™
:
|

EHGHITKL

WINDOWs 33

ADRIAN KING

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1994 by Adrian King

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
King, Adrian, 1953-
Inside Windows 95 / Adrian King.
p- cm.
Includes index.
ISBN 1-55615-626-X
1. Windows (Computer programs) 2. Microsoft Windows (Computer
file) I. Title.
QA76.76. W56K56 1994
005.4'469--dc20 93-48485
CIP

Printed and bound in the United States of America.
123456789 QMQM 987654

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office. Or contact Microsoft Press
International directly at fax (206) 936-7329.

PageMaker is a registered trademark of Aldus Corporation. Apple, AppleTalk, LaserWriter, Mac,
Macintosh, and TrueType are registered trademarks of Apple Computer, Inc. LANTtastic is a registered
trademark of Artisoft, Inc. Banyan and Vines are registered trademarks of Banyan Systems, Inc.
Compagq is a registered trademark of Compaq Computer Corporation. CompuServe is a registered
trademark of CompuServe, Inc. Alpha AXP, DEC, and Pathworks are trademarks of Digital Equipment
Corporation. LANstep is a trademark of Hayes Microcomputer Products, Inc. HP and Laser]et are
registered trademarks of Hewlett-Packard Company. Intel is a registered trademark and EtherExpress,
Pentium, and SX are trademarks of Intel Corporation. COMDEX is a registered trademark of Interface
Group-Nevada, Inc. AS/400, IBM, Micro Channel, OS/2, and PS/2 are registered trademarks and PC/
XT is a trademark of International Business Machines Corporation. 1-2-3, Lotus, and Notes are
registered trademarks of Lotus Development Corporation. Microsoft, MS, MS-DOS, and XENIX are
registered trademarks and ODBC, Win32s, Windows, Windows NT, and the Windows operating system
logo are trademarks of Microsoft Corporation. MIPS is a registered trademark and R4000 is a trade-
mark of MIPS Computer Systems, Inc. NetWare and Novell are registered trademarks of Novell, Inc.
Soft-Ice/W is a registered trademark of Nu-Mega Technologies, Inc. DESQview is a registered trade-
mark and Qemm is a trademark of Quarterdeck Office Systems. OpenGL is a trademark of Silicon
Graphics, Inc. PC-NFS, Sun, and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.
TOPS is a registered trademark of TOPS, a Sun Microsystems company. UNIX is a registered trademark
of UNIX Systems Laboratories.

Acquisitions Editor: Mike Halvorson
Project Editor: Erin O’Connor
Technical Editors: Seth McEvoy and Dail Magee, Jr.

CONTENTS SUMMARY

Foreword XVii
Preface XXI
Introduction XXV

CHAPTER ONE

THE ROAD TOCHICAGO 1
CHAPTER TWO

INTEL PROCESSOR ARCHITECTURE 33
CHAPTER THREE

ATOUROF CHICAGO 63
CHAPTER FOUR‘

THEBASE SYSTEM. 103
CHAPTER FIVE

THE USER INTERFACE AND THE SHELL 157
CHAPTER SIX

APPLICATIONS AND DEVICES 223
CHAPTER SEVEN

THE FILESYSTEM, 275
CHAPTER EIGHT .

PLUGAND PLAY. 309
CHAPTER NINE .

NETWORKING. 341
CHAPTER TEN

MOBILE COMPUTING. 381
EPILOGUE

LEAVING CHICAGO 407
GIOSSAIY . . . o 427

Index PP 455

TABLE OF CONTENTS

Foreword XVil
Preface XXi

INtroduction XXV

CHAPTER ONE

THEROAD TOCHICAGO 1
The Mission for Windows 95 3
Helpforthe EndUser 3
Hardware Platforms. 4

For the Developer—32 BitsatLast. 5
Shall We Go to Chicagoor Cairo?., 6
First Stop—Chicago 7
Clientsand Servers. e 8
AndONntoCairoo 10
SUMMArY . . 12
Project Goals 13
Compatibility 14

The Compatibility Fallback 15
Performance 16
Robustness—Adieu UAE? 17
Timely Product Availability 18
Easy Setup and Configuration 19

The Plug and Play Initiative 20
ConfiguringWindows o 21
User-Level Operations 21

New Shelland UserInterface 22
TheNewShell........ 22

Complete Protected Mode Operating System 23
32-Bit Application Support 24
TheJumpto 32Bits 26

Networking and Mobile Computing 27

INSIDE WINDOWS 95

Bringing Windows 95toMarket. oL 28
For Microsoft—The Bottom Line 30
CoNCIUSION e 31

CHAPTER TWO

INTEL PROCESSOR ARCHITECTURE.......... 33
Intel Inside 34
The Intel Processor Family 35
Backward Compatibility 36
Processor Architecture 37
- The 8080 and 8086 ProCcessorsovvvineinne. .. 38
The 640K Barrier 39

The 80286 ProCessorcoiv it e 41

The 80386 ProCessort 43
80386 Memory Addressingot 45
80386 DescriptorFormat L 45

The DescriptorinSummary 48

Virtual Memory 48
Virtual Memory Management 49

Good Virtual Memory Management 50

Mixing 286 and 386 Programs 54

The Protection System 54
Memory Protection 55
Operating System Protection 56
Device Protection 57
Low-Level Device ACCeSSt 57
High-Level Device AcCesSso 58

Using the 80386 Device Protection Capabilities 59

Virtual 8086 Mode 60
CONCIUSION . . .o 61

CHAPTER THREE

ATOUR OF CHICAGO 63
System OVEIVIEW . . . oo 63
TheBase System 66
WindowsandModes. 67

vi

Table of Contents

Virtual Machines 68
Windows Virtual Machines 70
Initialization 70

The System Virtual Machine 71

MS-DOS Virtual Machines 72

Protected Mode MS-DOS Applications 73
DPMI . 74
Multitasking and Scheduling 75
Multitasking Models 76
Critical Sections, e 79
Processes inWindows i 80
Modules. e 80

APl SUPPROIt . . 81
Dynamic LInKiNgo o 82
Support fromthe Base System 84
Memory Management 85
Application Virtual Memory L 86
Heap Allocation, 87

Windows 95 Application Memory Management. 87

System Memory Management 88
Windows Device Support 90
Device Virtualizationo 90
Minidrivers. 91

The Windows Interface 92
WhatlsaWindow? i 92
Windows 95 User Interface Design 95
Windows Programming Basics L 96
Event Driven Programming P 96
Message Handling i 97
Program Resourcest 99
Windows 95 Programmingottt 99
CONCIUSION . . ot 101
References. o 101

CHAPTER FOUR

THE BASE SYSTEM ... 103

Windows 95 Diagrammed 104

Vii

INSIDE WINDOWS 95

Windows 95 Surveyed 106
Protection Rings inWindows 95 107
Windows 95 MemoryMap 108
Tasksand Processes 110

Virtual Machine Management 111
Real MS-DOS 111
Virtual Machine Scheduling 112

The Windows 95 Schedulers 114
Scheduling Within the System Virtual Machine 116
Controllingthe Scheduler. 116
Threadsand UAESocvonn.. e 117
ThreadsandIdleTime 118
Application Message Queues 119
Physical Memory Management. 121
Virtual Memory Management 125
Memory Mapped Files 127
Reserving Virtual Address Space. 128
Private Heaps o 129

Virtual Machine Manager Services, 129

Calling Virtual Machine Manager Services. e 131
VMM Callbacks. 131
Loading VXDso 132
TheShell VXD 134

Getting AroundinRingZero 135
Calling Windows 95 Base OS Services 137
Calling from One VxDto Another 138

VMM Service Groupso ot 140

Application SUPPOrt. 141
The APLLayer i 142

Mixing 16-Bitand 32-BitCode 143
The Win32 Subsystem e 147
Internal Synchronization. 149
CONCIUSION . . oo 155
References. 156

viii

Table of Contents

CHAPTER FIVE

THE USER INTERFACE AND THE SHELL 157
Improvingon Windows 3.0and 3.1. 159
System Configurationand Control 160
Program Manager, File Manager, Task Manager 160

Control Functions 162
CONSIStENCY . . .o 162
Visuals. 164
Scalability 164

Concepts Guiding the New User Interface 165
The Document-Centric Interface 166
LookandFeel 167

The Windows 95 Shell. 169
Folders and Shortcuts in the Windows 95 Shell. 170

Desktop Folders 172
SystemSetup 173

The Initial Desktop 174
TheDesktopo 177
TheTaskbar 179
On-Screen APPearanCeuvviiin i, 182
LightSource 184

Property Sheets. 185
OnlineHelp 186
Implementation 188
Design Retrospective 189
The Outside Influences 189

The Developmentofthe Shell 190
ChangesintheShell........ 192
TheTaskbar 194
Foldersand Browsing., 195
Animation 196

The TransferModel 197
OtherChanges 198

The New Appearancet 198
Screen AppearanCe 198
Visual Elements. 201
Scalability 201

INSIDE WINDOWS 95

MENUSo 202

WindowButtons 204

CONS . . o 204

Proportional Scroll Box and Sizing Handle 205

New Controls.t 205

ToolBarControl i, 205

Button ListBox Control 206

Status Window Control 206

Column Heading Control 207

Progress Indicator Control 208

SliderControl 208

SpinBox Control. 208

RichTextControl. 209

TabControl 209

Property Sheet Control 209

List View and Tree ViewControls 210

New Dialog Boxes. i 210

FileOpenDialog........... 211

PageSetupDialogc i 213

Long Filenames 213

Windows 95 Support for MS-DOS Applications 215

Application Guidelines for Windows 95.......... B 217

Follow the Style Guidelines 218

SupportLong Filenames. 218

Support UNC Pathnames, 218
Register Document and Data Types,

and Support DragandDrop. oL 218

Use CommonDialogso voviv i 219

Reduce Multiple Instances of an Application 219

Be Consistentwiththe Shell 219

ReviseOnlineHelp i i, 219

Support OLE Functionality 220

CONCIUSIONo 220

Reference 221

Table of Contents

CHAPTER SIX

APPLICATIONS AND DEVICES 223
The WInB2 APl 224
GoalsforWin32. 226
Components of the Win32 APl 227

The Win32 APlonWindows 95 e 229
Portingtothe Win32 APlo i 229
PortingTools 229
APIChanges. 230

Memory Management 232
VersionChecking i 233
Nonportable APIs o 233
Win32onWindows 95. 234
Security APIS 234

Console APIS 235

32-Bit Coordinate System. 235

Unicode APls 235

“Server APIs . .. 236

Printer Support 236

Service Control Manager APIs 236
EventLogging 236

Detailed Differences. o . .. 237
Programming for Windows 95 238
Multitaskingo 238
Memory Management 241
Plugand Play Support i 241

The Registry 242

The User Interface [245

OLE . 245
International Support 248
Structured ExceptionHandling. 249

The Graphics Device Interface it 252
GDIArchitecture 255
Performance Improvements. L. 256
LimitExpansion i 256

New Graphics Features 257

Xi

INSIDE WINDOWS 95

TrUETY P . o oo 258

Metafile Support 258

Image Color Matching i, 259
Color Profiles 261
Communicating Color Information 261

The Display Subsystem 262
The DIBENGINEo 265

The Display Mini-Driver.o 266
Bank-Switched Video Adapters 267
Interfacing withthe DIBEngine 268

The Printing Subsystem 269
Printing Architecture 270

The Printing Process oo 270
Using the Universal Printer Driver. 272
CONCIUSION . . .o 274
References. o 274

CHAPTER SEVEN

THE FILESYSTEM 275
Overview of the Architecture e 277
Long Filename Support 281
Storing Long Filenames 282
Generating Short Filenames 288
MS-DOS Support for Long Filenames. 289
Long Filenames on Other Systems 291
Installable FilesystemManager. 291
Calling aFilesystem Driver 293
Filesystem Drivers 294
FSD Entry Points e 295

/O SUbSYSteM . . .o 296
Device Driver Initialization. 298
Controllingan l/ORequest 299
CalldownChains. i 300
Asynchronous Driver Events. 301
Interfacingtothe Hardware 302
Initialization. 302

Execution 303

Interrupt ... 303

Xii

Table of Contents

Other Layers in the Filesystem Hierarchy 303
Volume Tracking Drivers i, 304
Type SpecificDrivers 305
SCSIManager. 306
RealMode Drivers i 307

CONCIUSION . . . o e 308

References. o 308

CHAPTER EIGHT

PLUG AND PLAY 309
Why Do We Need Another Standard?. 310
History of the Plug and Play Project ..,......... 312
GoalsforPlugandPlay......... 314
Easy Installation and Configuration of New Devices 315
Support for a New Hardware Standard 315

New ISABoardStandard 317

Seamless Dynamic Configuration Changes 318
Compeatibility with the Installed Base and Old Peripherals. 319
Operating System and Hardware Independence. 320
Reduced Complexity and Increased Flexibility of Hardware . .. 320

The Componentsof PlugandPlay 321
How the Subsystem Fits Together. 325
After a System Configuration Change 328

Hardware Tree. i i 328
DeviceNodes. i 329

Device Identifiers e 331

Hardware Information Databases 332
PlugandPlayEvents 333
Configuration Manager, 333
Enumerators 334
Resource Arbitrators e 335
PlugandPlayBIOS. 336

Plug and Play Device Drivers 337
Applications in a Plugand Play System 338
CONCIUSION . . 339
References. i 340

xiii

INSIDE WINDOWS 95

CHAPTER NINE

NETWORKING 341
Windows Networking History e 342
Networking Goals i 346
Network Software Architecture 347
WOSA 348
Network Layers 351
Network Operations 353

The Multiple ProviderRouter 355
32-Bit Networking APIs o 357
Network Resources 357
Connection APIs 358
Enumeration APIs 359

Error Reporting APIs. oo 360

Local Device Name APIs 360

UNC APIS . .o e 360

Password Cache APl 360
Authentication Dialog APl. o 361
Interfacing to the Network Provider 361

The Network Provider i 362
Network Provider Services 363
Device Redirection SPI. 364

Shell SPI 365
Enumeration SPI........ 365
Authentication SPI L 366

Network Transportso 366
Network Device Drivers i 368
Network Driver Compatibility 369

Network Configurations. o L. 370

The Network Server 372
Server Components 373
Network Printing 375
Network Security 377
Access Controls 378
Share-Level Security 379
User-Level Security i 379
CoNCIUSION . . . 379
Reference 380

xiv

Table of Contents

CHAPTER TEN

MOBILE COMPUTING 381

Remote Communications Support. 382

Remote Network Access.t 385

Typesof Remote Access 386

The Telephony APl 389

Telephony Applications 390

Modem Support 391

The Communications Driver 392

ThelnfoCenter 394

Info Center Applicationso 396

Messaging APls 396

Messaging Service Providerso i 397

Portable System Support. 398

Power Management i 398

Docking Station Support. 399

File Synchronization. 400

The Briefcase APl 403

CONCIUSION . . 404
EPILOGUE

LEAVING CHICAGO 407

GlOSSAry . . . 427

INAEX . 455

FOREWORD

I first met Adrian King in 1981, on the floor of a trade show in
Amsterdam. I was new to Microsoft—a small company of 75 people
with $7.5 million in revenues—and I was on my first trip to Europe to
meet customers and distribution partners. The trade show turned out
to be a flop—more exhibitors than customers. Adrian and I by our-
selves might have outnumbered the customers.

We had a lot of time to talk to each other, and I found out that
Adrian had graduated from the University of Liverpool with a master’s
degree in computer science and had joined Logica, a big European
consulting outfit, straight out of school. It was clear right off that he un-
derstood technology and a lot else besides.

We tried to figure out why the aisles were so empty, and that got us
into talking about the future for software. I remember thinking that
Adrian was an impressive guy and reflecting that with more people like
Adrian involved, the software business might really take off. But even in
our freewheeling exchange of ideas, we didn’t come close to envision-
ing today’s incredible market for software.

A little later, Adrian managed to convince Logica to branch out
from their consulting business into software products—no small feat at
the time—and they became Microsoft’s European XENIX partner.
Through the early 1980s, Adrian and I worked together to develop the
European XENIX business. Then, in April of 1984, we met to review
XENIX support issues. That’s how it started out, anyway. During the
first half of the meeting, Adrian did his best to convince me that
Microsoft had to do a number of different things to improve our
XENIX product support. During the second half, I did my best to con-
vince Adrian that he really ought to become our XENIX product man-
ager and take care of those things himself. With a little help from Bill
Gates, I was able to persuade Adrian to do just that.

Adrian did a great job, and before long we gave him even more to
do. He eventually became our director of operating systems products,
picking up responsibilities for MS-DOS and Microsoft OS/2 as well as

INSIDE WINDOWS 95

XViii

XENIX. At the same time I was focusing on Windows, which had be-
come a big priority for the company. We had come to believe that using
a mouse with a graphical user interface was a natural, intuitive way to
use a computer. Adrian worked on the early Windows projects, and in
November of 1985 I put him in charge of Windows/386.

The effort we put in on the early versions of Windows was a foun-
dation for the blockbuster success of Windows 3.0 and Windows 3.1.
The work that Adrian and the rest of the team did on the Windows/386
project formed the basis for much of Microsoft’s MS-DOS support in
Windows 3.1 and even in Windows NT, for example. And many of the
people from that Windows/386 team are still involved in our Windows
development today.

Adrian went on to other important projects at Microsoft, and
then in 1991 he left to pursue his interest in peer-to-peer networking at
a smaller company. I'm sure that if Adrian were still at Microsoft he’d
be deeply involved in the development of Windows 95. But at least he’s
back in the Microsoft orbit—this time as a chronicler, the author of
Inside Windows 95.

Microsoft’s goals for Windows 95 are the same goals we’ve had for
every release of Windows. We want to make computing even easier. We
want to increase end user productivity. We want to provide a develop-
ment platform for the desktop. We want to provide a high-volume, low-
cost operating system that will spur industry growth and innovation. We
believe that Windows 95 will accomplish these goals and that Windows
95 will be even more important to the PC world than Windows 3.1,
which now has over 60 million users.

The list of great new features for Windows 95, a true 32-bit operat-
ing system, is amazingly long. Windows 95 will offer a vastly improved
user interface, true multitasking, a freshly designed filesystem, better
connectivity, better support for notebook PCs, easier installation and
configuration—all with performance at least as good as Windows 3.1
performance.

I’'m very excited that Adrian has written this book about our most
important Windows operating system ever. We’re lucky that Adrian
turned out to be a good writer too because he has a perspective that
only someone from the old days could bring to bear on the history and
the accomplishments of the “Chicago” Windows project. Everyone will
want to read Inside Windows 95—the interested power user, solution
providers, developers, and administrators. I heartily recommend this

Foreword

book to anyone who will want to take full advantage of the technologi-
cal innovations in Windows 95. Adrian does an excellent job of explain-
ing the major architectural components of the system and provides a
lot of insight into the thinking behind the design and implementation
of Windows 95. I've greatly enjoyed reading his account of the project
and the product in this book, and I think you will too.

Steve Ballmer

Executive Vice President, Microsoft
Redmond, Washington

August 1994

PREFACE

Witing a book about a yet to be released software product and pub-
lishing it before the product even ships has to be asking for trouble.
Throw in other factors such as the fact that the product in question is
one that literally thousands of people will examine and critique in
minute detail, and you can easily build a case for declining the writing
opportunity. So, of course, I accepted. Inside Windows 95 is the result.
When I started working for Microsoft in 1984, I'd already known
the company as a customer and development partner for a few years.
One thing I’d learned very quickly about Bill Gates and Steve Ballmer
is that they never, ever give up on something they believe in. In 1984
and 1985, even with massive delays in its initial planned shipment, Win-
dows was the something they weren’t giving up on. My first office at
Microsoft was next to Steve Ballmer’s. One day, after more bad news
about Windows shipment dates, he and his assistant packed everything
up and moved downstairs to occupy new offices in the midst of the Win-
dows development team (a group maybe ten strong at the time). Steve
was now the Windows project manager, and he wasn’t about to give up.
Windows 1.0 eventually shipped in late 1985. Describing the
market’s reaction as lukewarm is akin to describing Bill Gates as well
off. I remember installing the first Windows Software Development Kit
on an IBM PC XT and being at different moments impressed by its fea-
tures and bewildered by its complexity. Looking back on it now, I can
see that it was of course sheer madness for Microsoft to believe that
Windows could succeed on the limited hardware available at the time.
But Microsoft wasn’t about to give up. Through successive ver-
sions, Windows gradually got better and the hardware got faster and
more capacious. In 1987 and 1988 I managed the project that pro-
duced Windows/386 and launched it on the first 386-based PC: the
Compaq Deskpro. It was my favorite time at Microsoft, and the entire
project team—all fifteen of us—were rather proud of Windows/386. In
comparison to MS-DOS it still didn’t sell worth a darn. Even Steve
Ballmer was beginning to think that OS/2 might be the right strategy.

INSIDE WINDOWS 95

But Microsoft didn’t give up, and on May 22, 1990, Bill Gates in-
troduced the latest and greatest release of Windows—version 3.0—to a
rapt audience in New York City. Things were different this time. It was
obvious to me in the theater that day that Windows was about to become
a seven-year-old overnight success. And it did. Bill and Steve would prob-
ably try to convince you it was planned that way. Don’t believe it.
Whether the galaxies were finally in correct alignment, or a confluence
of market factors finally came about, or sheer determination finally car-
ried the day is no longer relevant—Windows was finally a hit.

I'was involved only a little in the development of Windows 3.0 and
not at all in the development of Windows 3.1. Shortly before I left
Microsoft in 1991, I began working on what was eventually to become
part of the base operating system for Windows 95. Clearly I was not des-
tined to escape the project entirely, and the opportunity to write this
book on Windows 95 for Microsoft Press is one I've enjoyed a lot.
Watching a Windows release once again is fascinating. The scope of the
work that goes into a major new release of Windows these days is stag-
gering, with hundreds of people involved rather than only a few dozen.

Of course, I'm only writing about what many have built and oth-
ers have yet to go out and sell. Although the Windows team at Microsoft
is considerably bigger these days, it still includes a few people from
back when Steve Ballmer was the project manager. And Steve’s current
role at Microsoft as Executive Vice President of Sales and Support
means that he is now in charge of the worldwide sales campaign for
Windows 95. Windows 95 will enter the market under some competi-
tive pressure. Proponents of UNIX, OS/2, and NetWare certainly
haven’t relaxed their attempts to improve their own products and their
market shares. But Windows 95 is definitely the product to beat. I'm
quite sure Steve won'’t give up on this challenge either—which means
that nothing has really changed since 1985 except the location of
Steve’s office and the size of his marketing budget.

Special thanks go to Erin O’Connor and her team at Microsoft
Press for overcoming my English and several other obstacles in the
preparation of this book. Claudette Moore and Mike Halvorson got the
project started, and several people at Microsoft gave time and assis-
tance to the project, for which I'm grateful. George Moore and Joe
Belfiore in particular were always willing to answer my questions. It has
been more than a year since I began work on this book, and, as I write,
I know there’s still a lot of work left to finish Chicago. That effort is but
a tiny part of the total still needed to ship Chicago and make it a suc-

Preface

cess. The industry magazines have already published their first reviews
of the Chicago Beta-1 release. IBM has launched its anti-Chicago adver-
tising campaign. The pundits and self-styled experts have begun their
critique of a product that won'’t be in the stores for months yet. Win-
dows 95 has a long way to go before it will be a runaway success. But I'm
sure that will happen. Microsoft won’t give up before it does.

If you’d like to talk to me about this book or about Windows 95 in
general, I'm readily available on the Internet as adriank@gravity.wa.com.
I hope you find at least some of the book useful and enjoyable. Thanks
for taking the time to read it.

Adrian King
July 12, 1994

XXiii

XXiv

Publisher’s Note

As we went to press, some aspects of Windows 95 were still under a gen-
eral nondisclosure agreement, but Microsoft had made public a great
deal of information about Windows 95. This book offers an interpreta-
tion of that information, and the author’s conclusions are based on his
exploration of Beta-1. The “Chicago” story continues to unfold, and the
product will continue to be refined. For up-to-the-minute changes in
information on Windows 95, we recommend that you periodically visit
the WIN_NEWS forum, which you can find at the following locations:

On CompuServe: GO WINNEWS
On the Internet: ftp://ftp.microsoft.com/PerOpSys/Win_News/Chicago
hitp://www. microsoft. com

On AOL: keyword WINNEWS
On Prodigy: jumpword WINNEWS
On Genie: WINNEWS file area on Windows RTC

You can also subscribe to Microsoft’s electronic newsletter WinNews. To
subscribe, send Internet e-mail to enews@microsoft. nwnet.com and put the
words SUBSCRIBE WINNEWS in the text of the e-mail.

When Windows 95 is released, be sure to head to your bookstore for
complete accounts of developing for and using Windows 95.

Microsoft Press
September 16, 1994

3,
i‘,%?dy-p

INTRODUCTION

To describe this book as an account of everything you could possibly
want to know about Windows 95, or indeed as an account of everything
in Windows 95, would be to mislead. The sheer scope of the Windows
95 development project makes it impossible to write the only book
about the product you’ll ever need to buy. If you’re an avid student of
Windows, I'm sure your sagging bookshelf will have to bear further
strain in the months ahead. If you’re a regular user, you’ll find a whole
host of new and exciting features to explore in Windows 95.

First a warning. Even as I write, Windows 95 is still in development
and scheduled for release a few months into the future. Microsoft
made the first external release of the product in August 1993. After in-
stallation, one of the first icons you were tempted to double-click on
produced this unsettling screen:

In many other places in the product you could find similar warn-
ings: subject to change, not yet implemented, and so on. It seems appropri-
ate to use the Under Construction screen at the front of this book. My
warnings won’t be as dire, though, since this book does describe fea-
tures you really can expect to find when Windows 95 hits the streets late

“this year. This book is current as of the Chicago Beta-1 release that

XXV

INSIDE WINDOWS 95

XXVi

Microsoft shipped in June 1994, By and large the product was feature
complete at the time of that beta release. However (and here’s that
warning), since the book has to go to the printer before the product
ships, there will undoubtedly be some changes of detail in the final re-
lease of the product. And the incompatible goals of exploring every last
feature of Windows 95 and still producing this book in advance of the
product means that some features won’t be examined in much detail
and some features will be left out altogether.'

The intention of the book is to provide a technical introduction
to the Windows 95 system, including enough detail to satisfy any Win-
dows user and most system administrators and Windows programmers.
The book is also “Inside Windows 95,” meaning that the emphasis is on
what the system can do, how it does it, and why its features were de-
signed and implemented in particular ways. If you’re looking for a
book that teaches you how to use the Windows 95 interface, how to cus-
tomize Windows 95, or how to write Windows 95 applications, this book
isn’t it. But this book does give you a thorough analysis of the system
architecture and explores every important new feature of Windows 95.

Windows 95 is a major product release for Microsoft. It incorpo-
rates significant new features for exploitation by developers, and major
advances in the user interface and in system usability that should bene-
fit the end user. Since Microsoft Windows has become such an im-
mensely successful product, new releases bear a burden of backward
compatibility. Windows 95 has to carry forward the MS-DOS legacy.
And Windows 95 isn’t Microsoft’s only Windows family operating sys-
tem. Windows 95 must take its place alongside Windows NT and the
forthcoming Cairo system. Chapter One explores the goals of the Win-
dows 95 project, the constraints on the development team, the market
for the product, and the role of Windows 95 in Microsoft’s overall sys-
tems software strategy.

When I began work on this book, Microsoft’s internal planning
had Windows 95 shipping at the end of the year—the year 1993. Win-
dows 95 would have been truly unique among operating systems if it
had shipped on the originally planned date. As I write, the testing sta-
tus of Windows 95 suggests that there’s a reasonable chance that it will
indeed ship at the end of the year—the year 1994.

1. One major “change” that did make it into this book is the Windows 95 name.
Everyone had been assuming that Chicago’s real name would be Windows 4.0. In July
1994 Microsoft decided on the Windows 95 name to align the operating system with a
planned company-wide revision of product names. Fortunately, they made the decision
just before the book went to press.

Introduction

One aspect of the product that I can’t cover in this book is exactly
how Windows 95 will be packaged and priced. Microsoft executives are
characteristically vague about these issues when responding to direct
questions. To some degree, that’s a competitive response; the final
packaging and pricing decisions are rarely made until quite late in a
project’s life cycle. It will probably work the way most other similar
decisions at Microsoft do: at some point Steve Ballmer will simply tell
everyone what the different boxes should contain and how much
they’ll sell for.

One difficult question I confronted as I developed this book was
how much introduction to the underlying hardware (the Intel 386 pro-
cessor) and software (Windows itself) to provide. Some authors expect
you to read other tomes as prerequisites to their own. Still others try to
teach you hexadecimal arithmetic before presenting the intimate de-
tails of fault-tolerant system design. In the end I decided to support this
book’s mission by including the information I would need to refer to
while talking about the more advanced details of Windows 95. Chapters
Two and Three therefore provide a basic description of the Intel 386
processor architecture and the Windows system architecture. If you
know these subjects intimately, you can skim quickly through those two
chapters. If you never knew much about those subjects, the two chap-
ters should equip you to deal with the new information about Windows
95 in the rest of the book. If you’re like me and can’t always remember
exactly how the 386 paging mechanism works, or precisely what a Win-
dows task really is, Chapters Two and Three can serve as a close at hand
reference to Intel and Windows architecture.

Windows 95 is built on an operating system base that adds major
new capabilities to the system. Some of these new features, such as the
new filesystem, have already appeared in other Microsoft operating sys-
tem products, notably Windows NT and Windows for Workgroups.
Windows 95 integrates these new features and other features to provide
a full 32-bit protected mode environment for Windows applications.
And although MS-DOS compatibility is retained, there really isn’t a col-
lection of files in Windows 95 that you can point to and label as
MS-DOS. Windows 95 really is a complete operating system for the very
first time in the history of this product line. In Chapter Four we’ll ex-
plore the inner workings of the Windows 95 operating system base.

Every user of Windows will see a dramatic revision in the on-
screen appearance of the operating system. In addition to revising the
appearance of Windows, Microsoft has changed many of the interactive

XXVii

INSIDE WINDOWS 95

XXviii

procedures and added a unified system control application. In Chapter
Five we’ll analyze the user interface and the new system shell. That
chapter contains a lot of screen shots illustrating various aspects of the
shell, and I'm quite sure that some of the details of these screens will
change in the final product. I already know that the visuals for the Start
menu are a little different, and the “now it’s there, now it’s gone” game
continues with the shell’s trashcan: post-Beta-1, the trashcan was back
in the product. :

Windows 95 introduces some significant changes in both the Win-
dows graphical subsystem and the Windows implementation of device
support. For the first time a Microsoft Windows system takes on the
challenge of device-independent color—a feature that has become
critical to many graphical applications. A major improvement in the
architecture for display drivers is also a highlight of the new system-
level features you’ll see in Windows 95. In Chapter Six we’ll take a look
at all of these changes.

The architecture for supporting disk devices and their associated
filesystems has also changed considerably in Windows 95. A layered de-
vice architecture derived from the Windows NT design provides full
protected mode support for hard and floppy disks and CD ROM de-
vices. And integrating support for new disk devices into the system be-
comes comparatively trivial in Windows 95. Although Windows 95
continues to use the MS-DOS FAT filesystem as its default storage
scheme, the design of the new installable filesystem manager opens the
door for improved filesystem support in the future. Right now, the
most visible enhancement in the Windows 95 filesystem is its support
for long filenames—finally relieving us of the tiresome 8.3 filenaming
convention that has dogged us since 1981. In Chapter Seven we’ll in-
spect the new filesystem design.

Although not limited to operation in the Windows environment,
Microsoft’s Plug and Play technology makes its system debut with Win-
dows 95. Fully implemented, Plug and Play makes the task of configur-
ing and managing a complex PC a trivial one. Apple Computer won’t
be able to run those Windows commercials any longer. In Chapter
Eight we’ll explore the need for Plug and Play and its implementation
under Windows 95. Plug and Play capable systems have a life outside
Windows 95, and I fully expect Plug and Play systems to be a highlight
of this year’s COMDEX/Fall trade show. The Plug and Play technology
really does work, and if you spend a lot of time messing around with
computers, you’ll find the benefits of Plug and Play to be compelling—

Introduction

so much so, that I'd recommend your waiting to buy a Plug and Play
system as your next.

Windows 95 integrates its support for network systems into the
new filesystem architecture. Windows 95 will support several simul-
taneously active networks—each with multiple connections—and pro-
vide consistent interfaces to any underlying network for applications.
Some of these features were seen for the first time with the release of
Microsoft Windows for Workgroups version 3.11 in the fall of 1993. In
Chapter Nine we’ll examine network support in Windows 95. The sud-
den surge of popular interest in the Internet prompted Microsoft
to include Internet access utilities in Windows 95 quite late in the de-
velopment project. It seems likely that the “Internet readiness” of Win-
dows 95 will be a focus of at least some of the early marketing for the
product.

Microsoft intends Windows 95 to play a significant role in the
growing mobile computing market. Windows 95 features related to
that market range from integrated support for pen-based computers to
an enormously improved remote network access capability and support
for the use of laptop docking systems. In Chapter Ten we’ll consider
these features together under the general topic of mobile computing.
Windows 95 will include support for pen input devices and the associ-
ated “inking” operations. Unfortunately, that topic didn’t make it into
this book—publishing deadlines are a little more rigid than software
development deadlines.

Apart from the pen computing capabilities, the only other major
feature of Windows 95 that is not a topic of this book is multimedia sup-
port. It will be there in the product, but even as late as the spring of
1994 its precise architecture and features were still rather vague.
Microsoft seemed to think it was pretty significant that there is a ver-
sion of the popular Doom game running under Windows using the
newly announced WinG graphics library. Game products are really the
final bastion of MS-DOS—specific software. Whether Windows 95 multi-
media support will be good enough to conquer the games market re-
mains to be seen.

There are components of Windows 95 that will have been in de-
velopment for well over three years by the time you can go out and buy
the product in a store. The first order of business is to look at what
Microsoft has been trying to achieve in all that time.

XXiX

CHAPTER ONE

THE ROAD TO CHICAGO

Throughout its design and development, Microsoft Windows 95 had
the codename “Chicago,” and the introductory slide for early product
presentations depicted a map of the USA entitled “Driving Towards
Chicago....” Windows 95 was not designed and developed in a
vacuum—there were a lot of stops on the way to Chicago. Beginning
with the first release of Windows in November 1985 and continuing
through the spectacularly successful introduction of Windows 3.0 in
May 1990 and beyond, Microsoft’s total investment in Windows has
been enormous. Until version 3.0, the commercial returns hardly mer-
ited the investment. But no one has ever accused Microsoft of giving up
easily, and Windows slowly and steadily improved in both capabilities
and sales. The introduction of Windows 3.0 was a watershed event. It
was as if the world had suddenly discovered the benefits of Windows,
and versions 3.0 and 3.1 sold in great numbers.

In truth, a number of factors contributed to the seemingly sudden
success of Windows 3.0. Personal computers using the Intel 386 chip
were then becoming affordable. By the time Windows 3.1 was released,
386 systems were commonplace and cheap. The 386 systems provided
good performance and the best platform for Windows to run on.
Equally as important, the amount of system memory and the quality
and performance of video hardware finally matched the requirements
set by Windows. Given the now adequate level of system performance,
the real benefits of the graphical user interface became apparent to
large numbers of users.

Microsoft had long extolled the benefits of Windows, but only a
limited number of high-quality Windows-based applications were avail-
able before version 3.0. Virtually every demonstration of Windows in-
cluded Microsoft Excel, Aldus PageMaker, and very little else. There
were occasions when Microsoft’s own applications development group

INSIDE WINDOWS 95

questioned the wisdom of pinning all their hopes on Windows, and
there were many internal debates, both formal and informal, over the rela-
tive priorities of MS-DOS, Windows, UNIX, and OS/2 as application plat-
forms. Windows 3.0 changed every company’s perspective significantly,
and within several months of its release, the level of application support
for Windows had grown dramatically. Software developers were no longer
faced with the question of whether it was worthwhile to develop a Windows
version of their application—it was simply a question of how fast they
could get the Windows version to market.

Even industry journals that had relegated Windows to the also-ran
category changed their view. As the numbers of users converting to
Windows rose, so did the level of press coverage. Within two years,
reviews and discussion of MS-DOS-based products had become the mi-
nor news items, and new journals concerning themselves only with Win-
dows had begun to take up a significant amount of magazine rack space.

It was on this stage that Windows 95 would be introduced. Before
version 3.0, new releases of Windows had received some polite (and a
lot of impolite) interest and had earned the product a few new custom-
ers. After all, those were the days when OS/2 had been designated “the
next big thing.” In that context, Windows version 3.0 was an over-
achiever, surprising everyone with its improved features and popular
success. Microsoft released version 3.1 primarily to solve the problems
that widespread use of the 3.0 product had exposed.' The product
team knew that the stage would be different for the introduction of
Windows 95. Expectations were high. Every feature and nuance of the
product was certain to be exhaustively examined, discussed, and criti-
cized.? Windows 95 had to be the best version of Windows ever, and the
goals the team set for the product had to address the need to incorpo-
rate dramatic and worthwhile improvements. With sales of the current
version of Windows topping a million copies a month by mid-1993, any
new release of the product also needed to be totally reliable.

1. Foremost among these problems was the infamous UAE—the Unrecoverable
Application Error. Although UAEs were most often caused by bugs in application
programs, everyone blamed Windows for UAEs. Eliminating UAEs was the driving
motive behind the development of Windows 3.1.

2. One illustration of this high degree of interest: within two weeks of Microsoft’s
first, limited, external release of the beta, someone had (illegally) provided a copy to
PC Week. They promptly published a review of the beta—almost a year in advance of
the product’s planned release date.

ONE: The Road to Chicago

Thus, the general goals for Windows 95 were set: build a great
new product that includes compelling new features and that is totally
réliable—and, of course, develop it quickly. If you’ve ever worked on a
software development project, you probably recognize those grand
goals. And you know that every project team has to reduce those nebu-
lous aims to specific targets. With Windows 95, it was no different.

The Mission for Windows 95

Although the goal is expressed in different ways and set in different
contexts, one phrase summarizes the mission of the Windows 95 devel-
opment team: make it easy. The mission to make every aspect of the PC
running Windows 95 easier for users, support staff, hardware manufac-
turers, and software developers consistently reasserts itself. The project
mantra often added a qualifying phrase: make it easy, not just easier.
Throughout the design and development cycle, each aspect of Win-
dows 95 had to undergo scrutiny within the “make it easy” context.

Help for the End User

Ease of use is an overused phrase in the computer industry. Not that
many people find computers easy to use. Most people find Windows
easier to use than MS-DOS, but the Windows 95 team recognized that on
an absolute scale there was a lot left to do before using Windows would
become “easy.” These are some of the problems the team recognized:

@ Many users remain intimidated by computers. Many potential
customers won’t buy a PC for the same reason.

Common tasks, such ds setting up a printer, are still far too
arduous and error-prone for many users.

#® Carrying out a complex operation, such as remote data access,
is difficult for sophisticated users and close to impossible for
most other people.

The scope for the team’s mission also needed broadening. It
would be no good making Windows easy to use if the systems on which
it ran remained difficult to set up and configure. And Windows 95 itself
had to be easy to install and support. To make things easy for the end
user at the expense of the MIS department would be self-defeating.

INSIDE WINDOWS 95

- Hardware Platforms

The basic architecture of today’s average PC is that of an IBM PC AT-
compatible machine, circa 1984. Despite many innovations in compo-
nents, the overall system design has remained largely unimproved.
Beyond encouraging manufacturers to ship PCs with at least a 386SX
processor, 4 MB of RAM, and good video boards, Microsoft had done
very little in the way of systematically persuading hardware companies
to innovate.

Microsoft saw Windows 95 as an opportunity to change the status
quo to the benefit of both the end user and the system manufacturer.
Central to this effort was the development of the hardware Plug and
Play specification, prepared jointly by Microsoft, Intel, Phoenix Tech-
nologies (the BIOS suppliers), and Compaq, among others. Plug and
Play aimed to eliminate most of the problems associated with setting up
and configuring PC hardware. No longer would the user need to know,
for instance, what an IRQ) or an 1/O port address was. The users, their
support staffs, and the system suppliers would all benefit from the
improved ease of system setup.

Microsoft’s other major step to encourage renewed hardware inno-
vation was the decision to finally remove Windows reliance on MS-DOS
as its underlying operating system. Successive releases of Windows had
incorporated more and more operating system functions, and MS-DOS
gradually came to be used as little more than a rather inefficient disk
filing system. This trend culminates in Windows 95—a complete oper-
ating system implementation that incorporates all the features re-
quired of a fully protected 32-bit multitasking operating system. The
user needs only to install Windows 95 on the machine; MS-DOS doesn’t
have to be present on the system at all. Windows 95 continues to support
MS-DOS applications using a compatibility feature that has its roots in
Microsoft Windows/ 386, Microsoft OS/2, and Windows NT.?

Windows 95 offers the system manufacturer the opportunity to
produce improved hardware that doesn’t have to conform strictly to
the old IBM PC AT design. Such improvements include the incorpora-
tion of an improved BIOS and plug-in cards that cooperate with the op-
erating system during system setup. Since device driver software always
controls access to any hardware within a Windows 95 system, the user
can add any new device provided it has a Windows device driver.

3. Although no code is repeated, members of the Windows 95 team had accumu-
lated a significant amount of expertise when they had implemented similar compatibil-
ity features for these other operating systems.

ONE: The Road to Chicago

The need for older-style BIOS compatibility no longer exists unless the
device must also support MS-DOS operations.

For the Developer—32 Bits at Last

Although the mission statement for Windows 95 emphasized making it
easy for users, support staff, and manufacturers, the lifeblood of Win-
dows is still application programs. Early on in life, Windows gathered
support from application developers slowly. After the introduction of
Windows 3.0, that trickle of support grew into a veritable torrent of new
applications. But developing a Windows application was never an easy
task, although the quality and variety of development tools and train-
ing material have improved by leaps and bounds over those of a few
years before. Windows 95 support for 32-bit programs helps the devel-
oper significantly:

Developing 32-bit programs is just plain easier than develop-
ing for the 16-bit segmented model required by earlier
versions of Windows.

The Windows 95 32-bit API is compatible with the API sup-
ported by Microsoft Windows NT. Developers who want to
produce products for both operating systems have an easier
time developing and supporting their applications.

B Windows 95 itself uses a 32-bit memory model, and many of
the limits of earlier versions of Windows disappear as a result.
Valuable system resources, such as file handles, are plentiful.
Application developers no longer have to come up with clever
schemes to minimize their demands upon the system.

Naturally, the availability and quality of applications for the new
release will help determine the success of Windows 95. At the same
time that Microsoft worked on Windows 95, they expended even more
effort on the development of Windows NT and associated products
such as the Advanced Server version of Windows NT. Further mystify-
ing the choice of platforms available to the application developer was
word of yet another Microsoft operating system—code-named Cairo—
which began to circulate in late 1992.* Today the success of each of

4. Chicago’s project.codename was originally “Tripoli”—a city “very close to Cairo.”
Humorists on the Windows team then asserted that the name ought to be “Spokane”™—
a place not very far from Microsoft’s headquarters in Redmond. Eventually, “Chicago”
was chosen—more because that was the site of the Windows 3.1 introduction than for
any other geographic significance.

INSIDE WINDOWS 95

these operating systems remains undetermined, but before going fur-
ther along the road to Chicago, we’ll look at how Microsoft sees the
role of each product over the next few years.

Shall We Go to Chicago or Cairo?

Over the last few years, every one of us has had several opportunities to
change PC operating systems. The sheer size of the installed base of
MS-DOS systems and application software creates enormous inertia,
and with no compelling reason to change, people simply don’t. This
hasn’t stopped a variety of vendors from trying to replace MS-DOS with
a better mousetrap. UNIX, for example, in all its versions, has been
around even longer than MS-DOS, and each year brings a renewed
pledge of unity and coherence from the UNIX vendors. Usually the
vendor infighting reasserts itself about six months later, and UNIX
returns to its status of technical overachiever and commercial also-ran.

Microsoft, in partnership with IBM, tried to replace MS-DOS with
0OS/2. After a few years and tens of millions of dollars spent in develop-
ment and promotion, OS/2 was nowhere in the market. Microsoft
abandoned its OS/2 efforts shortly after the introduction of Windows
version 3.0, when it became clear that Windows would be very success-
ful and OS/2 would never be a good enough product to justify a switch
from MS-DOS. Microsoft did press on with the development of another
advanced operating system, however—Windows NT. Why? Hadn’t
enough money been wasted on trying to replace MS-DOS? Wouldn’t it
have been better just to improve MS-DOS itself?

Technically speaking, MS-DOS is a severely limited operating sys-
tem. Its inability to support proper multitasking, memory protection,
and large address spaces makes it a poor base for environments where
the user wants to run several complex applications while connected to
a network. Fixing these problems involves much more than making
modifications to MS-DOS—it really does take a new operating system.
To a degree, Microsoft was able to incorporate some necessary improve-
ments to MS-DOS into successive versions of Windows. Multitasking,
limited 32-bit application support, memory protection, and other fea-
tures are now all functions of the current release of Windows. This way
of evolving an operating system also passes the test for commercial ra-
tionality. Since Windows required MS-DOS to be on the system already,
it was easy for users to upgrade, and Microsoft could add new functions
without having to change MS-DOS itself. In fact, by the time Windows

ONE: The Road to Chicago

version 3.1 appeared, Windows used MS-DOS for not much more than
loading programs and managing the disk filesystem.

First Stop—Chicago

Windows 95 is a major step in an evolutionary process. On a system run-
ning Windows 95, there is no longer any need for a separate product
called MS-DOS. Windows 95 takes over all the operating system func-
tions. You install a single product, and when you boot the system, you go
directly into the Windows environment. You’ll no longer see the familiar
C:> prompt at which you typed the win command. Naturally, Windows 95
retains MS-DOS compatibility so that you can still run all of your existing
TSR programs and any other MS-DOS applications you use. But the basic
architecture of Windows 95 is Windows with MS-DOS compatibility. It is
not MS-DOS running a Windows subsystem.

There are a lot of technical reasons for implementing Windows
95 this way. Relying at all on MS-DOS as the basic operating system
would have reduced the capability and performance of the overall sys-
tem. Now Windows truly supports the functions needed for advanced
applications and networked systems.

This evolutionary progression in the architecture was also feasible
from a marketing perspective. When Windows wasn’t very popular, it
would have been impossible to persuade people to give up MS-DOS
and move to an alternative. This conversion is exactly what the OS/2
campaign failed to pull off. Now Windows is popular, and users spend
much more time running Windows applications than they do MS-DOS
applications. Thus, Windows 95 is a great upgrade to Windows 3.1, and
yes, you can still run those aging MS-DOS applications.®

At this point, you might be wondering whether Microsoft is once
again predicting the imminent demise of MS-DOS. Probably not. There
is an active MS-DOS development group at Microsoft, and MS-DOS ver-
sions 5.0, 6.0, and now 6.22 attest to their efforts. The possibility of the
protected mode operating system components of Windows 95 forming
the basis of an MS-DOS 7.0 release was the subject of much questioning
and speculation during 1993. Microsoft would not confirm the specula-
tion, at least not by July 1994, but it’s impossible to ignore the commer-
cial success of the retail upgrade packages for MS-DOS 5.0 and 6.0. An
MS-DOS 7.0 upgrade release could provide both significant user benefit
and plenty of revenue dollars.

5. Demonstrating their personal bias quite succinctly, Microsoft executives referred to
the release of WordPerfect 6.0 for MS-DOS as “the last great DOS application.”

INSIDE WINDOWS 95

Clients and Servers

Apart from the move to Windows, the other major trend over the last
few years has been the widespread adoption of high-speed local area
networks. Sometimes these LANs have been installed where there were
no computers before, and now they are often installed to replace main-
frame- and minicomputerbased systems. Each machine on the net-
work usually operates in one of two roles: as a client (typically the
system that’s on your desk running your applications) or as a server
(where the systemwide databases and other shared resources, such as
printers, are found).

For a client system, you need a high level of usability, great graphi-
cal display performance, and an easy to manage network connection.
Some newer machines, such as the smallest portable systems, probably
spend a lot of their time not connected to anything. At some point,
though, even they have to become true clients, perhaps to print a file or
to connect to an electronic mail network.

For a server, you need performance, performance, performance,
and, of course, performance. Actually, the modern PC network server
needs to offer a lot of complex features:

B Performance. The server operating system must be very
efficient at transferring data across the network. To meet the
performance demand, the operating system must also support
machines using multiple processors, very high speed, high
capacity disk drives, and high-performance network hardware.

B Robustness. This word means that the system doesn’t crash
and that if it does, it doesn’t destroy data in the process. This
requirement extends to the operating system’s ability to
protect different programs from each other’s weaknesses. If
your wide area communications server falls over in a heap, for
example, you’d certainly prefer that it didn’t take the database
server down with it.

B Security. Securing data has always been a concern for any
computer system that many people can access, whether the
access be by virtue of proximity or through incoming tele-
phone lines. Research efforts in the last few years have formal-
ized many aspects of data security, and modern operating
systems are expected to meet some specific requirements.
Most governments insist that computer systems meet demon-
strated, and certified, security standards, and many corpora-
tions have adopted a corresponding policy.

ONE: The Road to Chicago

W Network management. If you have a large network that is
geographically dispersed, you need the software tools that
allow you to manage it effectively. Activities might range from
simple tasks, such as adding and removing network printers,
to finding and updating every copy of a particular application
program throughout the network.

B Transparent distribution of data and processing power.
Ideally, a network system should allow the user to retrieve data
and access other resources without having to know the net-
work locations of the objects in question. Although your client
desktop system participates in locating and using resources,
it’s the server that has to figure out where a resource is and
how to give you the most efficient access to it.

Of course, you’d like all these server features on your client ma-
chine as well. Unfortunately, implementing these advanced capabilities
takes a lot of software, and that translates into the need for more
memory, more disk space, and more processor speed. Someday we’ll all
have 500-MHz processors with gigabytes of memory in our laptop ma-
chines and we’ll install the most powerful version of everything. Of
course, by then, we’ll have figured out some new feature that we simply
must have and for which we still won’t have enough hardware capacity.
Until then, the configuration of most desktop and portable machines
is likely to be a lot smaller and cheaper than a server configuration. Op-
erating system vendors generally target a particular product toward ei-
ther the client-type machine or the server machine.

Microsoft’s operating syste}n development efforts acknowledge
the differences between these two basic system types. For the high-
volume client-type machine, Windows 95 is the product Microsoft
wants you to use. As we’ll see when we look at the features of Windows
95, there is a very close mapping between its features and user require-
ments within the client market segment.®

The lowest-power machine configuration the Windows 95 team
had in mind was an Intel 3865X~based system with 4 MB of memory, a
VGA display, and 80 MB of disk space. In 1994, that’s a pretty simple
and cheap configuration. But Windows 95 had to run at least as well as
Windows 3.1 on such a system. The Windows 95 team didn’t try to imple-
ment the complex security features or multiprocessor support offered

6. Another early Windows 95 marketing slogan—every Microsoft product accumu-
lates many before the final tagline is chosen—was “the ideal client system.”

INSIDE WINDOWS 95

by Windows NT.” Such features would have added a lot to the operating
system’s hardware requirements, and most users simply don’t need or
want such features. Certainly for the portable computer market, which
represents a large share of potential Windows 95 sales, such features
are neither applicable nor even desirable.

For the server market, Microsoft says choose Windows NT. With
Windows NT, you’ll get virtually unlimited capacity and the features
that meet all of the server requirements we’ve just looked at. Many us-
ers will have computing requirements that demand the capabilities of a
Windows NT machine right there on the desktop. Their work will also
justify the use of a machine with the power of an Intel 486, 16 MB of
memory, and 256 MB of disk space. Today that’s still a pretty impressive
configuration for a desktop machine, but for a network server it’s not
much more than an entry-level configuration. Of course, the incred-
ible pace of improvement in personal computer hardware will make
that 486 configuration a low-end system within a couple of years, and
users will be able to choose to move up to Windows NT functionality
with no loss of performance.?

And On to Cairo

10

The first thing to note about Cairo is that its new features don’t make
up a complete operating system. Cairo will actually appear as Microsoft
Windows NT version something point something. Windows NT will
continue as the base operating system, performing all the memory
management, task management, device handling, printing, and so on.
In some ways, this arrangement is similar to the way in which successive
releases of Windows before Windows 95 added new capabilities to the
MS-DOS operating system. For Cairo, however, the underlying operat-
ing system is an immensely powerful one. Microsoft freely acknowl-
edges that in the first release of Windows NT it sacrificed advances in
usability to designing and building an operating system with a sophisti-
cated and long-lived architecture. Cairo seeks to augment the native ca-
pabilities of Windows NT rather than add features that should be in the
operating system proper.

7. Windows NT also runs on processors other than the Intel 80386/486/Pentium
family. This portability was never a goal for Windows 95. The enormous difficulty of
maintaining full MS-DOS and Windows compatibility, let alone the implementation
effort that would be needed; made this idea a non-starter.

8. Remember that it was only early 1988 when the very first 16-MHz 386 machines
with 4 MB of memory were considered to be high-end systems.

ONE: The Road to Chicago

If you plan to use Windows 95, then, in a sense you’ll use the first
incarnation of Cairo. In particular, the new look of the Windows 95
interface and of the system shell will appear in Cairo too.’ There will be
a lot more to Cairo than the new look, of course, but as far as appear-
ance is concerned, you’ll be immediately familiar with the product.
Cairo will be a completely object-oriented system, allowing you to
query networkwide for a data object and examine it as you choose.
Cairo will make it easy for you to query the network for all the memos
authored by people in your department, for example. You won’t need
to know anything about filenames, filename extensions, what servers
might contain the document files, and so forth. If your network admin-
istrator increases capacity by adding a new network server and splitting
the data between the old and new servers, Cairo will keep track of what
happened. You’ll formulate your next query and get the results oblivi-
ous to the fact that a configuration change has occurred.

No doubt you’re wondering how much hardware power will be
necessary to run Cairo effectively. No doubt a lot. No doubt you’ll need
a machine that today would be considered only for duty as a network
server. But by the time Cairo comes up for adoption as the mainstream
operating system, that amount of computing power will be available in
a reasonably priced desktop machine. Someday microprocessor engi-
neers may reach an absolute physical limit, but that seems likely to be a
day that you and I won’t much care about.

So what of Windows 95 in this networked world? Microsoft plans
to extend the Windows role as the perfect clientside operating system
and to ensure its continued suitability for less powerful hardware, por-
table machines, and pen-based systems—few of which will run Cairo.
Through an update to Windows 95, Microsoft will make available the
tools that client systems will need to access Cairo systems effectively.
You’ll use your Windows machine to formulate queries, for example,
but it will be the Cairo systems that take care of searching the network
and retrieving the information. Application programs designed for the
Cairo environment will exist as distributed applications. Part of the
software will run on the Windows machine and communicate with a
server-side application running somewhere else on the network.

9. Alot of the original design for the new user interface was actually done by
people on the Cairo team. It was up to the Windows 95 group to implement the
interface and bring it to market, but there was an ongoing effort to ensure consistency
with the evolving Cairo design.

11

INSIDE WINDOWS 95

Summary

12

During 1993 Microsoft began the usual seeding process that precedes
all of their major product releases. The company repeated its intention
to build Windows into a family of compatible operating systems that
would cover market requirements from mission-critical corporate com-
puting to consumer devices. The executives who gave the public pre-
sentations used the slide shown in Figure 1-1 to illustrate their view of
the evolution of the Windows family."

1993 1994/95
Product Flow

Corporate
Mission-
Critical

Technology Flow

Personal

Non-PC

Figure 1-1.
Evolution of the Windows operating system family.

As you can see, a coherent story underlies all the different prod-
ucts. The products evolve in capability, and features can migrate to
other operating systems as microcomputer technology allows. Microsoft
itself is a firm believer in the continuing growth of microprocessor ca-
pability. This increase in horsepower is largely what allows the ad-
vanced features of, say, Windows NT version 3.1 to appear in other
operating systems.

10. The form of this slide changed over time, but the basic message remained
the same.

ONE: The Road to Chicago

Whether Cairo will be successful is a question that can’t be answered
for a few years yet, since its story will be played out much further into the
future than the Windows 95 story. Let’s get back to our main subject and
take a detailed look at what the Windows 95 team set out to do.

Project Goals

Let’s review the market context for Windows 95:

E Windows 95 would be the next release of an immensely
popular product, Windows 3.1.

B A huge amount of installed software, both for MS-DOS and
for Windows, placed some stringent compatibility require-
ments on Windows 95.

B There was a real desire on Microsoft’s part to make Windows
95 easier to set up, use, and administer.

B There was a need, principally for the benefit of Windows
application developers, to dramatically improve the funda-
mental capabilities of the system. More resource and memory
capacity, better performance, and support for more complex
programs appeared at the top of most petitioners’ lists.

B Windows 3.1 appeared in mid-1992. Obviously the next
version of Windows had to make it to market in a reasonable
amount of time after that—meaning that 1997 wouldn’t cut it.

B Other operating system development projects were proceeding
in parallel at Microsoft. Care had to be taken to ensure compat-
ibility with both Windows NT and the Cairo efforts and with the
release of Windows for Workgroups 3.11 in November 1993.

From the very early discussions about what the Windows 95 product
should be, there emerged a specification that translated these loose mar-
ket requirements into a more precise statement of goals for the project.
Each section of the more detailed specification addressed these ten
issues almost as ten commandments and described how each particu-
lar feature met the basic project goals."! The specification grouped

11. By the time work on this book began in earnest in April 1993, the Chicago
Feature Specification was approaching its eighth substantial revision and stretched to
over 200 densely printed pages. Who said software was all about writing tight code?

13

INSIDE WINDOWS 95

the ten issues as “The Four Requirements” and “The Six Areas for Im-
provement.” By and large, these ten goals remained unchanged during
the development project.'”? Here’s how the feature specification sum-
marized them (verbatim):

The four requirements:

Compatibility

B Performance equal to or better than Windows 3.1
performance on a 4-MB system

B Robustness
B Product availability in mid-1994

The six areas for improvement:

Great setup and easy configuration (Plug and Play)

® New shell and user interface visuals

® Integrated and complete protect mode operating system

B Great network client, peer server, and workgroup
functionality

B Great mobile computing environment
Windows 32-bit application support
A lot of this book is a detailed examination of the major new

features of Windows 95. Before launching into the detail, it’s worth tak-
ing a brief look at what these project goals really mean.

Compatibility

14

Compatibility is both the dream and the nightmare of everyone who
develops products for the PC market. The basic PC architecture was
defined by IBM’s very first product introduction in August 1981. Once
the clone (later “industry standard”) manufacturers were established
and software developers had figured out what compatibility meant for
them, the industry grew spectacularly. Compatibility means that you
and I can walk into a computer store, buy any PC product there, install

12. The original requirements specified “great Lmegabyte system” and “product
availability in the first half of 1994.” As you can see, the performance goal became
more precise and the availability goal extended beyond its upper bound.

ONE: The Road to Chicago

it, and expect it to work. Great news for us. Unfortunately for the devel-
opers of PC hardware and software, compatibility means that you and I
can walk into a computer store, buy any PC product there, install it,
and expect it to work. Any developer has to do a certain amount of
compatibility testing before releasing a product. For a straightforward
application program, the developer’s testing problem is a finite one
that might only involve testing on popular networks and with popular
printers. For a more complex product, such as a memory resident com-
munications program that runs in the background, the testing matrix
becomes much larger. The development effort could involve testing for
compatibility with different networks, different modems, and different
versions of MS-DOS, PC-DOS, DR-DOS, and Windows, with other
memory resident programs, ad infinitum. This testing burden repre-
sents a substantial part of the product’s development cost.

Now consider Windows 95. For the product to be successful, it
simply had to be compatible with everything that had gone before—
not only Windows applications software, but MS-DOS applications, de-
vice driver software, and network software, to name the principal foes.
If the product were truly compatible, the reasoning went, the new fea-
tures alone would persuade every user to upgrade without a second
thought.” And the absence of a “real” MS-DOS in the Windows 95 ar-
chitecture was a radical revision that seemed guaranteed to produce
some difficult to solve compatibility issues. Clearly, Windows 95 needed
a massive compatibility test effort, and that’s what the Windows 95 team
set about organizing.

The Compatibility Fallback

Microsoft also decided that Windows 95 needed an ultimate compat-
ibility fallback. Everyone was sure that the fallback would be invoked
only in the event the user wanted to run some ancient, obscure game
software. But the fallback did represent a good insurance policy against
any case in which Windows 95 broke the compatibility regime.

The fallback solution is to allow the user to exit completely from
Windows and run an actual real mode MS-DOS. While the system runs
in this mode, a small software loader stays resident in memory. That’s
the only component of Windows 95 still memory resident while the sys-
tem is in MS-DOS real mode. Once the user finishes off the Klingon
empire, the software loader traps the application program’s exit call and
reloads Windows from disk, returning the system to its normal state.

13. Referred to in Microsoft vernacular as a “no brainer upgrade.”

15

INSIDE WINDOWS 95

Performance

16

The earlier versions of Windows garnered a healthy measure of criti-
cism on several fronts. Poor performance was an oftrepeated com-
plaint. Looking back at the hardware configurations then available for
Windows, it seems amazing that the product was even usable. In 1985,
Windows was able to run on a 286-based system with a poor display
adapter (the CGA), a single megabyte of memory, and a fairly slow
hard disk. Any popular laptop system today has a comparatively much
improved display and better disk hardware, four times as much
memory, and a processor probably 25 or 30 times faster than the first
286. Naturally, Windows has obeyed one of the unwritten laws of com-
puter science and expanded to consume all the available hardware
resources.

It’s hard to measure the performance of a Windows system in ab-
solute terms. Does a benchmark reading of 15 million Winmarks mean
that you’ll see your desktop publishing package run at lightning speed?
Generally, users will judge a product’s performance from its response
time. Snappy screen redrawing, fast file opening and closing, and quick
scrolling operations always make a good impression. Less easy to ob-
serve but equally important to the overall system performance are op-
erations like network data transfers and program swapping. The
operating system vendor thus has to invest in two parallel performance
measuring activities: checking individual operations, such as how fast a
program can reéad a file, and observing the whole system as it runs a
mixture of applications and data transfer operations.

Microsoft’s development teams have always focused on perfor-
mance issues. They tune individual software components for improved
speed and reduced memory consumption as well as raise overall system
performance by removing undesirable interactions among different
components. Within Windows 95 itself, new features such as the 32-bit
protected mode filesystem and dynamically loadable device drivers
were aimed at improving system performance. Would the end user like
to see the system run even faster? Of course, but the recent perfor-
mance of Windows 3.1 on the base configuration 386SX with 4 MB of
memory is generally considered as reasonable.

For Windows 95, the development group set itself the goal of run-
ning as well as or better than Windows 3.1 on the same base hardware
configuration. Not very ambitious, you might say. However, this goal
took into account that the system had to include the new capabilities
such as the Plug and Play subsystem with its dynamic reconfiguration fa-
cility at the same time that it ran the application mix. Adding significant

ONE: The Road to Chicago

functionality while maintaining the same level of performance is ambi-
tious. By simple extension, a Windows 95 system doing exactly what the
Windows 3.1 system did, on the same hardware, ought to run faster.
Measuring different application mixes, modeling end user activities,
and playing with the variables have been staple ingredients of Windows
95 performance analysis.

The key, repeated phrase in Microsoft’s later Windows 95 presenta-
tions was “as well as Windows 3.1.” The recurrence of this phrase empha-
sized the fact that Windows 3.1 on a 4-MB system running Microsoft
Office and using OLE performs dreadfully. The Windows 95 team
didn’t try to address this problem. In fairness, they couldn’t. An appli-
cation mix of this complexity demands more memory—at least 8 MB
and probably more. Fortunately, early 1994 saw 8 MB becoming the
default configuration for many machines, so, to some degree, the prob-
lem would be solved by the time Windows 95 was released.

In early 1994, performance tuning began in earnest, and all of the
project status reports for Windows 95 dwelt on performance tuning
issues for some months. By the time of the Beta-1 release, Windows 95
performance was already as good as or better than Windows 3.1 perfor-
mance in almost every respect.

Robustness—Adieu UAE?

A robust system is a system that doesn’t crash—whatever the user or
application programs do to it. If one program goes awry, the user can
halt it without affecting the operation of any other programs or losing
any data. If a program makes erroneous requests for operating system
services, the system protects itself by terminating the offending program
with no effect on other programs.

Windows 3.0 was roundly criticized for system crashes. The infa-
mous unrecoverable application error (UAE) was a widely publicized,
and poorly understood, problem. Windows 3.0 reported a UAE when-
ever it determined that the system itself had reached an inconsistent
state. An application used a file handle to access a file that had been
deleted, for example. For most of the UAEs, the error was actually in
the application program and not in Windows itself. However, Windows
3.0 did a poor job of validating system requests generated by applica-
tion programs. Thus, an application could make an invalid request that

. Windows happily accepted and tried to process. By the time the error
was discovered, there would be nothing left to do but crash the system as
arather primitive last line of defense. Fixing this problem was a focus of
the work to produce Windows 3.1, which carefully validated almost every

17

INSIDE WINDOWS 95

system request before processing it. As a result, many application ven-
dors had to release updates of their products to fix software bugs that
had never been discovered before. The experience was a painful one for
all concerned, and the Windows 95 team was in no rush to repeat it.

The development team wanted Windows 95 to be extremely ro-
bust, with almost no possibility of a system crash caused by an applica-
tion program or other external factor. How do you go about ensuring
this? A lot of the answer goes back to the basic design of the system: in-
corporating careful validation of application requests, protecting sys-
tem data regions, and isolating individual software components. In
particular, the new 32-bit application programming model allowed the
Windows 95 team to implement full memory protection for individual
32-bit programs. Not only are 32-bit programs protected from each
other, but the system is also fully protected from these programs.
(Some improvements were also made for 16-bit programs, but the
options were limited because of compatibility constraints.) Once all of
this is done, you test and test and test some more.

Timely Product Availability

18

The eternal battle between the sales and marketing group and the devel-
opment group within any software project comes down to deciding
when the product is ready for release. Microsoft always sets an estimated
release date for a product way ahead of detailed planning. Then the de-
velopment team either cuts features or extends the planned release date
to allow completion of all the development work. Factors that influence
the release date include when the previous version was released, the
overall scope of the work for the new version, and how competitive the
market is. The decision to bless a particular version of the software as
the “golden master™ involves many people from the product group,
senior managers within the development division, product support per-
sonnel, and often Bill Gates himself. If the product is simply not ready
for release because of performance inadequacies or major bugs, there’s
no debate—you slip the date, and the development team continues its
work. But there finally comes a point when the software is in good shape,
all the introduction materials are ready, the support personnel are
trained, and the printed documentation is waiting in the warehouse.

14. In Microsoft parlance, the development group prepares a succession of
“release candidates” before shipment. When everyone is satisfied with the quality of
the software, the final release candidate becomes the golden master from which the
manufacturing group prepares the production version.

ONE: The Road to Chicago

There are still some bugs that could be fixed if you were to wake up the
development team and get them to put in yet another day or another
week of effort. Do you ship the software or do you wait? In any complex
software product, from any company, bugs always remain in the ship-
ping version. Experience and judgment dictate when those bugs are
sufficiently unobtrusive that the software really is ready for shipment.

" Windows 95 has been no different in this respect. By the middle
of 1993, Microsoft had come up with the product’s original, and rather
vague, shipment goal of “the first half of 1994.” This date would be
about two years after the release of Windows version 3.1, and that was
one major factor in choosing the planned ship date for Windows 95.
Once the scope of the work was better understood, the development
team pinned the release date down more firmly to “mid-1994.” Plans
were also made for a succession of limited releases to software develop-
ers, beta test sites, and others before the final general release. This cycle
of controlled releases began in August 1993, almost a year before the
planned general release date. The fact that a pretty complete and func-
tional version of Windows 95 was available that early on says a lot about
the extent of the testing and improvement effort Microsoft planned for
the product before it would release the final version.

Well, guess what? The team completely blew the mid-1994 date. In
fact, the Beta-1 release barely made it before the end of June. Once
again, it proved to be beyond human ability to accurately forecast the
completion date for a complex software project. This difficulty is not
unique to Microsoft’s release date predictions. Virtually no one is able
to forecast with any accuracy, but Microsoft’s plans are often very public.
The most public statement of the release goal was Bill Gates’s speech at
the 1994 COMDEX/Spring show, when he demonstrated Windows 95
and committed to a release date of “before the end of the year.”

How well “before the end of 1994” will be met remains to be seen.
But rest assured that many long workdays and sleepless nights have yet
to be invested in Windows 95.

Easy Setup and Configuration

Setting up and configuring a Windows system has never been a trivial
task. Each new release has improved the process, but even the setup for
Windows 3.0 and 3.1 (considered to have made quantum leaps in this
area) has continued to baffle a lot of users. The “make it easy” directive
governed much of the effort invested in improvements to the system

19

INSIDE WINDOWS 95

20

setup and configuration procedures. The Windows 95 team decided to
concentrate on these areas for major improvement:

B Hardware configuration. The Plug and Play initiative was
intended to dramatically ease the process of configuring PCs,
and Windows 95 would be the first operating system product
to support the Plug and Play standard that Microsoft, Intel,
Phoenix Technologies, and others were preparing.

® Installing and configuring Windows 95 on an existing Win-
dows 3.1 system. The team felt that this process ought to
require no user involvement beyond swapping diskettes at the
right time. After all, if a system ran Windows 3.1, someone
must have solved any setup or configuration problems already.
Windows 95 ought to be able to use the earlier effort to ease
its own installation process.

B System administration and reconfiguration procedures. Every
aspect of the existing system was carefully analyzed to improve
ease of use. For example, the team felt that any user ought to
be able to set up a new printer without a problem. With
Windows 3.1, that had not always been the case.

The Plug and Play Initiative

The Plug and Play standard was an effort with a much broader scope
than simply Windows 95. Intended by its sponsors to be independent of
any particular operating system, Plug and Play defines extensions to
the existing PC hardware architecture, together with new BIOS and
device driver capabilities that aim to shield the user from hardware
setup and configuration issues. Apart from the physical process of plug-
ging a system or a device in and turning it on, Plug and Play takes over
the problems of identifying a device, assigning the device the correct
hardware configuration resources (such as an interrupt request level),
and configuring the appropriate device driver software.

Plug and Play is also independent of any particular bus architec-
ture. It will use ISA, EISA, Micro Channel, PCMCIA, or any other bus
architecture that has some market share. In the case of the ISA bus, in
which there is really no hardware support for Plug and Play operations,
the specification defines a new adapter card interface. For a small addi-
tional hardware cost (perhaps 25 or 50 cents) and with some new soft-
ware, an ISA adapter card can become Plug and Play compliant. For even
non-Plug and Play systems, a large amount of effort went into developing

ONE: The Road to Chicago

device recognition and configuration capabilities. We'll take a detailed
look at the whole Plug and Play architecture in Chapter 8.

Configuring Windows

Configuring Windows itself has become something of a black art.
Lengthy articles, and even whole books, devote considerable attention
to every one of the often obscure lines in the Windows WIN.INI and
SYSTEM.INI files. Coupling the contents of these two files with the
contents of the basic CONFIG.SYS and AUTOEXEC.BAT files means
that the user trying to modify or improve the operation of Windows
faces a daunting task. The Windows 95 team decided to subject every
single entry in the configuration files to detailed scrutiny. If an entry
really wasn’t needed, why was it there? Furthermore, why were there so
many special case entries? Could better default selections avoid the
need for additional entries? Did Plug and Play make some entries re-
dundant? The more settings that could be eliminated, the easier the
system would be to understand.

Apart from the files that control Windows operations, many appli-
cations use private initialization files or add parameter information to
the WIN.INI file. Rationalizing this whole configuration mess was long
overdue, and the Windows 95 team adopted the solution designed by
the Windows NT group. Windows NT uses a special file called the regis-
try to contain all the information relating to hardware, operating sys-
tem, and application configuration. Entries in the registry are available
to application programs through defined application programming in-
terfaces. Applications can add to and retrieve their private configura-
tion settings using registry access APIs. No longer can the user edit the
text in a configuration file and introduce inconsistencies or other er-
rors. Windows 95 uses the registry concept in an identical way, and as
developers update application programs for Windows 95, the jumble of
configuration files will disappear.

User-Level Operations

Many basic system management operations, such as setting up printers
or modifying the layout of the Windows desktop, ought to be available
to every user. Yes, they’re there, but some of them are awkward to use
and difficult to comprehend. Windows 95 addresses this problem by
consolidating and simplifying many of the day-to-day operations that
all users must perform on their own systems.

21

INSIDE WINDOWS 95

New Shell and User Interface

22

The most immediately striking aspect of Windows 95 is the new look of
the screen display. Microsoft uses visual designers on all of its projects
these days, and the attention to details of the Windows 95 appearance
is remarkable. No longer does a programmer spend a mere hour de-
signing a new icon for a control panel function. The process now in-
volves a visual designer who carefully considers the intent, appearance,
and overall consistency of the new visual element. At first glance,
there’s no obvious difference between individual screen elements of
Windows 3.1 and those of Windows 95—no immediately apparent
changes in an icon, for example. But if you look closely, you can see the
subtle alterations to the shading and the shadow illusion around the
icons in the Windows 95 version. As you can imagine, a lot of debate
and painstaking effort went into the revision of the appearance of Win-
dows 95. Later in the book, we’ll examine these changes in detail.

The New Shell
Much more than just a pretty new face, the Windows 95 shell is a major
functional step forward. Asking a Windows 3.1 user to identify “the shell”
elicits some interesting responses. Some people have no idea what the
shell is. Those who do have an idea will often identify the Program Man-
ager as the shell component. Further questioning about how the File
Manager, Print Manager, Task Manager, and Control Panel fit in with “the
shell” will usually leave even the most expert Windows user confused.
This confusion is not because the user doesn’t understand the sys-
tem: Windows actually is rather confusing. For example, why do you
configure printers using the Control Panel, alter print characteristics
using the Print Setup option on the application’s File menu, and then
control print spooling using the Print Manager? Most proficient Win-
dows users become accustomed to these procedures and forget about
the awkwardness, but trying to introduce a naive user to the system and
justifying, or even explaining, this scattered approach is difficult.
Fortunately, Microsoft itself recognized the problem a long time
ago, and the Windows 95 release represents a serious effort to unify
and improve the collection of system functions that form the shell. Of
course, there are some major new features beyond that:

B OLE 2 is the first step in Microsoft’s initiative to move
toward a document-centric application architecture. The
Windows 95 shell supports OLE 2 functions and consistent
drag and drop capabilities.

ONE: The Road to Chicago

W Electronic mail is almost a given in a networked environment.
The shell supports an electronic mail interface directly.

® Long filenames—at last you can name a file My chicken chili
recipe and not have to use CHCHRECP.DOC, ensuring that
a month later you won’t have the vaguest idea what the file
contains.

® File viewers have become popular for allowing a user to
examine a formatted file without having to access the appli-
cation that created the file. Windows 95 incorporates a set
of viewers.

B Pen gestures that were originally defined for Microsoft Pen
Windows have been revised and incorporated directly into
Windows 95. As the base of pen systems expands, Windows 95
will support pen systems without having to add new operating
system components.

MS-DOS applications will most likely live forever. Although
Windows 95 appears to hasten their demise by providing
a better Windows environment, the support for MS-DOS
applications is also improved in Windows 95. MS-DOS
window sizing, copy and paste operations, and the use of
TrueType fonts within an MS-DOS applicatioxi are among
the improvements.

Complete Protected Mode Operating System

Later on in the book, we’ll look at exactly what protected mode is and
atwhat it means to Windows. Suffice it to say at this point that use of the
protected mode removes memory limitations—that is, the 640K barrier
disappears—and provides a solid basis for ensuring system robustness.
The greater part of Windows 3.1 is a protected mode system. MS-DOS
itself, however, remains a real mode system. Consequently, a system
running Windows 3.1 continually switches back and forth between pro-
tected mode and real mode.” The switching overhead detracts from
system performance. k

The decision to implement Windows 95 as a complete system, no
longer reliant on MS-DOS, opened the door to dispensing with all the
remaining real mode components. In particular, the filesystem (handled
by MS-DOS when you run Windows 3.1) and the mouse driver could

15. Actually, virtual 8086 mode—it’s not quite as bad as real mode.

23

INSIDE WINDOWS 95

now be rewritten as protected mode software. Given the protected
mode base and its enhanced capabilities, other improvements were
obvious. For example, the print spooler could become a true preemp-
tively scheduled background program. And some of the limitations of
the Windows device driver model (the so called VxDs) could be re-
moved, allowing VxDs to be dynamically loaded and unloaded rather
than reside permanently in memory as in Windows 3.1.

The other aspect of completeness that the development team
planned to tackle was filling in the gaps still present in Windows utility
functions. Windows 3.1 has no equivalent to the MS-DOS Chkdsk pro-
gram, for example. If you want to run the Chkdsk utility, you have to
exit Windows to do it. Getting rid of such inconveniences was all part of
the goal to provide a complete operating system.

Also on the list of operating system improvements was the re-
moval of redundant and conflicting functions. Windows 3.1 introduced
a very successful printing model that incorporated a single major mod-
ule supplemented by small, simple device-specific printer drivers. This
model had a number of positive effects, including the elimination of a
lot of duplicate code in the different printer drivers and the promotion
of the quick development of new drivers with fewer errors. Windows
NT made use of a similar concept to standardize disk device support.
Windows 95 would continue along the same path by using a similar
model for its hard disk, SCSI device, display, and communications
driver support.

32-Bit Application Support

24

Along with the growth in complexity of modern operating systems and
computer networks has come a growth in the depth and breadth of
single application programs. No longer does a word processor simply
allow you to put words on paper. Customers expect spelling and gram-
mar checking functions, a thesaurus, page layout facilities, and a host of
other features. The sheer scope of today’s application programs calls for
the consumption of large amounts of memory, disk space, and processor
cycles. Despite the fact that Intel’s first true 32-bit chip began to appear
in PCs in 1988, MS-DOS and Windows have never fully supported 32-bit
application programs. Rather inadequate solutions, such as the DPMI
standard incorporated into Windows 3.0, have been little more than
stopgaps to the developers who desperately needed 32 bits’ worth of
memory addressing.

ONE: The Road to Chicago

Windows NT was Microsoft’s first operating system in the Windows
family to offer full 32-bit support. Windows 95 will join Windows NT in
supporting Microsoft’s Win32 32-bit application programming inter-
face. From the application developer’s point of view, 32-bit support
provides three major benefits:

B Access to essentially unlimited amounts of memory. A single
Win32 application program can access up to 2 GB of memory.

B A much easier to program memory model. Writing software
for a so called “flat,” or linear, 32-bit address space provides
relief from the vagaries of the Intel processor family’s seg-
mented architecture. A programmer can design data struc-
tures without having to worry about the boundaries and
limitations imposed by a 16-bit memory model.

B A consistent application programming interface. The Win-
dows API contains hundreds of functions that together
involve thousands of parameters. In Windows 3.1, some of the
parameters are 16 bits and some are 32 bits. It is a rare pro-
grammer who can remember which is which and never make
mistakes while writing code that calls these APIs. Win32
functions consistently use 32-bit parameters with a consequent
reduction in programming errors.

Before the development of Windows 95, Microsoft defined a subset
API termed Win32s. Included within the Win32s definition were all the
APIs that, if strictly adhered to, would allow an application developer to
produce software that would run on both 16-bit Windows 3.1 and 32-bit
Windows NT. Win32s was in fact a true subset of the Windows NT API
and was made available on Windows 3.1 through the use of a library
that converted the Win32s 32-bit API calls to the native 16-bit API calls
of Windows 3.1. ’

The Windows 95 team needed to improve on the original
Win32s API set and originally defined a Win32¢ API set that took
Win32s as its base and added a number of APIs specific to Windows
95. For example, device-independent color capabilities (important in
most desktop publishing and drawing programs) will appear for the
first time in Windows 95. The term Win32c became quite confusing,
quite quickly, and many questions about the relationships among
Win32, Win32s, and Win32c convinced Microsoft that they needed a

25

INSIDE WINDOWS 95

26

simpler story.'® After an interval, the Win32c term was dropped alto-
gether, and the Windows 95 Win32 API set became simply a subset of
the full Win32 API, defined (at that time) by Windows NT and slated
for expansion in the Cairo era.

The exact definition of the Win32 API set and the individual lev-
els of support in each operating system for the Win32 API can be found
only by consulting the appropriate documentation. Microsoft’s inten-
tion is to allow an application program conforming to the Win32s API
to run on any Windows operating system (from Windows 3.1 onward).
Applications that use more advanced capabilities cannot necessarily be
supported on every version of Windows. For example, applications us-
ing the advanced security features available in the Win32 API will run
only on Windows NT and its direct successors.

The Jump to 32 Bits

Moving to the 32-bit API under Windows 95 introduces an interesting
discontinuity, and for once, discontinuity provides a useful break with
the fully compatible past. Since developers who decide to use Win32
must modify their application code, Microsoft reasoned that they could
impose a rule on developers requiring that every API in an application
be a Win32 API. Thus, not only do you modify your code to incorporate
the new 32-bit device-independent color APIs, but you also modify all
the other Windows API calls to conform to the Win32 interface. This
includes the basic APIs that deal with issues such as file management
and memory allocation."’

Given this new application model, and its associated rules, the
Windows 95 team could incorporate some significant new capabilities
into Windows 95. Since the system would know that it was dealing only
with applications that conform to the Win32 rules, it would know how
to manage the applications a lot more effectively than it could the
existing 16-bit applications. Under Windows 95, the benefits realized
by an application that bases itself on Win32 extend far beyond simply
having 32 bits’ worth of memory—notably:

B Preemption. A Win32 application is fully preemptible, mean-
ing that the operating system can suspend its execution at
any moment in order to switch to a higher-priority task. In

16. The first interesting marketing sleight of hand simply modified the inter-
pretation of the ¢in Win32c to say that it was for Win32 common, rather than Win32
Chicago. This didn’t go far enough, however.

17. To their credit, Microsoft supplied a program analyzer that simplified a lot of
the grunt work needed to complete this type of conversion.

ONE: The Road to Chicago

general, this means smoother response (an hourglass displayed
by one application no longer means that you can’t switch to
another to do something useful), better system throughput,
and avoidance of the data loss that can come from an ap-
plication’s having to wait too long for control of the processor.

B Separate address space. A Win32 application runs within its
own protected memory region. No other application can
scramble its code or data.

B Thread support. Often a single application would like to do
two things at once—perhaps writing a backup copy of the
current document to disk while still allowing the user to edit
the on-screen text. Under Windows 3.1, multitasking within a
simple application is an awkward and error-prone feature to
implement. An application’s ability under Win32 to utilize
multiple threads of execution provides a structured way to
perform multitasking.

Networking and Mobile Computing

Microsoft originally introduced its peer-to-peer local area networking
extension for Windows in the fall of 1992. Windows 95 essentially incor-
porates the Windows for Workgroups local area network functionality
and thus mirrors the model that Windows NT established. Microsoft
has long espoused the belief that networking capability is a fundamen-
tal part of the operating system. Separating networking and operating
system products into different categories, or using special purpose op-
erating systems for network servers, really isn’t the way to go. However,
Windows 95 enters a world in which Novell servers make up the major
part of the installed base. For Windows 95 to become popular in a
Novell-dominated network environment, it needs to offer much more
than its own brand of local area network support.’”® Thus, Windows 95
includes software that ensures its host system will be fully equipped as a
NetWare client machine.

Beyond its support of local area network facilities, Windows 95
has many other features that involve communications. From simple
telephone line dial-up facilities to support for the latest generation of

18. Whether peer networking will literally be given away in the Windows 95 box is a
packaging issue that probably won’t be decided until shortly before Windows 95 ships.
It may be packaged as a separately priced add-on.

27

INSIDE WINDOWS 95

mobile, handheld devices, Windows 95 aims to be about as good a cli-
ent machine operating system as it can be, including

@ Client support for all popular networks: Novell’s, Banyan’s,
Microsoft’s, and others.

Multiple client support, allowing a client machine to connect
simultaneously to different networks—perhaps to a Novell
local area network and to a TCP/IP-based wide area network.

B A peer server capability that matches the original capability
provided by the Windows for Workgroups product. Work-
groups or smaller businesses can thus avoid the need to
dedicate a machine to server functions.

Electronic mail support based on the message application
programming interface (MAPI) and extending to facsimile
devices as well as popular electronic mail networks.

Remote connectivity and administration features that provide
efficient access to and management of a local area network
over a low-bandwidth connection. Windows 95 acknowledges
the “traveling PC” phenomenon in its support for file synchro-
nization capabilities and effective data transfer over a low-
speed connection. Thus, you can dial back to home base and
download a copy of a document at a decent speed. When you
revise the document and take it back to the office, Windows
95 helps you figure out how to synchronize your hotel room
edits with the local master copy.

B Pen support. The pen-based computer revolution was pre-
dicted, and then it never really happened. Even so, there is a
steady growth in the use of pen computing devices. Windows
95 incorporates support for pen-based machines. As and when
the revolution occurs, your Windows 95 software will be ready.

Bringing Windows 95 to Market

28

Describing what the Windows 95 development team set out to accom-
plish begs the question of whether the product will be successful. The
mission of making a Microsoft product a success involves many other
Microsoft groups. Some of these groups, such as the product support
division, aren’t fully engaged in seeing to the success of the product

ONE: The Road to Chicago

until it ships to customers. Everyone involved faces a considerable chal-
lenge. Success for Windows 95 means selling tens of millions of copies.
Sales of only a few million copies (usually an indication of a runaway
software bestseller) will be a commercial disaster.

Outside Microsoft, the most important group influencing the suc-
cess of Windows 95 will be the independent software vendors (ISVs)
courted by the company’s developer relations group (DRG). If the ISVs
devote their resources to writing applications for Windows 95, compet-
ing operating systems such as IBM OS/2 and Novell NetWare will suf-
fer by comparison. Windows 95 presents an unusual selling job for
Microsoft in that they must persuade the application developers to
take presumably perfectly fine Windows applications and modify them.
The DRG spent much of 1993 evangelizing for Microsoft’s OLE technol-
ogy and the 32-bit API of Windows NT that would appear in Windows 95
in 1994. Whether the benefits of OLE and the 32-bit capabilities of
these operating systems are compelling enough to warrant major in-
vestment by the ISVs remains to be seen.

Microsoft provided the ISVs with a lot of early information about
Windows 95 in a series of design reviews held in Redmond during the
summer and fall of 1993. The audience for these events was usually
fairly small (the largest made up of perhaps 100 people), and Microsoft
always prefaced such an event with a warning that many product fea-
tures were expected to change. The participants also had an opportu-
nity to influence the Windows 95 design team. The team often asked
for comments on possible solutions to issues that had not been entirely
decided. Early on, the possibilities for change were quite numerous,
but as the planned shipment date drew closer, these opportunities to
influence the Windows 95 team naturally diminished.

As Windows 95 gathered marketing momentum, the product
team’s goals were translated into the market message behind the
product. Customers are most influenced by the perceived benefits of
any product, and Microsoft used the Windows 95 project goals as the
basis for their initial customer presentations. In the early fall of 1993,
Microsoft’s first closed door product briefings identified three main
benefits of Windows 95:

E Easy to use—based on the Plug and Play capability, the new
shell, and the extensive use of Microsoft’s OLE 2 technology.

E Powerful 32-bit multitasking system—based on the new
operating system kernel, the new filesystem, and the improve-
ments in device support.

29

INSIDE WINDOWS 95

B Great connectivity—based on the new networking compo-
nents and the mobile computing enhancements.

The first of the more public product briefings was given to a
group of industry journalists on May 12 and 13, 1994, in Redmond.
The press rollout was scheduled to take place shortly before the Beta-1
release, which was actually supposed to be ready to hand out at the
briefing and to coincide with the launch of the marketing campaign
that precedes every Microsoft operating system product release.

At that rollout, the product goals were restated in short form—
“easy,” “more powerful,” and “more connected.” The marketing mes-
sage has retained a degree of consistency throughout the project.

Whether these benefits are enough to sell Windows 95 to the end
user is a subject for the future and for a different forum. Certainly
Microsoft has every chance of success with the product. Their early
1994 estimates indicated that about 50 million copies of Windows
would be in use by mid-1994, with perhaps 60 to 70 percent of all new
machines shipping with Windows already installed. The principal tar-
get market for upgrading existing Windows 3.1 users will be about 60
percent of the installed base."

For Microsoft—The Bottom Line

30

Altruism is rarely a consideration in Microsoft’s business thinking. Yes,
some product characteristics, such as compatibility and ease of use, are
deeply ingrained in the thinking of every person in the product devel-
opment groups. The Windows 95 team tried as hard as anyone to meet
the ease-of-use goal, and indeed, their motivation did extend far be-
yond the simple desire for commercial success. However, the team also
wanted to sell one heck of a lot of software. Work out the numbers and
you’ll see that selling a Windows 95 upgrade to every existing Windows
user would translate into a billion dollars of revenue. The team knew
that if Windows 95 really could achieve the “make it easy” goal, the
door to more new users and more software sales would be unlocked.
Building a great product was definitely the number one goal. Selling
lots of copies came in a close second.

19. Microsoft classifies these users as “active” users; that is, they are people who
periodically upgrade some part of their computer systems, be it hardware or software.
The rest simply don’t upgrade anything (and probably drive a 10-year-old car quite
happily as well).

ONE: The Road to Chicago

Conclusion

In this chapter, we’ve looked at the underlying goals and philosophy
behind the Windows 95 development project and at a synopsis of the
major new features. Entering a mature market, the product has to meet
some stringent compatibility and performance goals as well as intro-
duce new features that will motivate Windows users to upgrade and will
attract new users to the Windows platform. Windows 95 is also an im-
portant component in Microsoft’s systems software plans. Married to
the strengths of Windows NT, it becomes part of an enterprise-wide
computing system and introduces some of the Cairo product concepts
for the first time. As our review of the development team’s self-imposed
ten commandments suggests, Windows 95 is also an ambitious project.
How Microsoft plans to meet the target it has set for itself is what most
of the rest of this book is about.

Windows 95 is an Intel processor-based operating system. The Intel family of
processors has had a significant influence on both MS-DOS and Windows over
their lifetimes. In return, Windows has influenced Intel’s processor designs. In
the next chapter, we’ll look at the Intel processors and highlight the features that
have an impact on the design and operation of Windows itself.

31

CHAPTER TWDO

INTEL PROCESSOR
ARCHITECTURE

Inside every fine operating system beats the heart of a good processor.
In our case, it’s very definitely Intel inside. Windows 95 has been
designed and developed for Intel processor-based systems only.
Microsoft’s high-end operating system, Windows NT, broke with the
Intel tradition in order to allow vendors to choose from a variety of pro-
cessor types as the base for a system, and Microsoft and its develop-
ment partners have introduced versions of Windows NT for the MIPS
R4000, the DEC Alpha, the PowerPC, and other advanced processors.
None of these chips is compatible with the Intel processor family, so the
only way to get existing applications for Windows or MS-DOS to run on
one of these processors is to include some form of Intel processor emula-
tion with the Windows NT version for the processor. For a Windows NT
user, the performance overhead of the emulator isn’t a real problem.
After all, that user bought Windows NT principally to use on a network
server or to run a new native 32-bit application. Any slowdown in such a
user’s occasional use of an existing 16-bit Windows application isn’t re-
ally an issue. There are also some thorny problems associated with run-
ning MS-DOS applications on Windows NT. The preservation of the
Windows NT security model prevents a lot of older MS-DOS applications
from running, for example. But running MS-DOS programs just isn’t
the role a Windows NT machine is meant to fill, so Microsoft decided
that putting restrictions on Windows N'T’s 16-bit application environ-
ment was acceptable.

For a Windows 95 user, Microsoft felt that any similar restrictions
or performance overhead for running 16-bit applications would be

®

33

INSIDE WINDOWS 95

completely unacceptable. After all, most Windows 95 users would
already be using Windows on their desktop or laptop machines. Their
main initial reason for installing Windows 95 would probably be to
have their existing applications run faster or better. Any compatibility
or performance problems for 16-bit applications would be a major
barrier to the mass acceptance of Windows 95.

Thus, the Windows 95 team had to provide 100 percent compat-
ibility and zero performance overhead to the Windows 3.1 user. Tough
goals. Fortunately, Microsoft’s experience with early versions of Win-
dows, OS/2, and Windows NT had equipped them with the expertise
they needed to meet these goals. Microsoft’s experience also told them
that the compatibility and performance goals could not be met for
Windows 95 running on a non-Intel processor. Any dreams of a por-
table version of Windows were laid aside early on. Windows 95, and any
direct successors, will forever run on Intel processor systems only.

Intel Inside

34

One could write a book devoted to the low-level details of Windows 95
and its interaction with the Intel processor and the system that contains
it, but that is not the purpose of this chapter. We’ll look at some aspects
of the hardware that have to be understood in order to make sense of
some of the Windows 95 features we’ll look at in detail in later
chapters—particularly Windows 95 memory management, its support
for MS-DOS applications, and the new Plug and Play services. However,
this chapter is certainly not intended to be an exhaustive treatment of
the subject.! Most of the information in this chapter will relate to the
80386, 80486, and Pentium processors that Windows 95 runs on. A lot
of the less relevant details have been left out or simplified. You may
already know more about the Intel processor family than you care to re-
member. If you do, I suggest that you go straight to the next chapter. If
you don’t care to know a lot about the Intel processor family, don’t
worry: the rest of the chapter deals only with the details of the hard-
ware you need to know about. We’ll get back to the Windows 95 soft-
ware very soon.

1. Of the many books that do provide an exhaustive treatment of hardware issues,
a good one is Ross Nelson’s Microsoft’s 80386/80486 Programming Guide (Microsoft
Press, 1991).

TWO: Intel Processor Architecture

Here’s what we’ll look at in this chapter:

® The Intel processor family—the continuing influence of
the original 16-bit Intel processor, the 8086, on all versions
of Windows because of the MS-DOS software compatibility
requirement

B Processor architecture and modes—the basic design of the
Intel chip family and how the processor can be made to run
the different application types (MS-DOS, 16-bit Windows,
32-bit Windows)

® Memory management—the different methods for handling
memory allocation on the Intel 80386 processor

Protection—how the 80386 processor allows the operating
system to protect itself and to protect applications and de-
vices from one another

The Intel Processor Family

Intel introduced its first 16-bit microprocessor, the 8086, in 1978. IBM
ensured the role of Intel processors in subsequent computing history
by adopting the Intel 8088 (a slightly slower version of the 8086) for
the IBM Personal Computer in 1981. Microsoft (figuratively, at least)
took its place on the podium with MS-DOS, the operating system it
implemented for the IBM PC. Successive models of the PC, from IBM
and its competitors, have continued to use Intel processor chips and
copies of MS-DOS in vast numbers. Somewhere, someone is buying a
PC right now. It probably has an Intel processor inside, and it probably
comes with a copy of MS-DOS. This buying process is repeated tens of
millions of times a year, and many fortunes, Intel’s and Microsoft’s
included, have been made as a result.

From the software point of view, the Intel processor family has
gone through two major architectural changes since 1978. These
changes appeared with the 80286 and 80386 processors. From the
hardware designer’s point of view, there have been other major design
changes, such as the integration of the processor and floating point pro-
cessor capabilities on the single 80486 chip. These hardware changes,
together with many other feature and performance improvements, are
often denoted by product name suffixes such as SX and SL. Each
change almost always meant more speed and rarely required any major

35

INSIDE WINDOWS 95

modification on the part of the operating system software designer.
‘That was not true in the case of the major architectural revisions intro-
duced with the 80286 and 80386 processors. At the risk of offending
some hardware designers, we’ll look primarily at the processor design
revisions that enabled significant new software capabilities.

Backward Compatibility

The single most important aspect of the Intel processor design has
been the backward software compatibility of the different chips. And
successive versions of MS-DOS have ensured that this compatibility fea-
" ture has been readily available to both programmers and users. Every
MS-DOS program ever written for an Intel 8086 will run unchanged on
a Pentium processor. This compatibility has allowed users to buy newer
and better hardware with every change in processor generation and
carry with them the applications they know and use every day. I'd be
willing to bet that many copies of version 1.0 of Lotus 1-2-3 are still in
use. Amazingly, the very first release of Microsoft Windows (1985) would
actually run on a floppy disk-based PC with an 8088 processor (1981).
That same software will still run on a Pentium-based system today.

Software compatibility has been the key to the success of the Intel
processor family and, to a large extent, the key to the success of the
whole personal computer industry. When Intel released the 80286 pro-
cessor in 1982, the announcement lauded, in addition to compatibility,
its higher speed and new “protected mode.” Unfortunately, the pro-
tected mode wasn’t compatible with the 8086. In 1984, IBM introduced
its first 286-based system, the IBM PC AT. Microsoft didn’t try to exploit
the protected mode with the MS-DOS release (version 3.0) for the PC
AT. MS-DOS used the 286 simply as a faster 8086. However, Micro-
soft did release XENIX, its UNIX-derivative operating system, for the
PC AT. XENIX was the first operating system that tried to exploit the
286’s protected mode of operation. But XENIX didn’t try to provide
MS-DOS software compatibility. A few years later, the designers of OS/2
made valiant attempts to exploit the 286’s protected mode while retain-
ing that all-important property, MS-DOS software compatibility. There
were many shortcomings.

If all of this sounds confused, it was. In truth, Intel’s implementa-
tion of 8086 compatibility alongside the 286 protected mode feature
was poorly designed. For example, once an operating system had
switched the processor into protected mode operation, there was no
way of switching back to real mode other than by simulating a complete

TWO: Intel Processor Architecture

reboot of the machine! This and other deficiencies meant that the 286
processor was rarely used as anything other than a faster 8086. How-
ever, the mistakes with the 286 design and the early experience from
operating system projects such as OS/2 ensured that the next proces-
sor in the family—the 80386—came out right. The 386 offered 8086
compatibility, 286 compatibility (which ultimately might not have been
worth the microcode), a new 32-bit mode (386 native mode), and an
unusual new mode of operation called virtual 8086 mode. This last fea-
ture enabled the implementation of an operating system that could
run not just one, but many MS-DOS programs compatibly and simulta-
neously. Microsoft helped Intel design virtual 8086 mode and har-
nessed that mode initially with the release of Windows/386 in 1987.
Other operating systems—Quarterdeck’s DESQview, IBM’s OS/2 version
2.0, and many versions of UNIX—also used the virtual 8086 feature to
good effect. The successor processors in the Intel family, the 80486 and
the Pentium, preserved the virtual 8086 mode feature, and today most
operating systems, including Windows 95, continue to exploit it.

The most recent releases of Windows have been designed only for
the 80386, the 80486, and recently, the Pentium processors. Essentially,
Windows has treated each of these processor types as a 386. A number
of low-level processor features have to be managed differently, but
none of this low-level management is visible to an application program
or indeed to most of the Windows operating system itself. Thus, we
won’t get into the intricate details of, for example, how Windows 95
manages floating point operations on the different processor types. In
the rest of this book, you’ll see references to only the 386 processor.
Read this to mean “386, 486, or Pentium.” The keys to understanding
how Windows exploits the Intel 386 processor architecture are in its
management of memory, its processor modes, and its protection
scheme. That’s what we’ll look at next.

Processor Architecture

The Intel 8086 introduced a microprocessor memory architecture re-
ferred to as segmented addressing. Similar schemes had appeared in the
design of other, generally much larger, computers, but the 8086 was the
first major microprocessor to employ the technique. Since all MS-DOS
programs throughout the 1980s were written for compatibility with the
8086 (and Windows 95 still has to be able to run those programs), it’s
important to understand the 8086 memory architecture.

37

INSIDE WINDOWS 95

The 8080 and 8086 Processors

38

The 8-bit predecessor of the 8086—the Intel 8080—allowed a program
to address a total of 64 kilobytes. Each addressing register of the 8080
was 16 bits. Sixteen bits gave you 65,536 total addresses and thus 64K of
address space. Intel tried pretty hard to make the 8086 compatible with
the 8080 and did preserve the 16-bit address registers. Intel’s goals for
the 8086 were much loftier, however, and they added four segment regis-
ters to the 8086, allowing a program to address up to 1 megabyte of
memory. Essentially, a segment register points directly to the first byte
of a memory segment. A segment can begin at any 16-byte chunk of
memory (what Intel called a paragraph). Adding 1 to a segment address
points you to a memory address 16 bytes higher in memory. Using this
segment address as a base address (that is, as address zero for this seg-
ment), the programmer can then use another processor register to ref-
erence any byte within the subsequent 64K. The processor simply
combines the contents of the segment register and an address register
to form a unique 20-bit address. Twenty bits gives you 1,048,576 total
addresses and thus 1 MB of address space. Figure 2-1 shows how the
8086 performs the address arithmetic. Note that the operation of com-
bining the contents of the segment register and the address register to
obtain the final memory address is carried out by the processor itself.
No direct action is required on the part of the programmer.

The segment registers on the 8086 have to be manipulated by the
programmer. When the operating system loads an application, it ini-
tializes the segment registers before running the application. After
that, the application code manipulates the segment registers as it needs
to. Most early MS-DOS programmers and compiler writers learned
many tricks for efficiently using the 8086 segment registers.

This segmented memory architecture has been both a boon and a
pain for software writers. On the plus side, the segmentation allowed
the use of techniques such as expanded memory—with a combination
of software and hardware tricks, segments of 8086 memory could be
temporarily replaced, effectively increasing the total memory available
to a program. On the minus side, segment management was a chore for
anyone developing large (that is, larger than two 64K segments) appli-
cations.? Scanning through a 100,000-element array of 2-byte integers,

2. During the development of the first version of Windows, signs proclaiming
8§ != DS were popular in many programmers’ offices. The signs were intended to be a
constant reminder to the developers. They hoped the signs would lead to fewer bugs.

TWO: Intel Processor Architecture

16-bit segment base
address 16-bit address offset

| 20-bit physical memory
address

Figure 2-1.
Intel 8086 address calculation.

for example, meant reloading the appropriate segment register at least
three times during the scan. Programmers used to larger machines, or
to microprocessors such as Motorola’s 68000, were more accustomed to
a linear address scheme. With a linear addressing architecture, the pro-
grammer would simply increment a single (usually 24- or 32-bit) address
in order to scan the entire physical memory present on the system.

The 640K Barrier

The 1-megabyte memory limit of the 8086 architecture never received
wide public attention. Instead, the infamous 640K limit in DOS was the
popular target for much ire and ill-informed criticism. So where did the
640K limit come from? The designers of the original IBM PC decided
to reserve 384K of the 8086’s enormous 1-megabyte address space (re-
member, this was 1981) for hardware and system software purposes.
The remaining 640K was free for use by DOS and application pro-
grams. Within the upper 384K were the BIOS code, screen memory,
and other system elements. Figure 2-2 on the next page is a reproduc-
tion of the first published memory layout of the original IBM PC.?

3. IBM Technical Reference #6025005. The first edition was published in August 1981.

39

INSIDE WINDOWS 95

System Memory Map
X'00000' — —
16 TO 64KB
gg AS;(DSTEM 256KB R/W MEMORY
PRESENT
. " SYSTEM
1/0 CHANNEL MAX MEMORY
ADDED MEM
MAX 192KB 3/4 MEG
] MEMORY
ADDRESS
FUTURE SPACE
EXPANSION
384K MEMORY
FUTURE
EXPANSION
128KB RESERVED
128KB L > GRAPHIC/DISPLAY
BUFFER
EXPANSION
MEMORY
216KB 256KB ROM
L > ADDRESS
SPACE
40KB
BASE SYSTEM
ROM
XFFFFF —

Figure 11. SYSTEM MEMORY MAP

Figure 2-2.
The first published memory map for the original IBM PC.

DOS really had little part in determining the 640K limit, and the
layout for the first megabyte of memory on a PC still has an impact on
the design of operating systems today. If you want to build an operating
system that runs MS-DOS programs, many of which expect to find cer-
tain resources at the specific addresses chosen in 1981, you have to
develop some method for supporting this memory layout.

40

TWO: Intel Processor Architecture

The 80286 Processor

Enter the 80286 and protected mode operation. Once again, software
compatibility was a key goal in the design of the processor, so the 286
designers retained the basic instruction set and addressing method of
the 8086. Indeed, at power on, the 286 operates in real mode (a term
coined at that time to designate operation in 8086 mode) and behaves
for all intents and purposes just as an 8086 does. But Intel added the
new protected mode of operation to significantly increase the processor’s
capabilities. An operating system can programmatically switch the 286
from real to protected mode, and in protected mode, the processor’s
segment registers are used very differently.

In protected mode, the processor uses the contents of a segment
register to access an 8-byte area of memory called a descriptor. Within
the descriptor is the information that determines the actual physical
address of the memory location the program is trying to reference. Fig-
ure 2-3 on the next page shows how the 286 combines the segment reg-
ister, descriptor information, and address register to produce a 24-bit
physical memory address. It’s like having a key to a numbered safety
deposit box that contains the real address of the location for a rendez-
vous. The segment register actually contains an index into a table of
descriptors. Each descriptor can be set up to address a different area of
physical memory. (Note that in descriptions of protected mode opera-
tions, the term selector is customary for describing the contents of the
segment register. Since the value in the register isn’t actually a memory
address, there is some justification for yet another term.)

A descriptor contains a lot more information, related primarily to
memory protection issues. The operating system sets up all the descrip-
tors for a particular program within a contiguous area of memory
called a local descriptor table, or LDT. Each program running on the 286
has its own LDT. The operating system also sets up a global descriptor
table, or GDT. The operating system uses the GDT to allocate memory
for itself and, for example, to allow several programs to access the same
area of physical memory. The operating system can place the GDT and
each application’s LDT anywhere in memory. Two special hardware
registers, the GDTR and the LDTR, are set up to contain the base
addresses of the tables for the currently executing program. When the
operating system switches tasks, it will typically change the base address
in the LDTR. Usually, the GDTR remains unchanged while the system
is running. Reloading the GDTR and LDTR registers is a privileged op-
eration performed only by the operating system. The system does not
allow application programs to modify the contents of these registers.

4

INSIDE°- WINDOWS 95

16-bit segment register
containing 13-bit selector 16-bit address offset

8-byte descriptor

24-bit base addressy

24-bit physical memory
address

Figure 2-3.

Memory access on the 80286 processor in protected mode.

Two aspects of the new protected mode architecture are impor-
tant to note. '

B Protected mode introduced the notion of memory protection.
Unless a program’s LDT contains a descriptor for a particular
area of memory, there is no way for the program to access
that part of memory. Thus, an operating system can set up
an environment in which several programs run concurrently,
each in its own protected memory area. The 286 actually
has protection capabilities beyond this, and we’ll look at all
the details when we examine the 80386 processor. Typically,
the OS uses the GDT descriptors to allow different programs
to access the same area of physical memory.

® The architecture’s provision for indirect access to memory
via the LDT or GDT allows the operating system to use any

42

TW O: Intel Processor Architecture

suitable area of physical memory as a segment. The segments
of one program need not be contiguous and can even be
different sizes. As far as the program is concerned, it has
access to all the memory described by its LDT. The program
doesn’t know, or care, exactly where in physical memory the
segments exist. Figure 2-4 shows how such an allocation of
memory might appear within a system running two programs
that share access to one particular memory segment.

Addresses generated Descriptor table
by program A for program A Physical memory

Addresses generated Descriptor table
by program B for program B

Figure 2-4.
Hypothetical memory allocation for two programs running on an
80286 processor in protected mode.

The 80386 Processor

Note that the 80286 retained the 8086’s awkward segmented address-
ing scheme. A programmer, or a compiler and linker, still had to be

43

INSIDE WINDOWS 95

sure to set up segment registers with the correct selector, and the code
that could scan through that ubiquitous 100,000-integer array still was
not pretty.* This deficiency alone made Motorola’s 32-bit microproces-
sor family the almost unanimous choice for manufacturers designing
UNIX workstations. Intel had to respond to this market pressure, and
they did, introducing the 32-bit 80386 processor in 1987.

Microsoft worked closely with Intel during the 80386 design
phase and strongly influenced the capabilities of the new virtual 8086
mode supported by the 386.° Microsoft’s interest in the project was to
make sure that the 386 included all the capabilities necessary to allow
new operating systems to run existing MS-DOS programs. Microsoft
had a lot of battlefield experience from meeting this requirement over
the course of several operating systems and versions of operating sys-
tems, and the work they’d put into OS/2, MS-DOS 95, and Windows,
all for the 286 processor, had persuaded them that there had to be an
easier way. Sometimes silicon chips don’t turn out quite the way the
designers intended, but in the case of the 80386, Intel got it right. The
new 32-bit capabilities and the virtual 8086 mode feature worked well
from the time of the first production samples of the 386, and apart
from changes to internal details, those features remain the same in the
80486 and Pentium processors.

Windows 95 is a 386 operating system, so we need to take a close
look at the features of the 386 (and by extension of the 486 and the
Pentium) that are important to Windows 95’s operation. Software com-
patibility for the now enormous installed base of MS-DOS software
remained an overriding consideration, so PC manufacturers® first re-
leased systems that used the 386 as a yet faster 8086—turn on the power
and the 386 runs in real mode, precisely emulating the 8086. However,
the 386 evolved from the 286 in a number of distinct ways, all of which
called for a new operating system to make the new features of the 386
available to application programs:

Internally, everything grew from 16 bits to 32 bits—all the
registers, the memory addresses, and so on.

4. If you're interested in the more amusing aspects of microprocessor history, you
might like to revisit Intel’s 286 sales campaign of the time. Their explanation of why a
segmented architecture beats a linear architecture is a triumph of marketing over
science.

5. In fact, the I/O permission bitmap, so important to virtual mode operation, was
present in the 386 largely because of Microsoft’s lobbying.

6. Compaq was the first company to introduce a PC that used a 386 processor, and
this was the first time that one of the so-called “clone” manufacturers broke ranks.
Compaq’s low-risk bet helped push IBM out of its industry leadership position.

TWO: Intel Processor Architecture

m Although the 386 preserved the notion of segments, a single
segment could now be 4 gigabytes in size as opposed to a
mere 1 megabyte. For all intents and purposes, the program-
mer could now treat the 386 as though it had a linear address
space. Intel finally had a real 32-bit microprocessor.

W The 386 improved the memory protection scheme further. An
operating system designer could now implement a full virtual
memory scheme on the 386. (Note that virtual memory and virtual
8086 mode really aren’t related, terminology notwithstanding.)

B An operating system could switch the 386 processor at will
among its different operating modes. The properly equipped
386 system could run 8086, 286, and new 32-bit 386 programs
simultaneously.

® The virtual 8086 mode and the associated 1/0 permission
bitmap allowed the implementation of complete MS-DOS
software compatibility within a protected multitasking system.

80386 Memory Addressing

The 80386’s software compatibility features ensure that in real mode it
operates just as an 8086 does. Address construction is the same as for
the 8086, and all extraneous information (notably the high-order 16
bits of each register) is simply ignored during execution. In protected
mode, the operating system that controls program loading and execu-
tion must set up a program’s descriptor table in such a way that the pro-
cessor knows how to interpret the memory address information. The
protected mode process for calculating a physical address on the 386 is
similar to that of the 286: the processor uses the contents of a segment
register as an index into a descriptor table, and the descriptor table en-
try contains nearly all the remaining necessary information—“nearly”
all because the 386 allows an operating system to implement a complete
paged virtual memory scheme. When the operating system enables.
paging, the address information extracted from the descriptor table
must go through a further level of interpretation before it is used as an
actual memory address.

80386 Descriptor Format

Figure 2-5 on the next page illustrates the layout of a single descriptor
table entry on the 386. Let’s look at each field in a little more detail.

45

INSIDE WINDOWS 95

46

Figure 2-5.
80386 descriptor table entry format.

Base Address The processor forms a 32-bit address from the four
base address fields. Once assembled, the address specifies the first
memory location of the memory segment the program wants to refer-
ence. Adding the 32-bit offset address generated by the program com-
pletes the address of the memory reference. For a 286 program, byte 7
of the descriptor (bits 24 through 31 of the base address) is always 0,
since the 286 can deal only with 24-bit base addresses.

This arrangement is the basis of the addressing mechanism for
32-bit programs. Each program has to deal only with a consistent 32-bit
linear address. The operating system sets up the base register to point
to the first byte of the program’s code or data segment, and no further
segment manipulation is necessary. Since a 32-bit quantity provides
such an enormous address space, only a tiny number of programs will
ever need to indulge in segment register trickery.

This absence of the need for segment register manipulation is
an important performance benefit. On the 286 running in protected
mode, every time the contents of a segment register change, the pro-
cessor must check to see that the new selector is a valid one—that is,
that the new segment register contents address a memory segment allo-
cated to the program. If the selector is not valid, the processor generates
a general protection, or GF, fault. This selector validation process consumes
many processor cycles, and when segment registers are frequently
changed, as they must be on the 286 running in protected mode, overall
program performance degrades. On the 386, most programs will never
reload the segment registers and consequently never suffer the perfor-
mance hit.

Limit Two fields form the 20-bit fmit quantity, which specifies the up-
per limit of the memory segment addressed by the descriptor. Twenty
bits, as a byte address, is only 1 megabyte. But didn’t we just say that seg-
ments could be 4 GB in size, rather than just 1 MB? Read on.

TWO: Intel Processor Architecture

G Bit The single granularity bit specifies whether the processor inter-
prets the limit field value as byte granular or page granular. Byte granular-
ity means that the processor interprets the limit value in terms of bytes.
This setting (0) assists in running 286 programs correctly. Page granu-
larity means that the processor interprets the limit value in terms of
pages. Memory pages on the 386 are 4K in size, and 20 bits’ worth of 4K
pages equals, lo and behold, 4 GB of memory.

D or B Bit This bit is the D bit if the memory segment contains pro-
gram code. The value 1 means that the segment contains native, thatis,
386, instructions. The value 0 means that the segment contains 286
code. This bit is the B bit if the segment contains data. In this case, the
value 1 means that the segment is larger than 64K.

P Bit The present bit denotes whether the memory segment is present
in physical memory. This information is an important aspect of the vir-
tual memory scheme implemented by Windows 95 since it allows the
operating system to differentiate between an invalid memory refer-
ence—one in which the program tries to access memory it doesn’t
own—and a reference to a memory segment that has been temporarily
swapped out to the hard disk.

DPL The 2-bit descriptor privilege level field specifies the privilege level
for the segment—zero through three. The contents of the DPL field,
together with the privilege level of the currently running program, play
an important role in the Windows 95 protection system. Code running
atring zero, as the terminology goes, has the privilege of executing cer-
tain instructions that ring three code does not. Code at ring three, for
example, can’t turn interrupts on and off. Windows uses only two privi-
lege levels—zero and three—despite the fact that the processor also
supports privilege levels one and two. Someday there may be a good
reason to use the extra privilege levels, but it hasn’t come along yet.

S Bit The segment bit is always set to 1 for a memory segment. The
value 0 means that the descriptor references something other than
memory. The “something other” can be one of several special data
structures used by a 386 operating system to control aspects of device
interrupt handling and memory protection.

Type Field The 3-bit #ype field specifies the memory segment type—for
example, an execute-only code segment or a read-only data segment. The

47

INSIDE WINDOWS 95

contents of the type field help the operating system maintain memory
protection. An attempt to modify the contents of a read-only data seg-
ment would obviously be an error, for example.

A Bit The accessed bit indicates whether any program has referenced
the memory segment. Any reference to the segment causes the ac-
cessed bit to be set to 1. The Windows 95 memory manager uses the
accessed bit in its virtual memory scheme. If a memory segment has
never been accessed while in physical memory, the physical memory it
occupies becomes an excellent candidate for the operating system to
reclaim it and allocate it to another program when the need comes up.
And if there has been no access to the segment, it obviously has never
been modified, so Windows can reclaim the memory for another use
without having to write the segment out to disk.

The Descriptor in Summary

As you can see, the layout of a 386 memory descriptor is hardly the
most elegant data structure ever devised. The layout is really an artifact
of the earlier processors with which the 386 has to remain compatible.
However, the descriptor does contain the information necessary to
implement a fully protected multitasking system with virtual memory
support. Windows 95 implements exactly that, and apart from the first
hardware initialization sequence after power on, Windows 95 always
runs in 32-bit protected mode with virtual memory enabled.

Virtual Memory

48

Simply put, virtual memory is a method for allowing several concur-
rently running programs to share the physical memory of the com-
puter. (Note again that virtual memory and virtual mode, or virtual 8086
mode, are very different. The phrase virtual moderefers to the operation of
the 386 processor in virtual 8086 mode. The context will determine the
meaning of any other use of the word virtual.) The techniques for imple-
menting and managing virtual memory date from many years before the
introduction of the 386.” In fact, the early research on virtual memory
was so good that the most effective techniques for handling virtual
memory have changed very little since its earliest implementations. The

7. Over the years, many manufacturers and research institutes have laid claim to
the “first” distinction. The earliest implementation of virtual memory was probably the
one by the Atlas research group at the University of Manchester, England, during the
late 1950s and early 1960s.

TWO: Intel Processor Architecture

management of virtual memory is entirely under the control of the op-
erating system. As far as any individual program is aware, it has access
to all the memory it needs all the time. A simple example should illus-
trate how Windows 95 manages virtual memory.

Let’s say that we have a Windows 95 system with 4 MB of memory
and a hard disk with plenty of free space. Windows 95 itself, with the
Shell, the Print Manager, and so on, might take up a megabyte of the
available memory. On the disk is a word processing program we decide
to run. Once loaded, this program occupies 2 megabytes, and we load
in a large document that includes several different fonts. Altogether,
this document consumes 400K of the remaining megabyte of memory.
Now we decide that we need to incorporate a table of numbers in the
document. The numbers reside in a spreadsheet, so we have to run the
spreadsheet application to cut and paste a copy into our document. Win-
dows 95 obligingly loads the spreadsheet application and its data into the
remaining 624K of memory. Well, maybe—if we still used VisiCalc it
could. Obviously, this software and data won'’t all fit into memory at the
same time. But from our user point of view, things do work exactly as de-
scribed. The system and both applications are running, so to us it seems
that everything must be in memory. Everything is actually held, not in the
available 4 MB of physical memory, but in virtual memory.

Virtual Memory Management

The system’s virtual memory is made up of the RAM in the computer
and the Windows swap file on the hard disk. The operating system
manages this total available memory by swapping program and data
segments back and forth between RAM and the swap file. For example,
if the instructions in a particular code segment are to be executed, the
segment must be loaded into RAM. Other code segments can stay on
disk in the swap file until they’re needed. A disk data buffer area within
a data segment has to be in RAM if the disk transfer is to succeed.
Whenever a segment is not held in RAM, the operating system can
mark its absence by clearing the present bit in the appropriate segment
descriptor. Then, if an access to that segment is attempted, the 386 will
generate a not present interrupt that notifies the operating system of the
problem. The system will arrange to load the missing segment into an
available area of RAM and then restart the program that caused the in-
terrupt. All of this swapping and notification is transparent to the appli-
cation program. It's up to the operating system to carry out these
housekeeping activities.

49

INSIDE WINDOWS 95

50

Good Virtual Memory Management
Of course, the art of designing a good virtual memory system revolves
around issues such as how much of a program to keep in RAM at any
one time and which segments to move from RAM to disk when RAM is
full and the system needs space for a new segment. A poor virtual
memory manager can slow the system down considerably. Since copy-
ing from the disk and copying to the disk are relatively slow operations,
the goal of good virtual memory management is to minimize the total
number of swap operations. After all, if the operating system is busy
swapping, programs aren’t running and no useful work is getting done.
The 386 helps things a lot by allowing the implementation of a
paged virtual memory scheme that allows the operating system to carry
out all memory allocation, de-allocation, and swapping operations in
units of pages. On the 386, a memory page is 4K and each memory seg-
ment is made up of one or more 4K pages. (Small page sizes are gener-
ally more efficient because many programs exhibit a trait called locality
of reference. For example, a program might repeatedly execute only a few
instructions to scan through a text file searching for a particular string
of characters. Allocating a single page for the program’s code and a
single page for a data buffer could satisfy this program’s memory re-
quirements for several seconds, even though the program is, in total,
much larger.) Windows 95 implements such a paged virtual memory
system. You'll often run across the words paging, page file, and page fault
in descriptions of memory management operations. These terms are
essentially identical to the swapping, swap file, and not present interrupt
terms used in the earlier description of virtual memory management.
As you can see if you study the 386 segment descriptor format in
Figure 2-5, there appears to be no way to allocate memory in units as
small as a 4K page without wasting a lot of the memory. The trick is in
the interpretation of the address once the operating system enables
paging. During initialization, the operating system will first switch the
processor into protected mode and then enable paging operation.
Once enabled, paging stays on until the system shuts down. With paging
enabled, the 386 alters the interpretation of the 32-bit address first ob-
tained by adding the base address from the descriptor to the offset gen-
erated by the program. Figure 2-6 illustrates the splitting of this
32-bit quantity into three parts. The top 10 bits (31 .. 22) are an index into
a page table directory. Part of each 32-bit quantity in a page table di-
rectory points to a page table. The next 10 bits of the original address (21
.. 12) are an index into the particular page table. Part of each page table

TWO: Intel Processor Architecture

32-bit linear address

Page table Page table Page offset
directory index
index

Page table
directory '

Page tables

Y
32-bit physical address

Figure 2-6.
80386 paged virtual memory address decoding.

entry points (finally) to a page of physical memory, and the remaining
12 bits of the original address (11 .. 0) make up an offset within this
page of memory. The operating system anchors the entire structure by
storing the address (for once, a physical address) of the page table di-
rectory for the current program in a special processor register called
CR3. Each time the operating system switches tasks, it can reload CR3
to point to the page directory for the new program. Although it sounds
laborious, the whole address decoding process takes place at lightning
speed within the chip itself. Memory caching techniques ensure that

51

INSIDE WINDOWS 95

52

frequently used page table entries are available with no additional
memory references.®

To fully support the virtual memory scheme, page table entries
contain more than just the address of where to find the next link in the
chain. Figure 2-7 shows the contents of a single 32-bit word in both the
page table directory and page table entry structures. The page table
directory and each page table consume one 4K memory page (1024
entries in each). If you care to do the math, you’ll see that this allows
the entire 4 GB of a program’s address space to be properly addressed.
However, look at the numbers: a page table directory that points to
1024 page tables could mean that the system has to use 4 MB of
memory (1024 page tables, each 4K in size) simply to store the page
tables. Fortunately, the flag bits in the page table directory allow the sys-
tem to store the page tables themselves on disk in the paging file. Thus,
if you run a very large program (for example, a 1-GB program, which
will need 256 page table pages), the system will swap page tables as well
as program code and data pages in and out of memory.

Page table directory entry

Page table entry

Figure 2-7.
80386 page table directory entry and page table entry formats.

To fully support the virtual memory operations and the 386
memory protection system, the page directory and page table entries
include a number of flag bits. The processor itself modifies some of
these flags directly. The operating system manages others. Let’s look at
a few of these fields in detail.

8. Intel’s experiments indicate that the required page table entry is found in the
cache more than 98 percent of the time.

TW O: Intel Processor Architecture

D Bit Whenever a program modifies the contents of a memory page,
the processor sets the corresponding page table dirty bit. This tells the
operating system that if it wants to remove the page from memory to
free up space, then it must first write the page out to disk to preserve
the modifications.

A Bit Any reference—read, write, or execute—to a page causes the
processor to set the accessed bit in the corresponding page table entry.
The virtual memory manager can use this flag to figure out whether it’s
wise to remove a particular page from memory. A page with the access
bit clear for the last 10 seconds, for example, has never been accessed.
Removing that page from memory is probably a better choice than re-
moving a page that was definitely in use during the same time period.
Windows 95 uses a standard algorithm known as least recently used (LRU)
to determine which page to remove from memory. The more recently
used a page, the less likely it is to be re-allocated.

P Bit The present bit is set to 1 only when the page table or memory
page addressed by the table entry is actually present in memory. If a
program tries to reference a page or page table that is not present, the
processor generates a not-present interrupt and the operating system
must arrange to load the page into memory and restart the program
that needed the page.

U/S Bit The user/supervisor bit is part of the 386’s overall protection
system. If the U/S bit is set to 0, the memory page is a supervisor
page—that is, it is part of the memory of the operating system itself—
and no user-level programs can access the page. Any attempted access
causes an interrupt that the operating system must deal with. In Win-
dows 95, as in earlier versions of Windows, this illegal memory refer-
ence might lead to one of the now infamous General Protection Fault
messages. Since any such access attempt is the direct result of a bug
in the application program, it’s hard to know what else to do with the
offending program.

R/W Bit The read/write bit determines whether a program that is
granted access to the corresponding memory page can modify the con-
tents of the page. A value of 1 allows page content modification. A value
of 0 prevents any program from modifying the data in the page. Nor-
mally, pages containing program code are set up as read-only pages.

53

INSIDE WINDOWS 95

Mixing 286 and 386 Programs

As we have seen, the 286 and 386 processors interpret the contents of
their internal registers and the resultant memory addresses in very dif-
ferent ways. Nearly every Windows application program to date has
been written and compiled as a 16-bit program—meaning that it uses
the instructions and memory addressing operations of the 286 proces-
sor. One of the major improvements in Windows 95 is its support for
32-bit programs that use the instructions and memory addressing op-
erations of the 386 processor. Windows 95 itself is a mixture of 16-bit
and 32-bit code. Mixing the two programming models efficiently is a
major development challenge.

The major problem is allowing 32-bit code to make calls to 16-bit
code and vice versa. Since the memory address formats are completely
different—32-bit base address and 32-bit offset vs.16-bit segment regis-
ter and 16-bit offset—simply jumping between 32-bit and 16-bit code is
insufficient: the memory address format must also be changed.

To mediate between the two models, Microsoft developed a tech-
nique it calls thunking. A thunk is a short sequence of instructions re-
sponsible for converting the memory addresses from one format to the
other. For example, when a 32-bit application makes a call to a Win-
dows User function, the Windows kernel accepts the call and its 32-bit
parameters and then calls a thunk. The thunk translates the param-
eters and addresses to 16-bit equivalents and then calls the 16-bit User
routine.?

The efficient operation of the thunk layer; as it’s called, is critical to
the performance of Windows 95. In Chapter 4, we’ll look at exactly how
Windows 95 uses its thunk layer.

The Protection System

54

Any modern operating system must offer protection capabilities: pro-
tection of the user’s data, protection of one program from others run-
ning concurrently in the system, and protection of physical devices
from unauthorized access. Windows 95 harnesses all of the 386’s pro-
tection facilities to deliver these capabilities.

9. User is one of the Windows 95 components still implemented as 16-bit code.
Compatibility issues coupled with the project schedule were the principal reasons that
User didn’t get translated to 32-bit code.

TWO: Intel Processor Architecture

Memory Protection

We’ve already seen some aspects of the 386 protection mechanism that
relate specifically to memory protection:

® The provision for the operating system to set up page tables
that describe exactly the areas of physical memory a program
can access

® The read/write page table entry flag that prevents a program
from modifying the contents of a read-only page or a program
code page

#® The user/supervisor flag that allows the operating system to
protect all of its own memory from any access by an application

Whenever an application tries to access a memory location that is
not within its current memory map, the 386 processor generates an in-
terrupt and hands the operating system a collection of information
about the problem. In a couple of cases, the memory reference will ac-
tually be quite legal and the operating system must arrange to add the
appropriate memory page to the application’s memory map. For ex-
ample, a function call within the application can push onto the program
stack parameters whose requirements exceed the memory currently al-
located to the application. The operating system responds by arranging
to add pages to the application’s stack space and then restarts the appli-
cation as if nothing had happened. With applications for Windows,
there are also cases in which the operating system would like to allocate
more memory to an application but has simply run out.'” Sometimes
the user sees a dialog box that says system resources are too low to con-
tinue, and sometimes the application simply fails. Windows 95 reduces
the likelihood of this type of problem by greatly expanding the number
of available operating system resources. Essentially all system resource
requests are now satisfied by the operating system’s allocating memory
from a 32-bit protected mode memory pool.

In still other cases, an invalid memory reference message might
indicate some sort of software problem—an application’s incorrectly
trying to access memory past the end of one of its data structures, for
instance—and the system would have no choice but to terminate the

10. The most common case of this, under Windows 3.0 and 3.1, is exhaustion of
the 64K GDI heap space.

55

INSIDE WINDOWS 95

offending program. Those of you who have used earlier versions of
Windows will, no doubt, have seen enough Unrecoverable Application
Error and General Protection Fault dialogs to be familiar with the han-
dling of such a situation." Fortunately, the quality of Windows develop-
ment tools and application testing has now reached a level that makes
this type of error rare.

Operating System Protection

56

There is more to protection than memory management. There has to
be a way to prevent applications from maliciously or inadvertently cor-
rupting the operation of the system. The several special 386 instruc-
tions that deal specifically with task switching, interrupt handling, and
other system management issues are cases in point. Clearly, the Win-
dows 95 kernel has to be the only software able to perform these opera-
tions. If an application could interfere with these delicate operations,
mayhem would be bound to ensue. The 386 provides for this protec-
tion requirement by maintaining as many as four processor privilege levels.

Software running with privilege level zero can do anything it
wants to: change page tables, switch processor modes, turn paging on
and off, halt the processor, and so on. The Windows 95 operating sys-
tem executes with privilege levels zero and three. Applications run only
with privilege level three and are subject to its several restrictions. A
program with privilege level three that tries to execute any of the privi-
leged instructions—specifically the task switching, interrupt handling,
and system management instructions mentioned earlier—will cause
the processor to generate an interrupt. The operating system will re-
trieve the interrupt information and will, most likely, terminate the of-
fending program.

The 386 has some complex mechanisms for managing software
running at any of the four privilege levels. You’ll hear the phrase “run-
ning at ring three,” for example, meaning that the processor privilege
level is set to three for the program in question. The more privileged

11. In fact, most UAEs under Windows 3.0 came from an application’s making
Windows function calls using incorrect parameters. By the time the system would
figure this out, it would have no choice but to terminate the offending program.
Windows 3.1 added parameter validation. An application’s passing illegal parameters
to the system resulted in an immediate return of an error to the application. Some
applications couldn’t handle the error return and failed in strange ways.

TWO: Intel Processor Architecture

the software is (that is, the lower its privilege level), the more it can do
to affect the operation of the system or of other programs running un-
der the system.

There has to be some controlled way for the processor to switch
between privilege levels—when an application program calls an operat-
ing system service, for example, or when a hardware interrupt causes a
device driver to execute. The 386 provides for this switching by means
of a gate, a specialized descriptor table entry that allows control trans-
fers to occur between rings. There are actually four different types of
gate: call, interrupt, task, and trap. A call to the operating system, a hard-
ware interrupt, or an error condition such as a protection fault causes
an entry to ring zero code via a gate. As processing is en route to a more
privileged execution level, a new instruction pointer and stack pointer
come into use and some sensitive data is stored in a protected area of
memory. The corresponding return to a less privileged level restores
the context of the less privileged code. Since it is the operating system
that sets up the gates originally, the operating system remains in con-
trol of what happens during these transitions—ensuring that system in-
tegrity isn’t compromised.

Device Protection

The device protection issue revolves around correctly sharing a re-
source, such as the hard disk, or preventing two programs from both
trying to use a nonshareable device, such as a COM port, at the same
time. Windows 95 handles a lot of the device management issues itself,
but the 386 also has a significant part to play.

Low-Level Device Access

At the basic hardware level, a program controls all input/output opera-
tions by manipulating the processor’s I/O ports and interrupt requests
(usually referred to as IRQs). You've probably installed in your PC
adapters whose documentation refers to their use of specific I/O ad-
dresses and IRQs. Adding a third serial port (the COM3 device) to a
system usually involves much frustrating effort to prevent conflicts be-
tween the third COM port and the existing COM ports. The conflicts in
question are those between the I/O addresses and the IRQ. Unless you
set up the third COM device with a unique 1/0O address and IRQ, the
controlling software can’t determine which device it needs to take care
of when an I/0 request is made.

57

INSIDE WINDOWS 95

58

From the inside looking out, the I/O ports appear to be similar to
amemory address. There are a total of 65,536 (64K) possible I/O ports
on the 386, though the majority of them are never used. Programs con-
trol devices by reading from and writing to the appropriate I/O ports
by means of special instructions. In the case of a COM device, placing a
byte of data in the appropriate 1/O port will cause the data to be sent
down the attached wire. An interrupt manifests itself as a temporary
pause in the processor’s current activity, coupled with the execution of
a piece of software that has been specifically set up to be responsible
for dealing with the interrupt. When a hardware interrupt occurs, the
386 arranges an orderly suspension of the current program and then
begins execution of some other code from within the operating system.
A device generally initiates an interrupt whenever it needs attention—
when a data transfer has been completed, for example. The processor
and associated hardware take care of generating interrupt signals and
moving bytes in and out of the I/O ports. The operating system is re-
sponsible for installing and configuring the various routines that man-
age the data transfer process and other housekeeping activities.

High-Level Device Access
Windows 95 and most other operating systems control peripherals by
means of device drivers. These software modules control all aspects of a
device’s operation—moving data to and from memory buffers, han-
dling interrupt requests, and so on. An application requests access to a
device by making a device open call to the operating system. If the call
is successful, the application can then read and write data with a fur-
ther series of system calls and, finally, close the device. This holds true
whether the device is a single resource such as a COM port or a shared
resource such as the hard disk. In the case of the hard disk, the open
request is obviously for a file on the disk rather than for the disk itself.
In this ordered world, device management is relatively easy and the sys-
tem concerns itself most with the efficiency of the I/O operations. All
these application requests are defined as part of the Windows API. The
operating system validates the API calls, hands them to the appropriate
device driver, and assists in error management and task scheduling.
Unfortunately, it isn’t that easy when you want to run MS-DOS ap-
plications concurrently with Windows applications. In particular, many
MS-DOS applications believe that they are in total control of the sys-
tem. They don’t try to account for other applications that might be run-
ning simultaneously with them, and they may try to access device

TW O: Intel Processor Architecture

hardware directly. For example, most terminal emulation programs
will manipulate the COM port I/O addresses without making any oper-
ating system requests. This direct access leads to a number of problems
on a Windows 95 system when you want to allow simultaneous execu-
tion of more than one MS-DOS application:

B Two applications could try to access the same device at the
same time. There has to be some way to prevent this conflict.

B Typically, a 386 program that controls a device directly is
running at ring zero. If Windows 95 allowed an application to
do this, that application would have access to other privileged
system resources. To protect other programs, such privileged
execution must be avoided.

B A program that believes it is in sole control of the system
might sit forever in a loop waiting for something to happen—
a key depression or a character from a COM port, for ex-
ample. If no other program can run at the same time, the
performance of the whole system sinks to nothing. This kind
of dominance has to be prevented.

Using the 80386 Device Protection Capabilities
Windows 95 uses a whole range of tricks to avoid these device access
problems while still allowing older MS-DOS programs to run without
modification. And the 386 provides one hardware feature crucial to the
successful implementation of this MS-DOS program support: the I/0O
permission bitmap, a hardware mechanism that allows Windows 95 to
manage device access for every program running on the system.
Whenever Windows 95 starts a new application, it determines
whether the application is a Windows application or an MS-DOS appli-
cation. Windows applications all use operating system APIs to access
files and devices, so each Windows application runs at ring three and
has no permission to access any device directly. A Windows application
will request access to all devices by means of API calls. If the Windows
application does try to access a device I/O port, the 386 will signal a
protection fault to the operating system and Windows 95 will terminate
the offending application. Each time the user starts an MS-DOS appli-
cation from the Windows 95 shell, the application will be set up to run
in virtual 8086 mode in a new virtual machine (VM). Windows 95 must
account for the possibility that the MS-DOS application might try to

59

INSIDE WINDOWS 95

directly access any of the hardware devices attached to the system. To
accommodate that possibility, Windows 95 sets up an I/O permission
bitmap for each VM. The bitmap is an array of flags, one flag for each
of the 386’s 1/0 ports, that specifies whether the application can access
the I/O port directly. If no access is granted—the normal case—the
386 signals a general protection fault whenever the application refers
directly to the I/O port. For an MS-DOS application, a direct access at-
tempt is not necessarily a program error, as it is for a Windows applica-
tion. For example, a communications application will access the I/O
ports for the COM device directly. For the application to run correctly,
Windows 95 must allow this I/O port access to happen—assuming that
some other program is not already in control of the same COM port.
This whole treatment of virtual machine management and direct de-
vice control—referred to as device virtualization—is a key element of
Windows 95. The most important aspect of device virtualization to note
here is that the 386 provides the hardware facility for selectively pro-
tecting the I/0 ports on an individual, program-by-program basis and
informing the operating system each time a direct access occurs.

Virtual 8086 Mode

60

Without the virtual 8086 feature (most often called simply virtual mode),
running MS-DOS applications under Windows 95 would be as difficult
and error-prone as running them under OS/2 or Windows on the 286
processor. If you used earlier versions of either OS/2 or Windows on
286 systems, you’ll remember both the errors and the major limitation:
only one MS-DOS program could run at any one time. Clearly, I/O per-
mission handling is a key requirement of the 386’s virtual 8086 mode. A
few other issues are important in Windows 95 running in virtual mode.

Virtual 8086 mode is an inherent part of the protected mode ar-
chitecture of the 386. Programs running in virtual 8086 mode are run-
ning in protected mode. On the 286, MS-DOS programs didn’t have a
virtual mode (protected mode) to run under. To run an MS-DOS pro-
gram on the 286, there was no choice but to run the processor in real
mode. Real mode provided absolutely no memory and device protec-
tion, and what’s more, the MS-DOS program had to occupy the first
megabyte of the system’s address space. The 386 solved all of these
problems:

TWO: Intel Processor Architecture

M Virtual 8086 mode execution remains subject to all the 386
memory and device protection rules. The operating system
has control over the resources it allocates to the virtual mode
program. The 386 reports to the operating system any at-
tempted access to resources outside the allocated set.

W The operating system can load virtual mode programs any-
where in memory. The 386 translates virtual mode addresses
using the 386 protected mode rules. All of the 386’s paging
capabilities are in play in virtual mode, so virtual mode
programs running on the 386 can be swapped just as other
protected mode programs can be.

Unlike running an MS-DOS program on the 286 by means of
- a switch to real mode, running a virtual mode program on
the 386 doesn’t require a lengthy mode switch operation. Task
switching between a Windows application and an MS-DOS
application on the 386 is much faster than it was on the 286.

Setting up a virtual mode program on the 386 is straightforward.
Once the program is loaded, the operating system simply identifies it as
a virtual mode program by setting a single flag in one of the 386’s
control registers. The 386 then imposes the rules of 8086 program exe-
cution on the virtual mode program. Specifically, registers are 16 bits
only (not 32 bits) and addresses are 20-bit values generated exactly as
they would be on an 8086. Of course, this is only half the story. Emulat-
ing an 8086 processor is one thing. Emulating an entire PC, including
MS-DOS, is entirely another. That problem has been passed along to
Windows 95 to solve.

Conclusion

The Intel microprocessor has accumulated enormous capability since
its simple beginnings with the introduction of the 8080 in 1974. In a
scant twenty years, the microprocessor has matched or surpassed the
capabilities of any mainframe processor costing thousands of times
more. Along the way, the designers at Intel have had the good fortune to
be able to learn from one failed experiment in protected mode—the
80286—and get it right the next time. The 80386 architecture, particularly
its support of virtual 8086 mode within a paged virtual memory

61

INSIDE WINDOWS 95

62

scheme, has proved to be the right platform for building today’s
advanced 32-bit operating systems. The successor processors, the 80486
and the Pentium, have adopted the same basic architecture without
change, and it’s a sure bet that successors to the Pentium will do
the same. :

Windows 95 takes full advantage of all of the 386’s capabilities.
There’s a lot going on under the hood when you run applications on
Windows 95. Fortunately, neither the user nor the application pro-
grammer has to pay much attention to Windows 95’s system and
program management activities. This is as it should be.

That was the basics of how the hardware works. Now for the software. It’s time to
look at Windows itself.

CHAPTER THREE

A TOUR OF CHICAGO

In this chapter, we’re going to take a tour through Windows 95—look-
ing briefly at the structure of the system and the associated terminol-
ogy. You may know Windows intimately already, in which case there’ll
be sections of this chapter that you’ll skip through quickly. Chapter
Four is where the detailed examination of Windows 95 begins. The
goal for this chapter is to give you a sufficient grounding in the Win-
dows system so that you can approach the new material in Chapter
Four with ease. Although a lot of the information in this chapter is
common to both Windows 3.1 and Windows 95, it will be Windows 95
that we dissect. Even if you’ve spent the last few years disassembling the
several versions of Windows, you may want to flip through this chapter
to make sure that my terminology matches yours and to get a quick over-
view of the structure of Windows 95.
Here’s what we’re going to look at in this chapter:

The structure of the Windows system, including the graphical
components of Windows and the system’s support for Win-
dows applications and MS-DOS virtual machines

B The Windows multitasking model
The elements of the Windows user interface

® Some aspects of Windows application programs

System Overview

Over the course of successive version releases, Windows has grown from
its original role as a graphical extension to MS-DOS to encompass many
of the functions of a full operating system. From its very first release, Win-
dows handled program loading functions. With Windows 95, the trans-
formation is complete. Windows is now a complete operating system

63

INSIDE WINDOWS 95

with MS-DOS compeatibility built in. The Windows 95 “single applica-
tion mode” allows you to run MS-DOS as a fallback operating system if
you want to run an application that can’t function under Windows.
Figure 3-1 shows a block diagram view of the major components
of Windows 95. Let’s look at these components in a little more detail.

System Virtual Machine

Shared address space

Windows API layer

Windows subsystem

Base System

Figure 3-1.
Windows 95 system architecture.

64

THREE: A Tour of Chicago

The System Virtual Machine (or simply System VM) is the name
given to the environment in Windows 95 that supports all the
Windows applications and the Windows subsystem components
such as the Graphics Device Interface (GDI).

32-bit Windows applications are the new Windows applications
that use the 32-bit memory model of the 80386 processor and a
subset of Microsoft’s Win32 application programming interface
(API). In Windows 95, each of these so called Win32 applications
has a private address space that’s inaccessible to other applica-
tions. 32-bit applications can be preemptively scheduled by
Windows 95.

The Shell is a 32-bit Windows application that provides the essential
user interface to the system. The Shell in Windows 95 consoli-
dates the functions of the Windows 3.1 Program Manager, File
Manager, and Task Manager utilities into a single application.

16-bit Windows applications are the “older” Windows applications,
the ones you use on Windows 3.1 today. These applications use
the segmented memory model of the Intel processor family—
really an 80286 memory model. As in Windows 3.1, the 16-bit
applications running under Windows 95 share a single address
space and can’t be scheduled preemptively. You’ll hear Microsoft
refer to these applications as Winl6 applications.

The application programming interface layer in Windows 95 pro-
vides full compatibility with the existing Windows 3.1 API as
well as support for the new 32-bit API accessible only to 32-bit
Windows applications. The 32-bit API is a subset of Microsoft’s
full Win32 API first seen in Windows NT and in the Win32s add-
on for Windows 3.1.

The Windows Kernel supports the lower-level services required by
Windows applications, such as dynamic memory allocation. For
Windows 95, the Kernel provides these services to-both 16-bit
and 32-bit applications.

GDI is the core of Windows’ graphical capabilities, supporting
the fonts, drawing primitives, and color management for both
display and printer devices. Although GDI in Windows 95
continues to support existing 16-bit applications, it includes
significant new features available only to 32-bit programs.

65

INSIDE WINDOWS 95

User is the window manager—the Windows 95 component that
manages the creation and manipulation of on-screen windows,
dialogs, buttons, and other elements of the Windows interface.

MS-DOS Virtual Machines support the execution of MS-DOS
applications under Windows. As in Windows 3.1, the user can
run multiple MS-DOS VMs concurrently. Windows 95 includes
several new features designed to improve the user’s management
of these VMs, but the basic design for MS-DOS VM support
hasn’t changed a great deal.

The Base System

The remaining modules implement various aspects of the underlying
operating system in Windows 95. The collection of these components is
usually referred to as the base system.

File management has changed dramatically in Windows 95. In Win-
dows 3.1, it’s MS-DOS that controls the local hard disk filesystem.
This MS-DOS control impaired the performance of Windows,
and the opportunity to improve filesystem support didn’t really
exist while MS-DOS remained in control. Under Windows 95, the
situation is entirely different. Notably, MS-DOS is no longer used
for the management of files on local disks.! The new file man-
agement subsystem provides a series of interfaces that allows all
local disk filesystems (including the CD ROM filesystem) and
multiple network filesystems to coexist.

The network subsystem is the latest incarnation of Microsoft’s
peer-to-peer network first seen in the Windows for Workgroups
product in 1992 and later seen in Windows NT.? The network
subsystem uses the new file management subsystem to coordi-
nate its access to remote files. Other network suppliers can
also plug their products into the new file management services,
allowing a user to simultaneously access more than one type of
host network. Windows provides built-in support for SMB,
Novell, and TCP/IP protocols.

1. As we noted in Chapter 1, there may yet be a version of MS-DOS that also in-
cludes the new filesystem capabilities. But it won’t be the MS-DOS we’re familiar with.

2. As of July 1994, it isn’t clear how Microsoft will package the Windows 95
networking features. They might all be in the same box as Windows 95, or
they might not.

66

THREE: A Tour of Chicago

Operating system services in Windows 95 include major components
such as the Plug and Play hardware configuration subsystem as
well as a miscellaneous collection of functions such as those that
fulfill date and time of day requests.

The Virtual Machine Manager is the heart of the Windows 95 operat-
ing system. It includes software to implement all the basic system
primitives for task scheduling, virtual memory operations, pro-
gram loading and termination, and intertask communication.

Device drivers in Windows 95 can come in a number of different
forms—real mode drivers and so called virtual drivers, or VxDs,
among others. Some systems may still require the use of older
real mode MS-DOS device drivers to support particular hard-
ware devices, but one of the development goals for Windows 95
has been to develop protected mode drivers for as many popular
devices as possible, including new protected mode drivers for
the mouse, CD ROM devices, and many hard disk devices.

Virtual device drivers, or VxDs, take on the role of sharing a single
hardware device among several applications. For example,
running two MS-DOS applications in separate screen windows
requires the system to create two MS-DOS VMs each of which
wants access to the single physical screen. The screen driver VxD
has to support this sharing requirement. “VxD” is also used as a
general descriptor for other 32-bit operating system modules.?

Windows and Modes

You may never have run Windows on anything other than a 386-based sys-
tem with a decent amount of memory—in which case, you’ve probably
only ever used Windows in its enhanced mode. Operationally speaking, this
meant that Windows used all the capabilities of your 386 processor, in-
cluding demand paging and virtual 8086 mode. If your history with Win-
dows goes back further, to 286- and even 8088-based systems, you will have
heard the terms real mode and standard mode applied to Windows. If you
knew those terms then, forget them now. Windows 95 operates only in
enhanced mode. In fact, there is no longer a term “mode” for Windows.*

3. “VxD” actually stands for “Virtual anything Driver.”

4. With Windows 95, support for the EGA as a display adapter also disappears.
A Windows capable machine now requires at least a 386SX processor, 4 MB of memory,
and a VGA.

67

INSIDE WINDOWS 95

Virtual Machines

The word “virtual” appears everywhere as a qualifier for terms in Win-
dows 95.° Indeed, the provision of a virtualized environment for the ex-
ecution of application programs is a key to many of the capabilities of
Windows 95. The most important of the “virtual” features is undoubt-
edly the support for the virtual machines that host the running pro-
grams, so it’s important to understand both the associated terminology
and the technical basis for Windows virtual machines.

It’s easy to get confused about virtual machines. Intel uses the
term virtual 8086 machine to describe the use of the virtual 8086 proces-
sor mode to emulate an Intel 8086 processor on the 80386. This virtual
8086 machine includes the 1-megabyte address space, the CPU regis-
ters, and the I/O ports. A Windows virtual machine (usually called simply
a Windows VM) refers to a context for the execution of an application
program. A VM context includes the application’s map of addressable
memory and the contents of the hardware registers as well as the Win-
dows resources allocated to the application. Because under Windows
3.1 every Windows VM runs at least part of the time in the hardware vir-
tual 8086 mode (which is still a protected mode), there are abundant
possibilities for misunderstanding. Many books and articles about Win-
dows fail to distinguish among the many possibilities when they use the
term “virtual.” A Windows VM is not the same as an Intel virtual 8086
machine. Here’s what’s important about Windows VMs:

Windows VMs are either MS-DOS VMs, each of which runs a
single MS-DOS session, or a System VM that provides the
execution context for all Windows applications.

B The System VM runs in protected mode all the time.
Under Windows 3.1, there comes a point at which the
System VM switches from protected mode to virtual 8086
mode so that MS-DOS code can run. This very rarely
happens in Windows 95.

B Windows uses virtual 8086 mode to run MS-DOS applications.
The system uses the processor’s virtual 8086 mode to erect
a controllable shield around code that would otherwise need
to execute in real mode.

5. The marketing slogan chosen for the original introduction of Windows/386 was
“Virtually Everything.” It’s a tagline that still seems to be appropriate.

68

THREE: A Tour of Chicago

W Windows applications on Windows 95 never use virtual 8086
mode. They execute in protected mode all the way down to
the bare hardware.® :

M An MS-DOS VM is a Windows VM running an MS-DOS
application in virtual 8086 mode.

W Notwithstanding their association with virtual 8086 mode,
MS-DOS VMs can run in 32-bit protected mode under Win-
dows with the mediation of a DOS extender that conforms to
the DPMI interface. When an MS-DOS VM switches to pro-
tected mode, it’s no longer running in the processor’s virtual
8086 mode, but Windows still considers it to be an MS-DOS
VM. (This is a subtlety that’s rarely recognized.)

To make things potentially more confusing, the word “virtual” is
also used in talk about memory addresses. In Chapter Two, we looked
at the details of how the 386 translates virtual addresses, generated by
an individual program, to physical addresses that reference actual
memory locations. Software running in any Windows VM always gener-
ates virtual addresses. The system itself uses virtual addresses. The only
time that physical addresses come into play is when the memory man-
agement subsystem sets up the processor’s page tables to provide the
mapping between virtual and physical addresses.

B Atleast in this book, “address” and “virtual address” are sy-
nonymous. The term “physical address” will mean exactly that.

B An MS-DOS VM usually has an address space covering ad-
dresses from 0 to 1 megabyte. This is a virtual address space.
The system maps this virtual address to its chosen set of
physical addresses using the 386’s virtual memory capabilities.
The pages of the virtual address space could be widely scat-
tered in physical memory.

The System VM can have a much larger virtual address space
than an MS-DOS VM running in virtual 8086 mode. Appli-
cations running in the System VM run in protected mode and
can make use of this large virtual address space.

6. This isn’t strictly true since Windows 95 still runs MS-DOS device drivers in
virtual 8086 mode if there’s no protected mode driver available. But real mode drivers
are an endangered species.

69

INSIDE WINDOWS 95

Windows Virtual Machines

Regardless of whether it’s an MS-DOS VM or the System VM that con-
tains all the Windows applications, you define the capabilities and cur-
rent context of a virtual machine by looking at the resources allocated
to it. Each VM has to include the following:

70

A memory map that defines the virtual memory accessible to
the currently executing code within the virtual machine.

An execution context, defined by the state of the VM’s regis-
ters (the directly accessible CPU registers as well as other
controlling factors such as the CPU privilege level).

A set of resources accessible to the application running with-
in the VM. Within the System VM, every Windows applica-
tion accesses resources using the Windows API. In an MS-DOS
VM, an application uses the MS-DOS software interrupt (INT)
interface and may also try to access the hardware directly.

The virtual machine environment of Windows 95 remains heavily
reliant on the underlying capabilities of the 386. The 386 dependence
offers advantages:

The virtual memory allocated to each VM is separated from
the virtual memory allocated to other VMs. Each MS-DOS
VM runs in a private address space, unable to interfere
with applications running in other MS-DOS VMs or in the
System VM.

The memory and I/0 port protection capabilities of the 386
allow every device on the system to be completely protected.
Any MS-DOS application can run, convinced that it has

the whole machine to itself and ignorant of the fact that it
might actually be sharing the host system with other MS-DOS
VMs or Windows applications.

Initialization

During initialization, the operating system sets up the System VM and
prepares the global context for all MS-DOS VMs. Under Windows 3.1,
this is essentially a snapshot of MS-DOS just at the point at which the
user types the win command. Subsequently, whenever the system creates
a new MS-DOS VM, this global context is used as the basis for the new

THREE: A Tour of Chicago

VM’s context. The snapshot includes all TSRs, environment variables,
and so on. Windows 95 is subtly different from Windows 3.1 during this
initialization phase. With Windows 3.1, it’s up to the user to enter the
win command and start the initialization of the Windows system. Win-
dows 95 immediately gains control and switches to protected mode to
complete the initialization process after loading—no win command is
needed. In either case, when Windows switches to protected mode, it
pushes the real mode code aside and takes control of the machine. Win-
dows 95 still processes the CONFIG.SYS and AUTOEXEC.BAT files if
they exist, so the user can still customize the global MS-DOS context by
including commands in these two files.

The System Virtual Machine

The context for the System VM is a protected mode environment in
which all the Windows applications run, together with the major com-
ponents of the Windows graphical subsystem. The interface between
any application and Windows is by means of one of hundreds of applica-
tion programming interface (API) functions.” This type of interface allows
applications to request system services using named function calls
rather than the numbered software interrupt scheme used in MS-DOS
applications. The linkage between a Windows application and the func-
tions in the Windows subsystem is made at program load time by means
of a technique called dynamic linking.

Windows 95 introduces support for a new class of apphcatmns
the 32-bit applications that use the Windows 95 subset of Microsoft’s
Win32 API. These 32-bit applications run within the System VM con-
text, but each has a private protected address space that prevents other
applications from accessing its private memory.

Windows 3.1 relies upon cooperative multitasking as the basis for
its task scheduling. Under Windows 95, cooperative multitasking is still
the basis of task scheduling for the older 16-bit applications. However,
the system schedules Win32 applications using a preemptive schedul-
ing algorithm. For the user of a system that runs Win32 applications
only, the preemptive scheduling means faster and smoother response
when several applications run concurrently.

A Windows program relies on the system to deliver a stream of
messages to it to inform it of new events—mouse clicks in one of the

7. As of early 1994, one rough count had the number of Windows 95 APIs,
messages, and macros totaling well over 2000.

71

INSIDE WINDOWS 95

72

application’s windows, new programs starting up, and so forth. Under
Windows 3.1, the system uses a single queue to hold all the messages
that originate within the system. As a result, it’s possible for one errant
application to choke the flow of messages to all the applications. Win-
dows 95 provides for the system to put messages destined for Win32
applications into private message queues, reducing the possibility of
the system’s grinding to a halt when one application fails to service the
message queue.

Windows 3.1 relies upon MS-DOS for filesystem access. Although
this is about the only significant reliance on MS-DOS within Windows
3.1, itis a weak point of the system. This remaining dependence on MS-
DOS for filing support creates a whole catalog of problems that the
Windows designers have grappled with over the course of several re-
leases. They finally fix the problems in Windows 95 by replacing the
MS-DOS filesystem services with a new protected mode subsystem.

All MS-DOS filesystem services are accessed by means of the INT
21H software interrupt. Within the System VM itself, the execution of
the INT 21H instruction causes a general protection fault that the op-
erating system catches and handles. Windows 3.1 deals with this fault by
arranging for the System VM to switch temporarily to virtual 8086
mode so that the MS-DOS INT 21H code can execute correctly. Once
the file operation is completed, the System VM returns to protected
mode and the Windows application code continues to execute.

Windows 95 catches the same fault and simply hands it to the pro-
tected mode filesystem manager for processing. No switch from protected
mode to virtual 8086 mode occurs, and providing there is a protected
mode device driver in use for the target device, the System VM context
remains a protected mode context throughout the entire operation.

MS-DOS Virtual Machines
An MS-DOS VM is a faithful replication of a PC running MS-DOS. As
far as the application is concerned, the VM has a megabyte of memory
with a memory map corresponding to the hardware memory map. For
example, the directly addressable video display memory is at memory
address BSOOOH. The context for the MS-DOS VM is usually, though
not always, a virtual 8086 mode environment with a copy of MS-DOS
mapped into the virtual address space of the VM.

Applications in an MS-DOS VM will use the software interrupt ser-
vices of MS-DOS (predominantly the INT 21H services) to make system

THREE: A Tour of Chicago

requests. Under Windows 95, these requests ultimately pass to the pro-
tected mode code that implements the system services. In the case of
filesystem requests, the INT 21H call will be passed to the new
filesystem manager to be handled together with other concurrent re-
quests from applications running in the System VM.

MS-DOS VMs are set up using a VM that you never see—unless
you start poking around with a debugger—and it’s a VM that never con-
tains an application that actually runs. This is the VM that is set up with
the initial state of the MS-DOS environment once system booting and
the processing of CONFIG.SYS and AUTOEXEC.BAT are complete.
Within this hidden VM is everything that is global to the MS-DOS envi-
ronment. For example, if your AUTOEXEC.BAT runs a TSR program
before it starts Windows, that TSR program will be loaded and will be-
come part of the global MS-DOS environment. Even under Windows
95, where there’s less reliance on MS-DOS, you can still use
CONFIG.SYS to load device drivers and AUTOEXEC.BAT to load TSRs
as parts of the global MS-DOS environment.

Once this global initialization is complete, Windows needs some-
where to save a snapshot of the MS-DOS environment. It sets up the
hidden VM context to be used as the initial state of every MS-DOS VM
that’s subsequently started. The saved hidden VM itself never runs.
Later on, when you start an MS-DOS application from within Windows,
the system creates a new MS-DOS VM—meaning that it allocates some
memory and the appropriate control blocks within the system—and
then copies into the new VM the entire global environment from the
hidden VM. This copying means that the initial state of the new MS-
DOS VM is exactly the state you’d achieve if you had just turned the
machine on and run through the startup procedure again. This copy-
ing from the hidden VM also explains why changes that you make in
one MS-DOS VM don'’t affect any of the others—either those already
running or new VMs that you run later. To verify this inviolability of the
MS-DOS VMS, simply run a few MS-DOS VMs and change the com-
mand prompt in each—local changes won'’t affect the saved global VM
context that governs the initial states of all the VMs.

Protected Mode MS-DOS Applications

One complexity that the Windows designers have had to deal with is
the fact that MS-DOS applications are not simply real mode applica-
tions anymore—they can also run in protected mode. You can trace

73

INSIDE WINDOWS 95

74

this wrinkle back to a few years ago when the hunt for more than 640K
of memory began in earnest. Expanded memory, extended memory,
high memory, and the products that exploited them—such as
Quarterdeck’s QEMM—became popular resources. For a while, the
whole situation was a mess, with various designs jockeying for position
as the standard.

One group of vendors sought order by agreeing to the VCPI (Vir-
tual Control Programming Interface) specification. VCPI was pretty
good except that it didn’t fully support Windows. So after a brief face-
off with Microsoft, vendors came up with the DPMI (DOS Protected
Mode Interface) specification. Programs that conform to the DPMI
specification can run under MS-DOS and Windows and can exploit
protected mode on both 286 and 386 systems.

DPMI
The DPMI specification lays out the definition of an MS-DOS software
interface that ultimately allows MS-DOS applications to exploit the 32-
bit protected mode while running under Windows. DPMI actually al-
lows low-level software components called DOS extenders to coexist with
Windows. A DOS extender supports the execution of protected mode
programs that want to call on MS-DOS for file I/O and other services.
The need for the DPMI specification became apparent during the de-
velopment of Windows 3.0, when Microsoft and other companies em-
barked on parallel efforts to provide support for 32-bit protected mode
program execution. Microsoft’s interest was in Windows, since Win-
dows is itself a DOS extender. It was clear that there would be a number
of DOS extenders on the market, so vendors developed DPMI as a way
of allowing them to coexist. Today you can find DOS extenders in use
in several kinds of popular applications that need more than 640K of
MS-DOS memory: compilers, database programs, and others. The in-
terfaces to the various DOS extenders are not standardized—the DPMI
interface that allows the DOS extenders to coexist with Windows is.
The DPMI-DOS extender exploitation of protected mode is es-
sentially the best way to allow an MS-DOS program to get at more
memory and to use 32-bit addressing (as opposed to struggling on with
segmented addressing). Windows 3.1 implements DPMI and DOS ex-
tender functionality within a single module, so as far as a Windows
programmer is concerned, the DPMI and extender services are indivis-
ible. This architecture does allow a user to start MS-DOS VMs that run

THREE: A Tour of Chicago

applications that make use of alternative DOS extenders rather than
Windows itself as a DOS extender. In that scenario, Windows provides
only the DPMI services.

The DPMI specification defines two software components needed
to provide a full implementation. The DPMI Host, or DPMI Server, is the
lowest-level software component responsible for administering the
DPMI services. All the DPMI functions are available by means of a call
to INT 31H with a function number that identifies the particular DPMI
service that’s required. These services really are very low level—the al-
location of descriptors within the LDT or GDT and the reading and
writing of MS-DOS interrupt vectors, for example.

The DPMI Client is any program requesting DPMI services, usually
the DOS extender. Although it’s possible, the DPMI interface is not in-
tended for direct use by application programs. It’s up to the client to
check for the presence of a DPMI server before any attempt to call the
server is made. Most DOS extenders define a private API that allows a
modified MS-DOS application to call the extender for protected mode
services and to provide MS-DOS services to the application while it exe-
cutes in protected mode.

Multitasking and Scheduling

One of the more complex Windows activities is its allocation of the pro-
cessor to multiple programs. For a program to do anything, it has to exe-
cute instructions. Since Windows allows you to run several programs at
once, there has to be a way of sharing the processor among these pro-
grams. Enter multitasking—and with it a great deal of terminology and
debate.

Since so much terminology is associated with the subject of
multitasking, we’ll need to define a few terms in this chapter. Some of
the terms are frequently used in both a generic context and a very par-
ticularized context. The word task, as we’ll see, is a classic example. Win-
dows is, generically speaking, a multitasking system, and a Windows 3.1
task is a very precise concept, represented by specific data structures and
operational rules.

In the next chapter, we’ll look at the details of the Windows 95
multitasking model. In this section, we’ll give the subject a general review
with a Windows bias.

75

INSIDE WINDOWS 95

Multitasking Models

76

The generic term multitasking refers simply to an operating system’s
ability to share the CPU among several programs. Most operating sys-
tem designers refer to a program in its running state as a fask, so you
can think of a task as a program loaded into memory and actually do-
ing something. The Windows NT and UNIX worlds both use the term
process to mean the same thing. Windows 3.1 says task and, occasionally,
process. And lo and behold, the word process is the term in favor for Win-
dows 95. The term task has been officially removed from the Windows
language. The term process is therefore what we’ll use. Really, you can
think of task and process as synonyms.®

As soon as you run Windows 3.1, you’re multitasking since you’re
running the Program Manager and a number of other tasks that are ac-
tually part of the system itself rather than programs with visible win-
dows on your screen. Windows 95 is no different in this respect. A few
years ago, when observers first began to discuss multitasking operating
systems for PCs, you often heard comments to the effect of “I don’t need
multitasking. I do only one thing at a time anyway.” Unfortunately,
people rarely understood that a multitasking system could offer features
such as background print spooling and network connectivity even if the
user only ran Lotus 1-2-3 all day. Nowadays good multitasking is consid-
ered to be essential to providing an effective environment for the PC
user. Even if you only run Lotus 1-2-3/W all day long, Windows
multitasking enables you to manage your network connection, the
Print Manager, and your communications session at the same time.

The operating system component that manages the multitasking
in both Windows 3.1 and Windows 95 is the scheduler. The scheduler
deals principally with time and events. A Windows 95 process gets a time
slice that determines how long it can use the CPU. At the end of the
process’s time slice, the scheduler decides whether to let a different
process use the CPU.? Events influence the scheduler’s decisions. To
the scheduler, a mouse click is an event that may mean handing the CPU
to the process that owns the window in which the mouse click occurred.

8. At this point you probably think this discussion is becoming very arcane.
Unfortunately, process has a precise meaning in Windows and the lack of rigor with
respect to such a term in most Windows documentation can generate considerable
misunderstanding.

9. Unlike Windows NT, Windows 95 doesn’t (and won’t) support multiprocessor
systems, in which the scheduler has more than one processor to allocate to processes.

THREE: A Tour of Chicago

Or the scheduler may consider the simultaneous completion of a net-
work data transfer to be an event worthy of more attention than the
mouse click. In that case, the process managing the network would get
the CPU, and the other process would have to wait.

You’ll hear Windows 3.1 described as a cooperative multitasking sys-
tem and Windows NT described as a preemptive multitasking system.
Cooperation and preemption are process scheduling techniques, and
Windows 95 uses both of them, so we have to understand them. Pre-
emptive scheduling puts the operating system in complete control over
which process runs next and for how long. At any time, the scheduler
can take the CPU away from the current process and hand it to another
one. Typically, such a preemptive act will occur in direct response to an
event that demands swift attention. The scheduler associates a priority
with each running process. If an event occurs that is of interest to a
high-priority process, the scheduler will preempt the current process
and run the high-priority process. The scheduler gets control of the sys-
tem either when a process surrenders the CPU (it reaches a point at
which it’s waiting for the user, for example) or when there’s a clock in-
terrupt. Most systems will program the clock to tick between 20 and 50
times a second, and the final tick is when the scheduler gains control
and can preempt a running process.

Process priorities are recalculated frequently. For example, if the
system has to choose between just two processes—one with a low prior-
ity and one with a higher priority—the low-priority process will never
be able to run if the scheduler doesn’t dynamically adjust the priorities.
The duration of the time slice plays into the calculation of priorities as
well. It makes no sense to continually give the CPU to a process and
then preempt the process after it has executed only a few instructions.
All that will ever get run is operating system code, not your spreadsheet
or compiler.

Cooperative multitasking relies upon application programmers
to help keep the system running smoothly. In the cooperative tech-
nique, the scheduler can switch processes only when the currently run-
ning process surrenders the CPU. If the current process decides to
recalculate 7 to 5000 decimal places, there’s nothing the scheduler can
do about it. Good programming practice for cooperative multitasking
systems dictates that applications should regularly hand the CPU back
to the operating system—a technique called yielding. An application’s
yielding allows the scheduler to run a higher-priority process if one is
ready. In Windows 3.1, cooperative multitasking is why no amount of

77

INSIDE WINDOWS 95

78

mouse clicking will help you when the current application has the hour-
glass cursor up on screen. The system duly registers all the mouse click
events and adds them to the application’s message queue, but until the
current process surrenders the CPU, the scheduler can’t switch away
from it and allow another process to handle the new events.

Windows 3.1 is as insistent as it can be about getting applications
to yield control of the processor. Essentially, every time an application
calls the system, asking to deal with the next event, the system suspends
the process and allows the scheduler to reevaluate process priorities.
The lack of preemption doesn’t make this way of handling the coopera-
tive multitasking problem foolproof, however.

The absence of preemption in Windows 3.1 does make a number
of design decisions easier for both operating system developers and
application programmers. Neither has to worry about the operating
system code’s being reentrant, for instance. The system design doesn’t
have to account for the possibility of process preemption while system
code is executing. Suppose, for example, that you run two Windows ap-
plications, both of which occasionally use a COM port to dial out and
retrieve data from an information service. If one application could be
preempted in favor of the other partway through the opening of the
COM port, the OS would have to protect itself from the possibility that
the second application would also start an open request. With no pre-
emption, the OS doesn’t have to worry: the first open request will al-
ways run to completion before the other application can run.

Ultimately, though, the lack of preemptive scheduling leads to
problems. High-priority events can’t be handled rapidly because an appli-
cation won'’t relinquish the processor in time, for example; or an
application that crashes will lock up the whole system because the
operating system will be unable to deliver messages to other applica-
tions. MS-DOS itself has to have a nonpreemptive scheduling environ-
ment. MS-DOS knew nothing of multiple processes when it was
designed, and despite the herculean efforts of many software develop-
ers to build multitasking systems on top of MS-DOS, there have always
been shortcomings in the resultant products. Windows has been no ex-
ception to this nonpreemptive rule. Preempting MS-DOS at the wrong
time can lead to disaster, so over the years the Windows designers have
had to put up with building most of an operating system on top of a
very unsuitable foundation. Windows 95 changes that.

THREE: A Tour of Chicago

Critical Sections

You’ll hear programmers use the term critical section when they talk
about developing software for any preemptive multitasking system. A
critical section is a sequence of instructions executed by more than one
process that for one reason or another must not be preempted before
it completes execution. An obvious example of a critical section occurs
during memory allocation.

Windows, along with most other operating systems, uses deriva-
tives of thirty-year-old algorithms for keeping track of blocks of avail-
able memory. (It’s not that the algorithms are outdated. It’s just that
they’re as good as they ever need to be.) One particular algorithm in
question maintains available memory blocks as a linked list, with a de-
scriptor for each block that identifies its size and location. When Win-
dows tries to satisfy an application’s request for memory, it has to
unlink the block from the list of available blocks.

At some point during the unlinking procedure, the list data struc-
ture is in a mess, with invalid pointers or erroneous flag bits set. If the
system were to reschedule right at that point, a different process might
initiate a new memory allocation request. Since the first process would
not yet be complete, the new process would eventually stumble while
trying to manipulate the invalid list data structure and probably crash
the whole system. To guard against such a situation, the code manipu-
lating the list maintains a critical section between the entry and exit
points of the sensitive instruction sequence. Once the process enters
the critical section, the system guarantees that the process will exit the
critical section before any other process can enter it. This isn’t to say
that the system necessarily ignores other processes while a critical sec-
tion is executing. For example, ignoring hardware interrupts during
the execution of a lengthy critical section would be indicative of bad
system design. Critical section management does guarantee, though,
that once a process has entered a critical section, the system will sus-
pend any other process trying to enter the same section.

The technique of allowing only one process at a time to execute a
critical section is sometimes referred to as mutual exclusion, and the un-
desirable situation in which several processes fight to get at a protected
resource such as memory by entering the critical section is called con-
tention. The Windows Virtual Machine Manager has long supported
critical section management for device drivers. Preemptive scheduling

79

INSIDE WINDOWS 95

means that Windows 95 has to support similar critical section manage-
ment functions at the API level. The newly improved nature of multi-
tasking and preemption in Windows 95 means that you’ll hear more

- frequently about objects called mutexes, or semaphores, that are used to

control process entry and exit of critical sections.

Processes in Windows

Modules

80

So, amidst a collection of virtual machines and in a system that sup-
ports cooperative multitasking, what exactly is a process in Windows
95? It is one of two objects:

B Windows considers each MS-DOS VM to be a single process.
Regardless of what’s going on inside that VM, to Windows
it is only one process.

@ Each executing Windows application is also a process. Re-
member that every Windows application runs within the
System VM, so this view of the System VM as containing mul-
tiple processes points up another difference between the
System VM and an MS-DOS VM.

Under Windows 3.1, all of these processes are described within a
system data structure called the Task Database, or TDB for short. Win-
dows 3.1 actually identifies an MS-DOS VM process by marking the ap-
propriate TDB entry as being the WinOldAp application.'

Under Windows 95, the tasking model is considerably more com-
plex. The most important change from the application developer’s
point of view is the addition of threads to the system. Under Windows
95, threads rather than processes are the objects managed by the sys-
tem scheduler. A thread defines an execution path within a process,
and any process can create many threads, each of which shares the
memory allocated to the original process. Multiple threads allow a
single application to easily manage its own background activities and to
offer a highly responsive interface to the user.

In Windows, the term module describes a related collection of code, data,
and other resources (such as bitmaps) present in memory. Typically,

10. WinOIdAp is the name given to the entity that controls a single MS-DOS VM.
You’ll see the name in various Windows status displays and documentation items.

THREE: A Tour of Chicago

such a collection will form either a single application program or a dy-
namic link library. Windows maintains a data structure, known as the mod-
ule database, that identifies all the modules currently active in the system.
The module database describes an essentially static collection of objects
rather than the dynamic collection referenced by the task database.

Keeping a record of currently loaded modules is important be-
cause such a record is the basis for the resource sharing supported by
Windows. The second time you run the WordPad (née Notepad) appli-
cation, for example, Windows can see that the code segments and the
bitmap that forms the icon are already in use. Rather than loading a
second copy and consuming more memory, Windows simply creates ad-
ditional references to the resources already in use.

During the life of the system, Windows maintains a usage count
for each resource. As applications make use of a resource, the system
increments the reference count. When the application terminates, the
system reduces the reference count. A reference count of 0 is the indi-
cation that the resource is no longer in use and that the system can re-
move the resource and reclaim the memory it occupied.

API Support

The Windows 95 API coverage is, to say the least, extensive. The Win-
dows 95 API includes a subset of Microsoft’s Win32 API and provides
compatibility by including support for 16-bit Windows applications and
MS-DOS applications. Microsoft recommends that 16-bit Windows ap-
plication development cease with the introduction of Windows 95 and,
to encourage developers to make that choice, makes the new capabili-
ties of the Windows 95 system accessible only to 32-bit applications.
The mere opportunity to finally abandon the Intel architecture’s
segmented memory model is likely to be enough reason for most devel-
opers to switch. Add in the enhancements available to Win32 applica-
tions, and switching becomes a pretty attractive option.

Windows supports its APIs by means of three major components:
Kernel, User, and GDI. Kernel incorporates the most operating-system-
like functions—memory allocation, process management, and the like.
The User module focuses on the window management issues that come
up throughout Windows operation: window creation and movement,
message handling, dialog box execution, and a myriad of related func-
tions. GDI is the Windows graphics engine, supporting all the line
drawing, font scaling, color management, and printing capabilities of
the system.

81

INSIDE WINDOWS 95

Every Windows application shares the code in these three mod-
ules. In Windows 95, Kernel, User, and GDI have each a 16-bit and a
32-bit implementation resident in the system. And a lot of code is
shared between, for example, the 16-bit and the 32-bit implementa-
tions of GDI. Applications don’t have to take any special note of this
dual existence, though. The system connects the application with the
appropriately sized subsystem.

Each Windows API function is accessible by means of a name—in
contrast to the MS-DOS API scheme of numbered interrupts. To get an
application to call on one of the services in a Windows subsystem, the
programmer simply uses the target function name in the application
source code and compiles and links with the appropriate libraries, and
the application is ready to run. This sounds normal so far, but if you ex-
amine the compiled program, you won't find any code that actually
implements a Windows API function. If you’re a G programmer, you’ll
have used the printf() function frequently. Poke through the compiled
program, and sure enough, you’ll find a stream of code and data that
implements printf(), and the same is true for many other functions.

What you will find if you care to dissect a compiled Windows
program is a collection of references to the Windows API functions—
references that are necessary if Windows is to be able to load the appli-
cation correctly. And think about that printf() example again—every
program has its own copy of the code for printf() linked in, whereas the
Windows program that calls GetMessage() calls the single copy of this
function that resides in the User module. So does every other Windows
program. In fact, the Kernel, User, and GDI modules are all examples
of Windows dynamic link libraries (DLLs for short). Windows uses DLLs
extensively, and the technique that allows an application to call a DLL
is dynamic linking.

Dynamic Linking

82

Nowadays it’s customary to rely upon the dynamic linking capabilities
of the target operating system when preparing an application for exe-
cution. Windows and Windows NT have the capabilities, OS/2 has
them, and so does UNIX. A compilation and link procedure used to
involve the linker in scanning object code libraries and copying large
amounts of code and data into the application’s executable file. No
more. In a dynamic linking environment, the traditional role of the
linker is now split between the link step and the program loading step
undertaken by the operating system.

THREE: A Tour of Chicago

The linker still scans a set of libraries. Some of the libraries in-
clude runtime support code that ends up in the executable file; others
simply contain references to functions that won’t be fully resolved until
the operating system loads the program. In Windows, such libraries are
called import libraries, and together they contain a defining reference
for each and every Windows API function. The linker scans the import
library and embeds in the executable file a target module name and a
numeric entry point. If an application calls the Windows MessageBox()
function, for example, the executable program file will include a refer-
ence to the User module entry point number 1. The application’s call-
ing the GDI LineTo() function will embed a reference to the GDI
module entry point number 19. At program load time, it’s the operat-
ing system’s responsibility to replace these references with addresses
that are valid for use in function calls. Any module that satisfies these
references via dynamic linking is called a dynamic link library. Every
DLL declares a set of entry points called exports that satisfies the exter-
nal references.

Much of Windows itself is a collection of DLLs, and the system
makes heavy use of the runtime name resolution capabilities to inter-
connect its various components. For example, printer device drivers
support a standard set of entry points. When the GDI module calls a
printer driver, it references a function that will be resolved via a runtime
dynamic link. Regardless of what type of printer is involved, each
printer driver supports the same set of entry points. Rather than
relinking the operating system when you install a new printer, you sim-
ply replace the file containing the device driver code, and the new
driver satisfies the same set of dynamic links. Figure 3-2 shows the first
few entries for the dynamic links exported from the Windows 3.1
Hewlett-Packard PCL and PostScript printer drivers.

14

Figure 3-2.

.. (continued)
Dynamic link entry points in printer drivers.

83

INSIDE WINDOWS 95

Figure 3-2. continued

Notice that in each printer driver the names refer to functions
within the driver. They could be any valid name. The external refer-
ence uses only the module name and the numeric identifier to resolve
the dynamic link.

The Windows resource sharing technique also applies to DLLs. It
has to—after all, DLLs are built for sharing. Loading unique copies not
only is wasteful but also defeats the whole purpose of a DLL.

Support from the Base System

84

Ultimately, the Windows subsystem has to call on the services of the
base system. This might be an explicit request—for example, to open a
file. Or it might be an implicit one—for example, there’s a page fault
and the base system has to set about loading the missing pages from
disk. In the case of an MS-DOS VM, the assistance of the base system is
needed once the MS-DOS software interrupt executes.

A transition to the operating system code in the base system in-
volves a transition between processor privilege levels. The Windows
VMs usually run at ring three; the base system—the most privileged
code in Windows—runs at ring zero. Chapter Four looks at the details
of the transition to the base system code. The various ways in which it
happens all amount to presenting the Virtual Machine Manager with
an opportunity to gain control over the transition so that order can be
maintained.

The base system code comprises a number of Windows VxDs. Al-
though the name VxD and the term virtual device driver are used inter-
changeably, a VxD need have nothing to do with any hardware device.
A VxD is simply a 32-bit protected mode module running at the
processor’s most privileged level of execution. Some VxDs do deal with
hardware devices, and others supply operating system functionality that
doesn’t have anything directly to do with devices. The VxD architecture

THREE: A Tour of Chicago

was originally designed as a standardized format for 32-bit protected
mode code modules. There is an API, internal to the base system, that
VxDs can use."! Obviously, the scope of these functions is at a much lower
level than the scope of the services called on directly by applications.

Memory Management

Memory management in Windows takes place at two different levels: a
level seen by the application programmer and an entirely different view
seen by the operating system. Over the course of different releases of
Windows, the application programmer has seen little change in the avail-
able memory management APIs. Within the system, however, the
memory management changes have been dramatic. Originally, Win-
dows was severely constrained by real mode and 1 megabyte of
memory. Then expanded memory provided a little breathing room,
and currently the use of enhanced mode and extended memory re-
lieves many of the original constraints. Windows 95 goes further yet
and essentially removes all the remaining memory constraints.

Windows 95 continues to support all the API functions present in
Windows 3.1, and you can still build and run applications that use the
segmented addressing scheme of the 286 processor. However, if you
look at the detailed documentation for the Windows 95 memory man-
agement API, you’ll see that all of the API functions originally designed
to allow careful management of a segmented address space are now
marked “obsolete.” The “obsolete” list includes, for example, all the
functions related to selector management. The reason, of course, is the
Windows 95 support for 32-bit linear memory and the planned obsoles-
cence of the segmented memory functions—yet another unsubtle hint
that the Win32 API is the API you should be using to write Windows ap-
plications. .

Although use of the 32-bit flat memory model simplifies a lot of
Windows programming issues, it would be misleading to say that Win-
dows memory management has suddenly gotten easy.’® Windows 95
actually has a number of new application-level memory management

11. The Windows Device Driver Kit is the best reference for detailed information
on VxDs and the associated API functions.

12. The Windows 95 documentation lists 45 API functions under the heading
“Memory Management.” The “obsolete” list numbers 28 API functions.

85

INSIDE WINDOWS 95

capabilities. All of the functions relate to the management of memory
within the application’s address space, the private virtual memory allocated
to the process. The systemwide management of memory is the responsi-
bility of the base system, and the Windows API aims to hide many of the
details of the system’s lower-level functions.

Application Virtual Memory

86

Figure 3-3 illustrates the basic layout of a Win32 application’s virtual
memory. Every Win32 application has a similar memory map, and each
such address space is unique. However, it is still not fully protected: the
private memory allocated to one Win32 application can be addressed
by another application. The Win32 application’s private address space
is also the region in which the system allocates memory to satisfy appli-
cation requests at runtime.

The system address space is used to map the system DLLs into the
application’s address space. Calls to the system DLLs become calls into
this region. Applications can also request the dynamic allocation of
memory by means of virtual addresses mapped to the shared region.
Having virtual addresses mapped to the shared address space caters to
the need for controlled sharing of memory with other applications.

4GB
3GB

2GB

Figure 3-3.
Application virtual memory map.

Requests for memory at runtime fall into one of two categories:
the application can make an explicit request for extra memory, or the
system can respond to an implicit request for memory—that is, allocate
memory to an application as a side effect of allocating some other re-
source. An implicit request occurs, for example, when an application

THREE: A Tour of Chicago

creates a new window on screen: the system must allocate memory for the
data structures used to manage the window. Windows 95 claims memory
for resource allocation from a large 32-bit linear region rather than from
the restrictive 64K segment used in previous versions of Windows. An on-
going problem in versions through Windows 3.1, running out of memory
during resource allocation, has been largely eradicated in Windows 95.

Heap Allocation

In Windows parlance, the term heap describes the region of memory
used to satisfy application memory allocation requests. In Windows 3.1,
the system maintains both a local heap and a global heap. The local heap
is a memory region within the application’s address space, and the glo-
bal heap is a memory region belonging to the system. As an application
makes requests for local memory, its address space is adjusted to en-
compass the newly allocated memory. The system resolves requests for
global memory from the same system memory pool used for all applica-
tions. It’s possible to run out of either or both resources, although the
use of a 2-GB address space makes this highly unlikely. Exhaustion of
the local heap affects only a single application. Exhaustion of the glo-
bal heap has systemwide repercussions.

Windows 3.1 programmers have to consider a variety of factors as
they decide how to satisfy an application’s runtime memory require-
ments. Windows 3.1 also has a range of API functions for manipulating
dynamically allocated segments, and the manipulation of these shifting
regions is further complicated by the underlying segmented memory
model. It isn’t just a chunk of memory that must be allocated. The ap-
plication also needs a selector so that it can address the memory cor-
rectly. Under Windows 95, the Win32 application model does away with
all these considerations. Selectors are no longer required—it’s simply a
32-bit address that identifies the new memory—and the local and glob-
al heaps are merged into a single heap. The API functions that deal
with selectors and the manipulation of memory regions in a segmented
model all become obsolete.

Windows 95 Application Memory Management

For a Windows programmer, the Win32 API greatly simplifies the most
common dynamic memory allocation chores. Furthermore, the in-
creased capability of the underlying 32-bit architecture allowed the
Windows designers to add a number of new functions for application
memory management.

87

INSIDE WINDOWS 95

® Windows 95 provides functions that support private
heaps whereby an application can reserve a part of mem-
ory within its own address space. The application can create
and use as many private heaps as it wishes and can direct
the system to satisfy subsequent memory allocation calls
from a specific private heap. An application might use the
local heap functions to create several different memory
pools that each contain data structures of the same type
and size.

Windows 95 provides functions that allow an application
to reserve a specific region of its own virtual address space
that once reserved won’t be used to satisfy any other dynamic
memory allocation requests. In a multithreaded application,
the 32-bit pointer to this reserved region is a simple way to
provide each thread with access to the same memory.

® Memory mapped files allow different applications to share
data. An application can open a named file and map a region
of the file into its virtual address space. The data in the file is
then directly addressable by means of a single 32-bit memory
address. Other applications can open the same file, map it
into their private address spaces, and reference the same data
by means of a single pointer.

System Memory Management

88

Regardless of changes in the details of application memory manage-
ment, the Windows programming model has remained pretty consis-
tent through the different product releases. Allocating blocks of
memory at runtime, using a reference to a block to manipulate it, and
ultimately returning the block to the system for re-use is the way in
which Windows programmers have always dealt with dynamic memory
requirements. Windows 95 is no different. What has changed, however,
is the way in which the system realizes the application’s requests for dy-
namic memory.

Starting with the Windows 3.0 enhanced mode and continuing
with the Windows 95 Win32 application model, the Windows API ma-
nipulates only the application’s virtual address space. This means that
an application request for a block of memory will adjust the
application’s virtual address map but might do absolutely nothing to
the system’s physical memory. Remember that the 386 deals with physical

THREE: A Tour of Chicago

memory in pages each 4K in size. This page size is reflected in the vir-
tual address space map of every Windows application. If an application
requests 100K of memory, for example, its virtual address space will
have 25 pages of memory added to it. The system will also adjust the
data in its own control structures to reflect the application’s new
memory map.

However, at the time of allocation, Windows won’t do anything to
the physical memory in the system. It’s only when the application starts
to use the memory that the underlying system memory management
kicks in and allocates physical memory pages to match the virtual
memory references the application makes. If the application allocates
but never references a region of its virtual memory space, the system
might never allocate any physical memory to match the virtual
memory. The ability of the 386 to allow physical memory pages to be
used at different times within different virtual address spaces is the ba-
sis for the operating system’s virtual memory capabilities.

Deep within the system are a range of memory management
primitives available to device drivers and other system components that
sometimes deal with virtual memory and sometimes force the system to
commit actual physical memory pages. But these primitives are specific
to the base operating system. Neither applications nor the Windows
subsystem knows or cares about physical memory. Applications can
force the system to allocate physical memory only by actually using the
memory: namely, by reading from and writing to locations within a
page. The separation of Windows memory management into the vir-
tual and physical levels is a key aspect of the system. Applications and
the Windows subsystems deal with defined APIs and virtual address
spaces. The base system deals with physical memory as well as virtual
address spaces.

Although physical memory is transparent to an application, its be-
havior can radically affect the performance of the system. For example,
scanning through a two dimensional array of data row by row using C as
the programming language will cause memory to be accessed from low
to high virtual addresses because C stores two dimensional array data
structures in row major order. As the memory sweep proceeds, the system
will allocate physical memory pages to match the virtual memory ac-
cesses. Byte-at-a-time access will cause the system to allocate a new physi-
cal page every 4096 references. Other languages—FORTRAN, for
example—store two dimensional arrays in column major order. Referencing
the data row by row will generate memory references to widely scattered

89

INSIDE WINDOWS 95

memory locations, forcing a much higher frequency of physical page
allocation and much-reduced application performance. So, although
the programmer doesn’t have to worry about matching virtual memory
to physical memory, it is a good idea for the programmer to know
something about how the underlying system primitives and hardware
support the application.

Windows Device Support

The most important aspect of the Windows device driver architecture is
its ability to virtualize devices. (Yes, it’s that word again.) The greatest
difference between the device drivers of Windows 95 and Windows 3.1
is the extensive use of protected mode drivers in Windows 95—in fact,
it will be unusual if your system uses any real mode drivers at all after
you install Windows 95. The use of protected mode for the drivers pays
off in terms of both system performance and robustness. The manufac-
turers of disk devices can adopt a new driver architecture—borrowed
from Windows NT—that almost guarantees the availability of a pro-
tected mode driver for every hard disk. In addition, new protected
mode drivers for CD ROM devices, serial ports, and the mouse make
the possibility of needing to support a device with a real mode driver
quite remote.

Device Virtualization

90

The device virtualization capability allows Windows 95 to use the
memory and I/O port protection capabilities of the 386 processor
to share devices among the different virtual machines. Every MS-
DOS VM believes it has full control over its host PC and is unaware
of the fact that it might be sharing the screen with other MS-DOS
VMs or with the Windows applications running in the System VM.
For MS-DOS applications, the display drivers must reside in the low-
est level of the operating system. Many MS-DOS applications, par-
ticularly those that use the display in a graphics mode or use serial
ports, will address the hardware directly. Windows has to intercept
all such direct access in order to bring order to a potentially chaotic
situation. The MS-DOS application knows nothing of the need to
cooperate with other applications and certainly doesn’t depend on
a system device driver to get the job done. With Windows applica-
tions, the system has a slightly easier task since device access is always

THREE: A Tour of Chicago

the result of a Windows API call. Thus, the operating system has
control of the entire transaction, and the system components can
collaborate as necessary.

You’ll sometimes hear Windows device drivers referred to as
virtual device drivers or even VDDs. But most of the time, a Windows
device driver is classified as a VXD along with all the other VxDs that
perform low-level system functions. Device drivers are written and
built just as any other VxD is—usually in assembly language and al-
ways with the freedom to access any system data structure or memory
location.

Minidrivers

The Windows device driver model has undergone some changes for
Windows 95. The minidriver architecture first used for Windows 3.1
printer drivers and more recently for Windows NT disk drivers has found
its way into the display and disk driver designs for Windows 95.” The
principal idea of the minidriver design is to provide a single hardware-
independent VxD that fulfills most of the necessary driver functions.
This VxD interfaces closely with a minidriver whose role is to perform
the hardware-dependent functions. Each minidriver consists of a set of
the hardware-dependent functions called by the controlling VxD. Win-
dows calls the central VxD, and when necessary, the VxD calls the
minidriver.

This design offers a lot of advantages. The basic design tenet is
that most drivers for a particular type of device contain roughly the
same code. Re-implementing the same code for every slightly different
type of device doesn’t make a lot of sense—despite the fact that just
about every operating system has done just that for years. Reducing the
implementation task for a new device to simply developing a new
minidriver helps everyone. The device manufacturer doesn’t have to
invest in writing code that already exists. The user can look forward to
much higher quality drivers that are readily available when a new de-
vice first appears. Microsoft benefits since they can justify the invest-
ment of a lot more effort in the central screen VxD, for example, rather
than have the dilution of the effort among drivers for dozens of slightly
different VGA devices.

) 13. In Windows NT, disk drivers are actually called port drivers.

91

INSIDE WINDOWS 95

In the past, a counterargument always insisted that the minidriver
model would degrade performance. This argument didn’t work when
it was applied to printers since the nature of the device makes it very
slow in comparison to the processor anyway. Even the worst printer
minidriver is probably fast enough to keep a printer fully occupied.
Disk device minidrivers do require more attention to performance is-
sues. However, a disk minidriver is a simple piece of code that shouldn’t
have a negative impact on performance if it’s correctly written.
Microsoft can provide lots of good examples to device manufacturers
to make sure that disk minidrivers come out right. Screen devices are
quite a different issue since performance under Windows is so critical.
The importance of performance makes the adoption of a minidriver
model for screen drivers an interesting design choice. Microsoft’s con-
fidence in its new display driver model comes from investing a lot of
very talented effort in the central VxD." Of course, it’s still possible for
a manufacturer to ignore the minidriver architecture and implement a
device driver that bypasses the minidriver architecture. The manufac-
turer still has this option for supporting unusual devices or squeezing
the last cycle of performance out of the device.

The Windows Interface

Let’s review the major elements of the Windows user interface in
preparation for an introduction in Chapter Five to the rather dramatic
changes to be seen in Windows 95. If you’re a Windows programmer,
you’re already intimately familiar with the user interface terms and the
various user interface components. If you use Windows extensively,
you’ve seen and used all of the major interface elements. However,
while clicking your way quite happily through a complex dialog box,
you may not have thought too hard about all the different elements
that make up the dialog box.

What Is a Window?

92

Take a look at the Windows 3.1 screen shot in Figure 3-4. It’s one of the
more commonly used dialog boxes in Microsoft Word for Windows.
You see it every time you print a document.

14. “World’s fastest flat frame buffer device driver” is one claim. We’ll see.

THREE: A Tour of Chicago

Microsoft Word - CHAP3.DOC
File Edit Yiew [nset Format Jools Table Window Help
W TR & LTI Ml Wi 5

Figure 3-4.
Windows, windows, windows...

This dialog box actually contains several of the most common items used
in dialog boxes—specifically:

Drop-down list box. The box to the right of Print:. Clicking on the
arrow causes a list of items to appear from which the user can
make a single choice.

Spin box. The box to the right of Copies:. Clicking the up and down
arrows changes the numeric value in the box.

Radio buttons. The round buttons inside the Rangebox. The user
can select just one of the All, Current Page, and Pages buttons.
Clicking one of them causes the others to clear.

Checkbox. The two boxes at the bottom of the dialog box. The Print
to Fileand Collate Copies boxes can be set on or off.

Button. The rectangular buttons at the right of the dialog box.

The ubiquitous OKand Cancel buttons appear in almost every
dialog box.

93

INSIDE WINDOWS 95

94

You’ll hear designers refer to each of these interface items as vi-
sual elements; programmers call them controls. These and several other
common elements are the building blocks from which a Windows ap-
plication developer will assemble the various dialog boxes and other
standard components of a Windows program interface. Of course, the
specific text that appears on a button, or the size of a box (for ex-
ample) will change according to the context. Windows is responsible
for drawing these standard controls on the screen. The programmer
simply describes the layout and dimensions of the visual elements, and
Windows does the rest.'

The screen shot in Figure 3-4 also shows other, more sophisti-
cated, visual elements: the scroll bars to the right and at the bottom of
the document window, the toolbars containing the rows of buttons with
a pictorial indication of the function of each, and the status line at the
bottom of the screen. Add to these the standard menu bar and the ap-
plication title bar, and you have examples of most of the visual ele-
ments in a Windows 3.1 program.

From the operating system’s point of view, every single one of the
interface’s visual elements is a window. Not just the larger areas sur-
rounded by the framing borders as in Figure 3-4, but virtually every
visual element of the Windows interface, is a separately identified win-
dow. The operating system keeps track of all of the windows, and user
actions performed in one window—for example, a mouse click on a
checkbox—ultimately result in the system’s sending a message to the
application that owns the window. The message to the application takes
the form of data that informs the application in which window the ac-
tion took place and what happened in the window. Very often the appli-
cation relies upon the system’s default processing to take care of any
action required in response to the message. For example, Windows it-
self will draw or remove the mark in a checkbox if the user clicks on the
checkbox. Thus, a large amount of the code in Windows is devoted to
handling all of these default actions, and individual application pro-
grams don’t have to include equivalent functions. One of Microsoft’s
guiding principles in the design of Windows has been to include within
the operating system functions that a majority of users or applications

15. Because Windows is responsible for drawing the controls, your Windows 3.1
applications will have the Windows 95 visual appearance when you run them under
Windows 95. Since it is the system that displays the standard visual elements, a 3.1
application will take on the new look without any modifications.

THREE: A Tour of Chicago

will need. It’s no surprise then when new visual elements such as an ap-
plication toolbar—and the associated default processing—eventually
appear in an operating system release. That’s exactly what happens
with Windows 95.¢

The concept of window ownership is another notion central to the
Windows system. Windows implements a strict hierarchy of windows. Ev-
ery window must have a parent window, and any application may create,
perhaps many, child windows. A child inherits many aspects of the parent,
such as its default behavior. The hierarchical relationship also defines
how window messages pass through the system: the youngest child win-
dow gets the first chance to process a message aimed at the window, and
ifitignores the message, its immediate parent inherits the message. Ulti-
mately the message may pass all the way to the top of the hierarchy so
that the system itself can respond with the default message handlers.

The windows within our dialog box example are all child windows
of the dialog box window. When the parent window disappears, so
do all the child windows. When an application terminates, all of the
descendant windows created by the application disappear (are
“destroyed,” in application programmer’s parlance).

The programmer’s term control actually refers to standard ele-
ments in the Windows interface that populate components such as dia-
log boxes and message boxes. Typically a control has some changeable
data associated with it and will constrain what the user can do to the
data. A checkbox, for example, allows only an on or an off condition,
and a list box may allow the user to select only from a predetermined
list of entries. The concept of a control is a little broader than this
simple description indicates, but most applications use these kinds of
controls. For application programmers, Windows makes the use of con-
trols very easy by providing all the software to create, manage, and
modify them and, subsequently, to determine user input.

Windows 95 User Interface Design

When contemplating changes to the appearance of Windows, the de-
signer faces more considerations than the visual appearance of a par-
ticular element, considerations such as those itemized on the next page.

16. In accord with the same principle, network support and disk compression
support have ultimately been incorporated into operating systems. Support for
spreadsheet operations hasn’t been and most likely never will be.

95

INSIDE WINDOWS 95

B What is the default behavior for a new window? Is it similar
enough to an existing window type that applications can take
advantage of common processing by the system?

B What behavior does a new window’s appearance imply? A
checkbox-like window that requires the user to enter a single
letter or number will probably confuse most users, for instance.

B Is the new element useful for many applications and not
simply for a single special case?

B Does the proposed new element or new appearance or
behavior of an existing element actually help the user? That
is, does the new or changed element provide an easier or
more obvious way to do something?

Add these considerations to the more practical ones of large scale
software development—how much memory is needed, how fast it will
run, whether it can be finished in time—and you can see that changing
the appearance of Windows 3.1 was more than just a facelift operation.
The changes in the interface from Windows 3.1 to Windows 95 do aim
to correct a number of flaws. But more impressive, a number of new
user interface concepts make their first appearance with Windows 95.
These ideas form the basis for the design of many of the new visual ele-
ments and for the design of the Windows 95 shell itself. In Chapter
Five, we’ll identify the problems in Windows 3.1 that Windows 95 aims
to correct and look at the conceptual basis for the new appearance.

Windows Programming Basics

This book isn’t about to try to teach you how to program for Windows.
That subject has been explored comprehensively in hundreds of books
and magazine articles over the last few years.”” However, just to make
sure that we embark on this voyage of discovery on an equal footing,
let’s review some basic information.

Event Driven Programming

96

Windows uses an event driven programming model that’s almost more
commonplace now than the procedural model everyone learned in

17. As ever, Charles Petzold’s book Programming Windows, 3d ed. (Microsoft Press,
1992), remains the best introductory text.

THREE: A Tour of Chicago

school. First popularized by the Apple Macintosh operating system,
event driven programming relies on external events to stimulate re-
sponses from an application. Mouse clicks and key depressions are the
two most common external stimuli for a Windows application, al-
though it’s possible to translate any change in the application’s envi-
ronment into an event suitable for consumption by an application.

Windows feeds an event to an application in the form of a message
that describes the change in the application’s environment. Some mes-
sages are universal, such as those informing an application that the user
has clicked on an application menu item. Other messages—for example,
those indicating movement of the mouse cursor within an application
window—are often of interest only to a particular type of application. Ev-
ery message is associated with a specific application window, and each
window has a window procedure associated with it. A Windows application
receives messages by means of the GetMessage() API function, and calls
Windows by means of the DispatchMessage() API function. Then Windows
itself calls the appropriate window procedure, passing it the message to
be processed. All messages are processed from within a queue that’s
maintained by the system and that preserves the order of the messages. If
mouse click and keyboard entry messages, for example, weren’t received
and processed in the same order as the user entered them, the system
would be out of control.

Message Handling

It used to be that every Windows application included the code frag-
ments shown in Figure 3-5 on the next page—although you should no-
tice one innovation in the code shown there. If you’ve written Windows
programs, you probably have something very similar in your earlier pro-
grams. Windows applications rely upon the system to provide significant
amounts of default processing. If an application isn’t interested in a par-

- ticular message, it simply ignores it and allows the system to apply its de-
fault response behavior to the message. Often the default processing
means discarding the message altogether, and often it means that the
window procedure for a particular message is simply not part of the ap-
plication. For example, it is quite rare for an application to register a
window procedure to handle messages sent to controls—the system’s de-
fault handling of such messages is usually adequate.

97

INSIDE WINDOWS 95

(continued)

3-5.

igure

F

ndows message loop

Fragments of the Wi

98

THREE: A Tour of Chicago

Figure 3-5. continued

Program Resources

Another common aspect of Windows programs is their use of identifi-
ers called handles to reference every object within their environments:
windows, memory blocks, files, communications devices, cursors, bit-
maps, and so on. Handles are simply convenient numeric identifiers
for resources that the system has allocated to a Windows program. Al-
most every Windows API function deals with a handle in one way or
another. Sometimes a handle can be translated into a more direct ref-
erence—a memory address, for example. However, it’s bad practice to
do that, and under Windows 95 the unwritten rules for such transla-
tions have changed anyway.

Windows 95 Programrhing

Under Windows 95, the fundamentals of Windows programming
haven’t changed. The event driven model is still the basis for how you
write 2 Windows program. However, there are some evolutionary
changes in writing a program for Windows 95:

B Microsoft is all but forcing developers to move to Win32
as the preferred Windows API. There are a lot of good tech-
nical reasons to go to 32-bit programs anyway, but the fact that
.the new capabilities of Windows 95 are accessible only to
Win32 applications tends to predetermine the result.

99

INSIDE WINDOWS 95

100

The programmer’s access to the new capabilities of Windows
95, notably 32-bit programs and preemptive scheduling, will
introduce new twists in the already complex Windows pro-
gramming model. If you don’t already know how to develop
applications for a preemptive multitasking system, Windows
95 forces you to learn. There are also some subtle changes
that the 32-bit API engenders in application code—if you
looked at the code in Figure 3-5, you saw one example.

Microsoft’s Object Linking and Embedding (OLE) technol-
ogy represents a massive investment in a new programming
methodology that may well transform Windows program-
ming and the nature of Windows applications. OLE has been
available in advance of the Windows 95 release, but its pres-
ence as a standard component of the Windows 95 product is
likely to ensure that a lot of programmers will spend a lot of
time learning it.

E The programming tools now available for Windows stress
more and more the object-oriented programming model
evident in languages such as C++. Windows is by its nature an
object-oriented environment, although purists can point to
areas in which Windows deviates from a pure object-oriented
model. The new tools for Windows programming tend to
hide these minor deviations, and with the emphasis that
Microsoft now places on OLE and the future promise of Cairo,
object-oriented programming is likely to be the discipline in
vogue for the next few years.

Although everything you worked hard to learn about Windows pro-
gramming is still valid, there are some new aspects that Windows 95 will
tend to bring into focus. OLE is not the least of these and is by some esti-
mates as complex as the entire Windows 2.0 product ever was. However, if
you’re comfortable with the basic concepts of events, messages, message
queues, window procedures, handles, and windows, you shouldn’t find
anything in the following chapters to be incomprehensible.

THREE: A Tour of Chicago

Conclusion

In this chapter, we took a tour through a lot of the basic terminology
and some of the inner workings of Windows. If you knew most of this
Windows lore already, you're ready for the new acronyms and some of
the architectural changes introduced with Windows 95. If you didn’t
know your way around Windows, I hope you’re ready for a second
heavy dose.

We looked at several of the new features of Windows 95 in this chapter but ig-
nored a lot of the detail. Chapter Four is where we’re cleared for the approach to
Chicago.

References

Duncan, Ray, et al. Extending DOS. 2d ed. Reading, Mass.: Addison-Wesley,
1991. A collection of lengthy papers about different aspects of squeezing
more memory and more function from MS-DOS. The book includes a
good discussion of DOS extenders and the DPMI specification.

Intel Corporation. MS-DOS Protected Mode Interface Specification. The definitive
specification for version 0.9 of DPMI. There’s also a version 1.0, but since
Windows itself supports only version 0.9, this is the de facto standard. To
get a free paper copy, call Intel at 1-800-548-4725.

Petzold, Charles. Programming Windows 3.1. 3d ed. Redmond, Wash.:
Microsoft Press, 1992. A classic in its own way. The best introduction to
Windows programming there is. If we’re lucky, Charles is hard at work on
the Windows 95 version.

101

CHAPTER FOUR

THE BASE SYSTEM

In this chapter and the next, we’ll examine the two features of Win-
dows 95 that most differentiate it from its predecessors. Of all the new
features in Windows 95, the most prominent to the user will be the new
appearance and the new system shell—the most obvious changes from
Windows 3.1—and that’s what we’ll look at in Chapter Five. For the
programmer, the support for a native 32-bit API will probably be the
most closely studied new feature in Windows 95. But the 32-bit API is
merely the best-documented manifestation of the changes in the un-
derlying operating system. In Windows 95, Windows finally becomes a
complete operating system. No longer is it simply a “graphical DOS ex-
tender,” some critics’ characterization of the earlier versions of Win-
dows. In Windows 95, many new or revised components now make full
use of the 32-bit protected mode of the 386 processor. The operating
system within Windows 95 is the subject of this chapter.

Simply looking at the feature highlight list for the base operating
system gives you an indication of how much is new and how much work
has gone into this part of Windows 95:

@ For all intents and purposes, real mode MS-DOS is gone.
Finally Windows is a complete operating system with no
reliance on MS-DOS and its real mode architecture and
limitations.

B A new filesystem architecture and 32-bit protected mode
implementation of the FAT filesystem eliminate the last major
dependency of Windows on MS-DOS. The new filesystem also
provides significant system performance improvements.

103

INSIDE WINDOWS 95

Windows 95 provides full support for 32-bit applications,
including a 32-bit Windows API and protected, private
address spaces.

® Windows 95 provides for the preemptive scheduling of
Windows applications.

B Windows 95 provides architected support for multiple
simultaneous network connections.

Naturally, whatever changed in Windows 95 had nevertheless to re-
main compatible with Windows 3.1 and MS-DOS. The developers had
the ever present specter of compatibility looking over their shoulders.

And the designers of Windows 95 had to recognize Windows NT
as a preexisting operating system in much of their work. Sometimes the
obligation to Windows NT helped. Windows 95 picked up components
of the disk device driver architecture used in Windows NT, for example.
And sometimes deference to the earlier Windows NT created quanda-
ries: which subset of the Windows NT API set Windows 95 should fully
support, for instance. As we examine the system’s features, we’ll draw a
number of comparisons between Windows 95 and Windows NT.

What we’ll concentrate on in this chapter are the underlying archi-
tecture and the major functional components of the operating system.
While the project was under development, the Windows 95 team pub-
licly referred to this collection of software as the base system, or simply the
base 0S.! Throughout the project, there was a lot of internal and exter-
nal discussion and speculation about a protected mode MS-DOS version
7.0 that would provide the operating system functionality required by

- Windows 95. By and large, this version of MS-DOS (if it appears) will be

the operating system components of Windows 95 in a different package.
Since we’re concerned with Windows only, we won’t go into what might
or might not appear in MS-DOS version 7.0.

Windows 95 Diagrammed

104

Software designers often discuss an operating system as if it were a liv-
ing, breathing entity. Reducing such an organism to simple diagrams
can’t provide a complete picture of either its complexity or the subtle
interactions among its different components. But given our medium,

1. Microsoft code-named the OS components Jaguar and Cougar. There were also
dragons stalking the halls. Interesting place to work.

FOUR: The Base System

diagrams are what we have.? Figure 4-1, a variation on Figure 3-1, provides
just such an inadequate view of the system’s most important components.

System Virtual Machine MS-DOS Virtual Machines

Shared address
space

T Ring 3 components

* Ring 0 components Virtual Machine Manager
File Management subsystem subsystem :

Figure 4-1.
Windows 95 system architecture.

2. One Microsoft designer maintains that drawing a block diagram of Windows NT
gives you a neat, concise presentation showing how the system really does work. For
Windows 95, a similar representation is a little more chaotic, but the diagrammatic
oddities usually point to important concerns—namely, compatibility and performance.

105

INSIDE WINDOWS 95

It would be difficult to point to a single box as the base operating
system since aspects of the low-level design permeate Windows 95. In
this chapter, we’ll concentrate on the functions provided by the Virtual
Machine Manager and on sorie details of the System Virtual Machine
architecture:

B Scheduling and memory management services

B The management of Windows-based applications within the
System Virtual Machine

B The management of the MS-DOS virtual machines
The foundation for the Windows API layer

We won’t get into all of the extremely low level details of h