
INVESTIGATIONS IN COMPUTER-AIDED DESIGN
FOR NUMERICALLY CONTROLLED PRODUCTION

Final Technical Report

1 December 1959 - 3 May 1967

D. T. Ross

and

J. E. Ward

Electronic Systems Laboratory
Electrical Engineering Department

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts 02139

C ontracts

AF-33(600)-40604
AF -33(600)-42859
AF-33(657)- 10954

This document is subject to special export con-
trol and each transmittal to foreign governments or
foreign nationals may be made only with prior ap-
proval of the AFML, MATF, WP-AFB, Ohio, 45433.

FOREWORD

This Final Report (ESL-FR-351) submitted in May, 1968) summarizes
the work performed from 1 December 1959 through 3 May 1967 under
three successive United States Air Force Contracts: AF-33(600)-40604
from 1 December 1959 to 31 January 1961; AF-33(600)-42859 from
1 February 1961 to 31 May 1963; and AF-33(657)-10954 from 1 February
1963 to 3 May 1967. Details of the work have been previously recorded
in a series of twelve Interim Engineering Progress Reports, plus a
number of Technical Reports on specific topics.

Contract AF-33(657)-10954 with the Electronic Systems Laboratory of
Massachusetts Institute of Technology, Cambridge, Massachusetts was
initiated under Manufacturing Technology Division, Project 8-236,
"Integration of Design Data into Numerical Control". It was accomplished
under the technical direction of Mr. W. M. Webster of the Advanced
Fabrication Techniques Branch, MATF, Manufacturing Technology Divi-
sion, Wright-Patterson Air Force Base, Ohio.

This project has been accomplished as a part of the Air Force Manufac-
turing Methods Program, the primary objective of which is to develop,
on a timely basis, manufacturing processes, techniques and equipment
for use in economical production of USAF materials and components.

This technical report has been reviewed and is approved.

Ja K R. MARSH, Chief
Ad nced Fabrication Techniques Branch
Manufacturing Technology Division
Air Force Materials Laboratory

ABSTRACT

This report summarizes the activities of the M. I. T. Computer-Aided
Design Project from 1 December 1959 through 3 May 1967 in the de-
velopment of a generalized "system of software systems" for generating
specialized problem-oriented man-machine problem-solving systems
using high-level language techniques and advanced computer graphics.
Known as the AED Approach (for Automated Engineering Design) the
Project results are applicable not only to mechanical design, as an
extension of earlier development of the APT System for numerical con-
trol, but to arbitrary scientific, engineering, management, and produc-
tion system problems as well. All results have been programmed using
machine-independent techniques in the Project's AED-0 Language, based
on Algol-60, and are operational on several widely available computers.

Advanced techniques for verbal and graphical language and generalized
problem-modeling are based on the concept of a plex which combines
data, structure, and algorithmic aspects to provide complete and
elegant representation of arbitrary problems. Program developments
are supported by hardware and software innovations in computer graphics.
Various design applications and a general technique for three-dimensional
shape description complement and illustrate the general approach. The
unique AED Cooperative Program allows visiting staff from industry to
learn Project results while contributing to their further development.

A complete bibliography of 274 references to Project documents, talks,
and thesis reports is included.

This document is subject to special export control and each transmittal
to foreign governments or foreign nationals may be made only with prior
approval of the AFML, MATF, WP-AFB, Ohio, 45433.

------ -~ ill~~

PERSONNEL

The developments covered in this report are the result of the

efforts of many people over an extended period-- December 1, 1959

to May 31, 1967. Listed below are the 129 technical personnel

(faculty, staff members, visiting staff, graduate and undergraduate

students) who have participated directly in the work during this period,

organized according to the subgroupings within the Computer-Aided

Design Project.

Mr. Douglas T. Ross has served as Project Engineer for the

Computer-Aided Design Project for this entire period. The support

and counsel of Professor J. Francis Reintjes, Director of the Elec-

tronic Systems Laboratory, is gratefully acknowledged.

From the Computer Applications Group, Electronic Systems Laboratory
(December, 1, 1959 to May 31, 1967)

Douglas T. Ross, Group Leader and Project Engineer
Clarence G. Feldmann, Associate Leader
Dr. Jorge E. Rodriguez, Assistant Leader

Reuben J. Bigelow Panos Z. Marmarelis
Nathan S. Bromberg David F. McAvinn
Robert Bobrow Charles S. Meyer
Leon M. Bousquet James D. Mills
Leo 0. Craft Harrison R. Morse, III
Dr. Ronald W. Cornew Robert C. Nelson
David S. Evans Barbara R. Petree
N. Dudley Fulton Robert B. Polansky
Marcus C. Goodall Eugenia Rohrberg
J. Martin Graetz John Reed
Irene Greif Albert F. Smith
Norman F. Hirst Daniel E. Thornhill
Peter Johansen John F. Walsh
Dr. Jacob Katzenelson Jerry D. Welch
John C. Kotelly Thomas S. Weston
Peter T. Ladd Barry L. Wolman
Charles A. Lang Jackson S. Wright
Robert B. Lapin Robert B. Zara
Harold D. Levin Joel S. Zucker

v

Visiting Staff of the AED Cooperative Program
(March 1, 1964 to May 31, 1967. See Chapter X for additional details.)

Stephanie I. Ackley - System Development
Donald Barovich - IBM Corporation
Anton J. Berger - The Boeing Company
Charles W. Bower - The Boeing Company
Howard J. Cilke - Sandia Corporation
Robert K. Coe - United Aircraft Corporation
B. Thomas Fox - Sandia Corporation
Leonard H. Haines - IBM Corporation
Walter L. Johnson - Ford Motor Company
Jack H. Jones - McDonnell Aircraft Corporation
James R. Kennedy - Lockheed-Georgia Company
Richard 0. Ladson - Univac Div. of Sperry Rand Corp.
Fabrizio Luccio - Olivetti
Richard S. Lynn - North American Aviation
James J. Martyniak - North American Aviation
Richard A. Meyer - IBM Corporation
Arthur K. Mills - The Dow Chemical Company
Arthur T. Nagai - The Boeing Company
John V. Oldfield - University of Edinburgh
James H. Porter - Chevron Research Company
Henry W. Spencer - Grumman Aircraft Corporation
June L. Walker - IBM Corporation
Irwin Wenger - Raytheon Company
Richard B. Wise - IIT Research Institute
Stephan Zurnaciyan - Northrup Corporation

From the Design Division of the Mechanical Engineering Department
(December 1, 1959 to May 31, 1965)

Prof. Steven A. Coons Harry E. Ladd
Prof. Robert W. Mann Prof. Deane Lent
W. A. Albertson Prof. Frank A. McClintock
David M. Auslander Richard M. Merrill
Prof. Dwight M. Baumann Philip F. Meyfarth
Richard U. Bayles Harit M. Nanavati
Peter T. Bennett Prof. Henry M. Paynter
Prof. Charles Berg Richard P. Parmelee
Prof. Ernesto B. Blanco George Piotrowski
Lawrence L. Clarke, Jr. Joseph D. Purvis, Jr.
Norman R. Cohler Romolo E. Raffo
Larry M. Delfs Ronald C. Rosenberg
Charles A. Garman Edgar H. Sibley
Grover C. Gregory Robert Starzec
Mark R. Haber Ivan E. Sutherland
Wayne Hamann Coyette C. Tillman
MacKenzie L. Hamilton Joseph A. Berderber
Norman B. Heubeck Marc R. Weinberger
Timothy E. Johnson Jerome I. Weiner
Laird E. Johnston Abbott D. Weiss
David Korenstein Paul A. Wieselmann
Joseph P. Ku

vi

From the Display Group, Electronic Systems Laboratory
(March 1, 1961 to May 31, 1967)

John E. Ward, Group Leader and Deputy Director, Electronic Systems
Laboratory

Robert H. Stotz, Assistant Group Leader

Linda J. Bernhardt Richard C. Larson
Arthur R. Best Barry K. Levitt
Abhay Bhushan George C. Ling
Frederick T. Blount Yngvar G. Lundh
Michael F. Brescia Glenn C. Randa
Thomas B. Cheek William D. Stratton
Jan W. Grondstra Eurique J. Tejara-R
Dr. Uri F. Gronemann Edward R. Vassar
Ednre G. Guttmann Albert Vezza
Dr. Donald R. Haring Christopher R. Wylie

vii

li~~~~ P ~ ~ ~ ~ _ ~ ~ ~ _ ~~~Vl

CONTENTS

CHAPTER I INTRODUCTION page 1

A. Introduction 1

B. Chapter Outline 2

CHAPTER II ACTIVITIES OF THE PROJECT 6

A. The Project Mandate 6

B. Associations with Other Groups 9

C. Efficacy of the Mandate 11

CHAPTER III PROBLEM MODELING 13

A. The Fundamental Plex Concept 13

B. Ideal Plexes 16

C. Plex Mechanization 18

D. Factored Plexes 20

E. Ope rato rs 21

F. Mouse Algorithms 23

G. Growth Algorithms 26

H. Summary 27

CHAPTER IV THE AED-0 LANGUAGE AND
COMPILER SYSTEM 29

A. History 29

B. The "Bootstrap" Compiler System 31

C. The Algorithmic Theory of Language 32

D. Algol-60 as a Base 33

E. An Example 35

F. Additional Features 37

G. The Macro Preprocessor 40

H. Integrated Packages 42

CHAPTER V SYSTEM-BUILDING SYSTEMS 44

A. Introduction 44

B. The AED Approach 45

C. The General Processors 46

D. AED-1 Compiler Structure 49

E. Recapitulation 51

ix

CONTENTS (Contd.)

F. Parsing page 53

G. Nested Languages 54

H. Macro Preprocessing 55

I. The Cadet System 57

J. Generalized Modeling 59

CHAPTER VI APPLICATION OF THE AED APPROACH 62

A. The Three-Man Team 63

B. Joint Meetings 64

C. The Role of the Analyst 66

D. The Semantic Package 67

E. The Role of the Programmer 69

F. The First-Pass Structure 70

G. The Role of the Designer 75

CHAPTER VII DISPLAY HARDWARE 77

A. History 77

B. The ESL Display Console 79

1. Line Generation 82

2. Display Rotation 84

3. Automatic Edging 86

4. Automatic Light Pen Tracking 87

5. Character Generation 88

6. Manual Inputs 89

7. Command Summary 91

C. Display Buffer Computer 92

1. Background 92

2. Design Considerations 97

3. Status of the Buffer System 100

D. Development of Low-Cost Remote Display 100

1. Background 100

2. Desired Characteristics 101

3. Design Considerations 103

4. Description of ARDS-II 105

x

CONTENTS (Contd.)

CHAPTER VIII GRAPHIC SOFTWARE page 114

A. History 114

B. Sketchpad 117

C. The ESL Console in Time-Sharing 118

D. The Display Editor Package 120

E. The Display Interface System 123

CHAPTER IX DESIGN DIVISION STUDIES 127

A. Thesis Activity 127

B. Generalized Surfaces 127

1. Introduction 128

2. Notation 130

3. The Surface Equation 132

4. Boundary Slope Continuity 134

5. Correction Surfaces 136

6. Matrix Form 137

CHAPTER X COMMUNICATION WITH INDUSTRY
AND OTHERS 141

A. Introduction 141

B. AED Cooperative Program 143

1. The Cooperative AED-1 Project 144

2. The AED Cooperative Program 146

C. Special Meetings and Symposia 149

1. MIT/ILO Symposium on Computer-Aided
Design 149

2. 1963 Spring Joint Computer Conference
Session 150

3. MIT/ILO Symposium on Project MAC 151

4, The First AED Technical Meeting 151

5. The Second AED Technical Meeting 151

D. Documentation by Movies 160

APPENDIX I AED APPLICATIONS 162

xi

CONTENTS (Contd.)

APPENDIX II SUMMARY OF PROJECT REPORTS
AND PUBLICATIONS page 166

A. Description of Documentation Types 167

B. Abstracts of Project Technical Documentation 168

C. Abstracts of Theses Associated with Project
Work 189

D. Technical Papers and Publications 203

E. Lectures and Technical Presentations Without
Publication 209

F. Bibliography of Informal AED Documents 218

APPENDIX III FILM LOANS - ELECTRONIC SYSTEMS
LABORATORY 228

xii

~~~-`- ~~~-11~-~-~" ~ ~ ~ ~ I "-~1~.-111I -~ I~.·~- r~--~Ill~_-·~_II--~-~-~--- _I__~·t··1·~Xll-·I0~I--



LIST OF FIGURES

1. Plex Model page 15

2. Plex Model, Version 2 19

3. Plex Model, Version 3 19

4. Plex Factors 22

5. Plex Operator 23

6. Operator "Induced" from Atomic Operator by Action
of a Mouse 25

7. Sample Program Written in Bootstrap Plateau Language 31

8. Component Declaration in AED-0 34

9. Growth Algorithm for Ordered List 36

10. General Problem-Solving Scheme 46

11. General Structure of AED-1 Compiler 47

12. High-Level Inputs to Set Up AED Systems 50

13. The First-Pass Structure 53

14. Contex Codes of the Precedence Follower 71

15. The Print Algorithm 72

16. Possible Parsings 73

17. Modifier Precedence 75

18. The ESL Display Console 80

19. Block Diagram of ESL Console 83

20. Typical Display List 85

21. Typical Display Command Word 91

22. Typical Displays on ESL Display Console 93

23. Addition of PDP-7 Display Buffer Computer between
the ESL Console and the Project MAC 7094 99

24. Block Diagram of ARDS-II Low-Cost Remote
Display Terminal 106

xiii



LIST OF FIGURES (Contd.)

25. ARDS-IIwith Tektronix 564 Storage Oscilloscope page 111

26. ARDS-II Display (Full Size) with Tektronix Type 611
Storage Tube 113

27. ESL Display Console Connected to CTSS 119

28. Use of PDP-7 as a Buffer Computer for the
ESL Display Console 124

29. Simple Surface Patch 131

30. Connected Surface Patches 134

31. AED Visitors 148

xiv



CHAPTER -I

INT RODUC TION

A. INTRODUCTION

This report covers the activities of the MIT Computer-Aided

Design Project from December 1, 1959 through May 31, 1967, under

three successive Air Force contracts: AF-33(600)-40604, AF-33(600)-

42859, and AF-33(657)-10954. It is a "final" report only in the most

technical sense. The three Air Force contracts covering this seven and

one-half year period are indeed finished, but the in-depth probing of

the fabulously rich concept of computer-aided design has, as history

will show, only progressed through its initial birth pangs. Computer-

Aided Design -- the synergetic integration of the creative abilities of a

human with the immense capabilities of computer hardware and soft-

ware into a man-machine problem-solving team -- will probably never

be sufficiently understood and mechanized to be considered in a "final"

state. A good strong beginning has been made, however, and the MIT

Computer-Aided Design Project, which has played a central role in

the achievement of this viable status, is continuing its work under a

new Air Force contract: F33615-67-C-1530, It is hoped that this re-

port will convey to the reader an adequate understanding of what has

been accomplished and how, as well as an appreciation of the vast

further potential of continued research into this stimulating and far-

reaching new technology.

In planning the organization and content of this report, a bal-

ance has had to be struck. A noisome chronology and summary of the

well-intentioned but faltering steps of research would be highly in-

appropriate for a report of this kind. On the other hand, a straight-

forward listing of accomplishments in outline form would be an almost

incomprehensible jumble of jargon. Many times the important topics

of computer-aided design and its underlying theoretical foundations

are quite foreign and far removed from topics which the nonspecialist

considers important. Therefore essentially no meaningful communi-

cation can take place in outline form. A listing of statistics would

-1-



-2-

similarly be uninformative; over 100 man years of highly-skilled

research effort cannot be boiled down into any meaningful nugget or

distilled into any useful essence.

For the above reasons, this report is primarily a guided an-

thology with a philosophically-oriented motivational introduction. It

is hoped that this organization of the material will serve to convey

not only an impression of the activities and accomplishments of the

MIT Computer-Aided Design Project over the years, but also that it

will permit a deepened understanding of the far-reaching potential

and significant remaining problems of the field of computer-aided de-

sign as they have been glimpsed during the conduct of this research.

It is also hoped that the dynamism and excitement which permeates

the collective efforts of all groups active in the field will seep through

from the verbiage, for this work has relevance to all of man's activi-

ties and must ultimately be reckoned with in some fashion by all seg-

ments of society. Although the term "computer-aided design" is

restrictive and.in many ways inappropriate, the evolutionary activity

which it is intended to connote has the broadest possible implications

and must not be underestimated with respect to either its potential or

the difficulties of achieving that potential.

B. CHAPTER OUTLINE

Since a correct understanding of the accomplishments of the

MIT Computer-Aided Design Project depends so heavily upon a prior

understanding of what is or what is not computer-aided design as we

mean it, we begin in Chapter II by describing the mandate which we

set for ourselves early in 1959, specifying the appropriate role which

could be played by a government-sponsored research effort carried

out in an academic community for the purpose of advancing industrial

technology. This section establishes that the role of the Project has

been to concentrate on the basic fundamentals and rigorous foundations

for a generalized approach to computer-aided design, rather than to

mount a frontal ad hoc attack on any particular form of computer-

aided design.



-3-

We then consider, in Chapter III, what are in fact the funda-

mentals. What are they and why are they fundamental? How do they

relate to the overall problem of generalized man-machine problem

solving? The idea of a "plex" model for: representing arbitrary prob-

lems. forms the basis for this discussion.

The next step is to bring these fundamentals to life to create

representatives of the important concepts in working form, so that

the potential for accomplishing a given task. is given substance. In

this development, set forth in Chapter IV, it becomes clear that the

primary prerequisite concerns not only the construction of working

tools, but also arranging the handles and controls for those tools in

such a way that a human can grasp and manipulate them. The AED

language and compiler allow plex concepts to be applied to real

problems.

The tremendous complexity of creating problem-solving sys-

tems is discussed in Chapter V, and it is shown that the tools them-

selves must be imbedded in larger automated systems in order to

enable the vast amounts of detailed precision work to be accomplished

with reasonable facility. It is at this point that the "system of systems

for making systems", which is the primary current result of the Proj-

ect, evolves.

To complete the AED story, the relationship of this generalized

approach to real computer-aided design problems is outlined in

Chapter VI, "Application of the AED Approach". Questions of coupling

the man to the machine and of organizing the use of the system-building

systems are covered to complete the picture of the current status of

the practice of the art of computer-aided design as envisioned by the

Project.

The lack of abundant illustrative examples of completed

computer-aided design systems is cogent testimony to the fact that the

field of computer-aided design has only begun. Examples are cited,

but their degree of specialization and carefully-controlled conditions

show that the true "reduction-to-practice" of computer-aided design

concepts still lies ahead.



-4-

Chapters VII and VIII outline the activities of the Project in

the design and construction of suitable display consoles for on-line

man-machine graphical communication, and of the system software

necessary for flexible and efficient use of these consoles in a time-

sharing environment. Close cooperation with Project MAC at M. I. T.

(and in many cases joint support) has played a key role in the success

of these activities, which have already had a substantial influence on

the characteristics of commercially available equipment.

Chapter IX summarizes results obtained from support ex-

tended to the Design Division of the MIT Department of Mechanical

Engineering in the early years of the Project. In addition to several

thesis investigations of possible applications of computer-aided

design, members of the Design Division were active in populariza-

tion of the general concept. The most significant development of this

support was the generalized parametric surface techniques for three-

dimensional shape description by Professor S. A. Coons, which is

briefly summarized.

The presentation finally comes full circle in.Chapter X by

outlining the activities of the Project in cooperative efforts and exten-

sive communication and liaison activities with industry. The opening

rounds of computer-aided design.research are now over. The re-

search will continue, but in order for computer-aided design to enter

a healthy childhood, (which must precede adolescence and ultimate

maturity), industry itself must become deeply involved, take some

risks, reap some benefits, and contribute directly to the further ad-

vance of the field. The challenge is being accepted by industry. The

combination of government sponsorship of academic research for use

in the industrial society is working. The future cannot be predicted

with certainty, but we may leave this "final" phase of the beginnings

of computer-aided design with optimism and some considerable-confi-

dence, based upon our accomplishments to date.

Appendix I lists reported applications of AED software and the

ESL Display Console by users at M. I. T. and elsewhere, other than by

the Computer-Aided Design Project itself and industry participants in

the Cooperative AED Program.



Appendix II is a complete listing of Project documentation

(reports, technical memoranda, theses, AED literature, and techni-

cal journal papers), plus the more significant of the many lectures,

talks, and technical presentations given over the reporting period.

This list contains 274 citations, and abstracts are included for all

formal documentation and theses. In addition to printed reports and

technical papers, motion pictures have been used to convey the flavor

of certain aspects of the Project work. A number of these movies

are available for loan or purchase, as listed in Appendix III.



CHAPTER II

ACTIVITIES OF THE PROJECT

A. THE PROJECT MANDATE

Work on computer-aided design within the Computer Applica-

tions Group of the Electronic Systems Laboratory at M.I.T. predates

the contractual periods covered by this report. The real beginning

was in June of 1956 when the group inherited the MIT activity in nu-

merical control from the preceding project, which had been primarily

engineering oriented, and focused on automatic programming for nu-

merical control through the APT Project. In the very first interim

report of the APT Project, brief reference is made to the ultimate

extension of the preparation of numerical control information into the

design area. Throughout the APT System development, this ill-

formed concept always was in the background. As the work on the

development of the APT System was drawing to its logical conclusion

with the cooperative effort with companies in the Aerospace Industries

Association, the possibilities of extending the sophisticated use of

computers into the design preparation stages which precede part pro-

gramming came more sharply into focus. Since the early fifties we

had made extensive use of on-line displays and manual intervention

(the first graphical input through a display was done in 1954) and had

developed a backlog of sophisticated computer usage techniques in

various areas. Some of this experience had been used profitably in

the APT System development, but other portions needed a broader

context in order to be brought to fruition. These experiences, cou-

pled with an informal acquaintanceship with the problems of aerospace

design and manufacturing gained from the intimate contact with aero-

space companies during the APT effort, formed the background for

the initial proposal that useful results could be expected from a re-

search program in computer-aided design.

Even our incomplete knowledge of the aerospace design-to-

manufacturing cycle was sufficient to demonstrate clearly that a

small academic project could not hope to create a system which

-6-



-7-

would solve everybody's problem directly. Furthermore, since

public funds were involved we felt that it would not be appropriate

to concentrate on a limited and specialized application which would

be of direct utility to only one or a few of the potential companies we

hoped to benefit. Instead, we felt that a program of research, aimed

at fundamentals and coupled with close liaison with industry on a

broad scale (once preliminary research had yielded usable results),

would be much more appropriate. Industry, especially in aerospace

matters, had historically been project oriented, with insufficient

time for truly long-range technological research such as we felt was

needed. On the other hand, the ability of the aerospace industry to

adapt rapidly to sophisticated technological innovations is well known,

the rapid incorporation of numerical control being but one of many

excellent examples. We hoped, therefore, to be able to develop a

systematized solution to some of the basic problems of generalized

computer-aided design, and then to serve a catalytic role in stimu-

lating industry itself in the application of the research results to di-

verse application areas.

Our deliberations on the role which we could play began even

before we had coined the term "computer-aided design", and, in fact,

a part of the early discussions centered around the distinction be-

tween "automatic" and "computer-aided" design and "computer aids

to " design. (It was only later that we found occasional misunder-

standing in oral presentations, when listeners thought we were talk-

ing about "computerated" design! ) It seemed quite clear to us that

any work in automatic design, in which a parameterized design is

optimized in some fashion by parameter variation, would of necessity

be too closely related to a particular application area to permit a

general approach. Although various aspects of the APT System anal-

yses and portions of earlier work in which we had used various lin-

earlization and adaptive programming techniques were related to

automatic design, we felt that such questions definitely should occupy

a secondary role. Similarly, we were not interested in advancing the

use of computers as aids to existing design practice. Instead, we

wanted to couple a man and a machine into a problem-solving team

suitable for fresh design problems requiring creative solutions, and



-8-

performing better than either man or machine alone. Our ultimate

goal was to have a system capable of going from the conception of

the need for a part through to the finished product by means of nu-

merical control.

We sought to develop a system whose language and character-

istics could be adapted to meet the needs of the user, whatever the

domain of application. Our view was that it was impossible to put

bounds upon the problems with which the system would have to cope,

because design itself knows no bounds. Geometry, materials, aero-

dynamics, thermodynamics, and even aesthetics, all may play de-

termining roles in a given design. If the system was truly to be ap-

plicable to creative design, it would have to be adaptable to these and

many other areas. Thus in our view, there was no distinction be-

tween computer-aided design and generalized man-machine problem-

solving.

These grandiose plans were not entirely wishful thinking, for

the previous activities of the Computer Applications Group had

touched upon many of the requisite areas and it seemed clear that

even modest success would have handsome payoff if properly applied.

Many of the basic ideas on which we hoped to base the. new research

program emerged and went through their earliest refinements in the

context of our final contributions to the APT System. Still others

were exercised in several small research investigations which we

carried out at the close of the APT Project in preparation for the

new computer-aided design focus.

Later sections of this report show that as our viewpoint has

sharpened and as our techniques and general approach have matured

over the years, we have changed terminology slightly, so that in-

stead of speaking of adapting a general system to a special purpose,

we now prefer to think of employing a family of generalized systems

to create a specialized new member of the family. We call the fam-

ily of systems by the general name AED (an acronym for Automated

Engineering Design) and tout "the AED Approach" as the entire

sweep of concepts, techniques, and working tools for creating spe-

cialized computer-aided design systems. The terminology and tech-

niques are refined, but the overall concept is the same.



-9-

B. ASSOCIATIONS WITH OTHER GROUPS

Although the computer-aided design concept was not intended

to be restricted to any particular type of design, the members of the

Computer Applications Group had essentially no engineering design

experience and would need design help from other sources. We felt

that the analysis and synthesis techniques for electronics and auto-

matic control systems were well enough developed so that when the

time was ripe, design activities in these areas could be arranged

with other appropriate Electronic Systems Laboratory personnel.

Mechanical design, however, with its more complex domain of three-

dimensional geometry and nonlinear problems of the continuum

would be a much richer and more difficult area in which to perform

investigations. Since a definite goal for the Project was ultimately

to couple results of the design process to numerically control pro-

duction techniques, it was highly appropriate that the problems of

mechanical design should receive special attention. Therefore, the

MIT Computer-Aided Design Project, housed in the Electronic Sys-

tems Laboratory of the Electrical Engineering Department, arranged

to support a computer-aided design effort in the Design Division of

the Mechanical Engineering Department at MIT.

From December 1959 through January 1966 the Design Divi-

sion, first under the direction of Professor Robert W. Mann and

later led by Professor Steven A. Coons, approached the computer-

aided design problem from the designer's point of view while the

Computer Applications Group worked from the programming and

generalized problem-solving point of view. Much useful cross fertil-

ization resulted from this joint venture, and a number of significant

thesis investigations (listed in the appendix) contributed to the goals

of the Project. Several of these efforts, notably the Sketchpad Sys-

tem, the doctoral thesis of Ivan E. Sutherland, and the Sketchpad III

System, the master's thesis of Timothy E. Johnson, for two- and

three-dimensional graphical manipulations, both using the TX-2 Computer

at Lincoln Laboratory, the master's thesis of Mackenzie L. Hamilton

and Abbott D. Weiss in preliminary ship design, the doctoral thesis

of Richard I. Parmelee on three-dimensional stress analysis, and



-10-

the doctoral thesis of Coyt Tillman on a generalized differential

equation-solving system, represented examples of computer-aided

design systems for particular areas which were illustrative of the

overall goals of the Project. Professors Coons and Mann played a

significant role in disseminating and popularizing the general con-

cept of computer-aided design, and Professor Coons has also made

a significant contribution in the form of generalized parameterized

techniques for representation of general three-dimensional shapes.

Another significant application system supported directly by

the Project (jointly with another NASA-sponsored project in the

Electronic Systems Laboratory) was the AEDNET System for the

simulation of nonlinear electronic circuits, developed under the

leadership of Dr. Jacob Katzenelson from 1964 through 1966. In

addition to these computer-aided design application systems which

received direct support, a large number of other applications of

both the hardware and the software developed by the Project have

been made by numerous other departments and projects at MIT, as

listed in an appendix to this report.

In addition to its activities in generalized software and specific

applications, the Project also has been from the beginning active in

the development of hardware for the man-machine interface. Initial

investigations were made using the display system of the TX-O Com-

puter, transferred to the Electrical Engineering Department from

MIT's Lincoln Laboratory in 1958. Later, manual intervention

equipment and display experiments were made with the IBM 709

Computer of the MIT Cooperative Laboratory. In 1963, with the

formation of Project MAC, an interdepartmental project sponsored

by the Advanced Research Projects Agency for research and devel-

opment in multiple access computer or "time-sharing" techniques,

the display activity was reorganized to form the Display Group of the

Electronic Systems Laboratory, and hardware developments since

that time have been jointly sponsored by the Computer-Aided Design

Project and Project MAC. The initial activity of the Display Group

concerned the completion of the ESL Display Console, the master's

thesis of Robert H. Stotz, for operation in the Project MAC time-

shared environment using the IBM 7094 Computer rather than the



-11-

IBM 709 Computer of the Cooperative Computer Laboratory. Later

work of the Display Group is described in a subsequent chapter.

Since 1963 the MIT Computer-Aided Design Project has re-

ceived very substantial support from Project MAC in the form of

generous access to its powerful time-sharing facilities, and alloca-

tion of convenient laboratory and office space. In turn, all results

of the Project have been made available to all users of the Project

MAC facilities, (and later the duplicate facilities of the MIT Compu-

tation Center), and it is through this mechanism that the large num-

ber of other departments and projects have been able to make use of

the Project results.

A final and very significant association of the Project with out-

side groups is the "AED Cooperative Program" which has been in

operation since March, 1964. This program, which is described in

more detail in a later chapter, is a unique cooperative venture with

industry whose primary purpose is to promote the dissemination and

appreciation of the results of the Project while at the same time con-

tributing toward their further advance. Experienced system program-

mers from industry join our regular staff on a visiting basis for one

year to learn about and contribute to the work of the Project. The

contributions of the visiting staff members neatly balance the educa-

tional load on our permanent staff so that not only is technical pro-

gress maintained, but ideas and skills which can only be transmitted

by active participation are seeded in the most direct possible way

into the vital activities of industry. Perhaps more than any other

aspect of the Project, the AED Cooperative Program symbolizes and

makes real the unique benefits which derive from a free and open

intermingling of the talents and backgrounds of the academic and in-

dustrial community with the stimulation and support of government

sponsorship.

C. EFFICACY OF THE MANDATE

Over the years, people who make initial contact with the MIT

Computer-Aided Design Project (and occasionally old friends of long

acquaintance as well) frequently say in effect, "What on earth does

what you're doing have to do with computer-aided design?' The



above outline of the multitudinous joint associations with many

different groups and activities gives a partial answer. Computer-

aided design as we mean it really translates into generalized man-

machine problem-solving, and the above listing has only that thread

in common among the various groups.

The MIT Computer-Aided Design Project would be much less

effective, and its activities would be much less significant, were we

to play any other role than that which we have pursued. There are

many other groups interested in the same general areas, but in

more of a hurry to obtain immediate results. By concentrating upon

the fundamentals of the man-machine problem-solving process, we

serve a catalytic role which links together in a positive fashion

many disparate activities. It is significant to note that with all the

groups with which the Project is associated, no coersion other than

an expounding of the benefits of the AED Approach has been used to

establish these associations. The efforts of the Project are a suc-

cess solely on technical performance grounds.

The proper answer to the question,"What does our work have

to do with design?" lies in a broadened understanding of the meaning

of the word design. The remaining portions of this report elaborate

upon this meaning and serve to put the final results of this opening

phase of computer-aided design research into focus. There still is

a great deal of additional work to be done, both in an extension and

elaboration of these beginnings and in the refinement and reduction-

to-practice of the total set of concepts, and these activities will be

the substance of subsequent phases.



CHAPTER III

PROBLEM MODELING

There is some merit in the question concerning the relevance

of our work to computer-aided design, for our consideration of

fundamentals begins not with design or problem-solving or program-

ming or even mathematics, but with philosophy (in the old-fashioned

meaning of the word) -- we begin by establishing a "world-view". We

have repeatedly emphasized that there is no way to bound or delimit

the potential areas of application of our system, and that we must be

prepared to cope with any conceivable problem. Whether the system

will assist in any way in the solution of a given problem is quite

another matter, about which more will be said later, but in order to

have a firm and uniform foundation, we must have a uniform philo-

sophical basis upon which to approach any given problem. This

"world-view" must provide a working framework and methodology

in terms of which any aspect of our awareness of the world may be

viewed. It must be capable of expressing the utmost in reality,

giving expression to unending layers of ever-finer and more con-

crete detail, but at the same time abstract chimerical visions bor-

dering on unreality must fall within the same scheme. Above all,

the world-view itself must be concrete and workable, for it will

form the basis for all involvement of the computer in the problem-

solving process, as well as establishing a viewpoint for approaching

the unknown human component of the problem-solving team.

A. THE FUNDAMENTAL PLEX CONCEPT

Although initial probings in these directions were much earlier,

in the summer of 1960 we coined the word plex to serve as a generic

term for these philosophical ruminations. "Plex" derives from the

word plexus, "An interwoven combination of parts in a structure",

(Webster dictionary). In the following paragraphs we attempt to con-

vey the basic principles of the plex concept as it is understood at this

time. As later sections will show, the full elaboration of the concept

also involves almost every other aspect of the Project's activities and it

-13-



-14-

is clear that only a beginning has been made. Our understanding of

the concept of plex has, however, been greatly enriched over the

years as we have used it actively in our work. We hope that further

use and study will enable these ideas to be understood deeply enough

to permit a rigorous formulation, since we are frequently hampered

by the informal nature of the current formulation.

We use the word plex both as a noun and an adjective, and in

many contexts and with many nuances of meaning. All uses of the

word ultimately tie back, however, to the most fundamental usage --

the modeling plex. The purpose of a modeling plex is to represent

completely and in its entirety a "thing", whether it is concrete or

abstract, physical or conceptual.

A modeling plex is a trinity with three primary aspects, all of

which must be present. If any one is missing a complete representa-

tion or modeling is impossible. The three aspects of plex are data,

structure, and algorithm.

In order to have a complete model or representation of a thing,

we must have data. There must be some finest level of indivisible

units or entities in terms of which the properties of the thing being

modeled are described or measured. A datum is a value, and may

be a thing itself, a token for a thing, a measurement from a mea-

suring scale which is applicable to a thing, etc. . Data by themselves,

however, are meaningless and do not constitute an adequate model.

The second aspect of plex is structure. By structure we refer

to relationships among the data of a plex. No matter how simple or

complex a thing which is being modeled may be, there always must

be some sort of relationship between the data from which it is com-

posed. Some of these relationships are firm and indivisible. Others

are transient and easily changed or altered. But at all times some

structural relationships must apply even if they degenerate to the

mere association of all of the data into a set which is applicable to

the model of a single thing. Even with data interrelated in a data

structure, however, a model is not complete, for the meaning of the

data and the interpretation of the relationships are ambiguous and

unspecified.



-15-

The third aspect of plex, which in combination with data and

structure makes the representation complete and workable, is

algorithm. The algorithmic aspect is the capstone which allows the

data in the structure to be interpreted, manipulated, and made

meaningful. It is concerned with the behavioral characteristics of

the plex model-- the interpretive rules for making meaningful the

data and structural aspects of the plex, for assembling specific in-

stances of the plex, and for interrelating the plex with other plexes

and operators on plexes. Specification of the algorithmic aspect re-

moves the ambiguity of meaning and interpretation of the data struc-

ture and provides a complete representation of the thing being

modeled.

Figure 1 shows a trivial example of a modeling plex. In this

case, we are modeling a geometric straight line in a cartesian

t LINE

n 1 Y

4 p2

n pI n p2 I
X I 2 2
Y I Y 4 0 1 2 3 
e e

left.end. point(line) -- e ,(line)

length(line)=_/(x x((r(l ine))-x((line)))2 +(y(r(line))-y((line))) 2

etc. for additional properties

Fig. 1 Plex Model

coordinate system, with labels. The data of the model are the

words such as "POINT", the labels such as "pl", the numbers mea-

suring coordinate values, and the pointer values. The structural

aspect of the plex is indicated by the "n-component elements", i. e.,

the constituent building-block elements with variable numbers of

components containing attribute values. Note that the components



-16-

are assigned mnemonic names, t, n, x, y, 1, r, and e for type,

name, x coordinate, y coordinate, left, right, and end of, respec-

tively. The components "contain" the data values, and the total col-

lection constitutes the data structure for the modeling plex. The

algorithmic aspect of the model is only incompletely indicated in

Fig. 1 by formulations expressed in an appropriate language showing

that the left end point of a line is the value of the -component of that

line; the length of a line may be obtained by the evaluation of an ap-

propriate formula with inputs obtained from the appropriate x and y

components of the point elements, etc. Notice in particular that it

is these algorithmic formulations which provide the proper interpre-

tation of the data structure, for a different set of formulations could

give an entirely different meaning. For example, although the mne-

monics of Fig. 1 would not be as appropriate, the same data structure

could represent the top two books on the best seller list, with titles

pi and p2, and with the x and y components showing their position on

the list of the previous week. Only when the interpretation rules are

included is a plex model complete.

B. IDEAL PLEXES

For the sake of discussion, we sometimes take an extreme pos-

ture and consider all plexes to be degenerate in their data and struc-

tural aspects, so that all consideration may be focused entirely in the

algorithmic domain. This is a generally useful viewpoint to take

when one is primarily considering an ideal plex (an idealized plex) in

a way which is as mechanization-free as possible. In this canonical,

ideal form, all relevant attributes of a plex are represented by read-

and-store procedure pairs , i. e., we ignore the mechanization

of data values and degenerate the data structure with the assumption

that there is associated with each read-store procedure pair a suit-

able "box" containing the unspecified datum. Then the entire consid-

eration of the plex can take place in terms of reading and storing

values of attributes by calling the appropriate read or store proce-

dures. The mechanization of the "box" and its contents are of no

interest.



-17-

We refer to the read-store procedure pair as an ideal compo-

nent. Ideal elements are then merely indivisible collections of ideal

components. An ideal element is itself a suitable datum which may

be the value of one or more ideal components in other elements. In

addition to the read-store procedures of the component definitions,

an ideal plex definition includes the definition of the ideal elements

from which the plex is composed, including the specification of the

element types which may be taken as values in the various ideal com-

ponents, and a create-destroy procedure pair for creating and de-

stroying specific instances of each element type. A specific instance

of a plex then is some arrangement of ideal elements which is gram-

matical with respect to the type constraints and which allows the

read-store procedures to function properly. An ideal element con-

sisting of a single ideal component containing some unspecified da-

tum is considered to be that datum itself. Thus the atomic levels of

data and structure coincide; the atomic data are considered to be

elements of specific types and thus are made to fit into the structural

aspect of the plex definition as described by the component and ele-

ment procedure pairs.

All plex operations may be expressed in terms of the proce-

dures of the ideal plex definition. A plex definition defines not a

single plex, but a general type of plex, of which there may be many

instances. For example, the Peano axioms define the positive in-

tegers and their properties, but there are uncountably many inte-

gers which satisfy the definition and therefore are specific instances

of the generic integer. Similarly, in Euclidean geometry, the defi-

nition of a triangle is generic and applies to uncountably many in-

stances of triangle. In general, when a plex definition is applied,

the algorithmic and behavioral aspects remain unchanged, as many

different combinations of data and structure are constructed to yield

specific instances of the plex. The establishment of specific data

structure instances which are compatible with the plex definition is

another major facet of the over-all plex concept, considered later.



-18-

C. PLEX MECHANIZATION

A plex is a model of a thing and therefore is a thing itself. As

such, it must be given some physical form, i. e. , the data, struc-

ture, and algorithm parts must be represented in some way. There

are many different forms that a given plex may take, each form be-

ing merely a different way of representing all of the relevant aspects

of the thing being modeled by the plex. We speak of these many dif-

ferent forms as various mechanizations of the same ideal plex. Just

as there may be many instances of integers which satisfy the Peano

axioms, there are many ways to physically mechanize integers

themselves. Formulas for integer calculations may be written in

terms of the ideal arithmetic operations for add, subtract, etc., and

they are valid for any suitable mechanization. It is impossible to

have a completely "mechanization-free" ideal plex in any form which

has no mechanization at all. We must always have some mechaniza-

tion. The idea of mechanization-free really involves the transforma-

tion from one mechanization to another "without loosing anything".

In general, any such transformation affects all parts of the data,

structure, and algorithm, since otherwise equivalence is lost.

Depending upon the use to be made of a plex model, one mech-

anization or another may be most appropriate. For example, Fig. 2

shows an alternate formulation for the modeling of a two-dimensional

line. The plexes of Fig. 1 and Fig. 2 are different mechanizations of

the same ideal plex. Notice that in Fig. 2 the lines and points are

grouped separately, and the 1, r and e components contain label val-

ues rather than pointer values. At the same time, the formulas for

obtaining the left endpoint, right endpoint, and length have also been

transformed, so that the total modeling characteristics are pre-

served. In order to find the left endpoint of a line in the second

scheme, it is necessary to scan the entire list of points until the ap-

propriate label is found. This is a time-consuming operation, but

the physical locations of the point elements may be changed without

modifying the values of the line element. In the scheme of Fig. 1,

however, it is very efficient to locate a left endpoint, but if a point

element is moved, the pointer value in every line element for which

it is an endpoint must be updated.



-19-

t L NE
n elp

e l I
LINES r pZ

4 II p2

3 /l

t POINT t POINT2
n pI n p2 I p

x I x 2 I

y I y 4 0 1 2 3 x
POINTS e £I e 'tl

C= P - _-_ _P 

left.end.point(line)

begin z=POINTS;

loop: if n(z) is not equal to (line) then begin z= p(z);
go to loop end else answer is z end;

end;

i.e., search the point string for the named point.

etc. for additional properties

Fig. 2 Plex Model, Version 2

LINE

I I&

TABLE 4 p2

2 2
3 PI POINT POINT
4) p2 3 4

I 2 O
0 I 2 3

76 I I

LINES

j I J left. end.point(line)

POI NTS etc. for additional propertiesPOINTS

3 

Fig. 3 Plex Model, Version 3



-20-

Figure 3 shows a thFird alternate mechanization in which the best

characteristics of both schemes 1 and 2 are combined. In this case

the pointer values are converted into an index into an array of actual

pointers. In this scheme, only moderate inefficiency is introduced

by indexing into the array to obtain a pointer value, while at the same

time locations of point elements may be changed and only the single

array entry need be updated no matter how many line elements may

share the same index value.

Although no modeling plex can be entirely mechanization-free,

some versions are more ideal than others. The design of an appro-

priate mechanization has much more importance than merely saving

a microsecond or so, or a storage bit here and there. The more

idealized the expression of a given modeling plex may be, the more

permanence and long-term value it will enjoy. In terms of the ex-

ample, the distinction between the "left-endpoint property" of a line

and the "I component" of an element representing a line is very im-

portant. The concept of a left endpoint is at a much higher and more

stable level than is the f component. Useful operations on lines ex-

pressed in terms of left endpoint properties and similar inherent

characteristics of lines apply correctly to all three mechanizations,

whereas equivalent formulations expressed directly in terms of £

components must be different for each mechanization. A single

mapping of left endpoint into I component can make any number of

expressions apply to a new mechanization.

D. FACTORED PLEXES

The desirable and undesirable characteristics of the above

three mechanizations have all been concerned with the trade-off be-

tween storage and execution time for a single plex type. Another

important influence which affects not only mechanization but the

ideal definition as well, concerns the use which is to be made of a

plex model. A definition which is optimized for the use of a plex

in isolation for only a single purpose may require considerable al-

teration if that plex is to be used in conjunction with some other plex

for a new purpose. The reverse process also frequently occurs, in

that a single definition plex is constructed for some rather gross



-21-

concept, when it is discovered that a more adequate model would

result if that single plex were factored into more specialized sub-

plexes. We have, in fact, already made use of this idea in the ma-

nipulations of Figs. 1, 2, and 3. The data, structure, and algorithm

aspects concerned with the type, name, x-coordinate, and y-coordi-

nate components were left unchanged in all of the transformations

considered there. Thus, in effect, we had factored out those aspects

as a separate sub-plex which was left invariant as we modified the

mechanization of the remaining portions of the total plex. In general,

any collection of concepts which is sufficiently rich to merit serious

consideration in terms of plex modeling will be complicated enough

that the best mechanization cannot be seen at once. An elaborate se-

quence of transformations in both directions, combining smaller

units into larger concepts and factoring others into different modules,

will take place as the many choices of possible mechanization are

considered.

E. OPERATORS

From the plex viewpoint all computation, data processing,

problem formulation, reformulation, and even cogitation are consid-

ered in terms of the interaction or transformation of plexes. Since

it is the algorithmic aspect of plex which determines the interpreta-

tion of the data and structure aspects and specifies the behavior of

the model so that it properly reflects the behavior of the thing being

modeled, consideration of the interaction and transformation of

plexes is primarily concerned with further elaboration of the algo-

rithmic aspect of plex. Just as we may take two numbers and

"operate" on them with an addition operator to yield a new number, or

operate on a single number with a negation operator to transform it

into a different number, we wish to consider operators applied to

plexes to yield other plexes. There is a whole spectrum of kinds of

operations, and we first consider two extreme cases, one very speci-

fic and one general, after which our main discussion centers on the

techniques for the middle portion of the spectrum.

The simplest and most direct way to transform a plex is to

alter one or more of its data values. This is accomplished merely



-22-

by calling a store procedure with an appropriate new value. Simi-

larly, two plexes may be "joined" in the most trivial sense by an op-

erator which makes them share a component value in common. All

operations on specific plexes ultimately are composed of atomic op-

erations of this form.

The other extreme of the scale of operators, which was briefly

alluded to above, is -indicated in Fig. 4. In this case, operations are

t LINE
/ noB t

/ \ t LINE

t POINT t POINT I
In pn p2 .r =-- 

…2 I3 XC c- xl I n t POIN. t POINT
j x1 / \- I\ n p1 p2

Y a 4

__--- / r \ '/

I|JI el j 

Fig. 4 Plex Factors

concerned not with specific plexes, but with manipulations of plex

definitions themselves. Figure 4 indicates symbolically how the

modeling plex for the straight line in cartesian coordinates may be

considered to be the composition of separate plex definitions -- one

for the type and naming conventions, one for the end-point relation-

ships, and another for coordinate values for points. These sub-

plexes may be combined in various ways to give other useful plexes.

In particular, if the coordinate information is omitted, a topologi-

cal, non-geometric modeling results. Here too, however, various

constraints and grammatical rules must be in effect to ensure that

we do not attempt to combine the elementary bead definitions in such

a way that a line has coordinates ora point has endpoints. Notice,



-23-

however, that if suitable modifications are made to the algorithmic

aspects of the elementary plexes of Fig. 4 (which are not explicitly

shown, but are assumed to be of the same sort as we have previously

considered), then such alternate compositions would be both accep-

able and useful. The same form of idealized data structure could be

used with different algorithm parts to stand for "line-passing-through

relationship" for points as well as "end-point relationship" for lines.

Most plex operators are neither as specific as the value-

changing type, nor as abstract and global as the plex definition-

changing type. Usually pre-defined plex types are left unchanged and

an operator says, "Combine a plex of type A and a plex of type B to

give a plex of type C", without explicitly specifying the finest level of

detail at which the operation is to take place (see Fig. 5). We will

Plex C

( operate )

Plex A Plex B

Fig. 5 Plex Operator

assume that ideal definitions have been given for the input and out-

put plexes, and outline the general scheme whereby plexes and op-

erators may be considered disjointly, and yet may be brought to-

gether in useful combinations. The idea is quite similar to the fact

that the Peano axioms are not affected by the definition of various

functions which map integers into integers, and similarly integer-

mapping functions may be defined independently of the representation

of the integers themselves.

F. MOUSE ALGORITHMS

Operators of the sort we are discussing do not work on plex

definitions, but on specific instances of plexes. They may work on



-24-

the entire data structure of a plex or any sub-part, accessing the

data using the read procedures of the component definitions. A

specific data structure may be arbitrarily complex so that we must

elaborate further the general plex concept in order to allow operators

to be defined in a uniform way which will apply automatically to all

levels of complexity. This elaboration gives a further subdivision to

the algorithm aspect of plex, for it specifies how the plex interacts

with operator definitions. We refer to this new feature as the mouse

algorithm. In addition to element and component definitions, includ-

ing their mechanization, a plex definition also must include a mouse

in order to couple with operator definitions.

The general idea of mice and operators as a solution to the

complexity problem is quite simple. In order to handle arbitrary

levels of complexity the over-all operation is broken into a number

of constituent actions which are applied repetitively as often as nec-

essary to get the job done. An active operator working on a plex is

composed of two parts: 1) a mouse algorithm which comes from the

plex definition, and 2) an action function which comes from the op-

erator definition. The mouse knows how to take a step from any

place in the data structure of a specific plex to another place in that

data structure, so that repetitive execution of the mouse algorithm

sequences through the structure in some fashion. We call the se-

quence the mouse path, and the similarity between the action of this

algorithm as it steps through the data structure and that of a mouse

attempting to solve a maze is the source of the quaint terminology.

We may think of the mouse carrying the action function of the opera-

tor. At each step along the path the action function is executed, after

which the mouse takes the next step. In general, the mouse path

will traverse the entire plex structure so that every aspect of the

plex or any sub-part may be acted upon no matter how large or

elaborate the structure may be. At all times, however, the action

function is concerned only with local information.

For a given data structure, there are a great number of pos-

sible mouse paths, only a fraction of which can serve as a useful

basis for operators. A useful mouse algorithm is one which allows

the action function for an operator to be defined only in terms of the



-25-

simplest necessary structure, and the mouse automatically extends

that definition to apply to the entire plex no matter how complicated

it may be. This is the standard mathematical concept of a mapping

on a sub-space inducing a mapping of the whole space, and is best

illustrated by an example. Figure 6 shows an algebraic equation in

A = B + C x D;

I) = where X is the value of;
A + A

B X B X C D

CD

where Y is the value of;

A/ X'Y B X

Fig. 6 Operator "Induced" from Atomic Operator by Action of a Mouse

"first-pass structure" form, (about which more will be said later).

For each operator symbol the binary tree shows the expressions

which constitute the left and right contexts whose values are to be

combined. The chain of "precedence string" pointers shows a

mouse path. Assuming that each atomic symbol is given a value, we

may then define the action function for an evaluation operator solely

in terms of operations on atomic values. As Fig. 6 shows, after

each step of the mouse-and-action-function combination, the evalua-

tion up to that stage provides an atomic value as the result of the

calculation up to that point, and this atomic value may be used as in-

put to the action function for the next step. No matter how extensive

the algebraic expression may be, the appropriate mouse path yields

precisely the right sequence, so that the atomic action is properly

carried over to the entire expression. Different operators may call

for different mouse algorithms, but in all cases it is this type of be-

havior that neatly resolves the complexity problem.



-26-

G. GROWTH ALGORITHMS

One very important class of operators is so universally re-

quired that it forms a final elaboration of the total plex concept.

These operators are concerned with the construction of valid in-

stances of plex structures which match a given plex definition. We

refer to this aspect of the algorithm part of the plex concept as the

growth algorithm of the plex. The growth algorithm is, in effect,

inverse to the mouse algorithm in the sense that it knows how to

construct a complex data structure step-by-step. Just as a good

mouse allows the action functions of operators to be concerned only

with atomic local contexts, a good growth algorithm works with

atomic local actions, however large the total plex structure may be.

In terms of Fig. 5 we may consider the relationship between

the mouse and growth algorithms, which are integral parts of plex

definitions, and action functions which define operators independent

of plex mechanization. Figure 5 represents

C = OPR (A, B)

where A, B, C are instances of plexes, and OPR is some plex-mapping

function. OPR obtains input values from the A and B plexes via the

read procedures and mice of their plex definitions. After manipula-

ting these values in some way, perhaps using internally stored pa-

rameters and state variables, some output values are generated

which are stored in plex C via the growth algorithm and store proce-

dures of its plex definition.

Just as there may be several alternate mouse algorithms for

different types of operations on a single plex type, there also may be

several growth algorithms for various purposes. A given final plex

structure may be grown in different ways, and the objective is, of

course, to match the sequencing of the mice which are gathering in-

put values to the proper growth sequence. All of these remarks

apply at the ideal level, but take on added significance when particu-

lar mechanizations are taken into account.



-27 -

H. SUMMARY

We have by now come quite a long way in the elaboration of the

plex concept. A plex consists of data, structure, and algorithm

parts which may be mechanized in many different ways. As long as

changes in the data structure are reflected in compensatory changes

in the algorithmic portion and vice versa, many different mechaniza-

tions may represent the same ideal plex.

Complicated plexes may be considered to be composed of sub-

plexes. In particular, lower-level mechanizations may be consid-

ered as sub-plexes which elaborate and make more concrete the ab-

stract ideal plex.

A plex definition actually defines a generic type of plex. There

may be many instances of specific plexes which are of a given type,

i. e., which satisfy that plex definition. These specific plexes have

the same algorithmic portion in general, but differ in their specific

data structures. An ideal plex definition is one in which the data and

structural aspects are degenerated so that the definition may be given

entirely in algorithmic terms. A specific instance of the ideal plex

is composed of ideal elements which are individual collections of

ideal components containing ideal elements as values. Data may be

of any sort and a datum is assigned an element type by defining it a

priori to be the value of an element with a single component. Thus

data may be stored in components of elements and elements may be

stored in components of elements, the resultant assembly consti-

tuting the data structure of the plex.

In an ideal plex definition, components, elements, and plexes

are defined by in-out procedure pairs as follows:

item in out

component store procedure read procedure

element create procedure destroy procedure

plex growth algorithm mouse algorithm

All operations on plexes can be described in terms of these proce-

dures. Making the data and structure aspects of the plex non-

degenerate by selecting various implementations of the procedures



-28-

yields various equivalent mechanizations of the plex. Finally,

various mouse and growth algorithms may be used with a single set

of component and element definitions (including their mechanizations)

to match the requirements of various plex-mapping operators.

With the above summary, this outline of the fundamental as-

pects of the plex concept is complete. There are other more detailed

aspects which have not been discussed, such as constrained compo-

nents, in which the value of one component depends upon values in

other components, (in ideal terms this is merely an extra side effect

of the store procedure for the affected components), and innumerable

questions of mechanization. Some of these topics are considered in

the subsequent chapters of this report, but others must await future

expositions. As we said in the introduction,"The next step is to bring

these fundamentals to life to create representatives of the important

concepts in working form. " This important job is performed by the

AED language and compiling system which we take up next.



CHAPTER IV

THE AED-0 LANGUAGE AND COMPILER SYSTEM

A. HISTORY

The cohesive view of the overall plex concept presented in the

previous chapter did not spring full-blown as an easy generalization

of the initial idea of plex. Although all of the essential features have

been present at every stage of the evolution and refinement of the

ideas, (for if any essential portion is omitted the overall concept is

unworkable) the specific formulations and ways of talking about the

ideas have changed considerably as the work has progressed. The

concept of plex is philosophical, but it has always been a working

philosophy upon which functioning problem-solving systems can be

based directly. The transformation from the philosophical to the

working domain is effected by writing programming systems which

mirror the various aspects of the plex concept and thereby use the

philosophical basis as a rigorous foundation. Such a transformation

takes place in terms of a programming language and programming

methodology which give physical form to the philosophical abstrac-

tions.

The first direct use of plex concept was in the design and pro-

gramming of the "MIT ARELEM", the Arithmetic Element Program

which was the last major activity of the Computer Applications Group

in the development of the APT System. This work was carried out

in 1959 and 1960 as part of the transition of the APT System from

MIT leadership to industry responsibility. The Arithmetic Element

Program is that portion of the APT System wherein a sequence of

"cut vectors" is calculated such that the cutting tool will sweep out a

path in three-dimensional space which approximates a specified geo-

metric shape within specified tolerance. The new MIT ARELEM for

the first time allowed consideration of completely arbitrary cutter

shapes whose profiles were approximated by arbitrary concatenations

of straight-line and circular-arc segments, and also permitted the

use of any number of arbitrary geometric surfaces in the

-29-



-30-

determination of the appropriate tool motion. The use of plex tech-

niques was mandatory and natural in order to represent the multitude

of properties of the various geometric portions of the problem and to

control the elaborate sequencing of actions in an efficient fashion.

The programming language used for the ARELEM programming was

basic machine code represented by the FAP assembly language of the

IBM 709-90 Computer. By sophisticated trickery, the "middle-of-

cut" portion of the new analysis was re-expressed in facilities of the

Fortran language for the "APT III" system which has been in use

since that time, but the "end-of-cut" analysis was omitted from the

Fortran version, since it would have necessitated large changes

which did not fit the desired time schedule. In any case, the initial

baptism of plex concepts and techniques took place in a very strenu-

ous and rigorous environment with basic machine language as the ex-

pressive medium.

As the emphasis of the Computer Applications Group shifted

from the APT Project to the Computer-Aided Design Project, the

medium for carrying out plex programming also changed. In view of

the Project mandate described in Chapter II, in which we hoped to

provide generally useful basic techniques which would be applicable

to many different problems using many different types of equipment,

our attention turned early to the steps which would have to be taken

within the Project in order to achieve machine-and problem-

independence. Our experience with FAP and FORTRAN as expres-

sive media for our ideas, coupled with various experiments which we

had carried out using the early LISP language of McCarthy and the

MIT Artificial Intelligence Project, as well as a short lived but deep

investigation into true list processing in an undocumented exercise

named "META META", had convinced us that no existing language

(nor any language then being proposed) would be able to serve as an

adequate expressive medium for the rigors and generality of plex

programming. It was at this point that it became clear that a major

effort of the Project would have to lie in the area of general-purpose

programming language and compiler system design.

Simultaneous parallel processing of lists of values.



-31-

B. THE "BOOTSTRAP" COMPILER SYSTEM

Since we had no prior experience in compiler construction, all

of our previous efforts in language design having been problem-

oriented, we set about making an initial system which would serve

both as a training ground for our own education and which would pro-

vide a basic initial system for programming problems in the way we

felt they should be programmed. The resultant "Bootstrap Compiler

System" is described in the sequence of Interim Reports of the period.

Although over-ambition distorted the Bootstrap Compiler in some re-

spects, so that the resultant system was much more powerful than we

had originally intended and thereby lost its machine independence and

bootstrap ability, we did in fact achieve most of our goals. The Boot-

strap language, a sample of which is shown in Fig. 7, was a cross

*PROGRAM TO SUBSTITUTE BOX TABLE ENTRIES FOR BOX TRANSFERS
* CALLING SEQUENCE - 'RID'(AB,CD)
* WHERE A IS THE INITIAL BOX TRANSFER TO BE RID

(NOTE BOX ZERO WILL NEVER BE RID)
B IS THE FINAL BOX TRANSFER TO BE RID
C IS OPTIONAL AND THE STARTING ADDRESS OF THE RID

* (NOTE IF C IS NOT GIVEN RID STARTS AT REGISTER TWO
D IS OPTIONAL AND THE FINAL ADDRESS OF THE RID

* (NOTE IF D IS NOT GIVEN RID ENDS AT THE CAI)
FOR EXAMPLE 'RID'(440,444,EDT) RIDS BOX TRANSFERS 440 THRU 444

* BETWEEN THE ADDRESS OF EDT AND THE CAI

*CONSTANTS FOR THE PROGRAM
$.EDB,$, /0 *TO ADD TO AGO 1 AND 2 TO MAKE BOX TRANSFER

*VARIABLES FOR THE PROGRAM
$SAAD, 0 .CURRENT REGISTER RID IS TESTING
$.EDT, 0 *FINAL ADDRESS OF THE RID

O *SAVED CAI

*ENTRY TO THE PROGRAM
$.RID,*$ $-I=EDT=EDT(1)

ONE$=AGO(1)=AGO(1)+ZER
AGO(2)-AGO(1)=AGO(1)
THRS=QCT/441/440
AGO(4)=EDT

440'NFM'AGO(3)
*TEST THE REGISTER FOR A BOX TRANSFER

441'NFM'$+I=AAD
EDB+AGO(2)$=O(I)-AGO(1)/442/443

442'NFM'$=O(I)/443+ZER
*SUBSTITUTE THE BOX TABLE ENTRY FOR THE BOX TRANSFER

O(I)$+J
O(J)=O(I)

*INDEX TO NEXT REGISTER AND TEST THE END
443'NFM'AAD+ONE$=EDT/444/441/441

*EXIT FROM THE ROUTINE
444'NFM'EDT(1)$+I/43

* END OF THE PROGRAM - 4/7/62

Fig. 7 Sample Program Written in Bootstrap Plateau Language



-32-

between an assembly language and a compiler language, and pos-

sessed a number of unique features, the most striking of which was

the ability to physically incorporate a program just compiled directly

into the compiler as the last step of the compilation process, so that

following portions of the program being translated could be affected

immediately by the new feature. The Bootstrap System was greatly

elaborated from an initial system, which compiled only 12 distinct

machine instructions into a complete system with elaborate input/

output and macro expansion capabilities. These developments finally

reached a logical conclusion, however, when we reached the limit of

facilities which could be mechanized in a strictly one-pass transla-

tion scheme.

The Bootstrap language obtained its primary power for plex

programming from the fact that it included the functional notation

(inherited from LISP) for referring to a component of an element, so

that the basic operations of plex programming could readily be ex-

pressed in a natural form. Aside from the initial FAP-coded Basic

Bootstrap translator (a very compact program of only a few hundred

words of instructions and table settings), the entire Bootstrap Sys-

tem was written in its own language, making use of each new feature

as it was introduced. Our intent was that recoding of the Basic Boot-

strap would then allow the entire system to be carried over to other

machines, and in the early stages we did in fact perform this opera-

tion several times as we developed the system simultaneously on the

TX-0 and 709 Computers. As the system became more elaborate,

however, the programming techniques became more machine depen-

dent, and the feasibility of the bootstrapping process diminished. It

was at this time that the supreme importance of control of mechaniza-

tion within the translation system was hammered home.

C. THE ALGORITHMIC THEORY OF LANGUAGE

In parallel with the later developments of the Bootstrap Com-

piler system, we had been making investigations into other areas,

particularly verbal and graphical language definition and translation.

Out of these investigations came the Algorithmic Theory of Language,

which was the first real exercise in applying the total plex concept to



-33-

a particular modeling process. The success of these research ideas

led us to the initiation in 1962 of a "Multi-Pass Compiler" develop-

ment, which soon evolved into the AED-0 effort as we know it today.

Having discovered that the techniques and power of the Bootstrap

System were inadequate for the goals which we wished to achieve,

our intent was to use the Bootstrap to make a more powerful system

(AED-0) which we would use only within the Project to create a first

system (AED-1) which we would attempt to make available for wide-

spread industrial and scientific use. It is for this reason that the ini-

tial AED System was christened AED-0 because we wished to have

AED-l be our first public effort. As history worked out, AED-0

evolved into a much more powerful system than we had originally

planned so that we did in fact make it public, and moreover formed

the AED Cooperative Program, described in a later chapter, to

spread its use and invest in its further development. Thus AED-1 is

not our first public distribution, but it still is the first achievement

of machine-independent techniques. In this chapter, we outline

briefly the main features of the AED-0 language and some of the rele-

vant AED-0 and AED-1 Compiler features for plex programming.

D. ALGOL-60 AS A BASE

Since AED-0 was to replace the Bootstrap System as the pri-

mary programming vehicle of the Project, it was desired that it be

a completely general-purpose programming language not related in

any way to any particular form or aspect of computer-aided design.

From our participation in the programming language standardization

activity of the American Standards Association we were well acquaint-

ed with the Algol-60 language and had in fact been using portions of it

(along with various natural-language English constructions and graph-

ical language forms) as test material for the research in the Algorith-

mic Theory of Language. Algol was by far the cleanest and most

rigorously defined language at the time and, in fact, we were sur-

prised by the completeness of the language which was disclosed by

our processing of it by the techniques of the Algorithmic Theory of

Language. We therefore decided to base our new language on Algol-60,

deviating from Algol only where modifications would improve



-34-

processing by the language theory, or to omit some Algol feature

which was not essential for system programming or which would be

inordinately expensive to implement. Since AED-0 was intended to

be used only within the Project, we did not expend any great effort

in careful language design on the additions which we made to the

Algol base.

The basic data types of AED-0 are the REAL (floating point),

INTEGER (fixed-point), and BOOLEAN types of Algol. In the origi-

nal AED-0 Language all other data types were treated as type INTEGER

since code generation was the same for all other types. In the final

AED-0 Language, however, an additional type POINTER was intro-

duced when a distinction between machine address quantities and in-

tegers was required. In addition to having simple variables of these

types, one-dimensional arrays as in Algol also are allowed. Multi-

dimensional arrays are omitted as being unessential to system pro-

gramming.

The most important innovation for plex programming is the in-

troduction of components of these various basic types. Components

may occupy either a full word or any portion of a word, down to indi-

vidual bits for boolean components. The component declaration facil-

ity of AED-0 is crude, but effective. The general format for the

declaration of components is shown in Fig. 8. The COMPONENTS

Specify the type and names -

INTEGER COMPONENT A, .... $, B-- 

Specify the word in the bead- 

A$ = $ 2 $,
Specify the portion of the word-

PACK 777777C18,18, SPECIAL COMPONENTS A, .... $

mask) shift ) mode)

Reference by A(B), read "A of B"

Fig. 8 Component Declaration in AED-O

statement declares the type associated with the mnemonic names, the

"$=$" statement assigns a word location relative to the beginning of

the element containing the component, and a PACK statement is given

The "$, " is treated as a single statement separator like the Algol "; ".



-35-

if the component is not full word. The value of the component is as-

sumed to be right-justified, and the arguments of the PACK statement

give respectively a mask ("C" indicates octal number conversion), a

left shift, a standard word portion if applicable for efficient processing,

and the relevant component names. The same functional notation A(B)

as used in the Bootstrap is used to access values of components.

The component mechanism is used in conjunction with the routines

of the system-supplied Free Storage Package. The user has explicit

control over all storage manipulations concerned with n-component

elements, requesting and returning "beads" (or n-component elements)

whenever desired by calls on the appropriate free storage functions.

The Algol block structure is not used for automatic allocation control

since it is not yet known how to accomplish these functions in a general

way with plex programming. Similarly, although the Free Storage

Package has a "garbage collection" mode, this merely involves con-

version of contiguous small returned beads into larger beads. There is

no automatic garbage collection such as is found in simple list proces-

sing languages. There are both simple and complex versions of the

Free Storage Package, and the user may select features which yield

complete control over the use of storage.

E. AN EXAMPLE

The general flavor of the use of AED Language to implement the

growth algorithm which builds the data structure for a specific plex may

be illustrated by means of a simple example as shown in Fig. 9. The

objective is to insert a new value in an ordered list of values. The list

is mechanized in terms of 2 -component elements with the zeroth word

a pointer component with mnemonic name NEXT, and the first word an

integer component with the mnemonic name VAL. The growth algo-

rithm itself employs four state variables, an integer variable I which

is assumed to contain the new value to be inserted, and pointer vari-

ables Q, R, and LIST (whose value is the list in question).

Following the declarations and initialization, the program begins

by reading a new value into I, using the generalized input function GIN.

The program then scans the list, starting at LIST. When a value not

less than I is found, a new element (or bead) is obtained from free



-36-

The most elegant and compact version-

BEGIN ... FULLY NESTED VERSION //
.INSERT MAIN $,
POINTER LIST, Q,R $,
INTEGER I $,
POINTER COMPONENT NEXT $, NEXT$ =$ 0 $,
INTEGER COMPONENT VAL $, VAL$=$ 1 $,
VAL(NEXT(LIST= FREZ(1 ))=FREZ(2)):1 C34 $,

LOOP$ ISI(GIN(I),STOP) $,
R=LIST $,

SCAN$ IF VAL(R=NEXT(Q=R)) LES I THEN GOTO SCAN $,
NEXT(Q=NEXT(Q)=FREZ(2))=R $,
VAL(Q)=I $,
GOTO LOOP $,

STOP$ FINISH() END FINI

Which can mechanically be expanded for people to understand-

BEGIN ... FULLY EXPANDED VERSION //
(Same Declarations)
LIST=FREZ(2) ... GET A "LEFT BOUNDARY" BEAD $,
NEXT(LIST)FREZ(2) ... ATTACH A "RIGHT BOUNDARY" BEAD $,
VAL(NEXT(LIST))=1C34 ... MAKE VALUE OF RIGHT BOUNDARY

INFINITE $,
LOOP$ ISI(GIN(I),STOP) ... READ AND TEST A VALUE. GOTO STOP IF

NOT INTEGER $,
R=LIST ... INITIALIZE SCANNING VARIABLE TO START OF LIST $,

SCAN$ Q=R ... INSIDE SCAN LOOP, Q REMEMBERS PREVIOUS BEAD FOR
SPLICING $,

R=NEXT(R) ... MOVE SCANNING VARIABLE TO CONSIDER NEW BEAD $,
IF VAL(R) LES I THEN GOTO SCAN ... IF VALUE IN LIST SMALLER, KEEP

GOING $,
NEXT(Q)=FREZ(2) ... WHEN GET HERE VAL(Q)<I<VAL(R) SO PUT NEW

BEAD AFTER Q $,
Q=NEXT(Q) ... NO LONGER NEED OLD Q, SO POINT TO NEW BEAD $,
NEXT (Q)=R ... TIE R BEAD AFTER NEW BEAD, COMPLETING THE

SPLICE $,
VAL(Q)=I ... FINALLY PUT IN THE VALUE THAT CAUSED THE

COMMOTION $,
GOTO LOOP ... NOW READY TO READ A NEW VALUE, SO GO BACK$,

STOP$ FINISH() END FINI

Fig. 9 Growth Alqorithm for Ordered List



-37-

storage by the FREZ function. The NEXT components are updated to

splice the bead in place, and the program loops to obtain a new value.

AED-0 embodies a powerful concept called phrase substitution

which allows a phrase of any complexity to be substituted in the same

place that an atomic symbol of the same type may appear. Since as -

signment statements (such as "LIST=FREZ(2)") take on the value being

assigned, that assignment statement may be nested in the component

reference, as shown in Fig. 9, yielding a compact expression and ef-

ficient code. The second version of the program shows how the "...

REMARK" feature of the language may be used for clear program

documentation. The expansion of the nested program is a mechanical

process easily performed.

The simple example of Fig. 9 illustrates the main features of the

mechanics of plex programming. All of the declared state variables

may be considered to be attached to the framework of the growth algo-

rithm program itself (which in turn is attached to the universe through

the operating system of the computer), and the pointer state variables

may be thought of as clamps which attach themselves to different

pieces of data structure, holding them until connecting pointer com-

ponents are set by the various assignment statements. An algorithm

building a data structure is in a very precise sense an elaborate as-

sembly machine, efficiently mating the various subparts of the overall

resultant data structure in the proper sequence. Elaborate data struc-

tures require much more elaborate programs of course, but the princi-

pal of operation is the same.

F. ADDITIONAL FEATURES

The free storage and component declaration features of AED pro-

vide the basic machinery for the structural aspect of plex, and the real,

integer, boolean, and pointer types provide for basic data. An ad-

ditional form of data provided by the AED-0 language is the "quoted

character string", of which there are various types, the most universal

being the ".C." form. The AED-0 method of quoting is extremely con-

venient, for any character from the character set may be used dy-

namically to quote an arbitrary string of all the remaining characters.

Thus for example



-38-

A = .C. 'ABCDE'

B = .C. FABCDEF

C = .C. /ABCDE/

are all equivalent representations of the character string ABCDE. The

internal value of a .C. expression is a pointer to the character string

so that character strings may be freely used as data. System-supplied

routines allow various manipulations with character strings such as

concatenation, counting number of characters, breaking into substrings,

etc.

Some of the most powerful innovations of the AED-0 language are

concerned with facilities for expressing the algorithmic aspect of plex.

In addition to the basic programming language features inherited from

Algol and illustrated above, various liberties have been taken with the

program structural aspects of Algol to provide a much richer basis for

structuring algorithms. Perhaps the most important of these inno-

vations is the mechanism whereby values of arguments ("actual param-

eters" in Algol terminology) are passed to a procedure body when it is

called. In AED-0 a procedure definition takes the following general

form

DEFINE INTEGER RECURSIVE PROCEDURE F(X, Y)

WHERE REAL X$, INTEGER Y TOBE ... $,

where the declarator RECURSIVE may be omitted if the procedure is

not recursive. Following the word TOBE and terminated by the state-

ment terminator $, is the procedure body, which is either a single

statement or an arbitrary program bracketed by a BEGIN...END pair.

X and Y are the arguments of the procedure and may be used in the ex-

pressions of the procedure body along with any other fixed variables.

If the procedure is a valued procedure or function as in the ex-

ample, the body must contain somewhere an assignment statement in

which the value of an expression is assigned to the name of the pro-

cedure, as in Algol. A procedure call then takes the general form

. . A + F(C, D)+...

which indicates that the function F is to be evaluated using the current

values of arguments C and D, and the resultant integer value is to be

used in some arithmetic expression.



-39-

Instead of the "call by name" or "call by value" parameter mecha-

nisms of Algol, AED-0 uses "call by LOC". Pointers to the location

of the values of C and D are transmitted to the procedure body. This

method is both very general and ideally suited to plex programming,

since arguments of a procedure call quite frequently have entire plex

structures as values, so that the LOC pointer indicates an arbitrarily

large amount of information with the same direct efficiency as a

simple value.

The LOC concept is properly defined for all program entities, and

in fact "LOC" is a vocabulary word in the AED-0 language. Thus

pointers to arbitrary expressions or quantities may be generated by

the programmer any time they are needed. For straight-forward pro-

gramming, LOC is almost never required, but for sophisticated soft-

ware system programming it can be used very effectively. Since the

LOC operator is defined for all types of entities, including labels and

procedure names, all of these entities become valid data for manipu-

lation within AED programs.

The use of call-by-LOC is complemented by a single legal loophole

(referred to as legitimate AED-0 "pornography"), which allows "user

beware" manipulations of even the inner workings of the system, with

the AED-0 language. The loophole is simply the fact that the AED-0

compiler purposely does not check the type of an argument used in a

procedure call against the type of that same argument in the procedure

definition. Thus, for example, an argument may be declared to be of

type integer in the procedure definition and yet a pointer may be used

in a call on that procedure. Thus the nature of the purposeful por-

nography has a very crisp definition, easily understood by the user of

the language, and with this loophole the high-level AED-0 Language

may be used for very lowly operations which are machine and imple-

mentation dependent. Lack of such a facility in other high-level

languages is one reason why they frequently cannot be used as ef-

fectively as can AED-0 for system programming. It should be re-

marked that in future AED languages, this feature will not be a loop-

hole in the entire system. Careful type checking will be the normal

mode of operation, removing the user-beware aspects, but a key will

still be provided to the user to lock out the checking when the loophole

would serve a useful purpose.



-40-

Another innovation of AED-0 regarding the procedure mechanism

is the ability to declare a procedure separately from its definition.

This not only facilitates the combination of procedures whose defi-

nitions lie in separate compilations into a single running program, but

also it is useful in making packages of procedures in which calls on

certain procedures influence the behavior of others. Consider the fol-

lowing simple example:

PROCEDURE F1, F2 $,

DEFINE PROCEDURE SET(A) WHERE POINTER A TOBE

BEGIN DEFINE PROCEDURE Fl (X) WHERE INTEGER X TOBE

BEGIN... body using A and X... END$,

DEFINE PROCEDURE F2(Y) WHERE BOOLEAN Y TOBE

BEGIN...body using A and Y... END$,

END$,

In this example, the body of procedure SET consists solely of the pro-

cedure definitions of F1 and F2. The definition of SET serves also as

its declaration, but Fl and F2 are globally declared to be procedures

separately from their definitions. This construction would be useless

in Algol since F1 and F2 could only be called within the BEGIN...END

block of the SET procedure body. The prior declaration in AED-0, how-

ever, makes it possible for Fl and F2 to be called from the same block

in which SET is itself defined. Thus if SET is called with a particular

pointer as argument, then all subsequent calls on F1 and F2 will use

that pointer in evaluating their bodies. Calling SET with a different

value for A will change the behavior of subsequent calls on F1 and F2.

This general technique may be elaborated to give very sophisticated

program behavior in a very efficient way.

G. THE MACRO PREPROCESSOR

In addition to the compiler proper, the AED compiler system in-

cludes an elaborate macro preprocessor which precedes compilation.

The macro preprocessor converts an AED-0 source language item*

string into another AED-0 item string which then is translated into

An item is a single unit of symbol, vocabulary word, or punctuation.



-41-

computer instructions by the compiler phase. The features of the macro

system provide an important addition to the capability of AED-0 to serve

as an expressive medium for plex programming. A macro definition

has a format similar to that of a procedure definition, and the macro

call notation is identical to that for procedure call. The definition of

a macro with arguments has the general form

DEFINE MACRO M(X,Y) TOBE IF X NEQ FIXED THEN BEGIN Y END

ELSE CALL.ALARM(X) ENDMACRO $,

Notice that for macros no WHERE portion is needed, since all argu-

ments are merely item strings and have no data type. The body of

the macro is the item string bracketed by TOBE.. .ENDMACRO.

Whenever a macro call of the form M(A, B) appears, where A and B are

item strings (portions of program), the macro preprocessor will re-

place that call by an exact copy of the macro body with the item

strings A and B substituted in full wherever the arguments X and Y ap-

pear in the definition form of the macro body. As with procedures,

macros may be defined within macros, in which case the inner macro

becomes active only following a call on the outer macro, and very

elaborate and useful structures may be built. The macro preprocessor

also includes a SYNONYM feature whereby the spelling of any item, in-

cluding the reserved words such as THEN of the language itself, may

be changed to alternate spellings, so that very powerful manipulations

are possible.

The fact that A(B) may represent a function of an argument, a

component of an element, an array with index, or a macro call with

argument, enables many changes of mechanization of a plex from one

form to another to take place merely by altering the declaration por-

tions of a program. Although the facilities of AED-0 are not complete

and we have many further features which are being held in abeyance

pending the design of a still more powerful AED-1 Language, the AED-0

features are sufficiently complete and self-consistent to enable many of

the most useful manipulations to be carried out automatically and re -

liably even now.

The AED-0 language also includes many additional non-Algol

features which are useful for plex programming and system programming



-42-

in general. Examples are automatic stack declaration and manipulation,

bit manipulation, character string manipulation, and a preset facility

which allows variables and arrays to be initialized at compile time.

H. INTEGRATED PACKAGES

Modification of AED-0 as a language ceased in 1964 and further de-

velopment of language features has been made in the form of "Inte-

grated Packages" of procedures which represent the raw semantics of

language features which will be given appropriate syntax in future AED

languages. The "culture" of AED usage depends heavily upon these

packages, several of which interlock directly with the compiled features

of the language itself. For example, the ISARG Package permits the

use of optional arguments in procedure calls; the DOIT Package per-

mits procedure names to be stored in and executed from data struc-

tures (including dynamic loading) so that program control and data

structures are interlocked, enabling generalizations of such techniques

as "coroutines" to be easily performed; the GENCAL Package permits

dynamic compilation of molecular procedure calls at run time. Vari-

ous techniques for using these features in combination with the ability

to nest procedure definitions and declare procedures separately from

their definitions permit many sophisticated control structures such as

multientry procedures to be developed. Other packages provide fa-

cilities for system building. The RWORD Package gives sophisticated

free format input and the ASMBL Package gives free format output of

character streams; the Generalized String Package creates and ma-

nipulates arbitrary "string" structures of arbitrary elements in any

combination, including ordered and unordered uni- or multidirectional

lists and rings, stacks, queues, hash-coded tables, or other more

elaborate specialized data structures; the interface for word- and

character-oriented files for arbitrary storage or input/output devices

including control of logical and physical records, buffering, timing,

etc.; the Delayed Merge Package and the Generalized Alarm Package

permit segmentation of large program actions including alteration of

control and a wide spectrum of error-handling facilities. Although

many of these packages are more closely related to software engi-

neering than language, their use is so integral with the direct linguistic



-43-

features of AED-O that they form a significant part of the pragmatics

of AED-O as a language.

In summary, the AED-O Language compiler system includes macro

preprocessing and compiling phases and an extensive library of inte-

grated packages for extending the language and providing major building

blocks for system building. It provides a very adequate expressive

medium for the physical realization of the philosophical plex program-

ming concepts which are at the roots of our computer-aided design

effort. There are numerous half-baked ideas, partially written pro-

grams, and completed packages and subsystems which have not yet

been worked into the overall fabric, so it is clear that the current level

of achievement is far from the final word on these matters. Much

further research and development in these important areas is planned

and underway, but the current capability is quite adequate to meet the

current and immediate future needs of ourselves and of the various

industrial and scientific organizations for whom the system is intended.



CHAPTER V

SYSTEM-BUILDING SYSTEMS

A. INTRODUC TION

The preceding chapters have introduced the plex philosophy as

a theoretical basis for representing all of the relevant facts and

attributes of a problem and the AED-0 Language and Compiler as an

initial but useful expressive medium for making that philosophy into

a working tool of sufficient power and generality to suit the needs of

computer-aided design. By themselves, however, the plex philoso-

phy and the AED Language in their raw state are an insufficient re-

sponse to the mandate of the Project. They require far too much de-

tailed knowledge and individual creative insight to be broadly useful

in the construction of specialized computer-aided design systems for

the numerous potential areas of application. Their elegance and

power are quite essential for providing the cohesive foundation which

is required for computer-aided design, but they must be embedded

in a larger framework more specifically directed to the creation of

specialized user-oriented systems if large numbers of users are to

be able to make use of them. We therefore turn momentarily from

abstract generality to a direct consideration of the man-machine problem-

solving process.

According to Webster's, to design is "To plan mentally; to

outline; to scheme. " Thus if we are to have "computer-aided"

design rather than "automatic" or "computed" design, or "computer

aids to" design, we must make the computer a partner to the schem-

ing process. This requires blending the man and computer into a

problem-solving team intimately coupling the best characteristics of

each so that the team works better than either one alone. As has

already been mentioned, "design" is a special term for some ill-

defined type of problem-solving, but no distinctive features are re-

flected in a system for design versus a system for general problem

solving. A single design or problem-solving system to be used for

all applications would be impractical and inappropriate. Many

-44-



-45-

systems are needed, each of which must

1. use the specialized jargon of its field of application,

2. require little or no knowledge of computer program-
ming to be used effectively,

3. be evolutionary and able to adapt to the changing needs
of its users, and

4. be created and maintained by the users themselves or
by skilled local staff who are in intimate contact with
the users.

In order to achieve these goals, the efforts of the Computer-Aided

Design Project have not been directed toward a computer-aided

design system, but rather toward a systematic way for making spe-

cialized systems.

B. THE AED APPROACH

Actually we have evolved a system of systems for making sys-

tems, along with an orderly method for applying them. This collec-

tion of concepts and working tools we refer to as the AED Approach.

In this chapter we outline the main features of the AED Approach, in-

dicating how it provides a general framework within which the com-

prehensive foundation of plex programming may be brought to bear on

the system-building problem.

In order for a man and a machine to be coupled to form a

problem-solving team, they must be able to communicate meaning-

fully. The AED Approach is 'based directly upon a universal model

for the communication process in terms of which any man-machine

system may be viewed. According to this model any communication

requires several distinct steps or phases.

The four major phases of the problem-solving process are

shown in Fig. 10, and are summarized below:

1. The lexical phase allows the input signal to be broken
into discrete items which constitute the atomic units
of the message.

2. The parsing phase enables the atomic items to be
grouped into phrases and sentences so that the struc-
ture of the message (and indeed whether it is in fact
a well-formed message) can be determined.



-46-

3. The modeling phase extracts the meaning from the
message and formulates an understanding of the
problem posed by the message.

4. Finally, the analysis phase carries out the solution
to the problem which has been understood.

CONTROL CONTROL CONTROL CONTROL

PROBLEM LEXICAL PARSING MODELING ANALYSIS ANSWER
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

CHARACTER ITEM STRUCTURED SYMBOLIC
STRING STRING STATEMENTS MODEL

Fig. 10 General Problem-Solving Scheme

One of the principal goals of the MIT Computer-Aided Design

Project is to reduce this general idea to concrete form by devising

and implementing a generalized problem-solving system of the form

shown in Fig. 10,and which is efficient, practical,and economical for

general use. The four phases listed above provide the basis for sys-

tematizing the system-building process, for it is possible to devise

generally useful basic operations for each of the four phases which

are independent of the particular application area. Thus these com-

mon portions may be constructed once and may be used to provide the

major structure of any number of specialized systems.

C. GENERAL PROCESSORS

There are many possible techniques for physically representing

the skeleton framework of the four phases of the problem-solving sys-

tem. All of these forms may be thought of in the same way, however --

as generalized table-driven processors. In other words, these proces-

sors may be constructed in such a way that merely by supplying the

appropriate control information, the detailed behavior of the general-

ized processor may be adapted to fit the specific needs of a given ap-

plication system. The massive intricacies of the complex behavior

required for satisfactory functioning of each phase is, for the most

part, automatically provided by the generalized processor, and the

setting of the control information is a much simpler and less exacting

task than creating a specialized processor for that phase from scratch.



-47 -

Even though setting up the control information for generalized

table-driven processors for the various phases is much easier than

constructing those phases from scratch, nonetheless for reasonably

rich application languages the setting of the control information is it-

self a complicated task. We may think of the generalized processor

for a given phase as a strange kind of computing machine and the set-

ting of the control information as writing a machine language program

for that strange device. Just as compilers are developed to ease the

programming problem for ordinary computers, high-level languages

and compilers can be constructed to ease the problem of program-

ming the control information as well. This is the route which has

been followed by the MIT Computer-Aided Design Project. The gen-

eralized processors for the four phases are the target machines for

distinct high-level programming systems. Thus the AED Approach

physically takes the form of a system of systems whose outputs are

specialized processors for the required four phases of a desired spe-

cialized system.

Figure 11 shows how the general AED Approach scheme has

been applied to the design of the AED-1 Compiler itself. AED-1 is a

RWORD AEDJR SECOND-PASS SETUP
SYSTEM SYSTEM SYSTEM

AED-O ITEM AED-O LANGUAGE MACHINE and LISTING MACHINE-CODE
DESCRIPTIONS DEFINITION DESCRIPTION MACROS

AED-O I I I I BINARY
PROGRAM ITEM-BUILDER FIRST-PASS SECOND-PASS PROGRAM

-' "MACHINE" ALGORITHM - ASSMB

C HARACTER AED-O ITEM FIRST-PASSSYMBOLIC
STRING STRING STRUCTURE PROGRAM

Fig. 11 General Structure of AED-1 Compiler

machine-independent and language-independent compiler system.

Merely by changing the control information it is possible to compile

many languages for one machine, one language for many machines,

or many languages for many machines. The figure illustrates how

the general AED Approach scheme has been set up to translate the



-48-

AED-0 programming language into binary programs for various ma-

chines, in order to bootstrap the AED System onto various computers.

The high-level system which sets up the lexical phase is called

the RWORD System ("read-a-word"). The input language to RWORD

is a version of the "regular expression" language of atomata theory

which may be used to describe how sequences of characters group to-

gether form the items (vocabulary words, symbols, and punctuation)

of an AED-0 input string. The output of the RWORD System is a lexi-

cal processor in the form of a specialized "finite state machine" pro-

gram which converts a character stream into a stream of items ready

for parsing.

The high-level system for setting up the parsing processor is

called the AEDJR System. It is based on the Algorithmic Theory of

Language which has been developed as part of the Project activity for

this important phase of language processing. The AEDJR System has

a number of distinct command languages which permit the metalin-

guistic properties of a new language to be described and checked out.

The processing involves introducing the vocabulary words of the

language, ascribing "types" to those words, and describing which

types "like" to group together to form phrases and what is the type of

the resulting phrase. This and other information is automatically

transformed into the appropriate type of control table to control the

First-Pass Algorithm of the language theory. This algorithm and the

resulting control tables form the specialized parsing processor for

the second phase of the system being built. This parsing processor

converts the item string supplied by the lexical processor into the

"first-pass structure" which shows both the syntactic and semantic

parsing of an input statement in the new language. The syntactic

parse shows the grouping of the words and phrases into larger

phras es, and the semantic parse shows the s equenc e in which the phras es

are to be considered in order to build up in an orderly fashion the

meaning of an entire statement from the meaning of its subparts.



-49-

D. AED- 1 COMPILER STRUCTURE

The RWORD and AEDJR Systems are sufficiently well developed

for general use, but generalized processors for the modeling and

analysis phases are available at present only for the specialized prob-

lem area of compiling computer programs. In the AED-1 compiler

system, the high-level system for setting up these phases is called

the Second Pass Setup System. The facilities of the AED-0 Language

itself are used to establish the control information for this system,

and a systematized Second Pass Algorithm provides the basic frame-

work for translating the AED-0 Language into various machine as-

sembly languages. Using high-level formats, the translation of the

various atomic units of semantics of the language are expressed sym-

bolically in terms of output character strings suitable for the target

assembler, including transformation operations to convert various

coded quantities into the appropriate forms and values. A general-

ized framework is also provided for the important Selector Function

which embodies the strategy of code generation. The output of the

modeling phase is a character string in the same format as a hand-

coded machine language program. The target assembler of the target

machine, which represents the specialized analysis phase, then pro-

duces the desired binary program ready for loading and execution.

Figure 12 gives sample intputs to the RWORD, AEDJR, and

Second Pass Setup Systems for describing portions of the AED-0

Language. It would be impractical to attempt to give any sort of de-

tailed description of these languages in this report. In general, how-

ever, the systems which represent the AED Approach provide a

broader spectrum of capabilities than are found in any other systems

which perform similar functions, and it is possible to produce high-

quality software systems which are sufficiently refined for economi-

cal production use. Without this degree of sophistication, specialized

systems produced in this manner would be inordinately expensive for

heavy application.



-50-

Specify character classes -

LET = /ABCDEFGHIJKLMNOPQRSTUVWXYZ/

DIG = /0123456789/

Define lexical types of items by regular expressions -

SYMBOL (1) = LET/(LET U DIG)*$,

NUMBER (2) = DIG/DIG*$,

where / = concatenuate, U = or, * = none-or-more

(a) RWORD Inputs to Define Itemization of Language

Specify vocabulary word and initial type -

VIN word itype

For each type, specify list of "like" types, output type,
and special attributes -

LIKE itype otype 1 type 1 type 2 Itype 3

= = otype 2 Q type 4 . type 5

ATTR codel code2

(b) AEDJR Inputs to Define Parsing of Language

Write set of special Type Functions to be performed
before standard operations.

Write set of special Action Functions to process standard arguments.

Combine in PRESET statements to translate atomic semantics into
Assembly Language output.

PRESET MRBTBL=... TABLE TO BE SET//

17$/$.C. '.LA.AC, $A0.$C/' .· .. LOCATM//

23/$.C.' .ORG.DATA+$D1 .$CO/' ... ORG//etc.

where number $/$= Type Function specification,

.C. '-----' = Driver for Assembly output,

. = Tab, / = Carriage return,

$ LET NUM = Special Function LET applied to argument NUM

All other characters are output directly.

(c) SECOND PASS Inputs to Define Code Generation

Fig. 12 High-Level Inputs to Set Up AED Systems



-51-

E. RECAPITULATION

Before continuing, it is worth while to give a brief recapitula-

tion of the over-all viewpoint of the AED Approach to man-machine

problem-solving systems. There are a few more embellishments

which form an integral part of the "system of systems" which must

be introduced before we can outline the making of systems for practi-

cal purposes. A word of apology is due for the seemingly endless

layers of elaboration and complexity which are being presented here,

but this inescapable confusion is primarily due to the newness of the

field which we are discussing. It is as though we were to describe

the field of symbolic part programming for numerically controlled

machine tools at a time when it was necessary to describe not only

the computer programming aspects, but also the concept of a general-

purpose machine tool and all of its underlying technology, including

production of precision lead screws, lapping of sliding joints, stress-

relieving of forgings, refining of lubricants and coolants, etc. , etc.

Any high-level technology is built upon a fantastically broad pyramid

of underlined technologies, and whenever even a modest portion of the

underlying technologies cannot be taken for granted, the process of

description becomes very involved.

So the recapitulation is as follows:

A single computer-aided design system suitable for all classes

of problems would be undesirable even if it were not inconceivable

and impractical. What is needed is a very large number of highly spe-

cialized man-machine problem-solving systems in which the user of

the system need learn only a natural and expressive specialized lan-

quage based upon the thought patterns and jargon of his specialized

field of interest. Use of simplified languages to control sophisticated

calculations implies that a high degree of automation must be incorpo-

rated directly into each of these specialized problem-solving systems.

In order to achieve this goal of many sophisticated specialized sys-

tems, a high degree of automation is also required in the manufacture

and modification of those systems themselves. It is therefore neces-

sary to have an underlying complete philosophical approach to man-

machine problem-solving in general, in order to provide a basis for



-52-

this automation of the system-generation problem. This common

backbone consists of recognizing that the first step is to place the

man and machine in communication with respect to the desired prob-

lem area or area of discourse. Communication in turn is based upon

processing of a time signal constituting a message transmitted from

one intellect to another. The common backbone envisions four gen-

eral phases to the processing of this message. The lexical phase

recognizes the words and syllables (generally called "items") of

which the message is composed. The parsing phase organizes these

items into phrases, sentences, and paragraphs in a richer structure

then the linear time sequence of the message, providing a basis for

extracting the meaning of the message. The third phase, the model-

ing phase, performs this extraction by constructing the understanding

of the message, and the fourth phase, the analysis phase, then ana-

lyzes the resulting model to complete the communication process.

The four phases of the backbone provide the basis for auto-

mating the system-building process, for each phase may be repre-

sented by a generalized processor which is capable of performing the

right kind of actions if properly instructed. Since these generalized

processors are elaborate and sophisticated in themselves, automation

also is required to set up the control information for each of the

phases. Thus there are four systems with specialized input languages

whose outputs control the generation of four specialized processors

which compose the required phases of a specific problem-solving sys-

tem. The resultant system will take the user-oriented language as

input and provide the desired answers, results, or behavior as output.

Let us refer to the particular sequence of lexical, parsing,

modeling, and analysis phases as a translator. It is clear that a

translator translates some input string message into some output re-

sult. The input may be any time sequence of any sort of things, and

the result may be any desired effect, including control of equipment,

s e tting of variables or quantities in other programs, or the gener-

ation of some output message sequence. We will now make use of

this general idea of translator to elaborate on the concept of the trans-

lator itself, and to show that actual translators for useful languages



-53-

are composed of interconnected sets of translators for many sublan-

guages of the total language for which the o verall translator is de-

signed.

F. PARSING

As a starting point, we will examine the action of the parsing

phase as exemplified by the First-Pass Algorithm of the Algorithmic

Theory of Language in more detail. Our objective is two-fold:

1) to clarify the important role played by parsing in the translation

of a language, and 2) to show how a stream of items constituting a

message may be considered to be a mixture of words from many lan-

guages, all of which work in concert to constitute a rich over-all lan-

guage amenable to smooth and efficient processing.

Recall that the purpose of the parsing phase was to restructure

the linear time sequence of the items in the input string into a more

elaborate form showing how items are grouped together into meaning-

ful phrases and sentences (the syntactic parse), and also how the

meanings of the individual items and phrases are to be considered in

order to build up the meaning of the total from the meaning of its sub-

parts (the semantic parse). This important function is carried out by

the parsing algorithm in one of its many forms. In general, the out-

put of the parsing algorithm is a first-pass structure which consists

of syntactic and semantic parts interlocked into a single data struc-

ture as shown in Fig. 13.

A= B*C+D*E;
Input String

A > A 0

B' CD E B C E

First Pass Structure = Syntactic Tree + Precedence String

Fig. 13 The First-Pass Structure



-54-

Figure 13 illustrates a simple first-pass structure for an

algebraic language for which the only active vocabulary words are

the mathematical operators and the statement terminator punctuation

character. Notice that only these words participate in the semantic

parse or "precedence string" structure. In the syntactic parse, the

right and left context of each of these vocabulary words is shown by

the binary tree structure. The literal symbols in this example are

not properly part of the language, but instead are the atomic data

upon which the meaningful operators of the language are to act. The

combined first-pass structure shows both the syntactic structural

relations and the time sequence in which the semantic evaluation is to

take place. By following the precedence string pointers (taking a

dashed minor precedence pointer to form a fresh beginning whenever

a new one is present and otherwise following the solid major prece-

dence pointers), the expression may be properly evaluated to drive

the modeling and analysis phases.

G. NESTED LANGUAGES

To bring out the fact that input strings for many languages may

be intermeshed into a single message string, we need merely note

that the atomic symbols in Fig. 13 need not consist only of single

items as shown ther,, Instead, they may be arbitrarily long strings

of items constituting the data and vocabulary words of some "foreign"

language, i. e., all items which are not vocabulary words of the lan-

guage currently being translated. The "second-pass" operators con-

stituting the modeling and analysis phases for the language currently

being processed may feed these item strings through to the output of

the translation process for further translation in the context of some other

active vocabulary tables, or they may treat the item strings as data

and process them in any other way. In particular, notice that the

second pass for one language may be an entire translator for another

language, i. e., once the proper context in the outer language has

been determined by the completion of its parsing phase, its second

pass may consist of taking the multi-item "atoms" as inputs to

another entirely separate translator. The output from that translator



-55-

then can supply the "meaning" for use by the second pass of the

original language.

A converse type of operation also is possible, in that part of

the processing of the lexical or parsing phases of one language may

involve the invocation of an entire translator for a foreign language.

In such a case, the output from that translator may constitute a sin-

gle item of the original language (which appears in its first-pass

structure as a single node) even though the input string contained a

multi-item message. This is in fact the way that quoted character

strings are processed in the AED-0 Language. When the item ". C. "

appears, the AED-0 lexical processor turns control over to a special

quoting translator. This translator proceeds to read the quoting char-

acter and compose a multi-character single item, stopping when

that quoting character appears once again. At that time, the charac-

ter string body which has been quoted is "wrapped up" as a single

item and control is returned back to the AED-0 lexical processor for

further processing of the input string.

In addition to dynamically controlling the processing of charac-

ter strings and item strings in the above manner, translators may

also be embedded in the processors for the phases of another transla-

tor in yet more devious ways. In particular, result of translating

some message in a sublanguage may affect the processing behavior

itself of the translator of the parent language. Thus for example, the

occurrence of a word or phrase in a foreign language may trigger the

change of the parent vocabulary to a different sublanguage, so that

the subsequent processing of the remainder of the message takes

place in a different language. Although the mechanism is quite dif-

ferent, the idea is similar to the above example of turning on and off

the quoting translator when processing a character string.

H. MACRO PREPROCESSING

All of these techniques are used in a general way in the overall

generalized translator scheme which we have been discussing, and in

fact their use introduces a fifth general phase into the overall trans-

lator concept called the macro preprocessing phase. The macro pre-

processing phase is interposed between the lexical phase and the



-56-

parsing phase, so that the completely general backbone scheme for

a translator consists of lexical, macro, parsing, modeling, and anal-

ysis phases. After describing briefly the role of the macro pre-

processor, we show how these techniques may be used for graphical

language forms as well as verbal language forms, in terms of which

full-blown computer-aided design systems may be constructed.

The preprocessing phase takes place between the lexical and

parsing phases of our previous description. It accepts as input the

item string supplied by the lexical phase and yields as output another

item string which is used as input to the parsing phase. Like the

other phases, the preprocessing phase incorporates a general proces-

sor which is table-controlled. Some of the control information is set

up when the main characteristics of the translator are adapted to a

given language, and other control information is generated dynami-

cally by the actions of the preprocessing phase itself as it operates

on an input string. Since the preprocessor is an item-string-to-item-

string converter, it provides several more highly useful degrees of

freedom for the design of user-oriented languages. The preprocessing

phase is itself a complete language translation system, translating the

message received from the lexical phase into a modified message for

the parsing phase. The preprocessor does a complete translation of

only part of the message. Those portions of the item string which are

not in the language of the preprocessor constitute the data which are

used to compose the output message.

The basic mechanism of preprocessing is that of macro defini-

tion and macro call. By means of a macro definition statement the

user of the language says, "Whenever I say this..., I really mean

that... ", where "this. . . " is a macro call specification and "that..."

is the macro body. A macro call consists of a particular instance of

"this... " in the input string. At the corresponding position in the out-

put string, a suitable version of the macro body will appear in place

of the macro call. In general, both the macro call and the macro body

conventions may be extremely elaborate, with argument substitutions

and conditional expansion depending upon argument values and various

forms of context. The particular syntactic forms which control the

semantics of macro definition and expansion may be set up to suit the



-57 -

"flavor" of the host language, so that all languages defined using the

AED Approach may have powerful macro preprocessing capability as

a natural and integral feature.

The MACRO System is itself set up using the AED Approach.

The facilities of the macro preprocessor allow a language to be "aug-

mented" by the user without actually being "extended" into new areas

of discourse. Although the average user of a specialized language

will not know how to extend that language, a smooth incorporation of

macro preprocessing capabilities can still allow him to make many

useful individualized changes in the physical format of the language to

suit his purposes. This is possible because macro preprocessing

merely is an automation of a form of shorthand for manipulating the

words of the language itself. The scope and power of the language are

not extended, but its utility and expressiveness may be greatly aug-

mented to suit the user's desires.

I. THE CADET SYSTEM

Throughout all the preceding discussion it has repeatedly been

emphasized that the entire AED Approach to the translation of lan-

guages is based upon the processing of a time sequence of events.

Even though all of the examples have been given in terms of proces-

sing of character strings as the physical mechanization of that time

sequence, the approach is not limited to the processing of verbal lan-

guages represented by character strings. Quite the contrary, it has

been the aim of the MIT Computer-Aided Design Project from the

very beginning to provide a scheme which is equally applicable to the

processing of other language forms, including most importantly the

"graphical languages" associated with the use of on-line display con-

soles. Elements of graphical language include all forms of input

which a man may generate at a CRT display console. Typical of

these are: switch activations; button pushes; light pen "sees" on

displayed items; x-y coordinate information resulting from pen

tracking; stylus manipulation on an input tablet, or track-ball rota-

tion; and knob rotations. Whatever their source, encoded "charac-

ters" from any or all of these devices may be treated in the same

manner as characters from a keyboard.



-58-

Historically, the Algorithmic Theory of Language, upon which

the whole AED Approach is based, was the outgrowth of initial studies

of mixed verbal and graphical language processing which began early

in 1961. Although primary emphasis has been given to the processing

of verbal language because the programming language and compiler

studies underlie all of the other activities of the Project, the graphi-

cal language influence has permeated the Project throughout this

period, and a modest effort at implementation has also proceeded in

parallel. Since 1964 these efforts have progressed under the acro-

nym CADET, standing for Computer-Aided Design Experimental

Translator. The CADET System is intended to play the same role for

generalized computer-aided design that the AED-1 Compiler plays for

the compilation of computer programs for high-level programming

languages. As such, it embodies the entire AED Approach, including

the use of mixed verbal and graphical language, and a systematized

approach to the generalized modeling phase.

The basic translator structure of CADET is the same as we

have been discussing, with a few embellishments. In particular, the

incorporation of graphical input necessitates the elaboration of the

basic lexical processor concept to include provision for multiple in-

put sources, such as character strings coming (directly or indirectly)

from a keyboard, button pushes, light-pen data, and any other actions

of a human operator at a graphical display console. As mentioned in

Section E, all messages consist of a time sequence of events, and the

mechanical form of the "characters" in a message is immaterial.

Thus, there is no difference between accepting "A = B + C" from a

keyboard or card reader, and "pen-position button-push pen-position

button-push..." from a display console with light pen and push buttons.

In the Graphical RWORD of the CADET System, the facilities of

the macro preprocessor described in the previous section are elabo-

rated slightly in order to provide the appropriate mechanism for inter-

meshing graphical and verbal item streams into a final canonical item

string form which is independent of the mechanical source of the orig-

inal input. In other words, a given type of phrase may be input

verbally at one time, graphically at another time, or in mixed verbal

and graphical form at yet another time. These various mechanical



-59-

forms are merely different forms of macro call structures, all of

which end up producing the same macro body output item string for

later parsing. This is actually a greatly oversimplified description,

however, because the sequence of actions appropriate to the verbal

expression may be quite different from those appropriate for graphi-

cal expression, and the parsing process itself may be dynamically

changed in order to result in the same inputs to the "second pass"

modeling phase. In general, however, it is the intent of the CADET

effort to provide the necessary generalized processing to allow the

most natural expressive medium to be selected by the user for a

given area of application. Development and enrichment of the basic

CADET mechanism is far from complete but the efficacy of this ap-

proach has been demonstrated in work to date.

J. GENERALIZED MODELING

The other primary innovation which is being incorporated into

CADET is a generalized approach to the modeling phase of the over-

all AED Approach translator concept. We expect that the analysis

phase will always be in the province of a general-purpose program-

ming language such as AED-0, but the internal representation of the

data structure aspects of the total modeling plex for arbitrary appli-

cation areas appears to be amenable to a systematized treatment. In

other words whatever the area of discourse may be, the resultant

specific modeling plexes must be composed of a structure of struc-

tures built up in an orderly fashion. We are attempting as part of the

over-all processor for CADET to capture the essence of this struc-

ture-building aspect in such a way that the generalized facilities there-

by made available can provide the basis for building arbitrary data

structures. In effect, this structural part of the CADET effort re-

duces some of the basic philosophical plex concepts from abstract to

concrete workable terms. Just as the first-pass structure of the

Algorithmic Theory of Language constitutes a basic mechanism for

modeling statements in arbitrary language, this structural part of

the CADET will provide a general basis for constructing the "under-

standing" for generalized problem areas.



-60-

At the same time that this CADET effort is attempting to repre-

sent the generalized structural aspects of modeling, we also are

giving careful attention to modeling of the design process itself, and

are considering the trade-offs and economies of data storage and exe-

cution time. The focal point for this research has been the "Polyface

Package" which considers the modeling of complex objects composed

by joining polygonal faces along their edges. It is important to note

that most of the techniques being used are representative of general

"structure" which we expect to find in arbitrary modeling and are not

dependent upon the particular polyface example.

The following list of features of the Polyface Package illustrates

the facilities which hopefully will be available in a generalized form

in the not too distant future.

1. The model is fully "common subexpressioned", i e.,
each distinct entity occurs only once in the system no
matter how often it may be used.

2. The system only keeps track of incremental changes
by means of "variation beads", so that there is no
redundancy.

3. The complete history of generation of a model is re-
coverable from the model.

4. Not only the structure of the total model (which may
represent several alternate designs) is available,
but also any substructure is uniquely isolatable at
any time.

5. A generalized mouse algorithm has been devised
which leaves no "tracks" in the data structure of the
model, i. e., the complete state of the mouse is con-
tained within itself, so that any number of mice may
be running simultaneously over the same model with-
out interference.

6. The encoding of variations so that a mouse knows
which of many variations to obey is done in a very
compact optimum binary code which uniquely identi-
fies the precise location of a bead in the structure
of the entire model.

7. The beads of the model are successively generated
in the natural construction sequence and are un-
changed from the time of creation, i. e. , there is no
necessity to read back old information and make
modifications.



-61-

8. The structure of the model naturally matches the
concepts required to handle various storage media.

Needless to say, the ambitious nature of the CADET effort

places a severe strain on all of the facilities, techniques, and con-

cepts which have been developed in the Project up to this time. The

magnitude of the multiple tasks which are being attempted makes it

impossible to estimate when the progress of this research will yield

plateau systems which may be directly employed in the intended man-

ner in industry.

Appendix I to this final report mentions numerous computer-

aided design application systems which have been built using various

building blocks and packages which have been generated by the Project

to date, however, so that even though it may be a few more years be-

fore the entire scope of the AED Approach as represented by CADET

will be available in a useful form, further evolution of larger and

larger partial building blocks may be anticipated.

We have now completed the general description of the "system

of systems for making systems" which represents the major output of

the Project. In the next chapters we consider how these systems are

used to set up particular computer-aided design systems, and the

vitally important aspect of graphical display consoles and coupling of

on-line display techniques into a multi-computer remote and/or local

time-sharing system.



CHAPTER VI

APPLICATION OF THE AED APPROACH

The preceding chapters have presented the philosophy, techniques,

and systems for generalized computer-aided design which have been

developed by the MIT Computer-Aided Design Project. We now con-

sider how these results can be used in the construction of specialized

man-machine problem-solving systems covering particular application

areas.

A varied mix of systems (listed in Appendix I ) have already been

created using the AED facilities, but only a few of these have exercised

the full sweep of the AED Approach. This is because most of these

efforts were begun before various AED systems were in usable form,

and also because many applications interfaced with systems of pro-

grams generated separately with other techniques. This situation may

be expected to continue in the foreseeable future, for depending upon

the interests, skills, and choice of application, the system-building

user of AED may select different portions of the total facilities for use

in a given situation. Some will use only the AED language and com-

piler facilities as a programming vehicle for independently designed

system programs, writing critical portions in machine language sub-

routines and perhaps using only the simplest form of Free Storage

Package. Others will make use of a wider variety of integrated pack-

ages, such as the String Package for data structures, the Assemble

Package and a standardized version of the RWORD Next-Item routine

for free format input and output, or add display facilities to an existing

set of programs using only the Display Editing Package.

There are advantages and disadvantages of using isolated building

blocks from the total AED facility in this manner, but it is nonetheless

a welcome and fully legitimate use of Project results. Since, however,

this type of building block usage is so individualized, we will not

attempt to describe the pros and cons of the various techniques which

have been or could be used. Instead, we will direct our attention to the

more systematized usage which results from the application of the full

AED Approach as facilities exist today for its implementation.

-62 -



-63 -

A. THE THREE-MAN TEAM

For the sake of discussion, we will assume that there are three

people involved in the construction and use of a specialized computer-

aided design system--a designer, a programmer, and an analyst.

These may all be the same person or there may be several persons in

each category, but it will be useful to make a distinction between three

kinds of interests in the following discussion.

By designer we refer to a person who is interested in the ultimate

use of the design system to solve particular problems in the specified

application area. By programmer we refer to a system programmer

skilled in the use of all of the AED system-building systems. He

knows how to use the high-level languages of the RWORD and AEDJR

Systems, knows their limitations, and knows how to use the general

AED language and compiler facilities to overcome limitations of the

systematized approach to accommodate required variants which fall

outside the scope of the generalized treatment. He also knows how to

track down bugs in all regions of the systems to be used, and in general

is a professional software technologist with high-powered tools and

specialized skills at his disposal. The analyst possesses a less de-

tailed knowledge of the actual controls and detailed behavior of the

various system-building systems, but is stronger in the abstract mathe-

matical domain. He is an expert not only in the calculations needed to

solve problems in the application area, but also is expert in plex think-

ing. He is able to visualize the essence of each of the various aspects

of the total class of problems included in the problem area. He can

express these relationships in total modeling plex terms, and is expert

at modifying the definitions and declarations of portions of the model to

alter the mechanization to achieve maximum generality and flexibility.

We will assume that except for the designer, these individuals have

already gained experience from the design and construction of several

prior systems, and will consider their activities in preparing a new

system to satisfy the needs of the designer.

We assume that the designer has been plying his trade for some

time within the company, perhaps using various computer aids in por-

tions of his daily activity. His design speciality is an important part of

the activity of the company and in his work he has come in contact with



-64-

other design or engineering specialists in the company who have

recently begun using new user-oriented systems prepared for them by

the programmer-analyst team. Seeing their initial successes and

listening to their plans for exciting evolutionary improvements in their

systems, he has taken some time to plan such a system for his own

area of interest. He has arranged a meeting with the programmer and

the analyst to present them with the specifications for his system and is

interested primarily in how rapidly they can place it in operation.

B. JOINT MEETINGS

The meeting begins with a presentation of the designer's specifi-

cations, including charts, diagrams, samples of the mixed verbal and

graphical language statements which he will use to solve problems, and

descriptions of the existing and new computer programs which will be

needed. He is an intelligent man with several years of experience in

his design speciality, and is well tuned to the political and economic

realities of life in a carefully run industrial organization, so that his

brief is well prepared and carefully thought out. The presentation ends

with a listing of specific direct questions concerning availability of man-

power and computer time to resolve the few open questions, and a

skeleton schedule chart upon which he requests the programmer and

analyst to fill in reasonable target dates for completion of the various

phases of the system preparation.

The programmer and the analyst also are intelligent and experi-

enced and acquainted with the political and psychological realities, and

furthermore they have been through similar sessions several times

before. They begin their response by sincerely complimenting the de-

signer on the thoroughness of his preparation and the exciting feasi-

bility of a specialized design system for his application area. They

then begin the delicate task of maintaining the designer's enthusiasm

while at the same time educating him to a few additional realities which

lie outside the scope of his previous experience, but which will play a

critical role in the success of the venture. The gist of this initial phase

of the response, stated gently and with supporting examples drawn from

previous system-building efforts, is that the programmer-analyst team

may in no way be considered as a subordinate service organization to



-65-

the design and engineering groups of the company--not for any prideful

or political reason, but because of the nature of the job to be done. In-

stead, all three aspects of the system-building problem represented by

the designer, the programmer, and the analyst must be equally re-

presented in a highly democratic team structure if a reasonable tapping

of the potential for the designer's problem area is to be achieved. The

net result of this first lengthy meeting is the acceptance of the designer's

specifications by all three members of the team merely as an opening

presentation of the general outline of the kind of system that is to be

achieved. The effort of careful preparation was not wasted, for a hasty

initial description of the ideas and interests of the designer would have

left many loose ends to be unraveled in the future. None of the team

members can at this time present significant deviations from the origi-

nal "specifications", but all (including the designer), have an open mind

as the meeting disbands. The programmer and analyst will study the

designer's proposal in more depth, looking up specifications on existing

programs and attempting to view the proposal in the light of their own

specialities. The designer will read various descriptions of the system-

building tools which the other team members will use, and will check

back in more depth with his other designer friends to compare notes on

how they fared in the earlier system-building efforts.

At subsequent meetings of the team, the focus of the group branches

out from the original "specification" prepared by the designer. The

analyst has found various auxiliary features in some of the computer

aids which the designer has been using but which were not adequately

covered in the original specifications. The programmer has studied

the language features proposed by the designer in sufficient depth to

show alternate forms which will yield more flexibility, entail less writ-

ing, and in general will provide a smoother user interface than the de -

signer had realized would be possible. After a short time, the three

members of the team find that they are in fair agreement as to the

general outlines of the area of discourse which is to be covered by the

computer-aided design system. There is confidence that sufficiently

efficient computational techniques will be available, and that useful im-

mediate results can be expected with an initial plateau of capability

which is established as the initial goal. It is at this stage that the



-66-

"wouldn't it be nice if..." phase is completed, and attentionfocuses on

the task of actually beginning the preparation of the system. Notice

that new rigid specifications to substitute for the initial efforts of the

designer have not been generated. There still is much to be learned by

the members of the team. Greatly deepened insights into both the

problem area and the kind of system which will suit it best are bound

to evolve as the initial target plateau is approached. The team at-

tempts to maintain flexibility at this early stage in order to let this de-

veloping understanding mold the final form within the guidelines of the

informal outline of the target plateau.

C. THE ROLE OF THE ANALYST

At this stage the analyst and his activities become the focal point

of the group. It is his job to create the semantic package for the

system--the package of procedures which will carry out the actions of

the modeling and analysis phases of the final system. With the target

plateau of initial capability roughly outlined and bounded by the preceding

generalized considerations, the starting point for real work in coh-

structing the system lies with the explicit treatment of just what can be

done in the way of formulating and solving problems in the area of dis-

course, independently of how the user language may look. The exist-

ence of the RWORD and AEDJR Systems for preparing lexical and

parsing processors give confidence that nice user-oriented language can

be incorporated into the system at an appropriate time. But whatever

that form may ultimately be, it will be meaningless language if se -

mantics is lacking. Therefore the semantic package comes first.

According to the AED Approach, the semantics of a language must

be represented by a collection of actions. In other words, the only way

to represent the complete set of all meanings of all statements in a

given language is to have a collection of discrete actions so arranged

that the act of comprehending the meaning of a statement is an act which

is the composition (in some appropriate fashion) of a subset of actions

selected from the total set of possible actions. Since language com-

munication involves only a time-signal message, with no physical trans-

port of any material of any kind, it is inescapable that the mechanism

of comprehension on the part of an intellect, be it man or machine,

must be an act performed by that intellect.



-67 -

The importance of the analyst's role in designing the semantic

package lies in the fact that the subroutines in the package neatly bound

and delimit the actual area of discourse of the resulting system. Any

statement which is processed as an input string will receive a meaning

determined by the semantic package, and no meaning outside the do-

main of the package can possibly be communicated. No amount of

"syntactic sugar" can overcome limitations of the semantic package.

D. THE SEMANTIC PACKAGE

The routines of a semantic package form a special-purpose library,

and are used to compose the actions of the modeling and analysis phases

in the final translation process. There are three main varieties of

action involved: modeling, analysis, and control. A given procedure

belongs to just one of these categories and is atomic in the sense that

it performs some smallest indivisible unit of modeling, action, or con-

trol. The atomic procedures of a package also satisfy another most

essential property; namely, almost all of the procedures are valued

procedures or functions, and the values taken on by these functions are of

such type and representation that the value of one function may be used

as an input argument in a call on another function. Thus it is possible

to make nested function calls to compose molecular functions out of the

atomic functions. Atomic functions also share a common set of global

variables which interlock them into a cohesive whole. For example,

the fact that one atomic procedure was called in a certain way may re-

sult in the setting of a global variable which will affect the behavior of

a number of other procedures if and when they are called in the future.

Because each atomic procedure performs some smallest essential

function, and because the entire collection of procedures gives a com-

plete set of actions, any mode of behavior which is appropriate for the

area of discourse can be achieved by the proper composition of atomic

function calls, or calls upon molecular functions defined in terms of

the atomic functions.

The above general principles of semantic package design are not

easy for the analyst to achieve. Many attempts at formulation and re-

formulation are usually required before the truly essential features of

the area of discourse may be seen clearly enough to be separated into



-68-

forms appropriate for atomic semantic units. Notice that in semantic

package design the objective is to explicitly discard the specific at-

tributes of any given problem within the problem area in an effort to

uncover the common structure which underlies every problem. This

is quite a different style of problem-solving than that to which most

people are accustomed, for we usually begin the attack on a new

problem by looking for specific features which may lead to a solution.

Quite the opposite is true in semantic package design, and it is vir-

tually impossible to achieve the desired result in a straightforward

manner. Usually many iterations are required.

The analyst designing a semantic package must play the plex pro-

gramming game to the hilt. He must consider at all times all three

aspects of plex--data, structure, and algorithm. The objective, of

course, is to find the most appropriate set of building block algo-

rithms so that the modeling and analysis phases for the processing of

any particular problem statement will involve the most elegant appli-

cation of growth algorithm atomic functions to build the data structure

to which just the right analysis functions may be applied to give the

answer. In these matters, storage space and execution time must be

taken into account and the full spectrum of AED capabilities for alter-

ing the mechanization of a plex model are important tools in the hands

of the analyst.

In addition to designing the appropriate data structure mechani-

zations and the atomic growth algorithm steps for constructing them,

the analyst must also design interfaces to existing analytic routines

which are to be taken from the existing body of computer aids which

the designer has been using. If any of the existing programs are found

to be too monolithic and rigid, it may be necessary to rework them to

obtain better modularity for use with the system. Many compromises

must be made, and a frequent variety is the decision to postpone the

reworking of some major older program until a later plateau. The

analyst, programmer, and designer know that at a future time more

flexibility can be available, but may accept or purposefully incorporate

certain awkward limitations for the initial plateau in order to expedite

matte r s.



-69-

E. THE ROLE OF THE PROGRAMMER

In parallel with the semantic package design, the designer and pro-

grammer have been working on the establishment of the lexical and parsing

features of the language. Major portions are directly available from

previous application systems, but variations to suit the new design

areas are worked into the same general framework. Early in the game

the programmer sets up a test subset based upon the original "speci-

fications" of the designer and using initial partially debugged semantic

package routines from the analyst to throw together a preliminary

system for the designer to try out. This activity serves an important

function of deepening the level of meaningful communication between the

designer and programmer in preparation for the final push to prepare

a truly satisfactory user language to match the semantic package being

prepared by the analyst.

As the analyst completes the modeling, control, and analysis

functions needed for the initial plateau, the primary focus of the team

shifts to the programmer and his area of activity. The routines of the

semantic package impose implicitly a very rigid structure on the use

of the atomic procedures to achieve a given end. Nesting a call on

procedure A as an argument of a call on procedure B will give quite a

different result from calling B as an argument of A. The analyst has

designed this sequence to give the most efficient modeling and analy-

sis behavior by the system, but the designer throws up his hands in

agony when he sees the awkward sequence in which successive pieces

of information must be supplied to build the proper model. It is im-

portant to realize that each bit of factual information required by some

elaborate molecular action of comprehension must either come into the

system from the input string supplied by the user, or it must be built

into the system in the form of normal case settings which are used if a

required piece of information is omitted from the input string. In gen-

eral, the natural sequence in which these bits of information come to

mind as a user of the language composes a message will be quite dif-

ferent from the rigid sequence imposed by the semantic package struc-

ture. The very real and understandable concern of the designer when

he first recognizes this awkwardness lies in the domain of the pro-

grammer member of the team, for one of the most essential functions

of the parsing phase of translation is to map the desired message



-70-

sequence into the required interpretation sequence. The mapping is

carried out by the precedence string semantic parse of the first-pass

structure composed by the parsing algorithm. We now consider this

mechanism in more detail.

F. THE FIRST-PASS STRUCTURE

The final modeling and analysis phases of translation are ac-

complished by means of an operator following the precedence string in

the first-pass structure representation of a statement. The operator

composes atomic and molecular actions from the semantic package

into an overall complete act of comprehension. It is the job of the

programmer to utilize the facilities of the AEDJR System to set up

the parsing controls for the First-Pass Algorithm so that the proper

sequence of operator actions will ultimately take place. There are

many possible parses for a given input string, each of which would

supply different data to the second-pass operator. It is the job of the

programmer to use the "remote control" features of language-definition

to make sure that the final translation is correct for every possible in-

put string. Just as the analyst designing the semantic package had to

consider entire families of problems and thereby took a different ap-

proach than the average problem-solver, the programmer setting up

the language must consider entire families of statements to ensure

that all possibilities are covered correctly.

In order to appreciate the job of the programmer in selecting the

appropriate first-pass structure for each form of statement, we first

consider the "precedence follower" mouse algorithm which corresponds

to the first-pass structure. The First-Pass Algorithm which is set up

and controlled by the AEDJR command languages is the growth algo-

rithm and the Precedence Follower is the mouse algorithm which forms

the backbone of the modeling and analysis phases of the AED Approach.

The Precedence Follower mouse follows a minor precedence com-

ponent (shown by dashed lines) if one is present and has not been fol-

lowed previously, and otherwise it follows the major precedence, com-

ponent, (shown by solid lines). At each step along the precedence

string, the mouse algorithm also computes an integer code which indi-

cates the local structural context of the current node in the first-pass



-71-

structure. This code indicates whether the left and right context are

atomic or not, the direction from which the node was encountered, and

whether the node represents a "modifier" or not. The codes currently

in use are indicated in Fig. 14.

CODE LEFT RIGHT HOW FROM MODIFIER

(///' 1 ATOM ATOM MINOR
2 ATOM NONATOM MINOR YES

A/ 5 3 NONATOM NONATOM MAJOR LEFT 
1/ /,/\\4 NONATOM ATOM MAJOR LEFT

5 NONATOM NONATOM MAJOR RIGHT
6 ATOM NONATOM MAJOR RIGHT NO

,\ _~_ I 7 ATOM NONATOM MAJOR RIGHT YES

Fig. 14 Contex Codes of the Precedence Follower

The table control for the generalized processor represented by

the mouse takes the form of a selector function supplied by the pro-

grammer which is called by the mouse once for each step along the

precedence string. The mouse supplies two arguments to the selector

function: (1) a pointer to the current node in the first-pass structure,

and (2) the numerical code representing the local structural context.

Using this information (including any or all of the data obtainable from

the first-pass structure node as well as any global variable settings),

the selector function chooses an appropriate atomic or molecular func-

tion from the semantic package and executes it. Once the execution is

complete, the selector function returns control to the mouse, which

then takes the next step along the precedence string, repeating the pro-

cess. In this way the modeling, analysis, or control actions of the

selected atomic and molecular functions carry out the complete act of

translation in an orderly and efficient fashion.

It was mentioned above that a given input string may have many

possible parses. On the other hand, not all possible binary tree and

precedence string combinations can be generated by the current



-72 -

First-Pass Algorithm. It is the job of the programmer to determine,

for a language which is satisfactory to the designer, what is the

"proper" parsing of any given expression to match the semantic pack-

age prepared by the analyst.

In order to tell whether a given binary tree can be generated by the

current First-Pass Algorithm, there is an elegant print algorithm

which operates as shown in Fig. 15. "Given a binary tree, scan around

A =B*C+D*E:

Fig. 15 The Print Algorithm

the tree counterclockwise. Whenever you go around a symbol, print it,

and whenever you encounter an operator from below, print it. " As

Fig. 15 shows,the input string "A=B*C+D*E; " is thereby regenerated.

Figure 16 shows the possible trees that can arise from an input

string containing from one to five vocabulary words, if the symbols

and vocabulary words are placed in each tree in a manner which satis-

fies the print algorithm. A number of possible parses for 0, 1, 2, 3, ...

words is given by the sequence 1,2, 5, 14, 42,...,

n-1

nP P>P.*P il

i=0

This is a strange series similar to the Fibonacci series and may be

compared with the sequence of factorials 1,2, 6, 24, 120, ... which gives



-73 -

Input String: a( b( c.()dd(e(~)f

f f f f f

e e e e e

d d a a

c a a bc d d b

a b b c b cc d

12345 21345 13245 23145 32145

5 5 5

12435 21435 13425 14325f f f f f

3 2 2W

e e b bd b b e ae c

b c c c d d e1245 3 2415 24315 3425 4325N2 Ways For 2mal Precedence Sequencesds

5 Ways For 3 Words

Fig. 16 Possible Parsings



-74-

the number of possible permutations of the corresponding number of

vocabulary words. Thus although only a subset of the possible syn-

tactic trees are available, there are plenty to choose from. The de-

ciding criterion among the possibilities for a given statement lies in

a very strong relationship between the precedence string and the syn-

tactic tree. This is the "remote control" handle by which the pro-

grammer controls the mapping of the message sequence into the exe-

cution sequence required by the semantic package.

If we refer back to Fig. 13 (in Chapter V) we notice that the prece-

dence string of that example may be described in the following way:

"Evaluate the syntactic tree from left to right and bottom to top." In

other words, as the example illustrates, we always evaluate the most

nested expression first, preserving the left-to-right sequence of the

input string. This is called the normal precedence sequence, since it

is directly derivable from the syntactic tree. For simple languages,

the normal precedence sequence gives the proper sequence for evalu-

ation. With the normal precedence sequence in mind, examine

Fig. 16. If we consider the subexpression consisting of the first four

vocabulary words (vocabulary word number 5 always serves as the

statement terminator in Fig. 16), we notice that the first parse gives

strict left-to-right execution sequence, 1234, and the last gives strict

reverse execution sequence 4321. The remaining 12 parsings give all

possible combinations of left-to-right and right-to-left execution sub-

sequences which are possible if the Print Algorithm is obeyed. In

setting up a given language, the proper parse is the one for which

normal precedence gives the appropriate mapping from the input se-

quence to the required interpretation sequence.

Normal precedence is adequate only for the simplest of languages

in which context plays no role. The current First-Pass Algorithm

provides one more feature called modifier precedence which is beauti-

fully simple and provides a mechanism which is strong enough to

satisfy the needs of virtually all artificial programming languages.

This mechanism is brought into play by declaring a vocabulary word to

be a "modifier", causing the precedence string to be altered so that

the modifier word always occurs twice on the precedence string

bracketing a context-dependent phrase. An example of this is shown in

Fig. 17.



-75-

These, then, are the tools which the programmer has at his dis-

posal. Since the first-pass structure itself is composed by the First-

Pass Algorithm, the actual controls which the programmer uses in

f W f f f xf

I nput String: abCdef

123425 124325 234215 243215 12345

InputStri.g: 7 Modifier Precedence®

Fig, 17 Modifier Precedence

language definition are still one further stage "remote" from the final

selector function which calls on routines from the semantic package.

But the programmer is skilled in their application and the debugging

facilities of the AEDJR System assist greatly in the language definition

process. If the analyst has done a good job at achieving modularity,

flexibility, and completeness in the semantic package design, the pro-

grammer and designer may work out a wide variety of language forms,

both verbal and graphical, all of which are amenable to correct trans-

lation.

G. THE ROLE OF THE DESIGNER

Once the designer-programmer-analyst team has completed its

first task of creating an operational initial plateau system, further

elaboration and evolutionary development are merely natural exten-

sions of the system-building task. In this phase, the designer once

again assumes the primary responsibility, but in a much more ef-

fective way than at first, for he now knows well the capabilities of the

analyst and programmer and their system-building tools. If the macro

preprocessing and graphical capabilities have been incorporated, the

designer-user and his other friends may, themselves, augment the

features of the initial plateau and personalize it to suit their own work



-76-

habits. Further true extensions beyond the plateau into successive

plateaus are possible by the addition (by the analyst) of new subpack-

ages to the semantic package of the system. If a good job has been

done on the initial design, these extensions and elaborations will not

drastically change the character of the initial system but will appear

to be natural and desirable additions of a maturing system to the

designer-users.

One feature of AEDJR parsing which plays an important role in

this regard is called phrase substitution. Since all parsing control de-

pends upon the "type" of syntactic units, it makes no difference

whether the right context of a given vocabulary is an atomic symbol or

an entire first-pass structure, as long as the type of the result is the

same. It is no more difficult for the system to handle a sentence such

as,"The boy who lives in the green house on Smith Avenue who has red

hair and an older brother serving in the army has a toothache", and

"John has a toothache". Thus additional sublanguages may be added to

the original language to permit elaborate descriptions of quantities

which previously existed only as atomic symbols, without causing

drastic upheaval in the system. As long as the phrase structure re-

presented by the mouse processing the precedence string is used as

the primary control medium, it is assured that no matter how compli-

cated or elaborate a given phrase may be, the result will be indis-

tinguishable from that which would be obtained from an atomic value.

Thus semantic package routines may be written to treat only the sim-

plest fundamental cases, and the systematic structure of generalized

parsing and precedence following operations will automatically allow

the composition of arbitrarily elaborate complex cases in an orderly

fashion. Even highly specialized user-oriented languages can be

economically very rich in possibilities.



CHAPTER VII

DISPLAY HARDWARE

From the beginning, the MIT Computer-Aided Design Project

has been interested in permitting the use of on-line displays for man-

machine interactions. In addition to the theoretical, programming,

and system-building studies which have been the subject of the pre-

ceding chapters, the Project has featured a pioneering activity in both

the hardware and software aspects of what is now known as computer

graphics. This and the following chapter outline Project accomplish-

ments in these fields.

A. HISTORY

The interest and experience of the Electronic Systems Labora-

tory in computer displays predates the Computer-Aided Design Project

by several years. Beginning in 1953 the Laboratory had used the dis-

play facilities of the Whirlwind Computer in sophisticated on-line con-

trol of a large-scale data-reduction system. In conjunction with this

work, the first tracking program for free-hand graphical input was

written in 1954, an on-line keyboard was added to the Whirlwind facility

in 1956, and a full-scale man-machine console incorporating the first

usage of a Charactron display tube outside of the Sage System was

placed in operation on the 1103 Computer at Eglin Air Force Base in

1957. Three-dimensional cutter path display was one of the earliest

features of the APT System development in 1956, and during the forma-

tive years which led up to the change of emphasis from APT to

computer-aided design, the important role of on-line displays, espe-

cially for three-dimensional geometric problems, became deeply in-

grained in our thinking.

When work began on the computer-aided design effort, the

Whirlwind Computer was being phased out, so that the only display

facilities available to the Project were the high-performance display

incorporated into the small TX-0 Computer which was transferred to

M. I. T. from Lincoln Laboratory, and a rather inadequate output-only

-77-



-78-

display attached to the IBM 709 Computer of the Cooperative Computer

Laboratory. Both of these displays were strictly point-plotting cathode

ray tubes driven directly under central computer control. The TX-0

Computer had a light pen and toggle switch registers which could be

used for program control, but the small size of the computer limited

its use to basic experiments in tracking program logic and similar

studies.

In order to obtain a larger facility for experimentation, the

Project in 1959 developed and installed auxiliary equipment for the

709 Computer to provide control buttons and enable the use of tracking

with the existing scope. This facility, (described in Reference 2) also

was used only for basic experiments with a "light button" compiler and

similar studies because the point plotting limitation of the display and

the relatively slow speed of the vacuum tube 709 Computer made large-

scale experiments infeasible.

With these facilities available for basic experimentation, the

attention of the Project in the display area was focused on various in-

depth studies of improved hardware facilities. One study, carried out

by a visiting IBM fellowship student in 1961, involved the design of a

display console system based entirely upon magnetic drum technology,

including built-in pen tracking, sub-routine structuring of the display

file, and other advanced features. In order to obtain reasonable per-

formance, however, it was necessary to incorporate high-speed cir-

culating register techniques and multiple reading heads to give the

effect of increased drum rotation speed. The resulting system, de-

scribed in Reference 19, was not constructed but the many aspects of

the display problem which were investigated provided valuable back-

ground information.

Another study carried out at the same time concerned the de-

velopment of more elaborate facilities for use with 709 Computer. In

this study the use of incremental digital techniques (binary rate multi-

pliers) for linear interpolation was taken over from the numerically

controlled milling machine technology and was proposed as a feasible

method for vector generation (in both this and the previous study,

vector generation within the display hardware was of the highest pri-

ority to increase the display speeds over that which was possible with



-79-

only point-plotting commands from the computer). The resulting sys-

tem, described in Reference 20, also was not built, however, because

it was decided that a more cohesive design would be needed for support-

ing the experimental needs of the Project.

At this stage, the idea occurred of expanding on the binary rate

multiplier concept for two-dimensional line generation to provide three-

dimensional line generation and automatic axonometric projection, as

well as hardware light-pen tracking. It was decided to design a com-

plete integrated man-machine display console incorporating these ideas

for attaching to the 709 Computer at the Cooperative Computer Labora-

tory. The design of the system was the subject of the Master's thesis

(Reference 23) of Robert H. Stotz, now Assistant Group Leader in the

ESL Display Group, and the resulting system became known as the ESL

Display Console, or "Kludge".

At the time of completion of the thesis study, Project MAC was

being organized at M. I. T. for large-scale time-sharing research and

the Computer-Aided Design Project was one of the largest cooperating

groups which would be using its more modern facilities. The design of

the ESL Display Console was therefore modified slightly to attach to the

time-shared IBM 7094 Computer of Project MAC. The console was

constructed and in operation in the time-shared environment by mid-

1964. The more general display interests of Project MAC led to the

establishment of the ESL Display Group, which has since that time car-

ried out display research and development for both the Computer-Aided

Design Project and Project MAC, as well as other groups at M. I. T.

Details of these display hardware developments have been ade-

quately covered in various Project reports and technical papers listed

in the references. The purpose of the present discussion is to describe

the general characteristics of the equipment, the underlying motiva-

tions and philosophy of approach, and the outlook for the future.

B. THE ESL DISPLAY CONSOLE

The ESL Display Console, shown in Fig. 18, was designed to

operate from the Direct Data Connection (Channel D) of the 7094, which

has 36 data lines and 10 sense lines in both directions. A 36-bit format

was therefore chosen for display command words. Also, the console



-8
0
-

'
"
i
 

O
D

-
5

.......... 
.

·
·

.
O
0

1
_LU



-81-

was designed without a memory of its own, and was operated for four

years in the MAC time-sharing system in a "semi-buffered" mode in

which information to be displayed was set up in a "display list" in the

A-core (supervisory) memory of the computer, i. e., a portion of the

A-core memory was used for continually rewriting (refreshing) the

display. Although this function is now served by a PDP-7 display buffer

computer, as will be discussed later, the following description of the

mode of operation pertains whether the console connection is to the

7094 channel or the PDP-7 channel.

Each time the display is to be regenerated -- roughly 30 times

per second -- a programmable "alarm" clock in the display console

interrupts the computer and causes the list to be outputted in the chan-

nel mode. Once the channel output command is given, individual words

in the list are accessed sequentially as needed by the console by mem-

ory "cycle stealing" without interrupting any program which may be

running in the computer. Since each word in the display list contains

both a data field, and a command field which tells the display system

what to do with the data, the "picture" described by the list is displayed

without further attention by the computer until the next regeneration

time. The hardware capabilities of the display generation system in

the console permit the information in the display list to be in a highly

coded form, and a small number of display words can generate quite

complex displays. Further reduction in the number of display words

required results from the use of "sub-pictures", similar to the concept

of subroutines in normal programming. Thus, if the same picture ele-

ment (perhaps a resistor in an electrical circuit, or a bolt in a mech-

anical assembly) is to appear in various locations on the display screen,

its description appears only once in the display list and is called by sub-

picture jumps as required. As will be explained later, the use of sub-

pictures is aided by the fact that symbol and vector commands are in

terms of relative screen coordinates.

The display console is based on a digital incrementing scope de-

signed in collaboration with the Digital Equipment Corporation and

identified by DEC as the Type 330. The Type 330 is capable of display-

ing closely spaced points every 1. 5 Ls (about 20 times faster than point-

plotting displays) when driven in the incrementing mode. The display



-82-

generation system which provides the incrementing pulses was built by

the Electronic Systems Laboratory, and performs with hardware such

display functions as: line and character generation; rotation, transla-
*

tion, and scaling of pictures; edge detection; and pen tracking. A

digital approach was maintained throughout for purposes of accuracy in

plotting, flexibility, and for ease of implementing the desired functions.

In designing the computer interface, control logic, and display genera-

tion system, considerable thought was given to the tradeoffs between

hardware and programming in order to minimize display word accesses

on the data channel and reduce the computational load on the computer,

and it is felt that the hardware, although quite complex, more than pays

for itself in computer time saved.

A block diagram of the ESL Display Console is shown in Fig. 19.

The following paragraphs describe the essential features of the display

generation system. Note that two coordinate frames of reference are

established: x, y, z referring to the fixed coordinate space in which the

computer "knows" a figure being displayed, and h, v referring to the

actual display coordinates. This distinction is necessary because of the

coordinate transformations performed in the console.

1. Line Generation

The Type 330 incrementing scope contains horizontal and verti-

cal buffer registers (h and v in Fig. 19) which directly control the scope

deflection amplifiers. These can be set by parallel bit transfers from

the computer in the normal point-plotting manner. Their unusual fea-

ture is that they can also be incremented or decremented at 1. 8 is

intervals by pulses from the display generation system. The line gen-

erator uses a three-channel binary rate multiplier (BRM) to convert

the signed 10-bit Ax, and Ay, and Az vector components contained in

a line-generate command into synchronized x-rate, y-rate, and z-rate

pulse trains. The pulse rates in the channels are such that in the BRM

DEC also offers the Type 340 and 338 Incrementing Scopes, derived
from the Type 330, which are complete display systems with line and
character generation, but which do not have all the features described
here.



-83 -

u
z

I-
0 

'
ol 

rrz
'w

w

>
o

o 
o~~~oo

o ~ ~ 
~

op ·

I 
J- 

u
_
 

0 w
zJ 'L

 
Z

~~~~~ 
'

' z .,

L
U

id
.o~~~~~~~~~~~~~~~~~~~~~~~~

-
foe

"~~~~~~~~~~~~~
o
o
i;~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~

a
In

-
i-i-io

I

0
',

w
w

[zIIo

,g

o
Ir~

~
''I

L
..

o
.

a
s

w
z

7 11 ~
·

zC

n
B

u

o
o

-_
w

',
z~~~~o

o
,z

~~~~~~~~~~~~~~o- 
z 

'-° 
m

 .> 

o
 

I,- "'" 
~

 
~

- 
O

z 2
U

 
4

::)e
 

3
[~

 
w

l,- 
o
~

o 
IIe

L
(L

r 
,. 

o--. 
z~ 

,4 
c

>
z
~

"
u

 
z 

~ 
a 

_
 

L
I 

L
a a. 

.
.

Iw
 UT

!m
m

 
,a~~~~o 

o" 
a 

-a I -- 
ow~~~~~~~~~~~~~~~~~~~o1



-84-

generation cycle, each pulse train contains a number of pulses exactly

equal to the numerical value of the corresponding vector component.

Thus the vector components are still digital in nature, but have been

converted to an incremental form without loss of accuracy.

Assume for the moment that the x-rate and y-rate pulse trains

were applied directly to the incrementing inputs of the h and v deflec-

tion registers. To start plotting a picture element, the computer first

sets the h and v registers to the desired initial set point (x, y), and

then sets the registers of the binary rate multiplier to the desired Ax

and Ay values for the terminal point of the first line. Line plotting

proceeds automatically, with the scope being intensified for 0. 5 [is

each time the buffers are incremented (unless a no-plot bit is given in

the line command). At the completion of the line generation cycle, the

h and v registers contain the terminal point for the line, and each suc-

ceeding line starts at the terminal point of the previous one (unless a

new initial set point is given, which defines a new picture element).

Blank vectors (not plotted) can be used to connect non-contiguous parts

(alphanumeric labels, etc. ) of a picture element. Note that if the com-

puter wants to move a picture element made up of these connected vec-

tors around the scope face, all it has to do is to change the single initial

set-point command in the display list for the element. It need not alter

in any way the remainder of the data for the element.

Actually, the x-rate and y-rate pulse trains are not applied di-

rectly to the h and v registers as in the above, but are first passed

through a rotation matrix as described below.

2. Display Rotation

Rotation of displayed figures is an essential feature for many

applications and would normally require the computer to recalculate

the data for the entire display for each new angular position. This

process has been greatly simplified in the display console by further

incremental manipulations. As shown in Fig. 19, a group of additional

binary rate multipliers (called the rotation matrix) has been placed be-

tween the line generator and the scope deflection registers, which per-

mits multiplication of the Ax, Ay, and Az pulse trains by numbers set

by the computer. Considering a vector A as being specified by its



-85-

three components Ax, Ay, and Az in the fixed coordinate space, the

components of the vector in the display coordinate space are determined

by the following relations:

A = A i h + A j + A k hh x h yh z h

A = A -i + A jv + A kv
v xv y z v

where ih, i v, jh' jv' kh, k are 10-bit numbers set by the computer

in the six rotation matrix registers:

If the (i, j, k) matrix settings are the components of the unit

vector specifying a desired rotation between the two coordinate systems,

the outputs of the matrix will be the components A h and A of the vec-

tor in the rotated coordinate system, and these will be the inputs to the

h and v registers of the scope. Thus to create an arbitrary projection

of a complex three-dimensional picture element made up of a sequence

of connected vectors (which can include unplotted ones), the computer

need only change two commands at the head of the display list for the

sequence, which set the six rotation matrix registers. The rotation

will be relative to the initial set point for the sequence. Arbitrary

centers of rotation can be established by including an initial blank (un-

plotted) vector in each picture element. The matrix is also used to

change the size of displayed figures by applying a common scale factor

(where 2 10- represents full scale) to the matrix settings.

Figure 20 shows the format of a display list for the ESL Display

Console. The "header" consists of three words which control the

1 SETPOINT -- Establishes picture position

~2 SET ik ' Jk' kh l Establishes picture size

3 SET iv jv kv and orientation

4
Picture description
in relative display
coordinates (needs
be changed only when
picture itself is to
be altered)

n

n+1 END OF FILE (JUMP ADDRESS) -Terminates picture and
jumps back to start or
to a sub-picture

Fig. 20 Typical Display List



-86-

position on the screen, the size, and the viewing angle for the picture

or picture element defined by the body of the list. The list is termi-

nated by a jump instruction. This saves the computer from having to

compute end addresses or word counts for the data channel, and also

facilitates picture sub-routining, or "sub-pictures". Usually, the

header information is changed each "frame" (1/30 second), to cause

smooth translation, rotation, and scale changes of a complete picture.

In other cases, different rotations or scale changes are applied to

parts of an overall display list to create dynamic mechanisms, show a

single picture element in several orientations simultaneously, etc.

The important point is that for these manipulations, the computer never

has to alter the display data itself, only the matrix settings for the con-

sole and the initial reference point (setpoint). This effects a substantial

reduction in computer time.

3. Automatic Edging

A problem in programming most display systems is "edging",

i. e., masking display data to fit on the display screen. Many displays

will "wrap-around", i. e., display modulo the maximum screen coordi-

nates. Also, many vector generators require modification of end-point

coordinates in order to display part of a vector which extends beyond

the visible area. Thus, the computer must usually be continuously

concerned with preventing any portion of a dynamically changing picture

from overflowing the display area. Since in the ESL Console the dis-

play list information is incremental in nature, and rotations, scale

changes, and translations are performed external to the computer, such

monitoring of display data would be a formidable computational task,

and would negate much of the gains of external display generation and

manipulation.

In the ESL Console, the horizontal and vertical display registers

were specified to be each 13 bits in length, with only the low-order 10

bits being displayed. Thus the "console dimensions" are eight times

those of the visible display area, and lines can be incremented off the

display area without wrap-around and without loss of data. With the

enlarged buffers the computer need not prevent overflows of the display

area, but it can be informed of overflows by programmable edge



-87 -

detection circuits which, when enabled, cause an interrupt either at

the edges of the visible display area or at the edges of the larger buffer

area. The computer can also read the display h and v registers at

any time it desires. Thus it can use the console as a special-purpose

"geometrical masking computer" to monitor display operations, and

provide the information needed for modification of a display list when

desirable or necessary.

4. Automatic Light Pen Tracking

Another important function of a display system is graphical

input, and a very useful technique for accomplishing this is light-pen

tracking. The usual programmed tracking (periodically displaying a

tracking pattern, testing light-pen response, and calculating new coor-

dinates, all under program control) typically requires about 10 percent

of a computer's time for adequate performance. In order to reduce

this drain on computer capacity, the pen tracking was made an auto-

matic hardware function in the ESL Console. When the computer en-

ables pen tracking (by a pen-track command added to one display list

cycle), the console is placed in a mode in which it automatically stops

the display process at regular intervals (currently every 10 ms) and

inserts a tracking cycle.

The pen track logic utilizes the line generator to generate the

four fixed-length arms of the tracking cross at the (h, v) location deter-

mined by the "pen location" registers in the console, which are set

initially by the pen-track enable command. Based on pen response for

each point in the tracking cross, four points on the field-of-view circle

of the pen are found, and from these Ah and Av movements of the pen

since the last tracking cycle are determined and used to update the pen

location registers. At the completion of each tracking cycle, the dis-

play process automatically resumes at the point where it was stopped.

Thus pen location is always available to the computer in the pen loca-

tion registers. Each tracking cycle takes 200 microseconds, and since

there are 100 tracking cycles per second, the tracking function uses

only two percent of total display time.

The automatic pen-tracking hardware described above was

essential for operation of the ESL Display Console directly from the



-88-

7094 time-sharing system, since programmed pen tracking would have

placed an unacceptable demand on CPU time. However, it is now

apparent that future displays operated from a central time-shared com-

puter facility will usually have a satellite display-buffer computer

(such as the PDP-7 now used with the ESL Console) and that there may

be sufficient CPU time in the satellite computer to permit programmed

tracking -- eliminating the need for tracking hardware. This is an ex-

ample of the hardware-software tradeoffs which must be taken into con-

sideration in any particular situation.

There have also been a variety of new input devices developed

since the ESL Console was designed that can substitute for the light

pen, and in some applications provide superior performance. Typical

of these is the Rand Tablet. * This unit, which provides continuous

measurements of the x-y position of a stylus as it is moved over a

writing surface (independent of the display operation) is now commer-

cially available, and similar devices are offered by other manufac-

turers. The light pen is still a simple but powerful tool, however, and

the choice of input device and its mode of operation is primarily a func-

tion of the intended application.

5. Character Generation

Display systems intended for output of textual material are

usually designed to operate in "typewriter format", i. e., with inter-

character and line spacings fixed as a function of character size. This

is a reasonable approach for many uses. However, it imposes a rigid

format on data sequence and possible character positions that would be

incompatible with the display manipulation system of the ESL Console.

Thus, a more flexible system was devised, making use of the line-

generation system to provide programmable character locations and

spacing. Character strings can be spaced any amount in any direction.

Vertically spaced strings, for example, have been found convenient for

labeling the ordinate of graphs.

"The RAND Tablet: A Man-Machine Communication Device",
Davis, M. R. and Ellis, T. O., AFIPS Conference Proceedings,
Volume 26, Part I, Spartan Books Inc., 1964, pp. 325-332.

----̀----~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---~~~~~~~~~~I-~-~L -~~~~~~~~~~~~~~~~~~'~~~~~1- ~ ~ ~ ~ ~~~ 111---~~~~~~~~~~~~~~~~11 ---- 



-89-

The stored character generator is a standard commercial unit

(Straza Industries Type 11-64), which provides a font of 64 characters

matching that used on the KSR 35 Teletypes of the Project MAC Time-

Sharing System. Characters are selected by 6-bit codes which can be

given in two ways: (a) a single character with its h, v location per

word, and (b) character strings packed six to a word. The packed-

character command includes character spacing information, and places

the console in a mode wherein subsequent words are interpreted as six

characters each (except for the first word following the command, which

contains five characters plus a count of the number of characters in the

string -- necessary to terminate the mode). In the packed-character

mode, the initial h, v location is established by the contents of the h

and v buffers resulting from any previous display operation. Thus

labels can be "attached" to picture elements and will remain so during

picture manipulations.

Since 64 characters is an insufficient repertoire for many pur-

poses (it does not provide lower-case letters, for example), the console

also has a "special-character" mode which generates arbitrary charac-

ters under program control. The special-character command causes

the line-generation logic to draw a 5 x 7 matrix, and the points in this

matrix to be intensified are determined by 35 bits in the following com-

puter word. Again, strings of characters can be given (one character

per word) with arbitrary spacing, and the 5 x 7 matrices can be stacked

vertically and horizontally to form larger matrices for large symbols,

such as integral signs, etc.

6. Manual Inputs

In addition to the light pen described previously, the console

has a number of other forms of manual input necessary for communica-

tion with the computer. As shown in Fig. 19, these include switches,

pushbuttons, and knobs. Perhaps the only unusual feature of these in-

put devices is the philosophy of their use in the console-computer

system, which is explained briefly below.

Swtiches have long been used for manual input and the console

has 72 toggle switches (two 36-bit words), and 9 decimal switches (one

36-bit word). These are convenient for various purposes, such as



-90-

giving a picture an identifying number, calling for a previously stored

picture, program control, etc. The switch registers can be read only

by the computer, and have no wired connection to any operation in the

console. Also, no action of these switches has any effect on the com-

puter unless it is programmed to look at them. For purposes of signal-

ing the computer that some action is desired, a box with 36 pushbuttons

is provided. Pushing any button causes a computer interrupt. The

computer then jumps to a subroutine which reads the push-button register

(which again has no wired console function) and dete rmines which

button was pushed. Depending on the conventions established by the

programmer, particular buttons can be assigned meanings, such as

"read the decimal switches", "start the light pen tracking mode", etc.

For purposes of display manipulations such as rotation, trans-

lation, and scaling, switches are an inconvenient form of manual input

and it is now becoming common to provide some form of continuous

input in real-time consoles. (Note that real-time continuous input has

long been a much-touted advantage of analog computers, but is now also

available in digital systems. ) In the ESL Console, continuous input is

provided in two forms -- "knobs" and a three-axis "globe". Three knobs,

each driving an analog-to-digital shaft encoder, permit convenient con-

trol of such functions as scaling, translation, rotation about an axis,

etc. Individual knobs are very inconvenient, however, when two or

more actions must be coordinated, such as rotating a figure about more

than one axis simultaneously. Thus a three-dimensional input device

was devised. This unit, called the "globe" (shown in front of the dis-

play in Fig. 18), has spring-loaded limited rotation about three mutu-

ally perpendicular axes. Each axis has a simple cam and microswitch

encoder, with three discrete codes each side of neutral.

The globe is usually used as a three-step rate control, with the

rate scaling entirely under program control, and provides a very con-

venient means of maneuvering a three-dimensional object into a desired

orientation. Coupled with the ability of the console hardware to display

a new projection of an object each pass through a display list, the

smooth apparent motion provided by rate control gives a striking visual

effect which enables instant visualization of the three-dimensional

shape of a displayed object, even though no perspective is involved.



-91-

This "motion effect" was unanticipated in the design of the console,

since it was thought that perspective projections, or even stereoscopic

views would be necessary for three-dimensional visualization. * Stereo

and perspective experiments have been conducted, but since no user of

the equipment has felt a strong need for such facilities, these proposed

additions to the console hardware have not been implemented.

Like the switches and buttons, the knobs and globe are read only

by the computer, and have no wired console function. Programmed

interpretation of these devices, keyed to manual input rates, gives max-

imum flexibility at the cost of a very small amount of computer time.

For example, some users have programmed rotation to be under the

control of the knobs (direct angular control about each axis), and others

have used the globe for rate control of picture scale and translation.

7. Command Summary

In summary, the ESL Console may be looked on as a special-

purpose graphic computer, with instruction words similar to the

"immediate" commands found in most general-purpose digital compu-

ters, i. e., the commands refer only to data contained in the same word

(or words immediately following). Since the console was designed for

use with the 7094 computer, the same command format was chosen as

is used in the 7094, i. e., the Prefix (bits S-2) and the Tag (bits 18-20)

define the command. A typical command word (to plot a line with Ax

and Ay components) is shown in Fig. 21. (If a line also has a Az

S 2 3 4 7 8 17 18 20 21 22 23 25 26 35

000m _ I^XIl OXX I I I I 
Lsign Ax L Pen inhibit

Line command code Lsign Ay

Fig. 21 Typical Display Command Word

component, this must be specified in a separate command preceding

this line-plot command. )

See Reference 23.
See Reference 23.



-92-

The command repertoire of the ESL Display Console is shown

in Table 1. Note the console actually includes two display stations

called "Master" and "Slave". These are always deflected in parallel,

but the computer can control which one (or both) is to be intensified at

any given time. Two sets of manual input devices are provided, and

two unrelated display problems may be run simultaneously by alter-

nating data for the Master and Slave stations each frame. This "time

sharing" of the display generation equipment of course tends to increase

flicker for each user, but this has not been a problem except when both

users have very complicated displays. For more detail on the com-

mand structure and other details of console operation, References 31

and 32 should be consulted.

The specification summary for the ESL Display Console is

shown in Table 2. Figure 22 illustrates typical displays from various

graphic applications programs.

C. DISPLAY BUFFER COMPUTER

1. Background

In the original design of the ESL Display Console in 1963, it was

recognized that a central computer should not have to be bothered with

repetitively supplying data for purposes of display maintenance, i. e.,

continuous rewriting of a picture at a flicker-free rate. The solution,

of course, is to provide a buffer memory in the display system itself.

Many buffered displays had been built over the previous decade, mostly

using drum memories or special-purpose sequentially-addressed core

stacks. Memories of this type are relatively inflexible, however, and

do not fit in with the dynamic computer-display interaction desired for

computer-aided design. It was therefore decided to build the ESL Con-

sole initially without a memory, and to buffer display data in the core

memory of the central computer until such time as proper requirements

for a buffer memory could be determined. At the same time, the con-

sole was designed to minimize computer load by building in specialized

hardware to perform many normally time-consuming computer functions,

such as picture rotation, pen tracking, etc.



-93 -

The ESL Console is a specialized computer which automatically

converts three-dimensional drawing commands into arbitrary two-

dimensional projections. Real-time rotation, translation, and scale

change are possible even in time-sharing. Light-pen tracking is

fully automatic, and either picture elements or character information

may be displayed.

Fig. 22 Typical Displays on ESL Display Console



-94-

Table 1

COMMAND FORMAT FOR ESL DISPLAY CONSOLE

7094 Bits Function Option

Prefix Tag

S 1 2 18 19 20 4

0 0 1 X X X Set AZ component
of line

0 0 0 0 X X Plot line AX, AY, (AZ) Visible

1 X X It It Invisible

0 1 0 0 S1 S0 0 Character Generation Packed Mode

0 X SO 1 " I, Special Symbol
Mode

1 S1 S " " Unpacked Mode

0 1 1 0 0 0 Plot Set Point X, Y Visible

1 0 0 i0 " Invisible

0 0 1 Load Control Word C Set various con-
sole parameters

1 0 1 Load Control Word F Incremental
beam control

0 1 0 Start Light Pen Track Master or Slave

1 1 0 Stop " " " "

0 1 1 End of File Jump Address

1 1 1 Not Used

1 0 0 0 Al AO Set Alarm Clock Slow

1 Al A 0" " Fast

1 0 1 X X X Set i,j,k, for h

1 1 1 X X X Seti, j,k, for v

1 1 1 X X X (Reserved to set
i, j, k for depth
coordinate, d)

Notes: S1 and SO specify character size (4 sizes available).

A1 and A0 specify which of four Alarm Clocks, (only two installed).

X indicates "don't care".

-~~~~~~- rn~ --~-~-I- ~ -- ~~-~~



-95-

Table 2

Specification Summary for ESL Display Console

Input Power 115 ± 10 volts, 60 cycles, single phase at 18 amps.

Active Scope Size 9 3/8 inches by 9 3/8 inches containing 1024 points
by 1024 points (one scope increment = 0. 009 inches).
P7 phosphor.

Memory None (operates from display lists stored in the compu-
ter memory, and accessed through the Direct Data
Connection).

Clock Rate Normal 555.55 KC (1. 8 itsec between clocks).
Slow 69.44 KC (14. 4[psec between clocks, used for

experiments with storage CRT's).

Line Plotting

Line Plotting Rate a point each clock (1. 8 [is). This point can be a step
of 0, 1, 2,4, or 8 scope increments in + Ah and in + Av
(0, 1, 2 for lines to be rotated).

Line Length 0 to 1023 increments in ± Ax and in + Ay without
magnification. 0 to 2046 increments by steps of 2
in ± Ax and + Ay with magnification. Thus, Ax and

Ay require 10 bits plus sign each.

Random Point Plotting

Point Plotting Rate a point every 40 microseconds

Point Plotting Range 213 = 8192 horizontal and vertical positions. Of this
only 210 = 1024 will appear on the scope. h = 0, v = 0
is center of screen.

Straza Symbol Generator

Symbol Code 6 bits to produce one of 64 symbols matching KSR-35
T e letype.

Symbol Size 0. 1, 0. 15, 0. 23, or 0. 35 inches high.

Symbol Plotting Rate a character every 20 [psec.

Special Character Generator

Symbol Code 35-bit code to produce any symbol on a 5 x 7 dot matrix.

Symbol Size 0. 14, 0. 28, or 0. 56 inches high.

Symbol Plotting Rate a character every 72 [psec.

Refresh Timing Programmable "Alarm Clocks" to cause real-time
interrupt between 50 microseconds and 6. 4 milli-
seconds by 50 microsecond increments (fast clock),
or between 1 millisecond and 128 milliseconds by
1 millisecond increments (slow clock).



-96-

The console has been running in this "semi-buffered" mode on

the Project MAC Time-Shared 7094 (CTSS) since January, 1964.

Although operation has been quite successful from a functional view-

point, there have been some minor problems. First, there is a mutual

interference problem which has been of increasing concern as the load

on the Project MAC computer increased: (1) the five to thirty percent

of 7094 memory cycles (data accesses plus interrupts) taken by the

console on typical graphics is out of proportion to the average two per-

cent or less taken by a user at a Teletype station, and (2) the new high-

speed 7094 drum system installed in 1966 blocks display data whenever

a CTSS memory swap is occurring, which causes the display to "blink"

every few seconds. Second, the allocation of display list space in the

A-core (Supervisor) of the 7094 has been limited to 1200 words. This

is divided between the two console stations according to user require-

ments, but many users have had to sign up for both console stations in

order to get sufficient display space for a complicated picture. These

problems, plus the clear fact that display buffering is a requirement

for any displays located remotely from the computer (such as would

most probably be desired in any industrial application), caused interest

to be intensified in solving the display buffer problem.

Experience in operating the ESL Console in the semi-buffered

mode described above, led us to the conclusion that in order to provide

the desired flexibility in real-time interactions at a remote display

console, the display buffer system should in fact be a small general-

purpose computer. This conclusion (now shared by many other organi-

zations) was strengthened by the commercial introduction during this

same period of quite powerful small computers in the $20, 000 to $50, 000

price range, and the clear indication that even these low prices would

drop in the near future. Thus the Display Group recommended in

November, 1965, that a small computer be purchased by Project MAC

for buffering the ESL Console. The particular computer chosen was

the Digital Equipment Corporation PDP-7, an 18-bit machine with con-

venient input-output provisions and a 1. 75 Usec memory cycle. The

PDP-7 circuitry is, of course, directly compatible with the ESL Con-

sole, which was constructed with DEC logic modules. Also, the 18-bit

word length permitted convenient packing of the 36-bit 7094 words into



-97-

two PDP-7 memory locations. The choice was also influenced by a

desire to be software-compatible with other groups at M. I. T. and else-

where that had already chosen the PDP-7 for display buffering, and

were interested in cooperative efforts on design of communication for-

mats, executive routines, etc.

2. Design Considerations

In designing the PDP-7 display buffer system for the ESL Con-

sole, it was of course desirable to avoid if possible the obsoleting of

existing software for the ESL Console (both system software and user

programs). At the same time, a solution was sought which had as

much generality as possible, i. e., one which could serve as a test bed

for developing techniques and procedures for future buffered display

systems.

In a buffered display system, there are two data-transfer

interfaces to consider: that between the central computer and the buffer

computer, and that between the buffer computer and the display. The

latter needs to be a high data rate connection with almost autonomous

access by the display controller to the buffer computer memory. Thus,

this will usually be a parallel word-transfer connection via a data chan-

nel of the buffer computer. The connection between the two computers,

however, is now freed from the high data rates and real-time service

demands of display maintenance, and choice of data rate and type of

connection is open to cost/performance tradeoffs. For example, the

primary consideration in choosing the bandwidth of the link between the

two computers is how long a user is willing to wait for a new picture

after requesting it, or stated another way, how much is he willing to

pay for a certain maximum delay in system response.

Studies to date indicate that a serial connection with a data rate

of 50, 000 bits per second will be a good choice for most applications,

since this will permit sending data for even the most complicated picture

over the link in a second or two. Also, this type of link is relatively

economical and easy to implement, and is an available service from

common carriers, should one wish or need to operate a display through

such services.



-98-

Although a serial communications-type connection appears to be

the proper one for most applications, the decision was made to initially

forego any possibility for remote operation and connect the PDP-7 and

7094 on a channel-to-channel basis. By building a special interface

which makes the PDP-7 look to the 7094 like the ESL Console, and to

the ESL Console like the 7094, the majority of existing software was

preserved intact, and no hardware changes were required in the 7094

or ESL Console.

It is important to note that this choice, made primarily for ex-

pediency, does not violate the general scheme outlined above. If, at a

later time, it is desired to convert the link between the PDP-7 and 7094

to a serial communication line, this can easily be done by procuring

suitable communications adapters for the two computers, and changing

the communications modules in the respective software.

The overall block diagram of the special interface designed to

"splice" the PDP-7 in between the 7094 and the ESL Console is shown

in Fig. 23. The primary parts of this interface are: (1) the Word-

Forming Buffer, which automatically packs 36-bit words from the 7094

and ESL Console into two PDP-7 memory locations (and vice versa);

and (2) the Buffer and Interrupt Registers which enable the PDP-7 to

intercept and interpret all control, sense-line, and interrupt messages.

Except for the standard PDP-7 options shown within the dashed outline,

this interface has been constructed in the Electronic Systems Laboratory.

The PDP-7 was ordered with an 8K memory, which was expected

to provide approximately 4000, 18-bit words of space for display lists

(assuming that executive and real-time programs would require about

4K), Actually the initial programs (described in Chapter VIII) occupy

only 3000 words, leaving 5000 words for display lists. This is the

equivalent of 2500 words of 7094 memory, twice the amount which has

been available in the A-core of the 7094. In general, it is our feeling

that a display buffer computer should have about 8K of core. This ap-

pears adequate for most purposes, provided that an adequate data link

to the main computer is available, and that service response of the

main computer is fast enough. There is a tendency on the part of users

to want more memory, particularly when the above provisions are not

(or cannot) be met. However, memory is the single most expensive



-99-

o
-.I

a

~~~~~~~~~~~~~~~~~~.e 
C

W
~~~~~~~~ 

.-
O

L
n 

"
 

I 
n

 
0 

a)i

L
 

~ 
"o 

0
D

 r > 
~ 

c

ov,·~
~

~
~

 0·u, 
no 

-

a
,~

~
~

~
~

~
~

a

D
.

0) ~ ~ ~ 
~ 

~ 
~ 

~~~0

a)
a§

C
 U tO

'-4
--~

~
v

a)
a

0))
0

U
-~~._

a)c
a)

).)
r.

_
L

¥

x
Y

u

cr 8.
o

c o

(,.)~~~~~~~~v
C

~C

E
m

a

n
-
-

a
-
a

0
'~

~

~

1

.4
-

in

a-a
0

U
 ~~LL

C
C

C
C

C
l

N
0

0 C
 c

a)0

U
~

~
~

~
~

~
~

~
~

~
~

~
~

~
L

E
o

a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

09
r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

c
~ ~

~
~

C
 C

 C
~

C
]

3
o~~~~~~(

.2
C

) u ~ ~ ~~~~~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

u

-100-

item in small computers today, and an optimum system would seem to

require a proper balance between total memory capacity and bandwidth

of the communication links.

3. Status of the Buffer System

As of the end of the contract (May, 1967), the buffer system was

very close to being operational. Information could be blocked back and

forth between the 7094 and PDP-7, and the display could be operated

from the PDP-7. However, certain combinations of events, particularly

simultaneous (or near-simultaneous) PDP-7 interrupts from the Console

and the 7094 would hang up the system. This type of problem is difficult

to isolate, and it was not until August, 1967, that these problems were

overcome and the buffered system released for routine operation.

D. DEVELOPMENT OF LOW-COST REMOTE DISPLAY

Although the low-cost display development reported in this sec-

tion was primarily supported by Project MAC at M. I. T. through

Contract NOnr-4102(01), the hardware and software techniques employed

are closely intertwined with those of the ESL Display Console. Also,

the design goals were largely drawn from the interactive graphics needs

of computer-aided design in a time-shared environment. It thus has

been appropriate to include discussions of the low-cost display develop-

ment in the Interim Reports of the Computer-Aided Design Project sub-

mitted in the past, and to include a brief description in this Final Report.

The following is based on Reference 109.

1. Background

Experimental computer time-sharing systems now have been in

operation for several years. This type of computer service appears

ideal for computer-aided design, and from all indications, will soon be-

come widely available. With a few notable exceptions, however, users

of these systems must communicate through mechanical teletypewriters

of some form (e. g., Teletype, IBM 1050). Although teletypewriters are

generally satisfactory as input devices, they are woefully inadequate for

computer output due to their slow speed and rigid format. Alphanumeric

output is typically at 10 to 15 characters per second, which is well below

human scanning speed. Also, input and output of graphic data is

-101-

cumbersome, if not impossible. Teletypewriters do have the advantage,

however, that they can operate over standard switched telephone lines

and can thus be located at virtually any remote site. Also, they are

relatively inexpensive, renting for $100- 150 per month.

At the other end of the spectrum is the full-fledged graphic dis-

play console, such as the ESL Console with its PDP-7 computer-buffer.

This type of system provides graphics and text at very high speed, but

represents a capital investment of $150, 000-200, 000, or perhaps $5, 000

per month if rented. Such a price level precludes having more than a

few displays in an installation, and thus limits graphics access for the

average system user.

As a result of the above dilemma, the Display Group set out to

try to devise a terminal which could replace teletypewriters at hopefully

comparable cost, and provide high-quality alphanumeric and graphic

display at higher speed (but not necessarily the speed of regular display

systems). The research effort has resulted in a unit called ARDS (for

advanced remote display station). The design goals, the implementation

chosen, and a description of ARDS are given in the paragraphs below.

2. Desired Characteristics

In considering the requirements for an improved time-sharing

terminal with graphics capability, the following "specifications" were

set down in early 1965. It was realized that these were beyond the state

of the art at that time (particularly the cost figure), but it was felt that

they were reasonable as goals for a development program, subject of

course to engineering compromise.

First of all, it was concluded that the new terminal should be a

CRT display device capable of handling characters, points, and lines in

a free format. It should also be capable of operating as a stand-alone

unit from a standard telephone line as teletypewriters do now, but that

it should make use of the full available data rate (today's teletypewriters

operate at 130 baud over telephone lines capable of operating as fast as

2000 baud). The desire for telephone-line operation is a result of the

fact that the telephone system represents the only communication net-

work widely available to the public, and it appears that its services will

be used in any computer public utility. Clustering of consoles about a

-102-

central control unit is a time-honored way to bring the cost per terminal

down. However, this can be done only in certain environments and is

not suitable for a general-purpose time-sharing terminal.

Graphic output, which refers to the ability to draw pictures, is

essential to the full development of the potentials of the time-shared

computer. When the computer can communicate in pictures, a whole

new dimension is added to man-machine "conversations". Lists of num-

bers become graphs, bridge structures, and electrical circuits. In the

vast areas of computer application where the real world is modeled

(e. g., computer-aided design, simulation, process control), use of

graphics is of particular importance. A highly desirable adjunct to

graphic output is graphic input, such as may be effected with a light pen

or input tablet. This capability is required to truly "converse" in

graphical language.

It is important that hard copy of displayed output be available to

the user when he needs it. For most applications, however, it is not

required at the local console, and not for all output. At Project MAC,

for example, over 90% of the teletype output paper produced by the 150

consoles in the system goes directly into the trash basket. The hard

copy that is taken away is generally for record purposes -- a need which

could be fulfilled by centralized hard-copy generators. The output paper

is occasionally used while at a console to refer to previous data or con-

versation, but if appropriate system programs can retrieve this infor-

mation quickly and easily, this "need" for hard copy vanishes. Thus it

was concluded that a device which produced only "soft copy" could

serve as a terminal.

The display area should be at least 100 square inches, which is

about the area of standard 8 1/2 x 11 paper. The resolution should be

at least that of high-quality CRT displays today (50 black-white line

pairs per inch). This resolution and screen size should permit the dis-

play of 4000 characters simultaneously. Many users would be content

with less, but anything less than 1000 characters is considered to be

inadequate for a general-purpose time-sharing console.

The display should accept and plot new data as fast as it comes

over the line from the computer, and the data should be as highly coded

as is economically feasible in order to minimize time required to

-103-

present new information. If a screen or other device which stores the

image for viewing is employed, it should be possible to erase this

rapidly (less than 1 second) for display of new information. Since a

user may work for hours at a time and he will often want to refer to

other papers, the console must be easily legible in a moderately lighted

room without flicker, blink, or eyestrain.

To allow proper operation and control in a computer time-sharing

environment, the console should also have such features as computer

controlled keyboard lock, an interrupt capability, and a unique identifi-

cation code which the computer can read. These are requisite properties

for terminals in the MIT time-sharing system, and for most others as

well.

Finally, in order for such a console to fulfill its role as a

computer time-sharing terminal, it must be inexpensive. The target

price cost which is felt to be reasonable is from $3, 000 to $5, 000 in

production quantity. Although somewhat arbitrary, this figure looks

reasonable with the cost of components coming down, with proper de-

sign, and with the projection of large-volume production.

The major design constraints imposed by these goals may be

summarized as follows:

Bandwidth-limited data input -- telephone line speed.

Need for a CRT display with high quality, fast text
display, and random vector drawing ability.

Need for a low-cost unit in a stand-alone configuration.

3. Design Considerations

In considering possible approaches to meet the above goals, TV

displays were ruled out because of the difficult transformation of

generalized graphics to video format. If this is done at the remote unit,

it is expensive. If it is done at the central computer, the mass of data

(106 bits per picture) requires much too long a time to transmit over a

telephone line. Repetitively regenerated random-access digital displays

were also ruled out, because while they are technically feasible for

telephone-line operation, they require high-cost deflection amplifiers

and high-speed memory to keep large amounts of data refreshed without

noticeable flicker.

-104-

In view of these problems in attaining low cost in refreshed

displays, the decision was made to investigate the feasibility of using a

display device in which a picture is stored in image form as written.

This decision was influenced by the introduction in 1964 of the Tektronix

Type 564 direct-view meshless storage tube (DVST). Although this tube

has only a 3" by 4" screen area, the resolution and other characteristics

largely met the goals stated above, and there were indications that

larger tubes were under development.

The use of a direct-view storage CRT was a key design decision.

With such a device, there is no need to provide either an electronic

memory or high-speed electronics, such as are required for rapid pic-

ture regeneration in displays using conventional CRT's. New data is

written only once and may be entered randomly on the display screen at

rates compatible with the relatively low-input bandwidth; thus speed

requirements on the electronics are quite modest.

The low-input bandwidth implied that efficient data coding be

used to generate complex displays in a reasonable time -- say 10 to 20

seconds for a full screen. Unfortunately, such coding increases the

amount of data processing equipment at each display station. In this

case, it was concluded that a vector and a symbol generator must be

included in each display terminal. The design problem then was to per-

form these functions with low-cost equipment, exploiting if possible the

low requirements on speed of display generation, as compared to

regenerative displays.

The first task was to choose an appropriate beam-positioning

technique that would be capable of random point plotting, vector gener-

ation, and symbol generation. Because of the success of the incremen-

tal scheme employed in the ESL Console and its basic simplicity, it was

decided to use a similar approach in the low-cost display. Recall that

There are a number of other promising image-storage techniques under
development (e. g., photochromics, EL-PC panels, photoplastics) which
may someday permit large, high-resolution image-storage displays at
very low cost. However, none of these at this time permit the instanta-
neous viewing of material as it is written. Since it is an important char-
acteristic of a computer time-sharing terminal that data be immediately
visible as it is written, image-storage techniques that require developing
and fixing of a latent image (e. g., photography) will not perform well in
a man-computer conversation.

-105-

the ESL Console uses binary rate multipliers (BRM's), in conjunction

with up-down counters and digital-to-analog converters, to move the

CRT beam in small, discrete voltage steps. By intensifying the beam

after each step, a constant intensity line, made up of a series of closely-

spaced dots, is drawn on the screen. BRM's can easily be made from

readily-available, inexpensive, digital-building blocks. The up-down

counters and digital-to-analog converters, however, appeared to be

high-cost items and an alternate solution was sought. Noting that these

simply integrate pulses, it was decided to adopt an unconventional,

hybrid approach. Pulses produced by each BRM are shaped to have

constant amplitude and duration and then are fed to an operational ampli-

fier connected as an integrator. Polarity of the pulses is controlled in

accordance with the sign of the vector component. The resulting ampli-

fier output produces the same discrete-step characteristic as the more

expensive up-down counter and D/A converter combination. Thus in the

low-cost display, all beam motions are controlled by pulse inputs to the

integrators.

The major circuit problem with this approach was that the two

integrating capacitors must "hold" the voltages impressed upon them,

without significant drifting during the 10 to 20 seconds required to pro-

duce a typical "picture". Because of various leakage paths, the capaci-

tors will tend to discharge and cause the beam position to drift. How-

ever, with careful design -- use of very stable amplifiers, very low-

leakage FET input gates and high-quality capacitors -- drift has been

held to one screen position per two minutes. This is quite adequate.

Despite the requirement for high-quality components in the integrators,

costs are substantially less than the equivalent up-down counter and

D/A converter, primarily because of the present availability of low-

cost solid-state operational amplifiers.

4. Description of ARDS-II

To confirm our conviction that a low-cost display using image

storage and incremental plotting techniques was feasible, we have de-

signed and constructed a prototype unit, which has been designated

ARDS-II (Advanced Remote Display Station - II), a block diagram of

which is shown in Fig. 24. A previous breadboard output-only unit

-1
0
6
-

z
5
?

-I
~

~
~

~
~

~
~

~
~

I'
'I

00
>

0
~0

I~
~~

~~
~~

~-

r
I

m

-

-I
<

r,

0,

,n

I',

~~
0~ ~~

0 ~

~
~

~
~

~
~

0
ci

rr
o

0
Z

-n
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~n

°
-

-I
(n

0a

0
~~

~~
~~

~~
~~

-o
a

7
0

0
-I

 ~
 ~ ~

~

~
~

~
~

~
~

~
~

~
~

~
~

~
o

°~
~~

~~
~~

~~
~

[
a

r
--

,

'
-
I

©

1I
0

-.

·

0
m

:
~

-- 1

x

Z
L

n
ar

 ~

~
~

,..

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
-o

0
r

70
M

Z

>
m

>
-

-

,,,
~~

~~
~~

~~
--

I7

-
:

r
X

O

(

>
>

"

1
L

23
-

©

P
i

C;
::o

U
3

2
!

L
q o

o
0-

70
.r

n Z

C
h~

 ~
~

~
o

m

m
O

O

g

"~
~~

~~
~~

~~
~~

~~
~~

00

Z

m

O

~~
~~

~~
~~

~Z
r

m

3
"

-1

-I

-(
r~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~

z3
r)

tb

io
Z

O

,

-C
0

m

-
- q

m

x
~

C
Z

~~

-107-

(ARDS-I) was constructed in 1965 (partly as a thesis project) to demon-

strate the feasibility of the basic display generation techniques.

a. Vector Generation. Pictures are drawn on the ARDS-II by

using incremental vectors -- that is, picture elements are constructed

by connecting straight-line segments end-to-end. In a Long Vector

command, the incremental vector lengths are defined as i-bit sign-

magnitude numbers, which are loaded into horizontal and vertical regis-

ters. The values stored in these registers program the binary-rate-

multiplier to produce synchronized Ax and Ay pulse trains of 0 to 1023

pulses each (there is also a Short Vector command which uses 6-bit

sign-magnitude numbers to produce up to 31 increments in Ax and Ay.)

The clock rate is 100 kHz, i. e., the maximum plotting rate is a point

every 10 microseconds. These pulse trains are fed as positive or nega-

tive pulses, depending on the Ax and Ay sign bits, into the two opera-

tional amplifiers where they are integrated and cause the CRT beam to

trace out the desired line. Vectors can be visible or invisible, as

specified by an intensity bit in the command.

In the Vector command described above, the beam motion is

incremental, i. e., each vector starts at the beam location resulting

from the previous command. In order to produce starting points for

vector and symbol sequences, and to perform random point plotting, we

also needed to be able to position the beam at absolute screen locations.

Since the absolute screen location x, y is the same as the end position

of a vector with incremental values Ax, Ay plotted from starting loca-

tion 0, 0, it was possible to use the vector generator to also act as a

"set-point" generator.

A Set Point command operates in the same manner as a Vector

command except that reed relays short the integrating capacitors and

return the beam to the screen center (0, 0) before the vector generator

is started. No penalty in display speed is incurred because the slow

data input rate provides more than enough time to accomplish both the

zeroing and vector drawing functions in one instruction cycle.

b. Symbol Generation. Symbol generation was another impor-

tant problem, since this is usually quite an expensive function in display

systems. Quite often, graphical displays are designed with symbol

-108-

generation and vector generation being treated as entirely separate

problems. By sharing certain circuits between vector and symbol gen-

erating tasks we have achieved important cost reductions. Given the

basic incremental beam positioning system which has been described,

all that is needed to create a dot-matrix symbol generator is a pair of

counters to step the beam through a matrix pattern, and a memory to

hold the specific intensity pattern for each symbol, which causes the

CRT beam to blank and unblank as it moves through the matrix. The

matrix pattern includes inter-symbol spacing, i. e., it leaves the CRT

beam in the proper screen position to plot the next symbol, so that no

beam repositioning is needed between symbols in a text line. Initial

positioning for the first symbol in a line is established by a previous

vector or set point, thus there is full flexibility in choosing symbol

locations. Design of the symbol generator is discussed in Reference 60.

Because we are limited to telephone-line transmission rates,

plotting speed is not a problem, and a 7 x 9 dot matrix was chosen to

display the 94 printable symbols of the ASCII code with reasonable

fidelity. This requires a 96-word, 63-bit read-only memory for the

symbol patterns (a blank symbol is used for "space", and a filled-in

pattern for "delete"). The symbol memory is a 6720-bit diode matrix

array contained on a single one-half-inch square integrated-circuit

chip, manufactured by the Autonetics Division of North American-

Rockwell. *

c. Communications and Control. The function of the communi-

cations and control portion of ARDS-II is to accept a continuous, serial

bit stream from the telephone line, and decode this into commands and

data to enable the machine to perform useful functions -- such as draw-

ing a line or printing an alphanumeric symbol. For practical reasons,

transmission is in the form of fixed-length "characters" with "stop" and

"start" bits to insure continuous synchronization between source and

receiver. The character set chosen is the American Standard Code for

Information Interchange (ASCII) which will be used in the new Project

MAC MULTICS System. This choice was also prompted by the desire

Electronics Magazine, May 30, 1966, pp. 152A-152D.

- 109-

to build a console that would be compatible with other computer systems.

In the ARDS-II, therefore, characters are 10 bits long (with a start bit,

7 data bits, a parity bit, and a stop bit).

ARDS-II currently has four modes, entered by the ASCII group

separator codes as follows:

Control Character ARDS-II Mode

FS Symbol

GS Set Point

RS Long Vector

US Short Vector

In Symbol mode, each succeeding character is treated as a sym-

bol to be plotted, and ARDS-II acts just like a teletypewriter (it is in

fact directly compatible with a Model 37 Teletype). A 10-bit input shift

register, driven by a clock that is resynchronized by each new character,

serially stores an entire character. When the input register is loaded,

the data bits are immediately shifted out at high speed to one of five

7-bit registers. A mod-5 character counter gates the first character

into the command register. If this character is one of the 96 text sym-

bols of the ASCII code, the symbol generator is activated, and the sym-

bol is plotted on the display screen at the current beam location. At the

same time the character counter is reset and a new character is assem-

bled in the buffer.

In the Set Fbint and Long Vector modes, 22 bits are required to

define the x and y components, and an additional bit is required for

intensity control. This binary information is transmitted in groups of

four ASCII characters, using six bits of each character (this scheme

avoids problems which arise when binary data includes the ASCII control

codes). The Short Vector mode was added to improve efficiency for very

short vectors. It uses a two-character sequence to define vectors up to

31 increments in each component. In all of these modes, the plotting

operation takes place during the time while the next character is being

assembled in the input buffer (8. 8 milliseconds with the present 1200 bit

per second transmission).

d. Graphical Input. For graphical input, one would like to be

able to move a pointer or "cursor" over a stored picture and yet not

-110-

store the image of the cursor. Fortunately, the characteristics of the

DVST screen we are using are such that there is a stable gap between

the "image-visible" intensity level and the "image-storage" level.

Also, there is a maximum writing rate beyond which storage cannot

occur. Therefore, by lowering normal intensity and moving the beam

through the cursor pattern rapidly, a very visible but non-storing cursor

is available.

The cursor pattern is generated locally, and its position on the

display screen is controlled by means of a hand-held box that is moved

about on a surface. This box, similar to a device called the "mouse"

by its developers at Stanford Research Institute, has two potentio-

meters mounted at right angles to each other. Wheels attached to the

potentiometers contact the surface, and resolve the motion of the box

into two orthogonal components which are fed as voltages to the CRT

deflection inputs. Thus, the cursor on the screen "follows" the motion

of the "mouse". A low-cost resistive tablet has also been investigated.

At the request of the operator (pushbutton control), an analog-

to-digital converter digitizes the vertical and horizontal components of

the cursor's (or tablet's) position and transmits them to the computer.

The operator's program can then interpret these position values as it

sees fit -- as endpoints of lines when in drawing mode, as a pointer in

locating one of a number of displayed objects, and so on. This type of

input has only barely begun to be investigated, but it is felt that it will

provide most of the functions now obtained with light pens and input tab-

lets on the more elaborate, refreshed consoles.

e. Pictorial Results. The ARDS-II prototype as it existed in

May, 1967, is shown in Fig. 25. Note that the storage tube used was

the Tektronix Type 564, with a 3" by 4" screen. This permitted display

of up to 1200 quite legible characters, but was considered to be too

small for a use in a final terminal.

An engineering model of the new Tektronix Type 611 Storage

Display Unit was obtained for tests in August, 1967. Although this is

English, W. K., Englehart, D. C., Huddart, B., "Computer-Aided
Display Control, " Final Report, Contract NAS 1-3988, Stanford
Research Institute, Menlo Park, California.

-111-

_~~~~~i '' ^
__ - A*'.~~~~~~~~~~s . ,*i

_ A=

~~~~~~~~~~~~ __~.

Ad ~ ~~~~~~~~~ S

~-,e * "- ·'. "

_p~; ~ BSI rr 1

3 X~~~~~~1i

f--'~;·.-;Fig -25 ARDS-lI wxO

Fig. 25 ARDS-II with Tektronix 564 Storage Oscilloscope



not within the period covered by this report, the results were so

striking that it is appropriate to conclude this discussion of the ARDS

development with a sample display from this new tube. The Type 611

has screen dimensions of 6. 5" by 8. 5", and has a stored spot size of

only 0. 008". Resolution is about twice that of the older Type 564.

Figure 26 shows a full-size photograph of an ARDS-II display on the

Type 611. The text size shown permits 4000 characters per page. The

next stages in the ARDS development will be to add an input keyboard

and package the electronics and storage tube into a self-contained table-

top unit.



-113-

Fig. 26 ARDS-11 DisPlOY (Full Size) with Tektronix Type 611 Stoage Tube
a~~~~~m -!-- am-- -rm- - _" ;1s ll . 1



CHAPTER VIII

GRAPHIC SOFTWARE

In addition to its work in display hardware, the Project also

has from the beginning been active in the study of generalized tech-

niques for the use of displays in man machine-interaction-- the soft-

ware side of computer graphics. We have never thought of this

display-oriented activity as merely picture-making, but always have

considered graphics in the total context of computer-aided design.

Computer graphics, in our thinking, has always been synonymous

with graphical language, with a heavy admixture of problem-modeling

inextricably interwoven to encompass the meaning of graphical lan-

guage in the total problem-solving process.

A. HISTORY

As was the case with other interests, activities of the Elec-

tronic Systems Laboratory in the area of graphic software predates

the initiation of the Computer-Aided Design Project proper. In addi-

tion to on-line graphical input-output for data reduction and general

problem-solving systems (including program control, situation dis-

plays, and an elaborate system for plotting graphs of functions), the

three-dimensional cutter-path displays of the APT System have

already been mentioned. One of the most pertinent and prophetic

studies was carried out in 1959 as part of the transition from APT to

Computer-Aided Design. This study, called the "Point-Line Diagram"

study had three main purposes:

1. To provide a general model of the computer-aided
design process as we envisioned it.

2. To study the applicability of the (then) new list-
processing languages as a technique for carrying
out our (then) new plex programming techniques
without using machine language programming.

3. To provide a concrete example of a miniature
computer-aided design system, both for demonstra-
tion and to serve as an initial vehicle for later,
more elaborate investigations.

-114-



-115-

The view of the design process, which is still valid today,

was that the composition of a design involves an iterative process in

which various sub-elements are composed into interrelated struc-

tures, which then are forced to satisfy specified conditions. Before

the precise conditions can be specified, the structure being built at

any given stage is a loose structure with many degrees of freedom

represented by unspecified parameter values. At some stage, suffi-

cient structure will exist to allow the desired constraints to be im-

posed. The parameters of the various elements may then be adjusted

by a constraint satisfaction routine until the desired condition is

reached, or until it is necessary to add more structure, change

some conditions, or relax some constraints.

The point-line diagram study illustrated this process in a

very simple form. The basic elements were points, lines, and

angles between lines, which were represented in list structure com-

posed and manipulated using the LISP list-processing language, then

under development by the MIT Artificial Intelligence Group. Coordi-

nates of points, lengths of lines, and angles between lines could be

constrained to fixed values, and various "hill climbing" algorithms

were used for the multi-variable constraint satisfaction process. All

input to the resulting system was in character form, although side

investigations were made to show that the various light pen graphics

studies (being carried on in parallel on the TX-O Computer at that

time) could easily supply graphical input and output if desired. The

study was satisfactorily completed, confirming both the validity of

our view of the design process and the expectation that general list-

processing techniques were far too inefficient (both in storage and in

execution time) for practical use in computer-aided design. It was

on this basis that the Project undertook the development of plex pro-

gramming and higher level language development leading to the AED

Systems of today.

As has been described previously, the Bootstrap Compiler

was our first step in language development. After this work was par-

tially underway, we also began graphical language studies to accom-

pany the display equipment being attached to the IBM 709 Computer of



-116-

the MIT Cooperative Computer Laboratory. Several isolated experi-

ments were carried out in light-pen tracking, and a "light button"

compiler was developed to permit arbitrary control actions to be

associated with spots included in a display.

As these activities were drawing to a close, we began the

design of a Bootstrap Picture Language, much along the lines of the

Bootstrap Compiler, with the intention that such a system could then

be coupled to design examples such as the point-line diagram study.

The Bootstrap Picture Language system started out with a very small

number of built-in light buttons displayed on the scope. One of these

light buttons represented a geometric point and the others enabled

geometric objects to be composed from other existing geometric ob-

jects, with specification of special display features, if required.

Once a generic object had been created, any number of copies could

be made and used to compose other objects. The bootstrapping

process consisted of defining a straight line in terms of the built-in

point, after which objects composed of lines could also similarly be

bootstrapped into existence. In general, pictures were composed of

sub-pictures and could themselves be treated as sub-pictures.

Part way through this development, interest developed in con-

structing a full-blown Multi-Pass Compiler to replace the Bootstrap

Compiler. Out of initial investigations grew the Algorithmic Theory

of Language upon which much of the remaining work of the Project

has been based. (The language theory itself is an application of the

"growth" concepts of plex programming, so that all of these activities

have a common heritage. ) During the early stages of development of

the language theory, examples were drawn freely from algebraic pro-

gramming language, structured geometric language ('a la the Bootstrap

Picture Language), and various constructions drawn from natural

English language. Once the principles of the language theory began to

solidify, attention focused primarily in the programming language

domain, both because of the need for replacement of the Bootstrap

system and also because many aspects of the graphical language

requirements were being satisfied by the success of the thesis



-117-

investigation of Ivan E. Sutherland, which ultimately led to the

Sketchpad System (see Reference 22 in Appendix II).

B. SKETCHPAD

Sutherland had several sources of sponsorship for his thesis

activity. In addition to a National Science Foundation Fellowship

stipend, he received generous and free use of the facilities of the

powerful transistorized TX-2 Computer at Lincoln Laboratory. Also,

from the MIT Computer-Aided Design Project, Professor Coons (who

served on the Thesis Committee) and Mr. Ross provided guidance and

encouragement. The Sketchpad development went through four princi-

ple phases. In the summer of 1961, initial display investigations were

concerned primarily with plotting functions and investigating pen-track

logics, and laid some preliminary groundwork.

In the fall of 1961 an initial computer-aided drafting system

was written, based on an internal Project memorandum of Coons.

This system implemented for the first time the "pseudo pen" or

"nearest indicated point" technique whereby the system selects a

point exactly on a displayed object whenever the tracking cross loca-

tion is within some preset distance of that object. This technique

allows precise manipulations to be performed with the inherently

imprecise light pen. The structure of the initial drafting system was

very rigid, with specific push buttons for constructing horizontal and

vertical lines and performing normal drafting actions. The internal

modeling consisted of fixed arrays of coordinate information.

The second phase of these developments followed Sutherland's

introduction to the concepts of plex programming (as practiced in the

Project at that time), the Point-Line Diagram study results, and the

generic and specific instances of sub-pictures of the Bootstrap Picture

Language, etc. Many of these concepts received very natural repre-

sentation in terms of the indexing, partial word, and multi-sequence

interrupt capabilities of the TX-2 Computer, and its large core mem-

ory of 65K words enabled elaborate data structures to be built and

manipulated with ease. This first Sketchpad System was internally



-118-

structured in terms of interlocked ring structures, and included sub-

picturing capability. It also had a more flexible input language,

departing from the drafting-like flavor of the initial system. For ex-

ample, a basic constraint satisfaction facility enabled lines to be con-

structed at any angle and then a single push-button specified that an

indicated line was to be made exactly horizontal or exactly vertical,

depending upon which was most nearly applicable.

The final phase of Sketchpad development involved a reorgani-

zation of several internal features of the system and an elaboration of

the constraint satisfaction capability, including the graphical display

of applicable constraint conditions and use of the system for various

applications to which it was well suited. Sutherland's skill, inventive-

ness, and diligence in expressing these powerful concepts in a

smoothly functioning system, making maximum use of the powerful

features TX-2 Computer, enabled Sketchpad to bring to life for many

people the vast potential for computer-aided design. In particular,

the widely distributed movies of Sketchpad in operation have had a

profound influence on the whole field of computer graphics.

C. THE ESL CONSOLE IN TIME-SHARING

After the Sketchpad era, the generalized graphic software

activity of the Project began, based upon the use of the ESL Display

Console in time-sharing. As was mentioned in the previous chapter,

the Console was placed in operation on the Project MAC 7094 time-

sharing system (CTSS) in the spring of 1964, and within a few months

preliminary software was available to enable its use in initial applica-

tions. Figure 27 shows the general system which was used from 1964

to mid-1967 for operating the ESL Display Console in the time-sharing

environment. The time-sharing system has two 32K core-memory

banks called A-core and B-core. A-core contains the time-sharing

Supervisor programs which are always active. User programs are

cycled in and out between B-core and the mass storage of the magnetic

disk system by the Scheduling Algorithm of the Supervisor. In order

to maintain a regenerative display on the console and in order to



z
o

'0o 
II

I- i 
Ii 

II
t; 

i

_~~~~~~~.1

>
>

- 
0-

I~
~

~
~

~
~

~
~

~
--

0 
<

~~
L

U
~~

L
U

 ~ ~ ~ ~ 
~ 

~ 
~ 

~ 
~ 

~
LA

 
0
0
 

V
II

L
jL

n
z
 

Z
t

oO
~~~~~~~~.-- 

I
·

0
E

0
v
) 0

op
"

v3 ~ ~
~

~
~

~
~

~
~

~
~

~
v

>
0-~

~
~

~
I

,-

0
C

>L
U

>-r

0
<

Z

«Z
U

~~~~~~~~~~~~~~~~>
,I-~

C
)~~~~~~~~~~~~~~~~~~~~a

O
 

Z 
a

0 
I0

.-r-

JE
 

0

V
)~

~
~

~
~

~
~

' 
--ou

V
)~ ~ ~ ~ 

~ 
~ 

~ 
~ 

~ 
~ 

~~~~~~~~~U
L

U
~~~~n 

C
 

~
~

~
~

~
~

~
~

~
u
-

U
 



-120-

provide real-time response to the electronic interrupts caused by

real-time actions at the Console, a portion of the Supervisor memory

in A-core was allocated to service display needs. This portion of the

graphical software system was called the "A-core Package" and occu-

pied about 4, 000 36-bit words of the 7094 core memory. Of this

amount, roughly 1/3 held the user display file of commands to the

hardware display generation system, and the remainder was used for

programs.

There are several categories of program in the A-core Pack-

age. Some programs control the timing and sequencing of the display

file words through the data channel to the display console. Others

physically construct and perform editing functions on the display com-

mands. Others respond to interrupts from the console, composing

messages called attentions for transmission to the B-core user pro-

gram when it becomes active in time-sharing. The final category,

called real-time functions, perform calculations and manipulate the

parameters of various display commands to provide such features as

real-time rotation, "rubber-band" lines, etc..

All communication with the display console must take place

through procedures of the A-core Package, since only the carefully

debugged routines of the Package can guarantee the integrity of the

time-sharing system against user-generated errors. Cycling of the

display is controlled by one of the real-time clocks in the ESL Display

Console which generates an interrupt to A-core 30 times per second,

at which time the display cycle is reinitiated if it is not already running.

If a display cycle takes longer than 1/30th of a second it is restarted

as soon as it finishes in order to minimize flicker. Before a recycle

of the display begins, the binary and decimal switches and the "crystal

ball" of the display console are sampled and their values are stored in

A-core for use by programs if desired.

D. THE DISPLAY EDITOR PACKAGE

The routines of the A-core Package are quite specialized, and

a fairly detailed knowledge of various technical details is required in

order for a user to perform desired actions through A-core calls.



-121-

Since many of these features are dependent upon the characteristics

of the ESL Display Console and the particular form of time-sharing

being used, a complementary display file generation and editing pack-

age, called the B-core Package, was written to complete the user

interface to the display system. As it's name implies, the B-core

Package is not continually resident in core memory, but instead

cycles in and out as a part of the user's own program in B-core. The

B-core Package consists of a large number of atomic and molecular

subroutines which permit any desired display file to be written and

changed. Not only may the entire range of basic functions of the ESL

Display Console be used, but in some instances the B-core Package

provides a higher-level of approach to the problem of programming

graphics. The B-core Package is described in Reference 32.

A family of B-core procedures also allow administrative func-

tions to be performed, as well as generation and editing of the display

file which composes a picture. All routines are written in accordance

with the principles of integrated package design so that calls on the

procedures may be nested one within another to compose high-level

constructs in an efficient manner. In addition to constructing picture

objects from points, lines, and circular arcs, messages composed of

characters may be displayed, rotation matrix settings may be altered

by real-time functions, and other console actions may be effected. A

single call for a circular arc will automatically cause the required

number of straight-line commands to be inserted into the display file

to compose an approximate arc out of straight-line segments.

Other procedures in the B-core Package are concerned with

the processing of attentions caused by push-button or light-pen inter-

rupts from the console. Groups of display commands also may be

composed into sub-pictureswhich may be called from many places in

the display file, just as closed subroutines are called in a computer

program. When a pen response is received, the user program must

know which subpart of the total display was seen. The B-core Package

provides a general and powerful solution to this problem in the form of

display registers which may be imbedded in the user's own data



-122-

structure, so that the B-core Package can indicate directly (in the

terms of the user's own problem) the object which was seen. This

referencing system can become elaborate and very important when

sub-picturesare used, for it is necessary to give the entire ancestry

of the final object in order to receive an unambiguous indication.

These and many other features of the B-core Package provide

a sophisticated high-level interface to the intricacies of display pro-

gramming which is to a great extent independent of both the display

system and time-sharing system. The technique is similar to the

Postprocessing idea of the APT System which allows the APT System

to generate control tapes for many different machine tools, merely by

changing the Postprocessor Module of the system. We use the same

system of B-core calls to drive both the ESL Display Console and the

ARDS storage display, even though the systems are connected to the

time-sharing system in quite different ways and have very different

command languages and display characteristics.

The B-core philosophy not only provides display and operating

system independence similar to the interchangeability of Postproces-

sors in the APT System, but the high-level approach to display pro-

gramming is of great value in enabling powerful systems to be con-

structed efficiently and reliably. This feature was dramatically

demonstrated during the preparation of the B-core Package itself.

The ESL Display Console was initially constructed to provide its rota-

tion capabilities only in two-dimensions, with the third dimension

mechanization saved until the approach was proved out. The initial

B-core Package was written and already in use for two-dimensional

graphics when the third dimension was added to the display console

capability. This necessitated the addition of a new routine to the

B-core Package to enable display construction with three-dimensional

lines. When this program was written, it was necessary to write a test

case to check it out.

Mr. Charles Lang, author of the B-core Package, decided one

Sunday evening to use the three-dimensional drawing technique illus-

trated by Sketchpad III as a test vehicle. In this scheme, the screen



-123-

is divided into quadrants with simultaneous display of plan, top, and

side views, plus a three-dimensional perspective or axonometric pro-

jection. In that single evening, Mr. Lang wrote and debugged the

entire system, verifying the correctness of the new three-dimensional

line subroutine. Except for the fact that the B-core Package did not at

that time include a pseudo pen capability, the performance of this test

system was identical to that of the TX-2 Sketchpad III System, developed

in a Master's thesis only a year before. (A three-dimensional pseudo

pen package now exists as an adjunct to the B-core Package. ) Thus,

even though this application had not been planned in advance, the

building-block facilities of the B-core Package (coupled with the power-

ful features of AED-O and the time-sharing system) permitted a very

high degree of almost casual automation to be applied to a problem

which had only a short time before been a significant research effort.

E. THE DISPLAY INTERFACE SYSTEM

As discussed in Chapter VII, the ESL Display Console was

initially directly connected to the A-core data channel only as an ex-

pedient to gain experience and to assist in deciding how much more

than a simple buffer memory was required to adequately support a

sophisticated display console. Even though the A-core/B-core system

was relatively efficient, the combination of display generation and

real-time computation on occasion placed an unacceptable load on the

time-sharing system, decreasing the resources available to the more

numerous nongraphic users of the system. Thus, in early 1967 a

PDP-7 Computer was purchased by Project MAC for insertion between

the A-core data channel and the ESL Display Console, to serve as a

display buffer and minimize the load on the time-sharing system.

Figure 28 illustrates the revised organization of the Display

Interface System to accommodate this two-computer organization. As

is characteristic of the other activities of the Project, we have

approached the problem of coupling a display console to a time-shared

computer through a dedicated real-time computer in a manner which

is as general as possible, and yet which is practical for economic use.



-1
2

4
-

7

-Ji~ 0
.-,o 

<,
-1 

L
 

>Z 
Z

 
Z

0-<z 
.<

~
A

.J 
C

---~ 
U

 
0

N
- 

U
0I.-I
u

-
oI~~~~~~~~~ 

Igu
o 

0
(

o 
i 

0iii

L
U

1 
II

a -
L

'U
 

-E0

v, 
n

ct 
v,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a.

v
,~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
C

L
 

w
~~~~~~~~~~~~~~~~~~~~~~~~~~~~a

zO

O

w
 Z

~~~~~0

..~ 
_ 

\
v
,

L
U

 
-

L
n

H
- 

I 
L

L
 

o~
-

co~
~

~
~

-jc
a_ L

U
 

z

0I 
0

 
0)-

L
U

 
UI 

LL
U

U

I-- 
~~~~~~~~~~~~~~~I
L

i,~ ~ ~
~

~
~ ~

~ ~
~

~
~

~
~

~
~

C

0
0

~
~

~
~

~
~

~
~

~
~

~
~

0
(30-a

ae <
z

0
a

co

a
-o

 a Li~
~

~
~

~
~

~
~

~
~

~
~

~
0 ~ ~ ~

+

ce
c

o
w

~
~

~

C
>

0

w

v,

C
)

uj~~~~~~~~~~~~c

L
i,< ~

~
~

~
a

Z
I

Ln
L

L

u

c
e
 <

Zn(

-125-

The new Display Interface System is intended to be independent of

display and computer hardware, system-organization, and application

area, so that the same general approach can be applied to a wide

variety of circumstances. As before, the B-core System Display

Editor Package provides the outer interface to the user problem, so

that very little program modification is required in the event that

hardware and operating system characteristics are changed (even

drastically).

The central idea in the Display Interface System, as described

in a paper at the 4th Annual ACM/SHARE Design Automation Workshop

in June, 1967 (see Reference 110 in Appendix II), is that the total stor-

age and computing time of the real-time computer are continuously

dedicated to the user's problem, even though the remainder of his sys-

tem cycles in and out in time-sharing and is only occasionally active.

For economic reasons, the real-time computer will in general be as

small as possible to provide the required capability, and therefore

real-time computer capacity is a limited, precious commodity. We

seek to develop a system organization which will provide minimum

overhead for all classes of users, so that each user may have the

maximum amount of real-time computer capacity to use as he sees

fit. This general idea translates into the concept of a minimal

executive for the real-time and time-sharing computers.

In general, the minimal executive programs are concerned

only with transmission of messages between the two computers. A

message may consist of user information (display file, data, control,

or program) or system program. The absolute minimum real-time

executive for the small computer need only be able to

1. receive messages from the time-shared computer,

2. respond to physical interrupts from the display
console, and

3. be able to tie in system programs in a simple
fashion into its execution cycle.

In this way, the first messages from the big computer may be

selected system subroutines to be added to the minimal executive to

-126-

give an augmented executive, capable of performing precisely those

actions which the user requires. Among these actions in general will

be the ability to send messages back to the big computer.

In the time-shared computer, the purpose of the minimal exec-

utive is to minimize the fixed overhead on the time-sharing system

imposed by display system users. Virtually all of the previous A-core

functions may now be performed in the real-time computer (or in the

user B-core area), so that the display executive in the time-shared

computer is strictly a communication coordinator which is only active

in establishing links to and from the B-core Package and the aug-

mented executive of the real-time computer.

Under this new organization, the combined functions of the old

A-core and portions of the old B-core Packages are broken into well-

defined modules, which are mechanized in two ways so that any func-

tion can be performed either in the real-time computer or in the time-

shared computer. Libraries of these routines will be available, and

new calls in the Display Editor Package will allow the user to request

that a total system with specified limited characteristics be dynamically

assembled for him and transmitted from the mass memory of the time-

shared machine to the real-time computer. One user may desire to

have dynamic storage allocation and large display structures, but very

little real-time computation. Another user may have only simple dis-

plays but may wish to use the real-time capability for on-line dynamic

problem simulation with moving displays. Under the new organization,

each class of user will pay only the overhead required by his particular

kind of usage. Notice also that the same system structure can apply

even though the real-time computer becomes a very large computer, as

might be desirable if the communication link costs become high because

of great distance between the two computers.

An initial version of the system described above was placed in

operation in 1967 in a simplified form which duplicates all of the func-

tions previously performed in the old A-core/B-core system, but with

a greatly-reduced load on the time-sharing system. A new version,

with greater emphasis on machine-independence and versatility is

currently under study.

CHAPTER IX

DESIGN DIVISION STUDIES

A. THESIS ACTIVITY

Early in the Project, as was mentioned previously, the Design

Division of the MIT Mechanical Engineering Department was invited to

join forces with the ESL Computer Applications Group in the work of

the MIT Computer-Aided Design Project. The intent of this collabora-

tive venture was to cross-fertilize by having the two groups approach

the common goal from the points of view of mechanical design and

computer applications respectively.

The work of the Design Division took concrete form in a num-

ber of wide-ranging investigations into the design process and into

various specific application areas. Most of this work is summarized

in the complete abstracts for the fifteen Mechanical Engineering

Masters and Doctoral theses which resulted from this work given in

Appendix II-C. Taken as a whole, this collection of theses served an

important role in providing illustrations of the types of activities which

can be foreseen once computer-aided design becomes an economic

reality in the industrial scene. Because the studies were performed

in the thesis context, however, they did not receive public distribution

and are not sufficiently developed to be applied as actual production

tools. They served their role well in providing demonstrations and an

environment of increasingly sophisticated application of computers in

the design process, in the formative stage of the evolution of the

computer-aided design concept. We look forward with anticipation to

the development of similar applications, carried out in sufficient depth

to stand up to the rigors of actual production use, in the industrial

context.

B. GENERALIZED SURFACES

A very significant development of the Project was the extensive

work carried out by Professor S. A. Coons in the generation of sophis-

ticated mathematical techniques for three-dimensional shape description

-127-

and high-level parametric functions. The bulk of this work was

carried out throughout the period when Prof. Coons was a leader of

the Design Division efforts, and received its final publication as MIT

Project lMAC Technical Report No. 41, "Surfaces for Computer-Aided

Design of Space Forms," [Ref. 39]. The following sections are taken

from that report and present the basic techniques involved.

1. Introduction

The purpose of this work is to present the mathematics of a cer-

tain class of surfaces which are suitable for the design and description

of arbitrary shapes. In the past, the subject of surface mathematics

has been investigated, in analytical geometry and in differential geome-

try, from the standpoint of the analysis of geometric properties of sur-

faces that already exist, but very little literature has been produced on

the subject of the creation of such surfaces. As a typical example, the

design of the hull of a racing yacht requires the description of a surface

of considerable subtlety and complexity, and the process is traditionally

carried out by purely graphical procedures which are exceedingly labo-

rious, since they entail a large amount of trial-and-error iteration in

order to assure that the surface is completely described, and is smooth

and "fair". The design of automobile bodies and airplane fuselages is

similarly tedious and time consuming, although mathematical techniques

have been applied to aircraft design for a number of years.

The mathematical structure of the surfaces to be described in

the following discussion has been devised to implement the surface

design process itself, so as to make it, from the designer's stand-

point, extremely natural and easy. The designer himself need not

know or care about these internal mathematical details, any more than

he needs to know the specific composition of the pencils with which he

writes or the mechanics of the splines with which he now draws curves.

The mathematics is relatively simple, but it is nevertheless too com-

plicated for hand calculation, and is designed for use on a computer.

In the design of a three-dimensional object, whether it be an

airplane fuselage, an automobile body, a ship's hull, or a single

sculptured part of a machine, the designer requires a system which

will permit him to define a surface with a minimum of input information,

-129-

and then to modify this surface, if he feels so inclined, either by

changing the original input, or by adding more design constraints to

the system.

The following sections describe a very simple, flexible and

general class of surfaces which are able to fulfill these requirements.

It will be shown that a single algorithmic structure provides the fol-

lowing features:

1. Smooth, fair surfaces can be defined by a minimum
number of curves, and then adjacent surfaces can
be designed to match position, slope, curvature, and
indeed any desired order of derivative along the
adjoining boundaries.

2. The design curves that define the surface can be of
any kind whatsoever, including circles, second-
degree curves, polynominals, transcendentals, and
also sketched curves with no known mathematical
formula whatsoever.

3. Some classic surfaces are not necessarily members
of the family of surfaces to be described; neverthe-
less, these classic surfaces can be matched along
their boundaries to any order of derivative desired.

4. The arithmetic involved in constructing these sur-
faces is extremely simple and easy to implement on
a digital computer. It also lends itself to special-
purpose computing hardware, such as digital or
analog differential analysers. In addition, by virtue
of the form of the algorithm, the parameters that
define the shapes are extremely easy to compute.

We construct complex arbitrary surfaces by piecing together

surface "patches". Each such patch is defined by four boundary

curves, in principle, although it is harmless for one of the boundary

curves to be degenerate, and to appear as a point instead of a curve

segment. In the design of a surface, it is intended that the designer

begin with a single surface patch, or a very small number of patches,

and then subdivide these regions with additional design curves defining

boundaries of smaller patches only when the internal surface needs

modification. This is somewhat at variance with the customary pro-

cedure for mathematical curve fitting and surface fitting of existing

curves and surfaces, in which a relatively large number of surface

points already defined by some other procedure are used to obtain

-130-

mathematical expressions for a surface that best fits them. Instead,

the system to be described is intended to be used by the designer at

the outset, in the process of designing the surface, rather than later

on as a means for making it mathematical. When the design process

is completed, the surface will be completely mathematically defined,

since this definition occurs automatically and concurrently with the

design.

2. Notation

We shall in what follows relate the x, y, and z coordinates of

points on a surface to two independent variables u and w, so that we

could write

x = f (u,w)

y = g(u,w)

z = h(u,w).

If the functions f, g, and h were specified, then for a pair of values of

u and w, a point in space would be defined. If we held one of the inde-

pendent variables fixed, say w, then by allowing u to vary, the point

in space would trace out a curve. If subsequently we set w to a new

fixed value and again allowed u to vary, we would trace out another

curve, and so on. Clearly by stepping the values of w by small incre-

ments and allowing u to vary after each such step, we could produce a

family of space curves that would lie on the surface and define it. All

that is needed is some convenient and systematic way of arriving at

the functions f, g, and h.

It will turn out that the form of all of these three functions is

the same; only certain internal numerical values are different. In

vector notation we can write

[x Y Z] = [f(u,w) g(u, w) h (u, w)]

Since V = [x y z] is a suitable conventional abbreviation for

the vector on the left, we introduce a similar abbreviation for the

right-hand side:

(uw) = [f(u,w) g (u, w) h (u, w)]

Here, in the abbreviated symbol on the left, we shall omit the comma

between the two letters. Later on, when no ambiguity can arise, we

-131-

shall omit the parentheses as well, and write simply uw to stand for

the vector. It is to be remembered that uw does not stand for the

ordinary product of the two quantities, but is merely a bi-literal sym-

bol standing for a vector whose components are functions of the two

variables.

We plan to build up surfaces by adjoining surface "patches", in

an analogy of the piecewise fitting of complicated curves by curve seg-

ments suitably joined together. Accordingly, we shall at the beginning

focus our attention on one such surface patch. To simplify arithmetic,

we shall stipulate that the independent parameters, u and w, can take

on only values between 0 and 1. Then a surface patch can be considered

to be a surface segment bounded by four space curves, (Ow), (1w), (uO)

and (ul).

01 u Il

0 /Ow/ \

00 uO 10

Fig. 29 Simple Surface Patch

Here, typically, the symbol (Ow) stands for the vector describing the

x, y, and z coordinates of points along the curve generated by allowing

w to vary continuously from 0 to 1, while u is held fixed and equal to 0.

We shall introduce two scalar functions, F 0 and F 1 each a func-

tion of a single variable. These will be referred to as "blending func-

tions" for reasons that will become clear.

In order to compress the surface equation, and the proofs that

we wish to demonstrate, we shall use a kind of indicial notation; we

introduce the indices i and j, which can assume only the values 0 and

1, and we invoke the customary summation convention for terms with

repeated indices. This convention in our case simply means that when

- 132-

an index is repeated in a term, we write out all the possible terms

that the actual indicial values generate, and then add them.

3. The Surface Equation

With these conventions and notational peculiarities in mind, we

write

(uw) = (iw)Fi(u) + (uj)Fj(w) - (ij)Fi(u)Fj(w).

(Typically, the first term on the right expands as follows:

(iw)Fi(u) = (Ow)F0 (u) + (lw)Fl(u).

Thus the complete expansion would consist of eight terms, if carried

out.) We shall proceed to demonstrate that this surface equation repre-

sents a surface that contains the four boundary curves, and is thus

defined by them.

We must make a stipulation, a weak one, on the nature of the

blending functions F 0 and F :

F 0 (0) = 1 F 0 (1) = 0

F 1 (1) = 1 F 1(0) = O

A further stipulation is that F 0 and F 1 be continuous and monotonic

over the interval.

Now set u = a, where a can only be either 0 or 1. Then, sub-

stituting in the surface equation,

(aw) = (iw)Fi(a) + (aj)Fj(w) - (ij)Fi(a)Fj(w).

Consider Fi.(a) which occurs twice in the equation. By the stipulation,

if i = a, Fi(a) = 1. Otherwise, if i / a, Fi(a) = 0. Hence all terms in

the expansion that contain i / a vanish; we can set i = a, and what

remains is

(aw) = (aw)Fa(a) + (aj)Fj(w) - (aj)Fa(a)Fj(w)

= (aw) + (aj)Fj(w) - (aj)Fj(w)

= (aw).

-133-

This shows that for a = 0 or 1, and hence (aw) = (Ow) or (1w), the sur-

face equation reduces to an identity. An entirely parallel argument

would show that the equation also reduces to an identity for the other

two boundaries (uO) and (ul). This implies that the surface contains

its boundaries.

Provided a pair of functions F 0 and F 1 that satisfy the stipula-

tions are chosen once and for all, the surface equation may be con-

structed immediately and uniquely for any set of boundary curves (uO)

(ul) (Ow) and (1w). It is to be observed that the only restrictions on

the form of the boundary curves is that they form a closed boundary

and they should be continuous functions, but apart from these rather

obvious restrictions, they can be of any shape whatever, including

curves that can only be represented by tables of values.

We can gain intuitive insight into the nature of such a surface

if we look at one of the terms, say (uj)Fj(w).

We have the expansion

(uj)Fj(w) = (uO)F0 (w) + (ul)Fl(W).

This represents a weighted average of the quantities (uO) and

(ul). When w = 0, F 0 (O) = 1 and F 1 (O) = 0, and the expression becomes

simply (uO). As w increases, the weight of F0(w) decreases, while

that of F 1 (w) increases, so that the surface partakes of the nature of

both boundary curves. As w approaches the value 1, the influence of

(uO) on the shape of the surface gradually disappears while the influence

of (ul) gradually becomes dominant. Finally, at w = 1, the curve (ul)

represents the shape of the surface. We can say that the surface is

generated by a gradual transition from (uO) to (ul), and that these two

curve shapes are "blended" together by virtue of the blending functions

F 0 and F 1 . This discussion is somewhat oversimplified, since we

have omitted the term (iw)Fj(u) and it too plays a part in determining

the shape of the internal surface, as does of course the term involving

the corner coordinates, (ij)Fi(u)Fj(w). The entire surface equation

also is seen to be symmetric in u and w.

-134-

4. Boundary Slope Continuity

It is our aim to design and delineate complicated surfaces by

adjoining surface patches, in a piecewise fashion. Consider two such

01

/ A Ow B Iw

oo0 10 00

uO uO

Fig. 30 Connected Surface Patches

patches A and B, with a common boundary. For patch A the boundary

is (iw); for patch B it is (Ow), and the vectors of coordinates are

equal,

A(lw) = B(Ow).

Then the two patches will be continuous across their common boundary.

They will however in general be discontinuous in slope across the

boundary, and we wish to investigate this and make some amendments

that will correct this discontinuity of slope.

We take the partial derivative with respect to u: Our sym-

bolism for this partial derivative is (uw) = a(uw) and when we sub-

stitute, say, u = 0, we can write (Ow)u to mean the value of the partial

derivative so obtained. Then

(UW)u = (iw)F.'(u) + (Uj)UFj(w) - (ij)F.'(u)Fj(w).

Now substitute u = a = 0 or 1, as before.

(aW)u = (iw)F.'(a) + (aj)uFj(w) - (ij)F.i(a)Fj(w).

If we now place additional constraints on the blending functions, that

their first derivatives

F.'(a) = 0 (a = either 0 or 1)

-135-

we obtain the result

(aw) u = (aj)UFj(w),

all other terms vanishing.

This implies, for example, that when a = 0,

(Ow) = (00OO)F(W) + (O1)UFl(w),

i. e., the derivative anywhere along the boundary in the u direction

(across the boundary) depends only upon the derivatives at the end-

points of the boundary; it is entirely independent of the shapes of the

four boundary curves, including the boundary (Ow) itself.

Thus for the two patches A and B, if

A(10)u = B(00)u

and

A(1l1) = B(0 1)u

i. e., if the boundary curves are continuous in slope in the u direction

at the ends of the contiguous boundary between patches, we are guaran-

teed to have A(lw)u = B(Ow)u everywhere along the boundary regardless

of the shapes of the boundary curves of A and B. This is a remarkably

powerful and useful property, achieved at the slight exposure of extend-

ing the stipulations on the Fi.

Similarly, the second derivative with respect to u is

(UW) = (iw)F.i"(u) + (Uj) Fj(w) - (ij)F."(u)Fj(w)uu 1 uuj 1

and if we further stipulate that F."(a) = 0 we obtain
1

(aw)uu = (aj)uuFj(w).

This establishes second derivative (or curvature) continuity as

an automatic and inherent property of adjacent patches, provided their

boundary curves have this kind of continuity at the end-points of the

boundary. It is easy to see that we may escalate in this way to any

level of derivative continuity we wish along contiguous boundaries.

-136-

5. Correction Surfaces

The surface equation already described is very general, in the

sense that it can contain virtually any boundary curve we wish, and it

has certain benign properties of derivative matching along boundaries;

nevertheless it is not a universal formula for all surfaces, and there

are many that do not belong to its family. We have already seen that

surfaces generated by the surface equation have a definite intrinsic

slope along boundaries, whose variation is rigidly prescribed by a

single formula. Obviously surfaces exist whose boundary slopes do

not match this intrinsic slope, except at the end-points of boundaries.

Nevertheless, we wish to be able to patch together such other surfaces

with our special surfaces, so as to have slope continuity (or continuity

of any level of derivative).

To do so, we introduce a new surface equation, describing a

slope-correction surface, which when added to the first surface equa-

tion has the property of leaving the boundaries unchanged, but causing

the derivatives across boundaries to vary in any arbitrary way we

wish, as we move along the boundary.

The equation resembles the first form very strongly. It is

(uw) = (iW)UGi(u) + (Uj)WGj(w) - (ij)uwGi(u)Gj(w).

Here, typically, (iw)u is a function of w only, and describes

the arbitrary variation of the derivative with respect to u as w varies

along the curve (iw), and similarly for the other boundaries. The

vector (ij) represents the cross derivatives of the four corners.

Typically,

a2(uw) u = O
(0)uw au aw w= 0

The functions G O and G 1 are again blending functions or

weighting functions, but they have properties different from the func-

tions F 0 and F 1 . We stipulate

Gi(a) = 0, a and i = 0 or 1.

Gi'(a) = 0, a /i.

Gi'(a) = 1, a = i.

-137-

The proof that the vectors describing the boundaries vanish identically,

and that the vectors describing the slope variation along boundaries

are indeed given by the equation proceeds along precisely the same

lines we used before.

Analogous forms may be obtained for correction of higher

derivatives along boundaries. For second derivative correction, the

surface equation is

(uw) = (iw) uuHi(u) + (U)wwH(w) - (i)uuww H.(u)(w).

In this equation, the blending functions H. have the stipulations that,

for a = 0 or 1 as before,

Hi(a) = 0

H.'(a) = 0

H i"(a) = O, i / a

H"(i) = 1, i = a.

With these constraints on the Hi, it is easy to arrange matters so that

this second-order correction surface is zero everywhere on the bound-

ary, has zero slopes across boundaries, and has second derivatives

across boundaries specified by (iw)u u and (uj)ww whatever these func-

tions may be. The addition of this surface vector to a given surface

vector will then provide a means for boundary second-derivative cor-

rection without disturbing either the boundary shapes or boundary

slopes.

6. Matrix Form

The surface equation

(uw) = (iw)Fi(u) + (uj)Fj(w) - (ij)Fi(u)Fj(w)

by virtue of the summation convention may be expanded directly into

matrices, to yield:

-138-

(uw) = [uO ul1 [FOw + [FOu F 1uJ Ow

- [F 0 u Fuw 00 Ol ow

L0 11 F Iw

(We omit parentheses, since no misunderstanding can arise. Thus

typically F 0 u is written in place of F 0 (u) as a matter of convenience

and economy); which in turn is equivalent to

(uw) = [1 FOu FlU] 0 u O ul 1

Ow -00 -01 Fw

lw -- 10 1 F
L _ W 1 1

It is slightly more convenient to rewrite this in the equivalent form

(uw) = - [-1 F 0u Flu] FO uO ul -1

Ow 00 01 F 0 w

lw 10 1 Fiw

so as to avoid the awkward minus signs in the 3 x 3 matrix.

Two facts should be noted. The leading row vector in front of

the matrix and the trailing column vector following the matrix are

transposes of one another, but with different arguments; the matrix

represents the boundary conditions of a patch. The partition 00o 0

10 11

is redundant, since its elements must agree with uj and iw for u and w

equal to 0 or 1.

We have already suggested that we can maintain slope continuity

across boundaries by suitable stipulations on Fi, and we have also

already suggested that when desired we can adjust slopes across bound-

aries by a second additive vector with suitable stipulations on its Gi.

We shall now investigate the combined form of the surface equation. To

do so we shall prefix a symbol to the vector uw to indicate whether we

are talking about the first surface equation, or the correction surface

-139-

equation, and we shall omit the prefix symbol when we are talking

about the combined form. Thus

uw = suw + cuw, with

suw = the primary surface

cuw = the correction surface

uw = the combination.

Accordingly, using this notational convention, we will take derivatives,

with respect to u, of the surface equation suw in order to determine its

slope vector in the u direction.

We obtain the complete matric expression for the correction

surface:

cuw = -[-1 Fu Fu GFlU G] UO ul -1° ° ° w w

o 0 0 00 01 Fw
W w 0

0 0 0 10 11 F1w

Ow 00 01 00 01 G wu u u uw uw O0

lw 10 11 10 11 G wu u u uw uw 1

If now we border the original surface equation matrix, it can be written,

suw = -[-1 F u FlU Gou G u 0 uO ul U O -10 0 1 J 0 uO ul 0 0 -l

Ow 00 01 0 0 Fw

lw 10 11 0 0 Flw

0 0 0 0 0 G 0w

0 0 0 0 0 G 1w

In this bordering process, the value of the matric product is unchanged.

Since the pre- and post-multiplicative matrices in this equation

are the same as those of the correction surface equation, we can add

the two 5 x 5 matrices and pre- and post-multiply by the two vectors.

We shall perform, in fact,

-140-

uw = suw + cuw, and obtain

uw = -[-1 F 0 u F u G u G] uO ul uO ul -10 1 0u 1u w l

Ow 00 01 00w 01 FOw

lw 10 11 10 11 Fw

Ow 00 01 00 01 Gw
u u u uw uw O

1w 10 11 10 11 G w
u u u w uw 1

This is a general expression for a slope-matching, slope continuous

surface patch with entirely arbitrary boundaries and entirely arbitrary

slopes across these boundaries. There are no stipulations whatever

on the nature of the boundary slope functions. The stipulation on the F

and G functions have already been discussed.

Similarly the surface equation

uw = -[-1 F 0 u Flu G u Glu Hu HU]

0 uO ul uO ul uO ul -1
w w ww ww

Ow 00 01 00 01 00 01 FLw
w w uww ww 0

lw 10 11 10 11 10 11 F w
w w ww ww 1

X Ow 00 01 00 01 00 01 Gw
u u u uw uw uww uww 0

lw 10 11 10 11 10 11 Gwu u u uw u ww uw uww I1

Ow 00 01 00 01 00 01 H w
uu uu uu uuw uuw uuww uuww 0

l w 10 11 10 l o 11 od10 es.11 THe fr wuu uu uu uuw UUW uuww uuww 1

represents a surface patch whose vectors of coordinates, slope, and

curvature are everywhere arbitrary along its boundaries. The first

column and first row of the 7 x 7 matrix represent these boundary con-

ditions; the remainder of the matrix is redundant, since the quantities

this partition contains must all come from the column and row by dif-

fe rentiation.

CHAPTER X

COMMUNICATION WITH INDUSTRY AND OTHERS

A. INT RODUC TION

As the preceding chapters have indicated, the work of the MIT

Computer-Aided Design Project is not pure research nor pure develop-

ment, nor merely applied research. It can perhaps be best character-

ized as goal-oriented research and development. The Project mandate

and the very nature of the work itself has required that much of the

effort be directed toward abstract theoretical areas with much of the

flavor of pure research. At the same time, however, even the most

abstract considerations are attacked with the intent that the ultimate

resolution will be sound, practical, and economical for direct applica-

tion in the rigors of the industrial and scientific environment. Fre-

quently, this balancing of generality with practicality forces interme-

diate layers of complexity to appear in the work of the Project. It is

almost a truism that suitable idealization will allow abstract and gen-

eral things to be done simply. Similarly, sufficient specialization and

elimination of flexibility will allow practical things to be done simply.

But for the kinds of problems with which we are concerned,the simul-

taneous achievement of generality and practicality without complexity

is impossible.

In order for the work of the Project to be useful to the industrial

and scientific community, it is necessary that our approach to general

man-machine problem-solving be understood in some detail. Since

many Project activities break new ground and require approaches quite

different from those commonly used, a large and increasing amount of

Project effort must go into the preparation of technical presentations

and documents describing the approach and the work. The large num-

ber of references cited in the Appendix to this report give testimony to

the importance which we attach to this vital aspect of the Project man-

date.

-141-

-142-

Through past experience in the launching of the APT Language

and System for programming of numerically-controlled machine tools,

and in other Laboratory efforts in which advanced research results are

meaningful and worthwhile only when they are applied by others, we

early became convinced that we could not rely upon ordinary documen-

tation and reporting to promote effective transfer of results into the

application environment. In addition to ordinary documentation, pilot

projects and worked-out examples must be carried through to comple-

tion in order to demonstrate "reduction-to-practice" and to provide

stimulus and guidelines for further applications. Various theses and

specialized application system developments have been intended to ini-

tiate the fulfillment of this requirement, but much further work remains

to be done.

Even documentation and examples are not sufficient, however,

for the complex nature of the work of the Project makes it virtually

impossible (at least at the early stages) to capture all of the essential

information and ideas in concrete form. Throughout this initial phase

of the Project, and for several more years as well, the "culture" which

accompanies the use of the ideas and techniques plays an essential role,

and this important ingredient can only be transmitted through direct

experience and intimate collaboration. Therefore, another important

activity of the Project in the area of communication and education has

been a variety of cooperative arrangements with potential users of

Project results. These cooperative programs have been arranged on

a direct, informal basis, with numerous groups and projects at M. I. T.,

and with industry and outside organizations, through the AED Coopera-

tive Program of the Project. Such joint ventures both serve the de-

sired information transfer role and also provide important feedback to

the Project on the efficacy of the work in various environments and

applications.

The participation in the work of the Project by the Design Divi-

sion of the MIT Department of Mechanical Engineering has been re-

ported in Chapter IX. The most intimate current association of the

Project is with Project MAC at M. I. T. Project MAC is a large

Institute-wide project sponsored by the Advanced Research Projects

Agency through the Office of Naval Research. This work, under

-143-

Contract NOnr-4102(01), is intended to study, develop, and foster

man-machine problem-solving. The acronym MAC can be considered

to come from Machine-Aided Cognition, indicating the broad goal of

the Project, or from Multiple Access Computer, referring to the

time-shared use of computer as a means toward achieving the broader

goals. Project MAC has a very large IBM 7094-based time-shared

computer system in successful operation on a 24-hour-per-day,

7-days-per-week-basis, with short down times for maintenance and

collection of backup records. Over 200 typewriter-like consoles

scattered around the Institute community provide remote access to the

central computer through a telephone switching system. As has been

reported in Chapter VII, the ESL Console of the Computer-Aided

Design Project is attached to the central computer through a PDP-7

buffer computer. Project MAC forms an excellent example of the type

of intimate working relationship which is appropriate for the Computer-

Aided Design Project at this stage. The long-term goals of the two

Projects are very closely related, and the differences in approach to

common problems form fruitful ground for much valuable cross

fertilization.

Other associations with various MIT groups have been in the

nature of helping them use AED systems in techniques in their own

work. These applications are listed in Appendix I.

Remaining sections of this chapter discuss the AED Cooperative

Program, Special Meetings and Symposia, and Documentation by

Movies.

B. AED COOPERATIVE PROGRAM

The goal of the Computer-Aided Design Project and our Air

Force sponsors is to transfer completed portions of research results

to industry as rapidly as possible, and to assist in field-trial applica-

tion to practical and important problems. To provide a vehicle for this

transfer of results, the Project maintains the AED Cooperative Pro-

gram in which visiting staff members from outside organizations are

accepted into the Project for a one-year term, to learn about and par-

ticipate in the on-going activities. Such cooperative liaison is of value

to both the individuals and organizations who accept the invitation, and

-144-

also helps to insure that the subsequent evolution of AED will be perti-

nent to the problems of industry. By active participation in the work

itself, the industry representative at M. I. T. becomes skilled in the

needed techniques being developed for the AED System, and learns

many aspects which are impossible to document at present. Further-

more, working programs developed in the Project are released imme-

diately so that additional programmers in the company plants also can

gain experience with the new techniques. Continual liaison between the

M. I. T. Project and company personnel by direct communication,

progress reports, and technical documentation, as well as meetings

and visits, allows efficient transfer of Project results to industry with

important two-way benefits.

1. The Cooperative AED-1 Project

Cooperative activity with selected industrial organizations was

begun following an invitation extended by the Project in December,

1963. In March, 1964, the regular staff of the Computer-Aided Design

Project was augmented by experienced system programmers nominated

for a one-year tour of duty by seven U. S. companies who accepted the

invitation to participate in what was then named the "Cooperative AED-1

Project".

When the Cooperative AED-1 Project was set up early in 1964,

it was emphasized that it would be a research rather than a develop-

ment effort. Nonetheless, the plans at that time were essentially to

use the then-existing AED-0 capabilities to reduce to practice the vari-

ous proposed AED-1 features. It was hoped that an initial version of

an AED-1 System embodying those features could be put together in

approximately one year's time. As the work progressed, however, it

became apparent that the modest additions to AED-0 which had been

envisioned originally should be augmented. As a result, many of the

proposed AED-1 features were transformed into features of the ex-

panded AED-0 System.

At an Open House, held at M. I. T. in late August, 1964, for

representatives from the cooperating companies, the changed complex-

ion of the Project was gone over in some detail, with a primary empha-

sis on the reasons behind the decision to delay work on AED-1 proper

-145-

in order to strengthen the AED-0 base. The major consideration was

the fact that AED-1 would not evolve from AED-0 in any direct way,

but instead AEtD-0 was to be used as the tool to construct AED-1 from

the beginning. Thus, the more ambitious the expectations became for

the AED-1 System, the more stringent the requirement for the AED-0

tool.

An additional consideration was the fact that extreme difficul-

ties were being encountered in the task of preparing a version of the

original AED-0 System for distribution to the cooperating companies

as a batch-processing system for the IBM 709-7090-7094 computers.

Many of these unexpected problems were primarily triggered by the

fact that the high modularity of the AED-0 compiler involved larger

numbers of distinct subroutines than were usually encountered. In

order to handle these, it was necessary to carry out modifications to

the master tape generating programs of the standard Fortran Monitor

System, which was being used as the batch-processing vehicle, and

many of these features of the FMS System were incompletely docu-

mented. Although preliminary success was achieved by October, 1964,

and an old version of the AED-0 compiler was distributed to those

companies who had requested copies, the many changes made to AED-0

in the meantime, combined with the shortcomings of the distributed

batch processor, indicated that efforts should be continued to obtain a

cleaned-up and more-powerful version of AED-0 for use by the compa-

nies.

In December, 1964, it was decided to schedule the preparation

of the first definitive version of an AED-0 batch-processing system by

March, 1965. The March batch-processing system encompassed, in-

sofar as possible, all of the features of the AED-0 System used in the

MIT Time-Sharing environment, and all of the most recent advances

in AED-0. Thus the dissemination of AED techniques through a nucleus

of technical people in each company, using and experimenting with the

system, could begin in earnest.

At the conclusion of this first cooperative effort, in March,

1965, the following results had been achieved:

-146-

1. A greatly expanded AED-O System, embodying the
most powerful high-level system programming
language available, was completed in both time-
sharing and batch-processing versions, and distri-
buted to interested companies.

2. Working versions of the AEDJR System, which
allows specialized problem-oriented programming
languages to be defined and put to use, were com-
pleted and distributed.

3. The design of the still more powerful machine-
independent AED- 1 System was blocked out, and
many major building blocks were completed.

4. Results of the Project began to be applied in com-
pany projects, both through direct application of the
distributed systems, and through the use of the
underlying programming techniques in other forms.

5. Perhaps most important, a growing number of
talented individuals acquired new insights and tech-
niques for attacking the pressing problems of
computer-aided design.

The demonstrated workability of this first cooperative program

led to incorporation of this type of industry cooperation as an integral

part of the Air Force contract supporting the activities of the MIT

Computer-Aided Design Project.

2, The AED Cooperative Program

A second invitation was extended to selected organizations to

participate in the continuing but renamed AED Cooperative Program

in mid-1965. Companies invited were believed to be well advanced in

their own appreciation of the potentialities and problems of computer-

aided design. Many already were taking the necessary steps to prepare

for the new technology to ensure they would benefit from the new de-

velopments. During this second period, the prime focus was on the

new AED-1 Compiler System, in preparation for bootstrapping AED to

"third-generation" computers and subsequent design studies. The

second group of five visitors started in July, 1965, and stayed through

July, 1966.

The 1966 AED Cooperative Program was initiated by inviting

companies to send an experienced system programmer to M. I. T. to

-1
4
8
-

a
.aII-kc-

10
a,

T
'

n
i=

n

L
n
~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~

~
~

~
~

~
~

~
~

~
<~~~~~~~~~~~~~~~~~~~

cn
cn

r
w

®

L
n

N
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

L

cr~
~

~
~

~~~~ 
c~

~
~

~
~

<
c

a, 
r~~~a

kkrr] 
cn 

O
 

a, 
o~~~~~~~~~~~~~~~~c

O
 

".r10 
O

 
u 

4:~~~~~~~~~~~1
,,, 

k
 

Q
 

0 
,
 

f 
"

L
O

 
cr,

In 
C

n 
.

ol 
~

F
-)~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
F

z 
9 

u 
oi 

~
L

U
~~~~~~~~~~~~~~~~~

41
C

d
.d

>
~~~~ 

~ 
Q

 
4t'---

IV
 

, 
id 

lo
 

..
oo

9~~~~~~~~~~~~~~~~~~ 
o

0 
o~ 

tn 
0 

zn
{
j
o
 

p 
u" 

>
~~~~~~~~~II 

~ ~
~

~

~

~

~

~

~

~

~

~


~~~ 

I 
I 

IIl

Z
 
o
 

a 
o
 

O
~~~~~~~ 

c,
O
0
~

~
X

'
U

ed 0
<
~
~
~

.
.

9
1
-

a
Sr=

~~~~~ 
~ 

~ 
~ 

~ 
-
~
I
·
I
 

I 
I 

I
I
I
 

.. 
-c, 

(·~r 
c
 

~
~

~
~

~
Z

~
~

- 
o
 

o
~
a
 

a~~~~~~ 
.

o
 ·" 

o
 

o
 

'~ 
' 

~
'~

~
at 

B
 

C
 

$ 
$ 

c, 
5: 

c



-147 -

work with the regular Project staff for a nominal one-year period be-

ginning in March, 1966. Nine companies accepted the invitation, and

during that year of joint activity the first pass of AED- 1 received

major emphasis, resulting in a new RWORD and AEDJR capability.

Many integrated packages also were improved, and new packages were

developed in preparation for bootstrapping all AED results to third-

generation computers by means of the machine-independent AED-1

Compiler.

Following the 1966 AED Cooperative Program we have shifted

to an open-door policy regarding nominations for new visiting staff.

In a letter dated June 19, 1967, the following paragraph described the

new plan: "With this mailing, we are discontinuing the 'Invitation

Mailing List' for the AED Cooperative Program. The Program will

remain active, but we do not plan to issue further formal invitations.

However, any company that would like to send a visiting staff member

in the future is invited to write me at any time to determine our cur-

rent status and to work out a mutually satisfactory arrangement. The

reason for this change is that the various company activities have

evidently now matured to the point where coordinated schedules for

groups of visiting staff are inappropriate. We hope that many of the

companies who have expressed future interest will take advantage of

our continuing 'open-door' policy."

Companies which do not participate directly in the AED Coop-

erative Program can nonetheless obtain copies of system releases and

documents so they may experiment with AED-0 and AEDJR on their

own problems. Copies of all system releases are available for use on

the IBM 709, 7090, 7094 and System 360 computers, as well as the

Univac 1108 computer. We hope that growing expressions of interest

on the part of users will enable AED to similarly be bootstrapped and

made available on all major computers in the next few years. We have

extended a great deal of effort in making the bootstrapping process as

systematic as possible to provide a basis for these expected develop-

ments.

Figure 31 shows the pattern of participation in the AED Coop-

erative Program to date. Full names and company affiliation for these

Visiting Staff Members are listed in the Personnel List, page v.

--··-------------- -~--~~-~-·--···----- --- ~---··--·-·-- ----- -·-·- ---- ·---------- --~-------------·-------- 7·---- ·----·------ ·---------·- -----------



-149-

C. SPECIAL MEETINGS AND SYMPOSIA

Several special meetings have been organized to present infor-

mation about the Project, its work, and the potential of computer-

aided design as a powerful new component of advanced industrial and

problem-solving technology. The following sections describe these

meetings in chronological order. The AED Technical Meetings are

held at M. I. T. as part of the AED Cooperative Program but with open

invitation.

1. MIT/ILO Symposium on Computer-Aided Design

In May, 1963, a symposium on "Computer-Aided Design" was

held at the Kresge Auditorium, Little Theater, M. I. T. The sympo-

sium was sponsored by the Industrial Liaison Office of M. I. T. for

attendance by those companies who are members of the Industrial

Liaison Program. The symposium was attended by 201 people repre-

senting 45 companies from the United States. According to the Indus-

trial Liaison Office, this was the largest attendance of any meeting in

the history of the MIT Industrial Liaison Program up to that time.

Considerable interest was expressed by the attendees and it was agreed

that the symposium was very successful and worthwhile. The program

included the following presentations:

WELCOME Professor Peter Elias, Head
Department of Electrical Engineering

BACKGROUND OF THE Professor J. Francis Reintjes, Director
PROJECT Electronic Systems Laboratory

Department of Electrical Engineering

CRITERIA FOR THE Professor Robert W. Mann, In Charge
COMPUTER-AIDED Engineering Design Division
DESIGN SYSTEM Department of Mechanical Engineering

THEORETICAL Mr. Douglas T. Ross, Head
FOUNDATIONS C omputer Applications Group

Electronic Systems Laboratory

GRAPHICAL COMMUNI- Professor Steven A. Coons
CATIONS AND PROBLEM Engineering Design Division
SOLVING Department of Mechanical Engineering



-150-

STRESS ANALYSIS Professor Frank A. McClintock
TECHNIQUES Materials Division

Department of Mechanical Engineering

STRUCTURE AND Mr. Douglas T. Ross
OPERATION

MAN-MACHINE Mr. John E. Ward, Ass't. Director
CONSOLE FACILITIES Electronic Systems Laboratory

Department of Electrical Engineering

SUMMARY AND Mr. Douglas T. Ross
GENERAL DISCUSSION Professor Steven A. Coons

2. 1963 Spring Joint Computer Conference Session

Also in May, 1963, a special session on "Computer-Aided

Design" was included in the program of the 1963 Spring Joint Computer

Conference, sponsored by the American Federation of Information

Processing Societies at Cobo Hall in Detroit, Michigan. Attendance at

the special session was high and considerable interest was generated

in the material presented. At the Conference Luncheon the paper by

Ross and Rodriguez received the American Federation of Information

Processing Societies Prize Paper Award, "Awarded in recognition of

an outstanding and significant contribution to the Information Processing

Field through presentation of the best paper at the 1963 Spring Joint

Computer Conference". The program included the following presenta-

tions:

An Outline of the Requirements for a Computer-Aided
Design System, S. A. Coons, Mechanical Engineering
Department, M. I. T.

Theoretical Foundations for the Computer-Aided Design
System, D. T. Ross and J. E. Rodriguez, Electronic
Systems Laboratory, M. I. T.

Man-Machine Console Facilities for Computer-Aided
Design, R. Stotz, Electronic Systems Laboratory,
M. I. T.

Sketchpad: A Man-Machine Graphical Communication
System, I. E. Sutherland, Consultant, Lincoln Labora-
tory, M. I. T.

Sketchpad III: A Computer Program for Drawing in
Three Dimensions, T. E. Johnson, Mechanical Engi-
neering Department, M. I. T.



-151-

3. MIT/ILO Symposium on Project MAC

In May, 1964, the MIT Industrial Liaison Office offered another

symposium in which the Project was represented. As part of the pre-

sentation by large users of the Project MAC facilities, D. T. Ross and

C. G. Feldmann presented a paper and demonstration entitled "Verbal

and Graphical Language for the AED System: A Progress Report" (see

Ref. 27) in which the initial AEDJR System was described for the first

time, including the definition of a simple language and a description of

the role played by parsing in the AED compiling scheme.

D. T. Ross, C. A. Lang, and R. B. Polansky also presented

the "May 6 Demonstration Package", the first demonstration of proces-

sing graphical language with the Algorithmic Theory of Language, set

up using the AEDJR System. The demonstration used large-screen

video tape of action at the ESL Display Console.

J. E. Ward and R. H. Stotz also made a presentation on the

ESL Display Console and how it was used in the time-sharing environ-

ment.

4. The First AED Technical Meeting

The First AED Technical Meeting was held at M. I. T. June 22-

23, 1966, with 105 people (54 from 24 organizations plus 51 from vari-

ous MIT groups) in attendance. The first morning was devoted to the

structure and general features of the AED-1 Processor. The first

afternoon covered the use of the AEDJR System for constructing

problem-oriented systems, discussions concerning distribution of AED

results, and the possibility of forming an AED User Group. On the

second day, the morning was devoted to a discussion of computer

graphics, and in the afternoon various demonstrations and general dis-

cussions were held. From the comments of those in attendance, the

meeting fulfilled its aims quite satisfactorily. The few companies who

had made extensive use of AED gave highly complementary reports.

5. The Second AED Technical Meeting

The Second AED Technical Meeting was held at M. I. T. in

Kresge Auditorium, January 25-27, 1967, with over 349 people (312

from 104 organizations plus over 37 people from various MIT groups)



-152 -

in attendance. The program included brief summaries of technical

progress on the AED- 1 System and prognoses for future developments,

as well as another attempt to determine whether an AED User Group

should yet be organized. The main emphasis of the meeting, however,

was a workshop on the use of the AEDJR System and AED-O language

for making specialized user-oriented systems efficiently. The work-

shop session and demonstrations were carried out using the on-line

time-sharing facilities of Project MAC with closed circuit television

coverage of actions at the teletypewriter console and the first use of

the ARDS remote storage display unit. The meeting is best described

by the meeting notice and the informal meeting report, which are

reproduced below.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Electronic Systems Laboratory

COMPUTER-AIDED DESIGN PROJECT
Cambridge, Massachusetts 02139

NOTICE

THE SECOND AED TECHNICAL MEETING

Little Theater
M. I. T., Kresge Auditorium

9AM-5PM, Wednesday - Friday
January 25-27, 1967

WHAT WHAT
CAN BE DOES IT

' SAID ? MEAN ?
PROBLEMS ANSWERS

L . I M 

AEDJR SKELETON SYSTEM

The M. I. T. Computer-Aided Design Project is pleased to announce the Second

AED Technical Meeting to be held at M. I. T. Wednesday through Friday, January 25-

27, 1967. The meeting will be of particular value to system programmers, computer-

oriented designers and engineers of various disciplines, and managers of same. The

primary purpose of the meeting will be to demonstrate that specialized problem-

oriented computer-aided design systems can be created NOW at a fraction of the

customary investment, by using the facilities of the AEDJR System and the AED-0

Language. Most of the meeting will be an open Workshop in which a complete, func-

tioning, problem-oriented design system will be designed, programmed, debugged

and used, live and in real time, with audience participation. Attendees will be able

to propose system features and to discuss fully the techniques being used. Each facet

of the Workshop design problem will be compared with similar features of industrial



-153-

applications of computers in design in order to emphasize the immediate applicability

of this new system-building technology. The Workshop will use the on-line time-

sharing facilities of Project MAC, with closed circuit television coverage of actions

at typewriter consoles. Further details are on the attached sheets.

A progress report on the AED-1 System (with demonstrations), and discussion

of time-tables for the AED Cooperative Program in 1967 will be included in the

agenda for the first day.

Registration will be limited to the capacity of the Little Theater, and preference

will be given to personnel from present, past, and future participants in the AED

Cooperative Program for pre-registrations received before January 13. Others will

receive preference in the order in which their registrations are received. Notes and

documents for the Workshop will be sent to accepted registrants January 16-18, 1967.

Second AED Technical Meeting
January 25-27, 1967 Little Theater, M.I.T.

ELABORATION

1. Purpose of the AEDJR Workshop

In the Second AED Technical Meeting we are de-emphasizing.computer graphics

and sophisticated machine-independent programming language techniques in order to

give compelling emphasis to the man-machine problem-solving process, which is the

sole reason for their interest and importance. We are concerned this time with in-

creasing the utility and reliability of existing applications of computers in the design

process by improving the man-machine interface through specialized user-oriented

languages in which the man communicates with the machine in "shop-talk" language

uniquely appropriate to his design area. There are innumerable existing computer

applications in industry which fall into this category, and provide a handsome oppor-

tunity for an evolutionary rather than revolutionary introduction of true computer-

aided design into the industrial scene, This approach offers significantly greater

economic advantages than the more glamorous ad hoc crash programs in new and

untried gaudy-gadget computer-graphics applications. Furthermore, since the

AEDJR System used in the workshop is the same as is used in the CADET System,

further future advances to incorporate computer graphics will be a natural and evolu-

tionary step.

The AEDJR Workshop of the Second AED Technical Meeting represents a chal-

lenge to industry. We are in effect, throwing down the gauntlet and saying to indus-

try, "If we can in a matter of days create a working problem-oriented computer-

aided design system for a simple application area, why cannot industry do the same

in a matter of months with real design problems which they have in abundance ?"' The

application area on which the workshop will be based, and the sophistication of the

resulting system, will not be the important message of the workshop. Instead, the

methods by which the system is created as a direct and orderly application of the AED

approach are the focal point of the workshop. We hope that many workshop attendees

will see the strong analogy between the workshop example and design areas in their

own companies in which they already are using computers in the design process, and



-154-

that they will be stimulated to ask, "Why not indeed ?", and will begin in earnest on

the learning process to acquire the necessary skills with the new system-building

technology which AEDJR provides.

The AEDJR Workshop will not be a sterile series of lectures on the details of

the AEDJR System. It is not expected that attendees will be able to leave the work-

shop and set about immediately constructing problem-oriented systems in the manner

demonstrated; for even with the powerful assistance of AEDJR, system-building is a

complicated and exacting task. The objective of the workshop is to present a com-

plete picture in depth of the AED approach to system-building for computer-aided

design, opening all the doors and peeking into every nook and cranny of the various

black boxes that constitute the AEDJR System in order to demonstrate that the begin-

nings of a new-organized, dependable technology for software development are at

hand. The experience of the workshop will provide valuable background for subse-

quent. study of the working tools and methods of the AED approach. Our objective is

not teach a skill, but to impart a new level of understanding and a deeper and techni-

cally better-justified vision of the implications and imminence of meaningful

computer-aided design.

2. The AED Approach to User-Oriented Systems

The general scheme for systematically deriving a sophisticated and smoothly

functioning user-oriented system from an existing application of computers, using the

AEDJR System, may be outlined as follows:

We begin with some class of problem which we will consider to be the area

of discourse for the man-machine system to be constructed. We first prepare a set

of functions or procedures which constitute an integrated package, called the semantic

package, containing all of the necessary building blocks for constructing the solution

to any problem within the area of discourse. These are not just ordinary procedures,

for they are specifically designed to give the finest necessary sub-division of the

various features which compose the area of discourse. (If we begin with already-

existing programs, some modification may be needed to achieve the necessary modu-

larity. ) Each procedure is an atomic procedure in the sense that it treats some

smallest indivisible piece of the problem area. The atomic procedures are written

such that the value given by one procedure may be used as an input argument to

another procedure. In this way, large molecular procedures may be constructed

from the atomic procedures by assembling the proper nested calls. Some of the

procedures in the package are concerned with modelling or representing the detailed

structure and constituents of any particular problem in the area of discourse. Other

atomic procedures have to do with analyzing or computing values for various aspects

of a particular problem.

In general, in order to solve a particular problem in the area it is necessary to

call upon the proper collection of model-building procedures until the problem state-

ment is complete, and then to assemble the appropriate analysis procedures to apply

to that model to arrive at a solution. Many problems iterate back and forth between

these steps, using the results of some sub-analysis to modify or augment the model

for a succeeding phase of analysis. The important point about the semantic package



-155-

is that it effectively delimits and bounds the area of application, so that by definition

any problem within the area of discourse can in fact be stated and solved.

The problem then becomes that of matching the user to the problem-solving

system, i. e., we next must design one or more user-oriented languages which can be

translated into the appropriate calls on the procedures in the semantic package. It is

at this point that the AEDJR skeleton system provides the necessary framework for

defining the language and integrating its translation with the integrated package of pro-

cedures which define the area of discourse.

In general, the atomic routines of the package must be applied in a very rigid

sequence in order to accomplish given tasks. Differing sequences of assembling

atomic procedures into molecular compound actions will in general give differing

results. The sequence imposed by the structure of the semantic package may be

quite different from the sequence which is natural for the human problem-solver to

think of the specification of a problem. A key feature of the powerful parsing algo-

rithm which is incorporated in the AEDJR System is that there is a direct way to trans-

form the natural sequence of the human thought process into the required sequence

imposed by the semantic package. Thus problem-oriented languages to control the

use of the semantic package to solve problems in the area of discourse can be made

to seem very natural and easy to use. (The First-Pass Algorithm performs a seman-

tic as well as a syntactic parse, and it is possible to control the behavior of the

"precedence string" which represents the semantic parsing structure needed for the

transformation. )

The AEDJR System incorporates a special command language by means of which

the vocabulary and linguistic rules for a new language may be defined. The First-

Pass Algorithm which performs parsing permits almost all desired linguistic features

to be carried out elegantly and efficiently as a straight-forward application of the fea-

tures of the Algorithmic Theory of Language. Wherever the basic algorithm will not

perform the desired function, however, "execute programs" may be incorporated to

momentarily override the standard behavior to achieve the desired result. Once

facility with the language-definition language is achieved, new languages may be de-

fined rapidly and in an orderly fashion. The AEDJR System also provides special

facilities for debugging and modifying language definitions, and once a suitable defini-

tion is achieved, automatic provisions allow dumping of the definition tables for sub-

sequent reloading with the basic First-Pass Algorithm core to create a system for

production use.

One final feature which is necessary to ensure that a language is natural and

user-oriented, is control over the physical format of expressions in the language.

The AED RWORD Package provides an elegant solution to the problem of permitting

the user to have complete control over the format of a new language and performing

with great efficiency the intricate lexicographic analysis which must precede parsing.

A special language (a subset of the language of regular expressions) permits natural

description of the rules whereby sequences of characters cluster together to form the

items (syllables, words, or punctuation) of the language input form. The regular

expressions describing the various item types are processed by an automatic system



-156-

to create a specialized reading program which may be incorporated directly into the

production system to provide input to the parsing algorithm controlled by the language

definition tables.

3. Specific Topics to be Covered in the Workshop

1. How to structure a collection of subroutines so that they form a
suitable "semantic package" of atomic routines for an area of
discourse.

2. Discussion of the sequence of atomic actions imposed by the struc-
ture of the semantic package.

3. Discussion of various sequences which seem natural for problem
statement, showing how all necessary information is supplied, but
in a different sequence than that required by the semantic package.

4. How to use left-to-right, right-to-left, and "modifier" parsing to
control the precedence string sequence of a parsed statement to
map the desired sequence into the required sequence.

5. How to use the "dun" bits to control back-up and error detection
in parsing.

6. How to use "execute" programs to control construction and activa-
tion of symbol-table structures and to perform unusual parsing.

7. How to use the AEDJR "mouse" to translate parsed statements
into semantic package actions.

8. How to construct a complete "modeling plex" from sequences of
statements to represent the total problem in the computer.

9. How to write "regular expressions" which describe the desired
item-structure of an input string for presentation to the parsing
algorithm.

10. How to use the "Assemble" Package to provide free-format output
of answers in user-oriented terms.

11. How to use the generalized Alarm Package to efficiently report
errors in user-oriented terms.

12. How to design a language which is rich in possibilities, in which
definition, analysis, and control features may be used in natural
combinations.

The AED Cooperative Program is a major activity of the M. I. T. Computer-

Aided Design Project, sponsored by the Manufacturing Technology Division of the

U. S. Air Force through Contract AF-33(657)-10954 with the M. I. T. Electronic

Systems Laboratory. The Project also uses facilities of Project MAC, sponsored by

the Advanced Research Projects Agency of the Department of Defense under Contract

NOnr-4102(01). The "AED Cooperative Program" refers to those aspects of the

overall M. I. T. Computer-Aided Design Project which are sufficiently developed to

merit industry participation.



-157-

The results of the Second AED Technical Meeting were reported

in AED Technical Progress Report No. 17. The following is an extract

from this report which was issued on April 3, 1967.

AED PROGRESS REPORT NO. 17
November 1, 1966 - March 31, 1967

Second AED Technical Meeting

"It is a safe bet to say there will never be another quite like it. The Second

AED Technical Meeting was held at M. I. T., January 25-27, 1967, but not quite as

scheduled. For those who were unable to attend, the following synopsis is presented.

"Based upon attendance at the First AED Technical Meeting, we had scheduled

the use of the Little Theater at Kresge Auditorium with a seating capacity of 214, and

the meeting notice was worded such that registration for the meeting would be re-

stricted to that number. Toward the middle of January, however, when pre-

registrations already exceeded that capacity and still many companies which would

have priority for seats had not yet been heard from, we had to make our first decision.

Rather than disappoint large numbers of interested people we decided to move the pro-

ceedings from the Little Theater to the Main Auditorium upstairs, and impose no

restrictions on registration. Although we are sure this was the proper decision, once

the meeting went from fewer than 200 to over 400 registrants, any semblance of

"workshop" became impossible. The problem was compounded because a majority of

the unexpected registrants evidently lacked the requisite background familiarity with

the aims and objectives of AED. (Some acknowledged that they had not even read the

meeting announcement, but had been dispatched by a supervisor. ) Since the material

that had been prepared for the meeting was geared toward an intensive pace even for

those well prepared, we were faced with a rather ticklish situation.

"The sharp division in backgrounds, preparation, and interests in the attendees

was not immediately apparent, but gradually became quite obvious by the end of the

"progress report" segments of the agenda of the first day. The progress report seg-

ments on the RWORD System, dumping and restoring first-pass structures, and the

status of the AED-1 Compiler were intended merely to be brief demonstrations to

show that progress was being made as a preamble to the AEDJR Workshop. Evidently

this intended objective was not expressed clearly enough to be understood, so that

considerable confusion resulted when people could not follow what was going on. The

demonstrations themselves probably were not concise enough, as well. As a result,

questions about the over-all objectives and relevance of our whole program were

raised repeatedly, and only incompletely answered.

"In order to attempt to establish a mechanism for satisfying the needs of the

technical and non-technical parts of the audience, we split up into several groups on

the second day. Technical working groups on AEDJR, Language Design, Second Pass,

AED for the 1108, and AED-0 Distributions met under the leadership of senior Project

staff members (who performed admirably in these unscheduled roles) while the non-

technical group continued discussions in the main auditorium. Although things were

still rather hectic, this separation of conflicting interests vastly improved the ability



-158-

to communicate. From the remarks received, almost everyone agreed that we had

done the best we could possibly do with a difficult situation, and it appeared that a

considerable majority were well satisfied with the results. In the middle of the after-

noon of the second day, we purposefully shifted the meeting into technical high gear

with apologies to the non-technical segment in order to proceed with the Workshop.

Although attendance did drop off on the third day, a gratifyingly high percentage of the

non-technical attendees did remain and were glad they-did, for even though technical

details eluded them, they were able to sense and appreciate the unexpected and signif-

icant results of the workshop portion of the meeting which were achieved in spite of

the chaotic circumstances.

"As originally planned, the AEDJR Workshop portion of the Second AED Techni-

cal Meeting was intended to demonstrate how existing applications of computers in

design, constituting a problem-oriented system, could be made over into a user-

oriented system using the AEDJR facilities. The example which we selected as a

demonstration vehicle was that of composing large structures out of smaller struc-

tures by joining polygonal faces along their edges. This example was chosen because

it was simple to describe in loose terms, and because the appropriate modeling aspect

of the problem consisted almost entirely of pure structure, the only universal feature

of all problem formulation. In early December when preparations for the meeting be-

gan, we intended merely to define a few string types using the Generalized String

Package to form the basis for the semantic package of programs which would repre-

sent the "existing use of computers" for purposes of the meeting. Work on the

graphical input to the CADET System was tabled to prepare these programs, and as

the "Polyface Package" (as the polygonal face example became known) progressed, we

found that instead of merely being a collection of quick-and-dirty programs for use in

the meeting, we were developing a generalized approach to the universal modeling

feature of the CADET System. Our plans for the Polyface Package thereupon became

much more ambitious as we sought to incorporate rigor and generality for subsequent

use in CADET. By the time of the meeting at the end of January, an extremely com-

plex and intricate set of programs was only partially debugged. In fact debugging of

the Polyface Package continued through the third day of the meeting.

"Another reason that the Polyface Package was chosen as an example was that

the polygonal structures could be displayed on our remote storage scope located in the

theater connected by phone lines to the Project MAC time-shared computer. The dis-

play programs themselves, and the operation of the storage scope remotely, were

also firsts for the meeting, and many of the programs and arrangements were oper-

ated for the first time only hours before they were used in the meeting. Again de-

bugging continued (moving the equipment off-stage) during the meeting.

"Although the Polyface and Display programs were only partially debugged,

those features which did work properly were demonstrated the afternoon of the first

day, and vastly improved results were shown on the third day so that people in the

audience could see first-hand the progress that had been made. Final debugging of

these programs, carried out at a normal working pace, was completed by mid-March

but the portions which were workable during the meeting did serve their role of



-159-

showing how "existing computer applications" could be controlled and driven by

system-structure established using AEDJR.

"Due to the limited functions which the Polyface Package could perform at the

meeting, and also due to the disrupted schedule of the Workshop, it became clear on

the second day of the meeting that the actual user-oriented language for the Polyface

Package would have to be greatly simplified over that which had been anticipated.

Therefore, an eager sub-group of attendees proposed that a more elaborate language,

preferably an already-known language, be run through the process as well, so that we

would actually make two user-oriented languages at the meeting, one much more

ambitious than the other. Our staff accepted the challenge, and a visit was made to

the bookstore at the Tech Coop next door to the theater to obtain a copy of Iverson's

A Programming Language. One of the workshop sub-groups then selected a subset of

Iverson's programming language to be set up using AEDJR.

"Starting in the afternoon and working into the evening using the on-line consoles

at Project MAC, this sub-group not only set up the parsing for the subset of Iverson

language, but also wrote AED-0 programs to constitute an interpretive system to re-

sult in a line-by-line compile-and-go programming system. On the third day, this

system, which had not even been conceived of 24 hours before, was demonstrated to

the audience and worked properly except for a coding error in the second pass inter-

pretor in which multiplication and addition codes were interchanged so that the numer-

ical answer given by the system was in error. A member of the audience stated that

he and several others had attempted a similar system and had accomplished an equiv-

alent result in a matter of months.

"Combined with the demonstration of the Polyface language system composing

simple pictures on the display screen before it too ran into second pass bugs, we had

created not one but two programming systems in the manner specified in the meeting

notice. We had achieved our stated objectives technically, even though we had not

been able to go through as many of the intermediate steps in detail as originally

planned.

"Another impressive result which was demonstrated on the third day was the

completely unscheduled generation of workable machine code for the Univac 1108

computer using the new AED-1 Second Pass. Only a few weeks before the meeting

we had begun a new method for setting up the tables which drive the code-generation

portions of the AED-0 Second Pass as modified for AED-1. With great diligence,

this new scheme had been set up to generate FAP assembly code for the 7094, and

this fresh result was reported as one of the progress report segments of the first day

of the meeting. In the afternoon of the second day, Bob Coe and the programmers

from United Aircraft Corporation who are carrying out the bootstrapping of AED-1

onto the Univac 1108 asked whether this new scheme could not be applied to the gen-

eration of 1108 machine code as well. Once again, the challenge was accepted, and

in the evening work commenced using the time-sharing system. Within four hours

workable 1108 machine code was being generated, and within seven hours good 1108

machine code was being generated for algebraic, boolean, and conditional statements

of AED-0, (i. e., omitting procedure definitions and complex FOR loops, etc).



-160-

Samples of various AED-0 programs and their 1108 equivalents were shown, and

copies were made available to those interested on the last day of the meeting.

"There appeared to be universal agreement that the Second AED Technical

Meeting was a resounding and most impressive success technically, in spite of the

confusions and hectic pace described above. The entire staff was very gratified by

remarks such as "This has been the most exciting meeting I have ever attended" which

were a comforting balance to the disgruntled remarks which were received in approx-

imately equal number during the first day of the meeting. The majority of the atten-

dees between these two poles, showed by their participation as well as their more

moderate encouragement, that the efforts of the Project members were well

appreciated."

D. DOCUMENTATION BY MOVIES

In addition to printed reports and technical papers, motion pic-

tures have been used to convey the flavor of certain aspects of the

Project work. A number of these movies are available for loan or pur-

chase, as listed in Appendix III.

The first movies, prepared by Dr. Ivan E. Sutherland as part

of his thesis activity, showed the Sketchpad System in operation on the

TX-2 Computer at Lincoln Laboratory. A short, four-minute, edited

version of this film (Film No. 4) with sound track was made available

by the Lincoln Laboratory and has been loaned on request to qualified

organizations by the Library of the Electronic Systems Laboratory. A

longer version of this film, showing the three-dimensional Sketchpad

III, and also some curve-generation simulation, was used in many pre-

sentations. Since this longer film lacks a sound track, it was not made

available outside the Project, but was used in many local presentations.

A combination of these films was used in a 30-minute TV program in

1964 for Station WGBH (Educational Network), and a film of this program

is available (Film No. 3).

In an attempt to convey the dynamic behavior of the processing

algorithms of the Algorithmic Theory of Language, a color animinated

motion picture was made (in 1963) by the Project members showing the

step-by-step growth of the first-pass structure as a statement is scanned

from left to right. The script for this film was prepared by a program

operating in conjunction with the First-Pass Algorithm on the computer,

and the thousands of frames of animination were carried out by hand



-161-

using special equipment for large-scale animation which we designed

and assembled. The movie suffers from defects in timing, in that the

complexities of the processing take place somewhat too rapidly to be

fully comprehended, and a narrator is required, as there is no sound

track. However, the film was used at the 1963 SJCC presentation

(Ref. 80), and has been of assistance in conveying to selected audiences

the dynamic growth of complicated structures.

Another widely distributed movie on Project work is Film No. 1,

showing three-dimensional "graphics in motion" on the ESL Console

(or "Kludge"). Finally, Film No. 2 shows an application of AED and

the ESL Console in an on-line network design system. This system,

CIRCAL-0, was developed in the Electronic Systems Laboratory under

a NASA Grant.



APPENDIX I

AED APPLICATIONS

The following is a summary of applications of project-developed

software and the ESL Display Console, as reported by users at M. I. T.

and elsewhere. (These summaries do not include the uses by the

Computer-Aided Design Project and industry participants in the AED

Cooperative Program, described in the body of this report. )

Three studies have been reported in which the ESL Display Con-

sole was used in studies of protein molecule models. These studies

were conducted under the supervision of Professor Cyrus Levinthal,

Biology Department, M. I. T. A biomedical image processing project

under the supervision of Professor M. Eden, Research Laboratory of

Electronics, M. I. T., examined images generated by pattern recognition

programs.

The Chemical Process Control Project supported by a National

Science Foundation Grant, supervised by Professor L. A. Gould, Elec-

trical Engineering Department, Electronic Systems Laboratory, M. I. T.,

reports extensive use of the AED-0 compiler in design of the data struc-

ture for input to a chemical engineering plant design system.

The DISCOURSE Project of the M. I. T. Department of City

Planning, under the supervision of Professor Aaron Fleisher, reports

using the AED-0 compiler to provide a city designer with a data struc-

ture and a set of manipulations on these data by which he creates

designs.

Several studies are reported under the supervision of Professor

M. L. Dertouzos, Department of Electrical Engineering, Electronic

Systems Laboratory, M.I.T., in developing CIRCAL-0, CIRCAL-1,

and CIRCAL-2 for on-line computer-aided electronic circuit design,

and LOTUS for on-line computer-aided system design. AEDNET, a

circuit analysis program developed by Dr. Jacob Katzenelson for sim-

ulating nonlinear components and networks makes extensive use of the

AED-0 compiler language.

Computer-aided design of threshold element networks, under

the supervision of Professor A. K. Susskind, Department of Electrical

-162-

----- ----------- --- ------ --- --- ---- ·---- ~---------- ·~-------1·- --------- -



-163-

Engineering, Electronic Systems Laboratory, M. I. T., makes exten-

sive use of the AED-0 compiler.

The Econometrics Project, under the supervision of Professor

Edwin Kuh, Department of Economics, M. I. T., is developing a com-

plete system to perform econometric research by using AED-0,

AEDJR, and the AED integrated packages. The system will simulate

models of the economy, as well as offering a variety of estimation

routines.

Project Intrex, the M. I. T. information storage and retrieval

program directed by Professors C. F. J. Overhage and J. F. Reintjes,

uses the AED-0 compiler for programming library storage and re-

trieval systems. AEDJR is being considered for implementing the

user language.

Project Dynamo, under the supervision of Alexander L. Pugh,

III, of the Sloan School of Management, M. I. T., is using the AED-0

compiler for continuous system simulation, specifically for industrial

dynamic s imulations.

Six studies are reported under the sponsorship of Project MAC.

A project in bootstrap compiling under the direction of Professor J.

M. Wozencraft used AED-0 as the initial coding language because of

its capability in dealing with recursion. The MULTICS Project, under

the supervision of F. J. Corbato, has recoded parts of the CTSS super-

visor in AED-0. Professors M. M. Jones and M. Greenberger report

that the OPS System, a subsystem of CTSS, employs a complex dynamic

storage allocation mechanism which uses the AED Free Storage system

extensively. A project studying instabilities under the supervision of

Professor R. J. Briggs, reports using the ESL Display Console to

study linear stability theory. Professor C. L. Miller, Head of the

Department of Civil Engineering, reports using the ESL Display Con-

sole in developing a graphical system for the definition of two-

dimensional geometric inputs to the civil engineering analysis pro-

grams, COGO and STRUDL. Dr. Thomas C. Stockham, Jr., Lincoln

Laboratory, used the ESL Display Console in debugging and manipulat-

ing waveforms in his research on high-speed convolution and also de-

veloped a graph-plotting utility package for general use.



-164-

Two studies under the supervision of Professor Roy Kaplow,

Department of Metallurgy, M. I. T., used the ARDS and the ESL Dis-

play Consoles for the display of mathematical functions as part of the

MAP system for on-line mathematical analysis. Also used was the

ESL Console for the display of three-dimensional atomic arrange-

ments in noncrystalline materials. Professor J. F. Elliott, Depart-

ment of Metallurgy, M. I. T., reports using the AED integrated pack-

ages in studying temperature distributions in the arc-furnace electrode

and in the hearth of the blast furnace.

Project DISHPAN, under the supervision of Professor E. N.

Lorenz, Department of Meterology, M. I. T., reports investigating the

ARDS display as a means for graphic display of contour maps and

world maps.

Professor A. Bers, Department of Electrical Engineering,

M. I. T., is directing the study of instabilities in plasmas. The ESL

Display Console has been used in stability analysis of dispersion equa-

tions relevant to a theoretical analysis of beam plasma discharge de-

vices, and plasma instabilities in solids, through the mapping of roots

of the dispersion equations in the complex frequency and wave number

planes. An automated system for plotting natural frequencies of in-

stabilities versus physical parameters was achieved.

A study of two-dimensional stress analysis under the supervi-

sion of Professor C. A. Berg, Department of Mechanical Engineering,

M. I. T., reports using the AED-O compiler for the complex-variable

formulation of plane-elasticity problems using conformal mapping.

Also in the Department of Mechanical Engineering, a study of a linear

flow resistance element under the supervision of Professor S. Y. Lee,

is using the AED-O compiler and the ESL Display Console in a numeri-

cal implementation of a conformal mapping technique to obtain solu-

tions to a potential flow problem with free streamlines.

Professor William Henke, Department of Electrical Engineering,

M. I. T., reports extensive use of the AED-O compiler, and the ESL

Display Console in the modeling of speech production and in the produc-

tion of educational movies.



-165-

Professor A. G. Oettinger, Division of Engineering and

Applied Physics, Harvard University, reports using the ESL Display

Console for text and curves in a system for computer aids to mathe-

matical analysis. Mr. T. H. Van Vleck, under the supervision of

Professor I. D. Pool, used AED-0 in developing a social science

data bank.



APPENDIX II

SUMMARY OF PROJECT REPORTS AND PUBLICATIONS

During the period December, 1959 to May 1967, documentation

of project activity was performed in a number of ways. Section A

briefly describes each type of project documentation and its purpose.

Section B (references 1 through 39) contains bibliographic ref-

erences and abstracts of all formal documentation issued by the proj-

ect, plus a few documents which were considered to be of an informal

nature when issued but in retrospect are important for the historical

record. All formal documentation was automatically sent to the dis -

tribution list approved by the sponsor (about 200 addresses on the

average), and numerous additional copies were sent out in response

to specific requests.

Thesis activity, both graduate and undergraduate, has played a

significant role in project technical accomplishments, as well as con-

tributing to the spread of ideas and techniques as many of these stu-

dents have moved on to responsible positions in government and indus-

try. Section C (references 40 through 73), contains titles and abstracts

for 35 theses supported by or otherwise connected with the project.

(In cases where a thesis was also issued as a report, reference is made

to the abstract in Section B. )

Technical paper presentations and publications listed in Section C

(references 74 through 114), form another important means of com-

municating project results. In addition, a substantial number of talks

and lectures were given on Computer-Aided Design which did not result

in specific publications, and these are listed in Section E (references

115 through 192).

Finally, Section F lists a group of material of various forms

which has become known as the "AED Documentation", i. e., specific

details and instructions on the design and use of the programs and

systems developed by the project. Selected AED Documents have

been distributed to a specially-maintained mailing list of directly

-166-



-167-

interested groups and individuals, but have not been sent to the for-

mal mailing list of the project. Since this material is highly volatile

and subject to frequent change, anyone using this list for reference

would be interested in the latest version. Thus, the listing in Sec-

tion E is as of the date of publication of this report, not the contract

end date of May 30, 1967.

A. DESCRIPTION OF DOCUMENTATION TYPES

1. Project Interim Engineering Reports

This group of 11 documents in the IR-series reports across-

the-board progress of the project at six-month intervals (except in

two cases where two six-month intervals were combined in a single

document). All work is either reported in full for each period, or

summarized in cases where other separate full documentation was

available (see 2 below). These reports all carry Air Force report

numbers in addition to the MIT-assigned numbers.

2. Project Technical Reports and Technical Memoranda

In addition to the reporting in the IR-series, 17 documents on

specific topics were issued in the report (R) and technical memoran-

dum (TM) series. These represent phases of the work which merit

separate and complete reporting for easy reference. They are con-

sidered part of the formal documentation and were distributed to the

same address list as used for the IR-series.

3. Informal Documentation

A large number of informal memoranda (about 190) have been

issued over the life of the project, primarily for internal use.

These M-series documents were not given general distribution, al-

though many have gone to outside organizations in answer to specific

requests, or where they formed part of the "AED Documentation"

Because of the close working relationship between the Computer-

Aided Design Project and Project MAC at MIT, many of these memo-

randa were also jointly issued in the Project MAC documentation sys-

tem and thus carry two sets of identifying numbers -- one for this

project and one for Project MAC.



-168-

B. ABSTRACTS OF PROJECT TECHNICAL DOCUMENTATION

1. Final Report 6873-FR-3, Automatic Programming of Numeri-

cally Controlled Machine Tools, John E. Ward, January 15,

1960, 120 pp.

This report covers the three-year period of develop-
ment work on the APT System which preceded the period
covered by the-present report. It documents the first dis-
cussions of "computer aids to design", carried out as one
task during the final year of the APT work. It also con-
tains reprints of Final Reports 6873-FR-1 and 6873-FR-2
on the development of numerical control, thus serving as
a reference for all N/C MIT work for the Air Force under
Contract AF-33(038)-24007 from February, 1951 through
November 30, 1959.

2. Interim Engineering Report 8436-IR-1, "Investigations in

Computer-Aided Design", for the period 1 December 1959 to

30 May 1960; Project Staff; published January 1961; 156 pp;

DDC No. AD252062.

This Interim Report covers the first six months of the
Project under Contract AF-33(600)-40604. Topics covered
include a generalized technique for utilizing computer stor-
age; a general description of the new calculating program
for the APT System for numerical control programming;
techniques for the evaluation of simultaneous logical func-
tions; a summary of a computer routine for constructing
a three-dimensional description of an object from ortho-
graphic projections; descriptions of the light pen and light
cannon (photosensitive devices for transmitting human-
modulated signals from the output scope back into the com-
puter) and associated picture-language forms; conclusions
on the study of automatic feedrate regulation in metal cut-
ting; studies of stress calculations and other mathematical
techniques for design; standard part selection by computer;
and mechanical devices for graphical input to a computer.

3. Interim Engineering Progress Report 8436-IR-2, "Investiga-

tions in Computer-Aided Design", for the period 1 June 1960

to 28 February 1961; Douglas T. Ross and Steven A. Coons;

published November 1961; 81 pp; DDC No. AD269573.

This Interim Report covers the seventh through the four-
teenth months of the Project under Contract AF-33(600)-40604.
Topics covered include a description of initial work on a boot-
strap compiler for programming with "plex" structures,

----- ~·-------- --- -- ·- ··--- ----- -- ·~--------- ----- ----------- _ ----- ~-1-



-169-

including the handling of free storage and symbol tables;
modifications to the new calculating program (ARELEM)
for the APT System; initial experiments with graphic
languages; some proposals for improved computer design
for manipulating plex structures; summaries of theses on
graphical languages, stress analysis and selection of stan-
dard parts; and mathematical techniques useful in design.

4. Interim Technical Progress Report Nos. 3 and 4, ASD-TR-7-

820 (IR 3 and 4), "Investigations in Computer-Aided Design for

Numerically Controlled Production", for the period 1 March

1961 to 8 February 1962 (MIT Report ESL-IR-138); Douglas T.

Ross and Steven A. Coons; published May 1962; 86 pp;

DDC No. AD282679.

This combined Interim Report covers the fifteenth
through the twenty-sixth months of the Project,now under
Contract AF-33(600)-42859. Topics covered include a
description of current status on the basic bootstrap com-
piler, the available programs of the bootstrap plateau sys-
tem, and the multipass compiler; discussion of a new
first-pass algorithm which is believed to have wide appli-
cability to all forms of problem statement; descriptions
of three manual-intervention console designs -- a rudimen-
tary version now operating on the MIT IBM 709 Computer,
a proposed version for the 709, and a study of a remote
console for a large-scale central computer; computer
studies in three-dimensional shape description and stress
analysis; and plans for pilot studies in pin-jointed trusses
and sculptured parts.

5. Interim Technical Progress Report No. 5, ASD-TR-7-820

(IR 5), "Investigations in Computer-Aided Design for Numeri-

cally Controlled Production", for the period 1 March 1962 to

31 August 1962 (MIT Report ESL-IR-164); Douglas T. Ross

and Steven A. Coons; published February 1963; 51 pp;

DDC No. AD403685.

This Interim Report covers the twenty-seventh through
thirty-second months of the Project under Contract AF-33
(600)-42859. Topics covered include: a restatement of
project goals, including a description of the proposed sys-
tem in use; a summary of theoretical developments, in-
cluding a new Algorithmic Theory of Language, and a Theory
of Symbolic Computation; a summary of program develop-
ments, including features of the Multi-Pass Compiler, two-
and three-dimensional graphic languages, and programs for
stress analysis and pilot studies; and a description of new
equipment for display of three-dimensional figures.



-170-

6. Interim Technical Progress Report No. 6, ASD-TR-7-820

(IR 6), "Investigations in Computer-Aided Design for Numeri-

cally Controlled Production", for the period 1 September 1962

to 31 May 1963 (MIT Report ESL-IR-180); Douglas T. Ross

and Steven A. Coons; published August 1963; 57 pp;

DDC No. AD418183.

This Interim Report covers the thirty-third through
forty-second month of the Project under Contract AF-33
(600)-42859. Topics covered include: the features of
the AED-0 (Automated Engineering Design) Compiler,
two- and three-dimensional graphical languages and other
programming studies; and a new display console for at-
taching to the IBM 7094 Computer.

7. Interim Technical Progress Report No. 7, ASD-TR-7-820

(IR 7), "Investigations in Computer-Aided Design for Numeri-

cally Controlled Production", for the period 1 June to

30 November 1963 (MIT Report ESL-IR-202); Douglas T.

Ross and Steven A. Coons; published June 1964; 41 pp;

DDC No. 442880.

This Interim Report covers the forty-third through
forty-eighth month of the Project,now under Contract
AF-33(600)- 10954. Topics are covered in the theoreti-
cal and hardware areas, including an outline of a machine-
independent scheme for generation of efficient computer
programs, analog curve generation for visual displays,
and progress in several areas of stress analysis and other
applications, type theory, and the AED-0 Compiler and
ESL Console in Time-Sharing.

8. Interim Technical Progress Report IR 8-236-I, "Investigations

in Computer-Aided Design for Numerically Controlled Produc-

tion", for the period 1 December 1963 to 30 May 1964 (MIT

Report ESL-IR-221); Douglas T. Ross, Steven A. Coons, and

John E. Ward; published December 1964; 93 pp;

DDC No. 604678.

This Interim Report, although the second one under
Contract AF-33(657)-10954, is the first one under a new
MMP Project Nr. 8-236, and starts a new AF number
series for these Interim Reports. For the Computer-
Aided Design Project, it is the eighth in a series and
covers the forty-ninth through fifty-fourth month of the
Project.



-171-

Technical topics include innovations in compiling
and language processing for the AED-1 System, additions
to AED-0 Compiler capabilities, processing both graphi-
cal and verbal language by a single algorithm, generalized
parametric surfaces, three-dimensional display in time-
sharing, stress analysis and other design topics. To as-
sist in the dissemination of research results the Project
is establishing various cooperative contacts with other
groups. Work with Project MAC and Ship Design at MIT,
and the AED-1 Project, in which programmers from in-
dustry join in the research effort at MIT, are outlined.

9. Interim Engineering Progress Report IR 8-236-II, "Investiga-

tions in Computer-Aided Design for Numerically Controlled

Production", for the period 1 June to 30 November 1964 (MIT

Report ESL-IR-241); Douglas T. Ross, Steven A. Coons,

and John E. Ward; published June 1965; 74 pp;

DDC No. 467764.

This Interim Report under Contract AF-33(657)-10954,
although the second one under MMP Project Nr. 8-236, is
the ninth in a series and covers the fifty-fifth through the
sixtieth month of the Project. Technical topics include in-
novations in compiling and language processing for the
AED-1 System, additions to AED-0 Compiler capabilities,
processing both graphical and verbal language by a single
algorithm, generalized parametric surfaces, three-
dimensional display in time-sharing, stress analysis and
other design topics. This report begins with a five-year
summary of the organization and progress of the Project.
Later chapters describe modifications to the AED-0 Com-
piler System, plans for its distribution to industry, and its
use in preparations for AED- 1. Graphic language in time-
sharing and for shape description is summarized, along
with various mathematical techniques for mechanical design
problems. Experiments in improved display console tech-
niques are also described.

To assist in the dissemination of research results the
Project is establishing various cooperative contacts with
other groups. Work with Project MAC and Ship Design at
MIT, and the AED- 1 Project, in which programmers from
industry join in the research effort at MIT, are outlined.

10. Interim Engineering Progress Report IR 8-236-III, "Investiga-

tions in Computer-Aided Design for Numerically Controlled

Production", for the period 1 December 1964 to 31 May 1965

(MIT Report ESL-IR-262); Douglas T. Ross, Steven A. Coons,



-172-

and John E. Ward; published March 1966; 66 pp;

DDC No. 482837.

This Interim Report under Contract AF-33(657)-10954,
although the third one under MMP Project Nr. 8-236, is the
tenth in a series and covers the sixty-first through the
sixty-sixth month of the Project.

This report announces the distribution of the AED-0
System to companies participating in the AED (Automated
Engineering Design) Project, and the progress in develop-
ing the AED-1 System. Technical topics include innovations
in compiling and language processing for the AED- 1 System,
additions to AED-0 Compiler capabilities, processing both
graphical and verbal language by a single algorithm, gener-
alized parametric surfaces, three-dimensional display in
time-sharing, stress analysis, and other design topics.
Chapter 3 describes the application of computer-aided de-
sign to practical mechanical design problems, such as sur-
face description and display, as in the design of ship hulls
and aircraft fuselages. Chapter 4 reports the study of dis-
play requirements for future time-shared computer systems.

Combined Interim Engineering Progress Report IR 8-236-IV and

V, "Investigations in Computer-Aided Design for Numerically

Controlled Production", for the period 1 June 1965 to 31 May

1966 (MIT Report ESL-IR-278); Douglas T. Ross, Steven A.

Coons, and John E. Ward; published August 1966; 125 pp;

DDC No. 802213.

This Combined Interim Report, under Contract
AF-33(657)-10954, although the fourth and fifth under MMP
Project Nr. 8-236, is the eleventh and twelfth in a series
and covers the sixty-seventh through the seventy-eighth
months of the Project. Technical topics include: (1) innova-
tions in compiling and language processing for the AED
(Automated Engineering Design) System to permit processing
both graphical and verbal language by a single algorithm;
(2) the successful beginning of the 1966 AED Cooperative Pro-
gram with industry; (3) progress in developing the AED-1,
CADET, AEDJR, and AEDNET Systems; (4) the application
of computer-aided design to mechnical design problems, such
as surface description, display of surfaces having discontin-
uous slopes, and stress analysis; and (5) progress in display
hardware for three-dimensional display in time-sharing, in-
cluding a DDA (Digital Differential Analyzer) rotation matrix,
analog curve generation, and installation of a display buffer
computer.



-173-

12. Interim Engineering Progress Report IR 8-236-VI, "Investiga-

tions in Computer-Aided Design for Numerically Controlled

Production", for the period 1 June to 30 November 1966 (MIT

Report ESL-IR-320); Douglas T. Ross and John E. Ward;

published. August 1967; 67 pp; DDC No. AD821385.

This Interim Report under Contract AF-33(657)-10954,
although the sixth under MMP Project 8-236, is the thir-
teenth in a series and covers the seventy-ninth through the
eighty-fourth months of the Project.

The major emphasis continued to be focused on de-
velopment of the AED (Automated Engineering Design)
family of programming systems. Technical topics reported
include: (1) a major revision of the RWORD Package, which
builds items from the input character stream, (2) introduc-
tion of a "Features Feature", which permits selecting only
those facilities relevant to a particular problem situation,
(3) incorporation of a revised AEDJR into the general prob-
lem-solving scheme, which enlarges the present realm of
possible AED applications, (4) major improvements in pre-
processing, (5) improved integrated packages, and (6) com-
pletion of AEDNET, which simulates nonlinear circuits. In
the display area, work reported includes: (1) installation of
a PDP-7 buffer computer for the ESL Display Console,
(2) improved display hardware, and (3) design of low-cost
remote storage-tube displays. Increased activity and in-
terest is reported in the cooperative phases of Project work,
including the AED Cooperative Program, in which program-
mers from industry join in the research effort at MIT. A
report on the First AED Technical Meeting is included, and
plans for the Second AED Technical Meeting are presented.

13. Ross, D. T., and Feldmann, C. G., Papers on the APT

Language, Technical Memorandum 8436-TM-1, June 1960,

46 pp, DDC No. AD243156.

This Technical Memorandum is a reproduction of two
papers written by Douglas T. Ross and Clarence G.
Feldmann of the Computer Applications Group. The first
paper (by D. T. Ross) describes the motivations and view-
point which influenced the design of the English-like part
programming language of the APT System for automatic
programming of numerically-controlled machine tools. An
example of the (then) current APT System language is
given, and future developments are discussed.

The second paper (by C. G. Feldmann) essentially
takes up where the first leaves off, and describes additional
features of the APT Language which were being added to ex-
tend its usefulness and generality. Together these papers



-174-

provide, in a condensed form, a case study description
of the evolution of a specially-designed language.

14. Smith, A. F., Method for Computer Visualization,

Technical Memorandum 8436-TM-2, October 1960, 49 pp,

DDC No. AD248436. (SM Thesis in Department of Electrical

Engineering, MIT)

This computer program produces a three-dimensional
description of an object from a three-view orthographic
projection of that object. A number of restrictions have
been placed on the types of objects the program will handle.
The most important of these is that the object must be
bounded by surfaces which are simply connected plane
regions.

The three views of the given orthographic projection
are viewed as "point-line structures". From the given
two-dimensional structures, a three-dimensional point-line
structure is built up in which all the lines and points which
could possibly exist are represented. After "fixing" as
many points and lines of this structure as possible, the pro-
gram sets up a structure listing all the plane surface regions
which could possibly exist. Additional operations enable the
program to fix or eliminate some of these planes, along with
points and lines. If it is possible to fix or eliminate all the
planes, a solution is reached and the program determines
which side of each of the fixed planes is "solid", and is
finished. If this is not possible, an attempt is made to pre-
sent several alternative solutions to the problem.

Detailed flow diagrams of most of the program are
given. The program was not coded for computer testing but
hand calculation indicated that it should operate successfully
in most cases.

15. Meyer, C. S., A Digital Computer Representation of the Linear

Constant-Parameter Electric Network, Technical Memorandum

8436-TM-3, August 1960, 97 pp, DDC No. AD24837. (SM Thesis

in Department of Electrical Engineering, MIT)

A digital computer routine resulting in a set of equations
that can be solved for the branch currents or branch voltages
of a linear, constant-parameter electric network is described.
Topological relations are defined; and a matrix equilibrium
equation, based on these relations, forms the desired repre-
sentation. Advantages are obtained from the unique branch
numbering system which affords the circuit analyst the oppor-
tunity of specifying tree or link branches. Other existing com-
puter routines are studied, and a comparison is made with the
method of this research. Detailed flow charts are presented,
and a sample circuit is analyzed.



-175-

This work, done as a thesis, is reported as part of a
study program in computer-aided design. Although the
major emphasis of the study is on design of mechanical
parts to be made by numerically-controlled manufacturing,
the study of computer methods for design of electrical net-
works is also germane.

16. Ross, D. T., Computer-Aided Design: A Statement of

Objectives, Technical Memorandum 8436-TM-4, September

1960, 22 pp, DDC No. AD252060.

The MIT Computer-Aided Design Project is engaged in
a program of research into the application of the concepts
and techniques of modern data processing to the design of
mechanical parts, and the further development of automatic
programming (APT) systems for numerically-controlled
machine tools. The Project is a cooperative venture be-
tween the Computer Applications Group of the Electronic
Systems Laboratory and the Design Division of the Mechani-
cal Engineering Department. This document states the
philosophy of approach being used by the Computer Applica-
tions Group. (A companion document, 8436-TM-5, states
the philosophy of the Design Division.)

From the computer applications point of view, the pri-
mary problem is not how to solve problems, but how to state
them. It is proposed that outside-in problem statement, in
which a problem is described first in general terms and then
refined and made precise by further elaborative statements,
is required, rather than the inside-out problem statement
form which characterizes present computer programming.
General problems are viewed as internally structured by
means of interconnected "objets". An objet is. an abstract
entity of meaning, and the computer's "understanding" of a
problem is represented by the structure connecting the objets
of the problem. The human's understanding is in terms of a
language which is isomorphic to the structure of objets. This
language for problem statement will consist of pictorial as
well as alphabetic representations, and can be molded to suit
particular problem areas. The various project activities re-
quired to establish a proper research environment also are
outlined.

17. Coons, S. A., and Mann, R. W., Computer-Aided Design

Related to the Engineering Design Process, Technical Memoran-

dum 8436-TM-5, October 1960, 13 pp, DDC No. AD252061.

The MIT Computer-Aided Design Project is engaged in
a program of research into the application of the concepts
and techniques of modern data processing to the design of
mechanical parts, and the further development of automatic



-176-

programming (APT) systems for numerically-controlled
machine tools. The Project is a cooperative venture between
the Computer Applications Group of the Electronic Systems
Laboratory and the Design Division of the Mechanical Engi-
neering Department. This document states the philosophy of
approach of the Design Division. (A companion document
8436-TM-4 states the philosophy of the Computer Applications
Group. )

The engineering design process is viewed as a stochastic
iterative process in which a recognized human need leads to a
preliminary tentative concept of a means for its achievement;
subsequent analysis, evolution, and judgement leads to modi-
fication of the concept, and even possibly to a modification of
the original goal, until certain standards are met and the need
is satisfied.

The manpower-time requirements for proceeding from the
original design concept to its realization in a manufactured
part, device, or system is investigated, with a view to deter-
mining where best to begin consideration of computer aids in
the sequence. In general, the conclusion is drawn that for the
present the computer can be most effective in replacing man-
power in routine drafting, minor design decisions, engineering
computation occurring in analyses (particularly stress compu-
tations), and as an aid in the selection of standard parts.

18. Welch, J. D., Automatic Feedrate Regulation in Numerically

Controlled Contour Milling, Report 8436-R-1, December 1960,

64 pp, DDC No. AD253676.

The application of continuous-path numerical control and
tracer control to machine tools has increased the need for a
more automatic and accurate method of feedrate selection. A
method of using a feedback signal from the cutting process to
determine the desired feedrate is presented as a solution to
this problem.

The choice of the proper feedback signal is first consid-
ered. It is shown that whereas a computer regulation system
is best suited to controlling the metal removal rate, a feed-
back regulation system is best suited to controlling the tool
wear rate. The tool temperature is the output of the cutting
process which is most closely related to the tool wear rate.
The method chosen for detecting the tool temperature is the
tool-work thermocouple technique.

An experimental system for regulating the feedrate of the
MIT numerically-controlled milling machine is described.
The results show that subject to certain restrictions the tool-
work thermal emf can be used successfully as a feedback sig-
nal to control the machine feedrate so as to keep the cutting
temperature essentially invariant to changes in the cross
section of the cut.



-177-

19. Randa, G. C., Design of a Remote Display Console, MIT

Report ESL-R-132, February 1962, 126 pp, DDC No. AD274985.

(EE Thesis in Department of Electrical Engineering, MIT)

This report is a design study of a console which may be
remotely connected to a high-speed digital computer. The
console is designed to present visual information generated
during the course of problem solution on a cathode-ray-tube
display. The console is provided with an integral drum
memory for display maintenance, and allows the printing of
points, characters and vectors. Light pens also are pro-
vided for graphic communication and program control.
Primary control of the console is exercised by the central
data processor, in the selection of modes of operation; how-
ever, local control over the chaining of blocks of data to be
displayed is provided by the use of control words stored in
the display memory.

These features provide flexible operation of the remote
console. Since several consoles of this type may be con-
nected to a computer, low cost is a prime consideration in
the design.

This report discusses equipment specifications derived
from a consideration of several problems of varying com-
plexity, and concludes that use of the central data processor
itself to perform computations associated with the display is
the most economical system. The general system organiza-
tion of 'the console equipment and its interconnection with the
central processor are outlined, and the detailed logical de-
sign of the console and associated storage unit are considered.

20. Randa, G. C., and Grondstra, J. W., Design for a Manual Inter-

vention Console, Memorandum No. 8753-M-55, March 1962.

The work reported here covers the design study of a
manual-intervention console to be used with an IBM 709 Data
Processing System. The console will provide operator inter-
vention, display, and control functions which will permit him
to function efficiently while utilizing the computer for computer-
aided design studies, or while monitoring the progress of a
difficult, complex problem. Facilities are available on the con-
sole for use of two cathode ray oscilloscopes for display of
points, characters, or vectors (using incremental-digital rather
than analog display generation techniques); two electric type-
writers for operator communication with the machine; a high-
speed photoelectric tape reader for loading of large amounts of
data; light pens and light cannon for use with the oscilloscopes;
indicator lights to indicate the status of the problem; an alarm
clock as an external time-keeping device; activate pushbuttons
for inserting one-shot data; and mode toggle switches for use
in indicating static inputs to the machine.



-178-

Work which has been completed and which is reported
here includes the systems design for the console, using char-

acteristics of assumed console equipments, and the prelimi-
nary logic design required to interconnect the equipments and
the computer input-output channel. The equipments used on
the console and their functions are described, as well as the
methods used to control them in conjunction with the signals
available from the 709 direct data connection. Programming
also is considered as it affects the design of the console and
its operation with the computer. Detailed logic diagrams also
are given to describe the circuits necessary to make the con-
sole operational. The various modes of operation are de-
scribed and the instrumentation is defined.

21. Ross, D. T., An Algorithmic Theory of Language, MIT Report

ESL-TM-156, November 1962, 68 pp, DDC No. AD296998.

The Algorithmic Theory of Language takes the view that
processing algorithms define classes of language. A language
belongs to a class depending upon whether or not it is properly
processed by the corresponding algorithm. Following n-
component element and plex definitions, several General
Principles concerning the step-by-step growth of large, com-
plex structures are introduced. The words and symbols of
language are then considered to be elements with attractive
and repulsive properties which cause them to link together to
form linguistic structures. The General Principles are ap-
plied to suitable element definitions to yield derivations of
successively more elaborate algorithms defining the behavior
of these elements, and generating in one left-to-right pass the
First-Pass Structure, which explicitly exhibits the syntactic
and semantic structure of a statement by showing syntactic
context by a tree structure and semantic context by the "prece-
dence string".

The present development stops with the concepts of major
and minor modifiers and leaves ambiguity resolution and other
topics to future papers. (This document is a preprint of a
paper submitted to the Journal of the Association for Computing
Machinery for publication in 1963. )

22. Sutherland, I. E., Sketchpad: A Man-Machine Graphical

Communication System, M. I. T. Lincoln Laboratory Technical

Report No. 296, 30 January 1963, 91 pp, DDC No. AD404549.

(This report, based on a Doctoral thesis, was not directly sup-

ported by the CAD Project but was distributed by it because of

the close technical coupling in matters of goals and thesis

supervision. )



-179-

The Sketchpad system uses drawing as a novel means
of communicating with a computer. The system contains
input, output, and computation programs that enable it to
interpret information drawn directly on a computer display.
It has been used to draw electrical, mechanical, scientific,
mathematical and animated drawings; it is a general-
purpose system. Sketchpad has shown the most usefulness
as an aid to the understanding of processes, such as the
motion of linkages, which can be described with pictures.
Sketchpad also makes it easy to draw highly repetitive or
highly accurate drawings and to change drawings previously
drawn with it. The many drawings in this report, including
legends and labels, were all made with Sketchpad.

A Sketchpad user sketches directly on a computer dis-
play with a "light pen. " The light pen is used both to posi-
tion parts of the drawing on the display and to point to them
to change them. A set of push buttons controls the changes
to be made, such as "erase" or "move. " Except for legends,
no written language is used.

Information sketched can include straight line segments
and circle arcs. Arbitrary symbols may be defined from
any collection of line segments, circle arcs, and previously
defined symbols. A user may define and use as many sym-
bols as he wishes. Any change in the definition of a symbol
is at once seen wherever that symbol appears.

Sketchpad stores explicit information about the topology
of a drawing. If the user moves one vertex of a polygon,
both adjacent sides will be moved. If the user moves a sym-
bol, all lines attached to that symbol will automatically move
to stay attached to it. The topological connections of the
drawing are automatically indicated by the user as he
sketches. Since Sketchpad is able to accept topological infor-
mation from a human being in a picture language perfectly
natural to the human, it can be used as an input program for
computation programs which require topological data, e. g.,
circuit simulators.

Sketchpad itself is able to move parts of the drawing
around to meet new conditions which the user may apply to
them. The user indicates conditions with the light pen and
push buttons. For example, to make two lines parallel, he
successively points to the lines with the light pen and presses
a button. The conditions themselves are displayed on the
drawing so that they may be erased or changed with the light
pen language. Any combination of conditions can be defined
as a composite condition and applied in one step.

It is easy to add entirely new types of conditions to
Sketchpad's vocabulary. Since the conditions can involve
anything computable, Sketchpad can be used for a very wide
range of problems. For example, Sketchpad has been used



-180-

to find the distribution of forces in the members of truss
bridges drawn with it.

Sketchpad drawings are stored in the computer in a
specially designed "ring" structure. The ring structure
features rapid processing of topological information with
no searching at all. The basic operations used in Sketch-
pad for manipulating the ring structure are described.

23. Stotz, R. H., Specialized Computer Equipment for Generation

and Display of Three-Dimensional Curvilinear Figures,

M. I. T. Technical Memorandum ESL-TM-167, March 1963,

154 pp, DDC No. AD406608. (Also SM Thesis in Department of

Electrical Engineering, M. I. T.; also published in condensed

form in the Proceedings of the 1963 Spring Joint Computer

Conference. )

Studies being conducted of Computer-Aided Design of
three-dimensional shaped objects have shown the need for
improved graphical man-computer communications, par-
ticularly faster displays. A straight- line-and- curve-
drawing display system is proposed which is capable of
drawing two-dimensional, axonometric projections of
curvilinear three-dimensional figures at up to 100 times
the speed of point-plotting display scopes. The system,
based on digital incremental computing techniques, con-
sists of a Line Generator to produce time-varying x, y,
and z pulse-train signals proportional to the numerical in-
put information; a Rotation Matrix to transform these sig-
nals into the h and v coordinate axes of the scope; and
Accumulating Registers (bi-directional counters) to hold
the resultant data for the scope deflection amplifiers. The
Line Generator is capable of producing straight lines and
second-order curves of variable length.

Two basic elements are compared as building blocks
for the Line Generator and Rotation Matrix: the Binary
Rate Multiplier (BRM) and the Digital Differential Analyzer
(DDA). The operating principles of these units are de-
scribed and their differences as computing elements for
this system are analyzed. The entire system was simulated
on a PDP-1 computer which has a standard display scope
and the results of comparative tests between DDA- and
BRM-drawn figures are shown. Although the BRM has
larger errors than the DDA for equivalent register lengths,
its simplicity makes it attractive. BRM errors are studied
in detail, and theoretical and simulation results for im-
proved BRM's are given.

Additions to the display system permitting generation
of stereoscopic and perspective projections also are de-
scribed, and figures resulting from simulations of these



-181-

systems are shown. It is concluded that a display system
with an incremental computing capability will provide a
sound basis for future work in Computer-Aided Design.

24. Coons, S. A., An Outline of the Requirements for a Computer-

Aided Design System, M. I. T. Technical Memorandum

ESL-TM-169, March 1963, 13 pp, DDC No. 404832. (Also

published in the Proceedings of the 1963 Spring Joint Computer

Conference in Detroit. )

Computer-Aided Design, as distinct from Automatic
Design, involves the creation of a man-machine system
in which the designer and computer can work smoothly,
as a team, on original design problems requiring creative
solutions. This paper reviews the iterative and unpredict-
able nature of the design process, establishes broad re-
quirements of evolutionary flexibility which a Computer-
Aided Design System must meet, and describes several
applications indicating that such a broad general system is
practicable.

25. Ross, D. T., and Rodriguez, J. E., Theoretical Foundations

for the Computer-Aided Design System, M. I. T. Technical

Memorandum ESL-TM-170, March 1963, 43 pp, DDC No. 404832.

(Also published in the Proceedings of the 1963 Spring Joint Com-

puter Conference in Detroit. )

For an evolutionary Computer-Aided Design System
to become a reality, it must be built on a cohesive, rigo-
rous foundation. This paper describes the application of
The Algorithmic Theory of Language and its companion
Theory of Operators to the problem. It is shown how algo-
rithms of the Language Theory transform statements made
in graphical or verbal language into the corresponding
First-Pass Structure, which explicitly exhibits the syntactic
and semantic structure of the statement. Operators then
transform the meaning into the Modeling Plex, which repre-
sents the problem to which the statement referred. Succes-
sive operators then generate further models of statements
so that a common approach to all aspects of the Computer-
Aided Design System is achieved. The concepts are illus-
trated by an example drawn from servomechanism design.

26. Johnson, T. E. , Sketchpad III, Three-Dimensional Graphical

Communication with a Digital Computer, M. I. T. Technical

Memorandum ESL-TM-173, May 1963, 51 pp, DDC No. 406855.



- 182-

(Also SM Thesis in Department of Mechanical Engineering,

M. I. T.; also published in condensed form in the Proceedings

of the 1963 Spring Joint Computer Conference. )

In Computer-Aided Design of mechanical parts,
effective graphical man-machine communication is re-
quired. In particular, it is desired that the human de-
signer at the computer console be able to quickly con-
struct and manipulate three-dimensional figures in as
natural a manner as possible, at the same time making
use of the logical and computational power of the com-
puter to assist him. At the present time, the most ap-
propriate input-output device for this purpose appears
to be an output oscilloscope screen, coupled with a light-
pen input to the computer and various other manual input
devices such as control knobs, switches and keyboards.

This paper describes a programming system written
for the M. I. T. Lincoln Laboratory TX-2 Computer which
permits scope, light-pen and control knobs to be used in
a flexible manner to draw three-dimensional, straight
line, "wire frame" figures. Three orthogonal views com-
plement a perspective view to permit simultaneous obser-
vation from several vantage points to increase depth per-
ception. Drawing can be accomplished in any view.

27. Ross, D. T., and Feldmann, C. G., Verbal and Graphical

Language for the AED System: A Progress Report, M. I. T.

Project MAC Report MAC-TR-4, May 6, 1964, 26 pp,

DDC No. AD604678. (Also included in ESL Interim Technical

Progress Report No. 8, IR-8-236-I, Ref. 8. ) This paper was

presented at the M. I. T. Industrial Liaison Symposium on

Project MAC, May 6, 1964.

For Computer-Aided Design use of time-sharing a
single language which can take either verbal or graphical
form is required. This paper describes how a single
language processing technique, which is in turn a special
application of more general concepts concerning the step-
by-step growth and processing of large structures of inter-
related elements, can efficiently process both language
forms in the same manner. Illustrations of the concepts
involved are also drawn from the methods used in the
AED-0 Compiler, an efficient ALGOL-60-based compiler
used in Computer-Aided Design work, which is available
as a public command in the Project MAC CTSS.



-183-

28. Ross, D. T., AEDJR: An Experimental Language Processor,

M. I. T. Technical Memorandum ESL-TM-211, published

September 1964, 53 pp, DDC No. 453881.

The AEDJR System is a miniaturized version of the
kind of evolutionary problem-solving system which is
the goal of the M. I. T. Computer-Aided Design Project.
The core of the system is a simplified but more general
version of the First-Pass Algorithm which automatically
transforms an input string of statements in a language
into a structure which shows both the syntactic and seman-
tic structure of the statements. The behavior of this algo-
rithm is controlled by meta-properties associated with
words of the language. AEDJR allows new words to be
defined and their meta-properties to be assigned in a con-
venient manner, so that essentially arbitrary artificial
languages can be processed by the system. It also has
provision for testing new vocabularies thus established
and for using AEDJR processing to drive arbitrary work-
ing programs. Thus problem-oriented systems with
powerful control languages can be easily constructed.
Although the present version of AEDJR is preliminary and
experimental, it demonstrates tha techniques being used
for development of a full-scale, generalized Computer-
Aided Design System.

29. Ross, D. T., Implications of Computer-Aided Design for

Numerically Controlled Production, M. I. T. Report

ESL-TM-212, September 1964, 31 pp, DDC No. AD 453880.

(Reprint of a paper presented at the First Annual Meeting and

Technical Conference of the Numerical Control Society in

New York on March 20, 1964.)

Although the potential impact of Computer-Aided
Design techniques on the application of numerical control
in a production environment is very great, changes in
present practice will be evolutionary rather than revolu-
tionary. There are three main portions of the Computer-
Aided Design concept: 1) combined verbal and graphical
language, for making statements about problems; 2) the
modeling plex, for storing in a consistent fashion all of
the necessary information about a problem; and 3) gen-
eralized operators, for manipulating statements and
models to perform useful mathematical and data proces-
sing functions. Man-machine console facilities, including
graphical and verbal input-output facilities, are needed
and must be made economically feasible on a large scale.
The combined hardware-software system can be applied
to various new problem areas by bootstrapping new tech-
niques and processes into the system using available



-184-

facilities. It appears that the steps now associated with
the application of numerical control proper will play a
crucial but subordinate role in the overall design-to-
manufacturing process, and will take on new forms and
procedures. These longer range implications are a
natural evolution from the integration of "master dimen-
sions" and similar techniques now being pursued in in-
dustry. Portions of this overall new approach can be
made available to the small business, and the techniques
can be specialized for particular purposes, such as
drafting, for small and large business alike.

30. Hamilton, M. L., and Weiss, A. D., An Approach to Computer-

Aided Preliminary Ship Design, M. I. T. Technical Memorandum

ESL-TM-228, January 1965, 65 pp, DDC No. AD 461412.

This report describes an application of Computer-
Aided Design concepts to the general preliminary design
of ships, in which shape description plays an important
part. Although the present study is preliminary in nature
and will require considerable elaboration for practical
use, it does indicate the feasibility of the approach. The
design and evaluation of hull forms was accomplished
"on line" using the Project MAC time-shared digital com-
puter, the display console developed by the M. I. T. Elec-
tronic Systems Laboratory, and a very general, para-
metric surface description technique developed by Prof.
S. A. Coons. Three-dimensional hull surfaces displayed
on the CRT screen could be altered in a few seconds by
typed-in changes in parameters, and could be rotated to
any desired viewing angle for study. Using these tech-
niques, the lines of the US DD 692 were simulated such
that the routines for calculating midships coefficient,
prismatic coefficient, displacement, wetted surface area,
and centers of buoyancy yielded values closely resembling
those of the actual ship. A brief economic analysis shows
the great saving in time and cost and the corresponding in-
crease in study of alternative designs which would be possi-
ble with such a design system.

31. Stotz, R. H., and Ward, J. E., Operating Manual for the ESL

Display Console, M. I. T. ESL Memorandum 9442-M-129 (also

Project MAC Memorandum MAC-M-217), March 9, 1965, 47 pp.

This document, which describes the hardware func-
tions and detailed command structure of the ESL Display
console, supersedes an earlier memorandum written in
August 1963 during the construction of the console. The
ESL Console is designed to operate from the direct data
channel: of an IBM 7094 Computer, and is a specialized



-185-

computer which automatically converts three-dimensional
drawing commands from the 7094 memory into arbitrary
two-dimensional projections. Real-time rotation, trans-
lation, and scale changes are possible even in time-sharing
(the console operates under the Project MAC 7094 Compat-
ible Time-Sharing System). Light-pen tracking for graphic
input is an automatic hardware function. Other features
include character and vector generators, and convenient
manual input devices for controlling the real-time display
manipulations.

32. Lang, C. A., New B-Core System for Programming the ESL

Display Console, M. I. T. ESL Memorandum 9442-M-122 (also

Project MAC Memorandum MAC-M-217), April 30, 1965, 84 pp.

Graphical man-machine communication is made pos-
sible by devices such as the ESL Display Console, but as
with all elaborate input-output devices, the programming
required to obtain desired performance is an intricate
and exacting task. Programming problems are greatly
compounded when real-time response is required in a
time-sharing environment. To resolve these difficulties
and provide to the user a convenient software interface,
the Computer-Aided Design Project has prepared two in-
tegrated packages of system programs known as the
A-Core/B-Core System. The A-Core System is incorpo-
rated into the Project MAC Time-Sharing System Super-
visor and provides elemental real-time control of the ESL
Display Console. The B-Core System described in this
memorandum in turn controls the A-core functions in re-
sponse to a large number of convenient functions which con-
stitute the building blocks of graphical man-machine com-
munication. Not only is the user freed of the intricacies of
console programming, but also future changes in system
hardware and software will not affect his programs.

Flexible means are provided by the B-Core System
for creating and editing a display file. Procedures for
adding, removing, and replacing console commands, as
well as a "copy" function whereby identical sets of com-
mands may be reproduced within the file are included in
the package. An important feature is the ability to define
subroutine pictures or "subpictures" (analogous to the way
AED-0 procedures are defined) and each time one is called
only a single command is added to the display file. Also,
a set of procedures for adding "standard picture parts" to
the display file is provided. These include characters,
points, lines, arcs of circles, rotation matrix commands,
and console mode-change commands.

The user may identify items added to the display file
by assigning each one a name. All communication between
the user and the system about them then takes place in



-186-

terms of these names, the system automatically per-
forming the required transformations for communication
with A-core. The names remain invariant as the posi-
tions of the commands which they represent are moved
in the display file. Thus B-core provides a form of
automatic storage allocation for the display file.

33. Ross, D. T., The M. I. T. Computer-Aided Design Project--

A Half-Decade Summary, M. I. T. ESL Memorandum

9442-M-140, July 1965, 35 pp. (Reprinted in ESL-IR-241,

Ref. 9, also pp. 774-797 of Symposium Proceedings.)

This paper, presented at the Air Force Materials
Symposium, Miami Beach, Florida, June, 1965, does
not describe the Computer-Aided Design concept from
the user's point of view, but instead covers the methods
of attack being used in creating the system itself. The
work of the Project includes theoretical studies of prob-
lem structuring, language processing, compiling, and
shape description; program developments for construct-
ing working design systems and studying applications;
hardware developments for man-machine communication;
and cooperatire ventures with industry to ensure practi-
cal transmission of research results into the industrial
environment. Progress in these areas during the first
five years of effort is described, and plans and prognoses
for future developments are outlined. Annotated illustra-
tions summarize the technical discussion.

34. Johnson, T. E., Analog Generator for Real-Time Display of

Curves, M. I. T. Lincoln Laboratory Technical Report 398,

July 28, 1965, 28 pp, DDC No. AD623945 (an abstract of this

report is given in IR-236-IV and V, Ref. 11).

Real-time interaction between man and digital com-
puters often requires a computer-directed graphical dis-
play. The cathode-ray tube (CRT) has so far been the
only candidate for applications requiring fast write and
erase times. However, in addition to an adequate display
surface, there is need for more advanced generators
which are capable of drawing straight lines and curves
without demanding constant attention from the computer.
Digital techniques for drawing curves and straight lines
without performing point-by-point calculation in the com-
puter are well known but are quite expensive and complex.
Analog methods for generating curves are simpler and
more direct, but have found little use because of speed
and accuracy limitation and the high price of analog
switching components.



-187-

Two recent advances in solid-state analog devices
that have changed this situation are the high-current field-
effect transistor (FET) and the low-cost, high-bandwidth,
high-power operational amplifier. The advent of the high-
current FET provides, for the first time, analog switching
speeds in the microsecond region with no current or vol-
tage offset.

This report discusses the design and performance of
a low-cost analog generator capable of forming rotated
cubics and conics for display. The generator, presently
in operation on the TX-2 computer at Lincoln Laboratory,
has an accuracy of 0. 1 percent and is capable of producing
over 3000 arbitrary curves per second. It should be re-
garded as an extremely fast general-purpose analog com-
puter that has been adapted for the particular application
of real-time display. The analog computer is driven by a
general-purpose digital computer that supplies the param-
eters, selects the computing paths, and furnishes the
length of time the analog generator must run to form any
one solution (the display of a curve). While the analog gen-
erator is computing the locus of the curve, the driving digi-
tal computer is disconnected from the generator and is free
for general computation. Thus, the computational load on
the digital computer necessary to initiate and maintain a
complicated display of cubics and conics is greatly reduced.

35. Ross, D. T., Lang, C. A., Polansky, R. B., Some Experi-

ments with an Algorithmic Graphical Language, M. I. T.

Technical Memorandum ESL-TM-220, August 1965, 55 pp,

DDC No. 472147.

This report describes the inner workings of the
"May 6th Demonstration Program", a graphical language
system using the ESL Display Console attached to the
Project MAC time-shared computer system. The program
was written to demonstrate that picture languages, such as
Sketchpad, do not require special techniques, but are pro-
cessed by the same First-Pass Algorithm of the Algorith-
mic Theory of Language as is used for programming lan-
guages in the AED family of compilers. The system is
constructed around the AEDJR System for defining and
parsing languages, the Pseudo Pen Program for precise
light-pen action, the A-Core/B-Core System for control-
ling real-time display console action in the time-sharing
environment, plus a number of routines to define the mean-
ing of the graphical words. Although refinements of these
techniques are being incorporated in the newer CADET Sys-
tems (Computer-Aided Design Experimental Translator),
this report gives a more complete description of how graphi-
cal language systems are constructed than has previously
been available.



-188-

36. Wolman, B. L., Operators for Manipulating Language Struc-

tures, M.I.T. ESL Memorandum 9442-M-160, (also Project

MAC Memorandum MAC-M-304), March 18, 1966, 28 pp.

(Presented at the Symposium on Symbolic and Algebraic Manip-

ulation, Association for Computing Machinery, Washington D. C.,

March 29-31, 1966. )(Based on an SM Thesis, June 1965, Ref. 55a.)

The manipulation of symbolic expressions, optimiza-
tion of computer programs by a compiler, and the use of
graphical or pictorial input-output have heretofore been
considered to be unrelated problems. The Algorithmic
Theory of Language provides a language structure capable
of representing both the syntactic and semantic structure
of statements in algebraic, procedural, or graphical lan-
guages. Utilizing the semantic sequencing information in
the structure, "operators" defined for atomic forms may
be applied to arbitrarily complex structures to provide a
uniform and powerful manipulation capability for these and
other areas of application. This paper describes an on-
line, experimental version of a system constructed in this
manner.

37. Ross, D. T., The AED Approach to Generalized Computer-

Aided Design, M. I. T. Report ESL-R-305, April 1967, 56 pp,

DDC No. AD814912.

Computer-aided design requires a multitude of spe-
cialized man-machine problem-solving systems, each
with its own graphical-verbal jargon suited to the field of
application. Many popular misconceptions about computer-
aided design hinge on a lack of appreciation of the under-
lying processes which are involved in any successful sys-
tem. An experiment introduces to nonsystem-programmers
the thesis that four principal phases are involved: the lexi-
cal, parsing, modeling, and analysis phases, which receive
recognize, understand, and solve a problem. The AED
(Automated Engineering Design) Approach of the M. I. T.
Computer-Aided Design Project provides generalized table-
driven processors for each of these phases so that powerful
specialized systems can be created, modified, and main-
tained with a fraction of the customary effort. The finite-
state machines of the RWORD System, and the powerful
parsing of the AEDJR System, coupled with system-program-
ming techniques of the AED Compiler for generating Semantic
Packages provide an orderly and efficient methodology which
soon will be available on a variety of computers.



-189-

38. Lapin, R. B., Translation Between Artificial Programming
Languages, M.I.T. Report ESL-R-306, April 1967, 119 pp,

DDC No. AD815395, (also SM thesis in Department of Electrical
Engineering, M. I. T.).

Automatic translation of computer programs from one
artificial language to another is often a suitable solution to
the reprogramming problem. The report presents a gen-
eral method for translation between artificial programming
languages and its application to the translation between
MAD (Michigan Algorithmic Decoder) and AED-0 (Algol
Extended for Design). The method can be applied to any
language, as long as the scope of the target language effec-
tively includes that of the source language. Use of the
AEDJR language processor and associated manipulation
operators assures generality while maintaining simplicity.
The translation is accomplished by first defining the source
language in terms of the AEDJR grammar. This definition
is then used to produce a parsed tree structure for the
source program. Next, the application of a set of transla-
tion rules produces an equivalent tree structure for the tar-
get program. Finally, from this structure the equivalent
program is generated as a character string in the target
language

39. Coons, S. A., Surfaces for Computer-Aided Design of Space

Forms, M.I.T. Project MAC Technical Report MAC-TR-41,

June 1967, 111 pp, DDC No. AD663504.

The design of airplanes, ships, automobiles, and so-
called "sculptured parts" involves the design, delineation,
and mathematical description of bounding surfaces. A
method is described which makes possible the description
of free-form doubly curved surfaces of a very general
kind. An extension of these ideas to hyper-surfaces in
higher dimensional spaces is also indicated.

The surface technique has been specifically devised
for use in the Computer-Aided Design Project at M. I. T.,
and has already been successfully implemented here and
els ewhere.

C. ABSTRACTS OF THESES ASSOCIATED WITH PROJECT WORK

40. Meyer, C. S., A Digital Computer Representation of the Linear

Constant Parameter Electric Network, Master of Science thesis

in Electrical Engineering, June 1960.

(Also published as Technical Memorandum 8436-iTM-3,
for Abstract see Ref. 15. )



-190-

41. Smith, A. F., Method for Computer Visualization, Master of

Science thesis in Electrical Engineering, June 1960.

(Also published as Technical Memorandum 8436-TM-2,
for Abstract see Ref. 14.)

42. Welch, J. D., Automatic Feedrate Regulation in Numerically

Controlled Contour Milling, Master of Science thesis in Electri-

cal Engineering, June 1960.

(Also published as Report 8436-R-1, for Abstract see
Ref. 18. )

43. Johnson, L. E., Graphical Communication with a Digital

Computer, Master of Science thesis in Mechanical Engineering,

June 196 1.

This thesis reports the results of an investigation of
the problem of conveying graphical information about me-
chanical parts from the designer to a digital computer.
This study stems from the need for new techniques for the
utilization of computers in the design process. The par-
ticular technique which is discussed in some detail would
enable a designer to sketch projections of a part using an
electromechanical drawing device, push buttons to indicate
numerical quantities, and thus convey to the computer suf-
ficient information for a complete shape description of the
part.

A shape description interpretation program is de-
scribed which can be used by the computer to concisely
store the orthographic view information given by a de-
signer as he draws at a console. A proposed input device
for transmitting shape description information to the com-
puter is also described in some detail. The interpretation
program can be used with this device, however the major
part of it is sufficiently general to be used with other
graphical input devices.

44. Parmelee, R. P., A Study of a Stress Analysis Facility for

Computer-Aided Design, Master of Science thesis in Mechani-

cal Engineering, June 1961.

This thesis reports a study into various aspects of
stress analysis in computer-aided design, with such fea-
tures as internal computer storage of the three-
dimensionality of the part, and the ability to communicate
graphical information to the computer.



- 191-

Several elementary stress analysis techniques are
considered (beam stresses, torsion stresses, Mohr's
circle combination of stresses, and plate stresses) and
these techniques are outlined briefly in the introductory
pages. The necessary programs for obtaining cross
section from the internally stored three-dimensionality
information of the part and for automatic programming
of the specific stress analysis problem are discussed
and outlined.

In addition, the problems associated with the auto-
matic programming and solution of two partial differen-
tial equations are considered. The Poisson or nonhomo-
geneous Laplace equation and the nonhomogeneous bihar-
monic equation, describing torsion stresses and plate
stresses, respectively, are considered from the stand-
point of automatic programming requiring only that the
designer, while viewing an oscilloscope-produced repre-
sentation of the boundaries of the region (a cross section
for the case of torsion stresses) align suitably an array
of mesh points (also appearing on the scope face) on the
region.

These separate subfacilities are then organized and
placed under the control of a central processor or com-
piler which interprets the designer's statement of the
specific problem, assembles the appropriate subfacilities,
initiates computation, and organizes the outputs for dis-
play to the designer or for transfer to some other facility
in the overall computer-aided design system.

45. Purvis, J. D., Jr., An Investigation of a Standard Parts

Selection Facility for Computer-Aided Design, Master of

Science thesis in Mechanical Engineering, September 1961.

This thesis reports work done in an investigation of
a standard parts selection facility for a computer-aided
design system. The work that was done involved the anal-
ysis of the procedure followed by an engineering designer
when selecting a standard threaded fastener. The infor-
mation requirements of the designer were ascertained by
this analysis. A method of data storage was formulated
and used for the storage of the information requirements.
The final step was the formulation of data retrieval rou-
tines by which a threaded fastener would be selected to
meet either a specified external loading or a specified
special design requirement.



-192 -

46. Verderber, J. A., Graphical Input-Output Devices for

Computer-Aided Design, Master of Science thesis in

Mechanical Engineering, June 1961.

In the process of engineering design the use of
graphical data of the symbolic, indicial, and ikonal
types is necessitated by the stages of conceptualization
and analysis prerequisite to the formulation of a hier-
archy of design decisions. The factors affecting design
decisions are weighed with an eye toward development
of graphical input-output devices for designer-computer
matching. Three basic manual intervention techniques
for the processing of graphical data are discussed. In
the first, a scheme for computer control of a designer's
sketching is analyzed for the logic, error, power, con-
trol, and utilization information necessary and precedent
to the formulation of rigorous design criteria for a proto-
type system. The second and third approaches are based
on remote manipulation techniques for the electromechani-
cal or electronic display of graphical data. Stages in the
design, construction, and testing of "bread-board hard-
ware" of wide flexibility are described in detail, and it is
found feasible to employ remote manipulation as a means
of activating a graphical input-output device for digital
computers. A sample sketch made with the help of the
test control system is included.

47. Randa, G. C., Design of a Remote Display Console, Master

of Science thesis in Electrical Engineering, February 1962.

(Also published as Report ESL-R-132, for Abstract
see Ref. 19. )

48. Bennett, P. T., Automatic Strength of Materials Routines for

Computer-Aided Design, Master of Science thesis in Mechani-

cal Engineering, February 1963.

This thesis describes an investigation in the field of
computer-aided stress analysis. It reviews the under-
lying philosophy of the forms this aid should take to blend
in the best way the capabilities of the designer and the
computer.

The several related steps in designing a part for
strength are examined and discussed. The development
of a working computer system for beam stress analysis
is described. The underlying theory is presented, and a
delineation of the graphical input and control techniques
is included.



-193-

49. Stotz, R. H., Specialized Computer Equipment for Generation

and Display of Three-Dimensional Curvilinear Figures, Master

of Science thesis in Electrical Engineering, February 1963.

(Also published as Technical Memorandum ESL-TM-167,
for Abstract see Ref. 23. Also published in condensed
form in the Proceedings of the 1963 Spring Joint Compu-
ter Conference, see Ref. 81. )

50. Sutherland, I. E., Sketchpad, A Man-Machine Communication

System, Doctor of Philosophy thesis in Electrical Engineering,

February 1963.

(Also published as Lincoln Laboratory Report TR-396,
for Abstract see Ref. 22. Also published in condensed
form in the Proceedings of the 1963 Spring Joint Com-
puter Conference, see Ref. 82. )

51. Johnson, T. E., Sketchpad III, Three-Dimensional Graphical

Communication with a Digital Computer, Master of Science

thesis in Mechanical Engineering, June 1963.

(Also published as Technical Memorandum ESL-TM-173,
for Abstract see Ref. 26. Also published in condensed
form in Proceedings of the 1963 Spring Joint Computer
Conference, see Ref. 83. )

52. Tillman, C., Jr., On an Adaptive Technique for Solving Linear

Algebraic Equations, Master of Science thesis in Mechanical

Engineering, June 1963.

Pattern-search techniques may be employed in
solving linear algebraic equations by minimization of the
extremum functions with which linear equations are as-
sociated. Digital computer programs were written for
determining the efficiency of pattern-search techniques
relative to other common methods by which linear equa-
tions are solved. Functional relationships between com-
putation time T, number of unknowns n, and condition
number P were obtained for equations will full coefficient
matrices. It was found that at fixed P= 100, solutions of
5-decimal accuracy could be obtained in computation times
proportional to n1 . 2 -n 2 2, the exact proportionality de-
pending on the eigenvalue distributions of the coefficient
matrices being considered.5 With constant n= 12, T was
found to vary as PO 2 _p * , with eigenvalue distribution
again determining the exact exponent. It was concluded
that for many types of linear problems pattern searching
may offer considerable time savings over conventional
solution techniques.



- 194-

53. Best, A. R., The Examination of Pen Tracking Schemes for

Man-Computer Systems, Bachelor of Science thesis in Electri-

cal Engineering, June 1964.

This thesis examined easily implementable tracking
patterns for visual man-machine communication sys-
tems. The method of investigation was simulation on the
PDP-1 computer of various hardware logics and param-
eters. Essentially different programs were written for
each logic, and parameters were changed in each pro-
gram to determine the most effective combinations. The
conclusion is that a square or a small tracking cross
that "predicts" the next location of the pen is the best.

54. Hamilton, M. L., and Weiss, A. D., An Approach to

Computer-Aided Preliminary Ship Design, Master of Science

thesis in Mechanical Engineering and in Naval Architecture,

September 1964. (Also published as Technical Memorandum

ESL-TM-228, for Abstract see Ref. 30. )

55. Cohler, N., Three-Dimensional Computer Displays Using

Thin-Film Analog Multipliers, Master of Science thesis in

Electrical Engineering, June 1965.

This thesis describes the development and testing of
a four-quadrant analog multiplier for use in a hybrid
analog-digital computer display system. The multiplier
utilizes the effect of magnetoresistance in thin ferromag-
netic films. Its advantages for this application include
low cost, versatility as a three-term multiplier-added,
small size, and ease of replication with "standard" thin-
film computer memory components. Comparison is
made with a commercially available analog multiplier
which also uses magnetoresistive elements. The limita-
tions, accuracy, and input-output requirements of the
multiplier, as well as thoughts for its future improve-
ment, are discussed.

55a. Wolman, B. L., Operators for Manipulating Verbal and

Graphical Language Structures, Master of Science thesis in

Electrical Engineering, June 1965. (For Abstract see Ref. 36.)

56. Guttmann, E. G., Investigation of Threshold Logic in High-

Speed Display Systems, Master of Science thesis in Electrical

Engineering, June 1965.



- 195-

A computer-driven graphical display system con-
structed by the Electronic Systems Laboratory utilizes
binary rate multipliers (BRM's) to generate and rotate
figures made up of straight lines to be visually displayed
on a cathode ray tube. The displayed pictures are some-
times distorted and the lines are ragged looking, due to
inherent accumulative round-off errors of the binary rate
multipliers in the rotation matrix. In this thesis, a new
approach to improve the picture quality by eliminating
the distortion and smoothing out the lines was studied--
the use of digital differential analyzers (DDA's) to replace
the binary rate multipliers. The particular problem was
to design a four-input DDA capable of adding four ten-bit
signed numbers in 1. 5 microseconds.

The realization of such an adder by conventional
AND/OR or NAND logic would be prohibitively complex
and expensive. Multi-input threshold logic, on the other
hand, is found to yield a relatively simple realization.
Complete logic and system designs for a DDA rotation
matrix using threshold logic are established, including
interfaces with the other parts of the display system.
One cell of the four-input adder was designed and tested,
and found to have a transition time of 80 nanoseconds.

It is concluded that a workable system could be con-
structed with this cell. Suggestions are given for further
work, particularly in obtaining increased speed.

57. Ku, J. P. W., The Use of Dual Quarternions in the Analysis

of General Spatial Four-Bar Mechanisms, Master's thesis

in Mechanical Engineering, June 1965.

This thesis concerns a computer program for the
analysis of space linkages involving five basic joints:
turn, slide, turn-slide, screw, and ball joints, a list
which covers all possible elementary motions of a kine-
matic pair in three-dimensional space. The program
calculates the successive positions of the moving mem-
bers of a four-bar space linkage when one of the links
acts as a driver, and is limited to position calculations;
velocity and acceleration calculations have not been
attempted. Details of the theory, the mathematical
technique, and a description of the program itself are
pres ented.

58. Merrill, R. M., Generalized Three-Dimensional Strain Analy-

sis via Reticulated Framework, Master of Science thesis in

Mechanical Engineering, June 1965.



- 196-

This method of strain analysis is based upon the
replacement of the continuous structure by a discretized
mechanical structure consisting of nodes connected by
elastic members (springs) in such an array that condi-
tions of isotropy are maintained. The nodes are arrayed
in a pattern of corners of small cubes. For this array,
Poisson's ratio is 0. 25. For other Poisson ratios, each
cube of the array contains a smaller internal cube whose
vertices are spring-connected to the vertices of the
larger outside cube.

59. Heubeck, N., Computer-Aided Design of a Ship Hull, Master

of Science thesis in Mechanical Engineering, September 1965.

This thesis describes the application of the concepts
of computer-aided design for the preliminary design of
ships, primarily the description and evaluation of ship
hulls. This was accomplished using parametric surface
patches developed by Professor S. A. Coons for the hull
description, the Project MAC time-shared digital com-
puter for "real-time" communication and the Electronic
Systems Laboratory's display as a visual aid.

The hull was evaluated by calculating the displace-
ment, center of buoyancy, wetted surface area, the mid-
ships coefficient, waterplane coefficients and prismatic
coefficient. Compartments were placed in the ship and
the volumes and deck areas were calculated. The display
screen showed the cross-sectional area curve, ship's
lines and compartment locations.

60. Cheek, T. B., Design of a Low-Cost Character Generator for

Remote Computer Displays, Master of Science thesis in Elec-

trical Engineering, February 1966. (Also published as M. I. T.

Project MAC Report MAC-TR-26, DDC No. AD631269.)

A requirement exists for a low-cost remote display
terminal with alphanumeric and line-drawing capabilities
for use with time-shared computer systems. This thesis,
conducted as part of the overall remote display design
project, was undertaken to investigate novel approaches
to character generation, with the goal of drastically re-
ducing present-day costs for such devices.

A survey of existing devices and character generation
techniques was carried out, and a design approach was
chosen which takes advantage of mass-fabrication tech-
niques. This includes using a five-by-seven dot matrix
raster and a resistor array "read-only" character mem-
ory for the 96 printable symbols of the Revised Proposed
ASCII Code. Circuits designed included a dot matrix gen-
erator, and a resistor array memory with selection logic
sense amplifiers, and a shift register output buffer.



-197-

An experimental character generator with an eight-
word memory was built, largely using integrated cir-
cuits and was found to work as desired. It is concluded
that the design approach will yield a character generator
that is of low enough cost to find wide use in remote com-
puter terminals.

61. Evans, D. S., Man-Machine Communication for Simulation of

Nonlinear Circuits, Master of Science thesis in Electrical

Engineering, February 1966.

The Project MAC time-shared digital computer and
the ESL Display Console provide useful facilities for
man-machine communication in the design of nonlinear
electrical networks. The work described herein consti-
tutes the graphical part of a system that utilizes these
facilities to allow simulation of nonlinear electrical net-
works.

This thesis describes the concepts, data structure,
operations and paths of communication that comprise a
set of programs which allow the user to specify graphi-
cally the network to be analysed, to observe the behavior
of the network, and to easily modify the network's structure.

62. Ling, G. C., Investigation of a Semiconductor Laser Data Link

for Remote Computer Displays, Master of Science thesis in

Electrical Engineering, February 1966.

With a visual display terminal, such as the ESL
Display Console, coupled to a time-sharing computer
system a user can have his results, whether in character
form or graphical form, displayed rapidly on a cathode-
ray tube. The ESL Console must be located close to the
computer, however. One of the goals of Project MAC at
M. I. T. is to have a visual display equipment at every ter-
minal, and the ESL Display Console can be used as a cen-
tral generating station serving a number of remote stations,
provided a multi-megapulse data link is available. If the
remote station cannot be easily reached by coaxial cables,
which is the most effective way to link the Console with a
remote station, then other methods need be investigated.
As compared to a TV cable, a UHF broadcasting system,
or a microwave link, a laser link offers simple setup and
relatively low cost.

Mr. E. J. Chatterton of Lincoln Laboratory has suc-
cessfully transmitted a continuous train of infrared-light
pulses, emitted from a Gallium-Arsenide diode, through
a distance of 1. 8 miles under various weather conditions
and at rates up to 11 megapulses per second. For this



-198 -

thesis, his experimental setup was borrowed to experi-
ment with its usefulness as a connection between the
Console and a remote station. First, an investigation
was made of the reliability of the setup as a data link,
and a rate of 1. 65 megapulses was chosen for the tests.
Next, the necessary digital logic for encoding and de-
coding display information was designed and constructed.
Finally, the transmitting end was set up at Technology
Square and the receiving end was installed in the Elec-
tronic Systems Laboratory. Pictures generated by the
Console were successfully received by the receiving end.
It is concluded that this is a useful technique, and im-
provements on the present system for effective operation
are suggested.

63. Stratton, W. D., Investigation of an Analog Technique to

Decrease Pen-Tracking Time in Computer Displays, Master

of Science thesis in Electrical Engineering, February 1966.

(Also published as M. I. T. Project MAC Report MAC-TR-25,

DDC No. AD631396.)

Through the use of a display and a light-sensitive
pen, graphical material can be directly inserted into a
computer by using the pen to control the position of the
electron beam at the face of the CRT -- a process called
pen tracking. In present digital pen-tracking techniques,
a tracking pattern (usually a cross) with a substantial
number of points is generated on the face of the CRT and
the binary response of the pen to the individual points of
the pattern is employed to calculate pen position. The
large number of pattern points, and the phosphor decay
time associated with each, yield a typical tracking cycle
of 500 to 1000 microseconds. Since the cycle must be
repeated about 100 times per second, 5 to 10 percent of
display time is consumed.

To reduce the time required by the tracking opera-
tion, an analog technique employing a four-point tracking
pattern was investigated, in which the amplitude response
of the pen to corresponding pairs of points is used to de-
termine the position of the pen relative to the center of
the pattern. One channel of the proposed two-channel
analog tracking system was designed, constructed, and
coupled to the horizontal channel-of the ESL computer
display console. To avoid the phosphor-decay limitation,
an experimental "beam" pen capable of detecting the
electron beam rather than the phosphor luminescence
was employed. The system includes a pattern generator,
sample-and-hold gates, difference amplifier, envelope
detector and noise filter, and a threshold-logic analog-
to-digital converter. The time required to generate the
tracking pattern and develop the binary equivalent of the



-199-

horizontal distance separating pen and pattern center is
only 25 microseconds. Tracking is generally satisfac-
tory, but some anomalies were noted, apparently due to
the characteristics of the experimental pen being used.

It is concluded that the analog technique is feasible
for improving the speed of pen tracking, but recommended
that further studies be made of the limitation inherent in
the method.

64. Weinberger, M. R., Multi-Stage Random Search and Automatic

Network Synthesis, Doctor of Philosophythesis in Mechanical

Engineering, February 1966.

This thesis develops a multi-stage random search
strategy which enables one to search for an arbitrarily
small, non-zero neighborhood of the absolute minimum
(or maximum) of a many-dimensional criterion-surface.
The criterion-surface is time-invariant, uni- or multi-
modal; it further satisfies the hypothesis that, when one
considers all possible multi-stage random searches,
there exists a probability-distribution for the absolute
minimum within all its constant-height surroundings.
The strategy is more efficient in that it requires fewer
trials than other multi-stage random policies. The strat-
egy predicts average numbers of trials and upper bounds
for any chosen probability of convergence towards the
minimum. The strategy is self-contained and can be
either fully automated or used with human intervention in
computer-aided design; it is not overly sensitive to un-
certainties in data and to the presence of noise; it can
be adapted to a search with limited search effort. The
random search is superior to some deterministic search
schemes under quantitatively known conditions. The sec-
ond part of this report applies the general method to the
design of state determined systems. These systems may
be nonlinear and/or time-variant and their design criteria
are continuous functions or functionals of the state-
variables. An example is presented in detail to illustrate
most of the concepts.

65. Haber, M. R., Two-Dimensional Display of Mathematical Sym-

bols and Expressions, Master of Science thesis in Mechanical

Engineering, June 1966.

Using equations stored in list structure form as in-
put, a SLIP program converts these expressions into a
visual display. The program will also allow referencing
of sub-parts of the equations, with a light pen, for the
purpose of making alterations in the source expressions.
Necessary parentheses or brackets are inserted into the
equation and display is allowed of BCD, integer and



-200-

floating point constants as well as variables, operators
and functions. In addition, provision is being made to
allow the later appending of routines for defining special
operators, functions and variables.

66. Parmelee, R. P., Three-Dimensional Stress Analysis for

Computer-Aided Design, Doctor of Philosophy thesis in

Mechanical Engineering, June 1966.

Two- and three-dimensional general-purpose stress
analysis programs have been developed, programmed
and tested for the engineer who knows nothing about com-
puters or computer programming. The method of analy-
sis is based on that of Ritz in which finite difference
equations are generated by extremal methods from con-
tinuous, piece-wise linear approximations to the displace-
ments. Non-uniform placement of nodes appropriate to
the boundary and stress distribution of each problem en-
ables the solution of relatively difficult problems such as
notched sheets and spheres with networks of as few as 30
to 130 nodes.

67. Starzec, R. E., A Scheme for Information Storage and Retrieval,

Master of Science thesis in Mechanical Engineering, June 1966.

This thesis presents a scheme for information
storage and retrieval that could be used in a "standard-
parts-selection" type of computer-aided design system.
It utilizes a symmetric list structure by which descrip-
tions and associations are contained in the pointer rings
rather than by repeated storage. All items with some
common property lie on one pointer ring. Two sample
programs, written in the CORAL language, are con-
tained in the work. One program, BUILDIN', creates
structure, and the second program, called SEARCHIN',
performs a simple search of the structure.

68. Bernhardt, L. J., A Ten-MC Binary Rate Multiplier for Com-

puter Line Generation, Bachelor of Science thesis in Electrical

Engineering, June 1967.

The complexity of computer visual output on display
equipment is limited by the time constraints imposed by
the need to renew the picture 30 times a second to pre-
vent flicker, and the speed of various display functions.
The Electronic Systems Laboratory Display Console de-
signed in 1963 uses a one-mc. binary rate multiplier to
perform line generation. This thesis investigated the
possibility of using a 10-mc. binary rate multiplier (BRM)



-201-

to increase line-generation speed. A six-bit model was
built to test timing limitations and the effectiveness of
techniques. A 12-bit BRM was then designed to operate
at 10-mc. and minimize even further the time needed to
draw short lines. It was concluded that the 10-mc. BRM
could effectively be used for line generation if oscillo-
scope deflection techniques for displaying points at this
speed could be developed.

69. Blount, F. T., Design of a Low-Cost Computer Graphical Input

Device, Bachelor of Science thesis in Electrical Engineering,

June 1967.

A low-cost remote computer display terminal
which uses a direct-view storage tube to display data has
been developed at the M. I. T. Electronic Systems Lab-
oratory. To input graphical data to the computer, a low-
cost graphical input device is needed that would allow a
person to move a cursor over the storage tube screen in
a natural and convenient manner. Present graphic input
tablets are quite expensive.

The device built consists of a writing surface or
tablet made of Teledeltos paper, which has a low, uni-
form resistance. The tablet is 11" by 11" with a usable
writing space of 9" by 9". A voltage difference of 14. 2
volts is applied alternately along opposite pairs of edges
at 1 msec. intervals. The voltage at any point on the
tablet is detected by a writing instrument (a ball point
pen) connected to voltage measuring circuitry. The two
output voltages, corresponding to the pen's x and y coor-
dinates, control the cursor position on the display screen,
and after A/D conversion, as inputs to the computer.

The accuracy of the device is quite adequate for the
intended purpose. Departures from a linear resistance
characteristic in the Teledeltos paper introduces a maxi-
mum error of only 0. 02 volts to the output voltages. The
circuitry introduces an error of between 0. 1 and 0. 3 volts.
The accuracy is thus two percent or better. The total
parts cost for the device is about $100.

70. Lapin, R. B., Translation Between Artificial Programming

Languages, Master of Science thesis in Electrical Engineering,

June 1967.

(Also published as Report ESL-R-306, for Abstract
see Ref. 38.)



-202-

71. Levitt, B. K., High-Resolution Beam Pen, Master of Science

thesis in Electrical Engineering, June 1967.

Light-pen systems are currently used to provide a
rapid transfer of graphical information between a compu-
ter and its operator. For certain applications, however,
light-pen response time (determined by photocell rise
time and phosphor decay time) is too slow, and the need
for a faster system is evident. The beam-pen system
constructed by the Electronic Systems Laboratory at
M. I. T. is a sufficiently fast device, but its resolution
is not comparable to that of the light pen.

A theoretical analysis indicated that the resolution
could be significantly improved through the use of a sim-
ulated matched-filter signal-processing technique in-
volving synchronous detection followed by gated low-pass
filtering. A new beam-pen system was developed in com-
pliance with the above signal-processing scheme, and
tests indicate it indeed possesses a satisfactorily high
resolution. A final modification is suggested which will
result in a fully-operable beam-pen system which will be
particularly useful where response time is critical.

72. Vassar, E. R., Audio-Coupled Receiver-Demodulator for

Telephone-Transmitted Digital Data, Bachelor of Science

thesis in Electrical Engineering, June 1967.

The increasing use of multiple, remote input-output
devices, such as display terminals, has created a demand
for an inexpensive, portable data receiver which can re-
trieve modulated digital data from the telephone system
channel. Present digital data transmission via telephone
requires installation of data modems. An attractice alter-
nate is the utilization of an inductive pickup and demodu-
lator with an ordinary telephone handset. Such devices
commercially available operate only up to about 200 bits
per second. The design and test of such a device, which
might be useful at bit rates up to 600 bits per second,
is described in this report. Concluding suggestions are
advanced for an improved version which could push up the
bit rate to the desired frequency of 1200 bits per second
or more.

73. Rodriguez, J. E., A Graph Model for Parallel Computations,

Doctor of Science thesis in Electrical Engineering,

September 1967.



-203-

This thesis presents a computational model called
program graphs which makes possible a precise descrip-
tion of parallel computations of arbitrary complexity on
non-structured data. In the model, the computation steps
are represented by the nodes of a directed graph whose
links represent the elements of storage and transmission
of data and/or control information. The activation of the
computation represented by a node depends only on the
control information residing in each of the links incident
into and out of the node. At any given time any number
of nodes may be active, and there are no assumptions in
the model regarding either the length of time required to
perform the computation represented by a node or the
length of time required to transmit data or control infor-
mation from one node to another. Data dependent deci-
sions are incorporated in the model in a novel way which
makes a sharp distinction between the local sequencing
requirements arising from the data dependency of the
computation steps and the global sequencing requirements
determined by the logical structure of the algorithm.

The concept of the state of a program graph is intro-
duced and it is proved that every program graph repre-
sents a deterministic computation, i. e., that the final
state of each computation started from the same initial
state is unique. Computations which do not terminate
properly are defined in terms of the concept of hand-up
state. Methods of analysis are developed and necessary
and sufficient conditions for the absence of hang-up states
are obtained. These conditions are interpreted in terms
of the structure of the graph and the manner in which the
decision elements are imbedded in that structure. Finally,
an equivalence problem for program graphs is formulated
and a solution to this problem is presented.

D. TECHNICAL PAPERS AND PUBLICATIONS

74. Feldmann, C. G., "Automatic Data Processing for Numeri-

cally Controlled Machine Tools", presented at the ASME

Production Engineering Conference, May 18, 1960. (Reprinted

in Technical Memorandum 8436-TM-1, see Ref. 27.)

75. Ross, D. T., "A Generalized Technique for Symbol Manipula-

tion and Numerical Calculation", presented at the ACM Con-

ference on Symbol Manipulation, Philadelphia, Pa., May 20-21,

1960 and published in the Communication of the ACM, March,

1961.



-204-

76. Ross, D. T., "The Design and Use of the APT Language for

Automatic Programming of Numerically Controlled Machine

Tools, " presented at the Sixth Annual Computer Applications

Symposium, Armour Research Foundation of the Illinois Insti-

tute of Technology, Chicago, Illinois, October 29, 1959.

(Reprinted in Technical Memorandum 8436-TM- 1, see Ref. 27. )

77. Ross, D. T., "Man-Machine Aspects of Automatic Program-

ming for Numerically-Controlled Machine Tools, " presented

at the AIEE Winter General Meeting held in New York City,

February 2, 1961.

78. Ross, D. T., "Data Processing for Numerical Control in the

USA, " presented at the International Federation for Information

Processing (IFIP) Congress 62, Munich, Germany, Aug. 27-

Sept. 1, 1962, published in the Proceedings, pp. 259-260.

The following five papers formed a dedicated session on Computer-
Aided Design at the 1963 Spring Joint Computer Conference, May 23,
1963, in Detroit, Michigan. All five papers were published in the
AFIPS Conference Proceedings (American Federation of Information
Processing Societies), Vol. 23.

79. Coons, S. A., "Outline of the Requirements for a Computer-

Aided Design System. " (Also published as Technical Memoran-

dum ESL-TM-169, for Abstract see Ref. 24. )

80. Ross, D. T., and Rodriguez, J. E., "Theoretical Foundations

for the Computer-Aided Design System. " (Also published as

Technical Memorandum ESL-TM-170, for Abstract see Ref. 25;

also published in Simulation, Vol. 2, No. 4, March 1964,

pp. R-8 to R-20. )

81. Stotz, R. H., "Man-Machine Console Facilities for Computer-

Aided Design. " (Material condensed from Master of Science

thesis, Ref. 49, which was also published as Technical Memo-

randum ESL-TM-163; for Abstract see Ref. 23; also published

in Simulation, Vol. 2, No. 4, March 1964, pp. R-3 to R-7. )



-205-

82. Sutherland, I. E., "Sketchpad; A Man-Machine Graphical

Communication System. " (Material condensed from Doctor of

Science thesis, Ref. 50, which was also published as MIT

Lincoln Laboratory Report TR-396; for Abstract see Ref. 22.)

83. Johnson, T. E., "Sketchpad III, Three-Dimensional Graphical

Communication with a Digital Computer. " (Material condensed

from Master of Science thesis, Ref. 51, which was also pub-

lished as Technical Memorandum ESL-TM-173; for Abstract

see Ref. 26.)

84. Ross, D. T., "On Context and Ambiguity in Parsing, " pre-

sented at the Working Conference on Mechanical Language

Structures held at IDA, Princeton, New Jersey, August 14-16,

1963; also published in the Communications of the ACM,

Vol. 7, No. 2, pp. 131-133, February 1964.

85. Ross, D. T., "Implications of Computer-Aided Design for

Numerically-Controlled Production, " presented at the First

Annual Meeting and Technical Conference of the Numerical

Control Society in New York on March 20, 1964; also pub-

lished in the Conference Proceedings, pp. 100-111. (Also

published as Technical Memorandum ESL-TM-212; for

Abstract see Ref. 29. )

86. Ross, D. T., and Feldmann, C. G., "Verbal and Graphical

Language for the AED System: A Progress Report, " pre-

sented at the MIT Industrial Liaison Symposium on Project

MAC, May 6, 1964; also published as a Project MAC Report

MAC-TR-4. (Also included as Appendix in ESL Interim Tech-

nical Report ESL-IR-221, Ref. 8. )

87. Ward, J. E., "Display Consoles for the MAC System," pre-

sented at the MIT Industrial Liaison Symposium on Project

MAC, May 6 and 7, 1964. (Published as Project MAC Report

MAC-TR-5, June 1964.)



-206-

88. Knuth, D. E., Bumgarner, L. L., Ingerman, P. Z.,

Merner, J. N., Hamilton, D. E., Lietzke, M. P., Ross, D. T.,

"A Proposal for Input-Output Conventions in Algol 60, " A Re-

port of the Subcommittee on Algol of the ACM Programming

Languages Committee, Communications of the ACM, Vol. 7,

No. 5, May 1964, pp. 273-283.

89. Ross, D. T., "Automated Engineering Design AED-1, " pre-

sented at the SHARE Design Automation Workship, Atlantic City,

N. J., June 24-26, 1964, also published in the Proceedings.

90. Johnson, T. E., "Sketchpad, " presented at the SHARE Design

Automation Workshop, Atlantic City, N. J., June 24-26, 1964,

also published in the Proceedings.

91. Lang, C. A., and Polansky, R. B., "Graphical Language--

A Step Towards Computer-Aided Design, " IEEE Machine

Tools Conference, Hartford, Conn., November 16-17, 1964.

Conference Paper No. CP64-575.

92. Ross, D. T., "Computer-Aided Design, " presented at the

29th Annual Machine Tool Electrification Forum (sponsored by

Westinghouse), Buffalo, N. Y., April 27-29, 1965. Paper No.

304-ll1N, published in the Proceedings.

93. Feldmann, C. G., "Programming in AED-0," presented at

the Spring APT Technical Meeting, Chicago, Illinois, April 27-

30, 1965, published in the Proceedings.

94. Ross, D. T., "System Provisions for the Debugging of AED

Language Programs, " presented at the IFIPS Congress 1965,

New York City, May 24-29, 1965, published in the Proceedings,

Vol. 2, pp. 593-595.

95. Ross, D. T., "The MIT Computer-Aided Design Project-- A

Half Decade Summary, " presented at the 4th Air Force

Materials Symposium, Miami Beach, Florida, June 9-11, 1965,

published in the Proceedings, pp. 774-797.



-207 -

96. Ross, D. T., Lecture Notes Summer Course on Computer

Graphics, University of Michigan, June 14-18, 1965.

97. Ross, D. T., "Current Status of AED, " presented at the

2nd Annual SHARE Design Automation Workshop, Atlantic City,

N. J., June 23-25, 1965, published in the Proceedings.

98. Haring, D., "The Beam Pen: A Novel High-Speed, Input/Out-

put Device for Cathode-Ray-Tube Display Systems, " presented

at Fall Joint Computer Conference, Las Vegas, Nevada, Nov. 30-

Dec. 2, 1965, AFIPS Conference Proceedings, Vol. 27, Part I,

pp. 647-855.

99. Mann, R. W., and Coons, S. A., "Computer-Aided Design,"

McGraw-Hill 1965 Yearbook of Science and Technology, 9 pp.

(Also reprinted in Report of First Meeting of DOD/AOA Discus-

sion Group on Computer-Aided Design and Documentation,

March 1966, pp. D-2 to D-12. )

100. Wolman, B. L., "Operators for Manipulating Language Struc-

tures, " presented at the Symposium on Symbolic and Algebraic

Manipulation, Association for Computing Machinery, Washing-

ton, D. C., March 29-31, 1966. (Abstract published inACM Communi-

cations, Vol. 9, No. 8, August 1966, pp. 553-554, see also Ref. 36.)

101. Katzenelson, J., "Simulation for Nonlinear Circuits by

AEDNET, " presented at the 3rd Annual SHARE Design Automa-

tion Workshop, New Orleans, La., May 16-19, 1966. (Abstract

published in the Proceedings. )

102. Ward, J. E., "The MIT CAD Project, " review of project work

presented at the Second Meeting of the DOD/AOA Discussion

Group on Computer-Aided Design and Documentation, June 23,

1966. Published in the Report of the meeting, pp. B-6-B-8.

103. Ward, J. E., "Display Hardware for Dynamic Man-Machine

Interaction, " presented at the 20th Annual AFCEA Convention,

Washington, D. C., June 7-9, 1966; published in Conference



-208-

Proceedings, and also in SIGNAL, Journal of the Armed Forces

Communication and Electronics Association, Vol. XX, No. 11,

July 1966, pp. 54-61.

104. Ward, J. E., "Systems Engineering Problems in Computer-

Driven CRT Displays for Man-Machine Communication, " pre-

sented at the 1966 IEEE System Science and Cybernetics Con-

ference, Washington, D. C., October 18, 1966. Published in

the Conference Record, also published in the IEEE Transaction

on Systems Science and Cybernetics, Vol. SSC-3, No. 1,

June 1967, pp. 47 -54.

105. Katzenelson, J., "AEDNET: A Simulator for Nonlinear Net-

works," Proceedings of the IEEE, Vol. 54, No. 11, November

1966, pp. 1536-1552.

106. Katzenelson, J., Evans, D. S., and Lee, H. B., "A Program

for On-Line Analysis of Nonlinear Electronic Circuits," pre-

sented at the IEEE International Convention, New York, March

20-25, 1967. Published in the Convention Record.

107. Ross, D. T., "The Computer-Aided Design Project at MIT,"

presented at the Interdisciplinary Conference on Computer

Graphics, Ohio State University, April 5, 1967. Published in

the Proceedings.

108. Ross, D. T., "An Approach to Automated Engineering Design,"

presented at the AOA Annual Meeting, San Francisco, May 9-11,

1967. Abstract published in the Proceedings.

109. Stotz, R. H., and Cheek, T. B., "A Low-Cost Graphic Display

for a Computer Time-Sharing Console," presented at the

8th National Symposium on Information Display, San Francisco,

Calif., May 24-26 1967. Published in the Technical Session

Proceedings, Society for Information Display, pp. 91-100.

(Also published as Technical Memorandum ESL-TM-316, July

1967.)



-209-

110. Ross, D. T., Stotz, R. H., Thornhill, D. E., and Lang, C.A.,

"The Design and Programming of a Display Interface System

Integrating Real-Time and Time-Shared Computers, " presented

at the 4th Annual ACM/SHARE Design Automation Workshop, Los

Angeles, June 1967, published in the Proceedings.

111. Evans, D. S., and Katzenelson, J., "Data Structure and Man-

Machine Communications for Network Problems," Proceedings

of the IEEE, Vol. 55, No. 7, July 1967, pp. 1135-1144.

112. Ross, D. T., "The AED Approach to Generalized Computer-

Aided Design, " presented at the 1967 ACM National Conference,

Washington, D. C., August 1967, pp. 367-385. (Also published

as Report ESL-R-305, for Abstract see Ref. 37.)

113. Ross, D. T., "The AED Free Storage Package, " Communica-

tions of the ACM, Vol. 10, No. 8, pp. 481-492, August 1967.

114. Ross, D. T., "Features Essential for a Workable Algol X,"

ALGOL Bulletin, No. 26, August 1967, pp. 6-12, and ACM

Sigplan Notices, Vol. 2, No. 11, November 1967.

E. LECTURES AND TECHNICAL PRESENTATIONS WITHOUT
PUBLICATION

115. Ross, D. T., "Logarithmic Search and the First-Pass Algo-

rithm, " talk at the MITRE Corp, Lexington, Mass., February

20, 1962.

116. Coons, S. A., Description of the Project work in a lecture at

the Engineering Management Research and Development Insti-

tute of the General Electric Company, Crotonville, N. Y.,

May 22, 1962.

117. Coons, S. A., Description of the Project work in connection

with the NSF Commission on Graphics Course Content Study,

Princeton University, May 7-8, 1962.



-210-

118. Coons, S. A., "Computer-Aided Design, " lecture at Worcester

Polytechnic Institute, October 16, 1962.

119. Coons, S. A., Description of the Project work to a group of

Engineering Managers as part of the Modern Engineering Pro-

gram, General Electric Company, Saratoga Springs, N. Y.,

November 14 and 15, 1962.

120. Coons, S. A., "Computer-Aided Design," talk at an Engineer-

ing Seminar, IBM Corporation, New York, February 1963.

121. Coons, S. A., "Computer-Aided Design, " lecture at the

Mechanical Engineering Department, University of New Hamp-

shire, March 1963.

122. Mann, R. W., talks on Computer-Aided Design at North Caro-

lina State University and Ohio State University, March 1963.

123. Ross, D. T., "Breaking the Man-Machine Language Barrier,"

talk to the Middletown Scientific Society, Middletown, Conn.,,

April 1963.

124. Johnson, T. E., "Computer-Aided Design and Sketchpad III,"

talk and movie presented at the Salem-Lynn Division of the

AIEE-IRE, April 1963.

125. Coons, S. A., "Computer-Aided Design and Sketchpad, " talk

and movie presented at the General Electric Management Insti-

tute, Crotonville, N. Y. , May 1963.

126. Mann, R. W., "Computer-Aided Design," talk at the University

of Colorado, Denver, Colorado, May 1963.

127. The following group of seven talks were given at an MIT Indus-

trial Liaison Symposium, Computer-Aided Design, May 9, 1963,

co-chaired by D. T. Ross and Professor S. A. Coons. Regis-

trants from government and industry totaled 201.



-211-

Reintjes, Professor J. F., "Background of the Project"

Mann, Professor R. W., "Criteria for the Computer-Aided
Design System"

Coons, Professor S. A., "Graphical Communications and
Problem Solving"

McClintock, Professor F. A., "Stress Analysis Techniques"

Ross, D. T., "Theoretical Foundations for Computer-Aided
Design"

Ross, D. T., "Structure and Operation of the AED System"

Ward, J. E., "Man-Machine Console Facilities"

128. Coons, S. A., Description of the Project work at an ASEE

Meeting, Philadelphia, Pa., June 1963.

129. Ross, D. T., and Coons, S. A., "Computer-Aided Design,"

talks at Bell Telephone Laboratories, Murray Hill, N. J., and

International Telephone and Telegraph Company, Nutley, N. J.,

June 25 and 26, 1963.

130. Ross, D. T., "Computer-Aided Design, " talk at an Engineer-

ing Seminar, IBM Corporation, Kingston, N. Y.

131. Coons, S. A., talks on Computer-Aided Design at the Ford

Motor Company, the Chrysler Corporation, and the General

Motors Corporation, August 21-23, 1963.

132. Ross, D. T., "Computer-Aided Design," talk at the IBM

Mohansic Laboratories, Poughkeepsie, N. Y., September 17,

1963.

133. Coons, S. A., "Computer-Aided Design, " talk at the Comput-

er Division of the Philco Corporation, Philadelphia, Pa.,

October 7, 1963.

134. Coons, S. A., "Computer-Aided Design, " talk at the Engi-

neering Institute of Design and Drafting Automation, University

of Wisconsin, October 10, 1963.



-212-

135. Coons, S. A., "Computer-Aided Design, " talk at the Arthur

D. Little Corp., Cambridge, Mass., October 17, 1963.

136. Ross, D. T., "Computer-Aided Design, " talk at an MIT Elec-

trical Engineering Colloquium, October 23, 1963.

137. Coons, S. A., "Computer-Aided Design," talk at the Ford

Motor Company, Detroit, Michigan, October 23, 1963.

138. Coons, S. A., "Computer-Aided Design, " talk at the General

Electric Engineering Management School, Saratoga Springs,

N. Y., November 15, 1963.

139. Ross, D. T., Ward, J. E., and Johnson, T. E., description

of Project work at the IEEE Display Workshop, Las Vegas,

Nevada, November 16, 1963.

140. Ross, D. T., "Computer-Aided Design, " talks at the Sandia

Corporation, Livermore, California, and Albuquerque, New

Mexico, December 12 and 13, 1963.

141. Ross, D. T., member of panel on Numerically Controlled

Machines, 1964 SAE Automotive Engineering Congress and

Exposition, Detroit, Michigan, January 13-17, 1964.

142. Coons, S. A., "Computer-Aided Design, " lecture at an Elec-

trical Engineering Department Symposium, Brooklyn Polytech-

nic Institute, January 1964.

143. Coons, S. A., talks on Computer-Aided Design and mathemati-

cal methods for surface description at IBM-Poughkeepsie,

IBM-Kingston, and IBM-New York, February 5-6, 1964.

144. Coons, S. A., "Computer-Aided Design," talk at Westing-

house, Pittsburgh, Pa., February 18, 1964.

145. Coons, S. A., "Computer-Aided Design, " talk at Gulf Research

and Development Corporation, Pittsburgh, Pa., February 19,

1964.

~~~~"`---'""~~~~-"~"`~"~~~~~~~~~~~~~~ ~~""""" ~~~~~~~~~~~~~~~ x~~~~~~~~~~~~~`~~~- "~~~-~~~~-~~`~~~~~~~~~~ `~~~`~~~~~~-~~-~~-"~~~--~~~~"`I-~~~~-------- I I --~~~~~~~~~~-------


-213-

146. Coons, S. A., "Computer-Aided Design, " lecture at the

Cooper Union, New York, N. Y., March 24, 1964.

147. Ross, D. T., "Algorithmic Theory of Language," Graduate

Colloquium on Systems and Communications, Carnegie Insti-

tute of Technology, May 14, 1964.

148. Coons, S. A., "Computer-Aided Design, " talk at General

Electric Modern Engineering Course, Saratoga Springs, N. Y.,

May 8, 1964.

149. Coons, S. A., talk and movies on Computer-Aided Design at

the Engineering Summer Conference sponsored by the Univer-

sity of Detroit and the University of Michigan, August 3-4,

1964.

150. Coons, S. A., "Computer-Aided Design and Sketchpad, " talk

at the American Can Company, New York, N. Y., October 20,

1964.

151. Ross, D. T., panelist on session on Input and Output of

Graphics, Fall Joint Computer Conference, San Francisco,

October 26-29, 1964.

152. Coons, S. A., "Computer-Aided Design and Sketchpad, " talk

at Raytheon Corporation, Boston, Mass., October 28, 1964.

153. Ross, D. T., "Computer-Aided Design," talk at IBM Engi-

neering Seminar, Poughkeepsie, N. Y., April 9, 1965.

154. Coons, S. A., "Computers in Design, " talk at the ASTME

Conference and Exposition, April 1, 1965.

155. Coons, S. A., "Computer-Aided Design, " talk at the Post-

College Education Program, Carnegie Institute of Technology,

April 12, 1965.

156. Coons, S. A., talk on Computer-Aided Design at the IBM sym-

posium on Man-Machine Communication, Yorktown Heights,

N.Y., May 4, 1965.

157. Coons, S. A., "Computer-Aided Design, " talk at the AOA

Meeting in Santa Monica, California, May 7, 1965.

158. Coons, S. A., "Surface Mathematics, " talk to Lockheed-

California and Lockheed-Georgia personnel in California,

May 8, 1965.

159. Coons, S. A., "Computer-Aided Design," lecture at University

of California in Berkeley, May 15, 1965.

160. Coons, S. A., lecture on Computer-Aided Design at the AIChE

Information Processes and Computers Symposium, San Fran-

cisco, May 18, 1965.

161. Coons, S. A., "Computer-Aided Design," talk presented at the

DECUS (Digital Equipment Corporation Users Society) Meeting

at Harvard University, May 20, 1965.

162. Ross, D. T., lectures on Computer-Aided Design at the Sum-

mer Conference on Computer Graphics, University of Michigan,

June 14-16, 1965.

163. Coons, S. A., talk on Computer-Aided Design at the Fourth Air

Force Materials Symposium, Miami Beach, Florida, June 9-11,

1965.

164. Ross, D. T., "A Perspective on the Language Problem," pre-

sented at the AMA Briefing Session on Software -- The Computer

Software Decade, Roosevelt Hotel, New York City, July 26, 1965.

165. Coons, S. A., "Computer-Aided Design," talk at the Summer

Conference on Application of Computers to Automated Design,

University of Michigan, August 2-3, 1965.

-215-

166. Ross, D. T., "Recent Advances in Programming Languages,"

a panel discussion at the ACM National Conference, Cleveland,

Ohio, August, 24-27, 1965.

167. Stotz, R. H., "Computer Displays, " talk at the IEEE Display

Workshop, San Mateo, California, August 27-28, 1965.

168. Coons, S. A., talks on Computer-Aided Design at General

Motors and the Society of Body Engineers, Detroit, Michigan,

September 16, 1965.

169. Coons, S. A., talk on Computer-Aided Design at the Drafting

Automation Institute, University of Wisconsin, October 15,

1965.

170. Polansky, R. B., "Computer-Aided Design, " presented at an

IEEE Meeting, Worcester Polytechnic Institute, Worcester,

Mass., October 19, 1965.

171. Sibley, E. H., "Computer-Aided Design, " talk before the

Executives of Sacony-Mobile, Philadelphia, Pa., October 21,

1965.

172. Coons, S. A., "Computer-Aided Design, " talk at the National

Electronics Conference, Chicago, Illinois, October 27, 1965.

173. Ross, D. T., "Computer-Aided Design, " presented at an

Advanced Engineering Program Seminar, MIT, November 2,

1965.

174. Coons, S. A., talks on Computer-Aided Design at the University

of Nebraska and Wichita State University, December 7 and 8,

1965.

175. Ward, J. E., "Display Hardware for Graphical Man-Machine

Communication, " talk presented at the MIT Industrial Liaison

Symposium on Sensing, Analyzing, and Processing Visual Infor-

mation, December 21, 1965 (267 registrants).

-216-

176. Katzenelson, J., "On-Line Simulation of Nonlinear Electrical

Networks, " talk presented at the MIT Project MAC Seminar on

February 1, 1966.

177. Ross, D. T., and Ward, J. E., talks on Computer-Aided De-

sign and Computer Graphics at a special MIT Industrial Liaison

Program Meeting for executives of Laboratory for Electronics,

Inc., February 2, 1966.

178. Coons, S. A., "Computer-Aided Design: The Designer's View-

point, " paper presented at the IEEE Convention in Los Angeles,

California, February 3, 1966.

179. Ward, J. E., "Display Hardware for Project MAC," Engineer-

ing Seminar at IBM, Kingston, N. Y., March 9, 1966. (Descrip-

tion of ESL Console and related developments.)

180. Katzenelson, J., "Nonlinear Networks and their Simulation on

Digital Computers," series of lectures at the University of

California, Berkeley, March 14-18, 1966.

181. Ross, D. T., "The AED-1 Compiler for the GE-645, " talk

presented at the MIT Project MAC Seminar, April 5, 1966.

182. Ross, D. T., "Structure of a Time-Shared Hardware-Software

System for Sophisticated Local and Remote, On-Line, Mixed

Graphical and Verbal Problem-Solving, " presented at the IBM

Programmer's Club, Yorktown Heights, N. Y., April 15, 1966.

183. Reintjes, J. F., "The Role of Computers in Modern Design

Technology, " presented at the University of Wisconsin Con-

ference on Computer-Aided Solid State Circuit Design,

May 3-4, 1966.

184. Katzenelson, J., "Simulation of Nonlinear Circuits by AEDNET, "

paper presented at the Third Annual SHARE Design Workshop,

New Orleans, Louisiana, May 16-19, 1966.

-217 -

185. Ross, D. T., "The AED Approach to User-Oriented Languages

for Automated Engineering Design, " talk presented at the RCA

Computer Seminar, Princeton, N. J., November 30, 1966.

186. Ward, J. E., presentation and discussion of movie of computer

graphics produced on the ESL Console, Symposium on The

Growth of Computer Graphics, Marshall Space Flight Center,

Huntsville, Alabama, March 1-3, 1967 (jointly sponsored by

MSFC, The Army Missile Command, and the Assoc. for Com-

puting Machinery.)

187. Ross, D. T., "The AED Approach, " talk given at the APT

Interface Task Group Meeting, Cambridge, Mass., April 4,

1967. (Included demonstrations of graphics hardware and soft-

ware at Project MAC by D. E. Thornhill and R. B. Polansky.)

188. Ross, D. T., "The Computer-Aided Design Project at MIT, "

talk presented at the Interdisciplinary Conference on Computer

Graphics at Ohio University in Columbus, Ohio, April 5, 1967.

189. Ross, D. T., "The AED Compiler System: Status and Plans, "

talk presented at the ACM SICPLAN/PLANCOM Workshop on

Compiler-Building Tools at Atlantic City, N. J., April 16-17,

1967.

190. Ward, J. E., "AED, " talk given at the Northrop-MIT Technical

Meeting held at MIT, April 27, 1967.

191. Ross, D. T., "The AED Cooperative Program -- A University-

Industry Collaboration in Computer-Aided Design, " talk given

at the Boston Chapter ACM Meeting in Cambridge, Mass.,

April 27, 1967.

192. Ross, D. T., "An Approach to Automated Engineering Design,"

presented at the AOA 9th Annual Spring Meeting, San Francisco,

California, May 9-11, 1967.

-218-

F. BIBLIOGRAPHY OF INFORMAL AED DOCUMENTS

The following is the recommended current list of documents de-

scribing the use of the AED language and systems, and is based on the

AED Bibliography by D. T. Ross, ESL Memorandum 70429-M-153-2

(Project MAC Memorandum MAC-M-278-3), September 1, 1967.

Since parts of the system and the documentation are continually being

reworked, these documents in many cases supercede earlier ones,

and any documents dated prior to May, 1968, that are not listed, may

be considered obsolete.

These documents are all in an informal memorandum series

distributed only to those expressing a specific interest in AED details.

In addition to the ESL memorandum number, most also carry a num-

ber in the MIT Project MAC memorandum series, which is widely

distributed at M. I. T. Many also are identified as belonging to a

series of "AED Flashes" or "AED Progress Reports", distributed to

the organizations participating in the AED Cooperative Program. For

convenience in reference, the list has been organized into subject

groupings: Basic Use of AED-0 Language, AEDJR, Batch Processing,

etc.

Finally, a number of the documents (indicated by an asterisk)

have been grouped into a packet called the "AED User Kit", which can

be requested as an entity. The AED User Kit, which contains some

730 pages, is the basic documentation needed to use AED. (The total

AED bibliography listed in this section is 730 + 662 = 1, 392 pages.)

General Information and Administrative Documents

193. An Invitation to Participate in the Cooperative AED Project for

Computer-Aided Design by D. T. Ross, December 14, 1965,

15 pp. (Also reprinted in ESL-IR-278, Ref. 11.)

This memorandum extends an invitation to participate
in a continuation of the AED Cooperative Program con-
ducted as a component of the MIT Computer-Aided Design
Project. Interested organizations are invited to participate
by nominating an experienced system programmer to be
sent to M. I. T. to join with our regular Project staff in sys-
tem research and development for a nominal one-year

-219-

period. Section I of this memorandum presents informa-
tion of interest to those making the decision concerning
company participation. Project goals, organization, re-
sults to date, and plans for next year are described. The
benefits of company participation are presented. Section II
describes how to report the company decision regarding
participation at M. I. T., and the mechanics of participation.
The final page provides a check list for use in response to
this invitation. Supporting technical information and back-
ground material is summarized in an accompanying docu-
ment (Document 194 below).

194. AED Project Technical Information by D. T. Ross, December

14, 1965, 37 pp. (Also reprinted in ESL-IR-278, Ref. 11.)

This document presents technical information sup-
porting the "Invitation to Participate" (Document 193 above).
The approach of the Project to the problems of computer-
aided design, current status, and planned activities are
outlined.

195. General Description of the AED-1 Processor and the Display

Interface System, D. T. Ross, ESL Memorandum 9442-M-170/

MAC-M-312, June 16, 1966, 36 pp.

196. The AED Approach to Generalized Computer-Aided Design,

D. T. Ross, M. I. T. Electronic Systems Laboratory Report

ESL-R-305, April 1967, 55 pp.

(For Abstract see Ref. 37 which is the same document.)

197. AED Invitation Kit, D. T. Ross, ESL Memorandum 70429-M-193,

October 5, 1967, 122 pp.

This document has been prepared as an introduction
to the AED Cooperative Program, an important on-going
feature of the MIT Computer-Aided Design Project. The
Invitation Kit currently includes the following items:

1. Copies of the four invitation letters, from December
1965 through June 1967.

2. A summary of participants in the AED Cooperative
Program.

Asterisk indicates document is included in "The AED User Kit".

-220-

3. Document 196 (The AED Approach to Generalized
Computer Aided Design).

4. The Notice of the Second AED Technical Meeting,
January 1967.

5. Document 193 (An Invitation to Participate ---).

6. Document 194 (AED Project Technical Information).

Basic Use of AED-0 Language

198. AED-0 Programming Manual-- Preliminary Releases Nos. 1-4,

D. T. Ross, October - December 1964, 142 pp.

199. Modifications and Addenda to the AED-0 Programmer's Guide,

C. Feldmann, C. Bower, and P. Ladd, ESL Memorandum

9442-M-143/MAC-M-261, August 18, 1965, 65 pp.

200. 'AED Flash No. 34 - Available AED System Macros, C. Feldmann

and R. Lynn, ESL Memorandum 9442-M-177/MAC-M-325,

September 14, 1966, 14 pp.

201. AED Flash No. 27 - New CTEST2 Command, C. Feldmann,

ESL Memorandum 9442-M- 158/MAC-M-291, January 7, 1966,

3 pp.

202. AED Flash No. 2 - Machi Usage, R. Bigelow, ESL Memorandum

9442-M-116/MAC-M-207, December 8, 1964, 5 pp.

203. New Free Storage Package, D. T. Ross, ESL Memorandum

9442-M-173/MAC-M-318, July 15, 1966, 27 pp.

204. 'AED Flash No. 5 - Preset Usage, B. Wolman, ESL Memorandum

9442-M-116/MAC-M-207, December 8, 1964, 4 pp.

205. AED Flash No. 20 - New Array Handling Language for AED-0,

P. Ladd, ESL Memorandum 9442-M-145/MAC-M-271,

September 24, 1965, 3 pp.

-221-

206. AED Flash No. 33 - The FEATURES Feature, D. T. Ross and

C. Feldmann, ESL Memorandum 9442-M-176/MAC-M-321,

August 15, 1966, 7 pp.

207. Converting McCracken's Algol Book to Describe AED-0,

D. T. Ross and N. D. Fulton, ESL Memorandum 70429-M-200/

MAC-M-366, February 14, 1968, 9 pp. (Also Errata Sheet

70429-M-200. 1/MAC-M-366. 1)

208. Directions for Updating the AED-0 Programmer's Guide, plus

an Index of Terms, and a Description of AED-0 Items,

N. D. Fulton and D. T. Ross, ESL Memorandum 70429-M-198-1/

MAC-M-363-1, February 19, 1968, 25 pp.

Frequently Used Packages which Extend AED-0 Compiler
Features

209. AED Flash No. 13-2 - Argument Checking Procedures for AED,

J. Walsh, ESL Memorandum 9442-M-125-2/MAC-M-225-2,

April 15, 1965, 3 pp.

210. AED Flash No. 15 - Execution Time Procedure Calls, J. Walsh,

ESL Memorandum 9442-M-131/MAC-M-236, April 22, 1965,

4 pp.

211. *AED Flash No. 23 - Use of GENCAL, J. Walsh, ESL Memoran-

durn 9442-M-152/MAC-M-275, October 14, 1965, 3 pp.

AED-0 Programming Techniques

212. *AED Flash No. 12 - Multi-Entry Procedures, D. T. Ross, ESL

Memorandum 9442-M-124/MAC-M-222, February 25, 1965,

3 pp.

Packages for System Building

213. *AED Flash No. 26 - BSS Plex Dump, R. Ladson, ESL Memoran-

dum 9442-M-156/MAC-M-283, November 2, 1965, 12 pp.

214. The New Generalized String Package, D. T. Ross, ESL Memo-

randum 9442-M-164, May 2, 1966, 55 pp.

215. A Change in the New String Package, A. Mills, ESL Memoran-

dum 9442-M-164-1, July 20, 1966, 2 pp.

216. AED Flash No. 31 - FOCL-Frame Oriented Command Language,

W. D. Maurer, ESL Memorandum 9442-M-172/MAC-M-317,

July 14, 1966, 5 pp.

217. AED Flash No. 36 - The ASEMBL Package, B. Wolman and

C. Feldmann, ESL Memorandum 9442-M-180/MAC-M-331,

October 28, 1966, 16 pp.

218. AED Flash No. 35 - Line-Assemble Package, P. Ladd and

C. Feldmann, ESL Memorandum 9442-M-179/MAC-M-330,

October 14, 1966, 10 pp.

219. AED Flash No. 37 - The Alarm Package, A. Mills and C. Feld-

mann, ESL Memorandum 9442-M-185/MAC-M-343, January 31,

1967, 18 pp.

220. AED Flash No. 38 - Delayed Merge Program, B. Wolman,

ESL Memorandum 9442-M-186/MAC-M-344, February 15, 1967,

17 pp.

221. AED Flash No. 39 - RWORD Package, S. Ackley, W. Johnson,

and J. Porter, ESL Memorandum 70429-M-189/MAC-M-350,

May 29, 1967, 25 pp.

222. AED Flash 36. 1 - An End-of-Line Routine for Use with the

ASEMBL Package, F. Bates, ESL Memorandum 70429-M-180. 1/

MAC-M-331. 1, November 9, 1967, 5 pp.

223. *AED Flash No. 42 - Basic Input/Output Package, C. G. Feld-

mann and D. T. Ross, ESL Memorandum 70429-M-199/

MAC-M-365, March 7, 1968, 13 pp.

-223 -

AEDJR

224. Preliminary Documentation for the 1966 AEDJR System,

R. Lapin, D. T. Ross, and R. Wise, ESL Memorandum

9442-M-182, January 5, 1967, 106 pp.

225. Operators for Manipulating Language Structures, B. Wolman,

ESL Memorandum 9442-M- 160/MAC-M-304, March 18, 1966,

28 pp. (For Abstract see Ref. 36.)

226. 'AED Flash No. 40 - The Top-Down Mouse (APRAL), I. Wenger,

ESL Memorandum 70429-M-191/MAC-M-354, July 12, 1967,

8 pp.

Batch Processing

227. 'AED-0 Compiler for Batch Processing, H. W. Spencer, ESL

Memorandum 9442-M-115/MAC-M-204, December 2, 1964,

10 pp.

228. FMS Tape Distribution, C. Feldmann, J. Rodriguez, and

H. Spencer, ESL Memorandum 9442-M-127, April 13, 1965,

13 pp.

229. FMS Tape Distribution, C. Feldmann, ESL Memorandum

9442-M-127-2, April 26, 1965, 3 pp.

*
230. FMS Tape Distribution, C. Feldmann and L. Walker, ESL

Memorandum 9442-M-127-3/MAC-M-253, July 1, 1965, 10 pp.

231. *FMS Tape Distribution, C. Feldmann, ESL Memorandum

9442-M-127-4, January 25, 1966, 16 pp.

*
232. Maintenance Release No. 1, C. Feldmann, ESL Memorandum

9442-M-127-5, July 28, 1966, 3 pp.

233. Distribution of 1966 AEDJR and Other Maintenance Information,

C. Feldmann, ESL Memorandum 9442-M-127-6, March 8, 1967,

8 pp.

-224-

234. Maintenance Release No. 2, C. Feldmann, ESL Memorandum

9442-M-127-7, March 15, 1967, 6 pp.

235. AED Flash No. 41 - 7094 to 360 Conversion using AED, C. G.

Feldmann, ESL Memorandum 70429-M- 194/MAC-M-361,

October 19, 1967, 12 pp.

236. 'AED-0 Compiler for Batch Processing, C. G. Feldmann, ESL

Memorandum 70429-M-115-1/MAC-M-204-1, March 12, 1968,

7 pp.

237. Running AED on the MIT 360, C. G. Feldmann, ESL Memoran-

dum 70429-M-201/MAC-M-373, May 2, 1968, 55 pp.

Graphic Processing

238. Operating Manual for the ESL Display Console, R. Stotz and

J. Ward, ESL Memorandum 9442-M-129/MAC-M-217,

March 9, 1965, 47 pp.

239. New B-Core System for Programming the ESL Display Console,

C. Lang, ESL Memorandum 9442-M-122/MAC-M-216,

April 30, 1965, 87 pp.

240. Additions to the New B-Core System, C. Lang, ESL Memoran-

dum 9442-M-122-2/MAC-M-216-2, August 2, 1965, 2 pp.

241. ESL Display Console Operating System Manual, R. Bayles,

ESL Memorandum 9442-M-118/MAC-M-201, December 10,

1964, 18 pp.

242. Three-Dimensional Pseudo Pen Subroutine for use with the ESL

Display Console, R. Polansky, ESL Memorandum 9442-M-138/

MAC-M-256, July 13, 1965, 25 pp.

243. Surfaces for Computer-Aided Design of Space Figures, S. Coons,

ESL Memorandum 9442-M-139/MAC-M-255, July 21, 1965,

29 pp.

-225-

244. AED Flash No. 18 - A Subroutine for Generating Coons' Sur-

faces, C. Lang, ESL Memorandum 9442-M-137/MAC-M-252,

June 30, 1965, 4 pp.

245. AED Flash No. 22 - Use of Remote Display Consoles,

J. Rodriguez, ESL Memorandum 9442-M-148/MAC-M-274,

October 7, 1965, 4 pp.

246. The Design and Programming of a Display Interface System

Integrating Multi-Access and Satellite Computers, D. Ross,

R. Stotz, D. Thornhill, and C. Lang, ESL Memorandum

9442-M-190/MAC-M-353, July 6, 1967, 18 pp.

Time-Sharing Features

247. AED Flash No. 11 - AEDBUG Usage, B. T. Fox, ESL Memo-

randum 9442-M-121/MAC-M-213, December 28, 1964, 20 pp.

248. AED Flash No. 21 - Octal Debugging Subroutine LOPAT,

J. Walsh, ESL Memorandum 9442-M-146/MAC-M-272,

September 24, 1965, 4 pp.

249. AED Flash No. 21-1 - Addition to Subroutine LOPAT, B. Wol-

man, ESL Memorandum 9442-M-146- 1/MAC-M-272-1,

July 20, 1966, 2 pp.

250. AEDBUG Program Description, B. T. Fox, ESL Memorandum

9442-M-142/MAC-M-260, August 12, 1965, 21 pp.

251. AED Flash No. 25 - Loader/Unloader, B. Wolman, ESL Memo-

randum 9442-M-155/MAC-M-286, November 16, 1965, 12 pp.

252. AED Flash No. 28 - Reduction of Load Time, B. Wolman, ESL

Memorandum 9442-M-168/MAC-M-309, May 31, 1966, 3 pp.

253. AED Flash No. 29 - Description of "LAED COMMAND",

B. Wolman and C. Feldmann, ESL Memorandum 9442-M-169/

MAC-M-311, June 10, 1966, 10 pp.

-226-

254. AED Flash No. 29-1 - Change in the "LAED" Command,

B. Wolman, ESL Memorandum 9442 - M-169- 1/MAC - M-311 - 1,

August 3, 1966, 1 p.

255. AED Flash No. 30 - Writing "MACHINE INDEPENDENT" AED-0

Programs, J. Rodriguez, B. Wolman, C. Feldmann, and D. Ross,

ESL Memorandum 9442-M-171/MAC-M-315, June 21, 1966, 6 pp.

256. 'AED Flash No. 32-1 - Tracing Subroutine STOPAT, B. Wolman,

ESL Memorandum 9442-M-174-1/MAC-M-319-1, August 9, 1966,

5 pp.

AED Cooperative Program Progress Reports (all by D. T. Ross)

257. Progress Report No. 1 (March 1 - May 15, 1964), ESL Memoran-

dum 9442-M-104/MAC-A-114, dated June 1964, 26 pp.

258. Progress Report No. 2 (May 16 - June 30, 1964), ESL Memoran-

dum 9442-M-108/MAC-A-115, dated July 15, 1964, 15 pp.

259. Progress Report No. 3 (July 1-31, 1964), ESL Memorandum

9442-M-109/MAC-A-117, dated August 5, 1964, 14 pp.

260. Progress Report No. 4 (August 1 -October 31, 1964), ESL

Memorandum 9442-M-111/MAC-A-121, dated November 12,

1964, 11 pp.

261. Progress Report No. 5 (November 1 - December 30, 1964), ESL

Memorandum 9442-M-123/MAC-A-125, dated January 21, 1965,

23 pp.

262. Progress Report No. 6 (January 1 - February 28, 1965), ESL

Memorandum 9442-M-128/MAC-A-130, dated March 10, 1965,

12 pp.

263. Progress Report No. 7 (March 1-31, 1965), ESL Memorandum

9442-M-130, dated April 9, 1965, 11 pp.

-227 -

264. Progress Report No. 8 (April 1-30, 1965), ESL Memorandum

9442-M-133, dated May 1965, 9 pp.

265. Progress Report No. 9 (May 1 - July 31, 1965), ESL Memo-

randum 9442-M-141, dated July 30, 1965, 13 pp.

266. Progress Report No. 10 (August 1-31, 1965), ESL Memoran-

dum 9442-M-144, dated September 21, 1965, 7 pp.

267. Progress Report No. 11 (September 1-30, 1965), ESL Memo-

randum 9442-M-151, dated October 15, 1965, 7 pp.

268. Progress Report No. 12 (October 1 - December 15, 1965), ESL

Memorandum 9442-M-154, dated December 27, 1965, 14 pp.

269. Progress Report No. 13 (December 16, 1965 - February 15,

1966), ESL Memorandum 9442-M-161, dated March 7, 1966,

12 pp.

270. Progress Report No. 14 (February 16 - May 15, 1966), ESL

Memorandum 9442-M-i66, dated May 20, 1966, 20 pp.

271. Progress Report No. 15 (May 16-July 31, 1966), ESL Memo-

randum 9442-M-175, dated August 5, 1966, 14 pp.

272. Progress Report No. 16 (August 1 - October 31, 1966), ESL

Memorandum 9442-M-181, dated November 9, 1966, 23 pp.

273. Progress Report No. 17 (November 1, 1966 - March 31, 1967),

ESL Memorandum 9442-M-188, dated April 3, 1967, 15 pp.

274. AED Progress Report No. 18 (April 1 - December 15, 1967),

ESL Memorandum 70429-M-195, dated December 15, 1967,

14 pp.

APPENDIX III

FILM LOANS - ELECTRONIC SYSTEMS LABORATORY

The following films are available for two-week loans, free of

charge:

1. KLUDGE. A 7-minute, black-and-white, silent, 16-mm film,

1966. Introductory shots show the Project MAC Computer and

ESL Display Console. The main body of the film shows graphi-

cal drawing in two and three dimensions with the light pen,

three-dimensional real-time rotation of figures and surfaces.

A separate sequence at the end shows construction and rotation

of complex molecular models.

2. CIRCAL-0. A 7-minute, black-and-white, silent, 16-mm film,

1966. This film shows how an on-line digital computer utility

and an electronic circuit designer "cooperate" through a pro-

gram that analyzes electronic networks. Man-machine inter-

action is accomplished through a graphical input-output termi-

nal and through a teletypewriter terminal.

3. COMPUTER SKETCHPAD. A 30-minute, black-and-white,

sound, 16-mm film, 1964. More detailed version of the film

listed immediately following, including three-dimensional

drawing. (Film of TV Program.)

4. SKETCHPAD. A 7-minute, black-and-white, sound, 16-mm

film, 1962. Two-dimensional graphical language with con-

s traints.

5. APT. A 30-minute, black-and-white, sound, 16-mm film, 1959.

Film of an Education TV Program describing the Automatically

Programmed Tool or APT System, developed by the M. I. T.

Electronic Systems Laboratory with the U. S. Air Force support-

ing this work, in cooperation with the Aerospace Industries

Association. The program describes the preparation of control

tapes for numerically controlled machine tools through the use

of English-like APT language for part programming.

-228-

-229-

6. A NUMERICALLY CONTROLLED MACHINE TOOL. A 20-

minute, color, sound, 16-mm film, 1953. A lucid exposition

of the basic principles of numerical control of machine tools.

The film describes the first numerically controlled machine

tool, developed in 1952 by the M. I. T. Servomechanisms

Laboratory (now Electronic Systems Laboratory), under

sponsorship of the U. S. Air Force. The film shows graphi-

cally the decoding of commands punched on paper tape into

control signals which are applied to servomechanisms which

drive the axes of machine motion. The basic steps of manual

preparation of the input-control tape are also covered.

We request that all borrowers limit the loan period to two

weeks, and that they mail films via air parcel post, special handling,

each film insured for $50. 00, addressed as follows:

Mass. Institute of Technology
Electronic Systems Laboratory
35-315
Cambridge, Mass. 02139
Attn: Librarian

PLEASE NOTE: Since our films are often tightly scheduled months

in advance, many interested parties prefer to pur-

chase their own copies of these films. Films 3

through 6 are available from the source listed below.

Films 1 and 2 are not at present available for pur-

chase.

CINE, Inc.
51 Kondozian Street
Watertown, Mass. 02172

