P

ROGRAMM

The Microsoft Guide to writing applications for Windows 3

SECOND EDITION

The Authorized Edition

CHARLES PETZOLD

RRRRRRRRRRR

WINDOWS

P R I N G

s
i S

Charles Petzold

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1990 by Charles Petzold

All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Petzold, Charles, 1953—

Programming Windows : the Microsoft guide to writing applications

for Windows 3 / Charles Petzold. -- 2nd ed.
p- cm.

ISBN 1-55615-264-7 :

1. IBM Personal computer--Programming. 2. Microsoft Windows
(Computer programs) I. Title.
QA76.8.12594P474 1990
005.4'3--dc20 90-35467

CIP

Printed and bound in the United States of America.
89 MLML 654321

Distributed to the book trade in Canada by Macmillan of Canada,
a division of Canada Publishing Corporation

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available

Apple” and LaserWriter® are registered trademarks of Apple Computer, Inc. IBM® is a registered
trademark of International Business Machines Corporation. Microsoft? MS-DOS? and MultiPlan®
are registered trademarks and Windows™ is a trademark of Microsoft Corporation.

Project Editor: Jack Litewka
Technical Editor: Wm. Jeff Carey
Acquisitions Editor: Dean Holmes

Contents

Preface
ix

SECTION |

GETTING STARTED
1

Chapter1
Hello, Windows
3

Chapter 2
Painting with Text
45

SECTION I

READING INPUT

85

Chapter 3
The Keyboard
87

Chapter 4
The Mouse
133

Chapter 5
The Timer
173

Chapter 6
Child Window Controls
205

vi

SECTION I

USING RESOURCES

261

Chapter 7
Memory Management
263

Chapter 8
Icons, Cursors, Bitmaps, and Strings
303

Chapter 9
Menus and Accelerators
335
Chapter 10

Dialog Boxes
403

SECTION IV

THE GRAPHICS DEVICE INTERFACE

491

Chapter 11
An Introduction to GDI
493

Chapter 12
Drawing Graphics
541

Chapter 13
Bits, Bits, and Metafiles
605

Chapter 14
Text and Fonts
651

Chapter 15
Using the Printer
715

SECTIONV

DATA EXCHANGE AND LINKS

775

Chapter 16
The Clipboard
777

Chapter 17
Dynamic Data Exchange (DDE)
: 809

Chaptef 18
The Multiple Document Interface (MDI)
853

Chapter 19
Dynamic Link Libraries
877

Index
917

vii

Preface

When I began writing the first edition of PROGRAMMING WINDOWS in the early spring
of 1987, Microsoft Windows 1.0 had been released for about a year and a half, a beta-test
version of Windows 2.0 was just becoming available, and Windows 3.0 could only be
regarded as a far-fetched dream. At that time, the eventual success of Windows in the
personal computer marketplace was more a matter of faith than a certain-to-come reality.

With the release of Windows 3, more people than ever are interested in this operat-
ing environment. Windows 3 runs Windows programs in Intel 80286—compatible pro-
tected mode, giving Windows and Windows programs access to 16 megabytes of memory.
This exciting enhancement to Windows—coupled with the many Windows applications
released over the past few years—has made Windows 3 an important piece of systems
software released for IBM-compatible personal computers. Windows is the graphical inter-
face that many computer users will first encounter. '

Since the publication of the first edition of PROGRAMMING WINDOWS in early
1988, many programmers have told me that the book has been useful in helping them learn
how to write applications for Windows. Nothing could make me happier.

It was my intention with the first edition of PROGRAMMING WINDOWS to show the
basics of writing programs for Windows using the C programming language. A book like
this cannot delve into the complexities of a full-fledged application program, of course,
but it can show how to handle all the various components of a Windows program. It is up to
the application programmer to merge these components into a coherent whole.

In this second edition of PROGRAMMING WINDOWS, I have updated the text where
necessary, updated the code listings for a more modern style of C programming, tightened
the early chapters (where I felt I had been more theoretical than practical), and added two
new chapters—one on Dynamic Data Exchange (DDE) and one on the Multiple Document
Interface (MDD). Interestingly enough, the Windows application program interface has
been fairly stable over the years and very few changes had to be made to the sample
programs.

Windows has a reputation for being easy for users but tough for programmers. Often,
aspiring Windows programmers face a steep learning curve, and they want to see lots of
programming examples. To satisfy that desire, this book contains more than 50 complete
programs. Many of them are short and stripped down to clearly illustrate various Windows
programming techniques. Others are a bit longer to show how everything fits together.
Several of the programs are useful utilities. Others are tools for exploring Windows.

What I don’t do in this book is teach you how to use Windows. If you have no ex-
perience using the environment, now is the time to install it and play with it for awhile.
Windows is very easy to learn.

PROGRAMMING WINDOWS

Nor will I teach you how to program in C. Before you even think about programming
for Windows, you should have a good working knowledge of programming in C for a more
conventional environment such as MS-DOS. If your C is a little rusty, you may want to
spend some time becoming better acquainted with the topics of structures and pointers.

A good familiarity with the segmented architecture of the Intel 8086 family of micro-
processors will also help. If you know how 80286 addressing works (in both real mode and
protected mode) and the difference between near and far pointers and functions, you're in
good shape. If you don't, I've included some explanations along the way.

To compile the programs in this book and to write your own programs for Windows,
you need the following software packages:

B Microsoft Windows 3
m Microsoft Windows Software Development Kit 3
B Microsoft C Professional Development System (aka Microsoft C 6)

If you haven't yet installed Microsoft C 6, you should know that the programs in the
book require only the small-model MS-DOS libraries using the math emulator. You may be
able to use a C compiler other than Microsoft’s if the compiler is suitable for compiling
Windows programs. Most other C compilers can’t be used for this purpose.

To run Windows and the Windows Software Development Kit, you need the follow-
ing hardware:

® An IBM personal computer (or compatible) based on the Intel 80286 or
80386 microprocessor with a hard disk and 640 KB of memory running
MS-DOS 3.1 or later. An 80386-based machine with a couple megabytes of
extended memory is ideal.

W A graphics display and video board, preferably compatible with the IBM
VGA (Video Graphics Array) or better.

B A mouse. Although a mouse is generally optional for most Windows
programs, some of the programs in this book require one.

Sometimes readers of computer books are curious about the author’s own system.
When I was writing the first edition of PROGRAMMING WINDOWS, I used an IBM PC/AT
Model 339 (8 MHz) with two 30-megabyte (MB) hard disks, 512 KB of memory on the sys-
tem board, and a 1.5 MB Intel Above Board PS/AT. The system included a Microsoft mouse,
an IBM 256-KB Enhanced Graphics Adapter (EGA), and a NEC MultiSync monitor. I wrote
the book using WordStar 3.3 and printed everything on an IBM 5152 Graphics Printer.

For the second edition, I used a 20-MHz IBM PS/2 Model 70 with a 120-MB hard disk,
6 MB of memory, an IBM 8514/A graphics board (although I generally ran Windows in VGA
mode), a NEC MultiSync 4D monitor, and a Microsoft mouse. I used Microsoft Word for
revising the book chapters, printing on a NEC SilentWriter LC-890 PostScript printer. (Word
for Windows was not available until I was well into the revision.)

Preface

A book such as this could not have come about without help and encouragement
from some very special people. I offer my heartfelt thanks with a handshake or hug (as
appropriate) to the following people:

B To everyone at Microsoft involved in Windows 3, for creating a system
with fascinating depth and seemingly endless things to learn.

B To all the Windows 3 developers who reviewed my chapters and offered
comments and suggestions: Clark Cyr, David D’Souza, and particularly
David Weise.

B To the MS Online System Support people in the Windows SDK group who
reviewed galleys of the entire book: Much gratitude to Todd Cole, who
volunteered his group and coordinated the effort; special thanks to
John Hagerson, Mike Thurlkill, Dennis Crain, David Long, Ed Mills,
Steve Molstad, Richard Herrmann, Dan Boone, and Kyle J. Sparks; thanks
also to Jeff Stone, Dan Quigley, Steve Thompson, Larry Israel, Teresa
Posakony, Neil Sandlin, Curt Palmer, David Flenniken, Charles E. Kindel
Jr., and Doug Laundry.

B To everyone at Microsoft Press who has been involved in the first and
second editions of PROGRAMMING WINDOWS, for behind-the-scenes
work that makes all the difference in the world.

B To my friends and editors at PC Magazine and Microsoft Systems Journal
for their help and encouragement over the years.

B To the readers of the first edition of PROGRAMMING WINDOWS who
wanted to see a second edition. It’s here and it’s yours!

® To my family, who thought I was crazy when I quit my job to write full
time: to my Mom, my brother Steve and his wife Bernie and Christopher
and Michelle, my sister Sue and her husband Rich and Erika and another
one on the way. You’re right. I was crazy.

B To my friend Karen. Words cannot express....

B To my friends at the “DH” (and especially Devon and Leslie) for enjoyable
company and interesting conversation that has nothing whatsoever to
do with computers. Completing this book gets me closer to writing that
novel! ‘

® And most of all, as always, to Jan, who was as happy as I was when I called
her and said, “I finally finished the chapter on DDE.” ‘

Charles Petzold
July 29, 1990

Special Offer

Companion Disks for
PROGRAMMING WINDOWS, 2nd ed.

Microsoft Press has created a set of timesaving Companion Disks for PROGRAMMING
WINDOWS that include the more than 50 complete Windows programs provided in this book.
Available in either 5 '/s-inch format (1.2-MB disk) or 3 '/2-inch format (720-KB two-disk set), the
Companion Disks contain both the source code and executable (EXE) files for all the book's pro-
grams. These include many useful utilities that let you explore and understand Windows' use of the
keyboard, mouse, memory, graphics, color, and fonts. These Companion Disks are a valuable ready-
to-use resource for Windows programmers. Order your set today!

Domestic Ordering Information:

To order, use the special reply card bound in the back of the book. If the card has already been used,
please send $29.95, plus sales tax in the following states if applicable: AZ, CA, CO,CT,DC, FL,
GA, ID, IL, IN, KY, ME, MD, MA, MI, MN, MO, NE, NV, NJ, NY, NC, OH, SC, TN, TX, VA,
and WA. Microsoft reserves the right to correct tax rates andlor collect the sales tax assessed by
additional states as required by law, without notice. Please add $5.50 per disk set for domestic
postage and handling charges. Mail your order to: Microsoft Press, Attn: Companion Disk Offer,
21919 20th Ave SE, Box 3011, Bothell, WA 98041-3011. Specify 5 '/s-inch or 3 '/2-inch format.
Payment must be in U.S. funds. You may pay by check or money order (payable to Microsoft Press)
or by American Express, VISA, or MasterCard; please include both your credit card number and the
expiration date. Allow 2 — 3 weeks for delivery.

Foreign Ordering Information (except within the U.K.: see below):
Follow procedures for domestic ordering and add $6.00 per disk set for foreign postage and
handling. '

U.K. Ordering Information: ,
Send your order in writing along with £27.95 (includes VAT) to: Microsoft Press, 27 Wrights Lane,

London W8 5TZ. You may pay by check or money order (payable to Microsoft Press) or by
American Express, VISA, MasterCard, or Diners Club; please include both your credit card number
and the expiration date. Specify 5 /4-inch or 3 '/2-inch format.

Microsoft Press Companion Disk Guarantee
If a disk is defective, a replacement disk will be sent. Please send the defective disk along with your

packing slip (or copy) to: Microsoft Press, Consumer Sales, One Microsoft Way, Redmond, WA
98052-6399. ,
If you have questions or comments about the files on the disk,
you can contact the author through MCI mail (CPETZOLD or 143-6815).

The Companion Disks for PROGRAMMING WINDOWS, 2nd ed.,
are available only from Microsoft Press.

SECTION

GETTING
- SIARTED

Chapter1
HQ“O,
Windows

Since its introduction in November 1985, Microsoft Windows has emerged as the most
popular graphical user interface environment for MS-DOS. Several million copies of Win-
dows have been shipped, and hundreds of Windows applications are currently available.

For the user, Windows provides a multitasking graphical-based windowing environ-
ment that runs programs especially designed for Windows. Such programs include
Microsoft Excel (spreadsheet and business graphics), Microsoft Word for Windows (word
processing), Aldus’s PageMaker (desktop publishing), Samna’s Ami (word processing),
Micrografx’s Designer (drawing), IBM’s Current (a personal information manager),
Asymetrix’s ToolBook (a software construction kit), and many others. Programs written for
Windows have a consistent appearance and command structure, and are thus often easier
to learn and use than conventional MS-DOS programs. Users can easily switch among dif-
ferent Windows programs and exchange data between them. Windows also provides an
easy-to-use icon-based Program Manager for running programs as well as a File Manager
and Print Manager for file maintenance and printer-queue management.

'Although Windows exists primarily to run applications especially written for the en-
vironment, Windows can also run many programs written for MS-DOS. Of course, these
programs cannot take advantage of many Windows features, but in some cases they can be
windowed and multitasked alongside Windows programs.

For the program developer, Windows provides a wealth of built-in routines that allow
the use of menus, dialog boxes, scroll bars, and other components of a friendly user inter-
face. Windows also contains an extensive graphics programming language that includes

3

SECTION I: GETTING STARTED

the use of formatted text in a variety of fonts. Programmers can treat the keyboard, mouse,
video display, printer, system timer, and RS-232 communication ports in a device-
independent manner. Windows programs run the same on a variety of hardware
configurations.

The “look and feel” of Windows also shows up in the OS/2 Presentation Manager.
0OS/2 is the protected mode operating system developed by International Business
Machines Corporation (IBM) and Microsoft Corporation as a successor to MS-DOS; the
graphical user interface under OS/2 is called the Presentation Manager. While the applica-
tion program interfaces of Windows and the OS/2 Presentation Manager are not the same,
they have many similarities and common structural elements.

A BRIEF HISTORY OF WINDOWS

Windows was announced by Microsoft Corporation in November 1983 and released two
years later in November 1985. Over the next two years, Windows 1.01 (the first released
version) was followed by several updates to support the international market and to pro-
vide drivers for additional video displays and printers.

Windows 2.0 was released in November 1987. This version incorporated several
changes to the user interface to make it consistent with the forthcoming OS/2 Presentation
Manager (released in October 1988). The most significant of these changes involved the
use of overlapping windows rather than the “tiled” windows found in the earlier versions
of Windows. Windows 2.0 also included enhancements to the keyboard and mouse inter-
face, particularly for menus and dialog boxes.

Windows/386 (released shortly after Windows 2.0) used the Virtual-86 mode of the
386 microprocessor to window and multitask many DOS programs that directly access
hardware. For symmetry, Windows 2.1 was renamed Windows/286.

Windows 3—the subject of this book—was introduced in a spectacular product an-
nouncement on May 22, 1990. The earlier Windows/286 and Windows/386 versions have
been merged into one product with this release. The big change in Windows 3 is the sup-
port of the protected mode operation of Intel’s 80286 and 80386 microprocessors. This
gives Windows and Windows applications access to up to 16 megabytes of memory. The
Windows “shell” programs (the Program Manager, Task Manager, and File Manager) have
been completely revamped.

THE USER’S PERSPECTIVE

Windows provides considerable advantages to both users and programmers over the con-
ventional MS-DOS environment. The benefits to users and the benefits to program devel-
opers are really quite similar, because the job of a program developer is to give users what
they need and want. Windows makes this possible.

Chapter 1: Hello, Windows

The Graphical User Interface (GUI)

Windows is a graphical user interface (GUI), sometimes also called a “visual interface” or
“graphical windowing environment.” The concepts behind this type of user interface date
from the mid-1970s, with the pioneering work done at the Xerox Palo Alto Research Center
(PARC) for machines such as the Alto and the Star and for environments such as Smalltalk.

The work done at Xerox PARC was brought into the mainstream and popularized by
Apple Computer, Inc., first in the ill-fated Lisa and then a year later in the much more suc-
cessful Macintosh, introduced in January 1984. The Apple Macintosh remains a significant
challenger to IBM’s dominance in the personal-computer business market. It is not so
much the hardware of the Macintosh but its operating system that makes the machine
so appealing to users. The Mac is simply easier to use and learn than an IBM PC running
MS-DOS.

Since the introduction of the Macintosh, graphical user interfaces have bloomed like
wildflowers throughout the personal-computer industry and the not-so-personal com-
puter industry as well. For IBM-compatibles running MS-DOS, there is Windows. For IBM-
compatibles running OS/2, there is the Presentation Manager. For the Commodore Amiga,
there is Intuition. For the Atari, there is GEM. For machines running UNIX, there is the
X-Window system. For Sun Microsystems workstations, there is NeWS. For the NeXT, there
is NextStep.

It is obvious that the graphical user interface is now (in the words of Microsoft’s
Charles Simonyi) the single most important “grand consensus” of the personal-computer
industry. Although the various graphical environments differ in details, they have similar
characteristics.

GUI Concepts and Rationale

All graphical user interfaces make use of graphics on a bitmapped video display. Graphics
provides better utilization of screen real estate, a visually rich environment for conveying
information, and the possibility of a WYSIWYG (what you see is what you get) video dis-
play of graphics and formatted text prepared for a printed document.

In earlier days, the video display was used solely to echo text that the user typed
using the keyboard. In a graphical user interface, the video display itself becomes a source
of user input. The video display shows various graphical objects in the form of icons and
input devices such as buttons and scroll bars. Using the keyboard (or, more directly, a
pointing device such as a mouse), the user can directly manipulate these objects on the
screen. Graphics objects can be dragged, buttons can be pushed, and scroll bars can be
scrolled.

The interaction between the user and a program thus becomes more intimate. Rather
than the one-way cycle of information from the keyboard to the program to the video dis-
play, the user directly interacts with the objects on the display.

SECTION I: GETTING STARTED

The Consistent User Interface

Users no longer expect to spend long periods of time learning how to use the computer or
mastering a new program. Windows helps because all Windows programs have the same
fundamental look and feel. The program occupies a window—a rectangular area on the
screen. It is identified by a caption bar. Most program functions are initiated through the
program’s menu. Figure 1-1 shows a typical Windows program (in this case Write, the word
processor included in Windows) with the various window components labeled.

Some menu items invoke dialog boxes, in which the user enters additional informa-
tion. One dialog box found in almost every large Windows program opens a file. (See
Figure 1-2.) This dialog box looks the same (or very similar) in many different Windows
programs, and it is almost always invoked from the same menu option.

Once you know how to use one Windows program, you’re in a good position to
easily learn another. The menus and dialog boxes allow a user to experiment with a new
program and explore its features. Most Windows programs have both a keyboard interface
and a mouse interface. Although most functions of Windows programs can be controlled
through the keyboard, using the mouse is often easier for many chores.

System menu box Caption bar (or title bar) Menu bar Minimize box

| 7 Write - ISHMAEL.WRI

| File Edit Search Character Paragraph Document Help
Call me Ishmael. Some years ago -- never mind how long precisely --
having little or no money in my purse, and nothing particular to interest me
onshore, I thought I would sail about alittle and see the watery part of the
world. It is a way [have of driving off the spleen, and regulating the
circulation. Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I find myself
involuntarily pausing before coffin warehouses, and bringing up the rear of
every funeral I meet; and especially whenever my hypos get such an upper
hand of me, that it requires a strong moral principle to prevent me from ' Program's
deliberately stepping into the street, and methodically knocking people's hats client area
off -- then, I account it high time to get to sea as soon as I can. This is my
substitute for pistol and ball. With a philosophical flourish Cato throws
himself upon his sword; I quietly take to the ship. There is nothing
surprising in this. If they but knew it, almost all men in their degree, some
timle or other, cherish very nearly the same feelings towards the ocean with > Scroll bars
me
-4

Maximize box

Sizing
border

Figure 1-1. WRITE, a typical Windows program.

Chapter 1: Hello, Windows

=| L Write - ISHMAEL WRI e e
File Edit §earch Qharadcr Paragraph Document Help

Call me Ishmael. Some years ago -- never mind how long precisely --

having i) File Open icular to interest me
1 Filename: | &) I € watel:y part of the
Directory: c:\winbook2\chap01 regulatmg the
Files: Divoctors t the moutl!;
T henever I find mys elf
inging up the rear of
os get such an upper
brevent me from
knocking people's hats
k I can. This is my
ish Cato throws

surprising in this. lf they but lmew it, almost all men in thexr degree, some
time or other, cherish very nearly the same feelings towards the ocean with

me.
x R B

O a -] »

Figure 1-2. A dialog box to open a file.

From the programmer’s perspective, the consistent user interface results from using
the routines built into Windows for constructing menus and dialog boxes. All menus have
the same keyboard and mouse interface because Windows, rather than the application
program, handles this job.

The Multitasking Advantage

Although some people continue to question whether multitasking is really necessary on a
single-user computer, users definitely are ready for multitasking and can benefit from it.
The popularity of MS-DOS RAM-resident programs such as Sidekick proves it. Although
popups are not, strictly speaking, multitasking programs, they do allow fast context
switching. This involves many of the same concepts as multitasking.

Under Windows, every program in effect becomes a RAM-resident popup. Several
Windows programs can be displayed and running at the same time. Each program oc-
cupies a rectangular window on the screen, as shown in Figure 1-3 on the following page.
The user can move the windows around on the screen, change their size, switch between
different programs, and transfer data from one program to another. Because this display
looks something like a desktop (in the days before the desk became dominated by the
computer itself, of course), Windows is sometimes said to use a “desktop metaphor” for
the display of multiple programs.

SECTIONI: GETTING STARTED

Write - ISHMAEL.WRI
File [Edit Search Character Paragraph Document Help

Call me Ishmael. Some years ago -~ never mind how long precisely --

having little or no money in my purse, and nothing particular to interest me
onshore, I thought I would sail about alittle and see the watery part of the
world. Itisa driving off the spleen, and regulating the

Fonts Mouse Desktop 386 Enhanced

Q@ ® & BH

Printers Interational ~ Keyboard Date/Ti Sound

Figure 1-3. Several programs running under Windows.

Meymory Management

An operating system cannot implement multitasking without doing something about
memory management. As new programs are started up and old ones terminate, memory
can become fragmented. The system must be able to consolidate free memory space. This
requires the system to move blocks of code and data in memory.

Even Windows 1, running on an 8088 microprocessor, was able to perform this type

‘of memory management. Under real mode, this can only be regarded as an astonishing feat

of software engineering. Programs running under Windows can overcommit memory; a
program can contain more code than can fit into memory at any one time. Windows can
discard code from memory and later reload the code from the program’s .EXE file. A user
can run several copies (called “instances”) of a program,; all these instances share the same
code in memory. Programs running in Windows can share routines located in other .EXE
files called “dynamic link libraries.” Windows includes a mechanism to link the program
with the routines in the dynamic link libraries at run time. Windows itself is a set of
dynamic link libraries.

Thus, even in Windows 1, the 640-KB memory limit of the PC’s architecture was ef-
fectively stretched without requiring any additional memory. But Microsoft didn’t stop
there: Windows 2 gave the Windows applications access to expanded memory (EMS), and
Windows 3 runs in protected mode to give Windows applications access to up to 16
megabytes (MB) of extended memory.

. Chapter 1: Hello, Windows

The Device-Independent Graphics Interface

Windows is a graphical interface, and Windows programs can make full use of graphics
and formatted text on both the video display and the printer. A graphical interface is not
only more attractive in appearance, but it can also impart a high level of information to the
user, as you can see in Figure 1-4.

Programs written for Windows do not directly access the hardware of graphics dis-
play devices such as the screen and printer. Instead, Windows includes a graphics pro-
gramming language (called the Graphics Device Interface, or GDI) that allows the easy
display of graphics and formatted text. Windows virtualizes display hardware. A program
written for Windows will run with any video board or any printer for which a Windows de-
vice driver is available. The program does not need to determine what type of device is
attached to the system. '

Putting a device-independent graphics interface on the IBM PC was not an easy job
for the developers of Windows. The PC design was based on the principle of open archi-
tecture. Third-party hardware manufacturers were encouraged to develop peripherals for
the PC and have done so in great number. Although several standards have emerged, con-
ventional MS-DOS programs for the PC must individually support many different hardware
configurations. For example, it is fairly common for an MS-DOS word-processing program
to be sold with one or two disks of small files, each one supporting a particular printer.

= : Microsoft Excel [~]+1
File Edit Formula Format Data Options Macro Window Help|
Fb 987

Sheetl B
e rnE e E e G
[]
Jan Feb Apr
New York 450 542 458 425
California 651 351 642 645
Boston 854 243 213 514
Chicago 512 516 243 987 ry 1
. ; > e
Four Month Sales

£ Newvork
[calitomia

1000

Nice work, Chicago ——p»

H Boston
[chicago

Figure 1-4. Microsoft Excel running under Windows.

SECTION I: GETTING STARTED

Windows programs do not require these drivers because the support is part of Win-
dows. This benefits users because most Windows programs require very little in the way
of installation. Everything a program needs can be included in the program’s single .EXE
file. The user can often copy the .EXE file to the fixed disk, load Windows, and go.

MS-DOS Applications

Although Windows primarily exists to run new programs specifically designed for the en-
vironment, Windows can also run many non-Windows MS-DOS programs. The Windows
User’s Guide refers to these as “standard applications,” but many Windows programmers
call them “old applications” or “old apps.”

These MS-DOS programs can be divided into two broad categories: Well-behaved
applications (or “good old apps”) are those that use the MS-DOS and PC ROM BIOS (basic
~ input/output system) software interrupts to read the keyboard and write to the video dis-
play. These programs can generally run in a window.

“Bad apps” are those that write directly to the video display, use graphics, or take
control of the hardware keyboard interrupt. The term “bad” here refers not to the quality of
the program—many of the best programs written for the PC are bad apps when it comes to
Windows—but to the way in which the program uses the hardware of the PC. When run-
ning on a 286-based machine, there is simply no way Windows can allow such a program
to be windowed or multitasked. However, Windows can use the “virtual 86” mode of the
386 microprocessor to window and multitask even bad applications. '

THE PROGRAMMER’S PERSPECTIVE

Windows has the reputation of being easy for users but difficult for programmers. If you
have no prior experience with programming for a graphical user interface, you should be
warned right now that you will encounter some very strange concepts. Almost every
programmer who begins writing code for Windows must go through some mental reorien-
tation to assimilate these concepts.

If at first you find Windows programming to be difficult, awkward, bizarrely con-
voluted, and filled with alien concepts, rest assured that this is a normal reaction. You are
not alone.

Windows and MS-DOS

You start up Windows as if it were a normal application program running under MS-DOS.
But as Windows loads, it becomes almost a full-fledged operating system. It’s not quite an
operating system because it runs on top of MS-DOS. While Windows is running, it shares
responsibility with MS-DOS for managing the hardware resources of the computer.
Basically, MS-DOS continues to manage the file system, while Windows does everything

10

Chapter 1: Hello, Windows

else. Windows commands the video display, keyboard, mouse, printer, and serial ports and
is responsible for memory management, program execution, and scheduling.

Windows is strong where MS-DOS is weak, and weak where MS-DOS is adequate.
Windows includes almost no support of file I/O, which is one of the most essential chores
of a minimal operating system such as MS-DOS. This leads to some amusing—or not so
amusing—consequences. It is easier in a Windows program to create a disk-based
metafile containing a complex series of graphics drawing commands than to create a
simple ASCII text file. The former is a Windows job; the latter requires that the program use
MS-DOS.

The Windows Commitment

Programming for Windows is an all-or-nothing proposition. For example, you cannot write
an MS-DOS application—even a well-behaved one—and use Windows only for some
graphics. If you want to use any part of Windows, you must make the commitment to write
a full-fledged Windows program.

The reason for this will become more obvious as you learn about the structure of a
Windows program. Everything in Windows is interconnected. If you want to draw some
graphics on the video display, you need something called a “handle to a device context.” To
get that, you need a “handle to a window.” To get that, you must create a window and be
prepared to receive “messages” to the window. To receive and process messages, you need
a “window procedure.” And at that point you’re writing a Windows program. You can't fly
unless you leave the ground.

The Function Calls

Windows 3 supports over 550 function calls that applications can use. It is highly unlikely
that you will ever memorize the syntax to all these calls. Most Windows programmers keep
the Windows Programmer’s Reference manual within easy reach.

Each of the Windows functions has a descriptive name written in mixed uppercase
and lowercase letters, such as CreateWindow. This function (as you might guess) creates a
window for your program. Another example: the function IsClipboardFormatAvailable
determines whether the clipboard is holding data of a particular format.

All the Windows functions are declared in a header file named WINDOWS.H,
included in the Windows Software Development Kit. WINDOWS.H is an important part of
the Windows documentation. You might want to print a copy or use a file browser for
quick reference.

You use these Windows functions in your Windows program the same way you use C
library functions such as strlen. However, there are some differences between the Win-
dows functions and the standard C library functions.

Windows functions are always declared as far pascal functions. These are two key-
words that Microsoft has added to its version of C. The far keyword indicates that the

11

SECTION I: GETTING STARTED

Windows function is in a different code segment than the program’s code. (You’ll see
the reason for this shortly.)

The pascal keyword indicates that the function’s calling sequence is different than
the normal C calling sequence. Normally, the C compiler generates code-that pushes pa-
rameters on the stack from right to left beginning with the last parameter. The code calling
the function is responsible for adjusting the stack pointer after the function returns. With
the pascal calling sequence, the parameters are pushed on the stack from left to right and
the called function cleans up the stack. The pascal calling sequence is used in Windows
because it is more efficient.

With one oddball exception, any pointer passed to a Windows function must be
a far pointer. This is something you normally don’t have to worry about because the
compiler will extend short pointers to long pointers based on the function template
in WINDOWS.H.

Dynamic Linking

If you've been working with MS-DOS programming for awhile, you might guess that a
Windows program interfaces with Windows through a software interrupt such as the
MS-DOS Interrupt 0x21. You might guess that the linker adds bindings to your Windows
programs that convert the Windows function calls-into this software interrupt. But you
would be wrong. A Windows program interfaces to Windows through a process called
“dynamic linking.”

Like MS-DOS programs, Windows executables have the filename extension .EXE.
However, this is not the same .EXE format that is used in MS-DOS. Instead, Windows pro-
grams use a .EXE format called the New Executable file format, similar to that used in
OS/2. Whenever a Windows program calls a Windows function, the C compiler generates
assembly-language code for a far call. A table in the .EXE file identifies the function being

called using a dynamic link library name and either a name or a number (called the ordinal
number) of the function in that library.

Windows itself consists largely of three dynamic link libraries, called KERNEL (re-
sponsible for memory management, loading and executing programs, and scheduling),
USER (the user interface and windowing), and GDI (the graphics). These libraries contain
the code and data for the Windows functions. You can find these three dynamic link librar-
ies in the SYSTEM subdirectory of your Windows directory.

When a Windows program is loaded into memory, the far calls in the program are
resolved to point to the entry of the function in the dynamic link library, which is also
loaded into memory. This is why all Windows functions must be defined as far: The code
in the dynamic link libraries is not in the same segment as the program’s code. Also, point-
ers passed in Windows functions must also be defined as far to avoid confusion with the
dynamic link library’s own code and data segments.

12

Chapter 1: Hello, Windows

Generally, you don’t have to worry about the use of far calls and far pointers because
the functions are declared as far functions with far pointers in WINDOWS.H: The C com-
piler will perform the necessary address translations for you.

When you link a Windows program to produce an executable, you must link with a
special “import library” provided with the Windows Software Development Kit. This im-
port library contains the dynamic link library names and ordinal numbers of all the Win-
dows functions. LINK uses this information to construct the table in the .EXE file that
Windows uses to resolve calls to Windows functions when loading the program.

Object-Oriented Programmihg

When programming for Windows, you'’re really engaged in a type of object-oriented pro-
gramming. This is most evident in the object you’ll be working with most in Windows—
the object that gives Windows its name, the object that will soon seem to take on anthro-
pomorphic characteristics, the object that may even show up in your dreams, the object
known as the “window.”

Windows are rectangular objects on the screen. A window receives user input from
the keyboard or mouse and displays graphical output on its surface.

An application window usually contains the program’s title bar, menu, sizing border,
and perhaps some scroll bars. Dialog boxes are additional windows. Moreover, the surface
of a dialog box always contains several additional windows called “child windows.” These
child windows take the form of push buttons, radio buttons, check boxes, text entry fields,
list boxes, and scroll bars.

The user sees these windows as objects on the screen and interacts directly with
these objects by pushing a button or scrolling a scroll bar. Interestingly enough, the pro-
grammer’s perspective is analogous to the user’s perspective. The window receives this
user input in the form of “messages” to the window. A window also uses messages to
communicate with other windows.

Understanding these messages is one of the hurdles you'll have to jump in becoming
a Windows programmer.

Message-Driven Architecture

The first time I saw a graphical user interface in action, I was puzzled. The demonstration
included a rudimentary word processor running in a window. The word processor would
reformat its text when the program’s window was resized.

It was obvious to me that the operating system was handling the details of the
window-resizing logic, and that the program was capable of responding to this system
function. How did the program krnow when its window was resized? What was the mecha-
nism the operating system used to convey this information to the window? My previous
programming experience was useless in understanding how this worked.

13

SECTION I: GETTING STARTED

It turns out that the answer to this question is central to understanding the architec-
ture used in graphical user interfaces. In Windows, when a user resizes a window, Win-
dows sends a message to the program indicating the new window size. The program can
then adjust the contents of its window to reflect the new size.

“Windows sends a message to the program.” I hope you didn’t read that statement
without blinking. What on earth could it mean? We're talking about program code here, not
an electronic mail system. How can an operating system send a message to a program?

When I say that “Windows sends a message to a program,” I mean that Windows calls
a function within the program. The parameters to this function describe the particular
message. This function located in your Windows program is known as the “window
procedure.”

The Window Procedure

You are undoubtedly accustomed to the idea of a program making calls to the operating
system. This is how a program opens a disk file, for example. What you may not be ac-
customed to is the idea of an operating system making calls to a program. Yet this is funda-
mental to Windows’ object-oriented architecture.

Every window that a program creates has an associated window procedure. This
window procedure is a function that could be either in the program itself or in a dynamic
link library. Windows sends a message to a window by calling the window procedure. The
window procedure does some processing based on the message and then returns control
to Windows.

More precisely, a window is always created based on a “window class.” The window
class identifies the window procedure that processes messages to the window. The use of a
window class allows multiple windows to be based on the same window class and hence
use the same window procedure. For example, all buttons in all Windows programs are
based on the same window class. This window class is associated with a window pro-
cedure (located in the Windows USER.EXE dynamic link library) that processes messages
to all the button windows.

In object-oriented programming, an “object” is a combination of code and data. A
window is an object. The code is the window procedure. The data is information retained
by the window procedure and information retained by Windows for each window and
window class that exists in the system.

A window procedure processes messages to the window. Very often these messages
inform a window of user input from the keyboard or mouse. This is how a push-button
window knows that it’s being “pressed,” for example. Other messages tell a window when
it is being resized, or when the surface of the window needs to be repainted.

When a Windows program begins execution, Windows creates a “message queue”
for the program. This message queue stores messages to all the various windows a program

14

Chapter 1: Hello, Windows

may create. The program includes a short chunk of code called the “message loop” to
retrieve these messages from the queue and dispatch them to the appropriate window pro-
cedure. Other messages are sent directly to the window procedure without being placed in
the message queue.)

If your eyes are beginning to glaze over with this excessively abstract description of
Windows architecture, maybe it will help to see how the window, the window class, the
window procedure, the message queue, the message loop, and the window messages all fit
together in the context of a real program.

YOUR FIRST WINDOWS PROGRAM

In their classic book The C Programming Language (2d ed., Prentice Hall, 1988), Brian
Kernighan and Dennis Ritchie begin discussing C with the now-famous “Hello, world”
program:

f#include <stdio.h>

main ()
{
printf ("Hello, world\n") ;
}

In the remainder of this chapter, I will show you the analogous program written for
Microsoft Windows. The program is called HELLOWIN, and it creates a window that dis-
plays the text string “Hello, Windows!”

Lest you collapse from shock when you first look at the HELLOWIN code, I'll warn
you now that there are three files involved, and that the HELLOWIN.C source code file is
over 80 lines long. Most of these 80 lines are overhead. You'll have similar overhead in
almost every Windows program you write. ’

Rather than ask why the “Hello, Windows” program is so long and complex, let’s ask
why the traditional “Hello, world” program is so short and simple.

What’s Wrong with this Program?

The output model for the “Hello, world” program and other traditional C programs is an
antique piece of hardware known as the teletype. The teletype resembles a typewriter with
a continuous roll of paper. In the not too distant past, programmers would sit at a teletype
and type in commands that were echoed to the paper. The computer responded by print-
ing its output on the paper. '

The teletype metaphor was extended to the video display in the early days of com-
puters. The video display became a “glass teletype” that simply scrolled when text reached
the bottom of the screen.

15

SECTION I: GETTING STARTED

How can the traditional “Hello, world” program display text without telling the
operating system the particular output device on which the text is to appear? Because there
is only one output device—the video display used as if it were a teletype. If the user wishes
the output to go elsewhere, it must be redirected from the command line.

How can the program display text without telling the system where on the output de-
vice the text is to appear? Because the text always appears where the cursor happens to be,
probably on the next line after you execute the program. Suppose you want to display
“Hello, world” in the center of the screen. You’d have to use some device-dependent con-
trol codes to first position the cursor at the desired location.

Let’s say you want to run several “Hello, world” programs at one time and see their
output on the screen. What a mess! The copies of the program would interfere with each
other. There is nothing in the teletype metaphor to separate output from several programs
running concurrently. ,

It’s also interesting that you see the “Hello, world” output even after the program ter-
minates. Rather than properly cleaning up after itself, the program is leaving remnants of
its existence on the video display.

The “Hello, world” program is so simple because it is designed for a simpler age and
simpler computers and simpler output devices. It's not in the same ballpark as what we
think of today as modern software, and it’s not even playing the same game.

The HELLOWIN Files

The three files necessary to create the “Hello, Windows” program are shown in Figure 1-5:
B HELLOWIN.MAK is a “make” file.
B HELLOWIN.C is the C source code file.
® HELLOWIN.DEF is a module definition file.

Figure 1-5. The HELLOWIN program.

16

Chapter 1: Hello, Windows

| l"'5'-'-0\'\"&!(:

UQ: ‘LONIN C-- Tays "Hello, Windc
o [(c)“Charles Petzold j

..................

-E hprevlnstAﬁce.ff
t nCmdShow)“ o

: “He]1oW1n“

: ndow c]ass a
ndow caption
- ndow style
./l initial x positi
.. [ll.initial y positi
- /lodinitial x size
/. initial y size = .
parént w1rdow hand]e-':'
window meny handle -
. /] program 1nstance and1e
. br95f1nn parameters

W USEDE{ ULT,
CW_USEDE
;cw USEDE AUL

(continued)

17

SECTIONI: GETTING STARTED

‘ (continued)

i8

Chapter 1: Hello, Windows

These are standard files that you'll create for every Windows program you write. Generally
when you begin a new Windows program, you'll copy the standard files from an existing
program and then make appropriate changes to them.

Most Windows programmers do all their program development and compiling out-
side of Windows under MS-DOS, and then load Windows to test the program. You can also
create and compile a Windows program in the Microsoft C 6 Programmer’s WorkBench. I'll
be discussing the source code files as if you create them in a text editor of your choice and
then compile the program from the MS-DOS command line outside of Windows.

If you have Windows, the Windows Software Development Kit, and the Microsoft C
Professional Development System (the C 6 compiler) properly installed, you can create
HELLOWIN.EXE from the three files shown in Figure 1-5 by executing:

NMAKE HELLOWIN.MAK

on the MS-DOS command line. You can then run Windows and the HELLOWIN EXE
program by executing:

WIN HELLOWIN

The program creates a normal application window as shown in Figure 1-6 on the fol-
lowing page. The window displays “Hello, Windows!” in the center of its client area.

When you think about it, this window has an amazing amount of functionality in its
mere 80 lines of code. You can grab the title bar with the mouse pointer and move the win-
dow around the screen. You can grab the sizing borders and resize the window. When the
window changes size, the program will automatically reposition the “Hello, Windows!”
text string in the new center of the client area: You can press the maximize button and
zoom HELLOWIN to fill the screen. You can press the minimize button and compress the
program into an icon. You can invoke all these options from the system menu and, in addi-
tion, close the window to terminate the program.

While you may be pleased to see that HELLOWIN has all the functionality of a nor-
mal Windows program, you may not look so pleasant-faced when you see the source code
required to create this program. But let’s be brave while I proceed to dlssect this program
piece by piece and analyze it to death.

19

SECTIONI: GETTING STARTED

=) The Hello Program ﬂﬂ

Hello, Windows!

Figure 1-6. HELLOWIN running under Windows.

The Make File

To ease compilation of Windows programs, you can use the NMAKE utility included in the
Microsoft C Professional Development System. Whenever you change something in one of
the HELLOWIN source files, all you need do is run:

NMAKE HELLOWIN.MAK

to create the updated HELLOWIN.EXE executable.

A make file consists of one or more sections, each of which begins with a left-
justified line that lists a target file, followed by a colon, followed by one or more dependent
files. This line is followed by one or more indented command lines. These commands
create the target file from the dependent files. If the last modification date and time of any
of the dependent files is later than the last modification date and time of the target file, then
NMAKE executes the indented command lines.

Normally, NMAKE will update only the target file in the first section of the make file.
However, if one of the dependent files is itself a target file in another section of the make
file, then NMAKE will update that target first.

20

Chapter 1: Hello, Windows:

The HELLOWIN.MAK make file contains two sections. The first runs the LINK.EXE
linker if HELLOWIN.OBJ or HELLOWIN.DEF has been altered more recently than
HELLOWIN.EXE: '

-hellowin.exe : hellowin.obj hellowin.def
link hellowin, /align:16, NUL, /nod slibcew libw, hellowin
rc hellowin.exe

The second section runs the CL.EXE C compiler if HELLOWIN.C has been changed
more recently than HELLOWIN.OB]J:

hellowin.obj : hellowin.c
¢l -c -Gsw -Ow -W2 -Zp hellowin.c

Because HELLOWIN.OBJ is a dependent file in the first section of the make file and a
target file in the second section, NMAKE will check whether HELLOWIN.OBJ needs up-
dating before re-creating HELLOWIN.EXE. Thus, the make file should be analyzed from
the bottom up.

Running the CL.EXE C compiler creates the HELLOWIN.OBJ object module from the
HELLOWIN.C source code file:

cl -c -Gsw -Ow -W2 -Zp hellowin.c

Several compiler switches are required (or recommended) for compiling Windows
programs:

B The -c¢ switch indicates that the program should be compiled only and not
yet linked. The link is a separate step.

B The -Gsw switch is actually two switches: -Gs and -Gw. The -Gs switch
disables checks for stack overflow. Because stack overflow messages are
written to standard error output (and are hence ignored by Windows), it’s
best simply to be sure that you are using a sufficient stack. (Four kilobytes
is recommended.)

B The -Gw switch is a special Windows switch that inserts special prolog
and epilog code in all far functions in the program. This code (which I'll
discuss in Chapter 7) aids Windows in moving code and data segments in
memory.

B The -Ow switch concerns optimization. With this switch the compiler
will avoid some optimizations that may cause problems specifically with
Windows programs.

B The -W2 switch enables warning level 2 for displaying warning messages.
You should make an effort to write programs that show no warning
messages when you compile with this switch. Windows will not tolerate
sloppy programming, which can lead to nasty bugs.

21

SECTION I: GETTING STARTED

® The -Zp switch packs structure fields on byte boundaries. This is
required for some of the structures defined in WINDOWS.H that
programs use to communicate with Windows. Windows assumes that all
structures are packed.

The first section of the make file runs two commands if HELLOWIN.OBJ or
HELLOWIN.DEF has been altered more recently than HELLOWIN.EXE. The first indented
command runs LINK:

link hellowin, /align:16, NUL, /nod slibcew 1ibw, hellowin

The first field indicates the HELLOWIN.OBJ object file. The .OBJ extension is
assumed. The second field would normally list the name of the executable file, but I'm let-
ting it default to HELLOWIN.EXE. The /align:16 switch tells LINK to align code and data
segments on 16-byte boundaries in the HELLOWIN.EXE file for better space efficiency.
(The default is 512-byte boundaries.)

The third field is the name of an optional map file. This is set to NUL to create no map
file. The fourth field lists the libraries followed by the /#od (no default libraries) switch.
SLIBCEW.LIB is the small model Windows C run time library created during installation of
the Windows Software Development Kit.

LIBW.LIB is an import library that contains information LINK uses to set up a table in
the .EXE file so that Windows can dynamically link the program’s calls to Windows func-
tions with the Windows dynamic link libraries that contain those functions.

The fifth field indicates the name of the program’s module definition file,
HELLOWIN.DEF. The .DEF extension is assumed. (I'll discuss this file later in this chapter.)
It contains information that LINK uses to construct HELLOWIN.EXE.

The second indented command runs the Windows resource compiler, RC.EXE:

rc hellowin.exe

The resource compiler sets a couple flags in the HELLOWIN.EXE file to indicate that
this is a Windows 3—compatible application. Primarily, this avoids a Windows 3 message
that warns the user that the program may crash because it has not been modified for
protected-mode operation. Later on, we'll use the resource compiler to add menus and dia-
log boxes to our Windows programs.

The C Source Code Flle

The second file in Figure 1-5 is HELLOWIN.C, the C source code flle It may take awhile
before you recognize that this program is indeed written in C!

Let’s first take a global look at HELLOWIN.C before getting into details. The file con-
tains only two functions: WinMain and WndProc. WinMain is the entry point to the pro-
gram. It is the equivalent of the standard C main function. Every Windows program has a
WinMain function.

22

Chapter 1: Hello, Windows

WndProc is the window procedure for HELLOWIN’s window. This function pro-
cesses messages to the window. No code in HELLOWIN.C calls WndProc directly:
WndProc is called only from Windows, However, there is a reference to WndProc in Win-
Main, which is why the function is declared near the top of the program before WinMain.

The Windows Function Calls

HELLOWIN makes calls to no less than 16 Windows functions. In the order they occur in
HELLOWIN, these functions (with a brief description) are:

Loadlcon—Loads an icon for use by a program
LoadCursor—Loads a cursor for use by a program

GetStockObject— Obtains a graphics object (in this case a brush used for
painting the window’s background)

RegisterClass—Registers a window class for the program’s window
CreateWindow—Creates a window based on a window class
ShowWindow—Displays the window on the screen
UpdateWindow— Directs the window to paint itself

GetMessage— Obtains a message from the message queue
TranslateMessage—Translates some keyboard messages
DispatchMessage—Sends a message to a window procedure
BeginPaint—Initiates the beginning of window painting
GetClientRect— Obtains the dimensions of the window’s client area
DrawText—Displays a text string

EndPaint—Ends window painting

PostQuitMessage—Inserts a “quit” message into the message queue

DefWindowProc—Performs default processing of messages

These functions are documented in the Windows Programmer’s Reference and
declared in WINDOWS.H. I'll discuss each of them as we encounter them while dissecting
the program.

23

SECTION I: GETTING STARTED

Uppercase Identifiers

You'll notice the use of quite a few uppercase identifiers in HELLOWIN.C. These iden-
tifiers are defined in WINDOWS.H. ,
Several of these identifiers contain a two-letter or three-letter prefix followed by an

underscore:
CS_HREDRAW DT_SINGLELINE WM_DESTROY
IDI_APPLICATION CS_VREDRAW DT_CENTER
WS_OVERLAPPEDWINDOW IDC_ARROW DT_VCENTER
WM_PAINT CW_USEDEFAULT

These are simply numeric constants. The prefix indicates a general category to which
the constant belongs, as indicated in this table:

Prefix Category

CS class style

IDI ID for an icon
IDC ID for a cursor
WS window style
CwW _create window
WM window message
DT draw text

You almost never need to remember numeric constants when programming for Win-
dows. Virtually every numeric constant used in Windows has an identifier defined in

WINDOWS.H.

New Data Types

Other identifiers used in HELLOWIN.C are new data types, also defined in WINDOWS.H.
The ones used in the program are:

Data Type Meaning

FAR same as far

PASCAL same as pascal

WORD unsigned integer (16 bits)

DWORD unsigned long integer (32 bits)

LONG signed long integer (32 bits)

LPSTR far (or long) pointer to a character string

24

Chapter 1: Hello, Windows

These are fairly self-explanatory. The people who originally developed Windows
thought that it would someday be ported to other microprocessors. These new data types
were defined to ease the porting of Windows applications to other architectures. Rather
than use machine-specific data sizes (such as the size of C integer), the new data types
were devised to keep programs consistent regardless of the processor on which they run.

Of course, Windows will probably never be ported to other architectures, but the
Windows functions are still defined using these new data types, and Windows program-
mers continue to use them.

HELLOWIN also uses four data structures (which I'll discuss later in this chapter)
defined in WINDOWS.H:

Structure Meaning

MSG The message structure
WNDCLASS The window class structure
PAINTSTRUCT The paint structure

RECT The rectangle structure

The first two data structures are used in WinMain to define two structures named
msg and wndclass. The second two are used in WndProc to define two structures
named psand rect.

Getting a Handle on Handles

Finally, there are three uppercase identifiers for various types of “handles”:

Identifier Meaning

HANDLE Generic handle

HWND Handle to a window

HDC Handle to a device context

Handles are used quite frequently in Windows. Before the chapter is over, you also
encounter HICON (a handle to an icon), HCURSOR (a handle to a mouse cursor), and
HBRUSH (a handle to a graphics brush).

A handle is simply a 16-bit number that refers to an object. The handles in Windows
are similar to file handles used in conventional C or MS-DOS programming. A program
almost always obtains a handle by calling a Windows function. The program uses the
handle in other Windows functions to refer to the object. The actual value of the handle is
unimportant to your program, but the Windows module that gives your program the
handle knows how to use it to reference the object.

25

SECTION I: GETTING STARTED

Hungarian Notation

You may also notice that some of the variables in HELLOWIN.C have peculiar-looking
names. One example is [pszCmdParam, passed as a parameter to WinMain.

Many Windows programmers use a variable-naming convention known as Hun-
garian notation, in honor of the legendary Microsoft programmer Charles Simonyi. Very
simply, the variable name begins with a lowercase letter or letters that denote the data type
of the variable. For example, the Ipsz prefix in IpszCmdParam stands for “long pointer to a
string terminated by zero.”

The b prefix in bInstance and bPrevinstance stands for “handle”; the n prefix in
nCmdShow stands for “number,” and usually specifies an integer. Two of the parameters
to WndProc also use Hungarian notation: wParam is a WORD and [Param is a LONG.

When naming structure variables, you can use the structure name (or an abbrevia-
tion of the structure name) in lowercase as either a prefix to the variable name or as the
entire variable name. For example, in the WinMain function in HELLOWIN.C, the msg
variable is a structure of the MSG type; wndclass is a structure of the WNDCLASS type. In
the WndProc function, psis a PAINTSTRUCT structure and rect is a RECT structure.

Hungarian notation helps you avoid errors in your code before they turn into bugs.
Because the name of a variable describes both the use of a variable and its data type, you
are much less inclined to make coding errors involving mismatched data types.

The variable name prefixes I'll be using in this book are shown in the following table:

Prefix Data Type

c char

by BYTE (unsigned char)

n short or int

i int

X,y short (used as x-coordinate or j~coordinate)
cX, Cy short (used as x or ylength; the c stands for “count”)
b BOOL (int)

w WORD (unsigned int)

1 LONG (long)

dw DWORD (unsigned long)

fn function

s string

4 " string terminated by 0 byte

26

Chapter 1: Hello, Windows

The Program Entry Point

With this global look at HELLOWIN.C out of the way, we can now begin the line-by-line
dissection of the program. The code begins with an #include statement to include the
WINDOWS.H header file:

f#Hinclude <windows.h>

WINDOWS.H contains declarations of the Windows functions, the Windows structures,
the new data types, and numeric constants.
This is followed by a forward declaration of the WndProc function:

Tong FAR PASCAL WndProc (HWND, WORD, WORD, LONG) ;

The declaration is required because WndProcis referenced by some code in the WinMain
function.

In a C program written for a conventional environment, the entry point is a function
called main. This is where the program begins execution. (Actually, the main function is
the entry point to the part of the program written 'by the programmer. Usually the C com-
piler will insert some start-up code in the executable file. The start-up code then calls
main.) The entry point of a Windows program is a function called WinMain. (As is the
case with main, WinMain is actually called from some start-up code inserted into the exe-
cutable file.) WinMain is always defined like this:

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
LPSTR TpszCmdParam, int nCmdShow)

This function uses the PASCAL calling sequence and returns an integer to the start-up
code. The function must be named WinMain. It has four parameters.

The blnstance parameter is called the “instance handle.” This is a number that
uniquely identifies the program when it is running under Windows. It could be that the
user is running multiple copies of the same program under Windows. (For example, most
Windows users at one time or another have loaded multiple versions of the CLOCK pro-
gram to see what happens.) Each copy is called an “instance,” and each has a different
bInstancevalue. The instance handle is comparable to a “task ID” or “process ID” number
common in mulitasking operating systems. ' .

The hPrevInstance (“previous instance”) parameter is the instance handle of the
most recent previous instance of the same program that is still active. If no other copies of
the program are currently loaded, then hPrevinstance will be 0 or NULL.

The IpszCmdParam parameter is a long (or far) pointer to a 0-terminated string that
contains any command-line parameters passed to the program. It is possible to run a
Windows program with a command-line parameter by typing the program name and the
parameter into the Run dialog box invoked from either the Program Manager or the File
Manager.

27

SECTIONI: GETTING STARTED

The nCmdShow parameter is a number indicating how the window is to be initially
displayed in Windows. This number is assigned by whatever program executes the pro-
gram to run under Windows. Programs do not often need to examine this number, but they
can if they want. In most cases the number is either a1 or a 7. But it’s best not to think of the
value as a 1 or a 7. Rather, think of the value as SW_SHOWNORMAL (defined in WIN-
DOWS.H as 1) or SW_SHOWMINNOACTIVE (defined as 7). The SW prefix in these iden-
tifiers stands for “show window.” This indicates whether the user launched the program to
be displayed as a normal window or to be initially minimized.

Registering the Window Class

A window is always created based on a window class. The window class identifies the win-
dow procedure that processes messages to the window. This is important, so I'll repeat it:
A window is always created based on a window class. The window class identifies the
window procedure that processes messages to the window.

More than one window can be created based on a single window class. For example,
all button windows in Windows are created based on the same window class. The window
class defines the window procedure and some other characteristics of the windows that
are created based on that class. When you create a window you define additional charac-
teristics of the window that are unique to that window.

Before you create a window for your program, you must register a window class by
calling RegisterClass. The RegisterClass function requires a single parameter: a pointer to
a structure of type WNDCLASS. The WNDCLASS structure is defined in WINDOWS.H
like this:

typedef struct tagWNDCLASS
{
WORD style ;
LONG (FAR PASCAL *1pfnWndProc) () ;
int cbCisExtra ;
int cbWndExtra ;
HANDLE hlInstance ;
HICON hlcon ;
HCURSOR hCursor ;
HBRUSH hbrBackground ;
LPSTR TpszMenuName ;
LPSTR 1pszClassName ;
}
WNDCLASS ;

In WinMain, you must define a structure of type WNDCLASS, generally like this:
WNDCLASS wndclass
You then define the 10 fields of the structure and call RegisterClass:

RegisterClass (&wndclass) ;

28

Chapter 1: Hello, Windows

Only the first instance of a program needs to register the window class. The window
class then becomes available to all subsequent instances of the program. For this reason,
HELLOWIN initializes the fields of the WNDCLASS structure and calls RegisterClass only if
bPrevinstance equals NULL.

The WNDCLASS structure has 10 fields. The two most important fields are the last
and the second. The last field is the name of the window class (which is generally the same
as the name of the program). The second field (JpfnWndProc) is the address of the win-
dow procedure used for all windows created based on this class (which is the function
WndProc in HELLOWIN.C). All the other fields describe characteristics of all windows
based on this window class.

The statement:

wndclass.style = CS_HREDRAW | CS_VREDRAW ;

combines two “class style” identifiers with a C bitwise OR operator. In WINDOWS.H, the
various identifiers beginning with the CS prefix are defined as 16-bit constants with one bit
set. For example, CS_VREDRAW is defined as 0x0001, and CS_HREDRAW is defined as
0x0002. Identifiers defined in this way are sometimes called “bit flags.” You combine the
bit-flag identifiers with the C OR operator.

These two class-style identifiers indicate that all windows created based on this class
are to be completely repainted whenever the horizontal window size (CS_HREDRAW) or
the vertical window size (CS_VREDRAW) changes. If you resize HELLOWIN’s window,
you'll see that the text string is redrawn to be in the new center of the window. These two
identifiers ensure that this happens.

The second field of the WNDCLASS structure is initialized by the statement:

wndclass. pfnWndProc = WndProc ;

This sets the window procedure for this window class to WndProc, which is the second
function in HELLOWIN.C. This window procedure will process all messages to all win-
dows created based on this window class. The /pfn prefix in the field name is Hungarian
notation for “long pointer to a function.”

The next two statements:

0 ;
0 ;

wndclass.cbClsExtra
wndclass.cbWndExtra

reserve some extra space in the class structure and the window structure that Windows
maintains internally. A program can use this extra space for its own purpose. HELLOWIN
does not use this feature, so zero is specified. The cb prefix in the field names stands for a
“count of bytes.”

The next field is simply the instance handle of the program (which is one of the
parameters to WinMain):

Wndc]ass.hlnstance = hlnstance ;

29

SECTION I: GETTING STARTED

The statement:
wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

sets an icon for all windows created based on this window class. The icon is a small bitmap
picture that appears when the program is minimized. Later in this book you’ll learn how to
create customized icons for your Windows programs. Right now, we’ll take an easy ap- -
proach and use a predefined icon.

To obtain a handle to a predefined icon, you call LoadIcon with a first parameter set
to NULL. (When loading your own customized icon, this parameter would be set to the in-
stance handle of the program.) The second parameter is an identifier beginning with the
IDI (“ID for an icon”) defined in WINDOWS.H. The IDI_APPLICATION icon is simply a
white square with a black outline. The LoadlIcon function returns a handle to this icon. We
don’t really care about the value of this handle. It’s simply used to set the value of the hicon
field. The bhIcon field is defined in the WNDCLASS structure to be of type HICON, which
stands for “handle to an icon.”

The statement:

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

is very similar to the previous statement. The LoadCursor function loads a predefined
mouse cursor known as IDC_ARROW and returns a handle to the cursor. This handle is
assigned to the hCursorfield of the WNDCLASS structure. When the mouse cursor appears
over the client area of a window that is created based on this class, the cursor becomes a
- small arrow.

The next field specifies the background color of the client area of windows created
based on this class. The bhbr prefix of the hbrBackground field name stands for “handleto
a brush.” A brush is a graphics term that refers to a colored pattern of pixels used to fill an
area. Windows has several standard, or “stock,” brushes. The GetObject call shown here
returns a handle to a white brush:

wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;

This means the background of the client area of the window will be solid white, which isa
common choice.

The next field specifies the window class menu. HELLOWIN has no application
rhenu, so the field is set to NULL:

wndclass.TpszMenuName = NULL ;

Finally the class must be given a name. This is the same as the name of the program,
which is the “HelloWin” string stored in the szAppName variable:

wndclass.TpszClassName = szAppName ;

30

Chapter 1: Hello, Windows

When all 10 fields of the structure have been initialized, HELLOWIN registers the

window class by calling RegisterClass. The only parameter to the function is a pointer to
the WNDCLASS structure:

RegisterClass (&wndclass) ;

Creating the Window

The window class defines general characteristics of a window, thus allowing the same win-
dow class to be used for creating many different windows. When you actually create a
window by calling CreateWindow, you specify more detailed information about the win-
dow. Rather than using a data structure as RegisterClass does, the CreateWindow call
requires all the information to be passed as parameters to the function. Here’s the
CreateWindow call in HELLOWIN.C:

hwnd = CreateWindow (szAppName, // window class name
"The Hello Program", // window caption
WS_OVERLAPPEDWINDOW, // window style
CW_USEDEFAULT, // initial x position
CW_USEDEFAULT, // initial y position
CW_USEDEFAULT, /1 initial x size
CW_USEDEFAULT, // initial y size
NULL, // parent window handle
NULL, // window menu handle
hInstance, /1 program instance handle
NULL) ; // creation parameters

The Microsoft C compiler recognizes the // symbol for single-line comments. The com-
ments describe the parameters to the CreateWindow function.

Although you need to register a window class only for the first instance of a program,
you must create a window separately for each instance. Each instance has its own window,
and all the windows are based on the same window class.

The parameter marked “window class name” is szAppName, which contains the
string “HelloWin”—the name of the window class we just registered. This is how the win-
dow is associated with the window class.

The window created by this program is a normal overlapped window with a caption
bar, a system menu box to the left of the caption bar, minimize and maximize icons to the
right of the caption bar, and a thick window-sizing border. That’s a standard style of win-
dows, and it has the WINDOWS.H name WS_OVERLAPPEDWINDOW, which appears as
the “window style” parameter. The “window caption” is the text that will appear in the
caption bar.

The parameters marked “initial x position” and “initial y position” specify the initial
position of the upper left corner of the window relative to the upper left corner of the
screen. By using the identifier CW_USEDEFAULT for these parameters, we're indicating we
want Windows to use the default position for an overlapped window. (CW_USEDEFAULT

31

SECTION I: GETTING STARTED

is defined as 0x8000.) By default, Windows positions successive overlapped windows at
stepped horizontal and vertical offsets from the upper left corner of the display.

Similarly, the “initial x size” and “initial y size” parameters specify the width and
height of the window. The CW_USEDEFAULT identifier again indicates that we want Win-
dows to use a default size for the window. The default size extends to the right side of the
display and above the icon area at the bottom of the screen.

The parameter marked “parent window handle” is set to NULL because this window
has no parent window. (When a parent-child relationship exists between two windows,
the child window always appears on the surface of its parent.) The “window menu handle”
is also set to NULL because the window has no menu. The “program instance handle” is set
to the instance handle passed to the program as a parameter of WinMain. Finally, a
“creation parameters” pointer is set to NULL. You could use this pointer to access some
data that you might later want to reference in the program.

The CreateWindow call returns a handle to the created window. This handle is saved
in the variable hwnd, which is defined to be of type HWND (handle to a window). Every
window in Windows has a handle. Your program uses the handle to refer to the window.
Many Windows functions require hwnd as a parameter so that Windows knows to which
window the function applies. If a program creates many windows, each has a different
handle. The handle to a window is one of the most important handles a Windows program
(pardon the expression) handles.

Displaying the Window

After the CreateWindow call returns, the window has been created internally in Windows.
However, the window does not yet appear on the video display. Two more calls are
needed. The first is:

ShowWindow (hwnd, nCmdShow) ;

The first parameter is the handle to the window just created by CreateWindow. The second
parameter is the nCmdShow value passed as a parameter to WinMain. This determines
how the window is to be initially displayed on the screen. If nCmdShow is SW_SHOW-
NORMAL (equal to 1), the window is displayed normally. If nCmdShow is SW_SHOWMIN-
NOACTIVE (equal to 7), then the window is initially displayed as an icon.

The ShowWindow function puts the window (or icon) on the display. If the second
parameter to ShowWindow is SW_SHOWNORMAL, the client area of the window is erased
with the background brush specified in the window class. The function call:

UpdateWindow (hwnd) ;

then causes the client area to be painted. It accomplishes this by sending the window pro-
cedure (the WndProc function in HELLOWIN.C) a WM_PAINT message. We'll examine
shortly how WndProc deals with this message.

32

Chapter 1: Hello, Windows

The Message Loop

After the UpdateWindow call, the window is fully visible on the video display. The pro-
gram must now make itself ready to read keyboard and mouse input from the user. Win-
dows maintains a “message queue” for each Windows program currently running under
Windows. When an input event occurs, Windows translates the event into a “message” that
it places in the program’s message queue.

A program retrieves these messages from the message queue by executing a block of
code known as the “message loop”:

while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return msg.wParam ;

The msg variable is a structure of type MSG, which is defined in WINDOWS.H as
follows:

typedef struct tagMSG
{
HWND hwnd ;
WORD message ;
WORD wParam ;
LONG TParam ;
DWORD time ;
POINT pt ;
}
MSG ;

The POINT data type is yet another structure, defined like this:

typedef struct tagPOINT
{
int x ;
int y ;
}
POINT ;

The GetMessage call that begins the message loop retrieves a message from the mes-
sage queue: =

GetMessage (&msg, NULL, 0, 0) ;

This call passes to Windows a far pointer to the MSG structure called msg. The second,
third, and fourth parameters are set to NULL or 0 to indicate that the program wants all
messages for all windows created by the program. Windows fills in the fields of the
message structure with the next message from the message queue. The fields of this
structure are: '

33

SECTIONL: GETTING STARTED

B hwnd—the handle to the window to which the message is directed. In
the HELLOWIN program, this is the same as the hwnd value returned
from CreateWindow, because that’s the only window this program has.

B message—the message identifier. This is a number that identifies the
message. For each message, there is a corresponding identifier defined in
WINDOWS.H that begins with the prefix WM (“window message”). For
example, if you position the mouse pointer over HELLOWIN’s client area
and press the left mouse button, Windows will put a message in the
message queue with a message field equal to WM_LBUTTONDOWN,
which is the value 0x0201.

B wParam—a 16-bit “message parameter,” the meaning and value of which
depend on the particular message.

B [Param—a 32-bit message parameter dependent on the message.

& time—the time the message was placed in the message queue.

pt—the mouse coordinates at the time the message was placed in the
message queue, '

If the message field of the message retrieved from the message queue is anything
except WM_QUIT (which equals 0x0012), then GetMessage returns a nonzero value. A
WM _QUIT message causes the program to fall out of the message loop. The program then
terminates, returning the wParam member of the msg structure.

The statement:

TranslateMessage (&msg) ;

passes the MSG structure back to Windows for some keyboard translation. (I'll discuss this
more in Chapter 3.) The statement:

DispatchMessage (&msg) ;

again passes the MSG structure back to Windows. Windows then sends the message to the
appropriate window procedure for processing. That window procedure is the WndProc
function in HELLOWIN. After WndProc processes the message, it then returns to Win-
dows, which is still servicing the DispatchMessage call. When Windows returns to
HELLOWIN following the DispatchMessage call, the message loop continues with the next
GetMessage call.

The Window Procedure

All that I've described so far is really just overhead. The window class has been registered,
the window has been created, the window has been displayed on the screen, and the pro-
gram has entered a message loop to retrieve messages from the message queue.

34

Chapter 1: Hello, Windows

The real action occurs in the window procedure, which Windows programmers
commonly call a “window proc” (pronounced “prock™). The window procedure deter-
mines what the window displays in its client area and how the window responds to
user input.

In HELLOWIN, the window procedure is the function called WndProc. A window
procedure can have any name. A Windows program can contain more than one window
procedure. A window procedure is always associated with a particular window class that
you register by calling RegisterClass. The CreateWindow function creates a window based
on a particular window class. More than one window can be created based on the same
window class.

A window procedure is always defined like this:

long FAR PASCAL WndProc (HWND hwnd, WORD message, WORD wParam, LONG 1Param)

Note that the four parameters to the window procedure are identical to the first four fields
of the MSG structure.

The first parameter is hwnd, the handle to the window receiving the message. This
is the same handle returned from the CreateWindow function. For a program like
HELLOWIN, which creates only one window, this is the only window handle the program
knows about. If a program creates multiple windows based on the same window class (and
hence the same window procedure), then hwndidentifies the particular window receiving
the message.

The second parameter is a2 number (specifically, a 16-bit unsigned integer or WORD)
that identifies the message. The last two parameters (a WORD called wParam and a 32-bit
signed long integer or LONG called /Param) provide more information about the message.
These are called “message parameters.” What these parameters contain is specific.to each
type of message.

Processing the Messages

Each message that a window procedure receives is identified by a number, which is the
message parameter to the window procedure. The WINDOWS.H header file defines iden-
tifiers beginning with the prefix WM (“window message”) for each message parameter.

Generally, Windows programmers use a switch and case construction to determine
what message the window procedure is receiving and how to process it accordingly. When
a window procedure processes a message, it should return 0 from the window procedure.
All messages that a window procedure chooses not to process must be passed to a Win-
dows function named DefWindowProc. The value returned from DefWindowProc must
be returned from the window procedure.

35

SECTION I: GETTING STARTED

In HELLOWIN, WndProc chooses to process only two messages: WM_PAINT and
WM _DESTROY. The window procedure is structured like this:

switch (message)

case WM_PAINT :
[process WM_PAINT message]
return 0 ;

case WM_DESTROY :
[process WM_DESTROY message]
return 0 ;

}
return DefWindowProc (hwnd, message, wParam, 1Param) ;

It is essential to call Def WindowProc for all messages that your window procedure does
not process.

The WM_PAINT Message

The first message that WrndProc processes is WM_PAINT. This message is extremely im-
portant in Windows programming. It informs a program when part or all of the window’s
client area is “invalid” and must be repainted.

How does a client area become invalid? When the window is first created, the entire
client area is invalid because the program has not yet drawn anything on the window. The
first WM_PAINT message (which normally occurs when the program calls UpdateWindow
in WinMain) directs the window procedure to draw something on the client area.

When you resize HELLOWIN’s window, the client area also becomes invalid. You'll
recall that the style parameter of HELLOWIN's wndclass structure was set to the flags
CS_HREDRAW and CS_VREDRAW. This directs Windows to invalidate the whole window
when the size changes. The window procedure receives a WM_PAINT message.

When you minimize HELLOWIN to be displayed as an icon and then restore the win-
dow again to its previous size, Windows does not save the contents of the client area.
Under a graphical environment, this would be too much data. Instead, Windows invali-
dates the window. The window procedure receives a WM_PAINT message and itself
restores the contents of its window.

When you move windows around so they overlap, Windows does not save the area of
a window covered by another window. When that area of the window is later uncovered, it
is flagged as invalid. The window procedure receives a WM _PAINT message to repaint the
. contents of the window. .

Before sending the window procedure a WM_PAINT message, Windows erases the
background of the invalid area using the brush specified in the hbrBackground field of the

36

Chapter 1: Hello, Windows

WNDCLASS structure used to register the window class. In the case of HELLOWIN, this is
a stock white brush, which means that Windows erases the background of the window by
coloring it white.

WM_PAINT processing almost always begins with a call to BeginPaint:

hdc = BeginPaint (hwnd, &ps) ;
and ends with a call to EndPaint:
EndPaint (hwnd, &ps) ;

In both cases, the first parameter is a handle to the program’s window and the second
parameter is a pointer to a structure of type PAINTSTRUCT. PAINTSTRUCT contains some
information that a window procedure can use for painting the client area. (Ull discuss the
fields of this structure in the next chapter.)

BeginPaintreturns a “handle to a device context.” A device context refers to a physi-
cal output device (such as a video display) and its device driver. You need the device con-
text handle to display text and graphics in the client area of a window. Using the device
context handle returned from BeginPaint, you cannot draw outside the client area, even if
you try. EndPaint releases the device context handle so that it is no longer valid. EndPaint
also validates the entire client area.

If a window procedure does not process WM_PAINT messages (which is very rare),
they must be passed on to Def WindowProc. Def WindowProc simply calls BeginPaintand
EndPaint in succession so that the client area is validated.

After WndProc calls BeginPaint, it calls GetClientRect:

GetClientRect (hwnd, &rect) ;

The first parameter is the handle to the program’s window. The second parameter is a
pointer to a variable named rect defined as type RECT in WndProc. .

RECT is a “rectangle” structure defined in WINDOWS.H. It has four intfields named
left, top, right, and bottom. GetClientRect sets these four fields to the dimensions of the cli-
ent area of the window. The /left and fop fields are always set to 0. The right and bottom
fields are set to the width and height of the client area in pixels.

WndProc doesn't do anything with this RECT structure except pass a pointer to it as
the fourth parameter of DrawText:

DrawText (hdc, "Hello, Windows!", -1, &rect,
DT_SINGLELINE : DT_CENTER i DT_VCENTER) ;

DrawText (as the name implies) draws text. Because this function draws something, the
first parameter is a handle to the device context returned from BeginPaint. The second
parameter is the text to draw, and the third parameter is set to —1 to indicate that the text
string is terminated with a 0 byte.

37

SECTIONI: GETTING STARTED

The last parameter is a series of bit flags defined in WINDOWS.H. The flags indicate
that the text should be displayed as a single line centered horizontally and vertically within
the rectangle specified by the fourth parameter. This function call thus causes the string
“Hello, Windows!” to be displayed centered in the client area.

Whenever the client area becomes invalid (as it does when you change the size of the
window), Windows erases the background of the window and WndProc receives a new
WM _PAINT message. WndProc obtains the updated window size by calling GetClientRect
and again displays the text in the new center of the window.

The WM_DESTROY Message

The WM_DESTROY message is another important message. This message indicates that
Windows is in the process of destroying a window based on a command from the user. The
message is a result of the user selecting Close from the program’s system menu or pressing
Alt-F4.

HELLOW!IN responds to this message in a standard way by calling:

PostQuitMessage (0) ;

This function inserts a WM_QUIT message in the program’s message queue. I mentioned
edrlier that GetMessage returns nonzero for any message other than WM_QUIT that it
retrieves from the message queue. When GetMessage retrieves a WM_QUIT message, Get-
Message returns 0. This causes WinMain to drop out of the message loop and exit, ter-
minating the program.

The Module Definition File

In addition to the C source code, another file is required for Windows programs. It is called
a “module definition file” and has the extension .DEF. The module definition file aids the
LINK linker in creating the .EXE file by telling it the characteristics of the program’s code
and data segments, the size of the program’s local data heap (from which the program can
allocate memory), and the size of the program’s stack. This information becomes part of
the header section of the New Executable file format. The HELLOWIN.DEF file is shown in
Figure 1-5 on page 16.

The NAME line defines HELLOWIN as a program (rather than a dynamic link li-
brary) and gives it a module name, which is usually the name of the program’s .EXE file.
The DESCRIPTION line simply inserts some text into the .EXE file. This is an excellent
place for a copyright notice or version information. The EXETYPE line identifies the pro-
gram as a Windows program. (OS/2 programs also use module definition files and the
New Executable file format.)

The STUB is a program that is inserted into the .EXE file to be executed when
anyonie attempts to run HELLOWIN.EXE from the MS-DOS command line. The

38

Chapter 1: Hello, Windows

WINSTUB.EXE program included with the Windows Software Development Kit simply
displays the message “This program requires Microsoft Windows” and terminates.

The CODE statement indicates that the program’s code segment is flagged as
PRELOAD (which means that Windows will load the segment into memory immediately)
and MOVEABLE (which means that Windows can move the code segment to another loca-
tion in memory if it needs to consolidate blocks of free memory). The DISCARDABLE op-
tion makes the code “discardable” (which means that Windows can discard the code
segment from memory and later reload it from the .EXE file). These are the normal options
for Windows programs. If you follow proper Windows programming practice, you will not
(in theory) encounter any problems when Windows moves your code.

The DATA statement indicates that we want the data segment to be PRELOAD,
MOVEABLE, and MULTIPLE. Again, we are giving Windows permission to move the data
segment in memory if necessary. The MULTIPLE keyword requests that each instance of
the program gets its own separate data segment. This is necessary because the data seg-
ment contains the program’s stack and other data items that must be separate for each in-
stance. The code segment, on the other hand, is shared by all instances of the program.

The HEAPSIZE line specifies the amount of extra local memory (memory in the pro-
gram’s own data segment) that will be available for allocation. The value depends on what
the program needs. HELLOWIN doesn’t need to allocate any local memory, but we’ll throw
in a small value nonetheless. Windows can expand a program’s local heap if necessary.

The STACKSIZE line specifies the size of the stack. The value 8192 bytes is a
minimum recommended value. You’'ll want a bigger stack size if your program has recur-
sive functions or large non-static variables.

Finally, the EXPORTS line lists the window procedure WndProc. For reasons I'll
discuss in Chapter 7, all window procedures that a program contains must be listed in the
EXPORTS section of the module definition file.

THE WINDOWS PROGRAMMING HURDLES

Even with my explanation of HELLOWIN, the structure and workings of the program are
probably still somewhat mysterious. In a short C program written for a conventional envi-
ronment, the entire program may be contained in the main function. In HELLOWIN, Wizn-
Main contains only program overhead necessary to register the window class, create the
window, and retrieve and dispatch messages from the message queue.

All the real action of the program occurs in the window procedure. In HELLOWIN,
this action is not much—it simply displays a text string in its window. But in later chapters
you'll find that almost everything a Windows program does it does in response to a mes-
sage to a window procedure. This is one of the major conceptual hurdles that you must
leap to begin writing Windows programs.

39

SECTIONI: GETTING STARTED

Don’t Call Me, PI’ll Call You

As I mentioned earlier, programmers are familiar with the idea of calling on the operating
system to do something. For instance, C programmers use the open or fopen function to
open a file. The library functions provided with the compiler have code that eventually
calls the operating system to open the file. No problem. '

But Windows is different. Although Windows has more than 550 functions that your
program can call, Windows also makes calls to your program, specifically to the window
procedure we have called WndProc. The window procedure is associated with a window
class that the program registers by calling RegisterClass. A window that is created based on
this class uses this window procedure for processing all messages to the window. Windows
sends a message to the window by calling the window procedure.

Windows calls WndProc when a window is first being created. Windows calls
WndProc when the window is later destroyed. Windows calls WndProc when the window
has been resized or moved or made into an icon. Windows calls WndProc when an item
has been selected from a menu. Windows calls WndProc when a scroll bar is being moved
or clicked with the mouse. Windows calls WndProc to tell it when it must repaint its
client area.

All these calls are in the form of messages. In most Windows programs, the bulk of
the program is dedicated to handling these messages. The 130 or so different messages that
Windows can send to a window procedure are all identified with names that begin with the
letters WM and defined in WINDOWS.H.

Actually, the idea of a routine within a program that is called from outside the
program is not unheard of in normal programming. The signal function in C can trap a
Ctrl-Break. You may have experience with intercepting hardware interrupts in assembly
language or using one of the ON constructions in Microsoft BASIC. The Microsoft Mouse
driver has a method that non-Windows programs can use to be notified of mouse activity.

In Windows, this concept is extended to cover everything. Everything that happens
to a window is relayed to the window procedure in the form of a message. The window
procedure then responds to this message in some way or passes the message to Def Win-
dowProc for default processing.

The wParam and [Param parameters to the window procedure are not used in
HELLOWIN except as parameters to Def WindowProc. These parameters give the window
additional information about the message. The meaning of the parameters is message-
dependent.

Let’s look at an example. Whenever the client area of a window changes in size, Win-
dows calls that window’s window procedure. The bwnd parameter to the window pro-
cedure is the handle of the window changing in size. The message parameter is WM_SIZE.
The wParam parameter for a WM_SIZE message is the value SIZENORMAL, SIZEICONIC,
SIZEFULLSCREEN, SIZEZOOMSHOW, or SIZEZOOMHIDE (defined in WINDOWS.H as
the numbers 0 through 4). The wParam parameter indicates whether the window is being

40

Chapter 1: Hello, Windows

minimized, maximized, or hidden (as a result of another window being maximized). The
[Param parameter contains the new size of the window. The new width (a 16-bit value)
and the new height (a 16-bit value) have been stuck together in the 32-byte [Param.
WINDOWS.H includes macros to help you extract these two values from [Param. We’'ll
do this in the next chapter.

Sometimes messages generate other messages as a result of Def WindowProc pro-
cessing. For example, suppose you run HELLOWIN and select Close from the system
menu using either the keyboard or the mouse. Def WindowProc processes this keyboard
and mouse input. When it detects that you have selected the Close option, it sends a
WM_SYSCOMMAND message to the window procedure. WndProc passes this message to
DefWindowProc. Def WindowProc responds by sending a WM_CLOSE message to the
window procedure. WndProc again passes this message to Def WindowProc. Def Window-
Proc responds to the WM_CLOSE message by calling DestroyWindow. DestroyWindow
causes Windows to send a WM_DESTROY message to the window procedure. WndProc
finally responds to this message by calling PostQuitMessageto put a WM_QUIT message in
the message queue. This message causes the message loop in WinMain to terminate and
the program to end.

Queued and Nonqueued Messages

I've talked about Windows sending messages to a window, which means that Windows
calls the window procedure. But a Windows program also has a message loop that
retrieves messages from a message queue by calling GetMessage and dispatches them to
the window procedure by calling DispatchMessage.

So, does a Windows program poll for messages (exactly as a normal program polls
for keyboard data) and then route these messages to some location? Or does it receive mes-
sages directly from outside the program? Well, both.

Messages can be either “queued” or “nonqueued.” The queued messages are those
that are placed in a program’s message queue by Windows and retrieved and dispatched in
the message loop. The nonqueued messages are sent to the window directly when Win-
dows calls the window procedure. The result is that the window procedure gets all the
messages—both queued and nonqueued—for the window. Structurally, Windows pro-
grams are very clean, because they have one central point of message processing. It is said
that queued messages are posted to a message queue while nonqueued messages are sent
to the window procedure.

The queued messages are primarily those that result from user input in the form of
keystrokes (such as WM_KEYDOWN and WM_KEYUP), characters that result from
keystrokes (WM_CHAR), mouse movement (WM_MOUSEMOVE), and mouse button
clicks (WM_LBUTTONDOWN). Queued messages also include the timer message
(WM_TIMER), the repaint message (WM_PAINT), and the quit message (WM_QUIT).
The nonqueued messages are everything else. In many cases the nonqueued messages

a1

SECTION I: GETTING STARTED

result from queued messages. When you pass a nonqueued message to Def WindowProc
within the window procedure, Windows often processes the message by sending the
window procedure other messages.

This process is obviously complex, but fortunately most of the complexity is Win-
dows’ problem rather than our program’s. From the perspective of the window procedure,
these messages come through in an orderly, synchronized manner. The window procedure
can do something with these messages or ignore them. For this reason, the window pro-
cedure has been called the “ultimate hook.” Messages notify the window procedure of
almost everything that affects the window.

The nonqueued messages often result from calling certain Windows function calls or
by explicitly sending a message by calling SendMessage. (Messages can also be placed in a
message queue by calling PostMessage.)

For example, when WinMain calls CreateWindow, Windows creates the window and
in the process sends the window procedure a WM_CREATE message. When WinMain
calls ShowWindow, Windows sends the window procedure WM_SIZE and WM_SHOW-
WINDOW messages. When WinMain calls UpdateWindow, Windows sends the window
procedure a WM_PAINT message.

Messages are not like hardware interrupts. While processing one message in a win-
dow procedure the program will not be interrupted by another message. Only when the
window procedure calls a function that generates a new message will the message pro-
cedure process the message before the function returns.

The message loop and the window procedure do not run concurrently. When the
window procedure is processing a queued message, it is the result of a call to Dis-
patchMessage in WinMain. DispatchMessage does not return until the window procedure
has processed the message.

But notice that the window procedure must be reentrant. That is, Windows often
calls WndProc with a new message as a result of WndProc calling Def WindowProc with a
previous message. This is one reason that a Windows program requires a 8-KB stack, as in-
dicated in the module definition (. DEF) file. In most cases the reentrancy of the window
procedure presents no problem, but you should be aware of it.

In many cases, the window procedure must retain information it obtains in one mes-
sage and use it while processing another message. This information must be saved in vari-
ables defined as static in the window procedure or in global variables.

Of course, you'll get a much better feel for all this in later chapters as the window
procedures are expanded to process more messages.

Nonpreemptive Multitasking

The GetMessage call within the message loop is important for another reason. Except for
some device drivers that must process hardware interrupts (such as the timer, keyboard,
mouse, and serial port), Windows usually treats HELLOWIN as if it were the only program

42

Chapter 1: Hello, Windows

running under the system. Windows will not arbitrarily switch away from HELLOWIN and
run some other program. The exception is during the GetMessage call. If HELLOWIN’s
message queue has no waiting messages and another program has some messages in its
message queue, then Windows switches from HELLOWIN to the other program. That
makes sense, does it not?

You can think of it this way: In most cases, when your program calls a function in
Windows, you can expect that the function will be processed and return control to your
program within a reasonable period of time. When you call GetMessage, however, it may
be some time before Windows returns with a message if the program’s message queue
does not contain any messages and another program’s message queue does. Windows can
take advantage of the delay caused by an empty message queue during a GetMessage call to
switch to another program that has messages waiting. As a result, Windows has a “jumpy”
type of multitasking. Sometimes a program has a long job to do, and all other programs
running under Windows seem to stop running during this time.

Rather than “jumpy multitasking,” this characteristic is usually called “nonpreemp-
tive multitasking.” Windows is multitasking between programs by switching between
them. But Windows is not doing this as it is done within a traditional multitasking system,
based on the tick of a hardware clock and allocating each program a tiny time-slice to do
its stuff. It’s multitasking at the point where programs check the message queue for
messages.

The process is actually a little more complex than that: Windows also switches be-
tween programs during PeekMessage and WaitMessage calls, but these are less common
than GetMessage. Furthermore, the WM_PAINT and WM_TIMER messages are treated as
low-priority messages, so Windows can switch from a program if only WM_PAINT and
WM_TIMER messages are present in the queue.

The Learning Curve

Yes, as you’ve undoubtedly determined from this chapter, Windows programming is cer-
tainly different from programming for a conventional environment like MS-DOS. Nobody
will claim that Windows programming is easy.

When I first started learning Windows programming, I decided to do what I had
always done when learning a new operating system or a new language—to write a simple
“hex dump” program to display the contents of a file. In the conventional MS-DOS
environment, such a program involves command-line processing, rudimentary file 1/O,
and screen output formatting. However, my Windows hex-dump program turned into a
monster. It required that I learn about menus, dialog boxes, scroll bars, and the like. As
a first Windows program, it was definitely a mistake, demanding that I absorb too much
all at once.

Yet when this program was finished, it was quite unlike any hex-dump program I had
written. Rather than obtain the filename from a command line, WINDUMP (as I called it)

43

SECTION I: GETTING STARTED

presented a list Box showing all the files in the current directory. Rather than write its out-
put to the screen in a simple teletype fashion, WINDUMP had scroll bars so I could move to
any part of the file. As an extra bonus, I could even run two copies of WINDUMP to com-
pare two files side by side. In short, WINDUMP was the first hex-dump program I wrote
that [was actually proud of.

What you have to ask yourself is this: Do I want my programs to use a more modern
and productive user interface, one that includes menus, dialog boxes, scroll bars, and
graphics? If you answer yes, then the question becomes: Do I want to write all this menu,
dialog box, scroll bar, and graphics code myself? Or would I rather take advantage of all the
code already inside Windows for this? In other words, is it easier to learn how to use 550
function calls or to write them yourself? Is it easier to orient your programming mind to the
message-driven architecture of Windows or struggle with using several different sources of
user input in a traditional model?

If you're going to write your own user interface logic, you had better close this book
and get to work right away. Meanwhile, the rest of us are going to learn how to display and
scroll text in a window. -

44

Chapter 2

Painting
with Text

In the previous chapter you saw a simple Windows program that displayed a single line of
text in the center of its client area. The client area occupies all the space of the window
that is not taken up by the caption bar, the window-sizing border, the menu bar (if any), and
scroll bars (if any). The client area is the part of the window on which a program is free to
draw. You can do almost anything you want with that client area—anything, that is, except
assume that it will be a particular size or that the size will remain constant while your pro-
gram is running. If you are accustomed to writing programs for the IBM PC, this exception
may come as a bit of a shock. You can no longer think in terms of 25 lines and 80 columns
of text. Your program shares the video display with other Windows programs. The user
controls how the programs are arranged on the screen. Your program must accept the size
it’s given and do something reasonable with it. (A program could create a window of a
specific fixed size, but it isn’t very common.)

This works both ways. Just as your program may find itself with a client area barely
large enough in which to say “Hello,” it may also someday be run on a big-screen high-
resolution video system and discover a client area big enough for two entire pages of text
and plenty of closet space besides. Dealing intelligently with both these eventualities is an
important part of Windows programming.

Although Windows has extensive Graphics Device Interface (GDI) functions for dis-
playing graphics, in this chapter I'll stick to displaying simple lines of text. I'll also ignore
the various fonts (typefaces) and font sizes that Windows makes available and use only
Windows’ default “system font.” This may seem limiting, but it really isn’t. The problems

45

SECTIONI: GETTING STARTED

we encounter—and solve—in this chapter apply to all Windows programming. When you
display a combination of text and graphics (as, for instance, the Windows CALENDAR,
CARDFILE, and CALCULATOR programs do), the character dimensions of Windows’
default system font often determine the dimensions of the graphics.

This chapter is ostensibly about learning how to paint, but it’s really about learning
the basics of device-independent programming. Windows programs can assume little
about their environment. Instead, they must use the facilities that Windows provides to
obtain information about the environment.

PAINTING AND REPAINTING

Under MS-DOS, a program using the display in a full-screen mode can write to any part of
the display. What the program puts on the display will stay, there and will not mysteriously
disappear. The program can then discard information needed to re-create the screen dis-
play. If another program (such as a RAM-resident popup) overlays part of the display, then
the popup is responsible for restoring the display when it leaves.

In Windows, you can display only to the client area of your window, and you cannot
be assured that what you display to the client area will remain- there until your program
specifically writes over it. For instance, the dialog box from another application may
overlay part of your client area. Although Windows will attempt to save and restore the
area of the display underneath the dialog box, it sometimes cannot do so. When the dialog
box is removed from the screen, Windows will request that your program repaint this
portion of your client area. A

Windows is a message-driven system. Windows informs applications of various
events by posting messages in the application’s message queue or sending messages to the
appropriate window procedure. Windows informs a window procedure that part of the
window’s client area needs updating by posting a WM_PAINT message.

The WM_PAINT Message

Most Windows programs call the function UpdateWindow during initialization in Win-
Main shortly before entering the message loop. Windows takes this opportunity to send
the window procedure its first WM_PAINT message. That message informs your window
procedure that the client area is ready to be painted. Thereafter, that window procedure
should be ready at any time to process additional WM_PAINT messages and even repaint
the entire client area of the window if necessary. A window procedure receives a
WM _PAINT message whenever one of the following occurs:

B A previously hidden area of the window is brought into view when a user
moves a window or uncovers a window.

® The user resizes the window (if the window class style has the CS-
_HREDRAW and CS_VREDRAW bits set).

46

Chapter 2: Painting with Text

B The program uses the ScroliWindow function to scroll part of its
client area.

® The program uses the InwvalidateRect or InvalidateRgn function to
explicitly generate a WM_PAINT message.

In some cases in which part of the client area is temporarily written over, Windows
attempts to save an area of the display and restore it later. This is not always successful.
Windows may sometimes post a WM_PAINT message when:

B Windows removes a dialog box or message box that was overlaying part of
the window.

B A menu is pulled down and then released.

In a few cases, Windows always saves the area of the display it overwrites and then
restores it. This is the case whenever:

B The cursor is moved across the client area.
B Anicon is dragged across the client area.

Dealing with WM_PAINT messages requires that you alter your thinking about how
you write to the display. Your program should be structured so that it accumulates all the
information necessary to paint the client area but paints only “on demand”—when Win-
dows sends the window procedure a WM_PAINT message. If your program needs to
update its client area, it can force Windows to generate this WM_PAINT message. This
may seem a roundabout method of displaying something on the screen, but the structure
of your programs will benefit from it.

Valid and Invalid Rectangles

Although a window procedure should be prepared to update the entire client area when-
ever it receives a WM_PAINT message, it often needs to update only a smaller rectangular
area. This is most obvious when part of the client area is overlaid by a dialog box. Repaint-
ing is required only for the rectangular area uncovered when the dialog box is removed.

That rectangular area is known as an “invalid rectangle.” The presence of an invalid
rectangle in a client area is what prompts Windows to place a WM_PAINT message in the
application’s message queue. Your window procedure receives a WM_PAINT message
only if part of your client area is invalid.

Windows internally maintains a “paint information structure” for each window. This
structure contains (among other information) the coordinates of the invalid rectangle. If
another rectangular area of the client area becomes invalid before the window procedure
processes the WM_PAINT message, Windows calculates a new invalid rectangle that en-
compasses both areas and stores this updated information in the paint information struc-
ture. Windows does not place multiple WM_PAINT messages in the message queue.

47

SECTION I: GETTING STARTED

A window procedure can invalidate a rectangle in its own client area by calling
InvalidateRect. If the message queue already contains a WM _PAINT message, Windows
calculates a new invalid rectangle. Otherwise, it places a WM_PAINT message in the mes-
sage queue. A window procedure can obtain the coordinates of the invalid rectangle when
it receives a WM_PAINT message (as we’ll see shortly). It can also obtain these coordinates
at any other time by calling GetUpdateRect.

After the window procedure calls EndPaint during the WM _PAINT message, the en-
tire client area is validated. A program can also validate any rectangular region in the client
area by calling the ValidateRect function. If this call has the effect of validating the entire
invalid area, then any WM_PAINT message currently in the queue is deleted.

AN INTRODUCTION TO GDI

To paint the client area of your window, you use Windows’ Graphics Device Interface
(GDD functions. (A full discussion of GDI is in Chapters 11-15.) Windows provides five GDI
functions for writing text strings to the client area of the window. We’ve already encoun-
tered the DrawText function in Chapter 1, but the most popular text output function by far
is TextOut. This function has the following format:

TextOut (hdc, x, y, 1psString, nlLength) ;

TextOut writes a character string to the display. The IpsString parameter is a long (or far)
pointer to the character string, and nLength is the length of the string. The x and y param-
eters define the starting position, in “logical coordinates,” of the character string in
the client area. The hdc parameter is a “handle to a device context,” and it is an important
part of GDI. Virtually every GDI function requires this handle as the first parameter to
the function.

The Device Context

A handle, you'll recall, is simply a number that Windows uses for internal reference to an
object. You obtain the handle from Windows and then use the handle in other functions.
The device context handle is your window’s passport to the GDI functions. With that
device context handle you are free to paint your client area and make it as beautiful or as
ugly as you like.

The device context (also called the “DC”) is really a data structure maintained by
GDI. A device context is associated with a particular display device, such as a printer, plot-
ter, or video display. For a video display, a device context is usually associated with a
particular window on the display.

Windows uses the values in the device context structure (also called “attributes” of
the device context) in conjunction with the GDI functions. With TextOut, for instance, the

48

Chapter 2: Painting with Text

attributes of the device context determine the color of the text, the color of the text back-
ground, how the x-coordinate and y-coordinate are mapped to the client area of the
window, and what font Windows uses when displaying the text.

When a program needs to paint, it must first obtain a handle to a device context. After
it has finished painting, the program should release the handle. When a program releases
the handle, the handle is no longer valid and must not be used. The program should obtain
the handle and release the handle during processing of a single message. Except for a de-
vice context created with a call to CreateDC, you should not keep a device context handle
around from one message to another. '

Windows applications generally use two methods for getting the handle to the device
context in preparation for painting the screen.

Getting a Device Context Handle: Method One

You use this method when you process WM _PAINT messages. Two functions are involved:
BeginPaint and EndPaint. These two functions require the handle to the window (passed
to the window procedure as a parameter) and the address of a structure variable of type
PAINTSTRUCT. Windows programmers usually name this structure variable ps and define
it within the window procedure, like so:

PAINTSTRUCT ps ;

While processing a WM_PAINT message, a Windows function first calls BeginPaint
to fill in the fields of the ps structure. The value returned from BeginPaint is the device
context handle. This is commonly saved in a variable named hdc. You define this variable
in your window procedure like this:

HDC hdc ;

The HDC data type is defined in WINDOWS H as a HANDLE. The program may then use
GDI functions such as TextOut. A call to EndPaint releases the device context handle and
validates the window. :

Typically, processing of the WM_PAINT message looks like this:

case WM_PAINT :
hdc = BeginPaint (hwnd,&ps) ;

[use GDI functions/

EndPaint (hwnd, &ps) ;
return 0 ;

The window procedure must call BeginPaint and EndPaint as a pair while processing the
WM_PAINT message. If a window procedure does not process WM_PAINT messages,
then it must pass the WM_PAINT message to Def WindowProc (the default window pro-
cedure) located in Windows.

49

. SECTIONI: GETTING STARTED

DefWindowProc processes WM _PAINT messages with the following code:

case WM_PAINT :
BeginPaint (hwnd, &ps) ;
EndPaint (hwnd, &ps) ;
return 0 ; ‘

This sequence of BeginPaint and EndPaint with nothing in between simply validates the
previously invalid rectangle. But don't do this:

case WM_PAINT :
return 0 ; // WRONG !!!

Windows places a WM_PAINT message in the message queue because part of the client
area is invalid. Unless you call BeginPaint and EndPaint (or ValidateRect), Windows will
not validate that area. Instead, Windows will send you another WM_PAINT message. And
another, and another, and another. ..

The Paint Information Structure

Earlier I mentioned a “paint information structure” that Windows maintains for each win-
dow. That’s what PAINTSTRUCT is. The structure is defined in WINDOWS.H as follows:

typedef struct tagPAINTSTRUCT

{
HDC hdc ;
BOOL fErase ;
RECT rcPaint ;
BOOL fRestore ;
BOOL fIncUpdate ;
BYTE rgbReserved[16] ;

} PAINTSTRUCT ;

Windows fills in the fields of this structure when your program calls BeginPaint.
Your program may use only the first three fields. The others are used internally by
Windows.

The hdc field is the handle to the device context. In a redundancy typical of Win-
dows, the value returned from BeginPaint is also this device context handle.

In most cases, fErase will be flagged TRUE (nonzero), meaning that Windows has
erased the background of the invalid rectangle. Windows erases the background using the
brush specified in the bbrBackground field of the WNDCLASS structure that you use
when registering the window class during WinMain initialization. Many Windows pro-
grams use a white brush:

wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;

However, if your program invalidates a rectangle of the client area by calling the
Windows function InvalidateRect, one of the parameters to this function specifies whether

50

SECTION I: GETTING STARTED

before calling BeginPaint. This invalidates the entire client area and erases the back-
ground. A FALSE value in the last parameter will not erase the background, however.
Whatever was there will stay.

In the HELLOWIN program in Chapter 1, we didn’t care about invalid rectangles or
clipping rectangles when processing the WM_PAINT message. If the area where the text
was displayed happened to be within the invalid rectangle, then DrawText restored it. If
not, then at some point during processing of the DrawText call, Windows determined it
didn't have to write anything to the display. But this determination takes time. A program-
mer concerned about performance and speed will want to use the invalid-rectangle
dimensions during processing of WM_PAINT to avoid unnecessary GDI calls.

Getting a Device Context Handle: Method Two

You can also obtain a handle to a device context if you want to paint the client area when
processing messages other then WM_PAINT or if you need the device context handle for
other purposes, such as obtaining information about the device context. Call GetDC to ob-
tain the handle to the device context, and ReleaseDC after you’re done with it:

hdc = GetDC (hwnd) ;
[use GDI functions]
ReleaseDC (hwnd, hdc) ;

Like BeginPaint and EndPaint, the GetDC and ReleaseDC functions should be called in
pairs. When you call GetDC while processing a message, you should call ReleaseDC before
you exit the window procedure. Do not call GetDC in response to one message and
ReleaseDC in response to another.

Unlike the device context handle obtained from the PAINTSTRUCT structure, the de-
vice context handle returned from GetDC has a clipping rectangle equal to the entire client
area. You can paint on any part of the client area, not merely on the invalid rectangle Gf
indeed there is an invalid rectangle). Unlike EndPaint, ReleaseDC does not validate any
invalid rectangles.

TextOuti: The Details

When you obtain the handle to the device context, Windows fills the device context struc-
ture with default values. As you’ll see in later chapters, you can change these defaults with
GDI functions. The GDI function we’re interested in right now is TextOut:

TextOut (hdc, x, y, 1psString, nLength) ;

Let’s examine this function in more detail.

The first parameter is the handle to the device context—either the bdc value
returned from GetDC or the hdc value returned from BeginPaint during processing of a
WM _PAINT message. '

52

Chapter 2: Painting with Text

you want the background erased. If this parameter is FALSE (or 0), then Windows will not
erase the background, and the fErase field will also be FALSE.

The rcPaint field of the PAINTSTRUCT structure is a structure of type RECT. As you
learned in Chapter 1, the RECT structure defines a rectangle. The four fields are /left, top,
right, and bottom. The rcPaint field in the PAINTSTRUCT structure defines the bound-
aries of the invalid rectangle, as shown in Figure 2-1. The values are in units of pixels rela-
tive to the upper left corner of the client area. The invalid rectangle is the area that you
should repaint. Although a Windows program can simply repaint the entire client area of
the window whenever it receives a WM_PAINT message, repainting only the area of the
window defined by that rectangle saves time. :

0 left right

Caption Bar

0
top
Invalid
rectangle
bottom

Client area

Progam Manager . -

Figure 2-1. The boundaries of the invalid rectangle.

The rcPaint rectangle in PAINTSTRUCT is not only the invalid rectangle; it is also a
“clipping” rectangle. This means that Windows restricts painting to within the clipping
rectangle. When you use the device context handle from the PAINTSTRUCT structure,
Windows will not paint outside the rcPaint rectangle.

To paint outside this rcPaint rectangle while processing WM_PAINT messages, you
can make this call:

InvalidateRect (hWnd, NULL, TRUE) ;

51

Chapter 2: Painting with Text

The attributes of the device context control the characteristics of this displayed text.
For instance, one attribute of the device context specifies the text color. The default color is
black. The default device context also defines a background color of white. When a pro-
gram writes text to the display, Windows uses this background color to fill in the space
surrounding the characters.

This text background color is not the same background you set when defining the
window class. The background in the window class is a brush—which is a pattern that
may or may not be a pure color—that Windows uses to erase the client area. It is not part
of the device context structure. When defining the window class structure, most Windows
applications use WHITE_BRUSH so that the background color in the default device con-
text is the same color as the brush Windows uses to erase the background of the client area.

The lpsString parameter is a long pointer to a character string, and nlLength is the
length of the string. The string should not contain any ASCII control characters such as car-
riage returns, linefeeds, tabs, or backspaces. Windows displays these control characters as
solid blocks. TextOut does not recognize a 0 as denoting the end of the string and requires
the nlength parameter for the length.

The x and y values in TextOut define the starting point of the character string within
the client area. The x value is the horizontal position; the y value is the vertical position.
The upper left corner of the first character in the string is positioned at x and y. In the
default device context, the origin (the point where x and y both equal 0) is the upper left
corner of the client area. If you use 0 values for x and y in TextOut, the character string
starts flush against the upper left corner of the client area.

GDI coordinates are “logical coordinates.” Windows has a variety of “mapping
modes” that govern how the logical coordinates specified in GDI functions are translated
to the physical pixel coordinates of the display. The mapping mode is defined in the device
context. The default mapping mode is called MM_TEXT (using the WINDOWS.H iden-
tifier). Under the MM _TEXT mapping mode, logical units are the same as physical units,
which are pixels. Values of x increase as you move to the right in the client area and values
of y increase as you move down in the client area. (See Figure 2-2 on the following page.)
The MM _TEXT coordinate system is identical to the coordinate system that Windows uses
to define the invalid rectangle in the PAINTSTRUCT structure. Very convenient. (This is
not the case with other mapping modes, however.) '

The device context also. defines a clipping region. As you've seen, the default clip-
ping region is the entire client area for a device context handle obtained from GetDC and
the invalid rectangle for the device context handle obtained from BeginPaint. Windows
will not display any part of the character string that lies outside the clipping rectangle. If a
character is partly within the clipping rectangle, Windows displays only the portion of the
character inside the rectangle. Writing outside the client area of your window isn’t easy to
do, so don’t worry about doing it inadvertently.

53

SECTION I: GETTING STARTED

Caption Bar

Values of x

Values of y

Client area

Figure 2-2. The x-coordinate and y-coordinate in the MM _TEXT mapping mode.

The System Font

The device context also defines the font that Windows uses when writing text to the client
area. The default is a font called the “system font” or (using the WINDOWS.H identifier).
SYSTEM_FONT. The system font is the font that Windows uses for text in caption bars,
menus, and dialog boxes.

Under Windows 3, the system font is a variable-width font, which means that differ-
ent characters have different widths. A “W” is wider than an “i.” In earlier versions of
Windows, the system font was a fixed-pitch font in which all the characters had the same
width. '

The system font is a “raster font,” which means that the characters are defined as
blocks of pixels. The floppy disks for the Windows installation include several system
fonts in various sizes for use with different video display adapters.

When manufacturers of a new video board develop a new Windows display driver,
they are also responsible for developing a new system font appropriate for the resolution of
the display. Alternatively, the manufacturer might specify that one of the system font files
supplied with the retail version of Windows be used. The system font must be designed so
that at least 25 lines of 80-character text can fit on the display. That is the only guarantee
you have about the relationship between screen size and font size in Windows.

54

Chapter 2: Painting with Text

The Size of a Character

To display multiple lines of text using the TextOut function, you need to determine the
dimensions of font characters. You can space successive lines of text based on the height of
a character, and you can space columns of text across the client area based on the width
of a character.

You can obtain character dimensions with the GetTextMetrics call. GetTextMetrics
requires a handle to the device context because it returns information about the font cur-
rently selected in the device context. Windows copies the various values of text metrics
into a structure of type TEXTMETRIC. The values are in units that depend on the mapping
mode selected in the device context. In the default device context, this mapping mode is
MM_TEXT, so the dimensions are in units of pixels.

To use the GetTextMetrics function, you first need to define a structure variable
(commonly called tm):

TEXTMETRIC tm ;
Next, get a handle to the device context and call GetTextMetrics:

hdc = GetDC (hwnd) ;

GetTextMetrics (hdc, &tm) ;
After you examine the values in the text metric structure (and probably save a few of them
for future use), you release the device context:

ReleaseDC (hwnd, hdc) ;

Text Metrics: The Details

The TEXTMETRIC structure provides a wealth of information about the current font
selected in the device context. However, the vertical size of a font is defined by only five
values, as shown in Figure 2-3 on the following page.

These are fairly self-explanatory. The tminternalleading value is the amount of
space allowed for an accent mark above a character. If the value is set to 0, accented capital
letters are made a little shorter so that the accent fits within the ascent of the character. The
tmExternalLeading value is the amount of space that the designer of the font is suggesting
be added between character rows. You can accept or reject the font designer’s suggestion
for including external leading when spacing lines of text.

The TEXTMETRIC structure has two fields that describe character width:
tm AveCharWidth (a weighted average width of lowercase characters) and tmMaxChar-
Width (the width of the widest character in the font). For a fixed-pitch font, these two
values are the same. -

The sample programs in this chapter will require another character width—the
average width of uppercase letters. This can be calculated as 150% of tmAveCharWidth.

55

SECTION I: GETTING STARTED

tmExternallLeading

tminternalLeading

% tmAscent

} tmHeight

-=<— Baseline

% tmDescent

_)

Figure 2-3. The five values defining vertical character size in a font.

It's important to realize that the dimensions of the system font are dependent on the
resolution of the video display on which Windows runs. Windows provides a device-
independent graphics interface, but you have to help. Don’t write your Windows program
so that it guesses at character dimensions. Don’t hard code any values. Use the GetText-
Metrics function to obtain this information.

Formatting Text

Because the dimensions of the system font do not change during a Windows session, you
need to call GetTextMetrics only once when your program executes. A good place to make
this call is while processing the WM_CREATE message in the window procedure. The
WM _CREATE message is the first message the window procedure receives. Windows calls
your window procedure with a WM_CREATE message when you call CreateWindow in
WinMain. '

56

Chapter 2: Painting with Text

Suppose you’re writing a Windows program that displays several lines of text run-
ning down the client area. You’ll want to obtain values for the character width and height.
Within the window procedure you can define two variables to save the average character
width (¢xChar) and the total height (cyChar):

static short cxChar, cyChar ;

The prefix ¢ added to the variable names stands for “count,” and in combination with x or
y refers to a width or a height. These variables are defined as static because they must be
valid when the window procedure processes other messages (such as WM_PAINT). If the
variables are defined outside any functions, they need not be defined as static.

Here’s the WM_CREATE code:

case WM_CREATE :
hdc = GetDC (hwnd) ;

GetTextMetrics (hdc, &tm) ;
cxChar = tm.tmAveCharWidth ;
cyChar = tm.tmHeight + tm.tmExternalleading ;

ReleaseDC (hwnd, hdc) ;
return 0 ;

If you do not want to include external leading to space lines of text, you can use:
cyChar = tm.tmHeight ;

How you use this character size to calculate display coordinates is up to you. A simple
method is to leave a ¢yChar margin at the top of the client area and a cxChar margin at
the left. To display several lines of left-justified text, use the following x-coordinate values
when calling the TextOut function: ‘

cxChar
" The y-coordinate values in TextOut are:
cyChar * (1 + 1)

where i is the line number starting at 0.

You'll often find it necessary to display formatted numbers as well as simple charac-
ter strings. If you were programming in MS-DOS using standard C library functions, you
would probably use printf for this formatting. You cannot use printf in Windows, because
printf writes to the standard output device, and that concept makes no sense under
Windows.

Instead, you can use sprintf. The sprintf function works just like printf except that
it puts the formatted string into a character array. You can then use TextOut to write the
string to the display. Very conveniently, the value returned from sprintf is the length of

57

SECTION I: GETTING STARTED

the string—you can pass this value to TextOut as the nLength parameter. This code shows
a typical sprintf and TextOut combination: ‘

short nlLength ;

char szBuffer [40] ;

[other program lines]
nLength = sprintf (szBuffer, "The sum of %d and %d is %d",
nA, nB, nA + nB) ;

TextOut (hdc, x, y, szBuffer, nlLength) ;
For something as simple as this you could dispense with the nlength definition and
combine the two statements into one:

TextOut (hdc, x, y, szBuffer,
‘sprintf (szBuffer, "The sum of %d and %d is %d",
nA, nB, nA + nB)) ;
It’s not pretty, but it works.
If you don’t need to display floating-point numbers, you can use wsprintf rather than
sprintf. The wsprintf function has the same syntax as sprintf, but it’s included in Windows,
so using it won't increase the size of your .EXE file.

Putting It All Together

Now we seem to have everything we need to write a simple program that displays multiple
lines of text on the screen. We know how to get a handle to a device context, how to use the
TextOut function, and how to space text based on the size of a single character. The only
thing left to do is to display something interesting.

The information available in the Windows GetSystemMetrics call looks interesting
enough. This function returns information about the size of various graphical items in
Windows, such as icons, cursors, caption bars, and scroll bars. These sizes vary with the
display adapter and driver. GetSystemMetrics requires a single parameter called an “in-
dex.” This index is 1 of 37 integer identifiers defined in WINDOWS.H. GetSystemMetrics
returns an integer, usually the size of the item specified in the parameter.

Let’s write a program that displays all the information available from the GetSystem-
Metrics call in a simple one-line-per-item format. Working with this information is easier if
we create a header file that defines an array of structures containing both the WIN-
DOWS.H identifiers for the GetSystemMetrics index and the text we want to display for
each value returned from the call. This header file is called SYSMETS.H and is shown
. in Figure 2-4.

58

SYSMETS.H

Chapter 2:

#idefine NUMLINES (sizeof sysmetrics / sizeéf sysmetrics [0])

struct
{ : :

wint. nlndex ;

" char *szlabel ;

Yo :
-sysmetrics [1:=

. SM_CXSCREEN,
_ SM_CYSCREEN,

. SM_CXVSCROLL,
. SM_CYHSCROLL,
SH_CYCAPTION,
SM_CXBORDER,
 SM_CYBORDER,

' char xszDesc ;i

"SM_CXSCREEN"
"SM_CYSCREEN”
. "SM_CKVSCROLL
\ :;vsm;cvuscRonn

"SM_CYCAPTION

~ "SM_CYBORDER”,

-~ "SM_CXBORDER"

 "Vertical scroll arrow
. "Horizontal scro11_arrc
_ "Caption bar height”
. "Border width",

. "Border he1ght"'

Painting with Text

“Screen width in pixels”,
- "Screen height in pixel

W

pidthes

dth"

" heightf;f‘; -

hefght™

'i‘ﬁHorizontal'scrol]fthumb,width?,JLH;;:

'SM_CXDLGFRAME f“SM;CXDLGFiAMEﬁ; - "Dialog window frame w1 D
SM;CYDLGFRAME{~ .-"SM;CYDLGFaAME“;f’;fﬁnia1og window frame height",
“SM_CYVTHUMB, .. . "SM CYVTHUMB®, . "Vertical scroll thumb
. SM_CXHTHUMB, -~ "SM:CXHTHUMB",
- SM_CXICON, CMSMoCXICON", n width?,
. SM.CYICON, . "SM CYICONY, height™,
~ SM_CXCURSOR, - "SM CXCURSOR", ;_r width", =
SM CYCURSORJ, _ "SM_CYCURSOR", sor: he1ght"
. SM_CYMENU, - "SM.CYMENU™, . " _bar height”,
i M CXFULLSCREEN "SMCXFULLSCREEN", ""Fu11~screen client window width",
; *-SM CYFULLSCREEN _"SP CYFULLSCREEN" S "Full- screen client window he1ght"
SM_CYKANJIWINDOW, “SM CYKANJIWINDON"_-’Karj1 window height" ‘
SM. MOUSEPRESENT "SM_MOUSEPRESENT, . "Mouse. present f]ag"
- SM CYVSCROLL,. ~"SM_CYVSCROLLY, - .

~ SM_CXHSCROLL,
. SM_DEBUG,

SH 'RESERVED3,
 SM_RESERVED4,
{,SM_CXMIfo i
SM.CYMIN,
SM_ CXSIZE
SM CYSIZE

Figure 2-4. SYSMETS.H.

f'"SM CXHSCROLL",
. "SM.DEBUG",
"_4“5M5SMAPBUTTON" :
.. - "SM RESERVED1",
. USMR
. "SM_RESER\
"SH_RESERVEL
.Yf?SM;CXMI:V .
 USMECYMI
~ "SM_CXSI
: ;"SM CYSIZE“

 SMLSWAPBUTTON,

ESERVED2",

'Debug ver51on f]ag"

use buttons swapped flag",

(continued)

59

SECTION I: GETTING STARTED

SM_CMETRICS,

The program that displays this information is called SYSMETS1. The files required to
create SYSMETSL.EXE (make file, C source code, and module definition file) are shown in
Figure 2-5. Most of the code should look familiar by now. With the exception of the pro-
gram name, the make file, resource script, and DEF file are identical to those for
HELLOWIN. In SYSMETS1.C, WinMain is virtually identical to HELLOWIN.

Figure 2.5. The SYSMETS1 program. ' (continued)

60

static char szAppName[] = "SysMetsl" W
HWND hwnd " ; G
' MSG msg ;

Chapter 2: Painting with Text

(-

WNDCLASS wndclass ;

if (lhPrevInstance)

{ : i

wndclass.style CS_HREDRAW 1. CS_VREDRAW ;
wndclass.lpfnindProc WndProc ; -
wndclass.cbClsExtra:. 0
~wndclass.cbWndExtra 0.5 :
wndclass.hInstance hInstance ; 1
wndclass.hlcon LoadIcon (NULL, IDI APPLICATION)

LoadCursor (NULL, IDC.ARROW) ;
GetStockObJect (WHITE BRUSH) H
NULL ; :

szAppName g

wndclass.hCursor. . -
- wndclass. hbrBackground
" wndclass.1pszMenuName
wndclass.]pszC]assName

: Reg sterC]ass (&wndc1ass) :

}

hwnd = CreateWindow (szAppName, "Get System MetPiCSvNO;il""
. o o WS OVERLAPPEDWINDOW, R
- CW_USEDEFAULT, CH_ USEDEFAULT,
- CW_USEDEFAULT, CW_USEDEFAULT, .
CNULL, NULL, hInstance, NULL) ;

' _Sﬂoww1ndoﬁfthﬁndf nCmdShow .
: Updatewindow (hwnd B

' wh11e (GetMessage (&msg, NULL 0, 0))

E

' TranslateMessage {&msg)

16hg

~ return ms@ih’éf

T:,)_,_

DispatchMessage (&msg) ;

FAR PASCAL NndProc (HwND hwrd, NORD message HDRD wParam'. """
statlc short chhar ‘XCaJS. ryChar ;:T._.,: L
char . szBuffer[10] ; o
S HDC o ohde s
_short . i e

~ PAINTSTRUCT ps:
(TEXTMETRIC tm ;

(continued)

61

SECTION I: GETTING STARTED

Chapter 2: Painting with Text

SYSMETS] DEF modu]e defimtlon fﬂe .

......................................

-f SYSMETSl ;’ "2,-~?5i

; Metmcs D1sp1ay- N

(@) Charles Petzold, 1990"

MOV EAB‘LE DISCARDABLE
MoV EABLE MU LTI PLE

£LOAD |
LOAD

Figure 2-6 shows SYSMETSI running on a VGA. As you can see from the program’s win-
dow, the screen width is 640 pixels and the screen height is 480 pixels. These two values,
as well as many of the other values shown by the program, will be different for different
types of video displays.

Get System Metrics No. 1
-] SM_CXSCREEN Screen width in pixels
SM_CYSCREEN Screen height in pixels
SM_CXVSCROLL Vertical scroll arrow width
SM_CYHSCROLL Horizontal scroll arrow height

| 1 SM_CYCAPTION Caption bar height
'] SM_CXBORDER Border width

] SM_CYBORDER Border height

{ SM_CXDLGFRAME Dialog window frame width

-] SM_CYDLGFRAME Dialog window frame height

|] SM_CYVTHUMB Vertical scroll thumb height

{1 SM_CXHTHUMB Horizontal scroll thumb width

] SM_CXICON Icon width

"] SM_CYICON Icon height

-§ SM_CXCURSOR Cursor width

'} SM_CYCURSOR Cursor height

] SM_CYMENU Menu bar helght

-} SM_CXFULLSCREEN Full screen client window width
SM_CYFULLSCREEN Full screen client window height
SM_CYKANJIWINDOW Kanji window height ’
SM_MOUSEPRESENT Mouse present flag
SM_CYVSCROLL Vertical scroll arrow height
SM_CXHSCROLL Horizontal scroll arrow width

Figure 2-6. The SYSMETS1 display.

SECTION I: GETTING STARTED

‘The SYSMETS1.C Window Procedure

The WndProc window procedure in the SYSMETS1.C program processes three messages:
WM_CREATE, WM_PAINT, and WM_DESTROY. The WM_DESTROY message is pro-
cessed in the same way as the HELLOWIN program in Chapter 1.

The WM_CREATE message is the first message the window procedure receives. It is
generated by Windows when the CreateWindow function creates the window. During the
WM_CREATE message, SYSMETSI1 obtains a device context for the window by calling
GetDC, and gets the text metrics for the default system font by calling GetTextMetrics.
SYSMETS] saves the average character width in cxChar and the total height of the charac-
ters including external leading in cyChar.

SYSMETSI also saves an average width of uppercase letters in the static variable cx-
Caps. For a fixed-pitch font, cxCaps would equal cxChar. For a variable-width font, cxCaps
is about 150% of cxChar. The low bit of the tmPitchAndFamily field of the TEXTMETRIC
structure is 1 for a variable-width font and 0 for a fixed-pitch font. SYSMETSI uses this bit
value to calculate cxCaps from cxChar:

cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar /2 ;

SYSMETSI does all window painting during the WM _PAINT message. As normal, the
window procedure first obtains a handle to the device context by calling BeginPaint. A
Jorstatement loops through all the lines of the sysmetrics structure defined in SYSMETS.H.
The three columns of text are displayed with three TextOut functions. In each case, the
third parameter to TextOut is set to:

cyChar = (1 + 1)

This parameter indicates the pixel position of the top of the character string relative
to the top of the client area. Thus, the program leaves a margin at the top equal to ¢cyChar.
The first line of text (when ¢ equals 0) begins ¢cyChar pixels below the top of the client
area.

The first TextOut statement displays the uppercase identifiers in the first of the three
columns. The second parameter to TextOut is cxChar. This leaves a one-character margin
between the left edge of the client area and the text string. The text is obtained from the
szLabel field of the sysmetrics structure. I use the Windows function Istrlen (which is simi-
lar to strien) to obtain the length of the string, which is required as the last parameter
to TextOut.

The second TextOut statement displays the description of the system metrics value.
These descriptions are stored in the szDesc field of the sysmetrics structure. In this case,
the second parameter to TextOut is set to:

cxChar + 18 * cxCaps

64

Chapter 2: Painting with Text

The longest uppercase identifier displayed in the first column is 16 characters, so the
second column must begin at least 16 X cxCaps to the right of the beginning of the first
column of text.

The third TextOut statement displays the numeric values obtained from the Get-
SystemMetrics function. The variable-width font makes formatting a column of right-
justified numbers a little tricky. All the digits from 0 through 9 have the same width, but
this width is greater than the width of a space. Numbers can be one or more digits wide, so
different numbers can begin at different horizontal positions.

Wouldn't it be easier if we could display a column of right-justified numbers by
specifying the pixel position where the number ends rather than where it begins? This is
what the SetTextAlign function lets us do. After SYSMETSI calls

SetTextAlign (hdc, TA_RIGHT ¢ TA_TOP) ;

then the coordinates passed to subsequent TextOut functions will specify the top-right
corner of the text string rather than the top-left corner.

The TextOut function to display the column of numbers has a second parameter
set to:

cxChar + 18 * cxCaps + 40 * cxChar

The 40 x cxChar value accommodates the width of the second column and the width of
the third column. Following the TextOut function, another call to SetTextAlign sets things
back to normal for the next time through the loop. '

Not Enough Room!

One little nasty problem exists with the SYSMETS] program: Unless you have a big-screen
high-resolution video adapter, you can't see the last few lines of the system metrics list. If
you make the window narrower, you can't see even the values.

SYSMETSI1 doesn’t know how large its client area is. It begins the text at the top of the
window and relies on Windows to clip everything that drifts beyond the edges of the client
area. Our first job is to determine how much of the program’s output can actually fit within
the client area.

The Size of the Client Area

If you experiment with existing Windows applications, you'll find that window sizes can
vary widely. At the most (assuming the window does not have a menu or scroll bars), the
window can be maximized, and the client area will occupy the entire screen except for the
caption bar. The minimum size of the window can be quite small, sometimes almost non-
existent, eliminating the client area. '

65

SECTION I: GETTING STARTED

One common method for determining the size of a window’s client area is to process
the WM_SIZE message within your window procedure. Windows sends a WM_SIZE mes-
sage to a window procedure whenever the size of the window changes. The [Param vari-
able passed to the window procedure contains the width of the client area in the low word
and the height in the high word. The code to process this message looks like this:

static short cxClient, cyClient ;
lother program lines]

case WM_SIZE :
cxClient = LOWORD (1Param) ;
cyClient = HIWORD (1Param) ;
break ;

The LOWORD and HIWORD macros are defined in WINDOWS.H. Like cxChar and
cyChar, the cxClient and cyClient variables are defined as static inside the window pro-
cedure because they are used later when processing other messages.

The WM_SIZE message will eventually be followed by a WM_PAINT message. Why?
Because when we define the window class, we specify that the class style is:

CS_HREDRAW ! CS_VREDRAW

This class style tells Windows to force a repaint if either the horizontal or vertical size
changes.

You can calculate the number of full lines of text displayable within the client area
with the formula:

cyClient / cyChar

This may be 0 if the height of the client area is too small to display a full character. Simi-
larly, the approximate number of lowercase characters you can display horizontally within
the client area is equal to:

cxClient / cxChar

If you determine cxChar and cyChar during a WM_CREATE message, don’t worry about
dividing by 0 in these calculations. Your window procedure receives a WM_CREATE mes-
sage when WinMain calls CreateWindow. The first WM _SIZE message comes a little later
when WinMain calls ShowWindow, at which point cxChar and cyChar have already been
assigned positive values.

Knowing the size of the window’s client area is the first step in providing a way for
the user to move the text within the client area if the client area is not large enough to hold
everything. If you're familiar with other Windows applications that have similar require-
ments, you probably know what we need: This is a job for scroll bars.

Chapter 2: Painting with Text

SCROLL BARS

Scroll bars are one of the best features of a graphics and mouse interface. They are easy to
use and provide good visual feedback. You can use scroll bars whenever you need to dis-
play anything—text, graphics, a spreadsheet, database records, pictures—that requires
more space than the available client area of the window.

Scroll bars are positioned either vertically (for up and down movement) or horizon-
tally (for left and right movement). You can click with the mouse on the arrows at each end
of a scroll bar or on the area between the arrows. A “scroll box,” or “thumb,” travels the
length of the scroll bar to indicate the approximate location of the material shown on the
display in relation to the entire document. You can also drag the thumb with the mouse to
move to a particular location. Figure 2-7 shows the recommended use of a vertical scroll
bar for text.

Programmers sometimes have problems with scrolling terminology because their
perspective is different from the user’s: A user who scrolls down wants to bring a lower
part of the document into view. However, the program actually moves the document up in
relation to the display window. The Windows documentation and the WINDOWS.H iden-
tifiers are based on the user’s perspective: Scrolling up means moving toward the begin-
ning of the document; scrolling down means moving toward the end.

Click here to scroll
| _— one line up (contents
of window go down)

=

Scroll Bars

Click here to scroll
£ | one page or one
' screenful up

g4 1~ Drag thumb to go to
approximate location

Click here to scroll
one page or one
screenful down

Click here to scroll
one line down (contents
of window go up)

Figure 2-7; The vertical scroll bar.

67

SECTION I: GETTING STARTED

It is very easy to include a horizontal or vertical scroll bar in your application window. All
you need to do is include the identifier WS_VSCROLL (vertical scroll) or WS_HSCROLL
(horizontal scroll) or both to the window style in the CreateWindow statement. These
scroll bars are always placed against the right side or bottom of the window and extend for
the full length or width of the client area. The client area does not include the space oc-
cupied by the scroll bar. The width of a vertical window scroll bar and the height of a hori-
zontal window scroll bar are constant for a particular display driver. If you need these
values, you can obtain them (as you may have observed) from the GetSystemMetrics call.

Windows takes care of all mouse logic for the scroll bars. However, window scroll
bars do not have an automatic keyboard interface. If you want the cursor keys to duplicate
some of the window scroll bars’ functions, you must explicitly provide logic for that (as
we’ll do in the next chapter).

Scroll Bar Range and Position

Scroll bars have a “range” and a current “position.” The range is defined by minimum and
maximum integer values. When the thumb is at the top (or left) of the scroll bar, the posi-
tion of the thumb is the minimum value of the range. At the bottom (or right) of the scroll
bar, the thumb position is the maximum value of the range.

The position of the thumb is always a discrete integral value. For instance, a scroll bar
with a range from 0 through 4 has five thumb positions, as shown in Figure 2-8. By default,
the range of a scroll bar is 0 (top or left) through 100 (bottom or right), but it’s easy to
change the range to something that is more convenient for the program:

SetScrol1Range (hwnd, nBar, nMin, nMax, bRedraw) ;

The nBar parameter is either SB_VERT or SB_HORZ, nMin and nMax are the minimum
and maximum positions of the range, and bRedraw is set to TRUE if you want Windows to
redraw the scroll bar based on the new range.

You can use SetScrollPos to set a new thumb position within the range:

SetScroilPos (hwnd, nBar, nPos, nRedraw) ;

The nPos parameter is the new position and must be within the range of nMin through
nMax. Windows provides similar functions (GetScrollRange and GetScrollPos) to obtain
the current range and position of a scroll bar.

When you use scroll bars within your program, you share responsibility with Win-
dows for maintaining the scroll bars and updating the position of the scroll bar thumb.
These are Windows’ responsibilities for scroll bars: ‘

B Handle all scroll bar mouse logic

B Provide a “reverse video” flash when the user clicks on the scroll bar

Chapter 2: Painting with Text

B Display a “ghost” box when the user drags the thumb within the scroll bar

® Send scroll bar messages to the window procedure for the window con-
taining the scroll bar

These are your program’s responsibilities:
¥ Initialize the range of the scroll bar
M Process the scroll bar messages

B Update the position of the scroll bar thumb

Scroll Bars

[~ Position 0

[~ Position 1

™~ Position 2

Position 3

™ Position 4

Position 0 Position 1 Position 2 Position 3 Position 4

Figure 2-8. Scroll bars with five thumb positions.

Scroll Bar Messages

Windows sends the window procedure WM_VSCROLL and WM_HSCROLL messages
when the scroll bar is clicked with the mouse or the thumb is dragged. Each mouse action

on the scroll bar generates at least two messages, one when the mouse button is pressed
and another when it is released.

SECTIONI: GETTING STARTED

The value of wParam that accompanies the WM _VSCROLL and WM_HSCROLL mes-
sages describes what the mouse is doing to the scroll bar. These values of wParam have
WINDOWS.H identifiers that begin with SB, which stands for “scroll bar.” Although some
of these identifiers use the words “UP” and “DOWN,” they apply to horizontal as well as
vertical scroll bars, as you see in Figure 2-9. Your window procedure can receive multiple
SB_LINEUP, SB_PAGEUP, SB_LINEDOWN, or SB_PAGEDOWN messages if the mouse
button is held down while positioned on the scroll bar. The SB_ENDSCROLL message sig-
nals that the mouse button has been released. You can generally ignore SB_ENDSCROLL
messages.

When wParam is SB_THUMBTRACK or SB_THUMBPOSITION, the low word of
[Param is the current position of the dragged scroll bar. This position is within the
minimum and maximum values of the scroll bar range. For other values of wParam, the
low word of /Param should be ignored. You can also ignore the high word of /Param.

The Windows documentation indicates that the wParam value can also be SB_TOP
and SB_BOTTOM, indicating that the scroll bar has been moved to its minimum or maxi-

. mum position. However, you will never receive these values for a scroll bar created as part
of your application window.

Handling the SB_THUMBTRACK and SB_THUMBPOSITION messages is problem-
atic. If you set a large scroll bar range and the user quickly drags the thumb inside the scroll
bar, Windows sends your window function a barrage of SB_THUMBTRACK messages.

Scroll Bars

Pressed: SB_LINEUP
Released: SB_ENDSCROLL

Pressed: SB_PAGEUP
Released: SB_ENDSCROLL

Pressed and dragged: SB_THUMBTRACK
Released: SB_THUMBPOSITION

Pressed: SB_PAGEDOWN
Released: SB_ENDSCROLL

Pressed: SB_LINEDOWN
Released: SB_ENDSCROLL

Figure 2.9. WINDOWS. H identifiers for the wParam values of scroll bar messages.

70

Chapter 2: Painting with Text

Your program may have problems keeping up with these messages. For this reason, most
Windows applications ignore these messages and take action only on receipt of
SB_THUMBPOSITION, which means that the thumb is again at rest.

However, if you can update your display quickly, you may want to include
SB_THUMBTRACK processing in your program. But be aware that users who discover that
your program scrolls as they move the scroll bar thumb will undoubtedly try to move it as
quickly as possible to see if your program can keep up. They will get an inordinate amount
of satisfaction if it cannot.

Scrolling SYSMETS

Enough explanation. It's time to put this stuff into practice. But let’s start simply. We’ll
begin with vertical scrolling because that’s what we desperately need. The horizontal
scrolling can wait. SYSMETS2 is shown in Figure 2-10.

The new CreateWindow call adds a vertical scroll bar to the window; the scroll bar
has this window style:

WS_OVERLAPPEDWINDOW & WS_VSCROLL

 SYSMETSZMAK

 make Ifﬂg,‘

: ':"'sysmetsz exe ': SySWEtSZ °bJ sysmetsZ def

- sysmetsz

;System Metrics Dis lay;Program No. 2
(c) Charles Petzold, 1990

Figure 2-10. The SYSMETS2 program. (continued)

71

SECTION I: GETTING STARTED

(continued)

72

Chapter 2: Painting with Text

7ﬂf;swit&h-(hessage)J '»j-f:~i e L bR

{0
case WM_CREATE :
~hdc = GetDC (hwnd)

:-: GetTextMetr1cs (hdc &tm) . 0
- cxChar = tm, thveCharw1dth o .
_}_chaps”~_(tm thitchAndFami]y &12 3 2)_ oxChar /25

i,éfﬂiwbRD:(]RafamizE:
t = LOWORD: (1Param)

(continued)

73

SECTIONI: GETTING STARTED

74

Chapter 2: Painting with Text

svsmErz.nEr 5

......................................

NAME vSYSMETSZ o

“ DESCRIPTION 'System Metmcs D1sp1ay No 2 (c) Charles Petzold 1990'
EXETYPE ~ ~ WINDOWS

GSSTUB. b D INSTUBGEXEY e e i

~ CODE. PRELOAD MOVEABLE'DISCARDABLE-Wf.,:Th .
DATA PRELOAD MOVEABLE MULTIPLE .
HEAPSIZE 1024 i

OSTACKSTZE: - B9z

~ EXPORTS WndProc

The WndProc window procedure has two additional lines to set the range and posi-
tion of the vertical scroll bar during processing of the WM_CREATE message:

SetScrollRange (hwnd, SB:VERT, 0, NUMLINES, FALSE) ;
SetScrol1Pos (hwnd, SB_VERT, nVscrollPos, TRUE) ;

The sysmetrics structure has NUMLINES lines of text, so the scroll bar range is set from 0
through NUMLINES. Each position of the scroll bar corresponds to a line of text displayed
at the top of the client area. If the scroll bar thumb is at position 0, a blank line is left at the
top of the screen for a margin. As you increase the position of the scroll bar by scrolling
down, the text should move up. When the scroll bar position is at the bottom, the last line of
the structure is at the top.

To help with processing of the WM_VSCROLL messages, a static variable called
nVscrollPos is defined within the WndProc window procedure. This variable is the cur-
rent position of the scroll bar thumb. For SB_LINEUP and SB_LINEDOWN, all we need to
do is adjust the scroll position by 1. For SB_PAGEUP and SB_PAGEDOWN, we want to
move the text by the contents of one screen, or cyClient divided by cyChar. For
SB_THUMBPOSITION, the new thumb position is the low word of' [Param.
SB_ENDSCROLL and SB_THUMBTRACK messages are ignored.

The nVscrollPos is then adjusted using the min and max macros (defined in WIN-
DOWS.H) to ensure that it is between the minimum and maximum range values. If the
scroll position-has changed, then it is updated using SetScrollPos, and the entire window is
invalidated by an InvalidateRect call.

The InvalidateRect call generates a WM_PAINT message. When the original
SYSMETS1 processed WM_PAINT messages, the y-coordinate of each line was calcu-
lated as:

cyChar * (1 + 1)

75

SECTION I: GETTING STARTED

In SYSMETS?2, the formula is:
cyChar * (1 - nVscrollPos + 1)

The loop still displays NUMLINES lines of text, but for values of nVscrollPos of 2 and
above, the loop begins displaying lines above the client area. Windows merely ignores
these lines. ‘

I told you we’d start simply. This is rather wasteful and inefficient code. We'll fix it .
shortly, but first consider how we update the client area after a WM_VSCROLL message.

Structuring Your Program for Painting

The window procedure in SYSMETS2 does not repaint the client area after processing a
scroll bar message. Instead, it calls InvalidateRect to invalidate the client area. This causes
Windows to place a WM_PAINT message in the message queue.

It is best to structure your Windows programs so that you do 4l client-area painting
in response to a WM_PAINT message. Because your program should be able to repaint the
entire client area of the window at any time on receipt of a WM_PAINT message, you will
probably duplicate code if you also paint in other parts of the program.

At first, you may rebel at this dictum because it is so different from normal PC pro-
gramming. I won’t deny that, on occasion, painting in response to messages other than
WM_PAINT is much more convenient. (The KEYLOOK program in the next chapter is an
example of such a program.) But in many cases it’s simply unnecessary, and after you mas-
ter the discipline of accumulating all the information you need to paint in response to a
WM_PAINT message, you'll be pleased with the results. However, your program will often
determine that it must repaint a particular area of the display when processing a message
other than WM _PAINT. This is where InvalidateRect comes in handy. You can use it to
invalidate specific rectangles of the client area or the entire client area.

Simply marking areas of the window as invalid to generate WM_PAINT messages
may not be entirely satisfactory in some applications. After you make an InvalidateRect
call, Windows places a WM_PAINT message in the message queue, and the window pro-
cedure eventually processes it. However, Windows treats WM_PAINT messages as low pri-
ority. If your message queue contains only a WM_PAINT message and another application
has other messages waiting, Windows switches to the other application when you make a
GetMessage call.

If you prefer to update the invalid area immediately, you can call UpdateWindow
after you call InvalidateRect:

. UpdateWindow (hwnd) ;

UpdateWindow causes the window procedure to be called immediately with a WM-
_PAINT message if any part of the client area is invalid. (It will not call the window pro-
cedure if the entire client area is valid.) This WM_PAINT message bypasses the message

76

Chapter 2: Painting with Text

queue. The window procedure is called directly from Windows. When the window pro-
cedure has finished repainting, it exits and Windows returns control to the program at the
statement following the UpdateWindow call.

You'll note that UpdateWindow is the same function used in WinMain to generate
the first WM_PAINT message. When a window is first created, the entire client area is in-
valid. UpdateWindow directs the window procedure to paint it.

Building a Better Scroll

Because SYSMETS?2 is too inefficient a model to be imitated in other programs, let’s clean it
up. SYSMETS3—our final version of the SYSMETS program in this chapter—is shown in
Figure 2-11. This version adds a horizontal scroll bar for left and right scrolling and repaints
the client area more efficiently.

svsmetsamak

; ob,] sysmets3. :
1 gn 16, NUL, /nod shbcew hbw, sysmets3~' L

PSTR]_' 'sszdLme. _mt nCmdShow) . _': :‘

Figure 2-11. The SYSMETS3 program. : (continued)

77

SECTIONI: GETTING STARTED

(continued)

78

Chapter 2: Painting with Text

{
“case NM CREATE g o
o hde = GetDC (hwnd) 3

_ GetTextMetrics (hdc. &tm) _
- cxChar: = tm, thveCharw1dth o '

- cxCaps = (tm. thitchAndFam11y §1173: 2) * chhar / 2

cyChar = tm theight + tm tmExternalLeading Hi '

3 {“ Re1easeDC (hwnd hdc) ;

(continued)

79

SECTION I: GETTING STARTED

(continued)

Chapter 2: Painting with Text

~if (nHscrollInc = max (-nHscrollPos,
Rl min (nHscrollInc, nHscroliMax - nHscrollPos))) =

ancro]lPos += nHscrollInc :
ScrollWindow (hwnd, .-cxChar % nHscrolllnc, 0 NULL NULL) H

v SetScro]]Pos (hwnd SB _HORZ, ancrollPos. TRUE)
)
return 0

case WM_ PAINT o
~ hdc = Beg1nPalnt (hwnd &ps)

:5 1

PawntBeg = max (0, nVscro]lPos +'ps.rcPa1nt top / cyChar Do
alntEnd = min (NUMLINES,- - o
. nVscro]]Pos + ps. rcPalnt bottom / cyChar)

o =

ffor (1 = nPalntBeg ik nPa1ntEhdf. 1++)
@:x = chhar * (1 - ancrol)Pos) v
y = cyChar x (1 -anscrollPos + L)

iTextOut (hdc X, y, .
;~' sysmetrlcs[wj szLabel
L lstr1en (sysmetrics[i] szLabe1));'

. ‘2+ 18 * chaps y,;
 sysmetrics[i].szDesc,
1str1gn (sysmetr1cs[1] szDesc))

” fiSetTextALign (hdc TA RIGHT TA TOP)»,; -

' f* chaps + 40 = chhari_y‘

3uffer,'"%5d"3"' .
=mMetr1cs (sysmetrycs[a]

A LEFT TA:TOP .

81

SECTION I: GETTING STARTED

These are the improvements in SYSMETS3 and how they are implemented in the program:

B You can no longer scroll the display so that the last line appears at the top
of the client area. You can scroll only far enough to see the last line at the
bottom of the client area. This requires that the program calculate a new
scroll bar range (and possibly a new thumb position) when it processes a
WM_SIZE message. The WM_SIZE logic calculates the scroll bar range
based on the number of lines of text, the width of the text, and the size of
the client area. This approach results in a smaller range—only that
necessary to bring into view the text that falls outside the client area.
This offers an interesting dividend. Suppose that the client area of
the window is large enough to display the entire text with top and bottom
margins. In this case, both the minimum position and maximum position
of the scroll bar range will equal zero. What will Windows do with this
information? It will remove the scroll bar from the window! It’s no longer
needed. Similarly, if the client area is wide enough to show the full 60-
column width of the text, no horizontal scroll bar is displayed in the
window.

B The WM_VSCROLL and WM_HSCROLL messages are processed by first
calculating an increment of the scroll bar position for each value of
wParam. This value is then used to scroll the existing contents of the
window using the Windows ScroliWindow call. This function has the
following format:

Scrol1Hindow (hwnd, xInc, yInc, 1pRect, 1pClipRect) ;

82

Chapter 2: Painting with Text

The xInc and yInc values specify an amount to scroll in pixels. In
SYSMETS3, the IpRect and IpClipRect values are set to NULL to specify
that the entire client area should be scrolled. Windows invalidates the
rectangle in the client area “uncovered” by the scrolling operation. This
generates a WM_PAINT message. InvalidateRect is no longer needed.
(Note that ScrollWindow is not a GDI procedure because it does not re-
quire a handle to a device context. It is one of the few non-GDI Windows
functions that changes the appearance of the client area of 2 window.)

B The WM_PAINT processing now determines which lines are within the
invalid rectangle and rewrites only those lines. It does this by analyzing
the top and bottom coordinates of the invalid rectangle stored in the
PAINTSTRUCT structure. The program paints only those text lines within
the invalid rectangle. The code is more complex, but it is much faster.

B Because WM_PAINT was speeded up, I decided to let SYSMETS3 process
SB_THUMBTRACK operations for WM_VSCROLL messages. Previously,
the program would ignore SB_THUMBTRACK messages (which occur
as the user drags the scroll bar thumb) and would act only on SB-
_THUMBPOSITION messages, which occur when the user stops dragging
the thumb. The WM_VSCROLL code also calls UpdateWindow to update
the client area immediately. When you move the thumb on the vertical
scroll bar, SYSMETS3 will continually scroll and upda't'e;he clientarea. I'll
let you decide whether SYSMETS3 (and Windows) is fast enough to justify
this change. E

But | Don’t Like to Use the Mouse

If you don’t have a mouse on your PC, you can’t scroll SYSMETS3 at all. Scroll bars created
as part of your application window do not have an automatic keyboard interface. Because
Windows can be installed without a mouse, it is highly recommended that you write pro-
grams that do not require the mouse.

In the next chapter you'll learn how to use the keyboard and how to add a keyboard
interface to SYSMETS. You'll notice that SYSMETS3 seems to process WM_VSCROLL
messages where wParam equals SB_TOP and SB_BOTTOM. I mentioned earlier that a
window procedure doesn’t receive these messages for scroll bars, so right now this is
superfluous code. When we come back to this program in the next chapter, you'll see the
reason for including this code.

83

SECTION 11

READING

Chapter 3

The
Keyboard

Like most interactive programs that run on personal computers, Windows applications rely
heavily on the keyboard for user input. Although Windows also supports a mouse as an in-
put device, you can’t depend on a mouse being present in an installed version of Windows.
For this reason, program developers should attempt to allow complete program func-
tionality from the keyboard. (Of course, in some cases, such as drawing programs or desk-
top publishing programs, this is simply not practical and a mouse will be required.)

The keyboard cannot be treated solely as an input device in isolation from other pro-
gram functions. For example, a program almost always echoes the keyboard input by dis-
playing typed characters in the client area of a window. Handling keyboard input and
displaying text must be treated together. Sometimes the keystrokes result in a document
being created that is eventually saved in a disk file. Sometimes a program requires that the
user enter an MS-DOS filename. These apparently straightforward chores raise issues re-
lated to the support of the ASCII extended character set (codes of 128 and above) and of
international characters. For this reason, topics such as the character sets supported by
Windows and multibyte character codes are also covered in this chapter.

KEYBOARD BASICS

As the user presses and releases keys, the keyboard driver passes the keystrokes to Win-
dows. Windows saves the keystrokes in the system message queue and then transfers them
to the message queue of the program with the “input focus.” These messages are processed

87

SECTION II: READING INPUT

in the program’s window procedure. In most cases, the keyboard information encoded in
thése messages is probably more than your program needs. Part of the job of handling the
keyboard is knowing which messages are important and which are not.

The Keyboard Driver

Windows is shipped with several keyboard drivers for the support of various keyboard
hardware and dynamic link libraries that support international keyboard configurations.
Keyboards for European languages must include additional characters (such as letters with
diacritics) and symbols (such as the British pound sign). When you install Windows, the
SETUP program copies the keyboard driver for the keyboard and country you request into
the SYSTEM subdirectory of your Windows directory.

KEYBOARD.DRV is a relatively small and simple driver. When Windows starts up, it
enables the keyboard driver, which responds by saving the original interrupt vector
addresses for Interrupt 09H (the hardware keyboard interrupt) and setting this interrupt
vector to routines within the driver.

Pressing or releasing a key generates an Interrupt 09H. This is sometimes called an
“asynchronous” interrupt because it can occur at any time. The interrupt suspends the
program currently running and passes control to the Interrupt 09H keyboard handler.
When the keyboard handler is finished, it passes control back to the interrupted program.
The Interrupt 09H keyboard handler within KEYBOARD.DRYV decodes the key and calls a
routine within the Windows USER module, which stores them as quéued messages. The
Windows program then obtains the keyboard messages when the program calls
GetMessage.

Because a Windows program effectively polls for keyboard input by calling Getz-
Message, Windows programs are not very different from PC programs that obtain key-
strokes by polling through the software Interrupts 16H and 21H. However, the quantity of
information that Windows encodes in the keyboard messages is much greater than that
available from Interrupts 16H and 21H.

Some application programs written for the IBM PC intercept Interrupt 09H and do
their own hardware keyboard processing. This allows the program to use all possible com-
binations of keystrokes, not only those defined by the PC BIOS. Windows programs are not
very different from these programs either, because the window procedure is a message
handler that receives messages about all keyboard events. The only real difference be-
tween message handling and interrupt handling is that the Windows messages are not
asynchronous. A Windows program is never interrupted to be notified of a keystroke; the
program receives a new keyboard message only from the message queue. In short, Win-
dows provides programs with all the benefits of intercepting the hardware Interrupt 09H
but with none of the hassles.

When a user types on the keyboard faster than a program can process the keys, Win-
dows stores the extra keystrokes in a system message queue rather than in an individual

88

Chapter 3: The Keyboard

program’s message queue. One of these extra keystrokes (Alt-Tab, for instance) may have
the effect of switching to another program. The keys following Alt-Tab should then go to
the other program. Windows correctly synchronizes such keyboard messages.

Windows sends eight different messages to programs to indicate various keyboard
events. That may seem like a lot, but your program can safely ignore many of them.

Ignoring the Keyboard

Although the keyboard is the primary source of user input to Windows programs, your
program does not need to act on every keyboard message it receives. Windows handles
many keyboard functions itself. For instance, you can ignore keystrokes that pertain to
system functions. These keystrokes generally involve the Alt key.

A program need not monitor these keystrokes itself because Windows notifies a pro-
gram of the effect of the keystrokes. (A program can monitor the keystrokes if it wants to,
however.) For instance, if the Windows user selects a menu item with the keyboard, Win-
dows sends the program a message that the menu item has been selected, regardless of
whether it was selected by using the mouse or by using the keyboard. (Menus are covered
in Chapter 9.)

Some Windows programs use “keyboard accelerators” to invoke common menu
items. The accelerators generally involve the function keys, special noncharacter keys
such as Insert or Delete, or a letter in combination with the Ctrl key. These keyboard ac-
celerators are defined in a program’s resource script. (Chapter 9 shows how Windows
translates the accelerators into menu command messages. You don't have to do the trans-
lation yourself.)

Dialog boxes (covered in Chapter 10) also have a keyboard interface, but programs
usually do not need to monitor the keyboard when a dialog box is active. The keyboard
interface is handled by Windows, and Windows sends messages to your program about the
effects of the keystrokes. Dialog boxes can contain “edit” controls for text input. These are
generally small boxes in which the user types a character string. Windows handles all the
edit control logic and gives your program the final contents of the edit control when
the user is done.

Even within your main window you can define child windows that function as edit
controls. An extreme example of this is the Windows NOTEPAD program, which is little
more than a large multiline edit control. NOTEPAD does little keyboard processing on
its own and relies on Windows to handle all the dirty work. (Chapter 6 discusses how
this works.)

Focus, Focus, Who’s Got the Focus?

The keyboard must be shared by all applications running under Windows. Some applica-
tions may have more than one window, and the keyboard must be shared by these win-
dows within the same application. When a key on the keyboard is pressed, only one

89

SECTION II: READING INPUT

window procedure can receive a message that the key has been pressed. The window that
receives this keyboard message is the window with the “input focus.”

The concept of input focus is closely related to the concept of “active window.” The
window with the input focus is either the active window or a child window of the active
window. The active window is usually easy to identify. If the active window has a caption
bar, Windows highlights the caption bar. If the active window has a dialog frame (a form
most commonly seen in dialog boxes) instead of a caption bar, Windows highlights the
frame. If the active window is an icon, Windows highlights the window’s caption bar text
below the icon.

The most common child windows are controls such as push buttons, radio buttons,
check boxes, scroll bars, edit boxes, and list boxes that usually appear in a dialog box.
Child windows are never themselves active windows. If a child window has the input
focus, then the active window is its parent. Child window controls indicate that they have
the input focus generally by using a flashing cursor or caret.

If the active window is an icon, then no window has the input focus. Windows con-
tinues to send keyboard messages to the icon, but these messages are in a different form
from keyboard messages sent to active windows that are not icons.

. A window procedure can determine when it has the input focus by trapping
WM _SETFOCUS and WM _KILLFOCUS messages. WM_SETFOCUS indicates that the win-
dow is receiving the input focus, and WM _KILLFOCUS signals that the window is losing
the input focus. ‘

Keystrokes and Characters

The messages that an application receives from Windows about keyboard events distin-
guish between “keystrokes” and “characters.” This is in accordance with the two ways you
can view the keyboard. First, you can think of the keyboard as a collection of keys. The
keyboard has only one A key. Pressing that key is a keystroke. Releasing that key is a key-
stroke. But the keyboard is also an input device that generates displayable characters. The
A key can generate several characters depending on the status of the Ctrl, Shift, and Caps
Lock keys. Normally, the character is a lowercase a. If the Shift key is down or Caps Lock is
toggled on, the character is an uppercase A. If Ctrl is down, the character is a Ctrl-A. On a
foreign-language keyboard, the A keystroke may be preceded by a “dead-character key” or
by Shift, Ctrl, or Alt in various combinations. The combinations could generate a lowercase
a or an uppercase A with an accent mark.

For keystroke combinations that result in displayable characters, Windows sends a
program both keystroke messages and character messages. Some keys do not generate
characters. These include the shift keys, the function keys, the cursor movement keys, and
special keys such as Insert and Delete. For these keys, Windows generates only keystroke
messages.

90

Chapter 3: The Keyboard

KEYSTROKE MESSAGES

When you press a key, Windows places either a WM_KEYDOWN or WM_SYSKEYDOWN
message in the message queue of the window with the input focus. When you release a key,
Windows places either a WM_KEYUP or WM_SYSKEYUP message in the message queue.

Key Pressed Key Released
Nonsystem Keystroke: WM_KEYDOWN WM_KEYUP
System Keystroke: WM_SYSKEYDOWN WM_SYSKEYUP

Usually the “down” and “up” messages occur in pairs. However, if you hold down
a key so that the typematic (autorepeat) action takes over, Windows sends the window
procedure a series of WM_KEYDOWN (or WM_SYSKEYDOWN) messages and a single
WM_KEYUP (or WM_SYSKEYUP) message when the key is finally released. Like all mes-
sages, keystroke messages are time-stamped. You can obtain the relative time a key was
pressed or released by calling GetMessageTime.

System and Nonsystem Keystrokes

The “SYS” in WM_SYSKEYDOWN and WM_SYSKEYUP stands for “system” and refers to
keystrokes that are more important to Windows than to the Windows application. The
WM_SYSKEYDOWN and WM_SYSKEYUP messages are usually generated for keys typed
in combination with the Alt key. These keystrokes invoke options on the program’s menu
or system menu, or they are used for system functions such as switching the active window
(Alt-Tab or Alt-Esc) or for system menu accelerators (Alt in combination with a function
key). Programs usually ignore the WM_SYSKEYUP and WM_SYSKEYDOWN messages
and pass them to DefWindowProc. Because Windows takes care of all the Alt-key logic,
you really have no need to trap these messages. Your window procedure will eventually
receive other messages concerning the result of these keystrokes (such as a menu selec-
tion). If you want to include code in your window procedure to trap the system keystroke
messages (as we will do in the KEYLOOK program later in this chapter), pass the messages
to DefWindowProc after you process them so that Windows can still use them for their
normal purposes.

But think about this for a moment. Almost everything that affects your program’s
window passes through your window procedure first. Windows does something with the
message only if you pass the message to DefWindowProc. For instance, if you add the lines:

case WM_SYSKEYDOWN :

case WM_SYSKEYUP :

case WM_SYSCHAR :
return 0 ;

91

-

SECTION II: READING INPUT

to a window procedure, then you effectively disable all Alt-key operations (menu com-
mands, Alt-Tab, Alt-Esc, and so on) when your program has the input focus. Although 1
doubt you would want to do this, I trust you're beginning to sense the power in your
window procedure.

The WM_KEYDOWN and WM_KEYUP messages are usually generated for keys that
are pressed and released without the Alt key. Your program may use or discard these key-
stroke messages. Windows itself doesn’t care about them.

The IParam Variable

For all four keystroke messages, the 32-bit [Param variable passed to the window
procedure is divided into six fields: Repeat Count, OEM Scan Code, Extended Key Flag,
Context Code, Previous Key State, and Transition State. (See Figure 3-1.)

Extended Key Flag

|31|30|29|28|27|26|25|24|23| |16|15| |oo| :

Context Code
Previous Key State
Transition State

8-bit OEM 16-bit
Scan Code Repeat Count

Figure 3-1. The six keystroke-message fields of the |Param variable.

Repeat Count
The Repeat Count is the number of keystrokes represented by the message. In most cases
the Repeat Count is set to 1. However, if a key is held down and your window procedure
is not fast enough to process key-down messages at the typematic rate (approximately
a 10-character-per-second default), Windows combines several WM_KEYDOWN or
WM_SYSKEYDOWN messages into a single message and increases Repeat Count accord-
ingly. The Repeat Count is always 1 for a WM_KEYUP or WM_SYSKEYUP message.
Because a Repeat Count greater than 1 indicates that typematic keystrokes are occur-
ring faster than your program can process them, you may want to ignore the Repeat Count
when processing the keyboard messages. Almost everyone has had the experience of
“overscrolling” a word-processing document or spreadsheet-because extra keystrokes
have stacked up in the keyboard buffer. Ignoring the Repeat Count in your program will
significantly reduce the possibilities for overscrolling. However, in other cases you will
want to use the Repeat Count. You should probably try your programs both ways and see
which approach feels the most natural.

OEM Scan Code

The OEM Scan Code is the keyboard scan code generated by the hardware of the com-
puter. For the IBM PC, this scan code is the same as the value passed back to a program in
register AH during a BIOS Interrupt 16H call. Windows applications generally ignore the
OEM Scan Code because there are better ways to decode keyboard information.

92

Chapter 3: The Keyboard

Extended Key Flag

The Extended Key Flag is 1 if the keystroke results from one of the additional keys on the
IBM Enhanced Keyboard. (The IBM Enhanced Keyboard has function keys across the top
and a separate [combined] keypad for cursor keys and number keys.) This flag is set to 1 for
the Alt and Ctrl keys at the right of the keyboard, the cursor movement keys (including
Insert and Delete) that are not part of the numeric keypad, the Slash (/) and Enter keys on
the numeric keypad, and the Num Lock key. Windows programs generally ignore the
Extended Key Flag.

Context Code

The Context Code is 1 if the Alt key is pressed. This bit will always be 1 for the
WM_SYSKEYUP and WM_SYSKEYDOWN messages and 0 for the WM_KEYUP and
WM_KEYDOWN messages with two exceptions:

m If the active window is an icon, it does not have the input focus. All
keystrokes generate WM_SYSKEYUP and WM_SYSKEYDOWN mes-
sages. If the Alt key is not pressed, the Context Code field is set to 0.
(Windows uses SYS keyboard messages so that the active window that is
an icon doesn’t process these keystrokes.)

B On some foreign-language keyboards, certain characters are generated
by combining Shift, Ctrl, or Alt with another key. In these cases the
[Param variable that accompanies WM_KEYUP and WM_KEYDOWN
messages has a 1 in the Context Code field, but the messages are not
system keystroke messages.

Previous Key State

The Previous Key State is 0 if the key was previously up and 1 if the key was previously
down., Itis always set to 1 fora WM_KEYUP or WM _SYSKEYUP message, but it can be 0 or
1fora WM_KEYDOWN or WM_SYSKEYDOWN message. A 1indicates second and subse-
quent messages for keys that are the result of typematic action.

Transition State

The Transition State is 0 if the key is being pressed and 1 if the key is being released. The
field is set to 0 for a WM_KEYDOWN or WM_SYSKEYDOWN message and to 1 for a
WM_KEYUP or WM _SYSKEYUP.

Virtual Key Codes

Although some information in /Param might be useful for processing WM_KEYUP,
WM_KEYDOWN, WM_SYSKEYUP, and WM_SYSKEYDOWN messages, the wParam pa-
rameter is much more important. This parameter contains the “virtual key code” that iden-
tifies the key that was pressed or released. The developers of Windows have attempted to

93

SECTION II: READING INPUT

VIRTUAL KEY CODES
WINDOWS.H
Decimal Hex Identifier IBM Keyboard
1 01 VK_LBUTTON
2 02 VK_RBUTTON
3 03 VK_CANCEL Ctrl-Break
4 04 VK_MBUTTON
8 08 . VK_BACK Backspace
9 09 VK_TAB Tab
12 0ocC VK_CLEAR Numeric keypad 5 with Num Lock OFF
13 0D VK_RETURN Enter
16 10 VK_SHIFT Shift
17 11 VK_CONTROL Ctrl .
18 12 VK_MENU Alt
19 13 'VK_PAUSE Pause
20 14 VK_CAPITAL Caps Lock
27 1B VK_ESCAPE Esc
32 20 VK_SPACE Spacebar
33 21 VK_PRIOR Page Up
34 22 VK_NEXT Page Down
35 23 VK_END End
36 24 VK_HOME Home
37 25 VK_LEFT Left Arrow
38 26 VK_UP Up Arrow
39 27 VK_RIGHT Right Arrow
40 28 VK_DOWN Down Arrow
41 29 VK_SELECT
42 2A VK_PRINT
43 2B VK_EXECUTE
44 2C VK_SNAPSHOT Print Screen
45 2D VK_INSERT Insert
46 2E VK_DELETE Delete
47 2F VK_HELP
48-57 30-39 0 through 9 on main keyboard
65-90 41-5A A through Z
96 60 VK_NUMPADO Numeric keypad 0 with Num Lock ON

94

(continued)

Chapter 3: The Keyboard

VIRTUAL KEY CODES continued

WINDOWS.H
Decimal Hex Identifier Required IBM Keyboard
97 61 VK_NUMPAD1 Numeric keypad 1 with Num Lock ON
98 62 VK_NUMPAD?2 Numeric keypad 2 with Num Lock ON
99 63 VK_NUMPAD3 Numeric keypad 3 with Num Lock ON
100 64 VK_NUMPAD4 Numeric keypad 4 with Num Lock ON
101 65 VK_NUMPAD5 Numeric keypad 5 with Num Lock ON
102 66 VK_NUMPAD6 Numeric keypad 6 with Num Lock ON
103 67 VK_NUMPAD7 Numeric keypad 7 with Num Lock ON
104 68 VK_NUMPADS Numeric keypad 8 with Num Lock ON
105 69 VK_NUMPAD9 Numeric keypad 9 with Num Lock ON
106 6A VK_MULTIPY Numeric keypad « (enhanced
keyboard)
107 6B VK..ADD Numeric keypad + (enhanced
keyboard)
108 6C VK_SEPARATOR
109 6D VK_SUBTRACT Numeric keypad — (enhanced
keyboard)
110 GE VK_DECIMAL Numeric keypad
111 6F VK_DIVIDE Numeric keypad /(enhanced
keyboard)
112 70 VK_F1 * Function key F1
113 71 VK_F2 * Function key F2
114 72 VK_F3 * Function key F3
115 73 VK_F4 * Function key F4
116 74 VK_F5 * Function key F5
117 75 VK_F6 * Function key F6
118 76 VK_F7 * Function key F7
119 77 VK_F8 * * Function key F8
120 78 VK_F9 * Function key F9
121 79 VK_F10 * Function key F10
122 7A VK_F11 Function key F11 (enhanced
keyboard)
123 7B VK_F12 Function Key F12 (enhanced
keyboard)
124 7C VK_F13

(continued)

95

SECTION II: READING INPUT

VIRTUAL KEY CODES continued

WINDOWS.H _
Decimal Hex Identifier Required IBM Keyboard
125 7D VK_F14
126 7E VK_F15
127 7F VK_F16
144 90 VK_NUMLOCK Num Lock

define virtual keys in a device-independent manner. For this reason, some virtual key
codes cannot be generated on the IBM PC and strict compatibles but may be found on
other manufacturer’s keyboards.

The virtual key codes you use most often have names defined in WINDOWS.H. The
table above shows these names along with the numeric key codes and the IBM PC key that
corresponds to the virtual key. Although all keys cause keystroke messages, the table does
not include any symbol keys (such as the key with the / and ? symbols). These keys have
virtual key codes of 128 and above, and they are often defined differently for international
keyboards. You can determine the values of these virtual key codes using the KEYLOOK
program that is shown later in this chapter, but normally you should not process keystroke
messages for these keys.

An asterisk (+) in the column labeled “Required” indicates that the key is mandatory
for any Windows implementation. Windows also requires that a keyboard and keyboard
driver allow the Shift, Ctrl, and Shift and Ctrl keys together to be combined with all letter
keys, all required cursor keys, and all required function keys. The VK_LBUTTON,
VK_MBUTTON, and VK_RBUTTON virtual key codes refer to the left, middle, and right
buttons of a mouse. However, you will never receive keystroke messages with wParam set
to these values. The mouse generates its own messages. '

Shift States

The wParam and [Param parameters that accompany WM_KEYDOWN, WM_KEYUP,
WM_SYSKEYDOWN, and WM_SYSKEYUP messages do not tell your program about the
state of the shift keys. You can obtain the current state of any virtual key using the GetKey-
State function. This function generally is used to obtain the state of shift keys (Shift, Ctrl,
and Alt) and toggle keys (Caps Lock and Num Lock). For instance:

GetKeyState (VK_SHIFT) ;

returns a negative value (that is, the high bit is set) if the Shift key is down. The value
returned from:

GetKeyState (VK_CAPITAL) ;

96

Chapter 3: The Keyboard

has the low bit set if the Caps Lock key is toggled on. You can also obtain the state of
the mouse buttons using the virtual key codes VK_LBUTTON, VK_RBUTTON, and
VK_MBUTTON. However, most Windows programs that need to monitor a combination of
mouse buttons and keystrokes usually do it the other way around—by checking key-
strokes when they receive a mouse message. In fact, shift-state information is included in
the mouse messages (as you'll see in the next chapter).

Be careful with GetKeyState. It is not a real-time keyboard status check. Rather, itisa
check of the keyboard status up to and including the current message being processed.
GetKeyState does not let you retrieve keyboard information independent of normal
keyboard messages. For instance, you may want to hold up processing in your window
procedure until the user presses the F1 function key: ‘

while (GetKeyState (VK_F1) >=0) ; // WRONG !!!

This statement will execute for a very long time—until you reset your machine with Ctrl-
Alt-Delete. Your program must retrieve the keyboard message from the queue before
GetKeyState can retrieve the state of the key. This synchronization actually works to your
advantage, because if you need to know the shift state for a particular keystroke message,
GetKeyState is guaranteed to be accurate, even if you are processing the message after the
shift key has been released. If you really need the current state of the key, you can use
GetAsyncKeyState.

Using Keystroke Messages

The idea of a program getting information about every keystroke is certainly nice, but most
Windows programs ignore all but a few keystroke messages. The WM_SYSKEYDOWN and
WM_SYSKEYUP messages are for Windows system functions, and you don't need to look
at them. If you process WM_KEYDOWN messages, you can also ignore WM_KEYUP
messages. ‘

Windows programs generally use WM_KEYDOWN messages for keystrokes that do
not generate characters. Although you may think that it’s possible to use keystroke mes-
sages in combination with shift-state information to translate keystroke messages into
character messages, don’t do it. You’ll have problems with international keyboard differ-
ences. For instance, if you get a WM_KEYDOWN message with wParam equal to 33H, you
know the user pressed the 3 key. So far, so good. If you use GetKeyState and find out that
the Shift key is down, you might assume that the user is typing a pound sign (#). Not neces-
sarily so. A British user is typing a &. So the WM_KEYDOWN messages are most useful for
the cursor movement keys, the function keys, and special keys such as Insert and Delete.
However, Insert, Delete, and the function keys often appear as menu accelerators. Because
Windows translates menu accelerators into menu command messages, you don't have to
process the keystrokes themselves. Some non-Windows programs for the PC use function
keys extensively in combination with the Shift, Ctrl, and Alt keys. You can do something
similar in your Windows programs, but it’s not recommended. If you want to use the

97

SECTION II: READING INPUT

function keys, they should duplicate menu commands. One objective in Windows is to pro-
vide a user interface that doesn’t require memorizing or using complex command charts.

We've managed to eliminate everything except one final case: Most of the time, you
will process WM_KEYDOWN messages only for cursor movement keys. When you use the
cursor keys, you can check the Shift-key and Ctrl-key states through GetKeyState. Windows
functions often use the Shift key in combination with the cursor keys to extend a selection
in (for instance) a word-processing document. The Ctrl key is often used to alter the mean-
ing of the cursor key. (For example, Ctrl in combination with the Right Arrow key might
mean to move the cursor one word to the right.)

The Common User Access: Advanced Interface Design Guide contains a list of rec-
ommended keyboard definitions. (The guide, hereinafter referred to as the CUA Advanced
Interface Design Guide, is included in the Windows Software Development Kit and is part
of the IBM Systems Application Architecture Library.) You can also examine how the key-
board is used in existing Windows programs. If you don't like those definitions, you are
free to do something different. But keep in mind that doing so may be detrimental to a
user’s ability to quickly learn your program.

ENHANCING SYSMETS:
ADDING A KEYBOARD INTERFACE

When we wrote the three versions of the SYSMETS program in Chapter 2, we didn’t know
anything about the keyboard. We were able to scroll the text only by using the mouse on
the scroll bars. Now that we know how to process keystroke messages, let’s add a keyboard
interface to SYSMETS. This is obviously a job for cursor movement keys. We'll use most of
the cursor movement keys (Home, End, Page Up, Page Down, Up Arrow, and Down Arrow)
for vertical scrolling. The Left Arrow key and the Right Arrow key can take care of the less-
important horizontal scrolling.

Adding WM_KEYDOWN Logic

One obvious way to create a keyboard interface is to add some WM_KEYDOWN logic to
the window procedure that parallels the WM_VSCROLL and WM_HSCROLL logic:

case WM_KEYDOWN :
nVscrollInc = nHscrolllnc = 0 ;

switch (wParam)
{

case VK_HOME : // same as WM_VSCROLL, SB_TOP
nVscrolllnc = -nVscrollPos ;
break ;

case VK_END : // same as WM_VSCROLL, SB_BOTTOM
nVscrollInc = nVscrol1Max - nVscrollPos ;
break ;

Chapter 3: The Keyboard

case VK_UP : // same as WM_VSCROLL, SB_LINEUP
nVscrolllnc = -1 ;
break ;

case VK_DOWN : // same as WM_VSCROLL, SB_LINEDOWN
nVscrolllnc = 1 ;
break ;

case VK_PRIOR : // same as WM_VSCROLL, SB_PAGEUP
nVscrollInc = min (-1, -cyClient / cyChar) ;
break ;

case VK_NEXT : // same as WM_VSCROLL, SB_PAGEDOWN
nVscrollInc = max (1, cyClient / cyChar) ;
break ;

case VK_LEFT : - // same as WM_HSCROLL, SB_PAGEUP
nHscrollInc = -8 ;
break ;

case VK_RIGHT : // same as WM_HSCROLL, SB_PAGEDOWN
nHscrollInc = 8 ;
break ;

default :
break ;

1

if (nVscrolllnc = max (-nVscrollPos,
min (nVscrolllnc, nVscrol1Max - nVscrollPos)))
{
nVscrol1Pos += nVscrolllnc ;
ScrollWindow (hwnd, 0, -cyChar # nVscrolllnc, NULL, NULL) ;
SetScrol1Pos (hwnd, SB_VERT, nVscrollPos, TRUE) ;
UpdateWindow (hwnd) ;
}

if (nHscrollInc = max (-nHscrollPos,
min (nHscrollInc, nHscroliMax - nHscrollPos)))
{
nHscrol1Pos += nHscrollInc ;
ScroliWindow (hwnd, -cxChar * nHscrollInc, 0, NULL, NULL) ;
SetScroll1Pos (hwnd, SB_HORZ, nHscrollPos, TRUE) ;
}

return 0 ;

Do you dislike this code as much as I do? Simply duplicating all the scroll bar code is
unwise, because if we ever wanted to change the scroll bar logic, we’d have to make paral-

lel changes in WM_KEYDOWN. There has to be a better way. And there is.

99

SECTION II: READING INPUT

Sending Messages

Wouldn't it be better to simply translate each of these WM_KEYDOWN messages into an
equivalent WM_VSCROLL and WM_HSCROLL message and then perhaps fool WndProc
into thinking that it’s getting a WM_VSCROLL or WM_HSCROLL message, perhaps by
sending a phony scroll bar message to the window procedure? Windows lets you do this.
The function is called SendMessage, and it takes the same parameters as those passed to the
window procedure:

SendMessage (hwnd, message, wParam, 1Param) ;

When you call SendMessage, Windows calls the window procedure whose window
handle is bwnd, passing to it these four parameters. When the window procedure has com-
pleted processing the message, Windows returns control to the next statement following

*the SendMessage call. The window procedure to which you send the message could be the
same window procedure, another window procedure in the same program, or a wmdow
procedure in another application.

Here’s how we might use SendMessage for processing WM_KEYDOWN codes in the
SYSMETS program:

case WM_KEYDOWN :
switch (wParam)
{
case VK_HOME : ,
SendMessage (hwnd, WM_VSCROLL, SB_TOP, OL) ;
break ;

case VK_END :
SendMessage (hwnd, WM_VSCROLL, SB_BOTTOM, OL) ;
break ;

case VK_PRIOR :
SendMessage (hwnd, WM_VSCROLL, SB_PAGEUP, OL) ;
break ;

[other program lines]

OK, you get the general idea. Our goal was to add a keyboard interface to the scroll bars,
and that’s exactly what we’ve done. We've made the cursor movement keys duplicate scroll
bar logic by actually sending the window procedure a scroll-bar message. Now you see
why I included SB_TOP and SB_BOTTOM processing for WM _VSCROLL messages in the
SYSMETS3 program. It wasn’t used then, but it’s used now for processing the Home and
End keys. The final SYSMETS program, shown in Figure 3-2, incorporates these changes.
You'll also need the SYSMETS.H file from Chapter 2 (Figure 2-4) to compile this program.

Remember: To send a message to a window procedure, use the SendMessage func-
tion. Do not try to call the window procedure directly like this:

WndProc (hwnd, WM_VSCROLL, SB_PAGEUP, OL) ; // WRONG !!!

100

Chapter 3: The Keyboard

This statement will cause “unpredictable results” (if you call a system crash “unpredict-
able™). You may define and call other subroutines within a Windows program, but you
must not call a window procedure directly. You'll find out why in Chapter 7.

svsmsrs;m .

e
4

Figure 3-2. The SYSMETS program. » (continued)

101

SECTION II: READING INPUT

e L

_ nMaxWidt
return 0

102 (continued)

Chapter 3: The Keyboard

nVscrol1Max = max: (0, NUMLINES + 2 - cyClient / cyChar) ;
nVscrollPos = min (nVscrollPos, nVscrollMax) ;

SetScrollRange (hwnd, SB_VERT, 0, nVscrollMax, FALSE) ;
SetScrol1Pos .. (hwnd, SBVERT, nVscrollPos, TRUE) ;

nHscrollMax = max (0, 2 + (nMaxWidth - cxClient) / cxChar) ;
nHscrol1Pos = min (nHscroliPos, ancrol]Max) H :

SetScro11Range (hwnd SB_HORZ, 0, ancrollMax. FALSE) ;
L SetScro]]Pos (hwnd SB HORZ ancroI]Pos TRUE) ;
return 0 s

. case WM_VSCROLL : -
: switch (wParam)
ol .

’;ccse'SB;TOP H - E
% nVscrollInc = -nVscrollPos ;

© break ; L i

f;féasé,SBaBbTTOMfiiif e
= nVscrolllnc = nVscrol]Max - nVscrollPos.: - =
i b[‘eak; Bl L

case SBLLINEUP :
: ‘j'nVscro1IInc =- -1
break ; i

 case sB. LINEDGNN-E .
~ nVscrollIne =1 ;
_ break ; v

"ﬂ?f%{tasé*SB;RAGEUP‘;g_'fifv . Sl
. nVscrollInc = min (-1, -cyClient / cyChar) ;

case SBIPAGEDOMN: T e
"=nVscrol11nc = max- (1, cyClient / cyChar) ; -
break o0

».SEHWMHMW,'_fZT;;‘;. e
v;fanscrolllnc “'LONURD'X]Paham);;'nVSCFO1IPosf;

,befauit -
- nVscro11Inc = 0

if (nVscrollIncﬂ= max (- nVscro]lPos,

i (nVscrolIInc n¥scrolTHax v}nyséroII?OS)iB'-7}”jf .

(continued)

103

SECTION II: READING INPUT

nd, WM VSCROLL

(continued)

104

case

case

VK_END :
SendMessage
break: ;

VK_PRIOR :
SendMessage

" break ;

.case

 case

VK NEXT. 2
SendMessage

(hwnd,
(hwnd,

(hwnd,

: break ;

VK_UP
SendMessage

. case

: ;;asé

return 0

 'case>wM PAINT :

. {

~ break ;

_».SendMessage:
- ‘break ;

i
‘_},.SendMessage'
’iibreak.. o

X = chhar * (1_
Y ~1cyChar % (1'- nVscrollPos + 1) 5

VK DOWN

]ihwnd:

VK LEFT

(hund

WH_VSCROLL,
HHLYSCROLL,
WM_VSCROLL,
wM;vsckQLL.

WM_VSCROLL,

VK. RIGHT

.SendMessage;

(hwnd

WM_HSCROLL

“5hdc = Beg1nPa1nt (hwnd &ps)

inPa1ntBeg —\max (0 nVscro]]F

. (hwnd
':itiyu.breakj;bj'.” i

WM_HSCROLL

0s +\ps rcPairt'tbp

nPawntEnd = min (NUMLINES,
L nVscroI]Pos

--ff°f (- nPalntBeg i nPa1ntEnd

TextOut (hdc X 'y;*i
. sysmetrics[id. szLabel
1str1en

- sysmetri

+ ps rcPa1nt tottom

Chapter 3: The Keyboard

SB__PAGEUP, OL) ;

SB_PAGEDOWN, OL)

SB_BOTTOM, OL) ;

SB_LINEUP, OL) ;

SB_LINEDOMN,

 SB_PAGEUP, 0L) ;

SB. PAGEDOWN,

o)

OL)f‘ F;v'-

/ cyChar

-

:ancrollPos)

‘sysmetr1c5[1] szLabe]))

extOut (hdc, x + 18 * cxCaps, ¥, f: .

cs[x] szDesc,:

~1str1eh (sysmetr

cs[i1.s2Dese)) ;- o

/ cyChar)

(continued)

105

SECTION II: READING INPUT

CHARACTER MESSAGES

Earlier I discussed the idea of translating keystroke messages into character messages by
taking into account shift-state information, and I warned that shift-state information is not
enough: You also need to know about country-dependent keyboard configurations. For
this reason, you should not attempt to translate keystroke messages into character codes
yourself. ‘

106

Chapter 3: The Keyboard

Windows does it for you. You've seen this code before:

while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg)
DispatchMessage (&msg) ;
}

This is a typical message loop that appears in WinMain. The GetMessage function fills in
the msg structure fields with the next message from the queue. DispatchMessage calls the
appropriate window procedure with this message.

Between these two functions is TranslateMessage, which translates keystroke mes-
sages into character messages. If the message is WM_KEYDOWN or WM_SYSKEYDOWN;
and if the keystroke in combination with the shift states produces a character, then
TranslateMessage places a character message in the message queue. This character mes-
sage will be the next message that GetMessage retrieves from the queue after the keystroke
message. '

There are four character messages:

Characters Dead Characters
Nonsystem Characters: WM_CHAR WM_DEADCHAR
System Characters: WM_SYSCHAR WM_SYSDEADCHAR

The WM_CHAR and WM_DEADCHAR messages are derived from WM_KEYDOWN
messages. The WM_SYSCHAR and WM_SYSDEADCHAR messages are derived from
WM_SYSKEYDOWN messages. In most cases, your Windows program can ignore every-
thing except WM_CHAR messages. The [Param parameter passed to the window pro-
cedure with the character code message is the same as the [Param parameter for the
keystroke message that generated the character code message. The wParam parameter is
the ASCII code for the character (yes, good old familiar ASCID).

The character messages are delivered to your window procedure sandwiched be-
tween keystroke messages. For instance, if Caps Lock is not toggled on and you press and
release the A key, the window procedure receives the following three messages:

Message Key or Code
WM_KEYDOWN Virtual key A
WM_CHAR ASCII code a
WM_KEYUP Virtual key A

107

SECTION II: READING INPUT

If you type an uppercase A by pressing the Shift key, pressing the A key, releasing the
A key, and then releasing the Shift key, the window procedure receives five messages:

Message Key or Code
WM_KEYDOWN Virtual key VK_SHIFT
WM_KEYDOWN Virtual key A
WM_CHAR ASCII code A
WM_KEYUP Virtual key A
WM_KEYUP Virtual key VK_SHIFT

The Shift key by itself does not generate a character message.
If you hold down the A key so that the typematic action generates keystrokes you’ll
get a character message for each WM_KEYDOWN message:

Message Key or Code
WM_KEYDOWN “Virtual key A
WM_CHAR ASCII code a
WM_KEYDOWN Virtual key A
WM_CHAR ASCII code a
WM_KEYDOWN Virtual key A
WM_CHAR ASCII code a
WM_KEYDOWN Virtual key A
WM_CHAR ASCII code a
WM_KEYUP Virtual key A

If some of the WM_KEYDOWN messages have a Repeat Count greater than 1, the corre-
sponding WM_CHAR messages will have the same Repeat Count.

The Ctrl key in combination with a letter key generates ASCII control codes from 01H
(Ctrl-A) through 1AH (Ctrl-Z). You can also use other keys to generate these control codes.
The following table shows the value of wParam in a WM_CHAR message for keys that
generate control codes:

Key ASCII Code Duplicated by
Backspace 08H Ctrl-H

Tab 09H Ctrl-1
Ctrl-Enter 0Ah Ctrl-J

Enter 0Dh Ctrl-M

Esc 1BH Ctrl-

108

Chapter 3: The Keyboard

Windows programs sometimes use the Ctrl key in combination with letter keys for menu
accelerators, in which case the letter keys are not translated into character messages.

WM_CHAR Messages

When your Windows program needs to process characters from the keyboard (for in-
stance, in a word-processing or communications program), it will process WM_CHAR
messages. You’ll probably want some special processing for the Backspace, Tab, and Enter
keys (and perhaps the Linefeed key), but you'll treat all other characters the same:

case WM_CHAR :

switch (wParam)

{
case '\b' : /1 backspace
[other program lines]
break ;
case "\t' : // tab
[other program lines/
break ;
case '\n' : /1 linefeed
[other program lines/
break ;
case '\r' : // carriage return
[other program lines]
break ;
default : /1 character code
[otber program lines]
break ;
}
return 0 ;

This program fragment is virtually identical to keyboard character processing in regular
MS-DOS programs.

Dead-Character Messages

Windows programs can usually ignore WM_DEADCHAR and WM_SYSDEADCHAR mes-
sages. On some non-U.S. keyboards, certain keys are defined to add a diacritic to a letter.
These are called “dead keys” because they don't create characters by themselves. For in-
stance, when the German keyboard is installed, the key that is in the same position as the
+/=key on a U.S. keyboard is a dead key for the acute accent (") when unshifted and the
grave accent (*) when shifted.

109

SECTION II: READING INPUT

When a user presses this dead key, your window procedure receives a
WM _DEADCHAR message with wParam equal to the ASCII code for the diacritic by itself.
When the user then presses a letter key (for instance, the A key), the window procedure
receives a WM_CHAR message where wParam is the ASCII code for the letter a with the
diacritic. Thus, your program does not have to process the WM_DEADCHAR message, be-
cause the WM_CHAR message gives the program all the information it needs. The Win-
dows logic even has built-in error handling: If the dead key is followed by a letter that can’t
take a diacritic (such as the letter s), then the window procedure receives two WM_CHAR
messages in a row —the first with wParam equal to the ASCII code for the diacritic by itself
(the same wParam value delivered with the WM_DEADCHAR message) and the second
with wParam equal to the ASCII code for the letter s.

LOOKING AT KEYBOARD MESSAGES

If you'd like to see how Windows sends keyboard messages to a program, KEYLOOK,
shown in Figure 3-3, will help. This program displays in its client area all the information
that Windows sends the window procedure for the eight different keyboard messages.

Figure 3-3. The KEYLOOK program. (continued)

110

Chapter 3: The Keyboard

RECT rect ;
short'chhar ‘cyChar H

int. PASCAL w1nMa1n (HANDLE hiInstance, HANDLE hPrevInstance,
: LPSTR lpsszdL1ne int nCmdShow)

e
“static char szAppName[j = "KeyLook" :
CHUND . hwnd g .
- MSG msg oy

WNDCLASS - wndc]ass :

:alf ('hPrevInstance)

. f wndc'ass tyle

CS_HREDRAW | CS_VREDRAH : |

. wndclass. 1panndProc - WndProc ;
 wndclass.cbClsExtra = 0 ;0L
ndclass.cbWndExtra '0}3;" .
ndclass.hlnstance = hlInstance ;

LoadIcon (NULL, 10 APPLICATION) .
LoadCursor (VULL IDC_ARROW) ; ..

(HBRUSH) GetStockobject. (NHITE BRUSH)

class.hlcon
class.hCursor
wndclass. herackgrnund

(laSS"lpszMe

a n-ul"fn<-|- T

APPEDWIN .
FAULT _C_;JSEDEFAULT
_USEDEFAULT,
stance ?NULL) J

_;,f;_snowwundow (hwnd nCmdShow)
’*};Updatewindow (hwnd) 5

(continued)

111

SECTION II: READING INPUT

(continued)

112

:‘ tase :
S .Post0u1tMessage (0)
'=:return 0 ;

case

.case

case

~ case WM. : St -
. ShowKey (hwnd, 1, "WM_CHAR", wParam, 1Param) ;

case

.. case

case

. _case

k‘ break ; /] i.e., call DefN1ndowProc

case

’Jrn DefwindowProc (hwnd message wParam, 1Param) '

- ShowKey (hwnd, 1, “NM_DEADCHAR", wParam. 1quam) E

ShowKey (hwnd, 0, "WM_SYSKEYDOWN", wParam, 1Para

ShowKey: (hwnd; 1, "NM_SYSDEADCHAR“; wPabam ‘
‘-;break P I/ i.e., ca]] Defw1ndowProc o

Chapter 3: The Keyboard

WM_PAINT :
InvalidateRect (hwnd, NULL, TRUE) ;
hdc = BeginPaint (hwnd, &ps) ;

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

SetBkMode (hdc, TRANSPARENT) ;

TextOut (hdc, cxChar, cyChar / 2, szTop, (sizeof szTop) - 1) ;
TextOut (hdc, cxChar, cyChar / 2, szUnd, (sizeof szUnd) - 1) ;
EndPaint: (hwnd, ‘&ps) .

.return .0 ;

WM_KEYDOWN' : o ' L -
ShowKey ‘(hwnd, 0, “WM_KEYDOWN", wParam, 1Param) ;.
return 0 ; - 5

WM_KEYUP ;- il .
ShowKey: (hwad, 0, "WM_KEYUP", wParam,]Param) ;
return 0 ; .

WM CHAR :

return 0 ;

WM_DEADCHAR :
return 0 ;

NM SYSKEYDONN

break:i; ~ /) die., i call DefNindowPrbc: -

WM_SYSKEYUP :

ShowKey (hwnd, 0, "KM_SYSKEYUP", wParam, 1Param)v-, .

break ; _ // d.e., call DefwindowProc

WN_