e Microsoft

Active Directory
vicrosoft Services for
Windows 2000
Technical

Reference

The practical guide to planning and
deploying Active Directory services

David Iseminger
v jseminger con

At : ;— | : ;A"V‘
5 = ” % . ;é‘
armw e Wy

9 ll

¥ IT Professional

Microsoft

ctive Directory
-+ Services for
ndows 2000

=
I

The practical guide to planning and
deploying Active Directory services

David Iseminger

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by David Iseminger

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-)
Active Directory Services for Microsoft Windows 2000 : Technical Reference / David Iseminger.
p. cm.
Includes index.
ISBN 0-7356-0624-2
1. Directory services (Computer network technology) 2. Microsoft Windows
(Computer file) 1. Title.

TK5105.595 184 1999
005.7'1369--dc21 99-046102
Printed and bound in the United States of America.
23456789 WCWC 543210
Distributed in Canada by Penguin Books Canada Limited.
A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Active Directory, Microsoft, Microsoft Press, MS-DOS, Visual Basic, Visual C++, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the trade-
marks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: David Clark
Project Editor: Lynn Finnel
Technical Editor: Michael Hochberg

f

Contents

Acknowledgments x
Introduction xi

PART | Understanding Active Directory Services

a Understanding Directory Services 3

Network History and the Need for Directory Services 3
The Growth of Networks 4
The Expansion of the Enterprise Network 4
Administration Needs in the Small Company 5

The Laws of Computing 6
Metcalfe’s Law 7
Moore’s Law 7
Murphy’s Law 9

The Directory Defined 9
What Is a Directory? 10
What Is a Directory Service? 10

The Enterprise Directory Service Shopping List 12
Enterprise Directory Service Requirements 13
How Active Directory Services Meets
Enterprise Direc;ory Service Requirements 14

Real-Life Directory Examples 17
The Simple Directory Example 17
The Advanced Directory Service Example 18

Directory Service vs. Relational Database 21

Conclusion 21

2 Active Directory Services
as a Directory Service Implementation 23

Active Directory Technical Specifications 24
Centralization and Scalability 24
Ease of Administration 25
Security 26
Interoperability and Standardization 27

iv | Active Directory Services for Microsoft Windows 2000 Technical Reference

Active Directory Features 28
Administration Delegation 28
Automated Software Distribution - 29
Backup Services 29
Backward Compatibility 29
DEA Platform 29
DEN Platform 29
IntelliMirror 30
Printer Search Capabilities 31
Required Authentication Mechanism 31

Where Is Active Directory Services? 31
Departure from the Windows NT 4 Approach 32

Conclusion 36

3 Windows 2000 Domains and Active Directory Services 37

Windows 2000 Domains 37
The Domain Hierarchy 38
Administrative Boundaries 45

Active Directory Services Interaction 47
Emulating the Domain Hierarchy 47
Cataloging the Domain (the Directory Partition) 47
Cataloging the Enterprise (the Global Catalog) 52

Conclusions 52

4 Active Directory Services Scalability Architecture 55

The Importance of Scalability 55

Partitioning Approach 56

Catalog Services (the Global Catalog) 58
Namespace 59
Object 59
Naming Context 61
Schema 61
How the Global Catalog Operates 62

Replication 64
Replication Process Overview 65
Failure Recovery 65
Resolving Collisions 66
Reducing Network Traffic 66

B

7

Contents

68 -

FSMO Roles
Conclusion 70
More Active Directory Services Architecture 71
Achieving Ease of Administration 71
Easing Administration with Centralization 72
Easing Administration with Standards Compliance 72
Administration Building Blocks 72
Achieving Security 73
Achieving Application Integration 74
Schema Extensibility 74
Application Interfaces 74
Achieving Standardization and Openness 75
Achieving Centralization 77
Centralized Administrative Interface 77
Single Sign-on ' 77
Active Directory Connectors 79
Extensible Schema 79
© Active Directory Services and DNS 81
Understanding DNS 82
Computer Names, Host Names, FQDNs,
and Relative Distinguished Names 83
DNS Concepts ' 84
DNS Components 87
DNS Name-Resolution Operations 99
Recursive Queries 100
Iterative Queries 101
How Active Directory Services Uses DNS 103
Domain Controller Registration 103
SRV Resource Record Registration 104
Locating a Domain Controller 109
Integrating DNS with Active Directory Services 112
PART Il Deploying Active Directory Services
Planning an Active Directory Services Deployment 117
Overview of Planning Decisions 118
Components of Your Active Directory Services Plan 118

v

vi | Active Directory Services for Microsoft Windows 2000 Technical Reference

Understanding Windows 2000 Groups 120
Noteworthy Built-In Windows 2000 Groups 123
Active Directory Services Planning Recommendations 124
Planning the Forest 124
Planning Domains 127
Planning Organizational Units 140
Planning Sites: Getting Tight with the Network 143
Conclusions 148
8 Active Directory Services and Security 149
Windows 2000 Security 149
Windows 2000 Security Primitives 149
Security Implementation vs. Security Protocols 151
Active Directory Security 152
Object and Attribute Security 153
‘Directory Database Security 155
Understanding the Windows 2000 Security Infrastructure 156
Logon, Authentication, and Authorization 157
Understanding the Kerberos Protocol 159
Understanding Public Key Infrastructure 170
Understanding SSL/TLS 181
Security and Active Directory Deployments 183
Security and Domain Trusts 183
Physical Security 185
L Managing Active Directory Services 189
Everyday Management 190
Mapping Windows NT Tasks to
Windows 2000 Interfaces 192
Promoting Windows 2000 Servers
to Domain Controllers 193
Using Active Directory Services Snap-Ins 203
Delegating Administration 241
Performing Active Directory Services Backups
and Restores 246
Advanced Management 254
Managing Replication Strategies 255
Windows 2000 Group Policy 261
Managing FSMO Roles 265

Contents | vii

Command-Line Management l . 270
Getting the Most out of the Command Line 271
Active Directory Services Command-Line Utilities 277

Conclusion 284

10 Working with the Active Directory Setvices Schema 285

Understanding the Schema 285
The Schema Namespace 286
Content and Structure Enforcement 287
Object Interaction Clarified 291

The Base Schema 295
Base DIT Class Listing , 295
Base DIT Class Hierarchy 295
Base DIT Attribute Listing 296

Extending the Schema 297
classSchema Configuration Parameters 298
Creating New Schema Class Objects 300
attributeSchema Object Configuration Parameters 308
Creating New Schema Attribute Objects 314
Deactivating Classes and Attributes 315
Resurrecting Classes and Attributes 316
The Schema Cache 316

Conclusion . 317

i Upgrading to Active Directory Services 319

Understanding Your Upgrade Options 320
Upgrade or Restructure: Choosing the Right Path 321
Upgrading from a Windows NT Environment 324
The Upgrade Process 324
Upgrading Additional Domains 331
Transitioning LAN Manager Replication to File
Replication Services (FRS) 331
Transitioning Routing and Remote Access Service
(RRAS) Servers 332
Restructuring a Windows NT Environment 333
Understanding Restructuring 333
Transitioning Resource Domains into OUs 336

Conclusion 337

viii

Active Directory Services for Microsoft Windows 2000 Technical Reference

12 Migrating to Active Directory Services 339

Migrating from Novell NDS 340
Migrating from Exchange Server 340
~ Active Directory Services and Exchange Server 5.5 341
Authentication Methods and Their Security 343
Integration of Exchange Server Platinum and Active
Directory Services 345
Migrating from Other Directory Services 348
DirSync 348
The LDIFDE Command-Line Utility 349
ADSI Scripting 351
Conclusions 352
13 Making Postdeployment Organizational Changes 355
Making Forest Changes 356
What You Can Change 357
What You Cannot Change 359
Making Domain Changes 359
What You Can Change 360
What You Cannot Change 361
Understanding SIDhistory 362
Using MoveTree 364
Using ClonePrincipal 367
Making OU Changes 368
What You Can Change 368
What You Cannot Do with OUs 371
Making Site Changes 372
What You Can Do with Sites 372
Conclusions , 373
14 Administratively Leveraging Active Directory Services 375
Managing Change 376
What Change and Configuration Management Enables 377
Using IntelliMirror 379
Technologies That Enable IntelliMirror 382
User Data Management 383
Software Installation and Maintenance 384
User Settings Management 387

Implementing IntelliMirror
Life Without IntelliMirror
Using Remote OS Installation
Technologies That Enable Remote OS Installation
Implementing Remote OS Installation
Living Without Remote OS Installation
Using Distributed File System
Technologies That Enable Dfs
Dfs Technical Details
Implementing Dfs
Conclusions

PART [l Appendixes

388
398
398
400
402
411
412
414
414
415
424

A Windows 2000 DIT Classes 429

, Base DIT Class Hierarchy 431

€ Windows 2000 Base DIT attributeSchema Objects 435

. Index 445

Contents

ix

Acknowledgments

Some projects fly smoothly from the start, others seem to hit turbulence as soon as they’re
off the ground. Generally, those who are committed simply must strap on their seatbelts
and hold on for the ride. For most of this project the seat belt sign was illuminated—
whether because of moving release dates, added or omitted features, or other reasons
that don’t lend themselves to short explanations. For some who were able to stay in their
seats I'm grateful, including Lynn Finnel and especially Mike Hochberg.

Thanks are also in order for David Clark for acquiring the book, and for his occasional
telephone call to see how things were going. Along those lines, thanks to Anne Hamilton
for seeing this book idea from casual conversation to contract.

I've always been a fan of great graphics, and I believe you’ll agree that the artwork in
this book is excellent (noteworthy, even). For that, my special thanks are extended to
Joel Panchot, who took my faxed scribbles and turned them into... well... artwork.

Thanks to Ed Lance for his contributions in Chapter 12, they were very useful. And as
always, thanks go to Margot Hutchison for her ever-effective representation.

Despite challenges that seemed to dog this project from the beginning, everyone involved
was able to focus on quality, readability, and value, and I hope the book’s collabora-
tive quality effort is reflected in the contents. (I think it is.) The reward for all of us
will be readers who find its contents useful, educational, and maybe Chopefully) even a
little enjoyable.

xi

introduction

Welcome to Active Directory Services for Microsoft Windows 2000 Technical Reference,
your complete source for the information you need to become an expert on Active
Directory directory services. You probably already know that this technology is at the
center of Microsoft Windows 2000, which makes getting familiar with it a must for IT
professionals everywhere. Gathered here is the knowledge you need about directory
services, the technical know-how about implementation of Active Directory technology
in Windows 2000, and the step-by-step guidance to plan, implement, and manage Active
Directory services in your organization. In short, this book is your one-stop reference for
everything you need to make Active Directory services work for you.

How This Book Is Structured

Active Directory Services for Microsoft Windows 2000 Technical Reference is structured to
provide the best possible approach to explaining and detailing Active Directory technology.
Since directory services haven’t been around forever, this book starts with an explanation
of directory services, why we need them, and how they make our computing lives
manageable. Once directory services are explained, the particulars of Windows 2000’s imple-
mentation of Active Directory services is explained in increasing detail.

Because there are two broad steps in getting Active Directory working for you and your
organization—understanding the technology, and then implementing the technology— -
this book has been divided into two sections. As a result of this structure, you can quickly
find a clear line of demarcation between gathering the knowledge you need to understand
the technology and getting elbow-deep into its implementation. Again, the structure has
been designed around your needs as an IT professional.

Part I, “Understanding Active Directory Services,” explains directory services, Active
Directory architecture, components, and features. Part I also explains how Active Directory
is an improvement over the way directory structures were handled in other versions of
Microsoft Windows, and how Windows 2000 domains differ from Windows NT domains
and integrate with Active Directory services. Part I also explains how Windows 2000 base
services—almost all of which are tightly tied to Active Directory services—are affected
by the advent of Active Directory. The following list provides specifics on the chapters
you'll find in Part I:

e Chapter 1, “Understanding Directory Services,” explains what a directory
service is and discusses the characteristics that directory services must have to be
viable solutions in the distributed network environments that exist in today’s
organizations.

Xii

| Active Directory Services for Microsoft Windows 2000 Technical Reference

Chapter 2, “Active Directory Services as a Directory Service Implementation,”
lists the features and technologies that enable Active Directory services to meet
the requirements of an enterprise directory service. It also explains how features
of its implementation can benefit an organization. Additionally, Chapter 2 com-
pares the role of Active Directory directory service in Windows 2000 to the role
of the directory in Windows NT.

Chapter 3, “Windows 2000 Domains and Active Directory Services,” explains
how Windows 2000 domains and Active Directory services are tightly inte-
grated and provides a foundation of Windows 2000 domain knowledge that
facilitates understanding Active Directory technical concepts and deployment
strategies. ‘

Chapter 4, “Active Directory Services Scalability Architecture,” explains how
Active Directory architecture enables Active Directory services to scale to the
largest networks.

Chapter 5, “More Active Directory Services Architecture,” details the architec-
tural components and approaches that enable Active Directory to fulfill the re-
quirements of a directory service.

Chapter 6, “Active Directory Services and DNS,” introduces and explains the
Windows 2000 base services that are integral to the enabling of Active Directory
services. These base services are important to understanding how Active Direc-
tory delivers on Microsoft’s promise of a centralized and administrator-friendly
directory service.

Part II, “Deploying Active Directory Services,” provides the technical information and the
deployment recommendations that you need to get the most out of Active Directory
services and to make Active Directory work for you. Part Il includes exhaustive information
on the technical issues that IT professionals, architects, and administrators will run into
during the planning, securing, and managing of the varied services and offerings of
Windows 2000 Active Directory. Part II provides explicit direction on planning an Active
Directory services deployment, upgrading to Active Directory services from Windows NT,
migrating to Active Directory technology from other directory services, and making
organizational changes once Active Directory services is functioning. Part II consists of
the following chapters:

Chapter 7, “Planning an Active Directory Services Deployment,” provides you
with the information you need to ensure that your Active Directory deploy-
ment is well planned and that it will be able to handle the inevitable directory-
related IT challenges, such as integration with Internet-related domain names.
Understanding the concepts in this chapter is essential to ensuring that your
directory service is ready for prime time.

Chapter 8, “Active Directory Services and Security,” examines in detail Active
Directory security issues you'll face during the deployment and ongoing
administration of Active Directory services arnd prepares you to deal with them.

Introduction | xiii

¢ Chapter 9, “Managing Active Directory Services,” describes in detail the Active
Directory management interfaces and provides guidance for handling manage-
ment issues such as delegation, backup, and remote management.

e Chapter 10, “Working with the Active Directory Services Schema,” explains
how Active Directory schema functions, details how it interacts with Active
Directory services, and also provides schema extension guidance that
enables you to further extend and tailor Active Directory services to your
organization’s needs.

e Chapter 11, “Upgrading to Active Directory Services,” gives you the informa-
tion you need to ensure that upgrading your Windows network—whether it’s a
single domain or a multiple master—goes as smoothly as possible. Make sure
you read Chapter 7, “Planning an Active Directory Deployment,” in conjunction
with this chapter and before jumping into the upgrade process.

e Chapter 12, “Migrating to Active Directory Services,” presents the information
you need to migrate from another directory service to Active Directory services.
Also included in this chapter is an exhaustive discussion of the issues involved
in deploying Microsoft Exchange in conjunction with Active Directory services.

e Chapter 13, “Making Postdeployment Organizational Changes,” addresses the
challenges that IT professionals face once they deploy Active Directory ser-
vices, such as domain changes or DNS changes, and provides the information
they need to meet those challenges.

¢ Chapter 14, “Administratively Leveraging Active Directory Services,” details
the many features of Windows 2000 that are made possible with Active Direc-
tory services. Such features include IntelliMirror, distributed file system (Dfs),
and others.

Despite the progressive structure of Part I, Active Directory Services for Microsoft Windows
2000 Technical Reference is a reference book in every sense of the word. Part II is less
dependent on logical structuring; if you prefer to read about managing Active Directory
(Chapter 9) before reading about securing it (Chapter 8), no problem. As with many
reference books (such as dictionaries), you can dive right into any subject that interests
you. This book is structured in such a way that individual subjects are as complete as
possible. Perhaps the only exception to this philosophy is Chapter 7, “Planning an Active
Directory Deployment”—you should read this chapter before one on upgrade or migra-
tion. Although Part II is geared toward real-life implementation, you should read Part I
if you aren’t familiar with Active Directory’s architecture, its functions within Windows
2000, or its implementation capabilities.

If you want a comprehensive understanding of Active Directory services, start at the
beginning and work your way through. The structure of the book reflects how most
deployments are approached—first the technology must be understood; second the req-
uisite planning, security, and management issues are addressed; and finally the actual
implementation is set into motion.

xiv | Active Directory Services for Microsoft Windows 2000 Technical Reference

Conventions Used in This Book

Throughout the book, you will find special sections set aside from the main text. These
sections, denoted by icons, draw your attention to topics of special interest and impor-
tance or to problems implementers invariably face during the course of a deployment
These features include the following:

Note This is used to underscore the importance of a specific concept or to
highlight a special case that might apply only to certain situations.

More Info When additional material is available on a subject, whether in other
sections in the book or from outside sources such as Web sites or white papers,
I’ll provide such information next to the More Info icon.

Caution The | told you so of book features. When failure to take or avoid a cer-
tain action or situation could spell trouble for you, | point this out with the Cau-
tion feature. Don't say | didn’t tell you.

Tip This feature is reserved for directing your attention to advice on timesaving
or strategic moves.

Planning There are times when an ounce of prevention through planning is worth
20 hours of troubleshooting and downtime. Such times merit the Planning feature,
which is also used for checklist-type planning that can ensure all your IT bases
are covered.

Best Practices Getting the most stable performance and the highest quality
deployment often means knowing a few ins and outs. The Best Practices sections
are where you’ll find such pieces of knowledge.

Real World

Many common problems that occur during deployment in the field can be solved easily,
if you know how. The Real World sections provide workarounds and solutions to deploy-
ment problems without you having to learn the hard way.

When used judiciously, these features are especially helpful. I've included them only when
I think they help you get more out of the book. Take notice of these features because
ignoring them could come back to haunt you.

N n

e 4
Understanding
Active Directory

ervices

Active Directory services is the Microsoft Windows 2000 implementation of a directory
service. What sets it apart from other directory services is its implementation design
and comprehensive capabilities. A working knowledge of this new technology requires
more than knowing what button to click and when; what's required is a fundamental
understanding of directory services followed up with information specific to the operations
and functionality of Active Directory services. In other words, to truly grasp the signifi-
cance and power of this new directory technology and put it to work, it isn’t enough to
know that Active Directory services works; you must know how it works.

Chapter
Understanding
Directory Services

In order to take your understanding of directory services one step forward, this chap-
ter takes you one step back to the advent of directories. This slice of computer history
makes clear today’s need for a service such as Active Directory. Then, after defining
what a directory service is and what one does, the chapter provides real-life examples of
how directory services are used. Chapter 1 also lists attributes that directory services must
have to serve the computing needs of organizations of all sizes. This list of necessary
attributes is used in subsequent chapters to clearly detail how Active Directory services
meets and even exceeds the requirements for an enterprise-class directory service.

Network History and the Need for Directory Services

Our dependence on computers nearly equals our dependence on water and sunlight. We
e-mail, we schedule, and we finish files and submit presentations that either get us pro-
moted or land us in management. Imagine a day without e-mail, network capability, or
even the ability to type a quick memo; such imagining wakes IT professionals at mid-
night in a cold sweat. Computers are part of the daily lives of both users and admin-
istrators; we depend on them and use them as extensions of ourselves and our
productivity—quietly humming appendages that crunch numbers and meet deadlines.

But not long ago, computers came with green or amber screens, were booted with 5%-
inch floppies in five or more minutes, and were considered connected once the power outlet
was located. There were mainframes and terminals, of course, but their user-friendliness
ranked with that of IRS audits and root canals; few people other than tax advisers, den-
tists, and an occasional AS/400 programmer care much for any of those. With the advent
of the mouse, the graphical user interface, and thousands of affordable applications that
enabled all sorts of people to expand their productivity, computers began to flourish.
Microsoft Windows platforms enabled IT professionals to use their knowledge of the
Windows user interface and its navigational conventions to administer systems. Rather
than having to endure some hybrid MS-DOS/UNIX command interface, administrators
used Windows-based utilities and administration programs. The cost of administering net-
works came down; no longer were knowledgeable network administrators extremely rare,
which meant their consulting fees were less astronomical. This enabled more companies

-

4 | PART! Understanding Active Directory Services

to afford administrators, and therefore, to afford networks and increase efficiency and
productivity.

Then computer prices started dropping and processors got more and more powerful. Soon
users everywhere were connected to networks. That’s when the real trouble began.

The Growth of Networks

As computers became more powerful and less expensive, network operating systems
(NOS’s) such as Windows NT, Novell NetWare, and UNIX became viable solutions for
the storage of mission-critical files and databases. Companies of all sizes and budgets could
take advantage of networked computing, not just companies capable of shouldering the
high cost of a “big iron” (mainframe) solution. As the computing paradigm shifted, an
increasing number of applications were developed for the PC platform. The availability
of applications contributed to a self-perpetuating circle of industry growth—more PCs
meant a better potential return on applications developed for the PC platform, and the
wider selection of applications was an inducement for companies to use PCs and server-
class compatibles to run their back-office mission-critical applications. And with the grow-

* ing number of reasons for companies to put computers on every employee’s desktop came
a growing need for companies to get those computers connected to networks.

But with more connected computers came more load on the server-class computer act-
ing as mainframe pro tem, and soon the server couldn’t handle the load. This was not
such a big problem, though; computing hardware (server-class computers, in this case)
was so affordable that the easy fix to an overloaded server was simply to add another
server. The need for servers increased with user productivity and available applications,
though, and servers began dotting the networking landscape.

What's more, the number of services available from these servers increased, each with
its own interface and individual (read “completely different”) way of accomplishing
administrative tasks. Networks and the number of attached computers continued grow-
ing, spurred by Internet connectivity and benefits of the ubiquitous corporate local area
networks (LANs). No longer was the availability of administrators a concern—the bene-
fits of being networked far outweighed the costs associated with getting and keeping the
network running. Instead, the concern was managing the sprawl of servers, all of which
were interconnected, but like an uncharted archipelago, they were difficult to navigate
and almost impossible to organize into a viable community. A better system was needed
to enable administrators and users to view the network as a cohesive unit and not as the
disjointed and scattered array of servers, services, and information it was becoming.

The Expansion of the Enterprise Network

Not surprisingly, nowhere is the problem of the disjointed network more acute than in
large corporate networks. Large corporations have compelling reasons to completely
network their computer systems into a sort of digital information system: enhanced pro-
ductivity, improved and extended communications, and increased employee access to

Chapter 1 Understanding Directory Services | 5

resources that help them increase company profitability. Despite a shift in network com-
puting that resulted in replacing mainframe computers with a few commoditized server-
class computers, the paradigm of computing didn’t shift when networks scaled beyond
- the capabilities of a few individual servers. Activities were still server-centric, so as the
number of servers housing data increased, each server remained largely disconnected—
at least in presentation and management—from the rest of the servers and the users
themselves. Servers were distributed throughout a network in physical locations that suited
their group’s immediate needs, each server becoming little more than another name to
add to the browser list or to be memorized by those who placed their files on its shares.

The distribution of such servers caused a certain dilemma: it increased the administra-
tive burden and made finding useful information difficult for users. Rather than being
spread out further, networks needed to be consolidated—networks needed to have a’
central point for network information that would provide more unified network resources
for users and administrators. Rather than having to search the separate servers that dot-
ted the LAN geography, users and administrators needed an interface to the network that
enabled them to view the network as a unit and to utilize services that were a part of
that unit. In other words, the network needed to be presented as a single entity, not a
scattering of users, servers, and services. The difference is more than semantics; to be
definable (that is, to be a thing) suggests an element either is or is not a part of the entity.
A network with a scattering of users, servers, and services is a network without cohe-
sion or definable bounds.

A tool was needed that could define the network—its users, servers, services, and other
elements—as a bounded and isolated thing, not as a scattering of things. What was needed
was a directory service that was comprehensive, extensible, and scalable. In addition, the
directory service had to be easy to use and even easier to manage.

Windows 2000 Active Directory fills this tall order. Active Directory technology represents
a shift in paradigm from traditional server-centric computing. Active Directory effectively
embraces the network, creating a predictable, searchable, and unified system that rep-
resents the network as an individual unit. Active Directory is a centralized repository of
information that unifies and organizes the many elements that make up the network,
creating a logical, hierarchical, and scalable platform.

The implementation of a centralized repository of information is a powerful approach
to network computing, and its advantages reach much farther than the large enterprise.
Small-sized and midsize organizations might benefit most from the use of Active Direc-
tory services.

Administration Needs in the Small Company

Small-sized and midsize companies must be lean, adaptive, and agile to survive in today’s
competitive business environment, and their dependence on computers is no less than.
that of large organizations. In fact, companies that aren't the behemoths of industry might
rely more on their information systems since their ability to move quickly is essential to -

6 | PART1 Understanding Active Directory Services

their success. Windows 2000 Active Directory services was designed to meet the needs
of these growing, changing companies and to reduce the cost (and volatility) of main-
taining a network and a company’s digital information system. How can Active Direc-
tory do all this? By enabling administrators and users to do what they must do more easily,
quickly, and intuitively.

Often in small organizations, the responsibilities placed on administrators are many and
varied—at least as varied as the services and interfaces such administrators have to face.
Administrators need an efficient means of taking advantage of their knowledge of a user
interface as they administer network services. In Windows NT, administrators experienced
with Microsoft Exchange Server who move to the Remote Access Service (RAS) Access
Admin utility will find a vastly different way of performing administrative tasks, which
results in a certain amount of ramp-up time. Small organizations normally have less time
for such issues than large organizatiohs; small organizations need the network and its ser-
vices to be running soon and to be quickly administrable when problems arise. There is
a need for a consistent user interface, one that is centralized and manageable and enables
administrators to take advantage of their experience to put new and unfamiliar services
into use as quickly as possible.

The result needs to be something centralized—some sort of lassoing of all the adminis-
trative interfaces into one consistent and isolated interface. Only a service such as Active
Directory can deliver the degree of centralization required.

Administrators are often spread thin, leaving them little time to perform troubleshooting
tasks that require them to travel to various locations on their networks. With the central-
ized and consolidated vision of the network that Active Directory services provides,
navigation of the network becomes easier, which adds up to an easier approach for users
who want to access resources on the network. The end result is increased productivity
for administrators and users. As the network’s uses are extended and connectivity grows,
Active Directory services can help small-sized and midsize organizations more effectively
use everything the network has to offer.

The Laws of Computing

Some laws are difficult to break; others exist for no apparent reason. (The law of gravity
and rural jaywalking laws, respectively, come to mind.) When it comes to computing,
some laws have more influence and greater impact on the ongoing innovation of tech-
nology than others. While the laws of physics and chemistry certainly play roles in pro-
duction lines, laws other than such hard-science laws arguably shape the industry and
its cycle of innovation and evolution. These other laws—perhaps categorized as practical
or demand-driven laws—are based on science but are driven by consumers. These prac-
tical laws of computing—Metcalfe’s Law, Moore’s Law, and Murphy’s Law—have shaped
information technology as we know it today and will probably shape the computing para-
digm of tomorrow. Without question, these laws are important to the discussion of Active
Directory services and contribute to the paradigm shift toward distributed computing.

Chapter 1 Understanding Directory Services | 7

Metcalfe’s Law

Metcalfe’s Law, proposed by the same Robert Metcalfe who invented Ethernet and co-
founded 3COM Corporation, is an observational law that attempts to quantify the effect
of an interconnected system of machines (computers and telephones, for example). The
technical definition of Metcalfe’s Law is as follows: connect any number, 7, of machines—
computers, phones, or even cars—and you get n squared potential value. In the
postdigestion moments of reading that law, you realize that as computers become con-
nected, each additional connected computer makes the value of all connected comput-
ers skyrocket. As the old adage goes, one telephone is useless (who are you going to
call?); and a car in a driveway with no roads on which to travel to other places is simi-
larly useless (where are you going to go?). Connect everyone in a neighborhood (by phone
or by road) and then everyone in a city, and the increase in value becomes apparent.
AT&T certainly knows this; their connections are valued at around $60 billion.

In terms of networking, Metcalfe’s Law can be paraphrased like this: for each computer
you add to a network, the value of the network grows exponentially. At first, there was
a network, and then users (and the company) saw the advantages of the network and
began connecting more computers to it. The trend continued until eventually all the
computers on the network were interconnected in the corporate LAN. While this trend
toward corporate LANs was taking hold, the land of the bulletin board system (BBS),
where users connect to certain online locations for various reasons, began to give way
to a network of interconnected users (the Internet). As more users (networks) became
interconnected to the Internet, tremendous value was created, which compelled larger
networks (such as corporate LANs) to also connect. This trend was the embodiment of
Metcalfe’s Law, and we've only begun to see its impact.

Metcalfe’s Law is an accurate reflection of the effect of connecting more computers to a
network, and those continued interconnections have resulted in distributed networks of
mammoth value, but also mammoth administrative burden. The value was first seen in
the LAN (and continues to be seen there—the ongoing addition of connected comput-
ers still increases the value of every LAN) and extends to the Internet. The trend of in-
terconnecting computers, however, brought with it administrative growing pains that
Active Directory is designed to assuage.

Moore’s Law

Many people are familiar with Moore’s Law, which is attributed to former Intel execu-
tive Gordon Moore based on an observation he made during preparation for a speech
in 1965. Moore’s Law states: the processing power of computers doubles every 18 months.

There has been some variation to this timeline—it has sometimes been as long as two
years and as short as one year—but over the years, 18 months has been proven to be
most accurate. This pace of increased processing power explains the ever-slippery grasp
one has on possessing a cutting-edge powerhouse desktop computer, which requires
endless upgrades or replacements along a similar timeline. But for the sake of our
discussion, Moore’s Law has much broader implications. This constant increase in

8

PART 1 Understanding Active Directory Services

processing power brought about a fundamental change in the way networks needed to
function; in the beginning, processing power needed to be in the network (rather than
in the clients), as the following paragraph explains.

Not too terribly long ago, a wide area network (WAN) technology called X.25 was the
WAN of choice because at every hop over the WAN, network switching devices checked
packets for integrity and passed them to the next network-switching device, which would
do the same. This process enabled computers on either end of a connection to rest assured
(literally) that the data they sent over the X.25 network would reach its targeted device
intact. Such built-in network intelligence was necessary because the computers at either
end had limited processing power and were unable to check packets for integrity (and
handle problems that arose with corrupted packets). In other words, these computers
didn’t have the processing power to handle the communications overhead. Today, the
X.25 network is not very popular. The overhead associated with all that packet-checking
introduces latency, and because computers have continued to double their processing
power every 18 months, they are now easily able to handle the communications over-
head associated with checking packet integrity.

The same shift is happening with networks. Mainframes are no longer needed to per-
form the processing for desktop computers because desktop computers have sufficient
processing power. But with this distribution of computing power across a network—or
more simply put, with the advent of distributed computing—resources that users need
have also become distributed. Administration has been decentralized with the distribu-
tion of networks, and as a result, the workload and scope of responsibility for adminis-
trators have grown. Thus, Moore’s Law has created a dilemma: increased processing power
enables users to do more, process more, and use empowering new technology, but
increased processing power also scatters users and the resources they need across the
networked landscape, spreading information—and the administrators who must ensure
information is available—across that same ever-broadening network landscape.

Resource distribution leads to difficulty in finding and organizing useful information. When
users are unable to find information or administrators have to manage numerous, dis-
persed services, a network becomes less useful and more difficult to own. Therefore, the
growth and distribution of the network becomes its own nemesis. Any solution, then, must
enable users and administrators to shift back toward a more centralized view of the
network, while also accounting for (and encouraging) continued growth of the network.
This centralizing of ideas, attributes, and capabilities must be accomplished without
undermining the broadened physical reach of the distributed network. In short, there must
be distributed computing and networks with centralized presentation and administration.

Moore’s Law has shaped computing by encouraging the creation of a distributed envi-
ronment where desktop computers currently have the processing power that mainframes
had less than 10 years ago. Increased processing power has been a boon to network-
ing and computing, but with it has come a scattering of resources and ideas. The so-
lution is a centralization of those resources and ideas, and that is exactly what Active
Directory services does.

Chapter 1 Understanding Directory Services | 9

Murphy’s Law

Most of us have firsthand experience with Murphy’s Law, which is less a law of comput-
ing (administrators, I hear your objection to that statement) than a general law aligned
with a cynical view of life. Murphy’s Law states that “anything that can go wrong will go
wrong.” Anyone who’s installed a garage door opener can attest to its validity.

Hardware fails. Network connections get unconnected, wires work loose, domain con-
trollers go off line, users move to different offices, and hard disk space inevitably runs
low. These are facts of computing life and, in general, users and administrators are
required to consider them when going about their daily routines.

When this trio of computing laws—Metcalfe’s Law, Moore’s Law, and Murphy’s Law—is
considered together, it provides a perspective of the current computing environment that
makes the benefits of Active Directory services nearly irrefutable. With increasing pro-
cessing power spreading networks over numerous computers and varied geographies,
much can go wrong. Users can become inundated with details or lost in highly connected
networks; resources get scattered and placed on servers that process requests with light-
ning speed but whose usefulness is limited by the necessity to commit their murky names
and services to memory. What could go wrong has gone wrong—users are lost in distrib-
uted information overload, and the administrative difficulties have created a bottleneck.

Fortunately, a well-designed, enterprise-ready directory service can provide a real solu-
tion to these modern-day computing dilemmas; it can centralize the view and adminis-
tration of a network, while enabling and even fostering growth of the network and
computing power. Keeping Metcalfe’s Law of spiraling network value, Moore’s Law of
doubling processor power, and Murphy’s Law of inevitable bumps in the deployment road
in balance necessitates the advent of a well-designed directory service. Otherwise, we
will become mired in a distributed network that we can’t administer, can’t really use, and
can’t control.

The Directory Defined

As an IT professional who eats, breathes, and sleeps networks, you undoubtedly know
you need a tool that will enable you and your network users to view the network as a
cohesive unit and not as a scattered collection of servers, services, and information. The
need has existed for a while, and Microsoft isn’t the only company trying to address it.
(Novell Directory Services [NDS], the directory service offering from Novell, has been out
for some time now.) But what is a directory service, really? That question needs to be
answered before a firm grip on the sometimes slippery term can be had.

So let’s back up a bit and examine the particulars. Specifically, let’s explain in detail what
a directory is, how it differs from a directory service, and what the difference is between
a simple directory (single-purpose) and a complex directory (multipurpose).

10 | PART! Understanding Active Directory Services

What Is a Directory?

You probably know the meaning of the word inbibitor, and if you can tell me what a
covalence inhibitor is, you certainly know what covalence means. But if you're not clear
on the meaning of either of the words, you’ll never understand the term. Similarly, you
probably know what a service is, but if you want to know what a directory service is,
you must first be certain that you know the meaning of directory.

A directory is a catalog of information (such as names, phone numbers, or restaurants)
that is listed and grouped in a particular way; often, the listing or grouping of such
information is geared toward making the information as easily accessible to its users as
possible. For a couple of quick examples, the white pages and yellow pages are direc-
tories that are organized differently, one alphabetically and one categorically, that give
people convenient access to essential information.

What makes a directory powerful is its ability to accept all sorts of information and then
use that information in ways that empower the users or expand the richness of services.
But for such services and uses of the directory to be a reality, the information in the
directory must be accessible.

What Is a Directory Service?

A directory service is a computer service that enables users to store and access informa-
tion stored in a computerized directory. A directory service often defines, or is based on,
an interface protocol or protocols for interacting with the directory. An example of a
directory service is the Domain Name Service (DNS), which you use every time you
connect to the Internet. Another commonly used directory service is Windows Internet
Naming Service (WINS). The effectiveness and scalability of a directory service are not
guaranteed. Some directory services are expertly conceived such that they can scale to
the entire Internet without outgrowing their usefulness. (DNS is a good example.) Other
directory services are limited by their design and structure to a ceiling of scalability suit-
able only to moderately sized organizations. (WINS comes to mind.)

The point is that directory services aren’t all created equal; some are created only to
provide the names of employees within an organization—perhaps with their extensions,
office numbers, employee numbers, and departments—and serve their intended purpose
perfectly well. Others have the much more complex task of centralizing all networking,
security, user, and resource information into one extendable and scalable directory ser-
vice solution—absorbing other directory services and abstracting system management
activity to familiar snap-in user interfaces. Some directory services have proprietary in-
terfaces that make interacting with the information in the directory possible for only certain
users (such as other operating system components); others have an open, standardized
interface that enables any standards-compliant user to access its directory information.

Each of these kinds of directories has its place—that is, unless the more complex direc-
tory service makes the simple directory service unnecessary or absorbs its information

Chapter 1 Understanding Directory Services | 11

altogether. Examining a simple directory service in detail is in order. After that, we'll look
at a complex directory service.

The Simple Directory Service

To keep things simple, you must limit the tasks being performed,; this is true for direc-
tory services as much as it is for building a birdhouse.

DNS is a good example of a simple directory service. DNS has one goal: to translate host
names to IP addresses, such as translating bttp://www.microsoft.com to 207.46.130.14.

When we take a closer look at DNS and how it qualifies as a directory service, we see
that it has the following directory and directory service traits:

e Lists and groups a catalog of information in a particular way. DNS organizes its
information based on specific categories, such as .com or .org, and is hierarchi-
cal in nature, so you can have valid hosts with names such as microsoft.com
and microsoft.org.

¢ Defines a computer service that enables its users to access its information; DNS
has a particular format and particular commands that must be followed to
interface with its directory of information.

We can define the bounds of what DNS can do and what it’s intended for, and can
essentially define its uses in their entirety. If we add one or two more easily definable
capabilities, we can still understand the service. But computing environments require more
services than simple host-to-IP mappings these days and more than the capability to
provide only a couple of services. As these bounds increase and as the lines that define
what a directory service can do become fuzzy, understanding can wane unless we're
prepared for the fact that a directory service’s capabilities are meant to be fuzzy—or in
more technical terms, more extensible.

The Complex Directory Service

For many computing environments, the reasons for using directories are varied and
numerous, resulting in the proliferation of separate directory services, some of which are
single-purpose and some of which are multipurpose. The previous section describing the
single-purpose DNS directory service provides a great example of a useful directory =
service, but we would have limited computing functionality if that were the only direc-
tory service available.

Imagine for a moment what would happen if we were to increase the capabilities of DNS
so that it could provide more information than just the IP address of a given host. What
if it could, for example, provide us with a list of the host’s computer resources, the host’s
user accounts, and security settings placed on those accounts? If it could do those things,
it would be a multipurpose and more complex directory service. Figure 1-1 illustrates a
simple single-purpose directory service that has been turned into a complex multipur-
pose directory service.

12 | PART! Understanding Active Directory Services

Single-Purpose Directory Multipurpose Directory

Response

Response

QUe[y

Figure 1-1. A simple directory service, and opposite it, the same directory service as a com-
Dlex directory service.

With the complex directory service, an economy of scale is achieved because one direc-
tory can service requests for multiple types of information. The basic idea of the directory,
and its corresponding service, has not changed. It is still a catalog of information and is
still accessed by some defined interface protocol—only the protocol might be more
complicated than it was before and the catalog of information more extensive.

Because a complex directory service can do the work of multiple simple directory ser-
vices, complex directory services are essential parts of today’s complex distributed com-
puting environments—such as the computing environment found in enterprise networks.

The Enterprise Directory Service Shopping List

Enterprise computing environments, as well as small computer networks that make sig-
nificant use of computer technology, use many network services. These services, such
as WINS servers, Dynamic Host Configuration Protocol (DHCP) servers, and security
subsystems, have individualized catalogs of information that they must use to carry out
their network-based operations. The result has been a scattering of these services across
the network and across administrative bounds.

Administrators have had to manage these network services separately and ensure that
proper security is enforced on the catalogs of information, and users have had to deal
with an increasing number of directories and directory services to do their work. As a
result, the complexity of the network has been increasing for both administrators and

Chapter 1 Understanding Directory Services | 13

users, making it more difficult for both to do their respective jobs and curtailing the
effectiveness and usefulness of the network.

Clearly, organizations that use numerous network services need a way to consolidate these
services’ catalogs of information into some centralized, inclusive catalog that takes
advantage of a security, administrative, and user infrastructure by being completely
integrated with the operating system. An enterprise-class directory service is the solution
to the problem of dispersed catalogs of information. In the following section, 1 w1ll explain
the requirements that such a directory service must meet.

Enterprise Directory Service Requirements

A directory service that can serve the needs of organizations of all sizes, including orga-
nizations with enterprise networks, must meet a number of general and specific require-
ments. In general, a directory service must:

Help users and administrators work better
Be tightly integrated with security
Be able to absorb other directories

The following is a shopping list of specific network requirements for a directory service:

Centralization Also known as consolidation, centralization involves reduc-
ing the number of directories an organization must contend with. Centraliza-
tion also reduces administrative burden, and administration is one of the most
expensive aspects of a computer network. However, just as important to cen-
tralization is the capability for all such centralized catalogs to share information
among one another. For example, one catalog might have information about
which machines and shares are associated with user JamieW, and another
might have information about what her security access restrictions are on
Printer7; these catalogs must communicate to create effective centralization. An
enterprise-ready directory service must be able to absorb other directories,
consolidating network information in a central location. '

Scalability Simply put, any enterprise directory service must be able to grow
gracefully with an organization. Better yet, a directory service should be able
to grow as large as it must by somehow partitioning the information it stores. For
example, DNS has been created so that a DNS server is required to know only a
certain number of host-to-IP addresses at any given time. A DNS server has built-
in mechanisms that enable it to pass a request to other DNS servers if it doesn’t
know the information a user is looking for. This combination (partitioned
responsibility and hierarchical architecture) enables multiple DNS servers to
communicate so that they appear to act as a whole. Since no single DNS server
is responsible for all DNS queries, and because growth can be handled simply
by adding partitions to the network and creating new DNS servers responsible
for handling those partitions, scalability is not only achieved, it’s ensured.

14 | PART! Understanding Active Directory Services

¢ Ease of Administration Regardless of how centralized or scalable a solution
is, if the solution is difficult to administer or to navigate, it isn’t viable. Network
administrators have more to do than ever before, and their jobs are getting
more complex. If increased scalability, centralization, and consolidation of net-
work directories make network administration even more complex, the battle
is lost. Centralization and scalability must be implemented so as to make
administration easier, not more complex.

¢ Integration with Security There must be inherent mechanisms to secure
the data that is placed into a directory, and the more information placed into a
directory, the more important such security measures become. Without strong
security integration, the usefulness of a directory service is diluted because
much of the information in a network has some degree of security require-
ments associated with it. The challenge is in managing that security. Of course,
you could put passwords on every resource or subset of information stored in
a directory, but that debilitates the directory service’s capability to help users
and administrators work better. Security in a directory service must be inte-
grated with the operating system’s security subsystem to be effective.

e Integration with Applications For a directory service to be embraced by its
users and application developers, its central repository of information must be
available to more than just the operating system. The directory service must
have a built-in capability that allows applications to utilize the information in
the directory service.

e Standardization and Openness Access to a directory service must be avail-
able to application developers and users through standardized, open access
mechanisms. As I mentioned earlier in this chapter, a directory service defines
the means by which its users interact with its information. Often the interaction
mechanisms are defined by protocols. A defined interaction mechanism must
be standardized and open for the directory service to be viable for any organi-
zation, but especially in the enterprise.

How Active Directory Services Meets
Enterprise Directory Service Requirements

Active Directory services meets the requirements of an enterprise directory service in the
following ways:

Active Directory Is Centralized

Through its centralized repository of information, Active Directory services provides one-
stop shopping for fulfilling your network information storage and retrieval needs—
whether you're a user, an administrator, or an application developer.

Active

Active

Active

Active

Chapter 1 Understanding Directory Services | 15

Directory Is Scalable

The Windows 2000 domain model is a hierarchical domain model (which is significantly
different from the domain model used in prior versions of Windows NT). As a result, Active
Directory services can be partitioned across the entire multidomain enterprise yet behave
like a cohesive unit. (Does this sound familiar? Remember DNS?) More discussion about
the structure of Active Directory and about the new Windows 2000 domain model can
be found in the next chapter.

Directory Makes Windows Networks Easier to Administer

Windows 2000 includes the Microsoft Management Console (MMC), which provides a
centralized and common-interface approach to system administration. Many services in
Windows 2000 are now performed through MMC using “snap-in” tools, which are required
to share a common administrative look and feel. With Active Directory service’s capa-
bility to store information for all sorts of objects—including network hardware devices—
it'’s much simpler for an administrator to use a variety of tools with a common Windows
2000 interface than to use specialized tools and to possess specialized knowledge that
used to be required. For example, configuring a router used to require telneting infor-
mation from a hybrid MS-DOS/UNIX character-based command line utility to a router,
and then typing arcane commands to implement relatively simple changes. With Active
Directory services, such commands and administrative tasks can be performed with an
MMC snap-in from any computer that has access to Active Directory services’ catalog of
information.

Directory Is Built on Windows 2000 Security

As part of the Windows 2000 operating system, Active Directory services is completely
integrated with Windows 2000 security. Any time a user (or a service or application)
queries a directory for information it holds in its catalog, Active Directory checks whether
that user has proper permission. Because Active Directory is so tightly integrated with
Windows 2000, and because Windows 2000 security information is actually stored in the
Active Directory repository, Active Directory services can implement pervasive security
by simply comparing Windows 2000 security information against access control informa-
tion for any given object being queried. Also, because Active Directory can store all sorts
of information, administrators can create extended security services—such as those based
on digital certificates, the Kerberos protocol, or even smart cards.

Directory Is Application-Rich

To attract developers to use the powerful features of Active Directory technology,
Microsoft has made Active Directory accessible through multiple protocols such as Light-
weight Directory Access Protocol (LDAP) and Active Directory Services Interface (ADSD.
Application developers can use the host of existing application programming languages,

16 | PART | Understanding Active Directory Services

such as C, C++, and Microsoft Visual Basic, to write directory-enabled applications. Appli-
cation developers can use the LDAP application programming interface (API) to store and
modify information in an Active Directory directory. The recommended API for use with
Active Directory is ADSI; ADSI provides a single interface to ADSI-compliant directory
services and shields application developers from the details of LDAP programming,
enabling developers to concentrate on their application rather than on how to commu-
nicate with Active Directory.

Active Directory Implements Industry Standards

As mentioned in the previous section, Active Directory services is accessible program-
matically through LDAP. LDAP is an Internet standard overseen by the Internet Engineering
Task Force (IETF) and is defined in Request for Comments (RFC) 2251. Thus, program-
mers and users can be assured that programs built to adhere to the LDAP standard will
work with Active Directory. To get a sense of how important adhering to such standards
is and how open the standards are, consider that DNS is also a standard overseen by the
IETF and because it is open and standardized, it can be implemented and accessed around
the world and all across the Internet.

Active Directory Is Open (Extensible)

As you might have gathered, developers or administrators who use this central reposi-
tory of information might have a need to store (and later retrieve) information specific
to their applications or networks. Fortunately, Active Directory services is extensible. By
providing extension capabilities, Active Directory services can be tailored to an
organization’s specific needs.

Active Directory Is Ready to Use

All of these attributes are nice, but if Active Directory services started as an empty shell
waiting for information, most networks and their administrators would be at a loss as to
how to make it work for them. Fortunately, Active Directory services is automatically
populated with interesting and useful information upon installation for an immediate,
broad foundation of network computing objects. These objects include user information,
group information, security information, and all sorts of other Windows 2000 network
operating system objects that can be accessed by the operating system and by network
administrators and users.

And what about the general directory service requirements outlined previously? If Active
Directory is to be truly ready to use in an enterprise environment or a small organization’s
environment, those requirements must be met. Let’s see how Active Directory’s function-
ality fulfills them:

¢ It must help users and administrators work better By providing a central
repository of information that is available to both users and administrators,
Active Directory services enables users and administrators to work more
efficiently.

Chapter 1 Understanding Directory Services | 17

¢ It must be tightly integrated with security No problem here. Active Direc-
tory services is hooked to the Windows 2000 security subsystem like Velcro.

e It must be able to absorb other directories Because Active Directory ser-
vices is extensible (and because certain directories have already been designed
to run as part of Active Directory services), other directories—such as e-mail
server applications—can and will be absorbed by Active Directory so that their
services are simply another aspect of the capabilities of Active Directory services.

Real-Life Directory Examples

Now that you've read all sorts of facts about directories (the catalog of information) and
directory services (the network protocols used to interface with the catalog of informa-
tion), it’s time to move on to some real-life, everyday examples. Let’s start simple and
get more complex.

The Simple Directory Example

Imagine you walk into a large building that houses mainly doctors’ offices. Rather than
jumping in the elevator and searching each floor for the doctor (or type of doctor) you're
looking for, you walk over to a large, felt-backed, glass-covered display that presents
information about the building and its tenants—the directory.

When you approach the building directory board, you see that the information is arranged
by floor; at the top of the directory board, set to the left, is a title that states “Floor 10”
and to its right are suite numbers (starting with 1001), the name of the health-care
organization that rents each suite, and then the doctors who are associated with each
organization. This is consistent for each of the other nine floors. This particular approach
is fine if you are interested in finding out who is on each floor (the search criteria being
floor number), but it isn’t particularly efficient if you’re interested in finding the location
of the doctor you’re coming to visit. You'd have to read through each floor’s listing until
you happened to come across your doctor’s name. Now imagine that there are three of
these felt-backed, glass-covered displays placed in a row along a large wall near the
entrance of the 10-story building. The first directory is arranged as previously described—
by floor—but the second directory is listed alphabetically by the doctor’s last name, with
his or her floor number, suite number, and organization listed to the right. Aha! Since the
directory is arranged, or published, alphabetically by the last name of the doctor (your
search criterion, as previously mentioned, is the name of your doctor), you simply go to
the second felt-backed directory, read down the list until you come across your doctor’s
name, gather the ﬂoor, suite, and organization information associated with the doctor,
and hop on the elevator.

But what if you don’t have a specific doctor and instead have come because you've broken
your leg (OK, so you're hobbling). You need an osteopath, but when you hobble to the
first directory and see that it’s organized by floor, you get no help finding your osteopath.

18 | PART1 Understanding Active Directory Services

And then you wince and move to the second directory, where information is published
based on the doctor’s last name. This still doesn’t help you because your search crite-
rion is not the doctor’s last name. You limp to the third felt-backed directory board and
find that it is organized alphabetically by specialty. You finger down the list until you find
osteopath and then follow the entry to the right where it lists the doctor’s name, his or
her suite number (which implies the floor on which the doctor can be found—10xx for
the 10th floor, 9xx for the ninth floor, and so on), and the organization with which the
doctor is associated. You quickly locate the information you need from the third direc-
tory and then get on the elevator (no stair climbing in your state) and hurry up to the
doctor’s office.

These types of static directories—ones that cannot be rearranged based on real-time input
from users—are useful in places such as buildings and telephone books, but their use-
fulness and accuracy are also dependent on the volatility of their information. If, in the
example of the building directories, people in the medical building rarely change suites
(which is probably the case) and if the person in charge of the directory boards on the
big wall quickly makes changes whenever a tenant moves, the building’s directory actu-
ally remains quite useful. However, if no one bothers to update the directory for months
or years, the usefulness of that directory diminishes increasingly as time goes by.

So a directory must not only contain interesting or useful information, it must also be kept
current. Generally, the best way to keep information current is to store it on some sort
of computer system. When you computerize a directory and add retrieval capabilities,
you have a directory service.

The Advanced Directory Service Example

As information gets more abstract, vague, or perhaps dispersed, the need for a directory
service that can organize such information intensifies.

You could compare the approach a directory service takes in organizing information to
the way that online booksellers organize the information on their Web sites. There are a
number of online booksellers, including Amazon.com, BarnesAndNoble.com, Borders.com,
and Fatbrain.com, and most of them have organized their Web sites to enable users to
search for interesting or useful items in a centralized, cogent way—much the same way
that directory services enable users to locate information. In the spirit of alphabetical list-
ings, we'll use Amazon.com as representative of booksellers for the rest of this discussion.

Online booksellers are clearinghouses of information. They generally have every type
of book a person could want, in all sorts of categories, with all sorts of information for
any particular book. Categories of books are often specifically defined (such as fiction
vs. nonfiction, thrillers vs. horror, etc.), and at many online booksellers, even larger
divisions of hierarchies are provided when products other than books (such as movies
and CDs) are offered—though the information for those products is generally published
in a similar way to the information about books. At btip://www.amazon.com, users
can search for items of interest with the search capability that is built into the

Chapter 1 - Understanding Directory Services | 19

butp://www.amazon.com interface, or they can narrow a search by choosing a particular
category (Mystery & Thrillers, or Computers & Internet, for a couple of examples). From
there, users can hone their search criteria by choosing subcategories from within that cate-
gory, or they can perform a text-based search with keywords. In other words, users can
search for items of interest by starting with broad categories and moving toward more
specific categories. When bttp://www.amazon.com visitors finally get to a handful of
entries that meet their criteria, they can view specific book entries that enable them to
choose the book that most appropriately fits their need. Relevant, too, is that informa-
~ tion for each book conforms to a certain set of criteria—such as title, author, publisher,
and page count—that are common attributes of any book. What has happened through-
out the course of the user’s search of the sea of hitp://www.amazon.com information?
Diverse, distributed, and otherwise segmented pieces of information have been gathered
into one central site, where users interested in certain information can search based on
a known attribute (topic, title, or author) and find all relevant information.

Each object of a search (a book) has a set of discrete attributes, and the body of infor-
mation from which users can search is finite. There is an organizational hierarchy, in which
categories contain other categories—the Computers & Internet category contains groups
such as Certification and Programming—until they reach the final object that cannot
contain other objects: the book itself. When initiating the search, users can narrow it to
a particular section, such as Literature & Fiction, or they can search the entire site. Note,
however, that some pieces of information about particular books are not exposed to the
bttp://www.amazon.com search engine—for example, you cannot do a search based on
the page count of a book. Why not? There might be a number of reasons, but the im-
portant one is that page count is not included as a searchable piece of information in the
bttp//www.amazon.com search engine because it is not an attribute of a book that is likely
to be useful as a basis for performing a search.

Now imagine that Amazon.com wants to publish a piece of information that previously
did not exist about one of its books—perhaps the book’s sales ranking. First the body
of information that it publishes about its books—called a schema—must be expanded
to incorporate the new piece of information, or attribute. If the designers of
bttp.//www.amazon.com choose, they can require each book to have a value for the
attribute, or they can make the attribute an optional piece of information. Either way,
its inclusion as an attribute for each book object in their site equates to an extension
of their schema, and that extension to their schema enables the designers of
bttp://www.amazon.com to tailor their site to contain information that they believe is
important or relevant.

In many ways, the online bookseller’s approach to information organization is similar to
the Active Directory approach. But how does it really compare? How does the online
bookseller’s directory stand up to the criteria for a computer network directory service?

First let’s look at the general requirements for a directory service and see whether the
online bookseller’s directory meets the following requirements.

20 | PARTI Understanding Active Directory Services

e It must hdp users and administrators work better. It’s hard to say whether
it helps their administrators work any better, but it certainly helps users find the
books they're looking for. We'll give a passing grade, then, for this item.

¢ It must be tightly integrated with security. Most online booksellers want
you to find all the information you’re interested in on any of the books you
look for, so this doesn’t apply as directly as it could. However, when placing
an order with one of these booksellers for the first time, you generally set up
an account with a username and password that’s transmitted through a secure
line of communication. Also, credit card information is secured. So as far as
security is concerned, I think the online bookseller meets the criteria.

« It must be able to absorb other directories. Many booksellers these days
are also selling movies and music—some even sell electronics, toys, and gifts
and host auctions—all through the original (or primary) interface. So the online
bookseller example gets another passing grade for meeting the directory service
requirements.

Next, let’s look at the specific directory service requirements.

e Centralization Yes, online booksellers are centralized on a particular Inter-
net Web site,

¢ Scalability Well, the book offerings seem to continually expand, so as far
as the bookseller is concerned, this solution is probably as scalable as it
needs to be.

¢ Ease of administration This one is an unknown.

¢ Integration with security Yes, online booksellers provide adequate integra-
tion with security, by providing Secure Sockets Layer (SSL) or Transport Layer
Security (TLS) for placing orders.

¢ Integration with applications Since you could consider the order place-
ment and tracking as an application, it seems as though these online book-
seller directory services do a fair job of integrating with the kind of
applications they need.

 Standardization and openness These online booksellers’ directories are
absolutely standardized and open because they use an industry-standard, open
protocol and language (Hypertext Transfer Protocol [HTTP] and Hypertext
- Markup Language [HTML], respectively) to enable users to interact with the
directories they maintain.

More Info The last point is worth commenting on further; because online book-
sellers have implemented open, standardized interfaces, they have experienced
tremendous success and acceptance and have been able to expose their services
to millions of users. That is the idea behind using an industry standard and an
open standard. Active Directory services uses the same approach with its use
of LDAP as its protocol of choice for interaction with its catalog of information.

Chapter 1 Understanding Directory Services | 21

We still have one question left to answer: how is all the information in a directory stored,
organized, and updated? The answer is: by using a database. But a directory service is
more than just a database, as you’ll learn in the following discussion.

Directory Service vs. Relational Database

There are important distinctions to be made between a directory service and a relational
database. A directory service is a specialized kind of database—one that is built and tuned
around being queried and is queried much more than it is written to. To further distin-
guish a directory service from a database, a directory service’s distinctive qualities are not
how it stores its information, but rather how it publishes and uses that information.

So a directory service is a specialized database. This specialization means that informa-
tion appropriate for a directory service can be different than information appropriate for
storing in a relational database. For example, a relational database might contain fields
or entries that store volatile data or large pieces of data, whereas Active Directory ser-
vices’ core functionality—such as its storage, search, and retrieval capabilities—has been
tuned so that Active Directory is a great place for user names and group memberships
but not for volatile or large pieces of data. This is much like how an enterprise e-mail
application works; the attributes of its objects (e-mail address, office location, and dis-
tribution list membership) are read much more often than they are written to. In fact, the
core engine of Active Directory services is built upon the tried-and-true Exchange Ser-
ver directory engine, which means Active Directory services had real-world deployment
experience behind it before it was even rolled out.

The details of which objects are appropriate to store in Active Directory services and which
objects are not are the subject of 2 more detailed discussion—which appears in Chapter
14, “Leveraging Active Directory Services.” For now, though, the important fact to know
about Active Directory services and databases is that Active Directory services stores its
information in a specialized kind of database—one that has complete operating system
integration, security integration, and specialized interfaces for the operating system as well
as standardized interfaces so that other users of its services (applications, administrators,
and users) can make use of it through Windows user interfaces and programmatically.

Conclusion

As the PC-based distributed network began to gain momentum and replaced the central-
ized mainframe-based network, the varied services required to maintain interoperability
across a distributed network increased and dispersed. Windows NT networks were no
exception to the dilemma of ever-growing, more distributed networks, and the users,
administrators, and developers of Windows-based applications and services found it
increasingly difficult to work. Networks had become disjointed, spread out, and difficult
to navigate.

22

PART I Understanding Active Directory Services

A solution was needed that centralized resource information yet encouraged and enabled
growth and scalability. Moore’s Law and Metcalfe’s Law showed no indications of being
disproved, and to circumvent Murphy’s Law, a solution to the difficulties and challenges
of an ever more dispersed network had to be created, provided, and implemented.

The solution that was needed was a directory service that was enterprise-ready, scalable,
secured, and standardized—a directory service that could centralize the varied network
information pertinent to a Windows network.

This enterprise-ready directory service solution needed to be built into the base operat-
ing system, around which all other operating system activities are based and in which
all pertinent network-computing information is stored, retrieved, manipulated, and
extended. That’s easy to say, but a directory service of such ambitious proportion can-
not simply be added to an operating system; rather, the operating system must be built
around the directory service. That is precisely what has happened with Active Directory
services, and the major changes in Windows architecture implemented in Windows 2000
are a direct result of the central role of Active Directory services.

23

Clheter 2

Active Directory
Services as a Directory
Service impliementation

Microsoft Windows 2000 has incorporated its directory service, Microsoft Active Direc-
tory services, into the heart of the operating system’s functionality. As a result, comput-
ing in the Windows 2000 network environment is significantly different from computing
in the Microsoft Windows NT environment, and Active Directory services is at the cen-
ter of it all.

You can think of Active Directory services as the information hub of a Windows network—
the virtual brain of the digital nervous system. In Active Directory, information is stored
and retrieved, added and removed, and extended or pruned, providing the entire net-
work with a centralized repository that is the definitive source for information on the
network.

Because Active Directory is such an all-encompassing service and such a vital part of
Windows 2000, it's easy to be intimidated by its importance and complexity. Don’t be.
The Active Directory architecture isn’t intimidating if you keep one thing in mind: Ac-
tive Directory services is just an information store. That’s all it is—a specialized database.
Its features and benefits are varied and complex, but when all is said and done, the ar-
chitectural details of these features are simply derivatives of how information is stored
or presented. Once that’s understood, it’s easy to turn feelings of intimidation about Active
Directory services into eagerness or even excitement.

This chapter provides a list of technical details that Active Directory services implements
and introduces the deployment features that Windows 2000 makes available—each of
which is made possible by the presence of the centralized Windows 2000 directory ser-
vice. This chapter also explains where Active Directory technology is physically imple-
mented in the Windows 2000 operating system, and then explores how Active Directory
functions as the centralized information repository on a Windows 2000 network.

24 | PART1 Understanding Active Directory Services

Active Directory Technical Specifications

In Chapter 1, “Understanding Directory Services,” the requirements for an enterprise
directory service were outlined. For convenience, here they are again:

¢ Centralization

e Scalability

e Ease of administration

¢ Integration with security ‘

¢ Integration with applications (interoperability)

e Standardization and openness
The technical specifications of Active Directory services map to this list of requirements.
Of course, there is some overlap—for example, centralization and ease of administration

go hand-in-hand—so some features or technologies apply to more than one item and
therefore might be listed more than once.

Centralization and Scalability

For a directory service to provide a centralized information store accessible through the
use of any given access protocol, a certain set of directory service features must be imple-
mented. Additional features are necessary to ensure that the directory service can be scaled
to large, enterprise networks. Some features are basic and necessary; others establish the
difference between the best directory service available and all others.

The following is a list of the features, specifications, and technologies that enable Active
Directory services to provide a centralized information store and that allow Active Di-
rectory to scale with growing networks:

e All directory interfaces are exposed to Lightweight Directory Access Protocol
(LDAP)

e Base-level operating system integration

e Catalog services (the Active Directory Global Catalog)

e Domain Name Service (DNS) support

e DNS/Directory namespace integration

e Enhanced (real-time static) inheritance model

e Extensive search capabilities, based on LDAP search conventions

* Flexible single-master operation for collision-averse domain services

® Hierarchical directory

e Integrated development model

¢ LDAP support features use the same directory security model as the operating
system

Chapter 2 Active Directory Services as a Directory Service Implementation | 25

* Migration tool for migration from other directory services

¢ Multimaster replication

e Native LDAP integration

* Optimized replication based on network topology

¢ Partitioning support

* Pervasive security for catalog service and directory information

¢ Real-time catalog/directory access

e Schema extensibility

¢ Single network logon

» Synchronization and consolidation platform (absorption of other directories)
e Transitive domain trust relationships (vs. explicit trust relationships)

Ease of Administration

Ease of administration—or manageability, as it’s sometimes called—is at the heart of any
directory service. In fact, directory services were created because a tool was needed to
centralize distributed networks so that they would be easier to manage. Active Directory
services includes features and technologies that consolidate administrative activities and
that enable administrators to use a somewhat standardized and familiar interface (based
on the existing Windows 2000 interface) to perform administrative tasks. As a result, a
networked administrative infrastructure is created that allows your organization’s network
to be managed (or administered) more efficiently and, perhaps, more accurately.

The following is a list of the Active Directory features, specifications, and technologies
that make network administration easier than ever before:

* Advertised applications

e Application deployment services

e Application installation services

* Assigned applications

e Centralized and standardized management interface (Microsoft Management
Console [MMC])

e Command-line administration

¢ Delegated administration

e Desktop application management

e Extensible management tools (MMC snap-ins)
e Extensible scripting engine

e Group policy services

* Integrated management tools (MMC)

26 | PART!

Security

When security capabilities are built into a directory service, the operating system and any
service that is a client of the directory service’s store are able to authenticate any action
based on the centralized repository of security information. This pervasive and highly
available security information enables applications and services to offload security-related
functions to the directory service, which allows these applications or services to focus
on providing their intended functionality rather than a security infrastructure. Also, ro-
bust and centralized security capabilities provide a secure environment for sensitive docu-

Understanding Active Directory Services

Java scripting support

JavaScript scripting support

JScript scripting support

Lockdown of user desktop settings

Management scripting

Predefined desktop settings for users (Group Policy)

Published applications

Quality of Service (QoS) profile management (users and network devices)
Remote operating system installation

Roaming user support

Security-based and non-security-based groups for increased group usage
flexibility

Simple Network Management Protocol (SNMP) support

Synchronization of user data between client and server

Use of organizational units (OUs) for fine-grained administrative control and
delegation

User data management services

_ User settings management

VBScript scripting support

Web Based Enterprise Management (WBEM) support
Windows (graphical) administration

Windows Scripting Host (WSH) integration

ments, communications, and even commerce.

The following is a list of the features, specifications, and technologies that enable Active

Directory to provide robust, centralized security:

40-bit Secure Sockets Layer (SSL) support
128-bit SSL support
Centralized security management

Chapter 2 Active Directory Services as a Directory Service Implementation | 27

¢ Certificate server/directory service integration
e File system encryption

e Kerberos authentication

e Smart Card support

e Transport Layer Security (TLS) authentication

e X.509 certificate server integration

Interoperability and Standardization

When standards support is implemented in a directory service such as Active Directory
(and thereby, openness is achieved), all the capabilities of the directory service become
available to anyone who cares to develop to the interface standard. Standards support
not only enables quick deployment and porting of programs to Active Directory services,
but also ensures that applications, services, administrative tools, or even other directo-
ries that are compliant with the standards can interoperate with Active Directory or make
use of its features and capabilities. Without standards support, directories proliferate,
creating an environment where administrative tasks are not centralized and increasing
the administrative burden (and thereby, the cost of ongoing management) of the network
and its services. Fortunately, Active Directory services includes extensive support for
Internet and other industry standards.

When interoperability is implemented in a directory service, the directory service becomes
capable of synchronizing services with other directories. Interoperability provides the
Synchronization necessary to make all services in Active Directory (such as security)
available to other directories and vice versa.

The following is a list of the standards that Active Directory services implements, with
the associated Internet Engineering Task Force (IETF) Requests for Comments (RFCs) in
parentheses beside ratified standards. Note that support in Active Directory for these
standards ensures that Active Directory will interoperate with any directory service that
also complies with the standards. For example, because Active Directory services sup-
ports LDAP standards, it can interoperate with any LDAP-compliant directory service.

e Directory Syhchronization (DirSync) support (Internet Draft)

e Dynamic DNS (RFCs 2052 and 2136)

e Dynamic Host Configuration Protocol (DHCP) (RFC 2131)

e LDAP (RFCs 1777 and 2247)

e LDAP C application programming interface (API) (RFC 1823)

e LDAP Data Interchange Format (LDIF) (Internet Draft)

e LDAP version 3 (RFCs 2251, 2252, and 2256)

e LDAP version 3 C API (Internet Draft)

* MIT version 5 Kerberos (RFC 1510)

28 | PART! Understanding Active Directory Services

* Simple Network Time Protocol (SNTP)YRFC 1769)

e ‘Transmission Control Protocol/Internet Protocol (TCP/IP) (RFCs 791 and 793)

e X.509 version 3 public key security (International Organization for Standardiza-
tion [ISO] standard)

Interoperability requires that access to Active Directory and its services be made avail-
able to applications or services outside the operating system itself. Active Directory ser-
vices achieves such interoperability through its support of the following interfaces,
protocols, and languages:

e Active Directory Service Interfaces (ADSI)

e C

e C++

e Java
e LDAP

¢ Messaging API (MAPD
e Microsoft Visual Basic

Active Directory Features

The features discussed in this section are creations made possible by the building blocks
available through the specification details outlined in the previous section. These imple-
mentation features are available with any Windows 2000 deployment and are provided
as part of the base Active Directory capabilities provided by Microsoft.

As you read about these implementation features, you’'ll see that many of them enable
Active Directory services to meet the requirements for an enterprise directory service. For
example, the administration delegation feature reflects the effort made to ensure that ease
of administration is achieved.

Administration Delegation

Active Directory services allows network administrators to delegate administrative duties
while maintaining network security. The security scheme applied to Active Directory
services makes fine-grained security available to all objects in Active Directory. Among
those many and varied objects are domains, sites, and OUs. In addition to enabling
administrators to assign administrative control and administrative capabilities for such
objects and containers, Active Directory lets administrators apply permission settings to
all objects in a given container (inheritance).

Administration delegation capabilities of this sort are greatly needed because in previ-
ous versions of Windows, the only way to provide enough permission rights to subsets
of administrators for a given domain was to grant the administrators sweeping permis-
sions across the entire domain, which posed potential security risks and resulted in a less-
than-ideal blanketing of permissions. With the Windows 2000 administration delegation

Chapter 2 Active Directory Services as a Directory Service Implementation | 29

feature, administrative rights can be fine-tuned, and the scope of administrative rights can
be more narrowly defined than it could previously. (For example, administrative permis-
sions can be provided to administrators for an OU within a domain, rather than for the
entire domain. In Windows NT, providing such administrative rights meant giving sweep-
ing domain-wide administrative rights to administrators who only needed administrative
access to a portion of that domain.)

Automated Software Distribution

Active Directory services enables administrators to automatically distribute software to
users based on their roles in the organization. For example, an organization that has
licensed Microsoft Word 2000 .could automatically distribute that software (and maybe
their licensed copies of id Software’s Quake III Arena) to the computers of all writers
in the organization.

Backup Services

Windows 2000 comes with a backup utility, supplied by VERITAS Software Corporation,
that can back up the entire Active Directory database. (You must configure the backup
to include the Active Directory database by selecting to either back up everything on the
computer or back up the System State data. The configuration is geared toward backing
up the Active Directory database as part of the basic backup routine.)

Backward Compatibility

In any Windows 2000 environment, full backward compatibility with downlevel clients, such
as Windows NT, Windows 95, and Windows 98, is provided by default. In fact, backward
compatibility was one of the primary design requirements of Active Directory services.

When Windows 2000 servers and Windows NT servers exist in a given network deploy-
ment, that deployment is considered to be a mixed environment. In a mixed environ-
ment, Windows 2000 domain controllers appear to downlevel clients as Windows NT 4
domain controllers.

DEA Platform

Windows 2000 provides a platform for Directory-Enabled Applications (DEAs), which
allows these applications to take advantage of the centralized, distributed features of Active
Directory to automate various aspects of their functionality. Some of the functionality that
can be automated includes the installation, distribution, and maintenance of these DEAs.

DEN Platform

Windows 2000 has more integration with the network than did previous versions of
Windows. Not only is site information used to produce replication scenarios that reduce
Active Directory services’ use of network and wide area network (WAN) bandwidth, but
also network devices use the Active Directory database to store and retrieve configura-
tion and policy information.

30

PART I Understanding Active Directory Services

This interaction between Active Directory services and the network is called Directory-
Enabled Networking (DEN). This platform has hardware and software support from major
vendors such as Cisco Systems. Administrators can assign resources such as network
bandwidth allocation and QoS settings for users (or applications) based on their role in
the organization. ‘

IntelliMirror

One of the most important network management features of Active Directory services is
IntelliMirror. With IntelliMirror, administrators can automatically distribute software, pro-
vide for automated software maintenance, centrally manage desktop configuration, and
install operating systems remotely. The benefit for the administrator is clear: less admin-
istrative, management, and maintenance headaches.

IntelliMirror provides three primary functions: user data management, software installa-
tion and maintenance, and user settings management.

With its user data management functionality, IntelliMirror provides users with indepen-
dence from their personal workstations, enabling users to roam to any Windows 2000
Professional computer and retain their data, applications, and system settings preferences.
This independence is possible because Active Directory stores user information, so
IntelliMirror can make that information available to the user anywhere on the network
and on any Windows 2000 computer.

IntelliMirror also allows users to work with network data when the network is down or
they’re disconnected. We’ll examine how this is accomplished in Chapter 14, “Leverag-
ing Active Directory Services.”

With its software installation and maintenance functionality, IntelliMirror allows admin-
istrators to specify an application or a set of applications to always be available to a user
or a group of users. Whenever an application is not available to a user or a group when
that user or any member of the group logs on to a particular workstation and the group
profile specifies that the user or group should have the application available, the unavail-
able application is installed and configured. Conversely, the removal of applications is
also supported, as is automated repair of disabled applications.

With its user settings management, IntelliMirror enables administrators to centrally man-
age and control desktops across the enterprise. For example, administrators can lock
desktop configurations to certain specifications and settings. The user settings manage-
ment facilities of IntelliMirror also enable administrators to associate network settings with
users or groups of users.

Chapter 2 Active Directory Services as a Directory Service Implementation | 31

Printer Search Capabilities

Active Directory services contains information about all shared printer resources in a
Windows 2000 network environment. It organizes printers by business purpose rather
than by network location. This type of organization enables users to search for a printer
based on its features rather than having to know the name of the server share and the
name of the printer. Also, by maintaining information about printer resources in Active
Directory, administrators can easily change permissions or other settings on one or all
printers from an easily accessed central point of administration.

Required Authentication Mechanism

Active Directory services allows administrators to require a certain type of logon authen-
tication, including Kerberos authentication, X.509 certificate authentication, or NT LAN
Manager (NTLM) authentication.

Where Is Active Directory Services?

Although we’ve discussed the technical specifications and the features of Active Direc-
tory services, we still have a void in our understanding of how Active Directory is imple-
mented in Windows 2000. That void is expressible in the form of a question: where is
Active Directory? The need to know the answer to this question comes from a need to
understand how Active Directory services works, not just that it works. Understanding
how Active Directory works starts with knowing where it resides. Does the Active Direc-
tory database sit on one computer? If it's entirely new to Windows and so mission-critical
and central to Windows deployments, how did previous versions of Windows function
without it? Is it a service that runs on every Windows 2000 server, or is it something else?

The answers to these questions are best provided by comparing Active Directory services
to the directory service capabilities in Windows NT. Windows NT 4 and Windows NT 3.51
used Windows NT domains, and within each of those Windows NT domains, certain
Windows NT servers acted as domain controllers. There was one Primary Domain Con-
troller (PDC) and generally multiple Backup Domain Controllers (BDCs). On each of these
domain controllers, certain information about the Windows NT domain was housed so
that the domain controller could perform domain-centric activities, such as logging on
users or authenticating access to restricted resources. For example, if JohnDoe wanted
to read a restricted file housed on a computer running Windows NT Server, the read
request would be sent to the nearest domain controller to query whether JohnDoe had
proper access permission to read the file. The domain controller, which housed all se-
curity information for the domain (among other domain-specific information), would
authenticate whether JohnDoe had proper permission to read the file. It would then return
the information to the server on which the file was housed, enabling that server to ad-
mit or reject JohnDoe’s read request.

32

PART I Understanding Active Directory Services

All BDCs in Windows NT “ domains maintained copies of the domain-specific informa-
tion store housed on the PDC. Loosely speaking, they maintained copies of the PDC’s
directory store, which of course was specific to the Windows NT 4 domain. This enabled
organizations to make network information available across potentially large and geo-
graphically diverse domains. But the copies that the BDCs housed were read-only; in-
formation could be written to only the information repository on the PDC.

Active Directory replaces this directory store, this information repository that was kept
at the PDC and copied to BDCs in Windows NT domains, but its approach to doing so
is very different, and its architecture and capabilities enable it to do much, much more
than Windows NT’s domain-specific information store ever considered doing.

In Windows 2000 domains, there is no PDC and there are no BDCs. Instead, all servers
in a given domain are peers, called domain controllers, and each domain controller has
a read/write copy of the Active Directory database (the much enhanced and reengineered
information repository for domain-specific information). Therefore, Active Directory is
essentially a completely new, vastly enhanced incarnation of the information repository
that used to be housed by Windows NT domain controllers. Active Directory services has
not only absorbed the functionality of the old Windows NT directory stores, it has greatly
extended these stores, providing a centralized repository for all network information. In
other words, the Windows NT directory stores have been absorbed by the full-fledged
directory service that is Active Directory. Thus, in Windows 2000, the entire concept of
domain management has been redesigned from the ground up, based on the centraliza-
tion and scalability needs of ever-expanding networks.

Heal World

In physical terms, the Active Directory information repository is encompassed by a file
called ntds.dit, which is stored in the %systemroot%\ntds folder, such that a Windows
2000 installation placed in the C:\Win2000 folder would implement the Active Directory
information store in C:\'Win2000\NTDS\ntds.dit. For convenience, Active Directory ser-
vices also keeps a basic pre-deployment version of an Active Directory information store
(database) as the file ntds.dit in the %systemroot%\system32 folder; this file enables a
Windows 2000 Server computer to be promoted to a domain controller without the
Windows 2000 Server CD. Once promoted (and the ntds.dit file written to the
Y%systemroot¥\ntds folder), the newly promoted domain controller synchronizes with
other domain controllers to bring its information up to date.

Departure from the Windows NT 4 Approach

In Windows NT 4 (and earlier), the domain-based information repository was largely
closed. Sure, you could add users to the domain and create local or global groups, but
the type of information that went into the information store was dictated by Windows
NT. While the information repository was used by the Windows NT operating system to

Chapter 2 Active Directory Services as a Directory Service Implementation | 33

keep its predefined information centrally and highly available and enabled a somewhat
centralized point of administration and security, it couldn’t be used or extended by other
applications or by administrators. Nor was it available to application services that were
largely part of the domain-based network system itself, such as corporate e-mail. Figure 2-1
illustrates how Windows NT 4 kept its directory store under the hood, so to speak.

|
]
I Windows NT
Applications interfaces

Windows NT 4 operating system
(internal operatlons) Windows NT4 directory

| : |

System services
I/0 manager Local Virtual Process Security Object Window

procedure Memory Manager Reference Manager Manager

facility

Network drivers I ’ Microkernel] Graphic

: - device

I Device drivers I I Hardware Abstraction Layer (HAL) l drivers

I Hardware ‘

Figure 2-1. The Windows NT 4 directory store.

In Windows 2000, the directory plays a very different, very central, and highly extensible
role, and has taken an evolutionary step forward in networked computing. In Windows
2000, almost everything that has to do with the operating system stores its information
centrally, in Active Directory. This Windows 2000 directory information store model
enables applications, administrators, services, network devices, users, and the operating
system to make use of the directory, in effect making Active Directory itself a service
provider on a grand, distributed scale. Figure 2-2 illustrates how this approach enables
all sorts of software and administrative components to use Active Directory technology.

It's worthwhile to discuss how these two different approaches to the domain-based in-
formation store—keeping it isolated to the operating system or making it available to the
entire network—affect the network environment. In Windows NT 4, the result of keep-
ing the repository of domain-based information closed was that other services and ap-.
plications (such as e-mail, databases, or application servers) were distributed across the
network landscape. This created an ever-broadening scope of management responsibil-
ity and an ever-diluting sense of “the network,” as Figure 2-3 illustrates.

34 | PART | Understanding Active Directory Services

]
|
Applications ADSI
Windows 2000 operating system
(internal operations)
Active
Directory
System services services
l I |
1/0 manager Local - Virtual - Process = Security Object m Window
procedure Memory Manager Reference Manager Manager
Cache Manager call Manager Monlitor

facility
File system drivers

Network drivers I Microkernel l Graphic

: - device
l Device drivers ! L Hardware Abstraction Layer (HAL) I drivers

| Hardware

Figure 2-2. The Windows 2000 directory store.

Domain
controller %.;

” Subnet

Domain &, ¢)

controller = . Lw S
5 Domain &7¢> &2

controller ¢

eoe Subnet
g Corporate —
R3] backbone s
ceoe | Database
server
Domain
controller

Subnet

Domain™ gy
N
controller ®

Figure 2-3. A Windows NT 4 domain with directories scattered across the network.

Chapter 2 Active Directory Services as a Directory Service Implementation | 35

When the domain-based information store is opened to use by other services, applica-
tions, or network administrators who need to manage the corporate network, the sepa-
rate components of the network become united. Information pertinent to applications
or servers can be placed in Active Directory and easily retrieved (remember, the Active
Directory database is propagated to each domain controller in the domain), providing
cohesiveness for the network that can be maintained regardless of how big the network
gets. Figure 2-4 illustrates how a large network can appear as a cohesive unit; contrast
this to the network illustrated in Figure 2-3.

E-mail p
server é@f/ :

ol

e
Domain §3 4
controller <

Subnet

controller

Domain
controller

Figure 2-4 A Windows 2000 domain with directory information centralized on domain
controllers.

Note that an increase in the number of servers or services won't cause a segmentation
of the network. Regardless of where additional servers are deployed, policies or appli-
cation information is still published in the Active Directory database, which, due to its
propagation and publication throughout the domain in domain controllers, is always
available and “nearby.”

As you can see from Figure 2-4, the Windows 2000 approach is a significant improve-
ment over the Windows NT approach. Active Directory services not only effectively takes
over the responsibilities and services formerly performed by the PDC and its BDCs, but
also its introduction in Windows 2000 fundamentally changes the way the operatmg sys-
tem does its work.

36 | PARTI Understanding Active Directory Services

While it’s easy to report that Active Directory services has brought a centralized and open
directory service to Windows 2000 and the change will turn a distributed network prob-
lem into a centralized computing environment, the truth of those statements is difficult
to emphasize enough. In fact, this change in the way directory-based information is stored,
retrieved, and published fundamentally affects the way the entire network functions. It's
not just a new way of implementing PDCs and BDCs; it’s a new computing approach.
I'd say this 20 times in a row to underscore the importance of these facts, but my editors
won’t let me. Once (OK, a few times throughout the book), with a little italicizing to spice
it up, will have to suffice: Active Directory changes everything.

One of the main reasons that Active Directory services is capable of achieving central-
ization is that its schema is extensible. If it were not extensible, application developers
would not be able to use Active Directory to centrally store information objects particu-
lar to their programs. The result would be that applications would have to create and then
maintain their own information stores (or directories), as is the case with applications that
were written to function under Windows NT 4 and earlier. Without the extensibility of
the Active Directory schema, the availability of programmatic interfaces to manipulate
and interact with Active Directory, and the standardization on LDAP, Active Directory
services would fall short of achieving centralization. But Active Directory does deliver
on those requirements and capabilities and on all the other requirements of an enterprise-
class directory service. As a result, Active Directory is a centralized solution that can bring
a distributed, growing network together under the auspices of one integrated, open,
extensible, and scalable directory service solution.

Conclusion

When all is said and done, Active Directory services is really a simple thing: it is an in-
formation repository. This information repository comprises the set of requirements for
an enterprise-class directory service and all features related to such a complex animal.
Don’t confuse what it s with what it is capable of doing. Remember that Active Direc-
tory is simply a directory service, or information repository, and that all of its fancy, robust
features are what make it such a complex animal.

The notion of a directory service in Windows NT has actually been around for the past -
few versions, but until Windows 2000 and Active Directory the information repository
was a private tool, available primarily to the operating system and closed to the rest of
the network. With Windows 2000 and Active Directory services, the basic design of the
directory store has completely changed, creating a solution that can unify enterprise
networks.

@Sﬂ@g@“&@ﬁ &
Wmdow_s 20(_)0 Domains _
and Active Directory Services

37

The Microsoft Windows 2000 domain structure and its associated objects have changed
central role in Windows 2000 and the design requirements that make it a scalable,
enterprise-ready directory service. Some of these changes are obvious, such as the move-
ment to a transitive trust relationship model, while others are subtler, such as the intro-
duction of organizational units. Whether the issues are obvious or subtle, explaining them
is central to understanding the interaction and dependencies between Windows 2000
domains and Active Directory services.

Active Directory services emulates the Windows 2000 domain model—or vice versa, if
you'd like to look at it that way. Either way, Windows 2000 domains and Active Directory
services are dependent on one another and even defined by each other’s characteristics.
The close and indivisible relationship between Windows 2000 domains and Active
Directory services requires an explanation of the Windows 2000 domain model and how
it interacts with Active Directory services. Therefore, this chapter begins with an expla-
nation of the Windows 2000 domain model and examines why that model is so different
from the Windows NT domain model.

Windows 2000 Domains

Windows NT 4 domain models didn't scale well. There are other ways of stating this fact
that would sugarcoat the truth, but the simple fact of the matter is that the Windows NT
4 domain model—with its one-way nontransitive trusts—required lots of administrative
overhead in large-enterprise implementations. This is no longer the case with Windows
2000 and its domain model, largely because of the new approach to trusts, but also
because the entire domain concept has been revamped to align with industry standards
such as Lightweight Directory Access Protocol (LDAP) and Domain Name Service (DNS).

38

PART | Understanding Active Directory Services

The Domain Hierarchy

In Windows 2000 networks, domains are organized in a hierarchy. With this new hierar-
chical approach to domains, the concepts of forests and trees were created. These new
concepts, along with the existing concept of domains, help organizations more effectively
manage the Windows 2000 network structure.

Domains

The atomic unit of the Windows 2000 domain model hasn’t changed, it is still the domain.
A domain is an administrative boundary, and in Windows 2000, a domain represents a
namespace (which is discussed in Chapter 4) that corresponds to a DNS domain. See
Chapter 6, “Active Directory Services and DNS,” for more information about how Active
Directory services and DNS interact.

The first domain created in a Windows 2000 deployment is called the root domain, and
as its name suggests, it is the root of all other domains that are created in the domain
tree. (Domain trees are explained in the next section.) Since Windows 2000 domain struc-
tures are married to DNS domain hierarchies, the structure of Windows 2000 domains is
similar to the familiar structure of DNS domain hierarchies. Root domains are domains
such as microsoft.com or iseminger.com; they are the roots of their DNS hierarchies and
the roots of the Windows 2000 domain structure.

Domains subsequently created in a given Windows 2000 domain hierarchy become child
domains of the root domain. For example, if msdn is a child domain of microsoft.com,
the msdn domain becomes msdn.microsoft.com.

As you can see, Windows 2000 requires that domains be either a root domain or a child
domain in a domain hierarchy. Windows 2000 also requires that domain names be unique
within a given parent domain; for example, you cannot have two domains called msdn
that are direct child domains of the root domain microsoft.com. However, you can have
two domains called msdn in the overall domain hierarchy. For example, you could have
msdn.microsoft.com as well as msdn.devprods.microsoft.com; the microsoft.com
namespace has only one child domain called msdn, and the devyprods.microsoft.com
namespace also has only one child domain called msdn.

The idea behind domains is one of logical partitioning. Most organizations large enough
to require more than one Windows 2000 domain have a logical structure that divides
responsibilities or work focus. By dividing an organization into multiple units (sometimes
called divisions in corporate America), the management of the organization is made easier.
In effect, the organization is being partitioned to provide a more logical structure and
perhaps to divide work among different sections of the organization. To look at this
another way, when logical business units (divisions) are gathered collectively under the
umbrella of one larger entity (perhaps a corporation), these logically different divisions
create a larger entity. Although work within the different divisions might be separate and
very different, the divisions collectively form a larger but logically complete entity. This
concept also applies to the collection of Windows 2000 domains into one larger, con-
tiguous namespace entity known as a tree.

Trees

Chapter 3 Windows 2000 Domains and Active Directory Services | 39

Trees—sometimes called domain trees—are collections of Windows 2000 domains that
form a contiguous namespace. A domain tree is formed as soon as a child domain is
created and associated with a given root domain. For a technical definition, a tree is a
contiguous DNS naming hierarchy; for a conceptual figure, a domain tree looks like an
inverted tree (with the root domain at the top), with the branches (child domains) sprout-
ing out below.

The creation of a domain tree enables organizations to create a logical structure of domains
within their organization and to have that structure comply with and mirror the DNS
namespace. For example, David Iseminger and Company could have a DNS domain called
micromingers.iseminger.com and could have various logical divisions within the com-
pany, such as sales, accounting, manufacturing, and so on. In such a situation, the domain
tree might look like the domain tree in Figure 3-1.

micromingers.
iseminger.com

AGDA

corp. micromingers. products.micromingers.
iseminger.com iseminger.com

XA

mfg.corp. sales.corp.
micromingers. accounting.corp. micromingers.
iseminger.com micromingers. iseminger.com

isemmger.c}\(B/\

europe.sales. na.sales.corp.
corp.microminger. micromingers.
iseminger.com iseminger.com

Figure 3-1. The domain tree for micromingers.iseminger.com.

Note By now you've noticed that iseminger.com is being used all over the place.
This isn’t vanity on the author’s part; it's a legal consideration the publisher in-
sists upon. “No domains that are potentially contentious please,” they said. “Only
author-owned domains or really, really dull ones.” The author has an in at
www.iseminger.com, so that domain name has to be used everywhere in this book.
I had more inventive names, but alas, we must please the lawyers.

40

PART | Understanding Active Directory Services

This organization of logical divisions within the company works great for companies that
have one DNS domain, but the issue of companies that might have more than one “com-
pany” in their larger enterprise must be addressed. That issue is addressed through the
use of Windows 2000 forests.

Forests

Some organizations might have multiple root domains, such as iseminger.com and
microsoft.com, yet the organization itself is a single entity (such as the fictional David
Iseminger and Company in this example). In such cases, these multiple domain trees can
form a noncontiguous namespace called a forest. A forest is one or more contiguous
domain tree hierarchies that form a given enterprise. Logically, this also means that an
organization that has only a single domain in its domain tree is also considered a forest.
This distinction becomes more important later in this chapter when we discuss the way
that Active Directory interacts with Windows 2000 domains and forests.

The forest model enables organizations that don’t form a contiguous namespace to
maintain organization-wide continuity in their aggregated domain structure. For example,
if David Iseminger and Company—iseminger.com—were able to scrape together enough
pennies to purchase another company called Microsoft that had its own directory struc-
ture, the domain structures of the two entities could be combined into a forest. There
are three main advantages of having a single forest. First, trust relationships are more easily
managed (enabling users in one domain tree to gain access to resources in the other tree).
Second, the Global Catalog incorporates object information for the entire forest, which
makes searches of the entire enterprise possible. Third, the Active Directory schema
applies to the entire forest. (See Chapter 10 for technical information about the schema.)
Figure 3-2 illustrates the combining of the iseminger.com and Microsoft domain structures,
with a line between their root domains indicating the Kerberos trust that exists between
them and establishes the forest. (The Kerberos protocol is explained in detail in Chapter 8.)

Although a forest can comprise multiple domain trees, it represents one enterprise. The
creation of the forest enables all member domains to share information (through the
availability of the Global Catalog). You might be wondering how domain trees within a
forest establish relationships that enable the entire enterprise (represented by the forest)
to function as a unit. Good question; the answer is best provided by an explanation of
trust relationships.

Trust Relationships

Perhaps the most important difference between Windows NT 4 domains and Windows
2000 domains is the application and configuration of trust relationships between domains
in the same organization. Rather than establishing a mesh of one-way trusts (as in
Windows NT 4), Windows 2000 implements transitive trusts that flow up and down the
(new) domain tree structure. This model simplifies Windows network administration, as
I will demonstrate by providing a numerical example. The following two equations (bear
with me—the equations are more for illustration than pain-inducing memorization)

Chapter 3 Windows 2000 Domains and Active Directory Services | 41

corp. microsoft.com products.
microsoft.com

iseminger.com
mfg.corp. sales.corp.
microsoft.com accounting.corp. microsoft.com
microsoft.com

corp.iseminger.com products.
iseminger.com

europe.sales. na.sales.corp.
corp.microsoft.com microsoft.com

micromingers. vidcards.
mfg.corp. products. products.
iseminger.com iseminger.com iseminger.com
seattle.mfg.corp. wichita.mfg.corp.
iseminger.com iseminger.com

Figure 3-2. The combining of domain trees for iseminger.com and Microsoft.

exemplify the management overhead introduced with each approach; the equations rep-
resent the number of trust relationships required by each domain trust approach, where
n represents the number of domains:

Windows NT 4 domains—(n * (1—1))

Windows 2000 domains—(»—1)
Just for illustration purposes, let’s consider a network that has a handful of domains and
see how the approaches to domain models compare. (Assuming that five domains fit in
a given hand, # = 5 in the following formulas.)

Windows NT 4 domains: (5 = (5-1)) = 20 trust relationships

Windows 2000 domains: (5—-1) = 4 trust relationships

That's a significant difference in the number of trust relationships that must be managed,
but that reduction is not even the most compelling strength of the new approach to

42 | PART1 Understanding Active Directory Services

domains. With Windows 2000 domains, the trusts are created and implemented by default.
If the administrator does nothing but install the domain controllers, trusts are already in
place. This automatic creation of trust relationships is tied to the fact that Windows 2000
domains (unlike Windows NT 4 domains) are hierarchically created; that is, there is a root
domain and child domains within a given domain tree, and nothing else. That enables
Windows 2000 to automatically know which domains are included in a given domain tree,
and when trust relationships are established between root domains, to automatically know
which domain trees are included in the forest.

In contrast, administrators had to create (and subsequently manage) trust relationships
between Windows NT domains, and they had to remember which way the trust relation-
ships flowed (and how that affected user rights in either domain). The difference is sig-
nificant, the management overhead is sliced to a fraction, and the implementation of such
trusts is more intuitive—all due to the new trust model and the hierarchical approach to -
domains and domain trees.

In Windows 2000, there are three types of trust relationships, each of which fills a cer-
tain need within the domain structure. The trust relationships available to Windows 2000
domains are the following:

e Transitive trusts

e One-way trusts
e Cross-link trusts

Transitive Trusts

Transitive trusts establish a trust relationship between two domains that is able to flow
through to other domains such that if domain A trusts domain B, and domain B trusts
domain C, domain A inherently trusts domain C and vice versa, as Figure 3-3 illustrates.

YRR

o* : hE
R domain B "%

-

A

Trust relationships
pass through
trusting domains
domain A With transitive trusts domain C

Figure 3-3. Transitive trust among three domains.

Transitive trusts greatly reduce the administrative overhead associated with the mainte-
nance of trust relationships between domains because there is no longer a mesh of one-
way nontransitive trusts to manage. In Windows 2000, transitive trust relationships
between parent and child domains are automatically established whenever new domains

Chapter 3 Windows 2000 Domains and Active Directory Services | 43

are created in the domain tree. Transitive trusts are limited to Windows 2000 domains
and to domains within the same domain tree or forest; you cannot create a transitive trust
relationship with downlevel (Windows NT 4 and earlier) domains, and you cannot cre-
ate a transitive trust between two Windows 2000 domains that reside in different forests.

One-Way Trusts

One-way trusts are not transitive, so they define a trust relationship between only the
involved domains, and they are not bidirectional. You can, however, create two sepa-
rate one-way trust relationships (one in either direction) to create a two-way trust rela-
tionship, just as you would in a purely Windows NT 4 environment. Note, however, that
even such reciprocating one-way trusts do not equate to a transitive trust; the trust rela-
tionship in one-way trusts is valid between only the two domains involved. One-way trusts
in Windows 2000 are just the same as one-way trusts in Windows NT 4 and are used in
a handfui of situauons. A coupie Of die wust LwuLLL situations aic dosciibed below.

First, one-way trusts are often used when new trust relationships must be established with
downlevel domains, such as Windows NT 4 domains. Since downlevel domains cannot
participate in Windows 2000 transitive trust environments (such as trees and forests), one-
way trusts must be established to enable trust relationships to occur between a Windows
2000 domain and a downlevel Windows NT domain.

Note This one-way trust situation doesn’t apply to the migration process (such
as an upgrade of an existing Windows NT 4 domain model to the Windows 2000
domain/tree/forest model). Throughout the course of a migration from Windows
NT 4 to Windows 2000, trust relationships that you have established are honored
as the migration process moves toward completion, until the time when all
domains are Windows 2000 and the transitive trust environment is established.
There’s a whole lot more detail devoted to the migration process in Chapter 12,
“Migrating to Active Directory Services.”

Second, one-way trusts can be used if a trust relationship must be established between
domains that are not in the same Windows 2000 forest. You can use one-way trust rela-
tionships between domains in different Windows 2000 forests to isolate the trust relation-
ship to the domain with which the relationship is created and maintained, rather than
creating a trust relationship that affects the entire forest. Let me clarify with an example.

Imagine your organization has a manufacturing division and a sales division. The manu-
facturing division wants to share some of its process information (stored on servers that
reside in its Windows 2000 domain) with a standards body. The sales division, however,
wants to keep the sensitive sales and marketing information that it stores on servers in
its domain private from the standards body. (Perhaps its sales are so good that the stan-
dards body wants to thwart them by crying, “Monopoly!”) Using a one-way trust keeps
the sales information safe. To provide the necessary access to the standards body, you
establish a one-way trust between the manufacturing domain and the standards body’s

44

PART | Understanding Active Directory Services

domain, and since one-way trusts aren’t transitive, the trust relationship is established only
between the two participating domains. Also, since the trusting domain is the manufac-
turing domain, none of the resources in the standards body’s domain would be available
to users in the manufacturing domain.

Of course, in either of the one-way trust scenarios outlined here, you could create a two-
way trust out of two separate one-way trust relationships.

Cross-Link Trusts

Cross-link trusts are used to increase performance. With cross-link trusts, a virtual trust-
verification bridge is created within the tree or forest hierarchy, enabling faster trust
relationship confirmations (or denials) to be achieved. That’s good for a short version of
the explanation, but to really understand how and why cross-link trusts are used, you
first need to understand how interdomain authentications are handled in Windows 2000.

When a Windows 2000 domain needs to authenticate a user (or to otherwise verify an
authentication request) to a resource that does not reside in its own domain, it does so
in a similar fashion to DNS queries. Windows 2000 first determines whether the resource
is located in the domain in which the request is being made. If the resource is not located
in the local domain, the domain controller (specifically, the Key Distribution Center [KDC]
on the domain controller) passes the client a referral to a domain controller in the next
domain in the hierarchy (up or down, as appropriate). The next domain controller con-
tinues with this “local resource” check until the domain in which the resource resides is
reached. (This referral process is explained in detail in Chapter 8.)

While this “walking of the domain tree” functions just fine, that virtual walking up
through the domain hierarchy takes time, and taking time impacts query response
performance. To put this into terms that are perhaps more readily understandable,
consider the following crisis:

You’re at an airport whose two terminal wings form a V. Terminal A inhabits the left side
of the V, and Terminal B inhabits the right. The gates are numbered sequentially, such
that both Terminal A’s and Terminal B’s Gate 1s are near the base of the V (where the
two terminals are connected) and both Gate 15s are at the far end of the V. All gates
connect to the inside of the V. You've hurried to catch your flight and arrive at Terminal
A Gate 15 (at the far end of the V) only to realize that your flight is actually leaving from
Terminal B. You look out the window and can see your airplane at Terminal B Gate 15,
but in order for you to get to that gate you must walk (OK, run) all the way back up
Terminal A to the base of the V and then jog (by now, you're tired) all the way down
Terminal B to get to its Gate 15—just in time to watch your flight leave without you. As
you sit in the waiting area, biding your time for the two hours until the next flight becomes
available and staring across the V to Terminal A, from which you thought your flight was
departing, you come up with a great idea: build a skybridge between the ends of the
terminals so that passengers such as yourself can quickly get from Terminal A Gate 15
to Terminal B Gate 15. Does this make sense? It makes sense only if there’s lots of traffic
going between each terminal’s Gate 15.

Chapter 3 Windows 2000 Domains and Active Directory Services | 45

Similarly, cross-link trusts can serve as an authentication bridge between domains that
are logically distant from each other in a forest or tree hierarchy and have a significant
amount of authentication traffic. What amounts to lots of authentication traffic? Consider
two branches of a Windows 2000 domain tree. The first branch is made up of domains
A, B, C, and D. A is the parent of B, B is the parent of C, and C is the parent of D. The
second branch is made up of domains A, M, N, and P. A is the parent of M, M is the parent
of N, and N is the parent of P. That’s a bit convoluted, so check out Figure 3-4 for an
illustrated representation of this structure.

domain A

domain B domain M

domain C domain N

domain D domain P

Figure 3-4. A sample domain hierarchy.

Now imagine that you have users in domain D who regularly use resources that, for
whatever reason, reside in domain P. When a user in domain D wants to use resources
in domain P, Windows 2000 resolves the request by walking a referral path that climbs
back to the root of the tree (domain A in this case) and then walks back down the appro-
priate branch of the domain tree until it reaches domain P. If these authentications are
ongoing, this approach creates a significant amount of traffic. A better approach is to create
a cross-link trust between domains D and P, which enables authentications between the
domains to occur without having to walk the domain tree back to the root (or the base
domain at which the tree branches split). The result is better performance in terms of
authentication.

Admini_strative Boundaries

The reduction of the number of trust relationships that must be managed is a great
improvement in Windows 2000. However, another improvement was greatly needed in
Windows 2000, and that had to do with administrative boundaries. In Windows NT 4 and

46 | PART1 Understanding Active Directory Services

earlier, administrators who needed the capability to administer subsets of users or groups
within a given Windows NT domain had to be given sweeping, domain-wide adminis-
trative permissions. Even if their administrative rights shouldn’t have spanned the entire
domain, the rights they needed required that such sweeping rights be granted. In Windows
2000, that has changed with the advent of organizational units (OUs).

Domains

The Windows 2000 domain is an administrative boundary. Administrative rights do not
flow across domain boundaries, nor do they flow down through a Windows 2000 domain
tree. For example, if you have a domain tree with domains A, B, and C, where A is the
parent domain of B and B is the parent domain of C, then users with administrative rights
in domain A do not have administrative rights in B, nor do users with administrative
rights in domain B have administrative rights in domain C. To obtain administrative rights
in a given domain, a higher authority must grant them. This does not mean, however,
that an administrator cannot have administrative rights in multiple domains; it simply
means that all rights must be explicitly defined.

Organizational Units

Organizational units enable administrators to create administrative boundaries within a
domain. With OUs, administrators can delegate administrative tasks to subordinate
administrators without granting them sweeping administrative privileges throughout the
domain. Let’s clarify with an example of why OUs are so useful. Say the sales force within
your organization has its own network administrators and resources, such as printers and
servers, and funds all these network resources with its own budget. The network admin-
istrators from the sales force want control over the sales force resources, policies, and
other administrative elements within the sales force group. However, the sales force is
part of the corporate domain. If this were a Windows NT 4 network, the administrators
of the sales force unit would have to be added to the Domain Administrators group to
get the administrative privileges they need to administer the sales force unit. Such mem-
bership in the Domain Administrators group gives the sales force administrators admin-
istrative control over the entire corporate domain (not just the sales force unit). Such
sweeping administrative control isn’t appropriate, but it’s the only way to provide the sales
force administrators with administrative control over the sales force’s resources and
policies. With Windows 2000 and the advent of OUs, that’s changed. In a Windows 2000
network, the supervising network administrators can create OUs, including a sales force
OU, within the domain structure and thereby establish new and more limited adminis-
trative boundaries. The solution could go something like this: Create an OU for the sales
force unit, and give the sales force administrators full administrative privileges only for
the sales force OU and not for any other area of the corporate domain. With the crea-
tion of OUs, membership in the Domain Administrators group (which grants administrative
privilege for the entire domain, including its OUs) can be restricted to only those admin-
istrators who have administrative responsibilities that cover the entire domain. This results
in a more secure and better-run network.

Chapter 3 Windows 2000 Domains and Active Directory Services | 47

What if your organization needs to have OUs within OUs? Can you nest OUs? The answer
to that question is yes, but performance becomes an issue after you go deeper than about
15 OUs. There are other issues you should consider when deciding whether to nest OUs
(and whether to use OUs at alD), and I'll discuss them in detail in Chapter 7, “Planning
an Active Directory Services Deployment.”

Active Directory Services Interaction

Where does Active Directory services fit into all of this? Why is it absolutely necessary to
fully understand domains and domain structure in order to understand the planning
requirements of Active Directory services? Because Active Directory is inextricably tied
to the domain structure of your Windows 2000 deployment.

Emulating the Domain Hierarchy

As we already know, Windows 2000 domains form a domain hierarchy and one or more
domain hierarchies can form a forest. The directory, as a complete unit, is simply the
collection of all objects in the forest. To ensure that Active Directory services would scale
to millions of objects in a single directory, however, there had to be a strategy for “breaking
up” the directory into parts because, simply put, one mammoth unpartitioned directory
would not scale well. The solution was to partition the directory.

The Active Directory partitioning schema emulates the Windows 2000 domain hierarchy.
The unit of partition for Active Directory services, then, is the domain.

This emulation of the domain hierarchy achieves a number of goals.

e Scalability is ensured.
e Performance is maximized.

e Replication overhead is minimized.

The following section explains in detail how the Active Directory partitioning schema
emulates the domain hierarchy, why scalability is ensured and performance is maximized,
and how this emulation of the domain structure minimizes replication overhead.

Cataloging the Domain (the Directory Partition)

The primary goal of Active Directory services is to create a catalog of objects that reside
in the forest. Of course, the catalog wouldn’t be too terribly useful if it were so big that
it became slow and clumsy. For example, imagine all the friends you could take on a
skiing trip if only you had a school bus—but try parallel parking that bus, climbing a
mountain pass with that bus, or parking it in your garage. A better approach would be
to have a convoy of cars, each of which could carry skiers who lived near each other.
You would then avoid the painfully slow climb up the pass, and you could find parking
places scattered about the parking lot. Best of all, each car could service the getting-home

48 | PART ! Understanding Active Directory Services

requirements of a few skiers, thereby getting everyone home faster than if they were
loaded in the single bus."

To take the bus comparison a bit further, imagine the problem you’d run into if you made
more ski-frenzied friends. If there were too many, not all of them would fit on the bus.
‘In such a situation, you would have to get an entirely new, bigger bus, which would be
even more cumbersome. And as more skiers are invited, the time it takes to get every-
one home after the skiing trip gets longer and longer. In comparison, when cars are used,
you simply have to add more cars to the convoy as you invite more friends; the result is
essentially no additional inconvenience for any existing skiers, nor any additional tran-
sit time when getting skiers home. Of course, you must have a road that can accommo-
date more cars.

Active Directory services helps you avoid getting on the overloaded bus. Instead, the
directory is broken into pieces—just like the convoy of cars—and the benefits of such an
approach are similar to the benefits of using a convoy, but much farther reaching.

Partitioning the Directory

To help you picture how Active Directory services gets partitioned within the forest, I'll
provide an example of a simple forest. Figure 3-5 illustrates the sample forest and its single
domain tree.

The forest consists of all of the domains illustrated in Figure 3-5. The entire directory
consists of all the objects contained in all the domains in the forest. However, to increase
scalability and performance, you must break the directory into multiple pieces, the
aggregation of which creates the complete directory.

domain A

/X

domain B domain M

domain C domain N

domain D domain P

Figure 3-5. The A, B, C, D, M, N, and P domain bierarchy.

Chapter 3 Windows 2000 Domains and Active Directory Services | 49

Remember that in Windows 2000 the unit of partitioning is the domain. So, when we take
another look at our domain hierarchy example, we can compare the logical domain hier-
archy to the way that the directory is partitioned. Figure 3-6 compares the domain

hierarchy to the directory catalog. As you can see, the directory is simply the aggrega-
tion of each domain’s partition.

The domain hlerarchy...

domain A

‘e
~
o

domain B domain M ‘e

domain C domain N

“

domain D domain P .

with its partitions... _

'0
.0
‘0
v"
‘.’
combine to create the complete directory. ‘."
o“.‘
c A N Le*
/D\ B M P
(The directory)

Figure 3-6. The domain bierarchy/directory partition schema relationship.

50 | PART ! Understanding Active Directory Services

Remember that noncontiguous trees in the same forest still form one directory. Don’t
confuse trees with forests, and don't confuse the boundary of the enterprise (the forest)
with the contiguous nature of a given domain tree within the forest (the tree). Most
organizations, hopefully, will be able to plan and deploy a single tree—equating to a single
namespace—that constitutes their entire forest. That’s the easiest deployment to envision,
manage, and maintain. But deployments aren’t always that neat, and acquisitions hap-
pen, so you need to remember the following logical equation:

one forest = one schema = one directory catalog

Also realize that a single domain still constitutes a forest. If you're fortunate enough to
be able to sensibly design your Windows 2000 domain structure as a single domain, realize
that your single domain constitutes the forest. What does that mean? It means that the
entire directory catalog will be in one unpartitioned unit. (The domain is the unit of
partitioning—one domain = one partition.)

Perhaps one of the most important advantages of partitioning the directory catalog has
to do with the catalog’s scalability, specifically in terms of the effect of adding a domain
to the domain tree or even adding another entire domain tree to the forest. Adding a
domain or a domain tree does not add administrative or replication burden to the exist-
ing domain hierarchy and administrative structure. Because of the partitioning of the
directory, and because each domain controller in any given domain contains only direc-
tory catalog information particular to its domain, when a domain or even a domain tree
is added to the forest, network performance and scalability are not affected. When com-
bined with the new transitive trust relationships established among domains in the same
forest, this partitioning of directory catalog information makes scaling to very large en-
terprise deployments with Windows 2000 and Active Directory services possible.

Getting Information About Objects in Another Domain

With all this talk about partitioning the directory catalog, you might be wondering how
information from one domain partition gets accessed by users in another domain. After
all, if the domain controllers in one domain contain information about objects only in
their domain, what happens when users need to get information about objects that reside
in another domain? Good question, and fortunately the answer is straightforward: Active
Directory services uses DNS lookups and queries to resolve queries, just like the Interneét.

Although Active Directory services and Windows 2000 use DNS for their lookup service,
they both use a special service (SRV) resource record (RR) entry that designates a given
DNS entry as a domain controller. Domain controllers, in turn, determine whether they
are able to resolve a query, such as would be the case if the query were about an object
in their local domain. If they cannot, the request is referred to a domain controller that
either can resolve the request itself or can point the domain controller to the next logi-
cal server to which the request should be made. Eventually, the domain controller that
can resolve the query is found (or is definitely not found), at which time the client is
referred to that server to continue with the query process.

Chapter 3 Windows 2000 Domains and Active Directory Services | 51

Distributing the Directory

The next points to make clear are how the partitioned directory is distributed and how
it interacts with the Windows 2000 domain model. In Windows 2000, each domain con-
troller in a given domain contains a copy of the directory partition for its domain, enabling
each domain controller to locally resolve queries for information about objects in the
domain to which it belongs.’

This approach makes sense because in many cases users (or other entities that make use
of Active Directory services) make more use of domain-local network resources than they
make of resources located in a remote domain. By distributing a copy of the domain
partition to each domain controller in the domain—and by making each of those copies
readable and writable—the following enhancements and improvements are realized:

e Perfarmance is increased becanse anv domain controller can perform local
searches for objects found in its domain.

e Scalability is increased because each domain controller contains a readable and
- writable master copy of the directory catalog partition.

¢ Scalability is also increased because no single machine is burdened with per-
forming all the updates for the directory.

This approach is especially useful when remote sites or branch offices are part of the
network topology. By putting a domain controller (which, by definition, contains a copy
of the directory catalog partition) at a remote site, user queries can be resolved locally.
This means that the use of perhaps expensive or limited wide area network (WAN)
resources can be minimized. The benefit of placing a domain controller at a remote site
or branch campus isn’t confined to WAN resource savings because, of course, the per-
formance of queries will also be improved by having the domain controller (and its
directory catalog partition) available on the remote site’s local area network (LAN).

Replicating the Directory

Since each domain controller contains a writable master copy of the Active Directory
partition for its domain, changes can be made to a domain’s partition on any available
domain controller. When changes are made on one domain controller, there must be a
way to get change updates replicated to other domain controllers. This process of dis-
tributing updated information to appropriate domain controllers is called replication.

In Windows 2000, the unit of replication is the domain partition. However, only changes
at the attribute level of a given object are replicated to other domain controllers, rather
than entire objects. The result is a significant savings in replication traffic, and any time
operationally required network traffic can be reduced, the better the solution.

Update priority is determined through the use of Update Sequence Numbers (USNs).
Rather than comparing the values for object attributes, Active Directory services uses a
running number—the USN—to determine whether replication is needed, and if so, which
object attribute values need to be transmitted. For more information on USNs, see the
“Replication” section in Chapter 4, “Active Directory Services Scalability Architecture.” This

52 | PART ! Understanding Active Directory Services

implementation of USNs is another advantage of having the domain as the unit of par-
titioning; it limits replication traffic (which is already limited to attribute changes) to the
confines of the domain in which the changes were made.

Cataloging the Enterprise (the Global Catalog)

Finally, there must be some way for Active Directory services to quickly respond to user
queries. Although many user queries pertain to the domain in which the users belong,
many others are not domain specific, but rather, are made throughout the enterprise. For
example, e-mail name queries. A truly enterprise-ready and performance-minded directory
service must service such frequent and global queries without generating undue network
traffic and without having to jump through multiple query referrals. The answer is a
directory catalog that contains a subset of attributes for every object in the enterprise. In
effect, it must be a catalog of object attributes that are globally interesting. For Active
Directory services, that answer is the Global Catalog. The Global Catalog consists of
selected attributes from every object in the enterprise, which means that selected attributes
from every object in the forest are available for domain-local querying. Just as Microsoft
has created a default set of objects in the schema, default attributes from each schema
object are tagged for inclusion in the Global Catalog. (You might never need to modify
these—but you can.) Most objects have approximately 15 attributes, and approximately
seven of those attributes are tagged for inclusion in the Global Catalog.

The Global Catalog sits on selected domain controllers within each domain and services
queries that are specific to global searches. When a user submits a global query based
on an object’s attribute and that object’s attribute is tagged for inclusion in the Global
Catalog, the query can be resolved by a domain controller in the local domain that is
configured to keep a copy of the Global Catalog. Because there is at least one domain
controller housing the Global Catalog in each domain, queries directed at global searches
can be performed and resolved quickly. Attributes included in the Global Catalog by
default were chosen because they don’t change very often, and that’s the way it should
be. Using static information in the Global Catalog minimizes replication traffic; after all,
when an object’s attribute that's tagged for inclusion in the Global Catalog changes, that
change must be replicated to all Global Catalog domain controllers across the entire
enterprise. Apart from the minimizing of replication traffic, static information in general
is more appropriate for global searches.

Conclusions

Windows 2000 domains and Active Directory services are two sides of the same coin;
domains are administrative boundaries, as well as partition and replication boundaries
for Active Directory services. Just as the Windows 2000 forest is the all-inclusive organi-
zational structure for Windows 2000 domains, the Windows 2000 forest is the
all-object-inclusive structure for Active Directory services, as well as the framework within
which all objects are defined by a single schema. In short, the domain structure is the

Chapter 3 Windows 2000 Domains and Active Directory Services | 53

Active Directory services structure. If you don’t understand Windows 2000 domains, you
can’t understand how Active Directory services operates—which is why domains have
received as much attention in this chapter and this part of the book as they have.

Scalability is achieved in Windows 2000 because domains no longer require exhaustive
two-way trust relationships; now trusts are implicitly created and then augmented when
a Windows 2000 domain must interact with downlevel domains or when trusts must be
established with forest-external domains. Scalability is also achieved because the domain-
level partitioning schema of Active Directory services minimizes the impact of adding
domains—so much so that Active Directory services can scale to networks as large as the
Internet.

Despite the pattitioning of Active Directory services and the Windows 2000 domain model,
the roheciveness of 2 Windows 2000 networking environment is ensured by virtue of the
Global Catalog. By keeping selected object attributes in a catalog that spans the entire
enterprise, often-searched object attributes can be readily accessible, regardless of where
the query originates or where the target object resides in the organization.

Of course, keeping all the Windows 2000 domain terminology straight can be difficult,
as can getting a clear understanding of why such organizational and hierarchical contain-
ers—such as forests, domains, and OUs—were created in the first place. It might help if
you consider the following loose associations between Windows 2000 domain terms and
how a large organization might apply the structure to its environment:

¢ Enterprise boundaries—forests
e Corporate boundaries—trees
¢ Division boundaries—domains

¢ Departmental boundaries—organizational units

But what if your organization doesn’t look like this? What if you aren’t an enterprise or
a corporation, or you don’t have departmental boundaries? If any of those responses reflect
your thoughts, don’t worry—these loose associations are only guidelines to give you an
idea of how forests, trees, domains, and OUs can meet the requirements and requests
of large and small organizations alike. Maybe you don’t need OUs, or maybe you need
only one domain (which you determine after reading Chapter 7, “Planning an Active
Directory Services Deployment,” right?). Regardless, you should keep one thing in mind
throughout the planning, deployment, and management processes.

Keep it simple.

Domains, directories, and networking are complex enough on their own without the
burden of an overly complex deployment plan. Can your network work with one domain?
Can your network work with only a few OUs? If so, great—then use only one domain
and a few OUs. You'll hear this call for simplicity throughout Part II of this book because
simplicity works: keep things simple, and they’ll be easier to manage, easier to admin-
ister, and easier for your users to use. And after all, that's the goal, isn't it?

55

Chapier £
Active Directory Services
Scalability Architecture

Scalability is one of the primary goals of Microsoft Windows 2000, and at the center of
that goal 1s ensuring that the nrormauon repository for windows 2000—Acuve Diieciory
services—can scale to meet today’s enterprise computing requirements. To understand
the architecture of Active Directory services and how its central role in the operating sys-
tem requires that it scale gracefully with the operating system is to understand the op-
erational framework of Windows 2000.

The Importance of Scalability

As discussed in Chapter 2, Active Directory services must meet specific directory service
requirements in order to be a viable enterprise-ready directory service. These require-
ments are ‘

e Centralization

e Scalability

e Ease of administration

* Security

e Integration with applications

e Standardization and openness
The explanation of how Active Directory services meets these requirements is split into
two chapters: this chapter and the next. In this chapter, we will examine in detail the ar-
chitectural elements of Active Directory services that enable it to meet what is arguably
the most complex requirement for an enterprise-ready directory service: scalability. Since
achieving scalability sets the foundation for meeting many of the other requirements,

scalability is explained first (and individually) in this chapter, and the achievement of the
remaining requirements is explained in the following chapter.

Active Directory services is capable of scaling from small implementations, such as single-
server or single-domain deployments, to enterprise-sized implementations as large as the

56

PART | Understanding Active Directory Services

Internet. The reason Active Directory scales so well to both small and very large deploy-
ments is rooted in a handful of architectural design elements. These elements are

e Partitioning approach

e Catalog service implementation

* Replication scheme

Partitioning Approach

Active Directory services scales well because its approach to partitioning is designed to
enable it to hold millions of objects. Active Directory bases its partitions on Windows 2000
domains so that any given Windows 2000 domain equates to one Active Directory par-
tition. If an organization consists of three Windows 2000 domains, the organization also
has three Active Directory partitions. Since more Windows 2000 domains can be added
as the organization grows (and since each domain’s Active Directory partition can hold
up to 1 million objects), Active Directory services can scale in step with the growth needs
of the organization.

But why is partitioning important? Why is it that partitioning in this way helps Active
Directory achieve such scalability? To answer these questions, we must take a step back,
look at the overall information needs of a given network system, and explain how Active
Directory service’s partitioning approach meets those needs.

Let’s use an example with some easy numbers. Let’s say that the fictional midsized
Iseminger Corporation has a network environment that consists of 10 DNS domains, and
it's using some random and fictional operating system that has a directory service that
isn’t partitioned at all. The primary domain is called iseminger.com, and the rest of the do-
mains are child domains of that domain, all of which are in the same tree. In this example,
the full body of information that Iseminger Corporation uses is the information contained
in all 10 domains. However, most of the information that individual users and admin-
istrators use within the iseminger domain resides in their own domain. For example,
users in the midtower.cases.iseminger.com domain do most of their searches on infor-
mation that resides in the midtower.cases.iseminger.com domain. They also store most
of their files in that domain, and most of the printers they access are in that domain.

The total amount of information in all 10 of iseminger's domains is vast and scattered
throughout the organization, and it somehow needs to be available in a coherent man-
ner. With the company’s fictional operating system and its mammoth directory, no one
can get information very quickly, and adding even a single domain increases the size of
every directory-hosting server’s load by 10 percent. However, by partitioning the infor-
mation, an intelligent approach can be taken to managing iseminger’s vast amount of
information, and as a result, the amount of information that can be handled efficiently is
greatly increased. If iseminger moved to Windows 2000 'and Active Directory services,

Chapter 4 Active Directory Services Scalability Architecture | 57

its 10 domains could immediately be partitioned according to its Windows 2000 domains.
Figure 4-1 depicts a domain controller search both with and without partitioning.

Information specific
to domain in
iseminger.com

searches must go
through an entire
mammoth directory.

Domain controller search
without partitioning

Searching

With partitioning,
searches contend
with less data, and
can therefore be

. resolved more
Domain controller search quickly.

with partitioning

Figure 4-1. Domain controller searches with and without partitioning.

Since Active Directory services’ unit of partitioning (or slicing) is the Windows 2000 do-
main, scalability is achieved on a couple of levels. These efficiencies have a lot to do with
why Windows 2000 partitions Active Directory based on domains.

First, any given Active Directory partition must contain only part of a network’s body of
information—in the case of iseminger.com, only one-tenth of the network’s full body of
information. Limiting the number of objects that can exist in one partition or domain
(if you call 1 million objects limiting) ensures superior performance, and enabling

TR
T

58

PART | Understanding Active Directory Services

multiple domains to exist in a given organization ensures Active Directory can scale
to the largest of organizations. Partitioning in this way makes Active Directory services
more efficient and better performing, especially since most users’ Active Directory
queries are searches for information in their own domain.

Second, when growth occurs and a domain must be added to an organization’s network,
the new domain’s Active Directory partition will not have a large effect on Active Direc-
tory partitions in other domains. By contrast, consider what would happen if a domain
were added to a network with an unpartitioned directory service—let’s use the Iseminger
network as an example again. The result of adding a domain to that network would be
a 10 percent increase (10 domains’ information plus 1) in an already vast amount of
information that would have to be held on each directory-hosting server—that’s not a
good, scalable approach. Using the Active Directory approach to partitioning, the effect
of adding new domains to the overall enterprise deployment is minimized.

Note While each Windows 2000 domain equates to one Active Directory partition,
all domain controllers in a given domain contain a readable and writable copy of
the domain’s Active Directory partition.

After this discussion of the Active Directory partitioning approach, you might be won-
dering how users and administrators find objects (such as information about printers, files,
or people) stored in partitions other than their own. Clearly, some mechanism must be
in place that enables users to access information from Active Directory partitions located
throughout the enterprise. Such access is provided by the Active Directory catalog service,
the Global Catalog.

Catalog Services (the Global Catalog)

To provide scalability, a directory service must not only be able to partition the infor-
mation it stores, but it must also provide a mechanism that enables all the partitions to
act as a single entity. Although these two requirements—enterprise-wide information avail-
ability and information partitioning—might seem mutually exclusive, they can both be
met if a directory service provides a catalog service. The catalog service provided by Active
Directory services is called the Global Catalog.

Briefly, a catalog service is an information store that contains selective information about
every object in the entire directory and services queries specifically targeted for an “entire
enterprise” search. To understand how the Global Catalog functions, you must first
understand how information is stored in the Active Directory information store (includ-
ing the Global Catalog). What follows are explanations (or definitions, if you care to
consider them as such) of four terms—namespace, object, naming context, and
schema—that you must be familiar with to understand how information is stored in the
Active Directory database.

Chapter 4 Active Directory Services Scalability Architecture | 59

Namespace

The concept of a namespace is central to any directory service, including Active Directory
services. Despite the sometimes vague and foggy impressions that get conjured when
discussing the definition of a namespace, the definition is actually quite straightforward.
A namespace is simply a defined space in which a given name can be resolved (matched)
to some object. By defined space, I mean some definable, bounded area such as a cor-
poration, a Windows 2000 domain hierarchy, or the city of Seattle. To use a simple but
effective analogy, compare a namespace to an extended family: You generally have a
couple of parents, some kids, a few pets, some grandparents and cousins, and perhaps
some houseplants. In the extended family namespace of Olson, for example, the name
Pokey (of the fourth-generation Olsons) can be resolved to the family’s domesticated chee-
tah. The name, then, can be uniquely resolved to a certain object. Similarly, in the Windows
2000 domain Namespace Of ISCIIHLEr.CoMt, LIS LAE L1 iricr §.C0ip.isCiniinglincTii can BT
resolved to the printer on floor 776 of the Iseminger corporate campus. That name, then,
can be uniquely resolved to a certain object in the corp.iseminger.com domain hierar-
chy (that is, the iseminger.com namespace).

Since a domain hierarchy equates to a namespace, many Active Directory implementations
will also equate to a namespace. However, recognize that forests can consist of more than
one namespace. That is, forests can consist of more than one hierarchical Domain Name
System (DNS) domain tree, as would be the case if microsoft.com and msn.com were part
of the same forest.

Object

An object is some item that can be defined by a set of attributes. Each object type (a class
of object) has particular attributes that differentiate that object type from other object types
in a given namespace. For example, you can have a feline object (an instance of the feline
class) that has certain attributes, such as a name (Pokey), color (spotted), and species
(cheetah). A special kind of Active Directory object, a container, is similar to an object
in that it has attributes, but it doesn’t refer to an item; rather, a container contains ob-
jects and other containers. Containers are somewhat difficult to compare to real life
because they don’t represent a concrete item (like a cheetah). Rather, a container is
generally characterized (if not defined) by its contents; you might call your home a con-
tainer because it generally contains your family, your pets, some houseplants, and per-
haps a mortgage. The home container is defined not by its own attributes (like its
architectural style or its square footage), but rather by its contents. A Windows 2000 domain
is another example of a container.

Objects are identified by a name. In Windows 2000, there are two different kinds of names:
the distinguished name and the relative distinguished name.

60

PART 1 Understanding Active Directory Services

Distinguished Name

The distinguished name identifies the object’s path through the directory service’s entire
hierarchy. The following is an example of a distinguished name for a user object found
in midtower.cases.iseminger.com:

0=Internet/DC=COM/DC=iseminger/DC=cases/DC=midtower
/CN=0perators/CN=Linell/CN=CynthiaRandall

Don’t worry about memorizing the way this particular naming scheme is structured or
about what the various symbols and conventions represent. This naming scheme is just
to provide you with an example of a distinguished name and to illustrate how distin-
guished names find their way through the directory service hierarchy. For those with
inquiring minds, though, here’s a short legend to the conventions used in this particular
example.

O = Organization
DC = Domain Component
CN = Common Name

Relative Distinguished Name

The relative distinguished name is the part of the distinguished name that is actually an
attribute of the object. In the midtower.cases.iseminger.com example, the relative distin-
guished name is the following:

CN=CynthiaRandall

The object in question is a user, and the name attribute of this particular user object in the
Iseminger organization is CynthiaRandall; since CynthiaRandall is an attribute of the actual
object, this attribute becomes the relative distinguished name part of the larger distin-
guished name.

To stretch the application of distinguished names and relative distinguished names to our
cheetah example, you might contrive some sort of organizational hierarchy for a family
of which the cheetah named Pokey is a part by designating the following as the pet’s
distinguished name. (Remember, the distinguished name resolves the name through the
entire hierarchy.)

0=01son/DC=Generatioﬁl/DC=Generati0n2/DC=Generation3/CN=Pets
/CN=Pokey

And of course, the relative distinguished name would simply be:
CN=Pokey

Remember that only certain object types can be placed in certain containers. In this
example, you can'’t place a member of the feline class (such as a cheetah) in the Children
container; it breaks all sorts of rules, including genetics. Similarly, you can’t have a member
of a Houseplant object in the Children container either.

Chapter 4 Active Directory Services Scalability Architecture | 61

Naming Context

One or more naming contexts can exist within the scope of a namespace. It's easy to
confuse a naming context with a namespace, so let’s clarify the two right off the bat. A
namespace generally equates to a naming hierarchy; microsoft.com is a namespace, and
it might have a bunch of child domains in its domain tree. All of this would be part of
the microsoft.com namespace. In contrast, each given domain within the microsoft.com
namespace is a distinct naming context—for example, corp.microsoft.com is a naming
context, as is example.microsoft.com.

The important distinction between a namespace and a naming context has to do with
naming objects within a given naming context. In the corp.microsoft.com naming con-
text, there can be only one printer named Printer30 because the context in which Printer30
has been named requires that the name Printer30 resolve to a unique object. It’s some-
what akin (no pun intended) to the dilemma Of having Lwo Drouicls wiils tic saiiid Gist
name: “This is my brother Darryl, and that’s my other brother Darryl.” You'll see this
analogy and another explanation of the naming context in Chapter 6, “Active Directory
Services and DNS.” Rather than interrupting this explanation by sending you there right
now, I am providing an explanation in this chapter as well.

Back to the corp.microsoft.com and example.microsoft.com printer example: we have a
printer called Printer30 in the corp.microsoft.com naming context, and because of that,
we can'’t have another printer named Printer30 in corp.microsoft.com. However, we can
have a printer called Printer30 in example.microsoft.com. Why? Because it’s a different
naming context—just like it’s OK to have two different-family cousins named Darryl, but
not OK to have two same-family brothers named Darryl.

In Active Directory, each partition is a naming context. Since Active Directory partitions
equate to Windows 2000 domains, each Windows 2000 domain is a naming context.

Schema

Active Directory services has a specific set of objects that can exist in a given namespace
(or namespaces, in the case of a multi-namespace forest). To ensure that the universe of
objects that exists in Active Directory fits within this specific set of objects, Active Direc-
tory maintains something called a schema. The schema is essentially an extensive object
model from which any object within Active Directory must be derived. The schema also
dictates the attributes of any given object; it specifies which attributes a given object must
have and which attributes a given object can have. Essentially, the schema is a skeleton
of objects that can exist in an Active Directory deployment.

Active Directory services comes with an extensive schema, but the provided schema might
not include all the objects a given organization wants to include in its directory service.
For example, an organization within iseminger might need to create a new object with
attributes that include color, size, weight, cost, and type, which its sales force, product

62

PART I Understanding Active Directory Services

managers, or customer service technicians can search for in the Global Catalog. For that
reason, the Active Directory schema can be extended (by administrators with appropri-
ate permissions) to meet the needs of users. In a word, the schema is extensible.

The schema, then, is the scaffolding of your directory information tree. What you do once
that scaffolding is erected (or expanded) determines the usefulness of this structure.

How the Global Catalog Operates

Now that we’re familiar with the terms we need to know to understand how Active
Directory services stores information, we can return to the subject we started to explain
in this section: how does the Global Catalog provide access to information about the entire
organization? It does this by being the information service provider that covers all
namespaces in the forest. While the namespaces can be divided into two or more naming
contexts (Windows 2000 domains) for the purposes of the Active Directory partitioning
scheme, the Global Catalog is not bound by individual Windows 2000 domains or indi-
vidual domain trees. Instead, the Global Catalog is a collection of selected object attributes
from every domain (that is, every naming context in the namespace). Notice I specify the
term selected.

All objects in Active Directory services are based on objects available in the schema; there
are no objects in Active Directory that are not defined in the schema. Therefore, you can
take a representative view of the objects in Active Directory by viewing the objects avail-
able in the schema. The creation of the Global Catalog is based on this logic.

The attributes that any Windows 2000 Active Directory deployment includes in (replicates
to) the Global Catalog consist of a base set of default attributes, which means that if an
administrator does nothing to modify those attribute settings, a representative (default)
set of attributes preselected by Microsoft will automatically be included in the Global
Catalog. By providing these default items, Windows 2000 allows administrators to focus
on selecting additional attributes that they believe are necessary to meet the global search
needs of their organizations. Figure 4-2 depicts selected attributes of an object being stored
in the Global Catalog and distributed to various servers.

The Global Catalog is not housed on every domain controller. Administrators determine
which domain controllers should house a copy of the Global Catalog, generally consid-
ering such issues as site location and bandwidth. Administrators can use Active Directory
Schema Manager to designate appropriate domain controllers as Global Catalog holders.

Chapter 4 Active Directory Services Scalability Architecture | 63

Object
Attribute 1:]
Attribute 2. O
Attribute 3: A\ -
Attribute 4: Q Only selected attributes are
Attribute 5: % included in the Global Catalog.
Attribute 6: O
Attribute 7: [] —
Attribute 8: O '\
Attribute 9: A\ —
Attribute 10: () ——
Attribute 11: ¢ \%;E
Attribute 12: O

} ~”

- Giunai
Qtalog

Global Catalog Global Catalog Global Catalog
server in domain A server in site 7 server in domain B

Figure 4-2. The Global Catalog stores only selected attributes.

Global Catalog searches occur in the following circumstances:

e When searches are directed at the root of a domain tree (the “.” that is the
technical parent of the root domain). This is what happens when Windows
2000 user interface searches are used by clients and such searches specify a
global search.

¢ By a direct reference to the Global Catalog port at a Global Catalog replica.

* By explicit reference (as in GC://) to the Global Catalog Active Directory
Service Interfaces (ADSI) provider.

64 | PART1 Understanding Active Directory Services

When one of these Global Catalog searches is initiated, the following occurs:

1. The client queries its designated DNS server for a (Windows 2000) domain
" controller housing the Global Catalog. Domain-controllers that house a copy of
the Global Catalog register a special DNS resource record (RR) (a special kind
of service [SRV] record, to be exact) with DNS servers when they boot up,
 enabling those DNS servers to search their zone files (the DNS information
store) for records that designate the servers as Global Catalog servers.

2. The DNS server searches its zone file and returns the results of its query to the
client. Of course, the response includes an Internet Protocol (IP) address for
any matching Global Catalog domain controllers.

3. The client then makes a Lightweight Directory Access Protocol (LDAP) query
to the IP address returned by DNS (the IP address of the domain controller
housing a copy of the Global Catalog). The Global Catalog query is sent to
port 3268 on the domain controller. (Standard Active Directory queries, which
are directed to the domain-local partition, are submitted to port 389, which is
the standard LDAP port.)

4. The Global Catalog server listens for Global Catalog queries on that port,
processes each query, and then provides the client with an appropriate
response.

In Windows 2000 deployments that use only one domain, each domain controller actually
contains the equivalent of the Global Catalog (if there’s only one Windows 2000 domain,
there is no partitioning of the Active Directory database), and therefore each domain con-
troller responds to Global Catalog requests.

Replication

Replication is the process of copying (replicating) parts of an information repository to
other locations. Replication enables distributed information stores like Active Directory
services to remain synchronized, an important factor in an information repository’s ca-
pability to scale. In a Windows 2000 network, replication ensures that changes made to
one copy of an Active Directory partition are copied to all other replicas of the Active
Directory partition. (You might remember from Chapter 2 that each Windows 2000 do-
main controller contains a copy of the Active Directory partition for the domain it be-
longs to.)

Windows 2000 takes what is called a multimaster approach to replication. In a multimaster
approach, changes can be made to any copy of a part of an information store, and those
changes are propagated to all other copies. In Windows 2000, this is possible because
each copy of an Active Directory partition is writable—changes to the directory store can
be written to any Active Directory partition on any domain controller, and those changes
are propagated to all other domain controllers in the domain.

Chapter 4 Active Directory Services Scalability Architecture | 65

Contrast this to the replication approach in previous versions of Windows NT, in which
domain controllers were either the Primary Domain Controller (PDC) or one of many
Backup Domain Controllers (BDCs). In that approach, only the PDC was writable; the
BDCs were read-only. This single-master architecture meant that any changes to a
domain’s information store had to be made on the PDC, and copies would then be propa-
gated to the read-only BDCs. This approach, in which only the PDC has a writable copy
of directory information, scales poorly.

With Active Directory services and its multimaster approach to replication of changes or
updates to directory information, each domain controller is capable of handling changes
to the Active Directory information store, which effectively distributes the load associ-
ated with updating directory information. A superior replication scheme must do more
than ensure that the load associated with replication is distributed, though. It must also
ensure that the replication process is automatic and transparent to users and adminis-
trators and is performed as efficiently as possible.

The method that Active Directory services uses for its replication of information has been
developed to favor volatility over time, to avoid the use of (often unreliable) timestamps
for validity, and to dampen network traffic associated with updates. The following sec-
tions take a closer look at how Active Directory replication occurs.

Replication Process Overview

Windows 2000 uses a 64-bit number called the Update Sequence Number (USN) on each
domain controller to maintain a value that identifies changes to its Active Directory ser-
vices store. When a change is made to any object in Active Directory, the domain con-
troller advances the USN and stores it with the changed object (or attribute). Now the
change must be distributed to other domain controllers. To accomplish this distribution
without being wasteful, each domain controller maintains a table of USNs that are asso-
ciated with all its replication partners (other domain controllers with which replication
information is exchanged). In that table, the highest USN received by each replication
partner is stored. When one of the domain controller’s replication partners initiates the
replication process, the domain controller consults its table of USNs for that replication
partner and requests only the changes associated with USNs that are greater than the value
stored in its table for that replication partner. This approach limits the amount of data
passing between replication partners, effectively limiting the transmitted data to the data
that changed since the last successful replication update. Note that the USN stored in the
domain controller’s table for a given replication partner is not changed (to the new USN)
until all changes associated with the most recent replication exchange are completed
successfully. ' .

Failure Recovery

The use of USNs also makes failure of a given domain controller easy to recover from.
A domain controller that has failed for any given length of time can, once it is brought
back on line, consult its list of replication partner USNs and request updates for all changes
above the USN number stored in its USN table for a given controller.

66 | PART1 Understanding Active Directory Services

Resolving Collisions

Because most Windows 2000 domains contain multiple writable partition replicas, the
same attribute of a given object could be modified at or near the same time on different
domain controllers. When an attribute is modified on a domain controller before a change
to that attribute that was made on another domain controller is completely propagated,
a collision occurs. Domain controllers detect collisions by comparing the property version
numbers in the changes they receive during replication with locally stored property
version numbers. Property version numbers differ from USNs (which are specific to each
domain controller) because they are specific to a given object’s attribute and are initial-
ized upon creation of the attribute. Property version numbers are advanced only when
an attribute is changed (not when the attribute is updated through the normal process
of replication). These changes are called originating writes, to differentiate them from
changes applied to a given attribute through the replication process. A collision is detected
by comparing property version numbers for a given attribute.

When a collision occurs, Active Directory services evaluates the following properties of
each modification request, in the order presented, to resolve the collision:

1. The property version number
2. The timestamp
3. The IP address

The change with the higher value is the change that is replicated. If the values are iden-
tical in one instance, Active Directory moves to the next item to resolve the collision. If
a domain controller receives an update that has a property version number that is lower
than the locally stored number, the update (with the lower property version number) is
discarded. Such favoritism toward more recent versions, and the fact that timestamps are
used only to resolve collisions, results in Active Directory favoring volatility over time.

Reducing Network Traffic

To reduce the use of network bandwidth for the propagation of replication information,
Active Directory services employs several strategies. The premise behind such bandwidth
usage dampening is obvious: there’s never enough bandwidth, let alone too much, and
its use by system-specific activities should be kept at a minimum. There are other reasons
as well, as the following paragraphs explain.

The first approach that Active Directory uses reduces the amount of data transmitted by
compressing it before sending it over wide area network (WAN) links.

Secondly Active Directory services uses information about network topology, specifically
about Windows 2000 sites, to send replication information more efficiently over high-cost
network links. Sites (which are described in more detail in Chapters 5 and 7) are essen-
tially one or more IP subnets that are linked by high-bandwidth connections (10 Mbps
or faster). From the information about sites that Active Directory stores, the replication
mechanism within Active Directory is able to create a sense of site topology and inter-
connections and uses that information to create replication partners in an intelligent way.

Chapter 4 Active Directory Services Scalability Architecture | 67

For instance, when replication information is sent from a server across a high-cost link
to a server in another site, replication to other servers in that distant site is done within
the site rather than from the server across the high-cost link again. The following example
will help you visualize how this process works.

Say that the Windows 2000 domain midtower.cases.iseminger.com consists of two sites,
one in Amsterdam and one in Miami. Changes are made to the Active Directory services
partition that resides on a domain controller in Amsterdam, and those changes must be
propagated to the domain controllers in Miami holding Active Directory partition repli-
cas for the midtower.cases.isemingers.com domain. The appropriate replication partner
would compress the changed information and then send it to its replication partner in
the Miami site. The server at the Miami site would receive and decompress the updated
information and then apply the changes to its Active Directory store. Next all other domain
controllers in the Miami site would get that replication information (which originated in
Amsterdam) from the domain controller in Miami, avoiding more usage of the nigh-cost
link between Amsterdam and Miami. This approach not only conserves bandwidth on
high-cost links, but it also makes use of the high-bandwidth connections that intercon-
nect domain controllers in the same Windows 2000 site. Figure 4-3 illustrates this method.

Amsterdam site

’ Rami site
Changes to Active
Directory services

P

midtower.cases.iseminger.com domain

Changes to Active Directory information occurs on a domain controller in the Amsterdam site.

Replication of the changes propagates throughout the site.

@EE

The domain controller, configured to be a replication partner with a corresponding domain
controller in the Miami site, compresses the change information and sends it to its replication
partner at the Miami site.

@ Within the Miami site, the changed information gets replicated (without compression) to the
domain controllers in Miami.

Figure 4-3. Using compression to replicate data across a bigh-cost link.

68

PART | Understanding Active Directory Services

The third mechanism that Active Directory services employs to'reduce the amount of
bandwidth used to propagate replication information is called propagation dampening.
Propagation dampening keeps replication information from endlessly looping through
the network. This is necessary because Active Directory allows loops (multiple replica-
tion paths) in the Active Directory replication topology to provide fault tolerance and
increase performance. Without propagation dampening, replication updates would be
endlessly propagated through the loops, consuming large amounts of bandwidth.

Windows 2000 achieves propagation dampening by keeping up-to-date vectors comprised
of domain controller/USN (DC/USN) pairs. In any Windows 2000 site, each domain
controller contains an up-to-date vector for every other domain controller in the site; when
replication begins, the requesting domain controller sends its up-to-date vector to the
sending domain controller. If the DC/USN pair indicates that the requesting domain
controller has an up-to-date version of the Active Directory partition (that is, if its USN
matches the USN that the sending server has in its DC/USN table), then no update infor-
mation is transmitted. ' ‘

FSMO Roles

A multimaster operation such as the one that Windows 2000 implements with its new
approach to domain controllers is superior to its predecessor (single-master operations).
While there are many benefits to multimaster operations, certain network operations that
are necessary components of a Windows 2000 network environment don’t adapt well to
the multimaster paradigm. For the most part, these are operations that must have a unique
master copy (or authority or version) through which all requests for service must go. In
other words, these network operations require that one server contain the master copy
and be the master servicer of the operation.

To enable these single-master operations to take place in a multimaster environment,
Windows 2000 implements the idea of a flexible single-master operation (FSMO) (pro-
nounced FIZZ-mo). When a given server holds the “right” to be the FSMO server for one
of these multimaster-averse network operations, it becomes the “single master” for that
particular service.

The main reason why some of these special network operations don’t function well in a
multimaster environment is that they deal with collisions poorly. While Active Directory
services has mechanisms that can resolve replication-related collisions should they occur
(as we saw in the previous section), the sensitive network operations that require FSMO
operations do a better job avoiding collisions altogether. In the Windows 2000 environ-
ment, there are five situations in which it is better to prevent collisions than resolve them,
and the domain controllers that provide FSMO services in these five situations are called
FSMO role holders. '

Chapter 4 Active Directory Services Scalability Architecture | 69

In FSMO, a single-master role holder provides the necessary master role services for the
Active Directory functionality it provides. However, these roles can change and can be
offloaded to other domain controllers in the case of shutdown or failure. Since there is
the capability for a given FSMO role holder to hand its role to another domain controller,
the approach is considered flexible, hence the term flexible single-master operation.

The five roles that FSMO role-holding domain controllers can have are the following:

e Domain Naming Master
e Infrastructure Master

e PDC Emulator

e Relative ID (RID) Master
e Schema Master

Each of these five FSMO roles is explained in detail in Chapter 7, “Planning an Active
Directory Deployment.” However, a fundamental understanding of their operation is
important to understanding how Active Directory services achieves its scalability, so con-
cise explanations of each are provided here.

The Domain Naming Master is the only domain controller from which administrators can
perform a number of domain creation or deletion operations. New domains can be added
to the namespace or namespaces (the organization’s forest) only from the Domain Nam-
ing Master. Likewise, only from the Domain Naming Master can existing domains be
deleted or cross-references to external directories be removed or both.

The Infrastructure Master is the domain controller that is responsible for keeping track
of objects that reside in another directory but are referenced in the current directory. Any
record in Active Directory services that references such extra domain objects contains the
object’s globally unique identifier (GUID) to ensure that the object is referenced prop-
erly (even if it moves from one location or domain to another) and its security identifier
(SID) to ensure that security for the object is maintained. The Infrastructure Master is re-
sponsible for updating the SIDs and distinguished names in cross-domain object refer-
ences in the domain in which it resides.

The PDC Emulator provides support for downlevel clients, such as Windows NT 4,
Windows 95, and Windows 98 clients without the appropriate directory-enabling service
packs applied. Simply put; the PDC Emulator appears as the PDC for downlevel clients
attempting to reach the equivalent of the PDC in a Windows 2000 domain and provides
functions such as directory writes, downlevel BDC replication service, and domain master
browser for downlevel clients and servers. Obviously, only one server can act as a PDC
for a given domain; therefore, only one Windows 2000 domain controller can manage
emulation of that single PDC. Once all downlevel clients and servers are upgraded, how-
ever, the PDC Emulator still retains some functionality, including being the preferential

70 | PART1 Understanding Active Directory Services

password replication domain controller for other Windows 2000 domain controllers, pro-
cessing account lockouts, and authentication failure (on other domain controller) retries.

The RID Master is responsible for maintaining RIDs for a given domain. RIDs are used
as part of the creation of SIDs to enable the uniqueness of SIDs over time. The RID Master
is also responsible for being the gatekeeper for objects in its domain so that objects cannot
be moved from its domain to another domain. When an object is moved from one do-
main to another, its SID (which is comprised partially of its RID) changes. By ensuring that
only the RID Master can move objects from its domain to another domain, Windows 2000
ensures that two objects will never have the same SID, even across domains. This, in turn,
ensures that no two objects will have the same GUID, as could happen if an object were
moved to two places from two different domain controllers (rather than one—the RID
Master) at approximately the same time.

The Schema Master is the only domain controller on which schema changes can be
performed.

Each of these FSMO roles can be held by any domain controller in a given Windows 2000
domain; however, there are certain constraints and requirements that apply to them. First
there is one Domain Naming Master and one Schema Master for each namespace. (A
namespace is the collection of all domains in a given enterprise domain tree hierarchy,
as you might remember.) This makes sense: the addition or deletion of domains is an
enterprise-wide activity, and the schema applies to the entire namespace.

Second there is one Infrastructure Master, one PDC Emulator, and one RID Master for each
Windows 2000 domain. This also makes sense: The Infrastructure Master tracks references
to objects that are external to its particular domain and therefore is a per-domain opera-
tion. The PDC Emulator and the RID Master also function on a per-domain basis.

Conclusion

Scalability is one of the primary features of Active Directory services. It has to be; other-
wise, Active Directory could not meet the needs of enterprise networks.

When you add scalability to a directory service, you enable large organizations to create
a comprehensive and cohesive computing environment and to make that computing
environment function without the need for complex, labor-intensive managemnient. The
next step is ensuring that such scalability doesn’t distribute administration or services such
that they get lost in the extended tangle of the network. In other words, scalability must
come with centralization. The next chapter continues the explanation of how Active
Directory achieves its requirements and in doing so achieves the distinction of being an
enterprise-ready directory service. '

71

Glhapter |
More Active Directory
Services Architecture

This chapter continues the explanation begun in Chaptér 4 of how Active Directory ser-

— ~€ A
vices wiccis Ui u,\iuu\.nu.ntu Cran ...“"""p"“‘" -clace f“""""f‘"" cervice

The requirements we will discuss in this chapter include the following;:

¢ FEase of administration

e Security

e Integration with applications
e Standardization and openness

e Centralization

Achieving Eaée of Administration

Active Directory services is administered with relative ease because it takes advantage of
centralization and standards compliance, and it makes use of building blocks. For instance,
when network information is consolidated in a centralized repository (that is, when the
centralization requirement is met), network administration immediately becomes easier.
Active Directory provides a centralized repository for information about all network
resources, which means that multiple separate directories of information, such as RAS
account information or e-mail distribution lists, are obviated.

In addition, when a directory service is open and complies with industry standards (that
is, when the standardization requirement is met), network administration can be simpli-
fied because widely available (or widely used) tools can be used for what might other-
wise have required a proprietary, unfamiliar interface.

72 | PART1 Understanding Active Directory Services

Easmg Administration with Centralization

With centralization achieved, administration immediately becomes easier. Rather than
administrators having all sorts of directories to manage, such as RAS accounts, database
permissions, and SNA Server policies, all directories can be subsumed by Active Direc-
‘tory services and therefore be centrally located. The centralization of administration in-
formation in Active Directory, coupled with the standardization of the administration
interface provided by the Microsoft Management Console, goes a long way in promot-
ing easier administration.

Easing Administration with Standards Compliance

Other contributing factors to the ease of administration attributed to Active Directory
services are its standards compliance and openness. Such standardization results in admin-
istrative tools, whether provided by Microsoft or developed by outside vendors with similar
interfaces. Chapter 2, “Active Directory Services as a Directory Service Implementation,”
goes into detail about the various standards to which Active Directory services is compli-
ant. It also provides insight into just how many different standards there are for adminis-
trative interfaces or administrative programs.

One large contributor to achieving ease of administration with Active Directory services
is its complete, ground-up integration with Internet standards. One of the most impor-
tant of these standards is Hypertext Transfer Protocol (HTTP). The result of complying
with this particular standard is that Active Directory can be managed by any Web browser
on any machine (providing the user has appropriate permissions) from anywhere in the
organization or, with the proper connections, from anywhere on the Internet.

Administration Building Blocks

Perhaps the most important, pervasive, and potentially powerful tools that Active Direc-
tory provides to help ease the burden of administration are administration-empowering
building blocks. The architecture of Active Directory, with its centralization, scalability,
and vast repository of information, provides building blocks that can be used to make
administration of Microsoft Windows 2000 domains, and the clients who aren’t necessarily
directly making use of Active Directory services, potentially much easier. For example,
with the publication of available applications in the Active Directory database, as well
as pointers to necessary application files, it becomes possible to create an application that
senses when crucial files are missing from a given user’s desktop installation of the pro-
gram. The application can then direct the operating system to check Active Directory for
the location of such files on the network and to copy those files to the local “broken”
installation of the program—in short, to fix the broken program. This “self-healing” ap-
proach is an administrator’s best friend; what would otherwise entail a service log, a service
call, administrator time, downtime for the users, and all associated costs becomes an

Chapter 5 More Active Directory Services Architecture » | 73

automated update made possible by a centralized repository of information (for both
published applications and their files’ locations on the network). And remember that this
example is but a small taste of what can be done administratively with a centralized
information store such as Active Directory. It will likely be some time before we tap the
full extent of its capabilities.

Achieving Security

The advent of the Internet and open networks is a great thing, but with it comes unavoid-
able security baggage. Security, especially in a directory service that intends to make
objects selectively available in its information repository, must be both pervasive and
industrial-strength. Active Directory services meets the requirement for security by com-
pletely integrating with Windows 2000 security. All i infuaiion siorcd in the Actve
Directory information repository—all the way down to the attributes of a given object—
is protected from unauthorized access. This protection is made possible by securing every
object, and every object attribute, with Windows 2000 Discretionary Access Control Lists
(DACLs). The application and protection of DACLs for each object, and each object attri-
bute, in Active Directory means that the permissions most administrators are familiar with
applying to familiar securable objects, such as a file in an NTFS volume, cari also be
applied to Active Directory objects. If a user attempts to access an object but does not
have the proper permission settings, the Active Directory security implementation will
not reveal the presence of the object, let alone allow manipulation of its attributes.

In addition to the capability to apply security properties to objects and attributes, admin-
istrators can direct Active Directory services to propagate security settings down the hi-
erarchical object path (that is, to child objects and containers) of any given Active Directory
object. In other words, child objects and containers can inherit permission settings ap-
plied to parent objects or containers. This capability is aptly called inberitance, and it
enables administrators to efficiently apply security settings to entire trees or branches of
the Active Directory information repository.

With Active Directory services’ capability to assign certain permission rights to objects
and to enable children of such objects to inherit those security settings, an administrative
phenomenon called delegation can be achieved. With delegation, Active Directory enables
the administration of entire sections (such as a Windows 2000 site) of a given Active Di-
rectory tree to be assigned to a different administrator. In Windows NT, such delegation
wasn’t as accessible, and the result was that administrators were often given unneces-
sarily broad administrative rights over an entire Windows NT domain in order to provide
the necessary rights to administer even parts of the domain. With Active Directory’s flex-
ible object permission assignments (DACLs), which can easily be propagated to children

74 | PART ! Understanding Active Directory Services-

objects and containers (inheritance), you can provide administrators with only the admin-

istrative rights they need—and only over the objects for which such permissions should

be granted—to do their job. This more fine-tuned approach to assigning rights and per-

missions to objects, and its consequential reduction in the required set and scope of

administrative rights that a given administrator or group must be assigned, effectively

tightens the security of the Windows 2000 domain (and Active Directory) overall. Why?

Because the number of administrators with sweeping administrative rights can be reduced, -
and the number of administrators who can be provided with the subset of required per-

missions to do their (more focused and more site-specific or organization-specific) jobs

is increased.

Achieving Application Integration

Active Directory services enables application integration by providing an extensible
schema and multiple application interfaces to its information store.

The power of a directory service becomes more evident when applications and services
are able to take advantage of its centralized structure. Though a slew of new and em-
powering capabilities are built into Active Directory services, the true power of this dis-
tributed and scalable directory service can be seen when applications integrate with and
leverage Active Directory. Microsoft has taken steps to ensure application integration is
available, one of the most important of which is including the capability to extend the
Active Directory schema.

Schema Extensibility

The schema, as defined in Chapter 4, is the universe of objects that can be instantiated
in the Active Directory information store. Microsoft provides mechanisms to extend the
schema, enabling applications to create objects in the schema that can then be used in
Active Directory to provide extended or formerly unavailable application services. This
enables Active Directory to be more than a central repository of information—these mecha-
nisms allow Active Directory to become an active information store that can be used by
applications or users throughout the enterprise.

Application Interfaces

For Active Directory services to integrate with applications, its information store must be
accessible through application interfaces. Active Directory provides many application pro-
gramming interfaces (APIs), including Active Directory Service Interfaces (ADSD), Lightweight
Directory Access Protocol (LDAP), and Messaging Application Programming Interface
(MAPID). ADSI is the Microsoft-provided interface to Active Directory. It is the most

Chapter 5 More Active Directory Services Architecture | 75

commonly used (and the most versatile, powerful, and full-featured) interface available
for programmers to integrate their applications with Active Directory services. ADSI is
an object-oriented interface. Perhaps its most attractive feature is that it hides the details
of LDAP-based communications from its users. ADSI can be accessed from every pro-
gramming language that Windows 2000 supports, including Microsoft Visual Basic, C, C++,
Java, and others.

The LDAP API is a C programming language API that has been standardized in Request
for Comments (RFC) 1823. The LDAP API is a low-level interface that exposes many of
the LDAP-based communication interfaces that ADSI hides.

More Info For more information about LDAR see the complete text of RFC 1823
at http:;//www.ietf.org.

MAPI is supported in Active Directory strictly tor backward compaubulity. Application
developers building applications that will interface with Active Directory should use ADSI
instead of MAPL

Achieving Standardization and Openness

Active Directory services meets the requirement for standardization and openness by
embracing Internet standards and using LDAP as the directory-wire protocol.

Active Directory services was designed from the ground up to adhere to Internet standards -
and to be a native LDAP server. For example, the entire structure of the Windows 2000
directory scheme and Active Directory’s locator service are based on the Internet-standard
locator service Domain Name Service (DNS). Windows 2000 clients and Active Direc-
tory services no longer use NetBIOS name resolution; rather, the more hierarchical and
scalable solution, DNS, is used natively by Windows 2000 to provide all locator service
activity. NetBIOS name resolution (such as that provided when WINS is implemented)
is provided in Windows 2000 only for backward compatibility; once all clients are
Windows 2000 capable or outfitted with the appropriate directory services updates, you
can take your WINS servers out of service. We already use DNS every day; DNS trans-
lates familiar names into IP addresses, such as translating www.microsoft.com into
207.46.131.13.

Note Well, Active Directory services was not entirely built from the ground up.
It is based on the Microsoft Exchange directory service engine, but its capabilities
have been greatly extended. From an operating system perspective, it's been

completely rebuilt and its design has been tailored to meet the requirements of

an enterprise-class directory service.

76

l

PART I Understanding Active Directory Services

In addition, the information store (database) that previously managed domain-based
information in earlier versions of Windows NT has been revamped and extended to
embrace the openness and flexibility of the LDAP standard, and it now (in the form of
Active Directory services) is an LDAP-native directory service information store. Being
such, Active Directory natively implements LDAP commands, which means that it accepts
standardized LDAP protocol messages and responds to such commands without having
to translate them into another command. Such native support for LDAP, the language of
directory services, enables Active Directory to easily interoperate with and even subsume
other directory services; it also enables Active Directory to interoperate with any appli-
cation written to the LDAP standard.

Although Active Directory is standards compliant and is a directory service in every sense
of the word, it does not implement the X.500 standard and its associated directory access
protocols. X.500 is a directory standard that was created in the late 1980s and revised in
the early 1990s, but the X.500 specification and its directory access protocols (DAP, DSP,
DISP, and DOP) were too complex and introduced too much overhead to be commer-
cially viable or attractive, and therefore did not garner much acceptance or support. To
complicate things further, two X.500 “standards” were released, and there were no as-
surances that different X.500-compliant implementations would be interoperable. In re-
sponse to this dilemma, people at the University of Michigan (and other places) decided
that a lightweight client-server access protocol that interacted with X.500 might spur the
acceptance and deployment of X.500. The result proved their theory to be somewhat true;
LDAP is now the protocol of choice for accessing directory services, and X.500 is largely
unused and unsupported.

The fact that Active Directory services does not support X.500 is not a limiting factor, nor
is it a drawback to standardization or openness. LDAP is sufficient for directory services
and especially attractive due to its lightweight design, and there really isn’t much inter-
est in the industry for support of X.500 anyway (for reasons of overhead and ambiguity
as previously explained).

When Active Directory services’ support of DNS, LDAP, TCP/IP, and other Internet stan-
dards is combined with its programmatic interfaces such as ADSI, LDAP C, and MAPI,
its openness and standardization become evident.

More Info In addition to these standards and open architecture, Active Direc-
tory services supports many other Internet and open standards, a detailed list-
ing of which is provided in Chapter 2, “Active Directory Services as a Directory
Service Implementation.”

Chapter 5 More Active Directory Services Architecture | 77

Achieving Centralization

Active Directory services meets the centralization requirement by consolidating network
information in the Active Directory information store, by providing a centralized adminis-
trative interface (with MMC), by allowing a single logon to control all network access per-
missions, by creating Active Directory Connectors, and by having an extensible schema.
The following sections discuss these centralization features in detail.

Centralized Administrative Interface

Since Active Directory is at the heart of Windows 2000 and of all information associated
with a networked Windows 2000 environment, and since Active Directory services’ logi-
cal presentation is that of a single entity (rather than, say, this domain controller or that
domain controller), centralization is achieved. ‘I'he requirement that domain conuroi-
lers be placed throughout the network is a purely physical one. When user interfaces
(such as searches) or management interfaces (such as MMC snap-ins) are utilized, Active
Directory responds as a centralized entity regardless of which particular domain con-
troller physically responds to the inquiry or request. And since all domain controllers
contain replicas of domain-based Active Directory partitions, which domain controller
actually responds to a request is of no consequence. Active Directory appears to users
and administrators as a centralized entity, not as a group of domain controllers.

More Info For more information on Active Directory management interfaces,
check out Chapter 9, “Managing Active Directory Services.”

Single Sign-on

Another way Active Directory services achieves centralization, which works in tandem
with a pervasive security system, is by allowing users to access all network resources with
a single sign-on (logon) rather than by requiring users to sign-on to multiple systems.
All access control information is based on Windows 2000 security identifiers (SIDs) and
individual object (and attribute) DACLs, all of which are stored in Active Directory. With
the implementation of a single sign-on, when a user logs on to a Windows 2000 network,
the logon credentials initially provided (and the associated permissions for resource access
throughout the directory service offerings) carry through to all user activities in that logon
session, as shown in Figure 5-1.

More Info(For more information on the logon process and how security creden-
tials follow a user throughout a logon session, check out Chapter 8, “Active Direc-
tory Services and Security.”

78

PART I Understanding Active Directory Services

Log on to domain;
authentication

Server

Security token, full of your
security identifiers (SIDs)

\\privateserver\share File 7a Printer 40
Top Secret

@ You log on to your domain/machine, and are authenticated.

@ An access token (commonly called a security access token) is associated
with your logon session.

@ All attempts to access resources throughout your logon session, from printing documents
to running applications on remote computers, base your request on your security access

token, which is transparently transmitted whenever you make a request.

Figure 5-1. Windows 2000 single sign-on.

Chapter 5 More Active Directory Services Architecture | 79

Active Directory Connectors

Active Directory services also provides centralization by enabling users to access other di-
rectories directly through Active Directory itself. The access mechanism it provides, called
Active Directory Connectors, enables users to transparently access any LDAP-compliant
directory. Active Directory stores information about the LDAP-compliant directories that
its Active Directory Connector exposes, including DNS information, and determines from
that information where the foreign directory should appear within the Active Directory
information repository.

More Info For more information on Active Directory Connectors, check out
Chapter 12, “Migrating to Active Directory Services.”

=
=

R

[Ny | Ny DR DY Py
SEALGLIDINIC DwiiGiIIa

One of the most important ways that Active Directory achieves centralization is by pro-
viding an extensible schema. If application developers could not extend the schema, they
would not be able to use Active Directory services to centrally store information objects

" unique to their programs. The result would be that applications would have to create and
then maintain their own information stores (or directories), as is the case with applica-
tions that were written to function under Windows NT 4 and earlier.

More Info For more information on the Active Directory schema, check out Chap-
ter 14, “Administratively Leveraging Active Directory Services.”

- SN

81

Chapier ©
Active Directory
Services and DNS

Active Directory services is the hub of most operations that occur in Microsoft Windows
2000, so it’s no surprise that there is a lot of interaction between many Windows 200U
base services—both network-related and others—and Active Directory. Of particular in-
terest are the interactions between Active Directory services and the Domain Name Ser-
vice (DNS), and the new capability for dynamic DNS updates, both of which are integral
to Windows 2000 and Active Directory services.

To understand many of the locator and client/server interactions that occur in a Windows
2000 Active Directory environment, you need to understand DNS. The de facto standard
for providing name resolution in previous versions of Windows—the Windows Internet
Naming Service (WINS)—hasn’t been completely supplanted, but it is inferior to DNS and
is included in Windows 2000 only to provide compatibility with Windows clients that aren’t
configured to use DNS. You can be sure that DNS is the locator service of the future, and
once you deploy Windows 2000 and Active Directory services, DNS automatically becomes
* your default locator service.

DNS is the primary locator service for Active Directory, and many other components in
a Windows 2000 network also rely on DNS for locator services. DNS can therefore be
considered a base service for both Windows 2000 and Active Directory services. This chap-
ter provides an extensive treatment of DNS. The topics covered are:

¢ Understanding how DNS operates

e Getting familiar with DNS, including its concepts and components

¢ learning about DNS functional operations, including query resolution

e learning about how Active Directory services uses DNS as its locator service
As you read this chapter, you'll notice similarities between the way DNS functions and
the way Active Directory services functions. This is no coincidence—the way DNS scales

and operates is a model many computer systems would do well to emulate. After all, DNS
scales to the entire Internet.

82 | PART!I Understanding Active Directory Services

Understanding DNS

As you probably know, DNS is an industry-standard protocol (and service) used to locate
computers on an Internet Protocol (IP)-based network. IP networks, such as the Inter-
net and Windows 2000 networks, rely on number-based addresses to ferry information
throughout the network. Network users, however, are better at remembering word-based
and letter-based names, such as www.microsoft.com, than they are at remembering num-
ber-based addresses, such as 207.46.131.137. Therefore, it is necessary to translate user-
friendly names (www.microsoft.com) into the number-based addresses that the network
can recognize (207.46.131.137). DNS is the service of choice in Windows 2000 to locate
resources and translate resource names into their corresponding IP addresses.

Accordingly, you need to thoroughly understand DNS to understand Windows 2000 and
Active Directory services. This section provides the information you need to understand
DNS. It examines how DNS works, including discussions about DNS’s resource records
(RRs) and hierarchical namespace, and then examines in detail how Active Directory
services, Windows 2000 domain controllers, and clients interact with DNS to get the locator
services they require.

Note DNS can also translate an IP address into a user-friendly name using
in-addr.arpa. To see this type of translation in action, try pinging an IP address
with the —a parameter on, such as in the following command prompt command:

ping ~a 207.46.131.137

DNS uses a specialized database of RRs to respond to client name-resolution queries.
Before DNS, name resolution on the Internet was achieved with hosts files, which were
manually created files that associated host names with IP addresses. Whenever a new
client was added to the network, an administrator had to manually update the hosts file
and then copy (replicate) that file to all other computers on the network so that the new
host could be reached by all the other computers. As the Internet grew, this form of name
resolution was clearly insufficient; it was too management intensive, and it didn’t scale.
“The file just got bigger, and because it used a flat namespace, it could not be partitioned
and had to be distributed in its entirety. The solution was DNS.

DNS replaced a hosts file’s flat namespace with a hierarchical namespace. With a hierar-
chical namespace, information about host names and IP addresses can be partitioned and
distributed; thus, scalability is achieved. In the widgets.products.microsoft.com domain,
for example, responsibility for name resolution can be partitioned so that various serv-
ers can handle name resolution for different parts of the namespace. One server can be
responsible for resolving the first part (microsoft.com), and that server can forward the
name-resolution request to the DNS server deeper in the microsoft.com DNS hierarchy
that is responsible for resolving the next part of the namespace (the products part of
products.microsoft.com). Finally the request can be forwarded to yet a different server
that is responsible for resolving the last part of the name (the widgets part of
widgets.products.microsoft.com). DNS servers in each part of the hierarchical namespace

Chapter 6 Active Directory Services and DNS | 83

need to maintain a database of resource records for hosts in only their part of the
hierarchy. Thus the servers in the products part of widgets.products.microsoft.com main-
tain resource records for only the products part of the hierarchical namespace, and not
for the microsoft.com part or the widgets part of the namespace. '

As you've probably noticed, this approach to partitioning a potentially large database is
essentially identical to the way Active Directory partitions its directory of information into
Windows 2000 domains.

Computer Names, Host Names, FQDNs, and Relative Distinguished Names

The first step in understanding DNS is understanding the differences among the handful
of terms associated with a given computer’s name. Since Microsoft Windows NT went
through an evolutionary process that pushed it toward DNS as its locator service (and
away [rom e pooriy scalitlg WilNG approaciy, winduws INT uscrs aind adiiinisiaton have
had to become familiar with several name-resolution schemes and their associated naming
conventions. Now Windows 2000 users and administrators must learn about DNS and its
naming conventions. The following is a list of the naming conventions that have been
used to identify computers in the various Windows name-resolution methods, including
the Windows 2000 method. (IT professionals who have already transitioned to DNS should
consider this discussion a refresher and think about how fortunate they are to be ahead

of the curve.)

e Computer name
e Host name
¢ Fully qualified domain name

e Relative distinguished name

These naming conventions share a common goal: to unambiguously resolve a name to
a network address, generally an IP address. The difference between naming conventions
lies in each convention’s distinct approach to resolving names.

In the flat NetBIOS namespace, a single name unambiguously resolved a computer name
to a network address. This is the name that early Windows versions stored in browser
and master browser lists, enabling peer Windows networks to browse resources on
networked Windows computers. In this scenario, the term associated with the computer
was the computer name, and registration of the computer name depended on network
broadcasts (and a master browser, determined by elections, by later Windows version
numbers or Windows NT operating system usage, or by a combination of both). This was
fine for small, peer-based Windows networks, but networks soon grew beyond what the
use of broadcasts and simple flat-file master browser lists could service.

Next came WINS, which enabled a dynamic and centralized repository of NetBIOS-based
computer names stored on WINS servers. These repositories could service a larger
network. This was a step in the right direction because name-resolution queries could
be directed to a WINS server (rather than being broadcast—which is a method with a

84

l

PART 1 Understanding Active Directory Services

slew of drawbacks) and conflicts could be centrally arbitrated. With WINS, the term com-
puter name was retained, but the term host name also appeared (perhaps it was borrowed
from DNS, which was being widely used in the firmly established non-Windows network
world) and was used interchangeably with computer name. At the time, WINS was the
default name resolver for Windows platforms, but DNS was gaining popularity in step
with the popularity and proliferation of increasingly larger networks.

Networks grew, and WINS became less and less capable of handling the sheer volume
of names. The decreasing capability of WINS to handle the name-resolution load was not
due to the processing power required for resolution, but instead, was due to the fact that
generating unique names in an organization with lots of computers became an ever-
increasing management burden. DNS was (and is) a better solution. As a result of DNS’s
hierarchical namespace, the need for unique computer names was isolated to a given do-
main, enabling a computer name such as serverl to exist in different domain locations
in the same hierarchy. With DNS the necessity came (to the Windows world) for a name
that properly addressed the DNS hierarchy. The name had to include not only the com-
puter, or host, name, but also a name that could unambiguously identify, or fully qualify,
that computer within the entire DNS hierarchy. That name is the fully qualified domain
name (FQDN)—for example, serverl.widgets.microsoft.com.

But in certain situations, the domain-hierarchy part of the FQDN is cumbersome and a
“local” name for a given computer (or any other DNS host) that is relative to the DNS
‘domain in which the host resides is needed. That name is the relative distinguished name.
The relative distinguished name is simply the single host name to the left of the leftmost
dot in the FQDN—for example, an FQDN of serveri.widgets.microsoft.com has serverl
as its relative distinguished name.

But what about all those NetBIOS names that users have become accustomed to through-
out the evolution of Windows toward its enterprise-ready Windows 2000 incarnation?
Conveniently enough, rather than imposing new names or new naming conventions on
those poor users, DNS simply uses the computer name (or host name) as the relative dis-
tinguished name and appends the DNS domain hierarchy to that name to create the FQDN.

To clarify these concepts, Figure 6-1 illustrates how to identify the computer name (or host
name, or relative distinguished name) part of the FQDN.

Remember these computer name (or host name) conventions, as well as how the con-
ventions fit into the creation of the FQDN; the concepts will reappear throughout this
chapter.

DNS Concepts

There are a handful of basic concepts on which the functional structure of DNS oper-
ates. These basic concepts range from namespace definitions to demarcation of name-
resolution responsibility boundaries. Understanding these concepts goes a long way in
. getting a solid working knowledge of DNS. And since Active Directory functions in much

Chapter 6 Active Directory Services and DNS | 85

Host name or computer name

Fileserverd corp.sales.iseminger.com

Relative distingished name (RDN) DNS domain hierarchy location
|——> fileserverl.corp.sales.iseminger.com <—l

Fully qualified domain name (FQDN)

Figure 6-1. The relationship between the FQDN the relative distinguished name, and the
DNS domain hierarchy location.

the came wav ac DNS understanding these concepts also goes a long way toward
understanding how Active Directory provides its information repository services. The fol-
lowing is a list of the DNS concepts that are defined and explained in this section:

e Namespace

¢ DNS domains
e DNS zones

* Root

e Name resolution

Dealing with Fugitive DNS Characters

As you probably know, certain characters, some of which were widely used in computer
names during the NetBIOS name-resolution years of Windows, are illegal in computer names
in DNS. Since Windows has moved from NetBIOS to DNS, a dilemma arises when ad-
ministrators convert computer names or host names into DNS relative distinguished names
or FQDNs. What happens to computers that have consistently used DNS-illegal charac-
ters such as underscores () as part of their computer names?

The answer is that Windows 2000 DNS has been designed to provide backward compati-
bility—or rather, to provide an upgrade/evolution path—for computers making the tran-
sition from NetBIOS naming conventions to DNS. Specifically, Microsoft DNS Server (and
only Microsoft DNS Server) allows you to continue to use a number of characters that
are illegal in standard DNS. The characters that are illegal with other DNS software, but
are legal as long as Microsoft DNS is the DNS software being used, are the following:

* Underscore () for service (SRV) RRs
» Asterisk (+) for mail exchange (MX) RRs

Windows 2000 DNS also has support for Unicode characters.

This support for otherwise illegal characters is quite useful for IT administrators who don’t
want to rename their potentially numerous computers that have illegal DNS characters.

86

I

PART 1 Understanding Active Directory Services

Namespace

A namespace is a context within which the names of all objects must be unambiguously
resolvable. For example, the Internet is a single DNS namespace—within which all net-
work devices with a DNS name can be resolved to a particular address, such as
www.microsoft.com to 207.46.131.13.

Namespaces can be flat or hierarchical. Flat namespaces do not scale well because they
can grow only so large before all available names are used up, and once a name is used
more than once in a namespace, the namespace violates the “unambiguously resolvable”
requirement. For an everyday example of a flat namespace, an immediate family can be
compared to a flat namespace. You wouldn’t have two brothers named Darryl in the same
family. If the last name was, say, Smith, determining which Darryl Smith was being ad-
dressed would be too difficult. However, you might have a cousin from the Jones family
named Darryl. That would present no difficulties because that’s a different namespace—
you’d have Darryl Smith and Darryl Jones.

A hierarchical namespace is divided into different areas, which might be easier to
understand if you think of these hierarchically organized areas as subnamespaces. Each
area is its own subnamespace within the overall namespace. Therefore, each object must
have a unique name only within its subnamespace in order to have an unambiguously
resolvable name within the namespace hierarchy. Hierarchical namespaces, then, can scale
to extremely large networks—as you add more objects to the overall namespace, you have
to find unique names for them within only the subnamespace to which they belong.

All DNS namespaces are hierarchical. The subnamespaces in the DNS hierarchical
namespace are called domains. As you may remember, the unique name of a computer
within a domain is called a relative distinguished name. Computers with the same rela-
tive distinguished name can exist in different subnamespaces (domains) of the namespace
hierarchy because they can be fully resolved to a unique object within the entire DNS
hierarchy, using an FQDN. For example, you can have a server called serverl in the
widgets.microsoft.com domain (the widgets.microsoft.com namespace), and you can have
serverl in the gadgets.widgets.microsoft.com namespace. Because they are in different
subnamespaces in the hierarchical namespace, they can be resolved to different FQDNs—
server].widgets.microsoft.com and serverl.gadgets.widgets.microsoft.com.

Compare this hierarchical namespace to a family with Darryl Smith the father and Darryl
Smith the son. In computer terms, their relative distinguished names are both Darryl Smith,
but their FQDNs are Darryl Smith Sr. and Darryl Smith Jr. (More information about rela-
tive distinguished names and FQDNs is provided earlier in this chapter, in the “Computer
Names, Host Names, FQDNSs, and Relative Distinguished Names” section.)

DNS Domains

Domains in DNS are familiar to most computer professionals who've used the Internet;
domains are nodes in the DNS hierarchical namespace, and domains can be further

Chapter 8 Active Directory Services and DNS | 87

divided into subdomains. Domains in the gadgets.widgets.microsofi.com hierarchy, for
example, include the gadgets, widgets, microsoft, and com domains.

DNS Zones

A DNS zone is a set of files