Notes on the Programming Language LISP

Notes on the Programming Language LISP

by Bernard Gregnbeﬁg

(¢) Copyright 1976, 1978 by - Bernard -Greenberg and the Student
Information Processing Board of MIT. All rights reszrved. A

Notes on the Programming Language LISP

Acknowledgements:

I would like to thank the Student Information Processing Board of MIT
for the original idea of the course from which these notes developed,
and their continuing support and enthusiasm for this project. 1
specifically would 1like to thank Lee Parks of SIPB for a tremendous
amount of time and effort on preparing and editing this manuscript and
helping with the writing of some parts. I would 1like to thank Dave
Moon and others at the MIT Laboratory for Computer Science for
reading the manuscript and offering many valuable suggestions, and
Honeywell Information Systems for the time to carry this project out.

For the 1978 edition, I would again like to thank SIPB and
Honeywell for support and time. I wish to thank Dan Weinreb of the
MIT Artificial Intelligence Lab and Allan Wechsler of the MIT Joint
Computer Facility for participating in this massive reorganization and
rewrite.

Notes on the Programming Language LISP

PART 1

Introduction

LISP stands for LISt Processing language. It 1is a computer
programming language possessing many capabilities lacking in most
conventional 1languages. These special capabilities deal with
manipulation of highly structured and symbolic information. Lisp has
been used to great advantage in such fields as artificial intelligence
research, symbolic mathematics systems such as MACSYMA, modeling and
simulation, and computer language translators.

Lisp was invented in 1958 by John McCarthy, then of M.I.T.
Originally implemented as a collection of FORTRAN subroutines on the
IBM 7090, Lisp gained popularity, and was soon implemented on a
variety of widely different machines.

In this presentation we will deal with the M.I.T. Artificial

Intelligence Laboratory's Maclisp dialect of Lisp, which is available
both on the DEC PDP-10 and on Honeywell's Multics.

Notes on the Programming Language LISP

Objects

All programming languages deal with manipulating information;
however, various languages are better at manipulating certain kinds of
information. Most languages, such as BASIC, FORTRAN, PL/I, ALGOL, and
APL are best at dealing with such things as numbers, character
strings, arrays, and pointers. These are computer-like beings, which
live in registers and variables in computer programs. They are
loaded, copied, stored, incremented, decremented, and concatenated.

LISP deals with a kind of being called an object. Objects
have identity, i.e., being or uniqueness. The identity of an object
is its most fundamental attribute, and cannot be changed. Two objects
may resemble each other in all other attributes, and yet be different
by virtue of their different identities. They are two different
objects, as different as two identical twins, or two 1963 copper
pennies. This 1is unlike the numbers and character strings of other
languages: any 3.86 is the same as any other 3.86 in PL/I.

Lisp objects are often used to model real-world objects. Like
real-world objects, Lisp objects have properties and relations to each
other. A typical real-world object, like a house, has a color, a:
number of stories, the street it is on, the people who live in it, and
other qualities and quantities as "properties". The street, in turn
has many houses on it, a set of streets it crosses, a name, and
forth. In a Lisp program, we might have one object represent each
house we were dealing with, and another represent each street. Lisp
allows wus to define, establish, wutilize and change the various
properties and relations of groups of objects. It is in this way that
Lisp programs can be written to model the behavior of real-world
systems.

There are several types of Lisp objects. Objects of different
types have different kinds of attributes and uses. All objects of all
types live together in harmony in the 1list structure world. The
objects describe each other and relate to each other in all kinds of
interesting and dynamic ways, as desired by the programs at hand.

We will concern ourselves at first with the four most
important types of objects: symbols, conses, fixnums, ang subrs.
‘Symbols and conses are used to represent the structuring of
information; they are the "nouns" of Lisp. Fixnums are basically the
integers of conventional languages. The only property a fixnum has
its its "numeric value", or magnitude. Subrs are active beings who
perform operations with objects. They are like procedures, functions,
and operators in other languages. They are the "verbs" of Lisp.

Symbols
A symbol is an object which has three characteristics:

y

Notes on the Programming Language LISP

1) A printname, which is an arbitrary character string. For
exampEe: foo, a0126, first-item-in-list, !BBBBjhfkg.
Normally, ¢there is only one symbol in a given Lisp world
with a given printname, because, as we will see, this
greatly simplifies the task of writing programs. There are
advanced means, however, to create different symbols with
the same printname. This is not generally useful, but it
does point out that the printname is a property of the
symbol. "Fred" is not a symbol; it is a character string.
"Fred" may, however, be the printname of a symbol.

2) A binding, which is some object in the 1list structure
world. It can be any object, even the symbol itself. The
word "binding" is a good one: it suggests that the object is
on the end of a leash being held by the symbol. Any Lisp
object can be the binding of one or many symbols, or perhaps
of none at all. A symbol may either be bound to some
object, or it may not have any binding at all. When a
symbol does not have a binding, it is said to be unbound.

3) A property list, another object in the 1list structure
world that 1s used to associate objects with this symbol in
any way the programmer desires. For instance, the
programmer can specify some other object as the "color" of a
given object, another as its "affiliation" and a third as
its "brother", We will learn more about property lists and
how to use them in Chapter 2.

-Often we will want to represent Lisp objects and the relations
between them by pictures. We will draw symbols as stylized "atoms",
because in the old days, symbols used to be called atoms. Now, the
term atom is used to describe any object except a cons, which is the
next Type of object we learn about.

Notes on the Programming Language LISP

To FRED's BINDING

Figure 1. Picture of symbol.

CONSES
A cons

’ \ is an object

Yo .
ws \, which cares
cAR

Yo WS COPR

about two (not necessarily different, or even other!) objects in the
list structure world. They are called its car and cdr (pronounced
could'er). These terms originate from IBM 7090 addressing formats.
Another common term for conses is cons-cells.

Notes on the Programming Language LISP

Here is a picture of a typical cons:

AD ITS DR

THIS KERe sYM®OL

L

Figure 2. Picture of a cons.

FIXNUMS
A fixnum is a Lisp object whose interesting quality is its
magnitude, an integer,. There are ways to perform arithmetic on the

magnitudes of fixnums. The results of these operations are usually
fixnums, as well. Here is a picture of a typical fixnum:

° THWS ORE's HMAGNITUDE IS -4

Figure 3. Picture of a fixnum,

Notes on the Programming Language LISP

EXAMPLES from the List Structure World

MARY

Figure 4.

The car of the cons in the upper left hand corner is the symbol with
print-name "fred". The cdr of that cons is the fixnum at the bottom,
whose magnitude is -6. The binding of the symbol named "fred" is the
cons in the upper center. The car of that cons is the fixnum in the
center, whose magnitude is 3; the cdr of that cons is the symbol named
"mary". That symbol's binding is the fixnum on the right, whose
magnitude is also 3.

()

Q

7oy
N

Figure 5.

Notes on the Programming Language LISP

The car of the first cons is the symbol whose print-name is ma»; the
cdr of each cons is the next cons to the right, except the rightmost
one, whose cdr is the symbol named "nil", A bunch of conses strung
together by their cdrs like this is called a list; we will talk more
about lists later.

Pl e

Figure 6.

The car of the cons at the top is the cons on the left; the ecdr of the
cons on the top is the cons on the right. The car of the cons on the
left is a fixnum whose magnitude is 1, and its cdr is a fixnum whose
magnitude is 2. And so forth.

Subrs

Lisp programs are built by writing functions that deal with
objects. Like procedures in other languages, functions call or invoke
each other. They pass objects around; objects to indicate what to do,
objects to do it to, objects to say what was done. One function calls
the second, passing it objects as input, as arguments. This is called
applyin the second function to those arguments. When the second
function is finished doing what it was supposed to, it passes one
object back to the first function. This is called returning this
object as a value. The returned value may be the "answer" of the
second function, or perhaps some indication of how well it performed
the task it was asked to do.

The ability to have functions call each other, and pass the
result of one on to the next, i.e., functional composition, is one of
the most characteristic features of Lisp. Functions are built up by
specifying calls to other functions, and so forth. Now, if any of
these functions are to do anything but call each other, we will need
some “built-in" operations that perform their services without our
having to tell them how. Indeed, Lisp has such functions. They are
called subrs (pronounced "subber®"s). They are like the "operators" of
FORTRAN or BASIC (e.g., "+", "=" etc.) or the "builtin functions" of
PL/I (e.g., "substr", "index"). Like all functions, they are called
by applying them to arguments, which are objects, and they return an

Notes on the Programming Language LISP

object as a value to the function which called them when they are
done. '

Subrs create, examine, and modify objects in the List
structure world. Subrs can also communicate with the outside world,
through input/output devices such as the terminal.

Lisp books and manuals have names for subrs, so that we may
talk about them and learn their properties. The names don't exist in
the list structure world, but later we'll see how to get at subrs by
their names. Bear in mind that subrs are Lisp objects, and have
identity.

Some Fundamental Subrs.

1) car This subr may be applied only to a cons. When you
apply the car subr to a cons, the result you get
back is that cons's car.

2) cdr This is just like car, but it returns the cdr of
the cons to which It is applied.

3) cons This subr causes a brand-new cons to be created.
The car and cdr of that cons will be,
respectively, the first and second arguments
presented to the cons subr. The value returned by
the cons subr is the cons it created.

We have Jjust 1learned about three elementary subrs for
creating and examining conses. Next we present ¢two subrs for
modifying already existent conses, and for examining and modifying
symbo%s. These operations are not very common in elementary Lisp;
creating symbols is even less common. We show you these subrs here for
the sake of completeness, because conses and symbols can be modified,
and symbols inspected.

4) rplaca (for RePLACe cAr, prononounced "replocka"). rplaca
is applied to two objects. The first must be a
cons, and the Second may be any object. The first
argument, the one which 1is always a cons, is
altered such that the second object 1is now its
car. This, of course, in no way affects whatever
object that used to be its car. It's 1like
changing one's shirt or shoes. The first argument
(the cons), now changed, is the value which is
returned.

5) rplacd (pronounced "replockda"). Like rplaca, rplacd

takes a cons and anything as arguments but makes
the second object be the cdr of the first.

10

Notes on the Programming Language LISP

6) symeval This subr may only be applied to a symbol. The
object returned is the binding of that symbol.

7) set Takes two arguments, the first of which must be a
symbol. The second argument is made to be the
binding of the first argument. The value that the
set subr returns is that object which was its
second argument.

There are subrs for dealing with fixnums, performing
computations with their magnitudes, and producing fixnums, as returned
values, with magnitudes indicative of the result of arithmetic
operations to be performed. For example, there is a subr called """
which does addition: it takes some fixnums, figures out the sum of
their magnitudes, and returns as its result a new fixnum, whose
magnitude is that sum. They are simple, and used very often.

Here are some of these "numeric" subrs.

8) + This takes any number of fixnums, and returns the sum
of its arguments. Here we are speaking loosely,
and really mean that it returns a fixnum whose
magnitude is the sum of the magnitudes of its
arguments. When speaking of numeric subrs, we
shall continue to speak this way.

9) - This returns the difference of its arguments.
10) ®# This returns the product of its arguments.
11) 7/ This returns the quotient of its arguments.

There is a certain symbol whose print-name is "nil" which |is
treated specially by many subrs. It is of primal importance in Lisp
because of this. When we mention "nil" in this text, it is this
symbol that we will mean.

One of the most common kinds of data structure created in Lisp
programs is the list. As we know, a cons can specify two objects,
namely those which are its car and its cdr. We need the ability to
specify a set of an arbitrary number of objects. The way this is done
is to build a chain of conses, strung together by their cdrs. The cdr
of the last cons is "nil".

Go back to illustration 5; it portrayed a 1list of four
elements: the symbols named "a", "b", "c", and "d". It is an ordered
set; "a" is the first element, "b" is the second, etc. The car ol the
nth cons in the chain is the nth element of the list. The "nil" at
The end 1is not an element of the list; it is there because something
has to be there; if a cons were there, it would not be the end of the

1

Notes on the Programming Language LISP

list. The presence of "nil" is a convention to signify the end of a
list.

A list is but one example of a data structure built out of
lower-level data structures. When such structures are built, the
attributes of the lower level data structures, i.e., the conses, take
on new meaning in terms of the higher level data structure, i.e., the
list. The first cons of a list can be thought of as the list itself;
thus, the car of that cons is the first element of the list, and the
cdr of that cons is the "rest" of the list. As a matter of fact, we
usually speak of "the car of a list" when we mean "the car of the
first cons of a list", i.e., its first element, and "the cdr of a
list" when we mean "the rest of a list".

A single cons whose cdr is "nil" can be thought of as a 1list
of one element, that element being the object which is the cons's car,
Similarly, the symbol "nil" itself can be thought of as a list of zero
elements, for the c¢dr of a 1list of n elements is a list of n-1
elements. "But suppose you want to have a list with nothing but <The
symbol 'nil' in it"™ the overzealous student poses. Wwell, such a list

looks like this:
A__\\
\

NI

Figure 7.

just as the rightmost cons in figure 5 is a list of one element, the
symbol "d". There is a big difference between an object, and a list
of that object. The latter is a cons whose car is the former, and
whose c¢dr is "nil",

Lists aren't really the same as mathematical sets, because a

set cannot contain an object more than once, and the elements of a set
are not in any particular order. Here 1is a list of the symbol

12

Notes on the Programming Language LISP

"albert", the symbol "max", and the symbol "albert" again.

11

Figure 8.

-~ = = NOTICE = - =

We have been talking about Lisp objects and their structure
for several pages now. It is instructive to stop at this point and
compare the basics of Lisp with the basics of most other programming
languages. For example, were we describing ALGOL instead of Lisp, we
would already be talking about programs, having glossed over whatever
issues of data-structure coufa Ee raised. The mechanics of creating
programs in Lisp are indeed a major part of the 1language; yet, the
structure and semantics of those programs cannot be understood without
comprehension of the very real and specialized world of the data
objects upon which they operate.

In order to deal conveniently with large classes of structures
in the list-structure world, we will have to do better than drawing
little pictures of boxes. There exists a representation of objects in
the form of printed text; this is called the printed representation.
For example, the printed representation of

Figure 9.

is
foo

Tnat is, the printed representation of a symbol is its

13

Notes on the Programming Language LISP

print-name. Here is another example: the printed representation of

<

Figure 10.
is
54

That is, the printed representation of a fixnum is the numeral
representing its magnitude. (1)

The printed representationddcons is more complicated. 1In the
simplest case, it 1is an OPEN PARENTHESIS ("("), the printed
representation of its car, a DOT ("."), the printed representation of
its cdr, and, finally, a CLOSE PARENTHESIS (")"). For example, the
printed representation of

Figure 11.

is

(foo . bar)

(1) We might as well point out at this time that Maclisp deals with
numbers, unless you explicitly request otherwise, in octal (base 8).
Although there are ways of changing this, the eager novice must be

wary of this when he complains that Lisp thinks the sum of 4 and 5 is
1.

14

Notes on the Programming Language LISP

Or, for example,

Figure 12.

has the printed representation
((foo . bar) . baz)

Mote that the printed line above, which appears to be the printed
representation of the data structure drawn above it, may as well be
viewed as the printed representation of the cons at the head of that
data structure. The cons is an element of the list-structure world;
the data structure is an element of the conceptual data world of the
problem we are programming. The identification of that cons with the
data structure is an important one; the concept of building data
structures out of conses and atomic objects (symbols and fixnums) is
the basic data-building technique of Lisp.

This rapidly gets tedious for conses like the one in figure 5;
this useful list of symbols would have the awkward representation

(a . (b. (c. (d. nil))))

The people who started Lisp were really into lists; hence the
name of the language. So the printed representation became optimized
to the representation of lists. Thus, the printed representation of
}9; cons at the head of the list in Figure § |is

- (a b c d)

'.;ﬁgcall that a 1ist is a chain of conses hooked by their cdrs, with the
edr of the last cons being nil. The printed representation of a cons
whose c¢dr 1is nil doesn't have the DOT or the "nil". Thus we never
write "(a . nil)"; instead, we write "(a)".

It would appear that there are two distinct printed

representations for conses, depending upon whether or not the cons is
the head of a list. In fact, there is only one. Here is how you get

15

Notes on the Programming Language LISP

it: the printed representation of any cons starts with an OPEN
PARENTHESIS, followed by the printed representation of its car, e.g.,
"(a ", What comes next depends on the cdr. If the cdr is nil, we
continue with a CLOSE PARENTHESIS, and that is all. If the edr 1is a
cons, we continue with the printed representation of that cons,
without its leading open parenthesis. If the cdr is anything else, we
continue with a DOT, the printed representation of that edr, and
finally a CLOSE PARENTHESIS.

It isn't really necessary to understand this algorithm
completely at this point; you will soon get a feel for the
correspondence between list structure and its printed representation.
To make it clearer, here are a bunch of illustrative examples:

Ty CBITECT
1S TRe ome
WE'RE TALKING
ARO UT,

.

Figure 13. (a b ¢)

16

Notes on the Programming Language LISP

TN ONE

e nil

Figure 14. ((a . b) ¢)

Figure 15. (ab.c)

17

Notes on the Programming Language LISP

L /‘\‘

&P

S/

Figure 17. ((a b) e)

Notes on the Programming Language LISP

Figure 18. (((a) b) ¢)

19

Notes on the Programming Language LISP

Figure 19. (((nil . a) . b) . e)

Note that some objects have infinite printed representation.
For example, the printed representation of

is
(2 aaaaaaaaaaaaaad eee
and so on forever,

By the way, subrs also have printed representations, but you

20

Notes on the Programming Language LISP
don't see them very often and they are kind of ugly. On Multics they
look like
#000355402443000402000000
and on ITS they look like
#13011

As we mentioned, there are subrs which communicate with the
outside world about objects in the list-structure world:

12) print Subr of one argument. Types out, on your console,
the printed representation of its single argument.
It returns as a result a symbol whose print-name
is "tv, (Don't worry about the "t" right now;
we'll get back to it later.)

The READER

Printed representations suggest a good way to create 1list
structure; we can envision reading the characters ©of a printed
representation from the terminal, and creating corresponding objects.
The subr that builds a Lisp object from its printed representation is
read. Read is basically the inverse of print.

13) read A subr of no arguments. It reads in the printed
representation of a single Lisp object, builds up
such an object, and returns the object.

When read sees the printed representation of a cons, it
creates a brand-new, never-before-seen cons. This is one of the ways
new conses get into the list-structure world.

When read sees the printed representation of a symbol (that
is, when it sees something that looks like the print-name of a symbol)
it basically creates a new symbol with that print-name, with no
binding. However, read first looks to see if it has ever created a
symbol with that print-name before, and if so, uses the already
existing symbol instead of making a new one. It 1looks wup the
print-name on a big table of such symbols called the obarray. The
obarray is a catalog, or registry, of all symbols that read has ever
created. This means that every time the character string "foo" is
read in, we get the same symbol. Symbols that are registered on the
obarray are said to be interned. All symbols returned by the reader
are interned symbols.

When read sees something that 1looks 1like the printed
representation of a fixnum, ¢that 1is, something that looks like an
integer, it creates a fixnum of the appropriate magnitude. This 1is
how numeric data is entered into Lisp programs. "

21

Notes on the Programming Language LISP

The reader will not create subrs; if it sees the printed
representation of a subr, it will create a symbol with that
print-name. We do not want the reader to create or identify subrs by
their printed representation (that strange "#13011" thing we saw
above), because it is not very meaningful to the Lisp programmer,
Shortly we will learn how to specify subrs by better means. ‘

Remember before when we pointed out some list structure whose
printed representation is infinite? read will never produce ‘this kind
of stuff, for the simple reason that this printed representation
cannot be typed in! It is possible for ¢two different objects of
markedly different structure to have identical printed
representations: read will only produce one of them (obviously, when
you type that printed representation in, there is only one thing read
will give you). Read never produces 1list structure with any
particular cons being the car or cdr of more than one other cons.
Thus, when read sees "((a . b) (a . b))", it produces

Figure 20.

22

Notes on the Programming Language LISP

and not

THE READER DoEs
NOCT =WARE Conses |

Figure 21.

nor

Figure 22.

23

Notes on the Programming Language LISP

Programs

Here are examples from some programming languages:

eppap ssticme.devadd, .cme
stca api0,74

tsx0 pc trace$read

tra read_exit

sp -> symbol.token = htp => h(i).fp;
if sp -> symbol.attributes.structure then do;

//SET1 DD DSN=NYDATA,DCB=(RECFM=FB,LRECL=80),SPACE=(,,1)
ei/baz/zj-:s/foo/3deo/bletch/eq$$

In Lisp, we would like to represent expressions and programs
as 1list structure. For example, the FORTRAN expression 3+4 can be
represented by the list structure written as

(+ 3 4)
and a¥*b+c¥d as
(+ (¥ ab) (¥ ¢ d))

A very nice thing about this 1is that the 1list structure
corresponds exactly to the logical structure of the expression. No
"precedence rules" are needed at all.

As you can see, it is a convention to write the operator
first, followed by all of its operands. This is more general than the
usual "infix" notation wused in most languages ("infix" is where you
put the operator in between the arguments, as in "foo + bar ¥ baz"),
because it facilitates operators with any arbitrary number of
arguments, such as none, one, or five. Being able to say that the
first element of a list that represents an expression represents the
operator makes life simpler.

Notice how we are representing the addition operation with the
symbol whose print-name is "+", and how we are representing
mathematical variables by the symbols named a, b, ¢, and d. What we
have ostensibly i1s a representation of a mathematical expression, by
list-structure. 1In fact, this is one of the things Lisp was developed
for, and it is not surprising that it is natural and convenient.

Lisp has the ability to compute the values of expressions.
There exists a subr named eval which, given a lis; representing an

24

Notes on the Programming Language LISP

expression, such as the one above, will compute the "value" of that
expression and return a Lisp object representing that value.

Eval is central to Lisp. It is eval which makes Lisp more
than just a way of representing data. The magic wand of eval
transforms Lisp into a programming language.

When handed to eval, an expression becomes a call to action, a
specification of something to do. In this sense,
"(+« (* ab) (¥ ¢ d))" says: "Go out and multiply a by b, and then
multiply ¢ by d, and then @add the two products". We have also
expressed an order in which to perform these operations, by our
arrangements of the operands. It is clear that we had to perform the
two multiplications in order to obtain the addends, and so we had to
multiply before adding.

Taking a piece of list structure and performing the operations
specified therein is called evaluation. This is what eval does, and
is the essence of the programming language Lisp. A program, in any
language, 1is nothing more than a specification o? a bunch of
computations to be carried out in a certain order. 1In Lisp, programs
are represented by list structure, and the process of executing them
is evaluation.

Note that the representation of programs in Lisp is simply one
use of the Lisp data world. ALGOL programs are represented in
character strings, but ALGOL cannot even deal with character strings!
Lisp programs can write, manipulate, and even debug other Lisp
programs, or even themselves! It is this ability to manipulate its
own programs as data, among other things, from which Lisp derives its
substantial power. '

In this way, list structure is used in Lisp to represent all
computations: arithmetic operations with fixnums as well ~as
structural operations such as finding the car of a cons or the binding
of a symbol: in short, all of the operations perfomed by subrs. We
use eval to cause these subrs to do their things in the list-structure
world. A Lisp program 1is a collection of instructions to eval to
apply subrs to Lisp objects. A Lisp program is also a Lisp object,
which is interpreted by eval (itself a subr) to cause these
instructions, these applications of subrs, to be carried out.

A piece of list structure that represents a computation, and
is to be handed to eval to effect this computation, is called a form.
The "(+ (* a b) (* ¢ d))" which we saw earlier is a typical Torm.
Lisp forms can represent any computation capable of being carried out,
and thus Lisp can perform any such computation.

14) eval takes one argument, which is a form. It evaluates
the form, and returns the result.

25

Notes on the Programming Language LISP

Evaluation is a well-defined procedure, and we must learn its
details before we can write forms.

Exactly how does eval evaluate a given form?

Well, here is one simple case. Since we use fixnums to
represent integers, the value of the computation represented by a
fixnum with magnitude 3 is a fixnum with magnitude 3. So, when you

give eval a fixnum, it just gives you back that fixnum. We say that
fixnums self-evaluate. .

To instruct eval to apply some subr to some objects, we first
need a way to talk about the subr. The problem is, we cannot "type in
the subr" itself; we want to be able to type in its name. For this
reason, subrs are associated with symbols whose print-names are the
names of the subrs., For example, the "*" subr is associated with a
symbol named "¥", The "¥" subr may be found from the property list of
this symbol; we haven't explained property lists yet, and this is not
the place to do so. But there is a way of getting from that symbol to
that subr, so when we want to apply the "¥" subr to something, we can
use the symbol named "¥" to express this.

Let us call this symbol the "name-symbol" of the subr. Thus,
the name-symbol for the "car" subr is a symbol whose print-name is
“car", and which has attached to it the "car" subr. All name-symbols
are interned, 1i.e., on the obarray, so that when the reader sees the
character string "car", it will find the name-symbol for the "car"
subr. That is how we "type in the subr"!

Here is how we tell eval to apply a subr to some objects: we
give it a 1list whose first element is the name-symbol of the subr.
The remaining elements are forms, which eval 1is to evaluate, as
separate evaluations, to obtain the objects to give to the subr. The
subr's result will be the result of the original evaluation. Read
these three sentences several times, and then several times more: they
are the heart of evaluation, which is itself the heart of Lisp.

For instance, if we wish to find the sum of 3 and 4, we can
give eval a list, whose first element is the symbol "+" (which is the
name-symbol of the "+" subr, which does addition), and whose second
and third elements are fixnums of magnitude 3 and 4. Such a list has
a printed representation :

(+ 3 4)

If we give this list to eval, it will evaluate the fixnum "3"
and obtain that fixnum again; then evaluate the fixnum "4" and obtain
that fixnum, apply the "+" subr, found from the name-symbol "+", to
those two objects, and obtain its result. This result is the result
of the entire evaluation: a fixnum of magnitude 7.

Here is another example. Let us apply eval to a 1list which

26

Notes on the Programming Language LISP

prints as
(¥ (+ 3 4) (-12))

This is an order to apply the "%#" subr to two objects. Eval
obtains the first of these objects by evaluating that sub-form which
shows up as "(+ 3 4)"., As we saw in the previous example, this
produced a fixnum "7", Similarly, eval gets the second object by
evaluating the "(- 1 2)" sub-form, obtaining a fixnum, "-1", Eval
applies the "®#" subr to these two fixnums, and the "¥" subr returns a
fixnum "=-7", which eval returns.

We now see how we can build forms of arbitrary complexity,
such as

(- (*345) (+ (-45) (¥56T72)(*54 (-43))))

So far we have only dealt with applying numeric subrs to
fixnums. The same mechanism can be used to construct forms which
apply any of the subrs we have learned about to any Lisp objects. For
instance, we can ask for the car of a cons of the symbols "a" and "b",
by applying the "car" subr to such a cons.

We must now construct a form which asks eval to apply the
"car" subr to such a cons. OQur first attempt at this might be
something that looked like this:

(car (a . b))

This seems to be the right thing: the reader will indeed
create symbols a and b if there are not already such on the obarray,
and a cons with them as its car and cdr. The symbol "car" that the
reader will find will have the "car" subr attached to it.

Close, but no cigar. Upon seeing this form, eval will
correctly conclude that it is a request to apply the "car" subr to
some object. That object will be obtained by evaluating the form
"(a . b)". This is an ill-formed request to apply some function named
nan, Not only is there no subr attached to the symbol "a", but even
if there were, this is certainly not what we want. We are trying to
apply "car" to the object "(a . b)", not the object which results from
evaluating "(a . b)W,

This confusion is only possible because Lisp forms, which are
Lisp programs, are built of the same stuff, and print out the same
way, as "data" objects in the list-structure world. We need a way of
telling eval, "Don't evaluate this object, just return it. Your
answer is not to be the result of evaluating this; your answer is to
be this itself."

This is very much like trying to print out the string "X + 3"
in BASIC or PL/I, by a statement like

27

Notes on the Programming Language LISP

120 PRINT X + 3

In BASIC, this will print out a number three greater than X.
If a BASIC programmer wanted to print out the string "X + 3", he would
say:

120 PRINT "X + 3"

The issue here is one of differentiating between a name for
something and the thing itself. Lisp has such a mechanism for
"quoting": it is called quote. Here is how it works: to ask for the
car of "(a . b)", we give eval

(car (quote (a . b)))

" Here is how this form is evaluated: eval sees that this is a

request to apply the "Yecar" subr to an object. This object will be
found by evaluating

(quote (a . b))

Here is how this form is evaluated: eval sees that this is a
request to apply tThe quote subr to an object. BUT, eval knows that
the guote subr is one of a very special class of things called fsubrs.
A "Funny SUBR" is really a piece of the evaluator- it 1is something
which works on forms as part of the business of interpreting Lisp as
opposed to operating on the objects in the Lisp world that represent
the programmer's data. An fsubr is not really a subr at all. Seeing
the request to "apply" quote, eval does special things with the form
in which quote appears, instead of evaluating parts of it to get the
objects to which quote is to be applied. These special actions are
those associated with "quote": for this reasons, forms of fsubrs are
often called special forms: eval's actions in evaluating each kind of
special form differ,

In the case of gquote, eval takes the second element of the form
in which uote appears, and returns it as the result of the
.evaluation. n this case, the special form containing quote is

(quote (a . b))
and that second element is
(a . b)

This is the result of the evaluation; it is the object to which eval
now will apply the "car" subr.

Thus, we do not ask "what does quote do"? gquote is an internal

part of the evaluator; what it does is an internal feature of the
implementation. What we want to ask is "what does the evaluator do

28

Notes on the Programming Language LISP

with a "quote" form? This is the appropriate question for all special
forms. In the case of "quote", the answer is, "The second element of
the form is returned as the result of the evaluation".

In this way, we use quote to incorporate "constants"™, or pieces
of the program itself, into the running world of our Lisp program.

Thus the result of evaluating “(quote (a . b)) is (a . b).
This is the object to which eval now applies the "car" subr. The
"car" subr, given this object, now returns the object's car, namely,

This is the desired result of evaluating
"(car (quote (a . b)))", i.e., obtaining the car of "(a . b)". Notice
that we could have applied the "+" subr to "3" and "4" by evaluating

(+ (quote 3) (quote 4))

The only reason we didn't have to say this is that fixnums evaluate to
themselves. List structure is not self-evaluating. Thus, "quote"
provides a mechanism for putting into Lisp programs pieces of list
structure for your program to work with, instead of for eval to work
with. (Your program itself is just a piece of list structure, which
eval works with). Such pieces of list-structure "data" in programs
are sometimes called constants. "quote" provides the mechanism for
specifying list-structure constants in programs.

15) quote causes eval to return the second element in the
form in which guote is used.

It would soon get boring if all we could do is perform
computations on constants, as seen from the viewpoint of a computer
programmer. We could have used a pocket calculator to do what we have
done so far. Finding the cars of lists we made up for the fun of
finding their cars does not have much promise either. We need a way
to work with objects which are not known at the time we write the
program: we need something 1like the variables of other programming
languages. Lisp has such a notion of variables.

Symbols may be used as variables. The value of a symbol, when
used as a variable, is that object which is its binding. Thus, when
you give eval a symbol, you get back its binding. A symbol is said to
evaluate to its binding. It is an error to attempt to evaluate an
unbound symbol. Thus, we can set the values of variables by giving
symbols bindings, and use the values of variables by using these
symbols in forms.

29

Notes on the Programming Language LISP

Suppose we try to evaluate "(+ a b 3)", (1) where the binding
of "a" is a fixnum 4 and the binding of "b"™ is a fixnum -2. Eval
evaluates the "a", and gets a "4", it evaluates "b" and gets a "-2",
and evaluates the "3" and gets a "3". Then it applies the "+" subr to
the three fixnums which it got, and "+" gives it back a "5", Eval
returns the "5",

In order to assign values to variables, all we need do is
assign bindings to symbols. We have already described a means for
doing this; it is the "set" subr. If we wish to bind the symbol "a"
to the symbol "b", we apply "set" to "a" and "b". Go back to the
description of "set" earlier if this is at all unclear. So, we can
ask eval to perform such an application for us by giving it

(set (quote a) (quote b))

The function of the "quote"s ought to be clear. We want to
give "set" the symbols "a" and "b", not the result of evaluating then.
In contrast, if we wanted to assign the value of "b" to "a", that is,

make the binding of "a" be the same as the binding of "b", we would
give eval

(set (quote a) b)

After the evaluation, "a" and "b" will be bound to the same
thing. Some more examples: we can make the binding of "a" be a fixnum
"3" and the binding of "b" be a fixnum "4" by giving eval the forms

(set (quote a) 3)
(set (quote b) 4)

Having done this, evaluation of the form
(+ a b)

would give "+" the fixnums "3" and "4", and it would yield a fixnum
""", By contrast, evaluation of the form

(+ (quote a) (quote b))

would quickly cause an error, since "+" will be handed the symbols "a"
and "b", and "+" deals only with fixnums, not with symbols.

In practice, "set" is almost never wused. Just about every
time we would want to use set, we want to say

(1) By "(+ a b 3)" we really mean "a list whose printed representation
is (+ a b 3)". This is simply a convention to cut down on verbiage.
(+ ab 3) is not a 1list; it is a string of characters representing
one.

30

Notes on the Programming Language LISP

(set (quote ceceee) ceeee)

This is because far and away the most common use of the "bindings" of
symbols is as the "values" of variables. So a special form is
provided to allow us to set the values of variables more easily. It
is called setq; we almost never use Set: setq is usually what we want.

16) setq begins special forms. A setq form consists of
"setq", a symbol name, and an inner form to be
evaluated. The inner form is evaluated, and the
binding of the symbol is made to be that value.

For example, instead of saying
(set (quote foo) (+ 4 bar))

we can say
(setq foo (+ 4 bar))

This is very much 1like an assignment statement in other
languages, e.g.,

FOO := 4 + BAR ; _

At this point, one might get the idea that dealing with Lisp
consists ‘primarily of handing forms to eval, and seeing what one gets
back. In fact, this is the case. We are now ready to actually talk
to Lisp on a real computer!

When we invoke Lisp on a computer, a whole new 1list-structure
world 1is created beneath our fingertips. It already has a lot of
useful and interesting objects in it, such as the subrs we have
already described, and their name-symbols. It also has various other
things, such as the obarray, and some chosen symbols like "nil",

Lisp continuously runs a loop: it calls "read" to get an
object from the user, applies "eval" to it, and applies "print" to the
result, thus showing the result of evaluating the user's form to the
user, This "read-eval-print" loop is what Lisp does. Therefore, to
find out what eval does with some form, you just type it in, and Lisp
evaluates it and types back the result of so doing.

Now we are ready to run Lisp. On Multics, you start wup Lisp
by invoking the "lisp" command; that is, by typing

lisp

Lisp will respond with a "#" 6 and await your typing in forms
to be evaluated. On ITS, you start up a Lisp by typing

:LISP

31

Notes on the Programming Language LISP

Lisp will first respond by typing

LISP 1293 WITH WINNING NEW I/0
ALLOC?

to which you should answer negatively by typing an "N". Then it will
type a "¥" and await your typing in forms.

To get out of either, cause the "quit" subr to be qpplied to
no arguments by typing "(quit)". On Multies, the &' command
returns to command level; on ITS, it kills the "LISP" job, and returns
to DDT.

17) quit takes no arguments, and brings about the end of the
world.

The following is a dialogue with Multies LISP.

32

Notes on the Programming Language LISP

Multics 33.0: MIT, Cambridge, Mass.

Load = 17.0 out of 85.0 units: users = 17
login Weinreb SIPB

Password:

You are protected from preemption.

Weinreb SIPB logged in 01/06/78 2139.5 est Fri from ASCII terminal "none",
Last login 01/06/78 1801.7 est Fri from ASCII terminal "none".

No mail. -

r 2139 3.743 64.024 1221

lisp T INvVoOKE L\SP. AT THPES *#" AND coEs INTe TME
READ - EVAL- PRANT LooP,

(set (quote a) 3) x= <vyee —TvusS.

3 1T ANSAOERS TW\S,

T /S\® THIS BPACE DELIBRERATCELY.

(setg b 7)

7 SAME Ar " (st (Quote ®) 7).

g EVAL APPLIED To ‘o' owes 3.

b

7

(+ ab) APPLY "4 —To BINDINGS ©F "ol AN "L

12

(+ ab 2)

14

(setq list-1 (quote (a b ¢))) THE BINDING OF “list—1" Becomes -
(a b e) *be)
(setq list-2 (quote (d e)))

(d e)

(cons list=1 list=2) WMAKES A NEtw CONWNS.
((a bec) de)

(setq x list=2)
(d e)

(rplaca 1ist-2 (quote f00)) T CRANGE “THE CAR OF THE C€CONS TOo -
(foo e) WHId " ligx—-T" & DBOLVND,

x "X* WAS TBOULND TO THIS eone Too.
(foo e) ,

(rplaca (edr x (+ a b))) wuoorst AN ERROR — “cdvr" GOT T ARGS,
1isp: wrong number of arguments - eval ((edr x (+ a b)) (nil . 1)) WAwWTel

1.
33

Notes on the Programming Language LISP

;bkpt wrng-no-args

(ioc g) ‘ioe” iz aw fsuwbwn ‘('bg)“ es baclk
SU it we to p\CVC\ reod - eval —-5?'4 k‘? \ece ?G:

(]

(rp%aca (cdr x) (+ a b)) T CAN MODIEY oOTHER Lomses), Teo
(12 ‘ '

X
(foo 12)

(setq ducks (quote (Huey Louie Dewey))) A usT,
(Huey Louie Dewey)

(car ducks) THE FIEST ELEMENT OF

Huey THE LIST.
(car (cdr ducks)) THE SECoMD,
Louie

(rplaca (cdr ducks) (quote Louis))

(Louis Dewey) CHANCGE Twe Ui=T

ducks
(Huey Louis Dewey) AND (T 1 CHANGED,

(quit)
r 2146 2.032 87.502 1988 ‘ LEave LiIsSP.

34

Notes on the Programming Language LISP

Notes on the Programming Language LISP

by Bernard Greenberg

pPart 11

(¢) Copyright 1976, 1978 by Bernard Greenberg and the Student
Information Processing Board of MIT. All rights reserved.

Notes on the Programming Language LISP

PART 2

A substantial simplification of life is provided by the reader
for typing in those ever-so-useful forms whose car is "quote". The
character "'" is recognized specially by the reader. Whenever the
reader sees a "'", it reads in the printed representation of an object
right after the "'", and produces a list whose first element is the
symbol "quote", and whose second element is the object read in. For
instance, instead of

(cons (quote a) (quote (b c d)))
we can write

(cons 'a '(b ¢ d))
This is simply a shorthand notation which makes things easier to type
in. There 1is no special type of object in Lisp corresponding to the

win character; this is just a feature of the reader.

The character "'" is not a shorthand for the symbol T'"quote";
the following are equivalent:

'a (quote a)

'((a b ¢c)) (quote ((a b ¢)))
'‘quote (quote quote)

' (quote (quote a))

Notes on the Programming Language LISP

PROPERTIES and PROPERTY LISTS

We now deal with the 1last fundamental constituent of a
symbol, its property 1list. The property 1list of a symbol is a
collection of pairs of of objects, which the Lisp programmer may use
to attribute arbitrary and random properties to that which the symbol
represents to him.

For instance, let us posit a symbol named "Fred", which, in
some particular Lisp world, represents a fellow with that name. he
wish to record that Fred is 33 years old, has blue eyes, and employs
Faith, Hope, and Charity. We represent tais in Lisp by giving the
symbol named "Fred" an "age" property of a fixnum "33", an "eyes"
property of a symbol named "blue", and an "employees"™ property of a
list which prints as (Faith Hope Charity).

To say that the symbol named "Fred" has an "age" property of
some Lisp object, in this case a fixnum of magnitude 33, means that
two objects, being a symbol named "age" and this fixnum, are related
in a very special way by a fundamental data structure associated with
"Fred" called his property-list. The first object in this
relationship is always a symbol, which is called the indicator, and
the the second object is called the property. The indicator symbol,
which should be thought of as a "property name", says which or what
property, and the other object says what the value of that property
is.

The beauty of property lists is that any symbol may have a
random and indefinite collection of properties, whose indicators and
values may not even be known at the time the program is written. The
property 1list is one of Lisp's most powerful mechanisms for the
accretion of arbitrary and extensible data.

The internal structure of the property list of a symbol |is
not very interesting. But if you care, it 1is 1list of all the
indicators and properties this symbol has, indicator, property,
indicator, property, indicator, property, and so on., Esoteric
programs can deal with the property list itself, via the plist and
setplist (sgbrs, but this is rarely necessary. See the manual for more

etails. (1

The way we normally manipulate properties 1is via three
subrs, of unfortunate asymmetrical nomenclature, which we will learn

(1) Even though programs don't look at property 1lists directly all
that often, the interactive user often looks at them, via forms like

(plist 'gruzzle)

to "find out" interesting "facts" about some symbol (in this case, one
named "gruzzle").

Notes on the Programming Language LISP

about next. The first argument to each of them is always the symbol
whose properties we wish to deal with.

18) get takes two arguments. The first is a symbol, the
second a symbol to be used as an indicator. If
the first argument has a property under the
indicator of the second argument it is returned.
Otherwise, nil is returned. Note that if the
property happened to be nil, then one could not
separate this from the case where the symbol had
no property under the given indicator.

Example:
(get 'Fred 'employees)

evaluates to
(Faith Hope Charity)

19) putprop Applied to three arguments, a symbol, a property
and an indicator. Gives the first argument (a
symbol) a property with the third argument as the
indicator (a symbol used as a property name) and
the second argument as the property. The second
argument is returned. Watch out here, read it
again, for the order of arguments is
counterintuitive.

20) rempro takes two arguments, a symbol and an indicator.
emoves the property (and indicator) if it exists.

Hence, if we evaluated

(putprop x 'Fred 'father)
whatever symbol "x" is bound to gets a father property of “"Fred".
If we then evaluated

(get (get x 'father) 'age)
we get 33.

Properties are the most common way to store changeable
information in Lisp programs. Representing objects to be modeled by
symbols and their attributes by properties is a better way to save and
modify information than structured networks of conses for several
reasons. Ease of programming and debugging is one reason, for symbols

and properties have names. Secondly, new indicators can be added as
you need them, without changing the entire program. The property list

Notes on the Programming Language LISP

is unstructured, and open-ended.

Notes on the Programming Language LISP

Earlier we learned how to construct, modify and inspect DATA
OBJECTS in the list-structure world.

We have learned about a class of data objects, called FORMS,
which specify action. We learned of eval, the subr which interprets
forms. Also, we dealt with the interpreter and learned how to talk to
Lisp.

Now we learn how to write programs.
PO AAARNAAAAARAAARAAARAARAAAARAAAAARAARALAAAAAARARAARAARAARAARARAARAARARNAAALAAAAARAAAAANAAAAAN

Lisp is an applicative language -- All Lisp programs are
expressed as collections of functions, which take objects as input and

return objects as output. Subrs are a special case of functions.
Subrs are functions written in machine-language which are (usually)
part of ¢the Lisp system. Programs are composed of user-supplied
functions, which are written not in machine-language, but in Lisp.
Such functions are composed of forms, which themselves consist of
directions for the application of subrs and, perhaps, other
user-supplied functions. One of the results of this is that all
user-defined functions appear in forms just as the primitives of the
language do. For example, a user might define a function "double"
that would return twice its (fixnum) argument. This function would
then be wused exactly as though it were a subr; (double 3), when
evaluated, would return 6.

. Designing and constructing a Lisp program consists of creating
and implementing a set of functions which deal with the problem domain
in a useful and interesting fashion. Our next task is to 1learn to
construct our own functions. Once we have learned this, there is
little more to acheiving proficiency in Lisp than learning of the wide
variety of available subrs and accumulated tricks of the trade.

Functions in Lisp are expressed by a miraculous and powerful
naming operator called "lambda". Lambda is a way of generalizing a
form. Lambda is a way of taking a form, which is an expression of a
computation with Sspecific quantities, and wusing it to express a
computation with arbitrary quantities.

Let us proceed with the development of this doubling-function,
as a first example of how functions are expressed in Lisp. We already
know how to double specific things. For example, if we wanted to
double 6, we would write the form

(+« 6 6)

, : Notes on the Programming Language LISP

On the other hand, if we had a symbol "v" which were bound to an
object (which had better be a fixnum), and we wanted to compute that
fixnum's double, we might write

(+ v v)

This is all well and good, but is only useful in the case that there
happens to be a symbol named "v" lying around that happens to be bound
to the fixnum whose double we wished to compute. Suppose, on the
third hand, we had the result of some hideously complex machination,
such as

(+ fool foo2 (* xbar yyi17))
that we wished to double. We might just write
(+ (+ fool foo2 (¥ xbar yy17)) (+ fool foo2 (* xbar yyi17)))

On the fourth hand, we'd rather not. Not only is this complex,
error-prone and obfuscatory, but if the complex machination involved
some application of a function which had side-effects, it would be
outright wrong, for the side-effects would happen twice. Furthermore,
computing the quantity twice is implied, and this 1is inefficient as
well as logically erroneous. We don't want to compute this thing twice
and add the two results. We want to say,

"Compute this here quantity. Then add it to itself."

We could do this by assigning this quantity to some variable, say, our
friend "v", as follows:

(setq v (+ fool foo2 (¥ xbar yy17)))
(+ v v)

This is a lot better, but this has several problems. First of all, it
requires us to either make sure that nobody else is using "v" for
anything, or reserve a variable just for this purpose. Another good
problem is that two forms are required: first a "setq" form and then a
"+" form. To express a result to be used in a form, we need a single
form. Two forms just won't do.

The form "(+ v v)" is appealing as an expression of the
concept of adding something to itself. Its only real problem is that
it is so specific; it deals only with a totally specific and almost
always irrelevant symbol named "v". It says,

"Add the current binding of "v" to itself."

What we really want to say is:

YAdd something to itself."

Notes on the Programming Language LISP

A good compromise might be:
"Call it "v", Add v to itself."

In other words, we want to let "v" be a name for the result of the
thing which we want to double.

In Lisp, we might want to say,

“"Let v be bound to the object of interest for the moment.
Evaluate (+ v v)."

This is how we deal with the notion of function in Lisp. We write
the above sentence in Lisp as

(lambda (v) (+ v v))
This Lisp fragment (it is not a form) is Lisp for either of the above

indicated statements. This lambda expression is a function, just like
a subr,

We can use a lambda expression in forms, to specify the function to be
applied. Just as

(+ (¥ 7 (car x)) 5)

says, in some sense, "Do this with the object gotten by multiplying
the car of x's binding and 7, and 5: add them",

((lambda (v) (+ v v)) 3)

says, "Do this with the fixnum object 3: Call it "v"., Add v to
itself." The 1lambda expression 1is a thing to do with objects,
something which can be applied to objects, just like a subr. It says
"I am a thing to do with an object, which I will refer to as "v". 1
will add v to itself." The result of applying this thing to a fixnum
3 is a fixnum 6.

The form
((lambda (v) (+ v v)) 3)

is called a lambda combination, which means that it is a form whose
first element 1s @ lambde expression. There are names for the parts
of the lambda expression: the list "(v)" is called the lambda list; v
is called a lambda variable. The form inside the 1lambda expression,
“(+ v v)", is called the body.

Similarly, we can express functions of more than one argument
in a natural way:

Notes on the Programming Language LISP

((lambda (x y) (* (+ x y) (- x y))) (+ 7 w) (- v 3))

This says, "where x is the result of evaluating (+ 7 w), and y is the
result of evaluating (- v 3), evaluate (¥ (+ x y) (- x y))".

Eval recognizes a lambda expression, i.e., a list whose car is
the "chosen" symbol lambda, as a representation of a function when it
appears in the car of a form. When eval is given a form which has a
lambda expression as its car, the other elements of the 1list are
evaluated to produce the objects to which to apply the function, just
as it does for a subr.

Eval somehow must accomplish the "call it v" stuff, so that it
may just evaluate the "(+ v v)" in its normal fashion and get the
right answer. "Call it v" can be accomplished as follows:

1. Memorize what v's current binding 1is; put it away
someplace.
2. Make the binding of v be the object desired.

And after evaluating the form "(+ v v)",

3. Kecall what the binding of v was, and restore the
binding of v to be that.

This sequence of three operations is called binding v to the
object desired. It has the effect of not disturbing whatever use was
being made of v at the time. It makes it appear as though v were like
a "local variable" or "temporary variable"™ in that form. This 1is
highly desirable.

Note that binding v means the saving and restoring of v's
binding as well as giving v a new binding. When you simply change v's
binding without remembering the o0ld one, this is called setting v,
because it is what the "set" subr does. Binding is a Temporary,
reversible operation,

Understand that "lambda" is not the name-symbol of any subr;
lambda expressions are not forms, and are not intended to be
evaluated. A lambda expression is a representation of a function
recognized as such by eval. Lambda expressions are very much like
subrs: they are verbs. A lambda combination 1s a perfectly good form,
and is meant to be evaluated; it directs eval to apply a lambda
expression to some arguments, which are obtained by evaluating the
remaining elements of the form.

In summary, here is how eval evaluates a 1lambda combination
form:

1. Evaluate the second through nth elements of the form.

2. Apply the lambda expression To the results of step 1.
2a. Bind each of the variables of the lambda expression

10

Notes on the Programming Language LISP

to the corresponding object obtained from step 1,
being careful to save the old bindings.

2b. Evaluate the body of the lambda expression, obtaining
an object as a result.

2c. Restore the old bindings of the lambda variables.

2d. Return the result of step 2b.

Subrs and lambda expressions are both specifications of a
thing to do with some objects, i.e., functions. When we want to use a
subr, we have its name-symbol as a way of specifying to eval a desire
to use that subr. The next 1logical step is to somehow provide
name-symbols for lambda expressions. -

Sure enough, there is a way to connect a lambda expression to
a symbol, Jjust as a subr is connected to its name-symbol. For
instance, we can connect the lambda expression "(lambda (v) (+ v v))"
to the symbol "double"., Once we have done this, we can say

(double 3)
or
(double (+ 3 (¥ 6 5) (- 2 1)))

and eval will dutifully use that lambda expression as though we had
said

((lambda (v) (+ v v)) 3)
or
((lambda (v) (+ v v)) (+ 3 (¥ 6 5) (- 2 1)))

When we have done this, we have defined our own function. We
can use its name-symbol just like the name-symbol for a subr.

We define functions by means of the fsubr called "“defun".
Here is how we would define our doubling function:

(defun double (v) (+ v v))

Note that "defun" is an fsubr! The symbol "double" will not be
evaluated when the "defun" form is evaluated, nor will the "(v)" nor
any other part of it. Instead, "defun" fsubr will create a lambda
expression out of the above, and attach it to the symbol "double".

19) defun, an fsubr, takes a symbol, a lambda 1list, and a
body. It creates a lambda expression from the
lambda 1list and body, and places it on the
property 1list of the symbol in such a way that

1

Notes on the Programming Language LISP
eval will know that that symbol is the name-symbol
for that lambda expression.
Here are some more examples of function definitions:
(defun addone (x) (+ x 1))
The "addone" function will take a fixnum and return a fixnum whose
magnitude 1is one greater than its argument's magnitude. That is, it
will add one to something.
(defun recons (x y) (cons (car x) (cdr y)))
The "recons" function takes two conses, and returns a new c¢ons ‘whose
car 1is the car of its first argument and whose cdr is the cdr of its
second argument. For example, the result of evaluating
(recons '(a . b) '"(c . d))
would be

(a . d)

(defun list-of-three-things (a b c¢)
(cons a (cons b (econs ¢ 'nil))))

The "list-of-three-things" function takes three arguments, and returns
a list of three elements, being the three arguments to which it was
applied. For example,

(list-of-three-things 3 '(a . b) 'fred)
would evaluate to

(3 (a . b) fred)

D e T R R A R R R R aa e s 22 o e

Congratulations! You have managed to make your way through
enough of this language to be able to write your own functions.

COCCCCCOCOCoCoOoOnOnrnraroenoeeaiiaigiggiiiiliigiiiiiiigigiill

Now that we are able to define functions, we need a complete
- programming language. This requires things like conditionals, 1loops,
recursion and the ability to group imperatives together to form s
program.

Let's start with conditionals and predicates.

12

Notes on the Programming Language LISP

There is an fsubr known as "cond", to be discussed shortly,
which conditionally evaluates forms and returns different values.
This is used to make decisions. It is similar to the "if" constructs
of FORTRAN, ALGOL, and PL/I.

In order to make decisions we need predicates. These are
subrs (or functions of your own construction) which return an
indication of truth or falsehood. 1In Lisp, falsehood 1is represented
by the symbol "nil". Truth is represented by any object other than
"nil"; conventionally, the symbol "t"™ is used for this purpose.
Predicates are the interrogatives of Lisp; they are used to ask
questions.

Here are some useful predicates:

21) eg Applied to any two objects, returns "t" if they
are the same object, otherwise it returns "nil".

22) < Applied to two arguments, which must be fixnums,
and returns "t" if the first is numerically less
than the second, otherwise it returns the chosen
"nil",

23) > Like <, but it returns "t" if the first argument
is greater than the second.

24) not Returns "t" if the argument is "nil", else it
returns "nil".

25) fixp Returns "t" if the argument is a fixnum, else
"niln,

26)

Applied to two fixnums. Returns "t" if they are
numerically equal, "nil" otherwise.

27) symbolp Returns "t" if the argument is a symbol,
otherwise "nil",

28) atom Returns "nil" if the argument is a cons, otherwise
returns "t".

To make passing around objects which signify ¢truth or
falsity easier, the chosen symbols "t" and "nil" are self-evaluating:
they are always bound to themselves.

So:

(setq x 'nil) <=> (setq x nil)
Lisp provides us with cond. cond is an fsubr, It is not
easy to grasp at first sight, Recall that the arguments in a form

whose car is an fsubr are not evaluated by eval before the fsubr is
invoked. Rather the fsubr itself may call eval if it desires. A form

13

Notes on the Programming Language LISP

using cond looks like this:

(cond (p1 cla c¢lb cle ... c1x)
(p2 c2a c2b c2¢ ... c2x)

(pn cna enb cne ... cnx))

(p = predicate form, c= consequent form)

where all of the p's and c¢'s are forms. Each (p¢ .e...) is called a
cond clause,

Here is an example of a cons form with three cond clauses.

(cond ((eq man 'Max) 3)
((eq woman 'Sarah) (+ 2 3))
(t (print 'foo) 7))

If the symbol "man" is bound to "Max" (note the quote in the
cond clause), 3 is returned (remember numbers are self-evaluating). If
"man" is not bound to "Max", but "woman" is bound to "Sarah", 5 is
returned. If neither of the above are true, "foo" is printed, and 7 is
returned (recall that the symbol "t" is always bound to itself, and so
is not "nil"). ~

In terms of the general form above, cond works as follows:

cond evaluates pl. If the result is not "nil", i.e., if it
represents truth, cond evaluates ec¢la, c¢lb, ... in
succession. The value of the last ¢ is the value returned
by cond. There can be any number of c¢'s in each clause. If
pl evaluates to "nil" then p2 is evaluated, and so on until
it finds some p that does not evaluate to nil. That is, it
searches the «c¢ond clauses for one whose predicate is true,
so to speak, and when it finds such a clause, it evaluates
all of the consequents. If it cannot find such a clause (if

all the predicates evaluate to "nil"), it returns "nil"
itself. '

Note that this conditional evaluation facility not only

provides conditional flow of control, but conditional selection of
values as well.

14

Notes on the Programming Language LISP

The PROG Story

Lisp also gives us a FORTRANesque (or Algol or PL/l1-esque if
you prefer) facility for evaluating several forms in sequence and
throwing away their values. The basic one comes in three flavors:
prog2, progn, prog. Obviously, if you had a function to evaluate two
forms where before you could only have one (although the number of
places in MACLISP where this is true has been minimized) you could in
principle make ever expanding trees of forms. '

Thus we have prog2. proge is used to cause two forms to be
evaluated in sequence. It returns the value of the second of the
forms. For example, if we give eval

(prog2 (setg x (+ 5 2))
(print 'bar))

first the "(setq x (+ 5 2))" gets evaluated, making x be bound to 7,
and then the "(print 'bar)" is evaluated, printing "bar" and returning
the symbol "t" (print always returns "t"), and so prog2 returns t. (1)

So, we could have

(prog2 (prog2 (prog2 (setq x (+ y 3))
(setq y 27))
(prog2 (setq z (read))
(print (¥ x y 2))))
(prog2 . . «

and soO on.

We obviously could build up programs in this way, but this is clearly
inelegant. So we have progn, which is like prog2 but causes the
sequential evaluation of any number of forms. As above, eval does all
the work by evaluating the arguments to progn:

(progn (print 'Type-in-two-numbers)
(setq x (read))
(setq y (read))
(print 'answer-is)
(print (+ x y)))

Is very FORTRAN.

(7) prog2 1Is not actually an fsubr; 1t 1s simply a subr which returns
its second argument. The act of evaluating the form in which "“prog2"
appears causes these forms to be evaluated; all prog2 need do is
return the second argument. If this confuses you, forget about it;
it is a hack.

15

Notes on the Programming Language LISP

The most general member of the family is the prog, which
allows "labels" (which are 1like PL/I 1labels or FORTRAN statement
numbers) in such constructions as above. prog is an fsubr, and
therefore eval does not evaluate the elements of the cdr of the prog's
form before applying prog to it. prog, upon getting the form,
evaluates all elements of its form except symbols. (Obviously,
evaluating a symbol and then throwing away the resulting value is not
very interesting anyway.) The symbols are like "labels" or "statement
numbers"; they mark a place in the prog body which can be "gone to",

To make it all jell, there are two odd functions, go and
return, to use within progs.

29) go A go form looks like (go label). go is an fsubr.
It conspires with prog in a strange way.
Everything then stops what it is doing, and prog
continues evaluating the elements of its form at
the point where the label appears.

For example:

(prog (x)
(setg x 0)
a (setg x (+ 1 x))
(go a))

adds up a lot of ones,

The first thing in the form after the prog is somewhat
peculiar., It 1is not a form to be evaluated, but rather a possibly
empty list of temporary "variables" (symbols) to be used in this prog.
It is the same as if they were 1lambda variables of a lambda
expression, and Lisp binds them to nil when the prog form is
evaluated. Remember that when you bind a symbol, you remember its
previous binding; it is restored at the end of the evaluation of the
prog. Thus, these symbols may be used as variables within the prog
without fear of disturbing other use of them.

30) return 1is a subr which causes prog to be exited with
~ return's argument as a value. That is, the "prog"
returns the object which was the argument to
“"return". If a prog gets to the end of the

elements of its form, it returns nil.

Now we will contruct a simple function using prog to compute Fibonacci
numbers. Fibonaceci numbers you will recall, are the numbers:

1, 1, 2, 3, 5, 8 13, 21, 34, . ..
where each is the sum of the proceeding two. This function fib0

computes the Nth Fibonaceci number in the sequence. This program
should be obvious, with one exception.

16

Notes on the Programming Language LISP

Since prog2 was so useless in 1light of progn, a most
interesting and curious use was found for it. prog2 actually accepts
any number (greater than 1) of arguments, but it always returns the
second one!! Hence one can exchange the values of two variables,

€.

t
X
y

noonn
<< X

(in FORTRAN or BASIC)
which in Lisp can-be done as follows:

(setq y (prog2 0 x (setq x y)))
The zero is evaluated and then thrown away.

(defun fib0 (x)
(prog (old older)
(setq old 1)
(setq older 1)
a (cond ((< x 2) (return o0ld)))
(setq older
(prog2 0 old
(setg old (+ old older))))
(setg x (- x 1))
(go a)))

CEREELEEEEELEELEEEEELRRLEREEAEEREREROLLEEEECREEEEERECEEE

One particularly neat pair of Lisp constructs is the pair of
control-flow brothers and and or. Both of these fsubrs, De Morgan's
Law duals, evaluate ~the elements of their form until some argument
evaluates to "nil" in the case of and, or non-nil for or.. The value
of the last form evaluated is returned. One can use them for logical
constructs, like

(and (> x 5) (< x 15))

to test if x > 5 and x < 15 (octal). Hence, they can be wused to
compound forms into a compounded logical expression. Well, this is
very common in all programming languages, However, here the
similarity ends. The neatest thing about "ard"™ and "or" is that their
evaluation order is strictly defined, and conditional. Suppose that
we have no idea to what x is bound. We want to know if x is bound to
a cons whose car is the symbol "foo". The form

(and (not (atom x))
(eq (car x) 'foo))

17

Notes on the Programming Language LISP

will provide the answer. The point of this is that in general, it is
illegal to ask for the car of a symbol. The "and" form above stops
evaluating if x is bound to a symbol, and it never tries to take the
car of the symbol. As a matter of fact, it is very common is MACLISP
to see "and" and "or" used as a substitute for cond in simple cases,
eogo,

(and (= x 7) (go moe))
has two less parentheses than
(cond ((= x 7) (go moe)))

and since there are fewer parentheses, it is easier to see what 1is
happening.

(or (symbolp x) (print 'x-is-not-a-symbol))

is a very graphic statement of "unless x is a symbol, print out so and
so".

Most programming languages have iteration, and many support
recursion as well. Recursion in LISP is very cheap and thus almost de
rigeur. The natural recursive definitions of lists and list structure
lend themselves to2 recursive processing. (Recursion 1is when a
function can call itself.)

A recursive (and very natural) rewrite of the Fibonacei
program is as follows:

(defun fib1 (x)
(cond ((< x 3) 1)
(t (+ (fib1 (= x 1))
(fib1 (- x 2))))))

Note that in the first recursive call to fib1l, "x" will be
bound to the current "x" minus "1", as the recursive invocation is
.executed. The binding of "x" will then be restored so2 that the call to
fib1 on the next line indeed refers to the same "x" as the previous
one L

(1)

(1)

’ This, however, is an extremely slow program, taking time
proportional to exp(x), because this particular algorithm for
computing Fibonacci numbers computes the same values many times. It

is not recursion in Lisp which is slow, but this particular algorithm.

18

Notes on the Programming Language LISP

We have written two versions of the Fibonacei function:
"fibO" was iterative, and "fib1" was recursive. Here is a function
that cannot be written iteratively, but wWhose recursive definition is
natural, simple, elegant, and efficient. It prints out the printed
representation of all of the non-cons objects in a piece of
list-structure. For example, given

((a b) (c (d e) 6) f)
it will print

a
b
nil
c
d
e
nil
6
nil
f
Here it is:
(defun fringe-print (x)
(cond ((atom x) (print x))
(t (fringe-print (car x))
(fringe-print (cdr x)))))

Note the appearance of "nil" in several places. If you draw
out the 1list structure corresponding to the argument we gave
fringe-print, you will see why.

Another typical use of recursion, dealing with recursive
list structure is as follows:

We have a representation of a mobile (a hanging ornament)
with weights as nodes. Such a mobile might look like

_ \

@ méréélb @

19

Notes on the Programming Language LISP

(A mobile is either a single weight, like,

©

or two legs which are mobiles themselves, such as,

|
5 & ©

e represent»it in list structure as:
(4 (2 2)) (C(1 1) (1 1)) 4))

We wish to know if such a mobile is balanced. A mobile is balanced if
and only if either it is just a single weight or both its 1legs are
balanced and of equal weight. The weight of a single weight is
whatever it is, the weight of anything else is the sum of the weights
of its legs. The following two functions perform this task: (1)

(defun weight (x)
(cond ((atom x) x)
(t (+ (weight (car x))
(weight (cadr x))))))

(defun balancedp (x)
(cond ((atom x) t)
(t (and (balancedp (car x))
(balancedp (cadr x))
(= (weight (car x))
(weight (cadr x)))))))

"balancedp" is applied to a representation of a mobile and returns "t"
if the mobile is balanced, "nil" otherwise. Thus, it is a predicate.

(1) cadr 1s a subr which obtains the car of the cons which 1s the car
of its argument (the CAr of its ¢DR). That is, "(cadr x)" is the same
as "(car (cdr x))". It 1is one of a family of subrs with names like
caddr, cdar, cdadr, etc. being some other members. MACLISP supports
all combinations up to caaaar and cddddr. Note that car applied to a
list gives the first element, cadr the second, caddr the third, etc.

20

Notes on the Programming Language LISP

"weight" is an auxiliary function which is applied to a representation
of a mobile to obtain its weight. Both functions are recursive, as
the definition of both the mobile and its weight are recursive. The
power of Lisp for this lies not in the ability to write a recursive
program in it, but to represent recursively defined structure.

Although recursion in Lisp is common and very cheap, one must
not succumb to the temptation to use it as a substitute for jiteration
where the latter 1is the obvious choice. It has been somewhat
traditional, however, in presenting Lisp, to do precisely that. Among
the applications of recursion where it is the right solution are the
parsing, semanticating, and code-generating o a context-free or
block-structured language, the solution of mathematical problems which
are recursively defined, or, in general, any kind of thing which might
get itself involved with itself recursively several levels down.
Anything which recurses to do the same thing with the rest of
something, such as doing a certain thing to every element of a list,
probably ought to be iterating.

Lisp provides several mechanisms for organized iteration --
a conglomeration of cond's and go's constitutes disorganized
iteration. The most common form of iteration in Maclisp 1is the do
loop, an old friend to those who started out with FORTRAN. The actual
variant of do wused in Maclisp is a direct parallel of PL/1's
do-repeat-while. One says,

(do variable initial-value repeat-value
stop-test
first-thing
second-thing

last-thing)
in general. For instance, one might say
(do i 1 (+ 1 i)
(> i 100)
(print (cons i (¥ i i))))
to print out all the numbers from 1 to 100 (octal) and their squares
(very FORTRANesque application, note.) In this example, the variable
is "i", the initial-value is "1", the repeat-value is "(+ i 1)", and
the stop-test is "(> i 100)",
An exact definition of this kind of do is as follows:

Using the example above,

21

Notes on the Programming Language LISP

((lambda (variable)
(prog ()
Rumpelstiltskin (cond (stop-test) (return nil))
first-thing
second-thing

last-thing

(setq variable repeat-value)

(go Rumpelstiltskin)))
initial-value)

In the above definition, "Rumpelstiltskin" is a label whose
name is invisible to the programmer. This is really a definition,
which is to say, that if you use a "return", (i.e., (return foo)) in a
do, that will be the return value of the whole do. Note that one can
also use labels and go's in & do (the stuff first-thing,
second-thing,..last-thing, is called the body of the do), as it is
really an elaboration wupon a prog. We call the do's internal label
"Rumplestiltskin" because you can't guess its name, and so it will
never conflict with any of your own labels. This kind of thing where
one function is just a way of saying a whole bunch of other forms made
up out of stuff in the original form is called a macro, and we Wwill
learn about them in more detail, like how to make your own, later on.
for now, observe that, in terms of what we know up to this point, do
must be an fsubr, for its form is funny, i.e., eval does not simply
evaluate the elements of the form after "do" as arguments, and hand
them on to @& machine language function., The "do" fsubr has complete
control over the evaluation of stuff in that form, as it has to
simulate all that lambda-setq-cond-prog-setq-go hackery.

We have just encountered the simpler of two forms of do,
which 1is the older of the two. For many simple applications it
suffices, but one can usually do something clever to do its task in a
simpler way. The new form of do, however, is somewhat baroque, but
more than makes up for it by 1its power, Instead of having one
variable, the new "do" allows any number of variables! The neatest
thing about it, however, is that all the repeat values are assigned in
parallel, i.e., all the repeat values are evaluated before they are
assigned to their respective variables. You can envision this as
being done either with a whole bunch of temporary variables, or with
the proge trick we learned about above. The new do has the syntax

(do variable-specs
end-clause
first-thing
second-thing

last-thing)

The body is identical to the older do, and can contain

22

Notes on the Programming Language LISP

labels and returns. The end clause is a list of several forms -- the
first is a stop-test as above, and the second through 1last, if
present, are forms to be evaluated when the end-test succeeds. If
nothing in the body of the do has evaluated a return, the value of the
do, when the end-test succeeds, is the last of these "exit forms".

The variable-specs is a list of many variable-spec's., If it
is empty, i.e., none of them, this do simply does, until the end-test
is met. Otherwise, a variable-spec is one of three options:

(var)
(var init)
(var init repeat)

In the first case, var is set at the top of the loop to nil,
and never reset except by stuff in the body of the do. In the second
case, var 1is set to the value of "init" at the top of the loop, and
never set to anything else except by stuff in the body. In the 1last
case, var 1is set to the value of "init" at the top of the loop, and
set to the value of "repeat", reevaluated each time, at the bottom of
the loop, where all assignments are made in parallel.

Here is still another revision of our Fibonacei number
program which uses the new do format. Note how we take explicit
advantage of the parallel assignment in this program. Note also that
the body of the do is empty: some of the finest do's have no bodies,
as the power is all in the repeat clauses. This is the most efficient
version of the program so far.

(defun fib2 (x)
(do ((et x (= ct 1))
(old 1 (+ old older))
(older 1 old))
((< et 3) old)))

The expansion of the newer form of do as a prog (such as the
expansion given for the older form above in terms of lambda, etc.) is
non-obvious, and is left as an exercise for the interested reader.

You should be able to figure out that the "do" fsubr figures
out whether it has an old or a new format do by looking at the first
element of its form: if that element is a symbol other than nil, the
form is an old-style do; otherwise, it is a new-style do. Note that
only fsubrs (like cond, prog, do, setq) have syntaxes, i.e., explicit
rules how their forms have to be laid out (First comes a list of all
the soandsos, and then a form which is evaluated every third time to
test if the whatsit... etc.). Fsubrs, in general, are the control-flow
constructs of the language. quote and setg, which must not be left out
in any consideration of fsubrs, are basic artifacts of the evaluator.
There are a few fsubrs (status and signp, for example) which really

23

Notes on the Programming Language LISP

have no claim to any such exalted status. Reconsider them at some
other time.

24

Notes on the Programming Language LISP

Lists as Sets

The notion of a list, as encountered in previous lessons, is
beholden at least to the printer and the evaluator. To the evaluator
lists are the expression of forms: the first element of a list is a
function, the remaining elements are forms to be evaluated to supply
the arguments to which the function is to be applied. The printer
prints lists by printing all the elements in order between a pair of
parertheses.

Lists are a very useful notion, In everyday 1life, we deal
with grocery 1lists, laundry lists, blacklists, other kinds of lists.
These lists are not lists at all, in the computer sense, but rather
expressions of sets of groceries, shirts, suspected Communists, and
whatevers. Lisp Tists are a very useful expression of sets, Jjust as
the cdr of a form is a set of forms for evaluation. Thus,

(Khrushchev Malenkov Bulganin Beria)

might be a list representing certain individuals singled out for some
purpose.

((fish trout halibut mackerel)
(amphibian frog toad salamander)
(reptile crocodile lizard stegosaurus)
(bird heron jay robin bluebird)
(mammal bear cat dog student))

might be a set of classes of the vertebrate phylum, where each family
is represented as a cons of its name and a list of members that we
know about for some reason.

It is at dealing with precisely this sort of thing that Lisp
excels: several functions are provided for dealing with lists as sets,
and iterating over them. As a matter of fact, whenever a do 1loop |is
looping over a list, possibly one should be using one of these useful
subrs instead.

They all expect their second argument to be a list. Remember
that "nil" is a list, of zero elements.

15) cons of a thing and a list. You surely remember cons!
(We saw it before, in chapter 1). Well, viewed as
a 1list operator, one can see that cons creates a
new list, with the thing supplied at the head, and
the old 1list as the rest of the 1list. For
example,

(cons 'a '(b c d))

results in a new list of four elements:

25

Notes on the Programming Language LISP

(a b e d)

30) memq of any object and a list. As a predicate, tells
T you if the object supplied is a member of that
list (i.e., if it is eq to any element of the
list). If not, "nil" is returned. If so, the cons
whose car was the object supplied (Such a cons had
to be part of the list by hypothesis) is returned,
and since no cons can be "nil" ("nil" is a symbol,
not a cons!!!), cond, and, or, etc., will take
this as signifying "true". Hence, if x is bound to
the list of Soviet diplomats above,

(memg 'Stalin x) gives
nil
(memqg 'Bulganin x) gives

(Bulganin Beria)

(1)

31) delg of an object and a list. Takes the item out of
the 1list, by rplacding the cons before whichever
cons has the object as its car with the cdr of the
latter. If the object was the first element of the
list, this is obviously impossible, and delq hands
you back the second cons of the list, hoping that
you will wuse this for whatever purpose you had
been using the other idea of the list for. In all
cases, delg hands back the original list, suitably
bashed. For example, using the list above, '

(delq 'Bulganin x) gives
(Khrushchev Malenkov Beria)
and (delg 'Khrushchev x) gives
(Malenkov Bulganin Beria)
32) mapcar is one of a set of very powerful "mapping"

functions. The first argument is a function, e.g.,
a name-symbaol of a subr or a user-defined

(1) Note that the name "memq"” (and "delq", which we are about to
describe) has no connection with the name "setq": The name "setg"
alludes to the fact that it is an fsubr like quote. The names "memq"
and "delq" allude to the fact that they search down their lists
applying the "eq".

26

Notes on the Programming Language LISP

function, or a lambda expression. The second
argument is a 1list. mapcar walks down the list,
applying the function to every element of the list
in order, and produces a new list (not destroying
the old), where every element is the result of the
application of the function to the corresponding
element of the original list. For example, suppose
y is be bound to the zoological list above:

(mapcar 'car y)

returns (fish amphibian reptile bird mammal), a
list of all the family names. It did this by
applying car to each element of the list y.

33) mapc is like mapcar, but constructs no list. The second
argument verbatim is mape's value. That 1is to
say, the applications are performed only for what
side effects they might have. Again, assuming vy
bound to that zoological list,

(mapc '(lambda (z) (and (memq ‘*student (cdr z))
(print (car 2z))))
y)

prints out the family name of the family that
contains "student",

34) list of any number of arguments. list constructs a
list out of the items to which it is applied. The
first argument becomes the first element of the
list. For example:

(list 'this 'that '(the other thing))
gives

(this that (the other thing))
Note that for three arguments,
" (list a b ¢)
is equivalent té
(cons a (cons b (cons ¢ nil)))

and so forth for any specific number of
arguments.

35) append of any number of lists. append returns a new

list, whose element are all of the elements of its
arguments. For example:

27

Notes on the Programming Language LISP

(append '(a b ¢) '(d e f) nil '(g) '(h i)) gives
(abcdefghi)
All of the conses of the created list are

newly created, except for those of the 1last
argument,

28

Notes on the Programming Language LISP

Notes on the Programming Language LISP

by Bernard Greenberg

Part 111

(c¢) Copyright 1976, 1978 by Bernard Greenberg and the Student
Information Processing Board of MIT. All rights reserved.

Notes on the Programming Language LISP

(defun simp (x)

(cond ((atom x) x)
((eq (car x) '+)

PART 3

(simplify-plus (simp (cadr x)) (simp (caddr x))))

((eq (car x) '¥)

(simplify-times (simp (cadr x)) (simp (caddr x))))

(t x)))

(defun simplify-plus (el e2)
(cond ((and (fixp e1) (fixp e2))

(+ el e2))
((and (fixp e1) (= e1
e2)
((and (fixp e2) (= e2
el)
(t (list '+ el e2))))
(defun simplify-times (el e2)
(cond ((and (fixp e1) (fixp
(* el e2))
((and (fixp e1) (= el
0)
((and (fixp e2) (= e2
0)
((and (fixp e1) (= el
e2)
((and (fixp e2) (= e2
el)

(t (list '* el e€2))))

0))
0))

e2))
0))
0))
1))
1))

Notes on the Programming Language LISP

A Simple Program

For your entertainment and education, we present two viable
Lisp programs in this chapter. The first, the simpler of the two, is a
simplifier of algebraic expressions, which could easily be part of a
symbolic mathematical system, or a programming language interpreter or
compiler. The second program is a game-playing program, which you will
probably find somewhat amusing to play with.

The algebraic simplifier operates upon calculations,
expressed as, of all things, Lisp forms. Such a calculation might be
represented by the list structure which prints as

(+ (* u0) (*6 (+ ¢ 0)))

This particular simplifier is rather 1limited; it deals only with
expressions of addition and multiplication, of two addends or factors.
The simplifications that it is capable of performing are:

1) Eliminating additions to zero, replacing them by the thing
being added to zero, for example,

(+ v 0)
is simplified to
\
2) Eliminating multiplications by 1 in a similar way.
3) Eliminating multiplications by 0 by a 0, for example,
(* £ 0)
is simplified to
0

4) Reducing calculations on two constant operands to» a constant,
for example -

(+ 3 4)
is simplified to

7

Although all of the above cases are quite easy to deal with,
we want to be able to simplify calculations built wup of 1littler

Notes on the Programming Language LISP

calculations built up of 1littler calculations yet in a perfectly
general manner. For example, we want

(+« (*uo0) (¥*6 (+ c 0)))
to be simplified to

(* 6 ¢)

Thus, we want our simplifier to do its job recursively, to
work on subexpressions down to the utmost 1level 1n an identical

manner, and to benefit by having simplified the constituents of any
expression before dealing with that expression on its own merits.

To do this, we break up the task of simplification into two
components:

1) Being recursive and figuring out what's
going on

and

2) Simplifying the actual expressions, with all issues
of recursion having been dealt with already.

The program itself is made up of three functions, defined by
three defun forms. The names of the functions are simp,
simplify-plus, and simplify-times.

The implementation of the first task 1is provided in the
function simp, which 1is, by the way, the top-level function of this
program, i.e., the function that we actually apply to the structure we
wish to simplify. simp looks at the form he is handed, and does
different things depending on what it 1looks like. A symbol or a
fixnum here represents a variable or a number, respectively. In and of
. themselves, the quantities represented by these objects cannot be
simplified any further, and simp returns them as is. If handed a list,
however, simp knows that a calculation is represented, and he passes
the buck to one of his friends who can deal with the specifics of
addition or multiplication as appropriate. Before doing so, however,
simp calls himself recursively (or recurses) upon the operands of the
expression, simplifying them for all they are worth. It is these
processed operands that are handed to the simplifiers of addition and
multiplication, simplify-plus and simplify-times.

The strategy of recursing upon pieces of one's input
argument before dispatching work to others, giving them the results of
these recursions, is an important and widely used technique in Lisp
programming. eval himself is 1like this; he recurses upon the
argument-forms ~in a form bLefore dispatching the work to some subr,
passing the latter the result of these recursions (which are the
arguments to the subr)!

Notes on the Programming Language LISP

The task of simplify-plus and simplify-times 1is thus
simplified, so to speak, by what simp has already done before calling
them. The arguments passed to these two functions are always
simplified to the best of the ability of the program.

We will examine in close detail how simplify-plus works,
since simplify-times is very similar to it. simplify-plus knows about
two kinds of simplification: he knows that addition of something to
zero is just the thing itself, and that the sum of two constants is
just another constant. So what simplify-plus will do depends on
whether its arguments fit any of these specifications.

To take action conditional on the argument, a cond form is
used. It has four clauses. The predicate form of the first clause is

(and (fixp el1) (fixp e2))

This will be true (i.e. evaluate to something other than nil) if ©both
of the forms

(fixp e1) and (fixp e2)

are true; that is, if both el and e2 are fixnums. If +they are, the
predicate 1is true, and so the consequents are evaluated. 1In this
clause, there is only one consequent: (+ el e2). So the two fixnum
arguments are added, and simplify-plus returns their sum.

If the predicate of the first clause is not true, then the
next clause is tried; that is, simplii{y-plus continues to search for a
case it knows how to simplify. What the next clause says is: "If the
first argument is a fixnum whose magnitude is zero, then return the
second argument.". Notice that before evaluating the (= el G), it
must first make sure that el is a fixnum, because the "=" subr only
takes fixnums (if you give it anything else, an error will be caused).
Similarly, the third clause checks to see if the second argument is a
fixnum 0, and, if so, it returns the first argument.

If none of the first three clauses has a true predicate,
simplify-plus couldn't find anything to simplify, and so it goes to
the fourth and final clause of the cond. The predicate of this clause
is just the symbol t, so its consequents will always be evaluated if
none of the first three forms' predicates are. It is a last resort:
it simply returns an expression which represents the addition of its
arguments, that 1is, a 1list of three elements: the symbol "+", the
first argument, and the second argument.

Note carefully the difference between the first and fouth
clause. The first clause actually performs the addition itself; the
fourth does not do any addition, but returns a form which represents
an addition,

Notes on the Programming Language LISP

simplify-times is very similar to simplify-plus; it checks
for two ~fixnum arguments, one argument's being zero, and oOne
argument's being one. It also has a last resort at the end of its
cond, in which it returns a representation of a multiplication,

Here is an example of what the program does; suppose we
applied simp to a list which looked 1like

(* (+« a 0) (* 2 4))

First, simp would discover that his argument was a 1list
whose car is the symbol "#¥" (the third clause of simp's cond) and
would call simp on the arguments; first is would call sImE on

(+ a 0)

51mg would see this, and call simp on the symbol a, which would return

Next it would call simp on " the fixnum O, which would likewise
return 0. Finally it would call simplify-plus on the results of the
two recursive calls to simp, that is, on a and O. simplify-plus's
third clause would take action, and return a.

This would then get returned by simp. Next, the first of
all of these simps would call simp again on the list (* 2 4). After
performing boring simplification of 2 and 4, yielding just 2 and 4,
simplify-times would be called in. Its first cond clause would do the
Job, multiplying 2 by 4 to give 8 (decimal). It would return 8 back
to the top simp.

Finally the top simp would call s1mp11fy-times on the two
returned values of the “recursive calls si1 namely, a and 8.
simplify-times does not know how to simplify themugtlplicatlon of a
and 8, so it will create and return a list which looks like (* a 8).
This is what the top-level call to sinp will return; it is the final
answer,

In case that mess of recursive calls is unclear, here 1is a
picture of what would happen: each line of the picture represents the
application of one of the three functions, and the lines are arranged
in chronological order. The indentation points up who is calling
whom.

simp (* (+ a 0) (¥ 2 4))
8imp (+ a 0)

simp a

simp O

Simplify-plus a 0
simp (% 2 4)

simp 2

simp 4

simplify-times 2 4
simplify-times a 8

Notes on the Programming Language LISP

The important thing about this whole program is that it is
not manipulating numbers the way typical FORTRAN, BASIC, or ALGOL
programs do; it is working with algebraic expressions. Although what
it does is very simple (it was only written to help teach Lisp), it is
hoped that the student can see where this sort of thing could 1lead.
The program could be improved to know about other mathematical
functions, and how to handle any number of arguments; it could try to
combine common subexpressions, factor things, expand things, and so
on.

You might also imagine other programs to differentiate and
integrate expressions, producing other expressions, or solve equations
symbolically. In fact there is a very, very large Lisp program called
MACSYMA which does all of these things, and it is used every day by
mathematicians and physicists. It includes a wide variety of
sophisticated simplifying functions,

So for all its simple-mindedness, the program above is
really a typical application of Lisp, and such manipulation of
structured information is one of the things at which Lisp excels.

A More Complex Program

We now present another example of a usable program: this
time, a game-playing program. In addition to being fun to use, this
program gives some taste of using Lisp for 1language processing, and
deals with a minimal sampling of artificial intelligence. Here is a
transcript of a conversation with this program, including the wuser's
invocation of the Lisp subsystem on PMulties, and Multics's ready
message (job completion indication) when the game is over., All of the
questions are asked by the program. The terse responses are those of
the game-playing user.

lisp animal

Let's play a game. Choose a random animal.

I'm gonna try to guess it by asking you questions,
and you give me yes-or-no answers. OK? let's go.
Does it have horns?

yes

Is it a buffalo?

no

Well, I'm not too sharp today. I give up.

Just what kind of beast did you have in mind?

a gazelle. :

Tell me something about a gazelle which is not true about a buffalo.
a gazelle is graceful

That was fun. Wanna try again?

maybe

Notes on the Programming Language LISP

Hey, can you give me a yes or no answer?

yes
Does it have horns?
no
Is it a butterfly?
no

Well, I'm not too sharp today. I give up.
Just what kind of beast did you have in mind?
a pig

Tell me something about a pig which is not true about a butterfly.
a pig is slovenly

That was fun. Wanna try again?

yes

Does it have horns?

no

Is this animal slovenly?

yes ‘

Is it a pig?

yes

Hey hey I sure am clever, huh?

Lisp MUST be a great language.

That was fun. Wanna try again?

yes

Does it have horns?

yes

Is this animal graceful?

you are not graceful

Hey, can you give me a yes or no answer?

no

Is it a buffalo?

no

Well, I'm not too sharp today. I give up.
Just what kind of beast did you have in mind?
bull

Tell me something about a bull which is not true about a buffalo.
you tell me something you ttl moron

Aw, be serious. I asked you a real question.
it would marry a cow

That was fun. Wanna try again?

yes

Does it have horns?

yes

Is this animal graceful?

no

Is it so that it would marry a cow?

yes

Is it a bull?

yes

Hey hey I sure am clever, huh?

Lisp MUST be a great language.

That was fun. Wanna try again?

no

Notes on the Programming Language LISP

Do you want to save me?

yes

Type: lisp animal

to play this game again.
r 1905 3.573 88.624 1162

The program maintains a data-base representing a series of
questions whose answers select some specific animal. The game-playing
user is asked to secretly choosse an animal. The program issues a
series of questions, narrowing down the possibilities at each answer,
until there is only one animal that the program knows about that meets
all these criteria. At that point, the user is asked if this animal
is indeed the one he secretly selected. If so, the program blatantly
crows about its own cleverness. If not, the program admits defeat, and
asks the user for a new question with which it augments its data base.
The program becomes wiser for the next game.

We will begin by analyzing the overall strategy and data
structures wused by the program. Then we will go through the code in
detail, learning new subrs and techniques as we encounter them.

The program's knowledge of questions and animals (to be
distinguished from its knowledge of how to ask questions and how t»o
learn) is expressed by a tree of questions and animal names. The
symbol "toptree" is bound to the top of this tree. Animals are
represented by the symbol (the unique symbol on the obarray) with the
animal's name &as its printname. For example, the symbol "buffalo"
represents the animal "buffalo" when appearing in the proper context.
Questions ‘are represented by lists of symbols, each symbol
representing the word which is its printname. For example, the 1list
which prints as (does it have horns) represents that question.

The tree consists of nodes. A node, in this program, is
either a symbol representing an animal, or a list of three objects.
These objects are, respectively, the representation o2f a question, a
node called the "true branch", and a node called the "false branch".
The program operates by starting at the node at the top of the tree,
asking the questions, and chasing the "true branch" if the question is
answered affirmitavely, or the "false branch" if not. Thus, of the
animal(s) on the "false" branch of a particular node the question in
that node may be answered "false", and similarly the "true branch".
After some game playing, the tree might have a printed representation
as follows:

((does it have horns)
((is it graceful)
gazelle
buffalo)
((does it growl)

10

Notes on the Programming Language LISP

((is it like a cat)
lion

bear)

butterfly))

Note how going deeper and deeper into the tree produces
animals about which a larger and larger number of statements may be
made. The structure of the tree is used to implement a selection
process. When the program has progressed down an interaction with the
game-player to a given animal, but the player asserts that that animal
is not his choice, all of the statements that can be made about the
animal in the tree (!) can also be made about the player's chosen
animal. Therefore, the addition of a new question and new animal
involves only a local change to the data structure, replacing the old
animal with the node consisting of the new question, the new animal,
and the old animeal.

The program has to print out and receive English-language
sentences. Dealing with English sentences constitutes a large part of
its skill. Sentences are represented by lists of symbols, each symbol
representing the word which is its print-name. To make things easier
to deal with, all upper-case characters are converted to lower-case
characters and user input "re-read" in simulation, this having been
done. We will learn how to "re-read" input in this way as we arrive at
that point in the program. When sentences are output, the first word
is capitalized as is the standard English convention. Often, the
program has need to construct sentences from canned sentence fragments
(e.g., "(is this animal)") and deduced ones (e.g., "(a bear)"). To
facilitate the printing of such sentences, a concept of "constructed
sentence" exists. A constructed sentence is either a symbol,
representing a single word, or a list of constructed sentences. For
example, all of the constructed sentences below are to be printed at
the game player as "Is this animal a bear":

(is this animal a bear)
(is (this animal)(a bear))
((is this animal) a (bear))

and so forth.

Having looked briefly at the two fundamental data structures
used by this program, let us consider the source-listing given in this
chapter, line by line.

We first note that the source listing appears to be, and is
in fact, a print-out of a file in the Multics File System. Lisp
programs are usually created by creating files full of forms with a
system's regular editors, not by typing forms at the interpreter. This
allows for the creation of programs, sets of functions and forms that
may be used on different occasions whenever they are needed. We can
get the Lisp interpreter to go out to a file in the file system, and

1

Notes on the Programming Language LISP

read and evaluate all of the forms in it as though the user had typed
them 1in one by one, expecting their evaluation. There extists a subr
called load (1) which is used fo: this purpose. Applying it to a
symbol whose print-name 1is the representation of a file-name in the
operating system under which Lisp is running causes this to happen.
For instance, the file containing this program is called "animal".
Typing the form

(load ‘'animel)

at the interpreter causes Lisp to find that file, and evaluate zll the
forms in it (not, by the way, printing out the results). This action
is called loading the program.

The first character we observe is the semicolon character,
L It is used for putting comments in Lisp programs. Everything to
the right of a semicolon is put there for the benefit of humans
reading the program. The Lisp reader ignores all characters to the
right of the semicolon. Multiple semicolons may be used stylisticeally,
but only the first one on a given line means anything.

The first comment describes what this program is, and who
wrote it and when. This is called journalization, and is useful so
that the culprit may be found when the program doesn't operate
properly.

The four functions which are next defined, play, explore,
grow-in-intelligence, and get-new-predicate, are the heart of the
game, and responsible for its characteristic behavior. The remaining
functions are support functions, having not to do with animals and
trees, but with things like reading sentences, upper-and-lower-case
letters, interrogating the user, etc. They are the groundwork upon
which the first four functions are built.

The function play is responsible for the highest-level
behavior of the program as opposed to the game. It prints out its
greeting explaining the game, plays the game once (by calling explore,
the next function, which plays the game once), asks if the user wants
to play again, and continues doing so until the user answers "no", At
this point the user is queried as to whether he wishes to “"save" the
Lisp world (we will consider that alternative later) and exits Lisp,
via the "quit" subr, if he replies in the negative.

The first form in the definition of play applies the princ
subr to a symbol with a very long print-name, taking several lines.
Symbols with very long print-names are the usual way in Lisp to obtain
messages and canned dialogues for user communication. The vertical bar
character ("|") which appears to start the symbol name, is not part of

(1) We will stop calling out subrs by name and number, but simply
mention them in passing as appropriate.

12

Notes on the Programming Language LISP

the name at all, but tells the reader that all characters up until the
next vertical bar, are part of the print-name of this symbol,
Normally, the first space, dot or newline would terminate the
print-name, but this is not so when the vertical bar has been used.
For a rather esoteric reason, slashes ("/") must precede all newlines
in the print-names of such symbols. The slash does not become part of
the printname.

The princ subr is like the print subr, i.e., it prints out
on the terminal the printed representation of its argument. There are
two major differences between the two subrs:

1) Wwhile Erint outputs a newline before the printed
representation of the object and a space after, princ does
neither.

2) If there are funny characters in the name of a symbol, such as
parentheses, spaces, dots, quote-marks, or newlines, rint will
slashify them, i.e., put a slash ("/") in front o¥ each such
character, while princ will not. Thus, print's output may be read
back in by the Lisp reader, for a slasE preceding @a character
removes its special significance. princ's output is intended for
human readers, not the Lisp reager, and thus it will not
slashify. For instance, if we have a symbol whose print-name has
three characters, a close parenthesis, a space, and an open
parenthesis, print will give

/)7 /(
while princ will give

) (

One usually uses princ to type out messages to a person.

Next we see a new-format do, one with a 1list of
variable-spec's followed by an end-test/exit-form clause. We know this
because the first item in the form after do itself is a list, (),
which is the same as nil, which is a list of U elements. There are
thus no variable-spec's. The end-test, the first element of the
second item after the do, is nil. When nil becomes non-nil, the 1loop
terminates. As nil never becomes non-nil, the loop does not terminate
unless the do is exited by other means. Thus, we have a "do forever",
This loop repeats the play-game/ask-for-another-game cycle
indefinitely.

The call to explore plays one round of the game. The
arguments to explore wiEI become clear when we discuss that function
subsequently. The support function ask is used to interrogate the
user. It 1is not a Lisp subr, but a function defined in this file. It
is applied to either a single symbol or a constructed sentence. It

13

Notes on the Programming Language LISP

8]

asks the user this question, and returns t or nil as he answers yes 2
no, respectively. ask worries about making sure.he only types yes o
no, and gives him a hard time for anything else. ask 1is wused as
predicate, albeit a user-defined one. ask with an argument may be
viewed as a predicate which goes through the user to get its answer.
In this case, when the "user returns nil" for the "wanna try again"
predicate, the do is exited, and thus the infinite game-cycle
repetition, via the return subr (recall that do is just a special form
of rog). Again, we invoke the user as a predicate, via ask, to find
out whether to save the game or just quit when he decides not to play
any imore.,

-3

[V

explore is the basis of the game. It 1is the recursive
function That walks the animal-and-question tree. It embodies the
algorithm which is the program's game strategy. As it walks down the
tree by recursing, it poses the question in each non-terminzl node
(i.e., node which is a 3-1list as described above as opposed to a
specific animal) to figure out which branch to recurse over. when it
reaches a terminel node, it has arrived at the only animal known to
the program consistent with all of the answers that the user gave. It
constructs a sentence asking if that is indeed the user's chosen
animal, and either performs the blatant crowsmanship, or becomes more
intelligent. The becoming-more-intelligent is implemented 1in another
function, grow-in-intelligence.

The two arguments to explore are a node, and that cons of
the 1list which contained this node (i.e., the cons that had this node
as its car). This latter argument is provided s» that this cons might
rplaca'ed with a new node if the program must become smarter. For
instance, if explore is visiting the node which prints as

((is this animal graceful) gazelle buffalo)

it poses the question "Is it graceful?" to the user. If the answer is
affirmative, it calls itself recursively with

the new node: gazelle

the containing cons: (gazelle buffalo)
the latter being a sublist of the list

((is this animal graceful) gazelle buffalo)
If the beast is a gazelle, all 1is fine and good. But if another
graceful, horned beast, such as an antelope was chose by the user,
then the car of that cons must be changed, by rplaca. 1Its new printed
representation would be

(((does this animal rhyme with canteloupe)

antelope gazelle)
buffalo)

14

Notes on the Programming Language LISP

causing the "is this animal graceful" node to look like this:

((is this animal graceful)

((does this animal rhyme with canteloupe)
antelope gazelle))

buffalo)

It is for this reason that this cons is passed on recursively.

The first test made by explore is whether it is being
invoked upon a specific animal (no% a list, i.e., not a cons), or a
question-true-false list. The predicate atom is used here for this
purpose. In the specific-animal case, the user is queried with a
constructed sentence of the form

Is this animal a llama?

A multi-level sentence is constructed by the application of 1list,
resulting in something like

((is this animal)(a llama))

and this is passed on to ask, which uses print-sentence, defined
later, to print out such constructed sentences. The support function
a-an-hack, applied to a symbol, returns a 1list of an appropriate
article (i.e., "a" or "an") and its input argument. This sentence
fragment is combined with the canned "(is this animal)" to make . the
constructed sentence.

Having correctly guessed the user's chosen animal, explore
uses the support function print-sentence to perform the blatant
crowing. The two arguments to print-sentence are a (possibly
constructed) sentence, and a symbol with a l-character print-name,
being the end-of-sentence punctuation. The punctuation is provided
separately because it 1is different than all of the other words in a
sentence. It is not separated by a space from the previous word, and,
in fact, 1is not a word at all, but an artifact of the English
implementation of sentences. We note that the question-mark and period
symbols are slashified, to remove their special significance ¢to the
reader. When there is a special character, like "?", of which we are
not sure whether it has special meaning or not, it cannot hurt to
slashify it when using it in a symbol name.

If we have posed an animal to the user, and he has said that
it is not the correct animal, we must grow in intelligence, by the use
of the function of that name. He is passed the animal which it |is
not, and the cons to rplaca with the new node. We will consider him
shortly.

In the case where we are exploreing a non-terminal node, we
pose the question in that node, whicg is the first element of it, the

15

Notes on the Programming Language LISP

car of its first cons, and recurse over the selected branch, passing
the branch and its containing cons as required.

Note that when explore is called from play, nil is passed as
the containing cons. We can do this because we know that the top level
of the tree is not a specific animal, but a question-true-false 1list,
by explicit design. Thus, this node can never be a "wrong animal"
because it is not an animal at all, and its containing cons need never
be rplaca'ed. Thus, we pass an insignificant argument at that point,
which will never be wused. We must pass something, because explore
requires two arguments. The nil is a signal to a human reading the
program that this might be some special case, which it is.

grow=-in-intelligence is that function which admits defeat,
asks the wuser for the name of a new animal, asks the user for
knowledge to differentiate the new animal from the o2nly one known to
the program which satisfied all of the posed questions, builds a new
node with the question and the two animals, and rplaca's it into the
tree in place of +the o0ld animal. grow-in-intelligence begins by
printing out the "Well, I'm not too sharp.." remark, which asks the
user for the name of a new beast. The next bit of logic here is
expressed as a lambda-combination, "((lambda (new-beast) ...)"
meaning, "kWith the new beast, let's do these things. We'll answer the
question of where the new beast came from later.". It tells a person
reading the program that the important stuff of what this function
does is right up front, the issue of how it gets this new beast being
kind of secondary. The lambda combination is a very good construct for
this, for wunlike setq's and prog's, the person reading the program
does not have to think about where else in +the prog the variable
"new-beast" may be s:t or looked at. The lambda expression limits the
scope of that variable to the forms inside of it.

The new-beast is represented at this point by a single
symbol with a wholly 1lower-case printname, on the obarray, whose
print-name is the name of this new-beast. grow-in-intelligence builds
a constructed sentence like this (assume the old beast was a gazelle
and the new beast an antelope):

((tell me something about)(an antelope)
(which is not true about)(a gazelle))

Again, a-an-hack is used to affix a proper article to the name of the
new animal. print-sentence types out this sentence, properly
capitalized, with the selectea punctuation, a period (".").

row-in-intelligence calls get-new-predicate to get a 1list
of words from the user whilch represents the new question, to be built
from the user's statement. get-new-predicate must be passed the new
animsl in order to analyze the sentence fully. We will deal with how
he gets this question shortly. grow-in-intelligence then builds the
new 3-list via the 1list subr, applying it to the result of
get-new-predicate, the new beast, and the old beast. The new node is

16

Notes on the Programming Language LISP

rplaca'ed into the cons where the old animal used to live, in the
tree, thereby growing the program's data base.

Now back to the question of where did the name of the new
beast come from, which was postponed by the lambda-combination, as
being uninteresting. Well, if we look at the line beginning

((lambda (animaldesc)

we find that the question is again postponed. In this case,
"animaldesc" is a list of words representing the animal the user typed
in, such as

(a bee)
(firefly)
(great horned toad)

The task of this lambda expression is to get back a single symbol with

the right print-name. For the three examples above, the three symbols
will have print-names

bee
firefly
great/ horned/ toad

Note that in the last case there are blanks in the print-name. 1
slashify them here only to remind you that this is the print-name of
one symbol, not three.

The first simplification that the lambda-expression performs
is to remove any article, such as the "a" in "a bee". Since the user's
input, at this stage, is guaranteed (by get-statment below) to be a
non-null 1list, asking if its car is one of the symbols "a" or "an"
(remember all of the user's input has been interned on the obarray) is
reasonable. If so, use the cdr of the user's input, in the case in
question being (bee). In all other cases, we use the list as it came.
It is the "cond" in the lambda-expression which selects one of these
two values for further processing.

The subr explodec creates a list of symbols with print-names
1 character long. IT you catenate the print-names of all these symbols
together, you get the printed representation of the argument to
explodec. It is the human-readable form, such as printed by princ
uEicE 1s used, not the slashified form used by print. For example,

17

Notes on'the Programming Language LISP

Input to explodec Cutput

abcDe (abctlDe)

(abc def (g)) (/Cabe/ def / /¢(
. g /) /))

The slashes above are so that you can tell the symbol whose print-name
is an open paren from an open paren used to represent the start of the
list of symbols given above, It is not in the output. The output of
explodec given "(abc dec (g))" above is a list of 13 elements (being
tThe number of characters in "(abec def (g))". The symbol whose
print-name is an open-parenthesis appears twice in it. The symbol
whose print-name is a close parenthesis also appears twice in it. The
symbol whose print-name 1is a space appears twice in it, too. The
symbols whose print-names are a, b, ¢, d, e, f, and g each appear once
in it.

explodec is a great way to get at the characters which
constitute” the printed representation of something. (Of course, that
is in terms of the program, not in terms of Lisp, for Lisp does not
deal with characters, just symbols (and conses, etc.)). When we apply
explodec to a 1list, as we have seen, the first and last elements of
that list are always the symbols with the print-names of an open
parenthesis and a close parenthesis respectively. Applying reverse to

this list builds a new list of the same single-character symbols in
the opposite order., That is to say, if we apply reverse to

(/(beel/))
we get a list which prints like this:
(/) eeb /()

which is still a list of 5 elements. Applying the c¢dr subr to that
gets us a list of 4 elements,

(eeb /()

in effect removing the close parenthesis. Applying reverse to that we
get

(/C b ee)
putting it forwards. Applying cdr to that, we get
(b e e)

a list of 3 elements, being the characters in the name of the animal.
Had we started with "(great horned toad)", we would now have

(great/ horned/ toad)

18

Notes on the Programming Language LISP

Note the appearance of the symbol with ¢the single-space 'print-name
twice in the above list of 17 elements.

We now want to construct a single symbol whose print-name
can be gotten from these 1lists of characters, from which we have
removed the parentheses of the representation of a 1list, but left
spaces.

There is a primitive Lisp function that does precisely this.
maknam takes a list of single-character symbols, and constructs a
totally new symbol, different from any other symbol, whose printname
will be constructed out out the characters given; the symbol will have
no binding and an empty property list.

(maknam '(r um b 1 e))
gives a symbol named

rumble

However, we would like one service which maknam does nost
perform. We would 1like the constructed symbol to be interned on the
obarray, i.e., if there already is such a symbol on the obarray, (one
with this print-name) us it, and if not, put the symbol we construct
on the obarray. In this way, any time the user mentions that animal,
the symbol will be used to represent it, for the reader interns
symbols in this way. The implode does precisely this. It constructs
or returns an interned symEoI precisely the same way the reader does,
but instead of getting the print-name from typed input, we get it from
the print-names of the symbols in the list we are given. Thus, we now
have either an interned symbol whose print-name is "bee", or one whose
print-name is "great horned toad". It is with these symbols that the
upper lambda-expression works.

Whew. Now, as to the doubly-postponed question of from where
grow-in-intelligence got the original 1list, i.e.,

(a bee)
(firefly)
(great horned toad)

which was postponed by the second 1lambda-combination: it wuses a
support function, defined 1later, called "get-non-wisecrack", whose
purpose is to get a bunch of words from the user, and return a list of
symbols representing this reply. get-non-wisecrack also sorts out
remarks which it deduces are not serious. If such a wisecrack is
offered to it, it responds with the counter-remark which 1is the
print-name of {its argument. We will consider get-non-wisecrack in
detail when we get there.

19

Notes on the Programming Language LISP

get-new-predicate is the trickiest and most difficult part
of the program. It 1s used by grow-in-knowledge to get a new question
to be installed as part of the the tree. Again, it 1is a 1lambda
combination, which works on the result »of get-non-wisecrack, calling
the user's statement "wisdom". The user's statement is a sentence true
about the new animal, but not the old. (grow-in-knowledge has already
prompted the wuser for this statement). It 1s the task of
get-new-predicate to convert this statement into a question. At this
point, the statement is a list of interned symbols, all lower-case.
get-new-predicate's result will be a new list of such symbols. The
symbols represent words.

Although kind of clever, get-new-predicate is not all that
bright. He works best on sentences starting with "it", "it" being the
new animal in response to the prompt. Sentences like

it has four legs
become questions like
does this animal have four legs
Sentences like
it eats cauliflower
become questions like
does this animal eat cauliflower
Sentences which state predicate adjectives, like
it is polymorphous
become questions like
is this animal polymorphous

On all other cases, it does not win very well, and constructs a
kludgey sentence of the from

would you say that ramafrazz phamblatan
or similar.
get-new-predicate begins by checking if the given sentence

starts off with an 1indefinite reference to a member of the given
species, e.g.,

a cow is gentle and loving

The first element of the list representing the user's statement is one

20

Notes on the Programming Language LISP

of the symbols "a" or "an", and the second is the new animal (i.e.,
the interned symbol with that print-name) as passed for this purpose
by grow-in-knowledge. If so, the variable "wisdom"™ is set to a new
list, constructed from "it" and the cddr of the old, such as

it is gentle and loving

This allows the rest of get-new-predicate to do better with it,

If the statement now contends that "it has" or "it |is
esees", questions of the form "does it have ..." and "is this animal
««." are formed by appending the portion of the input statement beyond
"it has"™ or "it is" to copies of the pre-canned statement headers just
given. The append subr serves admirably here.

If the statement 1is neither one of having or being,
get-new-predicate tries for a sentence stating what the animal does,
looking for a verb as the word following "it". It thinks it recognizes
a verb by its ending in "s", It is by this means that a statement
like

it eats grass
becomes a question like
does this animal eat grass

It is not easy to find a case where this is not so, i.e., @a sentence
of the form

It XXXXXS eceo coe oo

where xxxxx is not a verb. To perform this analysis, get-new-predicate
must analyze the characters in the printed representation of the
second symbol in the input statement. For this, our new friend
explodec is called into play, and his output reversed. The inside
lambda-combination, in get-new-predicate says, "where "revexplode" is
bound to the 1list of single-character symbols in the reversed
print-name of the second element of "wisdom", do thus-and-so". So, if
we started with

it eats grass

(reverse (explodec (cadr wisdom))), and thus revexplode, evaluates to
a list which looks like

(st ae)
being "eats"™ spelled backwards. Note that this lambda combination is
in the predicate position of a cond-clause; if it returns nil, the

cond goes on. Since there are no consequents in this cond clause, if
it returns non-nil, what it will return will be the value of the whole

21

Notes on the Programming Language LISP

cond, the big lambda combination, and the function get-new-predicate.
To first, the lambda-expression starts with an and. If the first form
in the and evaluates to nil, not only are the remaining forms not
evaluated, but the and evaluates to nil, and thus s> does the 1lambda
combination (the inner one), and the cond-predicate is false, and the
cond marches on. This first form of the and thus checks to see if it
thinks the second word of the statement was a verb, by seeing if the
first element of revexplode is the single-character symbol "s", As
explodec interns the single-character symbols it returns, we can ask
for this "s" in the program, the interned "s", knowing we will be
asking about the one explodec would be expected to return.

So the and sees if the sentence is of the wverbal kind it
thinks it knows about. If the and turns wup nil, the cond falls
through. If, however, the second word of the response appears to be a
verb, get-new-predicate tries to reconstruct the verb by stripping off
the "s" “before bullding the question. The progn, being the second
clause of the and, is alwas evaluated in its entirety if the first
clause of the and is non-nil, whether or not any forms in it evaluate
to nil. It is progn, not and. Immediately, the "s" is chopped off by

(setq revexplode (cdr revexplode))

Thus,
(st ae)

becomes
(t a e)

Now a check is made for some common verbs that end in a doubled
letter, an "e", and then an "s" in the third-person singular, such as
“"puzzes". The three-clause and inside the progn checks for two
conditions, an “e" being the last letter (now the first element of
revexplode, the "s" having already been removed), and the next two
elements being the same letter. If these two conditions are true, the

final clause of the inside and is evaluated, and it strips off the
"e",. Thus,

buzzes
became
(s e z 2z ub)

then
(e z z ub)

and finally

(z z ub)

22

Notes on the Programming Language LISP

The new verb 1is now constructed by implodeing the reversed
"revexplode" as it now stands, stripped of "s" and perhaps "e". Thus,
we get the symbol

buzz

A new statement fragment is constructed out of this and the rest of
the original statement, giving

give milk
if the original statement were
it gives milk

This 1is appended to a copy of the canned statemnt-header
"(does this animal)", resulting in the final question, which can never
be nil, and thus, the progn, the and and the lambda combination all
return a non-nil result.

We have now described the heart of the program. We must now
describe the guts. All of what is left are the support routines, used
by the four (!) functions we have just described.

As we go on through the listing, we next encounter a form
which 1is not a function definition at all. However, like function
definitions (and all else) appearing in a file, it is evaluated at the
time the file is loaded. This particular form gives all of the symbols
whose print-names are single letters of the alphabet properties that
allow the program to differentiate between upper and lower case
letters, and translate between them where needed. The names of these
properties are "upper" and "lower". Each symbol whose print-name is an
upper-case letter gets the corresponding symbol with the same letter
lower-case as a print-name as its "lower" property. Similarly, the
latter symbol gets the former as an ‘"upper" property. No other
symbols in the Lisp world of this program will have "upper" or "lower"
properties. For example the interned symbol "Z" has a "lower" property
of the interned symbol "z", and the interned symbol "q" has an "upper"
property of the interned symbol "Q". We emphasize the fact that these
single-character-printname symbols are interned; it is this which
allows us to identify them in the code of the program (i.e., ask, "is
it the interned "s"?").

These properties are given by the nameless function
specified by the 1lambda expression in this form. It gives its first
argument a "lower" property of its second, and its second &an "upper"
property of its first. We do this for all of the letters in the
alphabet by means of the very powerful and useful subr mapc, which was
explained earlier. We give mapc three objects in 1s case, a
function (which c¢an be either a lambda expression or a symbol which
has a subr or lambda expression properly attached to it) and as many
lists as that function expects arguments (in this case, two). What

23

Notes on the Programming Language LISP

mapc will do is march down the two 1lists in parallel, taking one
element from each of them at a time, and apply the function to these
to objects (the elements chosen from each list). Thus,

(mape '(lambda (x y)(print (cons x y)))
'(A B C)
'*(a b c))

would print

(A . a) (B.b) (C. e)
Here, we apply this double-property-putting function to the lists
(ABCDEFGHTIUJKLWMN d PCRSTUVWXY Z)

and
(a2becdefghijklmnopgqrstuvwsxyz)

which were gotten by applying our friend explodec to symbols whose
print-names were the upper and lower case alphabets. Instead of
printing out a cons, we cross-relate the properties.

Next in the file is a function which makes use of these
properties, to ensure that a word is all lower-case letters. Applied
to a symbol representing a word, presumably gotten from user input, it
returns a symbol (perhaps the same one) whose print-name contains only
lower-case letters. That is to say, "foo", "FoO", and "FOO" all cause
"foo" to be returned. 1Its basic technique, like other functions we
have seen so far, is to blow apart its input with explodec, do
something with it character-by-character, and squeeze toget he‘~ a
(possibly new) symbol with implode. Here we use mape's brother,
mapcar, which is even more powerful. mapcar again takes a functlon,
and as many lists as that function expects arguments (in this case,
one, as the function is (lambda (y)..)) and applies the function to
list elements in succession., The difference between mapc and mapcar,
remember, 1is that instead of returning somethlng useless, mapcar
returns a new list, whose elements, in succession, are the successive
results of tThe successive function epplications that mapcar brought
about. (1)

In get-lower-case, the function we "map" over the 1list of
single-character-print-name-symbols is "If you are upper case, we want
your lower-case. Otherwise, you'll do.". In the context of our

(1) One is tempted to ask, "why use mapc at all if mapcar is so much
better?", The answer 1lies in the fact that construction of the new
list is relatively expensive, and is to be avoided if you are not
going to use it. Using mapc also tells people reading the program that
you do not intend to use the result.

2y

Notes on the Programming Language LISP

program, this function is written in Lisp as

(lambda (y) (or (get y 'lower) y))
This says "Where y is the letter under consideration: If its "lower"
property is non-nil (then it must be upper-case), the answer is that
(i.e., its "lower" property, which is its 1lower-case translation),
Otherwise, use the letter as it stands.".

implodeing the result of mapping this function over the
characters in the symbol produces a suitably lower-cased symbol which
(as we pointed out of all implode results) is interned.

The function capitalize sort of does the opposite. Given a
symbol representing a word, it returns a (perhaps other) symbol whose
print-name begins with a capital letter. Thus, "foo" gives "“Foo",
but "FOO" gives "FOO". Only the first letter is dealt with. This is
done again by explodecing the symbol, checking the first element of
the result for an "upper" property, replacing this element with its
Yupper" property if it has one, and implodeing the result. If the
first element didn't have an "upper™ property, we just use the input
symbol as it was given, to avoid the work of implodeing when we know
the answer. :

The function print-sentence implements a very powerful
primitive, and is sort of hairy. It takes a (possibly constructed)
sentence and a punctuation mark (being a single-character symbol) as
arguments. The sentence is printed out, with spaces between words,
the first word capitalized, and the punctuation mark printed
afterwards. print-sentence has a couple of features that are not even
used in this program. When one writes such a function, one should
consider all special cases, such as being passed a sentence of O
elenents, i.e., nil, or nil as a punctuation mark. In these cases,
print-sentence prints nothing for the sentence or punctuation mark,
respectively.

print-sentence, like many hairy recursive functions, 1is
broken down 1nto two parts, an outer-level non-recursive function
which handles the special cases and an inner "gut", a recursive
function which is called by the outer function with appropriate
arguments. In this case, the outer function, print-sentence worries
about - the cases of nil sentence or punctuation, the printing of the
punctuation, the issuing of a newline (the subr terpri does this) and
the calling of the recursive part, guts-of-print-sentence.
print-sentence also special-cases being passed a single symbol other
than nil as an argument; if this is the case, it is simply princed out
with the punctuation, without being capitalized, as it is assumed to
be some kind of verbatim message, i.e., not a constructed sentence.

guts-of-print-sentence is where the real work is done. He is
applied to lists, never to symbols. print-sentence applies it to his
input when he knows that not to be a symbol, and

25

Notes on the Programming Language LISP

guts-of-print-sentence calls himself recursively when he finds that an
element of one of these lists is a list.

guts-of-print-sentence mapc's his internal lambda expression
over his input list. Thls causes each symbol in it to be princed out,
and each list in it to be recursed over. The only really subtle thing
going on is the flag "firstflag", which is passed to any invocation of
guts-of-print-sentence as t if and only if it is known that the first
real word, i.e., not sublist, but real word, has not yet been printed
out. This flag triggers the captalizing of the first word t» be
printed when it is t, and causes each word to be printed to be
preceded by a space, when it is nil. Note that print-sentence passes
it to guts- (for short) as t, because in this case it certainly is
known that nothing has been printed out. Each invocation of guts-
turns off “1ts 1dea of "firstflag" after it has processed its first
element, be it symbol or sub-list. For after this first element was
processed, the first word bhad to have been printed, whether this
invocation or a successive one actually printed it. The local idea of
"firstflag" 1is handed down as a starting-point for all recursive
invocations. Once nil, it can never become t. If this confuses you,
you must convince yourself by staring at these two functions, and
trying sample executions either at your terminal or in your head. It
is subtle.

get-statement is straightforward. His task is to read a line
of user input from the console, and return it as a list of lower-cased
words. He also insures that the user does not type an empty 1line,
pestering him 1if he does. get-statement is implemented as a do, with
one local variable, "statement"m, initially bound to nil. The 1loop
terminates, returning the value of "statement", when the latter
becomes non-nil. (1) The form beginning with "(setq statement" is
that which does the real work, reading a line of characters as a
single object with readline. readline reads an entire 1l1line of
characters, up to and including & newline character, from the user's
console. It returns a symbol whose print-name consists of this
character string. (2) We apply explodec to this result to get a 1list
of characters, including all of +the spaces and the newline,
single-character-print-name-symbols like all else. We build a new list
out of a pair of parentheses, with all of the characters from this
explodecion in the middle. This now 1looks just like the printed
representation, or shoulad we say, a possible printed representation,
of the 1list we are trying to build. The subr readlist takes such a

(1) We say "(not (null statement))", although we could have said Just
"statement" in this end-test as well. We feel that the form given here
may be clearer, and for sure, in compiled code, it is as efficient.
We will talk about the compiler later. "null" is the same as "not".

(2) On Multics, a "string object", i.e., not a symbol, is actually

returned, but the effect of the subsequent explodec is identical. We
will talk about "string objects" later.

26

Notes on the Programming Language LISP

list of character-symbols, makes a character string out of them, and
asks the reader to read {t! This is sort of like the inverse of
explodec but for arbitrary lists, not just symbols (like implode is).
The result returned from readlist is the list of symbols representing
words that the user typed In. This is a very useful technique to
learn, because we have used the Lisp reader to solve all problems of
decomposing and parsing the user's input, but we did not require him
to type parentheses around a list.

et-statement then maps the function get-lower-case, already
described, over all the elements of the reconstructed Iist read in,
and proceeds to deal with the guaranteed-lower-case-symbol list. If
the user typed only a blank line, or a newline alone, we would have
given readlist a set of parentheses with only a newline or spaces and
or a newline between them. When we type such characters to the reader,
we get nil, which is what readlist as well will return for a pair of
parentheses separated by whitespace. If this is the case, the value of
"statement” will be nil at the or. The or checks for this, and needles
the user via print-sentence. The do will go around again until a
non-empty line is typed.

The function ask asks a question, typing it out via
print-sentence, supplying the "?" punctuation, and getting a list of
typed-in words via get-statement. Its do terminates when a 1line
starting with the word "yes" or "no" is typed. It translates "yes" and
"no"™ into t and nil, so that it may be used as a predicate. There are
no new Lisp concepts in this function.

et-non-wisecrack is another do that reads statements until
something sIt likes, 1in this case non-nil is produced. A non-empty
- statement is read via get-statement. A nameless function, represented
by the lambda-expression In get-non-wisecrack, is mapped over each
word in the gotten sentence. The entire mapc is encased in a prog,
whose value becomes the value of the variable "statement". If the
internal lambda-expression finds any word it dislikes, it prints out
the caller-supplied rebuff, and causes the entire prog to return nil
at once, causing the do to repeat. If all of the words in the
sentence pass this censor, (return response) is evaluated, causing the
prog to return the guaranteed non-nil response. The variable
"response"” is set to this value, and the do returns this object to
get-non-wisecrack's caller. :

a-an-hack creates a list of an indefinite article and {ts
input argument. Its internal logic ought be quite clear at this point.

The next form in the file sets the value of the variable
"toptree"” at the time the program is loaded, to the initial data-tree,
It is a 3-1ist of one question and two animals. This question will
always be the first question the program asks. Note that the variable
"toptree"” (whose value, you may recall, is passed by play to explore)
is not a lambda or prog variable of any function. It is called a free

or special variable.

a7

Notes on the Programming Language LISP

The function save-game is called to put the current Lisp
world 1in a huge burlap bag called a "saved environment" and put that
bag in a file called "animal.sv.lisp" in the current directory of the
Multics File System. This burlap bag can be opened up and made into a
Lisp world identical to the one at the time it was "saved". This is
done by issuing the command

lisp <filename>

to Multics, where <filename)> is whatever argument "save" (which is an
fsubr, and thus does not have its argument-forms evaluated for it by
eval) was given.

And when the bag is opened, Lisp does this thing: it mapc's
eval over the binding of the symbol "errlist", i.e., evaluates all the
forms in this list of forms. Thus, save-game sets this variable to a
list of the form "(play)", which causes the function play to be
invoked when the user invokes lisp in this manner. Thus, the user of
the animal game does not have to know how to cause the top-level
function play to be invoked; Lisp does it for him. In fact, he does
not have to know anything about Lisp at all to play the game.

When this program is first loaded, play must be invoked by
hand, i.e., by giving the form "(play)" to the interpreter. When we do
this, the game will give its little litany about how to play it, and,
on Multics, respond immediately with "Eh? Whazzat you say?" even
though we didn't type anything. This is because the first call to
readline produces the newline which was typed by the user after the
form "(play)". This newline looks, to the program, like an empty line.
We had to type this newline, or else Multics would not have sent the
line "(play)" to Lisp. This is not a problem when the game is started
up from the saved environment because no newline is typed to Lisp in
this case.

The last form in the file is somewhat arcane. It too, is
evaluated at 1load time. It changes the internal tables used by the
reader to make comma and period be treated as whitespace. This is done
so that arbitrary punctuation thrown in by the wuser is ignored,
instead of becoming part of symbol names or indicating conses (as
period normally does in printed representations). The programmable
reader is a useful feature of Maclisp. We will not go into it here.
Read up on it in the manual to learn more.

28

Notes on the Programming Language LISP

Creating and Debugging LISP Programs
in the Multics Environment

For all but the simplest exploratory toying with LISP,
sitting around and typing forms at the interpreter is not a reasonable
way to 1input programs. The interpreter is very unforgiving about
typing the wrong thing, and once you type the right thing, only the
paper and the property lists know what you have typed. Hence, it is
usual to prepare a file containing LISP forms (function definitions
and other forms) using a traditional editor (edm or qedx on Multics)
and cause it to be read into LISP. For example, one might prepare a
file by saying:

fedm myfuns

Segment myfuns not found.

Input.

! (defun foo (x) (cons (x (gensym))))

r 233 0.245 35 162
(! marks a line that is typed by the user)

To load this into LISP, one applies the "load" SUBR to the
pathname of the file:

1lisp
s
!éload '‘myfuns)

to get lisp to read and evaluate the forms in this file. Once this has
been done, we may hand the interpreter forms containing applications

for the functions defined therein. There are two common errors one
will encounter in this procedure, having too many parentheses or not
having enough. If there are not enough closing parentheses at some

point in a file, usually some object (a list) will not finish before
the file runs out. Hence the message

lisp: End of file in middle of object
may be taken as a hint that this is the case. On the other hand, too
many closing parens at some point often cause atoms in a suceeding
form to appear at top level, i.e. to be read and evaluated by load, as
one of the forms in the file. In this case,

lisp: undefined atomic symbol: cons

or something similar is usually the result. When any of these errors

29

Notes on the Programming Language LISP

happen, or the error from the file's name being misspelt or not found,
lisp "stacks" the error (in a very shallow stack) and expects you to
take some corrective action. This usually is hitting the "BREAK" or
"QUIT" key and typing a "g" in response to "CTRL/". This cryptic
formula causes lisp to unwind the error stacked up, and start again
reading, evaluating and printing at top level. Again, see the manual
for more details.

When you run your functions and find that they don't work,
you would probably like to look at the definitions you have provided.
Looking at the values of symbols is not a <challenge, since simply
typing the name of a symbol at the interpreter causes it to be
evaluated (its value retrieved), and the value printed.

There exists a function (an fsubr) called rindef (grind
definition, so called because of the amount of work if must do), is
available to take a function definition, and print it out as a "defun"
form with the conventional Lisp indentation.

Thus (grindef foobar) :the cadr of the form is the
; function to be ground

might print out

(defun foobar (x y) (prog (a b c)
(cond ((eq a 'what)
(setqg b 7)
(go ce))
(t (cond ((atom sSp) ...oc..

The value returned by "grindef" is a very peculiar symbol whose
printname mysteriously doesn't print at all.

Now once you find your error, you might want to fix your
program. You can quit LISP (apply "quit" to no arguments), and take
care of it, but it is usually most convenient to invoke an editor from
lisp and re-apply load to read the new file. To do this, we wuse the
subr cline, which may be applied to a symbol whose print-name is the
Multics command you want to execute. For instance, one can say

(cline '{edm myfunsi)
to cause the editor to edit the source file, without 1leaving 1lisp.
When you exit the editor, cline returns nil and you can then reload
the source file.
If looking at your program, its behavior and its variable

values is not sufficient to find your problem, you might want to trace
your functions. The FSUBRs trace and untrace exist for this purpose.

30

Notes on the Programming Language LISP

If you say

(trace fun1)

the tracing package will print out a message each time funl is applied
to anything, and will also print out the objects to which it was
applied. Furthermore the tracing package will print out the value
retraced by funil. As you might have guessed, untrace turns tracing
off. For further information about the tracing package which, in fact,
is quite versatile, check out the manual.

31

i3
333
333

333
333
i

Notes on the Programming Language LISP
Animal game program, by Bernard Greenberg 1/88/78.

Basic top-feve! function.

(defun play O

333
333
333

(princ *[Let’s play a game. Choose a random animal.|) (terpri)
(princ ’|I’m gonna try to guess it by asking you questions,|) (terpri)
(princ *|and you give me yes-or-no-answers. 0K? let’s go.|) (terpri)
(do O) (nil) jdo forever.
(explore toptree nil)
" (or (ask ’|That was fun. Manna try again|)

(return nil))) 31t he is done, escape from the “do®.
(and (ask ’(do you uant to save me)) 31t he uants to save it, do that.
(save-game))

(quit))

The gut of the whole game. That which recurses over each node.

(defun explore (node what-to-rplaca)

(cond ((atom node) tlle are at a specific animal
(cond ((ask (list *(is it) (a-an-hack node)))
(print-sentence ’ (hey hey 1 sure am clever/, huh) */?)
(print-gsentence ' (lisp MUST be & great language) °/.))

(t sTime to learn some neu knouledge.
(grou-in-intelligence node what-to-rplaca))))
(t ' "~ iNot an animal, but a question.
_(cond ((ask (car node)) jpose the question
(explore (cadr node) (cdr node))) sExplore the true branch.
(t (explore (caddr node) (cddr node))))))) jeise, do the faise branch.
333
333 Artificlial intelligence implemented here.
333 ' :
(defun grou-in-intelligence (loser houd-wus-get-here) s learn

(princ *[Heli, I'm not too sharp today. I give up.|) (terpri)
(princ ?|Just what kind of beast did you have in mind?|) (terpri)
((lambda (neu-beast)
(print-gsentence (list ’(tell me something about)
(a—-an-hack neu-beast)
? {which is not true about)
(a-an-hack loser))

*/.)
(rplaca houd-ue-gst-here schange the oid node.
(list (get-neu-predicate neu-beast) sbuiid neu node
neu-beast
loser)))
((lambda (animaldesc)
(implode (cdr (reverse (cdr (reverse sstrips off 0

(explodec ‘
(cond ((wemq (car animaldesc) ’(a an))
(cdr animaldesc))
- (t animatdesc)))))))))
(get-non-nisecrack °’|Hey, thats not the name of a real beast.}))))

Notes on the Programming Language LISP 33

333 Get & neu predicate by munging the English of the statessnt.

(defun get-neu-predicate (new—animal) ' sget what te decide on.
((lambda (uisdom)
(cond ((and (weng (car uisdom) ’(a an))
(eq (codr uisdom) new-animal))
(setq uisdon (cons *it (cddr wisdom))))) ;o oeu Is.. => It Is
(cond ((eq (car uisdom) ’it) tBest case.
(oond ((eq (codr uisdom) ’hes) silinninger yot.
C(append ? (does it have) (cddr wisdomw)))
((eq (coadr uisdom) ’is)
C(append °(is this enimal) (cddr uisdom)))
((Clambda (revexplede)
(and (eq (car revexplode) ’s)
(progn (setq revexpiode (cdr revexplede))
(and (eq (car revexplode) *e)
(oq (cadr revexplode) (caddr revexplode)) ;"buzzes” -> “buzz®.
(setq revexplode (cdr revexploede)))
(sstq uisdon (cons (implode (reverse revexplode))
(cddr uisdom)))
(append * (does this animal) uisdon))))
(reverse (explode (cadr uisdom)))))
(t C(append *(is it so that) uisdom))))
(t (append ’ (uould you say that) wisdom))))
(get-non-uisecrack ’|Au, be serious. 1 ssked you a real guestion.|)))

$33
333 Functions for hacking case-ness, i.s., upper/iouwer of words.

313

$33 Executed at load time. This function gives each lower cese symbol
$33 on upper case sywbo! 8s its “upper” property, and vice versa.

(mapcar ’ (lambda (x y)
(putprop x y *lower)
(putprop y x upper))
(explodec *ABCOEFGHIJKLNNOPQRSTUVIXYZ)
(expliodec ’sbedefghi jk Imnopgrs tuvixyz))

333 Get lower case from possibly partisliy-upper-case word.

(defun get-lowsr-case (x) . ~ $x is the symbol for the word.
" Cimplode
(mapcar '’ (lambda (y) tGet y’s "lower® property, if any, etherwise y.
Cor (get y ’lower) y))
(explode x)))))

$3 capitalize.

(defun capitalize (W)

. {Clambda (exploded) sThe exploded werd.
((lanbda (first-letter-upper) s "upper® property of the first letter.
(cond (first-letter-upper s11{ there (s ons, wse It
(impiode (cons first-letter-upper (oér expleded))))
(t u))) . 31t net, just return u.

(get (cor exploded) ’wpper)))
(oxplodec w)))

Notes on the Programming Language LISP

333
333 Function to print out a sentence. All lists are linearized.

333

(defun print-sentence (sentence punctuation)

(cond ((nul! sentence)) sdo nothing if nit at this level.
((atom sentence) snot a list.
(princ (capitalize sentence))) ssingle word
(t (guts-of-print-sentence sentence t))) jrecurse, hard case.

(and punctuation (princ punctuation)) sPrint if non-nil

(terpri)) ' jneuline

(defun guts-of-print-sentence (sentence firstfiag)
(mapc ’ (lambda (x) sFor each element of the sentence,
: (cond ((atom x) 3@ word, print it.
(or firstflag (princ | |))
(princ (or (and tirstflag (capitalize x)) x)))

(t (guts-of-print-sentence x firstflag))) sa list
(setq firstilag nil)) 31t is not the first time anywmore.
sentence))
11 :
333 Functions to read in a line
333

(defun get-statement ()
(do ((statement))
) ((not (null statement)) statement)
(setq statement
(mapcar ’get-iousr-case
(readlist (append ’ (| (])
" (explodec (readline))
» “pp »n»
(cond ((null statewent)
(princ ’|Eh? Whazzat you say?|)
(terpri)))))

(defun ask (query) . sget yes or no answer
(print-sentence query ’/?)
(do ((response (car (get-statement)) (car (get-statement))))
((memq response ’(yes no))
(eq response ’yes))
(print-sentence ’({Hey, can you give me a yss or no ansuer|) */?)))

333
333 Toys and gamwes.
353

(defun get-non-uisecrack (remark)
(do ((response))
(response response)
(setq response (get-statement))
(setq response
(prog 0
(mapc ’ (lambda (x) _
(cond ((memq x * (i you hell damn go the if dont))
(print-gentence remark nil) L
(return nii)))) $Exit prog with nil.
responss) jihat to sep over
(return responsse))))) 31¢ mapc &idn’t return, get ans.

Notes on the Programming Language LISP

(defun s-an-hack (word)
" (Clambda (first-letter)
(list (cond ((memq first-tetter *Ga e | o W)
‘an)
(t %e))
word))
(car (explodec word))))
$33
$3s Initialize the geme.
{11]

(setq toptree ’((does it have horns) butfalo buttertly))

33
$33 Save the game | f uented.

(defun save-game () .
(print-sentence ’|Type: = lisp enimal| nil)
(print-sentence ’[to play this game again| °/.)
(setq errlist *((play))) smokes game self-starting
(save animal))

33 .
112 Cause period and comma to be ignored.

(Clombda (syntax) .
) (sstetus syntax 56 syntax) 456 is on escil °.°
(sstatus sgntax 54 syntax)) 154 is an ascil *,*
(status syntax 49)) 340 is on escii * *

Notes on the Programming Language LISP

Notes on the Programming Language LISP

by Bernard Greenberg

Part 1V

(c) Copyright 1976, 1978 by Bernard Greenberg and the Student
Information Processing Board of MIT. All rights reserved.

Notes on the Programming Language LISP

PART &

This portion of the notes concerns itself with several
diverse topics which make LISP a more interesting programming
language.

GR&EEBAEEEE LA LB LS AL EELELELLE L LA L LEEELEELEEEEELLES

Lexprs

We have met many subrs which can be applied to a variable
number of arguments, such as "+" and "list". Most subrs, such as
"cons", are applied to a fixed number of arguments (in this case,
two). We have learned how to define functions; yet, so far, they can
take only a fixed number of arguments. For example, the function fg15
below takes 3:

(defun fg15 (abel zflag dontcpush).....

We would like to be able to define functions that take a variable
number of arguments. Such functions are called lexprs, for they are
like the list subr, which takes many arguments. (In fact, such subrs
are called lsubrs in this context.) Functions of a fixed number of
arguments are called exprs in this context.

We define a lexpr by specifying a single (non-nil) symbol
instead of the argument list in the function definition instead of the
usual lambda list. For example,

(defun mylexpr n
(cond ((...

As would be expected, a lambda expression like

(lambda n (cond ((..
gets filed under the expr property of the symbol mylexpr.

When such a lambda-expression is applied, the symbol "n"
is bound to a fixnum being the number of arguments to which the
lexprish lambda expression was applied. A lexpr always wants to know
to how many arguments it was applied. This, however, does not solve
the problem of actually finding out to what arguments it has been
applied. A lexpr may obtain its arguments by means of the arg subr.
arg is applied to a fixnum, being the number of the argument that you
want. For example, if we have

Notes on the Programming Language LISP
(defun blorph n
(print (arg 2)))
and we evaluate the form
(blorph 'boy 'is 'this 'random 'stuff)
we will find that "is" is printed out. For another example,
(defun fumble n
(do i n (1= i) (= 1i 0)
(print (arg i))))

will print out ‘"stuff", "random", "this", "is", and "boy" on
successive lines.

Notes on the Programming Language LISP

More List Processing Functions

Often it is useful to see if two pieces of 1list structure

are shaped the same and look the same. For instance, a list might be
as follows:

((the king of spain)
(the thing of main)
(the ring of bane))

representing a bunch of things we had determined useful for some
purpose. Now each of these things has "substructure™ in some sense
that we care about. For example, suppose "ainlist" were bound to the
list above. Then

(cadddr (car ainlist)) gives "spain®
(cadddr (cadr ainlist)) gives "main"
and (cadddr (caddr ainlist)) gives "bane",

Now suppose that we are accumulating a 1list 1like this of random
four-word, four-syllable posessives that end in something rhyming with
"ain", Suppose that a part of this system had come to the conclusion
that "the zing of rain" could, or should, also be an appropriate
member of this 1list. It has come to this conclusion by considering
various properties of "rain", "zing" and maybe something that a user
had typed in. So it has developed the list

(the zing of rain)

by building it up. We would like to see if this fact is already in
"ainlist". Well, you may recall that "memg” could be used for such
things. However, (say "x" is bound to "(the zing of rain)")

(memq x ainlist)

will not do it. In fact, just because "(the king of spain)" looks like
a member of the list "((the king of spain)" (the thing of main...... "
does not mean it is. The problem is that "(the king of spain)" 1is a
bunch of characters printed on paper, not a piece of list structure.
These characters do not identify any single piece of list structure in
any LISP world. Furthermore, in any given LISP world, there may be any
number of different pieces of list structure that print out "(the king
of spain)". In fact, any cons whose car is the symbol named "the" and
whose cdr is a cons whose car is the symbol named "king" and whose cdr
is a cons whose car is any symbol named "of" and whose cdr is a cons
whose car is a symbol named "spain" and whose cdr is nil, will print
out just like that!

Perhaps we don't care if they are the same physical piece of
list structure or not, but Jjust if they look the same or not! Well,
there is a predicate that tells you this, given that the symbols used
in each are physically the same symbols. This predicate, called equal,

Notes on the Programming Language LISP

is applied to two pieces of 1list structure. Basically, if they 1look
the same when printed, equal returns "t", otherwise "nil". Thus if "x"
is bound to "(the king of spain)" and "y" is bound to the "(king of
spain)" then

(equal x y)

returns "t", given that the "the" used is both expressions is the same
symbol "the", and that "king" is the same symbol named "king", etc.
This function "equal" is most valuable 1in pattern matching
applications and in the general class of problems where assertions or
facts which are equivalent may be independently derived or
constructed by differing parts of a program.

equal acts exactly as if it had been defined in Lisp as
follows: ,

(defun equal (x y)
(cond ((eq x y) t)
((and (fixp x) (fixp y) (= x y)) t)
((or (atom x) (atom y)) nil)
(t (and (equal (car x) (car y))
(equal (cdr x) (cdr y))))))

The function member is just 1like memq, but wuses "equal"
instead of "eq" as a basis to determine whether or not the first
argument is a member of the second argument. Hence,

(member x ainlist)

will correctly determine if "x", bound to "(the zing of rain)" is a
member of ainlist, as above or not.

"delete" is like "delq", but uses equal as a comparison.

8% % % E O OB X B B OE OE O OE N N R E E X E B EEE R E

Another very useful class of functions is the sorting
functions, which sort 1lists or arrays (see the later discussion of
arrays) based upon arbitrary criteria. The criterion is expressed as a
function (like in mapc or mapcar), and the sorting function applies
this function to determine ordering of the list. As in mapc, these may
be name-symbols or lambda expressions. The list is sorted by patching
various conses around, until it has the cons at its head whose car is
the 1lowest-sorting element. The cdr of this cons is the next
lowest-sorting element, etc. '

For instance, suppose we have

Notes on the Programming Language LISP

(setq x (84 3226 77 72 3))
(sort x '<)
returns (3 3462272T177)

Note that "x", which was bound to the cons whose car was 4,
still 1is. sort sorts a list by applying the given predicate to the
elements of the list, to sort the list into order.

Before:

ih—)

- 3
After:

It is a very common error to supply a form like

(sort x *>)
expecting x to wind up bound to something sorted. As can be seen in
the above 1illustration, it will not. 1In all such cases, a form such
as

(setq x (sort x "))

is what you will have meant. sort is applied for its returned value

7

Notes on the Programming Language LISP

as well as its side-effects.

sortcar sorts the things in a list by applying the predicate
supplied to the cars of the elements of the list. For instance,

(sortcar '((z Zebedee Zachariah Zeke)
(a Andy Able Art)
(b Baker Bill))
'‘alphalessp)

returns

((a Andy Able Art)
(b Baker Bill)
(z Zebedee Zachariah Zeke)).

(It is necessary to explain that the predicate alphalessp compares the
printnames of its two symbolic arguments and returns "t" if the first
collates 1lower than the second, else "nil".) This function is usually
used to sort lists of things, where the thing at the head of the 1list
determines its sorting position. '

CC<C<C LKL 222> %>

Notes on the Programming Language LISP

More Exotic Object Types

Maclisp provides a wide variety of object types. So far, we
have only considered four: symbols, conses, fixnums, and subrs.
Symbols have printnames, bindings, and property lists; conses have
cars and cdrs; fixnums have magnitude; and subrs can perform actions.

As well as providing fixnums to represent integers, Maclisp
provides flonums (for "floating point numbers") to represent real
numbers. They are like fixnums in that they have magnitude, and
nothing else. The magnitude of a flonum is a real number. Like
fixnums, they evaluate to themselves, and their printed
representations are the intuitive representations of real numbers.
For example, 60.5 2.67, =65.2, 35e6 are typical ones. The base of
representation of flonums is always ten: they are decimal.

There are also bignums, or infinite precision fixed numbers.
Any number which looks like a fixnum, but is actually bigger than a
machine word on the computer, 1is a bignum. The ability of LISP to
handle bignums like
323672630761237373627367021371127736726307726736163366363 is
incredible and allows arbitrary precision computation of mathematical
constants, etc. The reason that there exists a distinction between
fixnums and bignums is that fixnums are much easier for the machine to
deal with., If the generality of bignums is not needed, it 1is
advantageous to deal only with integers representable in a machine's
native integer format. Like fixnums, the printed representation
defaults to octal, with a point indicating decimal.

The subrs for numbers that we have learned about +, -, &, /
are limited to fixnums. They will not work on flonums, bignums, or
numbers of differing type. There is a similar set of subrs for
flonums, named +$, -$, #$ and /$. There is no set for bignums, but
the general arithmetic subrs, named plus, difference, times, and
quotient work for any or intermixed types. (= works for fixnums or
flonums but not mixed types. This peculiarity is due to the PDP10
floating point number format.)

Although the general arithmetic subrs will work for all
kinds of numbers, it is more efficient to use the specific ones (+ or
+$) as they are faster and the compiler (see the later discussion of
the compiler) can produce better code. Of course, you can only use the
specific subrs if you know you will be dealing only with fixnums or
flonums but not both in some form.

Lisp also provides predicates called floatp and numberp.
floatp returns t if its argument is a flonum, and numberp returns t if
its argument is any kind of "number" (a fixnum, flonum, or bignum).
Also, you should know that fixp returns t if given a bignum; most of
the time, you aren't interested in distinguishing between fixnums and
bignums. If you are, there exists bigp which returns t 1if its

Notes on the Programming Language LISP

argument is a bignum.
(MULTICS ONLY)

Another basic type of object is the character string object.
These are objects that have nothing but printnames. Like numeric
objects, they self-evaluate. Their printed representation is their
printname, surrounded by double-quotes. Any type of character at all
may appear in the print-name without being slashified; if a
double-quote character appears in the print-name, it is doubled in the
printed representation (that is, printed out twice).

"dkdk jbs ksdkj uuu iiisud((((("
is a good string object. One can say

(setq x "dkdk jbs ksdkj uuu i1isud (((C(")
as opposed to

(setq x '"dkdk jbs ksdkj uuu iiisud(((((")
because character string objects are self-evaluating. Character
string objects are wusually used for printing messages: princ prints
them by typing out the print-name character for character for what it
is worth: the double-quotes are not printed, and quotes inside the
string are only printed once. In the animal program in Part 1III, we
used the vertical-bar character ("|") to obtain symbols with peculiar
printnames for the purpose of printing messages. Although the

vertical-bar works in all Maclisp implementations, character string
objects are usually used for such purposes on Multics.

There are functions to deal with the character string
objects, to make 1little ones from big ones, one out of several or
several out of one. For instance,

(substr "ablebaker™ 2 4) gives "bleb"
just like the PL/I builtin.

(catenate "abcde"™ "fghijkl™ ™ " "xxx") gives

"abcdefghi jkl xxx"

All the character string functions take either character
strings or symbols as input, in the latter case using the printname.
They always return character string objects. Hence

(catenate 'foo) yields "foo"

Note that the Multics command 1line function, cline, only
likes to be applied to character string objects.

10

Notes on the Programming Language LISP

(index "foobarshabaz"™ "arsh"™) gives 5,

the index (position of the second argument is the first, like the PL/I
builtin.

(NOT MULTICS ONLY)

A very useful object is the array object. An array object is
a very funny kind of object. As opposed to having a binding, or a car
and a cdr, all of which are ways of designating other objects, it has
& numerically indexed array of designations. That 1is, it has its
first, second, ¢third,... forty-seventh (which are all objects) as
opposed to its car or cdr. Now, to get the car of a cons, we apply the
car subr to the cons. To get the "33rd"” of an array, we apply the
array {itself to 33. An array is a type of function: it is a basic
functional object, like a subr or a lambda expression. An array can be
applied to a fixnum, and it will hand back an appropriate object.
Array objects are hung off the array property on some symbol.

Say we had a 40-cell array off of the symbol "Harray".
Suppose further that the 32nd of "Harray" was "(a b ¢ (u i))". Then

(Harray 32) gives (a b c (u 1))

eval knows about arrays, as they are functional properties. It
evaluates the forms in the cdr of the form mentioning the array, as it
does for a subr. It knows how to apply them to fixnums. (The array
object)is actually a little subroutine that knows how to keep its own
house!).

As we have rplaca and rplacd to change the car and c¢dr of
conses, and set and setq to change the bindings of symbols, we have
the fsubr store to change array cells....

(store (Harray (+ 6 3)) 'Hoohah)

makes the symbol "Hoohah" be the 9th of the array property of
"Harray". store is an fsubr because it uses the array reference
"(Harray (+ b 3))" to figure out where to store something, as opposed
to evaluating it and doing something with the resulting object.

Arrays are created by putting an array object on a symbol,
which can then be used as a function. The fsubr array does this.
(array foo t 30) creates an array object
dimensioned 0 to 27 off
of foo. This single
dimensioned array can be
applied to one fixnum.

1n

Notes on the Programming Language LISP

(array bar t 32 45) creates a 2 dimensioned
array from 0 to 31 and 0 to 44,
The "t" is much too hairy to
explain now: consider it
necessary. Note that array
is an Fsubr as it deals with
bar, not bar's value.

12

Notes on the Programming Language LISP

The Callable Evaluator

The functions eval and apply, in terms of which we have been
describing the evaluation process, are actually subrs which are
:allable from any Lisp program. eval takes one argument and apply

wo.

eval, as we learned about long ago gets applied to something
you want to evaluate, just as "cdr" gets applied to something whose
cdr you want. Thus, if "x" is bound to "(+ 3 6)" then

(eval x)
causes "(+ 3 6)" to be evaluated giving 11 (octal).
(eval 'a)

gives the binding of the symbol "a". One can express the basic 1loop
of the LISP interpreter at top levels as

(do () (nil) ;do forever
(print (eval (read))))

If you are using eval in an elementary LISP program you are
probably doing something wrong. Note that we did not need it to do
anything until now. You only need eval if you are writing a program
which does something with Lisp, as opposed to blue eyes, Fibonacci
numbers, or symbolic expressions. For instance, suppose you had an
interactive subsystem which processed commands of some sort, and was
written in Lisp. As a convenience you might want to allow the user to
type 1in limited Lisp forms to perform simple calculations, or disturbd
the environment in some way. In this case, after having read in
something that you determined you wanted to be interpreteted as a Lisp
form, you might want to apply eval to it ¢to «cause it ¢to be
interpreted.

eval is the basis of the interpreter. The Lisp 1interpreter
is essentially a loop handing read-in forms to eval and printing out
the results. eval is the basis of the definition of Lisp.

Apply is the right hand of eval. eval and apply call each
other back and forth to perform Lisp interpretation. We have learned
very thoroughly what it means to apply a subr, lambda expression or
array to a set of objects. Forms are a way of specifying how to find
what objects a function is to be applied to, with eval being the agent
responsible for getting these objects by interpreting the form and
getting appl to apply the required array/subr/lambda expression to
the gotten osgects (This is but one more concise statement of the

entire evaluator).

13

Notes on the Programming Language LISP

If you have a bunch of objects that you obtained by whatever
means, that you wish to apply some function to, you may apply apply to
the function (function-propertied symbol or lambda expression) and a
list of the things to which you want the function applied. For
instance, suppose you had an interactive subsystem which read
"commands" such as

fire Charlie
make-boss Max John
and print-depends Irving

to manipulate some kind of data base. The data base might maintain
all kinds of employee data. Via a technique such as that used in
get-statement in the animal program of Chapter III, we can easily
convert these into lists, i.e. ‘

(fire Charlie)
(make-boss Max John)
and (print-depends Irving)
Suppose we had functions make-boss, fire and print-depends, such that
(fire (get current-employee 'manager))
at some point in the program for this system would fire the employee
who is the manager of the current binding of "current-employee". Well,
if the user typed in to the system
make-boss Max John
(say "x" were bound to the 1list constructed from this, i.e.
"(make-boss Max John)"), we could not say "(eval x)" to cause "Max" to
be made the boss of "John", because if we evaluated
(make-boss Max John)

Lisg would attempt to apply make-boss to the current bindings of the
symbols "Max" and "John", which is not what we want. We want to apply

make-boss to the symbols "Max" and "John" themselves. So, we apply
apply to

make-boss
and

(Max John)
by saying (that is, by evaluating)
(apply (car x) (edr x))

since (car x) is make-boss and (ecdr x) is "(Max John)", the 1list of

14

Notes on the Programming Language LISP

objects to which "make-boss™ is to get applied.

apply is applied to two arguments. The first may be be a
name-symbol of any function, or a lambda-expression. The second is a
list of objects to which that function is to be applied.

(apply 'cons '(a b))
returns

(a . b)

Just as does

(cons ‘a 'b)

15

Notes on the Programming Language LISP

The Lisp Compiler

Up until now we have been talking about the Lisp
interpreter, a subsystem which reads forms, and evaluates them via a
well defined procedure. As we know, this consists of looking at forms
to find objects to which functions should be applied, evaluating the
forms within them telling what objects should be gotten and applying
them to functions. Applying subrs, involves executing machine language
programs. Applying lambda expressions involves saving symbol bindings,
setting new bindings, and evaluating forms in the bodies of lambda
expressions.

Although the original development of LISP stemmed from the
Interpreter, as we have become familiar with it, the interpretation of
Lisp programs is not the most efficient way to carry out the
computations and manipulations they express. Remember that a Lisp
program 1is nothing but a collection of specifications (forms) of how
to get objects to which certain functions should be applied.

It is possible to write a program (almost always a Lisp
program) which analyzes a LISP program and produces a machine-language
program to manipulate Lisp objects in the way the program specifies.
Such a program is called a Lisp Compiler. For example, the function

(defun sumsquare (x y)
(+« (¥ x x) (% y y)))

can be translated into a machine-language subr which, applied to two
fixnums, returns a fixnum being the sum of the squares of the input
arguments. In general, the compiler reads a file full of "defun" forms
and creates a machine-language program containing subrs that do the
same things as the Lisp forms in the original file did. Since the
compiler figures out how to get what to apply to what, and how to keep
track of intermediate results, the interpreter need never be called
during the execution of such a subr (of course, if the subr calls eval
explicitly, that doesn't count).

Note that the previous paragraph said that the 1little
function "sumsquare" will be translated into a subr which sums
squares. In doing so this subr will simply pick wup 1its arguments,
square one, save the result, square the other, add it, and return the
result. It will not locate the symbols x and y, save their previous
values, or for that matter disturb or use them in any way. In fact, if
sumsquare called some other function which looked at the symbols "x"
or "y", it would not find them bound to the arguments of sumsquare.
"x" and "y" are thus true variables in the compiled subr, as opposed
to true bound-symbols of ~a lambda 1list. Note what an elegant
implementation of "where x is the first quantity and y the second" we
have here: symbols named x and y are never involved at all.

It is via the compiler that the user creates his own subrs.

16

Notes on the Programming Language LISP

If we want, we can make the compiler actually go through the
work of making "sumsquare™ save the old values of "x" and "y" and
rebinding them to the arguments of sumsquare. If we do this, other
functions called will find that "x" and "y" are indeed bound to what
they should be. In this case, the variables so specified are called
special variables (although all variables in interpreted forms act
this way). Normally, 1lambda variables of functions need not be
special, unless they are used for communicating betweeen functions
(the variables, not their values. That is to say, if one function
expects to find a value in a variable that another function set).
Special variables are 1less efficient than the other kind, local
variables.

One can define Lisp perfectly consistently as a 1language
translated by a compiler into machine code, used for manipulating Lisp
objects, and never need or mention the evaluator and its artifacts,
eval and apply. Most "production® Lisp programs are compiled, and are
often as efficent as compiled programs in "traditional"™ languages.

The compiler reads forms from a file. It considers each form
in turn: if the form appears to be a definition of a function (a form
whose car is defun), the compiler analyzes it and generates a subr of
the same name. If the form is a 1list whose car is the symbol
"declare", THE COMPILER ITSELF EVALUATES, AT THE TIME 1IT SEES THIS,
ALL THE FORMS 1IN THE CDR OF THIS LIST. This is possible because the

compiler is written in LISP and can apply eval, or any other function
it chooses to whatever it wants, as can any LISP program. Thus, if the
form
(declare (print 'hello-im-compiling-foo))
appears standing in your file, the compiler will print out
heilo-im-eompiling-foo
at the time it sees it. This is generally used in a more useful way to
tell the compiler things, like what variables are special. There is a

function in the compiler called special, which is an fsubr, which is
used for Jjust this. The cdr of the gorm invoking special is a list of

the symbols that you would 1like to have declared special. For
instance,
(declare (special x y y1 q) (special v))

declares all these variables as special. In the animal program in
Chapter 111, a decalaration like

(declare (special toptree))

would be appropriate.

The fsubr declare does nothing. Hence, if you read a file

17

Notes on the Programming Language LISP

with a declare in it into LISP, the declare will be ignored. The
compiler, however, is not applying declare to anything. When it sees a
list whose car is declare, it does this special thing that we have
just discussed.

All forms which are not functions are simply copied in
encoded form into the object program. These are known as "random
forms" in Lisp compiler parlance. They will get evaluated when the
object program is loaded into Lisp.

The compiler itself is a very 1large and beautiful Lisp
program and is one of the more interesting things that have been done
with Lisp. On Multics, the compiler is invoked by saying

lep Nicholas

where Nicholas.lisp is the name of a file containing function
definitions to be translated. The resulting object segment is called
Nicholas, for example.

On ITS, we compile programs by invoking NCOMPL, the ITS Lisp
compiler by saying

:NCOMPL
NCOMPL responds by saying
LISP COMPILER 703 BY 702 1IN OLDIO

to which we respond, after the " ", with the FNAME1 and FNAME2 of the
file to be compiled, and the magic incantation "(fk)"... i.e.,

_NICHO LAS (FK)

18

Notes on the Programming Language LISP

The Macro Facility

One of the most potent and fascinating features of Maclisp

is the macro facility. This facility constitutes a form of language
extensibility. One can construct one's own language out of LisSp, an

have it compiled by the compiler or interpreted by the interpreter.

The motivation for macros comes out of the compiler. One
can clearly implement an interpreter for any language whose
constructs are expressible as list structure in Lisp (implementing
Lisp in Lisp is a well-known example). However, convincing the
compiler to compile such things is not obviously easy.

Rather than for the total construction of new languages, the

macro facility is usually used to extend Lisp, adding new constructs
built out of old ones.

"do" is a good example of a builtin macro. We showed in an

earlier chapter an expansion of a "do", a set of forms containing
portions of the original do form. '

Suppose we had a program that often used forms like
(setq alist (cons thrung alist))
or (setq mv12 (cons (+ 32 yy mvn) mvi2))
or (setq wti17 (cons (caddr (ay by)) wtiT7))
or in general,
(setq #%#something®®* (cons ###something-else®®® &B¥something®*®))

This is a very common construction in Lisp programs, as it
is the operation of pushing something onto a list. We should like to
be able to say

(push this-thing that-list)
when we mean
(setq that-1ist (cons this-thing that-list))

However, the chances of writing the function "push" are nil, so to
speak. For as soon as we have said

(defun push (thing list)...
we have lost. Fér although we will pass the list and the item to be
pushed to the function "push", there is no way that this function can
ever perform the setq of the symbol that-list in the form that called
"push®™, Macros provide a way to achieve this functionality, and more.

A macro is a function which is called upon to translate the

19

Notes on the Programming Language LISP

form in which it appears into some other form. The result of the
macro-function is a form, which is wused in place of the original
(macro) form by either the interpreter or the compiler as appropriate.
Macros are defined just like regular functions, as follows:

(defun push macro (x)
(list 'setq (caddr x)(list 'cons (cadr x)(caddr x))))

Note that a macro always gets one argument, which is the
form in which it appeared.

Evaluating this defun gives "push"™ a macro property of
"(lambda (x)(list ‘'setqg..." etc. Now the interpreter, upon seeing a
form whose car is a symbol with a macro property, says:

"Jeez, I don't know what this thing even means. However, my
programmer has given me a lambda expression which will translate it
for me into something I wunderstand. So I'll apply that lambda
expression to this form, and work on what comes back instead!"

So, eval calls his friend apply, and

(lambda (x)(list 'setq (caddr x)
(1ist 'cons (cadr x)
(caddr x))))

is applied to
(push (+ 32 yy mvn) mviZ2)

which, to this lambda expression is just another piece of
data. If you yourself apply that lambda expression to that list, you,
as eval, will get

(setq mv12 (cons (+ 32 yy mvn) mvi2))

which is exactly what you want. Note that eval reconsiders the answer
returned by a macro as a form in place of the original. The macro did.
nothing with the values "of yy, mvn, or mvi2, and performed no
additions. It only messed around with a form IT understood, to
TRANSLATE it for eval.

An answer returned by a macro can have other macros 1in it,
or maybe even references to itself. As long as eval, reducing it
(applying macros each time it gets one until it's not a macro %orm
anymore) ultimately gets something that's not a macro form.

The first incredible thing about macros is that the COMPILER
is willing to invoke your macros at the time he is compiling your
programs, so you can tell him what your stuff means. That is to say,
the compiler, which is a Lisp program, will invoke your code during
compilation to help him in his task. Every macro can be thought of as
a little piece of a Lisp compiler. Hence, if you define and use

20

Notes on the Programming Language LISP

"push" in your program, it will be as efficient as had you put the
setq and cons in there instead.

The second incredible thing about macros is that the entire
power of the 1language 1is available to them. To help your macros
organize the meaning of their forms, you can use any function in Lisp,
builtin or of your own construction. You can call other-=language
programs, or cause your programs to be compiled differently at
different times of day. The power of the macro facility derives from
the fact that Lisp code is Lisp data, and as such is trivially easy to
deal with. Think of the complexities of handling PL/I code (ASCII or
EBCDIC characters strings) in PL/I, or FORTRAN code in FORTRAN.

The third and perhaps most incredible thing about macros is
the ability to define abstract and complex languages that bear little
relation to Lisp, except in parentheses. Since Lisp is capable of
expressing just about anything computational, one can write forms
using macros, whose translation into Lisp can be just about anything
computational. One can tailor the language to define constructs that
suit any given application, and have it be compiled into code as
efficient as the result of explicit coding in the basic primitives of

Lisp.

"Functions compute, macros translate."
-Do A . MOOO

21

Notes on the Programming Language LISP

A Close Parenthesis

It is hoped that these notes have provided a taste of the
true flavor of Lisp. Rather than concentrate on developing competency
in Lisp, we have chosen to expose the interested student to the basic
concepts, and a few usable programs, such that he or she might at
least say, "Well, Lisp, that's a bunch of stuff pointing to other
stuff, and 1it's really good for mak.ng models of things, or
simulation."”

We have tried to show you how Lisp car-and-cdr worlds are a
more reasonable representation of the things that make 1life
interesting than fixed decimal (15) or FILE OLDMSTR RECORD 1S
PAYROLL. It 4is hoped that you can at least extrapolate in your mind
what kind of neat things one can do with this. Our sincerest hope
is that you will see a piece of that part of the computer programming
world where the computer has become a tool whereby man extends his
mind and his own grasp of it.

22

LISP - A Radical Introduction
Worksheet #1

(2**'*‘¢r3 na*!g)

The class notes and lectures for this course will go a
long way towards introducing you to the Lisp language, and with
the aid of these worksheets it is hoped that you will get some
"hands-on experience" with Lisp as well. The worksheets are
designed to reinforce the material covered in lecture, supplement
some of the more picky details not spelled out in the notes. and
raise additional questions in the student's mind to lead him to
more advanced examples.

Public terminals are available in many dorms, the
student center library, and at delphi in building 38 (room 344).
To use Multics from a 300 baud-rate terminal turn on the
terminal (halfduplex), dial extension 8-8313, press the "DATA"
button on the modem, replace the receiver back on the dataset and
press "linefeed" on the terminal. Multics will type an
introductory message such as:

Multiecs 33.0: MIT, Cambridge, Mass.
Load = 17.0 out of 85.0 units: users = 17

You may then login with your Personid and Projectid
FOLLOWED BY A CARRIAGE-RETURN AND A LINE-FEED as follows:

login JDoe SIPBIAP

Substituting YOUR OWN PERSONID for John Doe's 1in the
example above. Multics will then ask for your password, which
‘you must again follow with a carriage-returns and a 1linefeed.
After you have 1logged in successfully, typing the word "lisp"
(all lowercase) will start up the Lisp interpreter.

You are now in a read-eval-print loop. Lisp will read
in any form you type, evaluate it, and print the value it
returns.

Below are a series of Lisp forms to evaluate. You may
choose to try and work them yourself and then check you answer by
using the computer, or possibly you will want to have the
computer evaluate the forms in order to help you understand a
new concept that you are having problems with. Experiment}] Try
your own problems; this is one of the best ways to get use to
using and understanding Lisp.

NOTES:

To correct typing errors, use "number-sign" (#) to delete the
last character typed and "at-sign" (€) to delete the current
line. When you first login you must follow each 1line with a
carriage-return AND 1linefeed. 1If you are using a decwriter you
may issue the command "1a36" before starting up Lisp, after which
only a carriage-return OR a linefeed is required. This may also
be accomplished after Lisp has been invoked by having Lisp
evaluate: (cline "1la36")

To get out of an endless loop or to get back to Lisp if things
don't seem to be going right simply hit the "break" key once
(sometimes labeled "quit" or "attn") and when Lisp types "CTRL/"
then you type the letter "g" (followed by a carriage-return and
linefeed) and you will be back in Lisp's read-eval-print loop.

The character slash "/" is wused by Multics Maclisp to quote
certain characters (for instance, to enter a symbol whose name
has a parenthesis or dot or space in it). Therefore in order to
use the "/" subr to divide you must enter two slashes. For
example: to divide 6 by 2 you would enter: (// 6 2).

You may get out of Lisp and back into Multics by typing "(quit)"
and you <can get out of Multics by typing "logout" and then
hanging up the telephone.

Your account on Multics may be used from 6:00 PM until 11:00 AM
on weekdays and all day Saturday and Sunday.

For more detailed information on how to use Multics, a free set
of "Notes on Using Multics" is available from the Student
Information Processing Board.

If you should run out of funds, or would like to do a project or
just 1learn more about Lisp after the course is over, apply for
money at the Student Information Processing Board.

For help with any questions or problems call the Student
Information Processing Board at extension 3-7788 or come in to
the office in room 39-200.

(set (quote a) 6)
a

(setq b 5)

b

(+ 4 5)

(quote (+ 4 5))

(+ a b)

'(+ a b)

(* 3 4)

(* (+ a3) (+ b4 56))

a
(quote a)

'a

(symeval (quote a))
(symeval 'a)

(eval ‘'a)

(set (quote colors) (quote (red green blue)))
colors

(car colors)

(cdr colors)

(cons (quote red) 'yellow))

(setq firstcolor (car colors))

(setq paints (cons (quote yellow) colors))

O

nil

(car nil)

(edr nil)

(setq smallcons (cons (quote foo) nil))
(car smallcons)

(cdr smallcons)

(quote a)
'a
'(a . b)

'*(a . nil)
‘(a . ((b . nil) . nil))

'((a . (b . nil)) . e)

(setq alph6 '(abcdef))
alph6

(car alph6)
(quote alph6)
(cdr alph6)
(cddr alphb6)
(cdddr alph6)
(cddddr alph6)
(cadr alph6)
(caddr alph6)
(cadddr alph6)

(setq pair (cons 'left 'right))
pair

(car pair)

(rplaca pair 'wrong)

(car pair)

(rplacd pair 'correct)

(cdr pair)

(rplaca pair alph6)

(rplacd pair nil)

(rplacd pair 'alph6)

(/77 6 2)

(setq egn "(¥* (+ a b) (- 4 (*¥ 3 a (// 4 b)))))
(car eqn)

(cdr eqn)

(quote eqgn)

(eval 'egn)

(eval eqn)

(cadr eqn)

(caadr eqgn)

(caddr eqn)

(setq d 'e)

(setq e (quote f))
(set (quote f) 4)
(quote d)

d

(symeval d)

(eval d)

(eval (quote d))
(eval e)

(eval f)

(eval (eval d))

Lisp - A Radical Introduction
Worksheet #2

NOTES:
What to do when an error occurs.

If Lisp finds that it is about to add two conses together, or
evaluate a symbol that has no binding, or any other illegal
action that should cause an error to be printed, Lisp places you
back into a read-eval-print 1loop (as usual) WITHOUT unbinding
anything. This allows you to examine the bindings of various
symbols as they were bound when the error occured. 1In order to
undo these bindings you can send a control-g to Lisp. On Multics
this is done by hitting the "break" key once (sometimes labeled
"quit" or "attn") and when Lisp types "CTRL/" then you type the
letter g (followed by a carriage-return and linefeed) and all of
the TEMPORARY bindings that were set at the time the error
occured will be forgotten. This was not terribly important on
worksheet 1 when no temporary bindings were made. Beginning with
worksheet 2 you will be defining and using your own functions.
It is important to release temporary bindings when an error
ocecurs. To better understand what happens try the following
example:

(defun zort (x y 2z)
(progn (print x)
(print y)
(print 2z)
(print w)))
(setq x 15)
X

(zort 10 20 30)
'

y
z

w
CTRL/g ; hit "break" then "g" then "carriage-return linefeed"
X

Changing the base used for reading and printing fixnums:

The symbol "base" is bound to a fixnum which determines what base
numbers are printed in. Similiarly the symbol "ibase" 1is bound
to a fixnum which the reader uses to determine what base numbers
read into lisp are in. Therefore evaluating the forms (setq base
10.) and (setq ibase 10.) will cause 1lisp to read and print
fixnums in decimal rather than octal.

-Page 1-

Worksheet 2

; PROBLEM 1
; Evaluate the following forms:

(> 5 4)

(> 4 6)

(< 37)

(< 4 4)

(=5 (+ 3 2))

(setq a 6)

(setq b 4)

(> (+ ab) (- (¥ ab) a))

(not (> 6 3))

(null (> 6 3))

(not (not (> 3 6)))
(null (not (> 3 6)))
(null nil)

(null (quote nil))
(null 7)

(setq smb 'foo)

(set (quote 1lst) '(foo bar baz))
(set 'fxn 17)
(symbolp smb)
(symbolp 1st)
(symbolp fxn)
(symbolp (quote 1lst))
(symbolp (quote (a)))
(atom smb)

(atom fxn)

(atom 1lst)

(or t nil)
(or (> 5 6) (< 4 3))
(or nil 5)
(or (atom 1st) 'lst-is-not-an-atom)
(or (atom smb) 'smb-is-not-an-atom)
(setq num 3)
(cond ((z num 2) 'two)
((= num 3) 'three)
((z num 4) 'four))

(cond ((atom 1st) 1st)
(t '"1st-is-not-an-atom))
(and t nil)

(and (> 5 4) (< 3 4))
(and (< num 4) (> num 2) 'num-is-3)

(setq alph (list 'a 'b 'c 'd 'e))
(setq bet '(f g h i j k))

(setq fred '(sam))

(cons fred bet)

(cons 'fred bet)

-Page 2-

Lisp - 1978

Worksheet 2 Lisp - 1978

(append fred alph)

(append alph bet)

(list alph bet)

(cons alph bet)

(append alph (list alph bet) nil bet '((end)))

(memqg 'a alph)

(not (null (memq 'a alph)))

(memq 'a bet)

(memq (car fred) fred)

(delq 'h bet)

bet

(append alph (list (car bet) (cadr bet)) (cons 'h (ecddr bet)))

'*(lambda (x) (+ 1 x))
((lambda (x) (+ 1 x))
(defun incr (x) (+ 1 x
(incr 6)

(setq incr ‘december)
(grindef incr)
(grindef (quote incr))
incr

y)
))

PROBLEM 2
Use defun to create a function that switches the order of 2

elements in a list the same way that the following lambda
expression does it.

“e Wwe woe we

((lambda (x) (list (cadr x) (car x)))
'*(a b))

PROBLEM 3

Presented below are three functions for computing factorial:
fact0, factl, and fact2. FactO is a recursive function taken
directly from the definition of factorial. The second, factil,
is an iterative fortranesque example using prog. The final
example is also an iterative implementation using the new style
"do" function. Note that there is no body to the do. Write
three separate functions similiar in style to the three
factorial functions that compute the sum of a list of fixnums.
Thus (sum '(4 6 3 5)) should evaluate to 22 (octal) and

(sum '()) should evaluate to zero. "sumO" should be recursive,
"sumi1" should be iterative and use prog, and "sum2" should use
the do function.

WO Ve WO Ve VW VO VW YV Ve VWS VO W we

-Page 3-

Worksheet 2 Lisp - 1978

(defun factO0 (n)

(cond ((= n0) 1)
(t (*¥ n (fact0 (1- n))))))

(defun fact1l (n)

(prog (result)
(setq result 1)
label(cond ((= n 0) (return result)))
(setq result (¥ n result))
(setg n (1- n))
(go label)))

(defun fact2 (n)

We Wwe We Wwe we we we we

we Wt we we we we we

(do ((i n (1= 1i))
(result 1 (* result i)))
((= i 0) result)))

PROBLEM 3

The Lisp function "reverse" will create a new list with the top
level elements reversed. Thus (reverse '(a b (c d) e)) returns
(e (c d) b a). Write your own version of reverse called revil.
[Harder problem]: Also write a function rev2 which reverses
elements at all levels of a list. Thus

(rev2 '(a (bc (de) f g) (h i) k)) should return:

(k (i h) (g f (e d) c b) a).

PROBLEM 4

The function "delq" is a destructive function -- that is rplaca
and rplacd are used to actually delete the specified element
from the given list. Below is a function "removel" which
returns a new list with the requested element removed. Write
an iterative function which uses "do" that performs the same
task.

(defun removel (thing a-list)

(cond ((null a-list) nil)
((eq thing (car a-1list))
(removel thing (cdr a-1list)))
(t (cons (car a-list)
(removel thing (ecdr a- llst))))))

-Page 4-

Lisp -+ A'Radical Infroduction
Solutions toWorkshee} #2

NOTES:
mi»wyquMnmtmmMmbum@Mninmmmnm
8) The functions “nuli” and *not* are identical. '

b)jm functions “arnd® and "or* do not dwayi wt:lo:all olmw. In other words, they are faubrs Wke
i “cond”, *do", and "prog". Afthough they are use! 0qmmwwmmnmwcom
; orders of evaksation.
i 1

(ond h';x 6, (g0 Mﬁ‘))

i Is Wke saying

(cond (e’ x O (g u-Mm
!

but ls simpler. thu ‘ovaluating (or 3 ber) Ml(mtgumnmoynnwum

c) We apologize faglviuyouheunﬂo (qumf (qqou incr)) h!h m:m Those of you who sat there
| wealting for “grindef" to retum something soon leamed ithat “grindef* nmaaynbolmumdm not contain
lmy characters at all. (You, too, can get at mh myslm beast ‘Illply by doing (implede nit), for whatever
tht'swoﬂh) Thofmc“on'mv' umtﬂowwmaummmmmmwm
Ooflmdufmcﬂom or bound to other objects.

d)Mnnllspmdshuﬂmnwlhnummm Nvmbulsumlohhuu 10. This is why evaluating
i (setq base 10.) will convert the output base 'obuo 10 or (uu base 16.) to hexadecimal. Evaluating (setq
" ibase 10 will never change the value of "lbase’, muﬂuofmtmw\mpu. (Think about it.)

PROBLEM 2

Tholdnhmwuhmdofmlom!oamwwwnmehmwmummuNmm
expression when placed in the functional postion of a fis{ o be mu.qd In other words, create a function “switch®
such that (suitch '(l b)) —> (b a).

uum switch mm (st tcadr 1ist) tchr mm?
i]

Solutions 2 : ’ 2 Lisp - 1978

PROBLEM 3

A couple of points are worth noting here: The recursive definition of *sum” |s not only the shortest, but Is aiso the one
which most clearly represents the algorithm which we are trying to Inplomem We also leamed eariler that the subr "+"
can take a varlable number of arguments. A call to fhis subr takes place py means of ovaluating a list whose car Is the
symbol "+* and whoso cdr Is a list of the arguments we Mshlouuloﬁﬂmctlon. We can easlly write a function
which will create and evaluate such a list:

(defun sum (list) (eval (cons '+ list)))
Recursive deﬂnmon:;

(defun sum8 (list)
(cond ((null tist) 8)
(t (& (car 1ist) (sumb (cdr 1ist)ID)))

Prog definition:

(defun suml (list)
(prog (result)
(setq result @))
toop (cond ((null list) (return resull))) |
(setq result (+ result {cor Jist)))
(setq list (cdr list))
(go loop)))

Rerative definition:

(defun sum2 (list)
(do ((1 tist (cdr 1))
(resultl 8 (¢ result (car 1))))
((nutl 1) result)))

PROBLEM 4

it was possible to write these functions in several ummm ways, but We have given only the recursive and iterative
definitions below. Again, we notice that the recursive. _definitions lfo far more straightforward than thelr Herative
counterparts. Note also that the iterative definition of "rev2" does eonph a recursive’ cafi -- it would be quite halry
trying to write "rev2" without any recursion whatsoever. ﬂnalty. noie nul the doﬂnltlcm for "rev2" test only to see if
theilr arguments are atoms, not null lists as the dollvi"om; for *revi® do. | Tm Is m “nif" is an atom as well as a
Hist, and (cond ((atom x) x)) is identical to (cond ;(tnufl x) x)) 1 "* is i, %

(detun revl (list)
(cond ((null List) nil)
(1 (append (revl (cdr list)) Cligt (cor 1ist)N))

(defun revl (list),
(do ({old-List list (cdr old-1ist))
(newu-1ist nit (cons (car old-1ist) new-List)))
(null old-1ist) neu-list)))

Sokutions 2 . 3 Lisp - 1978

(detun rov2 (list)
tcond t(atom tist) (ist)
(t Gappend (rev2 (cdr 1ist)) (1ift trav2 Gcar Hist)))))))

(defun rev2 (list)
: tcond ((atom 1ist) list)
(t (do (lolg-1ist list (cdr bid-pist)) . .
| (new-1ist nil (cons trev2 (car old-1is1)) hou-1ist)))

Unult old-1ist) meu-1isth)))),

PROBLEM &6
1

Several things are whrth noting here:

ov.:o._o.cloxli_ouiorosii..!o.!oT&‘.i&it-“t&@t.s.;g<oc
recall, uses the following symax:

(o ((Cirst var> Clnitial valve)' Crgpestyaive?) ... (nth verd ...0)
(Cond test) <exit form> ...)
Cbody) .

2.83.!og.&c.o-eo...-guo:“!.ifcooi!-.&s;&!&!ozﬂng However,
..o..oo-oﬁoxl!o.i..o..ﬁo&o.%sw-§--1<%33%g§.§o- index
variables. b .

b) A useful technique :zs..ozz.gssritari:.?.afif%zgzs-gsis
u:o...ooo:!.xoai.‘!?goif‘;a%o&gesiigg.osu?

©) Note also that the expressions that -3.”! a} Cinjtial valye) asd Crepest valve) can be arbitrarily hairy.
Expressions which are commonly used as repeat values are (¢ 1) of (cdr 1), it anything can be used. Note, for
oxample, the repsat value of new-Hist in the foliqwing’ Lo, (dopend mew-1ist ...).

(defun remove :...ro a-list)
(do ((old-Tist a-list (cdr oid-1ist))
(nou-1ist nil (sppend neu-list
J toond ({eq Rhing (car:.w: "o’
: 4 Clist Gcor old<lis))IN))
Cnull old-1ist) new-iist)))
1

Lisp--- A Radical Introduction
" Worksheet #3

- PROBLEM 1
~ Evaluate the following fonn.s:

{list *a *b *e)

"abe)

(ist 1 *(a . b) *fred 'm)
tist)

Uist L nit 3)

Chist Clist CHist niD)))

(append * (hou are you) (list °today '?))
. (append (1ist 1 2 3) nil *(4 S nit &)

(pu!brop, "fred 13 'age)

(get ’fred ’age))

(get ’fred ’oues-back-taxes)

{putprop ’{red 20888 ’oues-back-taxes)
{get *fred *oues-back-taxes)

{plist ?fred)

(remprop ’fred ‘oun-luet-uns)

* tget 'lrod ‘oues-back-taxes)

(get ’cor ~'subr-) ’
(defun: frobnicate (x) x)
" (get ’frobnicate "expr)
(get firob_nleal. ‘subr) -

tprint *ta b /.c))
(princ *(a b /.e)).
(print ’|Section 5.2|)
(princ ’|Section 5.2|)

(explodec *fred)

(explodec 'a/.b)

Cexplodec |1 em & funny sywbol. |)
(explodec *(1 2 3))

Cimplode *(a b ¢))

Gimplode *(h | | [ther o))

(lwlod.o hxplmc ’!Hcl!o. m ors you?|))

lupe 'prine '(-assaehutc!il))
hlpc ‘princ (expliodec "massachusetts))
(mapcar *1+ °(2 &4 6 B))

" (mapcer *fixp (a3 x bart (a ®) m

(mopcar *Clambda (x) (3 &7 x)) 742 & 6 B))

Worksheet 3 2 Lisp - 1978

(mapcar "'+ (2 4 6 8) *(-2 -4 -6 -8))
(mapcar ’cons ®’(one two three) ’(1 2 3))
(mapcar ’(lambda (x y) (putprop x y ’father))
* (USR PogBach ‘Isaac)
’ (Gworge " JZBath Rbraham))
(get "USR ’father)

--The following two functions are being introduced here and have not been mentioned previously. The function """ takes
two fixnums and retums the exponentiation of the first to the second. Note that since the magnitude of a fixnum must
be an integer, all results retumed will be rounded to Integers. The function "length® takes one argument, a list, and
retumns the number of elements in that list.. Here are some forms you can type in to sep what these guys do.

(~52)

4 -1
(length "(1 g a 47 bernie))
(length ' (1 (2 3) 4))
(length ' ()

PROBLEM 2

Use defun to create a function concatenate" which will take two symbols as argumen(s and will retum a symbol whose
name Is the concatenation of the names of the arguments. In other words, (concatenate ’hello ’there) -->
hellothere.

PROBLEM 3

On the last 'worksheﬁ you defined a function “rev2" which reversed a Iist and all of the elements of the fist Mlch were
themselves lists, l.e. (rev2 *(a (b c) d e)) --> (e d (c b) 8). Lisp has a bullt in fungtion (a sybr) called
"reverse” which retuns a list with only the toplevel elements of the list reversed, i.e. (reverse ’'(a (b e)'d @)) -->

(a d (b c) a). Using "mapcar” and "reverse", rewrite "rev2" -- your new detinition should be much simpler than your
earlier one. ’ ' ST

PROBLEM 4

Write a function which will sort a list of numbers. Hint: Define two functions -- one which sarts a list in a recursve
manner, and another which takes a number and a sorted list af numbers and retums a new list with the number Inserted in -
the appropriate place. It Is easlest if both functions are recursive. Notfe also that If we substitute the predicate
'alphalessp for the predicate "<", we can easlly modlfy the function jo sort symbols llphabetically

Worksheet 3 S o - mé

PROBLEM5
umu.m'mmmuoxmmmumymummmm Tvyh'num:nms

“o'un ‘who ({person) L
" (do ((1ist-of-1ists (mapcar *(lombds (x) (get x “Kids)) (get person ’Kids))
. tedr (ist-ol-lists)) ° :
T treu-list nil- toppend: (car 1ist-oi-Lists) ‘neu-1ist)))
(tnul !l Nn-o' tists) m—Hﬂ)M

Rowutwlmtldahbuetowukvmh-c-lhafu\ctldnmehlsmwﬂummto“m'wmﬂvoueholomt
otthosocondlmnon(a%Ms’wwmym&humwmoionnm.!hm.mom

(npe '(n-bda (father soﬂu (putprop father soms °kids))
S (abrsham issac ishmae! jaeob esau)
- *(Cisaac ishmasl)
" (jacob esau)
- (kedar abdes! nebatoth) .o
- (reuben simeon dan levi napthali issachar judah gad ssher zebulun jouph benjanin)
-leliphaz reve! jmh jalan koreh)))

"youm‘t ﬂmnommt‘sgohgon.m-m.hwow”iow—

Aget ’abrohan "wids)

(get (car (get ’abrM *kids)) ’kids)
- (who ’mahn) :

fuho ' isesac)

: PROBLEM 6

Write a symbolic dmemmalor which can handle expressions centaining addition, muitiplication, and exponentiation. ' The
: ﬂm argumem 1o this function should be the expression which Is.to be differentiated, ond' the second argument should be
-ln_ variable to which the differentiation should be performed with respect to. Arithmetic oxgnsglom are most easily
" represented as lists, with the car of the.list being the opetator, and the cdr beirig the operands (as usual). For example,
3x+4 should be represented as {+ (s 3 x) &). “The basicrules you should implement are listed below:

dx

-l

dx

dy

— =0 yox
k.

d R VIR
_'-; (usv) 8 o= § o=

dx o dx dx

d du dv
”"‘m?‘.:v..‘u’..v
dx - dx . dx
8 v veleu v dv

-8 BmVY mcoyu logu -
o e o

Worksheet 3 4 . Usp - 1978

An important thing to hote here is that your differentiator should not dctually attempt to perform the addition of two
expressions, simply create the list sfructure which represents their agdition. .For oxan'ple.‘lssunlng your function were
called "differentiate”, : : '

(differentiate '(x (+ a b) (+ x y)) ’x) .
should return
(+ (2 (+ab) (+18) (s (s xy (+08))),

But it should t;e obvious that this expression can be greatly slmpllﬂpd to (+« a b), which Is indeed the correct answer.
You may want to use the slmplmer olven JIn chapter 3.of the m.les In checking your answers.

Lisp provides'a useful function called "trace” for checking and debugglng funcions you may write. It Iis an fsubr and
takes a varlable number of arguments which are names of defined functions. Then, whenever any of these functions are
entered, Lisp will print the name of the function, the argumen!s which are being passed to the function, and a number
Indicating the depth to.which the func!lon Is recursing. For example, |If we had done (trace differentiate), then the
previous examp!e would have produced the following result:

a enQen-dil'crentlate'((# (+ ab) (+ x g)) x)) -
(2 enter ditferentiate ((+ x y) x))
(3 enter differentiate (x x))
(3 exit differentiate 1) ’
(3 enter differentiate (y x))
(3 exit differentiate 8)
(2 exit differentiate (+ 1 8))
(2 enter differentiate.((+ a b) x))
(3 enter differentiate (a x))
(3 exit differentiate 0) .
(3 enter differentiate (b x))
(3 exit differentiate 8)
(2 exit difterentiate (+ 0 8)) '
(1 exit d'!fqrenttale (v €5 (4 ab) (+18)) (= (s x g) (+ 8 8))))

The fsubr "untrace” will dlsconllnue tracing a glven function, and if qaﬂed with no arguments, will untrace all functions
which are ‘currently being traced. '

if you should manage tAo complete any or'all of problems 2 Ihrdugh 6, we would greatly appreciate your tuming in a
listing of your functions ai the next session.

Lisp == A Radical Introduction
Solution$ to Worksheet #3

' NOTES
Ammmmonwmmmn{ux&amh'ut&: :‘

u)mmmwmm.wuwn&nhm%wnmnuwsmm
Moxemmnmmuutnaquadmuwwh name, 1t must st be slashified, Le.
preceded by » slash.

b)mm:mw'mwmmhyﬁmim@my"o%' =< we can easlly define a "mepc®
end a W!\f\ldlhkouiymw:
]
(defun mapc (function arglist)
" (do ((args arglist (cér args))).
(tnull orgs) arglist)
tiuncall function (cor args))))

(de fun mapcer (;ﬁneuou arglist)

(do ((args orglist (cdr orgs))
~ (results il (append resulfs Guncll! function Gar' arge))))),
((mll orgs) rmlu)))

e)W'hOo'ﬂhc M'OM “bw

C)Fmtiomlﬁ!mm”twnmbouvhmmm 1m-qmmmmm-ww«

wwmwunmummtou mnm and user-defined functions witl
hwn'oxw'd‘um‘mymuhutao wm?nﬂmuwmnum
' PROBLEM 2

. Thlswoblmlsadwdmstmolybyw'iommiduh:dinwmmﬁtu,m .
these lists together, and then imploding the resul.))
|

(detun bﬁealmh{ (s &) Cinplode (append «a{’m&) u:,m.} s'.m);

PROBLEM 3

e»«muy.Nmngymunm«.mu&:y‘rmw 0ach of the slements within the ghven Nst,
NMNWMNsmutwmuMl-p '

. tdetun rev2 Clist)
(cond ((atom tist) Vist)
(1 (reverse (mapcor ‘rev2 nrm,n

Solutions 3 12 Lisp - 1978

PROBLEM' 4

Thls function works by taking the cdr of the list it Is yiveq. sorting 1, amll then inserting the car of the Hlist Inlc this new
sorted list. Note that the cdr must be sorted first be!oro attempting to'insert the car since "insert” ltms that its
second argument s aiready sorted. Note also that if we replace the predicate "< with *alphalessp®, m functions
can be used to sort lists of atoms.

(detun sort (list)
(cond ((null tist) nil)
(t Cinsert (car 1ist) (sort {cdr 1ist))))))

(defun insert (atom sorted-list)
(cond ((wll sorted-list) (list atom))
< ato- (car sorted-iist)) {cons atom sorted-list))
(t (cons (car sortad-1ist) (insert atom (cdr torlw-llﬂ))))))

PROBLEM &

Eva!uatlng (uho ’abraham) retuned a list of abraham's grwd\ﬂdron .0\ this by appending together the "kids"
properties of each of abraham's "kids".

PROBLEM 6

The following examples and the simple definitions of "mapc® and fmapcar® givea above both make use of the function

“funcall® which we wm briefly Introduce here. ‘As its name may hwly. t(to first argument to “funcail” (s the name of a
function to be caued and the subsequent arguMMs ‘o “funcall® are arguments to be passed to the function belm called.
For example, (funcall *car ’(a b c)) is equivalent to saying (car * (a! b c))

in writing the differentiation function, It would be possible 1o include [a test for each of the operations (addition,

multiplication, or exponentiation) which our function can hhndle, and this ls certainly a valid way of solving the problem.

The method we have chosen, however, assoclates a separate mferont!*ﬁon funciion with each of the operations (by
means of property lists). The simplifier which v«re‘vq included here also upkos use of this technigue.

(mapc * (lambda (x y) (putprop x y ’di"m)
O e |
'(diffplus difftimes di"oxpﬂ)

tdefun ditf (f x)
(cond ((equal x) 1)
(tatow 1) @ ‘
(1 (funcall (get (cor f) ’di"n) lx)))) 1

(defun ditiplus (4 %) (cons *+ (mapcar '(jum. (@) (@ift a x)) (ear 1))
i
(detun difftimes €f x)
{prog (u v)'
(nlq u (cadr ¢)
'w (cond ((null (cdddr 1)) caddr 1)) (§ (cmr 's (cddr 1)))))
(ntum (Hist '+ Ciist 's v “Hi v x’) (Hs! ’s v; (@itf v x10)))

(detun difiexpt (1. x)
(prog (v v).
(setq v (codr 1) v (coddr l"
h!q-n (list ¢
ist ‘s v um *hu@ist -y 1) (@11 e X))
“ln 's (Hu ' L v Kllﬂ ’lq w| Witt v u)))")

Gaopc *tlombda (x y) (putprop x ¢ 'umnn
Yo =8 /7 % tog) .
'(simplus u'-.lm simptines sispquotipnt siupexpt sisplog))

(detun evalp (exp)
(ond (member (cor exp) *(s - & // ~ lof))
(apply *ond (mspcer ‘mmberp !etim))ﬂ)

(detun simplify (exp)
(cond ((atom exp) exp)
((evalp exp) (ova! exp))
(t Cfuncall (get (cor exp) *simpin) (mapcer ‘siplity upmn

(‘jlm simplus (exp)
(delete § c&p)
(cond ((= Clength exp) 2) (cadr op)) Ut o))

Adatun simpminus g'np)
(delote § cptp)
(cond ((= (lmgth oxp) 2) oxp)
(t _(sppend (list '+ (cadr exp))
(mapcar * (losbda {x) K1t ’- x)) (cddr| ap))N)))

“'ﬂm simptimes (exp)
" (delete 1 exp)
(cond ((menber O exp) O)
((= Clength exp) 2) (cadr exp))
* (t (apply *append
(mapcer °* (lambda) (cond ((atom %) (1ist x))
Wlsqual (cor k) *8) (edr x))
%t st a0

exp))))

(datun simpguotient (exp)
(delete 1 oxp)
{cond ((equal (cadr exp) §) 8)
((menber 8 (cddr exp)) (error 'lelsun by m |b
(= Clongth exp) 2) (cadr exp))
({} (W (list "¢ (cadr oxp))
(mapcar * (lanbda x) R1ist ** x =1)) (olidr @xp))))))
L]
(dofun simpexpt (axp)
(delete | oxp)
(cond (fequal (cadr oxp) 82 8)
‘ Coqdat (cadr oxp) 1) 1)
({= Clongth oxp) 2). (codr o:p))
"t exp)))
. { :
(detun sinplog (axp) (cond ((eq (cadr exp) *Xe) 1) (t o))

