+« MDS Series 21

System Software Manual

MOBOL
REFERENCE MANUAL

D
l__f\V_A__-lS@ MOHAWK DATA SCIENCES

WS

SERIES 21

MOBOL

REFERENCE MANUAL

FIRST EDITION
RELEASE 7.0

The following are Trademarks of Mohawk Data Sciences Corp., Parsippany, N.J.
Mohawk Data Sciences—Canada, Ltd. Registered User.

8. MOBOL
MDS SERIES 21
Form No. M-2612-1078 © 1978 Mohawk Data Sciences Corp. Printed in USA.

FOREWORD

This reference manual is designed to introduce Series 21 programming personnel to the
MOBOL programming language. Familiarity with Series 21 components as well as a general
knowledge of computer programming principles are assumed throughout.

This publication consists of 8 major sections which are described below:

Section 1 presents an overview; it describes the function of the MOBOL compiler and pre-
sents the basic structure of a MOBOL source program.

Section 2 outlines the procedures involved in generating a MOBOL source program.

Sections 3 through 6 define the four main components of MOBOL source code and all
respective statements.

Section 7 discusses Input/Output operations.
Section 8 discusses STATION Input/Output operations.
Other publications which may be of interest to the reader are:
MDS Series 21 Operator’s Guide (Form No. M-2611)
MDS Series 21 System Generation User’s Guide (Form No. M-3922)
MDS Series 21 Display Messages Reference Manual (Form No. M-3925)
MDS Series 21 Binary Synchronous Communications Reference Manual(Form No. M-3921).

These publications can be obtained through your local MDS representative, or from Mohawk
Data Sciences Corp., Palisade Street, Herkimer, N.Y. 13350 (attention: Distribution Dept.
374).

Questions and comments related to the content of this publication should be submitted on the
Reader Comment Form located in the back of this publication.

iii

MOBOL LANGUAGE REFERENCE MANUAL

INTRODUCGCTION . . oottt et et e e e et e ix
MANUAL NOTATIONS ot e e e e e e xi
SECTION 1: OVERVIEW . .o i i e e e 1-1
MOBOL Compiler . ..ottt 1-1
Source Program Structurecoviiiiiniii i, 1-3
SECTION 2: CONSTRUCTING A MOBOL SOURCE PROGRAM 2-1
Designing Screen Displaysccoviiiiiniiniinnnenn.. 2-1
Generating MOBOL Source......coovviviiniiniinnnnennn. 2-2
Data Definition Section Requirements 2-3
Execution Section Requirements 2-4
SECTION 3: COMMENT STATEMENTS AND COMMENT FIELDS 3-1
Comment Statementsc.ccoiiiiiiiiii i, 3-1
Comment Fields ..., 3-1
SECTION 4: COMPILER DIRECTIVESt 4-1
0 5 4-1
EJECT i e 4-1
ST ART o e e 4-2
END o e e e e e 4-2
SECTION 5: DATA DEFINITION STATEMENTScoiiiiiiiiiaen. 5-1
The Input/Output Descriptor Statement (IOD) 5-3
The Record Statement............covviiiiiiiiinnnnn.. 5-5
RO o e 55
RCDD-AITay . oottt e e 5-16
The Key Entry Table Statement (KET) 5-18
The Equate Statement (EQU)ciiiiiiiinn... 5-28
Record Remappingooiviiiiin i, 5-29
SECTION 6: EXECUTION STATEMENTS ..ottt 6-1
Syntax Conventionsovviiiiiiiiniineiineenneennns 6-3
Semantic Conventions.............coiiuiiiiiiiiiin... 6-5
Interpretation of Literal Values By
Instruction Typeovtiiiiii ittt i, 6-5
Indexed Data Referencesccoviviiivin... 6-6
Explicit Notationcooviiiiiiii it iineennnn. 6-6
Implicit Notationcvviiiiiiiii i iiiiiiennn. 6-7
Non-Indexed Data Referencesccovvvvivnnn... 6-8
Move Statementsccoiiiii it 6-11
MOVELEFTANDFILLcoiiiiiiiiiiiiaen. 6-12
MOVERIGHTAND FILL ..., 6-13
FILL o 6-14
MOVE LEFT,NOFILL.......ccoiiiiiiiiiiniinnn, 6-15
MOVERIGHT, NOFILL ..., 6-16

MOBOL LANGUAGE REFERENCE MANUAL (Cont’d.)

SECTION 6 (Cont’d.) Decimal Arithmetic Statementsccovvivniun.. 6-17
DECIMAL EQUATE 6-18
DECIMAL ADD ... e i 6-19
DECIMAL SUBTRACT ... 6-20
DECIMAL MULTIPLY ...t i 6-21
DECIMALDIVIDE 6-22

Binary Arithmetic Statements........................... 6-23
BINARY ADD ... i e 6-24
BINARY SUBTRACT i 6-25
BINARY MULTIPLY ... i 6-26
BINARY DIVIDE i 6-27

Boolean Statementst 6-28
AND .. e 6-29
OR i e 6-30
XOR (Exclusive OR) ..ovviiii i 6-31

Editing Statements i 6-32
BINARY . e 6-33
DECIMAL ... e 6-34
JUSTIFY LEFT e i 6-35
JUSTIFY RIGHT ... i 6-36
PICTURE/EDIT ...ttt cie e 6-37

CURRENCY . e e 6-42
NUMBEREDITt it cie i 6-43
TRANSLATE. ... i e 6-44
COMPRESS ... e e 6-45
DECOMPRESS. i 6-49
HEX o 6-52
UNHEX .. e e e 6-53

Control Statements ...ttt 6-54
UNCONDITIONAL GO .. oie i 6-55
STOP . 6-56
CONDITIONALS . ..o e 6-57
COMPUTED GO ..ot 6-66
CASE . 6-67
ERROR TEST ... 6-68

Subroutine Statements i i 6-69
PERFORM ... e i 6-70
ENTRY .ot e et e 6-71
EXIT o e 6-73

[/O Statementscciiiiiiiiii i 6-74
OPEN ..o e 6-75
CLOSE .. i 6-76
READ .. 6-77
WRITE .. e 6-78
CHECKEOD ... o i e 6-79
DELETE ... o e 6-80
FREESPACE i 6-81
INSERT ..o e e 6-82
READLOCK ... i et 6-83
READNEXT . ..o e i 6-84

MOBOL LANGUAGE REFERENCE MANUAL (Cont’d.)

SECTION 6 (Cont’d.)

SECTION 7:

SECTION 8:

SETEOD .. i e 6-86
BACKSPACE ... i 6-87
MARK .. 6-88
REWIND .. i i e e 6-89
REWINDLOCK . ..o i et eecie e 6-90
SKIPFILE ..o e e 6-91
CHECKFORMS ... e e 6-92
PRINT .o e e e 6-93
SETFORMS . . e e 6-94
SENDEOF ... i e e 6-95
STATION I/O Statementsc.ccviiiiiiinenennnn.. 6-96
KENTER. ..ot i e e e e 6-97
KVERIFY it e i e 6-98
RESUME . i e e et 6-99
RESUMERR. ... i 6-100
ERROR ... e e e 6-101
NOTIEY it e e e et e 6-102
READSCREEN ... oot eii i ieee e 6-103
READKEY .ot e e e 6-104
Special Purpose Statementsccciiiiiiain.. 6-105
CHECKDIGIT .ttt et e it cee i iaeen 6-106
GETTIME. .. e 6-107
SETTIME .. . e et 6-108
SAME .. e 6-109
STRING ... o e e ee 6-110
INPUT/OUTPUT OPERATIONS ...t 7-1
I/O Statements In the Data Definition Section 7-1
I/O Statements In The Execution Section 7-2
KEYWORD CLASSIFICATIONcciiiiiiiiiieaenn. 7-3
Keywords Used In The Data Definition Section 7-3
Keywords Used In The Execution Section................. 7-4
Keywords Used In Both the Data Definition
And The Execution Sectionc.cciiiiiiiiiiennn. 7-6
DISK/DISKETTE I/O Operationsccevivinenennen.. 7-8
Basic Access Methodt 7-8
Sequential Index Access Method........................ 7-17
Random Index Access Method 7-18
TAPEI/O Operationsc.uoviiiieinenernenennneennnnns 7-22
PRINTER I/O Operationscovuiiieinenineenennnnnn 7-25
VFU (Vertical Forms Unit)cciiiiiiiiinn.... 7-27
Compatible Channel I/O Operationsccvvun.. 7-29
STATION I/O OPERATIONS iee e 8-1
Keywords Used In The Data Definition Section 8-2
Keywords Used In The Execution Section................... 83
KENTER. .t i e e et ettt 8-5
Field Mode . ..ot i it e e 87
ScreenModecoviiiii e 89
Control Keys . ..o iiiii i et i i i 811

MOBOL LANGUAGE REFERENCE MANUAL (Cont’d.)

SECTION 8: (Cont’d.) KVERIFY .. e 8-16
RESUME ... 8-17
RESUMERR. 8-20
ERROR ... 8-22
NOTIFY . e e 8-23
READSCREEN ... e 8-24
READKEY ... e 8-25
APPENDIX A: DIRECTORY OF FIGURES AND TABLES A-1
APPENDIX B: RESERVED WORDSINMOBOL...................ooot B-1
APPENDIX C: MOBOLIST ... e e C-1
APPENDIX D: MOBOL CROSS REFERENCE PROGRAM................ D-1
APPENDIX E: ERRORCODESo e E-1
APPENDIX F: GLOSSARY OF TERMS ...t F-1
APPENDIX G: CHECKDIGIT ALGORITHMSol G-1
APPENDIX H: INSTRUCTIONS FOR THE MOBOL COMPILER H-1
APPENDIX I: SYSTEM ERROR MESSAGES THAT OCCUR DURING
EXECUTION OF USER-DEFINED APPLICATIONS I-1
INDEX

viii

INTRODUCTION

This manual defines Mohawk Data Science’s MOBOL (Mohawk Business Oriented Language).
MOBOL programs are developed by users of Series 21 Distributed Data Processing Systems to
perform data entry, data verification, data validation and transaction processing.

MOBOL is arelatively free-form high level programming language designed to meet the needs of
an operator-interactive environment. In this environment, the operator communicates
interactively with the system through a keyboard and a video display screen (CRT). Using the
keyboard, the operator enters data or makes selections in response to the programmed
prompts displayed on the screen. Based on the data entered or the selection made, the program
carries out a pre-programmed series of steps. This cycle continues until all data has been
entered and all required selections are made.

Using MOBOL, A Series 21 System may be directed to perform the following functions:

STATION HANDLING

® Prompting
® Accepting data
® Verifying data

INPUT/OUTPUT

® Data recording
® Data retrieval

® Record update
® Report printing

DATA HANDLING

o Compare
® Arithmetic
® [ogical

e Edit

® Move

ix

MANUAL NOTATIONS

Conventions used to represent statement formats throughout this manual are described below.
A sample statement is shown.

1.

UPPER CASE words and punctuatian characters must be coded exactly as shown in the
statement formats.

{ } are known as Braces. Braces enclose two or more statement elements where one and
only one of the elements must be selected.

Spaces are not considered to be significant except when delimited in a literal.
[]are known as brackets. Any element enclosed in brackets is optional to the statement.
. .. are known as Horizontal Ellipses.

are known as Vertical Ellipses. Ellipses indicate that the elements or statements may
be repeated on subsequent lines.

Scripts 1,2, .. .,nor 1,2, ..., mare used to:

a. indicate the number of subsequent elements that will follow;

b. indicate distinctions of unique elements of the same type.

EOM:
PRINT (10D-name, buffer, ERR:sn-1, sn-2)
EOF:

Sample MOBOL statement

xi

SECTION 1: OVERVIEW

Once a distributed processing application for Series 21 is identified, the following steps are
performed:
1. Gather information regarding application requirements.

2. Analyze requirements and produce system block diagrams.
3. Produce detailed flowchart of program steps.

4. Translate steps of the flowchart into MOBOL source statements (see Figure 2-2 of Section
2 for a sample of the MOBOL Coding Form).

5. Transcribe the resulting MOBOL program to DISKETTE. For exceptionally large appli-
cations, multiple diskettes may be required to hold the source program. (A data entry pro-
gram may be used for this operation.)

6. Compile the source program using the MOBOL Compiler.

MOBOL COMPILER

A source code statement is not directly executable; i.e., it is not in a form readily understood by
the Series 21 System hardware. To be executed by the computer, a MOBOL source program
must be translated by the compiler into an object program. An object program is a series of
instructions especially designed for machine decoding. Using MOBOL, a programmer expres-
ses a problem in a language he readily understands; the resulting source program is then trans-
lated by the compiler into the object language that the system understands. Compilation of
MOBOL source language into object language is performed only once since the object program
can be re-executed as often as required. The compilation process is diagrammed below in
Figure 1-1.

—
OBJECT
PROGRAM
SNS~———]
SOURCE » MOBOL
PROGRAM COMPILER —~—
' NOTES

Figure 1-1 Compilation Process

The compiler produces an object file and a NOTES file. The object file is the primary compiler
output; it contains the compiled object program. The NOTES file contains summary
information about the compilation; also, it contains notes about detected errors (if any), which
are called diagnostic messages.

1-1

A MOBOL source program and/or its NOTES file may be printed using the MOBOLIST utility
program. A sample listing from the MOBOLIST utility is presented in Figure 1-2. Detailed

explanation of MOBOLIST is presented in Appendix C of this manual.

M 0 B 0 L

0013.
0014,
0015.
0016.
0017.
0018.
0019.
0020.
0021.
0022.
0023,
0024,
0025.
0026.
0027.
0028.
0029.
0030.
0031.
0032.
0033.
0034,
0035.
0036.
0037.
0038.
0039.
QoLoe.
0041,
0042,
0043,
oouy,
0045.
0046,
0047.
0048.
0049.
0050.
0051.
0052,
0053.
0054,
€055.
0056.
<END>

IOD:
IOD:

IO0D:

RCD:

KET

START
10,

110,

120,
130,

200,
201,

END

I

S T LEVEL 7.0 TITLE:

KSTATION = STATION;
INPUT = DISKETTE

DATASET = °“MASTERO1"
UNIT = 2;
QUTPUT = PRINTER
UNIT = 1;

WORKAREA
TYPE (1)
DATA (127);

DISPLAY
CRTSIZE = 480

BLANK = CRT SIZE

RELEASE = AUTOMATIC

(3,2) “PRINT/SELECT UPDATE RECORDS”
(4,2) "1 - LIST ALL”

(5,2) “2- LIST UPDATES~

(6,2) 3 - SIGN OFF"

(7,2) °“SELECTION:”

(7,14) SELECTION (1,N);

KENTER (KSTATION, DISPLAY)
IF (SELECTION, CONTAINS, :3:) STOP
IFNOT (°12°, CONTAINS, SELECTION) RESUMERR

OPEN (INPUT, WORKAREA, ERR:200)
OPEN (OUTPUT,WORKAREA, ERR:200)

READ (INPUT, WORKAREA, EOF:200, ERR:200)
GO (SELECTION) 130, 130, 120
IFNOT (TYPE, CONTAINS, :U:) GO:110

PRINT (OUTPUT, WORKAREA, EOM: 110, ERR:200)
GO0:110

CLOSE (INPUT, WORKAREA, ERR:201)
CLOSE (OUTPUT, WORKAREA, ERR:10)
GO:10

PRINT/SELECT UPDATE RECORDS

KEY STATION
DISKETTE FILE
DATASET NAME
DRIVE 2

PRINTER OUTPUT
DEFAULT PRINTER UNIT

BUFFER
FIRST CHARACTER
ALL THE REST

SCREEN DISPLAY

BIG SCREEN

BLANKS ENTIRE SCREEN
"ENTER” NOT REQUIRED
PROMPT MESSAGE
PROMPT MESSAGE
PROMPT MESSAGE
PROMPT MESSAGE
PROMPT MESSAGE
FIELD ENTRY

BEGIN CODE SECTION
DISPLAY

END PROGRAM
DISALLOW BAD CHARS

OPEN BUFFER FILE
OPEN PRINT FILE

READ INPUT
BRANCH ON SELECTION

NOT UPDATE: RECYCLE

PRINT, IGNORE EOM
CYCLE

CLOSE, IGNORE ERRS
CLOSE PRINTER
CYCLE

END OF SCURCE FILE

Figure 1-2: MOBOLIST Sample Listing

SOURCE PROGRAM STRUCTURE

A MOBOL source program has two major sections:

1) A Data Definition Section;
2) An Execution Section.

Data definition statements occur in the Data Definition Section and define each data element to
be processed by the program. All data definition statements must be in the Data Definition
Section. Complete information on constructing data definition statements is presented in
Section 5.

Execution statements occur in the Execution Section and define the processing steps to be
applied to the data elements. All execution statements must be in the Execution Section.
Complete information on constructing execution statements is presented in Section 6.

In addition to data definition and execution statements, there are comment statements and
compiler directives which may appear in both sections of a MOBOL program. Comment
statements are used to provide program documentation and annotate the source listing.
Compiler directives are used to delimit the Execution Section (START and END) and control
the program source listing (TITLE and EJECT). Comments and compiler directives are
documented in Sections 3 and 4, respectively.

1-3

SECTION 2: CONSTRUCTING A MOBOL SOURCE PROGRAM

After analyzing the application and creating a flowchart of the processing logic, a MOBOL
program may be produced by following the sequential steps outlined below:

1. Determine required screen displays for the application and create a layout of these displays
using the Series 21 CRT Screen Layout Form. (See discussion on designing screen displays
presented below.)

2. Generate MOBOL source code. Include coding for screen displays. A MOBOL coding
form is provided by MDS to assist the programmer when writing the MOBOL source.

3. Enter the source, via the STATION keyboard, into the Series 21 System.

DESIGNING SCREEN DISPLAYS

It is recommended that Series 21 CRT Screen Layout Form be used when designing the format
and content of the screen display. A sample form is presented in Figure 2-1.

D SERIES 21*CRT SCREEN LAYOUT FORM APPLICATION OBOQ
Ms, FOR 480 AND 1920 CHARACTER SCREEN FORMATS J0BNAME DAMPLE PROGRAM
DATE PAGE I oF (
10 ? 30 40 §f 60 70 80

3

FORAM NO. M-3798.1277 *Trademarks of Mohawk Data Sciences Corp., Parsippany, N.J. 07054 Mohawk Data Sciences—Canada, LTD. Registered User

® = Denotes attribute position.

Figure 2-1: Screen Layout Form

Data may be presented in either the 480 or the 1920 character display. Error messages (if any)
presented during program execution are normally displayed on line 2 of the screen. Therefore,
when an error message is presented, any data appearing on line 2 will be temporarily displaced.

Every guide message is preceded by an attribute byte which uses one character space on the
CRT screen. This space must be reflected in the source code. For example, if a guide message
appears on the screen on line 3, beginning in column 3, the layout would be coded (3,2).

2-1

GENERATING MOBOL SOURCE

The compiler accepts source programs recorded on DISKETTE as one or more datasets. The
diskette records (sectors) are input in sequence so that the source program is recorded in
proper sequence.

Each diskette sector may contain one line of source. A line of source may be one of the following:
1. One comment statement.

For example:

“THE |[NPUT ROUTINE FOLLOWS
((Column 1)

2. One entire compiler directive.

For example:

EJECT
3. One entire clause of a multi-clause data definition statement.

For example:

MASK(12) = '$$,$$$V.99CR"
4. One entire execution statement.

For example:

EDITFIELD = PICTURE (FIELD, MASK)
5a. The beginning of a data definition clause of an execution statement.

For example:

|F (TOTAL HOURS 40)
5b. A continuation of a data definition clause of execution statement.

VERTIME = OVERTIME + 1
(Column 1)
(where the beginning of the statement is illustrated in 5a.)

In this manual, the format of a clause or a statement is presented as a line of source as illustrated
in Steps 1-4 above, (that is, a printed line of format corresponds to a complete line of source).

The rules are given in this section so that long clauses and statements can be recorded as
illustrated by Steps 5a and 5b above.

A MOBOL program is written on MOBOL coding forms for ease and accuracy of transcription

to DISKETTE. Accordingly, the requirements for writing a line of source are described below in
terms of columns on a coding form.

2-2

MOBOL compiler directives, data definition and execution statements may be written in
columns 1-59 of the coding form. However, most programmers follow a formatting convention
(such as beginning any statement number of an execution in column 1 and beginning the
remaining part of the statement in column 10) to align statements for clarity.

When a clause or statement requires more than 59 positions available on a single line, multiple
lines are used to record the entire clause or statement. The first line is the beginning line and
subsequent lines are continuation.

A continuation line is recognized by the appearance of a plus (+) in column 1 of the current line
or by a delimiting comma (,) on the previous line.

Whe‘n the “plus method” is used, the plus character is discarded and columns 2-59 are used as
continuation for the previous line. With the exception of strings, basic syntactic elements must
not be split between lines. The basic syntactic elements that must not be split are:

¢ Fill Designators (e.g., :%:)
e Comparators (e.g.;<=)

When a string is split, it is important to consider the fact that column 2 of the continuation line

immediately follows column 59 of the previous line and not the last non-blank column of the
previous line.

When the “comma method” is used, columns 1-59 of the line are used as continuation for the line
terminated with the comma.

The “comma method” may be employed only witha comma which s a part of the syntax; that is,
a comma may not be inserted merely to signal continuation.

When both methods are employed simultaneously, the “plus method” prevails; that is, only
columns 2-59 are used for continuation.

Comment statements may appear anywhere within the source program. There are two formats
for comment statements. The first format requires an asterisk (%) in column 1, of the coding
form, with the remainder of the statement containing description information or all blanks. The
second format requires all blanks in columns 1-59 of the coding form, with the remainder of the
statement containing descriptive information or all blanks.

DATA DEFINITION SECTION REQUIREMENTS

1. Data definition statements are composed of multiple clauses, the first of which begins
with an identifying header and the last of which ends with a semicolon (;). The indi-
vidual clauses occurring between the header and semicolon terminator must be coded
according to the rules associated with the specific type of data definition statement
header (I0OD, RCD, KET or EQU).

2. Individual clauses which constitute a data definition statement are to be distinguished from

continuation lines. Continuation is employed in a data definition statement only when an
individual clause requires more than 59 columns available on a single line.

2-3

EXECUTION SECTION REQUIREMENTS

1. The Execution Section begins with the compiler directive START which must be positioned
within columns 1-59 of the coding form. (See Section 4 for a detailed discussion of compiler
directives.)

2. The Execution Section is concluded with the compiler directive END which must be posit-
ioned within columns 1-59 of the coding form.

3. Individual execution statements must be coded according to the format appropriate to the
statement as covered in Section 6.

4. Execution statements may have none, one or several statement numbers (see Figure 1-2,
line 37). Statement numbers are used to branch from one execution statement to another.
The compiler associates each statement number with the first execution statement which
follows the statement numbers.

a. Each statement number must be followed by a delimiting comma (,).

b. Statement numbers must be unique when regarded as a decimal number (for example,
32 is equivalent to 0032 and, therefore, would not be considered unique).

c. Generally, 3 or 4 digits are used for statement numbers. However, up to 32 digits may
be used, if desired.

Figure 2-2 is an example of a MOBOL coding form completed during development of the sample
program shown in Figure 1-2.

Mg MOBOL CODING FORM
IPROGRAM MoBOL SAMPpc L PRocRAM pace /o ¥

PROGRAMMER P2 LANG STRAAT lmchT DATE

HIHHHIHIIHLU
EENAREREEREERARRRNNRERY
|IRREREERRSREREEEEE
[N NREENEENNDRERENEN
NEENEERNDERERENEN

JINNRRENRENRREREREEND
T T
NENNNANENANNNENE N BRENENNN
NNNINI S NNRRMRNNRORRRRRER
BENENEEEEDENSERENN
[Tl
T IT]

FORM NO. M:3797-1277 *Trademarks of Mohawk Data Sciences Corp., Parsippany, N.J. 07054 Mohawk Data Sciences -Canada, LTD. Registered User

Figure 2-2: MOBOL Coding Form

2-4

SECTION 3: COMMENT STATEMENTS AND COMMENT FIELDS

COMMENT STATEMENTS
The following rules apply:

1. An asterisk () is written in column 1 with text (or all blanks) written in columns 2-128.
2. All blanks in columns 1-59 with text (or all blanks) in columns 60-128.

Comment statements may be inserted wherever desired. However, they may not appear within
a data definition statement.

COMMENT FIELDS

Comment fields can be placed in columns 60-128. These will be printed on the same line as a
source MOBOL statement without actually being within the statement. Comment fields may

appear in columns 60-128, adjacent to any line.

3-1

SECTION 4: COMPILER DIRECTIVES

There are four MOBOL compiler directives which provide the compiler with control
information during compilation. These directives are presented in logical order.
Compiler directives do not produce object code or affect other MOBOL source

statements.

TITLE

Purpose:

Format;

Description:

Example:

EJECT

Purpose:

Format:

Description:

Example:

To cause a top-of-form and print the title on a source listing when
using MOBOLIST.

TITLE: Up to 53 characters.

TITLE causes an immediate top-of-form to occur in a printed listing
of source statements. It establishes up to 53 characters to be printed on the
top line of the first and any subsequent pages until a new TITLE directive is
encountered. Several TITLE directives may be used in a source listing for
documentation clarification. TITLE can appear between any two
statements.

TITLE: PRINT/SELECT UPDATE RECORDS

To eject a page when printing a source statement listing when using

MOBOLIST.
EJECT
EJECT causes animmediate top-of-form (eject a page) to occur in a printed

listing of source statements. The most recently established title is printed at
the top of the new page. EJECT can appear between any two statements.

EJECT

4-1

START

Purpose:

Format:

Description:

Example:

NOTE:

END

Purpose:

Format:

Description:

Example:

NOTE:

To mark the beginning of the Execution Section.
START

START begins the Execution Section.

g DATA DEFINITION SECTION
°

START

o EXECUTION SECTION

END

1. All data definition statements must precede the START
statement.

2. All execution statements must follow the START statement.

To mark the END of the Execution Section.

END

END signifies the end of the execution statements and concludes
compilation.

See example for START

Every program must contain an END statement and END must be
the last statement in the program.

4-2

SECTION 5: DATA DEFINITION STATEMENTS

Data definition statements establish data elements and the names by which these data elements
can be referenced. Names (IOD-names, RCD-names, INDEX-names, KET-names, and EQU-
names) must be chosen according to the following rules:

1. The first character must be alphabetic.

2. Each subsequent character (if any) must be either alphabetic or numeric.

3. Space characters may be interspersed to improve readability.

4. The number of significant characters must not exceed 32.

5. The name must not be a reserved name (listed in Appendix B).

6. The name must not be defined earlier within the Data Definition Section.

The following are examples of valid names:

T
ACCOUNT
POLICY2
BIN NUMBER

The following are examples of rule violations:

@BAT (Violates rule 1)
TEN% (Violates rule 2)
THISNAME | SMUCHTOOLONGTOBEPERMITTED (Violates rule 4)
READ (Violates rule 5)
TWICE DEFINED (Valid name)

TWICEDEF | NED (Violates rule 6)

The last two examples illustrate that spaces relate only to readability; that is, the missing space
in the last example does not make the name different from the preceding example.

5-1

There are four types of data definition statements in MOBOL.:

1.

The IOD statement designates access information for Input/Output operations. The IOD
statement also designates an [OD-name that may be used to reference all of the associated
access information* or may be used to formulate a reference to a particular access
parameter.

The RCD statement designates a record area as a collection of individual fields. The RCD
statement also designates an RCD-name and field names that may be used to reference the
entire record area and its individual fields. The RCD statement may also designate an
INDEX-name.

The KET statement designates a record area and control information specific to entry,
verification and display of the record data. The KET statement also designates a KET-name
and field names that may be used to reference the entire record area and its individual fields.
The record area and the control information are collectively referenced when the KET-
name is used with the entry/verify operations. (The control information cannot otherwise
be referenced by the program.)

The EQU statement designates one or more EQU-names that may be used for parameter
passing within the Execution Section. An EQU-name may be made equivalent to a data item
so that the EQU-name may be referenced instead of the original item. An EQU-name may
be made equivalent to a sub-field of another data item to allow access to varying length fields
or records.

A data definition statement consists of multiple source statements, each of which contributes a
certain amount of related parametric information. The format of each source statement and the
number of source statements required for data definition depends upon the number of
parameters to be established within the data definition statement.

All data definition statements must be terminated by a semicolon (;) placed at the end of the last
source statement. The placement of the semicolon is important; it ensures that subsequent
individual source statements are not mistaken to be additional parametric information.

*this block of information is a set of system provided parameters or specifications for access to
the data contained in the file named by the IOD.

5-2

THE INPUT/OUTPUT DESCRIPTOR STATEMENT

10D
Purpose: To define a File Control Block (FCB) of access information (to be used with
Input/Output operations). The IOD is a data definition statement which is
required for each dataset accessed by execution statements.
Format: IOD: I0D-name = device
iod-specification-1
iod-specification-2
[]
[]
[
iod-specification-n ;
Description: The components of this statement are:

IOD-name The name used to reference the FCB or a specific
parameter within the block. The IOD-name is used with
Input/Output operations to identify the file to be oper-
ated upon.

device The type of device used for data transfer.

Permitted selections are:

DISK
DISKETTE
COMP CHAN
PRINTER
STATION
TAPE

Note: The selection TAPE is also used for DATA RECORDER.

iod-specification A keyword expression which assigns a particular
parameter. The keywords that are used depend upon
the device specification; for example, the specifi-
cation:

DATASET = 'ACCOUNTS'
is valid for DISK and DISKETTE devices only.

The keywords that may be used in the IOD statement are:

ACCESS KEYBOARD SIGNIF UNIT
BOUND KEYVALUE SLEW VOLUME
DATASET MCSEQ STATE

FILTER OPERATIONAL TARGET

5-3

In Section 6 the keywords are listed and defined. When a keyword is not
explicitly assigned an initial-value, a default value is used. Most keywords
have default values which correspond to normal use. Therefore, it is neces-
sary to include iod-specifications only for those parameters whose defaults
are unsuitable for the particular application program. A keyword that is
available for reference in the Execution Section is referenced in the Exe-
cution Section by concatenating the IOD-name and the keyword.

For example:
I0D-name « DATASET

In the example above, the [OD-name identifies the block of information and
DATASET identifies the specific parameter; in this case, the name of the
dataset.

RECORD STATEMENT

The RCD statement format can vary depending upon specific use. Therefore, for clarity, two
main formats are presented:

The first format is the basic form of RCD. It is used to define a record area and its fields.

The second format is used to define an array of records (multiple records of the same format).

Additional formats of the Record statement are presented in this section under the heading
"RECORD REMAPPING”.

RCD

Purpose:

Format:

Description:

To define a record area and its fields.

RCD: RCD-name
field-specification-1
field-specification-2

field-specification-n ;
The components of this statement are:

RCD-name The name used to refer to the entire record area estab-
lished by the various field-specifications that follow.

field-specification A clause which defines one field of a record area, its off-
set and length.

In the event that the individual fields are not related to each other, as when
defining counters and intermediate result fields, RCD-name may be coded
as a minus (-). When the RCD-name is coded as minus, reference to the
overall record area (as a single data item) is not possible.

A field-specification consists of two main parts: a name and a value. The
name is used to reference the individual field and the value establishes the
initial-value of the field. The initial-value is the contents of the field after
program load and prior to program execution.

Example:

RCD: -
DOLLAR LIMIT = 10000
MESSAGE = 'LIMIT EXCEEDED';

The field DOLLAR LIMIT is the first field of the record and consists of five
(5) positions. The field MESSAGE is the second field of the record and con-
sists of fourteen (14) positions. In both cases, the size of the field is deter-
mined by the number of positions appearing within the value. The value
assigned to DOLLAR LIMIT is called a decimal number. The value
assigned to MESSAGE is called an alphanumeric string.

5-5

Decimal Numbers

A decimal number is a series of digits with an optional leading sign (+ or -). The value is taken as
positive unless the minus (-) is explicitly coded. Space characters are not significant and may be
interspersed to improve readability.

Example:
RCD: -
LARGE = 50 000
SMALL = 64

MIDDLE = 24 966;

The fields LARGE and MIDDLE are each five (5) positions and positive; field SMALL is two (2)
positions and negative. Internally, the sign of a decimal number is carried in the unit’s position
along with the unit’s digit. Having a sign does not increase the length of the resulting field.

Alphanumeric Strings

An alphanumeric string is a sequence of characters enclosed within quote (*) characters. The
enclosing quotes do not contribute to the length of the field. Space characters are significant and
must be coded only when a space data character is desired. If a quote character is to be part of
the string value, two contiguous quotes must be coded for each quote data character desired.

Example:
RCD: -
UPPER = 'ABCDEFGH!JKLMNOPQRSTUVWXYZ'
LOWER = 'abcdefghijklmnopqrstuvwxyz'
NUMBERS = '123456789"
RESPONSE = 'YOU''RE OK.';

The fields UPPER and LOWER are each 26 positions containing the alphabet in uppercase and
lowercase, respectively. The field NUMBERS is ten (10) positions and contains the digit
characters. The field RESPONSE is also ten (10) positions, even though eleven (11) characters
are coded between the surrounding quotes. If RESPONSE is displayed on the CRT screen, it
would appear as:

YOU'RE OK,

5-6

Referencing Overall Record Areas

An RCD-name must be designated when the overall record area is to be referenced. A field-
name may be coded as minus (-) if there is no requirement to reference the field individually.

Example:
RCD: HEADER
- = 'PAGE'
CURRENT PAGE = 00
- = 'OF!

TOTAL PAGES = 00;

The field TOTAL PAGES is to contain the number of pages within the report and the field
CURRENT PAGE is to be incremented for each new page. The record HEADER would. be
printed once per page; suitable coding in the Execution Section could be written to produce the
following sequence of print images for a twelve-page report:

PAGE 01 OF 12
PAGE 02 OF 12
[J
[

[]

PAGE 12 OF 12

Note that two zero digits are necessary for the initial-value of CURRENT PAGE and TOTAL
PAGES so that a sufficient number of positions are allocated to handle reports of up to ninety-
nine (99) pages in length.

Stating An Explicit Size For A Field

An explicit size may be designated for a field. If the field is to be given a decimal number as an
initial-value, the leading zeros do not have to be coded. The field length must not exceed 256
positions, if the field is named.

Example:
RCD: HEADER
- = 'PAGE'
CURRENT PAGE(2) =0
- = 'OF!

TOTAL PAGES(2) = 0;

Because CURRENT PAGE has an explicit size of two (2) positions, the value is established by
moving the initial-value into the field, from right-to-left, with leading zeros to fill the field. The
same considerations apply to TOTAL PAGES.

5-7

Fill Characters And Alignment

The fill character and the direction of filling may be designated, provided that the field is
explicitly given a size. The fill character itself is coded between two colon characters and the
resulting three characters are placed to the left of the initial-value for left-filling or the right for
right-filling. Coding a fill character and omitting an initial-value designates that every position of
the field is to be filled.

Example:
RCD: -
LEFTFILL(10)= :*: 'PAGE'
RIGHTFILL(10) = 'PAGE' HEH
ALLFILL(10) = : R

The effect of these definitions is listed:

PUSRURI S R N

Xk k% %%PAGE

P A G E POV P RN N N
EARANRARANARAY

B o A MR P A P
ARARARARARARARARARAY

Large displacements for printing at the right margin may be indicated through the use of filling.

Example:

RCD: HEADER
-(119) = :
- = 'PAGE'
CURRENT PAGE = 00
- = '0OF!
TOTAL PAGES = 00;

or:

RCD: HEADER
-(124) = : : 'PAGE'
CURRENT PAGE = 00
- = 'OF'
TOTAL PAGES = 00;

Either format would cause the page accounting information to appear to the far right of a full 132-
position print line. Because of the choice of names, only one of the two examples could appear in
a given program.

5-8

Offset Notation

In all of the examples presented thus far, each field is placed within the record according to its
order of definition; fields defined in this way are called sequential. Optionally, a field may be
placed out of sequence using the offset notation; fields defined in this way are called non-
sequential.

Examples:

RCD: HEADER:
-(119,4) = 'PAGE'
-(127,2) = 'OF!

CURRENT PAGE(124,2) =0
TOTAL PAGES(130,2) = 0;

For the offset notation, both the offset into the record and the size of the field are specified. The
offset is coded first and represents the number of record positions to the left of the field being
defined.

Note that only ten (10) positions of the record are assigned an initial-value. No additional values
are required in this case, since all records are created with space characters for those positions
not explicitly assigned an initial-value.

Fields Without Initial-Values

When an initial-value is assigned to a field, the corresponding positions of the record are
updated. When no initial-value is assigned, there is no effect on the corresponding positions of
the record during compilation.

Example:
RCD: -
F1(0,5) = 'AAAAA!
F2(1,3) = 'BBB'
F3(2,1) = 'c!
F4(0,3) 3

As the compiler processes each specification sequentially, the appearance of the record is
shown below at the various stages of compilation:

AAAAA (after F1)
ABBBA (after F2)
ABCBA (after F3)
ABCBA (after F4)

Note that the first three positions of the record were not affected by the definition of field F4.

5-9

Alignment Without Filling

An initial-value may designate that alignment without filling is required. In this case, the field
positions that would normally receive a fill character are unchanged from their current value.

Example:

RCD: -
F1(0,6) = 'AAAAAA'
F2(1,4) = ::'B'
F3(2,2) = 'C'::;

The two contiguous colons(::) signify that filling is to be suppressed. The appearance of the
record is shown below at various stages of compilation:

AAAAAA (after F1)

AAAABA (after F2 - only the fourth character
is changed since the initial-value is
only one character in length and
right-justified. The fill characters are
suppressed).

AACABA (after F3 - only the third character is
changed since the initial-value is
only one character inlength and left-
justified. The fill characters are
suppressed).

NOTE: The above example is for illustrative purposes only and would not normally be found
in an application program.

5-10

Sequential and Non-Sequential Fields

Both sequential and non-sequential fields may be employed in defining a record. A sequential
field always begins at the first record position after the previous sequential field. A non-
sequential field begins at the designated offset and has no influence on the placement of the next
sequential field.

Example:
RCD: -~
LAST NAME(15) = 'SMITH'
FIRST NAME(15) = 'SAM'
LAST INITIAL(O,1) ;
or:
RCD:

LAST INITIAL(O,1)

LAST NAME(15) = 'SMITH' :
FIRST INITIAL(15,1)

FIRST NAME(15) = 'SAM' : : ;

Both examples produce equivalent records and fields. Note that in the second example, the
placement of LAST NAME is not influenced by LAST INITIAL. Again, only one of the two
examples could appear in a given program.

A non-sequential field may overlap other fields within the record.

Example:
RCD: -
LAST NAME(15) = 'SMITH'
FIRST NAME(15)= 'SAM!
IDENTIFIER(0,16) ;

The field IDENTIFIER includes all of the field LAST NAME and the first position of FIRST
NAME.

For some Input/Output related applications, certain fields of a data record are not significant to
the application and therefore do not require individual identification. In such cases, an unnamed
field may be required to create a sufficiently large record area.

Example:

RCD: MASTER
TAX TO DATE(60,7)
-(0,128) ;

This record is suitable for a selective copy of employee MASTER records based on certain TAX
TO DATE criteria. The application is not specifically concerned with address information,
salary, etc., but is obligated to provide room for this data so that it will be preserved on the
output file. The unnamed field ensures that 128 positions are allocated for MASTER records.

5-11

Tables 5-1 and 5-2 present every variation of establishing a field and assigning its initial-value. In
Table 5-1, the field name does not have an explicit size. In Table 5-2, the field length is specified.

TABLE 5-1: ESTABLISHING FIELD SPECIFICATIONS
WHERE FIELD NAME HAS NO SIZE SPECIFICATIONS

Field-name
EXAMPLE INTERNAL REPRESENTATION
NO VALUE A Contents not changed
ASSIGNED Contents=(=)

Alignment right-to-left;

VALUE ONLY A = 321 No fill characters.
Contents=(321)
Alignment right-to-left;

VALUE/NO FILL No fill characters.

CHARACTERS A = ::'ABC' Diagnostic message.
Contents=(ABC)
Alignment right-to-left;

VALUE/FILL No fill characters.

CHARACTERS A = :X:'ABC' Diagnostic message.
Contents=(ABC)

L cctmms || st e s

Contents (X)

Contents not changed.
EMPTY FILL A== Diagnostic message.
Contents=(-) .

Where (=) = One byte of previously established data (normally a space character).

5-12

TABLE 5-2: ESTABLISHING FIELD SPECIFICATIONS
WHERE FIELD NAME HAS A SIZE SPECIFICATION

Field-name (n)
Where n = field length

EXAMPLE INTERNAL REPRESENTATION
NO VALUE Contents not changed.
ASSIGNED A(3) Contents=(---)
VALUE ONLY Alignmeht right-to-left; fill after value
value length< length with decimal zero.
field length A(3) =2 Contents=(002)
VALUE ONLY Alignment right-to-left; no fill
value length= characters required.
field length A(3) = 321 Contents=(321)
Alignment right-to-left; truncate once
VALUE ONLY field is full.
value length > Diagnostic message.
field length A(3) = 4321 Contents=(321)
VALUE/NO FILL Alignment right-to-left; remaining
CHARACTERS characters of field remain unchanged.
value length< Contents=(==A)
field length A(3) = ::'A"

VALUE/NO FILL

Alignment right-to-left; no fill

CHARACTERS characters required.

value length= Contents= (ABC)

field length A(3) = ::'ABC'

VALUE/NO FILL Alignment right-to-left; truncate once
CHARACTERS field is full.

value length > Diagnostic message.

field length A(3) = ::'ABCD' Contents=(BCD)

VALUE/FILL CHARS
value length<

Alignment right-to-left; fill with speci-
fied fill characters.

field length A(3) = :X:'A! Contents=(XXA)
VALUE/FILL CHARS Alignment right-to-left; no fill
value length= characters required.
field length A(3) = :X:'ABC! Contents=(ABC)
VALUE/FILL CHARS Alignment right-to-left; truncate once
value length > field is full.
field length A(3) = :X:'ABCD' | Diagnostic message.
Contents=(BCD)

FILL/CHARACTERS Fill with specified fill character
ONLY A(3) = :X: Contents=(XXX)
EMPTY FILL Contents not changed.

A(3) = : Diagnostic message.

Contents=(---)

Where (--=-) = three bytes of previously established data.

5-13

Non-Graphic Fill Characters

If a non-graphic character (one that does not appear on the keyboard) is required as a fill
character, it must be expressed in terms of its hexadecimal representation. In this case, the two
hexadecimal digits of the fill character are coded between the colons.

Example:

RCD: -
ALL ONES (2) = :FF:
ALL NULL (8) = :00: ;

The field ALL ONES consists of two positions, or 16 bits; each bit is set. The field ALL NULL
consists of eight positions, or 64 bits; each bit is clear. The left hexadecimal digit determines the
leftmost four bits of the fill character and the right digit determines the rightmost four bits. The
hexadecimal digits and their corresponding four-bit values are tabled as follows:

Hexadecimal 4-Bit
Digit Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TIMOOWP> OO0 A WN = O

Non-Graphic Hexadecimal Strings

If a non-graphic string is required as an initial-value, it must be expressed as a hexadecimal
string. In this case, two hexadecimal digits must be coded for each string character. All
hexadecimal digits specified must be enclosed by quotes and preceded by an X.

Example:

RCD: -
BINARY HUNDRED = X'64!
BINARY THOUSAND = X'O3ES8'
ALPHA THREE = X'Cl C2 C3' ;

The field BINARY HUNDRED is one position in length and contains the binary representation
of the number 100. The field BINARY THOUSAND is two positions and contains the binary
1000. The field ALPHA THREE is three positions and contains the EBCDIC characters ABC
(more typically this field would be defined as "ABC’). Space characters are not significant and
may be used to improve readability.

5-14

Composite String

A string requiring a mix of graphic and non-graphic characters may be specified using a
composite specification. A composite specification is a sequence of alphanumeric strings,
hexadecimal strings and unsigned decimal numbers coded as applicable.

Example:

RCD: FILE COMMANDS
- = 'UPDATE' X'0O1'
- = 'DELETE' X'02'

- = 'ADD ' X'Ok!
- = '"INSERT' X'08!
- = X'00' ;

The record FILE COMMANDS contains a sequence of individual (unnamed) fields. It may be
searched to transform a file command into a bit mask for program interpretation. The null
terminates the record (COMMAND NOT FOUND’ condition). In this example, each source
line represents one transformation entry. This type of encoding facilitates the addition and
maintenance of commands and provides clarity of the source program.

5-15

RCD Array

Purpose: To define an array of records so that multiple records of the same overall
format are available for reference.

Format: RCD: RCD-name (INDEX-name, iterations)
field-specification-1
field-specification-2

field-specification-n ;

Description: The components of this statement are:

RCD-name

INDEX-name

iterations

field-specification

The name used to reference one record of the array.
The field-specifications which follow establish the for-
mat of the records.

The name of the index variable used to select a par-
ticular record of the array. When a reference to the
array is made and a specific record number is not
coded, the record implied by the current value of
INDEX-name is used.

The number of record occurrences within the array. A
maximum of 100 may be designated.

A clause that defines one field of a record in the array,
its offset and length. Also, the initial-value of the field is
defined for the first record.

The various field-specifications establish field-names
and field initial-values for the first element of the
record array. The rules governing specification are
identical to the ones described in the first format of
RCD with the following exceptions:

® Anindividual record of the array must not exceed
256 positions. The entire array, however, may
exceed 256 positions.

® An individual record of the array must not be de-
fined as having more than 255 named fields.

Additional record areas are allocated so that the total number of records in the array
corresponds to the iterations parameter.

The index variable is defined as a two-position field with an initial-value of decimal zero.

5-16

During execution, the assignment of a value to INDEX-name selects an element of the array for
implied references. The value zero selects the first element, one selects the second, etc.
Accordingly, each value assigned to an index variable must be:

® decimal;
® greater than or equal to zero; and
® less than the iterations parameter designated for the record.

Example:
RCD: RECORD (INDEX,3)
FIELDA(4) = 'ABCD!
FIELDB(2) = 41;

The arrangement of record elements and their fields is shown below with explicit indexing
notation used for identification.

7 | 1 FIELDB(0)

b | B B | B | FIELDA(1)

RECORD(D{ 5 | B FIELDB(1)
{ B | B B | B | FIELDA(2)
RECORD(2)\[& [B FIELDB(2)

Note that only the first iteration is assigned an initial-value.

5-17

THE KEY ENTRY TABLE STATEMENT
KET

Purpose: To define a record area and control information specific to entry, verifi-
cation and display of the record data.

Format: KET: KET-name
context-specification-1

context-specification-2
[]

[J

[]
context-specification-n
display-specification-1
display-specification-2

[

[J

[]

display-specification-m ;

A variation of the above format for KET is presented later in this section
under the heading "/RECORD REMAPPING”.

Description: The components of this statement are:

KET-name The name used to refer to the entire display
record established by the various field-specifi-
cations which follow. The name refers to both the
display record and its control information when
used with entry/verify operations.

context-specification A clause that establishes a parameter associated
with the overall KET.

display-specification A clause that establishes either a field within the
record area or a fixed guide message.

The ordering of specifications within the KET is important:

® context-specifications must follow the KET-header; and

e display-specifications must follow the last context-specification.

Context-Specification

Context-specifications are used to adjust operational details of entry, verify and display
activities associated with the KET. Each specification is coded as an individual keyword
assignment clause. In these clauses, the keyword identifies the parameter and the assignment
value identifies the option selected.

A keyword specification may be omitted from the KET statement if its default value is
appropriate. The ordering of the assignments is not significant, unless conflicting assignments
are made to the same keyword. In this case, the last assignment prevails.

The parameters and their options are discussed in the following paragraphs.

5-18

CRTSIZE
The display size to be used when the KET is active may be 480 or 1920 characters.

CRTS|ZE = 3“80 %

1920

When 480 is selected, the display is configured to twelve (12) lines of forty (40) characters each.
When 1920 is selected, there are twenty-four (24) lines of eighty (80) characters each.
Regardless of the selection, the display position in the upper left corner is designated line one,
column one (1,1).

An application may have a mix of 480" KET’s and '1920" KET’s as required.
The default value is 480.

BLANK

An area of the display to be cleared upon activation of the KET may be designated.

CRTSIZE

BLANK = 9011, ce) /7 (11, cc)

When CRTSIZE is selected, the entire display area is designated. When the second option is
selected, the starting line column and the ending line column are explicitly coded.

Example:

BLANK = (6,1)/(12,40)

For a 480" KET, the bottom half of the display is cleared.

The default value is computed by the compiler as the minimum extent required to clear the
guide and field areas used by the KET. The keyword BLANK should not be omitted when a
previous KET occupies more space on the screen, since data from this previous KET will remain
in the subsequent display.

5-19

MODE

Data fields of the KET are presented for entry/verify in their order of definition within the KET.
When a KET is used for the creation of new data, the standard order of presentation cannot be
superceded by the operator through the use of the cursor control keys. The MODE parameter
designates the intended use of the KET.

Data fields of the KET are presented for entry/verify in their order of definition within the KET.
When a KET is used for the creation of new data, the standard order of presentation cannot be
superceded by the operator. When a KET is used for updating existing data, the standard order
may be superceded by the operator through the use of the cursor control keys. The MODE
parameter designates the intended use of the KET.

MODE : %FIELD g

SCREEN

The FIELD option designates data creation and enables the use of the field positioning keys
(le— and —»)to move the cursor backwards or forwards (in order of definition) one field
at a time. The SCREEN option designates data update and enables the use of the field
positioning keys as well as the cursor positioning keys (4 ¢+ and —). Each cursor
positioning key moves the cursor one position on the screen, without regard to field ordering; a
sequence of these keys may be used to place the cursor on any field requiring update.

Other effects of selecting FIELD or SCREEN mode are described later, in Section 8.
The default value is FIELD.

NUMPAD

The numeric keypad (when installed) may be used for entry of numeric data or for selection of
application-defined functions.

DATA f

NUMPAD = EESCAPE

The option determines whether input from the keypad s to be processed as numeric data by the
entry/verify operations (DATA option) or is to be passed back for application-defined
interpretation (ESCAPE option). Operational details associated with the ESCAPE option are
covered in Section 8.

The default value is DATA.

5-20

RELEASE

When the end of an entry/verify operation is reached, the display data may be held for final
operator review or released immediately for processing.

_ {MANUAL
RELEASE = ;AUTOMATlcg

The AUTOMATIC option designates that the display data is to be released immediately for
processing. The MANUAL option designates that the display data is to be held until the
operator depresses the ENTER key. Errors detected during the review may be corrected prior
to the depression of ENTER.

The default is MANUAL.

INIT

When a KET is presented for the entry or the verify process,the first field to receive the cursor is
determined by specific rules discussed in Section 8.

AUTOMATIC%

INIT = %ESCAPE

The AUTOMATIC option designates that the first field to be keyed is selected by the system.
The ESCAPE option designates that a branch is to be taken to the application program before
initial field selection. Operational details associated with the ESCAPE option are covered in
Section 8.

The default is AUTOMATIC

TYPE

Program-assigned value that is transcribed to the STATION IOD when the KET is activated.
This one-byte parameter may be used to represent anything desired by the programmer. The
format is:

TYPE = initial-value

If a decimal initial-value is specified, the range is 0-255. It is subsequently converted to binary
representation.

NOTE

Program-assigned value that is transcribed to the STATION IOD when the KET is activated.
This one-byte parameter may be used to represent anything desired by the programmer. The
format is:

NOTE = initial-value

If a decimal initial-value is specified, the range is 0-255. It is subsequently converted to binary
representation.

5-21

Display-Specification

Each display-specification designates either a fixed guide message (guide-specification) or a data
field (field-specification). The field-specifications should be ordered in the desired entry/verify
sequence. The guide-specifications may occur in any order and may be interspersed with field-
specifications.

Guide-Specification

A guide-specification designates one guide message which may be used to
identify the overall display (title usage) or to identify a specific field (prompt
usage).

The format of a guide-specification is:
(line, column, attribute) guide-text
The components are:

Line

The line number on which the message attribute is to be placed. The range
is 1 to 12 for a 480" KET and 1 to 24 for a '1920" KET.

Column

The column number in which the message attribute is to be placed. The
range is 1 to 40 for a "480" KET and 1 to 80 for a ‘1920" KET.

Attribute

The parameter which designates a particular attribute byte that is to
precede the guide message. The attribute byte occupies one display posit-
ion, appears as a blank and influences the display of the characters which
follow.

Each attribute parameter and its effect on the display is listed below:

S or SUPPRESS for suppressed;

L or LOW for low intensity;

LBor LOWBLINK for blinking, low intensity;

R or REVERSE for reverse image;

RBor REVERSEBL | NKfor blinking, reverse image;
H or HIGH for high intensity;

HBor HIGHBL I NK for blinking, high intensity.

The default is LOW if the attribute and its preceding comma (,) are omitted
in a guide-specification.

5-22

Guide-text

The actual guide message text, is coded as an alphanumeric string (see
example). The stringis placed on the screen immediately following the attri-
bute position and continuing to the right.

The total number of display positions used is equal to the length of the
string plus one (for the leading position occupied by the attribute byte).

In the event of display line overflow, continuation begins on the first posit-
ion of the next line.

Example:
KET: o

[]

[]

CRTSIZE = 480

(3,5,LO0W) 'ACCOUNT:'

e

These fragments of a KET statement corresponds to the display results
diagrammed below.

]

1 2 3 4 5 6 7 8 9 10111213
|
|
|
2 I
|
|

3———————- @ ACCOUNT

Low attribute byte at line 3, column 5 (displays as a blank)

5-23

Field-specification

A field-specification establishes one field for data entry/display. Field-
specifications may be interspersed with guide-specifications. The ordering
of field-specifications governs the standard entry sequence.

The format of a field-specification is:

(line, column, attribute) field-name (position, shift, source, exit, verify) sn-post, sn-pre
Line

The line number on which the field attribute is to be placed. The range is 1
to 12 for a 480" KET and 1 to 24 for a '1920" KET.

Column

The column number in which the field attribute is to be placed. The range is
1 to 40 for a "480" KET and 1 to 80 for a '1920" KET.

Attribute

The parameter which controls the display of the field. The attribute
appears as a blank position at the designated line and column with the field
immediately following the attribute. Parameters are the same as those
listed for guide-specifications.

The default is HIGH.

Field-name

The name identifying the field within the record. Optionally, a minus (-)
character may be coded in lieu of field-name when no direct program refer-
ences to the field are required.

Position

Position designates the location and length of the field within the record.
Also, it designates certain entry control information. The form for this para-
meter is:

field-offset, field-length/minimum/0

The decimal number field-offset establishes the displacement of the field
from the beginning of the record. The field-offset and its delimiting comma
(,) may be omitted to designate that the field is to follow the last specified
sequential field within the record.

The decimal number field-length establishes the number of contiguous

characters comprising the field. Specification of this parameter is
mandatory.

5-24

The decimal number minimum designates the minimum number of signifi-
cant data characters that must exist within the field before a field entry
operation can be considered complete. The terminating phrase /0 is
optional. It designates that a field entry operation can be considered com-
plete when the minimum number of significant characters are present or
when no significant characters are present. If the entire phrase /mini-
mum/0” is omitted there is no constraint on the number of significant chara-
cters within the field.

Table 5-3 illustrates the interpretation of the significance parameters for a
five-position field.

Table 5-3: Interpretation of Significance Parameters

Source Specification Number of Significant
Characters in Field
...,5/4/0,... 0,4 or 5
..,0/8,... 4orb
RS T 0,1,2,340or 5
...,5/0,... 0,1,2,3,40or 5
...,5/0/0,... 0,1,2,34 or 5

Shift

Shift facilitates the entry of a specific class of characters (by minimizing the
need to depress the shift keys). Also, it restricts the acceptable character
class. The permitted values are:

LETTER or L to facilitate the entry of upper
case A-Z and to impose no actual
restriction.

DIGITorD to facilitate the entry of the digits
09 and to impose no actual
restriction.

TEXT or T to facilitate the entry of lower
case A-Z and to impose no actual
restriction.

NUMERIC or N to facilitate the entry of the digits
0-9 and to restrict data to the
digits 0-9.

ALPHA or A to facilitate the entry of upper

case A-Z-and to restrict data to
upper case A-Z.

The significance of L, D or T fields is determined by field-length less the
number of leading and training spaces. The significance of Numeric fields is
determined by field-length less the number of leading zeros. The signifi-
cance of Alpha fields is determined by field-length alone. The default is
LETTER for this parameter.

5-25

Source

This parameter designates the conditions of allowed operator entry. The
values are:

KEY or K to designate that the field may be
keyed whenever the cursor ari-
ves at the field displayed.

GENERATED or G to designate that the field has a
program- generated initial-value
which the operator seldom keys.
The field may be keyed, however,
if the cursor arrives at the field by
means of a backspacing action,
cursor positioning action or ex-
plicit program direction.

PROTECTED or P to designate that the field is pro-
tected from operator entry un-
less the cursor arrives at the field
under explicit program direction.

The default value for this parameter is KEY.

Exit

The exit parameter is specified if a particular field release key (or key class)
must be used to signal the end of keying to initiate alignment. If no para-
meter is coded, the field is automatically released when the rightmost posit-
ion is correctly keyed. The field may be released prior to keying the right-
most position as follows:

Release Shift Action
Key
SKIP L,D,T Left align; space fill
EXIT L,T Right align; space fill
EXIT D,N Right align; zero fill
- N Right align; zero fill; negate field
(minus)

The following parameters specify that a particular release key must be used
(even after keying the rightmost position).

SKIP or S to designate that the SKIP key must be used to release the field. If
depressed at or prior to the rightmost position, the action is as tabled
above. If depressed after the rightmost position, no alignment or filling is
performed.

EXIT or E to designate that the EXIT key (or - key) must be used to release
the field. If depressed at or prior to the rightmost position, the action is as
tabled above. If depressed after the rightmost position, no alignment or fil-
ling is performed.

5-26

Verify

Verify designates that the field is to be key-verified when a data verify oper-
ation is active. VERIFY or V means verification is required.

Ordering of the parameters shift, source, exit and verify is not important.

sn-post, sn-pre

These are statement labels which designate processing routines associated
with the field. The sn-post routine is executed upon a field-release condition
(all of the data has been entered for the field); the exit allows for ‘post-pro-
cessing’ of the data to occur before the next field is selected for entry/
verify. The sn-pre routine is executed when the operator initiates field up-
date (backspacesinto a field); the exit allows for ‘pre-processing’ of the data
to occur before the update actually proceeds.

Post-processing is used for validation, calculating extensions and selecting
fields out of normal sequence. Pre-processing is used for “backing-out”
previous extensions, inhibiting field update and selecting fields out of
normal sequence.

The conditions under which these routines are executed is dependent
upon the station operation and the MODE of the KET. These topics are
covered in Section 8.

Either or both labels may be omitted to designate that the corresponding
form of processing is not required for the field. Orderingis important: if sn-
post is omitted and sn-pre is present, the separating comma (,) must pre-
cede the sn-pre label.

The following fragments of field-specifications illustrate all coding com-
binations:

) no exits

) 100 post exits only
) 100, 200 both exits

) , 200 pre exit only

5-27

THE EQUATE STATEMENT

EQU

Purpose:

Format:

Description:

To establish names that may be used as alternate reference names for
records and fields.

EQU: EQU-name-1,
EQU-name-2,
[J
[]
[]
EQU-name-n;
or
EQU: EQU-name-1, EQU-name-2,...EQU-name-n;

Note: Commas are not required in the vertical syntax.

An EQU statement establishes each EQU-name as a specialized data item
having the following characteristics.

® Defining an EQU-name does not cause the name to be associated with
any particular data field; that is, no memory is allocated and no already
allocated memory is re-used.

® An EQU-name (and only an EQU-name) may appear as the “re-
ceiving” parameter in a SAME or STRING execution statement.
These statements cause the EQU-name to be assigned as an alternate
reference name for a record, field, or portion of a record of field.

® An EQU-name used elsewhere in the Execution Section,references

the data area established by the last executed SAME or STRING
statement that assigned the EQU-name.

5-28

RECORD REMAPPING

The purpose of remapping is to re-use a previously specified record or field area with an alter-
nate layout. One of the following formats may be used:

1. RCD: RCD-name, REMAPS:previous
field-specification-1
field-specification-2

[
[]
[]

field-specification-n ;

2. RCD: RCD-name (INDEX-name, iterations), REMAPS:previous
field-specification-1
field-specification-2
[]
[]
[]

field-specification-n ;

3. KET: KET-name, REMAPS:previous
context-specification-1

context-specification-2
[]

[]

[]
context-specification-n
display-specification-1
display-specification-2

[]

[]

[]

display-specification-m ;

The new component introduced is:

previous The designation of the previously defined record or field that is to be reused with
an alternate layout.

If format 1 or format 3 (above) is used, the area designated by “previous” must be of sufficient
length to hold the entire record currently being defined. If format 2 (above) is used, the area
designated by “previous” must be of sufficient length to hold the entire record currently being
defined. If format 2 (above) is used, the area designated by “previous” must be of sufficient
length to hold all iterations of the record being defined.

The coding of “previous” is dependent upon the record or field that is being remapped and the
remapping objectives. Three types of remapped records are distinguished:

normal The record is 256 positions, or less, in length and is not iterated. A normal record
may be defined by a KET or RCD.

extended The record is 257 positions, or more, in length (and therefore is not iterated). An
extended record may be defined by a KET.

indexed The record is iterated (and each iteration, therefore, has 256 or fewer positions).
The total number of positions for all iterations is not limited to 256 positions. An
indexed record is defined only by an RCD array.

5-29

REMAPPING A NORMAL RECORD

A normal record may be remapped by coding “previous” as follows:

® Record-name to remap the entire record;

® Record-name* also to remap the entire record; or

¢ field-name to remap a single field of the record.
The syntax Record-name* has little significance for a normal record. It is allowed for a normal
record, however, for convenience when recoding or updating source code. For example, the

syntax Record-name* was used to name an extended record and if this record is changed to a
normal record, the syntax Record-name* need not be changed.

Example:
RCD: RECORD
[]
[]
¢ length 256 positions, or less
FIELD
[]
[
[]

The diagram below illustrates the layout of RECORD as a point of reference with individual
shaded layouts to depict the areas that may be remapped by a subsequently defined RCD or
KET. Corresponding results would occur if the example were a KET.

Record Effect Of The
Layout REMAPS Option

RECORD=< FIELD .

REMAPS: FIELD
REMAPS:RECORD*

REMAPS:RECORD

REMAPPING AN EXTENDED RECORD

An extended record may be remapped by coding “previous” as follows:
® Record-name to remap the first 256 positions;
® Record-name* to remap the entire extended record; or
e field-name to remap a single field of the record.

Example:

RCD: RECORD

length 257 positions, or more

The diagram below illustrates the layout of RECORD as a point of reference with individual
shaded layouts to depict the areas that may be remapped by a subsequently defined RCD or
KET. Corresponding results would occur if the example were a KET.

Record Effect Of The
Layout REMAPS Option

(‘

256 positions
RECORD <

-

REMAPS: RECORD*
REMAPS: RECORD

5-31

The diagram below illustrates the field level option for RCD and KET remapping.

Record Effect Of The
Layout REMAPS Option

RECORD< FIELD

REMAPS:FIELD

REMAPPING AN INDEXED RECORD

An indexed record may be remapped by coding “previous” as follows:
® RCD-name to remap the first iteration of the record;
® RCD-name (index) to remap a specific, fixed iteration of the record;
® RCD-name* to remap all iterations of the record;
e field-name to remap a field within the first iteration of the record; or
o field-name (index) to remap a specific, fixed iteration within the record.

Example:

RCD: RECORD (INDEX,3)
[]

The diagram on the following page illustrates the layout of the three RECORD iterations as a
point of reference with individual shaded layouts to depict the areas that may be remapped by a
subsequently defined RCD or KET.

5-32

Record Effect Of The
Layout REMAPS Option

~

RECORD (o)~< FIELD (0)

=
~

RECORD (1)< FIELD (1)

—

-

RECORD (2)< FIELD (2)

.

TREMAPS: FIELD (2)

L REMAPS: FIELD (1)

L REMAPS: FIELD (0)
— REMAPS: FIELD

REMAPS: RECORD —
REMAPS: RECORD (0) —
REMAPS: RECORD (1) ————
REMAPS: RECORD (2)

REMAPS: RECORD*

5-33

SECTION 6: EXECUTION STATEMENTS

Execution statements indicate the processing steps to be applied to the data elements that are
defined in the Data Definition Section. Execution statements may have none, one or several
statement numbers. These numbers are used to branch from one execution statement to another.
Specific rules governing the use of statement numbers and the coding requirements for execution
statements are included in Section 2 of this manual.

Execution statements may be grouped into ten functional categories:

1. Move statements— move the contents of one field to another. These statements do not edit or
manipulate the characters within the sending field. To prevent data truncation, the receiving
field must be at least as long as the sending field. The programmer can also specify the
alignment of data within the field; in addition, he may specify a fill character for excess
positions in the receiving field. The Move statements are:

MOVE LEFT AND FILL
MOVE RIGHT AND FILL
FILL

MOVE LEFT, NO FILL
MOVE RIGHT, NO FILL

2. Decimal Arithmetic Statements — perform arithmetic calculations on decimal numbers. The
Decimal Arithmetic statements are:

DECIMAL EQUATE
DECIMAL ADD
DECIMAL SUBTRACT
DECIMAL MULTIPLY
DECIMAL DIVIDE

3. Binary Arithmetic Statements — perform arithmetic calculations on binary numbers. The
Binary Arithmetic statements are:

BINARY ADD
BINARY SUBTRACT
BINARY MULTIPLY
BINARY DIVIDE

4. Boolean Statements — perform “logical” operations upon fields at the bit level. The Boolean
statements are:

AND
OR
XOR (Exclusive OR)

6-1

5. Editing Statements— allow the programmer to alter the representation, format and alignment
of fields. The Editing statements are:

BINARY
DECIMAL
JUSTIFY LEFT
JUSTIFY RIGHT
PICTURE EDIT
CURRENCY
NUMBER EDIT
TRANSLATE
COMPRESS
DECOMPRESS
HEX

UNHEX

6. Control Statements— control the flow of program execution, either conditionally or uncondi-
tionally. The Control statements are:

UNCONDITIONAL GO
STOP
CONDITIONALS
COMPUTED GO
CASE

ERROR TEST

7. Subroutine Statements— delimit and direct execution of a subroutine. A subroutine is a group
of statements performing a specific function that may be performed as often as necessary. The
subroutine is coded only once, eliminating repetitive statements. It may be accessed from
anywhere within the Execution Section of the program. The Subroutine statements are:

PERFORM
ENTRY
EXIT

8. 1/0 Statements — direct Input/Output operations. I/O operations transfer data between
the application program in main memory and the I/O device. Also, I/O statements control
the I/O device. The I/O statements are:

OPEN
CLOSE
READ
WRITE
CHECKEOD
DELETE
FREESPACE
INSERT
READLOCK
READNEXT
RELEASE
SETEOD
BACKSPACE
MARK
REWIND
REWINDLOCK
SKIPFILE
CHECKFORMS
PRINT
SETFORMS
SENDEOF

9. STATION I/0 Statements — provide the necessary interface between the operator and the
application for data entry, validation, and display. The STATION I/O statements are:

KENTER
KVERIFY
RESUME
RESUMERR
ERROR
NOTIFY
READSCREEN
READKEY

10. Special Purpose Statements — perform specialized funcitons to enhance application program
capability. The Special Purpose statements are:

CHECKDIGIT
GETTIME
SETTIME
SAME
STRING

SYNTAX CONVENTIONS

A formatis presented with each statement in this section. Each statement must be coded according
to its format. Listed below are conventions (additional to the ones stated in Manual Notations)
associated with these formats.

1. The notations :X: and :Y: denote any EBCDIC character delimited by colons. Two coding
representations are permitted: graphic or hexadecimal. In the graphic representation, the
single character between colons is used as an EBCDIC character. In the hexadecimal
representation, two hexadecimal characters between the colons specify one EBCDIC charac-
ter. (See “Non-Graphic Fill Characters” in Section 5.)

2. The notation sn represents a statement number. It indicates that a statement number will be
specified to reference the associated statement.

3. The character A indicates the primary receiving field of an operation. Valid substitutions for
this character are:

EQU-name
INDEX-name
IOD-name o keyword
KET-name
KET-field-name
RCD-name
RCD-field-name

4. The characters B and C denote a source field for an operation. Valid substitutions for this
character are:

EQU-name

INDEX-name

IOD-name

IOD-name s keyword

KET-name

KET-field-name

literal

RCD-name

RCD-field-name 6-3

5.

10.

11.

12.
13.

The character D denotes the secondary receiving field of an operation. Valid substitutions for
this character are identical to those listed for character A.

The term EQU-name denotes the primary receiving field of an operation when the receiving
field must be a data item defined by the EQU data definition statement.

The term buffer may be any one of the following. A buffer designates that the reference is not
limited in size.

EQU-name
KET-name
KET-field-name
RCD-name
RCD-field-name
KET-name?*
RCD-name *
literal

Symbols A, B, C, D and buffer shown in the statement formats are presented for descriptive
clarity. They do not require that separate fields be individually substituted. For example, the
actual statement COUNT=COUNT +1 is compatible with the format A=B+C called out for
the DECIMAL ADD statement.

All fields denoted by the symbols A, B, C, and D are processed up to a maximum of 256 bytes
unless otherwise specified in the individual statement descriptions.

The unary minus may be applied to numeric literals (e.g.;721) as shown in Table 6-1. The
unary minus must not be used with non-numeric literals (e.g.-'ABC’) or field-names (e.g.;~
COUNT) unless explicitly permitted in the individual statement descriptions.

The exception exit shown in a statement format may be coded as EOF (end-of-file), EOM
(end-of-medium), or ESC (escape). All three notations are equivalent.

Ordering of the exception exit and ERR exit, within a format, is not significant.

Either or both abnormal exits may be omitted. The preceding comma (,) must also be omitted
in these cases.

6-4

SEMANTICS CONVENTIONS
INTERPRETATION OF LITERAL VALUES BY INSTRUCTION TYPE

Operations deal with fields containing character strings and/or numbers.
A non-numeric literal (character string) is processed by using the exact value stated in the literal.

A numeric value is processed in one of two ways, depending upon the type of instruction specified.
When a decimal oriented instruction is used, the value stated is coded directly as a literal and the
compiler automatically creates a field containing the designated decimal value. When a binary
oriented instruction is used, the value stated is converted to binary representation. The compiler
then creates a field containing the converted binary value. An instruction that does not appear to
be binary or decimal is treated as a decimal oriented instruction.

Table 6-1 illustrates the interpretations of character strings and numeric values made by the
compiler.

Table 6-1: INTERPRETATION OF LITERAL VALUES BY INSTRUCTION TYPE

Decimal NUMERIC NON-NUMERIC
Oriented Hexadecimal, com-
Instructi)) posite or Alpha-
nsitiction Unsigned Signed numeric Strings

1000 +1000 —1000 "ABCD’

Internal Internal Internal Internal

Represen- Represen- Represen- Representation=

tation= tation= tation=

F1 FO FO FO F1 FO FO FO F1 FO FO DO C1C2C3C4
Binary NUMERIC NON-NUMERIC
Oriented Hexadecimal, com-

:)) posite or Alpha-

Instruction Unsigned Signed numeric Strings

1000 +1000 —1000 '"ABCD’

Internal Internal Diagnostic Internal

Represen- Represen- Message Representation=

tation= tation=

03E8 03E8 C1C2C3C4

NOTE: Numeric literals employed in any of the binary class of statements must be = 0 and
< 16,383
Example: A = ADD(99,C)

6-5

INDEXED DATA REFERENCES

When an indexed RCD-name or indexed RCD-field-name is to be referenced, the specific
iteration of the record or field is selected at compile-time or at execution-time depending on how
the reference is coded. The explicit indexing notation is used if the selection is to be made at
compile-time and the implicit notation is used if the selection is to be made at execution-time.

Explicit Notation

An explicit reference is coded for an execution statement if the statement is used to access a fixed
iteration of the record or field. The particular iteration to be selected is specified by means of
an iteration number coded immediately after the Record-name or field-name, for example,

ACCOUNT (1).

Example:

RCD: RECORD (INDEX, 3)

The actual layout of the three iterations of RECORD is shown below. Explicit notations are listed to
the left in order to designate the area referenced by each notation that may be coded within the
Execution Section.

RECORD(0) { FIELD(0) }

RECORD (1) { FIELD(1)]

RECORD(2) ¢ FIELD(2)

6-6

Implicit Notation

An implicit reference is coded for an execution statement if the statement is used to access an
iteration which may vary from one execution of the statement to another. The particular iteration
selected for reference is determined by the current value of its associated index variable (INDEX-
name). The iteration selected for implicit reference is changed each time its associated index
variable is assigned a new value. An index value of zero selects the first iteration, one selects the
second iteration, and so on.

An implicit reference is distinguished by the absence of an iteration number coded as a part of the
reference, for example, ACCOUNT.

Example: The layout for the RCD example under Explicit Notation is shown next with shading
used to designate the area referred to by the notations RECORD and FIELD for each
value of INDEX. Explicit references are shown to the left for identification purposes.

RECORD FIELD
Current Index Value Current Index Value
00 01 02 00 01 02

RECORD(0) { FIELD(0)}

RECORD (1)< FIELD(1)]

RECORD(2)< FIELD(2)]

The table below illustrates the various forms of coding and the interpretation placed upon an
indexed RCD-name or indexed RCD-field-name reference.

Table 6-2: INTERPRETATION OF INDEXED DATA REFERENCES

Categories of References

Reference Notation

AB,C, or D

buffer

RCD-name

RCD-field-name

RCD-name(n)

RCD-field-
name(n)

RCD-name *

[teration of RCD-name des-
ignated by the current
value of its index-name.

RCD-field-name within the
iteration of RCD-name des-
ignated by the current
value of its index variable.

Specifically designated
iteration of RCD-name.

Field-name within the
specifically designated

iteration of RCD-name.

Not applicable

[teration of RCD-name des-
ignated by the current
value of its index-name.

RCD-field-name within the
iteration of RCD-name des-
ignated by the current value
of its index variable.

Specifically designated
iteration of RCD-name.

Field-name within the
specifically designated
iteration of RCD-name.

All iteration of RCD-name

(overall length may exceed
265 bytes).

NON-INDEXED DATA REFERENCES

EQU variables and non-indexed records may correspond to fields with length in excess of 256
positions. The table below illustrates the various forms of coding and the interpretation placed
upon the reference by the compiler.

TABLE 6-3: INTERPRETATION OF NON-INDEXED DATA REFERENCES

Categories of Reference

Reference Notation A,B,C, or D buffer
EQU-name First 256 positions | All positions All positions All positions
RCD-name or | First 256 positions | All positions All positions First 256 positions
KET-name

RCD-name*or| Not Applicable
KET-name*

Not Applicable | All positions All positions

Length 256 positions

Length in excess of 256 positions

6-8

OTHER DATA REFERENCES

All other data items are limited to 256 positions. For these types, the data-name used as a reference
designates the entire field area.

Selected substitutions for A and/or Din a statement format cause additional processing to occur as
outlined below:

INDEX-name causes a newiteration of the associated record to be selected.

KET-field-name causes the corresponding display area to be updated, pro-
vided that the KET containing the field is active.

STATION-IOD-name ¢ FLDNUM causes the KET field identified by the FLDNUM parameter to
be selected as the active field (see Section 8).

STATION-IOD-name ¢ CURFLD causes the currently active KET field to be updated on the
display (see Section 8).

Additional processing invoked due to a substitution for D occurs before any processing invoked
due to substitution for A.

6-9

DESCRIPTION OF STATEMENTS

Statements are presented by functional group. The following is presented for each statement:

¢ Purpose
e Format
e Description

¢ Example

6-10

MOVE STATEMENTS
Move statements move the contents of one field to another. These statements do not edit or
manipulate the characters within the sending field. To prevent data truncation, the receiving field
must be at least as long as the sending field. The programmer can also specify the alignment of data

within the field; in addition, he may specify a fill character for excess positions in the receiving field.
The Move statements are:

MOVE LEFT AND FILL
MOVE RIGHT AND FILL
FILL

MOVE LEFT, NO FILL

MOVE RIGHT, NO FILL

6-11

MOVE LEFT AND FILL

Purpose: To move data from one field to another, left-aligned,with remaining positions
padded with a specified fill character.

Format: A = B:X:
Description: Beginning with the leftmost position, the contents of field B are moved, one byte

at a time, to the leftmost position of field A. Any remaining positions of field A
are padded with the fill character specified within the colons.

If field A is shorter than field B, the transfer of data is terminated when field A is
full and no filling occurs.

Example: FLDA = FLDB:*:
BEFORE EXECUTION AFTER EXECUTION
FLDB = 123 FLDB = 123
FLDA = XXXXXX FLDA = 123w
FLDB = 1234 FLDB = 1234
FLDA = XXX FLDA = 123

6-12

MOVE RIGHT AND FILL

Purpose:

Format:

Description:

Example:

To move data from one field to another,right-aligned,with remaining positions
padded with a specified fill character.

A = :X:B

Beginning with the rightmost position, the contents of field B are moved, one
byte at a time, to the rightmost positions of field A. Any remaining positions of
field A are padded with the fill character specified within the colons.

If field A is shorter than field B, the transfer of data is terminated when field A is

full and no filling takes place.

FLDA = :*:FLDB

BEFORE EXECUTION AFTER EXECUTION
FLDB = 123 FLDB = 123
FLDA = XXXXXX FLDA = *%*x]23
FLDB = 1234 FLDB = 1234
FLDA = XXX FLDA = 234

6-13

FILL

Purpose: To fill a field with a specified fill character.
Format: A= :X:
Description: The fill character specified within the colons is moved to each position of field A.
Example: FLDA = :%:
BEFORE EXECUTION AFTER EXECUTION

FLDA = (insignificant) FLDA = ikt

6-14

MOVE LEFT, NO FILL

Purpose:

Format:

Description:

Example:

To move data from one field to another, left-aligned.
A =B::

Beginning with the leftmost position, the contents of field B are moved, one byte
at a time, to the leftmost positions of field A. Any remaining positions of field A
are unchanged.

If field A is shorter than field B, the transfer of data is terminated when field A
is full.

FLDA = FLDB::

BEFORE EXECUTION AFTER EXECUTION
FLDB = 123 FLDB = 123
FLDA = XXXXXX FLDA = 123XXX
FLDB = 12345 FLDB = 12345
FLDA = XXX FLDA = 123

The two colons (:) must be coded to specify the direction of data movement
(in this case, left-to-right).

These colons must be contiguous. If a space character is inserted between the

colons, it will be considered a fill character; therefore, a MOVE LEFT AND FILL
statement.

6-15

MOVE RIGHT, NO FILL

Purpose:

Format:

Description:

Example:

To move data from one field to another, right-aligned.
A= ::B

Beginning with the rightmost position, the contents of field B are moved, one
byte at a time, to the rightmost positions of field A. Any remaining positions of
field A are unchanged.

If field A is shorter than field B, the transfer of data is terminated when field A
is full.

FLDA = ::FLDB

BEFORE EXECUTION AFTER EXECUTION
FLDB = 123 FLDB = 123
FLDA = XXXXXX FLDA = XXX123
FLDB = 1234 FLDB = 1234
FLDA = XXX FLDA = 234

The two colons (: :) must be coded to specify the direction of data movement. In
this case, right-to-left.

These colons must be contiguous. If a space character is inserted between the

colons, it will be considered a fill character, therefore, a MOVE RIGHT AND
FILL statement.

6-16

DECIMAL ARITHMETIC STATEMENTS
Decimal Arithmetic statements perform arithmetic calculations on decimal numbers. The Decimal
Arithmetic statements are:
DECIMAL EQUATE
DECIMAL ADD
DECIMAL SUBTRACT
DECIMAL MULTIPLY

DECIMAL DIVIDE

6-17

DECIMAL EQUATE

Purpose:

Format:

Description:

Example 1:

Example 2:

To move the contents of a decimal field to another field.
1. A=B
2. A= -B

1. The contents of field B are moved to the rightmost positions of field A. The
sign of the resulting field A is the same as the sign of field B.

2. The contents of field B are moved to the rightmost positions of field A. The
sign of the resulting field A is the opposite of the sign of field B.

If field A is shorter than field B, the transfer of data is terminated when field A is
full. If field A is longer than field B, the leftmost positions of field A are filled with
zeros.

FLDA = FLDB

BEFORE EXECUTION AFTER EXECUTION
+ +

FLDB = 231 FLDB = 231

FLDA = (insignificant) FLDA = 237

FLDA = -FLDB

BEFORE EXECUTION AFTER EXECUTION
+ +

FLDB = 23] FLDB = 231

FLDA = (insignificant) FLDA = 231

6-18

DECIMAL ADD

Purpose:

Format:

Description:

Example:

To obtain the sum of two decimal fields.

A=B+¢C
Where B and/or C may be negative.

The contents of field B and field C are added together with the result stored in
field A.

If field A is not long enough to hold the maximum possible result, the error

indicator is set and the result value in field A may not be correct. If field A is
longer than required, the leftmost positions of A are zero filled.

FLDA = FLDB + FLDC

BEFORE EXECUTION AFTER EXECUTION
FLDB = 106 FLDB = 108
FLDC = 30 FLDC = 30
FLDA = (insignificant) FLDA = 0075

The sign control for DECIMAL ADD is as follows:

Sign of Sign of Sign of
Field B Field C Field A
+ + +
+ - Sign of field of greater
absolute value
- + Sign of field of greater

absolute value

A negative decimal number is stored with the units position modified to reflect
the negative value so that an additional sign position is not required. These
numbers should be edited prior to printing. Printing an unedited negative
decimal number causes the units position to be printed as J through Rinstead of
1 through 9. The graphic character associated with the modified zero is not a
standard graphic. When a negative decimal number is displayed on the CRT
screen in a NUMERIC KET field, the units position will display 0 through 9 and
the display attribute byte is changed to REVERSE.

6-19

DECIMAL SUBTRACT

Purpose:

Format:

Description:

Example:

To obtain the difference of two decimal fields.
A =B-C

The contents of field C are subtracted from the contents of field B with the result
stored in field A.

If field A is not long enough to hold the minimum possible result, the error

indicator is set and the result value in field A may not be correct. If field A is
longer than required, the leftmost positions of field A are filled with zeros.

FLDA = FLDB-FLDC

BEFORE EXECUTION AFTER EXECUTION
+ +
FLDB = 400 FLDB = 400
+ +
FLDC = 50 FLDC = 50
+
FLDA = (insignificant) FLDA = 000350

The sign control for DECIMAL SUBTRACT is as follows:

Sign of Sign of Sign of
Field B Field C Field A
+ + If field C is of greater

absolute value, the result
is negative. Otherwise,
the sign is positive.

- - If field B is of greater
absolute value, the re-
sult is negative. Other-
wise, the result is positive.

+ - +

6-20

DECIMAL MULTIPLY

Purpose: To obtain the product of two decimal fields.
Format: A = B*(C
Description: The contents of field B are multiplied by the contents of field C, the result is

stored in field A.

Fields A, B and C have the following length limitations:

A — 40 positions
B — 20 positions
C — 20 positions

If field A is not long enough to hold the result, field A is truncated on the left and
only the least significant digits are stored. In this case, the error indicator is set.

If field A is longer than required, the leftmost positions of field A are filled with

Zeros.
Example: FLDA = FLDB*FLDC
BEFORE EXECUTION AFTER EXECUTION
+ +
FLDB = 60 FLDB = 60
+ +
FLDC = 8 FLDC = 8
+
FLDA = (insignificant) FLDA = 00480

The sign control for DECIMAL MULTIPLY is as follows:

Sign of Sign of Sign of
Field B Field C Field A
+ + +
- - +
+ - -

- + -

6-21

DECIMAL DIVIDE

Purpose: To obtain the quotient and remainder of one decimal field divided by another.
Format: 1.A = B/C

2.A = B/C,D
Description: 1. The contents of field B are divided by the contents of field C with the result

stored in field A.

2. The contents of field B are divided by the contents of field C with the result
stored in field A. The remainder is stored in field D.

Fields A, B, C and D have the following length limitations:

A— 20 positions
B — 40 positions
C — 20 positions
D — 20 positions

It field A and/or field D is not long enough to hold the result, field A or field D is
truncated on the left and only the least significant digits are stored. In this case,
the errorindicator is set. If field A (or field D) is longer then required, the leftmost
positions of A (or D) are filled with zeros.

Division by zero is not defined. In this case, field A is zero filled and field D is set
to the same value as field B. Also, the error indicator is set.

Example: FLDA = FLDB/FLDC
BEFORE EXECUTION AFTER EXECUTION
+ +
FLDB = 206 FLDB = 206
+ +
FLDC = 3 FLDC = 3
+
FLDD = (insignificant) FLDD = 2
+
FLDA = (insignificant) FLDA = 000068
Sign control for DECIMAL DIVIDE is as follows:
Sign of Sign of Sign of Sign of
Field B Field C Field D Field A
+ + + +
- - - +
+ - + -

—_ + —_ -—

NOTE: the relationship between fields A, B, C and D also may be expressed as: B=A*C+D
6-22

BINARY ARITHMETIC STATEMENTS

Binary Arithmetic statements perform arithmetic calculations on binary numbers. The Binary
Arithmetic statements are:

BINARY ADD
BINARY SUBTRACT
BINARY MULTIPLY

BINARY DIVIDE

6-23

BINARY ADD
Purpose:
Format:

Description:

Example:

To obtain the sum of two binary fields.
A = ADD(B ,C)

The contents of field B and field C are added together with the result stored in
field A.

The operation proceeds rightto-eft, one character (8 bits) ata time until field A is
full.

Whenever a field is referenced as a source field in a BINARY ADD statement
and the receiving field is longer than the source field, the source field is logically
prefixed with a sufficient number of zero bits to force length concurrence.
Similarly, if the receiving field is shorter than a source field, then the excess bits
of the source field are ignored.

FLDA = ADD(FLDB,FLDC)

BEFORE EXECUTION AFTER EXECUTION
FLDB = 0000 0000 O111 1111 FLDB = 0000 0000 0111 1111
FLDC = 0000 0000 0011 1111 FLDC = 0000 0000 0011 1111

FLDA

0000 0000 1011 1110

(insignificant) FLDA

The error indicator is affected by this instruction but no significance can be
associated with its setting.

6-24

BINARY SUBTRACT

Purpose:

Format

Description:

Example:

To obtain the difference of two binary fields.
A = SUB(B,C)

The contents of field C are subtracted from the contents of field B. The result is
stored in field A.

The operation proceeds right-to-left, one character at a time, until field A is
full. (In effect, BINARY SUBTRACT adds the two’s complement of field C to
field B.)

Whenever a field is referenced as a source field in a BINARY SUBTRACT
statement and the receiving field is longer than the source field, the source field
is logically prefixed with a sufficient number of zero bits to force length concur-
rence. Similarly, if the receiving field is shorter than a source field, then the
excess bits of the source field are ignored.

In particular, if field Cis shorter than field B, the prefixing of zero bits occurs prior
to the two’s complement operation.

FLDA = SUB(FLDB,FLDC)

BEFORE EXECUTION AFTER EXECUTION

FLDB = 0000 0000 0111 1111 FLDB = 0000 0000 0111 1111
FLDC = 0000 0000 0011 1111 FLDC = 0000 0000 0011 1111
FLDA = (insignificant) FLDA = 0000 0000 0100 0000
FLDB = 0000 0000 0011 1111 FLDB = 0000 0000 0011 1111
FLDC = 0000 0000 0111 1111 FLDC = 0000 0000 0111 1111
FLDA = (insignificant) FLDA = 1111 1111 1100 0000

The error indicator is affected by this instruction but no significance can be
associated with its setting.

6-25

BINARY MULTIPLY

Purpose:

Format:

Description:

Example:

To obtain the product of two binary fields.
A = MPY(B ,C)

The contents of field Band field C are multiplied together with the result stored
in field A.

The operation proceeds right-to-left, one character at a time, until field A is full.

Field A cannot exceed 8 bytes (64 bits) in length; field B and C are limited to 4
bytes each (32 bits).

Whenever a field is referenced as a source field in a BINARY MULTIPLY
statement and the receiving field is longer than the source field, the source field
is logically prefixed with a sufficient number of zero bits to force length concurr-
ence. Similarly, if the receiving field is shorter than the source field, then the
excess bits of the source field are ignored.

FLDA = MPY(FLDB,FLDC)

BEFORE EXECUTION AFTER EXECUTION
FLDB = 0000 0000 0011 1100 FLDB = 0000 0000 0011 1100
FLDC = 0000 0000 0000 1000 FLDC = 0000 0000 0000 1000

FLDA = (insignificant) FLDA

0000 0001 1110 0000

The error indicator is affected by this instruction but no significance can be
associated with its setting.

6-26

BINARY DIVIDE

Purpose:

Format:

Description:

Example:

To obtain the quotient and remainder of one binary field divided by another.

DIVR(B,C)
DIVR(B,C,D)

1. A
2.A

||

1. The contents of field B are divided by the contents of field C with the result
stored in field A. The operation proceeds righttoleft, one character at a time,
until field A is full.

2. The contents of field B are divided by the contents of field C. The result is
stored in field A. The remainder is stored in field D. The operation proceeds
right-to-left, one character at a time, until field A is full.

Fields A, Cand D cannot exceed 4 bytes (32 bits) in length; field Bis limited to 8
bytes (64 bits).

Whenever a field is referenced as a source field in a BINARY DIVIDE statement
and the receiving field is longer than the source field, the source field is logically
prefixed with a sufficient number of zero bits to force length concurrence.
Similarly, if the receiving field is shorter than a source field, then the excess bits
of the source field are ignored.

FLDA = DIVR(FLDB,FLDC,FLDD)

BEFORE EXECUTION AFTER EXECUTION

FLDB = 0000 0001 1110 0010 FLDB = 0000 0001 1110 0010
FLDC = 0000 0000 0000 1000 FLDC = 0000 0000 0000 1000
FLDD = 0000 0000 0000 0000 FLDD = 0000 0000 0000 0010
FLDA = (insignificant) FLDA = 0000 0000 0011 1100

The error indicator is affected by this instruction but no significance can be
associated with its setting.

6-27

BOOLEAN STATEMENTS

Boolean statements perform “logical” operations upon fields at the bit level. The Boolean
Statements are:

AND
OR

XOR (Exclusive OR)

6-28

AND

Purpose:

Format:

Description:

Example:

To form the logical product of two fields.
A = AND(B,C)

From right-to-left, each bit position of field B is logically AND’ed with the
corresponding bit position of field C to produce a result for the corresponding
position of field A. This operation terminates when field A is full or when all
positions of field B or field C have been processed.

FLDA = AND(FLDB,FLDC)

BEFORE EXECUTION AFTER EXECUTION

FLDB = 1101 0101 FLDB = 1101 0101
FLDC = 1010 1010 FLDC = 1010 1010
FLDA = (insignificant) FLDA = 1000 0000

The diagram below illustrates the result of logically ANDing a bit pair:

C Bit Value
B 0 1
Bit
Value 0 0 0
1 0 1

The intersection of the row and column indicates the appropriate A bit value.

6-29

OR

Purpose:

Format:

Description:

Example:

To form the logical sum of two fields.
A = OR(B,C)

From right-to-left, each bit position of field B is logically OR’ed with the
corresponding bit position of field C to produce a result for the corresponding
position of field A. The operation terminates when field A is full or when all
positions of field B or field C have been processed.

FLDA = OR(FLDB,FLDC)

BEFORE EXECUTION AFTER EXECUTION
FLDB = 1100 0111 FLDB = 1100 0111
FLDC = 1010 1010 FLDC = 1010 1010
FLDA = (insignificant) FLDA = 1110 1111

The diagram below illustrates the result of logically ORing a bit pair.

C Bit Value
B 0 1
Bit
Value 0 0 1
1 1 1

The intersection of the row and column indicates the appropriate A bit value.

6-30

XOR (Exclusive OR)

Purpose: To perform a logical Exclusive OR comparison between two fields.

Format: A = XOR(B,C)

Description: From righttoleft, each bit position of field Bis logically EXCLUSIVE OR’ed with
the corresponding bit position of field C to produce a result for the correspond-
ing position of field A. The operation terminates when field A is full or when all
positions of field B or field C have been processed.

Example: FLDA = XOR(FLDB,FLDC)
BEFORE EXECUTION AFTER EXECUTION
FLDB = 1100 0101 FLDB = 1100 0101
FLDC = 1010 1010 FLDC = 1010 1010
FLDA = (insignificant) FLDA = 0110 1111

The diagram below illustrates the result of performing a logical Exclusive OR on

a bit pair.
C Bit Value
B 0 1
Bit
Value 0 0 1
1 1 0

The intersection of the row and column indicates the appropriate A bit value.

6-31

EDITING STATEMENTS

Editing statements allow the programmer to alter the representation, format and alignment of
fields. The Editing statements are:

BINARY
DECIMAL
JUSTIFY LEFT
JUSTIFY RIGHT
PICTURE EDIT
CURRENCY
NUMBER EDIT
TRANSLATE
COMPRESS
DECOMPRESS
HEX

UNHEX

6-32

BINARY

Purpose:

Format

Description:

Example:

NOTE:

NOTE:

To convert a number field in decimal representation into a number field in
binary representation.

A = BINARY(B)
The decimal value of field B is converted to binary representation and moved
right-to-eft to field A. The conversion terminates when all positions of field B (up

to a maximum of 10 positions) have been processed or when field A is full.

Termination due to the completion of field B causes the unused positions of field
A to be filled with leading null characters.

FLDA = BINARY (FLDB)

BEFORE EXECUTION

FLDB (Hex Code) = FO FO F2 F5 F9

FLDA (Binary Code) = 0000 0000 0000 0000

AFTER EXECUTION
FLDB (Hex Code) = FO FO F2 F5 F9

FLDA (Binary Code) = 0000 0001 0000 0011

Hex representation of FLDA=X'01 03’

The contents of field B must be a positive decimal number or the results will be
unpredictable.

The error indicator is affected by this instruction but no significance can be
associated with its setting.

Abinary number field contains a binary digitin each bit. Each character in a field
contains eight(8) binary digits. The rightmost bit is the unit’s position, the next
bit to the left is the two’s position, the next to the left is the four’s position, etc.
This form of binary representation is unsigned.

6-33

DECIMAL

Purpose:

Format:

Description:

Example:

NOTE:

To convert a number field in binary representation into a number field in
decimal representation.

A = DECIMAL(B)

The binary contents of field B are converted to decimal and moved to the
rightmost positions of field A.

A decimal number field contains a decimal digit in each position. The rightmost
position is the unit’s position, the next to rightmost is the ten’s position, etc.

The operation terminates when field A is full (maximum 10 positions) or when
all positions of field B (or the four rightmost positions of field B) are converted.
Unused positions of field A are filled with leading decimal zero characters.

The error indicator is affected by this instruction but no significance can be
associated with its setting.

FLDA = DECIMAL(FLDB)

BEFORE EXECUTION AFTER EXECUTION
FLDB (Hex Code) = X'FFFF' FLDB (Hex Code) = X'FFFF!'
FLDA (Graphic Code) = 00000 FLDA (Graphic Code) ='65535"

The leftmost bit of a binary field is not regarded as a sign bit.

6-34

JUSTIFY LEFT

Purpose:

Format:

Description:

Example:

To move significant characters from one field to the leftmost positions of
another.

A = JUSTIFY(B:X:)
Field B is moved to the leftmost positions of field A, ignoring all leading spaces

and zeros. The rightmost positions in field A that are not required for the edited
data from field B are padded with the fill character specified within the colons.

FLDA = JUSTIFY (FLDB:*:)

BEFORE EXECUTION AFTER EXECUTION
FLDB = BKBK030 FLDB = BBK030
FLDA = XXXXXX FLDA = 30%ss
FLDB = BK030BB FLDB = BB030BB
FLDA = XXXXXX FLDA = 30B+**

If field A is too small to hold all of the significant characters from the edited field
B, the transfer of data is terminated when field A is full. Spaces and zeros
following the leftmost significant character in field B are moved to field A.

6-35

JUSTIFY RIGHT

Purpose: To move significant characters from one field to the rightmost positions of
another.

Format: A = JUSTIFY{:X:B)

Description: Field B is moved to the rightmost positions of field A, ignoring all trailing spaces.

The leftmost positions in field A that are not required for edited data from field B
are padded with the fill character specified within the colons.

Example: FLDA = JUSTIFY(:%:FLDB)
BEFORE EXECUTION AFTER EXECUTION
FLDB = 0308885 FLDB = 0308BBK
FLDA = XXXXXXX FLDA = #3030
FLDB = BBO30KK FLDB = BBO30BY
FLDA = XXXXXXX FLDA = **§B030

If field A is too small to hold all of the significant characters from the edited field
B, the transfer of data terminates when field A is full.

Spaces to the left of the rightmost significant characters in field B are moved to
field A.

Zero is always a significant character in this operation.

6-36

PICTURE EDIT

Purpose:

Format:

Description:

To edit a numeric field according to an edit mask.
A = PICTURE(B,C)

The contents of field B are moved to field A, right-to-left, according to the
masK in field C.

The unit’s position in field B is unique in that the sign of the field is recorded
there as well as the unit’s magnitude. For this reason, a negative digit from the
unit’s position is converted to its corresponding positive representation when
transcribed. This conversion is not applicable to any other digit position.

Field B is e qual to zero if all positions are zero.

Field B is greater than zero if any position is not zero and the unit’s position
does not contain a modified digit.

Field B is less than zero if any position is not zero and the unit’s position does
contain a modified digit.

The mask in field C is regarded as a string of editing characters which specify
the editing details. The mask has either a right part only, or both a right part
and a left part. The rightmost "V” character within the mask determines the
end of the right part and the beginning of the left part. The essential difference
between the right part and the left part is the change in function associated
with certain edit characters and non-significant zeros.

The term currency-symbol refers to the ‘$° character. Any character se-
quence of up to three characters may be defined as an insertion substitute for
the standard currency symbol. The ‘$’ character always remains the edit
character that must be coded in the mask itself.

The edit characters ‘S’, ‘+’, =, and ‘$’ are termed floating if they appear more
than once within the mask.

6-37

Example:

FLDA = PICTURE(FLDB , FLDC)
7/04/76 070476 29/99/99

The following table defines the editing action associated with each edit
character:

EDIT
CHARACTER EDITING ACTION

9 Transcribes one character from field B.

Z Transcribes one character from field B if the character is not
zero. If the zero is significant, then the zero is transcribed;
otherwise, an asterisk is substituted.

% Transcribes one character from field B if the character is not
zero. If the zero is significant, then the zero is transcribed;
otherwise, an asterisk is substituted.

Y Transcribes one character from field B if the character is not
zero. A space is substituted for a zero, whether or not the zero
is significant.

B Transcribes the edit character itself (space).

Vv Ends the right part of a mask and begins the left part.

y [/ In right-part processing, the mask character itself is trans-

cribed unconditionally.

In left-part processing, the mask character itself is transcribed
if the character from field Bis significant. If the character from
field B is not significant, then one of the following three
editing actions occurs:

1. an asterisk is substituted if the next edit character is an
asterisk.

2. the current edit character is skipped and the floating
insertion is effected immediately if the next edit character
is a floating edit character.

3. a space is substituted if the next edit character is other
than above.

6-38

EDIT

CHARACTER EDITING ACTION
S If the edit character occurs only once within the mask, a

plus or a minus character is substituted in accordance with
the positive or negative value of the field.

If the edit character is floating and the character from field
B is significant, the field B character is transcribed; other-
wise the appropriate sign character is substituted and the
remainder of field A is space-filled without further refer-
ence to field B or the mask.

+ Identical to S, except the space character is substituted
instead of a minus.

- Identical to S, except the space character is substituted
instead of a plus.

$ If the edit character occurs only once within the mask, the
currency symbol is substituted.

If the character is floating and the character from field B is
significant, then the field B character is transcribed,;
otherwise, the currency symbol is transcribed and field
A is space-filled without further reference to field B or
the mask.

other
Any edit character not explicitly listed above is inserted
directly if the value of field Bis less than zero; otherwise, a
space is substituted. The mask symbols DB and CR are
edited in this manner.

Operation is terminated when field A is full. If field B is exhausted first,

characters of zero are selected for continued editing. If field C is exhausted,
the edit character ‘Z’ is used for continued editing.

6-39

Example: The sign associated with field B is shown here as a separate position only for
clarity. In practice, the field B sign would be represented with a modified unit’s

position.

FIELD B VALUE FIELD C MASK FIELD A RESULT

0 9 0

1 9 1

10 9 10

0 z B

] YA]

10 VA 10

0 99 00

0 9Z 0¥

0 % *

] *]

10 * 10

0 7':9 *0

1 *9 %]

10 *9 10

0 99 0¥0

1 99 Ck1

10 99 160

0 .9 .0

1 .9 o

10 .9 1.0

0 V9 0

] V9]

10 V9 1.0

0 ! s *%9 ~'-’ *%0

0 *, #x*\/9 xRk Q

100 $$,8%9 $,100

100 $$,5%V9 $100

1000 $$,9%V9 $1,000

100000 Z,272ZV.99 1,000.,00

6-40

FIELD B VALUE

FIELD C MASK

10000 Z,2727ZV,99
10 Z,227ZV.99
100000 Z,777V,99
10000 Z,7727V,99
10 Z.7272ZV,99
1000 SS,SSV9
-1000 SS,SSV9
100 SS,SSV9
-100 SS,SSV9
1000 ++, ++V9
-1000 ++,++V9
100 -=-,-=V9
-100 --,=--V9
0 9CR
] 9CR
-1 9CR
] 94DB
-1 9aDB
0 $$,98$V.99CR
100 $$,39$V.99CR
10000 $$,$85V.99CR
100000 $$,988V.99CR
-100 $$,995V.99CR
-10000 $$,$85V.99CR
-100000 $$, 995V, 99CR
100000 $$,955V.99s
-10000 $$,988V.99s
10203 YYYYY
070476 Z9/Y9/99
070476 29/99/99
NOTE: An all zero field has no significant positions.
Also see CURRENCY.

6-41

FIELD A RESULT

100,00

.10
1.000,00
100,00

, 10

+1,000

-1, 000
+100

-100
+1,000
1,000

100

-100

0).3

166

1CR

1885

16DB
$.0065
$1.0086
$100.00B8
$1,000,00B8
$1.00CR
$100.00CR
$1,000,00CR
$1,000,00+
$100,00-
16253
7/04/76
7/04/76

CURRENCY
Purpose:
Format:

Description:

Example:

To change the currency symbol for subsequent use by the PICTURE statement.
CURRENCY (B)

The contents of field B are used as the new currency symbol. The currency
symbol may be altered as many times within a program as desired and may
consist of up to 3 characters.

CURRENCY ('*"')
This will cause an asterisk to be substituted for ‘¢’ until restored or changed.
CURRENCY('$')

This will cause the currency symbol to be restored to '$'.

CURRENCY('DOL"')

This will cause the letters “DOL” to assume the leftmost edit positions previously
occupied by ‘$’.

Also See PICTURE.

6-42

NUMBER EDIT

Purpose: To create a decimal field from a field containing edit and decimal characters.
Format: A = NUMBER(B)
Description: From right-to-left, each position of field Bis examined to determine if it is an edit

character or a decimal digit. Edit characters are discarded but are used to
determine the arithmetic sign. Decimal digits are moved to field A. If examina-
tion of field B terminates before field A is full, the remainder of the field is filled

with zeros.

Example: FLDA = NUMBER (FLDB)
BEFORE EXECUTION AFTER EXECUTION
FLDB = BBS$34.53 FLDB = BBS34.53
FLDA = XXXXXX FLDA = 003453

The sign of the resulting field A is adjusted to correspond with the net sign
indicated by all edit characters. Interpretation of characters is as follows:

Character Action
0-9 Sign unchanged, digit moved
+ .,/ % B Sign unchanged, discarded
Others
(including —) Negative result, discarded
NOTE: Field B must contain only positive digits and edit characters.

6-43

TRANSLATE:

Purpose: To translate data from one code set to another using a translate table.
Format: A = TRANSLATE(B,C,EFF:sn)
Description: From left-to-right, each byte of field B translated per field C and moved to the

corresponding position in field A.
Field C is a translate table.

As each byte (character) is moved, the character is used as a binary offset into
field C to select the contents of that position as the translated value.

If field A is shorter than field B, the operation terminates when Ais full. If field A
is longer than field B, the unused bytes of field A are not modified.

Example: FLDA = TRANSLATE(FLDB,FLDC,ERR:sn)
BEFORE EXECUTION

FLDB (Hex Code) = 03 02 01 Ok

FLDC (Graphic Code) = *ABCD

XXXX

FLDA (Graphic Code)

AFTER EXECUTION

FLDB (Hex Code) = 03 02 01 04

FLDC (Graphic Code) = *ABCD
FLDA (Graphic Code) = CBAD
NOTE: If the range of field C is exceeded by a particular value in field B, the error

indicator is set; however, the translate process is not terminated.

6-44

COMPRESS
Purpose:
Format:

Description:

To convert a record into a compressed record.
A = COMPRESS(B,C,ERR:sn)

Compression is used to achieve improved recording characteristics for data on
magnetic media. The improvement is derived from the reduced number of
positions required by the compressed record and from the use of all positions of
the physical records within the compressed file.

Field A is the buffer receiving the compressed characters. When filled with data,
field A should be written to the compression file.

Field B is the record which is to be compressed.

Field C is the data control block (DCB) used to indicate when field A is full and
when field B is fully compressed.

When the DCB indicates that field A is full by returning an External State Code
(ESC) of X'01’, the program should take the following steps:

1. Write the compression buffer (field A) to the compression file.

2. Execute the COMPRESS statement again so that the compression of the
record (field B) may continue.

When the DCB indicates that field B is fully compressed by returning an
External State Code (ESC) of X'00’, the program should take the following
steps:

1. Obtain the next record (field B) which is to be compressed.
2. Execute the COMPRESS statement again so that compression of the new
record may begin.

Field A and field B are each limited to 256 positions.
Field C (DCB) must be exactly 10 positions. The DCB must be initialized to all

zeros (either binary or decimal) before the compression activity and should not
be subsequently reset or altered for the duration of the activity.

6-45

The internal organization of the DCB is as follows:
Result Length (RL)

| Source Displacement (SD)

Repeat Count (R)

Previous Character (P)

Current Character (C)

Reserved

Internal State Code (ISC)

. External State Code (ESC)

The Result Length and External State Code subfields are significant to the
application as described below. All others are for exclusive use of the COM-
PRESS operation.

The DCB indicates via the External State Code (ESC) field whether field B is
fully compressed (ESC = X'00’) or if field A is full prior to the end of the input
segment (ESC ='01’). When ESC is X'00’ and there is no “next record,” the
compression activity should be terminated. The program may accomplish this
with the following steps:

1. Null-fill the unused portion of the compression buffer (field A).
2. Write the compression buffer to the compression file.
3. CLOSE the compression file.

The unused portion of field A to be null-filled can be determined from the DCB’s
Result Length (RL) field which designates the number of positions currently in
use.

Null-filling provides for properly synchronized end-of-segment detection during
decompression and simplifies later extension of the file, if necessary.

6-46

Compression involves left-to-right processing of field B as shown in the table
below. The “FIELD B DATA” column enumerates the current situation in re-
gards to the sequence of characters to be compressed. The first applicable
entry in the column is the one which is used. The “Process” section enumer-
ates the one or two values. (Repeat Value/Data Value) added to the com-
pression buffer and the next compression step taken.

Table 6-4: COMPRESSION PROCESS

PROCESS
FIELD B DATA Repeat Value |Data Value Next Step
15 or more repeated | 15 (X'0F’) |Repeated Continue scanning
characters in Character
sequence
2-14 repeated Repetition |Repeated Continue scanning
characters in Count Character
sequence (X'02'-X'OE’
1 character in the 1(X'01') Data Continue scanning
range X'00" to X'OF Character
1 character in the Not Data Continue scanning
range X'10" to X'’FF’' | applicable |Character
No characters 0 (X'00') Not Return to program
remaining applicable | with the External

State Code = X'00’

The ERR:sn branch is taken if the length of field C is incorrect or its contents are
determined to be invalid (e.g., the Data Control Block (DCB) is not properly
initialized to nulls (X'00’) before execution of COMPRESS).

Example 1: Contents of B before and after execution of COMPRESS
|FO|FO| FO|FO|F2|F1| 40| 40| 40| 40| FO| FO|FO| FO|F6|F3| 40|40} 40}F0| F9 |

Contents of A after Execution of COMPRESS

[04]|FO|F2|F1|ok|40]03]|FO|F6|F3]03]|4o|F0o|F9]00]

NOTE: Example 1 illustrates the compression of only one string.

6-47

Example 2: RCD: B
-(133);
RCD: A
-(128);
RCD: DCB
DCBLEN(0,2)
-(0,10);
EQU: EQ;

START

DCB=:00:

5, READ (-, B,EOF:30)

10, A=COMPRESS(B,DCB)
Go(DCB)5,20

20, WRITE(-,A,-)
GO:10

30, EQ=STRING(A,0,DCBLEN,ERR:40)
A=EQ:00:
WRITE(-,A,-)

Lo, CLOSE(-)

.

END

Example 2, which is a portion of an entire application, illustrates how the
COMPRESS statement is used with other statements to compress an entire file.

Also see DECOMPRESS_.

6-48

DECOMPRESS

Purpose:

Format:

Description:

To convert a compressed record into its original expanded representation.
A = DECOMPRESS(B,C,ERR:sn)

Field A is the buffer to receive the expansion of field B. When it contains a full
segment of data, field A should be written to the decompression file.

Field B is the compressed record.

Field C is the Data Control Block (DCB) used to indicate when field A is full or
when field Bis completely decompressed. The internal organization of the DCB
is shown under COMPRESS.

The ERR:sn branch is taken if the length of field C is incorrect or its contents are
determined to be invalid (i.e., the Data Control Block (DCB) is not properly
initialized to nulls (X'00’) before execution of DECOMPRESS).

When the DCB indicates that a full segment has been expanded into field A, an
External State Code of X'00' is returned, the program should take the following
steps:

1. Write the record in the bulffer (field A) to the decompression file. The record
within field A occupies the first number of positions indicated by the RL in
the DCB. (See the internal organization of the DCB.)

2. Execute the DECOMPRESS statement again so that expansion of another
segment may begin.

When the DCB indicates that field B is fully decompressed by returning an

External State Code of X'01’, the program should take the following steps:

1. Obtain the next compressed record (field B) to be expanded.

2. Execute the DECOMPRESS statement again so that expansion of the

compressed segment may continue.

When the DCB indicates that field A is full by returning an External State Code
of X'02', the program has not provided a buffer of sufficient length to hold an
entire decompressed segment. Programmer options are:

1. Change the source program to provide for a buffer of greater length.

2. Dispose of the current contents of field A and execute the DECOMPRESS
statement again to obtain the remainder of the segment.

Field A and field B are each limited to 256 positions.
Field C (DCB) must be exactly 10 positions. The DCB must be initialized to all

zeros (either binary or decimal) before the decompression activity and should
not be subsequently reset or altered for the duration of the activity.

6-49

Tables ONE and TWO are used to outline character scanning during the
decompression activity. Characters are scanned one or two at a time. The first
character scanned is referred to as R; the second character simultaneously
scanned (if applicable) is referred to as D.

When DECOMPRESS is executed and the External State Code is X'00’,
TABLE ONE applies. Otherwise the last active table is used.

TABLE ONE
Field B Value of R Next Step
X'00 Continue scanning with Table ONE
X'01'-X'’FF’ Process according to Table TWO
TABLE TWO
Field B Value of R Data Decompression Next Step
X'00' Not Applicable Return to program
with ESC=X"00’
X'01'-X'0F Produce R copies of Continue scanning
character D with Table TWO
X'10'-X'FF Produce one copy of Continue scanning
character R with Table TWO

6-50

Example:

RCD:
RCD:

RCD:

EQU:

A

-(133);

B

-(128);

DCB
DCBLEN(0,2)
_(0’10);
EQ;

START

— \uUn
Ow

20,

30,

DCB=:00:

READ(-,B,-)

A=DECOMPRESS (B, DCB)

Go(DCB) 20,5, 30
EQ=STRING(A,0,DCBLEN)
PRINT(-,EQ,-)

GO:10

NOTIFY ('DATA ATTRIBUTE (AE) ',ANS)
(ERROR RECOVERY)

END

The example above which is a portion of an entire application, illustrates how
the DECOMPRESS statement is used with other statements to decompress an

entire file.

6-51

HEX

Purpose:

Format:

Description:

Example:

To convert binary data into graphic hexadecimal data
(EBCDIC 0-9, A—F).

A = HEX(B)

From righttoleft, each byte of field Bis converted into two bytes of hexadecimal
data and stored in field A; therefore, field A should be twice the size of field B.

The operation terminates when field A s full. If field A is more than twice as long
as field B, the unused leftmost positions of field A are filled with EBCDIC zeros.

FLDA = HEX(B)

BEFORE EXECUTION
FLDB (Binary Code) = 1000 0100 0100 1111

FLDA (Graphic Code) = 'XXXX'

AFTER EXECUTION

FLDB (Binary Code) = 1000 0100 0100 1111

FLDA (Graphic Code) = '84L4F!

6-52

UNHEX
Purpose:

Format:

Description:

Example 1:

Example 2:

To convert graphic hexadecimal data (EBCDIC 0-9, A—F) into binary data.
A = UNHEX(B)
From right-to-left, each successive pair of bytes from field B converted into one

byte of binary data and stored in field A; therefore, field A need be only half as
long as field B.

The operation terminates when field A is full. If field A is longer than required,
the unused leftmost positions of field A are filled with binary zeros.

If field B contains an odd number of hexadecimal digits, a value of decimal zero
is assumed to complete the leftmost hexadecimal pair.

If a character other than a hexadecimal digit is encountered in field B, a value of
decimal zero is assumed for that character.

The error indicator is affected by this instruction but no significance can be
associated with its setting.

BEFORE EXECUTION
FLDB (Graphic Code) = '1L44F'

FLDA (Binary Code) = 0000 0000 0000 0000

AFTER EXECUTION
FLDB (Graphic Code) = '8LL4F!

FLDA (Binary Code) = 0000 0000 0000 0000

BEFORE EXECUTION
FLDB (Graphic Code) = '44F!

FLDA (Binary Code) = 0000 0100 0100 1111
AFTER EXECUTION

FLDB (Graphic Code) = '8LL4F!

FLDA (Binary Code) = 1000 0100 0100 1111

6-53

CONTROL STATEMENTS

Control statements control the flow of program execution, either conditionally or unconditionally.
The Control statements are:

UNCONDITIONAL GO
STOP
CONDITIONALS
COMPUTED GO
CASE

ERROR TEST

6-54

UNCONDITIONAL GO

Purpose:

Format:

Description:

Example:

To branch unconditionally to a specified statement.
GO:sn

The GO statement unconditionally transfers control to the statement specified
by sn.

GO:25
22, A+B*C

25, STOP
END

If the statement immediately following a GO is not an END statement, then that
statement must have a statement number so that it can be reached (via a branch
or PERFORM statement) during program execution.

6-55

STOP
Purpose:

Format:

Description:

Example:

To terminate program execution.
STOP

The stop statement terminates program execution. It may appear anywhere in
the Execution Section prior to the END statement. Although several STOP
statements may appear in the program, only one STOP can be executed per
program execution.

When a STOP statement is executed, all open logical files are closed. If an error
condition occurs during closing of these files, the condition is not reported to the
program.

STOP
If the statement immediately following STOP is not an END statement, it must

have a statement number so that it can be reached (via a branch or PERFORM
statement) during program execution.

6-56

CONDITIONALS

Purpose:

Format:

Description:

Example 1:

Example 2:

NOTE:

To alter the flow of execution based upon a specified condition of program data.

A conditional statement is composed of two parts: a conditional phrase and an
executable statement. The test specified in the conditional phrase determines
whether or not the executable statement is executed.

1. IF (condition) statement

2. IFNOT (condition) statement

1. When the specified condition is true, statement is executed; otherwise, the
next in-line statement is executed.

2. When the specified condition is false, statement is executed; otherwise, the
next in-line statement is executed.

The executable statement must not be an ENTRY statement.

IF(condition)G0: 20

When condition is true, the GO statement is executed; otherwise, the next
in-line statement is executed.

IFNOT(condition)A = :*:

When the condition is false, the FILL statement is executed; otherwise, the next
in-line statement is executed.

Unless the executable statement affects program flow, the next in-line statement
will also be executed.

Since a conditional statement is also an executable statement, the conditional
statement may be compounded. For example,

IF(condition-B) IFNOT (condition-C) GO: 20

When condition-B is true and condition-C is false, the GO statement is exe-
cuted, otherwise, the next in-line statement is executed.

6-57

CONDITIONAL PHRASES: ALPHANUMERIC

Purpose:

Format:

Description:

To compare one alphanumeric field to another alphanumeric field or to a
specified alphanumeric literal character.

1.

(B, MATCHES, C)
(B, MATCHES, : X:)
(B,CONTAINS, : X:)

(B,CONTAINS,C)

From left to right, each position of field B is compared to the corresponding
position of field C for as many positions as there are in the shorter of the two
fields. If each position pair contains the same character value or either
position contains the null character, the position pair matches. If every
position pair matches, the condition is true; otherwise, false.

Each position of field B is compared to the specified literal character and to
the null character. If each position of field B contains either the specified
literal character, or the null character, the condition is true; otherwise, false.

Each position of field B is compared to the specified literal character. If at
least one position of field B matches the specified literal character, the
condition is true; otherwise, false.

Each position of field B is compared to the first position of field C. If at least
one position of field B matches the character contained in the first position of
field C, the condition is true.

6-58

Example 1: ~ |F(FLDB,MATCHES , FLDC)GO:10 RESULT

|A|A |nl |A|[B] LAl TRUE
|Anl A]B] |AlB[nl]B] TruE
Alnl]A [AfnT]B] fFacse

Example 2. |F(FLDB,MATCHES, :A:)G0:10 RESULT
|A|[nl]A] |A] TRUE
LALA] [A] TRUE
[Alnl]8B] [Al FALSE

Example 3: |F(FLDB,CONTAINS, :A:)GO0:10 RESULT
AlA]A LA] TRUE
|B|B[B|A] LA TRUE
BJC|D LA] FALSE

Example 4: |F (FLDB,CONTAINS,FLDC)GO:10 RESULT
|A[nl] A | A|B]|B RUE

[Ale | c| ClB|A TRUE
|A|nl]| A c|B|A FALSE

Where nl = null

The logical not character (7]) may prefix an alphanumeric comparator to designate inversion of
the true/false condition. For example, 7 CONTAINS designates a true condition when the
corresponding CONTAINS condition is false. Thus, the two samples below are functionally
equivalent:

6-59

CONDITIONAL PHRASES: BINARY

Purpose:

Format:

Description:

Example:

To compare two binary fields.

1. (B,EQ,C) 4. (B,NE,C)

2. (B,LT,C) 5 (B,LE,C)

3. (B,G6T,C) 6 (B,GE,C)

The binary contents of field B are compared to the binary contents of field C.
The condition is true for the following cases:

1. Field B equals field C;

2. Field Bis less than field C;

3. Field B is greater than field C:

4. Field Bis unequal to field C;

5. Field Bis less than or equal to field C;
6. Field B is greater than or equal to field C.

In all cases, if one field is longer than another, the shorter field is regarded as
filled with sufficient leading nulls to achieve equal length.

IF(FLDB,EQ,FLDC)GO:10 RESULT

1010 1111 1010 1111 TRUE

0000 0000 1111 0000 0000 1111 0000 TRUE

NOTE:

1010 1111 0000 0000 FALSE

The logical not character (1) may prefix a binary comparator to designate
inversion of the true/false condition.

For example, TEQ designates a true condition when the corresponding EQ
condition is false. Thus the two samples below are functionally equivalent:

|F(FLDB,7EQ,FLDC)GO:10

IFNOT(FLDB,EQ,FLDC)GO:10

The leftmost bit of a binary field is not regarded as a sign bit.

6-60

CONDITIONAL PHRASES: BIT

Purpose:

Format:

Description:

Example:

To compare bit settings.

1. (B,HASBITS,C)

2. (B,HASBITS, : X:)

The leftmost byte of field B is compared, using the logical AND, with either the
leftmost byte of field C (format 1) or the literal character X (format 2). If the result
is not equal to zero, the condition is true.

|F(FLDB,HASBITS,FLDC)GO:10 RESULT

1000 0000 1100 0000 TRUE
0100 0000 1100 0000 TRUE
0010 0000 1000 0000 FALSE

The logical not character (1) may prefix a bit comparator to designate inversion
of the true/false condition. For example, THASB I TS designates a true condi-
tion when the corresponding HASB | TS condition is false. Thus, the two sam-
ples below are functionally equivalent:

|F(FLDB, THASBITS,:80:)G0:10

IFNOT (FLDB,HASBITS, :80:)G0: 10

6-61

CONDITIONAL PHRASES: DECIMAL

Purpose:

Format:

Description:

Example 1:

Example 2:

To compare two decimal fields.

1. (B =¢C)
2. (B < C)
3. (B >¢()
4. (B <=C)
5. (B >=C)

The decimal contents of field B are compared to the decimal contents of field C.
The condition is true for the following cases:

1. Field B equals field C;

2. Field B is less than field C;

3. Field B is greater than field C;

4. Field B is less than or equal to field C;

5. Field B is greater than or equal to field C.

In all cases, if one field is longer than the other, the shorter field is regarded as
filled with sufficient leading zeros to achieve equal length.

IF(FLDB = FLDC)GO:10 RESULT
+
olol1]2]s 11215 TRUE
oJof1]2]5 1|25 TRUE
+ +
o[1]2]s] [o]f2]5]o0 FALSE
IF(FLDB< FLDC)GO:10 RESULT
+ +
01> 1]0 TRUE
_ +
[o]2]0 10 TRUE
+
l]l2]0o]o0 FALSE

6-62

Example 3: IF(FLDB >FLDC)GO:10 RESULT
+ +
lo]2]o0 110 TRUE
T][9]9]9 TRUE
_ +
/(91919 FALSE
NOTE: The values in the compared fields may be positive or negative. The contents of

the B or C fields cannot be negated during the decimal compare operation.
The logical not character (1) may prefix a decimal comparator to designate
inversion of the true/false condition. For example 1= designates a true condi-

tion when the corresponding = condition is false. Thus, the two samples below
are functionally equivalent:

|F(FLDBI=FLDC)GO:10

IFNOT (FLDB=FLDC)GO:10

6-63

CONDITIONAL PHRASES: SORT

Purpose:

Format:

Description:

Example 1:

Example 2:

To compare two alphanumeric fields for collating sequence.
1. (B,EQUALS,C)

2. (B,BEFORE,C)

3. (B,AFTER,C)

If one field is longer than the other in the above formats, the shorter field is
regarded as filled with sufficient trailing nulls to achieve equal length.

1. From left-to-right, each position of field B is compared to the corresponding
position of field C for as many positions as there are in the longer of the two
fields. If each pair contains the same character value, the condition is true.

N

From left-to-right, each position of field B is compared to the corresponding
position of field C for as many positions as there are in the longer of the two
fields or until a mis-match occurs. If a mis-match occurs and the character
from field B is before the character from field C in the EBCDIC collating
sequence, the condition is true.

3. From left-to-right, each position of field B is compared to the corresponding
position of field C for as many positions as there are in the longer of the two
fields, or until a mis-match occurs. If the character from field B is after the
character from field C in the EBCDIC collating sequence, the condition is
true.

(F(FLDB, EQUALS,FLDC)GO:10 RESULT

I A | B | A [B]| nl TRUE
A C nl |A I C I TRUE
nlf A |[A]A] FALSE

IF(FLDB,BEFORE,FLDC)GO:10 RESULT

|A]A]A] |8 |8] 8] TRUE
|oJof 1] |2]2] 3] TRUE
|8]c| o] {

*[{5]6 FALSE

Where nl = null

6-64

Example 3:

|F (FLDB,AFTER,FLDC)GO:10 RESULT
lelsls| [Alalal tgue

3/0]1 201 TRUE

B| BB B|B|B FALSE

The logical not character (1) may prefix a sort comparator to designate inversion
of the true/false condition. For example, 1 BEFORE designates a true condition
when the corresponding BEFORE condition is false. Thus, the two samples
below are functionally equivalent:

IF(FLDB, 1BEFORE,FLDC)GO:10

IFNOT (FLDB,BEFORE,FLDC)G0:10

6-65

COMPUTED GO

Purpose:

Format:

Description:

Example:

NOTE:

To branch, based upon a value to a statement specified in a list of statement
numbers.

GO(B)sn-list

The low order byte of field B determines which statement from the statement
number listis to be branched to. If the low order byte contains zero (0), then the
first statement number from the list is selected. If the low order byte contains 1,
then the second statement number from the list is selected, and so on.

Only the rightmost four bits of field B are examined. All other bits of field B are

ignored. Therefore, the values X'00', X'10' ,...,X'FO"would
each cause the first statement number in the list to be selected.

GO(FLDB)10,20,10

If the rightmost four bits of field B contain a value greater than that implied by
the length of the statement number list, the next in-line statement is executed.

Branches within the sn-list may not be omitted (for example: GO(FLDB) 10,,10
is considered invalid).

6-66

CASE

Purpose: To branch to a statement specified in a list of statements.
Format: CASE(B)condition-1:sn-1,condition-2:sn-2, ... ,condition-n:sn-n
Description: The rightmost position of field B determines the statement number to which it is

to branch. The coding of each condition includes a range of values for field B
associated with the statement to be branched to if the condition is met.

A condition may be expressed as either an alphanumeric or hexadecimal string.

If a condition describes a single character, then that character must be matched
exactly by the rightmost position of field B.

If the condition describes more than one character, then the rightmost position
of field B must be greater than or equal to the leftmost condition character, and
less then or equal to the rightmost condition character in order for the condition
to be satisfied.

If more than two characters occur in the condition, only the first and last are used
as described above.

The EBCDIC collating sequence constitutes the basis for the compare.

If multiple conditions are satisfied by field B, the first satisfied condition deter-
mines the branch.

Example: CASE(FLDB) 'AF':10,'09':20

If the rightmost position of FLDB contains either A, B, C, D, E, or F, control is
passed to the statement labeled 10. If FLDB contains a digit (O through 9),
control is passed to the statement labeled 20. For all other values, control is
passed to the next in-line statement.

6-67

ERROR TEST

Purpose: To branch to a specified statement on an error condition.
Format: ERR:sn
Description: ERR transfers control to the statement number specified when the error indi-

catoris set. If the errorindicatoris not set, the next in-line statementis executed.

Example: FLDA=FLDB+FLDC
ERR: 25

.

25, STOP

The ERR statement should immediately follow the statement being monitored.

6-68

SUBROUTINE STATEMENTS
Subroutine statements delimit and direct execution of a subroutine. A subroutine is a group of
statements performing a specific function that may be performed as often as necessary. The

subroutine is coded only once, eliminating repetitive statements. It may be accessed from any-
where within the Execution Section of the program. The Subroutine statements are:

PERFORM
ENTRY

EXIT

6-69

PERFORM

Purpose:

Format:

Description:

Example:

To invoke execution of a subroutine.
PERFORM: sn

To transfer control to a subroutine ENTRY specified by sn. Also, PERFORM
causes the return location of the next statement in-line with the PERFORM to be
saved for later continuation of the current program sequence.

START

—— PERFORM:10 (Subroutine call)

— | F (B,MATCHES, C) PERFORM: 10 (Subroutine call)

_»10, ENTRY

. (Subroutine)

EXIT:10

END

Since subroutines can be referenced by other coding within the main program-
ming module and since all fields of the main module are available to sub-
routines, they are usually reserved for calculations/operations which are fre-
quently used, tedious to repeat, or subject to change. A significant reduction in
both source program size and object program size can be realized with this
technique for program structuring.

The PERFORM, ENTRY and EXIT statements provide a means of logically
structuring the application program,; therefore, branching to a statement within
the subroutine is not recommended.

A subroutine should not contain a call to itself. However, if a call of this type is
coded, a logical exit must be provided within the subroutine, such as a condi-
tional or unconditional branch statement. A logical means of leaving such a
subroutine is required, since the saved address of the first PERFORM statement
is lost upon execution of the second PERFORM statement.

6-70

ENTRY

Purpose:

Format:

Description:

Example:

To designate the beginning of a subroutine.
sn, ENTRY

The ENTRY statement designates the beginning of the sequence of execution
statements (subroutines) and establishes the ENTRY statement number.

The subroutine is normally called through the PERFORM statement. However,
the ENTRY statement can be reached logically as the next statement in
sequence or as the result of a branch statement. When reached logically as an
in-line statement, execution proceeds with the first statement following the
ENTRY statement.

Since the subroutine is internal to the calling program, all fields within the calling
program are common to the subroutine and may be used by statements within
the subroutine.

No data definition statements may appear within the subroutine. All data
definition statements required for subroutine data must be included in the Data
Definition Section of the calling program.

If multiple statement numbers are assigned to ENTRY, only the last may be
referenced by PERFORM/EXIT

START
PERFORM:10 (Subroutine call)
+—— G0:10 (In-line branch)

e—— |F(B) ,MATCHES, C) PERFORM: 10 (Subroutine call)

«— |F (B,MATCHES, C)GO:10 (In-line branch)

L» 10, ENTRY

(Subroutine)

END

6-71

Nesting of subroutine calls is permitted as long as no subroutine has two outstanding performs
against it. For example:

START 100, ENTRY 200.ENTRY
PERFORM: 100 PERFORM: 200 EX1T:200
. . "
END EXIT:100
Also see EXIT and PERFORM.

6-72

EXIT

Purpose:

Format:

Description:

Example:

10,

To terminate execution of the subroutine by returning control to the calling
program.

EXIT:sn

An EXIT statement returns control to the return location saved by the initiating
PERFORM statement.

EXIT does not alter the return information established by PERFORM. If a
PERFORM has been previously executed, control passes to the statement
immediately following that PERFORM. However, if a PERFORM has never
been executed, control passes to the statement following the EXIT.

An exit can be made from a PERFORM’ed sequence to a specified statement
anywhere in the program by means of a branch statement. A labeled statement
within a PERFORM’ed sequence can be the object of a branch from anywhere
in the program.

START

PERFORM: 10 (Calling PERFORM statement)

Next executable statement &—

(Subroutine)

EXIT:10

END

Also see ENTRY and PERFORM.

6-73

I/0 STATEMENTS

I/O statements direct Input/Output operations. /O operations transfer data between the
application program in main memory and the I/O device. Also, I/O statements control the I/O
device. The I/O statements are:

OPEN

CLOSE

READ

WRITE

CHECKEOD

DELETE

FREESPACE

INSERT

READLOCK

READNEXT

RELEASE

SETEOD

BACKSPACE

MARK

REWIND

REWINDLOCK

SKIPFILE

CHECKFORMS

PRINT

SETFORMS

SENDEOF

6-74

OPEN

Purpose: To gain access to an I/O device.
Format: OPEN (10D-name,buffer,ERR:sn)
Description: The dataset represented by the IOD is connected to the corresponding device

and is made available for use. For DISKETTE, the dataset may be a named
dataset or it may be the whole volume.

For all devices but DISK and DISKETTE, the buffer and its preceding comma
may be omitted.

If an error condition occurs, the ERR exit is taken. If no ERR exit is coded,
execution of the program is cancelled.

Example: OPEN(PAYROLFILE,BUFFER,ERR:200)

6-75

CLOSE

Purpose: To terminate access to an OPEN’ed dataset.
Format: CLOSE(10D-name, buffer,ERR:sn)
Description: CLOSE releases the logical file defined by the IOD and all of the underlying

resources. If the IOD is not OPEN, the operation is null.

For all devices but DISK and DISKETTE, the buffer and its preceding comma
may be omitted.

If error occurs during the CLOSE operation, control is transferred to the
statement labeled sn. Even in this case the logical file is no longer open.

Example: CLOSE (PAYROLFILE,BUFFER,ERR:20)

NOTE: When a STOP statement is executed, all open logical files are closed. See the
discussion of STOP in this section.

6-76

READ (applies to all devices, except PRINTER)

Purpose: To transfer a data record from a dataset (or the host processor).
Format: READ (I10D-name,buffer,ERR:sn-1,EQF:sn-2)
Description: A data record is transferred by the device specified in the IOD.

The ERR exit is taken if an error condition results. If no ERR exit is coded,
execution of the program is cancelled.

The EOF exit is taken if an end-of-file condition results. If no EOF exit is coded,
the end-of-file condition is regarded as an error condition and handled as

described in the paragraph above.

Example: READ (PAYROLF | LE,, BUFFER, ERR: 200, EOF:201)

6-77

WRITE

Purpose: To transfer a data record to a dataset (or the host processor).
Format: WRITE(10D-name, buffer,ERR:sn-1,EOF:sn-2)
Description: A data record is transferred to the device specified in the IOD.

The ERR exit is taken if an error condition results. If no ERR exit is coded,
execution of the program is cancelled.

The EOM exit is taken if an end-of-medium condition results. If no EOM exit is

coded, the end-of-medium condition is regarded as an error condition and
handled as described in the paragraph above.

Example: WRITE (PAYROLFILE,BUFFER,ERR:101,EOM:102)

6-78

CHECKEQOD

Purpose:

Format:

Description:

To lock position of READ or WIRTE operations at EOD (next record-space after
the last record in the dataset) and to prevent other users from accessing that
record-space.

CHECKEOD (10D-name, ERR: sn)

CHECKEOD positions the file to prepare for writing at EOD (i.e., to append
records). The location of EOD is locked in order to serialize the use of EOD and
avoid a conflict between two or more users attempting to write a new “last
record.”

The lock may be removed by RELEASE, WRITE, or CLOSE. One record at a
time may be locked for an IOD.

The POSITION keyword* is updated to contain the system-maintained EOD.
If the record located at EOD cannot be reserved, control is transferred to the

statement labeled sn in the ERR clause. If no ERR clause is coded, program
execution is cancelled.

*See section 7 for a detailed discussion of the POSITION Keyword.

Example:

CHECKEOD (PAYROLFILE,ERR:102)

6-79

DELETE
Purpose:

Format:

Description:

Example:

To remove an entry from an index dataset.
DELETE(10D-name,ERR:sn)

The index entry for the most recently referenced record of the target dataset is
removed from the index dataset represented by this IOD. The index IOD must
have just been used to reference the target record. The target dataset remains
unchanged.

DELETE is valid only for index datasets for which ACCESS=SEQ or
ACCESS=RAN.

I0D:DATAFILE = DISK/DISKETTE

o0 0y

[0D: INDEXI DISK/DISKETTE

ACCESS

RANDOM
KEYVALUE = FIELDNAME
TARGET = DATAFILE

START

READ (INDEXI,...)

DELETE (INDEX1,...)

The record is not deleted from the target dataset, only its associated index
dataset entry is deleted.

6-80

FREESPACE

Purpose:
Format:

Description:

Example:

To free allocated space beyond EOD (end-of-data).

FREESPACE(10D-name,ERR;sn)

Any space beyond EOD for the dataset is returned to the free space chain for the
volume. The entire allocated space may be returned to the free space chain by

setting EOD=X'00 00’, then executing FREESPACE.

If an error condition occurs, the ERR exit is taken. If no ERR exit is coded,
program execution is cancelled.

FREESPACE (PAYROLFILE,ERR:102)

6-81

INSERT

Purpose:

Format:

Description:

Example:

NOTE:

To cause a new entry to be included in an index dataset for an existing but not
previously indexed record in the target dataset.

INSERT(10D-name, ERR:sn)

The key position information for the most recently referenced record of the
target datasetis added to the index dataset. The target IOD and the buffer for the
reference operation must have been left undisturbed.

Prior to INSERT, a READ operation must be executed against the target record
to establish the target .POSITION and the record value. The INSERT statement
causes the Random Index Access Method (RIAM) to hash the keyfield(s)
located in the READ bulffer, determine a POSITION for the index entry and
WRITE that index entry to the index dataset.

Ifan index for the particular target record already exists in the index dataset, the
error branch is taken. If the index dataset is full, the index record cannot be

inserted and the ERR branch is taken. If the ERR exit is not coded, program
execution is cancelled.

I0D: DATAFILE = DISK/DISKETTE
I0D: INDEX1 = DISK/DISKETTE
ACCESS = RANDOM

KEYVALUE = FIELDNAME

TARGET = DATAFILE

START

CHECKEOD (DATAFILE,...)
WRITE (DATAFILE,...)

INSERT(INDEX1,...)

The above statements add a new record to the target dataset DATAFILE and
enable this record to be accessed by INDEX1.

The operation of INSERT is valid only for index datasets for which
ACCESS=RAN.

6-82

READLOCK

Purpose:

Format:

Description:

Example:

To transfer a data record from a device and prevent any other user from
accessing that record.

READLOCK (10D-name,buffer,ERR:sn=-1,E0F:sn-2)

A READLOCK operation is similar to a READ operation except as noted below.
The record described in the .POSITION keyword is locked to prevent read
access through other IOD’s. The .POSITION keyword is not incremented (in
anticipation of a subsequent WRITE operation which updates the record and
clears the lock).

One record at a time may be locked for an 10D.

The ERR exit is taken if an error condition results. If no ERR exit is coded,
program execution is cancelled.

The EOF exit is taken if an end-of-file condition results.

If an EOF condition arises and no EOF clause s specified, the ERR exit is taken.

READLOCK (PAYROLF I LE,BUFFER,EOF: 101, ERR: 102)

6-83

READNEXT

Purpose:

Format:

Description:

Example:

To transfer the next data record, which has the same keyvalue as the record
previously read, from the target dataset to memory.

READNEXT(I10D-name, buffer, ERR:sn=-1,EQOF:sn=-2)

When more than one record contains the same keyvalue, this statement may be
used to acquire the second record (and subsequent records) via repeated
executions. When the series of duplicated keyvalues is exhausted, the READ-
NEXT operation takes the EOF:sn-2 branch.

The ERR exit is taken if an error condition results; control passes to the
associated sn. If no ERR exit is coded, program execution is cancelled.

The EOF exit is taken if an end-of-file condition results. If an EOF condition
arises and no EOF clause is specified, the ERR exit is taken.

This statement is valid only for index files when ACCESS =RAN.

READ (INDEX1,...)

READNEXT(INDEX1,...)

6-84

RELEASE

Purpose:

Format:

Description:

Example:

To remove restricted access (without transferring data) on an external dataset
record which has been the object of the READLOCK or CHECKEOD operation.

RELEASE(10D-name, ERR:sn)

This statement unlocks a previously locked record without performing a WRITE
operation.

RELEASE (PAYROLFILE,ERR:102)

The POSITION keyword* is examined to determine which record is to be un-
locked. Upon successful completion of the RELEASE operation, CONTROL
is returned to the next statement; the POSITION keyword is incremented by
one.

If the RELEASE request is not honored, control is transferred to the statement
associated with the statement number specified in the ERR clause and the
POSITION keyword is not changed. If no ERR clause is coded, program
execution is cancelled.

* See Section 7 for a complete discussion of POSITION and other keywords.

6-85

SETEOD
Purpose:

Format:

Description:

Example:

NOTE:

To update the system-maintained EOD (end-of-data).
SETEOD(I10D-name, ERR:sn)

The EOD (end-of-data) for a dataset is reset to the value obtained from the
POSITION keyword of the IOD.

The EOD parameter is recorded in two locations: in the system-maintained
EOD and in the dataset label located in the VTOC. The system-maintained
EOD is updated following a successful completion of a SETEOD operation. The
system-maintained EOD is also updated upon completion of WRITE operations
which extend the file. The dataset label of the VTOC is updated from the
system-maintained EOD when the dataset is closed.

If the record designated by the POSITION keyword exceeds the extent of the
dataset, an error condition occurs and control is transferred to the statement
labeled sn. If no ERR exit is coded, program execution is cancelled.

SETEOD (PAYROLFILE,ERR: 102)

SETEOD can only be used with DISK/DISKETTE if ACCESS =EXCLUSIVE.

6-86

BACKSPACE

Purpose:
Format:

Description:

Example:

To move the tape back one record.

BACKSPACE(10D-name, ERR: sn)
The magnetic tape is backed-up one record. The tape is left positioned in the
inter-record gap preceding the “backed-over” record. This operation is cancel-

led if no previous record is encountered.

BACKSPACE (PAYROLFILE,ERR:100)

6-87

REWINDLOCK

Purpose:

Format:

Description:

Example:

To cause the magnetic tape to be positioned immediately prior to load point.
REWINDLOCK(10D-name, ERR:sn)

The magnetic tape is positioned ahead of the load point. The tape drive is
switched off-line, effectively preventing subsequent use without operator inter-
vention (i.e., the tape drive must be manually placed on-line prior to issuing
further positioning or data transfer commands).

If an error condition occurs, the ERR exit is taken. If no ERR exit is coded,
program execution is cancelled.

REWINDLOCK(PAYROLFILE,ERR:101)

6-90

SKIPFILE

Purpose:

Format:

Description:

Example:

To position a magnetic tape beyond the next encountered tape mark.

SKIPFILE(10D-name, ERR: sn)

The magnetic tape is positioned within the inter-record gap following the next
tape mark encountered in the forward direction.

The operation is cancelled and the ERR exitis taken in the event that no forward
positioned tape mark is encountered (end-of-reel). If no ERR exit is coded,
program execution is cancelled.

SKIPFILE(PAYROLFILE,ERR:101)

6-91

CHECKFORMS

Purpose: To obtain the current printer control and positioning information.
Format: CHECKFORMS (10D-name, ERR: sn)
Description: The current printer control information is returned to the FORMS and POSI-

TION parameters. *
Control passes to the next statement unless the CHECKFORMS request cannot

be honored. In this case, controlis transferred to the statement labeled sn in the
ERR clause. If no ERR clause is coded, program execution is cancelled.

Example: CHECKFORMS (LISTFILE,ERR:103)

*See Section 7, for an explanation of the FORMS and POSITION keywords.

6-92

PRINT

Purpose: To effect printing with forms control.
Format: PRINT(10D-name, buffer,ERR:sn-1,EQF:sn-2)
Description: The paper is advanced according to the value contained in the SLEW*

keyword. Up to 132 bytes of data may be transferred to the printer.

Example: PRINT (PAYROLF ILE,BUFFER,EOF: 110, ERR:200)

The ERR exit is taken if an error condition results. If no ERR exit is coded,
program execution is cancelled.

The ERR exit is taken if an end-of-form condition results. If no EOF exit is
coded, the end-of-form condition is disgarded and the next in-line statement is
executed.

*See Section 7, for a detailed description of SLEW

6-93

SETFORMS
Purpose:
Format:

Description:

Example:

To alter active printer control parameters.

SETFORMS (10D-name, ERR: sn)

SETFORMS sets the POSITION keyword to zero (0), notifying the system that
the forms are positioned to top-of-forms. Also, it transfers the values specified
for FORMS (in the IOD) to the System Control Block. See the Initial Program
Load values for the system control table in Section 7, under the FORMS
keyword.

The FORMS parameter is a four-byte field:
byte 1 = lines per page
byte 2 = characters per inch — horizontal, range 1-15
byte 3 = lines per inch — vertical, range 1-48
byte 4 = lines per form

Forthe horizontal measurement, only 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60
are exact measurements since the unit of escapementis 1/60th of an inch. Any
other number would be approximate to its nearest value.

For the vertical measurement, only 1, 2, 3, 4, 6, 8, 12, 24, and 48 lines per inch
are exact measurements since the vertical forms ratchet is 1/48th of an inch.
Any other number would be approximated. After execution of SETFORMS,
control passes to the next subsequent statement. If the SETFORMS request
cannot be honored, control passes to the statement labeled sn in the ERR
clause. If no ERR clause is coded, program execution is cancelled.

SETFORMS (LISTFILE,ERR:103)

6-94

SENDEOF
Purpose:

Format:

Description:

Example:

To transfer an end-of-file indicator to the compatible channel.

SENDEOF (10D-name, ERR: sn)

A tape mark (end-of-file) is transmitted to the host System 2400. For a detailed
description of SENDEOF, see Section 7.

SENDEOF(PAYROLFILE,ERR:101)

6-95

STATION I/O STATEMENTS

STATION I/0 statements provide the necessary interface between the operator and the applica-
tion for data entry, validation and display. The STATION 1/O statements are:

KENTER
KVERIFY
RESUME
RESUMERR
ERROR
NOTIFY
READSCREEN

READKEY

6-96

KENTER
Purpose:

Format:

Description:

To initiate a session of data entry/update from the keystation.
KENTER (10D-name, KET-name, ESC: sn-1,ERR:sn=-2)

A session of entry/update is initiated with the KET serving as the focal point for
station control and data display.

The 10D-name parameter must designate an IOD for which the device is
STATION.

The “ERR:sn-2” phrase designates a program routine which is to receive
control when a program or systems configuration error is encountered. If
omitted and such an error condition occurs, program execution is cancelled.

The “ESC:sn-1” phrase designates a program routine which is to receive
control when an application-level control key is depressed. The routine is also
executed prior to operator input if the KET is defined with the “INIT=ESCAPE”
clause. If omitted and either condition occurs, processingis continued as though
the condition had not occurred.

For complete details of operation, see Section 8.

6-97

KVERIFY
Purpose:

Format:

Description:

To initiate a session of data verify/update from the keystation.
KVERIFY(10D-name, KET-name,ESC:sn-2,ERR:sn=-2)

A session of verify/update is initiated with the KET as the focal point for station
control and data display.

The syntactic units are as described for KENTER.

For complete details of operation, see Section 8.

6-98

RESUME
Purpose:

Format:

Description:

To continue the active KENTER/KVERIFY session.

1. RESUME
2. RESUME (KET-f ield-name)

For complete details of operation, see Section 8.

6-99

RESUMERR

Purpose:

Format:

Description:

To continue the active KENTER/KVERIFY session following display of an
exception message.

1. RESUMERR
2. RESUMERR (B)
3. RESUMERR (B, KET-f ield-name)

4. RESUMERR (, KET-f ield-name)

For Formats 2 and 3, the exception message (Field B) is edited and displayed.
For Formats 1 and 4, an all blank operation message is edited and displayed.

Following operator acknowledgement, the session is continued at the point of
lost interaction (Formats 1 and 2) or to a specific field (Formats 3 and 4).

If Format 3 or 4 is coded, field A must be a KET field-name within the currently
active KET or a program error results.

For complete details of operation, see Section 8.

6-100

ERROR

Purpose: To display an exception message for which no response, other than acknow-
ledgement, is required.

Format: ERROR (B)
Description An exception message (field B) is displayed on line 2 of the display screen.

The RESET key is depressed to acknowledge the message. Control is then
returned to the next in-line statement.

For details of operation, see Section 8.

Example: ERROR('RECORD NOT FOUND')

6-101

NOTIFY
Purpose:

Format:

Description:

Example:

To display an exception message and solicit a keyed response character.
NOTIFY(B,C)

An exception message (field B) is displayed on line 2 of the display screen.
The RESET key is depressed to acknowledge the message. A response is then
keyed; the value of this key is placed in the leftmost position of field C. The

control is then returned to the next in-line statement.

For details of operation, see Section 8.

NOTIFY('RECORD NOT FOUND',FLDC)

6-102

READSCREEN

Purpose:
Format:

Description:

To obtain an individual line from the display.
READSCREEN(10D-name, buffer,ERR:sn-1,E0F:sn=2)
A display line is edited for printing and transferred to the buffer.

The IOD-name must designate the station device.

The “ERR:sn-1" exit designates a program routine which is to receive control
when an incorrect display line is referenced. If omitted, program execution is
cancelled.

The “EOF:sn-2” exit designates a program routine which is to receive control

when the successor to the last display line is referenced. If this exit is omitted, the
reference is considered to be incorrect and is handled as described above.

6-103

READKEY

Purpose:

Format:

Description:

To obtain the next keyed data character or to be informed that no keyed data
character is present.

READKEY (10D-name, buffer,ERR:sn)

The next keyed data character is returned in the leftmost position in the buffer;
the program routine designeated by “ERR:sn” is executed if no keyed character
is present.

The IOD-name must designate the STATION device.

For details of operation, see Section 8.

6-104

SPECIAL PURPOSE STATEMENTS

Special Purpose Statements perform specialized functions to enhance application program capa-
bility. The Special Purpose statements are:

CHECKDIGIT
GETTIME
SETTIME
SAME

STRING

6-105

CHECKDIGIT
Purpose:

Format:

Description:

Example 1:
Example 2:

Example 3:

NOTE:

To validate or generate the checkdigit of a self checking number.

VALIDATE GENERATE
1. CK10(B,ERR:sn) 5. B=CK10(B,ERR:sn)
2. CK11(B,ERR:sn) 6. B=CK11(B,ERR:sn)
3. CKTB1 (B, ERR:sn) 7. B=CKTBI1 (B, ERR:sn)
4. CKTB2 (B,ERR:sn) 8. B=CKTB2(B,ERR:sn)

The contents of field B, exclusive of the rightmost position, are evaluated to
determine the checkdigit for the field.

1—4. The calculated checkdigit is compared with the rightmost position
of field B. If they do not match or the field contents are not suitable for
the selected algorithm, control is transferred to the statement labeled
sn.

5 — 8. The calculated ckeckdigit is moved to the rightmost position of field B.
If the calculated digit is not suitable for the selected algorithm, control
is transferred to the statement labeled
sn.

The selected algorithms are:

1,5 : IBM Modulus 10
2.6 : IBM Modulus 11
3,7 : Custom algorithm.

4,8 : Alternate custom algorithm.
CK10(FLDB,ERR:101)

FLDB=CKI1(FLDB,ERR:101)
FLDA=CKI1(FLDB,ERR:101)

Example 3illustrates that the receiving field for generation may be different from
the source field.

See Appendix G for CHECKDIGIT Algorithms.

6-106

GETTIME
Purpose:

Format:

Description:

Example:

To read the System Time-Of-Day Clock.
GETTIME(B)
The time of day is retrieved from the clock and stored in field B.

The System Time-Of-Day is a 24-hour clock. This field is a twelve-position
decimal field containing:

YYMMDDhhmmss
Where:

YY = year

MM = month

DD =day

hh = hours

mm = minutes
ss = seconds

The system increments only hours, minutes and seconds. Space is allocated for
year, month and day so that they may be optionally incremented by an
application program. When the time of day is retrieved, it is moved right-to-left to
field B. The operation terminates when field A is full. If field B is longer than
twelve positions, it is filled with leading zeros.

During the Initial Program Load, the clock is filled with zeros. A value may be
key-entered whenever the Selection Display Screen is conditioned to perform a
program load. Care should be taken so that conflicting settings of the time-of-
day clock are avoided.

GETTIME (FLDB)

6-107

SETTIME
Purpose:

Format:

Description:

Example:

To set the System Time-Of-Day Clock.
SETTIME(B)

The time of day is moved from field B to the clock. The System Time-Of-Day
Clockisa 24-hour clock. This field is a twelve-position decimal field containing:

YYMMDDhhmmss
Where:

YY = year

MM = month

DD = day

hh = hours

mm = minutes
ss = seconds

The system increments only hours, minutes and seconds. Space is allocated for
year, month and day so that they may optionally be incremented by an
application program. When the time of day is transferred to the clock, it is
moved from right-to-left from field B until every position (up to the rightmost
twelve) of filed B has been transferred. If field B contains fewer than twelve
positions, the Time-Of-Day Clock is filled with leading zeros.

Care should be taken so that conflicting settings of the Time-Of-Day Clock are
avoided.

SETTIME (FLDB)

6-108

SAME

Purpose: To select a field or buffer for subsequent program reference.
Format: EQU-name=SAME (buffer)
Description: After assignment of EQU-name as an alternate reference name for bulffer,

EQU-name may be used to reference the contents of the selected buffer.

Example: RCD: .

CO[JNT] (5)

.

COUNT2(8)
LI
EQU: FLDE; (Subroutine Parameter)
START
FLDE = SAME(COUNTI) (Setup Parameter)
PERFORM: 100 (Call Subroutine)
FLDE = SAME(COUNT2) (Setup Parameter)
PERFORM: 100 (Call Subroutine)
100, ENTRY
FLDE = FLDE + 1 (Increment Parameter)
EXIT:100
END
NOTE: For interpretation of EQU-name where buffer is greater than 256 positions, see
Table 6-3.

6-109

STRING
Purpose:

Format:

Description:

NOTE:

To select a sub-field of a field or a buffer for subsequent program reference.
EQU-name=STRING (buffer,B,C,ERR:sn)

After assignment of EQU-name as an alternate reference name for a sub-field of
the buffer, EQU-name may be used to reference the contents of the selected
sub-field.

For interpretation of EQU-name when the resulting sub-field of the buffer is
greater than 256 positions, see Table 6-3.

The binary contents of the rightmost two bytes of field B indicate the number of
leading bytes of the specified buffer which precede the desired sub-field (offset).
The binary contents of the rightmost two bytes of field C indicate the length of
the sub-field (length).

The sub-field must be within the bounds of the specified buffer. If any part of the
sub-field lies beyond those bounds:

1. The EQU-name is not changed.
2. The error indicator is set.

3. If the ERR exit is coded, control is transferred to the statement labeled
sn.

6-110

Example: The example program processes input records each of which contains eight 16

byte items.
DATA RECORD LAYOUT
< 128 CHARACTERS >
16 16 16 16 16 16 16 16
CHAR | CHAR | CHAR | CHAR | CHAR | CHAR | CHAR | CHAR

ITEM 1 2 3 4 5 6 7 8

RCD: BUFFER (Input buffer of:
-(128) ; 8 * 16 byte items)

RCD: PARAMS (Offset in buffer to item)
OFFSET = X'00 00';

EQU: SUBFIELD; (Active item for processing)
START

10, OFFSET = X'00 00" (Set (RESET) offset)
READ (—,Buffer , EOF:30) (Read (new) buffer)

20, SUBFIELD = STRING (BUFFER, OFFSET, (Select item until buffer ends)

16, ERR:10)

OFFSET = ADD (OFFSET,16) (Setup for next item)

Process this item
(Continue extracting)

30, .

6-111

NOTE: The following operations are supported as synchronous operations by Release
7 compiler and system software:

BACKSPACEA
MARKA

PRINTA

READA
READLOCKA
READNEXTA
REWINDA
REWINDLOCKA
SENDEOFA
SKIPFILEA

WAIT

6-112

SECTION 7: INPUT/OUTPUT OPERATIONS

Data is recorded at a device on some form of media. All or a portion of that media may be
available for the programmer’s use. Input/Output operations transfer data between the
application program in main memory and the I/O device. Input operations receive data from a
device to the application program. Output operations send data from the application program
to the output device. Both operations involve some device. The data transferred is contained in
datasets (files). A complete definition of a dataset is presented in Appendix F of this manual. A
dataset may be thought of as the physical structure containing data. A file is a logical structure of
data.

Statements involved with 1/O operations may be divided according to the subsections of
MOBOL.

I/O STATEMENTS IN THE DATA DEFINITION SECTION

The Data definition statements define initial parameters for the I/O devices. They are:

Key Entry Table Statement (KET)
Input/Output Descriptor Statement (IOD)

The KET statement is documented in Sections 5 and 8. The IOD statement is used to identify an
[/O device, its access characteristics and the datasets which may be contained on the device.
The IOD specifies certain information regarding control parameters used by the operating
system to access the data. When an IOD is declared, a File Control Block (FCB) containing the
parameters for the IOD is created in the data section of memory by the compiler. The access
method control program uses this information when it accesses the dataset. The FCB is an
interface between the system and the MOBOL program. The IOD declaration is a means to
provide certain default information to the File Control Block when the program is initially loaded
into the system. Certain parameters may be changed at execution time by use of the
IOD-name.keyword syntax. The syntax of the IOD statement is presented in Section 5 of this
manual.

7-1

I/O STATEMENTS IN THE EXECUTION SECTION

[/O execution statements direct operation of the I/O devices. Table 7-1 lists all statements and
the devices to which they apply.

Table 7-1:

1/0 Execution Statements by Device

Station

Disk/Diskette

Tape

Data Recorder

Printer|Comp Chan

BACKSPACE

X

CHECKEOD

X

CHECKFORMS

CLOSE

X

DELETE

X

ERROR

FREESPACE

X(DISK only)

INSERT

X

KENTER

KVERIFY

MARK

NOTIFY

OPEN

PRINT

XX

READ

READKEY

READLOCK

READNEXT

READSCREEN

RELEASE

oo I o = I e B P

RESUME

RESUMERR

REWIND

REWINDLOCK

SENDEOF

SETEOD

SETFORMS

SKIPFILE

WRITE

The 1/0O statements listed above that are used for STATION are explained in Section 8.
Statements pertaining to all other devices are discussed within each device operation
subsection. General syntax for all statements is presented in Section 6.

7-2

KEYWORD CLASSIFICATION

Keywords are classified according to the functional locations of their appearance in MOBOL
source code. D keywords appear in the Data Definition Section. E keywords appear in the
Execution Section. DE keywords may appear in either section.

Keywords Used In The Data Definition Section (D Keywords)

Keywords appearing in the Data Definition Section (D keywords) either define parameters or
error message text. They appear in the IOD statement in the form:

Keyword = Value

Keywords relating to STATION operations are discussed in Section 8. Keywords pertaining to
I/O operations for DISK, DISKETTE, TAPE (DATA RECORDER) and COMP CHAN
(Compatible Channel) are:

ACCESS

KEYVALUE

TARGET

A parameter that specifies the desired access method, degree of
exclusive use and whether a "READ after WRITE” check is to be per-
formed. This parameter, available only in the iod-specification, is a
compile-time parameter. It is not addressable at run-time. The format
is:

BASIC EXCLUSIVE NVERIFY
ACCESS =<RANDOM » | SHARED s |VERIFY
SEQUENT IAL -

The default values are BASIC, EXCLUSIVE and NVERIFY. They are
used in the absence of the ACCESS iod-specification or the absence

of their respective selection group. RANDOM may be abbreviated
using RAN, SEQUENTIAL may be abbreviated using SEQ.

A keyword that designates a data-name in a previously defined RCD.
The previously defined RCD must not be an RCD array. The contents
of the field associated with this data-name will be used by the
RANDOM INDEX ACCESS METHOD to determine the location of a
specific target record. KEYVALUE is valid only when ACCESS=
RANDOM and must be specified after the ACCESS clause. See
"RANDOM INDEX ACCESS METHOD” on subsequent pages of
this section.

A keyword which designates the IOD-name of the target dataset pre-
viously defined. TARGET appears in the IOD of an index dataset. The
TARGET clause is required and considered valid only when ACCESS

= RAN or ACCESS = SEQ. It must be specified after the ACCESS
clause.

7-3

Keywords Used In The Execution Section (E Keywords)

Keywords appearing in the Execution Section relate to the status and parameters of 1/0O
operations. These keywords may appear in any of the execution statements where A, B, CorD
is indicated in the syntax of the statements. The format used is:

I0D-name ,Keyword

Keywords used for STATION operations are presented in Section 8. Keywords pertaining to
I/O operations for TAPE (DATA RECORDER), DISK, DISKETTE and COMP CHAN are:

ACTUAL

BLKLEN

EOD

EOE

ERRCODE

FORMS

A six-byte field corresponding to the volume-name. It contains the
actual volume-name found on the unit when OPEN was executed.

Is a two-byte binary parameter indicating the block length (used as a
maximum record length) specified in the dataset label.

A two-byte binary READ-ONLY field that indicates the logical end of
data (the number of records in the dataset). The EOD value is the rela-
tive record number of the next record to be appended to the file.

A two-byte binary READ-ONLY field indicating the dataset’s last
physically allocated record number.

A one-byte READ-ONLY field containing the completion code for the
operation. For an abnormal completion, ERRCODE will contain the
actual code used to designate the specific termination result (i.e.,
reason for abnormal completion). The bit encoding is:

7654 3210
SSSS MMMM

M= Major status
S = Sub-status

See Appendix E.

A four-byte parameter indicating the binary parameters (listed below)
for the printer.

Byte 1 = lines per page

Byte 2 = characters per inch

Byte 3 = lines per page

Byte 4 = lines per form

The default values are 66 lines per page, ten characters per inch, six
lines per inch and 58 lines per form. These values are established
during Initial Program Load but may be altered by subsequent use of
SETFORMS.

MARK

OUTLEN

POSITION

STATUS

XFERLEN

XFERSTATUS

A one-byte parameter used to specify whether the current record is
active or deleted. The values for this field are:

X’03" = Normal record
X'00" = Deleted record

This parameter is valid only for DISKETTE.

A two-byte binary field that indicates the length of the next output
buffer. This parameter applies to all devices (DISK, DISKETTE,
PRINTER, TAPE (DATA RECORDER) and COMP CHAN).

OUTLEN may be used to override the length attribute for a WRITE
operation in lieu of specifying a variable length buffer. Prior to the
WRITE operation, the intended length of the buffer is placed in IOD-
name.OUTLEN. Then, when the WRITE operation takes place, this
length is used instead of the buffer length. This override mechanismis
a one-time execution (that is, the length must be placed in OUTLEN
for each specific operation).

For DISK/DISKETTE: A two-byte binary field that specifies the cur-
rent relative record number (X'00 00" is the first record) of the active
dataset. This parameter may be used to pass random location infor-
mation to a READ or WRITE function causing the device to access the
specified record.

For PRINTER: A one-byte binary READ-ONLY parameter that indi-
cates the current line position on the form. The value X’00 indicates
top-of-form.

A one-byte READ-ONLY field that indicates the current operational
condition of the I/O device.

Actual coding of the major and minor status bits indicate various con-
ditions depending upon the I/O device used.

NOTE: STATUS is provided for compatibility between
system levels. It is recommended that ERRCODE be
used in lieu of STATUS.

A two-byte binary READ-ONLY field that indicates the length minus
one of the data record last read into the buffer.

A field that indicates the status of the Series 21 when it is connected

(via compatible channel) to the System 2400. Bit encoding is pre-
sented in this section under "COMPATIBLE CHANNEL I/O OPER-
ATIONS".

7-5

Keywords Used in Both The Data Definition And The Execution Section (DE Keywords)

The keywords that may be used in both sections of MOBOL are presented below. When used in
the Data Definition Section, they define parameters in the IOD statement. The format for this
section is:

Keyword = Value

In the Execution Section, these keywords are used to reference their respective parameters.
They may appear in any of the execution statements where fields A, B, CorDisindicated in the
syntax of the statements. The format for the Execution Section keyword reference is:

|0D-name. Keyword
Keywords that may be used in both sections of MOBOL are listed and defined below.

DATASET An eight-byte field* containing the name of the dataset to be used by
this file. For a DISKETTE, the whole volume will be used as the data-
set if the leftmost byte of the field contains a X'’FF’ (e.g., DATASET =
:FF:).

SLEW A one-byte parameter for directing forms control for a printer. Paper
advances may be performed before or after printing according to the
value set. The bit encoding is:

7654 3210
TBnn nnnn
T= 0-Slew

1-Top of Forms
B = 0 - Before Print
N = number of lines in binary to slew when T = 0.

If the slew value chosen causes the line position to exceed the bottom
of a form (lines per form), and end-of-form is generated. The print
operation is performed before the EOF exit is taken. The slew value
supplied by the application program is not changed.

*The dataset-name must be exactly eight characters and must be properly aligned. The default
value is "DATAppBYL".

7-6

STATE A one-byte parameter indicating the status of the file as it is referenced
by the IOD (e.g., OPEN or CLOSED, SHARED or EXCLUSIVE).
The STATE is specified by the values set in each bit. The bit encoding
is:

7654 3210
OEXX XXCD

O =0 - If the file is CLOSEd
1 - If the file is OPEN

E =0- If the file is SHARED
1 - If the file is EXCLUSIVE

X = Reserved for future use

C* =0 - New print operation
1 - Continue previous print

D* =0 - If the SLEW information is contained in the IOD parameter
1 - If the SLEW information is in the first position of the data
buffer

UNIT A one-byte binary field indicating a specific drive (in the case of DISK
or DISKETTE) or a specific printer (in the case of PRINTER). A value
of X’00” has a special meaning in that the I/O system will search for the
required unit (see OPEN in the device dependent sections). The de-
fault value of X’01" is used if UNIT is not specified in the IOD. A deci-
mal number may be specified for UNIT in the data definition for the
IOD. It is converted to binary representation by the compiler.

VOLUME A six-byte field**specifying the name of the volume to be used. If this
field contains nulls (X'00") at OPEN time (e.g., VOLUME = :00), the
I/O system will search for the dataset on any volume (as specified by
the contents of the UNIT field). The default value is all nulls.

*Used only at OPEN time. Once set in the IOD, these bits can only be changed while the file is
closed.

**This field must be exactly six characters.

7-7

Table 7-2: Keywords By Device

Diskette | Disk | Printer | Tape | Data-Recorder|Comp Chan

ACCESS
ACTUAL
BLKLEN
DATASET
EOD

EOE
ERRCODE
FORMS
KEYVALUE
MARK
OUTLEN
POSITION
SLEW
STATE
STATUS
TARGET
UNIT
VOLUME
VOLUME
XFERLEN
XFERSTATUS

x| =<
X
<
<

X[>
XX
X[>

b I B E e e

e el e B Bt vl o B e o o oot B] i S B o P
e e B o et e B o o N ot O o B S S o P %

x>

DISK/DISKETTE I/O OPERATIONS

DISK and DISKETTE I/O operations are similar. Exceptions and/or major differences will be
noted in the text.

In these operations there are three access methods: Basic, Sequential Index and Random
Index.

BASIC ACCESS METHOD

The Basic Access Method is the control program responsible for logical Input/Output oper-
ations to the 1/O device DISKETTE or DISK.

DISKETTE Operations

MDS supports diskettes in a manner which is consistent and compatible with IBM’s definition of
Basic Data Exchange. MDS does not support the alternate track assignment feature.

A diskette dataset is a series of contiguous records with a constant length (less than or equal to
128 bytes). The dataset has a label in the Volume Table Of Contents (VTOC) which describes
the dataset configuration. The VTOC is recorded at the beginning of the diskette on the Index
Track. This dataset label contains the dataset-name and the absolute addresses for beginning-
of-extent (BOE), end-of-extent (EOE) and the relative address of end-of-data (EOD) as well as
other information required by the IBM Basic Data Exchange standards.* A diskette record is a
series of bytes preceded by a mark byte (which is not part of the actual data). Datais recorded in
the EBCDIC representation.

The diskette is physically configured in 128 byte sectors; however, the logical record size may be
set to any length from one to 128 bytes. Record lengths of less than 128 bytes will be recorded
leaving the unused bytes of the sector null-filled. For the Basic Access Method, diskette records
(logical records) always begin at the first data byte of the sector; there can only be one record
per sector.

Records are numbered sequentially, starting with zero. This relative record number (i.e.,
POSITION) is used to address the records. The Basic Access Method maintains a pointer to the
sector following the last logical record of a dataset. This sector is called the EOD Sector. A
dataset containing no data has an EOD = X’00 00".

The concept of POSITION, EOD, BLKLEN, XFERLEN and OUTLEN are described within the
keyword definitions on prior pages of this section.

DISK Operations

MDS usage of the various types of supported disks is not intended to be compatible with any
other manufacturer. The software support is designed so that differences between types of disk
drives are transparent to the user.

A disk dataset is a series of logically connected records with a constant length (between 10 and
4096 bytes) having a label describing the dataset configuration in the DISK Volume Table of
Contents (VTOC). This dataset label contains the dataset-name and the absolute address for
BOE and the relative address of EOD as well as a maximum allocation indicating a size which the
dataset may not exceed. Data is recorded in EBCDIC representation.

A DISK dataset is configured as logically connected records of a length which may be initially
defined (or later redefined) using the Disk Ultility Program. Records are numbered sequentially
starting with zero (0). The concept of POSITION, EOD, BLKLEN, XFERLEN and OUTLEN
are described within the keyword definitions on prior pages of this section.

*See the "Diskette Organization Section” of the Series 21 Operator’s Guide (Form No. M-3611).
7-9

Applicable operations for the Basic Access Method are:

OPEN

Purpose:

Format:

Description:

Obtain access to a dataset on DISK or DISKETTE.

OPEN(10D-name, buffer, ERR:sn)

The OPEN operation searches for the dataset specified in the IOD. The
.DATASET, .VOLUME and .UNIT keywords are relevant to the OPEN
operation.

The programmer can specify this search in several ways according to the

following table:

Table 7-3: Search Operation By OPEN For DISK/DISKETTE

VOLUME = nulls VOLUME not = nulls

UNIT =0 search for dataset on any unit. | search for volume on any unit;
then search for dataset.

UNIT not =0 | search specified unit for | verify volume on specified unit;
dataset. then search for dataset.

NOTE: The buffer length must be equal to 128 bytes.

If the OPEN operation cannot be successfully completed, the error con-
dition which caused the failure may be determined from the .ERRCODE
keyword (see Appendix E).

When a data set is being reopened for the purpose of appending to the file, the

.POSITION parameter should be reset after the OPEN to contain the current
value of EOD (i.e., IOD-name.POSITION=IOD-name.EOD)

7-10

READ

Purpose:

Format:

Description:

To transfer a data record from a dataset on DISK or DISKETTE to main
memory.

READ (10D-name, buffer, ERR:sn-1,E0F:sn-2)

The READ operation reads the record indicated by the .POSITION key-
word and places it in the buffer supplied by the READ statement. The
length of the record actually transferred may be referenced by means of the
.XFERLEN keyword. Upon successful completion of the READ operation,
the data is transferred from the DISK/DISKETTE record to the buffer and
the value of the .POSITION keyword is incremented to point to the next
record.

If the supplied buffer is too short to contain the record read, an error is
generated which may be referenced by means of . ERRCODE. If the sup-
plied buffer is longer than the actual record, the remainder of the buffer is
filled with blanks. The minimum length of a record is 1 byte for DISKETTE
and 10 bytes for DISK. The maximum length of a record is 128 bytes for
DISKETTE and 4096 bytes for DISK.

If any errors are detected during the operation, the POSITION keyword is
not incremented.

If a whole volume on DISKETTE is specified (first byte of dataset-nameis
X’FF’), UNIT must be specified.

Accessibility to a diskette volume or dataset may be restricted according to
the accessibility fields in the VTOC.

The OPEN operation also establishes the usage of the dataset as
EXCLUSIVE or SHARED by reference to the STATE parameter in the
IOD. Bit 6 of the STATE parameter determines usage (“1” - EXCLUSIVE;
”0” - SHARED). If the dataset is requested for exclusive use, the OPEN will
be successful only if no other user has an open file for this dataset. If shared
use is requested, the OPEN will be successful if all other files open for this
dataset have also requested shared use. An entire volume may be opened
for exclusive use if there are no other users with OPEN datasets on the
volume. Opening the entire volume with shared usage allows the entire
volume to be read but not written.

At conclusion of OPEN, reference may be made to the volume-name,
current record position, current EOD, record length, and EOE by means of
the .ACTUAL, .POSITION, .EOD, .BLKLEN and .EOE keywords.

The OPEN operation gets the volume-name, EOD, BLKLEN, and EOE
from the dataset label in the VTOC. The representations of EOD and EOE
keywords are converted to relative displacement; BLKLEN is converted to
binary. The current position is initially set to zero, to designate the first
record in the dataset.

7-11

NOTE: There is no EOE keyword for DISK.

Prior to the READ, the user may alter the value of the . POSITION keyword
to point to any valid record, allowing for random retrieval of records. If
.POSITION points to the EOD Sector at the beginning of the operation, the
EOF exit is taken. If an attempt is made to read a record beyond the EOD
Sector, the ERR exit is taken.

Upon successful completion of READ, the .MARK keyword will contain a
value derived from the mark byte of the diskette record. A value of X’00’
indicates the record is deleted. Values other than X’00’ indicate the record
is not deleted. The mark byte and the .MARK keyword apply only to
DISKETTE.

7-12

READLOCK

Purpose:

Format:

Description:

CHECKEOD

Purpose:

Format:

Description:

To transfer a data record from a dataset on DISK or DISKETTE to memory
and to prevent any other user from reading that record.

READLOCK(|0D-name, buffer, ERR: sn-1,EO0F:sn-2)

A READLOCK operation is similar to a READ operation. The record
described by the .POSITION keyword is locked to prevent read access
through other 10D’s. The .POSITION keyword is not incremented (in
anticipation of a subsequent WRITE operation which updates the record
and clears the lock).

One record at a time may be locked for an IOD.

To lock the EOD record of a dataset on DISK or DISKETTE and to prevent
other users from accessing that record concurrently.

CHECKEOD(IOD-name,ERR:sn)

CHECKEOD is described in detail in Section 6.

7-13

WRITE

Purpose:

Format:

Description:

To transfer a data record (128 bytes) of data from memory to a dataset on
DISK or DISKETTE.

WRITE(10D-name, buffer,ERR: sn-1,EO0F:sn-2)

The WRITE operation transfers the data from the supplied buffer to the
dataset record at the location indicated by .POSITION. The POSITION
keyword is automatically incremented by one upon completion.

If the supplied POSITION is less than EOD, any existing datain the record
is overwritten. If the POSITION is equal to EOD, the record is appended to
the dataset and EOD is automatically incremented by one. If the
POSITION is greater than EOD, the record is not written and the ERR exit
is taken. If the record is shorter than the record length (defined in the data-
set label of the VTOC), the remainder of the record is padded with blanks.
For DISKETTE, if the logical record length (from the dataset label) is less
than 128 bytes, the remainder of the 128 bytes is padded with nulls (X'00"). If
the buffer length is longer than the record length, the data is truncated on
the right.

OUTLEN can be used to override a buffer-size, record-size mismatch. See
OUTLEN under "KEYWORDS USED IN THE EXECUTION SECTION".
It the WRITE operation has been preceded by a CHECKEUD or a
READLOCK, successful completion of the WRITE releases the record.
Prior to executing a WRITE operation, the . MARK keyword may be adjus-
ted to write a deleted or anon-deleted record. The WRITE operation trans-
fers the value in .MARK to the mark byte of the diskette record. X'00’ indi-
cates a deleted record. Values other than null indicate a non-deleted
record. For example, to write a deleted record:

I0D-name.MARK = X'00'
WRITE(10D-name.buffer,ERR: sn-1,E0F:sn-2)

The mark byte and the .MARK keyword apply only to DISKETTE. The
effect of the WRITE operation on .POSITION and .EOD keywords is dis-
cussed under WRITE in Section 6. Normal or abnormal completion codes
of a WRITE may be referenced via the .STATUS and .ERRCODE
keywords.

If an error condition occurs, the ERR exit is taken. If an end-of-file con-
dition occurs, the EOF exit is taken. If the EOF branch is taken on the
completion of the WRITE operation, the last available sector of the dataset
has just been used.

7-14

RELEASE

Purpose: To remove restricted access (without transferring data) on an external
dataset record which has been the object of a READLOCK or
CHECKEOD operation.

Format: RELEASE (10D-name,ERR:sn)

Description: The RELEASE operation is described in detail in Section 6 of this manual.
SETEOD

Purpose: To update the system-maintained EOD (end-of-data)

Format: SETEOD(10D-name, ERR: sn)

Description: The SETEOD operation is described in detail in Section 6 of this manual.

NOTE: Only the records between the beginning of the dataset and
the EOD are considered to be valid data records. Normally,
the EOD is only advanced in response to WRITE oper-
ations at EOD. The program, however, can alter the value
of EOD to any value between zero and EOE with the
SETEOD statement. The value in POSITION at the time
SETEOD is issued becomes the new EOD. Since, for DISK,
the value of EOE can grow to expansion of the dataset, the
SETEOD statement can also be used to preallocate space
for the dataset.

SETEOD can only be used with DISK/DISKETTE if
ACCESS = EXCLUSIVE.

FREESPACE

Purpose: To free allocated space beyond EOD (end-of-data).

Format: FREESPACE (10D-name, ERR:sn)

Description: FREESPACE (which applies only to DISK) is described in detail in Section 6.

7-15

CLOSE

Purpose:

Format:

Description:

To terminate access to an OPENed dataset on a DISK or DISKETTE.
CLOSE (10D-name, buffer ,ERR:sn)

When CLOSE is executed, the system-maintained EOD (which is updated
with each operation) is written to the dataset label of the VTOC. The
VTOC EOD parameter is updated only at this time. When a MOBOL
program signs off (see STOP in Section 6) any remaining open datasets for
that program are automatically closed by the system.

In addition to updating the EOD in the dataset label of the VTOC, the
CLOSE operation resets the leftmost bit of the STATE keyword to zero.
Thus, the STATE parameter may be examined to determine whether a
dataset is OPEN or CLOSEAd.

NOTE: The buffer length must be equal to 128 bytes.

7-16

SEQUENTIAL INDEX ACCESS METHOD

The Sequential Index Access Method is a means of accessing a dataset (the target dataset) via
an index. The index dataset consists of record pointers indicating the sort sequence (the record
pointers are sorted in ascending or descending order of the contents of the keyfields within the
target records). Any number of index datasets (with differing sort sequences or keys) may
reference the same target dataset.

DMU (Data Management Utility Program) is used to create the index dataset. The user
specifies sort fields which reference fields in the target dataset records.

The index dataset is later used by a MOBOL application program to retrieve records, in a sorted
order, from a target dataset. Using a sequential index requires two IOD’s in the MOBOL
program: one for the dataset containing the data records (the target dataset) and one for the
index dataset. The index IOD must contain the TARGET keyword referencing the target IOD
(TARGET=IOD-name of the target dataset). The index IOD must also include ACCESS=SEQ
(see ACCESS described under " KEYWORDS USED IN THE DATA DEFINITION SECTION”

on previous pages of this section).
The operations that may be used with the Sequential Index Access Method include:

OPEN
CLOSE
DELETE
READ
READLOCK
RELEASE
CHECKEOD
SETEOD
WRITE

These operations function similarly to operations under the Basic Access Method except that
all references for I/O operations are made through the index dataset. Operations using the
Sequential Index Access Method affect the parameters of the IOD associated with the index
dataset in the same manner as operations for the Basic Access Method. Parameters of the
target IOD are adjusted by these operations to effect access to the target dataset.

7-17

RANDOM INDEX ACCESS METHOD

The Random Index Access Method (RIAM) provides a means to access a target dataset by
record content (keyfield) rather than relative record position. Using this access method
requires the use of anindex of the target dataset. This index is created by the Data Management
Utility Program (DMU). DMU allows a user to specify keyfields by which the records are to be
accessed. DMU creates an index dataset, which is separate from the target dataset, and must
be identified by a separate IOD. The target dataset itself is not affected by DMU. The index
dataset created by DMU consists of short records (four bytes each) containing pointers to the
target dataset records. These short index records are positioned in the index dataset according
to the result of a hashing of the key values contained in the user-specified keyfields. (The term
hashing refers to a process of generating an arithmetic summation of the contents of the
keyvalue.)

The MOBOL application program supplies a particular KEYVALUE to RIAM. Then, RIAM
hashes that value, locates the short record in the index (based on the hash value) and obtains
the POSITION of the desired record in the target dataset.

A MOBOL program may use RIAM by supplying certain IOD and keyword declarations in its
Data Definition Section. These declarations include an IOD for the index dataset which
specifies ACCESS=RAN, TARGET=IOD-name of the target dataset and KEYVALUE=data-
name. The parameters of these keywords are detailed in "KEYWORDS USED IN THE DATA
DEFINITION SECTION” on previous pages of this section. Applicable operations are:

OPEN

Purpose: Obtain access to a dataset on DISK or DISKETTE.

Format: OPEN (10D-name, buffer,ERR: sn)

Description: Operations are similar to those described for the Basic Access Method.
Both the index dataset and the target dataset must be OPENed.

READ

Purpose: To transfer a data record from a dataset on DISK or DISKETTE to main
memory.

Format: READ (Index-10D-name, buffer,ERR:sn-1,EQF: sn-2)

Description: The field designated by the KEYVALUE keyword contains the desired

search parameter. Since this data field is an RCD field, a MOBOL move
statement (FIELD=Value : :) may be used to set the search parameter.

Once this data field is set, the READ is issued. RIAM will read the index
dataset, find the correct target record position and transfer the data from
the- target record to the buffer.

NOTE: The relationship between buffer length and record lengthis
as described for the READ operation of the Basic Access
Method.

7-18

READNEXT

Purpose:

Format:

Description:

READLOCK

Purpose:

Format:

Description:

RELEASE

Purpose:

Format:

Description:

DELETE

Purpose:

Format:

Description:

To transfer the next data record, having a keyvalue previously read, via an
index dataset.

READNEXT(Index=-10D-name,buffer,ERR:sn-1,EQF:sn=-2)
When more than one record contains the same key value, this statement
may be used to acquire the second record (and subsequent records, via

repeated executions). When the series of duplicated key values is
exhausted, the READNEXT operation takes the EOF:sn-2 branch.

To transfer adatarecord from a dataset on DISK or DISKETTE to memory
and to prevent any other user from reading that record.

READLOCK(Index-10D-name, buffer, ERR: sn=1,EQF:sn-2)

Operation of READLOCK for RIAM is identical to the operation described
for the Basic Access Method.

To remove restricted access (without transferring data) on an external
dataset record which has been the object of a READLOCK operation.

RELEASE(Index-10D-name, ERR: sn)

Operation for RELEASE for RIAM is identical to the operation described
for the Basic Access Method.

To remove a target record position entry from an index dataset.

DELETE(Index=- 10D-name, ERR: sn)

The DELETE operation is described in detail in Section 6 of this manual.

7-19

WRITE

Purpose:

Format:

Description:

INSERT

Purpose:

Format:

Description:

CLOSE

Purpose:

Format:

Description:

To transfer a data record of data from memory to a dataset on DISK or
DISKETTE.

WRITE(Index-10D-name,buffer, ERR:sn-1,EOF: sn-2)

The WRITE statement does not go through the hashing process, but in-
stead uses information in the target IOD provided by a prior READ to the
index dataset. In RIAM, WRITE uses the relative record position of the
target dataset just as in the Basic Access Method. That is, to WRITE a
record to a target dataset, Target IOD-name.POSITION must contain the
correct position value. This is accomplished as follows: READLOCK the
record using the KEYVALUE method. This action will generate the correct
target record position in the target IOD.

The subsequent WRITE (e.g., WRITE (Index-IOD-name,buffer,ERR:sn))
will transfer the data from the buffer to the correct record position in the
target dataset.

For every record added to the target dataset, a new index is required. For
every keyvalue modified in the target dataset, a new index entry is required
(the existing index entry to this record should be deleted). The new record
is created using a WRITE operation to the target dataset to establish the

target .POSITION and the record value. The INSERT operation, then is
executed.

To cause a new entry to be included in an index dataset for an existing (but
not previously indexed) record in the target dataset.

INSERT (Index~10D-name, ERR: sn)

The INSERT statement is described in detail in Section 6.

To terminate access to an OPENed dataset on a DISK or DISKETTE.

CLOSE (10D-name, buffer,ERR:sn)

Operations are similar to those described for the Basic Access Method. A
CLOSE must be executed against both the index dataset and the target
dataset.

7-20

The keywords used for I/O operations for DISK and DISKETTE are tabled below.

Table 7-4: Keywords Used For I/O Operations

Keyword

Basic Access Method

Sequential Index

Random Index

ACCESS

ACTUAL

BLKLEN

DATASET

EOD

EOE (DISKETTE only)

ERRCODE

KEYVALUE

MARK (DISKETTE only)

OUTLEN

POSITION

STATE

STATUS

TARGET

UNIT

VOLUME

XFERLEN

RS B N P e P e B e o b o o e o

b e e Bt Bt Bl Bl B B e e e e Bead e

b BT el e Bl Ea Ba B B B B e e b e e 2

7-21

TAPE 1/0 OPERATIONS

Magnetic tape consists of a series of datasets (files) each of which is terminated by a single tape
mark. The end of the last dataset (i.e., multifile) is terminated by double tape marks. Only one
OPEN is required to access all datasets (files) on the tape. Following the OPEN, the program
may process all or selected datasets on the magnetic tape volume.

Applicable operations for TAPE are:

OPEN

Purpose:

Format:

Description:

READ

Purpose:

Format:

Description:

WRITE

Purpose:

Format:

Description:

To gain access to a magnetic tape drive.
OPEN(I10D-name, buffer,ERR:sn)

When the tape dataset is OPENed, the leftmost bit of the .STATE keyword
is set to one (1) indicating the open state of the dataset.

The OPEN operation establishes the usage of the tape as EXCLUSIVE or
SHARED by reference to the STATE parameter in the IOD. Bit 6 of the
STATE parameter determines usage (“1"-EXCLUSIVE; “0”-SHARED). If
the tape is requested for exclusive use, the OPEN will be successful only if
no other user has the tape open as a file. If shared use is requested, the
OPEN will be successful if all other files open for this tape have also re-
quested shared use.

If the OPEN operation cannot successfully be completed, the error con-

dition which caused the failure may be referenced by means of the
.ERRCODE keyword (see Appendix E).

Transfer a record from a magnetic tape file to main memory.
READ (10D-name, buffer,EQF: sn, ERR: sn)

After a READ operation, .XFERLEN contains the length of the data record
just read.

ERRCODE and STATUS receive the completion code after READ is
executed.

Transfer a record from memory to a magnetic tape file.

WRITE(10D-name, buffer,EOF:sn-1,ERR: sn-2)

In a statement prior to the WRITE, the IOD-name.OUTLEN parameter
may be used to override the buffer length for one WRITE operation (see
"KEYWORDS IN THE EXECUTION SECTION” in this section).

ERRCODE and STATUS receive the completion code after WRITE is
executed.

7-22

MARK

Purpose:

Format:

Description:

BACKSPACE

Purpose:

Format:

Description:

REWIND

Purpose:
Format:

Description:

REWINDLOCK

Purpose:

Format:

Description:

CLOSE

Purpose:

Format:

Description:

Wirite a tapemark.
MARK (10D -name, ERR: sn)
The TAPE is positioned to the interrecord gap following the tapemark.

ERRCODE and STATUS receive the completion code after MARK is
executed.

Move the tape back one record or one tapemark.

BACKSPACE (10D-name, ERR: sn)

The BACKSPACE operation positions the tape back one record (or tape
mark).

ERRCODE and STATUS receive the completion code after BACKSPACE
is executed.

Position the tape to load-point.
REWIND(10D=name, ERR:sn)

The REWIND operation is described in detail in Section 6.

Position the tape to load-point and make the tape unavailable for use.
REWINDLOCK(10D-name, ERR: sn)

The REWINDLOCK operation is described in detail in Section 6.

Release access to the magnetic tape drive.
CLOSE(10D-name, buffer, ERR: sn)

When the tape file is closed, the leftmost bit of the STATE keyword is reset
to zero (0) to indicate that the file is no longer OPEN.

ERRCODE and STATUS receive the completion code after execution of
CLOSE.

7-23

SKIPFILE

Purpose: To position a magnetic tape beyond the next encountered tape mark.
Format: SKIPFILE(10D-name, ERR: sn)
Description: The SKIPFILE operation is described in detail in Section 6.

NOTE: Use of a data recorder as the magnetic tape drive is the
same as for standard TAPE except that the only applicable
operations are: OPEN, CLOSE, READ and WRITE.

Keywords used or referenced in I/O operations for TAPE are:

ERRCODE
OUTLEN
STATE
STATE
STATUS
UNIT
XFERLEN

7-24

PRINTER 1/0O OPERATIONS

There are two modes of controlling forms on the printer /O device: Basic and VFU. The basic
mode is the default value and is used for any file that has not been expicitly opened for VFU use.
The VFU mode is explained in this subsection on subsequent pages.

Applicable operations for PRINTER in either mode are as follows:

OPEN

Purpose:

Format:

Description:

CHECKFORMS

Purpose:

Format:

Description:

SETFORMS

Purpose:
Format:

Description:

Obtain access to the printer.

OPEN(10D-name, buffer, ERR: sn)

When OPEN is executed, the printer denoted by IOD-name is made avail-
able for data transfer. The leftmost bit of the STATE keyword valueis set to
one (1) to indicate that the printer is OPEN. Also, bit 6 is read to establish
the state of the device (see the STATE keyword under "/KEYWORDS
USED IN BOTH THE DATA DEFINITION AND THE EXECUTION

SECTION” on previous pages of this section). Bit 0 is read to determine the
source of SLEW information for individual print operations.

ERRCODE and STATUS receive the completion code after execution of
OPEN.

Obtain the current printer control and positioning information.
CHECKFORMS (10D-name, ERR: sn)

The CHECKFORMS operation is described in detail in Section 6.

To reset active printer control parameters.
SETFORMS (10D-name, ERR: sn)

The SETFORMS operation is described in detail in Section 6.

7-25

PRINT

Purpose:

Format:

Description:

WRITE

Purpose:

Format:

Description:

CLOSE

Purpose:

Format:

Description:

To activate printing with forms control.

PRINT(10D-name,buffer, EOF:sn-1,ERR: sn-2)

If, during a PRINT or WRITE operation, the slew value chosen causes the
line position to exceed the bottom of a form (lines per form), an end-of-form
is generated. The PRINT operation is performed before the EOF exit is
taken. The slew value supplied by the application program is not changed.

The POSITION parameter is adjusted to reflect the relative line number
following execution of PRINT.

In a statement prior to PRINT, OUTLEN may be assigned a value to over-
ride the buffer length for one PRINT operation.

ERRCODE and STATUS receive the completion code after execution of
PRINT.

To activate printing with forms control.

WRITE(10D-name, buffer,EOF:sn-1,ERR:sn-2)

The WRITE operation is identical to the PRINT operation.

Release access to the printer.

CLOSE (10D-name, buffer, ERR:sn)

When CLOSE is executed, the leftmost bit of the .STATE parameter value
is reset to zero (0) to indicate that access to the printer is no longer
available.

ERRCODE and STATUS receive the completion code after execution of
CLOSE.

7-26

VFU (VERTICAL FORMS UNIT)

The VFU mode is used when the forms control information as well as the print data is contained
in the buffer. The forms control information (slew value) is kept in the first position of the data
buffer. In the standard mode, the forms control information is contained in the IOD (.SLEW
keyword) and the buffer contains print data only.

Prior to OPEN time, selection of the VFU mode is made by setting the rightmost bit of the
.STATE parameter. The selection remains active until a CLOSE is executed on the device.

In the VFU mode, the program can skip or slew lines before or after PRINT. Slewing is to move
paper a specified number of lines relative to the current position. Skipping to a channel is
controlled on many printers by a carriage control tape which terminates paper motion upon
detection of a punched hole in the designated channel. With the Series 21 System, the carriage
control tape is simulated to support channels 1 through 12 for 132 lines.

The bit encoding for the slew value is:

0l1ln nnnn Skip to Channel N - then print
010n nnnn Slew N lines - then print
100n nnnn Print - then skip to Channel N
000n nnnn Print - then Slew N lines

101x XXXX Reset the VFU Table

The format of the buffer used to reset the VFU Table is shown below:

AQ Reset VFU Table
Lines per page
First channel setting

Second channel setting
[]

~ - L4
~ - °

I I Fifteenth channel setting.

The first byte of the VFU Table contains the value X’A0’ to indicate that the remaining contents
of the buffer specify printing control information. The second byte contains the value for lines
per page (the total number of lines between perforations on the paper). The subsequent 15 byte-
pairs describe the channel settings. Each channel setting consists of a channel number (1-12)
and the corresponding line number (1 to lines per page).

Subsequent to establishing values for the VFU Table, slew values in the data buffer are
interpreted accordingly. Whenever a slewing operation causes the paper to exit a line
containing either Channel 9 or Channel 12, a skip to Channel 1 (top-of-form) occurs.

7-27

Example:

particular VFU Table values.

The example below illustrates opening the printer for VFU mode and establishing

SAMPLE PROGRAM SEGMENT TO MODIFY VFU TABLE

10D:
RCD:

LIST = PRINTER;

VFUTBL
CONTROL(1)=X"'AQ"
LINESPP(1)=X"42"
DEFI (2)=x'0101"
DEF2 (2)=X'0207"
DEF3 (2)=x'0310"
DEF12 (2)=X'oCk2';
START

LIST.STATE=X"L4]"
OPEN(LIST,BUFFER,ERR:999)
PRINT(LIST,VFUTBL,EOM:810,ERR:999)

END

DEFINE PRINT DEVICE

RESET VFU TBL SLEW VALUE
SET LINES PER PAGE = 66

SET CHANNEL 1 TO LINE 1 (TOP-OF-FORM)
SET CHANNEL 2 TO LINE 7

SET CHANNEL 3 TO LINE 16

SET CHANNEL 12 TO LINE 66 (BOTTOM OF
FORM)

SET EXCLUSIVE USE/VFU MODE
OPEN PRINT DEVICE
REPLACE VFU TABLE

Keywords used or referenced in I/O operations for PRINTER are:

ERRCODE
FORMS
OUTLEN
POSITION
SLEW
STATE
STATUS
UNIT

7-28

COMPATIBLE CHANNEL I/O OPERATIONS

Compatible Channel (COMP CHAN) allows the interchange of data between the Series 21
System and the MDS System 2400.

Using this channel as an interface, the Series 21 System acts as an I/O device for the System
2400. The System 2400 views the Series 21 as a magnetic tape drive. For data interchange to
successfully occur, the System 2400 must be operating under the control of a program whose
operations are compatible with the MOBOL program that is directing the Series 21; that is,
operations between the two must correspond. For example, when the 2400 is executing a
READ, the corresponding operation for the Series 21 is a WRITE.

Both the Series 21 and the System 2400 issue error and status information. Error information is
passed between each system and its corresponding application program. Status information is
exchanged between the Series 21 and the System 2400.

When the System 2400 issues a command to an I/O device, it receives two status
values: ‘Oldstatus’ and 'Newstatus’. Oldstatus reflects the result of the last operation.
Newstatus reflects the ability of the device to carry out the current operation.

On the Series 21, Newstatus is determined by the system. When transmitted to the System
2400, it will reflect READY and WRITE ENABLED. Oldstatus is maintained by the system and
passed to the MOBOL application keyword .XFERSTATUS.

If required, this parameter may be modified by the application program by referencing
.XFERSTATUS prior to the next COMP CHAN operation.

XFERSTATUS has the following bit assignments which are compatible with Oldstatus and
Newstatus:

Byte 1 Byte 2

27 - INTERRUPT 27 - SHORT TRANSFER
26 - NOT BUSY 26 - 7 CHANNEL

25 - BUSY 25 - WRITE ENABLED
24 - TAPE MARK DETECTED 2¢ - RUNAWAY

2% - DATA CHECK 2% - REWINDING

22 - EQUIPMENT CHECK 22 - EOM DETECTED
21 - OVERRUN/RUNAWAY 21 - LOADPOINT

20 - READY 20 - LOCAL

Applicable operations for COMP CHAN are:

OPEN

Purpose: To obtain access to a compatible channel for the purpose of data inter-
change with the MDS 2400.

Format: OPEN(10D-name, buffer,ERR:sn)

Description: When the COMP CHAN dataset is OPENed, the leftmost bit of the

.STATE parameter is set to one indicating the open state of the dataset.
ERRCODE and STATUS receive the completion code after OPEN is exe-
cuted. Newstatus and the parameter XFERSTATUS are both initialized to
reflect READY, LOADPOINT and WRITE ENABLED. (The system 2400
will continue to receive a status of LOCAL until the next Series 21 is

issued.)
7-29

READ

Purpose:

Format:

Description:

To transfer data from the compatible channel to the Series 21 System.

READ(10D-name, buffer,ERR:sn-1,EQF:sn-2)

Oldstatus is updated from . XFERSTATUS and the Series 21 is available for
a System 2400 command to be received. The next action executed de-
pends upon the System 2400 command received.

2400 Command

Action

WRITE

WRITE TAPE
MARK

READ

Other

Commands

(Or No Command
i.e., Time Out)

Data is transferred through the channel to the
application buffer.

XFERSTATUS is set to reflect normal
WRITE termination (the System 2400 con-
tinues to receive a busy status until the next
Series 21 operation is issued).

Newstatus is updated to cancel the LOAD-
POINT status bit. . XFERLEN contains the
length of the data record just read by the
Series 21.

After the READ, control is returned to the
next inline statement.

.XFERSTATUS is set to the normal WRITE
TAPE MARK termination (the System 2400
continues to receive a busy status until the
next Series 21 operation is issued).

Newstatus is updated to cancel the LOAD-
POINT status bit and controlis returned to the
EOF:sn-2 exit.

The Series 21 READ is suspended and control
is returned to the ERR:sn-1 exit.

(If the Series 21 executes a WRITE operation
in response to this exit, the System 2400 oper-
ation receives the data from the application
buffer and the . XFERSTATUS parameter is
set to reflect normal READ termination. If the
Series 21 executes any other operation, pro-
cessing begins as described for that operation.
The System 2400 READ operation is can-
celled. Subsequent System 2400 activity is
application dependent.)

ERRCODE will indicate the command re-
ceived from the System 2400 and control is re-
turned to the ERR:sn-1 exit.

7-30

SENDEOF

Purpose:

Format:

Description:

To transfer an end-of-file indicator (tape mark) to the compatible channel.

SENDEOF (10D-name, ERR: sn)

Oldstatus is updated from .XFERSTATUS and the Series 21 is available for
a System 2400 command to be received. The next action executed de-
pends upon the System 2400 command received:

2400 Command

Action

READ

WRITE

WRITE
MARK

Other
Commands
(Or No Command,

i.e., Time Out)

The Series 21 sends the standard EOF data
block (which is a special one-byte record) to
the System 2400. . XFERSTATUS is set to re-
flect TAPE MARK DETECTED; this com-
bination will cause the System 2400 to recog-
nize an end-of-file condition. (The system 2400
continues to receive a busy status until the
next Series 21 operation is issued.)

Newstatus is updated to cancel the
LOADPOINT status bit.

The Series 21 SENDEOF is suspended and
control is returned to the ERR:sn-1 exit.

(If the Series 21 executes a READ operationin
response to this exit, the System 2400 oper-
ation transmits its data to the application
buffer and the . XFERSTATUS parameter is
set to reflect normal WRITE termination. If the
Series 21 executes any other operation, pro-
cessing begins as described for that operation.
The System 2400 WRITE operation is can-
cancelled. Subsequent System 2400 activity is
application dependent.)

The Series 21 SENDEOF is suspended and
control is returned to the ERR:sn-1 exit.

(If the Series 21 executes a READ operationin
response to this exit, the System 2400 oper-
ation is considered complete and the EOF:
sn-2 exit associated with the Series 21 READ is
taken. If the Series 21 executes any other
operation, processing begins as described for
that operation. The System 2400 WRITE
TAPEMARK operation is cancelled. Subse-
quent System 2400 activity is application
dependent.)

Control is returned to the ERR:sn-1 exit.
ERRCODE will indicate the command re-

ceived from the System 2400 and controlisre-
turned to the ERR:sn-1 exit.

7-31

WRITE

Purpose:

Format:

Description:

To transfer data to the compatible channel from the Series 21 System.

WRITE (10D-name,buffer,ERR:sn-1,E0F:sn-2)

In a statement prior to WRITE, .OUTLEN may be used to override the
buffer length for one WRITE operation.

OLDSTATUS is updated from .XFERSTATUS and the Series 21 is
available for a System 2400 command to be received. The next action exe-
cuted depends upon the System 2400 command received:

2400 Command

Action

READ

WRITE

Data is transferred through the channel from
the application buffer.

.XFERSTATUS is set to reflect normal READ
termination (the System 2400 continues to
receive a busy status until the next Series 21
operation is issued).

Newstatus is updated to cancel the LOAD-
POINT status bit.

.XFERLEN will be updated to indicate the
length of the data record just transferred and
control is returned to the next in-line
statement.

The Series 21 WRITE is suspended and con-
trol is returned to the ERR:sn-1 exit.

(If the Series 21 executes a READ operationin
response to this exit, the System 2400 oper-
ation transmits its data to the application
buffer and the .XFERSTATUS parameter is
set to reflect normal WRITE termination. If the
Series 21 executes any other operation, pro-
cessing begins as described for that operation.
The System 2400 WRITE operation is can-
cancelled. Subsequent System 2400 activity is
application dependent.)

7-32

2400 Command Action

WRITE TAPE The Series 21 WRITE is suspended and con-
MARK trol is returned to the ERR:sn-1 exit.

(If the Series 21 executes a READ operationin
response to this exit, the System 2400 oper-
ation is considered complete and the Series 21
application EOF:sn-2 (associated with the
READ) exit is taken. If the Series 21 executes
any other operation, processing begins as
described for that operation. The system 2400
WRITE TAPEMARK operation is cancelled.
Subsequent System 2400 activity is appli-
cation dependent.)

Other Control is returned to the ERR:sn-1 exit.
Commands ERRCODE will indicate the command re-
(Or No Command ceived from the System 2400 and control is re-
i.e., Time Out) turned to the ERR:sn-1 exit.

CLOSE

Purpose: To release access to the compatible channel.

Format: CLOSE(10D-name, buffer, ERR:sn)

Description: OLDSTATUS is updated from . XFERSTATUS and Newstatus is updated

to show LOCAL. The Series 21 is available to allow the System 2400 to take
status. ERRCODE receives the completion code after execution of
CLOSE.

When the compatible channel is closed, the leftmost bit of the .STATE
keyword is reset to zero.

MOBOL keywords used by the Series 21 System in 1/O operations for COMP CHAN are:

ERRCODE
OUTLEN
STATE
STATUS
XFERLEN
XFERSTATUS

7-33

SECTION 8: STATION I/O OPERATIONS

The STATION is an interactive I/O device consisting of a keyboard and a video display screen
(CRT). Station operations may be directed by MOBOL application programs to perform the
following functions:

1. Solicit data from the keyboard.

2. Format the entry of data using screen displays, guide messages, etc.

3. Check correctness of entered data by comparing to predefined parameters.

4. Report run-time status during execution of application programs.

5. Accept operational information from the keyboard operator (e.g., SEL MODE).

6. Display error messages and obtain responses (and differentiate these responses from
normal entry).

7. Read data on the display screen and transform the images into data that can be
processed by the application program.

The components involved with station operations may be divided into two categories:

1. Structural or definition components which define parameters for the station device and
define the format for data to be entered through the keyboard. These components
appear in the Data Definition Section. They are:

10D
KET

2. Operational or execution components which direct operations of the station during pro-
gram execution. These components appear as statements in the Execution Section.

They are:
KENTER RESUMERR READSCREEN
KVERIFY ERROR READKEY
RESUME NOTIFY

Keywords associated with these components are described in Section 7.

KEYWORDS USED IN THE DATA DEFINITION SECTION

The keywords that may be used in the Data Definition Section in the [OD statements for the
station relate to error message text. This text is used in the error-sequence associated with the
internally detected keying errors.

When an error is detected and the corresponding message has been established by the IOD, the
message text is displayed on line 2. Also, the Error Tone/Flasher is activated; RESET must be

keyed to acknowledge the message. Following depression of RESET, the original line 2 display is
restored and operation continues. (For a description of the resulting message display, see the
ERROR statement later in this section.)

When the corresponding message has not been established by the IOD, the Error Tone/Flasher
is activated and RESET must be keyed to acknowledge the message.

An error message may be given a display value by means of a keyword assignment in the IOD.
The format is:

KEYWORD = alphanumeric string

Each keyword and the condition under which its value is displayed are tabled below:

KEYWORD ERROR CONDITION

BOUND Incorrect key used to release a field (e.g., SKIP keyed for an EXIT
field).

FILTER Incorrect type of data keyed for a field (e.g., an alphabetic character

keyed for a NUMERIC field).
KEYBOARD Hardware error, queue overflow, unassigned key or invalid dead key
sequence (e.g., the application is more than 15 keystrokes behind the

operator when the 16th key is struck).

MCSEQ Multi-code error (i.e., the first or second key after depression of multi-
code is not a hexadecimal digit).

MISCOMP Character miscompare during a field verify operation.

OPERATIONAL Inappropriate control or data key (e.g., data keyed when the cursor is
positioned between two fields in screen mode).

SIGNIF Incorrect number of significant data characters present when field re-
lease is attempted.

The length of the string assigned to a keyword is limited to 38 characters.

8-2

Example: I0D: CRT = STATION

MCSEQ = 'MULTI-CODE ERROR'

’
Keywords appearing in the KET statement are presented under context specifications for the
KET in Section 5.

KEYWORDS USED IN THE EXECUTION SECTION

Keywords that may be used in the Execution Section relate to the status and parameters of
station operations. The format for a reference is:

IOD-name ¢ keyword

KEYWORD DEFINITION

KETNUM A one-byte binary number designating the currently active KET. The
first defined KET in the Data Definition Section is numbered zero
(X’00°) and each subsequently defined KET is assigned a number in

sequence.
NOTE Each is a one-byte binary number corresponding to the TYPE and
TYPE NOTE values associated with the currently active KET. TYPE and

NOTE values may be used to represent anything desired or required
by the programmer.

FLDCOUNT A one-byte binary number designating the number of fields within the
currently active KET.

FLDNUM A one-byte binary number designating the currently active field of the
currently active KET. The first field of the KET is always assigned a

zero (0); each subsequently defined field within the KET is assigned a
number in sequence.

CURFLD An alternate name for the currently active field of the currently active
KET. See the RESUME statement for details.

8-3

KEYWORD

SHIFT

KEYSTROKE

MATCH

CHANGE

CONTROL
NUMPAD
NOLABEL
XCONTROL

LINE

UNIT

DEFINITION

A one-byte binary number designating the preferred shift. The value
normally reflects the preferred shift for the current field but may be set

by the application as a parameter for the READKEY operation.
SHIFT is described in detail in Section 5 of this manual. The shift

parameter encoding as tabled:

PREFERRED (o))

SHIFT PARAMETER
LETTER BINARY ZERO (X'00")
DIGIT BINARY ONE (X'01')
TEXT BINARY TWO (X'02))

A three-byte binary number which is incremented by one for each
keystroke.

A three-byte binary number which is incremented by one for each
data key that results in no change to the current data character.

A three-byte binary number which is incremented by one for each
data key that results in a change to the current data character.

These status parameters are set when a station operation is inter-
rupted for application processing. Each parameter is one-byte in
length. The value of the control key, if any, that caused the inter-
ruption is recorded in its appropriate keyword parameter. The other
parameters will contain a code of X'’FF" indicating that they do not
record the control key value.

A one-byte binary number used in conjunction with READSCREEN.
The initial-value is one.

A one-byte value designating the source for key data. The values
currently assigned signify that the source for key data is constant for
the execution of the application and designate the appropriate station
as tabled:

UNIT Value Source for Key Data
X001’ Station No. 1
X'02' Station No. 2
X'03’ Station No. 3
X'04’ Station No. 4

KENTER

Purpose: To activate a KET for key entry.
Format: KENTER (10D-name, KET-name, ESC:sn-1, ERR:sn-2)
Description: The KET specified by KET-name is activated and the key entry pro-

cess is executed in accordance with the specifications contained in
KET-name. The I[OD-name must designate the STATION device.

When the KENTER statement is executed, display and keying oper-
ation are primarily controlled by a key entry process which is defined
by the active KET. This process is outlined as follows:

1. The KETNUM, TYPE and NOTE keyword fields of the IOD are
transcribed from the corresponding fields of the KET.

2. The CRT is reconfigured, if necessary, to correspond to the
CRTSIZE keyword setting of the KET. The section of the display
described by the BLANK keyword of the KET is space filled.

3. The operator prompting messages are displayed.
4. The contents of all data fields are displayed.

5. The FLDNUM keyword is set to zero. (If the clause INIT=
ESCAPE is coded in the KET, the initial-value of FLDNUM may
be set by the application. The statement in the ESC clause is exe-
cuted at this point so that a specific field may be designated as the
initial field.) Beginning with the field identified by FLDNUM, each
data field is selected for processing in the order in which the field
appears in the KET. The MODE parameter of the associated KET
statement determines which of the two variations of the key entry
process is to be employed. See Field Mode and Screen Mode on
subsequent pages.

When the last field has been selected and processed, execution of the KENTER statement is
complete and control passes to the next statement. Transfer to the next statement occurs
immediately if the RELEASE=AUTOMATIC clause is present in the KET; otherwise, ENTER

must be pressed.

During the execution of the KENTER statement, the key entry process may be interrupted and
control may be transferred to a labeled statement. This can be effected either by specifying a
field post-processing or pre-processing routine in the KET, or the operator can signal an escape
request which causes a transfer of control to the associated statement labeled sn-1.

The operator signals the intention to escape by pressing certain labeled control keys, a numeric
pad key when the NUMPAD=ESCAPE clause is present in the KET, or any unlabeled key.
These keys are called user-defined keys. When control passes to the statement labeled sn-1, the
CONTROL, NUMPAD, or NOLABEL keyword indicates which user-defined key caused the
escape. If the "ESC:sn-1” clause is omitted from the KENTER statement, depression of any
user-defined key is ignored and the execution of the key-entry process is continued.

Control can be returned to an interrupted execution of the key-entry process using the

RESUME or RESUMERR statement. 8.5

The action of both system and user-defined control keys is presented in Tables 8-1 and 8-2 on
subsequent pages.

If the KENTER statement cannot be executed due to parameter errors or logically inconsistent
operation sequences (e.g., directing that execution be RESUMED at a non-existing field), an
error condition results and the ERR exit is taken. If no ERR exit is coded, execution of the
program is cancelled.

3 ~-@

|
+ — 2 & D/s
H -3 -iaak
PROG > : ; — [5
= - NHAERAEER - [-§ | BRBE
SEL NUMERIC ? " - : NEAE i

-

MODE zxclvisnNn|m] . . -

DATA ENTRY ONE KEYBOARD

)

- BEHE - B

1

o

—

Y U |
2

3

0]
6
L

ALPHA - 0

(2 3) (@
| @ | = s % |[A] &l * |«) -+
EHEHEEEERREN - |- - fBnE
mc — ! J— 9’8 I'scan 4 5 6
aflwleflr|| T v |u Lo P | ! OFF

EXIT

ADV

?
SEL SHIFT) SHIFT

AET:
RC [<o
.n
]
<]
m
)>
%]
o
m
(]
I
—
X
[

BEVAN
V

N
x
o
<
w
z
£

RESET ENTER

&
-
|

TYPEWRITER KEYBOARD

) 1@ @)
-~ - B EHE - HHE
- - HAAABENHEE |
E BT e
B OB e -1

4

DATA ENTRY TWO KEYBOARD
Figure 8-1: Identification Of Operator STATION Control Keys

Operator STATION symbolic control keys are identified as follows for all keyboards: .

1. je— = FIELD BACKSPACE
2 -9 = FIELD FORWARD
3. L = CHARACTER BACKSPACE
4 = CURSOR CONTROL KEYS:
A & A. DOWN
B 4 B. UP
C—» C. RIGHT
D & D. LEFT

8-6

FIELD MODE

When the MODE=FIELD clause is specified in the KET, the order of field selection is
determined primarily by the ordering of the field-specifications within the KET or by explicit
program direction.

The program may interact with the key entry process by using field processing routines
identified in the KET. A field post-processing routine, designated within a field specification by
“sn-post”, is executed following the completion of field key entry to allow program examination
of the field. A field pre-processing routine, designated by ” sn-pre” is executed upon re-selection
of a field in anticipation of re-keying the field (e.g., Field Backspace).

Field completion is operator-initiated by the depression of one of the following:

1. An appropriate field-release key (SKIP, EXIT or-);

2. A datakey in the rightmost position of a field for which mandatory boundary checking is
not specified; or,

3. The Field Forward key.

The field post-processing routine (sn-post) is then executed, provided that the following field
validation tests are successful:

1. Each character within the field is of the proper character class; and,
2. The field contains the required number of significant characters.

Otherwise, the key entry process signals an error to the operator by means of the error-
sequence and the appropriate error message text.

Field post-processing routines can:

1. Inspect the completed field to accept or to reject the field according to application-
dependent criteria.

2. Alter or generate the contents of related KET fields.

3. Perform application-related computations (e.g., increment an accumulator).

Field re-selection is operator-initiated by the depression of the Field Backspace key when the
cursor is at the first position of a field. The field pre-processing routine (sn-pre) is then executed
for the preceding field (provided that such a field exists).
Field pre-processing routines can:

1. Accept or reject the operator implied intention to re-key the field.

2. Alter the contents of related KET fields.

3. Perform application-related computations (e.g., decrement an accumulator).

An omitted field-processing-routine designator for the field signifies that no program interaction
is required for the corresponding event.

8-7

Because of the serial nature of field selection, either forward or backward, the operator may not
select fields for entry in an order which comprises the integrity of balanced sn-post and sn-pre
field processing exits.

Two macro control keys are provided to facilitate operator-initiated restart or premature
termination: HOME and ENTER. HOME corresponds to the number of repeated depressions
of the Field Backspace key (l#—) required to position the cursor to the first field of the KET
which allows key entry (i.e., not a PROTECTED field).

ENTER corresponds to the number of repeated depressions of the Field Forward key (—#)

required to position the cursor after the last field of the KET; the next statement following the
KENTER statement is then executed.

When the HOME or ENTER keys are used, the field processing routines are activated (as
described above) for each field affected by the positioning. The macro control-key sequence
terminates prematurely if one of the following occurs: ‘

1. A field validation test is failed;

2. The field processing routine rejects the action (i.e., issues a RESUMERR); or,

3. The field processing routine explicitly selects a field out of sequence (i.e., a directed
RESUME).

The four cursor control keys (¢ # » «) and the Character Backspace key (¢) can be

used to position the cursor within a field for individual character correction. Any depression of
these keys which would result in the cursor being positioned outside of the field is ignored.

8-8

SCREEN MODE

When the MODE=SCREEN clause is specified in the KET, the order of field selection is
determined primarily by the ordering of the field-specifications within the KET. Operator-
controlled cursor positioning or explicit program direction may be used to alter the order of field
selection.

The program may interact with the key entry process by using field processing routines
identified in the KET. In a manner similar to FIELD mode, the post-processing routine (sn-post)
is executed following completion of field key entry. The field pre-processing routine (sn-pre) is
executed upon re-selection of a field in anticipation of re-keying the field.

In SCREEN mode, the criteria for completion and re-selection differ slightly from those used in
FIELD mode.

In SCREEN mode, the operator may position the cursor anywhere on the display whenever a
field is not selected. A field is selected from the time that field re-selection takes place (described
below) until field completion occurs (also described below).
Field re-selection is operator-initiated by the depression of a:

1. Data key;

2. Field release key (SKIP, EXIT, or-); or,

3. User-defined key.

In these cases, the cursor must be positioned within a field. The pre-processing routine (sn-pre)
for the field is executed when one of the above keys is first depressed within a field. The re-
selection key itself is retained in anticipation of the response from the field pre-processing
routine.
The field pre-processing routine can:

1. Either accept or reject the intention to re-key the field.

2. Alter the contents of related KET fields.

3. Perform application-related computations.
Because the re-selection key has not yet caused the field contents to be modified, the field

pre-processing routine can access the original field contents. If the field pre-processing routine
rejects the re-selection, the original re-selection key is not further processed.

Field completion is possible only if a field has been successfully re-selected and has not already
been completed. In this case, field completion is operator-initiated by the depression of one of
the following:

1. An appropriate field release key (SKIP, EXIT, or -);

2. A data key in the rightmost position of a field for which mandatory boundary checking is
specified;

3. The Field Forward key (—);

4. The Field Backspace key (le—), if the cursor is at the first position of the field; or,

5. A cursor control key (¢4 —» e—) which would result in a new cursor position outside
the field display area.

The field post-processing routine (sn-post) is then executed, provided that the following field
validation tests are successful:

1. Each character within the field is of the proper character class; and,
2. The field contains the required number of significant characters.

The field post-processing routine can:

1. Inspect the completed field and either accept or reject the field according to appli-
cation-dependent criteria.

2. Alter or generate the contents of related KET fields.
3. Perform application-related computations.

An omitted field-processing-routine designator for the field signifies that no program interaction
is required for the corresponding event.

The operator may not compromise the integrity of balanced sn-pre and sn-post field processing
exits, even though the fields can be selected in a non-serial order.

When no field is currently selected and the cursor is moved through a field as an intermediate
step in using the cursor positioning keys or field positioning keys, the field processing routines
for these fields are not executed. The operator must explicitly re-select the field as described
earlier.

Two macro control keys are provided to facilitate operator-initiated restart or premature
termination: HOME and ENTER. HOME corresponds to the repeated depression of the field
backspace key (M~) required to position the cursor to the first field of the display.

ENTER corresponds to the repeated depression of the Field Forward key (—#}) required
to position the cursor after the last field of the display; the next statement following the KENTER
statement is then executed.

When the HOME or ENTER keys are used, the field not processed routine and field validation
tests are performed (as described for FIELD mode) only for the originating field (if it is re-
selected but not yet completed). The macro control key sequence is terminated prematurely in
the same way as described for FIELD mode.

8-10

CONTROL KEYS

Table 8-1 describes all labeled control keys. Unlabeled keys are user-defined. Table 8-2 indicates
the values returned in the CONTROL, NUMPAD, NOLABEL and XCONTROL keywords
which may be used in field processing routines.

TABLE 8-1: Labeled Control Keys

KEY KENTER KVERIFY
CODE Pressed simultaneously with Same as KENTER
another key to modify its
meaning. Produces a ‘Third
Shift’ capability when used
with data keys.
DUP User-defined User-defined
CODE/DUP
DS OFF User-defined User-defined
CODE/DS OFF
ENTER ‘Used to acknowledge com- Same as KENTER
pletion of the active KET and
signal a release. Also serves as
a macro control key which per-
forms the analogous function
of repeated depression of the
Field Forward key until the
cursor is extinguished (after
the last field) and a release is
signaled.
CODE/ENTER User-defined User-defined
EXIT Exit key which causes data to Same as KENTER; while veri-
(LEFT ZERO be adjusted to the right fying, the cursor stays in the first
OR RIGHT boundary with shift specified position of the field until the first
ADJUST (zero or space) fill characters non-fill data key is pressed. The

to the left. The -’ (minus) key is
used in lieu of ‘EXIT’ for nega-
tive numbers.

fill characters are compared;
then the first data character
keyed is compared with the first
non-fill character. If neither
agree, an error occurs. When fill
characters are in error, the
cursor is at the start of the field.

8-11

TABLE 8-1: Labeled Control Keys (Cont’d.)
KEY KENTER KVERIFY
FIELD BACKSPACE | Screen Mode — When the
cursor is between two fields,
the Field Backspace key pro-
vides cursor movement to the
first position of the nearest
field to the left (or above) the
current cursor position. When
the cursor is within a field, the
operation is identical to field
mode. Field Backspace is ig-
nored if cursor is in the first
display position of the first field
of the KET.
CODE/FIELD User-defined User-defined
BACKSPACE
CHARACTER Provides a destructive (space Same as KENTER: Initiates a
CORRECT fil) cursor movement one verified character correction
position to the left. Character sequence.
is ignored when the cursorisin
the first position of a field.
Screen Mode — Allows cursor Ignored
positioning, a character at a
time.
CURSOR Field Mode — Same as Screen
POSITION Mode except ignored if re-
sulting cursor position lies out-
side of the current field.
EXIT When data does not match, the
(LEFT ZERO cursor is at the first non-fill
OR RIGHT character.
ADJUST)
After verifying the last character,
either ‘EXIT’ or ‘-’ is pressed.
‘EXIT’ and the - key also verify
the sign in the case of a numeric
field. If a verification error occurs
while verifying the sign, a ‘SIGN’
error-sequence is initiated.
HOME Serves as a macro control key. Same as KENTER, except only

It performs the analogous
function of repeated de-
pression of the Field Back-
space key until the cursor is in
the first field (of the KET) that
is not a protected field.

fields marked Verify are con-
sidered. The verified field correc-
tion sequence is associated only
with the final field.

8-12

TABLE 8-1: Labeled Control Keys (Cont’d.)
KEY KENTER KVERIFY
CODE/HOME User-defined User-defined
MC The MC key provides a Same as KENTER: the char-
(MULTICODE) method of keying any of 256 acter is verified after its last
EBCDIC codes. EBCDIC keystroke.
codes are entered by pressing
‘MC’ and then keying two
hexadecimal digits. Valid
hexadecimal digits are: 0, 1, 2,
3, 4) 5’ 6, 7’ 8’ 9’ A’ B’ C’ D, E’
F. Non-displayable graphics
will appear as a multiple slash
character on the display.
PROG ADV User-defined User-defined

CODE/PROG ADV

RESET Used to acknowledge an error Used to acknowledge an error
condition. condition.

CODE/RESET User-defined User-defined

SCAN User-defined User-defined

CODE/SCAN

SEL MODE User-deﬁned User-defined

CODE/SEL MODE

SKIP

Field Exit key which causes
data to remain aligned with the
left boundary and remaining
unkeyed positions to be space
filled. When Skip boundary
checking is mandatory, failing
to exit with the ‘SKIP’ key re-
sults in a ‘BOUNDARY’ error-
sequence.

Same as KENTER; pressing
‘SKIP’ during verification causes
the remainder of the field to be
checked for spaces. If a non-
space character is encountered,
the cursor stops in that position
and a ‘MISCOMPARE’ error-
sequence is initiated. After pres-
sing ‘RESET’, the non-space
character can be replaced with a
space by pressing ‘SKIP’.
KVERIFY, then, continues to
check the remainder of the field
for spaces.

FIELD FORWARD

Field Mode — Moves the
cursor, left-to-right, to the first
position of the next data field
(in the KET) whose source is
key. If pressed in the last field,
the cursor is extinguished and
subsequent depressions are
ignored.

Field Escape; the verification
Compare Test is considered
successful for the current field.

8-13

TABLE 8-1:

Labeled Control Keys (Cont’d.)

KEY

KENTER

KVERIFY

FIELD FORWARD
(cont’d.)

Screen Mode — When the
cursor is within a field, the
operation is identical to field
mode. When the cursor is be-
tween two fields, the Field
Forward key moves the cursor
to the first position of the next
key field to the right (or below)
the current position. If pressed
in the last field, cursor is ex-
tinguished and subsequent
depressions are ignored.

CODE/FIELD
FORWARD

User-defined

User-defined

FIELD BACKSPACE

Field Mode — When the
cursor is located in the first
position of a field, this key pro-
vides cursor movement to the
first position of the first non-
protected field previously
specified. If the cursor is origi-
nally located in other than the
first position of the field, this
key provides cursor move-
ment to the first position of the
current field. Field Backspace
is ignored if the cursor is in the
first position of the first non-
protected field.

Same as KENTER: Initiates a
verified field correction
sequence.

8-14

TABLE 8-2: Values Returned In CONTROL, NUMPAD, NOLABEL And XCONTROL

HEXADECIMAL VALUE
KEY KEYWORD WITHIN FIELD | OUTSIDE FIELD
SEL MODE CONTROL 00 80
PROG ADV CONTROL 01 81
SCAN CONTROL 02 82
DUP CONTROL 03 83
DS OFF CONTROL 04 84
CODE/SEL MODE CONTROL 05 85
CODE/PROG ADV CONTROL 06 86
CODE/SCAN CONTROL 07 87
CODE/DUP CONTROL 08 88
CODE/DS OFF CONTROL 09 89
CODE/RESET CONTROL 0A 8A
CODE/ENTER CONTROL 0B 8B
CODE/ CONTROL 0C 8C
CODE/HOME CONTROL 0D 8D
CODE/ CONTROL OE 8E
NONE CONTROL FF FF
0 NUMPAD 10 90
1 NUMPAD 11 91
2 NUMPAD 12 92
3 NUMPAD 13 93
4 NUMPAD 14 94
5 NUMPAD 15 95
6 NUMPAD 16 9%
7 NUMPAD 17 97
8 NUMPAD 18 98
9 NUMPAD 19 99
NONE NUMPAD FF FF
INSTALLATION
DEFINED NO LABEL 20 - 2E A0 - AE
NONE NO LABEL FF FF
— XCONTROL 30 BO
e XCONTROL 31 Bl
HOME XCONTROL 32 B2
ENTER XCONTROL 33 B3
) XCONTROL 34 B4
\ XCONTROL 35 B5
-« XCONTROL 36 B6
-+ XCONTROL 37 B7
S XCONTROL 38 B8
(INIT=ESCAPE) XCONTROL 39 B9
NONE XCONTROL 3F FF

8-15

KVERIFY

Purpose: To activate a KET for key verify
Format: KVERIFY (10D-name, KET-name, ESC:sn-1, ERR:sn-2)
Description: The KET specified by KET-name is activated and the key-verification

process is executed in accordance with the specifications contained in
KET-name. The IOD-name must designate the STATION device.

When the KVERIFY statement is executed, display and keying oper-
ations are primarily controlled by a key-verification process which is
defined by the active KET. The process is identical to KENTER with

the following exceptions:

1. Only fields for which VERIFY is specified in the KET are acted
upon by the key-verification process unless a directed RESUME
or RESUMERR specifically indicates that a field is to be verified.

2. FIELD mode is always employed even if the MODE=SCREEN
clause is present in the KET.

3. The contents of all data fields are initially displayed. After the first
data key is depressed, those verify fields defined later in the KET
are blanked on the display pending their verification.

4. Keying into a field does not alter the field contents (except as
described below), instead the keyed data is used as a source for
comparison with the field content.

During key verification, each character is compared with the corres-
ponding character in the data field.

If the characters do not compare, a miscompare error is posted as
follows:

1. The MISCOMP error message is displayed on line 2;
2. The cursor remains at the position in question;
3. All verify fields are displayed.

The RESET key is used to acknowledge the error condition and re-
store the display to the pre-error state. The first character following
RESET is accepted if the character keyed agrees with either the
character in the data field or the character that caused the error. If the
first character following RESET is not accepted, a miscompare error
again occurs and the cycle is repeated.

A verified-field-correction sequence can be used to correct an entire
field with a minimum number of keystrokes. The sequence is initiated
by pressing Field Backspace (je—). The cursor moves to the first
position of the field and the correct datais keyed. Data field content is
displayed only to the left of the cursor. When the corrected data has
been keyed, the field is blanked on the display and the cursor is moved
back to the first position from which point key verification takes place.
Similarly, a verified-character-correction sequence is initiated by
pressing Character Backspace («—) invoking an analogous cor-
rection sequence (i.e., for a field of one character).

8-16

RESUME

Purpose:

Format:

Description:

To return control to key entry or key verify.

1. RESUME:

2. RESUME: (KET-field-name)

To allow a field pre-processing or post-processing routine to return
control to an interrupted key entry or key verification process.

When a branch to the statement labeled sn-pre or sn-post occurs, key
entry or key verification processing is suspended, pending further dir-
ection from a field-processing routine that has the ability to specify the
next field to be processed. Keystrokes are buffered during the sus-
pension. When the field-processing routine specifies the next field to
be processed, the buffered keystrokes are retrieved and processedin
accordance with the specification of the selected field.

The operation is as follows:

1. If the FLDNUM keyword is not changed by the field processing
routine, then the next cursor position is determined by: the
MODE clause of the KET; the field-processing-routine type; and,
the condition which caused the routine to be executed. Details
concerning cursor positioning are tabled later in this section.

If the FLDNUM keywordis changed, the cursor moves to the first
position of the corresponding field, regardless of MODE, field-
processing-routine type and/or cause of execution. This is called
a directed RESUME.

2. The cursor is moved to the first position of the designated field,
regardless of MODE, field-processing-routine type and/or cause
of execution. This is also a directed RESUME.

The RESUME statement may be used to return control to key entry
or key verification from a control-key-processing routine (sn-1), an
error routine (sn-2) and/or the next in-line statement to the KENTER
or KVERIFY.

A processing routine may reference the contents of the current field
using an alternate reference notation:

I0D-name.CURFLD
When this form of reference is coded, the processing routine may be
used for more than one field within the application. The field which is
reference through the CURFLD keyword corresponds to the KET
field which contains the cursor and, therefore, repeatedly changes.

8-17

A processing routine may change the field to which CURFLD corres-
ponds by changing the value of FLDNUM. For example, the following
sequence would select the first field of the active KET, asterisk-fill the
field and finally continue processing with that field:

|0D-name.FLDNUM :00:

|0D-name. CURFLD PN

RESUME

If a processing routine assigns a value to FLDNUM and the value is
less than FLDCOUNT, the designated field is activated and pro-
cessing continues in sequence. If the value is equal to FLDCOUNT,
the entry or verify process is continued at KET end; that is:

® the next processing statement within the exit routine is not exe-
cuted; and,

® the statement following the KENTER/KVERIFY is executed next if
RELEASE=AUTOMATIC is coded; or,

e the ENTER key is solicited if RELEASE=MANUAL is coded.
If the value is greater than FLDCOUNT, the next processing state-
ment within the exit routine is not executed and an error condition

results.

Table 8-3 indicates the cursor position following execution of the
RESUME statement (as described for Format A.)

8-18

Table 8-3: Cursor Positions Following Execution of Non-Directed RESUME

PROCESSING | CAUSE NEXT
ROUTINE OF CURSOR
MODE TYPE EXECUTION POSITION
FIELD SN-POST Field Release key First position, next field
SN-PRE Field Backspace key First position, new field
SN-1 User-defined key Current position, current field
SN-2 Error Program terminated
IN-LINE Resume after KENTER or | First position, first field of
KVERIFY statement last active KET
SCREEN | SN-POST Field Release key First position, next field
SN-POST Field Forward key First position, next field
SN-POST Field Backspace key First position, new field
SN-POST Cursor keys New cursor position
SN-PRE Data key (to initiate field Current position, current field
re-selection)
SN-PRE Field Release key (to Current position, current field
initiate field re-selection)
SN-PRE User-defined key Transfer control to SN-1
SN-1 User-defined key (when Current position, current field
cursor is within data field)
SN-1 User-defined key (when cur-| Current position, key ignored
sor is outside of a data field)
SN-2 Error Program terminated
IN-LINE Resume after KENTER or | First position, first field of

KVERIFY statement

last active KET

8-19

RESUMERR

Purpose:

Format:

Description:

To return to key-entry or key-verify.

1.

RESUMERR
RESUMERR (B)
RESUMERR (B, KET-field-name)

RESUMERR (,KET-field-name)

Identical to RESUME except that an error is also posted.

The operation is as follows:

1.

If the FLDNUM keyword is not changed by the exit routine, then
an error-sequence is initiated at the field which contains the
cursor. The next cursor position is determined by: the MODE
clause of the KET; the field-processing-routine type; and, the
condition which caused the routine to be executed. Details con-
cerning cursor positioning are tabled later in this section.

If the FLDNUM keyword is changed by the field-processing-
routine, the error sequence is initiated in the first position of the
field indicated by FLDNUM. This is called a directed
RESUMERR.

Same as described for Format 1, except that field B is used as an
error message on the second line of the display during the error
sequence.

Same as described for Format 2, except that the cursor position
relates to the explicitly designated field. This is also a directed
RESUMERR.

Same as described for Format 1, except that the cursor position

RESUMERR.

The error sequence arising from the use of RESUMERR is as des-
cribed for internally-detected keying errors, except that the message
text is derived from field B.

Table 8-4 indicates the cursor position following execution of the
RESUMERR statement (as described for Format 1).

8-20

Table 8-4: Cursor Positions Following Execution Of Non-Directed RESUMERR

PROCESSING | CAUSE NEXT
ROUTINE OF CURSOR
MODE TYPE EXECUTION { POSITION
FIELD SN-POST Field Release key First position, current field
SN-PRE Field Backspace key First position, current field
SN-1 User-Defined key Current position, current field
SN-2 Error Program terminated
IN-LINE Resume after KENTER or | First position, first field of
KVERIFY statement last active KET
SCREEN | SN-POST Field Release key First position, current field
SN-POST First position, current field
SN-POST Field Backspace key First position, current field
SN-POST Cursor key First position, current field
SN-PRE Data key (to initiate Current position, key ignored
Field re-selection)
SN-PRE Field release key (to Current position, key ignored
initiate field re-selection)
SN-PRE User-defined key Current position, key ignored
SN-1 User-defined key (when Current position, current field
cursor is within a data field)
SN-1 User-defined key (when cur- | Current position, key ignored
sor is outside of a data field)
SN-2 Error ' Program terminated
IN-LINE Resume after KENTER or | First position, first field of

KVERIFY statement

last active KET

8-21

ERROR

Purpose:

Format:

Description:

NOTES:

To display an exception message for operator acknowledgement.
ERROR (B)

The operation proceeds in several steps as detailed:

1. The Error Line (line of the CRT is saved).

2. The field B data is displayed on line 2, columns 2-39, with a HIGH-
BLINK attribute in column 1.

3. Column 40 or columns 40-80, depending upon the current
CRTSIZE, are set to display blanks and to preserve the appear-
ance of line 3.

4. The Error Tone is sounded once.

5. The Error Flasher is initiated.

6. All pre-keyed data and control keys are discarded.

7. Executionis suspended until RESET is depressed. (All other keys
are discarded.)

8. After RESET, the Error Flasher is extinguished.
9. The Error Line is restored to its previous condition.
10. The next in-line statement is executed.
For example, the statement:
ERROR ('FILE NOT FOUND')
would produce the Error Line shown:
(ine2) =® FILE NOT FOUND

N,

FIELD
B

HIGHBLINK ATTRIBUTE

1. If the length of field B is less than 38, trailing-space
characters are used to fill the Error Line.

2. Ifthelength of field Bis greater than 38, only the first 38
positions are transcribed to the Error Line.

8-22

NOTIFY

Purpose:

Format:

Description:

To display an exception message for operator acknowledgement and
to obtain a one-character response.

NOTIFY (B,C)

The operation proceeds in several steps as detailed:

1. thru 8. As per ERROR

8a. Execution is suspended until the next key is de-
pressed.

8b. The key is interpreted according to a preferred

shift of LETTER and the resulting value is placed
in the leftmost position of field C.

9-10. As per ERROR.

NOTES: See NOTES for the ERROR statement.

8-23

READSCREEN

Purpose:

Format:

Description:

To transfer a CRT display line to a buffer.
READSCREEN (10D-name, B, ERR:sn-1, EOF:sn-2)

The display line designated by the LINE keyword parameter is trans-
lated to EBCDIC and is moved to buffer.

If the current display uses the 480 character format, LINE can contain
a value in the range of 1 to 12; if the 1920 format is used, the value of
LINE can fall within the range of 1 to 24.

LINE is default-initialized to one (X'01°) and is automatically incre-
mented by 1 after the READSCREEN statement is executed. If the
resulting value of LINE is greater than the number of lines of the dis-
play (i.e., either 13 or 125 for 480 or 1920 format), LINE is set to X'01”
and control is transferred to the statement sn-2. If no EOF exit is
coded, the end-of-file condition is regarded as an error condition.

If an error condition results (invalid value of LINE), the ERR exit is
taken. If no error exit is coded, execution of the program is cancelled.

Display attribute bytes and other non-displayable graphics are trans-
lated to the EBCDIC space character.

The READSCREEN statement can be used in conjunction with the
PRINT statement to produce a hardcopy representation of the dis-
play. If it is desired, the display image can be edited by the application
prior to being printed. READSCREEN also provides read access to
the prompting messages.

8-24

READKEY

Purpose:

Format:

Description:

To allow an operator to interrupt a program during a non-interaction
phase of execution. This command will cause the system to determine
whether a key has been pressed to interrupt execution and, if so, to
return the key value.

READKEY (10D-name, B, ERR:sn)

If no data or control keys are available at the time of the request, exe-
cution continues with the statement labeled sn. If a data or control key
is available, the key value is returned in the leftmost position of field B.

The preferred shift used for key interpretation is in accordance with
IOD-name.SHIFT as established prior to the READKEY request.

NOTES: 1. If the application requires key input before processing
can continue, the following format should be used:

READKEY (l0D-name, B)

In this instance, the absence of an available key causes
execution of the application to be suspended until a
key is struck.

2. READKEY allows the application to sense operator

input without suspending mainline execution when no
data is available.

8-25

Example:

* SAMPLE PROGRAM PORTION FOR READKEY FUNCTION

I0D: CRT=STATION; OPERATOR STATION DEFINITION

RCD: WORKAREA WORK RECORD DEFINITION
KEYSAVE (1) SAVE AREA FOR READKEY
CODERESET(2)=X'8A0A"; CODE RESET KEYBOARD VALUES
KET:SCREEN CRT DISPLAY DEFINITION
START ; BEGIN EXECUTION SECTION

10, READKEY(CRT,KEYSAVE,ERR:20) READ KEYBOARD

|F(CODERESET,CONTAINS,KEYSAVE) STOP TEST FOR CODE RESET PRESENT

20, READ FROM DEVICEI

.

PROCESS INFORMAT|ON

WRITE TO DEVICE2

GO:10 REPEAT PROCESSING LOOP UNTIL
END OPERATOR INTERVENTION

8-26

APPENDIX A: DIRECTORY OF FIGURES AND TABLES

FIGURES PAGE
1-1 : Compilation Process 1-1
1-2 : MOBOLIST Sample Listing 1-2
2-1 : Series 21 CRT Screen Layout Form 2-1
2-2 : MOBOL Coding Form 2-4
8-1 : Identification of Operator Station Control Keys 8-6
TABLES PAGE

5-1 : Establishing Field Specifications Where Field Name Has No Size Specifications 5-12
5-2 : Establishing Field Specifications Where Field Name Has A Size Specification 5-13

5-3 : Interpretation of Significance Parameters 5-25
6-1 : Interpretation of Literal Values of Institution Type 6-5
6-2 : Interpretation of Indexed Data References 6-8
6-3 : Interpretation of Non-Indexed Data References 6-8
6-4 : Compression Process 6-47
7-1 : 1/O Execution Statements By Device 7-2
7-2 : Keywords By Device 7-8
7-3 : Search Operation Executed By OPEN For DISK/DISKETTE 7-10
7-4 : Keywords Used For I/O Operations 7-21
8-1 : Labeled Control Keys 8-12
8-2 : Values Returned In CONTROL, NUMPAD, NOLABEL And XCONTROL 8-15
8-3 : Cursor Positions Following Execution of Non-Directed RESUME 8-19
8-4 : Cursor Positions Following Execution of Non-Directed RESUMERR 8-21

A-1

The following words are reserved for system use and must NOT be defined as programmer-

APPENDIX B RESERVED WORDS IN MOBOL

assigned data names:

ADD

AND

BINARY
BACKSPACE
BACKSPACEA
CASE
CHECKEOD
CHECKFORMS
CK10

CK11

CKTB1

CKTB2

CLOSE
COMPRESS
CURRENCY
DECIMAL
DECOMPRESS
DELETE
DISPLAY

DIV

DIVR

EJECT

END

ENTRY

ERROR
ERR

EQU
EXIT
FREESPACE
FREESACEA
GETTIME
GO

HEX

IF

IFNOT
INSERT
IOD
JUSTIFY
KENTER
KET
KEYIN
KVERIFY
MPY
MARK
MARKA
NOTIFY
NUMBER
OR

OPEN
PERFORM
PICTURE
PRINT
PRINTA

READ

READA
READKEY
READLOCK
READLOCKA
READNEXT
READNEXTA
RELEASE
READSCREEN
RESUME
RESUMERR
REWIND
REWINDA
REWINDLOCK
REWINDLOCKA
RCD

RESUME
RESUMERR
SAME

SEARCH
SETEOD
SETFORMS
SETTIME
SKIPFILE
SKIPFILEA
SKIPRECORD
SKIPRECORDA
SENDEOF
SENDEOFA
START

STOP
STRING

SUB .
TERMINATE
TERMINATEA
TITLE
TRANSFORM
TRANSLATE
UNHEX
WAIT

WRITE
WRITEA

XOR

APPENDIX C: MOBOLIST

MOBOLIST is a utility program which can be used to generate a source listing of a MOBOL
program and/or the associated NOTES file. The NOTES file contains any syntax errors
detected by the MOBOL compiler during program compilation.

This utility program is accessed by inserting a library diskette containing MOBOLIST into a
diskette drive of the Series 21 System.

A diskette containing MOBOL source code, the OBJECT FILE and the NOTES FILE should be
inserted into a system diskette drive.

When the program selection display appears on the screen, select MOBOLIST, then press the
ENTER key on the console keyboard.

The message LOADING MOBOLIST appears briefly, followed by the MOBOLIST function
selection display.

MOBOL LIST

SOURCE LIST

NOTES LIST

ANNOTATED SOURCE LIST
SOURCE & NOTES LIST
ANNOTATED DISPLAY
SIGN OFF

SELECT FUNCTION @

C-1

Select the desired function:

1. If a listing of only the source code is desired, select 1. The following display will appear:

MOBOL LIST

DATA SET VOLUME UNIT
ID NO

SOURCE = SOURCE

PRESS ENTER

a. Key-in the dataset name containing the source program, the Volume ID of the diskette
and the unit number of the diskette drive in which the diskette is inserted. Press
ENTER.

b. If only a portion of a source program is to be listed, press the PROG ADV key. At the
top of the screen;

START = LAST =

will appear. Enter the line numbers of the source program at which printing should
begin and end.

c. The printer will print the source listing. When the function is complete, the MOBOLIST
Function Selection Display returns. Select 6 if no further listings are required.

C-2

2. If a listing of only the NOTES file is desired, select 2. The following display will appear:

MOBOL LIST

DATA SET VOLUME UNIT
ID NO

PRESS ENTER

a. Key-in the dataset-name containing the OBJECT program, the Volume ID of the disk-

ette and the unit number of the diskette drive into which the diskette is inserted. Press
ENTER.

b. When the function is complete, the MOBOLIST Function Selection Display returns.
Select 6 if no further listings are required.

3. For an annotated source list, select 3.
For a SOURCE and NOTES list, select 4.
For an annotated display, select 5.

a. After any of the above selections are made, the following display will appear on the
screen:

MOBOL LIST

DATA SET VOLUME UNIT
NO

SOURCE = SOURCE
NOTES NOTES

OBJECT = OBJECT

PRESS ENTER

b. Key-in the dataset-names, Volume ID’s and the unit numbers for SOURCE, OBJECT
and NOTES files. Press ENTER.

c. When the function is complete, the MOBOLIST Function Display returns. Select 6 if
no further listings: are required.

4. A source program dataset contained on more than one diskette may be printed.
MOBOLIST will print the contents of a diskette, then wait for the diskette containing the
next subsequent portion of the source program to be inserted into the diskette drive. This
cycle continues until the entire source program s printed. For all function selections but the
annotated display, as many diskettes as required may be used. For the annotated display,
the source program is limited to one primary and one extended dataset.

5. Press the SEL MODE key, at any time during the MOBOLIST operation, to return to the
Function Selection Display.

Following are examples of the MOBOL source listing, the NOTES file, the annotated source
listing and the annotated display.

2013, I0D: KSTATION = STATIOHN; KEY STATION

coly, I0D: INPUT = DISKETTE . DISKETTE FILE

0235, DATASET = "MASTERO1’ DATASET NAHE

0Ci6. UNIT = 2; DRIVE 2

o7,

c018. I0D: OUTPUT = PRLNTER PRINTER OUTPUT
2218. UNIT = 1; DEFAULT PRINTER UNIT
0C21. RCD: WORKAREA BUFFER

coz2. TYPE (1) FIRST CHARACTER
o022, DATA (127); ALL THE REST

002y,

0C25. KET DISPLAY SCREEN DISPLAY
0020, CRTSIZE = 430 BIG SCREEN

eozT. BLANK = CRT SIZE BLANKS ENTIRE SCREElN
0028, RELEASE = AUTOMATIC "ENTER” NOT REQUIRED
0029, (3,2) "PRINT/SELECT UPDATE RECORDS® PROMPT MESSAGE
n030. (4,2) "1 - LIST ALL" PROMPT MESIAGE
Th3. (5.2) “2- LIST UPDATES” PROMPT MESSAGE
cC32. (6,2) "3 - SIGN OFF’ PROMPT MESSAGE
©C33. (7,2) "CELECTION:” PROMPT MESSAGE
gggé. (7,14) SELECTION (1,N); FIELD ENTRY

C036. START BEGIN CODE SECTICH
2037 1 KENTER (KSTATINON, DISPLAY) DISPLAY

cC38. LF (SELECTICH, CONTAINS, :3:) STOP END PRQGRAl

Egi?. I[FNOT ("12°, CONTAINS, SELECTION) RESUMERR DISALLOW BAD CHARS
0QuC, '

ocuy, OPEN (INPUT, WORKAREA, ERR:200) OPEN BUFFER FILE
Cah?. OPEN (OUTPUT,WORKAREA, ERR:200) OPEN PRINT FILE
c042,

CCdu, 110, READ (INPUT, WORKAREA, EOF:200, ERR:200) READ INPUT

Eg?z. GO (SELECTION) 130, 130, 120 BRANCH ON SELECTION
0040,

224{. 120, IFNOT (TYPE, CONTAINS, :U:) GO:110 NOT UPDATE: RECYCLE
Q0ug,

ooua, 130, PRINT (CUTPUT, WORKAREA, EOM:110, ERR:200) PRINT, IGNORE EOM
0050, GO:11¢ CYCLE

0051,

ocon2. 200, CLOSE (INPUT, WORKAREA, ERR:201) CLOSE, IGNORE ERRS
0053, 201, CLOSE (OUTPUT, WORKAREA, ERR:10) CLOSE PRINTER

cosi, GO: 10 CYCLE

0065,

0056, END END OF SOURCE FILE
<END>

Figure C-1: MOBOL Source Listing

C-4

NO ERRORS DETECTED

OBJECT DATA SET = OBJECT

CODE AREA SIZE = 512 BYTES
DATA AREA SIZE = 512 BYTES
1 STATION SIZE = 1024 BYTES
2 STATION SIZE = 1536 BYTES
3 STATION SIZE = 2048 BYTES
4 STATION SIZE = 2560 BYTES

REHES END NOTES LIST ERERR

Figure C-2: NOTES File

x (DD
D OO
e g
- W~

feo20Y

O O
SO O

O Lo
w4
D

[sJsR 1ol

O O
QOO

x xOO
QOO0

Iop:
0

OUTPUT = PRNTER
MISSPELLED DEVICE NAME

START
KENTER (KSTATION, DISPLAY)
SYNTAX ERROR

OPER (INPET, WORKAREA, ERR:200)
REQUIRED IOD REFERENCE

IFNOT (TYPE, CONTAINS, :U) GO:110C
SYNTAX ERROR

PRINT (OUTPUT, WORKAREA, EOM:110, ERR:200)
GO:11¢
INAPPROPRIATE DEVICE OR OPERATION

CLOSE (OUTPUT, WORKAREA, ERR:10)
GU:10

MISSPELLED KEYWORD

UNDEFINED LABEL OR INCORRECT REFERENCE

THE COMPILER DETECTED 7 ERROR(S)

OBJECT DATA SET = OBJECT

CCDE AREA S
DATA AREA S

STATION
STATION
STATION
STATION

L£w -

12 BYTES
512 BYTES

nwon
v
n

1024 BYTES
1536 BYTES
20U38 BYTES
2560 BYTES

#%% END AMNOTATED SOURCE LIST ***

PRINTER OUTPUT

BEGIN CODE SECTION
DISPLAY

OPEN BUFFER FILE

NOT UPDATE: RECYCLE

PRINT, IGNORE EOH
CYCLE

CLOSE PRINTER
CYCLE

Figure C-3: Annotated Source Listing

C-5

NOTE:

In the annotated display, all statements are displayed individually (i.e., one at a
time). The SCAN key is used to advance display of statements. The CODE and
SCAN keys are used to reverse order of statement display.

Also, error messages (contained in the NOTES file) are individually displayed.
Press ENTER to advance display of error messages.

MOBOL LIST
RECORD COLUMN NOTE

20218 @@ MISSPELLED DEVICE NAME

SOURCE STATEMENT

I0D: OUTPUT = PRINTER
PRINTER OUTPUT

PRESS ENTER TO ADVANCE

Figure C-4: Annotated Display

APPENDIX D: MOBOL CROSS REFERENCE PROGRAM

The MOBOL Cross Reference Program (MOBOLXRF) is a Series 21 application program,
written in MOBOL, designed to generate cross reference listings for MOBOL programs
residing on diskette.

MOBOLXREF should only be executed for those programs whose SOURCE contains no syntax
errors.

PROGRAM LOADING AND INITIATION

MOBOLXREF is loaded by selection from the VTOC menu display using procedures required to
load any MOBOL program. The EXEC (Control Program) must be configured for at least a
printer, 1 diskette, and an operation station. After the program is loaded, the 'SELECT
OPTION display is presented, whereupon the user enters the dataset-name of the MOBOL
program to be used. The unit number and volume name are not requested and all diskettes are
searched.

DESCRIPTION OF THE 'SELECT OPTION’ DISPLAY
The 'SELECT OPTION' display is represented in the following:

MOBOLXRF

OPTIONS: MODES:
L-XREF & SOURCE LIST B=BOTH
2-XREF LIST N=NAMES
3-SIGN OFF L=LABELS

1
2
3
Y
5
E
?
4
q

SELECT OPTION :
DATA SET NAME :
MODE = m

OPERATOR ENTERED FIELDS:

dddddddd DATA SET NAME (SOURCE is default)
k OPTION, 1 through 3
m MODE KEY (B is a default value)

The operator selects one of the above options according to the type of output desired.

Large programs may require two steps to complete the cross reference process. First, mode
“N” produces the complete data name references followed by mode “L” to produce the label
references.

D-1

XREF & SOURCE LISTING

In this mode ("1’ entered at k field, in line 9) all source lines are listed starting with record zero and
terminating when the END statement is encountered. The MOBOLXRF program is designed
to automatically add a binary 1 to the right-hand position of the dataset-name currently
processed when EOD is encountered and the END statement has not been encountered. This
automatic dataset-name increment is compatible with the manner in which the MOBOL
compiler continues from one dataset ‘to the next if an END statement has not been
encountered. The user specifies the starting dataset-name on line 10 in the ‘dddddddd’ field.

The current relative record position of the record read is displayed on line 12.

The MOBOLXRF program reads the DATA section of a MOBOL program from record
number zero to the occurrence of the START statement, and builds DATA NAMES and
LABELS (if B is selected) in memory in array ‘'NAMES'.

Certain types of cross references are also noted such as 'REMAPS’ AAA, where AAA is cross
referenced as indicated by the statement number in which the REMAPS occurred. Also,
pre-processing and post-processing labels are cross referenced if they should occur in KET field
processing statements.

After the START statement is encountered, the program switches to the 'BUILDING CROSS
REFERENCES’ mode in line 3.

While printing the source statements, TITLE statements are placed in the MOBOLXRF page
header and a top-of-form is executed and the header line printed. Similarly, 'EJECT’ statements
result in top-of-form and the header contents is printed. XREF listing will use first TITLE
statement as a page header.

After source listing is finished, the total number of compilable statements are printed.

The user specifies the type of cross reference desired by enteringan’L’, an'N’, ora’B’in the 'm’
field of line 11. Entering ‘L’ causes the program to search just for statement labels and cross
references to the labels. Entering a "N’ causes the program to search just for data-names and
references. Entering a ‘B’ causes the program to search for both data names and labels. The
cross references for data-names are printed first followed by labels, providing either or both
are specified in ‘m’ on line 11.

The cross reference listing shows the record number of the occurrence of a data-name or label in
the far left margin. The next item is the actual data-name or label.

XREF LISTING (ONLY)

This mode is identical to that described above except that the source lines are not printed at the
time the MOBOLXRF program is extracting data-names, labels and cross references from the
source. After completing the reading of all records in the starting dataset, and continuation
datasets, the program prints the cross reference data requested under MODE, field ‘'m’, line 11.

ERROR MESSAGE SUMMARY

Errors which may occur in the operation of the MOBOLXRF program are tabulated below and
may appear on line 2.

Error Display Format:

FU NNNNNNNN XX-Message text

P XX-Message text
(XX : Hex Error Code
U : Unit number
NNNNNNNN : File name)

Error Messages:

I/O ERROR (RSAE)
DATA ERROR (AE)
UNEXPECTED CODE
NOT FOUND/AVAIL (RE)
MEDIA CHANGED (E)
FAULT

I/O ERROR (RSAC)

DATA ERROR (SA)
UNEXPECTED CODE
NOT FOUND/AVAIL (RSC)
FAULT

Response Meaning:

R : Retry

S : Retry previous record (Printer)
Operator should set forms to the top-of-form and then respond 'S’
Skip to next record and Retry (Diskette)

A : Accept
E : Treat as EOF/EOM condition
C : Continue printing previous line

OPERATING MESSAGE SUMMARY

Operating messages which may occur in the operation of the MOBOLXREF are tabulated below
and may appear on line 3.

SCANNING FOR DATA NAMES ('B’ & ‘N’ Option)

SCANNING KET’S FOR LABELS ('L’ Option)

BUILDING CROSS REFERENCES

PRINTING CROSS REFERENCES

DONE

ENTER NEXT DATA SET OR SEL MODE (in case END statement has not
occurred, and the next dataset-name can’t be found.)

CONTINUING WITH NEXT DATA SET

WILL CONTINUE — PLEASE WAIT

LOADING BINARY SEARCH ARRAYS

D-3

DESCRIPTION OF THE LISTING

In the name listing, character ' is marked at IOD.KEYWORDS (Case A:1,3) and character ' * ' is
marked at Names whose cross references are not referenced. (Case A:2)

In the Label listing, character ' *'is marked at Labels which are declared but not referenced
(Case B:4) and Labels are sorted like Case B showing.

When overflow occurs, MOBOLXRF prints the cross reference listing to the point of
overflow.A ' - 'character is printed on Labels that are referenced but not yet declared; a
statement number is printed where the Label is cross referenced (Case C). MOBOLXRF then
continues to process the remaining source.

H/_—_/_\-—J

W\//___
1588, -10200 1588
1587. -10500 1587
1575, -30000 1575
m/ \/-_——_—\

D-4

CROSS REFERENCE LISTING OF : XXXXXXXX TITLE : YYYYY =--- PAGE Z2ZZ

364, =DKS.POSITION 1452 1

132, DSNAME 877 428 299

137. XMSGCONSTANT <§j

322, =PRT.POSITION 520 150 (3

900. COME 999 277

316, *13 (1
¢

263, 100 252

Loy, 1014 429 417

320, 2 131

222, 25 523 521

563. 2020 888 827 520

APPENDIX E: ERROR MESSAGES

FOR DISK:

I[/O ERROR 01 HARDWARE ERROR

DATA ERROR 02 SHORT XFER

DATA ERROR 12 EOF

NOT FOUND/AVAIL 04 VOLUME NOT FOUND

NOT FOUND/AVAIL 14 FILE NOT FOUND

NOT FOUND/AVAIL 34 NOT SYSGENED

NOT FOUND/AVAIL 44 DISK NOT READY

NOT FOUND/AVAIL 54 FILE IN USE

NOT FOUND/AVAIL 64 VOLUME IN USE

NOT FOUND/AVAIL 74 RECORD LOCKED

NOT FOUND/AVAIL 84 NO MORE FREESPACE IN VOLUME. THE LAST
RECORD WRITTEN IS LOST

MEDIA CHANGED 06 DISK DOOR WAS OPENED

FAULT 07 FILE NOT OPEN

FAULT 17 FILE ALREADY OPEN

FAULT 27 INVALID POSITION POINTER

FAULT 37 C-LIST FAILURE

FAULT 67 INVALID COMMAND

FAULT 77 DEVICE NOT A DISK

FAULT 97 MULT LOCK REQUESTED

FAULT A7 DSCB FAILURE

FOR DISKETTE:

I[/O ERROR 01 HARDWARE ERROR

DATA ERROR 02 SHORT XFER

DATA ERROR 12 EOF/EOM

DATA ERROR 22 ACCESSIBILITY ERROR

DATA ERROR 32 ERMAP NON-BLANK

WRITE PROTECTED 03 TRIED TO WRITE A READ-ONLY FILE
NOT FOUND/AVAIL 04 VOLUME NOT FOUND

NOT FOUND/AVAIL 14 FILE NOT FOUND

NOT FOUND/AVAIL 24 UNIT IN USE

NOT FOUND/AVAIL 34 UNIT # NOT SYSGENED

NOT FOUND/AVAIL 44 NO DISKETTE READY

NOT FOUND/AVAIL 54 FILE IN USE

NOT FOUND/AVAIL 64 VOLUME'IN USE

NOT FOUND/AVALI: 74 RECORD LOCKED

MEDIA CHANGED 06 DKT DRIVE DOOR WAS OPENED

E-1

Cont. DISKETTE:

FAULT
FAULT
FAULT
FAULT
FAULT
FAULT
FAULT
FAULT

07
17
27
37
67
77
97
A7

FILE NOT OPEN

FILE ALREADY OPEN
INVALID POSITION POINTER
C-LIST FAILURE

INVALID COMMAND
DEVICE NOT A DKT

MULT LOCK REQUESTED
DSCB FAILURE

FOR INDEXED ACCESS METHOD SEQUENTIAL.:

DATA ERROR
DATA ERROR

FAULT

02
12

67

BUFFER SIZE NOT 128 ON OPEN
EOF ON READ

INVALID COMMAND

FOR INDEXED ACCESS METHOD RANDOM:

DATA ERROR
DATA ERROR

FAULT

(INFORMATION CODE)
(INFORMATION CODE)

FOR TAPE:

I[/O ERROR
I[/O ERROR
I[/O ERROR
I/O ERROR
I[/O ERROR

DATA ERROR
DATA ERROR
DATA ERROR

WRITE PROTECTED
NOT FOUND/AVAIL
NOT FOUND/AVAIL
NOT FOUND/AVAIL
FAULT
FAULT
FAULT

(INFORMATION CODE)

02
12

67

18
28

01
11
31
41
51

02
12
22

03
34
44
54
07
17
37

18

BUFF SIZE NOT 128 ON OPEN
EOF ON INSERT

INVALID COMMAND

NO RECORD ON RD OR RD NEXT (RECORD NOT FOUNE‘
DUPLICATE INSERT

HARDWARE ERROR

PARITY ERROR

POS. ERROR DURING RECOVERY
OVERRUN

TIMEOUT

SHORT XFER
EOF/EOM
ILLEGAL 7-TRACK CHAR

WRITE PROTECTED
NOT SYSGENED
NOT READY

TAPE IN USE

FCB FAILURE

FILE ALREADY OPEN
C-LIST FAILURE

TAPE BACKSPACED TO LOAD POINT

FOR PRINTER:

I[/O ERROR
I[/O ERROR

DATA ERROR
DATA ERROR

NOT FOUND/AVAIL
NOT FOUND/AVAIL
NOT FOUND/AVAIL

FAULT
FAULT
FAULT

01
11

12
22

34
44
54

07
17
37

HARDWARE ERROR
PARITY ERROR

BOTTOM OF FORMS HAS BEEN DETECTED
INVALID VFU CHAR

PRINTER NOT SYSGENED
PRINTER NOT READY
PRINTER IN USE

FILE NOT OPEN

FILE ALREADY OPEN
C-LIST FAILURE

E-3

APPENDIX F: GLOSSARY OF TERMS
Definitions of terms used in this manual are presented, in this section, to provide convenient
reference and facilitate understanding of MOBOL. These terms are listed alphabetically.
Abnormal Condition — The occurrence of an Exception Condition or an Error Condition.

Access Method — A technique for moving data between a computer and its peripheral
devices, e.g., serial access, random access.

Address — An identification for a location in which data is stored.
Algorithm —A procedure for performing a function described in terms of program operations.

Application — Programs written to produce specific reports and/or to update or create
specific files.

Attribute Byte — The byte that controls the display characteristics of the field immediately
following.

Automatic Release — Designates that the display data is to be released immediately for
processing without intervention.

Binary — A numbering system based on the powers of two.

Bit — A binary digit.

Buffer — An area in storage which temporarily holds data that will subsequently be processed.
Byte — A sequence of adjacent binary digits operated upon as a unit.

Cathode Ray Tube (CRT) — An electronic device that can be used to display graphic images.

Comment — A statement used to include information that may be helpful in documenting a
program for clarity.

Comparator — The comparator is an operator in a conditional phase (e.g., A<=B;<=1is the
comparator).

Compile — To transform a human readable program into a machine readable form.
Compiler — A program that compiles.

Data Compression — A technique that saves storage space by eliminating redundant datato
shorten the length of records or blocks.

Data Control Block (DCB) — A control block used by access routines in storing and
retrieving data.

Data Element — See Field

Data Item — See Field

F-1

Data Management — A general term that collectively describes those functions of the system
that provide creation of and access to stored data, enforce data storage conventions and
regulate the use of peripheral devices.

Dataset — A named area on a physical recording medium.

Default — The choice made by the system when no explicit choice is specified by the user.
EOD — End-of-Data.

EOE — End-of-Extent.

EOM — End-of-Medium.

Error Condition — The occurrence of a termination condition which prevents the detection of
a Normal Condition or an Exception Condition.

Exception Condition — The occurrence of a secondary anticipated result of a function.

Field — The smallest unit of data that has meaning in describing information; the smallest unit
of named data. Synonymous with Data Item and Data Element.

File — A group of related logical records as perceived by an application program; it may be ina
different form from that in which it is stored on peripheral devices.

Fill Character — To insert the representation of a specific character in a storage medium,
usually for the purpose of deleting unwanted data.

Format — The predefined arrangement for data.
Hexadecimal — A numbering system based on the powers of sixteen.
Index — A value indicating a specific record of several identically structured records.

Index Dataset — A control dataset on DISK or DISKETTE specifying the relative positions of
records located within another (Target) dataset.

Instruction — A statement that specifies an operation and the values or locations of its
operands.

Iterate — To repeat.
Keystation — A collection of hardware components accessible to the operator of a computer
system which allows selection of, and interaction with, an application. The collection of

hardware includes at least a keyboard and a screen.

Keywords — Predefined names recognized by the compiler to identify a particular access
parameter for definition or reference.

Labeled Volume — A volume whose name is recorded on the medium in such a way as to be
readable by the computer system.

Line Number — A number associated with a line in a printout or display.

F-2

List — An ordered collection of data items.

Literal — A symbol or a quantity in a source program that is itself data, rather than a reference
to data.

Loading — The process of transferring an application from an external medium to a computer
system’s memory.

Mask — A pattern of characters that is used to control the retention or elimination of portions
of another pattern of characters.

Normal Condition — The occurrence of the primary anticipated result of a function.

Notes File — A dataset produced by the compiler which contains summary information about
the compilation and notes of detected error messages (if any).

Object Code — Output from a compiler or assembler which is itself executable machine code
or is suitable for processing to produce executable machine code.

Offset — The number of measuring units from an arbitrary starting point in a record, area or
control block, to some other point.

Parameter — A variable that is given a value for a specific purpose or process.

Peripheral Device — A part of the computer system external to the CPU and RAM, e.q.,
magnetic tape drive and diskette drive.

Physical Record — A collection of bits that are physically recorded on the storage medium and
which are read or written by one access to the device.

Protected Field — A display field in which the operator can enter or modify data only under
specific application conditions.

Random Access — To obtain data directly from a storage location based on a key or address.
Also called Direct Access.

Record — A group of related fields of information treated as a unit by an application program.
Serial — Occurring successively in time, or by physical position.

Sequential — Occurring in a logical order not necessarily related to physical position.
String — A sequence of entities such as characters or physical elements.

Subroutine — A group of statements performing a specific function that may be performed as
often as necessary.

Target Dataset — A dataset consisting specifically of application data referenced through one
or more index datasets each of which defines an organization for the target dataset.

Unit — An addressable device attached to a computer system.

Volume — A physical instance of a medium (e.g., one diskette, one reel of tape).
Volume ID — The name recorded on a Labeled Volume.

VTOC (Volume Table of Contents) — The volume resident directory for the datasets
recorded on the volume.

Zero Fill — To character fill with the representation of zero.

APPENDIX G: CHECKDIGIT ALGORITHMS

A check digit, which is placed in the unit’s position of a self-checking number, is developed by
calculations made on the base number (the original number without the check digit). The
calculated digit is then included with the base number to create the self-checking number. When
a self-checking number is entered into the system, the calculations originally performed are
repeated, and the generated digit is compared to the check digit in the number entered. If the
numbers are not identical, a check digit error occurs and the error indicator is set.

The system calculates the check digit using either,the Modulus 10 or Modulus 11 Algorithm.

MODULUS 10 ALGORITHM

The operation for Mod 10 is as follows:

1.

Ignoring the check digit, multiply the base number’s unit’s position, and every alternate
position moving right-to-left, by two. For example,

4 6 9 2

x2 X2
12 4

Add the digits of these products to the digits of the base number which were not multiplied
by two.

4+1+2+9+4=20
Divide this sum by 10:
2
10 20

20
0 remainder

This remainder (0) is the offset.

Using the offset in the table below, a zero offset designates a check digit of zero (0).

MODULUS 10 CHECK DIGITS
Offset 01234567829
Check digit 0987 65 4321

MODULUS 11 ALGORITHM

The operation for Mod 11 is as follows:

1.

Ignoring the check digit, multiply the unit’s position of the base number by two, the tens
position by three, the hundreds position by four, and so on. Continue this procedure up to
multiplication by seven (if the number contains that many digits), then begin multiplying by
two again.

4 6 9 2

x5 x4 x3 x2
20 24 27 4

Add the products to each other.
20+24+27+4+=175

Divide the sum by 11:.

9 remainder
The remainder nine (9) is the offset.

Using the offset in the table below, a nine offset designates a check digit of 2.

MODULUS 11 CHECK DIGITS
Offset 01 23456 78 9 10
Check digit 0 X9 87 6 5 43 2 1

Note that a remainder (offset) of one (1) corresponds to an X which is stored as X’FF’. This is
considered an illegal check digit.

For both algorithms, numerals 0 through 9 and all other EBCDIC characters with the values 0
through 9 in the low-order hex digit are totaled by the low-order hex digit value. All other
characters are totaled as the value zero.

APPENDIX H: INSTRUCTIONS FOR THE MOBOL COMPILER

The MOBOL Compiler is an MDS-supplied software package which converts user-written
source programs into object programs. The Compiler is provided on diskette.

The MOBOL Compiler needs three datasets which can be allocated via the MDS DSKETTEU
program. (Refer to the MDS Series 21 Release 7.0 Operator’s Guide (Form No. M-2611) for a
discussion of this program.)

They are:
® SOURCE — Input statements written by the user in MOBOL language.
® OBJECT — The executable MOBOL program, output by the Compiler.

¢ NOTES — Syntax errors in source statements, detected during compilation. Using an
MDS-supplied utility called MOBOLIST, these error or warning messages
can be merged with the original input statements to produce an annotated
source listing on a printer or display screen.

The allocation requirements of SOURCE and NOTES are decided by the size and complexity of
the source program, while the OBJECT requires a minimum of 300 records. The user is
responsible for satisfying the minimum allocation requirement.

NOTE: The MOBOL Compiler is prohibited from more than one operator access at a
time.

COMPILER OPERATION

1. Controller — POWER On.
Operator Station — Power ON.

2. Insert the Library Diskette containing the MOBOL Compiler.
NOTE: If Library Diskette has been previously loaded, select SIGN OFF from the

Function Selection Display; otherwise, press RESET button on Controller Con-
sole to load Library Diskette.

H-1

3. Wiait for the Program Selection Display to appear on the display screen.

DISKETTE UNIT = 1 VOLUME = LIBBLD

01 LOADER 02 EXEC 03 PXa
o4 MoBOL 05 0k

av 08 0q
- 11 12

13 1y 15

1k 17 18

19 °

ENTER PROGRAM NUMBER: 8

4. Key the two-digit selection number for MOBOL Compiler; then press ENTER.
"LOADING MOBOL" appears briefly, followed by the Data Set Display when loading is
complete.

MESSAGES

DATASET VOLUME UNIT
NAME ID)

SOURCE ////7777777777777777/77777
OBJECT ///7/777777777777777777777
NOTES 1117717777777 777777777777

PRESS ENTER

messages — presents exception conditions while searching datasets as explained in
Step 7.

dddddddd — dataset-name.

VUVVIV — Volume ID.

u — device unit number.

All these fields are first blanked by the Compiler.

H-2

5.

O X0k W

The order of keying the fields is arranged as follows:

SOURCE dataset-name
OBJECT dataset-name
NOTES dataset-name
SOURCE Volume ID
SOURCE unit no.
OBJECT Volume ID
OBJECT unit no.
NOTES Volume ID
NOTES unit no.

But the operator can use the two field move keys (—| and Je—) to change the order of
input, or use the HOME key to position the cursor to the first field (i.e., SOURCE dataset-
name).

After the three dataset-names have been defined, the operator can press the ENTER key
any time to signal the end of input. Then, the Compiler tries to locate the dataset-names on
the volumes of the devices. If the unit number is left blank by the operator, the search
starts with the lowest numbered unit and proceeds sequentially through all the units or
until the dataset is found. Similarly, if the Volume ID is left blank by the operator, the Com-
piler looks for the first volume containing the requested dataset-name.

If a dataset can be found, its Volume ID and device unit number are temporarily fixed and
are used to replace the blank volume or unit (if any) on the display; if not found, an error
message is displayed in the message field. For instance, the message:

"SOURCE OBJECT — NOT FOUND”

is displayed if neither can be found. Only under the condition that the search for all the
datasets succeeds, the Compiler proceeds to Step 8; otherwise Step 5 is re-entered;
meanwhile, all the temporarily fixed datasets are unfixed and subject to changes. How-
ever, the operator can use some of them as inputs again simply by leaving them on display.

All three temporarily fixed datasets become permanently fixed (with the exception
stated in Step 9) and the compilation takes place. The Compiler also presents the MOBOL
Compilation Display, which remains active during the compilation process.

H-3

COMPILE PHASE PPPPP
SOURCE STATEMENT nnn

dddddddd VVVVVV uu
dddddddd VAAATAAY, uu
dddddddd VVVVVV uu

SOURCE
OBJECT
NOTES

PRESS SEL MODE TO TERMINATE

PPPP — the current compile phase is presented as one of the
following: '
DATA: processing the Data Definition Section
START: wrap-up of data definitions
CODE: processing the Execution Section
BUSY: compile wrap-up

CAT: searching for concatenated source file
nnn — the number of the current source statement being
compiled
dddddddd — dataset- name
VUVVYUV — Volume ID
uuu — device unit number

Pressing SEL MODE terminates the compilation prematurely, and returns the Program
Selection Display. The contents of both OBJECT and NOTES from this termination is
unpredictable.

9. Ifthe Compiler reaches EOD (end-of-data) prior to detecting an END source statement, it
assumes that there are multiple source datasets. The Compiler then searches for the next
SOURCE dataset. The new dataset-name is generated by using the previous dataset-
name with the EBCDIC value of its rightmost character incremented by 1. The Volume ID
and unit number of the new dataset are considered as unrestricted in this case. If the new
dataset is found, its name, volume, and unit number reflect on the display accordingly;
then, the compilation continues with the new SOURCE dataset.

NOTE: The Compiler will wait for either the proper dataset to be mounted or the depression
of SEL MODE to terminate.

Since the number of SOURCE datasets for one compilation is not limited, a SOURCE

program can consist of a multi-volume dataset (with names incremented as in

DATASETA, DATASETB, et.) on different device units.

H-4

The Compiler returns control to the system upon completion. The system displays the
Program Selection Display for next operation. The pertaining syntax errors diagnosed by
the Compiler can now be printed with or without the SOURCE statements via an MDS-

supplied utility called MOBOLIST. (For discussion of MOBOLIST, see Appendix C.) If no
error message is given, the OBJECT is ready for execution.

Error messages for the MOBOL Compiler (listed below) are displayed on line 2 of the dis-
play screen in the following format:

@##BBDD
DD DESCRIPTION
09 — Terminal lockout
iO — I/O error (source file)
11 — I/O error (note file)
12 — SYMBOL TABLE OVERFLOW
13 — Label Reference overflow
14 — I/O error (object file)
15 — Symbol table space not allocated
16 — Call your MDS service representative
17 — I/O error (patch file)
18 — Dictionary file overflow

H-5

APPENDIX I

SYSTEM ERROR MESSAGES THAT OCCUR DURING

EXECUTION OF USER-DEFINED APPLICATIONS

System error messages are displayed on line 2 of the display screen in the following format:

DD
02

04

19

20

21

22

@ ##ppDD
(Column 1)

DESCRIPTION

An index variable has been assigned an out of range value.

No error statement number was coded on an I/O operation and an error
was encountered.

The processing routine assigned a value to FLDNUM that is greater than
FLDCOUNT; no KENTER or KVERIFY is active or there is no ERR clause
in that statement.

No error statement number was coded in a READSCREEN operation and
the LINE parameter specified is beyond the maximum limit for the display
screen.

During System Generation, a 480 character screen size was specified and a
1920 character screen size is required.

A directed RESUME field-name is not defined in the currently active KET
and there is no ERR clause in the KENTER or KVERIFY statement.

If a system error message not listed above is displayed, contact your local MDS representative.

I-1

ACCESS 73
ACTUAL 74

Alignment 5-8
without filling 5-10

Alphanumeric
strings 5-6

AND
syntax 6-29

BACKSPACE 7-23
syntax 6-87

BINARY ARITHMETIC
STATEMENTS 6-23 - 6-27

BINARY
syntax 6-33

BINARY ADD
syntax 6-24

BINARY DIVIDE
syntax 6-27

BINARY MULTIPLY
syntax 6-26

BINARY SUBTRACT
syntax 6-25

BLKLEN 7-4

BOOLEAN STATEMENTS
syntax 6-28 - 6-31

BOUND 8-2

CASE
syntax 6-67

CHANGE 84

CHECK DIGIT
syntax 6-106

CHECKEOD 7-13
syntax 6-79

CHECKFORMS 7-25
syntax 6-92

CLOSE 7-16
syntax 6-76

COMPATIBLE CHANNEL
I/O OPERATIONS 7-29
OPEN 7-29
READ 7-30
SENDEOF 7-31
WRITE 7-32
CLOSE 7-33

COMP CHAN 7-29

COMPRESS
syntax 6-45

COMPUTED GO
syntax 6-66

CONDITIONAL PHRASES
syntax 6-57
alphanumeric 6-58
binary 6-60
bit 6-61
decimal 6-62
sort 6-64
computed go 6-66
case 6-67
error test 6-68

CONDITIONALS
syntax 6-57

CONTROL 84
CONTROL STATEMENTS 6-54 - 6-68
CONTROL KEYS 8-11
CROSS REFERENCE PROGRAM D-1
CRTSIZE 5-19
CURFLD 8-3
CURRENCY 6-42
Data Definition Statements
formats 2-2, 2-3
requirements 2-3, 5-1
DATASET 7-6

DECIMAL ARITHMETIC
STATEMENTS 6-17 - 6-22

DECIMAL EXECUTION Statements 2-2, 2-4

syntax 6-34 requirements 2-4, 6-1
ADD 6-19
DIVIDE 6-22 EXIT Parameter 5-26
EQUATE 6-18 Statement 6-73
MULTIPLY 6-21
SUBTRACT 6-20 Explicit Field Size 5-7
Decimal Numbers 5-6 Fields
non-sequential 5-11
DECOMPRESS sequential 5-11
syntax 6-49 without Initial-Values 5-9
DELETE 7-19 Field Specifications 5-12, 5-13, 5-24
syntax 6-80

FIELD MODE 87
DISK I/O OPERATIONS 7-8, 7-9

OPEN 7-10 File 5-3
READ 7-11
READLOCK 7-13 FILL
CHECKEOD 7-13 syntax 6-14
WRITE 7-14
RELEASE 7-15 Fill Characters
SETEOD 7-15 alignment of 5-8
FREESPACE 7-15 non-graphic 5-14
CLOSE 7-16

FILTER 8-2

DISKETTE I/O OPERATIONS 7-8, 7-9
FLDCOUNT 8-3
DISPLAYS. See Screen displays.

FLDNUM 8-3
EDITING STATEMENTS 6-32 - 6-53

FORMS 74
EJECT 4-1

FREESPACE 7-15
END 4-2 syntax 6-81
ENTRY GETTIME
syntax 6-71 syntax 6-107
EOD 74 Guide messages/specifications 5-22
EOE 74 HEX

syntax 6-52
EQU 5-28

Indexed Data 6-6
ERRCODE 74

INPUT/OUTPUT OPERATIONS 7-1
ERROR 8-22
syntax 6-101 INSERT

syntax 6-82
ERROR MESSAGES. (See Series 21 Display Messages
Manual M-3925.) IOD 5-2,5-3
ERROR TEST I/O Statements 7-1, 7-2

syntax 6-68
syntax 6-74

I/O Execution Statements by Device (Table) 7-2
[/O Statements in the Data Definition Section 7-1
[/O Statements in the Execution Section 7-2

JUSTIFY LEFT
syntax 6-35

JUSTIFY RIGHT
syntax 6-36

KENTER 8-5
syntax 6-97

KEYBOARD 82
KEYSTROKE 84

KEYVALUE 7-3

KEYWORDS (See also specific keyword name.) 7-3

Keywords By Device (Table) 7-8
Keywords Used For I/O Operations (Table) 7-21
Keywords Used In The Execution Section 8-3
KET 5-18
KETNUM 8-3

KVERIFY 8-16
syntax 6-98

LINE 84

Literal values,
interpretation of 6-5

MARK 75
syntax 6-88

MATCH 84

MBLXREF D-1

MCSEQ 8-2

MISCOMP 8-2

MOBdL CROSS REFERENCE PROGRAM D-1
MOBOLIST C-1

MOVE STATEMENTS 6-11

MOVE LEFT AND FILL
syntax 6-12

MOVE LEFT, NO FILL
syntax 6-15

MOVE RIGHT AND FILL
syntax 6-13

MOVE RIGHT, NO FILL
syntax 6-16

NOLABEL 84

Non-graphic
fill characters 5-14
hexadecimal strings 5-14

Non-Indexed Data 6-8
Non-sequential 5-11

NOTE TYPE 8-3

NOTIFY 8-23
syntax 6-102

NUMBER EDIT
syntax 6-43

NUMPAD 84
Offset notation 5-9

OPEN 7-10
syntax 6-75

OPERATION 8-2

OR
syntax 6-30
OUTLEN 7-5

Overall Record Areas 5-7

PERFORM
syntax 6-70

PICTURE EDIT
syntax 6-37

POSITION 7-5

PRINT 7-26
syntax 6-93

PRINTER I/O OPERATIONS 7-25
OPEN 7-25

CHECKFORMS 7-25
SETFORMS 7-25

PRINT 7-26

WRITE 7-26

CLOSE 17-26

RANDOM INDEX ACCESS METHOD 7-18
OPEN 7-18

READ 7-18

READNEXT 7-19

READLOCK 7-19

RELEASE 7-19

DELETE 7-19

WRITE 7-20

INSERT 7-20

CLOSE 7-20

RCD 5-2,55
arrays 5-16
statement formats 5-5 - 5-17

READ 7-11, 7-18
syntax 6-77

READKEY 8-25
syntax 6-104

READLOCK 7-13, 7-19
syntax 6-83

READNEXT 7-19
syntax 6-84

READSCREEN 8-24
syntax 6-103

RELEASE 7-15, 7-19
syntax 6-85

REMAPS 5-29

Remapping, Record 5-29
format 5-29
extended records 5-31
indexed records 5-32
normal records 5-30
types defined 5-29

Requirements 2-3, 2-4
Data Definition Section 2-3
Execution Section 2-4

Reserved Words B-1

RESUME 8-17
syntax 6-99

RESUMERR 8-20
syntax 6-100

REWIND 7-23
syntax 6-89

REWINDLOCK 7-23
syntax 6-90

SAME
syntax 6-109

Screen displays 2-1
designing 2-1
error messages 2-1
guide messages 5-22
sample layout form 2-1

SCREEN MODE 89
Semantics Conventions 6-5

SENDEOF 7-2
syntax 6-95

Sequential fields 5-11

SEQUENTIAL INDEX ACCESS METHOD 7-17

SETEOD 7-15
syntax 6-86

SETFORMS 7-25
syntax 6-94

SETTIME
syntax 6-108

SHIFT 8-4
defined 5-25

SIGNIF 8-2

SKIPFILE
syntax 6-91

SLEW 7-6

Source Program Structure 1-3
example of 1-2

SOURCE
defined 5-26

SPECIAL PURPOSE STATEMENTS 6-105

START 42

STATE 77 TAPE 1/O OPERATIONS 7-22
BACKSPACE 7-23

Statement Syntax and Descriptions 6-1 - 6-112 CLOSE 7-23
MARK 7-23
STATION I/O OPERATIONS 8-1 OPEN 7-22
Data Definition Keywords 8-2 READ 7-22
BOUND 82 READLOCK 7-23
FILTER 8-2 REWIND 7-23
KEYBOARD 8-2 REWINDLOCK 7-23
MCSEQ 82 SKIPFILE 7-24
MISCOMP 8-2 WRITE 7-22
OPERATIONAL 8-2 .
SIGNIF 8-2 TARGET 7-3
Execution Keywords TITLE 4-1
CHANGE 84
CONTROL 84 TRANSLATE
CURFLD 83 syntax 6-44
FLDCOUNT 83
FLDNUM 83 TYPE/NOTE 83
KETNUM 8-3
KEYSTROKE 8-4 UNCONDITIONAL GO
MATCH 84 syntax 6-55
NOLABEL 84
NUMPAD 84 UNHEX
SHIFT 8-4 syntax 6-53
TYPE/NOTE 8-3
XCONTROL 8-4 UNIT 7-7, 84
STATION I/O STATEMENTS 6-96 VERIFY
defined 5-27
STATUS 7-5
VERTICAL FORMS UNIT
STOP
syntax 6-56 VFU 7-27
STRING VOLUME 7.7
syntax 6-11
WRITE 7-14
SUBROUTING STATEMENTS 6-69 syntax 6-78
Syntax and Descriptions, Statement 6-1 - 6-112 XCONTROL 84
Syntax Conventions 6-3 XFERLEN 7-5

XFERSTATUS 75

XOR
syntax 6-31

S——

- o - - - - - - - . - T T T o e o e e e e e e o o o or e o o om o Go = om = = - - ——— = - - - = - - = ww e e e = = -

READERS COMMENT FORM

First Edition, Release 7.0
Form No. M-2612-1078

SERIES 21 MOBOL Reference Manual

“Please restrict remarks to the publication itself. Comments pertaining to hardware/software difficulties should be
referred to the local sales office. Please give specific page and line references with your comments when appropriate.

Requests for system assistance or publications should be directed to your MDS representative or to the MDS

Branch Office serving your area.

ERRORS NOTED:

SUGGESTIONS FOR IMPROVEMENT:

How do you use this document?
DAS an operator’s Reference Manual
DAS an introduction to the subject
DAS an aid to instruction in a class
DAS a student text book
D For advanced knowledge of subject

Your Name

Occupation

Do you wish a reply?

D Yes
D No

Date

Company

Address

Street City

Form No. M-1459-1175

State

Zip Code

Printed in U.S.A.

NO POSTAGE

NECESSARY

IF MAILED
INTHE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 73 HERKIMER, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

MOHAWK DATA SCIENCES CORP.

LOS GATOS DEVELOPMENT LAB
985 University Avenue
Los Gatos, California 95030

ATTN: Technical Publications Department

L]
I
I
I
|
L]
L]
I
I
L]
L]
L |
I
L]
L]
Fold

-2 1le]

suy

	Introduction
	Manual Notations
	Section 1: Overview
	MOBOL Compiler
	Source Program Structure

	Section 2: Constructing a MOBOL Source Program
	Designing Screen Displays
	Generating MOBOL Source

	Section 3: Comment Statements and Comment Fields
	Section 4: Compiler Directives
	Section 5: Data Definition Statements
	The Input/Output Descriptor Statement (IOD)
	The Record Statement
	RCD
	RCD-Array

	The Key Entry Table Statement (KET)
	The Equate Statement (EQU)
	Record Mapping

	Section 6: Execution Statements
	Syntax Conventions
	Semantic Conventions
	Interpretation of Literal Values By Instruction Type
	Indexed Data References
	Non-Indexed Data References
	Move Statements
	Decimal Arithmetic Statements
	Binary Arithmetic Statements
	Boolean Statements
	Editing Statements
	Control Statements
	Subroutine Statements
	I/O Statements
	STATION I/O Statements
	Special Purpose Statements

	Section 7: Input/Output Operations
	I/O Statements In the Data Definition Section
	I/O Statements In The Execution Section
	Keyword Classification
	Disk/Diskette I/O Operations
	Tape I/O Operations
	Printer I/O Operations
	Compatible Channel I/O Operations

	Section 8: Station I/O Operations
	Keywords Used In The Data Definition Section
	Keywords Used In The Execution Section
	KENTER
	KVERIFY
	RESUME
	RESUMERR
	ERROR
	NOTIFY
	READSCREEN
	READKEY

	Appendix A: Directory of Figures and Tables
	Appendix B: Reserved Words in MOBOL
	Appendix C: MOBOLIST
	Appendix D: MOBOL Cross Reference Program
	Appendix E: Error Codes
	Appendix F: Glossary of Terms
	Appendix G: Checkdigit Algorithms
	Appendix H: Instructions for the MOBOL Compiler
	Appendix I: System Error Messages...
	Index

