

MVME147BUG
147Bug Debugging Package

User’s Manual

Part 1 of 2

V147BUGA1/UM1

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document,
or from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in the content hereof
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise,
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about
Motorola products (machines and programs), programming, or services that are
not announced in your country. Such references or information must not be
construed to mean that Motorola intends to announce such Motorola products,
programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

Preface

The MVME147Bug -- 147Bug Debugging Package UserÕs Manual provides general
information about the debugger, the debugger command set, use of the one-line
assembler/disassembler, system calls, and a diagnostic Þrmware guide for the
147Bug Debugging Package.

The manual is bound in two parts:

Part 1 (V147BUGA1/UM1, this volume) contains Chapters 1 through 4.

Part 2 (V147BUGA2/UM1) contains Chapters 5 and 6 and Appendices A
through F.

The table of contents and index appear in both volumes.

The manual should be used by anyone who wants general as well as technical
information about the 147Bug Debugging Package. A basic knowledge of
computers and digital logic is assumed. To use this manual, you should be familiar
with the publications listed in the table below.

Related Documentation

The following publications are applicable to the 147Bug debugging package and
may provide additional helpful information. If not shipped with this product, they
may be purchased by contacting your local Motorola sales ofÞce. Non-Motorola
documents may be obtained from the sources listed.

Document Title
Motorola

Publication
Number

MVME147-0xx MPU VMEmodule Installation and Use VME147A/IH
MVME147FW SCSI Firmware User's Manual2 MVME147FW/D
MVME147BUG 147Bug Debugging Package UserÕs Manual Parts 1 and 2
(this manual)2

V147BUGA1/UM
V147BUGA2/UM

MVME147S MPU VMEmodule UserÕs Manual MVME147S/D
MVME712M Transition Module and P2 Adapter Board
Installation and Use

VME712MA/IH

MVME712-12, MVME712-13, MVME712A, MVME712AM, and
MVME712B Transition Modules and LCP2 Adapter Board UserÕs Manual

MVME712A/D

MC68030 32-Bit Microprocessor User's Manual MC68030UM
MC68881/MC68882 Floating-Point Coprocessor User's Manual MC68881UM
MVME050 System Controller Module User's Manual MVME050/D

Notes 1. Although not shown in the above list, each Motorola Computer
Group manual publication number is suffixed with characters
which represent the revision level of the document, such as Ò/D2Ó
or Ò/UM2Ó (the second revision of a manual); a supplement bears
the same number as the manual but has a suffix such as ÒD2A1Ó or
Ò/UM2A1Ó (the first supplement to the manual).

2. Manuals shown with a superscript (2) can be ordered as a set with
the part number LK-147SET.

The following publications are available from the sources indicated.

Z8530A Serial Communications Controller data sheet; Zilog, Inc., Corporate
Communications, Building A, 1315 Dell Ave., Campbell, California 95008

SCSI Small Computer System Interface; draft X3T9.2/82-2 - Revision 14; Computer
and Business Equipment Manufacturers Association, 311 First Street, N. W., Suite
500, Washington D.C. 20001

MK48T02 2K x 8 ZEROPOWER/TIMEKEEPER RAM data sheet; Thompson
Components- Mostek Corporation, 1310 Electronics Drive, Carrollton, Texas 75006

WD33C93 SCSI-Bus Interface Controller; WESTERN DIGITAL Corporation, 2445
McCabe Way, Irvine, California 92714

MVME319 Intelligent Disk/Tape Controller User's Manual MVME319/D
MVME320A VMEbus Disk Controller Module User's Manual MVME320A/D
MVME320B VMEbus Disk Controller Module User's Manual MVME320B/D
MVME321 Intelligent Disk Controller User's Manual MVME321/D
MVME321 IPC Firmware User's Guide MVME321FW/D
MVME327A VMEbus to SCSI Bus Adapter and MVME717 Transition
Module User's Manual

MVME327A/D

MVME350 Streaming Tape Controller VMEmodule User's Manual MVME350/D
MVME350 IPC Firmware User's Manual MVME350FW/D
MVME360 SMD Disk Controller User's Manual MVME360/D

Document Title
Motorola

Publication
Number

Local Area Network Controller Am7990 (LANCE), Technical Manual, order
number 06363A, Advanced Micro Devices, Inc., 901 Thompson Place, P.O Box
3453, Sunnyvale, CA 94088.

Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with speciÞc warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.
The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in the presence of ßammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a deÞnite safety hazard.

Keep Away From Live Circuits.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualiÞed maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.
Do not attempt internal service or adjustment unless another person capable of rendering Þrst aid and
resuscitation is present.

Use Caution When Exposing or Handling the CRT.
Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualiÞed maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modiÞcation of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are
present in this equipment. Use extreme caution when
handling, testing, and adjusting.

Manual Terminology

Throughout this manual, a convention has been maintained whereby data and
address parameters are preceded by a character which speciÞes the numeric
format as follows:

Unless otherwise speciÞed, all address references are in hexadecimal.

An asterisk (*) following the signal name for signals which are edge signiÞcant
denotes that the actions initiated by that signal occur on high to low transition.

In this manual, assertion and negation are used to specify forcing a signal to a
particular state. In particular, assertion and assert refer to a signal that is active or
true; negation and negate indicate a signal that is inactive or false. These terms are
used independently of the voltage level (high or low) that they represent.

Motorola¨ and the Motorola symbol are registered trademarks of Motorola, Inc.

All other products mentioned in this document are trademarks or registered
trademarks of their respective holders.

© Copyright Motorola, Inc. 1997
All Rights Reserved

Printed in the United States of America
March 1997

$ dollar speciÞes a hexadecimal number

% percent speciÞes a binary number

& ampersand speciÞes a decimal number

Contents

Description of 147Bug 1-1
How to Use This Manual 1-5
Installation and Start-up 1-5
Autoboot 1-8
ROMboot 1-9
Restarting the System 1-13

Reset 1-13
Abort 1-14
Reset and Abort - Restore Battery Backed Up RAM 1-15
Break 1-16

Memory Requirements 1-17
Disk I/O Support 1-23

Blocks Versus Sectors 1-23
Disk I/O via 147Bug Commands 1-24

IOP (Physical I/O to Disk) 1-24
IOT (I/O Teach) 1-24
IOC (I/O Control) 1-25
BO (Bootstrap Operating System) 1-25
BH (Bootstrap and Halt) 1-25

Disk I/O via 147Bug System Calls 1-25
Default 147Bug Controller and Device Parameters 1-27
Disk I/O Error Codes 1-27

Multiprocessor Support 1-28
Diagnostic Facilities 1-30
Entering Command Lines 2-1
Command Arguments 2-3

Expression as a Parameter 2-4
Address as a Parameter 2-6

Address Formats 2-6
Offset Registers 2-7

Port Numbers 2-9
Entering and Debugging Programs 2-10
Calling System Utilities from Your Programs 2-11
Preserving the Debugger Operating Environment 2-11

147Bug Vector Table and Workspace 2-11
Tick Timers 2-12

Exception Vectors Used By 147Bug 2-12
Using the 147Bug Target Vector Table 2-14
Creating a New Vector Table 2-15
147Bug Generalized Exception Handler 2-17

Memory Management Unit Support 2-18
Function Code Support 2-19

Introduction 3-1
Autoboot Enable/Disable - AB/NOAB 3-3
Block of Memory Compare - BC 3-5
Block of Memory Fill - BF 3-7
Bootstrap Operating System and Halt - BH 3-10
Block of Memory Initialize - BI 3-11
Block of Memory Move - BM 3-13
Bootstrap Operating System - BO 3-15
Breakpoint Insert/Delete - BR/NOBR 3-18
Block of Memory Search - BS 3-20
Block of Memory Verify - BV 3-24
Checksum - CS 3-26
Data Conversion - DC 3-29
Dump S-Records - DU 3-31
EEPROM Programming - EEP 3-35
Set Environment to Bug or OS - ENV 3-37
Go Execute Target Code - G/GO 3-43
Go Direct (Ignore Breakpoints) - GD 3-46
Go to Next Instruction - GN 3-48
Go to Temporary Breakpoint - GT 3-50
Help - HE 3-53
I/O Control for Disk/Tape - IOC 3-55
I/O Physical (Direct Disk/Tape Access) - IOP 3-56
I/O Teach for ConÞguring Disk Controller - IOT 3-62
Load S-Records from Host - LO 3-77
LAN Station Address Display/Set - LSAD 3-81
Macro DeÞne/Display/Delete - MA/NOMA 3-82
Macro Edit - MAE 3-85
Enable/Disable Macro Expansion Listing - MAL/NOMAL 3-87
Save/Load Macros - MAW/MAR 3-88
Memory Modify - M/MM 3-90
Memory Display - MD 3-93
Menu - MENU 3-95

Memory Set - MS 3-96
Set Memory Address from VMEbus - OBA 3-97
Offset Registers Display/Modify - OF 3-99
Printer Attach/Detach - PA/NOPA 3-102
Port Format/Detach - PF/NOPF 3-104

Listing Current Port Assignments 3-104
ConÞguring a Port 3-105
Parameters ConÞgurable by Port Format 3-106
Assigning a New Port 3-108
NOPF Port Detach 3-109

Put RTC in Power Save Mode for Storage - PS 3-110
ROMboot Enable/Disable - RB/NORB 3-111
Register Display - RD 3-113
Remote - REMOTE 3-119
Cold/Warm Reset - RESET 3-120
Register Modify - RM 3-122
Register Set - RS 3-124
Switch Directories - SD 3-125
Set Time and Date - SET 3-126
Trace - TRACE 3-127
Terminal Attach - TA 3-130
Trace on Change of Control Flow - TC 3-131
Display Time and Date - TIME 3-133
Transparent Mode - TM 3-134
Trace to Temporary Breakpoint - TT 3-135
Verify S-Records Against Memory - VE 3-137
Introduction 4-1

MC68030 Assembly Language 4-1
Machine-Instruction Operation Codes 4-2
Directives 4-2

Comparison with MC68030 Resident Structured Assembler 4-2
Source Program Coding 4-3

Source Line Format 4-3
Operation Field 4-4
Operand Field 4-5
Disassembled Source Line 4-6
Mnemonics and Delimiters 4-7
Character Set 4-9

Addressing Modes 4-9
DC.W - DeÞne Constant Directive 4-13

SYSCALL - System Call Directive 4-14
Entering and Modifying Source Programs 4-15

Invoking the Assembler/Disassembler 4-15
Entering a Source Line 4-16
Entering Branch and Jump Addresses 4-17
Assembler Output/Program Listings 4-17

List of Figures

Flow Diagram of 147Bug Normal Operational Mode 1-3
Flow Diagram of 147Bug System Operational Mode 1-4

List of Tables

DRAM Address Viewed from VMEbus 1-17
Debugger Address Parameter Formats 2-6
Exception Vectors Used by 147Bug 2-13
Debugger Commands 3-1
147Bug Assembler Addressing Modes 4-10
xv

xvi

1

1General Information
Description of 147Bug
The MVME147Bug (147Bug) package is a powerful evaluation and
debugging package for systems built around the MVME147
monoboard microcomputer. It contains facilities for loading and
executing user programs under complete operator control for
system evaluation. 147Bug includes:

❏ Commands for display and modification of memory

❏ Breakpoint and tracing capabilities

❏ A powerful assembler/disassembler useful for patching
programs

❏ A self-test at power-up feature that verifies the integrity of
the system

❏ Various 147Bug routines that handle I/O, data conversion,
and string functions available to user programs through the
TRAP #15 system calls

!
Caution

When using a 147Bug TRAP #15 function, the interrupt
mask is raised to level 7 and the MMU is disabled
during the TRAP #15 operation.

Optional ÒsystemÓ mode that allows autoboot on power-up or
reset, and a menu interface to several system commands used in
VME Delta Series systems.

The 147Bug consists of three parts:

❏ A command-driven, user-interactive software debugger,
described in Chapter 2 and hereafter referred to as the
debugger or 147Bug

❏ A command-driven diagnostic package for the MVME147
hardware, described in Chapter 6 and hereafter referred to as
the diagnostics
1-1

General Information
1

❏ A user interface that accepts commands from the system
console terminal

When using 147Bug, you operate in either of two directories:

❏ The debugger directory. In the debugger directory, the
debugger prompt 147-Bug> is displayed and you have all the
debugger commands at your disposal.

❏ The diagnostic directory. In the diagnostic directory, the
diagnostic prompt 147-Diag> is displayed and you have all
the diagnostic commands at your disposal as well as all of the
debugger commands.

You may examine the commands in the current directory by using
the Help (HE) command (refer to Chapter 3). You may switch
between directories by using the Switch Directories (SD) command

Because 147Bug is command-driven, it performs its various
operations in response to commands you enter at the keyboard.
When you enter a command, 147Bug executes the command and
again displays its prompt, except that when you enter a command
that causes execution of your target code (for example, GO), then
control may or may not return to 147Bug, depending on the
outcome of the program.

The flow of control in normal 147Bug operation is illustrated in
Figure 1-1. The flow of control in ÒsystemÓ mode is illustrated in
Figure 1-2.

The 147Bug commands are flexible, powerful, and Òuser-friendlyÓ,
with detailed error messages (refer to Appendix B) and an online
help facility.
1-2

Description of 147Bug
1

Figure 1-1. Flow Diagram of 147Bug Normal Operational Mode

GO TO
MAIN

11395.00 9602

RUN CONFIDENCE TEST

DISPLAY CONFIDENCE
TEST FAILURES, IF ANY.
DISPLAY DEBUGGER’S
NAME, VERSION AND
CPU CLOCK SPEED.

DISPLAY MMU AND FPC
TEST RESULTS.

DISPLAY COLD START
MESSAGE.

DISPLAY ON BOARD RAM
START AND STOP ADDRESS.

POWER-UP / RESET

POWER-UP

?

WARM START

?

SET DEBUGGER DIRECTORY

DISPLAY DEBUGGER’S
NAME, VERSION AND CPU

CLOCK SPEED

DISPLAY WARM START
MESSAGE

MODE

?

DISPLAY BUG’S PROMPT

INITIALIZE BUG VARIABLES

RUN MMU AND FPC
CONFIDENCE TEST

SET DEBUGGER DIRECTORY

DELAY

WAIT FOR INPUT

EXECUTE COMMAND

RESTORE TARGET STATE

EXCEPTION

YES

NO

DYNAMIC
BURN-IN

?

MAIN

ROMBOOT
ENABLED

?

ROMBOOT
EXECUTED

?

YES

NO

ROMBOOT
CODE INSTALLED

?

BURN-IN
LOOP

NO

GO TO
SYSTEM

NO

YES

BOOT

AUTOBOOT
ENABLED

?

YES

TARGET CODE

RETURN TO
BUG

?

YES ? ? ?

GO TO
MAIN

YES

NO

NO

NO

YES

YES

YES

NO

SYSTEM

BUG

NO

DOES COMMAND
CAUSE TARGET CODE

EXECUTION
?

EXCEPTION HANDLER

SAVE TARGET STATE

DISPLAY TARGET REGISTERS
1-3

General Information
1

Figure 1-2. Flow Diagram of 147Bug System Operational Mode

11396.00 9602

SYSTEM

SIZE SYSTEM MEMORY
DISPLAY OFFBOARD RAM

START AND STOP ADDRESS

WAIT 5 SECONDS
FOR “h” (HALT)

D1SPLAY SERVICE MENU

HALT

CONTINUE
START-UP

SELECT ALTERNATE
BOOT DEVELOPMENT

SYSTEM
DEBUGGER

SERVICE
CALL

DISPLAY
ERRORS

EXTENSIVE
SYSTEM

SELF TEST

OPERATING SYSTEM
OR

DIAGNOSTICS

BOOTLOADER

ERROR

ERROR

NO ERRORS

NO ERRORS

NO HALT
1-4

How to Use This Manual
1

How to Use This Manual
If you have never used a debugging package before you should
read all of Chapter 1 before attempting to use 147Bug. This gives an
overview of 147Bug structure and capabilities.

The Installation and Start-up section describes a step-by-step
procedure to power up the module and obtain the 147Bug prompt
on the terminal screen.

For a question about syntax or operation of a particular 147Bug
command, you may turn to the entry for that particular command
in the chapter describing the command set (refer to Chapter 3).

Some debugger commands take advantage of the built-in one-line
assembler/ disassembler. The command descriptions in Chapter 3
assume that you already understand how the assembler/
disassembler works. Refer to the assembler/disassembler
description in Chapter 4 for details on its use.

Note In the examples shown, all your input is in BOLD. This
is done for clarity in understanding the examples (to
distinguish between characters input by you and
characters output by 147Bug). The symbol (CR)
represents the Òcarriage returnÓ (Return or Enter) key
on the terminal keyboard.

Installation and Start-up
Even though the MVME147Bug EPROMs are installed on the
MVME147 module, for 147Bug to operate properly with the
MVME147, follow this set-up procedure. Refer to the MVME147-
0xx MPU VMEmodule Installation and Use manual for header and
parts locations.

Note The jumpering instructions that follow apply only to
MVME147modules with a suffix-01x or -02x. If you
have earlier boards, consult the MVME147 userÕs
manual that was furnished with your board.
1-5

General Information
1

!
Caution

Inserting or removing modules while power is applied
could damage module components.

1. Turn all equipment power OFF. Configure the jumper
headers J2 and J3 on the module as required for your
particular application.

!
Caution

Be sure chip orientation is correct, with pin 1 oriented
with pin 1 silkscreen markings on the board.

2. Be sure that the two 128K x 8 147Bug EPROMs are installed
in the U22 and U30 sockets on the MVME147 module, as
shown in the table below.

3. Refer to the set-up procedure for your particular chassis or
system and install the MVME147 as instructed.

4. Connect the terminal which is to be used as the 147Bug
system console to connector J7 (port 1) on the MVME712/
MVME712M front panel. Set up the terminal as follows:

Header Jumper ConÞguration

J2 Header J2 must be conÞgured with jumpers
positioned between pins 2-4, 3-5, 6-8, 13-15, and 14-
16 as shown. This sets EPROM sockets U22 and U30
for 128K x 8 devices. This is the factory
conÞguration.

J3 Header J3 enables (jumper installed) or disables (no
jumper) the system controller function.

EPROM Socket EPROM Description

U22 Even bytes, even Bxx label
U30 Odd bytes, odd Bxx label)

18

17

2

1 3 5 9 11 13 157

4 6 8 10 12 14 16
1-6

Installation and Start-up
1

Ð Eight bits per character

Ð One stop bit per character

Ð Parity disabled (no parity)

Ð 9600 baud to agree with default baud rate of the
MVME147 ports at power-up.

After power-up, the baud rate of the J7 port (port 1) can be
reconfigured by using the Port Format (PF) command of the
147Bug debugger.

Note In order for high-baud rate serial communication
between 147Bug and the terminal to work, the terminal
must do some handshaking. If the terminal being used
does not do hardware handshaking via the CTS line,
then it must do XON/XOFF handshaking. If you get
garbled messages and missing characters, then you
should check the terminal to make sure XON/XOFF
handshaking is enabled.

5. If you want to connect device(s) (such as a host computer
system or a serial printer) to ports 2, 3, and/or port 4 on the
MVME712/MVME712M, connect the appropriate cables and
configure the port(s) as detailed in the manual that you
received with your transition board. After power-up, these
ports can be reconfigured by using the PF command of the
147Bug debugger (refer to Chapters 2 and 3 of this manual).

6. Power up the system. The 147Bug executes self-checks and
displays the debugger prompt 147-Bug>.

If after a delay, the 147Bug begins to display test result
messages on the bottom line of the screen in rapid succession,
the MVME147 is in the 147Bug ÒsystemÓ mode. If this is not
the desired mode of operation, then press the ABORT switch
on the front panel of the MVME147. When the menu is
displayed, enter a 3 to go to the system debugger. (Refer to
Appendix A.) The environment may be changed by using the
Set Environment (ENV) command (Chapter 3).
1-7

General Information
1

When power is applied to the MVME147, bit 1 at location
$FFFE1029 (Peripheral Channel Controller (PCC) general
purpose status register) is set to 1 indicating that power was
just applied. (Refer to the MVME147-0xx MPU VMEmodule
Installation and Use manual for a description of the PCC.) This
bit is tested within the ÒResetÓ logic path to see if the power-
up confidence test needs to be executed. This bit is cleared by
writing a 1 to it, thus preventing any future power-up
confidence test execution.

Ð Successful Test: If the power-up confidence test is
successful and no failures are detected, the firmware
monitor comes up normally, with the FAIL LED off.

Ð Unsucessful Test: If the confidence test fails, the test is
aborted when the first fault is encountered and the FAIL
LED remains on. If possible, one of the following messages
is displayed:
... 'CPU Register test failed'
... 'CPU Instruction test failed'
... 'ROM test failed'
... 'RAM test failed'
... 'CPU Addressing Modes test failed'
... 'Exception Processing test failed'
... '+12v fuse is open'
... 'Battery low (data may be corrupted)'
... 'Unable to access non-volatile RAM properly'

The firmware monitor comes up with the FAIL LED on. Refer
to the trouble-shooting section of the MVME147-0xx MPU
VMEmodule Installation and Use manual.

7. After successfully powering up the system, you may wish to
use 147BugÕs SET command (Chapter 3) to verify the Real
Time Clock (RTC)Õs date and time.

Autoboot
Autoboot is a software routine that can be enabled by a flag in the
battery backed-up RAM to provide an independent mechanism for
booting an operating system. When enabled by the Autoboot (AB)
command, this autoboot routine automatically starts a boot from
the controller and device specified. It also passes on the specified
1-8

ROMboot
1

default string. This normally occurs at power-up only, but you may
change it to boot up at any board reset. NOAB disables the routine
but does not change the specified parameters. The autoboot
enable/disable command details are described in Chapter 3. The
default (factory-delivered) condition is with autoboot disabled.

If, at power-up, Autoboot is enabled and the drive and controller
numbers provided are valid, the following message is displayed on
the system console:

 “Autoboot in progress... To Abort hit <BREAK>”

Following this message there is a delay while the debug firmware
waits for the various controllers and drives to come up to speed.
Then the actual I/O is begun: the program pointed to within the
volume ID of the media specified is loaded into RAM and control
passed to it. If, however, during this time, you want to gain control
without Autoboot, hit the BREAK key.

ROMboot
This function is enabled by the ROMboot (RB) command and
executed at power-up (optionally also at reset), assuming there is
valid code in the ROMs (or optionally elsewhere on the module or
VMEbus) to support it. If ROMboot code is installed and the
environment has been set for Bug mode (refer to the Set
Environment to Bug or OS - ENV section in Chapter 3), a user-written
routine is given control (if the routine meets the format
requirements). One use of ROMboot might be resetting SYSFAIL*
on an unintelligent controller module. The NORB command
disables the function. For your module to gain control through the
ROMboot linkage, four requirements must be met:

1. Power must have just been applied (but the RB command can
change this to also respond to any reset).

2. Your routine must be located within the MVME147 ROM
memory map (but the RB command can change this to any
other portion of the onboard memory, or even off-board
VMEbus memory).
1-9

General Information
1

3. The ASCII string “BOOT” must be located within the specified
memory range.

4. Your routine must pass a checksum test, which ensures that
this routine was really intended to receive control at power-
up.

To prepare a module for ROMboot, the Checksum (CS) command
must be used. When the module is ready it can be loaded into RAM,
and the checksum generated and verified with the CS command.
(Refer to the CS command description and examples.)

The format of the beginning of the routine is as follows:

If you wish to make use of ROMboot you do not have to fill a
complete ROM. Any partial amount is acceptable, as long as the
length reflects where the checksum is correct. By convention within
Motorola, the checksum is placed in the two bytes following the
routine.

ROMboot searches for possible routines starting at the start of the
memory map first and checks for the “BOOT” indicator. Two events
are of interest for any location being tested:

1. The map is searched for the ASCII string “BOOT”.

2. If the ASCII string “BOOT” is found, it is still undetermined
whether the routine is meant to gain control. To verify that

Module
Offset Length Contents Description

$00 4 bytes BOOT ASCII string indicating possible
routine.

$04 4 bytes Entry
offset

Longword offset from “BOOT”.

$08 4 bytes Routine
length

Longword, includes length from
module offset $00 to and including
checksum.

$0C ? Routine
name

ASCII string containing routine
name.
1-10

ROMboot
1

this is the case, the bytes starting from the beginning of ÒBOOTÓ
through the end of the routine (as defined by the 4-byte
length at offset $8) are run through the checksum routine. If
both the even and odd bytes are zero, it is established that the
routine was meant to be used for ROMboot.

Under control of the RB command, the sequence of searches for
ÒBOOTÓ is as follows:

1. Search direct address (as set by the RB command).

2. Search non-volatile RAM (first 1K bytes of battery back-up
RAM).

3. Search complete ROM map.

4. Search local RAM (if RB command has selected to operate on
any reset), at all 8K byte boundaries starting at $00006000.

5. Search the VMEbus map (if so selected by the RB command)
on all 8K byte boundaries starting at the end of the onboard
RAM.

The following example performs the following:

1. Outputs a (CR)(LF) sequence to the default output port.

2. Displays the date and time from the current cursor position.

3. Outputs two more (CR)(LF) sequences to the default output
port.

4. Returns control to 147Bug.

The target code is first assembled and linked, leaving $00 in the
even and odd locations destined to contain the checksum.

Load the routine into RAM (with S-records via the LO command,
from a disk using IOP, or by hand using the MM command):
1-11

General Information
1

147-Bug>mds 6000 Display entire module
(zero checksums at $0000602C
and $0000602D).

00006000 424F 4F54 0000 0018 0000 002E 5465 7374 BOOT........Test
00006010 2052 4F4D 424F 4F54 4E4F 0026 4E4F 0052 ROMBOOTNO.&NO.R
00006020 4E4F 0026 4E4F 0026 4E4F 0063 0000 0000 NO.&NO.&NO.c....
00006030 0000 0000 0000 0000 0000 0000 0000 0000
00006040 0000 0000 0000 0000 0000 0000 0000 0000
00006050 0000 0000 0000 0000 0000 0000 0000 0000
00006060 0000 0000 0000 0000 0000 0000 0000 0000
00006070 0000 0000 0000 0000 0000 0000 0000 0000
00006080 0000 0000 0000 0000 0000 0000 0000 0000
00006090 0000 0000 0000 0000 0000 0000 0000 0000
000060A0 0000 0000 0000 0000 0000 0000 0000 0000
000060B0 0000 0000 0000 0000 0000 0000 0000 0000
000060C0 0000 0000 0000 0000 0000 0000 0000 0000
000060D0 0000 0000 0000 0000 0000 0000 0000 0000
000060E0 0000 0000 0000 0000 0000 0000 0000 0000
000060F0 0000 0000 0000 0000 0000 0000 0000 0000

147-Bug>md 6018;di Disassemble executable instructions.

00006018 4E4F0026 SYSCALL .PCRLF

0000601C 4E4F0052 SYSCALL .RTC_DSP

00006020 4E4F0026 SYSCALL .PCRLF

00006024 4E4F0026 SYSCALL .PCRLF

00006028 4E4F0063 SYSCALL .RETURN

0000602C 00000000 ORI.B #$0,D0

00006030 00000000 ORI.B #$0,D0

00006034 00000000 ORI.B #$0,D0

147-Bug>CS 6000 602E Perform checksum on locations
Effective Address: 00006000 6000 through 602E
Effective Address: 0000602D (refer to CS command).
Even/Odd = F99F

147-Bug> M 602C;B Insert checksum into bytes
0000602C 00 ?F9 $602C,$602D.

0000602D 00 ?9F.

147-Bug>CS 6000 602E Verify that checksum is correct.
Effective Address: 00006000

Effective Address: 0000602D.

Even/Odd = 0000
1-12

Restarting the System
1

147-Bug> mds 6000 Again display entire module
(now with checksums).

00006000 424F 4F54 0000 0018 0000 002E 5465 7374 BOOT........Test
00006010 2052 4F4D 424F 4F54 4E4F 0026 4E4F 0052 ROMBOOTNO.&NO.R
00006020 4E4F 0026 4E4F 0026 4E4F 0063 F99F 0000 NO.&NO.&NO.cy...
00006030 0000 0000 0000 0000 0000 0000 0000 0000
00006040 0000 0000 0000 0000 0000 0000 0000 0000
00006050 0000 0000 0000 0000 0000 0000 0000 0000
00006060 0000 0000 0000 0000 0000 0000 0000 0000
00006070 0000 0000 0000 0000 0000 0000 0000 0000
00006080 0000 0000 0000 0000 0000 0000 0000 0000
00006090 0000 0000 0000 0000 0000 0000 0000 0000
000060A0 0000 0000 0000 0000 0000 0000 0000 0000
000060B0 0000 0000 0000 0000 0000 0000 0000 0000
000060C0 0000 0000 0000 0000 0000 0000 0000 0000
000060D0 0000 0000 0000 0000 0000 0000 0000 0000
000060E0 0000 0000 0000 0000 0000 0000 0000 0000
000060F0 0000 0000 0000 0000 0000 0000 0000 0000
147-Bug>

The routine is now recognized by the ROMboot function when it is
enabled by the RB command.

Restarting the System
You can initialize the system to a known state in three different
ways: Reset, Abort, and Break.

Each has characteristics which make it more appropriate than the
others in certain situations.

Reset

Pressing and releasing the MVME147 front panel RESET switch
initiates a reset. COLD and WARM reset modes are available. By
default, 147Bug is in COLD reset mode (refer to the RESET
command description).

❏ COLD Reset. During a cold reset, a total board initialization
takes place, as if the MVME147 had just been powered up.
1-13

General Information
1

Ð The breakpoint table and offset registers are cleared.
Ð The user registers are invalidated.
Ð Input and output character queues are cleared.
Ð Onboard devices (timer, serial ports, etc.) are reset.
Ð All static variables (including disk device and controller

parameters) are restored to their default states.
Ð Serial ports are reconfigured to their default state.

❏ WARM Reset. A warm reset differs in that:
Ð The breakpoint table and offset registers are preserved.
Ð The user registers are preserved.
Ð All static variables (including disk device and controller

parameters) are preserved.

If the particular MVME147 is the system controller, then a system
reset is issued to the VMEbus and other modules in the system are
reset as well.

The local reset feature (when the MVME147 is NOT the system
controller) is a partial system reset, not a complete system reset
such as power-up or SYSRESET. When the local bus reset signal is
asserted, a local bus cycle may be aborted. Because the VMEchip is
connected to both the local bus and the VMEbus, if the aborted
cycle is bound for the VMEbus, erratic operation may result.

Communications between the local processor and the VMEbus
should be terminated by an abort; reset should be used only when
the local processor is halted or the local bus is hung and reset is the
last resort.

Reset must be used if the processor ever halts (as evidenced by the
MVME147 illuminated STAT LED), for example after a double bus
fault; or if the 147Bug environment is ever lost (vector table is
destroyed, etc.).

Abort
Pressing and releasing the ABORT switch on the MVME147 front
panel invokes an ÒabortÓ. When abort is invoked while executing a
user program (running target code), a ÒsnapshotÓ of the processor
state is captured and stored in the target registers. (When working
1-14

Restarting the System
1

in the debugger, abort captures and stores only the program
counter, status register, and format/vector information.) For this
reason, abort is most appropriate when terminating a user program
that is being debugged. Abort should be used to regain control if
the program gets caught in a loop, etc. The target PC, stack pointers,
etc., help to pinpoint the malfunction.

Abort generates a level seven interrupt (non-maskable). The target
registers, reflecting the machine state at the time the ABORT switch
was pushed, are displayed to the screen. Any breakpoints installed
in your code are removed and the breakpoint table remains intact.
Control is returned to the debugger.

Reset and Abort - Restore Battery Backed Up RAM

Pressing both the RESET and ABORT switches at the same time and
releasing the RESET switch before the ABORT switch initiates an
onboard reset and a restore of key Bug-dependent BBRAM
variables.

During the start of the reset sequence, if abort is invoked, then the
following conditions are set in BBRAM:

❏ SCSI ID set to 7.

❏ Memory sized flag is cleared (onboard memory is sized on
this reset).

❏ AUTOboot is turned off.

❏ ROMboot is turned off.

❏ Environment set for Bug mode.

❏ Automatic SCSI bus reset is turned off.

❏ Onboard diagnostic switch is turned on (for this reset only).

❏ System memory sizing is turned on (System mode).

❏ Console set to port 1 (LUN 0).

❏ Port 1 (LUN 0) set to use ROM defaults for initialization.

❏ Concurrent mode is turned off.
1-15

General Information
1

In this situation, if a failure occurs during the onboard diagnostics,
the FAIL LED repeatedly flashes a code to indicate the failure. The
on/off LED time for code flashing is approximately 0.25 seconds.
The delay between codes is approximately two seconds. To
complete bug initialization, press the ABORT switch while the LED
is flashing. When initialization is complete, a failure message is
displayed. LED flashes indicate confidence test failures per the
following table.

Break

Pressing and releasing the BREAK key on the terminal keyboard
generates a ÒbreakÓ. Break does not generate an interrupt. The only
time break is recognized is when characters are sent or received by
the console port. Break removes any breakpoints in your code and
keeps the breakpoint table intact. Break does not, however, take a
snapshot of the machine state nor does it display the target
registers.

Many times you may wish to terminate a debugger command prior
to its completion; for example, when displaying a large block of
memory. Break allows you to terminate the command without
overwriting the contents of the target registers, as would be done if
abort were used.

Number of
LED Flashes Description

1 CPU register test failure
2 CPU instruction test failure
3 ROM test failure
4 Onboard RAM test (Þrst 16KB) failure
5 CPU addressing mode test failure
6 CPU exception processing test failure
7 +12 Vdc fuse failure

10 NVRAM battery low
11 Trouble with the NVRAM
12 Trouble with the RTC
1-16

Memory Requirements
1

Memory Requirements
The program portion of 147Bug is approximately 256KB of code.
The EPROM sockets on the MVME147 are mapped starting at
location $FF800000, contained entirely in EPROM, and consist of
debugger and diagnostic packages. However, 147Bug code is
position-independent and executes anywhere in memory; SCSI
firmware code is not position-independent.

The 147Bug requires a minimum of 16KB of contiguous read/write
memory to operate.

When programming the PCC slave base address register, in order
to select the address at which onboard RAM appears from the
VMEbus, refer to the following table.

Table 1-1. DRAM Address Viewed from VMEbus

RBA4 RBA3 RBA2 RBA1 RBA0
Beginning
Address

Ending
Address

Notes

0 0 0 0 0 $00000000 (1 x DRAMsize)-1

0 0 0 0 1 1 x DRAMsize (2 x DRAMsize)-1 1, 2

0 0 0 1 0 2 x DRAMsize (3 x DRAMsize)-1 1, 2

0 0 0 1 1 3 x DRAMsize (4 x DRAMsize)-1 1, 2

0 0 1 0 0 4 x DRAMsize (5 x DRAMsize)-1 1, 2

0 0 1 0 1 5 x DRAMsize (6 x DRAMsize)-1 1, 2

0 0 1 1 0 6 x DRAMsize (7 x DRAMsize)-1 1, 2

0 0 1 1 1 7 x DRAMsize (8 x DRAMsize)-1 1, 2

0 1 0 0 0 8 x DRAMsize (9 x DRAMsize)-1 1, 2

0 1 0 0 1 9 x DRAMsize (10 x DRAMsize)-1 1, 2

0 1 0 1 0 10 x DRAMsize (11 x DRAMsize)-1 1, 2

0 1 0 1 1 11 x DRAMsize (12 x DRAMsize)-1 1, 2

0 1 1 0 0 12 x DRAMsize (13 x DRAMsize)-1 1, 2

0 1 1 0 1 13 x DRAMsize (14 x DRAMsize)-1 1, 2

0 1 1 1 0 14 x DRAMsize (15 x DRAMsize)-1 1, 2

0 1 1 1 1 15 x DRAMsize (16 x DRAMsize)-1 1, 2

1 0 0 0 0 16 x DRAMsize (17 x DRAMsize)-1 1, 2

1 0 0 0 1 17 x DRAMsize (18 x DRAMsize)-1 1, 2
1-17

General Information
1

The first 16KB of onboard RAM is used for 147Bug stack and static
variable space and the rest is reserved as user space. Whenever the
MVME147 is reset, the target PC is initialized to the address
corresponding to the beginning of the user space and the target
stack pointers are initialized to addresses within the user space.

1 0 0 1 0 18 x DRAMsize (19 x DRAMsize)-1 1, 2

1 0 0 1 1 19 x DRAMsize (20 x DRAMsize)-1 1, 2

1 0 1 0 0 20 x DRAMsize (21 x DRAMsize)-1 1, 2

1 0 1 0 1 21 x DRAMsize (22 x DRAMsize)-1 1, 2

1 0 1 1 0 22 x DRAMsize (23 x DRAMsize)-1 1, 2

1 0 1 1 1 23 x DRAMsize (24 x DRAMsize)-1 1, 2

1 1 0 0 0 24 x DRAMsize (25 x DRAMsize)-1 1, 2

1 1 0 0 1 25 x DRAMsize (26 x DRAMsize)-1 1, 2

1 1 0 1 0 26 x DRAMsize (27 x DRAMsize)-1 1, 2

1 1 0 1 1 27 x DRAMsize (28 x DRAMsize)-1 1, 2

1 1 1 0 0 $00000000 (1 x DRAMsize)-1 1, 3, 4

1 1 1 0 1 1 x DRAMsize (2 x DRAMsize)-1 1, 3, 4

Notes 1. DRAMsize = the size of the DRAM. For example, if the 4Mb
version is used, then DRAMsize = $400000, and (3 x
DRAMsize)-1 = $BFFFFF.

2. When beginning address is less then 16MB, the DRAM
responds to standard or extended address modiÞers. When
beginning address is 16MB or greater, the DRAM responds to
extended address modiÞers only. Note that bits 4 and 5 in the
VMEchip Slave Address ModiÞer Register further control
response to standard and extended address modiÞers.

3. This combination pertains only to DRAMsize of 16Mb or
32MB.

4. The values shown in the table refer to extended addresses
only. In the standard address range the DRAM responds to
$000000 through $7FFFFF.

Table 1-1. DRAM Address Viewed from VMEbus (Continued)

RBA4 RBA3 RBA2 RBA1 RBA0
Beginning
Address

Ending
Address

Notes
1-18

Memory Requirements
1

The following abbreviated memory map for the MVME147
highlights addresses that might be of particular interest to you.
Note that addresses are assumed to be hexadecimal throughout this
manual. In text, numbers may be preceded with a dollar sign ($) for
identification as hexadecimal.

DRAM Location Function
00000000-000003FF Target vector area
00000400-000007FF Bug vector area
00000800-00000803 MPCR (Multi-Processor Control Register)
00000804-00000807 MPAR (Multi-Processor Address Register)
00000808-000037DF Work area and stack for MVME147 debug

monitor
000037E0-00003FFF SCSI Þrmware work area

EPROM Location Function
FF800000-FF800003 Supervisor stack address used when

RESET switch is pressed
FF800004-FF800007 Program Counter (PC) used when RESET

switch is pressed
FF800008-FF80000B Size of code
FF80000C-FF80000F Reserved
FF83FFFA-FF83FFFB Even/odd revision number of the two

monitor EPROMs
FF83FFFC-FF83FFFD Even/odd socket number where monitor

EPROMs reside
FF83FFFE-FF83FFFF Even/odd checksum of the two monitor

EPROMs
FFA00000-FFBFFFFF Reserved for user
1-19

General Information
1

Note: $FF800000 to $FF83FFFF in sockets U22 (even) and U30 (odd)
 $FFA00000 to $FFBFFFFF in sockets U1 (even), U15 (odd)

BBRAM Location Function
FFFE0000-FFFE03FF Reserved for user
FFFE0000-FFFE000F Dynamic burnin pattern (0F-00 do burnin

loop in factory only)
FFFE0400-FFFE05FF Reserved for operating system use
FFFE0600-FFFE06C1 Disk/Tape I/O Map, set via the IOT

command
FFFE06C2-FFFE073E Reserved for Bug use
FFFE073F Maintain Concurrent Mode through a

Power Cycle/Reset, set via the ENV
command (Y/N)

FFFE0741 VMEchip VMEbus Interrupt Handler Mask
Register

FFFE0742 Power-up conÞdence test fail ßag
FFFE0743 CPU clock frequency
FFFE0744-FFFE0745 Onboard console port number
FFFE0746-FFFE0755 Serial port map (up to 8 ports)
FFFE0756 VMEchip Utility Interrupt Mask Register
FFFE0757 VMEchip Utility Interrupt Vector Register
FFFE0758 VMEchip GCSR Base Address

ConÞguration Register
FFFE0759 VMEchip Board IdentiÞcation Register
FFFE075A-FFFE075B Checksum for VMEchip registers
FFFE075C-FFFE075F VBR saved for MEMFIND routine
FFFE0760-FFFE0761 Board base number (BCD)
FFFE0762 Board B number (BCD)
FFFE0763 Board Rev. letter (ASCII)
FFFE0764-FFFE0767 System off-board RAM start address
FFFE0768-FFFE076B System off-board RAM end address
1-20

Memory Requirements
1

FFFE076C Execute/Bypass SST memory test, set via
the ENV command

FFFE076D Board conÞguration register
FFFE076E Reset SCSI bus switch, set via RESET

command
FFFE076F Reserved
FFFE0770 Reserved
FFFE0771 Onboard diagnostic switch
FFFE0772 System memory sizing ßag
FFFE0773 Execute/Bypass auto self test, set via ENV

command
FFFE0774-FFFE0777 End of onboard memory+1, set via memory

sizing routine
FFFE0778-FFFE077A Ethernet station address.
FFFE077B Onboard memory sizing ßag.
FFFE077C-FFFE07A5 SCSI Þrmware jump table
FFFE077C Jump to SCSI command entry
FFFE0782 Jump to SCSI reactivation entry
FFFE0788 Jump to SCSI interrupt entry
FFFE078E Jump to SCSI FUNNEL command entry
FFFE0794 Jump to SCSI come-again entry
FFFE079A Jump to SCSI RTE entry
FFFE07A0-FFFE07A5 Reserved
FFFE07A6 Local SCSI ID level (7)
FFFE07A7-FFFE07C5 SCSI trace switches (reserved for internal

use).
FFFE07C6 AUTOboot controller number, set via AB

command
FFFE07C7 AUTOboot device number, set via AB

command
FFFE07C8-FFFE07E3 AUTOboot string, set via AB command
FFFE07E4 Off-board address multiplier, set via OBA

command
FFFE07E5-FFFE07E9 Reserved
1-21

General Information
1

FFFE07EA-FFFE07EF ROMboot direct address, set via RB
command

FFFE07F0 AUTOboot enable switch, set via [NO]AB
command (Y/N)

FFFE07F1 AUTOboot at power-up switch, set via
AB command (P/R)

FFFE07F2 ROMboot enable switch, set via [NO]RB
command (Y/N)

FFFE07F3 ROMboot from VMEbus switch, set via RB
command (Y/N)

FFFE07F4 ROMboot at power-up switch, set via RB
command (P/R)

FFFE07F5 RTC ßag
FFFE07F6 Bug/System switch, set via ENV

command (B/S)
FFFE07F7 Reserved
FFFE07F8-FFFE07FF Time of day clock

I/O Hardware Address Function
FFFE3002-FFFE3003 Serial port 1
FFFE3000-FFFE3001 Serial port 2
FFFE3802-FFFE3803 Serial port 3
FFFE3800-FFFE3801 Serial port 4
FFFE2800 Printer port
FFFE1000-FFFE102F PCC registers
FFFE1800-FFFE1803 LANCE (AM7990) registers
FFFE2000-FFFE201F VME gate array registers
FFFE4000-FFFE401F SCSI (WD33C93) registers
1-22

Disk I/O Support
1

Disk I/O Support
147Bug can initiate disk input/output by communicating with
intelligent disk controller modules over the VMEbus. Disk support
facilities built into 147Bug consist of:

❏ Command-level disk operations

❏ Disk I/O system calls (only via the TRAP #15 instruction) for
use by user programs

❏ Defined data structures for disk parameters

Parameters such as the following are kept in tables by 147Bug.

❏ Address where the module is mapped

❏ Type of devices attached to the controller module

❏ Number of devices attached to the controller module

Default values for these parameters are assigned at power-up and
cold-start reset, but may be altered as described in the Default
147Bug Controller and Device Parameters section in this chapter.

Appendix E contains a list of the controllers presently supported, as
well as a list of the default configurations for each controller.

Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A
disk is viewed by 147Bug as a storage area divided into logical
blocks. By default, the logical block size is set to 256 bytes for every
block device in the system. The block size can be changed on a per
device basis with the IOT command.

The sector defines the unit of information for the media itself, as
viewed by the controller. The sector size varies for different
controllers, and the value for a specific device can be displayed and
changed with the IOT command.
1-23

General Information
1

When a disk transfer is requested, The start and size of the transfer
is specified in blocks. 147Bug does the following:

❏ Translates this into an equivalent sector specification

❏ Passes it on to the controller to initiate the transfer

If the conversion from blocks to sectors yields a fractional sector
count, an error is returned and no data is transferred.

Disk I/O via 147Bug Commands

The following 147Bug commands are provided for disk I/O.
Detailed instructions for their use are found in Chapter 3. When a
command is issued to a particular controller LUN and device LUN,
these LUNs, 147Bug remembers them so that the next disk
command defaults to use the same controller and device.

IOP (Physical I/O to Disk)

IOP allows you to:

❏ Read or write blocks of data

❏ Format the specified device in a certain way

IOP does the following:

❏ Creates a command packet from the arguments you specified

❏ Invokes the proper system call function to carry out the
operation

IOT (I/O Teach)

IOT allows you to:

❏ Change any configurable parameters and attributes of the
device

❏ See the controllers available in the system
1-24

Disk I/O Support
1

IOC (I/O Control)

IOC allows you to:

❏ Send command packets as defined by the particular
controller directly.

❏ Look at the resultant device packet after using the IOP
command

BO (Bootstrap Operating System)

BO does the following:

❏ Reads an operating system or control program from the
specified device into memory

❏ Transfers control to it

BH (Bootstrap and Halt)

BH is used as a debugging tool. It does the following:

❏ Reads an operating system or control program from a
specified device into memory

❏ Returns control to 147Bug

Disk I/O via 147Bug System Calls

All operations that actually access the disk are done directly or
indirectly by 147Bug TRAP #15 system calls. (The command-level
disk operations provide a convenient way of using these calls
without writing and executing a program.)

The following system calls are provided to allow user programs to
do disk I/O:

.DSKRD Disk read. System call to read blocks from disk/tape
into memory.

.DSKWR Disk write. System call to write blocks from memory
onto disk/tape.
1-25

General Information
1

Refer to Chapter 5 for information on using these and other system
calls.

To perform a disk operation, 147Bug must eventually present a
particular disk controller module with a controller command
packet which has been especially prepared for that type of
controller module. (This is accomplished in the respective
controller driver module.) A command packet for one type of
controller module usually does not have the same format as a
command packet for a different type of module. The system call
facilities which do disk I/O do the following:

❏ Accept a generalized (controller-independent) packet format
as an argument

❏ Translate it into a controller-specific packet

❏ Send it to the specified device

Refer to the system call descriptions in Chapter 5 for details on the
format and construction of these standardized user packets.

The packets which a controller module expects to receive vary from
controller to controller. The disk driver module for the particular
hardware module (board) must take the standardized packet given
to a trap function and create a new packet which is specifically
tailored for the disk drive controller receiving it. Refer to
documentation on the particular controller module for the format
of its packets, and for using the IOC command.

.DSKCFIG Disk conÞgure. This function allows you to change the
conÞguration of the speciÞed device.

.DSKFMT Disk format. This function allows you to send a format
command to the speciÞed device.

.DSKCTRL Disk control. This function is used to implement any
special device control functions that cannot be
accommodated easily with any of the other disk/tape
functions.
1-26

Disk I/O Support
1

Default 147Bug Controller and Device Parameters

The IOT command, with the T (teach) option specified, must be
invoked to initialize the parameter tables for available controllers
and devices. This option instructs IOT to scan the system for all
currently supported disk/tape controllers (refer to Appendix E)
and build a map of the available controllers. This map is built in the
Bug RAM area, but can also be saved in NVRAM if so instructed. If
the map is saved in NVRAM, then after a reset, the map residing in
NVRAM is copied to the Bug RAM area and used as the working
map. If the map is not saved in NVRAM, then the map is temporary
and the IOT;T command must be invoked again if a reset occurs.

If the device is formatted and has a configuration area, then during
the first device access or during a boot, IOT is not required.
Reconfiguration is done automatically by reading the configuration
area from the device, then the descriptor for the device is modified
according to the parameter information contained in the
configuration area. (Appendix D has more information on the disk
configuration area.)

If the device is not formatted or of unknown format, or has no
configuration area, then before attempting to access the device, you
should verify the parameters, using IOT. The IOT command may
be used to manually reconfigure the parameter table for any
controller and/or device that is different from the default. These are
temporary changes and are overwritten with default parameters, if
a reset occurs.

The IOT;T command should also be invoked any time the
controllers are changed or when ever the NVRAM map has been
damaged or not initialized (“No Disk Controllers Available” is
displayed when the IOT;H command is invoked).

Disk I/O Error Codes

The 147Bug returns an error code if an attempted disk operation is
unsuccessful. Refer to Appendix F for an explanation of disk I/O
error codes.
1-27

General Information
1

Multiprocessor Support
The MVME147 dual-port RAM feature makes the shared RAM
available to remote processors as well as to the local processor.

A remote processor can initiate program execution in the local
MVME147 dual-I/O port RAM by issuing a remote GO command
using the Multiprocessor Control Register (MPCR). The MPCR,
located at shared RAM location base address plus $800, contains
one of two longwords used to control communication between
processors. The MPCR contents are organized as follows:

The codes stored in the MPCR are of two types:

❏ Status returned (from 147Bug):

❏ Command set by the bus master (job requested by some
processor):

The Multiprocessor Address Register (MPAR), located in shared
RAM location base address plus $804, contains the second of two
longwords used to control communication between processors.
The MPAR contents specify the physical address (as viewed from

Base Address + $800 * N/A N/A N/A MPCR

HEX 0 (Hexadecimal 0) Wait. Initialization not yet
complete.

ASCII R (Hexadecimal 52) Ready. The Þrmware is
watching for a change.

ASCII E (Hexadecimal 45) Code pointed to by the MPAR
is executing.

ASCII G (Hexadecimal 47) Use Go Direct (GD) logic
specifying the MPAR address.

ASCII B (Hexadecimal 42) Recognize breakpoints using
the Go (G) logic.
1-28

Multiprocessor Support
1

the local processor) at which execution for the remote processor is
to begin if the MPCR contains a G or a B. The MPAR is organized
as follows:

At power-up, the debug monitor self-test routines initialize RAM,
including the memory locations used for multiprocessor support
($800 through $807).

The MPCR contains $00 at power-up, indicating that initialization
is not yet complete. As the initialization proceeds, the execution
path comes to the ÒpromptÓ routine. Before sending the prompt,
this routine places an R in the MPCR to indicate that initialization
is complete. Then the prompt is sent.

If no terminal is connected to the port, the MPCR is still polled to
see whether an external processor requires control to be passed to
the dual-port RAM. If a terminal does respond, the MPCR is polled
for the same purpose while the serial port is being polled for your
input.

An ASCII G placed in the MPCR by a remote processor indicates
that the Go Direct type of transfer is requested. An ASCII B in the
MPCR indicates that previously set breakpoints are enabled when
control is transferred (as with the Go command).

In either sequence, an E is placed in the MPCR to indicate that
execution is underway just before control is passed to the execution
address. (Any remote processor could examine the MPCR
contents.)

If the code being executed is to reenter the debug monitor, a TRAP
#15 call using function $0063 (SYSCALL .RETURN) returns control
to the monitor with a new display prompt. Note that every time the
debug monitor returns to the prompt, an R is moved into the MPCR
to indicate that control can be transferred once again to a specified
RAM location.

Base Address + $804 MSB * * LSB MPAR
1-29

General Information
1

Diagnostic Facilities
Included in the 147Bug package is a complete set of hardware
diagnostics intended for testing and troubleshooting of the
MVME147 (refer to Chapter 6). In order to use the diagnostics, you
must be in the diagnostic directory. If you are in the debugger
directory, you can switch to the diagnostic directory by entering the
debugger command Switch Directories (SD). The diagnostic
prompt 147-Diag> should appear.

Refer to Chapter 6 for complete descriptions of the diagnostic
routines available and instructions on how to invoke them. Note
that some diagnostics depend on restart defaults that are set up
only in a particular restart mode. Refer to the documentation on a
particular diagnostic for the correct mode.
1-30

2
2Using the Debugger
Entering Command Lines
147Bug is command-driven and performs its various operations in
response to the commands entered at the keyboard. When the
debugger prompt 147-Bug> appears on the terminal screen, the
debugger is ready to accept commands.

As the command line is entered it is stored in an internal buffer.
Execution begins only after the carriage return is entered, thus
allowing you to correct entry errors, if necessary.

When a command is entered the debugger executes the command
and the prompt reappears. However, if the command entered
causes execution of your target code; i.e., GO, then control may or
may not return to the debugger, depending on what the your
program does. For example, if a breakpoint has been specified, then
control is returned to the debugger when the breakpoint is
encountered during execution of your program. Alternately, your
program could return control to the debugger by means of the
TRAP #15 function .RETURN (described in Chapter 5). For more
about this, refer to the description in Chapter 3 for the GO
commands.

In general, a debugger command is made up of the following parts:

a. The command identifier; i.e., MD or md for the memory
display command. Note that either upper- or lower-case
may be used.

b. A port number, if the command is set up to work with
more than one port.

c. At least one intervening space before the first argument.

d. Any required arguments, as specified by the command.
2-1

Using the Debugger

2
 e. An option field, set off by a semicolon (;) to specify
conditions other than the default conditions of the
command.

When entering a command at the prompt, the following control
codes may be entered for limited command line editing.

Note The presence of the upward caret (^) before a character
indicates that the Control or CTRL key must be held
down while striking the character key.

When observing output from any 147Bug command, the XON and
XOFF characters which are in effect for the terminal port may be
entered to control the output, if the XON/XOFF protocol is enabled
(default). These characters are initialized to ̂ S and ̂ Q respectively
by 147Bug but may be changed by using the PF command. In the
initialized (default) mode, operation is as follows:

The following conventions are used in the command syntax,
examples, and text in this manual:

^X Cancel line The cursor is backspaced to the beginning
of the line. If the terminal port is conÞgured
with the hardcopy or TTY option (see PF
command) then a carriage return and line
feed is issued along with another prompt.

^H Backspace The cursor is moved back one position. The
character at the new cursor position is
erased. If the hardcopy option is selected a
Ò/Ó character is typed along with the
deleted character.

Delete Delete Performs the same function as ^H.
^D Redisplay The entire command line as entered so far

is redisplayed on the following line.

^S Wait Console output is halted.
^Q Resume Console output is resumed.
2-2

Command Arguments

2

Follow all inputs by pressing the carriage return key (Return or
Enter). This is shown, as (CR), only if it is the only input required.

Command Arguments
The following syntactic variables are encountered in the command
descriptions which follow. In addition, other syntactic variables
may be used and are defined in the particular command
description in which they occur.

boldface string A boldface string is a literal such as a
command or a program name, and is to be
typed just as it appears.

italic string An italic string is a Òsyntactic variableÓ and
is to be replaced by one of a class of items it
represents.

Fixed space font Used throughout in examples of screen
data.

| A vertical bar separating two or more items
indicates that a choice is to be made; only
one of the items separated by this symbol
should be selected.

[] Square brackets enclose an item that is
optional. The item may appear zero or one
time.

[]. . . Square brackets, followed by an ellipsis
(three dots) enclose an item that is
optional/repetitive. The item may appear
zero or more times.

del Delimiter; either a comma or a space.
exp Expression (described in detail in the Expression as a

Parameter section in this chapter).
addr Address (described in detail in the Address as a Parameter

section in this chapter).
count Count; the syntax is the same as for exp.
2-3

Using the Debugger

2

Expression as a Parameter

An expression can be one or more numeric values separated by these
arithmetic operators:

Numeric values may be expressed in either Hexadecimal, Decimal,
Octal, or Binary by immediately preceding them with the proper
base identifier, as shown in the following table.

If no base identifier is specified, then the numeric value is assumed
to be hexadecimal.

A numeric value may also be expressed as a string literal of up to
four characters. The string literal must begin and end with the
single quote mark ('). The numeric value is interpreted as the
concatenation of the ASCII values of the characters. This value is
right-justified, as any other numeric value would be.

range A range of memory addresses which may be speciÞed
either by addr del addr or by addr : count.

text An ASCII string of up to 255 characters, delimited at each
end by the single quote mark (').

+ Plus
- Minus
* Multiply by
/ Divide by
& Logical AND
<< Shift left
>> Shift right

Base IdentiÞer Examples

Hexadecimal $ $FFFFFFFF

Decimal & &1974, &10-&4

Octal @ @456

Binary % %1000110
2-4

Command Arguments

2
String literal examples:

Evaluation of an expression is performed according to the
following rules:

❏ Always evaluated from left to right unless parentheses are
used to group part of the expression

❏ No operator precedence

❏ Sub-expressions within parentheses evaluated first

❏ Nested parenthetical sub-expressions evaluated from the
inside out

Valid expression examples.

The total value of the expression must be between 0 and
$FFFFFFFF.

String Literal
Numeric Value
 (in Hexadecimal)

'A' 41

'ABC' 414243

'TEST' 54455354

Expression
Result
(in Hexadecimal) Notes

FF0011 FF0011

45+99 DE

&45+&99 90

@35+@67+@10 5C

%10011110+%1001 A7

88<<4 880 shift left

AA&F0 A0 logical AND
2-5

Using the Debugger

2
 Address as a Parameter

Many commands use addr as a parameter. The syntax accepted by
147Bug is similar to the one accepted by the MC68030 one-line
assembler. All control addressing modes are allowed. An Òaddress+
offset registerÓ mode is also provided.

Address Formats

Table 2-1 summarizes the address formats which are acceptable for
address parameters in debugger command lines.

Table 2-1. Debugger Address Parameter Formats

Format Example Description

N 140 Absolute address+contents of
automatic offset register.

N+Rn 130+R5 Absolute address+contents of
the speciÞed offset register
(not an assembler-accepted
syntax).

(An) (A1) Address register indirect,
also post-increment,
pre-decrement)

(d,An) or
d(An)

(120,A1)
120(A1)

Address register indirect with
displacement (two formats
accepted).

(d,An,Xn) or
d(An,Xn)

(&120,A1,D2)
&120(A1,D2)

Address register indirect with
index and displacement (two
formats accepted).

([bd,An,Xn],od) ([C,A2,A3],&100) Memory indirect preindexed.

([bd,An],Xn,od) ([12,A3],D2,&10) Memory indirect postindexed.
2-6

Command Arguments

2

Offset Registers

Eight pseudo-registers (R0 through R7) called offset registers are
used to simplify the debugging of relocatable and position-
independent modules. The listing files in these types of programs
usually start at an address (normally 0) that is not the one in which
they are loaded, so it is harder to correlate addresses in the listing
with addresses in the loaded program. The offset registers solve
this problem by taking into account this difference and forcing the
display of addresses in a relative address+offset format.

For the memory indirect modes, Þelds can be omitted. For example,
three of many permutations are as follows:

([,An],od) ([,A1],4)

([bd]) ([FC1E])

([bd,,Xn]) ([8,,D2])

Notes 1. N Absolute address (any valid expression).
An Address register n.
Xn Index register n (An or Dn).
d Displacement (any valid expression).
bd Base displacement (any valid expression).
od Outer displacement (any valid expression).
n Register number (0 to 7).
Rn Offset register n.

2. In commands with range speciÞed as addr del addr, and
with size option W or L chosen, data at the second
(ending) address is acted on only if the second address
is a proper boundary for a word or longword,
respectively.

Table 2-1. Debugger Address Parameter Formats (Continued)

Format Example Description
2-7

Using the Debugger

2
 Offset registers have adjustable ranges and may even have
overlapping ranges. The range for each offset register is set by two
addresses:

❏ Base

❏ Top

Specifying the base and top addresses for an offset register sets its
range. In the event that an address falls in two or more offset
registers' ranges, the one that yields the least offset is chosen. For
additional information about the offset registers, see the OF
command description.

Note Relative addresses are limited to 1MB (5 digits),
regardless of the range of the closest offset register.

Example

A portion of the listing file of an assembled, relocatable module is
shown below:

 1
 2 *
 3 * MOVE STRING SUBROUTINE
 4 *
 5 0 00000000 48E78080 MOVESTR MOVEM.L D0/A0,—(A7)
 6 0 00000004 4280 CLR.L D0
 7 0 00000006 1018 MOVE.B (A0)+,D0
 8 0 00000008 5340 SUBQ.W #1,D0
 9 0 0000000A 12D8 LOOP MOVE.B (A0)+,(A1)+
10 0 0000000C 51C8FFFC MOVS DBRA D0,LOOP
11 0 00000010 4CDF0101 MOVEM.L (A7)+,D0/A0
12 0 00000014 4E75 RTS
13
14 END
****** TOTAL ERRORS 0——
****** TOTAL WARNINGS 0——
2-8

Command Arguments

2
The above program was loaded at address $0001327C.

The disassembled code is shown next:

147Bug>MD 1327C;DI
0001327C 48E78080 MOVEM.L D0/A0,—(A7)
00013280 4280 CLR.L D0
00013282 1018 MOVE.B (A0)+,D0
00013284 5340 SUBQ.W #1,D0
00013286 12D8 MOVE.B (A0)+,(A1)+
00013288 51C8FFFC DBF D0,$13286
0001328C 4CDF0101 MOVEM.L (A7)+,D0/A0
00013290 4E75 RTS
147Bug>

By using one of the offset registers, the disassembled code
addresses can be made to match the listing file addresses as follows:

147Bug>OF R0
R0 =00000000 00000000? 1327C:16. <CR>
147Bug>MD 0+R0;DI <CR>
00000+R0 48E78080 MOVEM.L D0/A0,—(A7)
00004+R0 4280 CLR.L D0
00006+R0 1018 MOVE.B (A0)+,D0
00008+R0 5340 SUBQ.W #1,D0
0000A+R0 12D8 MOVE.B (A0)+,(A1)+
0000C+R0 51C8FFFC DBF D0,$A+R0
00010+R0 4CDF0101 MOVEM.L (A7)+,D0/A0
00014+R0 4E75 RTS
147Bug>

Port Numbers

Some 147Bug commands give you the option of choosing the port
which is to be used to input or output. The valid port numbers
which may be used for these commands are:

0 MVME147 RS-232-D (MVME712/MVME712M serial port 1)
1 MVME147 RS-232-D (MVME712/MVME712M serial port 2)
2 MVME147 RS-232-D (MVME712/MVME712M serial port 3)
3 MVME147 RS-232-D (MVME712/MVME712M serial port 4)
4 MVME147 Printer Port (MVME712/MVME712M printer)
2-9

Using the Debugger

2

Entering and Debugging Programs
There are various ways to enter your program into system memory
for execution. One way is to create the program using 147BugÕs
Memory Modify (MM) command with the assembler/
disassembler option. The program is entered one source line at a
time. After each source line is entered, it is assembled and the object
code is loaded to memory. Refer to Chapter 4 for complete details
of the 147Bug assembler/disassembler.

Another way to enter a program is to download an object file from
a host system. The program must be in S-record format (described
in Appendix C) and may have been assembled or compiled on the
host system. Alternately, the program may have been previously
created using the MM command as outlined above and stored to
the host using the Dump (DU) command. If a communication link
exists between the host system and the MVME147 then the file can
be downloaded from the host into MVME147 memory via the
debugger Load (LO) command.

One more way is by reading in the program from disk, using one of
the disk commands:

❏ BO

❏ BH

❏ IOP

Note These logical port numbers (0, 1, 2, 3, and 4) are
referred to as ÒSerial Port 1Ò, ÒSerial Port 2Ò, ÒSerial
Port 3Ò, ÒSerial Port 4Ò, and ÒPrinter PortÓ,
respectively, by the MVME147 hardware
documentation and by the MVME712/MVME712M
hardware documentation.

For example, the command DU1 (Dump S-records to
Port 1) would actually output data to the device
connected to the serial port labeled SERIAL PORT 2 on
the MVME712/MVME712M panel.
2-10

Calling System Utilities from Your Programs

2
When the object code has been loaded into memory, you can:

❏ Set breakpoints

❏ Run the code

❏ Trace through the code

Calling System Utilities from Your Programs
A convenient way of doing character input/output, and many
other useful operations has been provided so that you do not have
to write these routines into the target code. You have access to
various 147Bug routines via the MC68030 TRAP #15 instruction
vector. Refer to Chapter 5 for details on the various TRAP #15
utilities available and how to invoke them from within your
program.

Preserving the Debugger Operating
Environment

This section explains how to avoid contaminating the operating
environment of the debugger. 147Bug uses certain of the MVME147
onboard resources and uses onboard memory to contain temporary
variables, exception vectors, etc. If you disturb resources upon
which 147Bug depends, then the debugger may function unreliably
or not at all.

147Bug Vector Table and Workspace

As described in the Memory Requirements section in Chapter 1,
147Bug needs 16KB of read/write memory to operate. 147Bug
reserves a 1024-byte area for a user program vector table area and
then allocates another 1024-byte area and builds an exception
vector table for the debugger itself to use. Next, 147Bug:

❏ Reserves space for static variables
2-11

Using the Debugger

2
 ❏ Initializes the static variables to predefined default values

❏ Allocates space for the system stack

❏ Initializes the system stack pointer to the top of this area

With the exception of the first 1024-byte vector table area, you must
be extremely careful not to use the above-mentioned memory areas
for other purposes. Refer to the Memory Requirements section in
Chapter 1 to determine how to dictate the location of the reserved
memory areas. If, for example, your program inadvertently wrote
over the static variable area containing the serial communication
parameters, these parameters would be lost, resulting in a loss of
communication with the system console terminal. If your program
corrupts the system stack, then an incorrect value may be loaded
into the processor Program Counter (PC), causing a system crash.

Tick Timers

The MVME147 uses the PCC tick timer 1 to generate accurate
delays for program timing (refer to MVME147 MPU VMEmodule
User's Manual).

Exception Vectors Used By 147Bug

The exception vectors used by the debugger are listed below. These
vectors must reside at the specified offsets in the target program's
vector table for the associated debugger facilities (breakpoints,
trace mode, etc.) to operate.

When the debugger handles one of the exceptions listed in Table 2-
2, the target stack pointer is left pointing past the bottom of the
exception stack frame created; that is, it reflects the system stack
pointer values just before the exception occurred. In this way, the
operation of the debugger facility (through an exception) is
transparent to you.
2-12

Preserving the Debugger Operating Environment

2

Example

Trace one instruction using the debugger.

147Bug>RD
PC =00004000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004000 7055 MOVEQ.L # $55, D0
147Bug>T
PC =00004002 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000055 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004002 4E71 NOP
147Bug>

Table 2-2. Exception Vectors Used by 147Bug

Vector Offset Exception 147Bug Facility

$8 Bus Error
$10 Illegal Instruction Breakpoints (used by GO,

GN, GT)
$24 Trace Trace operations (such as T,

TC, TT)
$108 Level 7 Interrupt ABORT push-button
$BC TRAP #15 System calls (refer to

Chapter 5)
2-13

Using the Debugger

2
 Notice that the value of the target stack pointer register (A7) has not
changed even though a trace exception has taken place. Your
program may either use the exception vector table provided by
147Bug or it may create a separate exception vector table of its own.
The two following sections detail these two methods.

Using the 147Bug Target Vector Table

147Bug initializes and maintains a vector table area for target
programs. A target program is any program started by the bug:

❏ Manually with the GO command

❏ Manually with Trace commands (T, TL, TT)

❏ Automatically with the BO command

The start address of this target vector table area is the base address
($00) of the MVME147 module. This address is loaded into the
target-state VBR at power-up and cold-start reset and can be
observed by using the RD command to display the target-state
registers immediately after power-up.

147Bug initializes the target vector table with the debugger vectors
listed in Table 2-2 and fills the other vector locations with the
address of a generalized exception handler (refer to the 147Bug
Generalized Exception Handler section in this chapter). The target
program may take over as many vectors as desired by simply
writing its own exception vectors into the table. If the vector
locations listed in Table 2-2 are overwritten then the accompanying
debugger functions are lost.

147Bug maintains a separate vector table for its own use. In general,
you do not have to be aware of the existence of the debugger vector
table. It is completely transparent and you should never make any
modifications to the vectors contained in it.
2-14

Preserving the Debugger Operating Environment

2
Creating a New Vector Table

Your program may create a separate vector table in memory to
contain its own exception vectors. If this is done, the program must
change the value of the VBR to point at the new vector table. In
order to use the debugger facilities you can copy the proper vectors
from the 147Bug vector table into the corresponding vector
locations in your program vector table.

The vector for the 147Bug generalized exception handler (described
in detail in the 147Bug Generalized Exception Handler section in this
chapter may be copied from offset $3C (Uninitialized Interrupt) in
the target vector table to all locations in your program vector table
where a separate exception handler is not used. This provides
diagnostic support in the event that your program is stopped by an
unexpected exception. The generalized exception handler gives a
formatted display of the target registers and identifies the type of
the exception.

Example

The following routine builds a separate vector table and then
moves the VBR to point at it:

*
*** BUILDX - Build exception vector table ****
*
BUILDX MOVEC.L VBR,A0 Get copy of VBR.

LEA $10000,A1 New vectors at $10000.
MOVE.L $3C(A0),D0 Get generalized exception vector.
MOVE.W $3FC,D1 Load count (all vectors).

LOOP MOVE.L D0,(A1,D1) Store generalized exception vector.
SUBQ.W #4,D1
BNE.B LOOP Initialize entire vector table.
MOVE.L $8(A0),$8(A1) Copy bus error vector.
MOVE.L $10(A0),$10(A1) Copy breakpoints vector.
MOVE.L $24(A0),$24(A1) Copy trace vector.
MOVE.L $BC(A0),$BC(A1) Copy system call vector.
MOVE.L $108(A0),$108(A1) Copy ABORT vector.
LEA.L COPROCC(PC),A2 Get your exception vector.
MOVE.L A2,$2C(A1) Install as F-Line handler.
MOVEC.L A1,VBR Change VBR to new table.
RTS
END
2-15

Using the Debugger

2
 It may turn out that your program uses one or more of the exception
vectors that are required for debugger operation. Debugger
facilities may still be used, however, if your exception handler can
determine when to handle the exception itself and when to pass the
exception to the debugger.

When an exception occurs which you want to pass on to the
debugger; i.e., ABORT, your exception handler must read the
vector offset from the format word of the exception stack frame.
This offset is added to the address of the 147Bug target program
vector table (which your program saved), yielding the address of
the 147Bug exception vector. The program then jumps to the
address stored at this vector location, which is the address of the
147Bug exception handler.

Your program must make sure that there is an exception stack
frame in the stack and that it is exactly the same as the processor
would have created for the particular exception before jumping to
the address of the exception handler.

Example

The following example is an exception handler that can pass an
exception along to the debugger:

*
*** EXCEPT - Exception handler ****
*
EXCEPT SUBQ.L #4,A7 Save space in stack for a PC value.

LINK A6,#0 Frame pointer for accessing PC space.
MOVEM.L A0-A5/D0-D7,-(SP Save registers.
.
. Decide here if your code handles exception, if so, branch.
.
MOVE.L BUFVBR,A0 Pass exception to debugger; Get saved VBR
MOVE.W 14(A6),D0 Get the vector offset from stack frame.
AND.W #$0FFF,D0 Mask off the format information.
MOVE.L (A0,D0.W),4(A6) Store address of debugger exc handler.
MOVEM.L (SP)+,A0-A5/D0-D7 Restore registers.
UNLK A6
RTS Put addr of exc handler into PC and go.
2-16

Preserving the Debugger Operating Environment

2
147Bug Generalized Exception Handler

147Bug has a generalized exception handler which it uses to handle
all of the exceptions not listed in Table 2-2. For all these exceptions,
the target stack pointer is left pointing to the top of the exception
stack frame created. In this way, if an unexpected exception occurs
during execution of your code, you are presented with the
exception stack frame to help determine the cause of the exception.
The following example illustrates this:

Example

Bus error at address $F00000. It is assumed for this example that an
access of memory location $F00000 initiates bus error exception
processing.

147Bug>RD
PC =00004000 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000
00004000 203900F0 MOVE.L ($F00000).L,D0
147Bug>T

VMEbus Error

Exception: Long Bus Error
Format/Vector=B008
SSW=074D Fault Addr.=00F00000 Data In=FFFFFFFF Data Out=00004006
PC =00004000 SR =A700=TR:ALL_S._7_..... VBR =00000000
USP =00005830 MSP =00005C18 ISP* =00005FA4 SFC =0=F0
CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00005FA4
00004000 203900F0 MOVE.L ($F00000).L,D0
147Bug>
2-17

Using the Debugger

2
 Notice that the target stack pointer is different. The target stack
pointer now points to the last value of the exception stack frame
that was stacked. The exception stack frame may now be examined
using the MD command.

147Bug>MD (A7):&44
00005FA4 A700 0000 4000 B008 3EEE 074D FFFF 094E '..@.0.>n.M...N
00005FB4 00F0 0000 00F0 0000 0000 35EC 2039 0000 p...p....5l 9..
00005FC4 0000 400A 0000 4008 0000 4006 FFFF FFFF ..@...@...@.....
00005FD4 00F0 0000 100F F487 0000 A700 FFFF FFFF .p....t...'.....
00005FE4 0000 7FFF 0000 0000 9F90 0000 0000 6000'.
00005FF4 0000 0000 0000 0000
147Bug>

Memory Management Unit Support
The Memory Management Unit (MMU) is supported in 147Bug. An
MMU confidence check is run at power-up to verify that the
registers can be accessed. It also ensures that a context switch can
be done successfully. The commands RD, RM, MD, and MM have
been extended to allow display and modification of MMU data in
registers and in memory. MMU instructions can be
assembled/disassembled with the DI option of the MD/MM
commands. In addition, the MMU target state is saved and restored
along with the processor state as required when switching between
the target program and 147Bug. Finally, there is a set of diagnostics
to test functionality of the MMU.

At power-up, an MMU confidence check is executed. If an error is
detected the test is aborted and the message “MMU failed test” is
displayed. If the test runs without errors then the message ÒMMU
passed testÓ is displayed and an internal flag is set. This flag is later
checked by the bug when doing a task switch. The MMU state is
saved and restored only if this flag is set.

The MMU defines the Double Longword (DL) data type, which is
used when accessing the root pointers. All other registers are either
byte, word, or longword registers.

The MMU registers are shown below, along with their data types in
parentheses:
2-18

Memory Management Unit Support

2
Address Translation Control (ATC) Registers

Status Information Registers

For more information about the MMU, refer to the MC68030
Enhanced 32-Bit Microprocessor User's Manual.

Function Code Support

The function codes identify the address space being accessed on
any given bus cycle, and in general, they are an extension of the
address. This becomes more obvious when using a memory
management unit, because two identical logical addresses can be
made to map to two different physical addresses. In this case, the
function codes provide the additional information required to find
the proper memory location.

For this reason, the following debugger commands allow the
specification of function codes:

CRP CPU Root Pointer Register (DL)
SRP Supervisor Root Pointer Register (DL)
TC Translation Control Register (L)
TT0 Transparent Translation 0 Register (L)
TT1 Transparent Translation 1 Register (L)

MMUSR MMU Status Register (W)

MD Memory Display
MM Memory Modify
MS Memory Set
GO Go to target program
GD Go Direct (no breakpoints)
GT Go and set Temporary breakpoint
GN Go to Next instruction
BR Set BReakpoint
2-19

Using the Debugger

2
 The symbol ^ (up arrow or caret) following the address field
indicates that a function code specification follows. The function
code can be entered by specifying a valid function code mnemonic
or by specifying a number between 0 and 7. The syntax for an
address (addr) and function code (FC) specification is:

 addr^FC

The valid function code mnemonics are shown in the following
table:

Example

Change data at location $5000 in your data space:

147Bug>M 5000^ud
00005000^UD 0000 ? 1234.
147Bug>

Function
Code Mnemonic Description

0 F0 Unassigned, reserved
1 UD User Data
2 UP User Program
3 F3 Unassigned, reserved
4 F4 Unassigned, reserved
5 SD Supervisor Data
6 SP Supervisor Program
7 CS CPU Space Cycle

Notes 1. Using an unassigned or reserved function code or
mnemonic results in a Long Bus Error message.

2. If the symbol ^ (up arrow or caret) is used without
a function code or mnemonic, the function code
display is turned off.
2-20

3
3Debugger Command Set
Introduction
This chapter contains descriptions of each of the debugger
commands and provides one or more examples of each. Table 3-1
summarizes the 147Bug debugger commands.

Each of the individual commands is described in the following
pages. The command syntax is shown using the symbols explained
in Chapter 2. In the examples shown, all user input is in bold. This
is done for clarity in understanding the examples (to distinguish
between characters input by the user and characters output by
147Bug). The symbol (CR) represents the Òcarriage returnÓ (Return
or Enter) key on your terminal keyboard. The (CR) is shown only if
it is the only user input.

Table 3-1. Debugger Commands
Command
Mnemonic Title
AB/NOAB Autoboot Enable/Disable
BC Block Compare
BF Block of Memory Fill
BH Bootstrap Operating System and Halt
BI Block of Memory Initialize
BM Block of Memory Move
BO Bootstrap Operating System
BR/NOBR Breakpoint Insert/Delete
BS Block of Memory Search
BV Block of Memory Verify
CS Checksum
DC Data Conversion
DU Dump S-records
EEP EEPROM Programming
ENV Set Environment to Bug or Operating System
G/GO Go Execute Target Code
GD Go Direct (Ignore Breakpoints)
3-1

Debugger Command Set

3
 GN Go to Next Instruction and Stop
GT Go to Temporary Breakpoint
HE Help
IOC I/O Control for Disk/Tape
IOP I/O Physical (Direct Disk/Tape Access)
IOT I/O ÒTeachÓ for Disk ConÞguration
LO Load S-records from Host
LSAD LAN Station Address Display/Set
MA/NOMA Macro DeÞne/Display/Delete
MAE Macro Edit
MAL/NOMAL Enable/Disable Macro Expansion Listing
MAW/MAR Save/Load Macros
M/MM Memory Modify
MD Memory Display
MENU System Menu
MS Memory Set
OBA Set Memory Address from VMEbus
OF Offset Registers Display/Modify
PA/NOPA Printer Attach/Detach
PF/NOPF Port Format/Detach
PS Put RTC into Power Save Mode for Storage
RB/NORB ROMboot Enable/Disable
RD Register Display
REMOTE Connect the Remote Modem to CS0
RESET Cold/Warm Reset
RM Register Modify
RS Register Set
SD Switch Directories
SET Set Time and Date
T Trace Instruction
TA Terminal Attach
TC Trace on Change of Control Flow
TIME Display Time and Date
TM Transparent Mode
TT Trace to Temporary Breakpoint
VE Verify S-records Against Memory

Table 3-1. Debugger Commands (Continued)
Command
Mnemonic Title
3-2

Autoboot Enable/Disable - AB/NOAB

3

Autoboot Enable/Disable - AB/NOAB
Command Input

AB
NOAB

Description

The AB command lets you select the Logical Unit Number (LUN)
for the controller and device, and the default string that may be
used for an automatic boot function. (Refer to the Bootstrap
Operating System command, BO; Appendix E lists all the possible
LUNs). You can also select whether this occurs only at power-up,
or at any board reset. These selections are stored in the BBRAM that
is part of the MK48T02 (RTC), and remain in effect through power-
up or any normal reset. The automatic boot function transfers
control to the controller and device specified by the AB command.

Note The Reset and Abort option sets the autoboot function
to the default condition (disabled) until enabled again
by the AB command.

The NOAB command disables the automatic boot function, but
does not change the options chosen. (Refer to Chapter 1 for details
on Autoboot.)

Example 1: Enable autoboot function.

147-Bug> ab
Controller LUN =00? (CR) Note 1
Device LUN =00? (CR) Note 2
Default string = ? VME147.. Note 3
Boot at Power up only or any board Reset [P,R] = P? (CR) Note 4
At power-up only:

Auto Boot from Controller 0, Device 0, VME147..

147-Bug
3-3

Debugger Command Set

3

Example 2: Disable autoboot function.

147-Bug> NOAB Note 5
No Auto Boot from Controller 0, Device 0, VME147...

147-Bug

Notes: 1. Select controller for boot.
2. Select device to boot from.
3. Select boot string to pass on.
4. If you select R, then autoboot is attempted at any board

reset.
5. This disables the autoboot function, but does not

change any options chosen under AB.
3-4

Block of Memory Compare - BC

3

!!
Block of Memory Compare - BC
Command Input

BC range del addr [; b|w|l]

Options (length of data Þeld)

Description

The BC command compares the contents of the block of memory at
addresses defined by range to the block of memory, beginning at
addr. The bytes that differ are displayed along with the addresses.
The differences are displayed in two columns; i.e., two to a line.

The option field is only allowed when range is specified using a
count. In this case, the b, w, or l defines the size of the data that the
count is referring to. For example, a count of four with an option of
l would mean to compare four longwords (or 16 bytes) to the addr
location. If an option field is specified without a count in the range,
an error results. An error also results if the beginning address is
greater than the ending address.

Examples

For the following examples, assume the following data is in
memory.

147-Bug>MD 20000:20,b
00020000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!!
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

147-Bug>MD 21000:20,b
00021000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

b Byte
w Word
l Longword
3-5

Debugger Command Set

3

Example 1: Memory compares, nothing printed.

147-Bug>BC 20000 2001F 21000
Effective address: 00020000

Effective address: 0002001F

Effective address: 00021000

147-Bug>

Example 2: Memory compares, nothing printed.

147-Bug>BC 20000:20 21000;b
Effective address: 00020000

Effective count : &32

Effective address: 00021000

147-Bug>

Example 3: Create a mismatch, mismatches are printed out.

147-Bug>MM 2100F;b
0002100F 21? 0.
147-Bug>BC 20000:20 21000;b
Effective address: 00020000

Effective count : &32

Effective address: 00021000

0002000F: 21 0002100F: 00

147-Bug>
3-6

Block of Memory Fill - BF

3

Block of Memory Fill - BF
Command Input

BF range del data [increment] [;b|w|l]

Arguments

data and increment are both expression parameters.

Options (length of data Þeld)

Description

The BF command fills the specified range of memory with a data
pattern. If an increment is specified, then data is incremented by this
value following each write, otherwise data remains a constant
value. A decrementing pattern may be accomplished by entering a
negative increment. The data entered by you is right-justified in
either a byte, word, or longword field (as specified by the option
selected). The default field length is w (word).

If the data you enter does not fit into the data field size, leading bits
are truncated to make it fit. If truncation occurs, a message is
printed stating the data pattern which was actually written (or
initially written if an increment was specified).

If the increment you enter does not fit into the data field size,
leading bits are truncated to make it fit. If truncation occurs, a
message is printed stating the increment which was actually used.

If the upper address of the range is not on the correct boundary for
an integer multiple of the data to be stored, data is stored to the last
boundary before the upper address. No address outside of the
specified range is ever disturbed in any case. The ÒEffective
addressÓ messages displayed by the command show exactly where
data was stored.

b Byte
w Word
l Longword
3-7

Debugger Command Set

3

q
.

.

.

For each of the following examples, assume memory from $20000
through $2002F is clear.

Example 1: Default data Þeld length.

147-Bug>BF 20000,2001F 4E71
Effective address: 00020000

Effective address: 0002001F

147-Bug>MD 20000:18
00020000 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020010 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020020 0000 0000 0000 0000 0000 0000 0000 0000

Because no option was specified, the length of the data field
defaulted to word.

Example 2: Data larger than speciÞed data Þeld size.

147-Bug>BF 20000:10 4E71 ;b
Effective address: 00020000

Effective count : &16

Data = $71

147-Bug>MD 20000:30;b
00020000 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 qqqqqqqqqqqqqqq
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The specified data did not fit into the specified data field size. The
data was truncated and the ÒData = Ò message was output.

Example 3: Upper address range not on correct boundary.

147-Bug>BF 20000,20006 12345678 ; l
Effective address: 00020000

Effective address: 00020003

147-Bug>MD 20000:30;b
00020000 12 34 56 78 00 00 00 00 00 00 00 00 00 00 00 00 .4Vx...........
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3-8

Block of Memory Fill - BF

3

The longword pattern would not fit evenly in the given range. Only
one longword was written and the ÒEffective addressÓ messages
reflect the fact that data was not written all the way up to the
specified address.

Example 4: Incrementing data.

147-Bug>BF 20000:18 0 1 Default size is word.
Effective address: 00020000

Effective count : &24

147-Bug>MD 20000:18
00020000 0000 0001 0002 0003 0004 0005 0006 0007
00020010 0008 0009 000A 000B 000C 000D 000E 000F
00020020 0010 0011 0012 0013 0014 0015 0016 0017
3-9

Debugger Command Set

3

Bootstrap Operating System and Halt - BH
Command Input

BH [controller LUN][del device LUN][del string]

Arguments

Description

BH is used to load an operating system or control program from
disk into memory. This command works in exactly the same way as
the BO command, except that control is not given to the loaded
program. After the registers are initialized, control is returned to
the 147Bug debugger and the prompt appears on the terminal
screen. Because control is retained by 147Bug, all the 147Bug
facilities are available for debugging the loaded program, if
necessary.

Example 1

Boot and halt from controller LUN 0, device LUN 1:

147-Bug>BH 0,1
147-Bug>

Example 2

Boot and halt from controller 3, device LUN $A and pass the string
Òtest2;dÓ to the loaded program:

147-Bug>BH 3,A,test2;d
147-Bug>

Refer to the BO command description for more detailed
information about what happens during bootstrap loading.

controller LUN LUN to which the following device is attached.
Defaults to LU 0.

device LUN LUN of the device to boot from. Defaults to LUN 0.
del Field delimiter: comma (,) or spaces ().
string String that is passed to the operating system or

control program loaded. Its syntax and use is
completely deÞned by the loaded program.
3-10

Block of Memory Initialize - BI

3

Block of Memory Initialize - BI
Command Input

BI range [;b|w|l]

Options

The BI command may be used to initialize parity for a block of
memory. The BI command is nondestructive; if the parity is correct
for a memory location, the contents of that memory location are not
altered.

The limits of the block of memory to be initialized may be specified
using a range. The length option is valid only when a count is
entered.

BI works through the memory block by reading from locations and
checking parity. If the parity is not correct, the data read is written
back to the memory location in an attempt to correct the parity. If
the parity is not correct after the write, the message ÒRAM FAIL” is
output and the address is given.

This command may take several seconds to initialize a large block
of memory.

For the following examples, assume system memory from $0 to
$000FFFFF, and that user memory starts at $4000.

Example 1: Range deÞned as start address and a count.

147-Bug>BI 0 : 10000 ;b
Effective address: 00000000

Effective count : &65536

147-Bug>

b Byte
w Word
l Longword
3-11

Debugger Command Set

3

Example 2: Range deÞned as start and end address.

147-Bug>BI 4000,FFFFF
Effective address: 00004000

Effective address: 000FFFFF

147-Bug>

Example 3: Parity error or memory fault.

147-Bug>BI 0,1FFFFF
Effective address: 00000000

Effective address: 001FFFFF

RAM FAIL AT $00100000

147-Bug>
3-12

Block of Memory Move - BM

3

!

!
Block of Memory Move - BM
Command Input

BM range del addr [;b|w|l]

Options

Description

The BM command copies the contents of the memory addresses
defined by range to another place in memory, beginning at addr.

The option field is only allowed when range is specified using a
count. In this case, the b, w, or l defines the size of data that the count
is referring to. For example, a count of 4 with an option of l would
mean to move 4 longwords (or 16 bytes) to the new location. If an
option field is specified without a count in the range, an error results.

Example 1: Assume memory from $20000 to $2002F is clear.

147-Bug>MD 21000:20;b
00021000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

147-Bug>BM 21000 2100F 20000
Effective address: 00021000

Effective address: 0002100F

Effective address: 00020000

147-Bug>MD 20000:20;b
00020000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

147-Bug>

Example 2: This utility is very useful for patching assembly code in
memory.

Suppose you had a short program in memory at address $20000...

b Byte
w Word
l Longword
3-13

Debugger Command Set

3

147-Bug>MD 20000 2000A;DI
00020000 D480 ADD.L D0,D2

00020002 E2A2 ASR.L D1,D2

00020004 2602 MOVE.L D2,D3

00020006 4E4F TRAP #15

00020008 0021 DC.W $21

0002000A 4E71 NOP

147-Bug>

Now suppose you would like to insert a NOP between the ADD.L
instruction and the ASR.L instruction. You could Block Move the
object code down two bytes to make room for the NOP.

147-Bug>BM 20002 2000B 20004
Effective address: 00020002

Effective address: 0002000B

Effective address: 00020004
147-Bug>MD 20000 2000C;DI
00020000 D480 ADD.L D0,D2

00020002 E2A2 ASR.L D1,D2

00020004 E2A2 ASR.L D1,D2

00020006 2602 MOVE.L D2,D3

00020008 4E4F TRAP #15

0002000A 0021 DC.W $21

0002000C 4E71 NOP

147-Bug>

Now you simply need to enter the NOP at address $20002.

147-Bug>MM 20002;DI
00020002 E2A2 ASR.L D1,D2 ? NOP
00020002 4E71 NOP

00020004 E2A2 ASR.L D1,D2 ? .

147-Bug>MD 20000 2000C;DI
00020000 D480 ADD.L D0,D2

00020002 4E71 NOP

00020004 E2A2 ASR.L D1,D2

00020006 2602 MOVE.L D2,D3

00020008 4E4F TRAP #15

0002000A 0021 DC.W $21

0002000C 4E71 NOP

147-Bug>
3-14

Bootstrap Operating System - BO

3

Bootstrap Operating System - BO
Command Input

BO [controller LUN][del device LUN][del string]

Arguments

Description

BO is used to load an operating system or control program from
disk into memory and give control to it. Where to find the program
and where in memory to load it is contained in block 0 of the device
LUN specified (refer to Appendix D). The device configuration
information is located in block 1 (refer to Appendix D). The
controller and device configurations used when BO is initiated can
be examined and changed via the I/O Teach (IOT) command.

The following sequence of events occurs when BO is invoked:

1. Block 0 of the controller LUN and device LUN specified is
read into memory.

2. Locations $F8 (248) through $FF (255) of block 0 are checked
to contain the string “MOTOROLA”.

3. The following information is extracted from block 0:

controller LUN Logical Unit Number (LUN) of the controller to
which the following device is attached. Defaults
to LUN 0.

device LUN LUN of the device to boot from. Defaults to LUN
0.

del Field delimiter: comma (,) or spaces ().
string String that is passed to the operating system or

control program loaded. Its syntax and use is
completely deÞned by the loaded program.

$90 (144) - $93 (147) ConÞguration area starting block.

$94 (148) ConÞguration area length in blocks.
3-15

Debugger Command Set

3

If any of the above two fields is zero, the present controller
configuration is retained; otherwise the first block of the
configuration area is read and the controller reconfigured.

4. The program is read from disk into memory. The following
locations from block 0 contain the necessary information to
initiate this transfer:

5. The first eight locations of the loaded program must contain
a Òpseudo reset vectorÓ, which is loaded into the target
registers:

0-3: Initial value for target system stack pointer.
4-7: Initial value for target PC. If less than load address+8,
then it represents a displacement that, when added to the
starting load address, yields the initial value for the target PC.

6. Other target registers are initialized with certain arguments.
The resultant target state is shown below:

PC = Entry point of loaded program (loaded from Òpseudo
 reset vectorÓ).
SR = $2700.
D0 = Device LUN.
D1 = Controller LUN.

A0 = Address of disk controller.
A1 = Entry point of loaded program.
A2 = Address of media configuration block. Zero if no

$14 (20) - $17 (23) Block number of Þrst sector to load from
disk.

$18 (24) - $19 (25) Number of blocks to load from disk.

$1E (30) - $21 (33) Starting memory location to load.

D4 = Flags for IPL; 'IPLx', with x = bits 76 54 3210
Reserved 00
Firmware support for TRAP #15 1
Firmware support IPL disk I/O 1
Firmware support for SCSI streaming tape 0
Firmware support for TRAP #15 ID packet 1
Unused (reserved) 00
3-16

Bootstrap Operating System - BO

3

configuration loaded.
A5 = Start of string (after command parameters).
A6 = End of string + 1 (if no string was entered A5=A6).
A7 = Initial stack pointer (loaded from Òpseudo reset
vectorÓ).

7. Control is given to the loaded program. Note that the
arguments passed to the target program, for example, the
string pointers, may be used or ignored by the target
program.

Examples

147-Bug>BO Boot from default controller LUN, device LUN,
and string as deÞned by AB command.

147-Bug>BO 3 Boot from controller LUN 3, default device LUN,
and string.

147-Bug>BO , 3 Boot from default controller LUN, device LUN 3,
and default string.

147-Bug>BO 0 8,test Boot from controller LUN 0, device LUN 8, and
pass the string ÒtestÓ to the booted program.
3-17

Debugger Command Set

3

Breakpoint Insert/Delete - BR/NOBR
Command Input

BR [addr[:count]]
NOBR [addr]

Description

The BR command allows you to set a target code instruction
address as a Òbreakpoint addressÓ for debugging purposes. If,
during target code execution, a breakpoint with 0 count is found,
the target code state is saved in the target registers and control is
returned to 147Bug. This allows you to see the actual state of the
processor at selected instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept in
a table which is displayed each time either BR or NOBR is used. If
an address is specified with the BR command, that address is
added to the breakpoint table. The count field specifies how many
times the instruction at the breakpoint address must be fetched
before a breakpoint is taken. The count, if greater than zero, is
decremented with each fetch. Every time that a breakpoint with
zero count is found, a breakpoint handler routine prints the MPU
state on the screen and control is returned to 147Bug.

Refer to Chapter 2 for use of a function code as part of the addr field.

NOBR is used for deleting breakpoints from the breakpoint table.
If an address is specified, that address is removed from the
breakpoint table. If NOBR (CR) is entered, all entries are deleted
from the breakpoint table and the empty table is displayed.
3-18

Breakpoint Insert/Delete - BR/NOBR

3

Example
147-Bug>BR 14000,14200 14700:&12 Set breakpoints.
BREAKPOINTS

00014000 14200

00014700:C

147-Bug>NOBR 14200 Delete one breakpoint.
BREAKPOINTS

00014000 00014700:C

147-Bug>NOBR Delete all breakpoints.
BREAKPOINTS

147-Bug>
3-19

Debugger Command Set

3

Block of Memory Search - BS
Command Input

BS range del 'text' [;b|w|l]

BS range del data del [mask] [;b|w|l,n,v]

Arguments

data and mask are both expression parameters.

Options

Description

The block search command searches the specified range of memory
for a match with a data pattern entered by you. This command has
three modes, as described below.

Mode 1 - Literal text search: In this mode, a search is carried out for
the ASCII equivalent of the literal text entered by you. This mode is
assumed if the single quote (') indicating the beginning and end of
a text field is encountered following range. The size, as specified in
the option field, tells whether the count field of range refers to bytes,
words, or longwords. If range is not specified using a count, no
options are allowed. If a match is found, the address of the first byte
of the match is output.

Mode 2 - Data search: In this mode, a data pattern is entered by you
as part of the command line and a size is either entered by you in
the option field or is assumed (the assumption is word). The size
entered in the option field also dictates whether the count field in
range refers to bytes, words, or longwords. The following actions
occur during a data search:

b Byte
w Word
l Longword
n Non-aligned
v Verify
3-20

Block of Memory Search - BS

3

1. The data pattern entered by you is right-justified and leading
bits are truncated or leading zeros are added as necessary to
make the data pattern the specified size.

2. A compare is made with successive bytes, words, or
longwords (depending on the size in effect) within the range
for a match with the data you entered. Comparison is made
only on those bits at bit positions corresponding to a Ò1Ó in
the mask. If no mask is specified, then a default mask of all ones
is used (all bits are compared). The size of the mask is taken to
be the same size as the data.

3. If the ÒnÓ (non-aligned) option has been selected, the data is
searched for on a byte-by-byte basis, rather than by words or
longwords, regardless of the size of data. This is useful if a
word (or longword) pattern is being searched for, but is not
expected to lie on a word (or longword) boundary.

4. If a match is found, the address of the first byte of the match
is output along with the memory contents. If a mask was in
use, the actual data at the memory location is displayed,
rather than the data with the mask applied.

Mode 3 - Data verification: If the ÒvÓ (verify) option has been
selected, displaying of addresses and data is done only when the
memory contents do NOT match the pattern specified by you.
Otherwise this mode is identical to Mode 2.

For all three modes, information on matches is output to the screen
in a four-column format. If more than 24 lines of matches are found,
output is inhibited to prevent the first match from rolling off the
screen. A message is printed at the bottom of the screen indicating
that there is more to display. To resume output, you should simply
press any character key. To cancel the output and exit the
command, you should press the BREAK key.

If a match is found (or, in the case of Mode 3, a mismatch) with a
series of bytes of memory whose beginning is within the range but
whose end is outside of the range, that match is output and a
3-21

Debugger Command Set

3

message is output stating that the last match does not lie entirely
within the range. You may search non-contiguous memory with
this command without causing a Bus Error.

Examples: Assume the following data is in memory.

00030000 0000 0045 7272 6F72 2053 7461 7475 733D ...Error Status=
00030010 3446 2F2F 436F 6E66 6967 5461 626C 6553 4F//ConfigTableS
00030020 7461 7274 3A00 0000 0000 0000 0000 0000 tart:...........

147-Bug>BS 30000 3002F 'Task Status' Mode 1: the text is not
Effective address: 00030000 found, so a message is
Effective address: 0003002F output.
-not found-

147-Bug>BS 30000 3002F 'Error Status'
Effective address: 00030000 Mode 1: the text is found,
Effective address: 0003002F and the address of its first
00030003 byte is output.

147-Bug>BS 30000 3001F 'ConfigTableStart'
Effective address: 00030000 Mode 1: the text is found,
Effective address: 0003001F but it ends outside of the
00030014 range, so the address of its

last match extends over
 range boundary-- first byte
 and a message are output.

147-Bug>BS 30000:30 't' ; b Mode 1, using range with
Effective address: 00030000 count and size option:
Effective count: &48 count is displayed in
0003000A 0003000C 00030020 00030023 decimal, and address of

each occurrence of the text
output.

147-Bug>BS 30000:18,2F2F Mode 2, using range with
Effective address: 00030000 count: count is displayed in
Effective count : &24 decimal bytes, and the data
00030012|2F2F pattern is found and
 displayed.
3-22

Block of Memory Search - BS

3

147-Bug>BS 30000,3002F 3D34 Mode 2: the default size is
Effective address: 00030000 word and the data pattern is
Effective address: 0003002F not found, so a message is
-not found- output.

147-Bug>BS 30000,3002F 3D34 ;n Mode 2: the size is word
Effective address: 00030000 and non-aligned option is
Effective address: 0003002F used, so the data pattern is
0003000F|3D34 found and displayed.

147-Bug>BS 30000:30 60,F0 ;b Mode 2, using range with
Effective address: 00030000 count, mask option, and size
Effective count : &48 option: count is displayed.
00030006|6F 0003000B|61 00030015|6F 00030016|6E

00030017|66 00030018|69 00030019|67 0003001B|61

0003001C|62 0003001D|6C 0003001E|65 00030021|61

in decimal, and the actual
unmasked data patterns

 found are displayed.

147-Bug>BS 30000 3002F 0000 0008;v Mode 3: scan for words
Effective address: 00030000 with the D3 bit set (non-
Effective address: 0003002F zero): four locations failed
0003000E|733D 00030012|2F2F 00030014|436F 0003001C|626C

147-Bug> to verify.
3-23

Debugger Command Set

3

Block of Memory Verify - BV
Command Input

BV range del data [increment] [;b|w|l]

Arguments

data and increment are both expression parameters.

Options

Description

The BV command compares the specified range of memory against
a data pattern. If an increment is specified, data is incremented by this
value following each comparison, otherwise data remains a
constant value. A decrementing pattern may be accomplished by
entering a negative increment. The data entered by you is right-
justified in either a byte, word, or longword field (as specified by
the option selected). The default field length is w (word).

If the data or increment (if specified) entered does not fit into the data
field size, leading bits are truncated to make them fit. If truncation
occurs, a message is printed stating the data pattern and, if
applicable, the increment value actually used.

If the range is specified using a count, the count is assumed to be in
terms of the data size.

If the upper address of the range is not on the correct boundary for
an integer multiple of the data to be verified, data is verified to the
last boundary before the upper address. No address outside of the
specified range is read from in any case. The ÒEffective addressÓ
messages displayed by the command show exactly the extent of the
area read from.

b Byte
w Word
l Longword
3-24

Block of Memory Verify - BV

3
q
q

.

.

Example 1: Assume memory from $20000 to $2002F is as indicated.

147-Bug>MD 20000:30;b
00020000 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NqNqNqNqNqNqNqN
00020010 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NqNqNqNqNqNqNqN
00020020 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NqNqNqNqNqNqNqNq

147-Bug>BV 20000 2001F 4E71 Default size is word.
Effective address: 00020000

Effective address: 0002001F

147-Bug> Verify successful, nothing
 printed.

Example 2: Assume memory from $20000 to $2002F is as indicated.

147-Bug>MD 20000:30;b
00020000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020020 00 00 00 00 00 00 00 00 00 00 4A FB 4A FB 4A FBJ{J{J{

147-Bug>BV 20000:30 0;b
Effective address: 00020000

Effective count : &48

0002002A|4A 0002002B|FB 0002002C|4A 0002002D|FB

0002002E|4A 0002002F|FB Mismatches are printed out.
147-Bug>

Example 3: Assume memory from $20000 to $2002F is as indicated.

147-Bug>MD 20000:18
00020000 0000 0001 0002 0003 0004 0005 0006 0007
00020010 0008 FFFF 000A 000B 000C 000D 000E 000F
00020020 0010 0011 0012 0013 0014 0015 0016 0017

147-Bug>BV 00020000:18,0,1 Default size is word.
Effective address: 00020000
Effective count : &24
00020012|FFFF Mismatches are printed out.
147-Bug
3-25

Debugger Command Set

3

Checksum - CS
Command Input

CS address1 address2

Description

The CS command provides access to the same checksum routine
used by the firmware. This routine is used in two ways within the
firmware monitor.

1. At power-up, the power-up confidence test is executed. One
of the items verified is the checksum contained in the
firmware monitor EPROM. If, for any reason, the contents of
the EPROM were to change from the factory version, the
checksum test is designed to detect the change and inform
you of the failure.

2. Following a valid power-up test, 147Bug examines the ROM
map space for code that needs to be executed. This feature
(ROMboot) makes use of the checksum routine to verify that
a routine in memory is really there to be executed at power-
up. For more information, refer to the ROMboot section in
Chapter 1, which describes the format of the routine to be
executed and the interface provided upon entry.

This command is provided as an aid in preparing routines for the
ROMboot feature. Because ROMboot does checksum validation as
part of its screening process, you need access to the same routine in
the preparation of EPROM/ROM routines.

The address parameters can be provided in two forms:

1. An absolute address (32-bit maximum).

2. An expression using a displacement + relative offset register.

When the CS command is used to calculate/verify the content and
location of the new checksum, the operands need to be entered. The
even and odd byte result should be 0000, verifying that the
checksum bytes were calculated correctly and placed in the proper
locations.
3-26

Checksum - CS

3

The algorithm used to calculate the checksum is as follows:

1. $FF is placed in each of two bytes within a register. These
bytes represent the even and odd bytes as the checksum is
calculated.

2. Starting with address1 the even and odd bytes are extracted
from memory and XORed with the bytes in the register.

3. This process is repeated, word by word, until address2 is
reached. This technique allows use of even ending addresses
($20030 as opposed to $2002F).

Examples

Assume the following routine requiring a checksum is in memory.
Start at $20000; last byte is at $2002B. Checksum will be placed in
bytes at $2002C and $2002D, so they are zero while calculating the
checksum.

147-Bug>MD 20000:20;w
00020000 424F 4F54 0000 0018 0000 002E 5465 7374 BOOT........Test
00020010 2052 4F4D 424F 4F54 4E4F 0026 4E4F 0052 ROMBOOTNO.&NO.R
00020020 4E4F 0026 4E4F 0026 4E4F 0063 0000 FFFF NO.&NO.&NO.c....
00020030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

147-Bug>

Disassemble executable instructions.

147-Bug>MD 20018;DI
00020018 4E4F0026 SYSCALL .PCRLF

0002001C 4E4F0052 SYSCALL .RTC_DSP

00020020 4E4F0026 SYSCALL .PCRLF

00020024 4E4F0026 SYSCALL .PCRLF

00020028 4E4F0063 SYSCALL .RETURN

0002002C 0000FFFF ORI.B #$FF,D0 Zeros reserved for
00020030 FFFF DC.W $FFFF checksum.
00020034 FFFF DC.W $FFFF
3-27

Debugger Command Set

3

Example 1: Using absolute addresses.

147-Bug> CS 20000 2002E Request checksum of routine.
Effective address: 00020000

Effective address: 0002002D

Even/Odd = $F99F Checksum of even bytes is $F9.
Checksum of odd bytes is $9F.

147-Bug> M 2002C;w Place these bytes in zeroed area
used while calculating checksum.

0002002C 0000 ? F99F.
147-Bug> CS 20000 2002E Verify checksum.

Effective address: 00020000

Effective address: 0002002D

Even/Odd = $0000 Result is 0000, good checksum.
147-Bug>

Example 2: Using relative offset.

147-Bug> OF R3 Define value of relative offset
R3 =00000000 00000000? 20000. register 3.

147-Bug> CS 0+R3 2E+R3 Request checksum of routine.
Effective address: 00000+R3

Effective address: 0002D+R3

Even/Odd = $F99F Checksum of even bytes is $F9.
147-Bug> Checksum of odd bytes is $9F.

147-Bug> M 2C+R3;w Place these bytes in zeroed area
used while checksum was

0000002C+R3 0000 ?F99F. calculated.

147-Bug> CS 0+R3 2E+R3 Verify checksum.
Effective address: 00000+R3

Effective address: 0002D+R3

Even/Odd = $0000 Result is 0000, good checksum.
147-Bug>
3-28

Data Conversion - DC

3

Data Conversion - DC
Command Input

DC exp | addr

Description

The DC command is used to simplify an expression into a single
numeric value. This equivalent value is displayed in its
hexadecimal and decimal representation. If the numeric value
could be interpreted as a signed negative number; i.e., if the most
significant bit of the 32-bit internal representation of the number is
set, both the signed and unsigned interpretations are displayed.

DC can also be used to obtain the equivalent effective address of an
MC68030 addressing mode.

Examples

147-Bug>DC 10
00000010 = $10 = &16

147-Bug>DC &10-&20
SIGNED : FFFFFFF6 = -$A = -&10

UNSIGNED: FFFFFFF6 = $FFFFFFF6 = &4294967286

147-Bug>DC 123+&345+@67+%1100001
00000314 = $314 = &788

147-Bug>DC (2*3*8) /4
0000000C = $C = &12

147-Bug>DC 55&F
00000005 = $5 = &5

147-Bug>DC 55>>1
0000002A = $2A = &42

The subsequent examples assume A0=00030000 and the following
data resides in memory:
3-29

Debugger Command Set

3

147-Bug>MD 30000
00030000 11111111 22222222 33333333 44444444 """"3333DDDD

147-Bug>DC (A0)
00030000 = $30000 = &196608

147-Bug>DC ([,A0])
11111111 = $11111111 = &286331153

147-Bug>DC (4,A0)
00030004 = $30004 = &196612

147-Bug>DC ([4,A0])
22222222 = $22222222 = &572662306
3-30

Dump S-Records - DU

3

Dump S-Records - DU
Command Input

DU [port]del range del[text del][addr del][offset][;b|w|l]

Options

Description

The DU command outputs data from memory in the form of
Motorola S-records to a port you specify. If port is not specified, the
S-records are sent to the host port (logical port number 1).

The option field is allowed only if a count was entered as part of the
range, and defines the units of the count (bytes, words, or
longwords).

The optional text field is for text that is to be incorporated into the
header (S0) record of the block of records that is to be dumped.

The optional addr field is to allow the user to enter an entry address
for code contained in the block of records. This address is
incorporated into the address field of the block termination record.
If no entry address is entered, the address field of the termination
record consists of zeros. The termination record is an S7, S8, or S9
record, depending on the address entered. Appendix C has
additional information on S-records.

You may also specify an optional offset in the offset field. The offset
value is added to the addresses of the memory locations being
dumped, to come up with the address which is written to the
address field of the S-records. This allows you to create an S-record
file which loads back into memory at a different location than the
location from which it was dumped. The default offset is zero.

b Byte
w Word
l Longword
3-31

Debugger Command Set

3

!
Caution

If an offset is to be specified but no entry address is to be
specified, then two commas (indicating a missing field)
must precede the offset to keep it from being interpreted
as an entry address.

Examples: Assume the following routine is in memory starting at $20000
and ending at $20013.

147-Bug>MD 20000:10;w
00020000 4E4F 0026 4E4F 0052 4E4F 0026 4E4F 0026 NO.&NO.RNO.&NO.&
00020010 4E4F 0063 FFFF FFFF FFFF FFFF FFFF FFFF NO.c............

147-Bug>

Disassemble executable instructions.

147-Bug>MD 20000;DI
00020000 4E4F0026 SYSCALL .PCRLF

00020004 4E4F0052 SYSCALL .RTC_DSP

00020008 4E4F0026 SYSCALL .PCRLF

0002000C 4E4F0026 SYSCALL .PCRLF

00020010 4E4F0063 SYSCALL .RETURN

00020014 FFFF DC.W $FFFF

00020016 FFFF DC.W $FFFF

00020018 FFFF DC.W $FFFF

Example 1: Dump memory from $20000 to $2001F to port 1.

147-Bug>DU 20000 2001F
Effective address: 00020000

Effective address: 0002001F

147-Bug>

Example 2: Dump 10 bytes of memory beginning at $20000 to the terminal
screen (port 0).

147-Bug>DU 0 20000:&10;b
Effective address: 00020000

Effective count : &10

S0030000FC

S20E020004E4F00264E4F00524E4FA0

S9030000FC

147-Bug>
3-32

Dump S-Records - DU

3

Example 3: Dump memory from $20000 to $2001F to the terminal screen
(port 0). Specify a Þle name of ÒTESTÓ in the header record and
specify an entry point of $2000A.

147-Bug>DU 0 20000 2001F 'test' 2000A
Effective address: 00020000

Effective address: 0002001F

S007000054455354B8

S2140200004E4F00264E4F00524E4F00264E4F0026B1

S2140200104E4F0063FFFFFFFFFFFFFFFFFFFFFFFFE5

S80402000AEF

147-Bug>

The following example shows how to upload S-records to a host
computer (in this case a system running the UNIX operating
system), storing them in the file ÒFILE1.MXÓ.

147-Bug>TM Go into transparent mode to
Escape character: $01=^A establish communication with
 : the host.

(CR) Press RETURN or ENTER key to get
 : login prompt.

(login) You must log on to the host and
 : enter the proper directory where
 : FILE1.MX will reside.

cat > FILE1.MX At the prompt, invoke the
 : concatenate utility and redirect the
 : output to a file named ÒFILE1.MXÓ
 : (the S-records that are to be
 : uploaded).

^A Enter escape character (CTRL A) to
147-Bug return to the prompt.

Now enter the command for 147Bug to dump the S-records to the
port:
3-33

Debugger Command Set

3

147-Bug> DU 20000 2001F ÔFILE1Õ
Effective address: 00020000

Effective address: 0002001F

147-Bug>

147-Bug>TM Go into transparent mode again.
Escape character $01 = ^A

 :

(INTR) key) Press the ÒINTRÓ key to interrupt
 : (stop) the ÒcatÓ function.

^d When the prompt returns, log off
 : of the system.

login: ^A Enter the escape character (CTRL A)
147-Bug> to return to the 147Bug prompt.
3-34

EEPROM Programming - EEP

3

!!
EEPROM Programming - EEP
Command Input

EEP range del addr [;w]

Options

Description

The EEP command is similar to the BM command in that it copies
the contents of the memory addresses defined by range to EEPROM
or another place in memory, beginning at addr. However, the EEP
command moves the data a word at a time with a 15 millisecond
delay between each data move. Also, addr must be a word-aligned
address.

Example 1: Assumes EEPROMs are installed in U1 and U15 (bank 2), and
header J1 is conÞgured for the right size EEPROMs. Refer to the
MVME147-0xx MPU VMEmodule Installation and Use manual for
jumper details. U1 and U15 are at addresses starting at $FFA00000
and ending at or below $FFBFFFFF in the main memory map, with
the odd-byte chip in U15 and the even-byte chip in U1.

Note that 147Bug is in the EPROMs in U22 and U30 (bank 1), at
$FF800000 through $FF83FFFF, with odd bytes in U30 and even
bytes in U22.

For the following examples, assume the following data is in
memory.

147-Bug>MD 21000:20;B
00021000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

147-Bug>EEP 21000 2101F FFA00000
Effective address: 00021000

Effective address: 0002101F

w Word
3-35

Debugger Command Set

3
!!

!!
Effective address: FFA00000

Programming EEPROM - Done.

147-Bug>

147-Bug>MD FFA00000:10;w
FFA00000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST
FFA00010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

147-Bug>

Example 2

147-Bug>EEP 21000:8 FFA00000;w
Effective address: 00021000

Effective count : &8

Effective address: FFA00000

Programming EEPROM - Done.

147-Bug>MD FFA00000:10;w
FFA00000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST
FFA00010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

147-Bug>
3-36

Set Environment to Bug or OS - ENV

3

Set Environment to Bug or OS - ENV
Command Input

ENV [;D]

Options

D Update NVRAM with defaults.

Description

The ENV command allows you to select the environment in which
the Bug is to execute. When specified, the Bug remains in that
environment until the ENV command is invoked again to change
it. The selections are saved in NVRAM and used whenever power
is lost.

Note The reset and abort option sets the environment to the
default mode (Bug) until changed by the ENV
command.

When the ENV command is invoked, the interactive mode is
entered immediately. While in the interactive mode, the following
rules apply:

All numerical values are interpreted as hexadecimal
numbers.
Only listed values are accepted when a list is shown.
Uppercase or lowercase may be interchangeably used
when a list is shown.

^ Backs up to the previous option.

. Entering a period by itself or following a new value/setting
causes ENV to exit the interactive mode. Control returns to the
bug.

(CR) Pressing Return (Enter) without entering a value preserves the
current value and causes the next prompt to be displayed.
3-37

Debugger Command Set

3

If NVRAM has been corrupted it can be repaired by invoking the
individual command(s) that correct the bad data or the ENV
command may be invoked with a D (Defaults) option specified.
This option instructs ENV to update the NVRAM with defaults.
The defaults are defined as follows:

Bug mode
Automatic bug self test bypassed
Execute memory tests
Maintain concurrent mode through a power cycle/reset
System memory sizing (System mode only)
Set the seven VMEchip options to defaults
No automatic SCSI bus reset
SCSI ID set to 7
Off board address set to zero
No ROMboot and ROMboot address set to start of ROM
No Autoboot
Set disk map to default
Set console port to zero and all ports use default parameters

Example 1

147-Bug>env;D
Update with Auto-Configuration Defaults

Update Non-Volatile RAM [Y/N] = N? (CR)
WARNING: Update(s) Discarded

147-Bug>

Example 2

147-Bug>env;D
Update with Auto-Configuration Defaults

Update Non-Volatile RAM [Y/N] = N? Y
CPU clock frequency [16,20,25,32] = 25? (CR)

Reset System [Y/N] = N? (CR)

WARNING: Updates will not be in effect until a RESET is performed

147-Bug>
3-38

Set Environment to Bug or OS - ENV

3

Example 3

147-Bug>env;D
Update with Auto-Configuration Defaults

Update Non-Volatile RAM [Y/N] = N? Y
CPU clock frequency [16,20,25,32] = 25? (CR)

Reset System [Y/N] = N? Y

Firmware now takes the reset path and initializes the MVME147
with the defaults placed in NVRAM.

When ENV is invoked without any options you are prompted for
the following modes/options:

Two modes are available:

Bug or System environment

Three Bug options are available:

Execute/Bypass Bug Self Test

Execute/Bypass SST Memory Test

Bug This is the standard mode of operation, and is
the one defaulted to if NVRAM should fail.

System This is the mode for system operation and is
deÞned in Appendix A.

Execute This mode enables the extended conÞdence
tests as deÞned in Appendix A. This
automatically puts the Bug in the diagnostic
directory.

Bypass In this mode the extended conÞdence tests are
bypassed, this is the mode defaulted to if
NVRAM should fail.

Execute This is the standard SST memory test mode,
and is the one defaulted to if NVRAM should
fail. In this mode the SST memory tests are
executed as part of the automatic Bug self test.

Bypass In this mode the SST memory tests are
bypassed, but the board memory is zeroed to
initialize parity.
3-39

Debugger Command Set

3

Maintain Concurrent Mode through a Power Cycle/Reset

Three System options are available:

Execute/Bypass System Memory Sizing

Execute/Bypass SST Memory Test

Maintain Concurrent Mode through a Power Cycle/Reset

Yes If Concurrent Mode is entered, a Power Cycle
or Reset does not terminate the Concurrent
Mode. This is the mode defaulted to if NVRAM
should fail.

No Power Cycle or Reset causes an exit from
Concurrent Mode.

Execute This is the standard mode of operation, and is
the one defaulted to if NVRAM should fail. In
this mode the System Memory Sizing is
invoked during board initialization to Þnd the
start and end of contiguous system memory.

Bypass In this mode the System Memory Sizing is
bypassed and the message “No offboard RAM”
detected is displayed.

Execute This is the standard SST memory test mode,
and is the one defaulted to if NVRAM should
fail. In this mode the SST memory tests are
executed as part of the system self test.

Bypass In this mode the SST memory tests are
bypassed, but the system memory is zeroed to
initialize parity.

Yes If Concurrent Mode is entered, a Power Cycle
or Reset does not terminate the Concurrent
Mode. This is the mode defaulted to if NVRAM
should fail.

No Power Cycle or Reset causes an exit from
Concurrent Mode.
3-40

Set Environment to Bug or OS - ENV

3

Seven VMEchip options are available:

Example 1

147-Bug>env
Bug or System environment [B,S] = B? (CR) No change.
Execute/Bypass Bug Self Test [E,B] = B? E Change to execute.
Execute/Bypass SST Memory Test [E,B] = E? (CR)

Maintain Concurrent Mode (if enabled) through a Power Cycle/Reset [Y/N] = Y? (CR
Set VME Chip:

Board ID(def is 0) [0-FF] = $00? (CR)

GCSR base address offset(def is 0F) [0-0F] = $0F? (CR)

Utility Interrupt Mask(def is 0) [0-FE] = $00? (CR)

Utility Interrupt Vector number(def is 60) [8-F8] = $60? 10 Change vector.
VMEbus Interrupt Mask(def is FE) [0-FE] = $FE? (CR)

Board ID Allows unique board identiÞcation.
GCSR Base
Address offset

Sets the base address of the global control and
status register in the VMEbus short I/O map.
This value is an offset from the start
($FFFF0000) of the map.

Utility
Interrupt Mask

This is used to enable the VMEchip to respond
to speciÞc utility interrupt requests. Refer to the
MVME147-0xx MPU VMEmodule Installation
and Use manual for bit deÞnitions and
functional descriptions.

Utility
Interrupt
Vector number

Interrupt vector number ($8 to $F8) for the
utility interrupts. Must be in multiples of $8.

VMEbus
Interrupt Mask

This is used to enable the VMEchip to respond
to speciÞc VMEbus interrupt requests. Refer to
the MVME1-0xx MPU VMEmodule Installation
and Use manual for bit deÞnitions and
functional descriptions.

VMEbus
Requester Level

This is used to conÞgure the VMEbus requester
level (0 through 3).

VMEbus
Requester
Release

This is used to conÞgure the VMEbus requester
release mode (Release: On Request, When
Done, or Never).
3-41

Debugger Command Set

3

VMEbus Requester Level(def is 0) [0-3] = 00? (CR)

VMEbus Requester Release(def is ROR) [ROR,RWD,NVR]=ROR? (CR)

147-Bug>

Example 2

147-Bug> ENV
Bug or System environment [B,S] = B? (CR) No change.
Execute/Bypass Bug Self Test [E,B] = E? B Change to bypass.
Maintain Concurrent Mode (if enabled) through a Power Cycle/Reset [Y/N] = Y? (CR)
Set VME Chip:

Board ID(def is 0) [0-FF] = $00? 2. Change and exit.
147-Bug>

Example 3

147-Bug>ENV
Bug or System environment [B,S] = B? S Change to system.
Execute/Bypass System Memory Sizing [E,B] = E? (CR)

Execute/Bypass SST Memory Test [E,B] = E? (CR)

Maintain Concurrent Mode (if enabled) through a Power Cycle/Reset [Y/N] = Y? (CR)
Set VME Chip:

Board ID(def is 0) [0-FF] = $02? 0 Change and continue.
GCSR base address offset(def is 0F) [0-0F] = $0F? (CR)

Utility Interrupt Mask(def is 0) [0-FE] = $00? (CR)

Utility Interrupt Vector number(def is 60) [8-F8] = $10? (CR)

VMEbus Interrupt Mask(def is FE) [0-FE] = $FE? ̂ Back up.
Utility Interrupt Vector number(def is 60) [8-F8] = $10? 60. Change and exit.
147-Bug>

Firmware now takes the reset path and initializes the MVME147 for
the system mode (refer to Appendix A for system mode operation
details).
3-42

Go Execute Target Code - G/GO

3

Go Execute Target Code - G/GO
Command Input

G/GO [addr]

Description

The GO command (alternate form ÒGÓ) is used to initiate target
code execution. All previously set breakpoints are enabled. If an
address is specified, it is placed in the target PC. Execution starts at
the target PC address. Refer to Chapter 2 for use of a function code
as part of the addr field.

The sequence of events is as follows:

1. If an address is specified, it is loaded in the target PC.

2. If a breakpoint is set at the target PC address, the instruction
at the target PC is traced (executed in trace mode).

3. All breakpoints are inserted in the target code.

4. Target code execution resumes at the target PC address.

At this point control may be returned to 147Bug by various
conditions:

1. A breakpoint with 0 count was found.

2. The ABORT or RESET switch on the MVME147 front panel was
pressed.

3. An unexpected exception occurred.

4. The TRAP #15 .RETURN function was executed.
3-43

Debugger Command Set

3

Example: Assume that the following program resides at $10000.

147-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS.B D2
0001000E 60FE BRA.B $1000E
147-Bug>

Initialize D0, set breakpoints, and start target program.

147-Bug>RS D0 52A9C
D0 =00052A9C

147-Bug>BR 10000 1000E
BREAKPOINTS

00010000 0001000E

147-Bug>GO 10000
Effective address: 00010000

At Breakpoint

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

0001000E 60FE BRA.B $1000E

147-Bug>

Note that in this case breakpoints are inserted after tracing the first
instruction, therefore the first breakpoint is not taken.
3-44

Go Execute Target Code - G/GO

3

Continue target program execution.

147-Bug>G
Effective address: 0001000E

At Breakpoint

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

0001000E 60FE BRA.B $1000E

147-Bug>

Remove breakpoints and restart the target code:

147-Bug>NOBR
BREAKPOINTS

147-Bug>GO 10000
Effective address: 00010000

To exit target code, press the ABORT push-button.

Exception: Abort

Format Vector = 0108

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

0001000E 60FE BRA.B $1000E

147-Bug>
3-45

Debugger Command Set

3

Go Direct (Ignore Breakpoints) - GD
Command Input

GD [addr]

Description

GD is used to start target code execution. If an address is specified,
it is placed in the target PC. Execution starts at the target PC
address. As opposed to GO, breakpoints are not inserted. Refer to
Chapter 2 for use of a function code as part of the addr field.

The sequence of events is as follows:

1. If an address is specified, it is loaded in the target PC.

2. Target code execution resumes at the target PC.

At this point, control may be returned to 147Bug by various
conditions:

1. The ABORT or RESET switch on the MVME147 front panel was
pressed.

2. An unexpected exception occurred.

3. The TRAP #15 .RETURN function was executed.

Example: Assume that the following program resides at $10000.

147-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS.B D2
0001000E 60FE BRA.B $1000E
147-Bug>

Initialize D0, set breakpoints, and start target program.
3-46

Go Direct (Ignore Breakpoints) - GD

3

147-Bug>RS D0 52A9C
D0 =00052A9C

147-Bug> BR 10000 1000E
BREAKpoints

00010000 0001000E

147-Bug>GD 10000
Effective address: 00010000

Note that the breakpoints are not inserted

To exit target code, press the ABORT push-button.

Exception: Abort

Format Vector = 0108

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

0001000E 60FE BRA.B $1000E

147-Bug>
3-47

3-48

3

Debugger Command S
3Debugger Command Set
et
Go to Next Instruction - GN
Command Input

GN

Description

GN sets a temporary breakpoint at the address of the next
instruction, that is, the one following the current instruction, and
then starts target code execution. After setting the temporary
breakpoint, the sequence of events is similar to that of the GO
command.

GN is especially helpful when debugging modular code because it
allows you to ÒtraceÓ through a subroutine call as if it were a single
instruction.

Example: Assume that the following section of code resides at address
$10000.

147-Bug>MD 10010:2;DI
00010000 7003 MOVE.L #$3,D0

00010002 7201 MOVEQ.L #$1,D1

00010004 6100000A BSR.W $10010

00010008 2600 MOVE.L D0,D3

147-Bug>

Assume that the following simple routine resides at address
$10010.

147-Bug>MD 10010:2;DI
00010010 D081 ADD.L D1,D0

00010012 4E75 RTS

147-Bug>

Execute up to the BSR instruction.

147-Bug>BR 10004
BREAKPOINTS

00010004

147-Bug>

Go to Next Instruction - GN

3

147-Bug>G 10000
Effective address: 00010000

At Breakpoint

PC =00010004 SR =2710=TR:OFF_S._7_X.... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00000003 D1 =00000001 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010004 6100000A BSR.W $10010

147-Bug>

Use the GN command to ÒtraceÓ through the subroutine call and
display the results.

147-Bug>GN
Effective address: 00010004

At Breakpoint

PC =00010008 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00000004 D1 =00000001 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010008 2600 MOVE.L D0,D3

147-Bug>
3-49

Debugger Command Set

3

Go to Temporary Breakpoint - GT
Command Input

GT addr [:count]

Description

GT allows you to set a temporary breakpoint and then start target
code execution. A count may be specified with the temporary
breakpoint. Control is given at the target PC address. All previously
set breakpoints are enabled. The temporary breakpoint is removed
when any breakpoint with 0 count is encountered. Refer to Chapter
2 for use of a function code as part of the addr field.

After setting the temporary breakpoint, the sequence of events is
similar to that of the GO command. At this point control may be
returned to 147Bug by various conditions:

1. A breakpoint with 0 count was found.

2. The ABORT or RESET switch on the MVME147 front panel was
pressed.

3. An unexpected exception occurred.

4. The TRAP #15 .RETURN function was executed.

Example: Assume that the following program resides at $10000.

147-Bug>MD 010000;DI
00010000 2200 MOVE.L D0,D1

00010002 4282 CLR.L D2

00010004 D401 ADD.B D1,D2

00010006 E289 LSR.L #$1,D1

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #$1,D2

0001000C 55C2 SCS.B D2

0001000E 60FE BRA.B $1000E

147-Bug>
3-50

Go to Temporary Breakpoint - GT

3

Initialize D0 and set a breakpoint:

147-Bug>RS D0 52A9C
D0 =00052A9C

147-Bug>BR 1000E
BREAKPOINTS

0001000E

147-Bug>

Set PC to start of program, set temporary breakpoint, and start
target code:

147-Bug>RS PC 10000
PC =00010000

147-Bug>GT 10006
Effective address: 00010006

Effective address: 00010000

At Breakpoint

PC =00010006 SR =2708=TR:OFF_S._7_.N... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00052A9C D1 =00052A9C D2 =0000009C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010006 E289 LSR.L #$1,D1

147-Bug>

Set another temporary breakpoint at $10006 with a count of 13 and
continue the target program execution:

147-Bug>GT 10006:&13
Effective address: 00010006

Effective address: 00010006

At Breakpoint

PC =00010006 SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0
3-51

Debugger Command Set

3

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00052A9C D1 =00000029 D2 =00000009 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010006 E289 LSR.L #$1,D1

147-Bug>

Set a new temporary breakpoint at $10002 and continue the target
program execution:

147-Bug>GT 10002
Effective address: 00010002

Effective address: 00010006

At Breakpoint

PC =0001000E SR =2711=TR:OFF_S._7_X...C VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:...._I:... CAAR =00000000 DFC =0=F0

D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

0001000E 60FE BRA.B $1000E

147-Bug>

Note that a breakpoint from the breakpoint table was encountered
before the temporary breakpoint.
3-52

Help - HE

3

Help - HE
Command Input

HE [command]

Description

HE is the 147Bug help facility. HE displays the command names of
all available commands along with their appropriate titles. HE
command displays only the command name and title for that
particular command.

Examples

147-Bug>HE
AB Autoboot enable

NOAB Autoboot disable

BC Block compare

BF Block fill

BI Block initialize

BM Block move

BS Block search

BO Boot operating system

BH Boot operating system and halt

BR Breakpoint insert

NOBR Breakpoint delete

BV Block verify

CS Checksum

DC Data conversion and expression evaluation

DU Dump S-records

EEP EEPROM programming

ENV Set environment to Bug or operating system

GO Go to target code

G “Alias” for previous command

GD Go direct (no breakpoints)

GN Go and stop after next instruction

Press “RETURN” to continue (CR)

GT Go and insert temporary breakpoint

HE Help facility
3-53

Debugger Command Set

3

IOC I/O control
IOP I/O to disk
IOT I/O “teach”
LO Load S-records
LSAD LAN station address display/set
MA Macro define/display
NOMA Delete macro(s)
MAE Macro edit
MAL Enable macro expansion listing
NOMAL Disable macro expansion listing
MAR Load macros
MAW Save macros
MD Memory display
MM Memory modify
M “Alias” for previous command
MS Memory set
MENU System menu
OBA Set memory address from VMEbus
OF Offset registers
PA Printer attach

Press “RETURN” to continue (CR)

NOPA Printer detach
PF Port format
NOPF Port detach
PS Put RTC into power save mode for storage
RB ROMboot enable
NORB ROMboot disable
REMOTE Connect the remote modem to CSO
RESET Warm/cold reset
RD Register display
RM Register modify
RS Register set
SD Switch directory
SET Set time and date
TA Terminal attach
T Trace instruction
TC Trace on change of flow
TT Trace to temporary breakpoint
TM Transparent mode
TIME Display time and date
VE Verify S-records

To display the command T, enter:
147-Bug>HE T
T Trace Instruction

147-Bug>
3-54

I/O Control for Disk/Tape - IOC

3

I/O Control for Disk/Tape - IOC
Command Input

IOC

Description

The IOC command allows you to send command packets directly
to a disk controller. The packet to be sent must already reside in
memory and must follow the packet protocol of the particular disk
controller. This packet protocol is outlined in the user's manual for
the disk controller module (refer to Chapter 1).

This command may be used as a debugging tool to issue commands
to the disk controller to locate problems with either drives, media,
or the controller itself.

When invoked, this command prompts for the controller and drive
required. The default controller LUN (CLUN) and device LUN
(DLUN) when IOC is invoked are those most recently specified for
IOP, IOT, or a previous invocation of IOC. An address where the
controller command is located is also prompted for. The same
special characters used by the Memory Modify (MM) command to
access a previous field (^), reopen the same location (=), or exit
(.), can be used with IOC. The power-up default for the packet
address is the area which is also used by the BO and IOP
commands for building packets. IOC displays the command packet
and, if instructed by the user, sends the packet to the disk controller,
following the proper protocol required by the particular controller.

147-Bug>IOC
Controller LUN =00? (CR)
Device LUN =00? (CR)
Packet address =000014DC? 10000
00010000 0000 0000 0000 0000 0000 0D00 0000 0000 .0.....N........
00010010 0030 1000 0008 004E 0000 0005 0000 0000
00010020 0001 0100 0000 0000 0000 0000 0000 0000
00010030 0000 0000 0000 0000 0000 0000 0000 0000
Send Packet (Y/N)? Y
147-Bug>

Example: Send the packet at $10000 to the MVME147 controller. Specify an
ÒattachÓ operation to the hard disk.
3-55

Debugger Command Set

3

I/O Physical (Direct Disk/Tape Access) - IOP
Command Input

IOP

Description

The IOP command allows you to read, write, or format any of the
supported disk or tape devices. When invoked, this command goes
into an interactive mode, prompting you for all the parameters
necessary to carry out the command. You may change the
displayed value by typing a new value followed by a carriage
return (CR); or may simply enter CR, which leaves the field
unchanged.

The same special characters used by the Memory Modify (MM)
command to access a previous field (^), reopen the same location
(=), or exit (.), can be used with IOP. After IOP has prompted you
for the last parameter, the selected function is executed. The disk
SYSCALL functions (trap routines), as described in Chapter 5, are
used by IOP to access the specified disk or tape.

Initially (after a cold reset), all the parameters used by IOP are set
to certain default values. However, any new values entered are
saved and are displayed the next time that the IOP command is
invoked.

The information for which you are prompted is as follows:

Controller LUN =00?

The Logical Unit Number (LUN deÞned by the IOT command)
of the controller to access is speciÞed in this Þeld.

Device LUN =00?

 The LUN of the device to access is speciÞed in this Þeld.

Read/Write/Format =R?

In this Þeld, you specify the desired function by entering a one-
character mnemonic as follows:
3-56

I/O Physical (Direct Disk/Tape Access) - IOP

3

For read/write operations, the prompts are as follows:

Memory Address =00004000?

This Þeld selects the starting address for the block to be
accessed. For read operations, data is written to memory
starting at this location. For write operations, data is read from
memory starting at this location.

Starting Block =00000000?

For disk (direct access) devices, this Þeld speciÞes the starting
block number to access. For read operations, data is read
starting at this block. For write operations, data is written
starting at this block.

File Number =00000000?

For tape (sequential access) devices, this Þeld speciÞes the
starting Þle number to access.

Number of Blocks =0002?

This Þeld speciÞes the number of data blocks (logical blocks
deÞned by the IOT command) to be transferred on a read or
write operation.

Flag Byte =00?

For tape devices, this Þeld is used to specify variations of the
same command, and to receive special status information. Bits
0 through 3 are used as command bits; bits 4 through 7 are used
as status bits. At the present, only tape devices use this Þeld.

R Read. This reads blocks of data from the selected device
into memory.

W Write. This writes blocks of data from memory to the
selected device.

F Format. This formats the selected device. For disk
devices, either a track or the whole disk can be selected
by a subsequent Þeld. For tape devices, either retension
or erase can be selected by a subsequent Þeld.
3-57

Debugger Command Set

3

The currently deÞned bits are as follows:

Address Modifier =00?

This Þeld contains the VMEbus address modiÞer to use for
Direct Memory Access (DMA) data transfers by the selected
controller.

If zero is speciÞed, a valid default value of $0D is selected by the
driver.

If a nonzero value is speciÞed, it is used by the driver for data
transfers.

For format operations, the prompts are as follows:

Starting Block =00000000?

If the device supports track formatting, this Þeld speciÞes the
track that contains this block is to be formatted.

Track/Disk =T (T/D)?

Bit 7 Filemark ßag.
If 1, a filemark was detected at the end of the last
operation.

Bit 1 Ignore File Number (IFN) ßag.
If 0, the Þle number Þeld is used to position the tape
before any reads or writes are done.
If 1, the Þle number Þeld is ignored, and reads or writes
start at the present tape position.

Bit 0 End of File (EOF) ßag.
If 0, reads or writes are done until the speciÞed block
count is exhausted.
If 1, reads are done until the count is exhausted or until a
Þlemark is found.
If 1, writes are terminated with a Þlemark.
3-58

I/O Physical (Direct Disk/Tape Access) - IOP

3

If the device supports track formatting, this Þeld speciÞes
whether a disk track or the entire disk is formatted when the
format operation is selected.

Retension/Erase =R (R/E)?

For tape devices, this Þeld indicates whether a retension of the
tape or an erase should be done when a format operation is
selected.

After all the required parameters are entered, the disk access is
initiated. If an error occurs, an error status word is displayed. Refer
to Appendix F for an explanation of returned error status codes.

147-Bug>IOP
Controller LUN =00? (CR)
Device LUN =00? 2
Read/Write/Format=R? (CR)
Memory Address =00004000? 50000
Starting Block =00000000? &370
Number of Blocks =0002? &25
Address Modifier =00? (CR)
147-Bug>

Retension This rewinds the tape to BOT, advances the tape
without interruptions to EOT, and then rewinds it
back to BOT. Tape retension is recommended by
cartridge tape suppliers before writing or reading
data when a cartridge has been subjected to a
change in environment or a physical shock, has
been stored for a prolonged period of time or at
extreme temperature, or has been previously used
in a start/stop mode.

Erase This completely clears the tape of previous data
and at the same time retensions the tape.

Example 1: From a disk device read 25 blocks, starting at block 370 into
memory beginning at address $50000. For this example,
assume the drive is device 2 of controller 0.
3-59

Debugger Command Set

3

147-Bug>IOP
Controller LUN =00? 4
Device LUN =02? 0
Read/Write/Format=R? W
Memory Address =00050000? 7000
File Number =00000172? 6
Number of Blocks =0019? e
Flag Byte =00? %01
Address Modifier =00? (CR)
147-Bug>

147-Bug>IOP
Controller LUN =04? 0
Device LUN =00? 2
Read/Write/Format=R? F
Starting Block =00000006? 0
Track/Disk =D (T/D)? T
147-Bug>

Example 2: To a tape device write 14 blocks, starting at memory location
$7000 to Þle 6 and append a Þlemark at the end of the Þle. For
this example, assume the drive is device 0 of controller 4.

Example 3: Formatting a disk device, at track that contains block 6. For
this example, assume the drive is device 2 of controller 0.

!
Caution

On devices that support track
formatting, this destroys all
previous data on the selected track.

On devices that do not support
track formatting, this can destroy all
previous data on the whole device.
3-60

I/O Physical (Direct Disk/Tape Access) - IOP

3

147-Bug>IOP
Controller LUN =00? 4
Device LUN =02? 0
Read/Write/Format=F? (CR)
Retension/Erase =R (R/E)? E
147-Bug>

Example 4: Erase a tape device. For this example assume the drive is
device 0 of controller 4.

!
Caution

This completely clears the tape of
previous data.

!
Caution

This completely clears the tape of previous
data.
3-61

Debugger Command Set

3

I/O Teach for Configuring Disk Controller - IOT
Command Input

IOT [;[A][H][T]]

Options

Description

The IOT command allows you to ÒteachÓ a new disk configuration
to 147Bug for use by the TRAP #15 disk functions. IOT lets you
modify the controller and device descriptor tables used by the
TRAP #15 functions for disk access. Note that because 147Bug
commands that access the disk use the TRAP #15 disk functions,
changes in the descriptor tables affect all those commands. These
commands include IOP, BO, BH, and also any user program that
uses the TRAP #15 disk functions.

Note that during the first IOP command and during a boot, IOT is
not required. Reconfiguration is done automatically by reading the
configuration sector from the device, then the device descriptor
table for the LUN used is modified accordingly.

If the device is not formatted or is of unknown format, or has no
configuration sector, then before attempting to access the device
with the IOP command, you should verify the parameters using
IOT and, if necessary, modify them for the specific media and
device.

A All. List all disk controllers supported by 147Bug.

H Help. List all disk controllers available to the system.

T Teach. Probe the system for I/O controllers and build a table
of the available controllers.
3-62

I/O Teach for Configuring Disk Controller - IOT

3

When the IOT command is invoked without options or with a T
(teach) option, an interactive mode is entered. While in the
interactive mode, the following rules apply:

Examples: A and H options.

147-Bug> IOT;A
Disk Controllers Supported

All numerical values are interpreted as hexadecimal numbers.
Decimal values may be entered by preceding the number with
an ampersand (&).
Only listed values are accepted when a list is shown. Uppercase
or lowercase may be interchangeably used when a list is shown.

^ Back up to previous Þeld.

= Reopen same Þeld.

. Entering a period by itself or following a new value/setting
causes IOT to exit the interactive mode. Control returns to the
Bug.

(CR) Pressing Return (Enter) without entering a value preserves the
current value and causes the next prompt to be displayed.

 Type Address # dev

VME147 $FFFE4000 * SCSI - 0-7

VME327 $FFFFA600 * SCSI - 0-7

VME327 $FFFFA600 2

VME327 $FFFFA700 * SCSI - 0-7

VME327 $FFFFA700 2

VME321 $FFFF0500 8

VME320 $FFFFB000 4

VME319 $FFFF0000 8

VME321 $FFFF0600 8

VME360 $FFFF0C00 4

VME360 $FFFF0E00 4

VME350 $FFFF5000 1

VME350 $FFFF5100 1

VME320 $FFFFAC00 4

VME319 $FFFF0200 8

VME323 $FFFFA000 4

VME323 $FFFFA200 4
3-63

Debugger Command Set

3

147-Bug> IOT;H
Disk Controllers Available

147-Bug>

IOT may be invoked with a T (teach) option specified. This option
instructs IOT to scan the system for all currently supported
disk/tape controllers and build a map of the available controllers.
This map is built in the Bug RAM area, but can also be saved in
NVRAM if so instructed.

The IOT;T command should be invoked any time the controllers
are changed or whenever the NVRAM map has been damaged
(ÒNo Disk Controllers AvailableÓ). The reason for this is that,
during a reset, the map residing in NVRAM is copied to the Bug
RAM area and used as the working map.

Example: T option.

147-Bug> IOT;T
Scanning system for available disk/tape controllers . . .

Disk Controllers Available

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 5 ARCHIVE VIPER 60 21116

6 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

7 VME320 $FFFFB000 4

8 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116
3-64

I/O Teach for Configuring Disk Controller - IOT

3

147-Bug>

Align LUNs to SCSI addresses [Y,N] N? Y

Disk Controllers Available

Save map in NVRAM [Y,N] N? Y

147-Bug>

When invoked without options, the IOT command enters an
interactive subcommand mode where you can edit the disk map or
the descriptor table values currently in effect.

The disk map editor may be invoked with a Y (yes) response to the
prompt.

147-Bug> IOT

Edit Disk Map [Y,N] N? Y

Disk Controllers Available

5 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

6 VME320 $FFFFB000 4

7 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 5

6 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

8 VME320 $FFFFB000 4

9 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

LUN Type Address #dev
3-65

Debugger Command Set

3

Disk Map edit commands:

 =E? C Create a copy of an LUN after
Controller LUN =00? 0 another LUN.
Before or After [B,A] =A? (CR)
Controller LUN =00? 4

Disk Controllers Available

Quit options:

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 5

6 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

8 VME320 $FFFFB000 4

9 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

C -Copy

E -Edit

M -Move

R -Remove

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

6 VME147 $FFFE4000 1 SCSI Addr= 5

7 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

9 VME320 $FFFFB000 4

A VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

E -Edit (edit another LUN)

Q -Quit

S -Save in NVRAM and quit

LUN Type Address #dev
3-66

I/O Teach for Configuring Disk Controller - IOT

3

 =Q? E Edit another LUN

Disk Controllers Available

Disk Map edit commands:

 =C? M Move a LUN before another LUN
Controller LUN =04? 6
Before or After [B,A] =A? B
Controller LUN =06? 0

Disk Controllers Available

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

6 VME147 $FFFE4000 1 SCSI Addr= 5

7 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

9 VME320 $FFFFB000 4

A VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

C -Copy

E -Edit

M -Move

R -Remove

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 5

1 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

2 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

3 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

4 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

5 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

6 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

7 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

9 VME320 $FFFFB000 4

A VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7
3-67

Debugger Command Set

3

Quit options:

 =Q? E

Disk Controllers Available

Disk Map edit commands:

 =M? R Remove an LUN.

Controller LUN =00? 0

Disk Controllers Available

E -Edit (edit another LUN)

Q -Quit

S -Save in NVRAM and quit

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 5

1 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

2 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

3 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

4 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

5 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

6 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

7 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

8 VME320 $FFFFB000 4

9 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

C -Copy

E -Edit

M -Move

R -Remove

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

6 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

8 VME320 $FFFFB000 4
3-68

I/O Teach for Configuring Disk Controller - IOT

3
Quit options:

 =Q? E

Disk Controllers Available

Disk Map edit commands:

 =R? E Edit an LUN.

Controller LUN =00? 5
SCSI device [Y,N] =Y? Y
Controller type = 0147? (CR)
Controller address = $FFFE4000? (CR)
SCSI address (0-7) = 00? 5
SCSI Controller Type:

9 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

E -Edit (edit another LUN)

Q -Quit

S -Save in NVRAM and quit

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

6 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

8 VME320 $FFFFB000 4

9 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

C -Copy

E -Edit

M -Move

R -Remove

D - (147) Teac Floppy

 E - (147) Omti (3500/7x00)

LUN Type Address #dev
3-69

Debugger Command Set

3

Number of supported devices = 1
DLUN 0 is a Fixed Disk Device

Disk Controllers Available

Quit options:

 =Q? S Save in NVRAM and quit.
147-Bug>

 F - (147) Common Command Set (Win/Floppy)

 F - (327) Common Command Set (Win)

10 - (All) CDC (Wren III & Swift)

11 - (All) Micropolis 1375

12 - (All) Archive Viper, Teac Tape

13 - (All) CDC (Wren IV & V), Maxtor 8760

14 - (All) Seagate

15 - (327) Common Command Set Rev. 4A (Win)

16 - (All) Kennedy, HP 1/2" Tape

17 - (147) Sync Common Command Set (Win/Floppy)

17 - (327) Sync Common Command Set (Win)

18 - (All) Exabyte Tape

19 - (All) IBM

1A - (327) SONY

=10? (CR)

LUN Type Address #dev

0 VME147 $FFFE4000 1 SCSI Addr= 0 CDC 94161-9

1 VME147 $FFFE4000 1 SCSI Addr= 1 MICROP 1375

2 VME147 $FFFE4000 1 SCSI Addr= 2 CDC 94171-9

3 VME147 $FFFE4000 1 SCSI Addr= 3 SEAGATE ST296N/M

4 VME147 $FFFE4000 1 SCSI Addr= 4 ARCHIVE VIPER 60 21116

5 VME147 $FFFE4000 1 SCSI Addr= 5

6 VME147 $FFFE4000 4 SCSI Addr= 6 SMS OMTI7000

8 VME320 $FFFFB000 4

9 VME350 $FFFF5000 1

VME147 $FFFE4000 * SCSI Addr= 7

E -Edit (edit another LUN)

Q -Quit

S -Save in NVRAM and quit
3-70

I/O Teach for Configuring Disk Controller - IOT

3

When invoked without options, the IOT command enters an
interactive subcommand mode where the descriptor table values
currently in effect are displayed one-at-a-time on the screen for you
to examine. You may change the displayed value by entering a new
value or leave it unchanged.

The first two items of information that you are prompted for are the
controller LUN and the device LUN (LUN = Logical Unit Number).
These two LUNs specify one particular drive out of many that may
be present in the system.

If the controller LUN and device LUN selected do not correspond
to a valid controller and device, IOT outputs the message ÒInvalid
LUNÓ and you are prompted for the two LUNs again.

147-Bug>IOT
Edit Disk Map [Y,N] N? (CR)

Controller LUN = 00? (CR)

Device LUN = 00? (CR)

Controller type = VME147

Controller address = $FFFE4000? (CR)
VME147 Controller SCSI address (0-7) = 07? (CR) SCSI only.
SCSI Controller Type: SCSI only.

 =10? (CR)

D -(147) Teac Floppy

E -(147) Omti (3500/7x00)

F -(147) Common Command Set (Win/Floppy)

F -(327) Common Command Set (Win)

10 -(All) CDC (Wren III & Swift)

11 -(All) Micropolis 1375

12 -(All) Archive Viper, Teac Tape

13 -(All) CDC (Wren IV & V), Maxtor 8760

14 -(All) Seagate

15 -(327) Common Command Set Rev. 4A (Win)

16 -(All) Kennedy, HP 1/2" Tape

17 -(147) Sync Common Command Set (Win/Floppy)

17 -(327) Sync Common Command Set (Win)

18 -(All) Exabyte Tape

19 -(All) IBM

1A -(327) SONY
3-71

Debugger Command Set

3

After the parameter table for one particular drive has been selected
via a controller LUN and a device LUN, IOT begins displaying the
values in the attribute fields, allowing you to enter changes if
desired.

The parameters and attributes that are associated with a particular
device are determined by a parameter and an attribute mask that is
a part of the device definition. The device that has been selected
may have any combination of the following parameters and
attributes:

Sector Size:
0-128 1-256
2-512 3-1024 =01?

The physical sector size speciÞes the number of data bytes per
sector.

Block Size:
0-128 1-256
2-512 3-1024 =01?

The block size deÞnes the units in which a transfer count is
speciÞed when doing a disk/tape block transfer. The block size
can be smaller, equal to, or greater than the physical sector size,
as long as the following relationship holds true:

(block size)*(number of blocks)/(physical sector size) = integer

Sectors/Track =0020?

This Þeld speciÞes the number of data sectors per track, and is
a function of the device being accessed and the sector size
speciÞed.

Starting Head =10?

This Þeld speciÞes the starting head number for the device. It is
normally zero for Winchester and ßoppy drives. It is nonzero
for dual volume SMD drives.

Number of Heads =05?

 This Þeld speciÞes the number of heads on the drive.
3-72

I/O Teach for Configuring Disk Controller - IOT

3

Number of Cylinders =0337?

This Þeld speciÞes the number of cylinders on the device. For
ßoppy disks, the number of cylinders depends on the media
size and the track density. General values for 5-1/4 inch ßoppy
disks are shown below:

48 TPI - 40 cylinders
96 TPI - 80 cylinders

Precomp. Cylinder =0000?

This Þeld speciÞes the cylinder number at which
precompensation should occur for this drive. This parameter is
normally speciÞed by the drive manufacturer.

Reduced Write Current Cylinder =0000?

This Þeld speciÞes the cylinder number at which the write
current should be reduced when writing to the drive. This
parameter is normally speciÞed by the drive manufacturer.

Interleave Factor =00?

This Þeld speciÞes how the sectors are formatted on a track.
Normally, consecutive sectors in a track are numbered
sequentially in increments of 1 (interleave factor of 1). The
interleave factor controls the physical separation of logically
sequential sectors. This physical separation gives the host time
to prepare to read the next logical sector without requiring the
loss of an entire disk revolution.

Spiral Offset =00?

The spiral offset controls the number of sectors that the Þrst
sector of each track is offset from the index pulse. This is used to
reduce latency when crossing track boundaries.

ECC Data Burst Length =0000?

This Þeld deÞnes the number of bits to correct for an ECC error
when supported by the disk controller.
3-73

Debugger Command Set

3

Step Rate Code =00?

The step rate is an encoded Þeld used to specify the rate at
which the read/write heads can be moved when seeking a track
on the disk.

The encoding is as follows:

Single/Double DATA Density =D (S/D)?

Single (FM) or double (MFM) data density should be speciÞed
by typing S or D, respectively.

Single/Double TRACK Density =D (S/D)?

Used to deÞne the density across a recording surface. This
usually relates to the number of tracks per inch as follows:

48 TPI = Single track density
96 TPI = Double track density

Single/Equal_in_all Track zero density =S (S/E)?

This ßag speciÞes whether the data density of track 0 is a single
density or equal to the density of the remaining tracks. For the
ÒEqual_in_allÓ case, the Single/Double data density ßag
indicates the density of track 0.

Slow/Fast Data Rate =S (S/F)?

This ßag selects the data rate for ßoppy disk devices as follows:

S = 250 kHz data rate (5-1/4 inch ßoppy, usually)
F = 500 kHz data rate (8-inch, 3-1/2 inch ßoppy, usually)

Step Rate Code
(Hexadecimal

Winchester
Hard Disks

Slow Data
Rate

Fast Data
Rate

00 0 ms 12 ms 6 ms

01 6 ms 6 ms 3 ms

02 10 ms 12 ms 6 ms

03 15 ms 20 ms 10 ms

04 20 ms 30 ms 15 ms
3-74

I/O Teach for Configuring Disk Controller - IOT

3

Gap 1 =07?

This Þeld contains the number of words of zeros that are written
before the header Þeld in each sector during format.

Gap 2 =08?

This Þeld contains the number of words of zeros that are written
between the header and data Þelds during format and write
commands.

Gap 3 =00?

This Þeld contains the number of words of zeros that are written
after the data Þelds during format commands.

Gap 4 =00?

This Þeld contains the number of words of zeros that are written
after the last sector of a track and before the index pulse.

Spare Sectors Count =00?

This Þeld contains the number of sectors per track allocated as
spare sectors. These sectors are only used as replacements for
bad sectors on the disk.

147-Bug>IOT
Edit Disk Map [Y,N] N? (CR)

Controller LUN =00? 8
Device LUN =00? 2
Controller type =VME320

Controller address =$FFFFB000? (CR)

Sector Size:

0-128 1-256

2-512 3-1024 =01? (CR)
Block Size:

0-128 1-256

2-512 3-1024 =01? (CR)
Sectors/track =0010? (CR)
Number of heads =02? (CR)

Example 1: Examining the default parameters of a 5-1/4 inch ßoppy
disk.
3-75

Debugger Command Set

3

Number of cylinders =0050? (CR)
Precomp. Cylinder =0028? (CR)
Step Rate Code =00? (CR)
Single/Double TRACK density=D (S/D)? (CR)
Single/Double DATA density =D (S/D)? (CR)
Single/Equal_in_all Track zero density =S (S/E)? (CR)
Slow/Fast Data Rate =S (S/F)? (CR)
147-Bug>

147-Bug>IOT
Edit Disk Map [Y,N] N? (CR)

Controller LUN =00? 8
Device LUN =00? (CR)

Controller type =VME320

Controller address =$FFFFB000? (CR)

Sector Size:

0-128 1-256

2-512 3-1024 =01? (CR)
Block Size:

0-128 1-256

2-512 3-1024 =01? (CR)
Sectors/track =0020? (CR)
Starting head =00? (CR)
Number of heads =06? 8
Number of cylinders =033E? 400
Precomp. Cylinder =0000? 401
Reduced Write Current Cylinder=0000? (CR)
Interleave factor =01? 0B
Spiral Offset =00? (CR)
ECC Data Burst Length=0000? 000B
Reserved Area Units:Tracks/Cylinders =T (T/C)? (CR)
Tracks Reserved for Alternates=0000? (CR)
147-Bug>

Example 2: Changing from a 40MB Winchester to a 70MB Winchester.
(Note that reconÞguration such as this is only necessary
when the device is not formatted or of an unknown
format, or has no conÞguration sector. ReconÞguration is
normally done automatically by the IOP, BO, or BH
commands.
3-76

Load S-Records from Host - LO

3

Load S-Records from Host - LO
Command Input

LO [port] [addr] [;x|-c|t] [=text]

Options

Description

This command is used when data in the form of a file of Motorola
S-records is to be downloaded from a host system to the MVME147.
The LO command accepts serial data from the host and loads it into
memory.

Note The highest baud rate that can be used with the LO
command (downloader) is 9600 baud.

The optional port number ÒportÓ allows you to specify which port
is to be used for the downloading. If this number is omitted, port 1
is assumed.

-c Ignore checksum. A checksum for the data contained within an
S-record is calculated as the S-record is read in at the port.
Normally, this calculated checksum is compared to the
checksum contained within the S-record and if the compare fails,
an error message is sent to the screen on completion of the
download. If this option is selected, the comparison is not made.

x Echo. Echoes the S-records to your terminal as they are read in at
the host port.

t TRAP #15 code. This option causes LO to set the target register
D4 ='LO 'x, with x =$0C ($4C4F200C). The ASCII string 'LO '
indicates that this is the LO command; the code $0C indicates
TRAP #15 support with stack parameter/result passing and
TRAP #15 disk support. This code can be used by the
downloaded program to select the appropriate calling
convention when invoking debugger functions, because some
Motorola debuggers use conventions different from 147Bug, and
they set a different code in D4.
3-77

Debugger Command Set

3

The optional addr field allows you to enter an offset address which
is to be added to the address contained in the address field of each
record. This causes the records to be stored to memory at different
locations than would normally occur. The contents of the automatic
offset register are not added to the S-record addresses. If the
address is in the range $0 to $1F and the port number is omitted,
enter a comma before the address to distinguish it from a port
number.

The optional text field, entered after the equals sign (=), is sent to the
host before 147Bug begins to look for S-records at the host port. This
allows you to send a command to the host device to initiate the
download. This text should NOT be delimited by any kind of quote
marks. Text is understood to begin immediately following the
equals sign and terminate with the carriage return. If the host is
operating full duplex, the string is also echoed back to the host port
by the host and appears on your terminal screen.

In order to accommodate host systems that echo all received
characters, the above-mentioned text string is sent to the host one
character at a time and characters received from the host are read
one at a time. After the entire command has been sent to the host,
LO keeps looking for a line feed (LF) character from the host,
signifying the end of the echoed command. No data records are
processed until this (LF) is received. If the host system does not
echo characters, LO still keeps looking for an (LF) character before
data records are processed.

For this reason, in situations where the host system does not echo
characters, it is required that the first record transferred by the host
system be a header record. The header record is not used, but the
(LF) after the header record serves to break LO out of the loop so
that data records are processed.

The S-record format (refer to Appendix C) allows for an entry point
to be specified in the address field of the termination record of an S-
record block. The contents of the address field of the termination
record (plus the offset address, if any) are put into the target PC.
Thus, after a download, you need only enter G or GO instead of G
addr or GO addr to execute the code that was downloaded.
3-78

Load S-Records from Host - LO

3

If a nonhexadecimal character is encountered within the data field
of a data record, the part of the record which had been received up
to that time is printed to the screen and the 147Bug error handler is
invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not
agree with the checksum calculated by 147Bug AND if the
checksum comparison has not been disabled via the Ò-cÓ option, an
error condition exists. A message is output stating the address of
the record (as obtained from the address field of the record), the
calculated checksum, and the checksum read with the record. A
copy of the record is also output. This is a fatal error and causes the
command to abort.

When a load is in progress, each data byte is written to memory and
then the contents of this memory location are compared to the data
to determine if the data stored properly. If for some reason the
compare fails, a message is output stating the address where the
data was to be stored, the data written, and the data read back
during the compare. This is also a fatal error and causes the
command to abort.

Because processing of the S-records is done character-by-character,
any data that was deemed good has already been stored to memory
if the command aborts due to an error.

Examples

Suppose a host system was used to create this program:

1 * Test Program.
2 *
3 65040000 ORG $65040000
4
5 6504000 7001 MOVEQ.L #$1,D0
6 6504002 D088 ADD.L A0,D0
7 6504004 4A00 TST.B D0
8 6504006 4E75 RTS
9 END
****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

Then this program was compiled and converted into an S-record
file named TEST.MX as follows:
3-79

Debugger Command Set

3

S00F00005445535453335337202001015E
S30D650400007001D0884A004E75B3
S7056504000091

Load this file into MVME147 memory for execution at address
$40000 as follows:

147-Bug>TM Go into transparent mode to establish
Escape character: $01= ^ communication with the host.
 :
(CR) Press RETURN or ENTER to get login
 : prompt.
(login) You must log onto the host and enter
 : the proper directory to access the file
 : TEST.MX.
= ^A Enter the escape character (CTRL A)
147-Bug> to return to the 147Bug prompt.

147-Bug>LO -65000000 ;x=cat TEST.MX,#
cat TEST.MX,#

S00F00005445535453335337202001015E

S30D650400007001D0884A004E75B3

S7056504000091

147-Bug>

The S-records are echoed to the terminal because of the x option.

The offset address of -65000000 was added to the addresses of the
records in FILE.MX and caused the program to be loaded to
memory starting at $40000. The text Òcat TEST.MXÓ is the host
system command line that caused the file to be copied by the host
to the port which is connected with the MVME147 host port.

147-Bug>TM Go into transparent mode again.
Escape character: $01= ^A
 :
d At the prompt, log off the system.
 :
login: ^A Enter the escape character (CTRL A)
147-Bug> to return to the 147Bug prompt.

The target PC now contains the entry point of the code in memory
($40000).
3-80

LAN Station Address Display/Set - LSAD

3

LAN Station Address Display/Set - LSAD
Command Input

LSAD

Description

The LSAD command is used for examining and updating the
Ethernet station address.
Every MVME147 with LAN support is assigned an Ethernet station
address. The address is $08003E2xxxxx, where xxxxx is the unique
number assigned to the module; i.e., every MVME147 has a
different value for xxxxx.
Each Ethernet station address is displayed on a label attached to the
backplane connector P2. In addition, the xxxxx portion of the
Ethernet station address is stored in BBRAM location $FFFE0778 as
$2xxxxx.
If Motorola networking software is running on an MVME147, it
uses the 2xxxxx value from BBRAM to complete the Ethernet
station address ($08003E2xxxxx). The user must assure that the
value of 2xxxxx is maintained in BBRAM. If the value of 2xxxxx is
lost in BBRAM, you should use the number on the P2 connector
label to restore it.

Example 1: Display Ethernet station address.
147-Bug> LSAD
LAN Station Address = $08003E200000

To set the Station Address:

 Enter the code located on the back of the front panel:

$08003E2_____(CR)
147-Bug>

Example 2: Change Ethernet station address.
147-Bug> LSAD
LAN Station Address = $08003E200000

To set the Station Address:

 Enter the code located on the back of the front panel:

$08003E2_____1

LAN Station Address = $08003E200001

147-Bug>
3-81

Debugger Command Set

3

Macro Define/Display/Delete - MA/NOMA
Command Input

MA [name]
NOMA [name]

Arguments

The name can be any combination of 1 through 8 alphanumeric
characters.

Description

The MA command allows you to define a complex command
consisting of any number of debugger primitive commands with
optional parameter specifications.

NOMA command is used to delete either a single macro or all
macros.

Entering MA without specifying a macro name causes the
debugger to list all currently defined macros and their definitions.

When MA is invoked with the name of a currently defined macro,
that macro definition is displayed.

Line numbers are shown when displaying macro definitions to
facilitate editing via the MAE command. If MA is invoked with a
valid name that does not currently have a definition, then the
debugger enters the macro definition mode. In response to each
macro definition prompt ÒM=Ó, enter a debugger command,
including a carriage return. Commands entered are not checked for
syntax until the macro is invoked. To exit the macro definition
mode, enter only a carriage return (null line) in response to the
prompt. If the macro contains errors, it can either be deleted and
redefined or it can be edited with the MAE command. A macro
containing no primitive debugger commands; i.e., no definition, is
not accepted.

Macro definitions are stored in a string pool of fixed size. If the
string pool becomes full while in the definition mode, the offending
string is discarded, a message STRING POOL FULL, LAST LINE DISCARDED
3-82

Macro Define/Display/Delete - MA/NOMA

3

is printed and you are returned to the debugger command prompt.
This also happens if the string entered would cause the string pool
to overflow. The string pool has a capacity of 511 characters. The
only way to add or expand macros when the string pool is full is
either to delete or edit macro(s).

Debugger commands contained in macros may reference
arguments supplied at invocation time. Arguments are denoted in
macro definitions by embedding a back slash Ò\Ó followed by a
numeral. Up to ten arguments are permitted. A definition
containing a back slash followed by a zero would cause the first
argument to that macro to be inserted in place of the "\0"
characters. Similarly, the second argument would be used
whenever the sequence "\1" occurred.

Thus, entering ARGUE 3000 1 ;B on the debugger command line
would invoke the macro named ARGUE with the text strings 3000,
1, and ;B replacing "\0" , "\1", and "\2" respectively, within the
body of the macro.

To delete a macro, invoke NOMA followed by the name of the
macro. Invoking NOMA without specifying a macro name deletes
all macros. If NOMA is invoked with a macro name that does not
have a definition, an error message is printed.

Examples

147-Bug> MA ABC Define macro ABC.
M=MD 3000
M=GO \0
M= (CR)
147-Bug>

147-Bug> MA DIS Define macro DIS.
M=MD \0:17;DI
M= (CR)
147-Bug>
3-83

Debugger Command Set

3

147-Bug> MA List macro definitions.
MACRO ABC

010 MD 3000

020 GO \0

MACRO DIS

010 MD \0:17;DI

147-Bug>

147-Bug> MA ABC List definition of macro ABC.
MACRO ABC

010 MD 3000

020 GO \0

147-Bug>

147-Bug> NOMA DIS Delete macro DIS.
147-Bug>

147-Bug> MA ASM Define macro ASM.
M=MM \0;DI
M= (CR)
147-Bug>

147-Bug> MA List all macros.
MACRO ABC

010 MD 3000

020 GO \0

MACRO ASM

010 MM \0;DI

147-Bug>

147-Bug> NOMA Delete all macros.
147-Bug>

147-Bug> MA List all macros.
NO MACROS DEFINED

147-Bug>
3-84

Macro Edit - MAE

3

Macro Edit - MAE
Command Input

MAE name line# [string]

Arguments

Description

The MAE command permits modification of the macro named in
the command line. MAE is line oriented and supports the following
actions: insertion, deletion, and replacement.

To insert a line, specify a line number between the numbers of the
lines that the new line is to be inserted between. The text of the new
line to be inserted must also be specified on the command line
following the line number.

To replace a line, specify its line number and enter the replacement
text after the line number on the command line.

A line is deleted if its line number is specified and the replacement
line is omitted.

Attempting to delete a nonexistent line results in an error message
being displayed. MAE does not permit deletion of a line if the
macro consists only of that line. NOMA must be used to remove a
macro. To define new macros, use MA; the MAE command
operates only on previously defined macros.

Line numbers serve one purpose: specifying the location within a
macro definition to perform the editing function. After the editing
is complete, the macro definition is displayed with a new set of line
numbers.

name Any combination of 1 through 8 alphanumeric
characters.

line# Line number in range 1 through 999.
string Replacement line to be inserted.
3-85

Debugger Command Set

3

Examples

147-Bug> MA ABC List deÞnition of macro ABC.
MACRO ABC

010 MD 3000

020 GO \0

147-Bug>

147-Bug> MAE ABC 15 RD Add a line to macro ABC.
MACRO ABC

010 MD 3000

020 RD This line was inserted.
030 GO \0

147-Bug>

147-Bug> MAE ABC 10 MD 10+R0 Replace line 10.
MACRO ABC

010 MD 10+R This line was overwritten.
020 RD

030 GO \0

147-Bug>

147-Bug> MAE ABC 30 Delete line 30.
MACRO ABC

010 MD 10+R0

020 RD

147-Bug>
3-86

Enable/Disable Macro Expansion Listing - MAL/NOMAL

3

Enable/Disable Macro Expansion Listing -
MAL/NOMAL

Command Input

MAL
NOMAL

Description

The MAL command allows you to view expanded macro lines as
they are executed. This is especially useful when errors result, as
the line that caused the error appears on the display.

The NOMAL command is used to suppress the listing of the macro
lines during execution.

The use of MAL and NOMAL is a convenience for you and in no
way interacts with the function of the macros.
3-87

Debugger Command Set

3

Save/Load Macros - MAW/MAR
Command Input

MAW [controller LUN][del[device LUN][del block #]]
MAR [controller LUN][del[device LUN][del block #]]

Arguments

Description

The MAW command allows you to save the currently defined
macros to disk/tape. A message is printed listing the block number,
controller LUN, and device LUN before any writes are made. This
message is followed by a prompt (OK to proceed (y/n)?). You may
then decline to save the macros by typing the letter N (uppercase or
lowercase). Typing the letter Y (uppercase or lowercase) permits
MAW to proceed to write the macros out to disk/tape. The list is
saved as a series of strings and may take up to three blocks. If no
macros are currently defined, no writes are done to disk/tape and
NO MACRO DEFINED is displayed.

The MAR command allows you to load macros that have
previously been saved by MAW. Care should be taken to avoid
attempting to load macros from a location on the disk/tape other
than that written to by the MAW command. While MAR check for
invalid macro names and other anomalies, the results of such a
mistake are unpredictable.

controller LUN This is the logical unit number of the controller to
which the following device is attached. Initially
defaults to LUN 0.

device LUN This is the logical unit number of the device to
save/load macros to/from. Initially defaults to
LUN 0.

block # This is the number of the block on the above device
that is the Þrst block of the macro list. Initially
defaults to block 2.
3-88

Save/Load Macros - MAW/MAR

3

Note MAR discards all currently defined macros before
loading from disk/tape.

Defaults change each time MAR and MAW are invoked. When
either has been used, the default controller, device, and block
numbers are set to those used for that command. If macros were
loaded from controller 0, device 2, block 8 via command MAR, the
defaults for a later invocation of MAW or MAR would be controller
0, device 2, and block 8.

Errors encountered during I/O are reported along with the 16-bit
status word returned by the I/O routines.

Examples: Assume that controller 0, device 2 is accessible.

147-Bug> MAR 0,2,3 Load macros from block 3.
147-Bug>

147-Bug> MA List macros.
 MACRO ABC

010 MD 3000

020 GO \0

147-Bug>

147-Bug> MA ASM DeÞne macro ASM.
M=MM \0;DI
M= (CR)
147-Bug>

147-Bug> MA List all macros.
MACRO ABC

010 MD 3000

020 GO \0

MACRO ASM

010 MM \0;DI

147-Bug>

147-Bug> MAW ,,8 Save macros to block 8, previous device.
WRITING TO BLOCK $8 ON CONTROLLER $0, DEVICE $2

OK to proceed (y/N)? Y Carriage return not needed.
147-Bug>
3-89

Debugger Command Set

3

Memory Modify - M/MM
Command Input

MM addr[;[[b|w|l|s|d|x|p][a][n]]|[di]]
M addr[;[[b|w|l|s|d|x|p][a][n]]|[di]]

Options

MM accepts the following data types:

The n option of the MM command disables the read portion of the
command. The a option forces alternate location accesses only.

The di option enables the one-line assembler/disassembler. All
other options are invalid if di is selected. The contents of the
specified memory location are disassembled and displayed and
you are prompted with a question mark (Ò?Ó) for input. At this
point, you have three options:

1. Enter (CR). This closes the present location and continues
with disassembly of next instruction.

2. Enter a new source instruction followed by (CR). This
invokes the assembler, which assembles the instruction and
generates a Òlisting fileÓ of one instruction.

3. Enter . (CR). This closes the present location and exits the
MM command.

If a new source line is entered (choice 2 above), the present line is
erased and replaced by the new source line entered. In the
hardcopy mode, a linefeed is done instead of erasing the line.

If an error is found during assembly, the symbol ^ appears below
the field suspected of the error, followed by an error message. The
location being accessed is redisplayed.

Integer Data Type Floating-Point Data Type
b Byte s Single Precision
w Word (default) d Double Precision
l Longword x Extended

Precision
p Packed Precision
3-90

Memory Modify - M/MM

3

For additional information about the assembler, refer to Chapter 4.

Description

The M or MM command is used to examine and change memory
locations.

The MM command (alternate form M) reads and displays the
contents of memory at the specified address and prompts you with
a question mark (Ò?Ó). You may enter new data for the memory
location, followed by CR, or you may simply enter CR, which
leaves the contents unaltered. That memory location is closed and
the next location is opened.

Refer to Chapter 2 for use of a function code as part of the addr field.

You may also enter one of several special characters, either at the
prompt or after writing new data, which change what happens
when the carriage return is entered. However, these special
characters cannot be used if the di option is selected. They are as
follows:

Example 1

V or v The next successive memory location is opened. (This is the
default. It is in effect whenever MM is invoked and remains
in effect until changed by entering one of the other special
characters.)

^ MM backs up and opens the previous memory location.
= MM re-opens the same memory location (this is useful for

examining I/O registers or memory locations that are
changing over time).

. Terminates MM command. Control returns to 147Bug.

147-Bug>M 10000 Access location 10000.
00010000 1234? (CR)
00010002 5678? 4321 Modify memory.
00010004 9ABC? 8765^ Modify memory and back up.
00010002 4321? (CR)
00010000 1234? abcd. Modify memory and exit.
3-91

Debugger Command Set

3

Example 2

The examples below were made in the hardcopy mode.

Example 3: Assemble a new source line.
147-Bug>MM 10000;di
00010000 46FC2400 MOVE.W $2400,SR ? divs.w -(A2),D2
00010000 85E2 DIVS.W -(A2),D2

00010002 2400 MOVE.L D0,D2 ? (CR)
147-Bug>

Example 4: New source line with error.
00010008 4E7AD801 MOVEC.L VBR,A5 ? bchg #$12,9(A5,D6))
00010008 BCHG #$12,9(A5,D6))

--^

*** Unknown Field ***

00010008 4E7AD801 MOVEC.L VBR, A5 ? (CR)
147-Bug>

Example 5: Step to next location and exit MM.
147-Bug>M 1000C;di
FFE1000C 000000FF OR.B #255,D0 ? (CR)
FFE10010 20C9 MOVE.L A1,(A0)+ ? .
147-Bug>

Example 6
147-Bug>M 7000;X
00007000 0_0000_FFFFFFFF00000000?1_3C10_84782
0000700C 1_7FFF_00000000FFFFFFFF?0_001A_F
00007018 0_0000_FFFFFFFF00000000?6.02E23=
00007018 0_404D_FEF4F885469B0880?^
0000700C 0_001A_F000000000000000?(CR)
00007000 1_3C10_8478200000000000?.
147-Bug>

147-Bug>MM 10001;la Longword access to location 10001.
00010001 CD432187? (CR) Alternate location accesses.
00010009 00068010? 68010+10= Modify and reopen location.
00010009 00068020? (CR)
00010009 00068020? . Exit MM.
3-92

3Debugger Command Set
3

Memory Display - MD
Memory Display - MD
Command Input

MD[s]addr[:count | addr][; [b|w|l|s|d|x|p]|[di]]

Arguments

Options

MD accepts the following data types:

For the integer data types, the data is always displayed in
hexadecimal along with its ASCII representation.

The di option enables the resident MC68030 disassembler. No other
option is allowed if di is selected.

Description

This command is used to display the contents of multiple memory
locations all at once. Entering only CR at the prompt immediately
after the command has completed causes the command to re-
execute, displaying an equal number of data items or lines
beginning at the next address.

s The optional sector modiÞer s, appended to the MD
command, changes the default count to 128.

count The optional count argument speciÞes the number of data
items to be displayed (or the number of disassembled
instructions to display, if the disassembly option is selected).
The default is 8 if no count is entered and the s (sector)
modiÞer is not used.

Integer Data Type Floating-Point Data Type

b Byte s Single Precision

w Word (default) d Double Precision

l Longword x Extended
Precision

p Packed Precision
3-93

Debugger Command Set

3

Refer to Chapter 2 for use of a function code as part of the addr field.

Example 1

147-Bug>MD 12000
00012000 2800 1942 2900 1942 2800 1842 2900 2846 (..B)..B(..B).(F

147-Bug>(CR)
00012010 FC20 0050 ED07 9F61 FF00 000A E860 F060 | .Pm..a....h'p'

Example 2: Assume the following processor state: A2=00013500,
D5=53F00127.

147-Bug>MD (A2,D5):&19;b
00013627 4F 82 00 C5 9B 10 33 7A DF 01 6C 3D 4B 50 0F 0F
O..E..3z_.l=KP..
00013637 31 AB 80 +1.
147-Bug>

Example 3: Disassemble eight instructions, starting at $50008

147-Bug>MD 50008;di
00050008 46FC2700 MOVE.W $9984,SR
0005000C 61FF0000023E BSR.L $5024C
00050012 4E7AD801 MOVEC.L VBR,A5
00050016 41ED7FFC LEA.L 32764(A5),A0
0005001A 5888 ADDQ.L $4,A0
0005001C 2E48 MOVE.L A0,A7
0005001E 2C48 MOVE.L A0,A6
00050020 13C7FFFB003A MOVE.B D7,($FFFB003A).L
147-Bug>

Example 4: To display eight double precision ßoating point numbers at
location 50008, the user enters the following command line.

147-Bug>MD 50008;d
00005000 0_3F6_44C1D0F047FC2= 2.4777000000000002_E-0003
00005008 0_423_DAEFF04800000= 1.2749000000000000_E+0011
00005010 0_000_0000000000000= 0.0000000000000000_E+0000
00005018 0_403_0000000000000= 1.6000000000000000_E+0001
00005020 0_3FF_0000000000000= 1.0000000000000000_E+0000
00005028 0_000_00000FFFFFFFF= 2.1219957904712067_E+0314
00005030 0_44D_FDE9F10A8D361= 6.0200000000000000_E+0023
00005038 0_3C0_79CA10C924223= 1.5999999999999999_E+0019
147-Bug>
3-94

Menu - MENU

3

Menu - MENU
Command Input

MENU

Description

The MENU command works only if the 147Bug is in the ÒsystemÓ
mode (refer to the ENV command). When invoked in the system
mode, it provides a way to exit 147Bug and return to the menu.

When the 147Bug is in system mode, you can toggle back and forth
between the menu and Bug by typing a 3 in response to the Enter
Menu #: prompt when the menu is displayed. Entering the Bug and
then typing MENU in response to the 147-Bug> or 147-Diag> prompt
to return to the system menu.

For details on use of the system mode menu features, refer to
Appendix A.

Example

The following is an example of command line entries and their
definitions.

147-Bug>MENU

1 Continue System Start Up
2 Select Alternate Boot Device
3 Go to System Debugger
4 Initiate Service Call
5 Display System Test Errors
6 Dump Memory to Tape
Enter Menu #:
3-95

Debugger Command Set

3

Memory Set - MS
Command Input

MS addr [hexadecimal number]. . . | ['string']. . .

Arguments

Description

Memory Set is used to write data to memory starting at the
specified address.

Example: Assume that memory is initially cleared.

147-Bug>MS 25000 0123456789abcDEF 'This is ''147Bug''' 23456
147-Bug>MD 25000:10
00025000 0123 4567 89AB CDEF 5468 6973 2069 7320 .#Eg.+MoThis is.
00025010 2731 3437 4275 6727 2345 6000 0000 0000 '147Bug'#E`.....

147-Bug>

addr Refer to Chapter 2 for use of a function code as part of the
addr Þeld.

hexadecimal
number

Hexadecimal numbers are not assumed to be of a particular
size, so they can contain any number of digits (as allowed by
command line buffer size). If an odd number of digits are
entered, the least signiÞcant nibble of the last byte accessed is
unchanged.

string ASCII strings can be entered by enclosing them in single
quotes ('). To include a quote as part of a string, two
consecutive quotes should be entered.
3-96

Set Memory Address from VMEbus - OBA

3

Set Memory Address from VMEbus - OBA
Command Input

OBA

Description

The OBA (Off-Board Address) command allows you to set the base
address of the MVME147 onboard RAM, as seen from the VMEbus
(refer to Chapter 1). Therefore, you should enter the hexadecimal
number corresponding to the actual base address, so that the off-
board external devices on the VMEbus will know where it is. The
default condition is with the off-board address set to $0. These
selections are stored in the BBRAM that is part of the MK48T02
(RTC), and remain in effect through power-up or any reset.

Example 1: Display base addresses for 8MB board.

147-Bug>OBA
RAM address from VMEbus = $00000000? 1234 Note 1

Base addresses are: $00000000, $00800000, $01000000, $01800000,
 $02000000, $02800000, $03000000, $03800000,
 $04000000, $04800000, $05000000, $05800000,
 $06000000, $06800000, $07000000, $07800000,
 $08000000, $08800000, $09000000, $09800000,
 $0A000000, $0A800000, $0B000000, $0B800000,
 $0C000000, $0C800000, $0D000000, $0D800000

RAM address from VMEbus = $00000000? (CR) Note 2
147-Bug>

Example 2: Change base address for 8MB board.

147-Bug>OBA
RAM address from VMEbus = $00000000? 800000 Note 3
147-Bug>
3-97

Debugger Command Set

3

Example 3: Display/change base address for 16MB board.

147-Bug>OBA
RAM address from VMEbus = $00000000? 1234

Base addresses are: $00000000, $01000000, $02000000, $03000000,
 $04000000, $05000000, $06000000, $07000000,
 $08000000, $09000000, $0A000000, $0B000000,
 $0C000000, $0D000000, $0E000000, $0F000000,
 $10000000, $11000000, $12000000, $13000000,
 $10000000, $15000000, $16000000, $17000000,
 $10000000, $19000000, $1A000000, $1B000000
Base Address options: 1, 2

16/32 Mbyte Extended/Standard Addressing options available:

1 = Extended - $00000000-$00FFFFFF, Standard - $000000-$7FFFFF
2 = Extended - $01000000-$01FFFFFF, Standard - $000000-$7FFFFF

RAM address from VMEbus = $00000000? 2 Note 4
147-Bug>

Example 4: Change base address without option.

147-Bug>OBA
RAM address from VMEbus (option 2) = $01000000? 0 Note 5
147-Bug>

Notes 1. Any value that is not a base address or option, displays
the base addresses for the board based on the onboard
RAM size.

2. Pressing return without entering an address preserves the
current address.

3. Change base address from $0 to $800000.
4. Select option 2, onboard RAM responds to extended

addresses from $01000000 to $01FFFFFF, and standard
addresses from $000000 to $7FFFFF.

5. Return the base address to the default address of $0.
Onboard RAM responds to extended addresses from $0 to
end of onboard RAM, and standard addresses from $0 to
$FFFFFF.
3-98

Offset Registers Display/Modify - OF

3

Offset Registers Display/Modify - OF
Command Input

OF [Rn[;A]]

Options

Rn Register to be modified.
A Denotes automatic register.

Description

OF allows you to access and change pseudo-registers called offset
registers. These registers are used to simplify the debugging of
relocatable and position-independent modules. Refer to Chapter 2.

There are eight offset registers, R0-R7, but only R0-R6 can be
changed. R7 always has both base and top addresses set to 0. This
allows the automatic register function to be effectively disabled by
setting R7 as the automatic register.

Each offset register has two values: base and top. The base is the
absolute least address that is used for the range declared by the
offset register. The top address is the absolute greatest address that
is used. When entering the base and top, you may use either an
address/address format or an address/count format. If a count is
specified, it refers to bytes. If the top address is omitted from the
range, then a count of 1MB is assumed. The top address must equal
or exceed the base address. Wrap-around is not permitted.

Command Usage

OF Display all offset registers. An asterisk indicates which
register is the automatic register.

OF Rn Display/modify Rn. You can scroll through the register in a
way similar to that used by the MM command.
3-99

Debugger Command Set

3

Offset Register Rules

1. At power-up and cold start reset, R7 is the automatic register.

2. At power-up and cold start reset, all offset registers have both
base and top addresses preset to 0. This effectively disables
them.

3. R7 always has both base and top addresses set to 0; it cannot
be changed.

4. Any offset register can be set as the automatic register.

5. The automatic register is always added to every absolute
address argument of every 147Bug command where there is
not an offset register explicitly called out.

6. There is always an automatic register. A convenient way to
disable the effect of the automatic register is by setting R7 as
the automatic register. Note that this is the default condition.

Examples

Display offset registers.

147-Bug>OF
R0 =00000000 00000000 R1 = 00000000 00000000

R2 =00000000 00000000 R3 = 00000000 00000000

R4 =00000000 00000000 R5 = 00000000 00000000

R6 =00000000 00000000 R7*= 00000000 00000000

147-Bug>

OF Rn;A Display/modify Rn and set it as the automatic register. The
automatic register is one that is automatically added to each
absolute address argument of every command except if an
offset register is explicitly added. An asterisk indicates
which register is the automatic register.

range
entry

Ranges may be entered in three formats: base address alone,
base and top as a pair of addresses, and base address
followed by byte count. Control characters ^, v, V, =, and .
may be used. Their function is identical to that in the RM
and MM commands.

range
syntax

[base address [del top address]] [^ |v|=|.]
or
[base address [: byte count]] [^|v|=|.]
3-100

Offset Registers Display/Modify - OF

3

Modify some offset registers.

147-Bug>OF R0
R0 =00000000 00000000? 20000 200FF
R1 =00000000 00000000? 25000:200^
R0 =00020000 000200FF? .
147-Bug>

Look at location $20000.

147-Bug>M 20000;DI
00000+R0 41F95445 5354 LEA.L ($54455354).L,A0 .
147-Bug>M R0;DI
00000+R0 41F95445 5354 LEA.L ($54455354).L,A0 .
147-Bug>

Set R0 as the automatic register.

147-Bug>OF R0;A
R0*=00020000 000200FF? .

Look at location $20000.

147-Bug>M 0;DI
00000+R0 41F95445 5354 LEA.L ($54455354).L,A0 .
147-Bug>

Look at location 0, override the automatic offset.

147-Bug>M 0+R7;DI
00000000 FFF8 DC.W $FFF8 .
147-Bug>
3-101

Debugger Command Set

3

Printer Attach/Detach - PA/NOPA
Command Input

PA [port]
NOPA [port]

Argument

port Port number.

Description

These two commands ÒattachÓ or ÒdetachÓ a printer to the specified
port. Multiple printers may be attached. When the printer is
attached, everything that appears on the system console terminal is
also echoed to the ÒattachedÓ port. PA is used to attach, NOPA is
used to detach. If no port is specified, PA does not attach any port,
but NOPA detaches all attached ports.

If the port number specified is not currently assigned, PA displays
an ÒunassignedÓ message. If NOPA is attempted on a port that is
not currently attached, an ÒunassignedÓ message is displayed.

The port being attached must already be configured. This is done
using the Port Format (PF) command, and executing the following
sequence prior to ÒPA portÓ.

147-Bug>PF4
Logical unit $04 unassigned

Name of board? VME147

Name of port? PTR

Port base address = $FFFE2800? (CR)
DTE, DCE, or Printer [T,C,P] = P? (CR)
Auto Line Feed protocol [Y,N] = N? Y.
OK to proceed (y/n)? Y
147-Bug>

For further details, refer to the PF command.
3-102

Printer Attach/Detach - PA/NOPA

3

Examples

Console display: Printer output:

147-Bug>PA4 Attach printer port 4
147-Bug>HE NOPA 147-Bug>HE NOPA

NOPA Printer Detach NOPA Printer Detach

147-Bug>NOPA 147-Bug>NOPA Detach all printers
147-Bug>NOPA
No printer attached

147-Bug>
3-103

Debugger Command Set

3

Port Format/Detach - PF/NOPF
Command Input

PF [port]
NOPF [port]

Argument

port Port number.

Description

Port Format (PF) allows you to examine and change the serial
input/output environment. PF may be used to display a list of the
current port assignments, configure a port that is already assigned,
or assign and configure a new port. Configuration is done
interactively, much like modifying registers or memory (RM and
MM commands). An interlock is provided prior to configuring the
hardware -- you must explicitly direct PF to proceed.

Any onboard serial port configured via the PF command saves the
configuration values (baud rate, parity, character width, and
number of stop bits) in BBRAM. The configuration remains in effect
through power-up or any normal reset.

Note The Reset and Abort option sets BBRAM for Port 1
(LUN 0), to use the ROM defaults for port
configuration. (Refer to the Installation and Start-up
section for details on terminal set-up.)

!
Caution

Only nine ports may be assigned at any given time. Port
numbers must be in the range 0 to $1F.

Listing Current Port Assignments

Port Format lists the names of the module (board) and port for each
assigned port number (LUN) when the command is invoked with
the port number omitted.
3-104

Port Format/Detach - PF/NOPF

3

Example

147-Bug>PF
Current port assignments: (Port #: Board name, Port name)

[00: MVME147- "1"] [01: MVME147- "2"] [02: MVME147- "3"]

[03: MVME147- "4"] [04: MVME147- "PTR"]

Console port = LUN $00

147-Bug>

Configuring a Port

The primary use of Port Format is changing baud rates, stop bits,
etc. This may be accomplished for assigned ports by invoking the
command with the desired port number. Assigning and
configuring may be accomplished consecutively. Refer to the
Assigning a New Port section in this command discussion.

When PF is invoked with the number of a previously assigned port,
the interactive mode is entered immediately. To exit from the
interactive mode, enter a period by itself or following a new
value/setting. While in the interactive mode, the following rules
apply:

Only listed values are accepted when a list is shown. The sole
exception is that uppercase or lowercase may be
interchangeably used when a list is shown. Case takes on
meaning when the letter itself is used, such as XON character
value.

^ Control characters are accepted by hexadecimal value or by a
letter preceded by a caret (i.e., Control-A (CTRL A) would be
Ò^AÓ).
The caret, when entered by itself or following a value, causes
Port Format to issue the previous prompt after each entry.

v Either uppercase or lowercase ÒvÓ causes Port Format to resume
prompting in the original order (i.e., baud rate, parity type, ,...).
3-105

Debugger Command Set

3

Example: Changing the number of stop bits on port number 1.

147-Bug>PF 1
Baud rate [110,300,600,1200,2400,4800,9600,19200] = 9600?

Even, Odd, or No Parity [E,O,N] = N? (CR)
Char Width [5,6,7,8] = 8? (CR)
Stop Bits [1,2] = 1? 2 New value entered.

The next response is to demonstrate reversing the order of
prompting:

Async Mono, Bisync, Gen, SDLC, or HDLC [A,M,B,G,S,H] = A? ^
Stop Bits [1,2] = 2? . Value acceptable, exit
 interactive mode.
OK to proceed (y/n)? Y Carriage return is not
147-Bug> required.

Parameters Configurable by Port Format

Port base address:

Upon assigning a port, the option is provided to set the base
address. This is useful for support of boards with adjustable base
addressing; e.g., the MVME050. Entering no value selects the
default base address shown.

= Entering an equal sign by itself or when following a value
causes PF to issue the same prompt again. This is supported to
be consistent with the operation of other debugger commands.
To resume prompting in either normal or reverse order, enter
the letter ÒvÓ or a caret Ò^Ó respectively.

. Entering a period by itself or following a value causes Port
Format to exit from the interactive mode and issue the ÒOK to
proceed (y/n)?”.

(CR) Pressing return without entering a value preserves the current
value and causes the next prompt to be displayed.
3-106

Port Format/Detach - PF/NOPF

3

Baud rate:

You may choose from the following: 110, 300, 600, 1200, 2400, 4800,
9600, 19200. If a number base is not specified, the default is
decimal, not hexadecimal.

Parity type:

Parity may be even (choice E), odd (choice O), or disabled (choice
N).

Character width:

You may select 5-, 6-, 7-, or 8-bit characters.

Number of stop bits:

Only 1 and 2 stop bits are supported.

Synchronization type:

As the debugger is a polled serial input/output environment, most
users use only asynchronous communication. The synchronous
modes are permitted.

Synchronization character values:

Any 8-bit value or ASCII character may be entered.

Automatic software handshake:

Current drivers have the capability of responding to XON/XOFF
characters sent to the debugger ports. Receiving an XOFF causes a
driver to cease transmission until an XON character is received.

Software handshake character values:

The values used by a port for XON and XOFF may be redefined to
be any 8-bit value. ASCII control characters or hexadecimal values
are accepted.
3-107

Debugger Command Set

3

Assigning a New Port

Port Format supports a set of drivers for a number of different
modules and the ports on each. To assign one of these to a
previously unassigned port number, invoke the command with
that number. A message is then printed to indicate that the port is
unassigned and a prompt is issued to request the name of the
module (such as MVME147, MVME050, etc.). Pressing the Return
or Enter key on the console at this point causes PF to list the
currently supported modules and ports. When the name of the
module (board) has been entered, a prompt is issued for the name
of the port. After the port name has been entered, Port Format
attempts to supply a default configuration for the new port.

When a valid port has been specified, default parameters are
supplied. The base address of this new port is one of these default
parameters. Before entering the interactive configuration mode,
you are allowed to change the port base address. Pressing the
Return/Enter key on the console retains the base address shown.

If the configuration of the new port is not fixed, then the interactive
configuration mode is entered. Refer to the Configuring a Port
section in this command discussion. If the new port does have a
fixed configuration, then Port Format issues the ÒOK to proceed
(y/n)?” prompt immediately.

Port Format does not initialize any hardware until you have
responded with the letter Y to prompt ÒOK to proceed (y/n)?”.
Pressing the BREAK key on the console any time prior to this step or
responding with the letter N at the prompt leaves the port
unassigned. This is only true of ports not previously assigned.

Example: Assigning port 7 to the MVME050 printer port.

147-Bug>PF 7
Logical Unit $07 unassigned

Name of board? (CR) Cause PF to list supported boards,
Boards and ports supported: ports.
MVME147: 1,2,3,4,PTR

MVME050: 1,2,PTR2
3-108

Port Format/Detach - PF/NOPF

3

Name of board? MVME050 Upper- or lowercase accepted
Name of port? PTR2
Port base address = $FFFF1080? (CR)

Auto Line Feed protocol [Y,N] = N? .

Interactive mode is not entered because hardware has fixed
configuration.

OK to proceed (y/n)? Y
147-Bug>

NOPF Port Detach

The NOPF command, NOPFport, unassigns the port whose
number is port. Only one port may be unassigned at a time.
Invoking the NOPF command without a port number does not
unassign any ports.
3-109

Debugger Command Set

3

Put RTC in Power Save Mode for Storage - PS
Command Input

PS

Description

The PS command is used to turn off the oscillator in the RTC chip,
MK48T02. The MVME147 module is shipped with the RTC
oscillator stopped to minimize current drain from the onchip
battery. Normal cold start of the MVME147 with the 147Bug
EPROMs installed gives the RTC a Òkick startÓ to begin oscillation.
To disable the RTC, you must enter PS.

The SET command restarts the clock. Refer to the SET command
for further information.

Example

147-Bug>PS Clock is in battery save mode
147-Bug>
3-110

ROMboot Enable/Disable - RB/NORB

3

ROMboot Enable/Disable - RB/NORB
Command Input

RB
NORB

Description

The RB command enables the search for and booting from a routine
nominally encoded in onboard ROMs/PROMs/EPROMs/
EEPROMs on the MVME147. However, the routine can be in other
memory locations, as detailed in the RB command options given
below. Refer also to the ROMboot section in Chapter 1. The search
for and execution of a ROMboot routine is done ONLY in the Bug
mode and is excluded from the system mode. If ROMboot and
AUTOboot (refer to AB command) are enabled, ROMboot is
executed first and if there is a return to the Bug, AUTOboot is
executed. You also can select whether this occurs only at power-up,
or at any board reset. These selections are stored in the BBRAM that
is part of the MK48T02 (RTC), and remain in effect through power-
up or any normal reset.

Note The Reset and Abort option sets the ROMboot function
to the default condition (disabled) until enabled again
by the RB command.

NORB disables the search for a ROMboot routine, but does not
change the options chosen.

Example 1: Enable ROMboot function.

147-Bug> RB
Boot at Power-up only or any board Reset [P,R] = P?(CR) Note 1
Enable search of VMEbus [Y,N] = N? (CR) Note 2
Boot direct address = $FF800000? (CR) Note 3
ROM boot enabled

147-Bug>
3-111

Debugger Command Set

3

Example 2: Disable ROMboot function.

147-Bug> NORB
ROM boot disabled Note 4
147-Bug>

Notes 1. If R is entered, then boot is attempted at any board reset.

2. If Y is entered, the search for ÒBOOTÓ, etc. starts at the end of
onboard memory, in 8KB increments.

3. This is the Þrst address that is searched for ÒBOOTÓ, etc. and
may be set by you to point to the ROMboot routine, so the
search is faster. The default address is the start of the
147Bug EPROMs.

4. This disables the ROMboot function, but does not change
any options chosen under RB.
3-112

Register Display - RD

3

Register Display - RD
Command Input

RD [[+|-|=][dname][/]]. . . [[+|-|=][reg1[-reg2]][/]]. . .

Arguments

Description

The RD command is used to display the target state, that is, the
register state associated with the target program (refer to the GO
command). The instruction pointed to by the target PC is
disassembled and displayed also. Internally, a register mask
specifies which registers are displayed when the RD command is
executed. At reset time, this mask is set to display the MPU
registers. This register mask can be changed with the RD
command. The optional arguments allow you to enable or disable
the display of any register or group of registers. This is useful for
showing only the registers of interest, minimizing unnecessary data
on the screen; and also in saving screen space, which is reduced
particularly when coprocessor registers are displayed.

+ is a qualiÞer indicating that a device or register range is to
be added.

- is a qualiÞer indicating that a device or register range is to
be removed, except when used between two register names.
In this case, it indicates a register range.

= is a qualiÞer indicating that a device or register range is to
be set.

/ is a required delimiter between device names and register
ranges.

dname is a device name. This is used to quickly enable or disable
all the registers of a device. The available device names are:
MPU Microprocessor unit
FPC Floating-point coprocessor
MMU Memory management unit

reg1 is the Þrst register in a range of registers.
reg2 is the last register in a range of registers.
3-113

Debugger Command Set

3

Observe the following notes when specifying any arguments in the
command line:

1. The qualifier is applied to the next register range only.

2. If no qualifier is specified, a + qualifier is assumed.

3. All device names should appear before any register names.

4. The command line arguments are parsed from left to right,
with each field being processed after parsing, thus, the
sequence in which qualifiers and registers are organized has
an impact on the resultant register mask.

5. When specifying a register range, reg1 and reg2 do not have
to be of the same class.

6. The register mask used by RD is also used by all exception
handler routines, including the trace and breakpoint
exception handlers.

The MPU registers in ordering sequence are:

Total: 26 registers. Note that A7 represents the active stack pointer,
which leaves 25 different registers.

The FPC registers in ordering sequence are:

Number of
Registers Type of Registers Mnemonics

10 System Registers PC, SR, USP, MSP, SP, VBR,
SFC, DFC, CACR, CAAR

8 Data Registers D0-D7
8 Address Registers (A0-A7

Number of
Registers Type of Registers Mnemonics

3 System Registers FPCR, FPSR, FPIAR
8 Data Registers FP0-FP7
3-114

Register Display - RD

3

The MMU registers in ordering sequence are:

Example 1

147-Bug>RD
PC =00004000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP*=00006000 SFC =0=F0

CACR=0=D:.... I:... CAAR=00000000 DFC =0=F0

D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00004000 4AFC ILLEGAL

147-Bug>

Number of
Registers Type of Registers Mnemonics

5 Address
Translation/Control

CRP, SRP, TC, TT0, TT1

1 Status MMUSR

Notes 1. An asterisk (*) following a stack pointer name indicates
that it is the active stack pointer.

2. The status register includes a mnemonic portion to help
in reading it:

Trace Bits: 0 0 TR:OFF Trace off
0 1 TR:CHG Trace on change of ßow
1 0 TR:ALL Trace all states
1 1 TR:INV Invalid mode

S, M Bits: The bit name appears (S,M) if the
respective bit is set, otherwise a Ò.Ó
indicates that it is cleared.

Interrupt
Mask:

A number from 0 to 7 indicates the current
processor priority level.

Condition
Codes:

The bit name appears (X,N,Z,V,C) if the
respective bit is set, otherwise a Ò.Ó
indicates that it is cleared.
3-115

Debugger Command Set

3

The Source and Destination Function Code Registers (SFC, DFC)
include a two character mnemonic:

The Cache Control Register (CACR) shows mnemonics for two bits:
enable and freeze. The bit name (E, F) appears if the respective bit
is set, otherwise a Ò.Ó indicates that it is cleared.

Example 2: Display only the MMU registers.

147-Bug>RD =MMU
CRP =00000001_00000000 SRP =00000001_00000000

TC =00000000 TT0 =00000000 TT1 =00000000

MMUSR=0000=......._0

00004000 4AFC ILLEGAL

147-Bug>

The MMUSR register above includes a mnemonic portion. The bits
are:

Function Code Mnemonic Description

0 F0 UndeÞned
1 UD User Data
2 UP User Program
3 F3 UndeÞned
4 F4 UndeÞned
5 SD Supervisor Data
6 SP Supervisor Program
7 CS CPU Space

B Bus Error bit 15
L Limit Violation bit 14
S Supervisor Only bit 13
W Write Protected bit 11
I Invalid bit 10
M ModiÞed bit 9
T Transparent Access bit 6
N Number of Levels (3 bits) bits 2-0
3-116

Register Display - RD

3

Example 3: Display only the FPC registers.

147-Bug>RD =FPC
FPCR =00000000 FPSR =00000000-(CC=....) FPIAR=00000000

FP0 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

FP1 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

FP2 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

FP3 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

FP4 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

FP5 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

FP6 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

FP7 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

00004000 4AFC ILLEGAL

147-Bug>

The floating point data registers are always displayed in extended
precision and in scientific notation format. The floating point status
register display includes a mnemonic portion for the condition
codes. The bit name appears (N, X, I, NAN) if the respective bit is
set, otherwise a Ò.Ó indicates that it is cleared.

Example 4: Remove D3 through D5 and A2, and add FPSR and FP0,
starting with the previous display.

147-Bug>RD MPU/-FPC/-D3-D5/-A2/FP0/FPSR
PC =00004000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP*=00006000 SFC =0=F0

CACR=0=D:.... I:... CAAR=00000000 DFC =0=F0

D0 =00000000 D1 =00000000 D2 =00000000 D6 =00000000

D7 =00000000 A0 =00000000 A1 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

FPSR =00000000-(CC=....)

FP0 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF

00004000 4AFC ILLEGAL

147-Bug>
3-117

Debugger Command Set

3

Example 5: Set the display to D6 and A3 only.

147-Bug>RD =D6/A3
D6 =00000000 A3 =00000000

00013000 4AFC ILLEGAL

147-Bug>

Note that the above sequence sets the display to D6 only and then
adds register A3 to the display.

Example 6: Restore all the MPU registers.

147-Bug>RD +MPU
PC =00004000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP*=00006000 SFC =0=F0

CACR=0=D:.... I:... CAAR=00000000 DFC =0=F0

D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00004000 4AFC ILLEGAL

147-Bug>

Note that an equivalent command would have been RD PC-A or
RD = MPU.
3-118

Remote - REMOTE

3

Remote - REMOTE
Command Input

REMOTE

Description

The REMOTE command duplicates the remote (modem operation)
functions available from the ÒsystemÓ mode MENU command,
entry number 4. It is accessible from either the ÒbugÓ or ÒsystemÓ
mode (refer to MENU command in Appendix A for details on
remote operation).

The modem type, baud rate, and concurrent flag are saved in the
BBRAM that is part of the MK48T02 (RTC) and, remain in effect
through any normal reset. If the MVME147 and the modem do not
share the same power supply then, the selections remain in effect
through power-up; otherwise no guarantees are made as to the
state of the modem.

Note The Reset and Abort option sets the Òdual consoleÓ
(concurrent) mode to the default condition (disabled),
until enabled again by the REMOTE command.
3-119

Debugger Command Set

3

Cold/Warm Reset - RESET
Command Input

RESET

Description

The RESET command is used to issue a local SCSI bus reset and
also allows you to specify the level of reset operation that is in effect
when a RESET exception is detected by the processor. A reset
exception can be generated by pressing the RESET switch on the
MVME147 front panel, or by executing a software reset.

When the ENV command is invoked, the interactive mode is
entered immediately. While in the interactive mode, the following
rules apply:

Only listed values are accepted when a list is shown. Uppercase or
lowercase may be interchangeably used when a list is shown.

^ Backs up to the previous Þeld.
. Entering a period by itself or following a new value/setting causes

RESET to exit the interactive mode. Control returns to the Bug.
(CR) Pressing return without entering a value preserves the current

value and causes the next prompt to be displayed.:
Reset local SCSI bus [Y/N} Selecting this (Y) causes an

immediate reset of the local
MVME147 SCSI bus via the PCC
SCSI port interrupt control register.

Automatic reset of SCSI buses
[Y/N}

Selecting this (Y) causes a SCSI bus
reset command to be issued, at reset
time, to each available SCSI controller.
3-120

Cold/Warm Reset - RESET

3

Two RESET levels are available:

Example 1: Do a local SCSI bus reset and exit.

147-Bug>RESET
Reset Local SCSI Bus [Y,N] N? Y.
147-Bug>

Example 2: Arm automatic SCSI bus resets and exit.

147-Bug>RESET
Reset Local SCSI Bus [Y,N] N?(CR)
Automatic reset of known SCSI Buses on RESET [Y,N] =N? Y.

Example 3: Arm warm resets and execute a software reset.

147-Bug> RESET
Reset Local SCSI Bus [Y,N] N? (CR)
Automatic reset of known SCSI Buses on RESET [Y,N] = Y?(CR)
Cold/Warm Reset [C,W] = C? W
Execute Soft Reset [Y,N] N? Y

Copyright Motorola Inc. 1989, 1990 All Rights Reserved

VME147 Monitor/Debugger Release 2.3 - 3/30/90

CPU running at 25 MHz

WARM Start

147-Bug>

COLD This is the standard level of operation, and is the one
defaulted to on power-up. In this mode, all the static
variables are initialized every time a reset is done.

WARM In this mode, all the static variables are preserved when a
reset exception occurs. This is convenient for keeping
breakpoints, offset register values, the target register state,
and any other static variables in the system.
3-121

Debugger Command Set

3

Register Modify - RM
Command Input

RM reg

Arguments

reg The mnemonic for the particular register, the same as it
 is displayed.

Description

RM allows you to display and change the target registers. It works
in essentially the same way as the MM command, and the same
special characters are used to control the display/change session
(refer to the MM command).

Example 1

147-Bug>RM D5
D5 =12345678? ABCDEF^ Modify register and back up.
D4 =00000000? 3000. Modify register and exit.
147-Bug>

Example 2

147-Bug>RM SFC
SFC =7=CS ? 1= Modify register and reopen.
SFC =1=UD ? . Exit.
147-Bug>

The RM command is also used to modify the memory management
unit registers.

Example 3

147-Bug>RM CRP
CRP =00000001_00000000 ?(CR)
SRP =00000001_00000000 ?(CR)
TC =00000000 ?87654321
TT0 =00000000 ?12345678
TT1 =00000000 ?87654321
MMUSR=0000=._0? .
3-122

Register Modify - RM

3

147-Bug>RD =MMU
CRP =00000001_00000000 SRP =00000001_00000000

TC =87654321 TT0 =12345678 TT1 =87654321

MMUSR=0000=......._0

00004000 4AFC ILLEGAL

147-Bug>

The RM command is also used to modify the floating-point
coprocessor registers (MC68882).

Example 4

147-Bug>RM FPSR
FPSR =00000000-(CC=....) ? F000000
FPIAR=00000000 ? (CR)
FP0 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?0_1234_5
FP1 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?1.25E3
FP2 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?1_7F_3FF
FP3 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?1100_9261_3
FP4 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?&564
FP5 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?0_5FF_F0AB
FP6 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?3.1415
FP7 =0_7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-0FFF?-2.74638369E-36.

147-Bug>

147-Bug>RD =FPC
FPCR =00000000 FPSR =0F000000-(CC=NZI[NAN]) FPIAR=00000000

FP0 =0_1234_5000000000000000= 6.6258385370745493_E-3530

FP1 =0_4009_9C40000000000000= 1.2500000000000000_E+0003

FP2 =1_3FFF_BFF0000000000000=-1.4995117187500000_E+0000

FP3 =1_3C9D_BCEECF12D061BED9=-3.0000000000000000_E-0261

FP4 =0_4008_8D00000000000000= 5.6400000000000000_E+0002

FP5 =0_41FF_F855800000000000= 2.6012612226385672_E+0154

FP6 =0_4000_C90E5604189374BC= 3.1415000000000000_E+0000

FP7 =1_3F88_E9A2F0B8D678C318=-2.7463836900000000_E-0036

00004000 4AFC ILLEGAL

147-Bug>
3-123

Debugger Command Set

3

Register Set - RS
Command Input

RS reg [hexadecimal number]. . .

Arguments

reg The mnemonic for the particular register.

Description

The RS command allows you to change the data in the specified
target register. It works in essentially the same way as the RM
command.

Example 1

147-Bug>RS D5 12345678 Change MPU register.
D5 =12345678

147-Bug>

Example 2

147-Bug>RS TT0 87654321 Change MMU register.
TT0 =87654321

147-Bug>

Example 3

147-Bug>RS FP0 0_1234_5 Change FPC register.
FP0 =0_1234_5000000000000000= 6.6258385370745493_E-3530

147-Bug>
3-124

Switch Directories - SD

3

Switch Directories - SD
Command Input

SD

Description

The SD command is used to change from the debugger directory to
the diagnostic directory or from the diagnostic directory to the
debugger directory.

The commands in the current directory (the directory that you are
in at the particular time) may be listed using the HE (Help)
command.

The way the directories are structured, the debugger commands are
available from either directory but the diagnostic commands are
only available from the diagnostic directory.

Example 1

147-Bug>SD
147-Diag> You have changed from the debugger
 directory to the diagnostic directory,
 as can be seen by the 147-Diag> prompt.

Example 2

147-Diag>SD
147-Bug> You are now back in the debugger
 directory.
3-125

Debugger Command Set

3

Set Time and Date - SET
Command Input

SET

Description

The SET command is interactive and begins with you entering SET
followed by a carriage return. At this time, a prompt asking for
MM/DD/YY is displayed. You may change the displayed date by
typing a new date followed by (CR), or may simply enter (CR),
which leaves the displayed date unchanged. When the correct date
matches the data entered, you should press the carriage return to
establish the current value in the time-of-day clock.

Note that an incorrect entry may be corrected by backspacing or
deleting the entire line as long as the carriage return has not been
entered.

After the initial prompt and entry, another prompt is presented
asking for a calibration value. This value slows down (- value) or
speeds up (+ value) the RTC in the MK48T02 chip. Refer to the
MK48T02 data sheet (as mentioned in Chapter 1,) for details.

Next, a prompt is presented asking for HH:MM:SS. You may
change the displayed time by typing a new time followed by (CR),
or may simply enter (CR), which leaves the displayed time
unchanged.

To display the current date and time of day, refer to the TIME
command.

Example: Set a date and time of May 16, 1990 2:05:32 PM.
147-Bug>SET
Weekday xx/xx/xx xx:xx:xx
Present calibration = -0
Enter date as MM/DD/YY.
05/11/90
Enter Calibration value +/- (0 to 31)
(CR)
Enter time as HH:MM:SS (24 hour clock)
14:05:32
147-Bug>
3-126

Trace - TRACE

3

Trace - TRACE
Command Input

T [count]

Description

The T command allows execution of one instruction at a time,
displaying the target state after execution. T starts tracing at the
address in the target PC. The optional count field (which defaults to
1 if none entered) specifies the number of instructions to be traced
before returning control to 147Bug.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands, which allows the use of breakpoints in ROM or
write protected memory. In all cases, if a breakpoint with 0 count is
encountered, control is returned to 147Bug.

The trace functions are implemented with the trace bits (T0, T1) in
the MC68030 status register, therefore, these bits should not be
modified while using the trace commands.

Example: Assume that the following program resides at location $10000.

147-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1

00010002 4282 CLR.L D2

00010004 D401 ADD.B D1,D2

00010006 E289 LSR.L #$1,D1

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #$1,D2

0001000C 55C2 SCS.B D2

0001000E 60FE BRA.B $1000E

147-Bug>

Initialize PC and D0:

147-Bug>RS PC 10000
PC =00010000

147-Bug>
3-127

Debugger Command Set

3

147-Bug>RS D0 8F41C
D0 =0008F41C

147-Bug>

Display target registers and trace one instruction:

147-Bug>RD
PC =00010000 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010000 2200 MOVE.L D0,D1

147-Bug>T
PC =00010002 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010002 4282 CLR.L D2

147-Bug>

Trace next instruction:

147-Bug>(CR)
PC =00010004 SR =2704=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010004 4D01 ADD.B D1,D2

147-Bug>
3-128

Trace - TRACE

3

Trace the next two instructions:

147-Bug>T2
PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =0008F41C D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010006 E289 LSR.L #$1,D1

PC =00010008 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =00047A0E D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010008 66FA BNE.B $10004

147-Bug>
3-129

Debugger Command Set

3

Terminal Attach - TA
Command Input

TA [port]

Description

TA command allows you to assign any serial port to be the console.
The port specified must already be assigned (refer to the Port
Format (PF) command). Any onboard serial port selected as console
is saved in the BBRAM that is part of the MK48T02 RTC, and
remains in effect through power-up or any normal reset.

Note The reset and abort option returns the console port to
the default port (port 1, LUN 0).

Example 1: Selecting port 3 (logical unit #02) as console.

147-Bug>TA 2 (See note below)

Changing the Console Port from [0: VME147- "1"] to [2: VME147 "3"]

Example 2: Restoring console to default port (port 1, LUN 0).

147-Bug>TA

Changing the Console Port from [2: VME147- "3"] to [0: VME147- "1"]

Note Console changed to port 3 and no prompt appears,
unless port 3 was already the console. All keyboard
exchanges and displays are now made through port 3.
This remains in effect (through power-up or reset) until
either another TA command has been issued or the
reset and abort option has been invoked.
3-130

Trace on Change of Control Flow - TC

3

Trace on Change of Control Flow - TC
Command Input

TC [count]

Description

The TC command starts execution at the address in the target PC
and begins tracing upon the detection of an instruction that causes
a change of control flow, such as JSR, BSR, RTS, etc. This means that
execution is in real time until a change of flow instruction is
encountered. The optional count field (which defaults to 1 if none
entered) specifies the number of change of flow instructions to be
traced before returning control to 147Bug.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands, which allows the use of breakpoints in ROM or
write protected memory. Note that the TC command recognizes a
breakpoint only if it is at a change of flow instruction. In all cases, if
a breakpoint with 0 count is encountered, control is returned to
147Bug.

The trace functions are implemented with the trace bits (T0, T1) in
the MC68030 status register, therefore, these bits should not be
modified while using the trace commands.

Example: Assume that the following program resides at location $10000.

147-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1

00010002 4282 CLR.L D2

00010004 D401 ADD.B D1,D2

00010006 E289 LSR.L #$1,D1

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #$1,D2

0001000C 55C2 SCS.B D2

0001000E 60FE BRA.B $1000E

147-Bug>
3-131

Debugger Command Set

3

Initialize PC and D0:

147-Bug>RS PC 10000
PC =00010000

147-Bug>

147-Bug>RS D0 8F41C
D0 =0008F41C

147-Bug>

Trace on change of flow:

147-Bug>TC
00010008 66FA BNE.B $10004

PC =00010004 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =00047A0E D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010004 4D01 ADD.B D1,D2

147-Bug>

Note that the above display also shows the change of flow
instruction.
3-132

Display Time and Date - TIME

3

Display Time and Date - TIME
Command Input

TIME

Description

The TIME command presents the date and time in ASCII characters
to the console.

To initialize the time-of-day clock, refer to the SET command.

Example: A date and time of Wednesday, May 16, 1990 2:05:32 would be
displayed as:

147-Bug>TIME
Wednesday 5/16/90 14:05:32

147-Bug>
3-133

Debugger Command Set

3

Transparent Mode - TM
Command Input

TM [port] [escape]

Description

TM essentially connects the console serial port and the host port
together, allowing you to communicate with a host computer. A
message displayed by TM shows the current escape character; i.e.,
the character used to exit the transparent mode. The two ports
remain ÒconnectedÓ until the escape character is received by the
console port. The escape character is not transmitted to the host,
and at power-up or reset it is initialized to $01=^A.

The optional port number ÒportÓ allows you to specify which port
is the ÒhostÓ port. If omitted, port 1 is assumed.

The ports do not have to be at the same baud rate, but the console
port baud rate should be equal to or greater than the host port baud
rate for reliable operation. To change the baud rate use the PF
command.

The optional escape argument allows you to specify the character
to be used as the exit character. This can be entered in three
different formats:

If the port number is omitted and the escape argument is entered as
a numeric value, precede the escape argument with a comma to
distinguish it from a port number.

Example 1
147-Bug>TM Enter TM.
Escape character: $01=^A Exit code is always displayed.
^A Exit transparent mode.
147-Bug>

Example 2
147-Bug>TM ^ g Enter TM and set escape
Escape character: $07=^G character to ^G.
^G Exit transparent mode.
147-Bug>

ASCII code $03 Set escape character to ^C
Control character ^C Set escape character to ^C
ASCII character 'c Set escape character to c
3-134

Trace to Temporary Breakpoint - TT

3

Trace to Temporary Breakpoint - TT
Command Input

TTaddr

Description

TT sets a temporary breakpoint at the specified address and traces
until a breakpoint with 0 count is encountered. The temporary
breakpoint is then removed (TT is analogous to the GT command)
and control is returned to 147-Bug. Tracing starts at the target PC
address.

Breakpoints are monitored (but not inserted) during tracing for all
trace commands, which allows the use of breakpoints in ROM or
write protected memory. If a breakpoint with 0 count is
encountered, control is returned to 147Bug.

The trace functions are implemented with the trace bits (T0, T1) in
the MC68030 status register, therefore, these bits should not be
modified while using the trace commands.

Example: Assume that the following program resides at location $10000.

147-Bug>MD 10000;DI
00010000 2200 MOVE.L D0,D1

00010002 4282 CLR.L D2

00010004 D401 ADD.B D1,D2

00010006 E289 LSR.L #1,D1

00010008 66FA BNE.B $10004

0001000A E20A LSR.B #1,D2

0001000C 55C2 SCS.B D2

0001000E 60FE BRA.B $1000E

147-Bug>

Initialize PC and D0:

147-Bug>RS PC 10000
PC =00010000

147-Bug>
3-135

Debugger Command Set

3

147-Bug>RS D0 8F41C
D0 =0008F41C

147-Bug>

Trace to temporary breakpoint:

147-Bug>TT 10006
PC =00010002 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010002 4282 CLR.L D2

PC =00010004 SR =2704=TR:OFF_S._7_..Z.. VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010004 D401 ADD.B D1,D2

At Breakpoint

PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000

USP =00005830 MSP =00005C18 ISP* =00006000 SFC =0=F0

CACR =0=D:.... I:... CAAR =00000000 DFC =0=F0

D0 =0008F41C D1 =0008F41C D2 =0000001C D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00006000

00010006 E289 LSR.L #$1,D1

147-Bug>
3-136

Verify S-Records Against Memory - VE

3

Verify S-Records Against Memory - VE
Command Input

VE [port] [addr] [;x|-c] [=text]

Options

Description

This command is identical to the LO command with the exception
that data is not stored to memory but merely compared to the
contents of memory.

The VE command accepts serial data from a host system in the form
of a file of Motorola S-records and compares it to data already in the
MVME147 memory. If the data does not compare, then you are
alerted via information sent to the terminal screen.

The optional port number ÒportÓ allows you to specify which port
is to be used for the downloading. If this number is omitted, port 1
is assumed.

Note The highest baud rate that can be used with the VE
command (downloader) is 9600 baud.

The optional addr field allows you to enter an offset address which
is to be added to the address contained in the address field of each
record. This causes the records to be compared to memory at
different locations than would normally occur. The contents of the
automatic offset register are not added to the S-record addresses.

-c Ignore checksum. A checksum for the data contained within an
S-Record is calculated as the S-record is read in at the port.
Normally, this calculated checksum is compared to the
checksum contained within the S-record and if the compare fails
an error message is sent to the screen on completion of the
download. If this option is selected, the comparison is not made.

x Echo. Echoes the S-records to your terminal as they are read in
at the host port.
3-137

Debugger Command Set

3

(For information on S-records, refer to Appendix C.) If the address
is in the range $0 to $1F and the port number is omitted, precede the
address with a comma to distinguish it from a port number.

The optional text field, entered after the equals sign (=), is sent to the
host before 147Bug begins to look for S-records at the host port. This
allows you to send a command to the host device to initiate the
download. This text should NOT be delimited by any kind of quote
marks. Text is understood to begin immediately following the
equals sign and terminate with the carriage return. If the host is
operating full duplex, the string is also echoed back to the host port
by the host and appears on your terminal screen.

In order to accommodate host systems that echo all received
characters, the above-mentioned text string is sent to the host one
character at a time and characters received from the host are read
one at a time. After the entire command has been sent to the host,
VE keeps looking for a line feed (LF) character from the host,
signifying the end of the echoed command. No data records are
processed until this (LF) is received. If the host system does not
echo characters, VE still keeps looking for an (LF) character before
data records are processed.

For this reason, in situations where the host system does not echo
characters, it is required that the first record transferred by the host
system be a header record. The header record is not used, but the
(LF) after the header record serves to break VE out of the loop so
that data records are processed.

During a verify operation, data from an S-record is compared to
memory beginning with the address contained in the S-record
address field (plus the offset address, if it was specified). If the
verification fails, then the non-comparing record is set aside until
the verify is complete and then it is printed out to the screen. If three
non-comparing records are encountered in the course of a verify
operation, the command is aborted.
3-138

Verify S-Records Against Memory - VE

3

If a non-hexadecimal character is encountered within the data field
of a data record, the part of the record which had been received up
to that time is printed to the screen and the 147Bug error handler is
invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not
agree with the checksum calculated by 147Bug AND if the
checksum comparison has not been disabled via the Ò-cÓ option, an
error condition exists. A message is output stating the address of
the record (as obtained from the address field of the record), the
calculated checksum, and the checksum read with the record. A
copy of the record is also output. This is a fatal error and causes the
command to abort.

Examples

This short program was developed on a host system.

1 * Test Program.
2 *
3 65040000 ORG $65040000
4
5 65040000 7001 MOVEQ.L #$1,D0
6 65040002 D088 ADD.L A0,D0
7 65040004 4A00 TST.B D0
8 65040006 4E75 RTS
9 END
****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

Then this program was compiled and converted into an S-Record
file named TEST.MX as follows:

S00F00005445535453335337202001015E
S30D650400007001D0884A004E75B3
S7056504000091

This file was downloaded into memory at address $40000 (refer to
the LO command for more information). The program may be
examined in memory using the MD command.
3-139

Debugger Command Set

3

147-Bug>MD 40000:4;DI
00040000 7001 MOVEQ.L #$1,D0

00040002 D088 ADD.L A0,D0

00040004 4A00 TST.B D0

00040006 4E75 RTS

147-Bug>

Suppose you want to make sure that the program has not been
destroyed in memory. The VE command is used to perform a
verification.

147-Bug>VE -65000000 ;x=cat TEST.MX
S00F00005445535453335337202001015E

S30D650400007001D0884A004E75B3

S7056504000091

Verify passes.

147-Bug>

The verification passes. The program stored in memory was the
same as that in the S-record file that had been downloaded.

Now change the program in memory and perform the verification
again.

147-Bug>M 40002
00040002 D088 ? D089 .
147-Bug>VE -65000000 ;x=cat TEST.MX
S00F00005445535453335337202001015E

S30D650400007001D0884A004E75B3

S7056504000091

The following record(s) did not verify

S30D65040000------88--------B3

147-Bug>

The byte that was changed in memory does not compare with the
corresponding byte in the S-record.
3-140

4
4Using the One-Line
Assembler/Disassembler
Introduction
Included as part of the 147Bug firmware is an assembler/
disassembler function. The assembler is an interactive
assembler/editor in which the source program is not saved. Each
source line is translated into the proper MC68030/MC68882
machine language code and is stored in memory on a line-by-line
basis at the time of entry. In order to display an instruction, the
machine code is disassembled, and the instruction mnemonic and
operands are displayed. All valid MC68030 instructions are
translated.

The 147Bug assembler is effectively a subset of the MC68030
Resident Structured Assembler. It has some limitations as
compared with the Resident Assembler, such as not allowing line
numbers and labels; however, it is a powerful tool for creating,
modifying, and debugging MC68030 code.

MC68030 Assembly Language

The symbolic language used to code source programs for
processing by the assembler is MC68030 assembly language. This
language is a collection of mnemonics representing:

❏ Operations

Ñ MC68030 machine-instruction operation codes

Ñ Directives (pseudo-ops)

❏ Operators

❏ Special symbols
4-1

Using the One-Line Assembler/Disassembler

4

Machine-Instruction Operation Codes

The part of the assembly language that provides the mnemonic
machine-instruction operation codes for the MC68030/MC68882
machine instructions is described in the MC68030UM 32-Bit
Microprocessor User's Manual and MC68881UM Floating-Point
Coprocessor User's Manual. Refer to these manuals for any question
concerning operation codes.

Directives

Normally, assembly language can contain mnemonic directives
which specify auxiliary actions to be performed by the assembler.

The 147Bug assembler recognizes only two directives called DC.W
(define constant) and SYSCALL. These directives are used to define
data within the program, and to make calls to 147Bug utilities. Refer
to the DC.W - Define Constant Directive and SYSCALL - System Call
Directive sections in this chapter.

Comparison with MC68030 Resident Structured Assembler

There are several major differences between the 147Bug assembler
and the MC68030 Resident Structured Assembler. The resident
assembler is a two-pass assembler that processes an entire program
as a unit, while the 147Bug assembler processes each line of a
program as an individual unit. Due mainly to this basic functional
difference, the capabilities of the 147Bug assembler are more
restricted:

1. Label and line numbers are not used. Labels are used to
reference other lines and locations in a program. The one-line
assembler has no knowledge of other lines and, therefore,
cannot make the required association between a label and the
label definition located on a separate line.

2. Source lines are not saved. In order to read back a program
after it has been entered, the machine code is disassembled
and then displayed as mnemonic and operands.
4-2

Source Program Coding

4

3. Only two directives (DC.W and SYSCALL) are accepted.

4. No macro operation capability is included.

5. No conditional assembly is used.

6. Several symbols recognized by the resident assembler are not
included in the 147Bug assembler character set. These
symbols include > and <.

7. Three symbols, the ampersand (&), the slash (/), and the
asterisk (*), have multiple meanings to the resident
assembler, depending on the context:

& Ampersand AND or decimal number preÞx.

/ Slash Divide or delimiter in a register list.

* Asterisk Multiply or current PC.

Although functional differences exist between the two
assemblers, the one-line assembler is a true subset of the
resident assembler. The format and syntax used with the
147Bug assembler are acceptable to the resident assembler
except as described above.

Source Program Coding
A source program is a sequence of source statements arranged in a
logical way to perform a predetermined task. Each source
statement occupies a line and must be either an executable
instruction, a DC.W directive, or a SYSCALL assembler directive.
Each source statement follows a consistent source line format.

Source Line Format

Each source statement is a combination of operation and, as
required, operand fields. Line numbers, labels, and comments are
not used.
4-3

Using the One-Line Assembler/Disassembler

4

Operation Field

Because there is no label field, the operation field may begin in the
first available column. It may also follow one or more spaces.
Entries can consist of one of three categories:

The size of the data field affected by an instruction is determined by
the data size codes. Some instructions and directives can operate on
more than one data size. For these operations, the data size code
must be specified or a default size applicable to that instruction is
assumed. The size code need not be specified if only one data size
is permitted by the operation. The data size code is specified by a
period (.) appended to the operation field and followed by a b, w,
or l, which represents the size:

The data size code is not permitted, however, when the instruction
or directive does not have a data size attribute.

❏ Operation codes Correspond to the MC68030/MC68882
instruction set.

❏ Define constant directive DC.W is recognized to deÞne a
constant in a word location.

❏ System call directive SYSCALL is used to call 147Bug system
utilities.

b Byte (8-bit data)
w Word (the usual default size; 16-bit data)
l Longword (32-bit data)
4-4

Source Program Coding

4

Examples (legal):

Example (illegal):

Operand Field

If present, the operand field follows the operation field and is
separated from the operation field by at least one space. When two
or more operand subfields appear within a statement, they must be
separated by a comma. In an instruction like “ADD D1,D2Ó, the first
subfield (D1) is called the source effective address field, and the
second subfield (D2) is called the destination <EA> field. Thus, the
contents on D1 are added to the contents of D2 and the result is
saved in register D2. In the instruction 'MOVE D1,D2', the first
subfield (D1) is the sending field and the second subfield (D2) is the
receiving field. In other words, for most two-operand instructions,
the format Òopcode source,destinationÓ applies.

LEA (A0),A1 Longword size is assumed (.b, .w not
allowed); this instruction loads the effective
address of the Þrst operand into A1.

ADD.B (A0),D0 This instruction adds the byte whose
address is (A0) to the lowest order byte in
D0.

ADD D1,D2 This instruction adds the low order word of
D1 to the low order word of D2. (w is the
default size code.)

ADD.L A3,D3 This instruction adds the entire 32-bit
(longword) contents of A3 to D3.

SUBA.B #5,A1 Illegal size speciÞcation (.b not allowed on
SUBA). This instruction would have
subtracted the value 5 from the low order
byte of A1; byte operations on address
registers are not allowed.
4-5

Using the One-Line Assembler/Disassembler

4

Disassembled Source Line

The disassembled source line may not look identical to the source
line entered. The disassembler makes a decision on how it
interprets the numbers used. If the number is an offset from an
address register, it is treated as a signed hexadecimal offset.
Otherwise, it is treated as a straight unsigned hexadecimal.

Example

MOVE.L #1234,5678
MOVE.L FFFFFFFC(A0),5678

This disassembles to:

00003000 21FC0000 12345678 MOVE.L #$1234,($5678).W

00003008 21E8FFFC 5678 MOVE.L -$4(A0),($5678).W

Also, for some instructions, there are two valid mnemonics for the
same opcode, or there is more than one assembly language
equivalent. The disassembler may choose a form different from the
one originally entered. For example,

1. BRA is returned for BT.

2. DBF is returned for DBRA.

Note The assembler recognizes two forms of mnemonics for
two branch instructions. The BT form (branch
conditionally true) has the same opcode as the BRA
instruction. Also, DBRA (decrement and branch
always) and DBF (never true, decrement, and branch)
mnemonics are different forms for the same
instruction. In each case, the assembler accepts both
forms.
4-6

Source Program Coding

4

Mnemonics and Delimiters

The assembler recognizes all MC68030 instruction mnemonics.
Numbers are recognized as binary, octal, decimal, and
hexadecimal, with hexadecimal the default case.

Binary is a string of binary digits (0 and 1) preceded by a percent
sign (%).

Octal is a string of octal digits (0 through 7) preceded by a
Òcommercial atÓ sign (@).

Decimal is a string of decimal digits (0 through 9) preceded by an
ampersand (&).

Hexadecimal is a string of hexadecimal digits (0 through 9, A
through F), optionally preceded by a dollar sign ($).

Examples

One or more ASCII characters enclosed by apostrophes (' ')
constitute an ASCII string. ASCII strings are right-justified and
zero-filled (if necessary), whether stored or used as immediate
operands.

00005000 21FC0000 12345668 MOVE.L #$1234,($5678).W
00005008 0053 DC.W 'S'
0000500A 223C41424344 MOVE.L #'ABCD',D1
00005010 3536 DC.W '56'

The following register mnemonics are recognized/referenced by
the assembler/ disassembler:

Binary %1000110

Octal @456

Decimal &12334

-&987654321

Hexadecimal $AFE5
4-7

Using the One-Line Assembler/Disassembler

4

Pseudo-Registers

Main Processor Registers

Floating-Point Coprocessor Registers

Memory Management Unit Registers

R0-R7 User Offset Registers

PC Program Counter; used only in forcing program counter-
relative addressing

SR Status Register
CCR Condition Codes Register (lower eight bits of SR)
USP User Stack Pointer
MSP Master Stack Pointer
ISP Interrupt Stack Pointer
VBR Vector Base Register
SFC Source Function Code Register
DFC Destination Function Code Register
CACR Cache Control Register
CAAR Cache Address Register
D0-D7 Data Registers
A0-A7 Address Registers; address register A7 represents the active

system stack pointer, that is, one of USP, MSP, or ISP, as
speciÞed by the M and S bits of the status register (SR).

FPCR Control Register
FPSR Status Register
FPIAR Instruction Address Register
FP0-FP7 Floating-Point Data Registers

MMUSR Status Register
CRP CPU Root Pointer
SRP Supervisor Root Pointer
TC Translation Control Register
TT0 Transparent Translation 0
TT1 Transparent Translation 1
4-8

Source Program Coding

4

Character Set

The character set recognized by the 147Bug assembler is a subset of
ASCII, and is listed below:

❏ The letters A through Z (uppercase and lowercase)

❏ The integers 0 through 9

❏ Arithmetic operators: + - * / << >> ! &

❏ Parentheses ()

❏ Characters used as special prefixes:

Pound sign The intermediate form
of addressing

$ Dollar sign Hexadecimal number
& Ampersand Decimal number
@ Commercial at sign Octal number
% Percent sign Binary number
' Apostrophe ASCII literal character string

❏ Five separating characters:

Space
, Comma
. Period
/ Slash
- Dash

❏ The asterisk character (*) indicates the current location.

Addressing Modes

Effective address modes, combined with operation codes, define
the particular function to be performed by a given instruction.
Effective addressing and data organization are described in detail
in the Data Organization and Addressing Capabilities section of the
MC68030 32-Bit Microprocessor User's Manual.

The following table summarizes the addressing modes of the
MC68030 which are accepted by the 147Bug one-line assembler.
4-9

Using the One-Line Assembler/Disassembler

4

You may use an expression in any numeric field of these addressing
modes. The assembler has a built-in expression evaluator that
supports the following operand types and operators:

Table 4-1. 147Bug Assembler Addressing Modes

Format Description

Dn Data register direct

An Address register direct

(An) Address register indirect

(An)+ Address register indirect with post-increment

-(An) Address register indirect with pre-decrement

d(An) Address register indirect with displacement

d(An,Xi) Address register indirect with index, 8-bit
displacement

(bd,An,Xi) Address register indirect with index, base
displacement.

([bd,An],Xi,od) Address register memory indirect post-indexed

([bd,An,Xi],od) Address register memory indirect pre-indexed

d16(PC) Program counter indirect with displacement

d8(PC,Xi) Program counter indirect with index, 8-bit
displacement

(bd,PC,Xi) Program counter indirect with index, base
displacement

([bd,PC],Xi,od) Program counter memory indirect post-indexed

([bd,PC,Xi],od) Program counter memory indirect pre-indexed

(xxxx).W Absolute word address

(xxxx).L Absolute long address

#xxxx Immediate data
4-10

Source Program Coding

4

Allowed operators are:

The order of evaluation is strictly left to right with no precedence
granted to some operators over others. The only exception to this is
when you force the order of precedence through the use of
parentheses.

Possible points of confusion:

1. Keep in mind that where a number is intended and it could
be confused with a register, it must be differentiated in some
way.

CLR D0 Means CLR.W register D0.
CLR $D0 On the other hand,
CLR 0D0 all mean CLR.W
CLR +D0 memory location $D0.
CLR D0+0

Type Example

Binary numbers %10

Octal numbers @765..0

Decimal numbers &987..0

Hexadecimal numbers $FED..0

String literals 'CHAR'

Offset registers R0 - R7

Program counter *

+ Plus Add
- Minus Subtract
* Asterisk Multiply
/ Slash Divide
<< Left angle brackets Shift left
>> Right angle brackets Shift right
! Exclamation mark Bitwise OR
& Ampersand Bitwise AND
4-11

Using the One-Line Assembler/Disassembler

4

2. With the use of Ò * Ò to represent both multiply and program
counter, how does the assembler know when to use which
definition?

For parsing algebraic expressions, the order of parsing is

operand operator operand operator ...

with a possible left or right parenthesis.

Given the above order, the assembler can distinguish by
placement which definition to use.

Example

3. When specifying operands, you may skip or omit entries with
the following addressing modes.

a. Address register indirect with index, base displacement.

b. Address register memory indirect post-indexed.

c. Address register memory indirect pre-indexed.

d. Program counter indirect with index, base displacement.

e. Program counter memory indirect post-indexed.

f. Program counter memory indirect pre-indexed.

4. For modes address register/program counter indirect with
index, base displacement, the rules for omission/skipping
are as follows:

a. You may terminate the operand at any time by specifying
Ò)Ò.

Example

CLR ()

or

*** Means PC * PC
+ Means PC + PC
2** Means 2 * PC
*&&16 Means PC AND &16
4-12

Source Program Coding

4

CLR (,,) is equivalent to
CLR (0.N,ZA0,ZD0.W*1)

b. You may skip a field by Òstepping pastÓ it with a comma.

Example

CLR (D7) is equivalent to
CLR ($D7,ZA0,ZD0.W*1)

but

CLR (,,D7) is equivalent to
CLR (0.N,ZA0,D7.W*1)

c. If you do not specify the base register, the default ÒZA0Ó is
forced.

d. If you do not specify the index register, the default
ÒZD0.W*1Ó is forced.

e. Any unspecified displacements are defaulted to Ò0.NÓ.

5. The rules for parsing the memory indirect addressing modes
are the same as above with the following additions.

a. The subfield that begins with Ò[Ò must be terminated with
a matching Ò]Ó.

b. If the text given is insufficient to distinguish between the
pre-indexed or post-indexed addressing modes, the
default is the pre-indexed form.

DC.W - Define Constant Directive

The format for the DC.W directive is:

DC.W operand

The function of this directive is to define a constant in memory. The
DC.W directive can have only one operand (16-bit value) which can
contain the actual value (decimal, hexadecimal, or ASCII).
Alternatively, the operand can be an expression which can be
assigned a numeric value by the assembler.
4-13

Using the One-Line Assembler/Disassembler

4

The constant is aligned on a word boundary and word .w is
specified. An ASCII string is recognized when characters are
enclosed inside single quotes (' '). Each character (seven bits) is
assigned to a byte of memory, with the eighth bit (MSB) always
equal to zero. If only one byte is entered, the byte is right justified.
A maximum of two ASCII characters may be entered for each
DC.W directive.

Examples

00010022 04D2 DC.W &1234 Decimal number
00010024 AAFE DC.W AAFE Hexadecimal number
00010026 4142 DC.W 'AB' ASCII string
00010028 5443 DC.W 'TB'+1 Expression
0001002A 0043 DC.W 'C' ASCII character is right

justified

SYSCALL - System Call Directive

The function of this directive is to aid you in making the
appropriate TRAP #15 entry to 147Bug functions as defined in
Chapter 5. The format for this directive is:

SYSCALL function name

Example

The following two pieces of code produce identical results.

TRAP #$F
DC.W 0

or

SYSCALL .INCHR
4-14

Entering and Modifying Source Programs

4

Entering and Modifying Source Programs
Your programs are entered into the memory using the one-line
assembler/ disassembler. The program is entered in assembly
language statements on a line-by-line basis. The source code is not
saved as it is converted immediately to machine code upon entry.
This imposes several restrictions on the type of source line that can
be entered.

Symbols and labels, other than the defined instruction mnemonics,
are not allowed. The assembler has no means to store the associated
values of the symbols and labels in lookup tables. This forces the
programmer to use memory addresses and to enter data directly
rather than use labels.

Also, editing is accomplished by retyping the entire new source
line. Lines can be added or deleted by moving a block of memory
data to free up or delete the appropriate number of locations (refer
to the Block Move (BM) command).

Invoking the Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the
Memory Modify (MM) and Memory Display (MD) commands:

MM addr ;DI

where (CR) sequences to next instruction, .(CR) exits command,
and

MD[S] addr[:count | addr];DI

The MM (;DI option) is used for program entry and modification.
When this command is used, the memory contents at the specified
location are disassembled and displayed. A new or modified line
can be entered if desired.

The disassembled line can be an MC68030 instruction, a SYSCALL,
or a DC.W directive. If the disassembler recognizes a valid form of
some instruction, the instruction is returned; if not (random data
occurs), the DC.W $xxxx (always hexadecimal) is returned. Because
4-15

Using the One-Line Assembler/Disassembler

4

the disassembler gives precedence to instructions, a word of data
that corresponds to a valid instruction is returned as the instruction.

Entering a Source Line

A new source line may be entered immediately following the
disassembled line, using the format discussed in the Source Line
Format section in this chapter.

147-Bug>MM 10000;DI
00010000 2600 MOVE.L D0,D3 ? ADDQ.L #1,A3

When the carriage return is entered, terminating the line, the old
source line is erased from the terminal screen, the new line is
assembled and displayed, and the next instruction in memory is
disassembled and displayed.

147Bug>MM 10000;DI
00010000 528B ADDQ.L #1,A3
00010002 4282 CLR.L D2 ?(CR)

If a hardcopy terminal is being used, the above example would look
as follows:

147Bug>MM 10000;DI
00010000 2600 MOVE.L D0,D3 ? ADDQ.L #1,A3
00010000 528B ADDQ.L #1,A3
00010002 4282 CLR.L D2 ? (CR)

Another program line can now be entered. Program entry
continues in like manner until all lines have been entered. A period
is used to exit the MM command. If an error is encountered during
assembly of the new line, the assembler displays the line
unassembled with a Ò^Ó under the field suspected of causing the
error and an error message is displayed. The location being
accessed is redisplayed.

147Bug>MM 10000;DI
00010000 528B ADDQ.L #1,A3 ? LEA.L 5(A0,D8),A4
00010000 LEA.L 5(A0,D8),A4
-------------------------------------^
*** Unknown Field ***
00010000 528B ADDQ.L #1,A3 ? (CR)
4-16

Entering and Modifying Source Programs

4

Entering Branch and Jump Addresses

When entering a source line containing a branch instruction (BRA,
BGT, BEQ, etc.) do not enter the offset to the branch destination in
the operand field of the instruction. The offset is calculated by the
assembler. You must append the appropriate size extension to the
branch instruction.

To reference a current location in an operand expression, the
asterisk character (*) can be used.

Examples

00030000 60004094 BRA *+$4096

00030000 60FE BRA.B *

00030000 4EF90003 0000 JMP *

00030000 4EF00130 00030000 JMP (*,A0,D0)

In the case of forward branches or jumps, the absolute address of
the destination may not be known as the program is being entered.
You may temporarily enter an Ò * Ò for branch-to-self in order to
reserve space. After the actual address is discovered, the line
containing the branch instruction can be re-entered using the
correct value.

Note Branch sizes must be entered as .b or .w as opposed to
.s or .l.

Assembler Output/Program Listings

A listing of the program is obtained using the Memory Display
(MD) command with the ;DI option. The MD command requires
both the starting address and the line count to be entered in the
command line. When the ;DI option is invoked, the number of
instructions disassembled and displayed is equal to the line count.

To obtain a hardcopy listing of a program, use the Printer Attach
(PA) command to activate the printer port. An MD command to the
terminal then causes a listing on the terminal and on the printer.
4-17

Using the One-Line Assembler/Disassembler

4

Note again, that the listing may not correspond exactly to the
program as entered. As discussed in the Disassembled Source Line
section in this chapter, the disassembler displays in signed
hexadecimal any number it interprets as an offset from an address
register; all other numbers are displayed in unsigned hexadecimal.
4-18

Index
A
AB command 3-3
abort or reset, when to use 1-14
ABORT switch 1-7, 1-14
add (+) 4-11
addr (address) 2-3
address as a parameter 2-6
address formats 2-6
address registers 3-114
Address Registers (A0-A7) 4-8
Address Translation Control (ATC) Reg-

isters 2-19, 3-115
addresses

BBRAM 1-20
DRAM 1-17
EPROM 1-19
I/O hardware 1-22

addressing modes 4-9
algebraic expressions, parsing 4-12
ampersand (&) 4-9, 4-11
apostrophe (Õ) 4-7, 4-9
arithmetic operators 2-4, 4-9
ASCII literal character string 4-9
ASCII string (Õ Õ) 4-7
assembler addressing modes 4-10
assembler output 4-17
assembler, 147Bug vs MC68030 4-2
assembler/disassembler

invoking 4-15
using 4-1

assigning new ports 3-108
assigning port numbers 3-105
asterisk (*) 4-9, 4-11

attaching a printer 3-102
attaching the console terminal 3-130
Autoboot (AB) 1-8
Autoboot Enable/Disable (AB/NOAB)

3-3
automatic boot setup 3-3
automatic software handshake 3-107

B
backspace 2-2
base address of RAM 3-97
base identifiers 2-4
baud rate 1-7, 3-107, 3-134
BBRAM

restoring 1-15
BBRAM Location 1-20
BC command 3-5
BF command 3-7
BH command 1-25, 3-10
BI command 3-11
binary (%) 2-4, 4-7
bits per character 1-7
bitwise AND (&) 4-11
bitwise OR (!) 4-11
Block of Memory Compare (BC) 3-5
Block of Memory Fill (BF) 3-7
Block of Memory Initialize (BI) 3-11
Block of Memory Move (BM) 3-13
Block of Memory Search (BS) 3-20
Block of Memory Verify (BV) 3-24
block size 1-23, 3-72
blocks versus sectors 1-23
BM command 3-13
IN-19

Index

I
N
D
E
X

BO command 1-25, 3-15
board ID 3-41
boldface string 2-3
Bootstrap Operating System (BO) 3-15
Bootstrap Operating System and Halt

(BH) 3-10
BR command 3-18
branch instructions 4-17
BREAK key 1-16
Breakpoint Insert/Delete (BR/NOBR)

3-18
breakpoints

ignoring 3-46
setting and removing 3-18
setting temporary 3-48, 3-50
temporary 3-135
tracing 3-127, 3-131

BS command 3-20
Bug mode 3-39

options 3-39
BV command 3-24

C
Cache Address Register (CAAR) 4-8
Cache Control Register (CACR) 3-116,

4-8
cancel line 2-2
caret (^) 2-20
carriage return (CR) 1-5, 2-3
change of flow instruction 3-131
character set, assembler 4-9
character width 3-107
characters

missing 1-7
checksum

verifying 3-26
Checksum (CS) 1-10, 3-26
chip orientation 1-6
clock 3-126
clock, disabling 3-110
COLD reset mode 1-14, 3-121
Cold/Warm Reset (RESET) 3-120

command line entry 2-1
command names, displaying 3-53
command packets, sending 3-55
command set 3-1
command-level disk operations 1-23
commands

creating macros 3-82
editing macros 3-85
function code support 2-19

commercial at sign (@) 4-9
communicating between host and con-

sole 3-134
communications, terminating 1-14
comparing memory vs data 3-24
Concurrent Mode 3-40
concurrent mode 3-40
Condition Codes Register (CCR) 4-8
confidence check 2-18
confidence test, power up 1-8
configuring

disk controllers 3-62
new ports 3-104

connecting devices 1-7
console output, halt/resume 2-2
console, selecting 3-130
constant, defining 4-14
contaminating operating environment,

avoiding 2-11
control codes 2-2
controller command packet 1-26
controller/device descriptor tables 3-62
controller/device parameter tables 1-27
controllers supported 1-23
CPU Root Pointer (CRP) 4-8
CPU Root Pointer (CRP) Register 2-19
CS command 3-26
cylinders

number of 3-73
precompensation 3-73
write current reduced 3-73
IN-20

I
N
D
E
X

D
Data Conversion (DC) 3-29
data density 3-74
data rate, floppy disk 3-74
data registers 3-114
Data Registers (A0-A7) 4-8
data search mode 3-20
data verification mode 3-21
date

displaying 3-133
displaying and setting 3-126

DC command 3-29
DC.W - Define Constant Directive 4-13
debugger commands 3-1
debugger directory 3-125
decimal (&) 2-4, 4-7
define constant in memory 4-13
del (delimiter) 2-3
delete character 2-2
delimiters 2-3
Destination Function Code (DFC) Regis-

ter 3-116, 4-8
detaching a printer 3-102
device 1-27

unformatted 1-27
device descriptor tables 3-62
diagnostic directory 3-125
diagnostics package 1-30
directives 4-1, 4-2
directories, switching between 3-125
disassembled source line 4-6
disassembler 4-1
disk configuration, new 3-62
disk controllers

available 3-64
packets 3-55
supported 3-63

disk devices, I/O access 3-56
disk I/O

commands 1-24
support 1-23
system calls 1-23, 1-25

disk transfer 1-24
Display Time and Date (TIME) 3-133
divide (/) 2-4, 4-11
dollar sign ($) 4-9
DRAM address as viewed from the

VMEbus 1-17
DRAM location 1-19
DU command 3-31
Dump S-Records (DU) 3-31

E
ECC data burst length 3-73
EEP command 3-35
EEPROM Programming (EEP) 3-35
effective address modes 4-9
Enable/Disable Macro Expansion List-

ing (MAL/NOMAL) 3-87
entering

branch and jump addresses 4-17
command lines 2-1
program 2-10
source line 4-16
source programs 4-15

ENV command 3-37
environment

parameters, setting 3-37
selecting 3-37

EPROM location 1-19
EPROM sockets 1-6
Ethernet station address 3-81
exception handler, generalized 2-17
exception vector table 2-11
exception vectors 2-12
exclamation mark (!) 4-11
exit transparent mode. 3-134
exp (expression) 2-3
expressions

as parameter 2-4
converting 3-29
evaluation of 2-5
evaluator 4-10
examples 2-5
IN-21

Index

I
N
D
E
X

extended confidence tests 3-39
external devices, off-board 3-97

F
FAIL LED 1-8
FAIL LED, flashing 1-16
failure messages 1-8, 1-16
fixed space font 2-3
floating point registers 3-117
Floating-Point Control Register (FPCR)

4-8
Floating-Point Coprocessor Registers 4-8
Floating-Point Data Registers (FP0-FP7)

4-8
Floating-Point Instruction Address Reg-

ister (FPIAR) 4-8
Floating-Point Status Register (FPSR) 4-8
flow diagram

normal operation 1-3
system operation 1-4

FPC registers 3-114
function codes 2-19

G
G command 3-43
gaps 1-4 3-75
GD command 3-46
GN command 3-48
GO command 3-43
Go Direct (Ignore Breakpoints) (GD) 3-46
Go Execute Target Code (G/GO) 3-43
Go to Next Instruction (GN) 3-48
Go to Temporary Breakpoint (GT) 3-50
GT command 3-50

H
handshake character values 3-107
handshake, automatic software 3-107
hardware diagnostics 1-30
HE command 3-53
head number, starting 3-72
header J2 1-6

header J3 1-6
heads, number of 3-72
Help (HE) 1-2, 3-53
help menu 3-53
hexadecimal ($) 2-4, 4-7
host port, communicating with 3-134

I
I/O Control for Disk/Tape (IOC) 3-55
I/O hardware address 1-22
I/O Physical (Direct Disk/Tape Access)

(IOP) 3-56
I/O Teach for Configuring Disk Control-

ler (IOT) 3-62
initializing

the system 1-13
installation and start-up 1-5
instruction mnemonics 4-7
instructions, tracing 3-127, 3-135
interleave factor 3-73
Interrupt Stack Pointer (ISP) 4-8
invoking

assembler/disassembler 4-15
IOC (I/O Control) 1-25
IOC command 3-55
IOP (Physical I/O to Disk) 1-24
IOP command 3-56
IOT (I/O Teach) 1-24
IOT command 3-62
italic string 2-3

J
J2 (EPROM socket configuration) 1-6
J3 (system controller function) 1-6
jump instructions 4-17
jumper configuration 1-6

L
labels, not allowed 4-15
LAN Station Address Display/Set

(LSAD) 3-81
left angle brackets 4-11
IN-22

I
N
D
E
X

literal text search mode 3-20
LO command 3-77
load and halt operating system or pro-

gram 3-10
Load S-Records from Host (LO) 3-77
loading operating system or program

3-15
local reset feature 1-14
logical AND 2-4
logical block 1-23
LSAD command 3-81

M
M command 3-90
MA command 3-82
machine language code 4-1
machine-instruction operation codes 4-2
Macro Define/Display/Delete

(MA/NOMA) 3-82
Macro Edit (MAE) 3-85
macros

creating 3-82
deleting 3-82
displaying 3-82
displaying expansion of 3-87
editing 3-85
loading from disk/tape 3-88
saving to disk/tape 3-88

MAE command 3-85
Main Processor Registers 4-8
MAL command 3-87
MAR command 3-88
Master Stack Pointer (MSP) 4-8
MAW command 3-88
MC68030 assembly language 4-1
MC68030 machine-instruction operation

codes 4-1
MC68030 Resident Structured Assembler

4-1
MD command 3-93
memory

change contents 3-91

comparing blocks 3-5
comparing data pattern 3-24
copying 3-35
display contents 3-93
examine contents 3-91
filling with pattern 3-7
initializing blocks 3-11
map, MVME147 1-19
moving blocks 3-13
requirements 1-17
searching blocks 3-20
set base address from VMEbus 3-97
system memory sizing 3-40
write data to 3-96

Memory Display (MD) 3-93
Memory Management Unit (MMU) 2-18
Memory Management Unit Registers 4-8
Memory Modify (M/MM) 2-10, 3-90
Memory Set (MS) 3-96
Menu (MENU) 3-95
MENU command 3-95, 3-119
messages

failure 1-16
garbled 1-7

minus (-) 2-4, 4-11
MK48T02 3-110, 3-126
MM command 3-90
MMU (see Memory Management Unit)

2-18
MMU register 3-115
MMU Status Register (MMUSR) 2-19,

3-115, 4-8
MMUSR register bits 3-116
modem

operation functions 3-119
modifying source programs 4-15
MPU registers 3-114
MS command 3-96
multiply (*) 2-4, 4-11
Multiprocessor Address Register

(MPAR) 1-28
IN-23

Index

I
N
D
E
X

Multiprocessor Control Register (MPCR)
1-28

multiprocessor support 1-28
MVME712 ports 1-6, 1-7, 2-10

N
networking software 3-81
No Autoboot (NOAB) 1-9
No ROMboot (NORB) 1-9
NOAB command 3-3
NOBR command 3-18
NOMA command 3-82
NOMAL command 3-87
NOPA command 3-102
NORB command 3-111
normal 147Bug operation 1-2
numeric values 2-4

O
OBA command 3-97
octal (@) 2-4, 4-7
OF command 3-99
off-board address setting 3-97
offset

registers 2-7
spiral 3-73

offset registers
displaying/modifying 3-99
rules 3-100

Offset Registers Display/Modify (OF)
3-99

onboard reset 1-15
operand field 4-5
operand types and operators 4-10
operating environment, protecting 2-11
operation field 4-4
operational mode

normal 1-3
system 1-4

operators 4-1
order of evaluation 4-11

P
PA command 3-102
packets, disk controller command 1-26
parentheses () 4-9
parity 1-7

initializing 3-11
type 3-107

parsing algebraic expressions 4-12
partial system reset 1-14
percent sign (%) 4-9
Peripheral Channel Controller (PCC) 1-8
PF command 3-104
plus (+) 2-4, 4-11
Port Format (PF) 1-7
Port Format parameters 3-106
Port Format/Detach (PF/NOPF) 3-104
port numbers, valid 2-9
ports

assigning 3-108
assigning as console 3-130
assignments, displaying 3-104
base address 3-106
communicating between 3-134
configuring 3-104
detaching 3-109

pound sign (#) 4-9
power up confidence test 1-8
Printer Attach/Detach (PA/NOPA)

3-102
printers

attaching/detaching 3-102
connecting 1-7

processors, remote and local 1-28
Program Counter (PC) Register 4-8
program listings 4-17
programs

calling system routines from 2-11
entering and debugging 2-10

PS command 3-110
pseudo-ops 4-1
pseudo-registers 2-7, 3-99, 4-8
IN-24

I
N
D
E
X

Put RTC in Power Save Mode for Storage
(PS) 3-110

Q
quote mark (Õ) 2-4

R
RB command 3-111
RD command 3-113
Real Time Clock (RTC) 1-8
redisplay command 2-2
Register Display (RD) 3-113
Register Modify (RM) 3-122
Register Set (RS) 3-124
registers

address 3-114
address translation control 2-19
address translation/control 3-115
changing 3-124
data 3-114
floating point 3-117
floating-point coprocessor 4-8
FPC 3-114
main processor 4-8
memory management unit 4-8
MMU 3-115
MMUSR 3-116
modifying 3-122
MPU 3-114
offset 2-7, 3-100
pseudo 2-7, 4-8
state, displaying 3-113
status (MMUSR) 3-115
status information 2-19
system 3-114

Remote (REMOTE) 3-119
REMOTE command 3-119
remote processors 1-28
RESET and ABORT switches, pressing

1-15
RESET command 3-120
reset or abort, when to use 1-14

RESET switch 1-13, 3-120
restarting the system 1-13
restore BBRAM variables 1-15
resume display 2-2
return control to debugger 2-1
right angle brackets 4-11
RM command 3-122
ROMboot 1-9

preparing a module for 1-10
routine, enabling or disabling 3-111

ROMboot (RB) 1-9
ROMboot Enable/Disable (RB/NORB)

3-111
RS command 3-124
RTC 3-126
RTC chip 3-110
RTC, starting 1-8

S
Save/Load Macros (MAW/MAR) 3-88
SCSI

addresses, LUNs 3-65
SD command 3-125
searching memory 3-20
sectors

formatting 3-73
per track 3-72
size 1-23, 3-72
spare 3-75
versus blocks 1-23

self-checks, at start-up 1-7
serial ports 2-9

communicating with 3-134
configuring 3-104

SET command 1-8, 3-126
Set Environment to Bug or OS (ENV) 1-7,

3-37
Set Memory Address from VMEbus

(OBA) 3-97
Set Time and Date (SET) 3-126
shift left 2-4, 4-11
shift right 2-4, 4-11
IN-25

Index

I
N
D
E
X

slash (/) 4-11
software reset 3-120
Source Function Code (SFC) Register

3-116, 4-8
source line

disassembled 4-6
entering 4-16
format 4-3

source program coding 4-3
spiral offset 3-73
square brackets 2-3
S-records

downloading 3-77
dumping 3-31
verifying 3-137

SST memory test mode 3-39, 3-40
static variables 2-11
Status Information Registers 2-19
STATUS LED 1-14
Status Register (SR) 4-8
step rate 3-74
stop bit per character 1-7
stop bits 3-107
string literal 2-4
subtract (-) 4-11
Supervisor Root Pointer (SRP) 4-8
Supervisor Root Pointer (SRP) Register

2-19
Switch Directories (SD) 1-2, 1-30, 3-125
symbols, special 4-1
synchronization character values 3-107
synchronization type 3-107
SYSCALL - System Call Directive 4-14
system 147Bug operation 1-2
system mode 1-1

menu 3-95
options 3-40

system operation mode 3-39
system registers 3-114
system stack 2-12
system utilities, calling 2-11

T
T command 3-127
TA command 3-130
tape devices, I/O access 3-56
target code, executing 3-43, 3-46, 3-50
target registers, changing 3-124
target registers, modifying 3-122
target state, displaying 3-113
target vector table 2-14
TC command 3-131
temporary breakpoints 3-135
Terminal Attach (TA) 3-130
terminal set-up 1-6
terminating

communications 1-14
program debugging 1-15

tick timer 2-12
time

displaying 3-133
displaying and setting 3-126

TIME command 3-133
time-of-day clock 3-126, 3-133
TM command 3-134
Trace (TRACE) 3-127
Trace on Change of Control Flow (TC)

3-131
Trace to Temporary Breakpoint (TT)

3-135
tracing instructions 3-127, 3-131, 3-135
track sectors 3-73
tracks per inch 3-74
Translation Control (TC) Register 2-19,

4-8
Transparent Mode (TM) 3-134
Transparent Translation 0 (TT0) Register

2-19
Transparent Translation 1 (TT1) Register

2-19
TRAP #15 2-11

entry 4-14
functions 1-1
system calls 1-25
IN-26

I
N
D
E
X

TT command 3-135

U
U22, U30 1-6
up arrow symbol (^) 2-20
User Offset Registers (R0-R7) 4-8
User Stack Pointer (USP) 4-8
using the 147Bug debugger 2-1
Utility Interrupt Mask 3-41
Utility Interrupt Vector number 3-41

V
VE command 3-137
Vector Base Register (VBR) 4-8
vector table

area 2-11
creating 2-15
using 2-14

Verify S-Records Against Memory (VE)
3-137

verifying checksum 3-26
vertical bar 2-3
VMEbus

Interrupt Mask 3-41
Requester Level 3-41
Requester Release 3-41

VMEchip options 3-41

W
wait (halt display) 2-2
WARM reset mode 1-14, 3-121
write

data to memory 3-96

X
XON/XOFF 2-2, 3-107

handshaking 1-7
IN-27

	Notice
	Restricted Rights Legend
	Motorola, Inc. Computer Group 2900 South Diablo Wa...

	Preface
	Related Documentation
	Safety Summary Safety Depends On You
	Ground the Instrument.
	Do Not Operate in an Explosive Atmosphere.
	Keep Away From Live Circuits.
	Do Not Service or Adjust Alone.
	Use Caution When Exposing or Handling the CRT.
	Do Not Substitute Parts or Modify Equipment.
	Dangerous Procedure Warnings.
	Manual Terminology
	 Copyright Motorola, Inc. 1997 All Rights Reserve...
	Printed in the United States of America March 1997...
	MVME147BUG 147Bug Debugging Package User’s Manual
	Part 1 of 2
	General Information

	Description of 147Bug
	Figure 1�1. Flow Diagram of 147Bug Normal Operatio...
	Figure 1�2. Flow Diagram of 147Bug System Operatio...

	How to Use This Manual
	Installation and Start-up
	1. Turn all equipment power OFF. Configure the jum...
	2. Be sure that the two 128K x 8 147Bug EPROMs are...
	3. Refer to the set-up procedure for your particul...
	4. Connect the terminal which is to be used as the...
	5. If you want to connect device(s) (such as a hos...
	6. Power up the system. The 147Bug executes self-c...
	7. After successfully powering up the system, you ...

	Autoboot
	ROMboot
	1. Power must have just been applied (but the RB c...
	2. Your routine must be located within the MVME147...
	3. The ASCII string “BOOT” must be located within ...
	4. Your routine must pass a checksum test, which e...
	1. The map is searched for the ASCII string “BOOT”...
	2. If the ASCII string “BOOT” is found, it is stil...
	1. Search direct address (as set by the RB command...
	2. Search non-volatile RAM (first 1K bytes of batt...
	3. Search complete ROM map.
	4. Search local RAM (if RB command has selected to...
	5. Search the VMEbus map (if so selected by the RB...
	1. Outputs a (CR)(LF) sequence to the default outp...
	2. Displays the date and time from the current cur...
	3. Outputs two more (CR)(LF) sequences to the defa...
	4. Returns control to 147Bug.

	Restarting the System
	Reset
	Abort
	Reset and Abort - Restore Battery Backed Up RAM
	Break

	Memory Requirements
	Table 1�1. DRAM Address Viewed from VMEbus (Contin...

	Disk I/O Support
	Blocks Versus Sectors
	Disk I/O via 147Bug Commands
	IOP (Physical I/O to Disk)
	IOT (I/O Teach)
	IOC (I/O Control)
	BO (Bootstrap Operating System)
	BH (Bootstrap and Halt)

	Disk I/O via 147Bug System Calls
	Default 147Bug Controller and Device Parameters
	Disk I/O Error Codes

	Multiprocessor Support

	*
	N/A
	N/A
	N/A
	MPCR
	MSB
	*
	*
	LSB
	MPAR
	Diagnostic Facilities
	Using the Debugger

	Entering Command Lines
	a. The command identifier; i.e., MD or md for the ...
	b. A port number, if the command is set up to work...
	c. At least one intervening space before the first...
	d. Any required arguments, as specified by the com...
	e. An option field, set off by a semicolon (;) to ...

	Command Arguments
	Expression as a Parameter

	Identifier
	$
	&
	@
	%
	Address as a Parameter
	Address Formats
	Table 2�1. Debugger Address Parameter Formats (Con...

	Offset Registers
	Example

	Port Numbers
	Entering and Debugging Programs
	Calling System Utilities from Your Programs
	Preserving the Debugger Operating Environment
	147Bug Vector Table and Workspace
	Tick Timers
	Exception Vectors Used By 147Bug
	Table 2�2. Exception Vectors Used by 147Bug
	Example
	Using the 147Bug Target Vector Table
	Creating a New Vector Table
	Example
	Example

	147Bug Generalized Exception Handler
	Example

	Memory Management Unit Support
	Function Code Support
	Example
	Debugger Command Set

	Introduction
	Table 3�1. Debugger Commands (Continued)

	Autoboot Enable/Disable - AB/NOAB
	Command Input
	Description
	Example 1: Enable autoboot function.
	Example 2: Disable autoboot function.

	Block of Memory Compare - BC
	Command Input
	Options (length of data field)
	Description
	Examples
	Example 1: Memory compares, nothing printed.
	Example 2: Memory compares, nothing printed.
	Example 3: Create a mismatch, mismatches are print...

	Block of Memory Fill - BF
	Command Input
	Arguments ���
	Options (length of data field)
	Description
	Example 1:�Default data field length.
	Example 2:�Data larger than specified data field s...
	Example 3:�Upper address range not on correct boun...
	Example 4:�Incrementing data.

	Bootstrap Operating System and Halt - BH
	Command Input
	Arguments
	Description
	Example 1
	Example 2

	Block of Memory Initialize - BI
	Command Input
	Options
	Example 1: Range defined as start address and a co...
	Example 2:�Range defined as start and end address....
	Example 3:�Parity error or memory fault.

	Block of Memory Move - BM
	Command Input
	Options
	Description
	Example 1:��Assume memory from $20000 to $2002F is...
	Example 2:��This utility is very useful for patchi...

	Bootstrap Operating System - BO
	Command Input
	Arguments
	Description
	1. Block 0 of the controller LUN and device LUN sp...
	2. Locations $F8 (248) through $FF (255) of block ...
	3. The following information is extracted from blo...
	4. The program is read from disk into memory. The ...
	5. The first eight locations of the loaded program...
	6. Other target registers are initialized with cer...
	7. Control is given to the loaded program. Note th...

	Examples

	Breakpoint Insert/Delete - BR/NOBR
	Command Input
	Description
	Example

	Block of Memory Search - BS
	Command Input
	Arguments
	Options
	Description
	1. The data pattern entered by you is right-justif...
	2. A compare is made with successive bytes, words,...
	3. If the “n” (non-aligned) option has been select...
	4. If a match is found, the address of the first b...

	Examples:�Assume the following data is in memory.

	Block of Memory Verify - BV
	Command Input
	Arguments
	Options
	Description
	Example 1:�Assume memory from $20000 to $2002F is ...
	Example 2:�Assume memory from $20000 to $2002F is ...
	Example 3:�Assume memory from $20000 to $2002F is ...

	Checksum - CS
	Command Input
	Description
	1. At power-up, the power-up confidence test is ex...
	2. Following a valid power-up test, 147Bug examine...
	1. An absolute address (32-bit maximum).
	2. An expression using a displacement + relative o...
	1. $FF is placed in each of two bytes within a reg...
	2. Starting with address1 the even and odd bytes a...
	3. This process is repeated, word by word, until a...

	Examples
	Example 1:�Using absolute addresses.
	Example 2:�Using relative offset.

	Data Conversion - DC
	Command Input
	Description
	Examples

	Dump S-Records - DU
	Command Input
	Options
	Description
	Examples: Assume the following routine is in memor...
	Example 1:�Dump memory from $20000 to $2001F to po...
	Example 2:�Dump 10 bytes of memory beginning at $2...
	Example 3:�Dump memory from $20000 to $2001F to th...

	EEPROM Programming - EEP
	Command Input
	Options
	Description
	Example 1: Assumes EEPROMs are installed in U1 and...
	Example 2

	Set Environment to Bug or OS - ENV
	Command Input
	Options
	Description
	Example 1
	Example 2
	Example 3
	Example 1
	Example 2
	Example 3

	Go Execute Target Code - G/GO
	Command Input
	Description
	1. If an address is specified, it is loaded in the...
	2. If a breakpoint is set at the target PC address...
	3. All breakpoints are inserted in the target code...
	4. Target code execution resumes at the target PC ...
	1. A breakpoint with 0 count was found.
	2. The ABORT or RESET switch on the MVME147 front ...
	3. An unexpected exception occurred.
	4. The TRAP #15 .RETURN function was executed.

	Example:�Assume that the following program resides...

	Go Direct (Ignore Breakpoints) - GD
	Command Input
	Description
	1. If an address is specified, it is loaded in the...
	2. Target code execution resumes at the target PC....
	1. The ABORT or RESET switch on the MVME147 front ...
	2. An unexpected exception occurred.
	3. The TRAP #15 .RETURN function was executed.

	Example:�Assume that the following program resides...
	Debugger Command Set

	Go to Next Instruction - GN
	Command Input
	Description
	Example:�Assume that the following section of code...

	Go to Temporary Breakpoint - GT
	Command Input
	Description
	1. A breakpoint with 0 count was found.
	2. The ABORT or RESET switch on the MVME147 front ...
	3. An unexpected exception occurred.
	4. The TRAP #15 .RETURN function was executed.

	Example:�Assume that the following program resides...

	Help - HE
	Command Input
	Description
	Examples

	I/O Control for Disk/Tape - IOC
	Command Input
	Description

	I/O Physical (Direct Disk/Tape Access) - IOP
	Command Input
	Description

	I/O Teach for Configuring Disk Controller - IOT
	Command Input
	Options
	Description
	Examples: A and H options.
	Example: T option.
	C
	E
	M
	R
	E
	Q
	S
	C
	E
	M
	R
	E
	Q
	S
	C
	E
	M
	R
	C
	E
	M
	R
	E
	Q
	S

	Load S-Records from Host - LO
	Command Input
	Options
	Description
	Examples

	LAN Station Address Display/Set - LSAD
	Command Input
	Description
	Example 1:��Display Ethernet station address.
	Example 2:��Change Ethernet station address.

	Macro Define/Display/Delete - MA/NOMA
	Command Input
	Arguments
	Description
	Examples

	Macro Edit - MAE
	Command Input
	Arguments
	Description
	Examples

	Enable/Disable Macro Expansion Listing - MAL/NOMAL...
	Command Input
	Description

	Save/Load Macros - MAW/MAR
	Command Input
	Arguments
	Description
	Examples:�Assume that controller 0, device 2 is ac...

	Memory Modify - M/MM
	Command Input
	Options
	1. Enter (CR). This closes the present location an...
	2. Enter a new source instruction followed by (CR)...
	3. Enter . (CR). This closes the present location ...

	Description
	Example 1
	Example 2
	Example 3:�Assemble a new source line.
	Example 4:�New source line with error.
	Example 5:�Step to next location and exit MM.
	Example 6
	Debugger Command Set

	Memory Display - MD
	Command Input
	Arguments
	Options
	Description
	Example 1
	Example 2: Assume the following processor state: A...
	Example 3:�Disassemble eight instructions, startin...
	Example 4:�To display eight double precision float...

	Menu - MENU
	Command Input
	Description
	Example

	Memory Set - MS
	Command Input
	Arguments
	Description
	Example: Assume that memory is initially cleared.

	Set Memory Address from VMEbus - OBA
	Command Input
	Description
	Example 1:�Display base addresses for 8MB board.
	Example 2:�Change base address for 8MB board.
	Example 3:�Display/change base address for 16MB bo...
	Example 4:�Change base address without option.

	Offset Registers Display/Modify - OF
	Command Input
	Options
	Description
	Command Usage
	Offset Register Rules
	1. At power-up and cold start reset, R7 is the aut...
	2. At power-up and cold start reset, all offset re...
	3. R7 always has both base and top addresses set t...
	4. Any offset register can be set as the automatic...
	5. The automatic register is always added to every...
	6. There is always an automatic register. A conven...

	Examples

	Printer Attach/Detach - PA/NOPA
	Command Input
	Argument
	Description
	Examples

	Port Format/Detach - PF/NOPF
	Command Input
	Argument
	Description
	Listing Current Port Assignments
	Example

	Configuring a Port
	Example: Changing the number of stop bits on port ...

	Parameters Configurable by Port Format
	Port base address:
	Baud rate:
	Parity type:
	Character width:
	Number of stop bits:
	Synchronization type:
	Synchronization character values:
	Automatic software handshake:
	Software handshake character values:

	Assigning a New Port
	Example:�Assigning port 7 to the MVME050 printer p...

	NOPF Port Detach

	Put RTC in Power Save Mode for Storage - PS
	Command Input
	Description
	Example

	ROMboot Enable/Disable - RB/NORB
	Command Input
	Description
	Example 1:�Enable ROMboot function.
	Example 2:�Disable ROMboot function.

	Register Display - RD
	Command Input
	Arguments
	Description
	1. The qualifier is applied to the next register r...
	2. If no qualifier is specified, a + qualifier is ...
	3. All device names should appear before any regis...
	4. The command line arguments are parsed from left...
	5. When specifying a register range, reg1 and reg2...
	6. The register mask used by RD is also used by al...

	Example 1
	Example 2:�Display only the MMU registers.
	Example 3:�Display only the FPC registers.
	Example 4:�Remove D3 through D5 and A2, and add FP...
	Example 5:�Set the display to D6 and A3 only.
	Example 6:�Restore all the MPU registers.

	Remote - REMOTE
	Command Input
	Description

	Cold/Warm Reset - RESET
	Command Input
	Description
	Example 1: Do a local SCSI bus reset and exit.
	Example 2: Arm automatic SCSI bus resets and exit....
	Example 3: Arm warm resets and execute a software ...

	Register Modify - RM
	Command Input
	Arguments
	Description
	Example 1
	Example 2
	Example 3

	Register Set - RS
	Command Input
	Arguments
	Description
	Example 1
	Example 2
	Example 3

	Switch Directories - SD
	Command Input
	Description
	Example 1
	Example 2

	Set Time and Date - SET
	Command Input
	Description
	Example:�Set a date and time of May 16, 1990 2:05:...

	Trace - TRACE
	Command Input
	Description
	Example:�Assume that the following program resides...

	Terminal Attach - TA
	Command Input
	Description
	Example 1:�Selecting port 3 (logical unit #02) as ...
	Example 2:�Restoring console to default port (port...

	Trace on Change of Control Flow - TC
	Command Input
	Description
	Example:�Assume that the following program resides...

	Display Time and Date - TIME
	Command Input
	Description
	Example: A date and time of Wednesday, May 16, 199...

	Transparent Mode - TM
	Command Input
	Description
	Example 1
	Example 2

	Trace to Temporary Breakpoint - TT
	Command Input
	Description
	Example:�Assume that the following program resides...

	Verify S-Records Against Memory - VE
	Command Input
	Options
	Description
	Examples
	Using the One-Line Assembler/Disassembler

	Introduction
	MC68030 Assembly Language
	Machine-Instruction Operation Codes
	Directives

	Comparison with MC68030 Resident Structured Assemb...
	1. Label and line numbers are not used. Labels are...
	2. Source lines are not saved. In order to read ba...
	3. Only two directives (DC.W and SYSCALL) are acce...
	4. No macro operation capability is included.
	5. No conditional assembly is used.
	6. Several symbols recognized by the resident asse...
	7. Three symbols, the ampersand (&), the slash (/)...

	Source Program Coding
	Source Line Format
	Operation Field
	Examples (legal):
	Example (illegal):

	Operand Field
	Disassembled Source Line
	Example
	1. BRA is returned for BT.
	2. DBF is returned for DBRA.

	Mnemonics and Delimiters
	Examples
	Pseudo-Registers
	Main Processor Registers
	Floating-Point Coprocessor Registers
	Memory Management Unit Registers

	Character Set

	Addressing Modes
	Table 4-1. 147Bug Assembler Addressing Modes
	1. Keep in mind that where a number is intended an...
	2. With the use of “ * “ to represent both multipl...
	3. When specifying operands, you may skip or omit ...
	a. Address register indirect with index, base disp...
	b. Address register memory indirect post-indexed.
	c. Address register memory indirect pre-indexed.
	d. Program counter indirect with index, base displ...
	e. Program counter memory indirect post-indexed.
	f. Program counter memory indirect pre-indexed.

	4. For modes address register/program counter indi...
	a. You may terminate the operand at any time by sp...
	b. You may skip a field by “stepping past” it with...
	c. If you do not specify the base register, the de...
	d. If you do not specify the index register, the d...
	e. Any unspecified displacements are defaulted to ...

	5. The rules for parsing the memory indirect addre...
	a. The subfield that begins with “[“ must be termi...
	b. If the text given is insufficient to distinguis...

	DC.W - Define Constant Directive
	Examples

	SYSCALL - System Call Directive
	Example

	Entering and Modifying Source Programs
	Invoking the Assembler/Disassembler
	Entering a Source Line
	Entering Branch and Jump Addresses
	Examples

	Assembler Output/Program Listings
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

