
Part of the five-volume
Networking Services Developer's Reference Ubrary

The essential reference set for developing with
Microsoft® Windows® networking technologies

David Iseminger
Series Editor

w-lsf.tmI~re",_

Remote Access Services

David Iseminger
Series Editor

Remote Access Services

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Networking Services Developer's Reference Library / David Iseminger.
p. cm.

ISBN 0-7356-0993-4
1. Application Software--Development. 2. Microsoft Windows (Computer file). 3.

Computer networks. I. Title.
QA76.76.A65 184 2000
005.4'4769--dc21 00-020241

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa­
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. Active Directory, BackOffice, FrontPage, Microsoft,
Microsoft Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual
J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade­
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product
and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002786

Acknowledgements
First, thanks to Ben Ryan at Microsoft Press for continuing to share my enthusiasm
about the series. Many thanks to Ben and Steve Guty for also managing the business
details associated with publishing this series. We're just getting started!

Wendy Zucker again kept step with the difficult and tight schedule at Microsoft Press
and orchestrated things in the way only project editors can endure. John Pierce was
also instrumental in seeing the publishing process through completion, many thanks to
both of them. The cool cover art that will continue through the series is directed by Greg
Hickman-thanks for the excellent work. I'm a firm believer that artwork and packaging
are integral to the success of a project.

Thanks also to the marketing team at Microsoft Press that handles this series: Cora
McLaughlin and Cheri Chapman on the front lines and Jocelyn Paul each deserve
recognition for their coordination efforts with MSDN, openness to my ideas and
suggestions, creative marketing efforts, and other feats of marketing ingenuity.

On the Windows SDK side of things, thanks again to Morgan Seeley for introducing me
to the editor at Microsoft Press, and thereby routing this series to the right place.

Thanks also to Margot (Maley) Hutchison for doing all those agent-ish things so well.

Author's Note In Part 2 you'll see some code blocks that have unusual margin
settings, or code that wraps to a subsequent line. This is a result of phYSical page
constraints of printed material; the original code in these places was indented too much
to keep its printed form on one line. I've reviewed every line of code in this library in an
effort to ensure it reads as well as possible (for example, modifying comments to keep
them on one line, and to keep line-delimited comment integrity). In some places,
however, the word wrap effect couldn't be avoided. As such, please ensure that you
check closely if you use and compile these examples.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

v

Contents

Acknowledgements .. iii

Part 1

Chapter 1: Getting Around in the Networking Services Library ... 1
How the Networking Services Library Is Structured .. 2

How the Networking Services Library Is Designed ... 3

Chapter 2: What's In This Volume? .. 5
RAS Programming Guide ... 6
RAS Reference .. 6
RRAS Overview ...•. 6
RAS Administration .. 6
EAP .. 6

Tracing ... 6

Chapter 3: Using Microsoft Reference Resources .. 7
The Microsoft Developer Network .. 8

Comparing MSDN with MSDN Online ... 9

MSDN Subscriptions ... 11

MSDN Library Subscription .. 11

MSDN Professional Subscription ... 12

MSDN Universal Subscription .. 12

Purchasing an MSDN Subscription .. 12

Using MSDN .. 13

Navigating MSDN ... ; 14

Quick Tips .. 16

Using MSDN Online .. 18

Navigating MSDN Online ... 20

MSDN Online Features ... ; 21

MSDN Online Registered Users .. 27

The Windows Programming Reference Series .. 28

Chapter 4: Finding the Develooper Resources You Need .. 29
Developer Support ; ... 29

Online Resources ... 31

vi Volume 4 Remote Access Services

Internet Standards .. 32

Learning Products .. 33
Conferences ... 35

Other Resources .. 35

Chapter 5: Understanding Remote Access Transmission Technologies 37
Analog Modem Technology ... 37

Getting Data to the Modem ... 38

Parallel Versus Serial Communication .. 38

How Analog Modems Operate .. 40

PSTN Bandwidth .. 40

Modulation ... 41

ISDN Technology .. 49

Residential Broadband Technology ... 51

ADSL Technology ... 51

ADSL Technology Overview .. 52

Cable Modem Technology .. 55

Cable Modem Technology Overview ... 55

WAN Technologies .. 59

X.25 ... 59

X.25 Technology Overview .. 60

T-Carrier .. ,"""""'""""",,62
T-Carrier Technology Overview ... 62

T1 s, E1 s, PRls and All Those Bits ... 65

ISDN PRI Technology ... 66

Frame Relay" .. , , , , , .. , .. , .. , .. , ,"', .. 67

Frame Relay Technology Overview ... 67

ATM ... 68

Getting to ATM ... 69

Creating the Common Carrier's Shopping List.. .. 69

ATM Technology Overview .. 71

Part 2

Chapter 6: RAS Programming Guide ... 79
RAS Common Dialog Boxes , , ".,',.,',.,., , 79
RAS Connection Operations .. 80

Synchronous Operations .. 81

Asynchronous Operations ... 81

Phone-Book Files and Connection Information .. 81

User Authentication Information ... ; .. 82

Contents vii

Other Connection Information ... 82

Connection States ... 83
Notification Handlers ... 83

Handling RAS Errors ... 84

Informational Notifications ... 85

Completion Notifications .. 85
Paused States ... 85

Callback Connections .. 86

Disconnecting .. 87

RAS Custom Scripting ... 87

Setting Up the DLL ... 88

Configuring the Phone-Book Entries .. 88

Interaction Between the Server, RAS, and the Custom-Scripting DLL. 88

RAS Phone Books .. 89

Phone-Book Entries .. 89

Subentries and Multilink Connections ... 90

RAS AutoDial .. 91

AutoDial Mapping Database · ... 91

AutoDial Connection Operations ... 92

RAS Configuration and Connection Information .. 93

RAS Server Administration ... 93

RAS User Account Administration .. 94

RAS Server and Port Administration ... 95

RAS Administration DLL .. 96

RAS Administration DLL Registry Setup ... 97

RAS Security Host Support , ; .. 98

Registering a RAS Security DLL ... 99

RAS Server Security Authentication ... 99

RAS Security DLL Authentication Transaction .. 100

Using Remote Access Service ... 101

Linking to the Remote Access DLL ... 1 01

Chapter 7: RAS Functions ... 103
RAS Custom Scripting DLL Functions ... 196

Chapter 8: RAS Structures .. 205

Chapter 9: RAS Message and Enumeration Types .. 257
Remote Access Service Message ~ ... 257

Remote Access Service Enumeration Types258

viii Volume 4 Remote Access Services

Chapter 10: RAS Server Administration Reference .. 265
RAS Server Administration Functions .. 265

RAS Administration DLL Functions .. 277

RAS Security DLL Functions .. 284

RAS Server Administration Structures ... 293

RAS Server Administration Union .. 312

RAS Server Administration Enumeration Types .. 313

Chapter 11: RRAS Overview ... 315
About Routing and Remote Access Service .. 315

Windows 2000 RRAS Registry Layout .. 315

About Remote Access Service Administration .. 318

RAS User Administration .. 318

RAS Server and Port Administration .. 319

RAS Administration DLL .. 320

RAS Administration DLL Registry Setup .. 322

Chapter 12: Remote Access Service Administration .. 323
Remote Access Services Administration Overview ... 323

RAS User Administration .. 323

RAS Server and Port Administration .. 324

RAS Administration DLL ... 325

RAS Administration DLL Registry Setup .. 327

Remote Access Service Administration Reference ... 327

RAS Administration Functions ... ; 329

RAS Admin DLL Functions .. 340

RAS User Administration Functions .. 349

RAS Administration Structures ... 355

RAS Administration Enumerated Types ... 375

Chapter 13: Extensible Authentication Protocol (EAP) .. 3n
EAP .Overview .. 377

EAP and Internet Authentication Service .. 377

EAP Installation ... 377

Authentication Protocol Registry Values .. 378

Registry Values Example ... 381

User Authentication ... 381

EAP Implementation. Details ... 381

RAS Connection Manager Initialization .. ~ 381

Authentication Protocol Initialization .. 382

Contents ix

RAS and Authentication Protocol Interaction During Authentication 383

Completion of the Authentication Session ... 385

Configuration User Interface ... 385

Server-Side Configuration User Interface .. 385

Client-Side Configuration User Interface .. 386

Obtaining Identity Information ... 387

Interactive User Interface .. 388

Multilink and Callback Connections .. 389

EAP Reference ... 389

EAP Functions ...•... 389

EAP Structures .. 402

EAP Enumerated Types .. 414

Extensible Authentication Protocol COM Interfaces .. .425

Chapter 14: Tracing .. , 435
Tracing Overview ... 435

Using Tracing .. 435

Configuration .. 436

Console Manipulation ... 437

Tracing Reference .. , 437

Part 3

Index: Networking Services Programming Elements - Alphabetical Listing 453

Part 1

CHAPTER 1

Getting Around in the Networking
Services Library

Networking is pervasive in this digital age in which we live. Information at your fingertips,
distributed computing, name resolution, and indeed the entire Internet-the advent
of which will be ascribed to our generation for centuries to come-imply and require
networking. Everything that has become the buzz of our business and personal lives,
including e-mail, cell phones, and Web surfing, is enabled by the fact that networking
has been brought to the masses (and we've barely scraped the beginning of the trend).
You, the network-enabled Windows application developer, need to know how to lasso
this all-important networking services capability and make it a part of your application.
You've come to the right place.

Networking isn't magic, but it can seem that way to those who aren't accustomed to
it (or to the programmer who isn't familiar with the technologies or doesn't know how to
make networking part of his or her application). That's why the Networking Services
Developer's Reference Library isn't just a collection of programmatic reference
information; it would be only half-complete if it were. Instead, the Networking Services
Library is a collection of explanatory and reference information that combine to provide
you with the complete set that you need to create today's network-enabled Windows
application.

The Networking Services Library is the comprehensive reference guide to network­
enabled application development. This library, like all libraries in the Windows
Programming Reference Series (WPRS), is designed to deliver the most complete,
authoritative, and accessible reference information available on a given subject of
Windows network programming-without sacrificing focus. Each book in each library is
dedicated to a logical group of technologies. or development concerns; this approach has
been taken specifically to enable you to find the information you need quickly, efficiently,
and intuitively.

In addition to its networking services development information, the Networking Services
Library contains tips designed to make your programming life easier. For example,
a thorough explanation and detailed tour of MSDN Online is included; as .is a section
that helps you get the most out of your MSDN subscription. Just in case you don't have
an MSDN subscription, or don't know why you should, I've included information about
that too, including the differences between the three levels of MSDN subscription, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet.

2 Volume 4 Remote Access Services

To ensure that you don't get lost in all the information provided in the Networking
Services Library, each volume's appendixes provide an all-encompassing programming
directory to help you easily find the particular programming element you're looking for.
This directory suite, which covers all the functions; structures, enumerations, and other
programming elements found in network-enabled application development, gets you
quickly to the volume and page you need, saving you hours of time and bucketsful
of frustration.

How the Networking Services Library Is Structured
The Networking Services Library consists of five volumes, each of which focuses on
a particular aspect of network programming. These programming reference volumes
have been divided into the following:

• Volume 1: Winsock and aos
• Volume 2: Network Interfaces and Protocols

• Volume 3: RPe and WNet

• Volume 4: Remote Access Services

• Volume 5: Routing

Dividing the Networking Services Library into these categories enables you to quickly
identify the Networking Services volume you need, based on your task, and facilitates
your maintenance of focus for that task. This approach enables you to keep one
reference book open and handy, or tucked under your arm while researching that aspect
of Windows programming on sandy beaches, without risking back problems (from toting
around all 3,000+ pages of the Networking Services Library) and without having to
shuffle among multiple less-focused books.

Within the Networking Services Library-and in fact, in all WPRS Libraries--each
volume has a deliberate structure. This per-volume structure has been created to further
focus the reference material in a developer-friendly manner, to maintain consistency
within each volume and each Library throughout the series, and to enable you to easily
gather the information you need. To that end, each volume in the Networking Services
Library contains the following parts:

• Part 1: Introduction and Overview

• Part 2: Guides, Examples, and Programmatic Reference

• Part 3: Intelligently Structured Indexes

Chapter 1 Getting Around in the Networking Services Library 3

Part 1 provides an introduction to the Networking Services Library and to the WPRS
(what you're reading now), and a handful of chapters designed to help you get the most
out of networking technologies, MSDN, and MSDN Online. MSDN and WPRS Libraries
are your tools in the developer process; knowing how to use them to their fullest will
enable you to be more efficient and effective (both of which are generally desirable
traits). In certain volumes (where appropriate), I've also provided additional information
that you'll need in your network-enabled development efforts, and included such
information as concluding chapters in Part 1. For example, Volume 3 includes a chapter
that explains terms used throughout the RPC development documentation; by putting
it into Chapter 5 of that volume, you always know where to go when you have a question
about an RPC term. Some of the other volumes in the Networking Services Library
conclude their Part 1 with chapters that include information crucial to their volume's
contents, but I've been very selective about including such information. Publishing
constraints have limited the amount of information I can provide in each volume
(and in the library as a whole), so I've focused on the priority: getting you the most
useful information possible within the number of pages I have to work with.

Part 2 contains the networking reference material particular to its volume. You'll notice
that each volume contains much more than simple collections of function and structure
definitions. A comprehensive reference resource should include information about how
to use a particular technology, as well as definitions of programming elements.
Consequently, the information in Part 2 combines complete programming element
definitions with instructional and explanatory material for each programming area.

Part 3 is a collection of intelligently arranged and created indexes. One of the biggest
challenges of the IT professional is finding information in the sea of available resources
and network programming is probably one of the most complex and involved of any
development diSCipline. In order to help you get a handle on network programming
references (and Microsoft technologies in general), Part 3 puts all such information into
an understandable, manageable directory (in the form of indexes) that enables you
to quickly find the information you need.

How the Networking Services Library Is DeSigned
The Networking Services Library (and all libraries in the WPRS) is designed to deliver
the most pertinent information in the most accessible way possible. The Networking
Services Library is also designed to integrate seamlessly with MSDN and MSDN Online
by providing a look and feel consistent with their electronic means of disseminating
Microsoft reference information. In other words, the way a given function reference
appears on the pages of this book has been deSigned specifically to emulate the way
that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you to use the
tools and get the ongoing information you need to create quality programs. Providing a
"common interface" among reference resources allows your familiarity with the
Networking Services Library reference material to be immediately applied to MSDN or
MSDN Online, and vice-versa. In a word, it means consistency.

4 Volume 4 Remote Access Services

You'll find this philosophy of consistency and simplicity applied throughout WPRS
publications. I've designed the series to go hand-in-hand with MSDN and MSDN Online
resources. Such consistency lets you leverage your familiarity with electronic reference
material, then apply that familiarity to enable you to get away from your computer if you'd
like, take a book with you, and-in the absence of keyboards and e-mail and upright
chairs-get your programming reading and research done. Of course, each of the
Networking Services Library volumes fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Networking Services Library provide you with a comprehensive,
presharpened toolset to build compelling Windows applications.

CHAPTER 2

What's In This Volume?

Volume 4 of the Networking Services Developer's Reference Library gives its undivided
attention to Remote Access Services, commonly referred to simply as RAS.

5

The Remote Access Service (RAS) API is included in Microsoft Windows NT 4.0. RAS is
used to create client applications that can display any of the Routing and RAS common
dialog boxes, start and end a remote access connection, manipulate phone-book entries
and network addresses that are mapped to phone-book entries, and get information
about existing RAS connection status or RAS-capable devices.

RAS makes it possible to connect a remote client computer to a network server over a
Wide Area Network (WAN) link or a Virtual Private Network (VPN). The remote computer
can then participate on the server's LAN as though the remote computer was connected
to the LAN directly. The RAS API enables programmers to access the features of RAS
programmatically. The API is applicable in any networking environment that utilizes RAS.
Part 2 of this volume provides a complete treatment of RAS.

This volume also has information about how you can use development resources such
as MSDN, MSDN Online, and developer support resources. This helpful information is
found in various chapters in Part 1, and those chapters are common to all WPRS
volumes. By including this information in each library and in each volume, a few goals of
the WPRS are achieved:

• I don't presume you have bought, or expect you to have to buy another WPRS Library
to get access to this information. Maybe your primary focus is network programming,
and your budget doesn't allow for you to purchase the Active Directory Developer's
Reference Library. Since I've included this information in this library, you don't have
to .

• You can access this important and useful information regardless of which volume you
have in your hand. You don't have to (nor shou/dyou have to) fumble with another
physical book to refer to information about how to get the most out of MSDN, or where
to get support for questions you have about a particular Windows development
problem you're having.

• Each volume becomes more useful, more portable, and more complete in and of
itself. This goal of the WPRS makes it easier for you to grab one of its libraries'
volumes and take it with you, rather than feeling like you must bring multiple volumes
with you to have access to the library's important overview and usability information.

These goals have steered this library's content and choices of included technologies;
I hope you find its information is useful, portable, a good value, and as accessible as it
can be.

6 Volume 4 Remote Access Services

Part 2 of this volume provides RAS information in the following chapter-based focuses:

RAS Programming Guide
This guide takes you through the steps necessary to implement RAS capabilities in your
Windows application. All such tasks are grouped in task-oriented categories,· such as
connection operations, AutoDial, server administration, and more.

RAS Reference
A collection of chapters appears after the RAS programming guide that provide a
complete treatment of the RAS API.

RRAS Overview
This chapter provides an overview of the new Remote Access capabilities built into
RRAS, which is the successor of RAS.

RAS Administration
This chapter provides information and programmatic reference for performing RAS
Administration programming using RRAS-based RAS administration. Where there are
differences in the treatment of RAS on Windows NT 4.0 and Windows 2000, such
differences are clearly noted in the text.

EAP
Windows 2000 supports the Extensible Authentication Protocol (EAP). EAP allows third­
party authentication modules to interact with the implementation of the Point-to-Point
Protocol (PPP) included in Windows 2000 Remote Access Service (RAS).

EAP is an extension to PPP, providing a standard support mechanism for authentication
schemes such as token cards, Kerberos, Public Key, and S/Key. EAP has been made
available in response to increasing demand to augment RAS authentication with third­
party security devices.

EAP is fully supported on both the Windows 2000 Dial-Up Server and the Dial-Up
Networking Client. EAP is a critical technology component for secure Virtual Private
Networks (VPN), protecting them against "brute force" or "dictionary" attacks and
password guessing.

EAP improves on previous authentication protocols such as Password Authentication
Protocol (PAP) and Challenge Handshake Authentication Protocol (CHAP). Windows
2000 supports these earlier authentication protocols as well.

Tracing
The final chapter in this volume describes the implementation of the common tracing
DLL, which provides a uniform mechanism for generating diagnostic output for the
Windows NTIWindows 2000 Routing and RAS components (as well as any other
application that wishes to use the DLL). The DLL provides dynamic configuration
change, allowing a user to direct output to a console or to a specified file.

CHAPTER 3

Using Microsoft Reference
Resources

7

Keeping current with all the latest information on the latest networking technology is like
trying to count the packets going through routers at the MAE-WEST Internet service
exchange by watching their blinking activity lights: It's impossible. Often times,
application developers feel like those routers might feel at a given day's peak activity; too
much information is passing through them, none of which is being absorbed or passed
along fast enough for their boss' liking.

For developers, sifting through all the available information to get to the required
information is often a major undertaking, and can impose a significant amount of
overhead upon a given project. What's needed is either a collection of information that
has been sifted for you, shaking out the information you need the most and putting that
pertinent information into a format that's useful and efficient, or direction on how to sift
the information yourself. The Networking Services Developer's Reference Ubrarydoes
the former, and this chapter and the next provide you with the latter.

This veritable white noise of information hasn't always been a problem for network
programmers. Not long ago, getting the information you needed was a challenge
because there wasn't enough of it; you had to find out where such information might be
located and then actually get access to that location, because it wasn't at your fingertips
oron some globally available backbone, and such searching took time. In short, the
availability of information was limited.

Today, the volume of information that surrounds us sometimes numbs us; we're
overloaded with too much information, and if we don't take measures to filter out what
we don't need to meet our goals, soon we become inundated and unable to discern
what's "white noise" and what's information that we need to stay on top of our respective
fields. In short, the overload of available information makes it more difficult for us to find
what we really need, and wading through the deluge slows us down.

This fact applies equally to Microsoft's reference material, because there is so much
information that finding what you need can be as challenging as figuring out what to do
with it once you have it. Developers need a way to cut through what isn't pertinent to
them and to get what they're looking for. One way to ensure you can get to the
information you need is to understand the tools you use; carpenters know how to use
nail-guns, and it makes them more efficient. Bankers know how to use ten-keys, and it
makes them more adept. If you're a developer of Windows applications, two tools you
should know are MSDN and MSDN Online. The third tool for developers-reference
books from the WPRS-can help you get the most out of the first two.

8 Volume 4 Remote Access Services

Books in the WPRS, such as those found in the Networking Services Developer's
Reference Library, provide reference material that focuses on a given area of Windows
programming. MSDN and MSDN Online, in comparison, contain all of the reference
material that all Microsoft programming technologies have amassed over the past few
years, and create one large repository of information. Regardless of how well such
information is organized, there's a lot of it, and if you don't know your way around,
finding what you need (even though it's in there, somewhere) can be frustrating, time­
consuming, and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online and enable you to use each of them to the fullest of their capabilities. Also, other
Microsoft reference resources are investigated, and by the end of the chapter, you'll
know where to go for the Microsoft reference information you need (and how to quickly
and efficiently get there).

The Microsoft Developer Network
MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don't have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What is the difference between the three levels of MSDN subscriptions?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked any of these questions, then lurking somewhere in the back of your
thoughts has probably been a sneaking suspicion that maybe you aren't getting the most
out of MSDN. Maybe you're wondering whether you're paying too much for too little, or
not enough to get the resources you need. Regardless, you want to be in the know and
not in the dark. By the end of this chapter, you'll know the answers to all these questions
and more, along with some effective tips and hints on how to make the most effective
use of MSDN and MSDN Online.

Chapter 3 Using Microsoft Reference Resources 9

Comparing MSDN with MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD or DVD.

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best possible presentation of material. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online because it gets to its subscribers
in the form of CDs or DVDs that come in the mail. However, MSDN can sit in your
CD/DVD drive (or on your hard drive), and isn't subject to Internet speeds or failures.
Also, MSDN has a software download feature that enables subscribers to automatically
update their local MSDN content over the Internet, as soon as it becomes available,
without having to wait for the update CD/DVD to come in the mail. The interface with
which MSDN displays its material---'-whichlooks a whole lot like a specialized browser
window-is also linked to the Internet as a browser-like window. To further coordinate
MSDN with the immediacy of the Internet, MSDN Online has a section of the site
dedicated to MSDN subscribers that enable subscription material to be updated (on their
local machines) as soon as it's available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based Web sites. MSDN Online also
has a customizsble interface (somewhat similar to MSN.com) that enables visitors to
tailor the information that's presented upon visiting the site to the areas of Windows
development in which they are most interested. However, MSDN Online, while full of
up-tO-date referenCe material and extensive online developer community content,
doesn't come with Microsoft product software, and doesn't reside on your local machine.

Because it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to f.igure out a way to quickly identify how and where they depart.
Figure 3·1 puts the differences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

10 Volume 4 Remote Access Services

Figure 3-1: The similarities and differences in coverage between MSDN and
MSDN Online.

One feature you'll notice is shared between MSDN and MSDN Online is the interface­
they are very similar. That's almost certainly a result of attempting to ensure that
developers' user experience with MSDN is easily associated with the experience had on
MSDN Online, and vice-versa.

Chapter 3 Using Microsoft Reference Resources 11

Remember, too, that if you are an MSDN subscriber, you can still use MSDN Online and
its features. So it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what the differences between its subscription levels are, you aren't
alone. This section aims to provide a quick guide to the differences in subscription levels,
and even provides an estimate for what each subscription level costs.

The three subscription levels for MSDN are: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut-and-paste into your projects, royalty free

• The complete Microsoft Knowledge Sase-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Microsoft Visual Studio,
Microsoft Office, and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

12 Volume 4 Remote Access Services

MSDN Professional Subscription
The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of
Windows 95, Windows 98, and Windows NT 4 Server and Workstation

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

• The latest version of Visual Studio, Enterprise Edition

• The Microsoft BackOffice test platform, which includes all sorts of Microsoft product
software incorporated in the BackOffice family, each with a special 10-connection
license for use in the development of your software products

• Additional development tools, such as Office Developer, Microsoft FrontPage, and
Microsoft Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1 ,999, and if you're
upgrading from the Library subscription level, there's an in-the-box rebate for $200.

Chapter 3 Using Microsoft Reference Resources 13

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal-and in most cases, the
deal is in fact much better. Also, if your organization is using lots of Microsoft products,
whether or not MSDN is a part of that group, ask your purchasing department to look into
the Microsoft Open License program; the Open License program gives purchasing
breaks for customers who buy lots of products. Check out www.microsoft.com//icensing
for more details. Who knows, if your organization qualifies you could end up getting an
engraved pen from your purchasing department, or if you're really lucky maybe even a
plaque of some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions.

As an added bonus for owners of this Networking Services Developer's Reference
Library, in the back of Volume 1, you'll find a $200 rebate good toward the purchase of
an MSDN Universal subscription. For those of you doing the math, that means you
actually make money when you purchase the Networking Services Developer's
Reference Library and an MSDN Universal subscription. With this rebate, every
developer in your organization can have the Networking Services Developer's Refence
Library on their desk and the MSDN Universal subscription on thier desktop, and still
come out $50 ahead. That's the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

14 Volume 4 Remote Access Services

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains, over 1 .1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Office Developer Documentation
Windows CE Documentation
Platform SDK

Windows Resource Kits
Tool. and Technologies
Knowledge Base
Technical Arlicle,

Welcome to the October 1999
release of the MSDN Library,

The MSDN Library is the essential reference for developers, with
more than a gigabyte of technical programming information,
including sample code, documentation, technical articles, the
Microsoft Developer Knowledge Base, and anything else you
might need to develop solutions that implement Microsoft
technology,

.·MH".;il';;iiliiW'
Dr, GUI introduces the October 1999 release of the MSDN Library, The
good doctor examines new Library content, including articles and
documentation about Windows 2000, Windows CE, Office 2000, and
databases and data access, plus several new technical article sample
suites,

M,fifig'i.J,"5ij"¥i,.
Read through this document for summaries of what's new and follow
the links to the new titles.

Figure 3-2: The MSDN interface.

Basic navigation through MSDN is simple and is alot like navigating through Microsoft
Windows Explorer and its folder structure. Instead of folders, MSDN has books into
which it organizes its topics; expand a book by clicking the + box to its left, and its
contents are displayed with its nested books or reference pages, as shown in Figure 3-3.
If you don't see the left pane in your MSDN viewer, go to the View menu and select
Navigation Tabs and they'll appear.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

!±l • Welcome to the MSDN Libral,Y
[±J • Visual Studio 6.0 Documentation
r±l • Office Developer Documentation
[±] • Windows CE Documentation
B ('QJ Plalform SDK

!±l .. Getting Stalted
l±l • Design Strategies and Standards
fil .. Base Services
r±J • Component Services
!!1 • DataAccess Services
LB • Graphics and Multimedia Services
!±l • Management S elvices
!±l • Messaging and Collaboration Services
El IJ2j Networking and Director.'.' Services

!±.l Active Director,Y, ADSL and Directory Services
ff.I Common Internet File System Protocol

Fax Service

Chapter 3 Using Microsoft Reference Resources 15

Purpose

MADCAP, or Multicast Address
Dynamic Client Allocation
Protocol, is a technology
aimed at making it easy for
clients to renew and release
Multicast addresses, enabling
clients to dynamically
"connect" and "disconnect"
from multicast network
transmissions.

The development of
standards for MADCAP is
ongoing j and falls under the
Multicast Address Allocation
(malloe) Working Group at the
IETF,

Where Applicable

Overview

General
information
about
MADCAP,

Reference

Documentation
of MADCAP
functions and
structures.

Feedback

Make error
reports and
feature
requests
directly to
Microsoft,

Figure 3-3: Basic navigation through MSDN.

The Active Subset drop-down box isa filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry. This enables you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed.

MSDN comes with the following predefined subsets (these subsets are subject to
change, based on documentation updates and TOC reorganizations):

Entire Collection Platform SDK, Networking Services
MSDN, Books and Periodicals Platform SDK, Security
MSDN, Content on Disk 2 only Platform SDK, Tools and Languages

(CD only - not in DVD version) Platform SDK, User Interface Services

MSDN, Content on Disk 3 only Platform SDK, Web Services
(CD only - not in DVD version) Platform SDK, Win32 API

MSDN, Knowledge Base Repository 2.0 Documentation
MSDN, Technical Articles and Visual Basic Documentation
Backgrounders Visual C++ Documentation

16 Volume 4 Remote Access Services

Office Developer Documentation
Platform SDK, BackOffice
Platform SDK, Base Services
Platform SDK, Component Services
Platform SDK, Data Access Services
Platform SDK, Getting Started
Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management Services
Platform SDK, Messaging and
Collaboration Services

Visual C++, Platform SDK and
WinCE Docs

Visual C++, Platform SDK, and
Enterprise Docs

Visual FoxPro Documentation
VisuallnterDev Documentation
Visual J++ Documentation
Visual SourceSafe Documentation
Visual Studio Product Documentation
Windows CE Documentation

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK's ADSI, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset by choosing the View menu, and then selecting the
Define Subsets menu item. You're presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

You can also delete entire subsets from the MSDN installation. Simply select the subset
you want to delete from the Select Subset To Display drop-down box, and then click the
nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the predefined
subsets, and filters the information available in the four Navigation Tabs, just like the
predefined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure.

Chapter 3 Using Microsoft Reference Resources 1.7

This is easy to fix. Simply click the Locate button in the navigation toolbar and all will be
synchronized.

Figure 3·4: The Define Subsets window.

Use the Back button just like a browser. The Back button in the navigation tool bar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the volume of information available these days can sometimes make it difficult to get our
work done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box shows
only a few subsets at a time (making it difficult to get a grip on available subsets, I think).
Underscores come before letters in alphabetical order, so if you use an underscore on all
of your defined subsets, you get them placed at the front of the Active Subset listing of
available subsets. Also, by using an underscore, you can immediately see which subsets
you've defined, and which ones come with MSDN-it saves a few seconds at most, but
those seconds can add up.

18 Volume 4 Remote Access Services

Using MSDN Online
MSDN underwent a redesign in December of 1999, aimed at streamlining the
information provided, jazzing things up with more color, highlighting hot new
technologies, and various other improvements. Despite its visual overhaul, MSDN Online
still shares a lot of content and information delivery similarities with MSDN, and those
similarities are by design; when you can go from one developer resource to another and
immediately work with its content, your job is made easier. However, MSDN Online is
different enough that it merits explaining in its own right-it's a different delivery medium,
and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used MSN's home page before (www.msn.com). you're familiar with the fact
that you can customize the page to your liking; choose from an assortment of available
national news, computer news, local news, local weather, stock quotes, and other
collections of information or news that suit your tastes or interests. You can even insert a
few Web links and have them readily accessible when you visit the site. The MSDN
Online home page can be customized in a similar way, but its collection of headlines,
information, and news sources are all about development. The information you choose
specifies the information you see when you go to the MSDN Online home page, just like
the MSN home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Personalize This Site button near
the top of the page, or you can go there directly by pointing your browser to
msdn. microsoft. com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from (many
more options can be found when you scroll down through available technologies). If
you're interested in Web development, you can select the checkbox at the left of the
page next to Standard Web Development, and a predefined subset of Web-centered
technologies is selected. For technologies centered more on Network Services, you can
go through and choose the appropriate technologies. If you want to choose all the
technologies in a given technology group more quickly, click the Select All button in the
technology's shaded title area.

You can also choose which tab is selected by default in the home page that MSDN
Online presents to you, which is convenient for dropping you into the category of MSDN
Online information that interests you most. All five of the tabs available on MSDN
Online's home page are available for selection; those tabs are the following:

• Features

• News
• Columns
• Technical Articles

• Training & Events

Select or clear the check boxes
below tochoo •• apre·set
template of information for that
technology

o Database
Development/Administration

o Database Web Development

o OfficeNBA Developer

o Standard Web Development

o Windows Development

n~

Chapter 3 Using Microsoft Reference Resources 19

Personalize the information that appears on your I'ISDN Online home page.

Select your preferences from the sections below J then return here and choose Save. (Yes J we
know it's a lot of choices. There's a lot of information on this s~e.) You can update your choices
at any time by visiting this Personalization page.

Figure 3-5: The MSDN Online Personalize Page.

Once you've defined your profile-that is, customized the MSDN Online content you
want to see-MSDN Online shows 'you the most recent information pertinent to your
profile when you go to MSDN Online's home page, with the default tab you've. chosen
displayed upon loading of the MSDN Online home page.

Finally, if you want your profile to be available to you regardless of whiCh computer
you're using, you can direct MSDN Online to store your profile. Storing a profile for
MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of storing your profile is available
when you customize your MSDN Online home page (and can be done any time
thereafter). The storing 01a profile, however, requires that you become a registered
member of MSDN Online. More information about becoming a registered MSDN Online
user is provided in the section titled MSDN Online Registered Users.

20 Volume 4 Remote Access Services

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the information
you're most interested in, navigating through MSDN Online is easy. A banner that sits
just below the MSDN Online logo functions as a navigation bar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

iii Products
iii Partnerlng
iii International
iii My Links
• IT Professionals

~ MSDN Flash
(e·newsletter)

II Send Us
Your Feedback

I'll Site Guide

Learn about the new features, bug fixes, and other
improvements to the Microsoft XML pars.r coming in
Windows 2000, in this column by Charli. Heinemann of
the Microsoft XML team, Charlie also explains why the
new version of the parser is better equipped for server

use, (Dec 21, Column)·.

TUne in to the MSDN Show

XML

Visual Studio

DLL Help
Database

Learn about new technologies coming out of Microsoft in MSDN Online's

first strMming media ·show, This show's topics include XML and BizTalk,

(Dec 15, Streaming video).

Figure 3-6: The MSDN Online Navigation Bar with Its Drop-Down Menus.

Following is a list of available menu categories, which groups the available sites and
features within MSDN Online: .

Home

Magazines

Libraries

Developer Centers

Resources

Downloads

Search MSDN

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

Chapter 3 Using Microsoft Reference Resources 21

-MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
information about technologies that you've indicated you're interested in reading about.

Magazines is a collection of columns and articles that comprise MSDN Online's
magazine section, as well as online versions of Microsoft's magazines such as MSJ,
MIND, and the MSDN Show (a Webcast feature introduced with the December 1999
remodeling of MSDN Online). The Magazines feature of MSDN Online can be linked to
directly at msdn.microsoft.comlresources/magazines.asp. The Magazines home page is
shown in Figure 3-7.

Voices •

MSJ •

MIND.

MSDN Newspaper •

MSDN Snow •

Magazines
Print and online publications for current information on all type's of development,

Microsoft Systems Journal eMS)

MS} is the magazine that brings developers monthly features on the most important tools and
technologies such as XML, Windows 2000, ATL, MFC, Windows CE, DirectX, C++, as well as monthly
columns on visual programming~ Win 32~ COM'~ debugging, security, and more.

Microsoft Internet Developer (MIND)

MIND is the monthly magazine for Internet and intranet developers that covers tools and technologies
induding XML, Visual Basic, scripting, ADO, SQL Server, lIS, and anything else a developer might need
to build an interactive or e-commerce site.

MSDN News

The MSON New. is a printed newspaper,published bi-monthly for the developer audience. The
newspaper features new technical article~ and ongoing columns l including the popular "Ask Dr. GUI/' as
well as a regular series of posters. Subscriptions are free to MSDN subscribers.

The MSDN Show

This regular Webcast brings you inside Microsoft to talk with developers and planners about our hott.e.t
new technologies. The segments range from broad overviews to down-and-dirty coding l with some
news and entertainment mixed inJ too.

Figure 3-7: The Magazines Home Page.

For those of you familiar with the VOices feature section that formerly found its home on
the MSDN Online navigation banner, don't worry; all content formerly in the Voices
section is included the Magazines section as a subsite (or menu item, if you prefer) of
the Magazines site. For those of you who aren't familiar with the Voices subsite, you'll

22 Volume 4 Remote Access Services

find a bunch of different articles or "voices" there, each of which adds its own particular
twist on the issues that face developers. Both application and Web developers can get
their fill of magazine-like articles from the sizable list of different articles available (and
frequently refreshed) in the Voices subsite. With the combination of columns and online
developer magazines offered in the Magazines section, you're sure to find plenty of
interesting inSights.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between Windows application development and Web development.
Choosing Library from the Libraries menu takes you to a page through which you can
navigate in traditional MSDN fashion, and gain access to traditional MSDN reference
material. The Library home page can be linked to directly at msdn.microsoft.com/library.
Choosing Web Workshop takes you to a site that enables you to navigate the Web
Workshop in a slightly different way, starting with a bulleted list of start points, as shown
in Figure 3-8. The Web Workshop home page can be linked to directly at
msdn.microsoft.com/workshop.

ESSENTIALS·

Component DeIJelopme'nt •

Content 8! Component Delivery.

Data Access 8! Databases.

Design.

DHTML, HTML 8t ess •
Languages & DeIJelopment Tools.

Messaging 8t ColI,aboratlon •

Net orking. Protocols.
& Data Formats

Reusing Browser Technology.

Security & Cryptography.

Server Technologies.

Streaming & InteractilJe Media.

Web Content Management.

XML (Extensible Markup Language) •

Component
Development

This section contains
inform.tion you'll need to
create components for your
Web pagesJ using either
ActiveX or DHTML scriptlet
technology, as well as related
information about COM 1

ActiveX Scripting l Active

Documents J and offline
browsing.

Welcome
The MSDN Online Web
Workshop provides the latest
information about Internet
technologies~ including
reference material and in­
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords, and the s.arch
page for specific queries.
Check our What's New page
for updates.

The to1S0N Online team

© 1999 Microsoft Corporation. All rights reserlJed. Terms of use.

Figure 3-8: The Web Workshop Home Page:

Chapter 3 Using Microsoft Reference Resources 23

Developer Centers is a hub from which developers who are interested in a particular
area of development-such as Windows 2000, Sal Server, or XMl-can go to find
focused Web site centers within MSDN Online. Each developer center is dedicated to
providing all sorts of information associated with its area of focus. For example, the
Windows 2000 developer center has information about what's new with Windows 2000,
including newsgroups, specifications, chats, knowledge base articles, and news, among
others. At publication time, MSDN Online had the following developer centers:

• Microsoft Windows 2000

• Microsoft Exchange

• Microsoft Sal Server

• Microsoft Windows Media

• XMl

In addition to these developer centers is a promise that new centers would be added to
the site in the future. To get to the Developer Centers home page directly, link to
msdn. microsoft. comlresourcesldevcenters.asp. Figure 3-9 shows the Developer Centers
home page.

Microsoft Windows ..
2000

Microsoft Exchange ..

Microsoft SQLServer •

Microsoft Windows ..
Media

XML •

MSDN Developer Centers
MSDN Developer Centers provide access to all the developer resources MSDN has to offer for specific
products and technologies, From the Developer Centers: you can also find the latest links to aU the best
new technical articles, downloads) samples) product news! and more. While we'll be adding more
Developer Centers to the site in the future, you can visit the following Developer Centers today:

• r.,.'jicrosoft Exchange

• Microsoft SQL Server

• Microsoft Windows fv'ledia

• XML

Figure 3-9: The Developer Centers Home Page.

24 Volume 4 Remote Access Services

Resources is a place where developers can go to take advantage of the online forum of
Windows and Web developers, in which ideas or techniques can be shared, advice can
be found or given (through MHM, or Members Helping Members), and the MSDN User
Group Program can be joined or perused to find a forum to voice their opinions or chat
with other developers. The Resources site is full of all sorts of useful stuff, including
featured books, a DLL help database, online chats, case studies, and more. The
Resources home page can be linked to directly at msdn.microsoft.com/resources. Figure
3-10 provides a look at the Resources home page.

OLL H.lp Oat.b.... Additional MSDN Online Resources
MSDN Online Support •

Newsgroups •

Peer Journal _

Members Helping _
Members

MSDN User Group •
Program

MSDN Online Chat5 •

MSDN Training •

Events •

Deyeloper Books •

MSDN Online is apout more than just technical articles and documentation. Check out the wide variety
of resources we offer to help you get your job done.

The DLL Help Database

Microsoft·s DLL Help database provides a searchable database of information about file versions that
ship with a selected set of Microsoft products,

MSDN Online Support

MSDN Online Support offers a large variety of technical resources, including the Microsoft Knowledge
Base; service packs~ hotfixes~ and tools,; and Support Web Casts J live presentations by Support
professionals.

Newsgroups

MSDN online provides access to selected developer-focused public newsgroups through our browser­
based newsreader. Microsoft's public newsgroups allow you to interact with the Microsoft developer
community and MVPs (Most Valuable Professionals), Public newsgroups are a great way to solve
technical problems, learn more about a specific product or technology, or keep up with the latest buzz
in the developer community. Microsoft employees do not monitor Microsoft's public newsgroups.

Peer Journal

Microsoft's collection of code~ tips~ and articles written by your developer'peers.

Figure 3-10: The Resources Home Page.

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDNsection. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-11.

Ser~'ice Packs •

Samples to

Tools 0-

Beta and Pre ... iew ..
Releases

Images ..

Sounds •

De'Jelopment ..
Kit::: (SDKs)

MSDN Subscriber
Do nloads

Chapter 3 Using Microsoft Reference Resources 25

Welcome to the MSDN Online Downloads Area

Service Packs

Service Packs and product updates provide bug fixes and address other issues that customers have
discovered since a product's release.

Samples

In this section) you will find a great variety of samples that demonstrate ways to use the latest and
greatest Microsoft technologies to make your applications the best they can be. All samples have code
that can be downloaded) most can be browsed online) and many have live demonstration pages,
Choose from the Table of Contents to find samples focused on a particular product or technology,
Entries prefixed with it are for users registered with Visual Studio only, To get access to these! register
your product today.

Tools

Want to tryout some great new products? Check out our tools area! where users can download more
than 40 trial! beta J and full versions of the latest developer products,

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understand
end~to-end application architecture and desigr).

Beta and Preview Releases

Figure 3~11: The Downloads Home Page.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), as well as other fine-tune search capabilities. The Search MSDN home page
can be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-12.

There are two other destinations within MSDN Online of specific interest, neither of
which is immediately reachable through the MSDN navigation bar. The first is the MSDN
Online Member Community home page, and the other is the Site Guide.

26 Volume 4 Remote Access Services

Figure 3-12: The Search MSDN Home Page.

The MSDN Online Member Community home page can be directly reached at
msdn. microsoft. com/community. Many of the features found in the Resources
navigation menu are actually subsites of the Community page. Of course, becoming a
member of the MSDN Online member community requires that you register (see the next
section for more details on joining), but doing so enables you to get access to Online
Special Interest Groups (OSIGs) and other features reserved for registered members.
The Community page is shown in Figure 3-13.

Another destination of interest on MSDN Online that isn't displayed on the navigation
banner is the Site Guide. The Site Guide is just what its name suggests-a guide to the
MSDN Online site that aims at helping developers find items of interest, and includes
links to other pages on MSDN Online such as a recently posted files listing, site maps,
glossaries, and other useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. com/siteguide.

Your Membership.

081G5.

Peer Journ.al ..

Case Studies ""

Downloads.

Members Helping.
Members

Offers ..

Training '"

MSDN Stores: ..

Chapter 3 Using Microsoft Reference Resources 27

Welcome to the MSDN Online Member Community
Updated October 14,1999

With an MSDN Online membership) developers can easily access technical
information, tools) and a community of developers ready to help solve the
toughest challenges, Join now and take advantage of member benefits.

Online Sliecial- Interest Groups

Access the information you need) when you need it! with
(OSIGs), Web~based access to relevant newsgroups, sorted by product!

make it easy for you to get information you need to do your job, Take advantage
of special offers, find useful links, and stay up to date with the late.t product and
technology news.

Members Helping Members

(MHM) is a networking and support tool that helps
developers get connected) solve problems) and gain recognition within the
developer community, Get answers quickly by searching the MHM database for
people who can answer your technical ,questions. Or) register as a volunteer and
help other developers when they need it. up n!J!<\'!

Roaming Profiles

Figure 3-13: The MSDN Online Member Community Home Page.

MSDN Online Registered Users
You may have noticed that some features of MSDN Online-such as the capability to
create a store profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more but a few minutes of registration time,

Some features of MSDN Online require registration before you can take advantage of
their offerings, For example, becoming a member of an OSIG requires registration. That
feature alone is enough to register; rather than attempting to call your developer buddy
for an answer to a question (only to find out that she's on vacation fortwo days, and your
deadline is in a few hours), you can go to MSDN Online's Community site and ferret
through your OSIG to find the answer in a handful of clicks. Who knows; maybe your
developer buddy will begin calling you with questions-you don't have to tell her where
you're getting all your answers,

28 Volume 4 Remote Access Services

There are a number of advantages to being a registered user, such as the choice to
receive newsletters right in your inbox if you want to. You can also get all sorts of other
timely information, such as chat reminders that let you know when experts on a given
subject will be chatting in the MSDN Online Community site. You can also sign up to get
newsletters based on your membership in various OSIGs-again, only if you want to. It's
easy for me to suggest that you become a registered user for MSDN Online-I'm a
registered user, and it's a great resource.

The Windows Programming Reference Series
The WPRS provides developers with timely, concise, and focused material on a given
topic, enabling developers to get their work done as efficiently as possible. In addition to
providing reference material for Microsoft technologies, each Library in the WPRS also
includes material that helps developers get the most out of its technologies, and
provides insights that might otherwise be difficult to find.

The WPRS currently includes the following libraries:

• Microsoft Win32 Developer's Reference Library

• Active Directory Developer's Reference Library

• Networking Services Developer's Reference Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
WPRS Libraries that cover the following material:

• Web Technologies Library

• Web Reference Library

• MFC Developer's Reference Library

• Com Developer's Reference Library

What else might you find in the future? Planned topics such as a Security Library,
Programming Languages Reference Library, BackOffice Developer's Reference Library,
or other pertinent topics that developers using Microsoft products need in order to get
the most out of their development efforts, are prime subjects for future membership in
the WPRS. If you have feedback you want to provide on such libraries, or on the WPRS
in general, you can send email towinprs@microsoft.com.

If you're sending mail about a particular library, make sure you put the name of the
library in the subject line. For example, e-mail about the Networking Services
Developer's Reference Library would have a subject line that reads "Networking
Services Developer's Reference Library." There aren't any guarantees that you'll get a
reply, but I'll read all of the mail and do what I can to ensure your comments, concerns,
or (especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

Networking is complex, and its resource information vast. With all the resources
available for developers of network-enabled applications, and the answers they can
provide to questions or problems that developers face every day, finding the developer
information you need can be a challenge. To address that problem, this chapter is
designed to be your one-stop resource to find the developer resources you need,
making the job of actually developing your application just a little easier.

29

Microsoft provides plenty of resource material through MSDN and MSDN Online, and the
WPRS provides a great filtered version of focused reference material and development
knowledge. However, there is a lot more information to be had. Some of that information
comes from Microsoft, some of it from the general development community, and yet
more information comes from companies that specialize in such development services.
Regardless of which resource you choose, in this chapter you can find out what your
development resource options are, and be more informed about the resources that are
available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances: For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be reached at www.microsoft.comlsupportlcustomerldeve/op.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between.
The Web page displayed in Figure 4-1 is a good starting point from which you can
find out more information about Microsoft's support services.

30 Volume 4 Remote Access Services

Whether you are a Software or Web Developer, developing or porting
commercial applications to run on Microsoft platforms requires a unique
level of support to ensure those applications optimize both current and
emerging technologies. Microsoft provides access to a wide range of
product and application development expertise to help developers
accelerate the development cycle and produce successful applications,
This includes the Microsoft Developer Network (MSDNTM) - a specially
dedicated Web site packed with news, resources and technical services.

II Go to Support Phone Numbers Click here

PREMIER SUPPORT FOR OEVELOPERS
For large organizations developing products using Microsoft technologies
who require a direct, proactive and managed support relationship with
Microsoft, Premier Support offers comprehensive and flexible high-end
support,

Click here for details

PROFESSIONAL SUPPORT FOR OEYELOPERS
Professional Support for Developers provides information services and
incid~nt-ba~ed support to help create and enhance your software

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and
includes different packages geared toward specific Microsoft customer needs. The
packages of Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you could fall into any of these categories. To find out more
information about Microsoft's Premier Support, contact them at (800) 936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft.

Chapter 4 Finding the Developer Resources You Need 31

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

The best support option for you as a developer is the Priority Developer support. To
obtain more information about Priority Developer Support, call Microsoft at
(800) 936-3500.

Microsoft also offers a Pay-Per-Incident Support option so you can get help if there's just
one question that you must have answered .. With Pay-Per-Incident Support, you call a toll­
free number and provide your Visa, MasterCard, or American Express account number,
after which you receive support for your incident. In loose terms, an incident is a problem
or issue that can't be broken down into subissues or subproblems (that is, it can't be
broken down into smaller pieces). The number to call for Pay-Per-Incident Support
is (800) 936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional subscription, and provides four priority technical support incidents as part
of the MSDN Universal subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a time line you might want to rethink this approach and consider
going to MSDN Online and looking into the Community site for help with your
development question. To submit a question to Microsoft engineers online,
go to support. microsoft. com/supportlwebresponse. asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, Simply go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.com/supportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on t:1ewsgroup-specific topics, providing yet another developer resource for
information about creating Windows applications, To find out which newsgroups are
available and how to get to them, go to support.microsoft.com/supportlnews.

The following newsgroups will probably b~ of particular interest to readers of the Active
Directory Developer's Reference· Library:.

• microsoft. public. win2000 . ..
• microsoft.public.msdn.general
• microsoft.public.platformsdk.active.directory
• microsoft.public.platformsdkadsi

32 Volume 4 Remote Access Services

• microsoft.public.platformsdk.disLsvcs
• microsoft. public. vb. *
• microsoft. public. vc. *
• microsoft.public.vstudio. *microsoft;public.cert. *
• microsoft. public. certification. *

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to developing on Windows are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup;generally, you'll need to contact your 18P to find out the name of the
mail server and then use a newsreader application to visit, read, or post to the
Usenet groups.

For network developers with a taste for Winsock (and 008) programming, another site
of interest is www.stardust.com. which is chock full of up-to-date information about
Winsock development and other network-related information. There's other information
about network programming on the site, so it's worth a look.

Internet Standards
Many of the network protocols and services implemented in Windows platforms conform
to one or more Internet standards recommendations that have gone through a process
of review and comments. One especially useful source, of information about such
standards, recommendations, and ongoing comment periods is the Internet Engineering
Task Force, or IETF. Rather than go into some long-winded (page-eating) explanation
of what the IETF is, does, and stands for, let me simply say that this is the place where
networking protocols and other various Internet-related services are often born,
scrutinized, recast, commented upon, and although not standardized or implemented,
recommended in a final form called a request for comment, or RFC, even though it's
essentially a standard by the time it gets to RFC stage.

If you want to get a clear technical picture of a given technology or protocol, or if you're
inclined to comment on the creation and subsequent scrutiny of such things, the place
you should go is www.ietf.org.This site can tell you all you want to know about the
goings on of the IETF, their (non-profit) mission, their Working Groups, and all the
information you might ever want about almost anything that has to do with networking
recommendations.

If you're curious about a given protocol or networking technology, and want to find an
unadulterated (albeit technical) version of its explanation, this is a great place to go.
It's a virtual hangout for the brightest people in networking, and it's worth a look or two,
even just for the sake of satisfying curiosity.

Chapter 4 Finding the Developer Resources You Need 33

Learning Products
Microsoft provides a number of products that enable developers to get versed in
the particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering series, and its
products provide comprehensive, well-structured interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft contains interactive tools that group books and CDs
together so that you can master the topic in question, and there are products available
based on the type of application you're developing. To obtain more information about the
Mastering series of products, or to find out what kind of offerings the Mastering series
has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors as well, such as other
publishers, other application providers that create tutorial-type content and applications,
and companies that issue videos (both taped and broadcast over the Internet)
on specific technologies. For one example of a company that issues technology-based
instructional or overview videos, take a look at www.compchanne/.com.

Another way of learning about development in a particular language (such as C++,
FoxPro, or Microsoft Visual Basic), for a particular operating system, or for a particular
product (such as Microsoft Sal Server or Microsoft Commerce Server) is to read the
preparation materials available for certification as a Microsoft Certified Solutions
Developer (MCSD). Before you get defensive about not having enough time to get
certified, or not having any interest in getting your certification (maybe you do----there are
benefits, you know), let me just state that the point of the journey is not necessarily to
arrive. In other words, you don't have to get your certification for the preparation
materials to be useful; in fact, the materials might teach you things that you thought you
knew well but actually didn't know as well as you thought you did. The fact of the matter
is that the coursework and the requirements to get through the certification process are
rigorous, difficult, and quite detail~oriented. If you have what it takes to get your
certification, you have an extremely strong grasp of the fundamentals (and then some) of
application programming and the developer-centric information about Windows .
platforms.

You are required to pass a set of core exams to get an MCSD certification, and then
you must choose one topic from many available electives exams to complete your
certification requirements. Core exams are chosen from among a group of available
exams; you must pass a total of three exams to complete the core requirements. There
are ''tracks'' that candidates generally choose which point their certification in a given
direction, such as C++ development or Visual Basic development. The core exams and
their exam numbers (at the time of publication) are as follows.

34 Volume 4. Remot&Access Service:s

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Visual C++ 6.0 (70-016)

• Designing and Implementing Desktop Applications with Visual FoxPro 6.0 (70-156)

• Designing and Implementing Desktop Applications with Visual Basic 6.0 (70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Visual C++ 6.0 (70-015)

• Designing and Implementing Distributed Applications with Visual FoxPro 6.0 (70-155)

• Designing and Implementing Distributed Applications with Visual Basic 6.0 (70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams
to complete their MCSD exam requirements. The following MCSD elective exams are
available:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft SOL Server 7.0
(70-019)

• Developing Applications with C++ Using the Microsoft Foundation Class Library
(70-024)

• Implementing OLE in Microsoft Foundation Class Applications (70-025)

• Implementing a Database Design on Microsoft SOL Server 6.5 (70-027)

• Designing and Implementing Databases with Microsoft SOL Server 7.0 (70-029)

• Designing and Implementing Web Sites with Microsoft FrontPage 98 (70-055)

• DeSigning and Implementing Commerce Solutions with
Microsoft Site Server 3.0, Commerce Edition (70-057)

• Application Development with Microsoft Access for WindowS 95 and the
Microsoft Access Developer's Toolkit (70-069)

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications (70-091)

• Designing and Implementing Database Applications with Microsoft Access 2000
(70-097)

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5 (70-105)

• Designing and Implementing Web Solutions with Microsoft VisuallnterDev 6.0
(70-152)

• Developing Applications with Microsoft Visual Basic 5.0 (70-165)

Chapter 4 Finding the Developer Resources You Need 35

The good news is that because there are exams you must pass to become certified,
there are books and other material out there to teach you how to meet the knowledge
level necessary to pass the exams. That means those resources are available to you­
regardless of whether you care about becoming an MCSD.

The way to leverage this information is to get study materials for one or more of these
exams and go through the exam preparation material (don't be fooled by believing that if
the book is bigger, it must be better, because that certainly isn't always the case.) Exam
preparation material is available from such publishers as Microsoft Press, IDG, Sybex, and
others. Most exam preparation texts also have practice exams that let you assess your
grasp on the material. You might be surprised how much you learn, even though you may
have been in the field working on complex projects for some time.

Exam requirements, as well as the exams themselves, can change over time; more
electives become available, exams based on previous versions of software are retired,
and so on. You should check the status of individual exams (such as whether one of the
exams listed has been retired) before moving forward with your certification plans. For
more information about the certification process, or for more information about the
exams, check out Microsoft's certification web site at www.microsoft.comltrain_cert/dev.

Conferences
Like any industry, Microsoft and the development industry as a whole sponsor
conferences on various topics throughout the year and around the world. There are
probably more conferences available than anyone human could possibly attend and still
maintain his or her sanity, but often a given conference is geared toward a focused topic,
so choosing to focus on a particular development topic enables developers to winnow
the number of conferences that apply to their efforts and interests.

MSDN itself hosts or sponsors almost one hundred conferences a year (some of them
are regional, and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one~the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site
for event information, enabling users to search the site for conferences, based on many
different criteria. To find out what conferences or other events are going on in your area
of interest of development, go to events. microsoft. com.

Other Resources
Other resources are available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The list of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need; it's geared toward getting you 1 00 percent of
the way, but there are always exceptions.

36 Volume 4 Remote Access. Services

Perhaps you're just getting started and you want more hands-on instruction than MSON
Online or MeSO preparation materials provide: Where can you go? One option is to
check out your local college for instructor-led courses. Most community colleges offer
night classes, and increasingly, community colleges are outfitted with pretty nice
computer labs that enable you to get hands-on development instruction and experience
without having to work on a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you know of a resource that should be shared, send me
e-mail atwinprs@microsoft.com. and who knows-maybe someone else will benefit
from your knowledge.

If you're sending mail about a particularly useful resource, simply put "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the mail
and do what I can to ensure that your resource idea gets considered.

CHAPTER 5

Understanding Remote Access
Transmission Technologies

37

First things first: This chapter is not absolutely necessary to develop programs that make
use of RAS or the remote access capabilities of RRAS. But then again, you don't need
an electrician's certification to play with circuit breakers and wiring (but the knowledge
that goes along with that certification can really help). The point is that garnering a
knowledge base for the technologies associated with your work (whether it's developing,
plumbing, or electrical work) can go a long way in helping YOL,l better understand what
you're working with.

This chapter is geared toward providing you with a quick, reasonably concise
explanation of the transmission technologies associated with remote access. Of course,
there are likely going to be improvements and changes to these technologies as time
marches on, but from this basis, you will be better prepared to understand those
changes. How can this chapter help you develop better applications? If you're doing the
debugging or testing of your applications, these can help tremendously; is it your
application that isn't working properly (or providing the best performance), or is it the fact
that your 56k modem is actually achieving only 33kbps (because noisy lines can make
modems drop in their transmission rates to achieve a reliable connection)? Is ATM a
telephone technology for Regional Bell Operating Companies (RBOCs), or is it a network
transmission technology (see the ATM section later in this chapter)? Knowing the
answers to questions such as these (and many more) can make you a moresawy
remote access developer, and might even expand your knowledge base a bit, which is a
worthy achievement in its own right.

Analog Modem Technology
Analog modems make up the bulk of the long-distance computer communications
devices today. These modems are analog because we live in a world (or a time) where
the most widely available network-the telecommunications network-is based almost
entirely on analog connectivity for the end user (this is changing with ADSL and Cable
Modems, but it has a long way to go).

38 Volume 4 Remote Access Services

As most of you know, however, computers don't function natively on analog signals;
when the computer is communicating internally between subsystems, such as when the
hard drive is loading an application into memory, it doesn't communicate with analog
data. The computer instead functions on digital data (ones and zeros), requiring some
means of converting the digital information on a computer into a form that can be
transmitted over the analog device connected to the telephone network. The devices
used to achieve this transition are today's analog modems.

What is a modem? Most people can point one out in a lineup, but actually answering
what a modem is, what it does, how it does what it does, and where it got its name are
generally not too clear. Quick answers: Modems are communications devices that use
the telecommunications network to transmit data over geographically distant sites.
Modems take digital signals (from the computer) and turn them into analog signals that
can be transmitted over the telephone network. Modems do this by taking the serial data
they receive from a COM port and translating it into specific analog signals that can be
understood by the modem on the other side of the connection and translated back into
digital data. Modem stands for MOdulator/DEModulator.

Getting Data to the Modem
It's late at night and you have a sales information file on your hard drive at home (which
is where you are for this illustration), which absolutely needs to be on the company
server before the day ends. That means you need to get the sales information file from
your computer at home to the server at work, and that's going to be achieved when you
make the connection between your modem and one of the modems hanging off the
RRAS Server at corporate headquarters. What does that mean? It means that you need
to get the data from your hard drive to the modem, then the modem needs to send it
over the telecommunications network (PSTN, from here forward) to the corporate
modem, which will then forward it appropriately to the server to which you're trying to
transfer the file. Nothing to it.

Parallel Versus Serial Communication
A computer communicates in parallel communication, which means that it sends multiple
bits of data at once. Serial communication, in contrast, sends one bit at a time. Think of it
this way: When you go to Disneyland or one of the Six Flags theme parks, at the front
gate there are a number of turnstiles that funnel incoming guests through the ticket gate.
If there are eight turnstiles, when looked at as a whole, they are letting people through
the gates eight people at a time. So you have eight lines, and if the ticket-takers are
synchronized (taking tickets at precisely the same time), people would be entering the
park eight people at a time.

Serial communication, in this example, would be like a theme park that had only one
turnstile, and thus could let people come through the gate only one at a time.

Chapter 5 Understanding Remote Access Transmission Technologies 39

Because your computer's bus utilizes parallel communication to send data wherever it's
going around the computer, and the communications port needs to communicate
serially, there must be a means by which the computer's parallel means of
communication and the serial port's serial means of communication are translated for
one another. This is done by a chip called a Universal Asynchronous
ReceiverfTransmitter (UART). Each communications (COM) port on your computer also
has a UART associated with it, which translates parallel data to serial data, and vice
versa. Figure 5-1 illustrates the mechanism.

To Computer Bus To COM (serial)Port

Figure 5-1: Parallel Data Going Through the UART to the Communications Port,
and Vice Versa.

Part of the responsibility of the UART is to add (upon transmission to the COM port) and
remove (upon reception from the COM port) start and stop bits that "frame" serial data to
let the receiver of the data know when the beginning and end ota byte's data is reached.
In very loose terms, a start bit is similar to the capitalization we do at the beginning of a
sentence and the stop bit is similar to the period we put at tne end of a sentence.
Without either, it would be much more difficult for us to determine where a sentence
starts and where one ends; thoughvve maybe able to figure it out from context, there is
still room. for ambiguity and computers don't have much tolerance for sUCh inaccuracies.
The start and stop bits in a sentence letus read more clearly, understand much better,
and are universally (in English, at least) accepted delimiters. The s.amecan be said for
start and stop bits. in serial communication ..

All UARTs are not created equal. Some are better than others, some are faster than
others, and some still are faster and better than all the others-and of course, generally
more expensive. Internal modems use a UART that comes built into the modem card
itself and thus doesn't I)tilize the UART (or COM port) built into your computer.

40 Volume 4 Remote Access Services

Whether this is good news or not is largely a matter of opinion, but know that you are at
the mercy of the modem manufacturer for the quality of your internal modem's UART,
which means that there is another performance parameter to take into consideration
when purchasing your internal modem (if you do such a thing-I wouldn't suggest it). For
the rest of this example, I'll presume you have an external modem.

Back to the sales file. You've instructed your computer to send it to the corporate LAN
(I'm presuming at this point that you're connected to the corporate LAN using your
modem) and now the UART on your computer is taking the data that the hard drive is
sending over the bus (the computer's internal freeway system for its data) and
translating it from the computer's native parallel form of communication to serial
communication-in other words, to the COM port. Your modem, then, is connected to
your COM port and is accepting the serial data from the COM port. Your modem takes
this serially transmitted data, looks at it, maybe compresses it if that's part of its
functionality/feature set, and then sends it ou~ over the wire and across the PSTN. This,
of course, is where the modem's laws of physics kick in.

How Analog Modems Operate
How were all of these analog transmissions achieved, once this data got to the modem?
How did modem makers go from 300bps-that's bits,not bytes, per second-to almost
200 times that throughput? It all has to do with the means by which they modulated the
data, and an explanation of how such modulation is done requires more than a cursory,
narrative description of how modems came into being and took their permanent place at
the PC dinner table. That explanation requires an overall view of the means by which
modulation is achieved, the constraints under which modems must function (dictated by
the PSTN), and the means by which these conditions are married in today's
contemporary modems. In short, such an explanation requires details. Only after these
details are fleshed out will we see why the bandwidth available for the analog modem is
running out.

PSTN Bandwidth
I've already mentioned the confines within which modems connect to the PSTN, but here
we're going to look a little closer and throw in a couple of illustrations to show just where
these lines are drawn.

Remember that the PSTN was built around the need to provide voice service to the
masses. Two terms are important in thatstatement: "voice" and "masses." When the
infrastructure of the PSTN was being created and the decision regarding how much
bandwidth to provide was made (and where that bandwidth was on the analog
spectrum), economics ruled, as they probably should have. A certain level of quality was
necessary, but to provide crystal-clear voice transmissions wasn't the goal; the goal was
to provide voice service to the masses, and that meant having the capability to transmit
mas,sive amounts of calls over the PSTN infrastructure all at once, or at least a lot of
them at once.

Chapter 5 Understanding Remote Access Transmission Technologies 41

It was found that the range of analog signals necessary for transmission of intelligible,
reasonably clear communicated speech could be constrained to the range of 300 to
3300 Hz. Such constraint provided for an economy in the transmission of lots of these
voices because the more range provided, the more bandwidth necessary for
transmission over the PSTN infrastructure. The range over which the transmission of
voice was allowed to transpire was set, and the equipment that handled voice traffic
(switches) filtered everything below and above this set range. The result was an
available range similar to what you see in Figure 5-2.

1-1 ---------- Approximate Range of Human hearing I

! I _________ Reproduction Range of Stereo Speakers ---------.... I ... · .. ··-i

- Available PSTN Transmission Range-t-====·::::JI··I111I111I11I1111I1111I11~I1111I11I11.

Hzl~+---~------~------~~----~----~~~jl~------~1 I 1,000 2,000 3,000 4,000 5,000 1 19,000 I

300 3,300 20,000

_ = PSTN Filtering

Figure 5-2: The Range Available for Voice Transmission Over the PSTN.

This worked great for the telecommunications network-it could limit the amount of
resources necessary to transmit voice from one end of the network to the other-but the
same factor that provided an economy of transmission for the telecommunications
network also bridled the amount of theoretical bandwidth available for the transmission
of data. In short, PSTN filtering limits the amount of bandwidth available to analog
modems.

Modulation
Modulation is the conversion of digital data into tones, or analog form. For example,
when you put the receiver to your ear and hit a number key on the telephone, a certain
and specific tone is emitted for as long as you hold down that number. On the receiving
side of things (the PSTN), the tone is recognized as the representation of a number (the
number of the key you pressed), and as those numbers are pressed, the phone
company knows that your intent is to connect to another telephone and it puts the signal
through. Modems do much the same thing, except that the tones thatthey emit are
going much, much faster than your finger can press, and the means by which they
generate these tones (as well as the way the present certain characteristics of the tone,
such as its phase) follow a set of standards that all modems understand, and translate
into data. The three major means by which analog modems throughout their existence
have transmitted their data are Frequency Modulation (FM), Amplitude Modulation (AM),
and Phase Modulation (PM) or Phase Shift Keying (PSK).

A word of warning: A true, complete, and in-depth technical treatment of modem
modulation is the subject of an entire book, not one chapter's section. I'll give you a good
overview and enough information and explanation to help you understand how it works.

42 Volume 4 Remote Access Services

If you want more specifics, more mathematical depth, or just more bulk, there are
technical papers and telecommunication tomes in abundance that can articulate what
equations were used to get where we are today. This is the hands-on version; the
"pencils-on" and "calculators-on" versions can be found at your local university bookstore
in the "in-depth treatment of technical telecommunications theories" section.

Modulation methods
FM, utilized in early modems, implements a changing of the carrier frequency (Le., the
analog signal, or sine wave) to represent the value of the bit being transmitted. For
example, if we use a frequency of 1070Hz to represent zero, and a frequency of 1270Hz
to represent one (remember that we must operate in the 300Hz to 3300Hz range or the
PSTN will filter us out), then we can switch between these two frequencies and transfer
data. If the baud rate is 300, which means that the signal can change 300 times per
second, and with each change we communicate one bit of information, then the bit rate
is equivalent to the baud. If this is the case, then we also know-because a baud rate of
300 means that there are 300 signal changes per second-that the duration of one of
these little pieces of information is 1/300th of a second. Figure 5-3 presents a visual
representation of FM.

Frequency Modulation

'V\J\.fV =1 '\IV =0 300 baud, 300 bits/second

Figure 5-3: Frequency Modulation.

Though FM was used in some modems that operated at higher speeds than 300bps, in
contemporary modems FM has been replaced by a combination of the two following
approaches.

AM achieves the transmission of zeros and ones through the use of a change in the
amplitude, or height, of the analog signal. Figure 5-4 puts this into a picture.

As you can see from Figure 5-4, AM uses a change in the amplitude of the analog signal
carrying its information to create the distinction between ones and zeros. If AM is
straightforward and easy to comprehend, then the third means to impress intelligence on
an analog signal (or in simpler terms, to transmit data using an analog signal), PM,
makes up for it.

Chapter 5 Understanding Remote Access Transmission Technologies 43

Amplitude Modulation

o o 1

1 !300th 11300th 1/300th 1/3(JOth 1 /300th 1 f300th 1 f300th

Time (In seconds) ----------------________

'\AM =1 'W\JV =0 300 baud, 300 bits/second

Figure 5-4: Amplitude Modulation.

PM changes the phase of the sine wave being transmitted in order to represent a value.
PM is certainly best explained with a picture (Figure 5-5) and I think a thousand words is
on the low side.

Phase Modulation

1 baud 1 baud 1 baud 1 baud 1 baud 1 baud 1 baud

Time (in seconds) ---------------------___

'\AM =01

\MN =00

MM=10

\J\Mf =11

Figure 5-5: Phase Modulation.

44 Volume4 Remote Access Services

PM is reserved for more sophisticated modems, generally those that are 14,400bps and
above, which puts most (or all) of our contemporary modems in the category of PM, also
knows as PSK. As mentioned earlier, AM and PM are often combined, the result of
which is that a single signal can represent more than one bit. More on that later. First,
let's take a look at what a simple modulation scenario, using a modem that implements
FM, might shake out to be.

Simple modulation
In terms of implementation and explanation, the simple version of modulation comes
when the bit rate is equal to the baud. This hasn't been the mode of operation since
early in the 2400bps/baud modem days, but it is the building block of more complex
modulation methods, so the discussion appropriately starts here.

We already know what bits per second is-the amount of bits (ones or zeros) that can be
transmitted in a given second-but we haven't really clarified baud. This is a perfect
point at which to clarify.

The term baud is defined as the number of signal changes for an analog transmission in
a given second. In early modems, the baud rate was equal to the bits per second rate,
because each change in the analog signal (actually a sine wave) represented one bit.
From our earlier explanation of FM, we were talking about a modem that transmitted
zeros with a signal setting of 1070Hz, and transmitted ones with a signal setting of
1270Hz. In the simple version of modulation, a zero will be communicated across the
PSTN by transmitting the carrier signal at 1070Hz for the duration allotted once signal
value (that's 1/300th of a second on a 300 baud modem). If the next bit to be transmitted
is also a zero, the carrier signal will continue at the frequency that corresponds to zero
(1070Hz) for the duration of another signal value (another 1/300th of a second). This is
very straightforward, and as Figure 5-6 suggests, the mapping of single bit to each signal
change makes for an easily understood scenario.

Specific Frequencies = 0 or 1

1 1 o o 1 o o o

Time (in seconds) --------------------------+

'\IV =1070 Hz (represents binary 0)

'\I\M =1270 Hz (represents binary 1)

Figure 5-6: Mapping One Bit for Each Baud.

Chapter 5 Understanding Remote Access Transmission Technologies 45

But in real life, things are rarely that simple. The next section explains the more complex
version of analog modem modulation.

Complex modulation
To respond to the increasing need for speed, modem manufacturers developed a way to
transmit more data through the same (finite) baud rate available through the analog
PSTN. In other words, they figured out how to transmit more than one bit for each signal
change. Of course there were some acronyms that evolved from such ideas; dibit
encoding deals with the encoding of two bits per signal change, tribit encoding involves
allowing each signal change to represent three bits (imagine that). There's also the
venerable QAM, or Quadrature Amplitude Modulation, which results in four bits being
transmitted for each signal change (QAM32 and QAM64 are variations of QAM that
represent five and six bits respectively). These days, however, bit transmission rates are
in the nine bits per signal change neighborhood for analog modems.

This mapping of more than one bit per signal change is generally achieved through the
combination of PM or PSK (PM/PSK) and AM. But a little bit of explanation is required
for a reasonable amount of understanding to be achieved with regard to how this
mapping is done; it isn't quite as straight-forward as it sounds at first pass. QAM, with its
four bits per signal change operation, requires 16 distinct states. 16? Yes, because as
you remember, we're talking about the representation of binary information, and for all
possible combinations of four binary bits to be provided, there must be 16 states. Look at
Figure 5-7.

As you increase the amount of bits you want to transmit with each signal change, the
number of discreet states that must be available to represent every available bit
combination grows in a binary fashion. In other words, the amount of discreet states that
must be represented doubles every time you add one bit to the number of bits you're
trying to transmit with each signal change. With QAM, which represents four bits per
signal change, you need 16 (24) discreet states; if you want to send five bits per signal
change, you need 32 (25) discreet states. Once you get to 9 bits, you need 512 (29)
discreet states. That's a lot of states; too many to transmit on conventional PSTN lines
without lots of errors, actually. As the states increase, the difference (in amplitude or
phase shift) between the states becomes smaller and smaller, until you get to the point
where the state changes are so susceptible to noise in the line-noise that can attenuate
the signal and thus make it appear changed once it gets to the receiver-that the
transmission becomes error laden to the point that the use of so many signal states
becomes its own worst enemy. A better way to manage errors was needed, and in order
to get past the 14,400bps modem speed with any consistency, it was absolutely
necessary. That better way came in the form of Trellis Coding.

46 Volume 4 Remote Access Services

4 binary bits represent 16 distinct values ...

0000
1 I 1 FttBit

Second Bit
Third Bit

Fourth Bit

16 possible values

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PSKValue

AMVlllue

Bit values are cumulative. If two bits are set,
simply add their values to get the numeric value

from its binary representation.

The first bit (if set, or =1) has a value of 1
The second bit (if set, or =1) has a value of 2.

The third bit (if set, or =1) has a value of ~
The fourth bit (if set, or =1) has a value of.lt

i . ' i !

~MMwwNM~
Binary Value

lime (in seconds)
1 baud

N\I\A"'OIJ '\/VV\J'",·rH VVVV"'1IJ ~=11
Figure 5-7: Four Binary Bits Being Represented as 16 Changes.

Chapter 5 Understanding Remote Access Transmission Technologies 47

Trellis Coding is a method of encoding data that is much more robust than conventional
QAM encoding; Trellis Coding can tolerate more than twice as much noise or other line
imperfections as QAM modems, and its sophisticated error detection techniques reduces
the likelihood of transmission errors by orders of magnitude. The decrease in errors is
achieved by adding redundancy into the bit stream that essentially "steers" the
interpretation of the received signal to the correct value. In Trellis Coding, only certain
sequences of ones and zeros are valid. As the data stream passes through the Trellis
coding logic, its bit sequences (zeros and ones) are evaluated c;lnd then impressed with
redundant bits and sent over the wire. When the transmission reaches its intended
receiver, the value is sent back through the receiving modem's Trellis Coding logic and
checked for ''Trellis Coding" validity, and then handled appropriately (rejected or
passed).

Today's modems transmitting at 33.6kbps use Trellis Coding and other techniques such
as equalization (built-in components that compensate for channel distortion) to get all
sorts of data across the wire. We've hit the major points here.

The bottom line, then, is that contemporary modems take the synchronous bits (received
through the COM port via the UART, which has converted the parallel data from the
computer into serial data that the modem can understand) and group them into multiple
bit groups (often groups of nine), then represent that group of bits by choosing the
unique signal state (through a combination of AM and PM) that corresponds to that
specific group of bits, then transmits that unique signal (and thus the bit group) within a
single cycle, To avoid errors-errors that would certainly result from the closely aligned
constellation patterns of today's modems-contemporary modems use the complex
mathematical formulas and encoding logic incorporated in Trellis Coding to greatly
reduce the chance of mistaken signal state identity.

The 56k version
56k technology fakes even the reduced Trellis Coding mistaken Signal-state identity
problems to task .. This analog modem technology, which is actually a hybrid digital­
analog technology, comes in the form of a touted but mostly untrue 56,OOObps
downstream throughput technology commonly referred to as 56ktechnology.

56k technology is based on the fact that most remote access service providers, such as
an MSN or an ISP,or manymid~sized or larger corporate remote access facilities, have
digital T1 connections servicing their modem banks. This digital connection, the T1
servicing the server modems, is critica.l to the implementation .of 56k technology, for it
ensures that only one digital to analog conversion will occur in the path between the
server modem and the client modem and removes aU errors associated with degraded or
distorted analog Signals on the server modem's loop. Notice here that we can specify. or
define, server modem and Client modem: The server modem is the56k modem that is
directly attached to the digital T1 facility, while the client modem is the 56k modem that is
attached to the user's standard analog subscriber loop. Notice also that both modems
are 56k modems, which is a prerequisite for establishing 56k connections. Figure !)-8
shows how the physical setup of this configuration would look in terms of the elements
involved in creating the connection between modems.

48 Volume 4 Remote Access Services

Digital to Analog
Conversion

PSTN = Public Switched Telephone Network,
or the Telecommunications network

Modem Bank

... _. __ . __ .• = Downstream 56k Digital Data Transmission

Figure 5-8: The PSTN, with a Remote Access Provider Connected to a T1 and a
Client Connected to the Telephone. Line.

The effects of this isolation of digital to analog conversions provides the means by which
56k technology can be implemented. The PSTN digitizes transmissions when coming
from the analog subscriber loop, or in more widely used terms, does an analog-to-digital
conversion of the data. The information travels across the digital core PSTN until it
reaches the Central Office (CO) servicing the receiving connection's subscriber loop,
where the digital information that has traversed the PSTN is turned back into analog
form.

56k technology removes the initial analog-to-digital conversion, creating a
communication between modems that contains only one conversion-that which occurs
as the digital information sent from the server's 56k modem reaches the client modem's
subscriber loop, where it is put into analog form. There are 256 possible representations
of analog information (8-bits per sample, which in binary creates 256 possible
representations); the 56k server modem uses that knowledge to its advantage by
transmitting those specific codes. By avoiding the analog-to-digital conversion, and thus
avoiding the Analog to Digital Converter's (ADC) interpretation of analog signals that
may have been distorted or attenuated by line noise, server modems equipped with 56k
technology can transmit the binary representations of the analog signals, thus avoiding
all errors associated with the first analog loop.

Chapter 5 Understanding Remote Access Transmission Technologies 49

Although not all of the 256 representations can be utilized, largely because as they
approach OHz the space between those analog representations of digital data is too
small and thus too prone to errors with even the smallest line noise (line noise is still an
issue on the client modem's subscriber loop), many of the 256 representations can be
utilized and discretely transmitted to and through the Digital to Analog Converter (DAC)
to the client. It is digital all the way to the client subscriber loop DAC, and due to that
fact, errors and limitations resulting from what would be the server's analog-to-digital
conversion are removed, allowing throughput levels that approach the absolute ceiling of
DSOs (Digital Signal level 0), the individual analog line payload, 64kbps.

ISDN Technology
First a quick disclaimer: ISDN technology is not analog modem technology, but its
discussion as a (waning) client-end transmission technology meant its discussion fit
better here (in this section) than in any of the others. Disclaimer complete.

You've probably heard of ISDN, and depending on whom you were listening to, probably
heard how it will never get off the ground, or how it's noticeably way, way faster than
even 56k technology. In remote access connectivity reality, both may be correct. The
technology has drawn praise and prejudice, and along the way pro tem meanings have
been coined to usurp the official acronym, such as ISDN standing for "I Still Don't Know."
Whoever thought that one up obviously wasn't a spelling bee champion.

ISDN actually stands for Integrated Services Digital Network, and its most notable
technological departure from today's analog modems is easily explained: ISDN removes
the analog part of the data transmission process. There is no analog local loop; it is
instead all digital, and that digital connection enables users to achieve the full 64kbps
per channel that T -Carriers and ISDN PRI frames offer to each channel every 125
microseconds, thanks in part to its technological design that puts signaling and
administration features out-of-band. I've loaded this paragraph with plenty of
unexplained technology tidbits; let's get to the explanation part of it.

First, the all-digital part. Telephone lines are analog, so they can take your voice (an
analog Signal) in its native format (as you talk into the phone) and do their conversion
from its natural analog form into digital form so that the PSTN can send the
representation of your voice over the PSTN infrastructure in an efficient way. With ISDN,
you call up your local telephone company and say, "I'd like ISDN." If ISDN service is
available in your area, and once all the details of getting the service are ironed out, your
telephone line (or your extra line) is physically changed at your CO to an ISDN interface,
and in effect, the analog-to-digital converter that is on everyone else's line is removed.
To clarify this, take a look at Figure .5-9.

50 Volume 4 Remote Access Services

Before ISDN ...

/
Analog Subscriber Loop

After ISDN ...

Analog conversion of digHal
data no loncer takes plgce at the
Central Office; the digital information
Is put Into ISDN format and sent
along to the customer's line unmodulated,
or, as digital Information.

Figure 5-9: An Origina.1 Analog Line Getting Changed to an ISDN Line.

On to the second point: ISDN provides the ability to utilize the entire 64kbps channel
provided by the T-Carrier/ISDNPRI standard. Explanation of this brings us back to the
digital end-to-end characteristic of ISDN. Through such digital implementation, the need
to interpret analog information and translate that analog information into it$ binary
representation is removed. What that I~aves, then, is the ability to use all8-bits of the
per-cycle sample for data (still accomplished at 8,000 samples per second, or in 125*s
intervals. This is a trend you will see throughout telecommunications and its new
technologies). 8,000 samples* 8-bits per sample = 64,000 bits per second, per channel.

ISDN comes in two standard interfaces: Basic Rate Interface (BRI) and Primary Rate
Interface (PRI).

Chapter 5 Understanding Remote Access Transmission Technologies 51

BRI is geared more for the end user or small company, and its standard offering is two
bearer or B Channels, each operating at 64kbpsas explained earlier, and one data or 0
channel. This configuration is often referred to as 2B+0. The B channels handle the data
(or voice, video transmission, or whatever other ISDN-featured technology you want to
use the channel for), while the 0 channel manages the administrative part of the ISDN
service suite.

PRI is geared toward the remote access service center, or PBX, or other mUlti-line (the
term is being used loosely here) services planned for the ISDN PRI interface. PRI is
similar in use to a T1 in that it can support multiple remote access sessions through one
interface. PRI also has a bandwidth of 1 .536Mbps, as does an, but its division is
slightly different than that of a n. The PRI is generally divided (in remote access
solutions) into 23 64k B channels and one 0 channel. Thus the PRI is the ISDN interface
that would be used at the corporate RRAS/remote access. site to provide ISDN
connectivity to remote users.

ISDN is more complex than conventional modems. Its implementation requires more
patience, especially since you can't just plug into your existing phone line and call it
good. And with the availability Of AOSL or Cable Modems these days (both of which
provide much more bandwidth), it's a hard sell to just about anyone.

Residential Broadband Technology

ADSL Technology
What's one of the biggest financial assets of the telecommunications industry? The
existing wiring plant; all those pairs of twisted wire running under the ground of almost
every street in America, bringing a dial tone to anyone who wants it and everyone who
needs it. It's everywhere, and it's a huge asset. It's in everyone's home, everyone's
business, and in many places, there's more. than one pair of wires to each residence.
That's. a lot of contact with a lot of people, and those people want a lot of bandwidth for a
lot of different reaSOnS. The telephone companies want to proviqe that bandwidth,
however it gets to you. What's perhaps the best way to do so? Well, I suspect Using an
existing, omni-present, already-paid-for telephone wiring infrastructure would,be a good
me.ans of providing high data-rate services, at least as far as the local telephone
companies. are concerned. The problem lies with their wiring: Standard twisted pair
wiring, the kind that everyone has in their house, was meant for voice, not high-speed
qata services. The telephone companies thought (and said to Bell Labs, now Luceht),
"what if we could use that existing wiring ·infrastructure to provide high speed data
services?" Enter AOSL. .

52 Volume 4 Remote Access Services

ADSL stands for Asymmetric Digital Subscriber Line, and its technology is the result of a
search to find a way to utilize existing copper twisted-pair wiring-standard phone
lines-to provide a high bandwidth solution. It has had a few (too many) acronyms,
including HDSL, SDSL, RADSL, VADSL and VDSL, and although some of these
acronyms stand for differing applications of the overall DSL technology, ADSL has

emerged the most widely known, likely because it's the most used application of xDSL.
The reason for its wide use (in terms of xDSL technologies) is that ADSL's distance
requirements encompass the majority of existing telephone lines, and because it has the
potential to be deployed in large volume in the near future. VDSL is actually a higher­
throughput rate of ADSL; differentiation and explanations of the differences between
them and the other xDSL technologies will be covered in the following section.

ADSL Technology Overview
As the term "Asymmetric" suggests, ADSL technology provides different throughput
levels for each direction, or in more direct terms, ADSL can pull data downstream at a
much higher throughput rate than it can send data upstream.

ADSL's theory is relatively straightforward in its explanation: Through the use of a
modem pair, one at the customer premise and one althe local CO, data is transferred at
very high speeds to the customer premise equipment (downstream). A lower level of
bandwidth is afforded for the upstream communication, but the ratio is very much in the
downstream favor (for example, 756kbps downstream: 128kbps upstream), which
coincides perfectly with the way people use their residential services. Audio and/or video
content such as movies (incoming, or downstream), Internet access (Web page viewing
is mostly downstream), and radio (downstream, and reproduced with great clarity if it's
digital) are all downstream content deliverables, and these are just some of the more
obvious examples.

One of the most attractive aspects of ADSL is the fact that it incorporates the use of your
existing telephone line into its technology, which means you need only one telephone
line to keep your existing unmodified (as far as you can tell) telephone service, and you
get the full range of bandwidth associated with ADSL without any conflict. People in the
household can be on the telephone, surfing the Web, listening to some heavy metal
radio station, watching some on-demand movie, and playing an interactive Internet­
based Quake Arena deathmatch, all at the same time with ADSL. No more obnoxious
data signals or interrupted transfers because someone picked up the phone when you
were getting a fax or sending e-mail. The setup of ADSL in the home looks similar to
Figure 5-10.

ADSL's technical implementation is somewhat more complex, but because we've
already been through analog modem explanations, it will be much easier to explain and
understand.

Chapter 5 Understanding Remote Acces~ Transmission Technologies 53

Other Data
Services ...

2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz 20kHz 22kHz 24kHz

Frequency (Hertz) ----_________________ _

LI'"----- To the
LO-O.= ~ .-C.~~, =, / Ce"'''' 0fIl~

Standard (existing)
""",.n ... ,,,,.., • .,, Twisted P<':Iir

Figure 5-10: ADSL in Simultaneous Use in the Home.

We remember that standard telephone service uses the 300Hz to 3300Hz frequency
range for telephone calls; for more practical reading, we'll simply say that standard
telephone services uses frequencies between OkHz and 4kHz (OHz and 4000Hz-some
of the frequency spectrum above 3.3khz is used for administrative purposes). As stated
previously, data within that spectrum is digitized and passed along the circuit toward its
destination and any signal or information above that range is filtered out at the local CO.
This is why standard analog modems have such constraints under which they must
operate, since all the data they want to transmit must be sent within that frequency
range, as it otherwise would be filtered out and never reach its destination. I remember
thinking, "why don't they just do away with that filtering and allow for more use of the
frequency spectrum?" Guess what: ADSL technology does away with that filtering.

By removing the constraints of the standard PSTN filtering, ADSL can appropriately
divide the resulting available spectrum among standard telephone service, data service,
video-on-demand service, radio service, and whatever other services come along.

With all this high-throughput talk, there is one very important consideration to keep in
mind when touting the benefits of ADSL or any xDSL technology: It is distance-oriented,
and the greater the distance between the residence and CO, the lower your maximum
throughput. There are limits to the frequency at which ADSL or any xDSL modem can

54 Volume 4 Remote Access Services

operate due to attenuation and other physical characteristics that degrade the signal as
it travels down the twisted pair wire. These signal losses or distortions, and their
aggregated effects on the signal being transmitted between modems, result in the
distance limitations placed on throughput capabilities of ADSL. Longer wire runs mean
more signal distortion or loss, and as the wire gets shortened these effects are
minimized, leaving more frequency range available for transmitting data. There are some
ADSL implementations that attempt to adapt to imperfections in the attached telephone
line, such as Rate-Adaptive ADSL (RADSL), which tests the line for noise or
transmission impairments and adjusts its transmission to get the most throughput
possible out of the available line quality (a great advantage of ADSL technology, IMHO).
Despite this adaptation to the noise inherent with telephone lines, ADSL is still sensitive
to line distances; the shorter the distance the better. Thus, shorter distances provide
greater available bandwidth, and that discussion brings us to VDSL.

VDSL or Very high data rate Digital Subscriber Line, sometimes called VADSL when
"Asymmetric" is thrown into that line of words, can be called the short, stocky cousin of
ADSL. In short (excuse the pun), VDSL is a very high-speed version of ADSL. Though
sometimes called VADSL, it is inaccurate at this early stage in the game to presume that
VDSL will be asymmetric. Indeed, though maximum line lengths would be compromised
in the process, it is possible that customers who would need the extremely high VDSL
data rates would want (and get) symmetric service; in other words, those customers
would want the high throughput in both directions of the connection.

The question then becomes: How does ADSL get all that information from one modem to
the other? There are two technological camps with regard to which method is better, and
those are CAP and DMT.

CAP stands for Carrierless Amplitude/Phase modulation, and is essentially a variant of
QAM, which was discussed earlier in this chapter as a means of representing multiple
bits with one signal change. CAP was not in the ANSI T1 .413 standardization for ADSL
technology, but success in its implementation in some field trials have reportedly
resulted in some big name manufacturers of ADSL equipment lobbying for its inclusion in
the ANSI standard.

DMT stands for Discrete MUlti-Tone. DMT (in general terms) effectively divides the
available frequency spectrum into discrete frequency segments, each of which (or many
of which, for certain segments) is specifically allocated in its ADSL application for certain
uses such as video channels, ISDN channels, or administrative signaling, which also
reserves existing frequency ranges for standard telephone service. Often these
segments are called channels. DMT is included as the standardized ADSL transmission
technology in the ANSI T1.413 recommendation.

ADSL technology, though somewhat easy to explain in its theoretical and
implementation approaches, is certainly not a simple feat of engineering; it is a genius of
invention and implementation in its hardware and the algorithms that go into the innards
of an ADSL modem, and we're fortunate enough take be able to take it for granted.

Chapter 5 Understanding Remote Access Transmission Technologies 55

Cable Modem Technology
Cable companies also have a very large, very valuable installed infrastructure base,
though it differs widely from the installed telecommunications base, as we'll investigate
further when we discuss the technology behind cable modems. One differentiating
feature of cable modem technology, however, is that cable modem technology has lots
of potential bandwidth on which it can operate. How much? More than a T3. More than
your Fast Ethernet can handle. More than an DC-3. More than an STS-5. Lots. But if we
lived in a world where it was all that easy, we'd all have cable modems, there would be
no such thing as bottlenecks, and money would grow on trees (at least in my yard).

Cable Modem Technology Overview
Cable modem functionality requires a quick overview of the way CATV operates, and the
means by which we get all those nifty, never-watched cable channels piped into our
living rooms.

CATV technology creates individual channels through the use of Frequency Division
Multiplexing, or FDM, by dividing the available frequency spectrum of the well-shielded
CATV coax cable into 6Mhz segments. These segments, more appropriately called
channels, are used to transmit (broadcast) one-way information out to the attached
nodes. Those nodes, connected in a branching tree (or tree and branch) topology, have
certain tuners attached to them that allow them to focus on a particular 6Mhz channel
and transmit the information they receive onto some medium (often a television).

Cable Modem technology, then, utilizes a 6Mhz channel that has been reserved for
receiving data; current downstream rates are either approximately 1 OM bps or 36Mbps,
depending on whether QAM64 is utilized as the transmission technology (advantage:
higher throughput) or QPSK-Quaternary Phase Shift Keying-is utilized as the
transmission technology (advantage: more robust, including Forward Error Correction).
The return path utilizes a lower frequency range than the receive path and it is here
where the technological concerns of the cable modem arise. The concerns are twofold:
the shared cable wiring infrastructure and the traditionally one-way transmission
direction. We'll take each in turn.

Shared wiring infrastructure
The concern with the fact that cable companies have a shared cable infrastructure
stems, literally, ·from its tree and branch topology. Cable wiring, with regard to the
transmission of one-way, downstream, identical signals that are used in everyday CATV
viewing, is economical and appropriate for such uses. It allows for amplifiers to be
placed along the cable path every once in a while to boost the signal to a necessary
level in order to get the signal out to all the nodes. The problem this presents with regard
to bursty data is that current cable modem technology will operate in localized
"branches" under a shared transmission medium design, in which a community of x
number of users will share the same 6Mhz channel for getting their bandwidth. Figure 5-
11 illustrates the tree and branch topology, then shows the isolated view of a certain
"branch" among which its nodes, or users, must share bandwidth.

56 Volume 4 Remote Access Services

Theoretical:

To Cable
Head.End ,1i.1* 1#;'0 ,~!-!ll ('M %11 {OJ} t\\l.i} "M.t slM \HN ;;m m!

0"'" 'v' '0>"' ,''',h., "1:"0.""'''''''-''"'41'' ,~"""~,,,,- ""1' "'''''''' ," «

"'iiiiiiI: ''iiiii& "'iiiii& \iiiiiiI:

Practical:

!:nuii1:iililiii!:;!!!lllfi!i~z::i = Shared Bandwidth Example

!!!"!!,ll!!,!!"!'!' =Coax Cable run

Figure 5-11: Tree and Branch Topology of CATV Wiring, and the Issue of Sharing
Bandwidth Among Residences on a Certain Branch of the Cable Network.

Is this really a valid concern? To a certain bandwidth utilization, the answer is no. The
means of regulating access to the shared medium (in this case, the 6Mhz channel
devoted to data) employed in many CATV systems is reportedly efficient, meaning that
the 10Mbps (or 36M bps) can be utilized even with many nodes transmitting near the
maximum rate. 10Mbps is a lot of bandwidth for the home, unless you're using it for lots
of applications (movies, Internet access, and telecommuting) or there's a hot new killer
app out that requires lots of bandwidth and all your neighbors have it. Whether or not it's
a valid concern, having to share the bandwidth with the neighborhood isn't too
appealing; if your throughput depends on your neighbor not using their access too much,
that could make your area a bad neighborhood.

Chapter 5 Understanding Remote Access Transmission Technologies 57

Another questionable issue regarding shared wiring has to do with how far up the trunk
data must go in order to get to the head end (the place where this data is going to be
redirected to wherever it's going, like the Internet). The farther up the branch you go, the
higher the number of users who must share the bandwidth. At some point the
requirements will be too much and it is there where some sort of transmission medium,
such as fiber, must be taken to get more bandwidth closer to the neighborhood.

The last question to pose is: When has there ever been enough bandwidth, at any level
of the network, for any amount of time? If you've ever had to suffer through waiting on
the cable company to fix your line because you didn't want to miss an episode of
Friends, imagine if you had to endure that same wait for your mission-critical and career­
critical corporate access.

Traditional one-way transmissions
To get the obvious out of the way: Cable is traditionally a unidirectional transmission and
its infrastructure has been built around that premise. Also, cable head-ends are
generally islands that exist as the products of one-way transmission mediums; in other
words, they aren't necessarily connected to other cable head-ends, making data
exchange between and among them not immediately available and not intrinsic to their
infrastructure. In contrast, every CO in the world is interconnected in one way or another,
and prewired for bidirectional communications. This fact-that cable companies are
traditionally downstream-centric or unidirectional-lends itself to other concerns.

If we revisit the earlier diagram that outlines the tree and branch topology of the
traditional CATV wiring infrastructure, this time looking a little closer at the means by
which the content signal (the TV channel signal) is propagated down the tree and to all
the branches, we see that the signal is boosted along the way by amplifiers. This fact
starts to dig into the wallet issue surrounding cable operators and their ability to provide
the hardware upgrades necessary for Residential Broadband over cable, as shown in
Figure 5-12.

Notice that these amplifiers are pointing in the downstream direction. The implications of
this fact are that cable operators, in order to provide residential broadband services, are
going to need to replace those amplifiers with amplifiers that can send data both ways,
or augment their downstream amplifiers with upstream amplifiers (much like
telecommunications cas will have to outfit themselves with ADSL modems). The
difference is that the CO can outfit itself with enough ADSL modems (or ADSL line
multiplexer capacity) to cover its subscribed users and add more modems/interfaces as
demand merits. With cable amplifiers, proper amplifier additions must be added before
even one downstream customer can subscribe to the service. Not an impossible task,
just something that must be done; however, the economics of Internet users wanting
more bandwidth are convincing and compelling reasons to complete such a task.

A couple of other concerns many people share with regard to cable operating companies
are network management and general market perception. Unfortunately, the perception
of both is not positive.

58 Volume 4 Remote Access Services

Theoretical:

Practical:

.0 = One-Way Signal Amplifier

\ii:iiil!,iiiiliil!i!:ii:i:iii!iilil:,' = Shared Bandwidth Example

IW","""'"'''''' =Coax Cable run

1IIi·.'''''''''''''''''''*,,'''''''''''' '''''''''''''''''',,'''' """",""'" "'''''''
" "'iiiii& \'iiiii& \'iiiii& '~
" 1",,,,,,,,",'"''',

"""'''''''';;_''';:_'':;,_''i~~

Figure 5-12: The Tree and Branch Topology, with the Amplifiers That Boost the
Signal to Get It into the Neighborhoods.

One thing that cable modems do have going for them, however, is content. The cable
companies are the kings of content, and once residential broadband kicks in and
bandwidth enough to get movies on demand, services on demand, all sorts of other data
on demand, and pay-per-view prize fight equivalents is available, there will be few who
can compete with the content delivery experience cable companies have.

Chapter 5 Understanding Remote Access Transmission Technologies 59

WAN Technologies

X.2S

The following is intended to familiarize you with WAN technologies and their
applications, fundamental behavior, and market implementations. It isn't a full
dissertation on any of the technologies, so if you're interested in knowing facts such as
which bit in the header of a Frame Relay PDU constitutes its candidacy for being
dropped when the EBR for a given node is exceeded (the DE bit, for Discard Eligibility),
you'll need to look elsewhere, because that isn't the intention here (it's the second bit,
after the flag).

Entire books (such as the bookstore inhabitants mentioned earlier) can and are
committed to the detailed treatments of each of the following WAN technologies; such
detail doesn't further the mission of this chapter, which is to familiarize you with remote
access technologies (including WAN technologies) to the point of being conversationally
familiar with them and enable you to understand them when you're developing remote
access applications. It's context-based knowledge and the imparting of such knowledge
is the overall goal of the WPRS, after all.

We're starting this section with the genesis of WAN technologies, the beginnings of the
WAN as a standardized means of providing wide area access for data networks. That
first, old, widely deployed technology is X.25.

If you remember one thing about X.25, remember that it has intrinsic data integrity
checks throughout its network "cloud," the overhead of which introduces latency and
makes X.25 less desirable for transmission between and among today's powerful
desktop computers. If you remember two things about X.25, then also remember that it
is not a standard for a public packet-switched network; it is a recommendation for
interfacing with a public packet-switched network.

X.25 was created as a result of an ITU-T (the CCITI back then) study group charged
with defining a standard interface recommendation for a public data network; to the
companies that needed such a service, it promised a means of avoiding the inhibiting
proprietary network protocols in use at the time, provided by the likes of IBM (many
different protocols from IBM), DEC, and others. It also meant a standard to which access
devices for different vendors' equipment could be manufactured, against which such
devices could be tested for compliance, and by which differenttypes of equipment,
made by different manufacturers, could use a common carrier to send their data across
wide distances. It was also a means by which such user-requested features such as
Quality of Service could be implemented (QOS is an old technology for WAN
technologies, but a relative newcomer to the realm of LANs).

X.25 has been widely deployed and used over the years, both with public networks and
private network implementations, because of its "abstraction" characteristics and
because it generates a network cloud within which connections can be made with other
devices that are connected to that cloud. The result is the creation of a common and

60 Volume 4 Remote Access Services

centralized connection arena, or in more common terms, a public data network. The
advantag~s of such a public network were two-fold and certainly economic: Rather than
having to create a private network with expensive (and almost always grossly
underutilized, though wholly paid for) leased lines running from each node to which
connectivity was required (a mesh network), only one connection for each node was
required. By creating a standard access protocol (okay, a recommendation),different
types of computers, mainframes, or terminals could connect to the network and send
their data; there was no need for separate networks for each type of device or each
proprietary protocol. It put the means by which access was gained at arm's length, and it
allowed for a pooling of network resources, which in turn resulted in lower costs.

Figure 5-13 outlines how a public data network, such as an X.25 network, can reduce
the costs of access when many nodes require connectivity to many other nodes; or in
simpler terms, the connectivity requirement of the network is many-to-many.

The actual recommendation from the ITU-T (CCITT) came in 1974. It wassince revised
in 1976, 1978, 1980, 1984, and in its "Blue Book" recommendation of 1988, which is
today's most common implementation.

Notice the term recommendation instead of the term standard. The ITU-T isn't in the
business of providing standards and instead provides recommendations, which the
industry then promptly takes and calls a standard. Though it generally becomes a
standard, the line of recommendation versus standards is clearly not crossed, for
reasons such as endorsements, walking the middle-line ... you get the idea.

Though X.25 has a lot of good qualities to it, among them its cost-effectiveness and wide
availability, it does have limitations that are more a result of changing computing power
and network architecture, as well as reduced tolerance of technology by today's
compelling applications, and less a result of problems with the technology itself.

X.25 Technology Overview
X.25 is a connection-oriented WAN technology, which means that "calls" are initiated,
placed, and then dismantled as a matter of course for sending data from one node to the
other, similar to our telephone network and dissimilar to today's LAN technologies. In
order for most PCs to interface with an X.25 network, a PAD (Packet
Assembler/Disassembler) is required. X.25 utilizes 128 or 256 byte packet sizes, which
are too big to be good for voice and video applications and too small to be optimum for
native data network formats. With the move toward multimedia content delivery and
interaction over the network (which would include the WAN link, certainly), such limiting
factors-latency and less-than-ideal packet size-don't put X.25 in the very small
pedestal that will hold the WAN technology of the future.

As mentioned earlier, X.25 does a number of checks on any given packet as it passes
through the X.25 network, which creates a delay (compared to networks that do very
little checking of packet integrity, such as an Ethernet LAN) in the overall delivery of the
packet. Simply put, the checks X.25 performs take time, and that time accumulates as
the packet crosses an X.25 network. This factor is perhaps one of the most limiting

Chapter 5 Understanding Remote Access Transmission Technologies 61

aspects of X.25 and will ultimately spell its demise in the face of other WAN
technologies. There is a reason for this, however; when X.25 first came onto the scene,
there was a need for such data integrity checks.

Point-to-Point

Branch 3

Public (or private) Data Network

Branch 1

Branch 3

= WAN Router

Figure 5-13: The Difference Between Using Leased Lines and a Public Data
Network.

X.25 was created when the devices utilizing its services were, compared to today's
standards, processor-poor. The requirements of the data network, in the time it was
created and even revised, included a need to ensure the integrity of the data that
crossed through its network cloud. That meant that checkpoints for data integrity at each
stop (hop) along the network way had to be a part of the network, and when integrity

62 Volume 4 Remote Access Services

checks are done at the packet level, the requisite overhead and consequent latency is
significant. Today's computers, with their 300 million or so cycles per second, don't
require such hand-holding transfers, because they have the computing horsepower to
implement data integrity (error) checks and balances upon receipt of packets. If errors
occur, the receiving computer simply lets the sending computer know of such errors
(through NAKs) and requests the appropriate response, such as a retransmission.

T·Carrier
T-Carrier facilities have been around for over 30 years, and were designed as a means
of digitizing and transmitting multiple voice channels over twisted pair media
(multiplexing), increasing overall telephone network transmission capacity.

A T1 line, by definition, is a digital transmission facility that provides 24 digitized
channels over two twisted pairs (a total of four wires). As time has gone on and T-Carrier
services have been widely used, the differentiation between the widely used T-Carrier
facility and its throughput levels-transmission capability levels more accurately
described with DSOs or DS1 s-began to muddy. Today, many people intermingle the
term T1 among carrier type and throughput capability, which tends to confuse the
understanding of the technology.

Thus, T-Carrier is a tricky bit of work, since its name is used to denote transmission
signaling, throughput rates, and the carrier system itself. So if you say, "I have T1 access
to the Internet," that could be interpreted to mean you have a dedicated T1 line that
connects you to an ISP, and the equipment on either end creates one big 1.536Mbps
pipe, or you have a Frame Relay connection to the Internet that runs over a T1 line,
which operates at 1.536Mbps. Which do you mean? Either would be correct, though
technically it would be more accurate (and descriptive) if the latter were to say, "I have a
Frame Relay connection to the Internet. It's running over a T1." Does anyone wonder
why T-Carrier technology can get a bit confusing?

So to reiterate and conclude in one sentence: T-Carrier both defines the transmission
medium (over copper) and is a defined transmission signaling technology (24 DSO
channels of 64kbps each).

T·Carrier Technology Overview
The T-Carrier facility is based on DSO (the 64kbps digital payload), which in this
discussion will be called a channel. Note that the DSO is a digital transmission facility.

A T1 is divided among 24 individual channels, each of which is generally used to support
one telephone conversation, one analog modem connection to wherever, or one fax
transmission coming in from your favorite office supply shop-the point being that a T1
provides 24 virtual "telephone lines," and what you do with them depends on how that T1
is used. Through the use of compression, some applications of T1s can squeeze more
voice channels out of one T1 line, but that application is in the PBX and voice end of
things, not the remote access end of things. With remote access applications, you'll be
getting 24 digitized 64kbps channels out of your T1. Because T1 s are so prevalent,

Chapter 5 Understanding Remote Access Transmission Technologies 63

the subject of T1s and how they work merits some more depth; see the section titled
T1s, E1s, PRls and All Those Bits.

T-Carrier facilities use a signaling mechanism called Time Division Multiplexing, which is
best explained by an analogy. Imagine you have a line of trucks taking payload to a
destination in preordained, very specific intervals (precisely 8,000 times per second in
this case, which is a pretty fast truck), and the trailer (open at the top in this example)
has exactly 24 evenly spaced slots into which cargo can be placed. Now let's say that
you have 24 different companies that have reserved a spot-the same spot on each
truck-within those 24 slots for the transport of their payload. When a truck starts moving
out, it is loaded with its payload and heads across the T1 highway toward its destination.
Thus, the 7th spot on the first truck's trailer is occupied by payload from Company XYZ,
as is the 7th spot on the second truck, the third truck, and so on, until Company XYZ
hangs up its cargo contract and no longer wants to transmit its goods across the T1
highway. The 7th spot on all the trucks then becomes available. We could call this the
Channelized Trucking Company, since its trailers are all divided among 24 individual
channels.

A T1 behaves in a similar manner. Each of the 24 channels on a T1 has a specific
payload capacity, which is equivalent to a DSO (or vice versa, meaning that a DSO is
equivalent to the payload available on one channel of a T1-it's kind of a chicken and
egg deal), or 64,000 bits per second.

This is all great and interesting if you're putting together a rack of modems that need
individual lines, but we're in the WAN section, and we want one big pipe to the Internet,
a specific remote location, or wherever; we don't want it divided. How does that work?
Well,let's take a look at the Unchannelized Trucking Company to find out.

Back to the line of trucks waiting to take payload to their destination across the T1
highway. With the Channelized Trucking Company, each of its trucks had trailers that
were divided into 24 separate slots, into which a company such as Company XYZ could
place its payload of up to 64,000 bits per second. In contrast, the Unchannelized
Trucking Company has trucks with trailers that aren't divided into separate slots, and
instead have the full 1 .536Mbps of available payload to make available to one customer
(for the reason why a T1 has a payload of 1.536Mbps instead of the generally stated
1.544Mbps, see Technical Talk: T1 s, E1 s, PRls and All Those Bits). Figure 5-14 shows
the difference between these trucking companies.

As mentioned earlier, the T-Carrier facility is based on its transmission of the DSO (the
64kbps digital payload) in increments of 24, which when aggregated into the T1 frame
format becomes the basis of the entire North American Digital Hierarchy in the form of
the DS1 (1.544Mbps). Figure 5-15 outlines the DS hierarchy and their corresponding
voice channel capabilities.

64 Volume 4 Remote Access Services

Channelized Trucking Company

Individual 64,000 bit Payload Channels

r-----.

Unchannelized Trucking Company

One big 1.536Mbps Payload Channel

r-----.

Figure 5-14: The Channelized Trucking Company and Its Payload Division Versus
the Unchannelized Trucking Company and Its One Big Payload.

North American Digital Hierarchy

• Throughput rating·includes administrative signaling.

Figure 5-15: The North American Digital Hierarchy and Its Corresponding
Throughput Capabilities and Voice Channels.

T2s are uncommon except in movie sequels. Generally, T1 s are used until a throughput
requirement somewhere around a T3 is required.

Chapter 5 Understanding Remote Access Transmission Technologies 65

T1 s, E1 s, PRls and All Those Bits
You've heard talk of T1 and E1, and you may have heard that they don't have the same
bandwidth capabilities and are not compatible, but you may be wondering: What's the
difference, and why have two similar kinds, if not for entertainment/confusion value?
Good questions, and a good subject for a Technical Talk.

First we'll define the T1 in technical terms: A T1 consists of 24 DSO channels. Each DSO
carries 64,000 bits of information per second, and with the addition of one control bit per
T1 frame (the 193rd bit of a T1 frame), we get a total transmission rate of 1.544Mbps
(1.536Mbps of which is available to the user).

In the North American digital signal hierarchy, a DS1 (Digital Signal level 1) is equivalent
to 24 DSOs (a T1), and the telecommunications infrastructure in North America is based
on that hierarchy. (See Figure 5-15) Different parts of the world, however, have
developed their own, different digital signal hierarchies.

In Europe, the European Hierarchy defines a DS1 as carrying 30 DSOs. In Japan, the
Japanese Hierarchy defines a DS1 as 24 DSOs, but defines a DS3 as 480 DSOs, versus
the North American Hierarchy which defines a DS3 (T3) as 672 DSOs. Thus when there
are discussions about T1s and E1s, and their differences in bandwidth and voice/data
channel handling capabilities, the reasons for their incompatibilities and the need for
different interfaces for each become clear.

Back in North America, where T1 s live in close quarters with ISDN PRI interfaces, the
differences between the two require a closer look. The difference between the
transmission characteristics of T1s and PRls are that (as we know) T1s utilize 24 DSOs
and add a bit to the T1 frame for control, whereas PRls utilize exactly 24 DSOs, but
reserve the last (24th) DSO for the ISDN D Channel use. Figure 5-16 illustrates the
difference.

T1 Frame

Time ..

ISDN PRI Frame

Time ..

~ =DSO (individual 64kbps channel)

Figure 5-16: The Difference Between T1 Frames and PRI Frames.

66 Volume 4 Remote Access Services

Because the ISDN PRI utilizes one of the DSOs for its signaling, it doesn't require the
additional control bit to be added to each frame as T1 s do. Thus, you may see bit (not
big) differences between transmission rates of T1 s (1.S44Mbps) and ISDN PRls
(1.S36Mbps), despite the fact that they both "utilize" 24 DSOs.

ISDN PRI Technology
ISDN PRI technology was discussed earlier in this chapter. We won't beat it up again
here in too much detail, though we will go over some (WAN-centric) concepts not
covered earlier.

As mentioned previously, ISDN has similar bandwidth capabilities as a T1 , and uses the
same 64kbit DSO as its basic building block. ISDN provides comprehensive
administrative capabilities much better than a T1. The technical aspects of how it
implements its administrative services are too involved (and provides definitions, not
explanations). It can be loosely introduced by stating that ISDN has its own management
"language," which ISDN equipment (more accurately, ISDN Network Terminators, which
are built into ISDN equipment) understands and can respond to, providing a native and
inherent management structure within the technology itself. This is sometimes referred
to, in ISDN and other technologies, as a management layer or a management "plane."
For those who want more technical information, and even more terminology, this
management comes in the form of 0.931 messages and is carried within the LAPD
frame.

Like (one aspect of) T-Carrier, ISDN PRI is a signaling standard. Though ISDN isn't the
WAN technology or common carrier of the future, it has immediate, real-world
applications today and is being implemented, more so recently, as increases in ISDN
popularity have been making incremental appearances in the residence and office.

Despite ISDN's seemingly sputtered break into the WAN and the home, what can be
attributed to ISDN's success and track record is the use of control messaging (0.931)
and call setup/teardown (LAPD) for the WAN; both have been implemented in one form
or another with stronger WAN candidates such as Frame Relay and ATM.

For technical details on how ISDN PRI differs from T1s and even E1s, see the previous
section titled Tts, E1s, PRls and All Those Bits.

ISDN's competition and implementations as a WAN technology are quite similar to
T-Carrier. Though its future isn't doomed by inadequate administrative facilities, other
more attractive WAN technologies have more going for them than ISDN, and in
comparison to the two following technologies, ISDN's future is not destined for big
things, but it's certain to be around for some time to come.

Chapter 5 Understanding Remote Access Transmission Technologies 67

Frame Relay
Frame Relay could be called the modern makeover of X.2S. Frame Relay came on to the
WAN technology scene in the early 1990s, though standardization groups began work
on it in the late 1980s, and has been growing in its installed base since its introduction to
the market. There are a lot of things about Frame Relay that make sense, and it solves
most of the problems other WAN technologies run into, including bursty traffic handling,
administrative facilities, aos capabilities, upper throughput range, latency (resulting
from network "touching" of packets), wasted leased-line bandwidth and costs, and
others. Is it the golden WAN technology? Some people would give you a very quick and
resounding NO to that question, many would say it probably isn't. I think it's hard to say
at this point, but Frame Relay has a lot of attractive characteristics, is placed in the
overall telecommunications network scheme in such a way that allows the BISDN
infrastructure to augment it, not replace it, and has throughput limits that seem to provide
a lot of headroom. '

Frame Relay Technology Overview
Like X.2S, Frame Relay is a connection-based recommendation. A Frame Relay network
is a public (or private, or some combination of the two) packet switching network, whose
most appealing characteristic is that it does very little, in fact as little as pOSSible, to the
data that gets sent across its network. Instead, Frame Relay relies on end nodes to
provide error correction, ACKs, NAKs, sequencing, and other processing-intensive
operations. Frame Relay was designed to do as little as pOSSible, and in so doing, keep
latency across its networks to a minimum and the cost of its core network hardware to a
minimum (cost savings which are passed on to the user).

Similar to X.2S, Frame Relay is an interface standard, and says nothing about the
internal workings of the Frame Relay cloud. For end users, that's fine: We don't care
what happens in the core network cloud, as long as we can get and send our data
quickly, effiCiently, cost effectively, and with Jots of throughput.

The most attractive aspects of Frame Relay include the following:

• Frame Relay does very little to the data that passes through its network, which results
in much lower latencies than X.2S, though not as low as ATM.

• Frame Relay is based on a mesh network instead of a pOint-to-point network, which
makes connection to a Frame Relay network much more economical than leased-line
alternatives.

• Since Frame Relay networks do less processing to their data, implementation of
Frame Relay networks are more cost-effective than other, more processor-intensive
WAN solutions.

• Frame Relay has the ability to move data at T3 (approximately 4SMbps) rates and
even slightly higher rates.

• The maximum Frame Relay PDU is 4,096 bytes and is variable, allowing LAN frames
to get Frame Relay headers prepended and then sent on their way (no slicing and
dicing ofthe original frame).

68 Volume 4 Remote Access Services

ATM

Frame Relay uses an economical approach to the transmission of data called Statistical
Time Division Multiplexing (STDM). STDM is similar to the Channelized Truck Company
discussed in the T-Carrier section (which used TDM), with a few important distinctions:
The Frame Relay Company's trucks don't leave at preordained intervals and will carry
any payload in their slots. Also, their trucks' payload slots are not necessarily
constrained to specific sizes. There is also a buffer near the loading dock that can store
payload for a certain, small amount of time. If it helps (since Frame Relay often runs over
T-Carrier), you can consider Frame Relay over T-Carrier in the following way: When
Frame Relay is in charge, the Frame Relay Company takes over management of the
loading dock and cargo-placing booms, and is more flexible with its payload and
scheduling requirements than the Channelized Truck Company. Though they may use
the Channelized Truck Company's trucks and trailers, they allow their customers'
varying-sized payloads to be dropped off with them, and then they (the Frame Relay
Company) deal with stuffing those varying-sized payloads into the compartmentalized
trucks of the Channelized Truck Company, and also deal with unloading (and putting
back together) when the trucks reach their destination.

Frame Relay works on the basis of Committed Information Rates, Committed Burst
Rates and Excess Burst Rates (CIR, CBR and EBR respectively). That means that
bursty networks such as LANs can get Frame Relay service at a certain CIR and exceed
that rate during bursty periods up to the CBR or EBR (extended periods at or above EBR
will make your data eligible for being dropped) without having to waste financial
resources on leased lines that equate to the EBR. For example, you might have a
512kbps Frame Relay CIR that's been brought to your premises via T1; if your
corporation at times exceeds 512kbps, perhaps up to 1 Mbps under certain conditions,
the Frame Relay interface will handle that excessive data. If your EBR were 1 Mbs and
you had bursts that were hitting 1.2Mbps, then 1.2Mbps would be eligible for being
dropped within the Frame Relay network. The advantage of Frame Relay's ability to
handle bursty traffic, in this situation, is that you don't have to lease an expensive T1 line
to get burst rates of 1 Mbps or 1.2Mbps; if your sustained average throughput is
512kbps, you can base your usage on that rate, not on your peak, or burst, rate.There
are other, more sophisticated means of provisioning peak rates in Frame Relay, which
have to do with buckets and credits, but the details of such algorithms are outside the
scope of this discussion.

ATM stands for Asynchronous Transfer Mode, and has been positioned as the
underlying technology to take networking-both data networking, video transmission,
and telecommunications-through the 21st century, all onthe same wire. And if the
amount of planning, theorizing, debating, refining, and general thought that has gone
into ATM is any representation of its chances of achieving that lofty intention, then ATM's
chances are good.

ATM, however, can be intimidating, often because of the sheer volume of dry reading or
research that must be done to achieve even a reasonable familiarity. The result, too
often, is a break after only Sipping on its details, from which many never return.

Chapter 5 Understanding Remote Access Transmission Technologies 69

This treatment of ATM is an intentional departure: It's been structured to explain why
ATM is the way it is, and by dOing so should let you get through it with the least amount
of pain or sleepiness.

Getting to ATM
We've gone through technical overviews of other prominent WAN technologies already,
and we've seen a sort of trend. X.2S brought the cost-effectiveness of standardization
and shared mesh topologies to data networks; T -Carrier utilized a digital
telecommunications infrastructure, and the well understood T-Carrier technology, to get
data moved from point to point using the existing and ubiquitous PSTN. Frame Relay
improved on both, taking the attractive shared network packet-switching attributes of
X.2S and the low-latency attributes of T-Carrier, and then threw in its own added features
to make it a great solution as a shared mesh data network for today's high-speed client
computing. And in the beginning, the middle, and still today, there was the need to
transmit plain old voice data throughout the world.

We also found that there is another network sending out data of one sort or the other,
which is the CATV network. It utilizes its own means of moving data, whether that's
movies, digital music, or 24 hours of television shopping, which implements none of the
transmission technologies discussed above.

But there has been something missing throughout all of this; a fundamental
cohesiveness that all these WAN solutions and voice transmission facilities lack. What's
missing is a common network, certainly, but also a common carrier, which is the aim of
ATM. ATM strives to be a common carrier for voice, data, audio, video, and any other
data that can be transmitted over one network that would become the Information
Superhighway. You name it, and ATM wants to be able to send it, and has been
designed to be able to do just that.

Creating the Common Carrier's Shopping List
In order to be the common carrier of data, voice, video, and any other type of data, ATM
must provide all of the services each of the data types need, but must do so within the
constraints of one data type.

The difficulty with trying to please all of the people (or data types) all of the time centers
on the fact that different data types are best serviced at different sized PDUs. Voice is
best served by small packet sizes, such as 32 bytes per PDU, while "computer" data is
served best my much larger sized PDUs (Frame Relay, a data-centric technology, has a
maximum PDU of 4,096 bytes). Thus, there is a disparity between voice and data. How
do you solve these differences? First, you must be very fast; so fast that the
compromised (smaller or larger than you would like) size of the PDU is grossly
outweighed by the increase in speed or throughput. Second, you must promise and
deliver compelling reasons-real world reasons-why changing from the status quo is
worth it in the short term, the near future, and the long run.

70 Volume 4 Remote Access Services

The means of dealing with the difference in optimum PDU size is: being fast and being
everywhere. That brings us back to the "one data type for all" philosophy. Why one data
type? Because one data type, with a fixed length and fixed header sizes, would enable
that same data type (regardless of its content) to traverse the network quickly, efficiently,
and in hordes and hordes, gigabits and terabits at a time. It is so efficient to use fixed
sized PDUs that the switches that forward them can actually function and process at
rates higher than the line speeds themselves. That's fast switching. Even if you have to
chop up larger PDUs from their native format (like Ethernet with its 1518 byte maximum
PDU) into smaller PDUs to utilize the network, the benefits of the anticipated cost
effective and higher bandwidth WAN service availability and low latency associated with
the smaller PDU implementation make the work involved in chopping up the data (and
reassembling at the other end, if necessary) worth the effort.

The means of providing compelling reasons for changing from the status quo are
somewhat less immediately tangible, but certainly are at least as important as all the
technical reasons combined. In the short term, the common carrier can actually
concentrate on a subset of its strengths: the ability to move data in large volumes. One
short term use might be upgrading existing LAN backbones to the higher capacity
capabilities of a common carrier technology. A mid-range or near-future reason for
utilizing the benefits of a common carrier might be to augment the "coming of age" of
multimedia applications to the desktop. This movement requires a significant amount of
bandwidth, and also a means of guaranteeing a certain level of service (voice and video
over data networks exist today, with Internet phones and monitor-top desktop cams, but
they're jittery and hog all of the available bandwidth, and generally speaking, at best are
novelties rather than real solutions). For the long term, compelling reasons for a common
carrier include all of the preceding reasons, as well as the ability to turn multiple
information service networks into one cohesive delivery platform. This is one compelling
reason to move to a common carrier; if you could take advantage of using one network
even for data and voice (and thus make it more cost effective in terms of service
charges, administration, application and content development, and new market
potentials), concessions would be made to integrate those services.

When we put these requirements of a common carrier into shopping-list form, the end
result, much more concisely presented, looks something like the following:

• Carry all sorts of different data, including voice, "computer" data, video, and others.

• When carrying that data, allow users to request various levels of "service" so that
information delivery that is sensitive to delay, bandwidth constraints, or timely
sequential arrival can be accommodated.

• Carry the data in large volumes, quickly, and efficiently. In specific terms, provide for
lots of bandwidth, low latency, and make sure switching infrastructure processing
power ("inside-the-network-cloud" equipment efficiency) isn't prohibitively expensive.

• Be media-independent, allowing existing transmission facilities (copper, fiber, or co­
ax) to migrate without making expensive physical changes to their infrastructure.

• Create the ability to merge all the various information networks, including voice, data,
video, into one network.

Chapter 5 Understanding Remote Access Transmission Technologies 71

• In merging those networks, allow graceful handling of different transmission
characteristics, such as bursty transmissions (variable bit rate) versus continuous
transmissions (constant bit rate).

• Allow for an incremental migration from other technologies; avoid the requirement of
an "all or nothing" approach.

• Be designed in such a way that limits the likelihood of being outdated in the near
future. Don't be an interim solution, be the long term solution.

We can boil these requirements down even further if we try to:

• Carry all information data types efficiently and meet the different transport
requirements of each.

• Be available over any transport media and provide mechanisms to interact with
existing technologies.

• Be the transmission technology for the long term future of information delivery.

One issue that was alluded to but not directly addressed comes last. We have worldwide
PSTN interconnectivity, which means you can call someone across the globe just as
easily as you can call your neighbor across the street. Being the common carrier of the
future of information delivery necessitates that information boundaries, in a world where
the economy is global rather than local, be non-existent. It further requires that such
technology not be implemented in one way in North America, another way in Europe,
and another way in Japan and Asia. This brings us to the last item on the common
carrier shopping list:

• The common carrier must be a worldwide standard.

ATM Technology Overview
With all those shopping list items, you can imagine the difficulty coming up with a
technology that met all the requirements. Perhaps an even more challenging task would
be choosing among the different ideas and methods, often heatedly defended and
promoted, for going about achieving such a standard. An international body comprised
of industry leaders in both the telecommunications and data industries, those who
(choose the word as you will) created, devised, invented, or standardized ATM, have
done it. The means by which ATM reaches those lofty goals is the subject of the
following sections.

Carrying all data types
The means by which ATM carries all data types in an efficient, fast-switching, low­
latency means is by having a standard sized ATM PDU, called a cell, of 53 bytes.
Hereafter, the ATM PDU will be referred to as a cell, much like an Ethernet frame is
often referred to as a packet.

72 Volume 4 Remote Access Services

The ATM Cell. An ATM cell is always 53 bytes. An ATM cell always has a 5-byte
header, leaving a 48-byte payload. Always. This presents a deterministic, or specific and
predictable, means of determining the beginning and end of an ATM cell, which in turn
makes equipment that must handle ATM cells efficiently and quickly. The handling of all
data types, including voice, data, and video, is thus done within the 53-byte cell. ATM
transmission characteristics (such as service requirements, routing information, source
and destination addresses, path identifiers, and payload type identifiers) are carried in
the 5 byte ATM header. The information (the actual "data" that's being transmitted), plus
that data's information necessary for its adaptation to ATM, is handled in the 48-byte
payload. That is the 'crux of ATM. All other features, services, capabilities, and
characteristics must do their work within those confines. Figure 5-17 puts this into a
picture.

ATM Cell

48 byte Payload:
Carries data payload, as well as
necessary LAN frame headers and AAL
information used to reconstruct the LAN
frame upon arrival at LAN destination.

5 byte ATM Header:
Provides cell information such as service
requirements, routing information, source and
destination addresses, and payload content

Figure 5-17: The ATM Cell, with the Division of Carried Information Between the
Header and the User-Available Payload.

ATM Connections. Pick up the telephone, dial your friend's number, and you've
completed a call. You have a number identifier (the telephone number), and within the
telecommunications network you have a circuit assigned to your call, which is sent over
larger, multi-circuit transmission facilities (multiplexed). Though ATM connections don't
fit exactly into that example, they're similar. ATM connectivity works on the basis of two
identification elements: the Virtual Channel Identifier (VCI) and the Virtual Path Identifier
(VP/). Combined, these two channel elements constitute the Virtual Circuit Identifier.

Perhaps a better comparison is a TCP/IP address: In the TCP/IP network address
210.21.98.3 with a subnet mask of 255.255.255.0, you have the network address
(210.21.98) and the local address (3) which together constitutes the IP address. Network
address + local address = IP address. In ATM terms, VCI + VPI = Virtual Circuit
Identifier. Both the IP address (in IP networks) and the Virtual Circuit Identifier (in ATM
networks) are used for routing their respective PDUs across their networks.

Chapter 5 Understanding Remote Access Transmission Technologies 73

The reason the telephone example is pertinent, though, is the virtue of its connection­
oriented sequence. With the telephone call, the circuit is created when necessary (when
the person picks up the telephone and dials the number) and torn down when they hang
up. ATM works in a similar manner, though its general usage provision differs slightly.
Switched Virtual Channels, or SVCs, are similar to telephone calls in that they are
created when the user requests use of the network (in computer terms, your "request"
might be an attempt to connect to a server on the other side of an ATM WAN link, at
which time the connection would likely be initiated and made so quickly that it appears
as though the connection were always "up"). In contrast to the need to initiate a call to
establish the connection, Permanent Virtual Circuits, or PVCs, are always up. Examples
of an SVC and a PVC, respectively, would be a dial-up connection to the Internet and a
dedicated connection; iNith a dial-up connection you must tell your modem to dial your
ISP, at which time a connection is made. An example of a dedicated connection to the
Internet would be an ISDN connection that's on 24 hours a day, always connected and
ready for transferring data to or from the Internet, whether any data is passing back and
forth or not.

Adaptation to ATM. To be the carrier of all data types, all data types must be
convertible into ATM cells~ This conversion, or adaptation, is done through the ATM
Adaptation Layer (AAL). With this abstraction of ATM, or in less technical terms, by
outsourcing the means by which other technologies (or data types) become compatible
with ATM, the technology makes itself available to any type of data. Figure 5-18
illustrates this.

Because some data-type technologies have additional information necessary to provide
adaptation to ATM, part of the 48-byte payload may be dedicated to the adaptation of a
given data type. Such data types have been specified and standardized within ATM
technology. Figure 5-19 illustrates those AAL types.

Although the ATM cell facilitates one size for all sorts of different data types, and the
AAL allows those different data types to be adapted to ATM cells, neither inherently
solves the issues surrounding different data types' dissimilar service requirements. LAN
data is traditionally bursty; voice traffic is traditionally a constant state. Video is sensitive
to timing requirements. ATM addresses these issues through traffic classification.

Classification of ATM Traffic. The classes of traffic within ATM have been categorized,
recategorized, uncategorized, and then rethought and represented. Throughout all the
changes of classification naming and conventions the fundamental requirements have
remained the same. Those requirements deal with which service parameters the traffic
being adapted by the AAL is most sensitive to. They fall into a few categories:

• Constant bit rate requirements.

• Variable bit rate requirements, which are sensitive to timing constraints.

• Connection-oriented variable bit rate requirements, such as bursty computer-data
applications.

• Variable bit rate reqUirements, such as bursty computer-data and Frame Relay WAN
applications.

74 Volume 4 Remote Access Services

Adaptation of LAN data to ATM

4 byte AAL 'header':
Carries necessary AAL information
used to reconstruct the LAN fra me
upon arrival at LAN destination.

44 byte Payload:
Carries LAN data payload.

Provides cell information such as service
requirements, routing information, source and
destination addresses, and payload content.

"Note that many uses ofAAL Type 3/4 are being moved to Type 5,
which has lower overhead than Type 3/4; Type 5 uses less bytes
to transmit overhead information than the 4-byte 'AAL header'
seen here in Type 3/4.

Adaptation of Voice to ATM

Voice data

Carries Voice data.

Figure 5-18: The ATM Adaptation Layer.

Provides cell information such as service
requirements, routing information, source and
destination addresses, and payload content.

Chapter 5 Understanding Remote Access Transmission Technologies 75

A TM Adaptation Layer Types

Variable Bit rate connection oriented data requiring
minimal sequencing or error detection (contrast to Type
3/4), Used in support of upper protocol (such as Frame

~ Type 3/4 and Type 5 currently gamer the most interest Types 1 and 2 INere initial (and not widely used) definitions.

Figure 5-19: ATM Adaptation Layer Types.

These classifications were grouped into Types, such that there were Type 1, Type 2,
Type 3/4 (Types 3 and 4 were combined), and Type 5 standards established for
adapting different data types to ATM. Each different type has a specific means by which
data is placed into an ATM cell's payload. For a technical example, a Type 1 PDU starts
with a 4-bit sequence number (placed at the beginning of the payload part of the cell),
then has a second 4-bit sequence dedicated to providing error correction to the first 4-bit
sequence, then has an optional 8-bit (one byte) pointer field (its use or nonuse identified
within the initial 4-bit sequence field), leaving the 46 or 47 bytes available for actual data.
Why the technical example? The importance of the example is that a Type 5 does not
have the same 4-bit, 4-bit, then optional 8-bit fields in its payload field; these types
specify how data is segment and "formatted" into an ATM cell, in order to best
accommodate different data types individual service needs.

Thus, while ATM has a standard 5-byte header and 48-byte payload, the format of the
payload differs among different AAL "Types." Yes, my nose is getting a little fizzy too.
But such classification of types for ATM allows switches to make very quick decisions
regarding the servicing of a cell based on its type, which contributes to and facilitates the
overall ability of ATM to provide the appropriate quality of service to many different types
of data, all within the same transport technology, or to keep with our terminology, allows
ATM to become the common carrier.

Whew. So all these attributes of ATM-the size of the cell, its means of connection to
other ATM equipment, the adaptation of different data types to ATM formats, and the
classification of ATM traffic-all contribute to (or facilitate, depending on your
perspective) ATM's ability to carry all data types.

Media independence
Media independence is achieved with ATM because its standard does not require that a
certain medium be employed. It is media independent, much like you can buy a
Windows NT machine and put an Ethernet, Token Ring, or FDDI cardin it and still
achieve network capabilities. Thus a manufacturer, if it so chooses, could implement
ATM over standard CAT 5 UTP networking cable (found all over the place in Ethernet
LANs today). Or a manufacturer could implement ATM over multi mode fiber, utilizing the

76 Volume 4 Remote Access Services

high transmission rate traits of fiber and the fast switching capabilities of ATM to create a
backbone that speeds all sorts of data over a backbone. Or a manufacturer could
implement ATM over microwave transmission facilities.

Of course, there is engineering to be done to figure out how to get, say, CAT 5 UTP to
transmit the electrical signals that will carry the signal on which ATM will be transmitted.
With Windows NT, you cannot simply touch a network wire to the outside of the box and
expect to get connectivity; you must have an interface card, engineered and designed
for a certain medium such as Ethernet, installed and configured to run with Windows NT
in order for network connectivity to be achieved. ATM's requirements, whether
implementing it on Windows NT, a Cisco router, or in a Northern Telecom
telecommunications switch, are similar.

To ensure interoperability among different vendors' products, there are guidelines
created to provide an understood playing field for different media implementations.
Standards exist today for the transmission of ATM over certain media including CAT 5
UTP, T1, E1, T3, E3 and fiber, to name many.

The long-term carrier
ATM's design to send all known data types is augmented with its abstracted
transmission model, which allows the unknown data types of the future to fit into its
model, or to be fit into its model, without having to rewrite the technology's infrastructure.
This, of course, is due to the planning and future-minded engineering that went
into ATM.

Another requirement for the common carrier of the future centers around its need to be
relatively light in terms of processing requirements, which is a reflection of the evolution
of the client computer. As mentioned in the X.25 and Frame Relay technology sections,
the computer that sits on today's desktop is far and away more powerful than those that
sat on desktops 10 or 20 years ago. In fact, it's more powerful than the mainframes that
were servicing the terminals that were sitting on desktops 10 or 20 years ago. As a
result, the processing burden for ensuring the integrity of data transmissions can be
placed on the end unit, not the core network switch. For the "computer" data part of
ATM's long-term common carrier candidacy, that means that ATM's hands-off approach
to sending data (ATM doesn't do significant, and therefore processor- and latency­
intensive, error checking on its cells as they move through the network) situates it well
for long-term viability. There are other data types to be concerned with, though, such as
voice.

Another advantage of the continuous leapfrogging in processor power and technology is
that its benefits, in the ability to move tons of data, are also reaped in switches. That
means that any data being sent over an ATM switch (not just "computer" data) is
benefiting from process speed improvements. More than the quality of service available
for voice, this fact becomes pertinent because of ATM's ability to handle lots of data
without introducing latencies, which any common carrier that will serve information
transmissions for the long term must certainly be able to do. Handle lots of data and
handle it quickly, which brings us to video.

Chapter 5 Understanding Remote Access Transmission Technologies 77

Video is inherently bandwidth hungry. It also has many QOS requirements, such as a
constant bit transmission rate that the network can guarantee for the duration of the
connection, which puts additional processor (and logic) burdens on the network, while
ensuring very little loss. In order for a common carrier to be viable for video and
multimedia transmission applications, it must have the ability to provide a guaranteed
QOS so that video or audio is smooth and constant, not jittery and intermittent due to
dropped or delayed cells. With the combination of video and data networks, the issue of
QOS is equally important, indeed perhaps more important, for mission-critical

, applications as well. When bandwidth-hungry multimedia applications are utilizing
perhaps disproportionate network resources, it is vital that mission-critical applications
not be starved of bandwidth, latency, or other QOS requirements. ATM has the
mechanisms built into it to facilitate all of those requirements.

Another requirement of the long-term common carrier technology that will prevail is that it
must have administrative facilities. The need to be able to get administrative information
from the common carrier of the future is a must, and ATM is well situated in that category
as well.

~rt2 N

CHAPTER 6

RAS Programming Guide

Remote Access Service (RAS) provides remote access capabilities to client applications
on computers using Microsoft® Windows® operating systems. RAS client applications
can perform the following tasks:

• Display any of the RAS common dialog boxes. This includes the main Dial-Up
Networking dialog box, the Dial-Up Networking Monitor property sheet, and other
dialog boxes for creating, editing, copying, or dialing a phone-book entry.

• Start and end a RAS connection operation using the common dialog boxes or the low­
level dialing functions.

• Create, edit, or copy phone-book entries using the common dialog boxes or the low­
level phone-book functions.

• Work with entries in the RAS AutoDial mapping database. This database maps
network addresses to the phone-book entry that can establish a connection to the
address.

• Get RAS information, including information about existing RAS connections,
information about the RAS-capable devices configured on the local computer, and
notifications when a RAS connection begins or ends.

Microsoft® Windows NT® version 4.0 also provides support for RAS server
administration and for third-party extensions to RAS server security and connection
management. Windows® 95 does not provide RAS server support.

RAS Common Dialog Boxes
Windows NT 4.0 provides a set of functions that display the RAS dialog boxes provided
by the system. These functions make it easy for applications to display a familiar user
interface so that users can perform RAStasks. For example, users can establish and
monitor connections, or work with phone-book entries. Windows 95 does not currently
support these functions.

The RasPhonebookDlg function displays the main Dial-Up Networking dialog box.
From this dialog box, the user can dial, edit, or delete a selected phone-book entry,
create a new phone-book entry, or specify user preferences. The RasPhonebookDlg
function uses the RASPBDLG structure to specify additional input and output
parameters. For example, you can set members of the structure to control the position of
the dialog box on the screen. You can use the RASPBDLG structure to specify a
RasPBDlgFunc callback function that receives notifications of user activity while the
dialog box is open. For example, RAS calls your RasPBDlgFunc function if the user
dials, edits, creates, or deletes a phone-book entry.

80 Volume 4 Remote Access Services

You can use the RasDialDlg function to start a RAS connection operation without
displaying the main Dial-Up Networking dialog box. With RasDialDlg, you specify a
phone number or phone-book entry to call. The function displays a stream of dialog
boxes that indicate the state of the connection operation. The RasDialDlg function uses
a RASDIALDLG structure to specify additional input and output parameters, such as
position of the dialog box and the phone-book subentry to call.

To display the Dial-Up Networking Monitor property sheet, call the RasMonitorDlg
function. This dialog box enables the user to monitor the status of existing connections.
The RasMonitorDlg function uses a RASMONITORDLG structure to specify additional
input and output parameters, such as the position of the dialog box and the property
sheet page to display on top.

You can call the RasEntryDlg function to display a property sheet for creating, editing,
or copying a phone-book entry. The RasEntryDlg function uses a RASENTRYDLG
structure to specify additional input and output parameters, such as the position of the
dialog box and the type of phone book operation.

RAS Connection Operations
Windows NT 4.0 and later versions provide the RasPhonebookDlg and RasDialDlg
functions that display the built-in user interface for starting a RAS connection operation.
For most applications, this is the preferred way to start a RAS connection operation.
Windows 95 does not currently support these functions.

The remainder of this section describes the low-level functions for starting a RAS
connection. These functions are available on both Windows NT 4.0 (and later versions), .
and Windows 95.

A RAS client application uses the RasDial function to establish a connection to a RAS
server. The RasDial function starts the connection operation, which is then carried out
by the Remote Access Connection Manager.

The Remote Access Connection Manager is a service that handles the details of
establishing the connection to the remote server. This service also provides the client
with status information during the connection operation. The Remote Access Connection
Manager starts automatically when an application loads the RASAPI32.DLL.

The RasDial call specifies the following information when it starts a connection
operation:

• The connection information that the Remote Access Connection Manager needs to
establish the connection.

• An optional notification handler that receives progress notifications during the
connection operation. If the RasDial call specifies a notification handler, the call is
asynchronous; otherwise, it is synchronous.

Chapter 6 RAS Programming Guide 81

• An optional RASDIALEXTENSIONS structure to enable or disable extensions to the
RasDial operation. The extensions permit a RAS client to directly enable some
modem settings, to control whether RAS uses the prefixes and suffixes in a phone­
book entry, and to support paused states during the connection operation.

Synchronous Operations
When RasDial is invoked as a synchronous operation, the function does not return until
the connection has been established or an error occurs. Synchronous mode provides a
simple way for a RAS client to establish a connection. The client can simply call
RasDial, wait for the function to return, and then call the RasGetConnectStatus
function to determine whether the connection operation was successful. Once the
connection has been established, the client application can terminate without breaking
the connection. If an error occurs, the client application must shut down the connection
operation before terminating.

The disadvantage of synchronous mode is that the client does not receive progress
notifications as the connection operation proceeds. As aworkaround for this lack of
progress notifications, a synchronous mode client can use a separate thread that calls
RasGetConnectStatus to poll for and display the current state. However, for RAS
clients that want to receive progress information, the preferred technique is to invoke
RasDial asynchronously.

Asynchronous Operations
When RasDial is invoked as an asynchronous operation, the function returns
immediately. In asynchronous mode, the RasDial call must specify a notification handler
that the Remote Access Connection Manager uses to inform the client whenever the
connection operation changes states or an error occurs.

The notification handler can be a window to receive messages, or a RasDialFunc,
RasDialFunc1, or RasDiaiFunc2 callback function. The Remote Access Connection
Manager makes its asynchronous notifications in the context of the thread that made the
RasDial call. For this reason, the calling thread must not terminate until the connection
operation has been successfully established or an error occurs. As in synchronous
mode, the client application can safely terminate once the connection has been
established, and it must shut down the connection operation if an error occurs.

Phone-Book Files and Connection Information
A RasDial call must specify the information that the Remote Access Connection
Manager needs to establish the connection. Typically, the RasDial call provides the
connection information by specifying a phone-book entry. The connection information in
a phone-book entry includes phone numbers, bps rates, user authentication information,
and other connection information.

82 Volume 4 Remote Access Services

A RAS client uses the parameters of the RasDial function to specify a phone-book file
and an entry in that file. The IpszPhonebookPath parameter can specify the name of a
phone-book file, or it can be NULL to indicate that the default phone-book file should be
used. The IpRasDialParams parameter points to a RASDIALPARAMS structure that
specifies the name of the phone-book entry to use.

To display a list of phone-book entries from which the user can select a connection, a
RAS client can call the RasEnumEntries function to enumerate the entries in a phone­
book file.

To make a connection without using a phone-book entry, the RasDial call can specify an
empty string for the szEntryName member of the RASDIALPARAMS structure. The
RASDIALPARAMS.szPhoneNumber member must contain the number to call. In this
case, the Remote Access Connection Manager uses the first available modem port and
default values for all other settings.

User Authentication Information
The Remote Access Connection Manager service on the client computer sends a user
name and password to the RAS server on the remote computer. Before it will establish a
connection, the remote server uses this information to authenticate the user. By default,
the Remote Access Connection Manager sends the user name and password of the
currently logged-on user. The RAS client can use the RASDIALPARAMS structure
specified in the RasDial call to specify a different user name and password.

If the remote server cannot authenticate the user with the specified information, it can
allow the connection operation to enter a paused state to enable the RAS client to collect
different authentication data from the user.

Other Connection Information
The members of the RASDIALPARAMS structure can also specify the following
connection information:

• A phone number to override the number in the phone-book entry.

• A callback phone number that the remote server can call back to establish the
connection.

• The name of the remote network domain on which the authentication is to occur.

For the callback number and the domain, the RASDIALPARAMS members can either
indicate that RAS should use the information in the phone-book entry, or it can provide
information that overrides the phone-book data. .

A RAS client can use the IpRasDialExtensions parameter of the RasDial. function to
control whether RASuses a phone number prefix or suffix specified in a phone-book
entry.

Chapter 6 RAS Programming Guide 83

. Connection States
During the process of connecting to a remote server, the Remote Access Connection
Manager and the RAS server on the remote computer perform several steps to establish
the connection. Each of these steps is identified by a connection state. The
RASCONNSTATE enumeration is a set of values that correspond to these connection
states. The connection states can be divided into the following three groups:

Running states
The running states are the parts of the connection operation that RAS handles
automatically, such as connecting to the necessary devices, authenticating the user,
and waiting for a callback from the remote server. Unless an error occurs, the RAS
client need take no action other than to pass the notification on to the user.

Paused states
The paused states occur when the remote server pauses the connection operation to
get additional input from the user. During a paused state, the user can type a callback
number, a different user name and password if the user authentication fails, or a new
password if the old one has expired.

Terminal states
The terminal states occur when the connection has been successfully established, the
connection operation has failed, or the connection has been broken by a RasHangUp
call.

There are several mechanisms that a RAS client can use to determine the current state
of a connection operation. When a RAS client executes the RasDial function
asynchronously, the Remote Access Connection Manager sends progress notifications
to the client's notification handler whenever the connection state changes. In addition,
the client can use the RasGetConnectStatus function to get the current state of any
RAS connection operation.

Notification Handlers
An asynchronous RasDial call must specify a notification handler. During an
asynchronous connection operation, the Remote Access Connection Manager uses the
notification handler to inform the RAS client whenever the connection state changes or
an error occurs.

The actions performed by. a notification handler can be divided into the following
categories:

• Handling errors.

• Providing feedback to the user as the connection operation proceeds through the
various connection states. See Informational Notifications.

• Handling paused states.

• Signaling the RAS client application when the connection operation has been
completed. See Completion Notifications.

84 Volume 4 Remote Access Services

There are three types of notification handlers, each of which receives the same basic
information: the current connection state and an error code that is nonzero only if an
error has occurred.

Value Definition

RasDialFunc A callback function prototype that receives only the current
connection state and error code information.

RasDiaiFunc1 A callback function prototype that receives the HRASCONN
connection handle and extended error information in addition to the
basic information. The connection handle parameter makes
RasDiaiFunc1 useful for client applications that support multiple
simultaneous connection operations. This allows the clientto specify
the same callback function for all operations, and enables the
callback function to determine which connection is changing states.

RasDiaiFunc2 A callback function similar to RasDialFunc1. However,
RasDiaiFunc2 is enhanced to support multilink connections.

Window handle A window handle to which RAS sends WM_RASDIALEVENT
messages containing the current connection state and error code
information. Use this method if your source code must be compatible
with 16-bit Windows, because 16-bit Windows does not support
either of the callback functions.

The Remote Access Connection Manager suspends the connection operation until the
notification handler returns. For this reason, the handler should return as soon as
possible unless an error has occurred.

The RasDial function should not be called from within a notification handler. The other
remote access functions (RasGetConnectStatus, RasEnumEntries,
RasEnumConnections, RasGetErrorString, and RasHangUp) can be called frC?m
within a handler.

Handling RAS Errors
When an error occurs, the Remote Access Connection Manager invokes the client's
notification handler. The notification indicates the connection state when the error
occurred, and a code that identifies the error. In these cases, the notification handler
should call RasHangUp to end the RAS connection.

The RAS client can use the RasGetErrorString function to get a display string
describing the error.

Chapter 6 RAS Programming Guide 85

Informational Notifications
For the connection states known as running states, no action is required of the
notification handler unless an error occurs. Running states occur during. the parts of the
connection operation that RAS handles automatically, such as connecting to the
necessary devices, authenticating the user, and waiting for a callback from the remote
server. The notification is simply a progress report to the client.

The client can choose to pass these informational notifications on to the user. In some
running states, the client may want to display additional information. For example, a
notification handler that receives a RASCS_ConnectDevice notification can call the
RasGetConnectStatus function to get the name and type of the device being connected
to. Another example is when the client receives a RASCS_Projected notification. This
occurs when the RAS projection phase of the connection operation has been completed.
The client can call the RasGetProjectionlnfo function to get additional information about
the projection. The client can use this information to notify the user as to which network
protocols can be used by this connection.

You should avoid writing code that depends on the order or occurrence of particular
informational states, because this may vary between platforms.

Completion Notifications
The Remote Access Connection Manager continues progress notifications until the
connection operation has been completed. This occurs in the following situations:

• The handler receives a RASCS_Connected, or RASCS_Disconnected notification.
The RAS client application can exit without breaking any established connection.

• An error occurs. The handler receives a notification indicating the error and the
connection state when the error occurred. The RAS client application can exit.

The RAS client application should not assume the connection operation is complete after
calling RasHangUp. It should wait for one of the preceding conditions before exiting.

Paused States
During a connection operation, there can be times when the remote server cannot
proceed without additional information from the local user. Beginning with Microsoft®
Windows NT® version 3.5, the RasDial function supports paused states. A paused state
allows the Remote Access Connection Manager to suspend a connection operation so
the RAS client application can collect information from the user.

Paused states are useful in the following situations:

• When the user needs to provide a callback number.

• When the user authentication fails, the user can type in a different user name and
password.

• When the user's password has expired, the user can provide a new password.

86 Volume 4 Remote Access Services

By default, paused state support is disabled. RAS clients that want to support paused
states must set the RDEOPTS_PausedStates flag in the RASDIALEXTENSIONS
structure passed as a parameter to RasDiaL

When a paused state occurs, the Remote Access Connection Manager invokes the
client's notification handler. If paused state support is disabled, the notification message
indicates an error, and the connection operation fails. If it is enabled, the Connection
Manager pauses the connection operation to wait for the RAS client's response. The
RAS client can resume the connection operation by a second RasDial call, or terminate
it by calling the RasHangUp function.

After getting the user's input, the RAS client restarts the connection operation by calling
. RasDial again. This second RasDial call must specify the following information:

• The connection handle that was returned by the original RasDial call.

• The same notification handler as the original RasDial call.

• The user's input in the appropriate members of the RASDIALPARAMS structure.
Other members of the RASDIALPARAMS structure should have the same
information as specified in the original RasDial call.

The second RasDial call cannot be made from within the notification handler.

Callback Connections
RAS supports connections in which the remote server hangs up and then calls back to
the client to establish the connection.

For each user that can connect to a RAS server, the server stores a callback attribute
that controls how the connection is made. The default attribute is No Callback, which
means that the user can connect to the RAS server without a callback. Alternatively, the
administrator of the RAS server can assign to a user either the Preset or Set-By-Caller
callback attribute.

For a user assigned the Preset restriction, the administrator specifies a phone number
that the RAS server must call back to establish a connection. The user cannot specify a
different number, and the connection cannot be made without a callback.

A Preset callback operation is handled automatically by the Remote Access Connection
Manager and the remote server. The RAS client application does not need to do
anything other than provide feedback to the user when the notification handler is called
during the various states of the callback operation.

A user assigned the Set By Caller privilege can choose to connect either with or without
a callback. The RasDial call uses the szCaliBackNumber member of the
RASDIALPARAMS structure to indicate the choice.

Chapter 6 RAS Programming Guide 87

The szCaliBackNumber member can simply specify the callback number; or, to
establish the connection without a callback, szCaliBackNumber can point to an empty
string, 101. In either of these cases, the Remote Access Connection Manager handles the
connection operation automatically. As with a Preset callback operation, the RAS client
does not need to perform anyaction other than to provide feedback to the user.

If the RasDial call enables paused states, szCallBackNumber can point to an asterisk
string, "*", to indicate that the connection operation should enter a paused state to allow
the user to type in the callback number. In this case, the connection operation for a Set
By Caller user enters a paused state after the remote server has authenticated the user.
During the paused state, the RAS client gets the callback number input from the user.
The client then resumes the connection operation by making a second RasDial call in
which szCallBackNumber specifies the number supplied by the user.

Note If paused states are not enabled there is a different meaning when
szCallBackNumber pOints to an asterisk string, "*". In this case, the asterisk indicates
that the callback number is stored in the phone-book file specified by the RasDial call.

Disconnecting
When a RAS client application starts a connection operation, the RasDial call receives
an HRASCONN connection handle to identify the connection. If the returned handle is
not NULL, the client must eventually call the RasHangUp function to end the connection.
If an error occurs during the connection operation, the client must call RasHangUp even
though the connection was never established.

The application that calls RasHangUp should not exit immediately, because the Remote
Access Connection Manager needs time to properly terminate the connection. Instead,
the application should wait until the RasGetConnectStatus function returns
ERROR_INVALID_HANDLE, indicating thatthe connection has been deleted.

A RAS client application might need to end a connection even though it does not have
the handle returned by RasDial. For example, the application that called Ra.sDial might
have exited once the connection was successfully established. In this case, the.
disconneCting application can use the RasEnumConnections function to get all the
current connections. For each connection, RasEnumConnections returns a RASCONN
structure containing the HRASCONN connection handle and the phone-book entry
name or phone number specified when the connection operation was started. This
information can be used to display a list of connectiol'lsfrom which the user can select
the connection to end.

RAS Custom Scripting
Developers can create a custom-scripting DLL that resides on a RAS client computer.
This DLL can communicate with the server during the process of establishing a
connection.

88 Volume 4 Remote Access Services

Setting Up the DLL
To set up the DLL, create a value with the name CustomScriptDIIPath under the
following registry key:

\\HKEY _LOCAL_MACHINE\System\CurrentControISet\Services\Rasman\
Parameters\

This value should be of type REG_EXPAND_SZ. The value should contain the path to
the custom-scripting DLL. Only one custom-scripting DLL is supported for each RAS
client computer.

Configuring the Phone-Book Entries
RAS will invoke RasCustomScriptExecute for a connection only if the phone-book
entry for the connection has the RASEO_CustomScript option set. See the dwfOptions
member of RASENTRY for a description of phone-book entry options. Use the
RasGetEntryProperties and RasSetEntryProperties functions to set this option
programmatically.

Interaction Between the Server, RAS, and the
Custom-Scripting DLL
The custom scripting DLL should export a single entry point:
RasCustomScriptExecute. RAS will call this function during the RASCS_lnteractive
state of the connection process. The RASCS_lnteractive state is a paused state, which
allows the user to interact with a user interface presented by the custom-scripting DLL.
See RASCONNST ATE for more information about connection states.

RAS will pass as parameters to the RasCustomScriptExecute function:

• A handle to the port on the client computer that is being used for the connection.

• Strings that identify the phone book and entry for the connection.

• RAS also passes in a handle to a window to enable the DLL to present a user
interface.

• A set of function pointers that the DLL can use to communicate with the server.

See RasCustomScriptExecute for more information about these parameters.

RAS mediates the dialog between the server and the custom-scripting DLL. Typically,
the server initiates the dialog. For example, the server may request the user name and
password of the user.

RAS makes no assumptions about the type of server to which the client is connected.
The server need not use Windows NT version 4.0 or Windows 2000.

Chapter 6 RAS Programming Guide 89

RAS Phone Books
Phone books provide a standard way to collect and specify the information that the
Remote Access Connection Manager needs to establish a remote connection. Phone
books associate entry names with information such as phone numbers, COM ports, and
modem settings. Each phone-book entry contains the information needed to establish a
RAS connection.

Windows NT/2000: Phone books are stored in phone-book files, which are text files that
contain the entry names and associated information. RAS creates a phone-book file
called RASPHONE.PBK. The user can use the main Dial-Up Networking dialog box to
create personal phone-book files. The Win32 API does not currently provide support for
creating a phone-book file. Some RAS functions, such as the RasDial function, have a
parameter that specifies a phone-book file. If the caller does not specify a phone-book
file, the function uses the default phone-book file, which is the one selected by the user
in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows NT version 4.0 provides the RasPhonebookDlg and RasEntryDlg functions
that display the built-in RAS user interface that enable users to work with phone books
and phone-book entries.

Windows 95: Dial-up networking stores phone-book entries in the registry rather than in
a phone-book file. Windows 95 does not support personal phone-book files. Windows 95
does not support the functions that display the built-in RAS dialog boxes.

Phone-Book Entries
Phone-book entries contain the information necessary to establish a RAS connection. A
user or administrator can use the Dial-Up Networking dialog box to create, edit, and
dial phone-book entries.

Windows 95: Windows 95 supports a limited set of the Win32 functions for working with
phone-book entries. You can use the RasCreatePhonebookEntry and
RasEditPhonebookEntry functions to create or edit a phone-book entry. These
functions display a dialog box in which the user can specify information about the phone­
book entry. You can use the RasGetEntryDialParams and RasSetEntryDialParams
functions to set or retrieve the connection parameters for a phone-book entry. The
RasEnumEntries function retrieves an array of RASENTRVNAME structures that
contain the phone-book entry names.

Windows NT version 4.0 supports the functions described for Windows 95, as well as a
number of additional functions that an application can use to work with phone books and
phone-book entries.

The RasEntryDlg function displays a property sheet that enables the user to create,
edit, or copy phone-book entries. The RasCreatePhonebookEntry and
RasEditPhonebookEntry functions call the RasEntryDlg function. You can use the

90 Volume 4 Remote Access Services

RasRenameEntry function to rename a phone-book entry, or the RasDeleteEntry to
delete an entry. The RasValidateEntryName determines whether a specified string has
the correct format to be used as an entry name.

You can use the RasGetEntryProperties and RasSetEntryProperties to get and set
additional information about a phone-book entry. These functions use a RASENTRY
structure.

The RasGetCredentials and RasSetCredentials functions get and set the user
credentials associated with a specified RAS phone-book entry. These functions use a
RASCREDENTIALS structure.

The RasGetCountrylnfo function retrieves country-specific dialing information from the
Windows Telephony list of countries. RasGetCountrylnfo uses the RASCTRYINFO
structure.

Subentries and Multilink Connections
Windows NT version 4.0 provides support for phone-book subentries, which enable
multi link connections. A multilink connection combines the bandwidth of multiple
connections to provide a single connection with higher bandwidth.

A RAS phone-book entry can have zero or more subentries. The
RasGetEntryProperties function retrieves a RASENTRY structure that includes
information about the subentries of a phone-book entry. The dwSubEntries member of
the RASENTRY structure indicates the number of subentries. Phone-book entries
initially have no subentries. To add subentries to a phone-book entry, use the
RasSetSubEntryProperties function.

The properties for each subentry include a phone number and the name and type of the
TAPI device to use when dialing the subentry. In addition, a subentry can include a list of
alternate phone numbers to dial if RAS cannot make a connection using the primary
number. The RasSetSubEntryProperties and RasGetSubEntryProperties functions
use the RASSUBENTRY structure to set and retrieve the properties of a specified
phone-book subentry. Subentries are identified by a one-based index.

You can call the RasSetEntryProperties function to configure a multilink RAS entry to
connect all subentries when it is first dialed. Alternatively, you can configure an entry to
provide variable bandwidth. In this case, RAS connects a single subentry initially, and
then connects or disconnects additional subentries as needed. For a variable-bandwidth
multilink connection, you can use the RASDIALPARAMS structure to specify the initial
subentry to connect when you call the RasDial function. When using the RasDialDlg
function to connect a multilink entry, you can use the RASDIALDLG structure to specify
the initial subentry to connect.

For a variable-bandwidth multilink connection, use the RASENTRY structure with the
RasSetEntryProperties function to specify the parameters for connecting and
disconnecting the individual subentries. RAS connects an additional subentry when the
bandwidth being used exceeds a specified percentage of the available bandwidth for a
specified interval.

Chapter 6 RAS Programming Guide 91

If you call the RasDial function to establish a multilink connection, you can specify a
RasDiaiFunc2 callback function to receive notifications about the connection.
RasDiaiFunc2 is similar to the RasDiaiFunc1 callback function, except that it provides
additional information for a multilink connection, such as the index of the subentry that
caused the notification. RAS calls your RasDiaiFunc2 function when it connects or
disconnects a subentry.

You can use an HRASCONN connection handle to hang up or retrieve information about
a multilink connection. You can get a connection handle for each of the subentry
connections that make up the multilink, as well as for the combined multilink connection.
When you call the RasDial function to establish a multilink connection, RasDial returns a
handle to the combined multilink connection. Similarly, RasEnumConnections returns
the combined multilink handle when you enumerate connections. To get a handle to one
of the subentry connections in a multilink connection, call the RasGetSubEntryHandle
function.

You can use the combined multilink connection handle and the subentry connection
handles in the RasHangUp, RasGetConnectStatus, and RasGetProjectionlnfo
functions. Calling RasHangUp with a combined multilink handle terminates the entire
connection; calling it with a subentry handle hangs up only that subentry connection.
Similarly, RasGetConnectStatus returns information for the combined or individual
connection, depending on the handle specified. The projection information returned by
RasGetProjectionlnfo for a multilink entry is the same for each of the subentry
connection handles as it is for the main connection handle.

RAS AutoDial
Windows NT version 4.0 supports a feature known as AutoDial. Windows 95 and
Windows NT version 3.51 and earlier do not support the AutoDial feature.

When an attempt to connect to a network address fails because the host cannot be
reached, the AutoDial feature can automatically start a dial-up connection operation. To
do this, AutoDial searches its database of network addresses to find a phone-book entry
that it can use to establish the connection.

AutoDial Mapping Database
The AutoDial mapping database maps network addresses to RAS phone-book entries.
The database can include IP addresses (for example, "127.95.1.4"), Internet host names
(for example, "www.microsoft.coni'), or NetBlOS names (for example, "products1 ").
Associated with each address in the AutoDial database is a set of one or more
RASAUTODIALENTRY entries. Each of these entries specifies a phone-book entry that
RAS can dial to connect to the address from a particular Telephony Application
Programming Interface (TAPI) dialing location. For more information about TAPI dialing
locations, see the T API documentation.

92 Volume 4 Remote Access Services

AutoDial automatically creates entries in the AutoDial mapping database in two
situations:

• When an attempt to connect to a network address fails

If there is no entry for the address in the mapping database, and the computer is not
connected to a network (either directly or through RAS), AutoDial prompts the user to
specify the information necessary to establish a dial-up connection. If the user
provides the information and the dial-up connection operation is successful, AutoDial
stores the information in the mapping database.

• When the computer is connected to a network through RAS

Whenever the user connects to a network address, AutoDial creates an entry in the
database. The entry maps the network address to the phone-book entry that was
used to establish the RAS connection.

You can use the RasSetAutodialAddress function to add an address to the AutoDial
mapping database, delete an address from the database, or change the AutoDial entries
associated with an existing address in the database. You can use the
RasGetAutodialAddress function to retrieve the AutoDial entries associated with a
specified network address in the AutoDial mapping database. The
RasEnumAutodialAddresses function returns a list of all addresses in the AutoDial
mapping database.

AutoDial Connection Operations
When an attempt to connect to a network address fails because the host cannot be
reached, the system searches the AutoDial mapping database for the address. If the
address is in the database, the system initiates an AutoDial operation for the
RASAUTODIALENTRY, if any, that corresponds to the local TAPI dialing location.

The Win32 API provides functions that enable you to set and query AutoDial parameters
that control AutoDial connections. You can call the RasSetAutodialEnable function to
enable or disable the AutoDial feature for a specified TAPI dialing location. The
RasGetAutodialEnable function indicates whether the AutoDial feature is enabled for a
specified TAPI dialing location. For more information about TAPI dialing locations, see
the TAPI documentation. You can call the RasSetAutodialParam function to set other
AutoDial connection parameters. For example, you can disable AutoDial connections for
the current logon session. Call the RasGetAutodialParam function to determine the
current value of the AutoDial connection parameters.

The system provides a default user interface for AutoDial dialing operations. However,
you can create an AutoDial dynamic-link library (DLL) to provide a custom user interface
for AutoDial dialing operations involving specified phone-book entries. Your AutoDial
DLL must export both an ANSI and a Unicode version of a RASADFunc AutoDial
handler.

Chapter 6 RAS Programming Guide 93

To enable your custom AutoDial handler for a phone-book entry, call the
RasSetEntryProperties function to set the properties for that entry. The szAutodialDIl
and szAutodialFunc members of the RASENTRY structure passed to
RasSetEntryProperties specify the name of your AutoDial DLL and the name of your
RASADFunc function, excluding the "A" or "W" suffix.

When the system starts an AutoDial operation for a phone-book entry with a custom
AutoDial handler, it calls the specified RASADFunc. The RASADFunc function receives
a pOinter to a RASADPARAMS structure that indicates the location and parent window
for the window of your user interface. Your RASADFunc can start a thread to perform
the custom dialing operation. The RASADFunc function returns TRUE to indicate that it
took over the dialing, or FALSE to allow the system to perform the dialing. Your custom
dialing operation must use the RasDial function to do the actual dialing. When the
dialing operation has been completed, the custom dialing operation indicates success or
failure by setting the variable pOinted to by the /pdwRetCode parameter passed to
RASADFunc.

RAS Configuration and Connection Information
Applications running on Windows NT version 4.0 and later versions, and Windows 95,
can use the RasEnumConnections function to get information about the existing
connections on the local computer. The information for each connection includes a
connection handle and the name of the phone-book entry used to establish the
connection. You can use the connection handle in a call to the RasGetConnectStatus
function get the current status of the connection.

Windows NT 4.0 and later versions provide two new functions for retrieving RAS
information. Windows 95 does not support these functions.

The RasEnumDevices function returns the name and type of the RAS-capable devices
that are configured on the local computer.

The RasConnectionNotification function specifies an event object that the system
signals when a RAS connection is created or terminated.

RAS Server Administration
Windows NT version 4.0 provides a set of functions for administering user permissions
and ports on Windows NTlWindows 2000 RAS servers. Windows 95 does not support
these functions. Using these functions, you can develop a RAS server administration
application to perform the following tasks:

• Enumerate those users who have a specified set of RAS permissions

• Assign or revoke RAS permissions for a specified user

• Enumerate the configured ports on a RAS server

• Get information and statistics about a specified port on a RAS server

94 Volume 4 Remote Access Services

• Reset the statistics counters for a specified port

• Disconnect a specified port

You can also install a RAS server administration DLL for auditing user connections and
assigning IP addresses to dial-in users. The DLL exports a set of functions that the RAS
server calls whenever a user tries to connect or disconnect.

RAS User Account Administration
A Windows NT version 4.0 RAS server uses a user account database that contains
information about a set of user accounts. The information includes a user's RAS
privileges, which are a set of bit flags that determine how the RAS server responds when
the user calls to connect. The RAS server administration functions enable you to locate
the user account database, and to get and set the RAS privileges for user accounts.

A Windows NT version 4.0 RAS server can be part of a Windows NTIWindows 2000
domain, or it can be a stand-alone Windows NT Server or Workstation that is not part of
a domain. For a server that is part of a domain, the user account database is stored on
the Windows NTIWindows 2000 server that is the Primary Domain Controller (PDC). A
stand-alone server stores its own local user account database. To get the name of the
server that stores the user account database used by a specified RAS server, you can
call the RasAdminGetUserAccountServer function. You can then use the name of the
user account server in a call to the NetQueryDisplaylnformation function to enumerate
the users in a user account database. You can also use the server name in calls to the
RasAdminUserGetlnfo and RasAdminUserSetlnfo functions to get and set the RAS
privileges for a specified user account.

The RasAdminUserGetinfo and RasAdminUserSetlnfo functions use the
RAS_USER_O structure to specify a user's RAS privileges and call-back phone number.
The RAS privileges indicate the following information:

• Whether the user can make a remote connection to the server or the domain to which
the server belongs.

• Whether the user can establish a connection through a call-back, in which the RAS
server hangs up and then calls back to the user to establish the connection.

Chapter 6 RAS Programming Guide 95

Each user account specifies one of the following flags to indicate the user's call-back
privilege.

Value

RASPRIV _NoCaliback

RASPRIV _AdminSetCallback

RASPRIV _CalierSetCaliback

Meaning

The RAS server will not call back the user to establish
a connection.

When the user calls, the RAS server hangs up and
calls a preset call-back phone number stored in the
user account database. The szPhoneNumber
member of the RAS_USER_O structure contains the
user's call-back phone number.

When the user calls, the RAS server provides the
option of specifying a call-back phone number. The
user can also choose to connect immediately without
a call back. The szPhoneNumber member contains a
default number that the user can override.

RAS Server and Port Administration
The RAS server administration functions enable you to get information about a specified
RAS server and its ports. These functions also enable you to terminate a connection on
a specified RAS server port.

The RasAdminServerGetlnfo function returns a RAS_SERVER_O structure that
contains information about the configuration of a RAS server. The returned information
includes the number of ports currently available for connection, the number of ports
currently in use, and the server version number.

The RasAdminPortEnum function retrieves an array of RAS_PORT _0 structures that
contains information for each of the ports configured on a RAS server. The information
for each port includes:

• The name of the port

• Information about the device attached to the port

• Whether the RAS server associated with the port is a Windows NT/Windows 2000
Server

• Whether the port is currently in use, and if it is, information about the connection

You can ~all the RasAdminPortGetlnfo function to get additional information about a
specified port on a RAS server. This function returns a RAS_PORT _1 structure that
contains a RAS_PORT ~O structure and additional information about the current state of
the port. The RasAdminPortGetlnfo function also returns an array of
RAS_PARAMETERS structures that describe the values of any media-specific keys
associated with the port. A RAS_PARAMETERS structure uses a value from the
RAS_PARAMS...:.FORMAT enumeration to indicate the format of the value for each
media-specific key.

96 Volume 4 Remote Access Services

The RasAdminPortGetlnfo function also returns a RAS_PORT_STATISTICS structure
that contains various statistic counters for the current connection, if any, on the port. For
a port that is part of a multilink connection, RasAdminPortGetlnfo returns statistics for
the individual port and cumulative statistics for all ports involved in the connection. You
can use the RasAdminPortClearStatistics function to reset the statistic counters for the
port. The RasAdminPortDisconnect function disconnects a port that is in use.

Use the RasAdminFreeBuffer function to free memory allocated by the
RasAdminPortEnum and RasAdminPortGetlnfo functions. Use the
RasAdminGetErrorString function to get a string that describes a RAS error code
returned by one of the RAS Server Administration (RasAdmin) functions.

RAS Administration DLL
Windows NT version 4.0 enables you to install a RAS administration DLL on a
Windows NT version 4.0RAS server. The DLL exports functions that the RAS server
calls whenever a user tries to connect or disconnect. You can use the DLL to perform
the following administrative functions:

• Decide whether to allow a user to connect to the server. This can provide a security
check in addition to the standard RAS user authentication.

• Record the time that each user connects to and disconnects from the server. This can
be useful for billing or auditing purposes.

• Assign an IP address to each user. This can be useful for security purposes to map a
user's connection to a specific computer.

Implement the following functions when developing a RAS server administration DLL.

• RasAdminAcceptNewConnection

• RasAdminConnectionHangupNotification

• RasAdminGetlpAddressForUser

• RasAdminReleaselpAddress

A RAS administration DLL must implement and export all of the above functions. If any
of the functions are not implemented, the remote access service will fail to start.

The RasAdminAcceptNewConnection and
RasAdminConnectionHangupNotification functions enable the DLL to audit user
connections to the server. A Windows NTlWindows 2000 RAS server calls the
RasAdminAcceptNewConnection function whenever a user tries to connect. The
function can prevent the user from connecting. You can also use the function to
generate an entry in a log for billing or auditing. When the user disconnects, the RAS
server calls the RasAdminConnectionHangupNotification function, which can log the
time at which the user disconnected.

Chapter 6 RAS Programming Guide 97

After the RAS server has authenticated a caller, it calls the
RasAdminGetlpAddressForUser function to get an IP address for the remote client.
The DLL can use this function to provide an alternate scheme for mapping an IP address
to a dial-in user. If RasAdminGetlpAddressForUser is not implemented, a RAS server
connects a remote user to an IP address selected from a static pool of IP addresses, or
one selected by a Dynamic Host Configuration Protocol (DHCP) server. The
RasAdminGetlpAddressForUser function allows the DLL to override this default IP
address and specify a particular IP address for each user. The
RasAdminGetlpAddressForUser function can set a flag that causes RAS to call the
RasAdminReleaselPAddress function when the user disconnects. The DLL can use
RasAdminReleaselPAddress to update its user-to-IP-address map.

RAS serializes calls into the administration DLL. A call into one of the DLL's functions for
a given RAS client will never be preempted by a call to that function for a different RAS
client; the initial call is guaranteed to be complete before RAS calls the function for the
other client. Furthermore, serialization extends to certain groups of functions. The IP
address functions are serialized as a group; a call into either
RasAdminGetlpAddressForUser or RasAdminReleaselpAddress will block calls into
both until the initial call is complete. RasAdminAcceptNewConnection and
RasAdminConnectionHangupNotification are also serialized as a group.

RAS executes the functions for assigning IP addresses in one process and executes the
functions for connection and disconnection notifications in another process.
Consequently, the DLL should not depend on shared data between the two sets of
functions.

The RAS server logs an error in the system event log if an error occurs when it tries to
load a RAS administration DLL or when calling one of the DLL's functions. This can
happen, for example, if the DLL specified the wrong name for an exported function, or if
it did not include the function name in the .def file. The entry in the event log indicates
the reason for the failure.

Windows 2000 and later: RAS administration DLLs that implement this function
interface will not work on Windows 2000 and later versions. Instead, use the MprAdmin
function interface provided with the more recent versions of Windows. For more
information, see the RAS Administration Reference in the Routing and RAS
documentation.

RAS Administration Dll Registry Setup
The setup program for a third"party RAS administration DLL must register the DLL with
RAS by providing information under the following key in the registry:

HKEV _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDIl

98 Volume 4 Remote Access Services

To register the DLL, set the following values under this key.

Value name

DisplayName

DLLPath

Value data

A REG_SZ string that contains the user-friendly display name of
the DLL.

A REG_SZ string that contains the full path of the DLL.

For example, the registry entry for a RAS administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDII

DisplayName : REG_SZ : Netwerks RAS Admin DLL

DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS administration DLL should also provide remove/un install
functionality. If a user removes the DLL, the setup program should delete the DLL's
registry entries.

RAS Security Host Support
Windows NT version 4.0 provides a way for a third-party RAS security DLL to enhance
the built-in RAS security features. Windows 95 does not provide this support.

The Windows NTIWindows 2000 RAS server provides security mechanisms for
validating the network access of remote users. When a RAS server receives a call, it
validates the user's credentials against the local or domain account database. RAS also
supports call-back security, in which the RAS server hangs up and then calls back to the
remote user to establish the connection. For networks in which this level of security is
not enough, you can install a third-party RAS security DLL. The security DLL can then
authenticate a remote user by reading security information from a database other than
the standard Windows NTIWindows 2000 user account database.

When the RAS server receives a call, it invokes the security DLL to authenticate the
remote.user. TheRAS security host support provides a mechanism for the security DLL
to communicate with the remote user through a terminal window on the remote
computer. In a typical scenario, the security DLL asks for the logon name of the remote
user. The DLL then uses its private security database to formulate a challenge to send to
the remote terminal. For example, the challenge could be a code that the user must
provide as input to a cardkey reader. The cardkey reader then displays a response that
the remote user types in the terminal window. The security DLL then validates the
response against the user's information in the private security database.

If the security DLL authenticates the remote user, the RAS server performs its own
authentication. This ensures that RAS security always authenticates a remote user, even
if a security DLL is installed that grants access to all users.

Chapter 6 RAS Programming Guide 99

Note Windows NTIWindows 2000 currently provides RAS security host support only for
asynchronous connections; other media, such as ISDN, are not supported.

Registering a RAS Security DLL
The setup program for a RAS security DLL must register the DLL with the
Windows NTIWindows 2000 RAS server. Only one RAS security DLL can be registered;
Windows NTIWindows 2000 does not support multiple security DLLs. To register a RAS
security DLL, set the DLLPath value under the following key in the registry:

Value Name

DLLPath

Value Data

A REG_SZ string that contains the path of the DLL. This string
should specify the full path unless the DLL is in a directory listed
in the system path.

The setup program for a RAS security DLL must also provide remove/uninstall
functionality. If a user removes the DLL, the setup program must delete the DLLPath
value from the registry. The RAS service will not start if the DLLPath value specifies a
DLL that cannot be found.

A RAS security DLL must export the RasSecurityDialogBegin and
RasSecurityDialogEnd functions.

RAS Server Security Authentication
When a Windows NTIWindows 2000 RAS server receives a call, it invokes the
RasSecurityDialogBegin function of the registered RAS security DLL, if there is one.
This call notifies the security DLL to begin its authentication of the remote user. The RAS
server calls RasSecurityDialogBegin before performing its PPP or RAS authentication.

The RasSecurityDialogBegin call passes the following information to the security DLL:

• A port handle to identify the connection

• Pointers to buffers to use when communicating with the remote user

• A pointer to a RasSecurityDialogComplete function to call when the authentication
has been completed

The port handle and buffer pointers are valid until the security DLL calls
RasSecurityDialogComplete to terminate the authentication transaction.

100 Volume 4 Remote Access Services

The RasSecurityDialogComplete notifies the RAS server of the results of the security
DLL's authentication of the remote user. If the security DLL reports success, the RAS
server proceeds with its PPP and RAS authentication of the remote user. If the security
DLL reports that the remote user failed the authentication, or that an error occurred, the
RAS server hangs up and logs the error or failed authentication in the
Windows NTlWindows 2000 event log.

RAS Security DLL Authentication Transaction
The Windows NTlWindows 2000 RAS server calls the security DLL's
RasSecurityDialogBegin function to begin an authentication of a remote user. The RAS
server is blocked and cannot accept any other calls until RasSecurityDialogBegin
returns. For this reason, RasSecurityDialogBegin should copy the input parameters,
create a thread to perform the authentication, and return as quickly as possible.

The thread created by the security DLL uses the RasSecurityDialogSend and
RasSecurityDialogReceivefunctions to communicate with the remote computer. These
functions are not available for static import from any library. Instead, the security DLL
must use the LoadLibrary and GetProcAddress functions to dynamically link to these
functions in RASMAN.DLL.

During an authentication transaction, the RAS connection manager on the remote
computer displays a terminal window. The thread of the security DLL calls
RasSecurityDialogSend to send a message to display in the terminal window. The
thread then calls RasSecurityDialogReceive to receive the input that the remote user
types in the terminal window. The thread can make any number of
RasSecurityDialogSend calls, with each call followed by a RasSecurityDialogReceive
call. After each call to RasSecurityDialogReceive, the thread must call one of the wait
functions, such as WaitForSingleObject, to wait for the asynchronous send and receive
operations to be completed. The RAS server signals an event object when the receive
operation has been completed or when an optional time-out interval has elapsed.

When the thread has finished authenticating the remote user, it calls the
RasSecurityDialogComplete function. This call passes a SECURITY_MESSAGE
structure containing the results of the authentication transaction to the RAS server. The
RAS server then performs a cleanup sequence that includes a call to the DLL's
RasSecurityDialogEnd function. This gives the security DLL an opportunity to perform
any necessary cleanup.

The security DLL can call the RasSecurityDialogGetlnfo function to retrieve information
about the port associated with an authentication transaction. RasSecurityDialogGetlnfo
fills in a RAS_SECURITY _INFO structure that indicates the state of the last
RasSecurityDialogReceive call for the port.

Chapter 6 RAS Programming Guide 101

Using Remote Access Service
The following section explains how to use Remote Access Service features in an
application.

Linking to the Remote Access DLL
If an application links statically to the RASAPI32 DLL, the application will fail to load if
Remote Access Service is not installed. A RAS application can load when RAS is not
installed by using LoadLibrary to load the DLL, and GetProcAddress to obtain pointers
to the RAS functions.

The Win32 RAS functions are in RASAPI32.DLL. The import library for these functions is
RASAPI32.LlB. To use the RAS functions, your programs must include the following
files.

File

RAS.H

RASERROR.H

Description

Contains the RAS function prototypes, constants, and structure
definitions.

Contains the RAS error codes.

103

CHAPTER 7

RAS Functions

Use the following functions to implement RAS functionality:

ORASADFunc RasGetCountrylnfo
RASADFunc RasGetcredentials
RasClearConnectionStatistics RasGetCustomAuthData
RasClearLinkStatistics RasGetEapUserData
RasConnectionNotification· RasGetEapUserldentity
RasCreatePhonebookEntry RasGetEntryDialParams
RasCustomDeleteEntryNotify RasGetEntryProperties
RasCustomDial RasGetErrorString
RasCustomDialDlg RasGetLinkStatistics
RasCustomEntryDlg RasGetProjectionlnfo
RasCustomHangUp RasGetSubEntryHandle
RasDeleteEntry RasGetSubEntryProperties
RasDial RasHangUp
RasDialDlg RaslnvokeEapUI
RasDialFunc RasMonitorDlg
RasDiaiFunc1 RasPBDlgFunc
RasDiaiFunc2 RasPhonebookDlg
RasEditPhonebookEntry RasRenameEnfry
RasEntryDlg RasSetAutodialAddress
RasEnumAutodialAddresses RasSetAutodialEnable
RasEnumConnections RasSetAutodialParam
RasEnumDeviees RasSetCredentials·
RasEnumEntries RasSetCustomAuthData
RasFreeEapUserldentity RasSetEapUserData
RasGetAutodialAddress RasSetEntryDialPa.rams
RasGetAutodialEnable RasSetEl'ltryProperties
RasGetAutodialParam RasSetSubEntryProperties
RasGetConnectionStatistics RasValidateEntryName
RasGetConnectStatus

ORASADFunc
The ORASADFunc function is an application-defined callback function that you can use
to provide a customized user interface for autodialing.

104 Volume 4 Remote Access Services

This prototype is provided for compatibility with earlier versions of Windows. New
applications should use the RASADFunc callback function. Support for this prototype
may be removed in future versions of RAS.

Parameters
hwndOwner

Handle of the owner window.

/pszEntry
Pointer to a null-terminated string that specifies the phone book entry to use.

dwF/ags
Reserved; must be zero.

/pdwRetCode
Pointer to a variable that the callback function fills in with the results of the dialing
operation. If the dialing operation succeeds, set this variable to ERROR_SUCCESS. If
the dialing operation fails, set it to a nonzero value.

Return Values
If the callback function performs the dialing operation, return TRUE. Use the
/pdwRetCode parameter to indicate the rel?ults of the dialing operation.

If the callback function does not perform the dialing operation, return FALSE. In this
case, the system uses the default user interface for dialing.

Remarks
If your ORASADFunc function performs the dialing operation, it presents its own user
interface for dialing and calls the RasDial function to do the actual dialing. Your
ORASADFunc then returns TRUE to indicate that it took over the dialing. When the
dialing operation has been completed, set the variable pointed to by /pdwRetCode
to indicate success or failure.

To enable an ORASADFunc handler for a phone book entry, use theRASENTRY
structure in a call to the RasSetEntryProperties function. The szAutodialDIl member
specifies the name of the DLL that contains the handler, and the szAutodialFunc
member specifies the exported name of the handler.

The ORASADFunc function is a placeholder for the library-defined function name.
The ORASADFUNC type is a pOinter to an ORASADFunc function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Chapter 7 RAS Functions 105

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASADFunc, RasDial, RASENTRY, RasSetEntryProperties

RASADFunc
The RASADFunc function is an application-defined callback function that you can use to
provide a customized user interface for autodialing.

Parameters
IpszPhonebook

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a phone book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string that specifies the phone book entry to use.

IpAutoDialParams
Pointer to a RASADPARAMS structure that indicates how to position the window of
your AutoDial user interface. The structure may also specify a parent window for your
AutoDial window.

IpdwRetCode
Pointer to a variable in which you must return a value if you perform the dialing
operation. If the dialin'g operation succeeds, set this variable to ERROR_SUCCESS. If
the dialing operation fails, set it to a nonzero value.

106 Volume 4 Remote Access Services

Return Values
If your application performs the dialing operation, return TRUE. Use the IpdwRetCode
parameter to indicate the results of the dialing operation.

If your application does not perform the dialing operation, return FALSE. In this case, the
system uses the default user interface for dialing.

Remarks
When the system starts an AutoDial operation for a phone book entry with a custom
AutoDial handler, it calls the specified RASADFunc. Your RASADFunc can start a
thread to perform the custom-dialing operation. The RASADFunc function returns TRUE
to indicate that it took over the dialing, or FALSE to allow the system to perform the
dialing.

If your RASADFunc function performs the dialing operation, it presents its own user
interface for dialing and calls the RasDial function to do the actual dialing. Your
RASADFunc then returns TRUE to indicate that it took over the dialing. When the
dialing operation has been completed, set the variable pOinted to by the IpdwRetCode
parameter to indicate success or failure.

Your AutoDial DLL must provide both a RASADFUNCA (ANSI) and a RASADFUNCW
(Unicode) version of the RASADFunc handler. To enable a RASADFunc AutoDial
handler for a phone book entry, use the RASENTRY structure in a call to the
RasSetEntryProperties function. The szAutodialDIl member specifies the name of the
DLL that contains the handler, and the szAutodialFunc member specifies the exported
name of the handler. The szAutodialFunc member should not include the "A" or "W"
suffix.

RASADFunc is a placeholder for the library-defined function name. The RASADFUNC
type is a pOinter to a RASApFunc function.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI prototypes.

Remote Access Service (RAS) Overview, Remote Access Service Functions, RasDial,
RASENTRY, RasSetEntryProperties

Chapter 7 RAS Functions 107

RasClearConnectionStatistics
The RasClearConnectionStatistics functions clears any accumulated statistics for the
specified RAS connection.

Parameters
hRasConn

Handle to the connection. Use RasDial or RasEnumConnections to obtain this
handle.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_NOT_ENOUGH_
MEMORY

Other

The hRasConn parameter does not specify a valid
connection.

The function could not allocate sufficient memory to
complete the operation.

Use FormatMessage to retrieve the system error
message that corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.1ib.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasClearLinkStatistics, RasDial, RasEnumConnections,
RasGetConnectionStatistics, RAS_STATS

RasClearLi n kStatistics
The RasClearLinkStatistics functions clears any accumulated statistics for the
specified link in a RAS multilink connection.

108 Volume 4 Remote Access Services

Parameters
hRasConn

Handle to the connection. Use RasDial or RasEnumConnections to obtain this
handle.

dwSubEntry
Specifies the subentry that corresponds to the link for which to clear statistics.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_
PARAMETER

ERROR_NO_CONNECTION

ERROR_NOT_ENOUGH
MEMORY

Other

The hRasConn parameter does not specify a valid
connection.

The dwSubEntry parameter is zero.

RAS could not find a connected port that corresponds
to the value in the dwSubEntry parameter.

The function could not allocate sufficient memory to
complete the operation.

Use FormatMessage to retrieve the system error
message that corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasClearConnectionStatistics, RasGetLinkStatistics

Chapter 7 RAS Functions 109

RasCon nection Notification
The RasConnectionNotification function specifies an event object that the system sets
to the signaled state when a RAS connection is created or terminated.

Parameters
hrasconn

Handle to the RAS connection for which to receive notifications. This can be a handle
returned by the RasDial or RasEnumConnections function. If this parameter is
INVALlD_HANDLE_VALUE, you receive notifications for all RAS connections on the
local computer.

hEvent
Specifies the handle of an event object. Use the CreateEvent function to create an
event object.

dwFlags
Specifies the RAS event that causes the system to signal the event object specified
by the hEvent parameter. This parameter can be a combination of the following
values.

Value Meaning

RASCN_Connection If hrasconn is INVALlD_HANDLE_VALUE, hEventis
signaled when any RAS connection is created.

RASCN_Disconnection hEvent is signaled when the hrasconn connection
is terminated. If hrasconn is a multilink connection,
the event is signaled when all subentries
are disconnected. If hrasconn is
INVALlD_HANDLE_ VALUE, the event is signaled
when any RAS connection is terminated.

RASCN_BandwidthAdded Windows NT 4.0 and earlier versions only: If
hrasconn is a handle to a combined multilink
connection, hEvent is signaled when a subentry is
connected.

RASCN_BandwidthRemoved Windows NT 4.0 and earlier versions only: If
hrasconn is a handle to a combined multilink
connection, hEvent is signaled when a subentry is
disconnected.

110 Volume 4 Remote Access Services

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error code.

Remarks
To determine when the event object is signaled, use any of the wait functions.

When the event is signaled, you can use other RAS functions, such as
RasEnumConnections, to get more information about the RAS connection that was
created or terminated.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
CreateEvent, RasEnumConnections

RasCreatePhonebookEntry
The RasCreatePhonebookEntry function creates a new phone book entry. The function
displays a dialog box in which the user types information for the phone book entry.

Windows NT/2000: The RasCreatePhonebookEntry function calls the RasEntryDlg
function. Applications written for Windows NT version 4.0 should use RasEntryDlg.

Parameters
hwnd

Handle to the parent window of the dialog box.

Chapter 7 RAS Functions 111

IpszPhonebook
Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows 95: Dial-up networking stores phone book entries in the registry rather than
in a phone book file.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is the following error code.

Value Description

ERROR_CANNOT _OPEN_PHONEBOOK The phone book is corrupted or missing
components.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasEditPhonebookEntry, RasEntryDlg, RasGetEntryDialParams,
RasSetEntryDialParams

RasCustomDeleteEntryNotify
The RasCustomDeleteEntryNotify function is an application-defined function that is
exported by a third-party custom-dialing DLL. This function allows third-party vendors to
implement custom dialogs for managing phone book entries.

112 Volume 4 Remote Access Services

Parameters
IpszPhonebook

Pointer to a null-terminated string that specifies the full path and file name of a phone
book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string that contains the name of the phone book entry to
dial.

dwFlags
Specifies one or more of the following flags:

RCD_SingleUser
RCD_AIIUsers
RCD_Eap

Return Values
The function should return NO_ERROR.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCustomDial, RasCustomDialDlg, RasCustomEntryDlg, RasCustomHangUp,
RasDial,

RasCustom Dial
The RasCustomDial function is an application-defined function that is exported by a
third-party custom-dialing DLL. This function allows third-party vendors to implement
custom remote-access dialing routines.

Parameters
hlnstDII

Chapter 7 RAS Functions 113

Handle to the instance of the custom-dial DLL that was loaded.

IpRasDialExtensions
Pointer to a RASDIALEXTENSIONS structure that specifies a set of RasDial
extended features to enable. If you do not need to enable any of the extensions, set
this parameter toNULL.

IpszPhonebook
Pointer to a null-terminated string that specifies the full path and file name of a phone
book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box.

IpRasDialParams
Pointer to a RASDIALPARAMS structure that specifies calling parameters for the
RAS connection.

The caller must set the RASDIALPARAMS structure's dwSize member to
sizeof(RASDIALPARAMS) to identify the version of the structure being passed.

dwNotifierType
This parameter is the same as the dwNotifierType parameter for the RasDial function.
See the RasDial reference page for more information.

IpvNotifier
This parameter is the same as the IpvNotifier parameter for the RasDial function.
See the RasDial reference page for more information.

IphRasConn
Pointer to a variable of type HRASCONN. You must set the HRASCONN variable to
NULL before calling RasDial. If RasDial succeeds, it stores a handle to the RAS
connection into * IphRasConn.

114 Volume 4 Remote Access Services

Return Values
If the function succeeds, the immediate return value should be zero. In addition, the
function should store a handle to the RAS connection into the variable pOinted to by the
IphRasConn parameter.

If the function fails, the immediate return value should be a nonzero error value, either
from the set listed in Raserror.h or ERROR_NOT_ENOUGH_MEMORY.

Remarks ,
RAS calls this entry point from RasDial, if the szCustomDialDIl member of the
RASENTRY structure for the entry being dialed specifies a custom-dialing DLL.

If this entry point calls RasDial, the IpRasDialExtensions parameter must not be NULL,
and the dwFlags member of the RASDIALEXTENSIONS structure must have the
RDEOPT _CustomDial flag set.

If the custom-dial DLL does not support this entry point, RAS returns
ERROR_CANNOT _DO_CUSTOMDIAL to the caller of RasDial.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI prototypes.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCustomDialDlg, RasCustomEntryDlg, RasCustomHangUp, RasDial,
RASENTRY

RasCustom Dial Dig
The RasCustomDialDlg function is an application-defined function that is exported by a
third-party custom-dialing DLL. This function allows third-party vendors to implement
custom RAS connection dialog boxes.

Parameters
hlnstDII

Chapter 7 RAS Functions 115

Handle to the instance of the custom-dialing DLL that was loaded.

dwFlags
The parameter is reserved for future use.

IpszPhonebook
Pointer to a null-terminated string that specifies the full path and file name of a phone
book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string that contains the name of the phone book entry to
dial.

IpszPhoneNumber
Pointer to a null-terminated string that contains a phone number that overrides the
numbers stored in the phone book entry. If this parameter is NULL, RasDialDlg uses
the numbers in the phone book entry.

Iplnfo
Pointer to a RASDIALDLG structure that contains additional input and output
parameters. On input, the dwSize member of this structure must specify
sizeof(RASDIALDLG). If an error occurs, the dwError member returns an error code;
otherwise, it returns zero.

Return Values
If the function establishes a RAS connection, the return value should be a nonzero
value.

If an error occurs, or if the user selects a Cancel button during dialing box operation, the
return value should be zero. If an error occurs, set the dwError member of the
RASDIALDLG structure to a· nonzero system error or a RAS error code from Raserror.h.

Remarks
RAS will call this entry point from RasDialDlg, if the szCustomDialDIl member of the
RASENTRY structure for the entry being dialed specifies a custom-dialing DLL.

116 Volume 4 Remote Access Services

If this entry point calls RasDial, the IpRasDialExtensions parameter must not be NULL,
and the dwFlags member of the RASDIALEXTENSIONS structure must have the
RDEOPT _CustomDial flag set.

The custom-dial dialog must support WM_COMMAND messages where
LOWORD(wParam) equals IDCANCEL.

If the custom-dial DLL does not support this entry point, RAS returns
ERROR_CANNOT _DO_CUSTOM DIAL to the caller of RasDialDlg.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Unicode: Declared as Unicode and ANSI prototypes.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCustomDial, RasCustomEntryDlg, RasCustomHangUp, RasDialDlg,
RASENTRV

RasCustom EntryDlg
The RasCustomEntryDlg function is an application-defined function that is exported by
a third-party custom-dialing DLL. This function allows third-party vendors to implement
custom dialogs for managing phone book entries.

Parameters
hlnstDlI

Handle to the instance of the custom-dial DLL that was loaded.

Chapter7 RAS Functions 117

IpszPhonebook
Pointer to a null-terminated string that specifies the full path and file name of a phone
book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box. .

IpszEntry
Pointer to a null-terminated string that contains the name of the phone book entry to
edit, copy, or create.

If you are editing or copying an entry, this parameter is the name of an existing phone
book entry. If you are copying an entry, set the RASEDFLAG_CloneEntry flag in the
dwFlags member of the RASENTRYDLG structure.

If you are creating an entry, this parameter is a default new entry name that the user
can change. If this parameter is NULL, the function provides a default name. If you
are creating an entry, set the RASEDFLAG_NewEntry flag in the dwFlags member of
the RASENTRYDLG structure.

/plnfo
Pointer to a RASENTRYDLG structure that contains additional input and output
parameters. On input, the dwSize member of this structure must specify
sizeof(RASENTRYDLG). Use the dwFlags member to indicate whether you are
creating, editing, or copying an entry. If an error occurs, the dwError member returns
an error code; otherwise, it returns zero.

Return Values
If the user creates, copies, or edits a phone book entry, the return value should be a
nonzero value.

If an error occurs, or if the user cancels the operation, the return value should be zero. If
an error occurs, the RasCustomEntryDlg should set the dwError member of the
RASENTRYDLG structure to a nonzero system error code or a RAS error code from
Raserror.h.

Remarks
RAS will call this entry pOint from RasEntryDlg, if the szCustomDialDIl member of the
RASENTRY structure for the entry being dialed specifies a custom-dialing DLL.

If the custom-dial DLL does not support this entry point, RAS returns
ERROR_NO_CUSTOMENTRYDLG to the caller of RasEntryDlg.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Unicode: Declared as Unicode and ANSI prototypes.

118 Volume 4 Remote Access Services

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCustomDial, RasCustomDialDlg, RasCustomHangUp, RasEntryDlg,
RASENTRV

RasCustomHangUp
The RasCustomHangUp function is an application-defined function that is exported by a
third-party custom-dialing DLL. This function allows third-party vendors to implement
custom connection hang-up routines.

Parameters
hRasConn

Handle to the RAS connection to hang up.

Return Values
If the function succeeds, the return value should be zero.

If the function fails, the return value should be a nonzero error value listed in Raserror.h,
or ERROR_INVALlD_HANDLE.

Remarks
RAS will call this entry pOint from RasHangUp, if the szCustomDialDIl member of the
RASENTRV structure for the entry being dialed specifies a custom-dialing DLL.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCustomDial, RasCustomDialDlg, RasCustomEntryDlg, RasHangUp,
RASENTRV

Chapter 7 RAS Functions 119

RasDeleteEntry
The RasDeleteEntry function deletes an entry from a phone book.

Parameters
IpszPhonebook

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a phone book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string containing the name of an eXisting entry to be
deleted.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is ERROR_INVALlD_NAME.

Remarks
The following sample code deletes the phone book entry specified by the variable
IpszEntry.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

120 Volume 4 Remote Access Services

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCreatePhonebookEntry, RasEnumEntries

RasDial
The RasDial function establishes a RAS connection between a RAS client and a RAS
server. The connection data includes callback and user-authentication information.

Parameters
IpRasDialExtensions

Windows NT/2000: Pointer to a RASDIALEXTENSIONS structure that specifies a
set of RasDial extended features to enable. If you do not need to enable any of the
extensions, set this parameter to NULL.

Windows 95: This parameter is ignored. On Windows 95, RasDial always uses the
default behaviors for the RASDIALEXTENSIONS options.

IpszPhonebook
Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows 95: This parameter is ignored. Dial-up networking stores phone book
entries in the registry rather than in a phone book file.

Chapter 7 RAS Functions 121

IpRasDialParams
Pointer to a RASDIALPARAMS structure that specifies calling parameters for the
RAS connection.

The caller must set the RASDIALPARAMS structure's dwSize member to
sizeof(RASDIALPARAMS) to identify the version of the structure being passed.

dwNotifierType
Specifies the nature of the IpvNotifierparameter. If IpvNotifieris NULL, dwNotifierType
is ignored. If IpvNotifier is not NULL, set dwNotifierType to one of the following values.

Value Meaning

OxFFFFFFFF The IpvNotifier parameter is a handle to a windoyv to receive
progress notification messages. In a progress notification message,
wParam is the equivalent of the rasconnstate parameter of
RasDialFunc and RasDialFunc1, and IParam is the equivalent of
the dwError parameter of RasDialFunc and RasDialFunc1.

o
1

2

IpvNotifier

The progress notification message uses a system registered
message code. You can obtain the value of this message code as
follows:

The IpvNotifier parameter pOints to a RasDialFunc callback function.

The IpvNotifier parameter points to a RasDiaiFunc1 callback
function.

Windows NT/2000: The IpvNotifier parameter pOints to a
RasDiaiFunc2 callback function.

Specifies a window handle or a RasDialFunc, RasDialFunc1, or RasDiaiFunc2
callback function to receive RasDial event notifications. The dwNotifierType
parameter specifies the nature of IpvNotifier. Please refer to its description preceding
for further detail.

If this parameter is not NULL, RasDial sends the window a message, or calls the
callback function, for each RasDial event. Additionally, the RasDial call operates
asynchronously: RasDial returns immediately, before the connection is established,
and communicates its progress via the window or callback function.

If IpvNotifier is NULL, the RasDial call operates synchronously: RasDial does not
return until the connection attempt has completed successfully or failed.

If IpvNotifier is not NULL, notifications to the window or callback function can occur at
any time after theiriitial call to RasDial. Notifications end when one of the following
events occurs.

122 Volume 4 Remote Access Services

• The connection is established. In other words, the RAS connection state is
RASCS_Connected.

• The connection fails. In other words, dwError is nonzero.

• RasHangUp is called on the connection.

The callback notifications are made in the context of a thread captured during the
initial call to RasDial.

IphRasConn
Pointer to a variable of type HRASCONN. You must set the HRASCONN variable to
NULL before calling RasDial. If RasDial succeeds, it stores a handle to the RAS
connection into * IphRasConn.

Return Values
If the function succeeds, the immediate return value is zero. In addition, the function
stores a handle to the RAS connection into the variable pOinted to by IphRasConn.

If the function fails, the immediate return value is a nonzero error value, either from the
set listed in the RAS header file or ERROR_NOT _ENOUGH_MEMORY.

Remarks
Errors that occur after the immediate return can be detected by RasGetConnectStatus.
Data is available until an application calls RasHangUp to hang up the connection.

An application must eventually call RasHangUp whenever a non-NULL connection
handle is stored into * IphRasConn. This applies even if RasDial returns a nonzero
(error) value.

An application can safely call RasHangUp from a RasDial notifier callback function. If
this is done, however, the hang-up does not occur until the routine returns.

Windows NT/2000: If the structure pointed to by IpRasDialExtensions enables
RDEOPT _PausedStates, the RasDial function pauses whenever it enters a state in
which the RASCS_PAUSED bit is set to one. To restart RasDial from such a paused
state, call RasDial again, passing the connection handle returned from the original
RasDial call in * IphRasConn. The same notifier used in the original RasDial call must be
used when restarting from a paused state.

Windows 2000: RAS supports referenced connections. If the entry being dialed is
already connected, RasDial will return SUCCESS and the connection will be referenced.
To disconnect the connection, each RasDial on the connection should be matched by a
RasHangUp.

Windows 2000: Because some phone book entries require Extensible Authentication
Protocol (EAP) for authentication, the caller should call RasGetEapUserldentitybefore
calling RasDial. If RasGetEapUserldentity returns
ERROR_INVALID_ENTRY _FOR_FUNCTION, the phone book entry does not require
EAP. However, if RasGetEapUserldentity returns NO_ERROR, the caller should copy

Chapter 7 RAS Functions 123

the EAP identity information from RasGetEapUserldentity into the RasEaplnfo member
of RASDIALEXTENSIONS, and the szUserName member of RASDIALPARAMS. See
RasGetEapUserldentity for more information. If the phone book entry requires EAP, the
dwfOptions member of the RASENTRY structure for the entry contains the
RASEO_RequireEAP flag.

To specify that RasDial should enter a RASCS_CalibackSetByCalier state, set
IpRasDiaIParams->szCalibackNumber to "*,, on the initial call to RasDial. When your
notification handler is called with this state, you can set the callback number to a number
supplied by the user.

Windows 95: Windows 95 does not support the RASCS_CalibackSetByCaller state or
any of the other paused states.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions, Dialable
Addresses, RasDialDlg, RasDialFunc, RasDialFunc1, RasDialFunc2,
RasGetConnectStatus, RasHangUp, RASDIALEXTENSIONS, RASDIALPARAMS,
WM_RASDIALEVENT

RasDialDlg
The RasDialDlg function establishes a RAS connection using a specified phone book
entry and the credentials of the logged-on user. The function displays a stream of dialog
boxes that indicate the state of the connection operation.

124 Volume 4 Remote Access Services

Parameters
IpszPhonebook

Pointer to a null-terminated string that specifies the full path and file name of a Phone
Book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string that contains the name of the phone book entry to
dial.

IpszPhoneNumber
Pointer to a null-terminated string that contains a phone number that overrides the
numbers stored in the phone book entry. If this parameter is NULL, RasDialDlg uses
the numbers in the phone book entry.

Iplnto
Pointer to a RASDIALDLG structure that contains additional input and output
parameters. On input, the dwSize member of this structure must specify
sizeof(RASDIALDLG). If an error occurs, the dwError member returns an error code;
otherwise, it returns zero.

Return Values
If the function establishes a RAS connection, the return value is a nonzero value.

If an error occurs, or if the user selects the Cancel button during the dialing operation,
the return value is zero. If an error occurs, the dwError member of the RASDIALDLG
structure returns a nonzero system or RAS error code.

Remarks
The RasDialDlg function displays a series of dialog boxes that are similar to the dialog
boxes that main Dial-Up Networking dialog box displays when the user selects the Dial
button. The RasDialDlg function is useful for applications in which you want to display a
standard user interface for a connection operation without presenting the main phone
book dialog box. For example, the RAS AutoDial service uses this function to establish a
connection using the phone book entry associated with a remote address.

The RasDialDlg function displays dialog boxes during the connection operation to
provide feedback to the user about the progress of the operation. For example, the
dialog boxes might indicate when the operation is dialing, when it is authenticating the
user's credentials on the remote server, and so on. The dialog boxes also provide a
Cancel button for the user to terminate the operation.

RasDialDlg returns when the connection is established, or when the user cancels the
operation.

The sample code on the following page dials the entry in the default phone book
specified by the variable IpszEntry.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Library: Use Rasdlg.lib.

Chapter 7 RAS Functions 125

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASDIALDLG, RasPhonebookDlg

RasDialFunc
The RasDialFunc function is an application-defined or library-defined callback function
that the RasDial function calls when a change of state occurs during a RAS connection
process.

126 Volume 4 Remote Access Services

Parameters
unMsg

Specifies the type of event that has occurred. Currently, the only event defined is
WM_RASDIALEVENT.

rasconnstate
Specifies a RASCONNSTATE enumerator value that indicates the state the RasDial
remote access connection process is about to enter.

dwError
Specifies the error that has occurred, or zero if no error has occurred.

RasDial calls RasDialFunc with dwError set to zero upon entry to each connection
state. If an error occurs within a state, RasDialFunc is called again with a nonzero
dwError value.

Return Values
None.

Remarks
A RasDial connection operation is suspended during a call to a RasDialFunc callback
function. For that reason, your RasDialFunc implementation should generally return as
quickly as possible. There are two exceptions to that rule. Asynchronous (slow) devices
such as modems often have time-out periods measured in seconds rather than
milliseconds; a slow return from a RasDialFunc function is generally not a problem. The
prompt return requirement also does not apply when dwError is nonzero, indicating that
an error has occurred. It is safe, for example, to put up an error dialog box and wait for
user input.

Your RasDialFunc implementation should not depend on the order or occurrence of
particular RASCONNSTATE connection states, because this may vary between
platforms.

Do not call the RasDial function from within a RasDialFunc callback function. You can
call the RasGetConnectStatus, RasEnumEntries, RasEnumConnections,
RasGetErrorString, and RasHangUp functions from within the callback function. For
example, calling RasGetConnectStatus from within a callback function would be useful
for determining the name and type of the connecting device.

Note For convenience, RasHangUp can be called from within a RasDialFunc callback
function. However, much of the hang-up processing occurs after the RasDialFunc
callback function has returned.

RasDialFunc is a placeholder for the application-defined or library-defined function
name.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.

Chapter 7 RAS Functions 127

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASCONNSTATE, RasDial, RasDialFunc1, RasDialFunc2, RasEnumConnections,
RasEnumEntries, RasGetConnectStatus, RasGetErrorString, RasHangUp

RasDiaiFunc1
A RasDiaiFunc1 function is an application-defined or library-defined callback function
that the RasDial function calls when a change of state occurs during a remote access
connection process. A RasDiaiFunc1 function is comparable to a RasDialFunc
function, but is enhanced by the addition of two parameters: a handle to the RAS
connection, and an extended error code.

Parameters
hraseonn

Handle to the RAS connection, as returned by RasDial.

unMsg
Specifies the type of event that has occurred. Currently, the only event defined is
WM_RASDIALEVENT.

rases
Specifies a RASCONNSTATE enumerator value that indicates the state the RasDial
remote access connection process is about to enter.

128 Volume 4 Remote Access Services

dwError
Specifies the error that has occurred. If no error has occurred, dwError is zero.

RasDial calls RasDiaiFunc1 with dwErrorset to zero upon entry to each connection
state. If an error occurs within a state, RasDial calls RasDiaiFunc1 again with a
nonzero dwErrorvalue.

In some error cases, the dwExtendedError parameter contains extended error
information.

dwExtendedError
Specifies extended error information for certain nonzero values of dwError. For all
other values of dwError, dwExtendedError is zero.

The contents of dwExtendedErrorare defined for values of dwError as follows.

dwError dwExtendedError

ERROR_SERVER_NOT _RESPONDING Specifies the NetSIOS error that
occurred.

ERROR_NETSIOS_ERROR Specifies the NetSIOS error that
occurred.

ERROR_AUTH_INTERNAL Specifies an internal diagnostics code.

ERROR_CANNOT _GET _LANA Specifies a routing error code, which is a
RAS error.

Return Values
None.

Remarks
A RasDial connection operation is suspended during a call to a RasDiaiFunc1 callback
function. For that reason, your RasDiaiFunc1 implementation should generally return as
quickly as possible. There are two exceptions to that rule. Asynchronous (slow) devices
such as modems often have time-out periods measured in seconds rather than
milliseconds; a slow return from a RasDiaiFunc1 function is generally not a problem.
The prompt return requirement also does not apply when dwError is nonzero, indicating
that an error has occurred. It is safe, for example, to put up an error dialog box and wait
for user input.

Your RasDiaiFunc1 implementation should not depend on the order or occurrence of
particular RASCONNSTATE connection states, because this may vary between
platforms.

Do not call the RasDial function from within a RasDiaiFunc1 callback function. You can
call the RasGetConnectStatus, RasEnumEntries, RasEnumConnections,
RasGetErrorString, and RasHangUp functions from within the callback function. For
example, calling RasGetConnectStatus from within a callback function would be useful
for determining the name and type of the connecting device.

Chapter 7 RAS Functions 129

Note that, for convenience, RasHangUp can be called from within a RasDiaiFunc1
callback function. However, much of the hang-up processing occurs after the
RasDiaiFunc1 callback function has returned.

RasDiaiFunc1 is a placeholder for the application-defined or library-defined function
name.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Functions, RasDial,
RasDialFunc, RasDialFunc2, RASCONNSTATE, RasEnumConnections,
RasEnumEntries, RasGetConnectStatus, RasGetErrorString, RasHangUp

RasDiaiFunc2
A RasDiaiFunc2 function is an application-defined or library-defined callback function
that the RasDial function calls when a change of state occurs during a remote access
connection process. A RasDiaiFunc2 function is similar to the RasDiaiFunc1 callback
function, except that it provides additional information for multilink connections.

Parameters
dwCallbackld

Provides an application-defined value that was specified in the dwCalibackld
member of the RASDIALPARAMS structure passed to RasDial.

130 Volume 4 Remote Access Services·

dwSubEntry
Specifies a subentry index for the phone book entry associated with this connection.
This value indicates the subentry that generated this call to your RasDiaiFunc2
callback function.

hraseonn
Handle to the RAS connection, as returned by RasDial.

unMsg
Specifies the type of event that has occurred. Currently, the only event defined is
WM_RASDIALEVENT.

rases
Specifies a RASCONNSTATE enumerator value that indicates the state the RasDial
remote access connection process is about to enter.

dwError
Specifies the error that has occurred. If no error has occurred, dwErroris zero.

The RasDial function calls RasDiaiFunc2 with dwError set to zero upon entry to each
connection state. If an error occurs within a state, RasDial calls RasDiaiFunc2 again
with a nonzero dwErrorvalue.

In some error cases, the dwExtendedError parameter contains extended error
information.

dwExtendedError
Specifies extended error information for certain nonzero values of dwError. For all
other values of dwError, dwExtendedError is zero.

The contents of dwExtendedError are defined for values of dwError as follows.

dwError dwExtendedError

ERROR_SERVER_NOT _RESPONDING Specifies the NetBIOS error that
occurred.

ERROR_NETBIOS_ERROR Specifies the NetBIOS error that
occurred.

ERROR_AUTH_INTERNAL Specifies an internal diagnostics code.

ERROR_CANNOT _GET _LANA Specifies a routing error code, which is a
RAS error.

Return Values
If the RasDiaiFunc2 function returns a nonzero value, RasDial continues to send
callback notifications.

If the RasDiaiFunc2 function returns zero, RasDial stops sending callback notifications
for all subentries.

Chapter 7 RAS Functions 131

Remarks
A RasDial connection operation is suspended during a call to a RasDiaiFunc2 callback
function. For that reason, your RasDiaiFunc2 implementation should generally return as
quickly as possible. There are two exceptions to that rule. Asynchronous (slow) devices
such as modems often have time-out periods measured in seconds rather than
milliseconds; a slow return from a RasDiaiFunc2 function is generally not a problem.
The prompt return requirement also does not apply when dwError is nonzero, indicating
that an error has occurred. It is safe, for example, to put up an error dialog box and wait
for user input.

Your RasDiaiFunc2 implementation should not depend on the order or occurrence of
particular RASCONNSTATE connection states, because this may vary between
platforms.

Do not call the RasDial function from within a RasDiaiFunc2 callback function. You can
call the RasGetConnectStatus, RasEnumEntries, RasEnumConnections,
RasGetErrorString, and RasHangUp functions from within the callback function. For
example, calling RasGetConnectStatus from within a callback function would be useful
for determining the name and type of the connecting device.

Note For convenience, RasHangUp can be called from within a RasDiaiFunc2
callback function. However, much of the hang-up processing occurs after the
RasDiaiFunc2 callback function has returned.

RasDiaiFunc2 is a placeholder for the application-defined or library-defined
function name.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Functions, RasDial,
RasDialFunc, RasDialFunc1, RASCONNST ATE, RasEnumConnections,
RasEnumEntries, RasGetConnectStatus, RasGetErrorString, RasHangUp

RasEditPhonebookEntry
The RasEditPhonebookEntry function edits an existing phone book entry. The function
displays a dialog box in which the user can modify the existing information.

Windows NT/2000: The RasEditPhonebookEntry function calls the RasEntryDlg
function. Applications written for Windows NT version 4.0 should use RasEntryDlg.

132 Volume 4 Remote Access Services

Parameters
hwnd

Handle to the parent window of the dialog box.

IpszPhonebook
Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows 95: Dial-up networking stores phone book entries in the registry rather than
in a phone book file.

IpszEntryName
Pointer to a null-terminated string that specifies the name of an existing entry in the
phone book file.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Description

ERROR_BUFFER_INVALID

ERROR_CANNOT_OPEN_PHONEBOOK

ERROR_CANNOT _FIND_PHONEBOOK_
ENTRY

The phone book entry buffer is invalid.

The phone book is corrupted or miSSing
components.

The phone book entry does not exist.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Chapter 7 RAS Functions 133

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCreatePhonebookEntry, RasEntryDlg, RasGetEntryDialParams,
RasSetEntryDialParams

RasEntryDlg
The RasEntryDlg function displays modal property sheets that allow a user to
manipulate phone book entries. If editing or copying an existing phone book entry, the
function displays a phone book entry property sheet. The RasEntryDlgfunction returns
when the user closes the property sheet.

Parameters
IpszPhonebook

Pointer to a null-terminated string that specifies the full path and file name of a phone
book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string that contains the name of the phone book entry to
edit, copy, or create.

If you are editing or copying an entry, this parameter is the name of an existing phone
book entry. If you are copying an entry, set the RASEDFLAG_CloneEntry flag in the
dwFlags member of the RASENTRYDLG structure.

If you are creating an entry, this parameter is a default new entry name that the user
can change. If this parameter is NULL, the function provides a default name. If you
are creating an entry, set the RASEDFLAG_NewEntry flag in the dwFlags member of
the RASENTRYDLG structure.

Iplnfo
Pointer to a RASENTRYDLG structure that contains additional input and output
parameters. On input, the dwSize member of this structure must specify
sizeof(RASENTRYDLG). Use the dwFlags member to indicate whether you are
creating, editing, or copying an entry. If an error occurs, the dwError member returns
an error code; otherwise, it returns zero.

134 Volume 4 Remote Access Services

Return Values
If the user creates, copies, or edits a phone book entry, the return value is a nonzero
value.

If an error occurs, or if the user cancels the operation, the return value is zero. If an error
occurs, the dwError member of the RASENTRYDLG structure returns a nonzero
system error code or RAS error code.

Remarks
The RasCreatePhonebookEntry and RasEditPhonebookEntry functions call the
RasEntryDlg function.

The following sample code brings up a property sheet to create a new entry. The IpEntry
variable specifies the default name for the new entry.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Library: Use Rasdlg.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCreatePhonebookEntry, RasEditPhonebookEntry, RASENTRYDLG

Chapter 7 RAS Functions 135

RasEnumAutodialAddresses
The RasEnumAutodialAddresses function returns a list of all addresses in the AutoDial
mapping database.

Parameters
IppAddresses

Pointer to an array of string painters, with additional space for the storage of the
strings themselves at the end of the buffer. Each string is the name of an address in
the AutoDial mapping database.

If IppAddresses is NULL, RasEnumAutodialAddresses sets the IpdwcbAddresses
and IpdwcAddresses parameters to indicate the required size, in bytes, and the
number of address entries in the database.

IpdwcbAddresses
Pointer to a variable that contains the size, in bytes, of the buffer specified by the
IppAddresses parameter. On return, the function sets this variable to the number of
bytes returned, or the number of bytes required if the buffer is too small.

IpdwcAddresses
Pointer to a variable that receives the number of address strings returned in the
IppAddresses buffer.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is the following error code.

Value Meaning

ERROR_INVALlD_PARAMETER NULL was passed for the IpdwcbAddresses or
IpdwcAddresses parameter.

136 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASAUTODIALENTRY, RasGetAutodialAddress, RasSetAutodialAddress

RasEnumConnections
The RasEnumConnections function lists all active RAS connections. It returns each
connection's handle and phone book entry name.

Parameters
Jprasconn

Pointer to a buffer that receives an array of RASCONN structures, one for each RAS
connection. Before calling the function, an application must set the dwSize member of
the first RASCONN structure in the buffer to sizeof(RASCONN) in order to identify
the version of the structure being passed.

Jpcb
Pointer to a variable that contains the size, in bytes, of the buffer specified by
Jprasconn. On return, the function sets this variable to the number of bytes required to
enumerate the RAS connections.

IpcConnections
Pointer to a variable that the function sets to the number of RASCONN structures
written to the buffer specified by Jprasconn.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is either a nonzero error value listed in the RAS
header file or ERROR_BUFFER_ TOO_SMALL or ERROR_NOT _ENOUGH_MEMORY.

Chapter 7 RAS Functions 137

Remarks
If a connection was made without specifying a phone book entry name, the information
returned for that connection gives the connection phone number preceded by".".

The following sample code enumerates the current RAS connection. This code assumes
that, at most, only one connection is currently active. Note that the code sets the dwSize
member of the RASCONN structure to specify the version of the structure:

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASCONN, RasEnumEntries, RasGetConnectStatus

RasEnumDevices
The RasEnumDevices function returns the name and type of all available RAS-capable
devices.

138 Volume 4 Remote Access Services

Parameters
IpRasDevlnfo

Pointer to a buffer that receives an array of RASDEVINFO structures, one for each
RAS-capable device. Before calling the function, set the dwSize member of the first
RASDEVINFO structure in the buffer to s i zeaf (RASDEV INFO) to identify the version of
the structure.

Ipcb
Pointer to a variable that contains the size, in bytes, of the IpRasDevlnfo buffer. On
return, the function sets this variable to the number of bytes required to enumerate the
devices.

To determine the required buffer size, call RasEnumDevices with the IpRasDevlnfo
parameter set to NULL and the variable pointed to by Ipcb set to zero. The function
returns the required buffer size in the variable pOinted to by Ipcb. (See sample code
under Remarks section.)

IpcDevices
Pointer to a variable that the function sets to the number of RASDEVINFO structures
written to the IpRasDevlnfo buffer.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero RAS error value or one of following
error codes.

Value

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALlD_PARAMETER

ERROR_INVALlD_USER_BUFFER

Meaning

The IpRasDevlnfo buffer is not large enough.
The function returns the required buffer size in
the variable pOinted to by Ipcb.

Indicates insufficient memory.

Indicates an invalid parameter value.

The address or buffer specified by IpRasDevlnfo
is invalid.

Chapter 7 RAS Functions 139

Remarks
The following sample code enumerates the devices on the current machine. The code
initially calls RasEnumDevices with a IpRasOevlnfo parameter of NULL, to obtain the
size of the buffer that should be passed in. The code also sets the dwSize member of
the first RASDEVINFO structure to sizeof(RASDEVINFO) to specify the version of the
structure.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASDEVINFO

RasEnumEntries
The RasEnumEntries function lists all entry names in a remote access phone book.

(continued)

140 Volume 4 Remote Access Services

Parameters
reserved

Reserved; must be NULL.

IpszPhonebook
Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows 2000: If this parameter is NULL, the entries are enumerated from all the
remote access phone book files in the AIiUsers profile and the user's profile.

Windows 95: This parameter is ignored. Dial-up networking stores phone book
entries in the registry rather than in a phone book file.

Iprasentryname
Pointer to a buffer that receives an array of RASENTRYNAME structures, one for
each phone book entry. Before calling the function, an application must set the
dwSize member of the first RASENTRYNAME structure in the buffer to
sizeof(RASENTRYNAME) in order to identify the version of the structure being
passed.

Ipcb
Pointer to a variable that contains the size, in bytes, of the buffer specified by
Iprasentryname. On return, the function sets this variable to the number of bytes
required to successfully complete the call.

IpcEntries
Pointer to a variable that the function, if successful, sets to the number of phone book
entries written to the buffer specified by Iprasentryname.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value listed in the RAS header file
or one of the following values.

Value

ERROR_BUFFER_TOO_
SMALL

ERROR_INVALlD_SIZE

ERROR_NOT_ENOUGH
MEMORY

Remarks

Chapter7 RAS Functions 141

Meaning

The buffer pointed to by the Iprasentryname parameter is
not large enough to hold all the entries.

The value of dwSize in the RASENTRYNAME structure
pointed to by Iprasentryname, specifies a version of the
structure that is not supported on the current platform. For
example, on Windows 95, RasEnumEntries returns this
error if dwSize indicates that RASENTRYNAME includes
the dwFlags and szPhonebookPath members, since
these members are not supported on Windows 95 (they
are supported only on Windows 2000 and later).

The function could not allocate sufficient memory to
complete the operation.

The following sample code enumerates the RAS phone book entries on the current
machine. The code initially calls RasEnumEntries to obtain the size of the buffer to pass
in. The code then calls RasEnumEntries again, to enumerate the entries. Note that for
both calls, the code sets the dwSize member of the first RASENTRY structure in the
buffer to sizeof(RASENTRY) to specify the structure version.

(continued)

142 Volume 4 Remote Access Services

(continued)

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASENTRYNAME, RasEnumConnections

RasFreeEapUserldentity
Use the RasFreeEapUserldentity function to free the memory buffer returned by
RasGetEapUserldentity.

Parameters
pRasEapUserldentity

Pointer to the RASEAPUSERIDENTITY structure returned by the
RasGetEapUserldenity function.

Return Values
If the function succeeds, the return value is NO_ERROR.

Otherwise, the function returns one of the following error codes.

Remarks
RasFreeEapUserldentity may be called with the pRasEapUser/dentity parameter equal
to NULL.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.

Chapter 7 RAS Functions 143

Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

RASEAPUSERIDENTITY, RasGetEapUserldentity

RasGetAutodialAddress
The RasGetAutodialAddress function retrieves information about all the AutoDial
entries associated with a network address in the AutoDial mapping database.

Parameters
JpszAddress

Pointer to a null-terminated string that specifies the address for which information is
requested. This can be an IP address, Internet host name ("www.microsoft.com ..). or.
NetBIOS name ("products1").

JpdwReserved
Reserved; must be NULL.

JpAutoDiaJEntries
Pointer to a buffer that receives an array of RASAUTODIALENTRY structures, one
for each AutoDial entry associated with the address specified by the JpszAddress
parameter. Before calling RasGetAutodialAddress, set the dwSize member of the
first RASAUTODIALENTRY structure in the buffer to si zeof(RASAUTODIALENTRY) to
identify the version of the structure.

144 Volume 4 Remote Access Services

If IpAutoDialEntries is NULL, RasGetAutodialAddress sets the
IpdwcbAutoDialEntries and IpdwcAutoDialEntries parameters to indicate the required
buffer size, in bytes, and the number of AutoDial entries.

IpdwcbAutoDialEntries
Pointer to a variable that contains the size, in bytes, of the IpAutoDialEntries buffer.
On return, the function sets this variable to the number of bytes returned, or the
number of bytes required if the buffer is too small.

IpdwcAutoDialEntries
Pointer to a variable that receives the number of structure elements returned in the
IpAutoDialEntries buffer.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_XXX_NOT _FOUND

ERROR_INVALID_SIZE

ERROR_INVALlD_
PARAMETER

The address was not found in the mapping database.

The dwSize member of the RASAUTODIALENTRY
structure is an invalid value.

The IpszAddress, IpdwcbAutoDialEntries, or
IpdwcAutoDialEntries parameter was NULL.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASAUTODIALENTRY, RasEnumAutodialAddresses, RasSetAutodialAddress

RasGetAutodialEnable
The RasGetAutodialEnable function indicates whether the AutoDial feature is enabled
fora specified TAPI dialing location. For more information about TAPI dialing locations,
see the TAPI Programmer's Reference in the Platform SDK.

Parameters
dwDiaJingLocation

Specifies the identifier of a TAPI dialing location.

JpfEnabJed

Chapter7 RAS Functions 145

Pointer to a Baal variable that receives a nonzero value if AutoDial is enabled for the
specified dialing location, or zero if it is not enabled.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero value.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasSetAutodialEnable

RasGetAutodial Param
The RasGetAutodialParam function retrieves the value of an AutoDial parameter.

146 Volume 4 Remote Access Services

Parameters
dwKey

Specifies the AutoDial parameter to retrieve. This parameter can be one of the
following values.

Value Meaning

RASADP _ The IpvValue parameter returns a DWORD value. If this
DisableConnectionQuery value is zero (the default), AutoDial displays a dialog box

to query the user before creating a connection. If this
value is 1, and the AutoDial database has the phone
book entry to dial, AutoDial creates a connection without
displaying the dialog box.

RASADP _ The IpvValue parameter returns a DWORD value. If this
LoginSessionDisable value is 1, the system disables all AutoDial connections

for the current logon session. If this value is zero (the
default), AutoDial connections are enabled. The
AutoDial system service changes this value to zero
when a new user logs on to the workstation.

RASADP _ The IpvValue parameter returns a DWORD value that
SavedAddressesLimit indicates the maximum number of addresses that

AutoDial stores in the registry. AutoDial first stores
addresses that it used to create an AutoDial connection;
then it stores addresses that it learned after a RAS
connection was created. Addresses written using the
RasSetAutodialAddress function are always saved,
and are not included in calculating the limit. The default
value is 100.

RASADP _ The IpvValue parameter returns a DWORD value that
FailedConnectionTimeout indicates a time-out value, in seconds. When an

AutoDial connection attempt fails, the AutoDial system
service disables subsequent attempts to reach the same
address for the time-out period. This prevents AutoDial
from displaying multiple connection dialog boxes for the
same logical request by an application. The default
value is 5.

RASADP _ The IpvValue parameter pOints to a DWORD value that
ConnectionQueryTimeout indicates a time-out value, in seconds. Before attempting

an AutoDial connection, the system will display a dialog
asking the user to confirm that the system should dial.
The dialog has a countdown timer that will terminate the
dialog with a "Do not dial" selection if the user takes no
action. The DWORD value pointed to by IpvValue
specifies the initial time on this countdown timer.

Chapter 7 RAS Functions 147

IpvValue
Pointer to a buffer that receives the value for the specified parameter.

IpdwcbValue
Pointer to a DWORD value. On input, set this value to indicate the size, in bytes, of
the IpvValue buffer. On output, this value indicates the actual size of the value written
to the buffer.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER The dwKeyor IpvValue parameter is invalid.

ERROR_INVALlD_SIZE The size specified by the IpdwcbValue is too small.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasSetAutodialAddress, RasSetAutodialParam

RasGetConnectionStatistics
The RasGetConnectionStatistics function retrieves accumulated connection statistics
for the specified connection.

Parameters
hRasConn,

Handle to the connection. Use RasDial or RasEnumConnections to obtain this
handle.

148 Volume 4 Remote Access Services

IpStatistics
Pointer to a RAS_STATS structure to receive the statistics. Set the dwSize member
of this structure to sizeof(RAS_STATS) before calling RasGetConnectionStatistics.
This parameter cannot be NULL.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_NOT_ENOUGH
MEMORY

Other

At least one of the following is true: the hRasConn
parameter is zero, the IpStatistics parameter is NULL, or
the value specified by the dwSize member of the
RAS_STATS structure specifies a version of the structure
that is not supported by the operating system in use.

The function could not allocate sufficient memory to
complete the operation.

Use FormatMessage to retrieve the system error
message that" corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasClearConnectionStatistics, RasDial, RasEnumConnections,
RasGetLinkStatistics

RasGetConnectStatus
The RasGetConnectStatus function retrieves information on the current status of the
specified remote access connection. An application can use this call to determine when
an asynchronous RasDial call is complete.

Parameters
hrasconn

Chapter 7 RAS Functions 149

Specifies the remote access connection for which to retrieve the status. This handle
must have been obtained from RasDial or RasEnumConnections.

Iprasconnstatus
Pointer to a RASCONNSTATUS structure that the function fills with status
information. Before calling the function, an application must set the dwSize member
of the structure to sizeof(RASCONNSTATUS) in order to identify the version of the
structure being passed.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value listed in the RAS header file
or either ERROR_BUFFER_ TOO_SMALL or ERROR_NOT _ENOUGH_MEMORY.

Remarks
The return value for RasGetConnectStatus is not necessarily equal to the value of the
dwError member of the RASCONNSTATUS structure returned by
RasGetConnectStatus. The return value of RasGetConnectStatus indicates errors
that occur during the RasGetConnectStatus function call, whereas the dwError
member indicates errors that prevented the connection from being established.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASCONNSTATUS, RasDial, RasEnumConnections

RasGetCountrylnfo
The RasGetCountrylnfo function retrieves country-specific dialing information from the
Windows Telephony list of countries.

150 Volume 4 Remote Access Services

For more information about country-specific dialing information and Telephony
Application Programming Interface (TAPI) country identifiers, see the TAPI portion of the
Platform SDK

Parameters
IpRasCtrylnfo

Pointer to a RASCTRYINFO structure that receives the country-specific dialing
information followed by additional bytes for a country description string. Before calling
the function, set the dwSize member of the structure to s i zeaf (RASCTRY INFO) to
identify the version of the structure. You must also set the dwCountryld member to
the T API country identifier of the country for which to get information.

The size of the buffer should be at least 256 bytes.

IpdwSize
Pointer to a variable that contains the size, in bytes, of the buffer pointed to by the
IpRasCtrylnfo parameter. On return, the function sets this variable to the number of
bytes required.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes,

Value Meaning

ERROR_INVALlD_USER_BUFFER The address or buffer specified by IpRasCtrylnfo
is invalid.

ERROR_INVALID_PARAMETER The dwCountryld member of the structure
pointed to by IpRasCtrylnfo was not a valid
value.

ERROR_BUFFER_ TOO_SMALL The size of the IpRasCtrylnfo buffer specified by
the IpdwSize parameter was not large enough to
store the information for the country identified by
the dwCountryld member. The function returns
the required buffer size in the variable pointed to
by IpdwSize.

ERROR_ TAP I_CONFIGURATION TAPI subsystem information was corrupted.

Chapter 7 RAS Functions 151

Remarks
To enumerate information for all countries in the Windows Telephony list, set the
dwCountryld member of the RASCTRYINFO structure to 1 in the initial
RasGetCountrylnfo call. This causes the function to return information for the first
country in the list. The value returned in the dwNextCountryld member is the country
identifier of the next country in the list. Use this value in repeated calls to
RasGetCountrylnfo until dwNextCountrylD returns zero, indicating the last country in
the list.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASCTRYINFO

RasGetCredentials
The RasGetCredentials function retrieves the user credentials associated with a
specified RAS phone book entry.

Parameters
IpszPhonebook ,

Pointer to a null-terminated string that specifies the full path and file name of a phone
.book (PBK) file. If this parameter is NULL, the fUnction uses the current default phone
book file. The default phone book file is the one selected by the user in the User
P·references property sheet of the Dial-Up Networking dialog box.

152 Volume 4 Remote Access Services

IpszEntry
Pointer to a null-terminated string that contains the name of a phone book entry.

IpCredentials
Pointer to a RASCREOENTIALS structure that receives the user credentials
associated with the specified phone book entry. Before calling RasGetCredentials,
setthe dwSize member of the structure to si zeof(RASCREDENTIALS), and setthe
dwMask member to indicate the credential information to retrieve. When the function
returns, dwMask indicates the members thatwere successfully retrieved.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CANNOT _FIND_PHONEBOOK_
ENTRY

ERROR_INVALlD_PARAMETER

ERROR_INVALlD_SIZE

Remarks

The specified phone book cannot be
found.

The specified entry does not exist in the
phone book.

The IpCredentials parameter was NULL.

The dwSize member of the
RASCREOENTIALS structure is an
unrecognized value.

The RasGetCredentials function retrieves the credentials of the last user in order to
connect using the specified phone book entry, or the credentials subsequently specified
in a call to the RasSetCredentials function for the phone book entry.

The RasGetCredentials function retrieves the user credentials that are stored securely
for the specified phone book entry. This function is the preferred way of securely
retrieving the credentials associated with a RAS phone book entry. RasGetCredentials
supersedes the RasGetEntryOialParams function, which may not be supported in
future releases of Windows 2000.

Windows 2000 and later versions:. RasGetCredentials does not return the actual
password. Instead, the szPassword member of the RASCREOENTIALS structure
contains a handle to the saved password. You can substitute this handle for the saved
password in subsequent calls to RasSetCredentials and RasOial. When presented with
this handle, RasDial will retrieve and use the saved password The value of this handle
may change in future versions of the operating system; do not develop code that
depends on the contents or format of this value.

Chapter 7 RAS Functions 153

Windows 2000 and later versions: The dwMask member of RASCREDENTIALS
contains the RASCM_Password flag if the system has saved a password for the
specified entry. If the system has no password saved for this entry, dwMask does not
contain RASCM_Password.

The following sample code retrieves the credentials for the phone book entry with the
name "mazy":

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote·Access Service (RAS) Overview, Remote Access Service Functions,
RASCREDENTIALS, RasGetEntryDialParams, RasSetCredentials

RasGetCustomAuthData
Use the RasGetCustomAuthData function to retrieve connection-specific authentication
information. This information is not specific to a particular user.

Parameters
pszPhonebook

Pointer to a null-terminated string containing the full path of the phone book (PBK) file.
If this parameter is NULL, the function will use the system phone book.

154 Volume 4 Remote Access Services

pszEntry
Pointer to a null-terminated string containing an existing entry name.

pbCustomAuthData
Pointer to a buffer to receive the authentication data. The caller should allocate the
memory for this buffer. If the buffer is not large enough, RasGetCustomAuthData will
return ERROR_BUFFER_ TOO_SMALL, and the pdwS;zeofEapData parameter will
contain the required size.

pdwS;zeofCustomAuthData
Pointer to a DWORD variable that contains the size of the buffer pOinted to by the
pbCustomAuthData parameter.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

E_I NVALI DARG

ERROR_BUFFER_ TOO_
SMALL

ERROR_CANNOT_OPEN_
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

Other

The pdwS;zeofCustomAuthData parameter is NULL.

The buffer pointed to by pbCustomAuthData is too small
to receive the data. The pdwS;zeofCustomAuthData
contains the required size.

RasGetEapUserData was unable to open the specified
phone book file.

RasGetEapUserData was unable to find the specified
entry in the phone book.

Use FormatMessage to retrieve the system error
message that corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

RasGetEapUserData, RasSetCustomAuthData

Chapter 7 RAS Functions 155

RasGetEapUserData
Use the RasGetEapUserData function to retrieve user-specific Extensible
Authentication Protocol (EAP) information for the specified phone book entry.

Parameters
hToken

Handle to a primary or impersonation access token that represents the user for which
to retrieve data. This parameter can be NULL if the function is called from a process
already running in the user's context.

pszPhonebook
Pointer to a null-terminated string containing the full path of the phone book (PBK) file.
If this parameter is NULL, the function will use the system phone book.

pszEntry
Pointer to a null-terminated string containing an existing entry name.

pbEapData
Pointer to a buffer to receive the retrieved EAP data for the user. The caller should
allocate the memory for this buffer. If the buffer is not large enough,
RasGetEapUserData will return ERROR_BUFFER_ TOO_SMALL, and the
pdwSizeofEapData parameter will contain the required size.

pdwSizeofEapData
Pointer to a DWORD variable that contains the size of the buffer pOinted to by the
pbEapData parameter.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

E_INVALIDARG The pdwSizeofEapData parameter is NULL.

ERROR_BUFFER_ TOO_SMALL The buffer pOinted to by pbEapData is too small to
receive the data. The pdwSizeofEapData contains
the required size.

(continued)

156 Volume 4 Remote Access Services

(continued)

Value

ERROR_CANNOT_OPEN
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

Other

Meaning

RasGetEapUserData was unable to open the
specified phone book file.

RasGetEapUserData was unable to find the
specified entry in the phone book.

Use FormatMessage to retrieve the system error
message that corresponds to the error code
returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasSetEapUserData, RASEAPINFO

RasGetEapUserldentity
The RasGetEapUserldentity function retrieves identity information for the current user.
Use this information to call RasDial with a phone book entry that requires Extensible
Authentication Protocol (EAP).

Parameters
pszPhonebook

Pointer to a null-terminated string containing the full path of the phone book (PBK) file.
If this parameter is NULL, the function will use the system phone book.

pszEntry
Pointer to a null-terminated string containing an existing entry name.

Chapter 7 RAS Functions 157

dwFlags
Specifies zero or more of the following flags that qualify the authentication process.

Flag Description

RASEAPF _ Specifies that the authentication protocol should not bring up a
Nonlnteractive graphical user-interface. If this flag is not present, it is okay for

the protocol to display a user interface.

RASEAPF _Logon Specifies that the user data is obtained from Winlogon.

RASEAPF _Preview Specifies that the user should be prompted for identity
information before dialing.

hwnd
Handle to the parent window for the UI dialog. If the flnvokeUI parameter is FALSE,
then hwnd should be NULL.

ppRasEapUserldentity
Pointer to a pointer that, on successful return, pOints to a RASEAPUSERIDENTITY
structure containing EAP user identity information. RasGetEap~serldentity will
allocate the memory buffer for the RASEAPUSERIDENTITY structure. Free this
memory by calling RasFreeEapUserldentity.

Return Values
If the function succeeds, the return value is NO_ERROR.

Otherwise, the function will return one of the following error codes.

Value Meaning

E_I NVALI D_ARG

ERROR_INTERACTIVE_MODE

ERROR_INVALID _FUNCTION_
FOR_ENTRY

E RROR_RASMAN_CAN NOT_
INITIALIZE

Other

The pcbEapUserldentity parameter is NULL.

The function was called with the
RASEAPF _Nonlnteractive flag. However, the
authentication protocol must display a UI in order to
obtain the required identity information from the user.

Either the authentication method for this phone book
entry is not EAP, or the authentication method is
EAP but the protocol uses the standard Windows
NTIWindows 2000 credentials dialog to obtain user
identity information. In either case, the caller does
not need to pass EAP identity information to
RasDial.

The Remote Access Service failed to initialize
properly.

Use FormatMessage to retrieve the system error
message that corresponds to the error code
returned.

158 Volume 4 Remote Access Services

Remarks
RasGetEapUserldentiy calls the RAS function RasGetEapUserData and the EAP
function RasEapGetldentity. RasEapGetldentity is implemented by the authentication
protocol.

If the function succeeds, that is the return value is NO_ERROR, the caller should copy
the EAP identity information from the structure pointed to by ppRasEapUserldentityto
the RASDIALPARAMS and RASDIALEXTENSIONS structures used in the call to
RasDial. The following sample code demonstrates how to copy the identity information:

If the remote access application being developed has a graphical user interface, the
caller of RasGetEapUserldentity should not specify the RASEAPF _Nonlnteractive flag.
If the application has a command-line user interface, the caller may want to specify the
RASEAPF _Nonlnteractive flag to prevent the authentication protocol from displaying a
graphical user interface.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

RASEAPUSERIDENTITY, RasDial, RasEapGetldentity, RasFreeEapUserldentity,
RasGetEapUserData, RasSetEapUserData

RasGetEntryDial Params
The RasGetEntryDialParams function retrieves the connection information saved by
the last successful call to the RasDial or RasSetEntryDialParams function for a
specified phone book entry.

Parameters
IpszPhonebook

Chapter 7 RAS Functions 159

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows 95: Dial-up networking stores phone book entries in the registry rather than
in a phone book file.

Iprasdialparams
Pointer to a RASDIALPARAMS structure. On input, the dwSize member must specify
the size of the RASDIALPARAMS structure, and the szEntryName member must
specify a valid phone book entry. On output, the structure receives the connection
parameters associated with the specified phone book entry.

Note that the szPhoneNumber member of the structure does not receive the phone
number associated with the phone book entry. To get the phone number associated
with a phone book entry, call the RasGetEntryProperties function.

Windows 2000 and later versions: RasGetEntryDialParams does not return the
actual password. Instead, the szPassword member of the RASDIALPARAMS
structure contains a handle to the saved password. You can substitute this handle for
the saved password in subsequent calls to RasSetEntryDialParamsand RasDial.
When presented with this handle, RasDial will retrieve and use the saved password.
The value of this handle may change in future versions ofthe operating system; do
not develop code that depends on the contents or format of this value.

IpfPassword
Pointer to a flag that indicates whether the function retrieved the password associated
with the user name for the phone book entry. The function sets this flag to TRUE if the
user's password was returned in the szPassword member of the RASDIALPARAMS
structure painted to by Iprasdialparams.

Windows 2000 and later: The IpfPassword parameter is TRUE if the system has
saved a password for the specified entry. If the system has no password saved for
this entry, IpfPassword is FALSE.

Return Values
If the function succeeds,the return value is zero.

If the function fails, the return value is one of the following error codes.

160 Volume 4 Remote Access Services

Value

ERROR_CANNOT_OPEN
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

Description

The Iprasdialparams or IpfPassword pointer is invalid,
or the Iprasdialparams buffer is invalid.

The phone book is corrupted or missing components.

The phone book entry does not exist.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions, RasDial,
RASDIALPARAMS, RasCreatePhonebookEntry, RasEditPhonebookEntry,
RasSetEntryDialParams

RasGetEntryProperties
The RasGetEntryProperties function retrieves the properties of a phone book entry.

Parameters
IpszPhonebook

Chapter 7 RAS Functions 161

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string containing an existing entry name. If you specify an
empty string, "", the function returns default values in the buffers pOinted to by the
IpRasEntry and IpbOevicelnfo parameters.

IpRasEntry
Pointer to a RASENTRY structure followed by additional bytes for the alternate phone
number list, if there is one. The structure receives the connection data associated with
the phone book entry specified by the IpszEntry parameter. Before calling the
function, set the dwSize member of the structure to s i zeof(RASENTRY) to identify the
version of the structure. This parameter can be NULL.

IpdwEntrylnfoSize
Pointer to a variable that contains the size, in bytes, of the IpRasEntry buffer. On
return, the function sets this variable to the number of bytes required. This parameter
can be NULL if the IpRasEntry parameter is NULL.

To determine the required buffer size, call RasGetEntryProperties with IpRasEntry
set to NULL and *lpdwEntrylnfoSize set to zero. The function returns the required
buffer size in * IpdwEntrylnfoSize.

IpbOevicelnfo
Pointer to a buffer that receives device-specific configuration information. This is
opaque TAPI device configuration information that you should not manipulate directly.
This parameter can be NULL. For more information about TAPI device configuration,
see the lineGetDevConfig function in the T API Programmer's Reference in the
Platform SDK.

Windows NT/2000: This parameter is unused. The calling function should set this
parameter to NULL.

IpdwOevicelnfoSize
Pointer to a variable that contains the size, in bytes, of the buffer specified by the
IpbOevicelnfo parameter. On return, the function sets this variable to the number of
bytes required. This parameter can be NULL if the IpbOevicelnfo parameter s NULL.

To determine the required buffer size, call RasGetEntryProperties with
IpbOevicelnfo set to NULL and *lpdwOevicelnfoSize set to zero. The function returns
the required buffer size in *lpdwOevicelnfoSize.

Windows NT/2000: This parameter is unused. The calling function should set this
parameter to NULL.

162 Volume 4 Remote Access Services

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER

ERROR_INVALID_SIZE

ERROR_CANNOT_OPEN
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

The function was called with an invalid parameter.

The value of the dwSize member of the
IpRasEntryis too small.

The address or buffer specified by IpRasEntry is
invalid.

The buffer size indicated in IpdwEntrylnfoSize is
too small.

The phone book is corrupted or is missing
components.

The phone book entry does not exist.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASENTRY, RasSetEntryProperties

RasGetErrorString
The RasGetErrorString function obtains an error message string for a specified RAS
error value.

Parameters
uErrorValue

Chapter 7 RAS Functions 163

Specifies the error value of interest. These are values returned by one of the RAS
functions: those listed in the RAS header file.

IpszErrorString
Pointer to a buffer that the function will write the error string to. This parameter must
not be NULL.

cBufSize
Specifies the size, in characters, of the buffer pointed to by IpszErrorString.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value. This value is
ERROR_INVALID_PARAMETER or the GetLastError value returned from the functions
GlobalAlioc or LoadString. The function does not set a thread's last error information;
that is, there is no GetLastError information set by the RasGetErrorString function.

Remarks
There is no way to determine in advance the exact size in characters of an error
message, and thus the size of buffer required. Error messages will generally be 80
characters or fewer in size; a buffer size of 256 characters will always be adequate. A
buffer of insufficient size causes the RasGetErrorString function to fail, returning
ERROR_INSUFFICIENT _BUFFER. Note that buffer sizes are specified in characters,
not bytes; thus, the Unicode version of RasGetErrorString requires a 512 byte buffer to
guarantee that every error message will fit.

Windows NT/2000: RequiresWindows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
GlobalAlloc, LoadString

164 Volume 4 Remote Access Services

RasGetLi n kStatistics
The RasGetLinkStatistics function retrieves accumulated statistics for the specified link
in a RAS multilink connection.

Parameters
hRasConn

Handle to the connection. Use RasDial or RasEnumConnections to obtain this
handle.

dwSubEntry
Specifies the subentry that corresponds to the link for which to retrieve statistics.

IpStatistics
Pointer to a RAS_STATS structure to receive the statistics. Set the dwSize member
of this structure to sizeof(RAS_STATS) before calling RasGetLinkStatistics. This
parameter cannot be NULL.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_NOT_ENOUGH
MEMORY

Other

At least one of the following is true: the hRasConn
parameter is zero, the dwSubEntry parameter is zero, the
IpStatistics parameter is NULL, or the value specified by
the dwSize member of the RAS_STATS structure
specifies a version of the structure that is not supported by
the operating system in use.

The function could not allocate sufficient memory to
complete the operation.

Use FormatMessage to retrieve the system error
message that corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.

Chapter 7 RAS Functions 165

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasClearLinkStatistics, RasDial, RasEnumConnections,
RasGetConnectionStatistics

RasGetProjectionlnfo
The RasGetProjectionlnfo function obtains information about a remote access
projection operation for a specified remote access component protocol.

Parameters
hrasconn

Handle to the remote access connection of interest. An application obtains a RAS
connection handle from the RasDial or RasEnumConnections function.

rasprojection
Specifies a RASPROJECTION enumerated type value that specifies the protocol of
interest.

Ipprojection
Pointer to a buffer that will receive the information specified by the rasprojection
parameter. The information will be in a structure appropriate to the rasprojection
value.

rasprojection value

RASP_Amb

RASP _PppCcp

RASP_Ppplp

RASP _Ppplpx

RASP _PppLcp

RASP _PppNbf

RASP_Slip

Data structure

RASAMB

RASPPPCCP

RASPPPIP

RASPPPIPX

RASPPPLCP

RASPPPNBF

RASPSLlP

166 Volume 4 Remote Access Services

Ipcb
Pointer to a variable that, on entry, specifies the size in bytes of the buffer pOinted to
by Ipprojection. On exit, this variable contains the size of the buffer needed to contain
the specified projection information.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is an error code. The function may return a nonzero
RAS error code, or one of the following error codes.

Value Meaning

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

ERROR_INVALI D _SIZE

ERROR_PROTOCOL_NOT_
CONFIGURED

Remarks

The buffer pointed to by Ipprojection is not large
enough to contain the requested information.

The hrasconn parameter is not a valid handle.

One of the parameters is invalid.

The dwSize rnember of the structure pointed to by
Ipprojection specifies an invalid size.

The control protocol for which information was
requested neither succeeded nor failed, because
the connection's phone book entry did not require
that an attempt to negotiate the protocol be made.
This is a RAS error code.

Remote access projection is the process whereby a remote access server and a remote
client negotiate network protocol-specific information. A remote access server uses this
network protocol-specific information to represent a remote client on the network.

Windows NT/2000: Remote access projection information is not available until the
operating system has executed the RasDial RASCS_Projected state on the remote
access connection. If RasGetProjectionlnfo is called prior to the RASCS_Projected
state, it returns ERROR_PROJECTION_NOT _COMPLETE.

Windows 95: Windows 95 Dial-Up Networking does not support the RASCS_Projected
state. The projection phase may be done during the RASCS_Authenticate state. If the
authentication is successful, the connection operation proceeds to the
RASCS_Authenticated state, and projection information is available for successfully
configured protocols. If RasGetProjectionlnfo is called prior tothe
RASCS_Authenticated state, it returns ERROR_PROTOCOL_NOT _CONFIGURED.

Chapter 7 RAS Functions 167

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions, RASAMB,
RasDial, RasEnumConnections, RASPPPNBF, RASPPPIPX, RASPPPIP,
RASPROJECTION

RasGetSubEntryHandle
The RasGetSubEntryHandle function retrieves a connection handle for a specified
subentry of a multilink connection.

Parameters
hrasconn

Specifies an HRASCONN connection handle returned by the RasDial function for a
multilink phone book entry.

dwSubEntry
Specifies a valid subentry index for the phone book entry.

Iphrasconn
Pointer to an HRASCONN variable that receives a connection handle that represents
the subentry connection.

Return Values
If .the function succeeds, the return value is zero.

If the function fails, the return value can be one ofJhefollowing error Codes.

Value Meaning

ERROR_INVALID_HANDLE The hras.conn connection handle does not represent a
connected phone book entry.

(continued)

168 Volume 4 Remote Access Services

(continued)

Value Meaning

ERROR_PORT _NOT _OPEN The hrasconn and dwSubEntry parameters are valid,
but the specified subentry is not connected.

ERROR_NO_MORE_ITEMS The value specified by dwSubEntry exceeds the
maximum number of subentries for the phone
book entry.

Remarks
The connection handle specified in the hrasconn parameter refers to the entire multilink
connection, but the connection handle returned in the */phrasconn parameter refers only
to the subentry connection. You can use the subentry connection handle in any function
that accepts an hrasconn parameter, including the RasHangUp,
RasGetConnectStatus, and RasGetProjectionlnfo functions. The projection
information returned by RasGetProjectionlnfo for a multilink entry is the same for the
each of the subentry connection handles as it is for the main connection handle.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions, RasDial,
RasGetConnectStatus, RasGetProjectionlnfo, RasHangUp

RasGetSubEntryProperties
The RasGetSubEntryProperties function retrieves information about a subentry for a
specified phone book entry.

Parameters
IpszPhonebook

Chapter 7 RAS Functions 169

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a phone book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string containing the name of an existing entry in the
phone book.

dwSubEntry
Specifies the one-based index of the subentry.

IpRasSubEntry
Pointer to a RASSUBENTRY structure followed by additional bytes for the alternate
phone number list, if there is one. The structure receives the information about the
specified subentry. Before calling the function, set the dwSize member of the
structure to s i zeof (RASSUBENTRY) to identify the version of the structure. This
parameter can be NULL.

Ipdwcb
Pointer to a variable that contains the size, in bytes, of the ipRasSubEntry buffer. On
return, the function sets this variable to the number of bytes returned, or the number
of bytes required if the buffer is too small. This parameter can be NULL if
IpRasSubEntry is NULL.

IpbDeviceConfig
Pointer toa TAPI device configuration block. This parameter is currently unused. The
caller should pass NULL for this parameter. For more information about T API device
configuration blocks, see the function IineGetDevConfig.

IpcbDeviceConfig
Pointer to a DWORD to receive the size of the T API device configuration block. This
parameter is currently unused. The caller should pass NULL for this parameter.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

170 Volume 4 Remote Access Services

Value

ERROR_INVALID_PARAMETER

ERROR_BUFFER_INVALID

ERROR_CANNOT_OPEN
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

Remarks

Meaning

The function was called with an invalid parameter.

The address or buffer specified by IpRasSubEntry
is invalid.

The IpRasSubEntry buffer is too small. The Ipdwcb
variable receives the required buffer size.

The phone book is corrupted or is missing
components.

The phone book entry does not exist.

A RAS phone book entry can have zero or more subentries, each minimally consisting of
a device and a phone number. A phone book entry with multiple subentries can be
configured to dial the first available or all subentries when the entry is dialed.

Use the RasGetEntryProperties function to retrieve a RASENTRY structure containing
information about the subentries of a phone book entry. The dwSubEntries member
indicates the number of subentries and the dwDialMode member indicates the dialing
configuration.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasGetEntryProperties, RASENTRY, RasSetSubEntryProperties, RASSUBENTRY

RasHangUp
The RasHangUp function terminates a remote access connection. The connection is
specified with a RAS connection handle. The function releases all RASAPI32.DLL
resources associated with the handle.

Parameters
hrasconn

Chapter 7 RAS Functions 171

Specifies the remote access connection to terminate. This is a handle returned from a
previous call to RasDial or RasEnumConnections.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value listed in the RAS header file,
or ERROR_INVALlD_HANDLE.

Remarks
The connection is terminated even if the RasDial call has not yet been completed.

After this call, the hrasconn handle can no longer be used.

An application should not call RasHangUp and then immediately exit. The connection
state machine needs time to properly terminate. If the system prematurely terminates the
state machine, the state machine may fail to properly close a port, leaving the port in an
inconsistent state. A simple way to avoid this problem is to call Sleep(3000) after
returning from RasHangUp; after that pause, the application can exit. A more responsive
way to avoid the problem is, after returning from RasHangUp, to call
RasGetConnectStatus(hrasconn) and Sleep(O) in a loop until RasGetConnectStatus
returns ERROR_INVALlD_HANDLE.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASCONN, RasCustomHangUp, RasDial, RasEnumConnections,
RasGetConnectStatus, Sleep

RaslnvokeEapUI
The RaslnvokeEapUI function displays a custom user interface to obtain Extensible
Authentication Protocol (EAP) information from the user.

172 Volume 4 Remote Access Services

Parameters
hRasConn

Handle to the connection returned by RasDial.

dwSubEntry
Specifies the subentry returned in the callback.

IpExtensions
Pointer to a RASDIALEXTENSIONS structure. This structure should be the same as
that passed to RasDial when restarting from a paused state. The dwSize member of
the RASDIALEXTENSIONS structure must be set to
sizeof(RASDIALEXTENSIONS). This parameter cannot be NULL.

hwnd
Handle to the parent window to use when displaying the EAP user interface.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_
HANDLE

ERROR_INVALI D_SIZE

Other

The hRassConn parameter is zero, or the IpExtensions
parameter is NULL.

The value of the dwSize member of the
RASDIALEXTENSIONS structure specifies a version of the
structure that isn't supported by the operating system in use.

Use FormatMessage to retrieve the system error message
that corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.

Chapter 7 RAS Functions 173

Remote Access Service (RAS) Overview, Remote Access Service Functions, RasDial,
RASDIALEXTENSIONS, RASEAPINFO

RasMonitorDlg
The RasMonitorDlg function displays the Dial-Up Networking Monitor property sheet
that describes the status of RAS connections.

Parameters
IpszDeviceName

Pointer to a null-terminated string that specifies the name of the device to display
initially. If this parameter is NULL, or if the specified device does not exist, the
property sheet displays the first device.

Iplnto
Pointer to a RASMONITORDLG structure that contains additional input and output
parameters. On input, the dwSize member of this structure must specify
sizeof(RASMONITORDLG). If an error occurs, the dwError member returns an error
code; otherwise, it returns zero.

Return Values
If the user hangs up a connection, the return value is a nonzero value.

If an error occurs, or if the user closes the dialog box without hanging up a connection,
the return value is zero. If an error occurs, the dwError member of the
RASMONITORDLG structure returns a nonzero system error code or RAS error code.

Remarks
The following sample code invokes the RAS monitor dialog:

(continued)

174 Volume 4 Remote Access Services

(continued)

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Library: Use Rasdlg.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASMONITORDLG

RasPBDlgFunc
The RasPBDlgFunc function is an application-defined callback function that receives
notifications of user activity while the RasPhonebookDlg dialog box is open.

Parameters
dwCaflbackld

Specifies the application-defined value that was specified in thedwCaliback member
of the RASPBDLG structure passed to the RasPhonebookDlg function.

Chapter 7 RAS Functions 175

dwEvent
A set of bit flags that indicates the event that occurred. This parameter is one of the
following values.

Value Meaning

RASPBDEVENT_
AddEntry

RASPBDEVENT_
EditEntry

RASPBDEVENT_
RemoveEntry

RASPBDEVENT_
DialEntry

RASPBDEVENT_
EditGlobals

Received when the user creates a new phone book entry or
copies an existing phone book entry. The pszText parameter is
the name of the new or copied entry. The pData parameter is
undefined.

Received when the user changes an existing phone book entry.
The pszText parameter is the name of the modified entry. The
pData parameter is undefined.

Received when the user deletes a phone book entry. The
pszText parameter is the name of the deleted entry. The pData
parameter is undefined.

Received when the user successfully dials an entry. The
pszText parameter is the name of the newly connected entry.
The pData parameter is undefined.

Received when the user makes changes in the User
Preferences property sheet. The pszText parameter is the full
path of the default phone book file selected by the user. The
pData parameter is undefined.

This event is also received during dialog startup if the
IpszPhonebook parameter of the RasPhonebookDlg call is
NULL. In this case, the event informs the caller of the path of
the default phone book.

RASPBDEVENT _ Received during dialog box initialization when the
NoUser RASPBDFLAG_NoUser flag is set. The pData parameter is a

painter to a RASNOUSER structure. The callback function
should fill the structure with the user's logon credentials and
dialog time out. The RasPhonebookDlg function then uses the
supplied credentials for authentication by the remote server.
The pszText parameter is undefined.

RASPBDEVENT _ Received if the RASPBDFLAG_NoUser flag is set and the user
NoUserEdit changes the credentials that you supplied during the

RASPBDEVENT _NoUser event. The pData parameter is a
pointer to aRASNOUSER structure containing the updated
credentials. This occurs during a dialing operation if the user
changes his or her password, or if the authentication fails and
the user retries authentication with different credentials. The
pszText parameter is undefined.

176 Volume 4 Remote Access Services

pszText
Pointer to an additional string argument whose meaning depends on the event
indicated in the dwEvent parameter.

pData
Pointer to an additional buffer argument whose meaning depends on the event
indicated in the dwEvent parameter.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Unicode: Declared as Unicode and ANSI prototypes.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASNOUSER, RasPhonebookDlg

RasPhonebookDlg
The RasPhonebookDlg function displays the main Dial-Up Networking dialog box.
From this modal dialog box, the user can dial, edit, or delete a selected phone book
entry, create a new phone book entry, or specify user preferences. The
RasPhonebookDlg function returns when the dialog box closes.

Parameters
/pszPhonebook

Pointer to a nUll-terminated string that specifies the full path and file name of a phone
book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box.

/pszEntry
Pointer to a nUll-terminated string that contains the name of the phone book entry to
highlight initially. If this parameter is NULL, or if the specified entry does not exist, the
dialog box highlights the first entry in the alphabetic list.

Chapter 7 RAS Functions 177

Iplnto
Pointer to a RASPBDLG structure that contains additional input and output
parameters. On input, the dwSize member of this structure must specify
sizeof(RASPBDLG). If an error occurs, the dwError member returns an error code;
otherwise, it returns zero.

Return Values
If the user selects the Dial button and the function establishes a connection, the return
value is a nonzero value.

If an error occurs, or if the user selects the Close button to close the dialog box, the
return value is zero. If an error occurs, the dwError member of the RASPBDLG
structure returns a nonzero system error code or RAS error code.

The following sample code brings up the Dial-Up Networking dialog. The dialog will
display dialing information for the first entry from the default phone book file.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Library: Use Rasdlg.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASPBDLG

178 Volume 4 Remote Access Services

RasRenameEntry
The RasRenameEntry function changes the name of an entry in a phone book.

Parameters
IpszPhonebook

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows 95: This parameter should always be NULL. Dial-up networking stores
phone book entries in the registry rather than in a phone book file.

IpszOldEntry
Pointer to a null-terminated string containing an existing entry name.

IpszNewEntry
Pointer to a null-terminated string containing the new entry name. Before calling
RasRenameEntry, call the RasValidateEntryName function to validate the new
entry name.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_NAME The IpszNewEntryname is invalid.

ERROR_ALREADY _EXISTS An entry with the IpszNewEntry name already exists.

ERROR_CANNOT _FIND_ The phone book entry does not exist.
PHONEBOOK_ENTRY

Remarks
The RasRenameEntry function allows entry names that would not be accepted by the
dial-up networking user interface. The entry names specified in RasRenameEntry can
consist of any string that adheres to the following conditions.

Chapter 7 RAS Functions 179

1. The string cannot have a length greater than RAS_MaxEntryName (as defined in
Ras.h).

2. The string cannot consist entirely of space or tab characters.

3. The first character in the string cannot be a period character (".").

The following code sample renames the phone book entry with the name specified by
IpszOldEntry to the new name specified by IpszNewEntry.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
Ras ValidateEntryName

RasSetAutodialAddress
The RasSetAutodialAddress function can add an address to the AutoDial mapping
database. Alternatively, the function can delete or modify the data associated with an
existing address in the database.

Parameters
IpszAddress

Pointer to a null-terminated string that specifies the address to add, delete, or modify.
This can be an IP address, Internet host name (.. www.microsoft.com ..). or NetSIOS
name ("products1").

180 Volume 4 Remote Access Services

dwReserved
Reserved; must be zero.

IpA utoDialEn tries
Pointer to an array of one or more RASAUTODIALENTRY structures to be
associated with the IpszAddress address. If IpAutoDialEntries is NULL and
dwcbAutodialEntries is zero, RasSetAutodialAddress deletes all structures
associated with IpszAddress from the mapping database.

dwcbAutoDialEntries
Specifies the size, in bytes, of the IpAutodialEntries buffer.

dwcAutoDialEntries
Specifies the number of RASAUTODIALENTRY structures in the IpAutoDialEntries
buffer.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_SIZE The dwSize member of the RASAUTODIALENTRY
structure is an invalid value.

ERROR_INVALID_PARAMETER The IpszAddress parameter was NULL.

Remarks
An address in the AutoDial mapping database can have any number of associated
RASAUTODIALENTRY entries. Each entry specifies AutoDial information for a
particular TAPI dialing location.

If the address specified by the IpszAddress parameter is an existing address in the
database and the IpAutoDialEntries parameter is not NULL, the
RasSetAutodialAddress function modifies the set of AutoDial entries associated with
the address. If an entry in the IpAutoDialEntries array specifies a dialing location for
which the address already has an entry, the function replaces the existing entry with the
new entry. Otherwise, the function simply adds the IpAutoDialEntries entries to the set of
entries for the address.

If the IpszAddress address exists in the database and IpAutoDialEntries is NULL and
dwcbAutodialEntries is zero, RasSetAutodialAddress deletes the address from the
database.

If the IpszAddress address does not exist in the database, RasSetAutodialAddress
adds the address to the database. The IpAutoDialEntries parameter specifies the
AutoDial entries to associate with the new address.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.

Chapter 7 RAS Functions 181

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASAUTODIALENTRY, RasEnumAutodialAddresses, RasGetAutodialAddress

RasSetAutodialEnable
The RasSetAutodialEnable function enables or disables the AutoDial feature for a
specified TAPI dialing location. For more information about TAPI dialing locations, see
the (TAPI) Programmer's Reference in the Platform SDK documentation.

Parameters
dwDialingLocation

Specifies the identifier of a TAPI dialing location.

fEnabled
Specify TRUE to enable AutoDial for the specified dialing location, or FALSE to
disable it.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error code.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

182 Volume 4 Remote Access Services

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasGetAutodialEnable

RasSetAutodial Param
The RasSetAutodialParam function sets the value of an AutoDial parameter:

Parameters
dwKey

Specifies the AutoDial parameter to set. This parameter can be one of the following
values.

Value Meaning

RASADP_
DisableConnectionQuery

RASADP_
LoginSessionDisable

The IpvValue parameter points to a DWORD
value. If this value is zero (the default), AutoDial
displays a dialog box to query the user before
creating a connection. If this value is 1, and the
AutoDial database has the phone book entry to
dial, AutoDial creates a connection without
displaying the dialog box.

The IpvValue parameter points to a DWORD
value. If this value is 1 , the system disables all
AutoDial connections for the current logon
session. If this value is zero (the default), AutoDial
connections are enabled. The AutoDial system
service changes this value to zero when a new
user logs on to the workstation.

Value

RASADP_
SavedAddressesLimit

RASADP_
FailedConnectionTimeout

RASADP_
ConnectionQueryTimeout

IpvValue

Chapter 7 RAS Functions 183

Meaning

The IpvValue parameter points to a DWORD value
that indicates the maximum number of addresses
that AutoDial stores in the registry. AutoDial first
stores addresses that it used to create an AutoDial
connection; then it stores addresses that it learned
after a RAS connection was created. Addresses
written using the RasSetAutodialAddress
function are always saved, and are not included in
calculating the limit. The default value is 100.

The IpvValue parameter points to a DWORD value
that Indicates a time-out value, in seconds. When
an AutoDial connection attempt fails, the AutoDial
system service disables subsequent attempts to
reach the same address for the time-out period.
This prevents AutoDial from displaying multiple
connection dialog boxes for the same logical
request by an application. The default value is 5.

The IpvValue parameter points to a DWORD value
that indicates a time-out value, in seconds. Before
attempting an AutoDial connection, the system will
. display a dialog asking the .userto confirm that the
system should dial. The dialog has a countdown
timer that will terminate the dialog with a "Do not
dial" selection if the user takes no action. The
DWORD value pointed to by IpvValue specifies
the initial time on this countdown timer.

Pointer to a buffer that contains the new value for the specified parameter,

dwcbValue
Specifies the size, in bytes, of the value in the IpvValue buffer.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER

ERROR_INVALID_SIZE

The dwKeyor IpvValue parameter is invalid.

The size specified by the dwcbValue is invalid.

184 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasGetAutodialParam, RasSetAutodialAddress

RasSetCredentials
The RasSetCredentials function sets the user credentials associated with a specified
RAS phone book entry.

Parameters
IpszPhonebook

Pointer to a null-terminated string that specifies the full path and file name of a phone
book (PBK) file. If this parameter is NULL, the function uses the current default phone
book file. The default phone book file is the one selected by the user in the User
Preferences property sheet of the Dial-Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string that contains the name of a phone book entry.

IpCredentials
Pointer to a RASCREDENTIALS structure that specifies the user credentials to set for
the specified phone book entry. Before calling RasSetCredentials, setthe dwSize
member of the structure to si zeof(RASCREDENTIALS). Set the dwMask member to
indicate the credential information to be set.

Chapter 7 RAS Functions 185

fClearCredentials
Specifies a flag that indicates whether RasSetCredentials clears existing credentials
by setting them to the empty string, "". If this flag is TRUE, the dwMask member of
the RASCREDENTIALS structure indicates the credentials that the function sets to
the empty string. If this flag is FALSE, the function sets the indicated credentials
according to the contents of their corresponding RASCREDENTIALS members.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CANNOT_OPEN_
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

ERROR_INVALID_PARAMETER

ERROR_INVALID_SIZE

Remarks

The specified phone book cannot be found.

The specified entry does not exist in the phone
book.

The IpCredentials parameter was NULL.

The dwSize member of the RASCREDENTIALS
structure is an unrecognized value.

The RasSetCredentials function sets the user credentials associated with a specified
RAS phone book entry. The credentials stored with a phone book entry are the
credentials of the last user to successfully connect using the specified phone book entry,
or the credentials subsequently specified in a call to the RasSetCredentials or
RasSetEntryDialParams function for the phone book entry.

The RasSetCredentials function is the preferred way of securely storing credentials with
a phone book entry. RasSetCredentials supersedes the RasSetEntryDialParams
function, which may not be supported in future releases of Windows 2000.

Windows 2000 and later versions: If the szPassword member of the
RASCREDENTIALS structure contains the password handle returned by
RasGetCredentials or RasGetEntryDialParams, RasSetCredentials returns
successfully without changing any currently saved password.

The following code sample sets the credentials for the phone book entry with the name
"mazy".

(continued)

186 Volume 4 Remote Access Services

(continued)

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASCREDENTIALS, RasGetCredentials, RasSetEntryDialParams

RasSetCustomAuthData
Use the RasSetCustomAuthData function to set connection-specific authentication
information. This information should not be specific to a particular user.

Parameters
pszPhonebook

Pointer to a null-terminated string containing the full path of the phone book (PBK) file.
If this parameter is NULL, the function will use the system phone book.

pszEntry
Pointer to a null-terminated string containing an eXisting entry name.

pbCustomAuthData
. Pointer to a buffer containing the new authentication data.

dwSizeofCustomAuthData
Size of the data pointed to by the pbCustomAuthData parameter.

Chapter 7 RAS Functions 187

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

E_INVALIDARG

ERROR_CANNOT_OPEN_
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

Other

The dwSizeofCustomAuthData parameter is zero, or the
pbCustomAuthData parameter is NULL.

RasSetEapUserData was unable to open the specified
phone book file.

RasSetEapUserData was unable to find the specified
entry in the phone book.

Use FormatMessage to retrieve the system error
message that corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

RasGetCustomAuth Data, RasSetEapUserData

RasSetEapUserData
Use the RasSetEapUserData function to store user-specific Extensible Authentication
Protocol (EAP) information for the specified phone book entry in the registry.

188 Volume 4 Remote Access Services

Parameters
hToken

Handle to a primary or impersonation access token that represents the user for which
to store data. This parameter can be NULL if the function is called from a process
already running in the user's context.

pszPhonebook
Pointer to a null-terminated string containing the full path of the phone book (PBK) file.
If this parameter is NULL, the function will use the system phone book.

pszEntry
Pointer to a null-terminated string containing an existing entry name.

pbEapData
Pointer to the data to store for the user.

dwS;zeofEapData
Specifies the size of the data pointed to by the pbEapData parameter.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_CANNOT_OPEN_
PHONEBOOK

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

Other

The dwS;zeofEapData parameter is zero, or the
pbEapData parameter is NULL.

RasSetEapUserData was unable to open the specified
phone book file.

RasSetEapUserData was unable to find the specified
entry in the phone book.

Use FormatMessage to retrieve the system error
message that corresponds to the error code returned.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasGetEapUserData, RaslnvokeEapUI

Chapter 7 RAS Functions 189

RasSetEntryDial Params
The RasSetEntryDialParams function changes the connection information saved by the
last successful call to the RasDial or RasSetEntryDialParams function for a specified
phone book entry.

Parameters
IpszPhonebook

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

Windows 95: Dial-up networking stores phone book entries in the registry rather than
in a phone book file.

Iprasdialparams
Pointer to a RASDIALPARAMS structure containing the connection parameters to be
associated with the phone book entry. RasSetEntryDialParams uses the structure's
members as follows.

Member Description

dwSize

szEntryName

szPhoneNumber

szCalibackNumber

szUserName

Must specify the sizeof(RASDIALPARAMS) to identify the
version of the structure.

A null-terminated string that identifies the phone book entry
to set parameters for.

Not used. Set to NULL.

A null-terminated string containing the callback phone
number. If szCalibackNumber is an empty string (""), the
callback number is not changed.

A null-terminated string containing the logon name of the
user associated with this entry. If szUserName is an empty
string, the user name is not changed.

(continued)

190 Volume 4 Remote Access Services

(continued)

Member

szPassword

szDomain

dwSubEntry

dwCalibackld

fRemovePassword

Description

A null-terminated string containing the password for the user
specified by szUserName. If szUserName is an empty
string, the password is not changed. If szPassword is an
empty string and fRemovePassword is FALSE, the password
is set to the empty string. If fRemovePassword is TRUE, the
password stored in this phone book entry for the user
specified by szUserName is removed regardless of the
contents of the sZPassword string.

Windows NT 4.0 and later: The password is changed to the
string specified by sZPassword regardless of whether
szUserName is an empty string.

Windows 2000 and later: If szPassword contains the
password handle returned by RasGetCredentials or
RasGetEntryDialParams, RasSetEntryDialParams returns
successfully without changing any currently saved password.

A nUll-terminated string containing the name of the domain to
log on to. If szDomain is an empty string, the domain name
is not changed.

Specifies the (one-based) index of the initial subentry to dial
when establishing the connection.

Not used; should be zero.

Specifies whether to remove the phone book entry's stored password for the user
specified by Iprasdialparams->szUserName. If fRemovePassword is TRUE, the
password is removed. Setting fRemovePassword to TRUE is equivalent to checking
the "Unsave Password" checkbox in Dial-Up Networking. When setting the password
or other properties of a phone book entry, set fRemovePassword to FALSE.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Description

ERROR_BUFFER_INVALID The address or buffer specified by Iprasdialparams is
invalid.

ERROR_CANNOT _OPEN The phone book is corrupted or missing components.
PHONEBOOK

ERROR_CANNOT _FIND_ The phone book entry does not exist.
PHONEBOOK_ENTRY

Chapter 7 RAS Functions 191

Remarks
To create a new phone book entry, use the RasSetEntryProperties function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASDIALPARAMS, RasCreatePhonebookEntry, RasEditPhonebookEntry,
RasGetEntryDial Params, RasSetEntryProperties

RasSetEntryProperties
The RasSetEntryProperties function changes the connection information for an entry in
the phone book or creates a new phone book entry.

Parameters
IpszPhonebook

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

192 Volume 4 Remote Access Services

IpszEntry
Pointer to a null-terminated string containing an entry name.

If the entry name matches an existing entry, RasSetEntryProperties modifies the
properties of that entry.

If the entry name does not match an existing entry, RasSetEntryProperties creates a
new phone book entry. For new entries, call the RasValidateEntryName function to
validate the entry name before calling RasSetEntryProperties.

IpRasEntry
Pointer to a RASENTRY structure that contains the new connection data to be
associated with the phone book entry specified by the IpszEntry parameter.

The structure might be followed by an array of null-terminated alternate phone
number strings. The last string is terminated by two consecutive null characters. The
dwAlternateOffset member of the RASENTRY structure contains the offset to the
first string.

dwEntrylnfoSize
Specifies the size, in bytes, of the buffer specified by the IpRasEntry parameter.

IpbDevicelnfo
Pointer to a buffer containing device-specific configuration information. This is opaque
TAPI device configuration information. For more information about TAPI device
configuration, see the IineGetDevConfig function in the T API Programmer's
Reference in the Platform SDK.

Windows NT/2000: This parameter is unused. The calling function should set this
parameter to NULL.

dwDevicelnfoSize
Specifies the size, in bytes, of the IpbDevicelnfo buffer.

Windows NT/2000: This parameter is unused. The calling function should set this
parameter to zero.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BUFFER_INVALID The address or buffer specified by IpRasEntry is invalid.

ERROR_CANNOT _OPEN The phone book is corrupted or missing components.
PHONEBOOK

Remarks

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.

Chapter 7 RAS Functions 193

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RASENTRY, RasCreatePhonebookEntry, RasGetEntryProperties,
RasValidateEntryName

RasSetSubEntryProperties
The RasSetSubEntryProperties function creates a new subentry or modifies an
existing subentry of a specified phone book entry.

Parameters
IpszPhonebook

Windows NT/2000: Pointer to a null-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial-Up Networking dialog box.

194 Volume 4 Remote Access Services

IpszEntry
Pointer to a nUll-terminated string containing the name of an existing entry in the
phone book.

dwSubEntry
Specifies the one-based index of the subentry. If the index matches an existing
subentry index, the function changes the properties of that subentry. If the index does
not match an existing index, the function creates a new subentry.

IpRasSubEntry
Pointer to a RASSUBENTRY structure that contains the data for the subentry.

The structure might be followed by an array of nUll-terminated alternate phone
number strings. The last string is terminated by two consecutive null characters. The
dwAlternateOffset member of the RASSUBENTRY structure contains the offset to
the first string.

dwcbRasSubEntry
Specifies the size, in bytes, of the IpRasSubEntry buffer.

IpbDeviceConfig
Pointer to a T API device configuration block. This parameter is currently unused. The
caller should pass NULL for this parameter. For more information about TAPI device
configuration blocks, see the function IineGetDevConfig.

dwcbDeviceConfig
Specifies the size of the T API device configuration block. This parameter is currently
unused. The caller should pass zero for this parameter.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_CANNOT _FIND_
PHONEBOOK_ENTRY

ERROR_CANNOT_OPEN_
PHONEBOOK

ERROR_INVALID_PARAMETER

Remarks

The address or buffer specified by IpRasEntry is
invalid.

The phone book entry does not exist.

The phone book is corrupted or missing
components.

The function was called with an invalid parameter.

A RAS phone book entry can have zero or more subentries, each minimally consisting of
a device and a phone number. A phone book entry with multiple subentries can be
configured to dial either the first available subentry or all subentries when the entry is
dialed.

Chapter 7 RAS Functions 195

Use the RasGetEntryProperties function to retrieve a RASENTRY structure containing
information about the subentries of a phone book entry. The dwSubEntries member
indicates the number of subentries and the dwDialMode member indicates the dialing
configuration.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasGetEntryProperties, RASENTRY, RASSUBENTRY

Ras ValidateEntryName
The RasValidateEntryName function validates the format of a connection entry name.
The name must contain at least one non-white-space alphanumeric character.

Parameters
IpszPhonebook

Windows NT/2000: Pointer to a nUll-terminated string that specifies the full path and
file name of a Phone Book (PBK) file. If this parameter is NULL, the function uses the
current default phone book file. The default phone book file is the one selected by the
user in the User Preferences property sheet of the Dial~Up Networking dialog box.

IpszEntry
Pointer to a null-terminated string containing an entry name.

Windows NT/2000: The entry name cannot begin with a period (".").

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is ERROR_INVALlD_NAME or
ERROR_ALREADY _EXISTS.

196 Volume 4 Remote Access Services

Remarks
The following sample code validates the phone book entry specified by the variable
IpszEntry.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Library: Use Rasapi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Remote Access Service (RAS) Overview, Remote Access Service Functions,
RasCreatePhonebookEntry, RasGetEntryProperties

RAS Custom Scripting DLL Functions
Implement the following functions when developing a RAS custom-scripting DLL:

• RasCustomScriptExecute

• RasGetBuffer

• Ras FreeB uffer

• RasSendBuffer

• RasReceiveBuffer

• RasRetrieveBuffer

Chapter 7 RAS Functions 197

RasCustomScriptExecute
RAS calls the RasCustomScriptExecute function when establishing a connection for a
phone book entry that has the RASEO_CustomScript option set.

Parameters
hPod

Handle to the port on which the connection is established. Use this handle when
sending or receiving data on the port.

IpszPhonebook
Pointer to a Unicode string containing the path to the phone book in which the entry
for the connection resides.

IpszEntryName
Pointer to a Unicode string containing the name of the entry that was dialed to
establish the connection.

pfnRasGetBuffer
Pointer to a function of type PFNRASGETBUFFER. The custom-scripting DLL should
use this function to allocate memory to send data to the server.

pfnRasFreeBuffer
Pointer to a function of type PFNRASFREEBUFFER. The custom-scripting DLL
should use this function to free memory allocated by the pfnRasGetBufferfunction.

pfnRasSendBuffer
Pointer to a function of type PFNRASSENDBUFFER. The custom-scripting DLL uses
this function to communicate with the server over the specified port.

pfnRasReceiveBuffer
Pointer to a function of typePFNRASRECEIVEBUFFER. The custom-scripting DLL
uses this function to communicate with the server over the specified port.

pfnRasRetrieveBuffer
Pointer to a function of type PFNRASRETRIEVEBUFFER. The custom-scripting DLL
uses this function to communicate with the server over the specified port.

198 Volume 4 Remote Access Services

hWnd
Handle to a window that the custom-scripting DLL can use to present a user interface
to the user.

pRasDialParams
Pointer to a Unicode RASDIALPARAMS structure. This structure contains the
authentication credentials for the user. The custom-scripting DLL can modify the
szUserName, szPassword, and szDomain members of this structure. The Point-to­
Point Protocol (PPP) will use whatever is stored in these members when
RasCustomScriptExecute returns.

pvReserved
This parameter is reserved for future use.

Return Values
If the function succeeds, the return value should be ERROR_SUCCESS.

If the function fails, the return value should be an appropriate error code from Winerror.h
or Raserror.h.

Remarks
When RAS calls RasCustomScriptExecute, the pRasDialParams parameter will point
to a Unicode RASDIALPARAMS structure. That is, the structure contains only Unicode
strings.

In some cases, the szUserName of the RASDIALPARAMS structure will be an empty
string. In these case, the custom-scripting DLL should use the Unicode version of the
GetUserName function to obtain the name of the current user.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Unicode: Declared only as Unicode.

RAS Custom-Scripting, RasGetBuffer, RasFreeBuffer, RasSendBuffer,
RasReceiveBuffer, RasRetrieveBuffer

RasGetBuffer
The custom-scripting DLL calls RasGetBuffer to allocate memory for sending or
receiving, data over the port connected to the server.

Parameters
ppBuffer

Chapter 7 RAS Functions 199

Pointer to a pOinter that receives the address of the returned buffer.

pdwSize
Pointer to a DWORD variable that, on input, contains the requested size of the buffer.
On output, this variable contains the actual size of the buffer allocated.

Return values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Meaning

RAS cannot allocate anymore buffer space.

Remarks
The maximum buffer size that can be obtained from is 1500 bytes.

The custom-scripting DLL calls RasGetBuffer through a function pOinter. The function
pOinter is passed to the custom-scripting DLL as a parameter when RAS calls the DLL's
implementation of RasCustomScriptExecute.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.

RAS Custom-Scripting, RasCustomScriptExecute, RasFreeBuffer

RasFreeBuffer
The custom-scripting DLL calis HasFreeBufferto release a memory buffer that was
allocated by a previous call to RasGetBuffer.

200 Volume 4 Remote Access Services

Parameters
pBuffer

Pointer to the memory buffer to free. This memory must have been obtained by a
previous call to RasGetBuffer.

Return values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Meaning

Remarks

The pOinter to the buffer passed in the
pBufferparameter is invalid.

The handle specified by the hPort parameter
is invalid.

The custom-scripting DLL calls RasFreeBuffer through a function pointer. The function
pOinter is passed to the custom-scripting DLL as a parameter when RAS calls the DLL's
implementation of RasCustomScriptExecute.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.

RAS Custom-Scripting, RasCustomScriptExecute, RasGetBuffer

RasSendBuffer
The custom-scripting DLL calls the RasSendBuffer function to send data to the server
over the specified port.

Parameters
hPort

Chapter 7 RAS Functions 201

Handle to the port on which to send the data in the buffer. This handle should be the
handle passed in by RAS as the first parameter of the RasCustomScriptExecute
function.

pBuffer
Pointer to a buffer of data to send over the port specified by the hPort parameter.
Obtain this buffer using RasGetBuffer function.

dw$ize
Specifies the size of the data in the buffer painted to by the pBuffer parameter.

Return values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BUFFER_INVALID The pointer to the buffer passed in the pBuffer
parameter is invalid.

ERROR_INVALID_PORT _HANDLE The handle specified by the hPort parameter is
invalid.

Remarks
The custom-scripting DLL calls RasSendBuffer through a function painter. The function
pointer is passed to the custom-scripting DLL as a parameter when RAS calls the DLL's
implementation of RasCustomScriptExecute.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.

RAS Custom-Scripting, RasCustomScriptExecute, RasReceiveBuffer,
RasRetrieveBuffer

RasReceiveBuffer
The custom-scripting DLL calls the RasReceiveBuffer function to inform RAS that it is
ready to receive data from the server over the specified port.

202 Volume 4 Remote Access Services

Parameters
hPort

Handle to the port on which to receive the data. This handle should be the handle
passed in by RAS as the first parameter of the RasCustomScriptExecute function.

pBuffer
Pointer to a buffer to receive the data from the port specified by the hPort parameter.
Obtain this buffer using RasGetBuffer function.

pdwSize
Pointer to a DWORD variable that receives the size of the data returned in the buffer
pointed to by the pBuffer parameter.

dwTimeout
Specifies a time-out period in milliseconds after which the custom-scripting DLL will
no longer wait for the data.

hEvent
Handle to an event object that RAS will signal when the received data is available.

Return values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Meaning

Remarks

The pOinter to the buffer passed in the pBuffer
parameter is invalid.

The handle specified by the hPort parameter is
invalid.

RasReceiveBuffer is an asynchronous function. RasReceiveBuffer returns
immediately even if the data is not yet available. The custom-scripting DLL must wait on
the event object specified by the hEvent parameter. When the data is available, RAS
signals this event. The custom-scripting DLL should then call the RasRetrieveBuffer
function to obtain the data. The custom-scripting DLL may pass the same buffer pOinter
in RasRetrieveBuffer that it passed in RasReceiveData.

Chapter 7 RAS Functions 203

RAS also signals the event object if, for some reason, the port is disconnected before
the data is posted. In this case, RasRetrieveBuffer returns an error defined in
Raserror.h, that indicates the cause of the failure.

The custom-scripting DLL calis RasReceiveBuffer through a function painter. The
function pointer is passed to the custom-scripting DLL as a parameter when RAS calls
the DLL's implementation of RasCustomScriptExecute.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.

RAS Custom-Scripting, RasCustomScriptExecute, RasSendBuffer

RasRetrieveBuffer
The custom-scripting DLL calls the RasRetrieveBuffer function to obtain data received
from the RAS server over the specified port. The custom-scripting DLL should call
RasRetrieveBuffer only after RAS has signaled the event object passed in the call to
RasReceiveBuffer.

Parameters
hPort

Handle to the port on which to receive the data. This handle should be the handle
passed in by RAS as the first parameter of the RasCustomScriptExecute function.

pBuffer
Pointer to a buffer to receive the data from the port specified by the hPort parameter.
Obtain this buffer using RasGetBuffer function. The value of this parameter may be
the same as the painter to the buffer passed into the RasReceiveBuffer function.

pdwS;ze
Pointer to a DWORD variable that receives the size of the data returned in the buffer
painted to by the pBuffer parameter.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

204 Volume 4 Remote Access Services

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BUFFER_INVALID The painter to the buffer passed in the pBuffer
parameter is invalid.

ERROR_INVALlD_PORT _HANDLE The handle specified by the hPort parameter is
invalid.

RAS signals the event object if the port gets disconnected for some reason before the
data is posted. In this case, RasRetrieveBuffer returns an error defined in Raserror.h,·
that indicates the cause of the failure.

Remarks
The RasRetrieveBuffer function is synchronous. When it returns, the buffer painted to
by the pBuffer parameter contains the data received over the specified port. The custom­
scripting DLL should call RasRetrieveBuffer only after RAS has signaled the event
object that the DLL passed in the call to RasReceiveBuffer.

The custom-scripting DLL calls RasRetrieveBuffer through a function painter. The
function painter is passed to the custom-scripting DLL as a parameter when RAS calls
the DLL's implementation of RasCustomScriptExecute.

RAS Custom-Scripting, RasCustomScriptExecute, RasReceiveBuffer,
RasSendBuffer

CHAPTER 8

RAS Structures

Use the following structures to implement RAS functionality:

RASADPARAMS
RASAMB
RASAUTODIALENTRY
RASCONN
RASCONNSTATUS
RASCREDENTIALS
RASCTRYINFO
RASDEVINFO
RASDIALDLG
RASDIALEXTENSIONS
RASDIALPARAMS
RASEAPINFO
RASEAPUSERIDENTITY
RASENTRY

RASADPARAMS

RASENTRYDLG
RASENTRYNAME
RASIPADDR
RASMONITORDLG
RASNOUSER
RASPBDLG
RASPPPCCP
RASPPPIP
RASPPPIPX
RASPPPLCP
RASPPPNBF
RASSLIP
RASSUBENTRY

The RASADPARAMS structure describes the parameters that AutoDial passes to a
RASADFunc AutoDial handler.

Members
dwSize

Specifies the size, in bytes, of the RASADPARAMS structure. The system sets
dwSize to 5 i zeaf(RASADPARAMS) to identify the version of the structure.

hwndOwner
Specifies the parent window for the AutoDial user interface. This member can
be NULL.

205

206 Volume 4 Remote Access Services

dwFlags
Specifies a flag that indicates how to position the window of your AutoDial user
interface. The following flag is defined.

Flag Description

RASADFLG_PositionDlg

xDlg

If this flag is set, position your window according to the
coordinates specified by the xDlg and yDlg members.

If this flag is not set, center your window on the window
specified by the hwndOwner member. If hwndOwner
is NULL, center your window on the screen.

Specifies the horizontal screen coordinate of your window's upper-left corner. Ignore
this member if the RASADFLG_PositionDlg bit is not set in the dwFlags member.

yDlg
Specifies the vertical screen coordinate of your window's upper-left corner. Ignore this
member if the RASADFLG_PositionDlg bit is not set in the dwFlags member.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RASADFunc

RASAMB
The RASAMB structure contains the result of a Remote Access Server (RAS)
Authentication Message Block (AMB) projection operation.

The RasGetProjectionlnfo function returns a RASAMB data structure when its
rasprojection parameter has the value RASP _Amb.

Members
dwSize

Chapter 8 RAS Structures 207

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionlnfo
function, set this member to sizeof(RASAMB). The function can then determine the
version of the RASAMB data structure that the caller of RasGetProjectionlnfo is
expecting. This allows backward compatibility for compiled applications if there are
future enhancements to the data structure.

dwError
Contains the result of the PPP control protocol negotiation. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation, the error that prevented the projection from
completing successfully.

szNetBiosError
If dwError has the value ERHOR_NAME_EXISTS_ON_NET, the szNetBiosError
field contains a zero-terminated string that is the NetBlOS name that caused the
conflict. For other values of dwError, this field contains the null string.

bLana
Specifies the NetBlOS network adapter identifier, or LANA, on which the remote
access connection was established. This member contains the value OxFF if a
connection was not established.

Remarks
The AMB protocol is used with servers that were released before PPP was adopted as
the primary framing protocol; for example, Windows NT 3.1 and OS/2 1.3 RAS servers.

Windows NT12000: Requires Windows NT 3.1 or later.
Windows 95198: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetProjectionlnfo, RASPROJECTION

RASAUTODIALENTRY
The RASAUTODIALENTRY structure describes an AutoDial entry associated with a
network address in the AutoDial mapping database. An AutoDial entry specifies a
phone-book entry that AutoDial dials in a particular TAPI dialing location.

208 Volume 4 Remote Access Services

The RasGetAutodialAddress and RasSetAutodialAddress functions use this structure
to set and retrieve information about an AutoDial entry.

Members
dwSize

Specifies the size, in bytes, of the RASAUTODIALENTRY structure. Before calling
RasGetAutodialAddress or RasSetAutodialAddress, set dwSize to
si zeaf (RASAUTODI ALENTRY) to identify the version of the structure.

dwFlags
Reserved; must be zero.

dwDialingLocation
Specifies a TAPI dialing location. For more information about TAPI dialing locations,
see the T API Programmer's Reference in the Platform SDK.

szEntry
Specifies a null-terminated string that names an existing phone-book entry.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetAutodialAddress, RasSetAutodialAddress

RASCONN
The RASCONN structure provides information about a remote access connection. The
RasEnumConnections function returns an array of RASCONN structures.

Members
dwSize

Chapter 8 RAS Structures 209

Specifies the size, in bytes, of the RASCONN structure.

hrasconn
Specifies the remote access connection. This handle is used in other remote access
API calls.

szEntryName
A string that specifies the phone-book entry used to establish the remote access
connection. If the connection was established using an empty entry name, this string
consists of a PERIOD followed by the connection phone number.

szDeviceType
Windows NT 4.0 and later: A null-terminated string that contains the device type
through which the connection is made.

szDeviceName
Windows NT 4.0 and later: A nUll-terminated string that contains the device name
through which the connection is made.

szPhonebook [MAX_PATH]
Windows NT 4.0 and later: The full path and file name to the phone book containing
the entry for this connection.

dwSubEntry
Windows NT 4.0 and later: For multi link connections, specifies the subentry index of
one of the connected links. Subentry indices are one based.

guidEntry
Windows 2000: A GUID (Globally Unique IDentifier) that represents the phone-book
entry. The value of this member corresponds to that of the guidid member in the
RASENTRY structure.

210 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasEnumConnections, RasGetConnectStatus

RASCONNSTATUS
A RASCONNSTATUS structure describes the current status of a remote access
connection. It is returned by the RasGetConnectStatus function.

Members
dwSize

Specifies the structure size, in bytes.

rasconnstate
Specifies a RASCONNSTATE enumerator value that indicates the current state of the
RasDial connection process; that is, the piece of the RasDial process that is currently
executing.

Two state values are especially significant.

State Meaning

RASCS_Connected Indicates that the connection has been successfully
established.

RASCS_Disconnected Indicates that the connection has failed.

dwError
If nonzero, indicates the reason for failure. The value is one of the error values from
the RASheader file or one of ERROR_NOT _ENOUGH_MEMORY or
ERROR_INVALID_HANDLE.

Chapter 8 RAS Structures 211

szDeviceType
A string that specifies the type of the current device, if available. For example,
common device types supported by RAS are "modem", "pad", "switch", "isdn", or
"null".

szDeviceName
A string that specifies the name of the current device, if available. This would be the
name of the modem-for example, "Hayes Smartmodem 2400"; the name of the PAD,
for example "US Sprint"; or the name of a switch device, for example "Racal­
Guardata".

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetConnectStatus, RasDial, RASCONNSTATE

RASCREDENTIALS
The RASCREDENTIALS structure is used with the RasGetCredentials and
RasSetCredentials functions to specify the user credentials associated with a RAS
phone-book entry.

Members
dwSize

Specifies the size, in bytes, of the RASCREDENTIALS structure.

dwMask
Specifies a set of bit flags that specify the members of this structure that are valid. On
input, set the flags to indicate the members in which you are interested. On output,
the function sets the flags to indicate the members that contain valid data. This
member can be a combination of the following values.

212 Volume 4 Remote Access Services

Value

RASCM_UserName

RASCM_Password

RASCM_Domain

Meaning

The szUserName member is valid.

The szPassword member is valid.

The szDomain member is valid.

Windows 2000 and later versions: When retrieving credentials using the
RasGetCredentials function, the dwMask member contains the RASCM_Password
flag if the system has saved a password for the specified entry. If the system has no
password saved for this entry, dwMask does not contain RASCM_Password.

szUserName
Specifies a nUll-terminated string that contains a user name.

sZPassword
Specifies a nUll-terminated string that contains a password.

Windows 2000 and later versions: When retrieving credentials using the
RasGetCredentials function, the sZPassword member does not receive the actual
password. Instead, szPassword receives a handle to the saved password. You can
substitute this handle for the saved password in calls to RasSetCredentials and
RasDial. When presented with this handle, RasDial will retrieve and use the saved
password. The value of this handle may change in future versions of the operating
system; do not develop code that depends on the contents or format of this value.

szDomain
A nUll-terminated string that contains a domain name.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetCredentials, RasSetCredentials

RASCTRYINFO
The RASCTRYINFO structure describes the direct dialing procedures for calls placed
within a specified country. The RasGetCountrylnfo function uses this structure to
retrieve country-specific dialing information from the Windows Telephony list of country
information.

Chapter 8 RAS Structures 213

For more information about country-specific dialing information, see the
T API Programmer's Reference in the Platform SDK.

Members
dwSize

Specifies the size, in bytes, of the RASCTRYINFO structure. Before calling
RasGetCountrylnfo, set dwSize to si zeof(RASCTRYINFO) to identify the version of the
structure.

dwCountrylD
Specifies a T API country identifier. Before calling RasGetCountrylnfo, set
dwCountrylD to identify the country of interest. For more information about T API
country identifiers, see the T API Programmer's Reference in the Platform SDK.

If this member is 1, RasGetCountrylnfo returns information about the first country in
the Windows Telephony list of country information.

dwNextCountrylD
Specifies the T API country identifier of the next country to enumerate in the Windows
Telephony list. This member is zero for the last country in the list.

dwCountryCode
Specifies the country code for the country identified by the dwCountrylD member.

dwCountryNameOffset
Specifies the offset, in bytes, from the start of the structure to the start of a nulf­
terminated string describing the country. The description string is either ANSI or
Unicode, depending on whether you use the ANSI or Unicode version of
RasGetCountrylnfo.

Remarks
For more information on dialing procedures and telephony configuration, see the
T API Programmer's Reference in the Platform SDK.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

214 Volume 4 Remote Access Services

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetCountrylnfo

RASDEVINFO
The RASDEVINFO structure contains information that describes a T API device capable
of establishing a RAS connection. The RasEnumDevices function uses this structure to
retrieve information about RAS-capable devices.

Members
dwSize

Specifies the size, in bytes, of the RASDEVINFO structure. Before calling
RasEnumDevices, set dwSize to s i zeof(RASDEVI NFO) to identify the version of the
structure.

szDeviceType
Specifies a null-terminated string indicating the RAS device type referenced by
szDeviceName. This member can be one of the following string constants.

String Description

RASDT _Modem

RASDT_lsdn

RASDT_X25

RASDT_Vpn

RASDT_Pad

A modem accessed through a COM port.

An ISDN card with the corresponding NDISWAN driver installed.

An X.25 card with the corresponding NDISWAN driver installed.

A virtual private network connection.

A Packet Assembler/Disassembler.

Windows 95: The RASDT _ Vpn device type is supported on Windows 95 only if
Microsoft Dial-Up Networking Version 1.2 is installed. The RASDT _X25 and
RASDT _Pad device types are not supported on Windows 95.

Windows 98: The RASDT _ Vpn device type is supported on Windows 98. However,
the RASDT _X25 and RASDT _Pad device types are not currently supported on
Windows 98

szDeviceName
Specifies a null-terminated string containing the name of a TAPI device.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Chapter 8 RAS Structures 215

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasEnumDevices

RASDIALDLG
The RASDIALDLG structure is used in the RasDialDlg function to specify additional
input and output parameters.

Members
dwSize

Specifies thesize of this structure, in bytes. Before calling RasDialDlg, set this
member to sizeof(RASDIALDLG) to indicate the version of the structure. If dwSize is
not a valid size, RasDialDlg fails and sets the dwError member to
ERROR_INVALlD_SIZE.

hwndOwner
Specifies the window that owns the modal RasDialDlg dialog boxes. This member
can be any valid window handle, or it can be NULL if the dialog box has no owner.

dwFlags
A bit flag that indicates the options that are enabled for the dialog box. You can
specify the fol/owing value.

216 Volume 4 Remote Access Services

Value

RASDDFLAG
Position Dig

xDlg

Meaning

If this flag is set, RasDialDlg uses the values specified by
the xDlg and yDlg members to position the dialog box.

If this flag is not set, the dialog box is centered on the
owner window, unless hwndOwner is NULL, in which
case, the dialog box is centered on the screen.

Specifies the horizontal screen coordinate of the upper-left corner of the dialog box.
This value is used only if the RASDDFLAG_PositionDlg flag is set.

yDlg
Specifies the vertical screen coordinate of the upper-left corner of the dialog box. This
value is used only if the RASDDFLAG_PositionDlg flag is set.

dwSubEntry
Specifies the subentry or subentries to dial. If dwSubEntry is zero, RasDialDlg dials
all subentries associated with the specified phone-book entry. Otherwise, to indicate
the index of the individual subentry to dial, dwSubEntry must be a number from one
to the number of subentries.

dwError
The RasDialDlg function sets this member to a system error code or RAS error code
if an error occurs. If no error occurs, the function sets dwError to zero. This value is
ignored on input.

reserved
Reserved; must be zero.

reserved2
Reserved; must be zero.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasDialDlg

Chapter 8 RAS Structures 217

RASDIALEXTENSIONS

Value

The RASDIALEXTENSIONS structure contains information about extended features of
the RasDial function. You can enable one or more of these extensions by passing a
pointer to a RASDIALEXTENSIONS structure when you call RasDial. If you do not pass
a pOinter to a RASDIALEXTENSIONS structure to RasDial, RasDial uses the default
settings that are noted in the following descriptions.

Members
dwSize

Specifies the size of this structure, in bytes. Set this member to
sizeof{RASDIALEXTENSIONS). This indicates the version of the structure.

dwfOptions
A set of bit flags that specify RasDial extensions. The following bit flags are defined;
you must set all undefined bits to zero.

Description

RDEOPT_ If this bit flag is one, RasDial uses the prefix and suffix that is in the
RAS phone book. UsePrefixSuffix

RDEOPT_
PausedStates

If this bit flag is zero, RasDial ignores the prefix and suffix that is in
the RAS phone book.

If no phone-book entry name is specified in the call to RasDial, the
actual value of this bit flag is ignored, and it is assumed to be zero.

If this bit flag is one, RasDial accepts paused states. Examples of
paused states are terminal mode, retry logon, change password,
set callback number, and EAP authentication.

If this bit flag is zero, RasDial reports a fatal error if it enters a
paused state.

(continued)

218 Volume 4 Remote Access Services

(continued)

Value

RDEOPT_
IgnoreModemSpeaker

RDEOPT_
SetModemSpeaker

Description

If this bit flag is one, RasDial ignores the modem speaker setting
that is in the RAS phone book, and uses the setting specified by
the RDEOPT _SetModemSpeaker bit flag.

If this bit flag is zero, RasDial uses the modem speaker setting that
is in the RAS phone book, and ignores the setting specified by the
RDEOPT _SetModemSpeaker bit flag.

If no phone-book entry name is specified in the call to RasDial, the
choice is between using a default setting or the setting specified by
the RDEOPT_SetModemSpeakerbit flag. The default setting is
used if RDEOPT _lgnoreModemSpeaker is zero. The setting
specified by RDEOPT _SetModemSpeaker is used if
RDEOPT _Ignore Modem Speaker is one.

If this bit flag is one, and RDEOPT _lgnoreModemSpeaker is one,
RasDial sets the modem speaker on.

If this bit flag is zero, and RDEOPT _lgnoreModemSpeaker is one,
RasDial sets the modem speaker off.

If RDEOPT _lgnoreModemSpeaker is zero, RasDial ignores the
value of RDEOPT _SetModemSpeaker, and sets the modem
speaker based on the RAS phone-book setting or the default
setting.

RDEOPT _ If this bit flag is one, RasDial ignores the software compression
IgnoreSoftwareCompression setting that is in the RAS phone book, and uses the setting

specified by the RDEOPT _SetSoftwareCompression bit flag.

RDEOPT_
SetSoftwareCompression

If this bit flag is zero, RasDial uses the software compression
setting that is in the RAS phone book, and ignores the setting
specified by the RDEOPT _SetSoftwareCompression bit flag.

If no phone-book entry name is specified in the call to RasDial, the
choice is between using a default setting or the setting specified by
the RDEOPT _SetSoftwareCompression bit flag. The default setting
is used if RDEOPT _lgnoreSoftwareCompression is zero. The
setting specified by RDEOPT _SetSoftwareCompression is used if
RDEOPT _lgnoreSoftwareCompression is one.

If this bit flag is one, and RDEOPT _lgnoreSoftwareCompression is
one, RasDial uses software compression.

If this bit flag is zero, and RDEOPT _lgnoreSoftwareCompression is
one, RasDial does not use software compression.

If RDEOPT _lgnoreSoftwareCompression is zero, RasDial ignores
the value of RDEOPT _SetSoftwareCompression, and sets the
software compression state based on the RAS phone-book setting
or the default setting.

Chapter 8 RAS Structures 219

Value Description

RDEOPT_ Used internally by the RasDialDlg function so that a Windows-95-
style logon script is executed in a terminal window visible to the
user. Applications should not set this flag .

PauseOnScript

. The default value for each of these bit flags is zero.

hwndParent
Handle to a parent window that a security DLL can use for dialog box creation and
centering.

Note that this is not the window that receives RasDial progress notifications.

This member is optional; it is not required when no security DLL is defined.

The default value for this member is NULL.

reserved
This member is reserved for future use. It must be set to zero.

reserved 1
Windows 2000: This member is reserved for future use. It must be set to zero.

RasEaplnfo
Windows 2000: A RASEAPINFO structure that contains user-specific Extensible
Authentication Protocol (EAP) information.

Windows NTJ2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Structures, RasDial,
RaslnvokeEapUI

RASDIALPARAMS
The RASDIALPARAMS structure contains parameters that are used by RasDial to
establish a remote access connection.

220 Volume 4 Remote Access Services

(continued)

Members
dwSize

Specifies the structure size, in bytes.

szEntryName
Specifies a string containing the phone-book entry to use to establish the connection.
An empty string ('m) specifies a simple modem connection on the first available
modem port, in which case a nonempty szPhoneNumber must be provided.

Windows NT 4.0 and later versions: The callback number is no longer stored in the
registry. Specifying an asterisk for szCalibackNumber causes RAS to return error
704: ERROR_BAD_CALLBACK_NUMBER.

szPhoneNumber
Specifies a string that contains an overriding phone number. An empty string ("")
indicates that the phone-book entry's phone number should be used. If szEntryName
is "", szPhoneNumber cannot be "".

szCalibackNumber
Specifies a string that contains a callback phone number. An empty string ("")
indicates that callback should not be used. This string is ignored unless the user has
"Set By Caller" callback permission on the RAS server. An asterisk indicates that the
number stored in the phone book should be used for callback.

szUserName
Specifies a string that contains the user's user name. This string is used to
authenticate the user's access to the remote access server.

szPassword
Specifies a string that contains the user's password. This string is used to
authenticate the user's access to the remote access server.

Windows NT/2000: You can use szPassword to send a new password to the remote
server when you restart a RasDial connection from a RASCS_PasswordExpired
paused state. When changing a password on an entry that calls Microsoft Networks,
you should limit the new password to 14 characters in length to avoid down-level
compatibility problems.

Windows 2000 and later versions: When retrieving the password using the
RasGetEntryDialParams function, the szPassword member does not receive the
actual password. Instead, szPassword receives a handle to the saved password.
You can sUbstitute this handle for the saved password in calls to RasSetDialParams,

Chapter 8 RAS Structures 221

and RasDial. When presented with this handle, RasDial retrieves and uses the saved
password. The value of this handle may change in future versions of the operating
system; do not develop code that depends on the contents or format of this value.

szDomain
Specifies a string that contains the domain on which authentication is to occur. An
empty string ("") specifies the domain in which the remote access server is a member.
An asterisk specifies the domain stored in the phone book for the entry.

dwSubEntry
Specifies the index of the initial subentry to dial. If the dial mode is
RASEDM_DiaIAsNeeded, RAS dials this subentry. If dwSubEntry is not a valid
subentry index, RAS dials the first subentry.

If the dial mode of the phone-book entry is RASEDM_DiaIAII, dwSubEntry is ignored.
If the phone-book entry has no subentries, dwSubEntry is ignored.

The subentry indices are one-based. That is, the first subentry has an index of one,
the second subentry as an index of two, and so on.

The RASENTRY structure returned by RasGetEntryProperties indicates the dial
mode (dwDiaIMode) and number of subentries (dwSubEntries) for the phone-book
entry.

Windows 2000 and later: If dwSubEntry specifies a valid subentry index, RAS dials
the specified subentry regardless of the dial mode. If the dial mode is
RASEDM_DiaIAIl and dwSubEntry is zero, RAS dials all of the subentries.

dwCalibackld
Specifies an application-defined value that RAS passes to your RasDiaiFunc2
callback function.

Remarks
The szUserName and sZPassword strings are used to authenticate the user's access
to the remote access server.

Windows NT/2000: RAS does not actually log the user onto the network. The user does
this in the usual manner, for example, by logging on with cached credentials prior to
making the connection, or by using CTRL+AL T +DEL after the RAS connection is
established.

If both the szUserName and sZPassword members are empty strings (""), RAS uses
the user name and password of the current logon context for authentication. For a user­
mode application, RAS uses the credentials of the currently logged-on interactive user.
For a Win32 service process, RAS uses the credentials associated with the service.

Windows 95: RAS uses the szUserName and szPassword strings to log the user onto
the network.

Windows 95 cannot.obtain the password of the currently logged-on user, so if both the
szUserName and the szPassword members are empty strings (''''), RAS leaves the
user name and password empty during authentication.

222 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures, RasDial,
RasGetEntryProperties, RasSetEntryDialParams, RASENTRY

RASEAPINFO
The RASEAPINFO structure contains user-specific Extensible Authentication Protocol
(EAP) information. Use RASEAPINFO to pass this information to the RasDial function.

Members
dwSizeofEaplnfo

Specifies the size of the binary information pOinted to by the pbEaplnfo member.

pbEaplnfo
Pointer to binary EAP information. RasDial uses this information for authentication.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetEapUserData, RASDIALEXTENSIONS

RASEAPUSERIDENTITY
The RASEAPUSERIDENTITY structure stores identity information for a particular user.
This information is required for remote access connections that use Extensible
Authentication Protocol (EAP) for authentication.

Chapter 8 RAS Structures 223

Members
szUserName[UNLEN + 1]

Pointer to user name of the user requesting authentication.

dwSizeofEaplnfo
Size of the identity information required by the extensible authentication protocol.

pbEaplnfo[1]
Pointer to the identity information required by the extensible authentication protocol.

Remarks
Obtain the EAP information for the current user by calling RasGetEapUserldentity. This
function will return a RASEAPUSERIDENTITY structure containing the EAP information.
Free the memory occupied by this structure by calling RasFreeEapUserldentity.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

RasFreeEapUserldentity, RasGetEapUserldentity

RASENTRY
The RASENTRY structure describes a phone-book entry. The RasSetEntryProperties
and RasGetEntryProperties functions use this structure to set and retrieve the
properties of a phone-book entry.

(continued)

224 Volume 4 Remote Access Services

(continued)

Members
dwSize

Chapter 8 RAS Structures 225

Specifies the size, in bytes, of the RASENTRY structure. Before calling
RasSetEntryProperties or RasGetEntryProperties, set dwSize to si zeof(RASENTRY)

to identify the version of the structure.

dwfOptions
A set of bit flags that specify connection options. You can set one or more of the
following flags.

Flag Description

RASEO_ If this flag is set, the dwCountrylD, dwCountryCode, and
UseCountryAndAreaCodes szAreaCode members are used to construct the phone number. If

this flag is not set, these members are ignored.

This flag corresponds to the Use Country and Area Codes check
boxes in the Phone dialog box.

(continued)

226 Volume 4 Remote Access Services

(continued)

Flag

RASEO_
Specificl pAddr

RASEO_
SpecificNameServers

RASEO_
IpHeaderCompression

RASEO_
RemoteDefaultGateway

RASEO_
DisableLcp Extensions

RASEO_
TerminalBeforeDial

Description

If this flag is set, RAS tries to use the IP address specified by ipaddr
as the IP address for the dial-up connection. If this flag is not set,
the value of the ipaddr member is ignored.

Setting the RASEO_SpecificlpAddr flag corresponds to selecting the
Specify an IP Address setting in the TCP/IP settings dialog box.
Clearing the RASEO_SpecificlpAddr flag corresponds to selecting
the Server Assigned IP Address setting in the TCP/IP settings
dialog box.

Currently, an IP address set in the phone-book entry properties or
retrieved from a server overrides the IP address set in the network
control panel.

If this flag is set, RAS uses the ipaddrDns, ipaddrDnsAlt,
ipaddrWins, and ipaddrWinsAlt members to specify the name
server addresses for the dial-up connection. If this flag is not set,
RAS ignores these members.

Setting the RASEO_SpecificNameServers flag corresponds to
selecting the Specify Name Server Addresses setting in the TCP/IP
Settings dialog box. Clearing the RASEO_SpecificNameServers flag
corresponds to selecting the Server Assigned Name Server
Addresses setting in the TCP/IP Settings dialog box.

If this flag is set, RAS negotiates to use IP header compression on
PPP connections.

If this flag is not set, IP header compression is not negotiated.

This flag corresponds to the Use IP Header Compression check box
in the TCP/IP settings dialog box. It is generally advisable to set this
flag because IP header compression significantly improves
performance. The flag should be cleared only when connecting to a
server that does not correctly negotiate IP header compression.

If this flag is set, the default route for IP packets is through the dial­
up adapter when the connection is active. If this flag is clear, the
default route is not modified.

This flag corresponds to the Use Default Gateway on Remote
Network check box in the TCP/IP settings dialog box.

If this flag is set, RAS disables the PPP LCP extensions defined in
RFC 1570. This may be necessary to connect to certain older PPP
implementations, but interferes with features such as server
callback. Do not set this flag unless specifically required.

If this flag is set, RAS displays a terminal window for user input
before dialing the connection.

Flag

RASEO_
TerminalAfterOial

RASEO_
ModemLights

RASEO_
SwCompression

RASEO_
RequireEncryptedPw

RASEO_
RequireMsEncryptedPw

RASEO_
RequireOataEncryption

RASEO_
NetworkLogon

Chapter 8 RAS Structures 227

Description

If this flag is set, RAS displays a terminal window for user input after
dialing the connection.

Do not set this flag if a dial-up networking script is to be associated
with the connection, because scripting has its own terminal
implementation.

Windows 2000: If this flag is set, a status monitor will be displayed
in the Task Bar.

If this flag is set, software compression is negotiated on the link.
Setting this flag causes the PPP driver to attempt to negotiate CCP
with the server. This flag should be set by default, but clearing it can
reduce the negotiation period if the server does not support a
compatible compression protocol.

If this flag is set, only secure password schemes can be used to
authenticate the client with the server. This prevents the PPP driver
from using the PAP plain-text authentication protocol to authenticate
the client. The CHAP and SPAP authentication protocols are also
supported. Clear this flag for increased interoperability, and set it for
increased security.

This flag corresponds to the Require Encrypted Password check
box in the Security dialog box. See also
RASEO_RequireMsEncryptedPw.

If this flag is set, only the Microsoft secure password schemes can
be used to authenticate the client with the server. This prevents the
PPP driver from using the PPP plain-text authentication protOCOl,
M05-CHAP, MS-CHAP, or SPAP. The flag should be clearedfor
maximum interoperability and should be set for maximum security.
This flag takes precedence over RASEO_RequireEncryptedPw.

This flag corresponds to the Require Microsoft Encrypted Password
check box in the Security dialog box. See also
RASEO _RequireOataEncryption.

If this flag is set, data encryption must be negotiated successfully or
the connection should be dropped. This flag is ignored unless
RASEO_RequireMsEncryptedPw is also set.

This flag corresponds to the Require Data Encryption check box in
the Security dialog box.

If this flag is set, RAS logs on to the network after the point-to-point
connection is established.

This flag currently has no effect under Windows NT/2000.

(continued)

228 Volume 4 Remote Access Services

(continued)

Flag

RASEO_

UseLogonCredentials

RASEO_
PromoteAlternates

RASEO_
SecureLocalFiles

RASEO_
RequireEAP

RASEO_
RequirePAP

RASEO_
RequireSPAP

RASEO_
Custom

RASEO_
PreviewPhoneNumber

RASEO_
SharedPhoneNumbers

RASEO_
ReviewUserPW

RASEO_
PreviewDomain

RASEO_
ShowDialingProgress

Description

If this flag is set, RAS uses the user name, password, and domain of
the currently logged-on user when dialing this entry. This flag is
ignored unless RASEO_RequireMsEncryptedPw is also set.

Note that this setting is ignored by the RasDial function, where
specifying empty strings for the szUserName and szPassword
members of the RASDIALPARAMS structure gives the same result.

This flag corresponds to the Use Current Username and Password
check box in the Security dialog box.

This flag has an effect when alternate phone numbers are defined
by the dwAlternateOffset member. If this flag is set, an alternate
phone number that connects successfully becomes the primary
phone number, and the current primary phone number is moved to
the alternate list.

This flag corresponds to the check box in the Alternate Numbers
dialog box.

Windows NT/2000: If this flag is set, RAS checks for existing
remote file system and remote printer bindings before making a
connection with this entry. Typically, you set this flag on phone-book
entries for public networks to remind users to break connections to
their private network before connecting to a public network.

Windows 2000: If this flag is set, an Extensible Authentication
Protocol (EAP) must be supported for authentication.

Windows 2000: If this flag is set, Password Authentication Protocol
must be supported for authentication.

Windows 2000: If this flag is set, Shiva's Password Authentication
Protocol must be supported for authentication.

Windows 2000: If this flag is set, the connection will use custom
encryption.

Windows 2000: If this flag is set, the remote access dialer displays
the phone number to be dialed. .

Windows 2000: If this flag is set, phone numbers are shared.

Windows 2000: If this flag is set, the remote access dialer displays
the user's name and password prior to dialing.

Windows 2000: If this flag is set, the remote access dialer displays
the domain name prior to dialing.

Windows 2000: If this flag is set, the remote access dialer displays
its progress in establishing the connection.

Chapter 8 RAS Structures 229

Flag Description

RASEO_
RequireCHAP

Windows 2000: If this flag is set, the Challenge Handshake
Authentication Protocol must be supported for authentication.

RASEO_
RequireMsCHAP

Windows 2000: If this flag is set, the Microsoft Challenge
Handshake Authentication Protocol must be supported for
authentication.

RASEO_
RequireMsCHAP2

Windows 2000: If this flag is set, version 2 of the Microsoft
Challenge Handshake Authentication Protocol must be supported
for authentication.

RASEO_
RequireW95MSCHAP

Windows 2000: If this flag is set, MS-CHAP must send the
Lan Manager-hashed password.

RASEO_
Custom Script

Windows 2000: If this flag is set, RAS will invoke a custom-scripting
DLL after establishing the connection to the server.

dwCountrylD
Specifies the T API country identifier. Use the RasGetCountrylnfo function to
enumerate country identifiers. This member is ignored unless the dwfOptions
member specifies the RASEO_UseCountryAndAreaCodes flag.

dwCountryCode
Specifies the country code portion of the phone number. The country code must
correspond to the country identifier specified by dwCountrylD. If dwCountryCode is
zero, the country code is based on the country identifier specified by dwCountrylD.
This member is ignored unless dwfOptions specifies the
RASEO _ UseCountry AndAreaCodes flag.

szAreaCode
Specifies the area code as a null-terminated string. If the dialing location does not
have an area code, specify an empty string (''''). Do not include parentheses or other
delimiters in the area code string. (For example, "206" is a valid area code; "(206)" is
not. This member is ignored unless the dwfOptions member specifies the
RASEO_UseCountryAndAreaCodes flag.

szLocalPhoneNumber
Specifies a null-terminated string containing a telephone number. The way RAS uses
this string depends on whether the dwfOptions member specifies the
RASEO_UseCountryAndAreaCodes flag. If the flag is set, RAS combines·
szLocalPhoneNumber with the country and area codes specified by the
dwCountrylD, dwCountryCode , and szAreaCode members. If the flag is not set,
RAS uses the szLocalPhoneNumber string as the entire phone number.

dw AlternateOffset
Specifies the offset, in bytes, from the beginning of the structure to a list of
consecutive null-terminated strings. The last string is terminated by two consecutive
null characters. The strings are alternate phone numbers that RAS dials in the order
listed if the primary number (see szLocalPhoneNumber) fails to connect. The
alternate phone number strings are ANSI or Unicode, depending on whether you use
the ANSI or Unicode version of the structure.

230 Volume 4 Remote Access Services

ipaddr
Specifies the IP address to be used while this connection is active. This member is
ignored unless dwfOptions specifies the RASEO_SpecificlpAddr flag.

ipaddrDns
Specifies the IP address of the DNS server to be used while this connection is active.
This member is ignored unless dwfOptions specifies the
RASEO_SpecificNameServers flag.

ipaddrDnsAlt
Specifies the IP address of a secondary or backup DNS server to be used while this
connection is active. This member is ignored unless dwfOptions specifies the
RASEO_SpecificNameServers flag.

ipaddrWins
Specifies the IP address of the WINS server to be used while this connection is
active. This member is ignored unless dwfOptions specifies the
RASEO_SpecificNameServers flag.

ipaddrWinsAlt
Specifies the IP address of a secondary WINS server to be used while this connection
is active. This member is ignored unless dwfOptions specifies the
RASEO_SpecificNameServers flag.

dwFrameSize
Specifies the network protocol frame size. The value should be either 1006 or 1500.
This member is ignored unless dwFramingProtocol specifies the RASFP _Slip flag.

dwfNetProtocols
Specifies the network protocols to negotiate. This member can be a combination of
the following flags.

Flag Description

RASNP _NetBEUI

RASNP_lpx

RASNP_lp

dwFramingProtocol

Negotiate the NetBEUI protocol.

Negotiate the IPX protocol.

Negotiate the TCP/IP protocol.

Specifies the framing protocol used by the server. PPP is the emerging standard.
SLIP is used mainly in UNIX environments. This member can be one of the following
flags.

Flag Description

RASFP _Ppp

RASFP_Slip

RASFP_Ras

Point-to-Point Protocol (PPP)

Serial Line Internet Protocol (SLIP)

Asynchronous NetBEUI, Microsoft proprietary protocol
implemented in Windows NT 3.1 and Windows for
Workgroups 3.11

Chapter 8 RAS Structures 231

To use Compressed SLIP, set the RASFP _Slip flag and set the
RASEO_lpHeaderCompression flag in the dwfOptions member.

Windows 2000 or later: The RASFP _Ras flag is no longer supported. As a result,
Windows 2000 and later computers will not be able to connect to Lan Manager,
Windows for Workgroups 3.11, or Windows NT 3.1 servers. However, these earlier
platforms will continue to be able to connect to Windows 2000 and later servers.

szScript
Specifies a null-terminated string containing the name of the script file. The file name
should be a full path.

Windows NT/2000: To indicate a Windows NTIWindows 2000 SWITCH.INF script
name, set the first character of the name to "[".

szAutodial DII
Specifies a null-terminated string containing the full path and file name of the
Dynamic-Link Library (DLL) for the customized AutoDial handler. If szAutodialDIl
contains an empty string ('m), RAS uses the default dialing user interface and the
szAutodialFunc member is ignored.

szAutodialFunc
Specifies a null-terminated string containing the exported name of the RASADFunc
function for the customized AutoDial handler. An AutoDial DLL must provide both
ANSI and Unicode versions of the RASADFunc handler. However, do not include the
"A" or "W" suffix in the name specified by szAutodialFunc.

szDeviceType
Specifies a null-terminated string indicating the RAS device type referenced by
szDeviceName. This member can be one of the following string constants.

String Description

RASDT _Modem

RASDT_lsdn

RASDT_X25

RASDT_Vpn

RASDT_Pad

RASDT _Generic

RASDT _Serial

RASDT _Frame Relay

RASDT_Atm

RASDT _Sonet

RASDT_SW56

A modem accessed through a COM port.

An ISDN card with corresponding NDISWAN driver
installed.

An X.25 card with corresponding NDISWAN driver installed.

Windows 2000: A virtual private network connection.

Windows 2000: A Packet Assembler/Disassembler.

Windows 2000: Generic

Windows 2000: Direct serial connection through a
serial port.

Windows 2000: Frame Relay

Windows 2000: Asynchronous Transfer Mode

Windows 2000: Sonet

Windows 2000: Switched 56K Access

(continued)

232 Volume 4 Remote Access Services

(continued)

String Description

Windows 2000: Infrared Data Association (IrDA) compliant
device.

Windows 2000: Direct parallel connection through a
parallel port.

Windows 95: The RASDT _ Vpn device type is supported on Windows 95 only if
Microsoft Dial-Up Networking Version 1.2 is installed. The RASDT _X25 and
RASDT _Pad device types are not supported on Windows 95.

Windows 98: The RASDT _ Vpn device type is supported on Windows 98. However,
the RASDT _X25 and RASDT _Pad device types are not currently supported on
Windows 98.

szDeviceName
Contains a null-terminated string containing the name of a T API device to use with
this phone-book entry, for example, "XYZ Corp 28800 External". To enumerate all
available RAS-capable devices, use the RasEnumDevices function.

szX25PadType
Contains a null-terminated string that identifies the X.25 PAD type. Set this member to
"" unless the entry should dial using an X.25 PAD.

Windows NT/2000: Under Windows NTlWindows 2000, the szX25PadType string
maps to a section name in PAD.INF.

szX25Address
Contains a null-terminated string that identifies the X.25 address to connect to. Set
this member to '''' unless the entry should dial using an X.25 PAD or native X.25
device.

szX25Facilities
Contains a null-terminated string that specifies the facilities to request from the X.25
host at connection. This member is ignored if szX25Address is an empty string ("").

szX25UserData
Contains a null-terminated string that specifies additional connection information
supplied to the X.25 host at connection. This member is ignored if szX25Address is
an empty string ("").

dwChannels;
dwReserved1

Reserved; must be zero.

dwReserved2
Reserved; must be zero.

dwSubEntries
Specifies the number of multi link subentries associated with this entry. When calling
RasSetEntryProperties, set this member to zero. To add subentries to a phone-book
entry, use the RasSetSubEntryProperties function.

Chapter 8 RAS Structures . 233

dwDialMode
Specifies whether RAS should dial all of this entry's multilink subentries when the
entry is first connected. This member can be one of the following values.

Value Meaning

RASEDM_DiaIAIl Dial all subentries initially.

RASEDM_DiaIAsNeeded Adjust the number of subentries as bandwidth is
needed. RAS uses the dwDialExtraPercent,
dwDialExtraSampleSeconds,
dwDialHangUpExtraPercent, and
dwHangUpExtraSampleSeconds members to
determine when to dial or disconnect a subentry.

Windows 2000 and later: In order for RAS to dial all subentries, dwDialMode must
be set to RASEDM_DiaIAIl and the dwSubEntry member of RASDIALPARAMS must
be set to zero.

dwDialExtraPercent
Windows 2000 or later: Specifies a percent of the total bandwidth available from the
currently connected subentries. RAS dials an additional subentry when the total
bandwidth used exceeds dwDialExtraPercent percent of the available bandwidth for
at least dwDialExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the
RASEDM_DiaIAsNeeded flag.

dwDialExtraSampleSeconds
Windows 2000 or later: Specifies the number of seconds that current bandwidth
usage must exceed the threshold specified by dwDialExtraPercent before RAS dials
an additional subentry.

This member is ignored unless the dwDialMode member specifies the
RASEDM_DiaIAsNeeded flag.

dwHangUpExtraPercent
Windows 2000 or later: Specifies a percent of the total bandwidth available from the
currently connected subentries. RAS terminates (hangs up) an existing subentry
connection when total. bandwidth used is less than dwHangUpExtraPercent percent
of the available bandwidth for at least dwHangUpExtraSampleSeconds seconds.

This member is ignored unless the dwDialMode member specifies the
RASEDM_DiaIAsNeeded flag.

dwHangUpExtraSampleSeconds
Windows 2000 or later: Specifies the number of seconds that current bandwidth
usage must be less than the threshold specified by dwHangUpExtraPercent before
RAS terminates an existing subentry connection.

This member is ignored unless the dwDialMode member specifies the
RASEDM_DiaIAsNeeded flag.

234 Volume 4 Remote Access Serifices

dwldleDisconnectSeconds
Specifies the number of seconds after which the connection is terminated due to
inactivity. Note that unless the idle time out is disabled, the entire connection is
terminated if the connection is idle for the specified interval. This member can specify
a number of seconds, or one of the following values.

Value Meaning

RASIDS_Disabled

RASIDS_UseGlobaiValue

dwType

There is no idle time out for this connection.

Use the user preference value as the default.

Windows 2000: The type of phone-book entry. This member can be one of the
following types.

Type Description

RASET _Phone

RASET_Vpn

RASET _Direct

RASET _Internet

dwEncryptionType

Phone line, for example, modem, ISDN, X.25.

Virtual Private Network

Direct serial or parallel connection

Internet Connection Services (ICS)

Windows 2000: The type of encryption to use for Microsoft Point to Point Encryption
(MPPE) with the connection. This member can be one of the following values.

Value

ET_40Bit

ET_12BBit

ET_None

ET_Require

ET _RequireMax

ET _Optional

Meaning

Require encryption

Require strong encryption

No encryption

Require encryption

Require maximum-strength encryption.

Do encryption it possible. No encryption is okay.

The value of dwEncryptionType does not affect how passwords are encrypted.
Whether passwords are encrypted and how passwords are encrypted is determined
by the authentication protocol, e.g. PAP, MS-CHAP, EAP.

dwCustomAuthKey
Windows 2000: This member is used for Extensible Authentication Protocol (EAP).
This member contains the authentication key provided to the EAP vendor.

guidld
Windows 2000: The GUID (Globally Unique IDentifier) that represents this phone­
book entry. This member is not settable.

Chapter 8 RAS Structures 235

szCustomDiaIDII[MAlCPATH]
Windows 2000: A null-terminated string containing the full path and file name for the
dynamic link library (DLL) that implements the custom-dialing functions. This DLL
should export Unicode versions of functions named RasCustomDial,
RasCustomHangup, RasCustomEntryDlg, and RasCustomDialDlg. These
functions should have prototypes RasCuStomDialFn and RasCustomHangUpFn as
defined in Ras.h, and RasCustomDialDlgFn and RasCustomEntryDlgFn as defined in
Rasdlg.h.

If szCustomDialDIl contains an empty string, RAS uses the default system dialer.

dwVpnStrategy
Windows 2000: The VPN strategy to use when dialing a VPN connection. This
member can have one of the following values.

Value Meaning

VS_~ptpOnly

VS_PptpFirst

VS_L2tpOnly

VS_L2tpFirst

Remarks

With this strategy, RAS dials PPTP first. If PPTP fails, L2TP is
attempted. Whichever protocol succeeds is tried first in subsequent
dialing for this entry.

RAS will dial only PPTP.

RAS will always dial PPTP first.

RAS will dial only L-2TP.

RAS will always dial L2TP first.

Unless the operating system is Windows 2000 or later, theRAS Connection Manager
ignores the dwDialMode, dwDialExtraPercent, dwDialExttaSampleSeconds,
dwHangUpExtraPercent, and dwHangUpExtraSampleSeconds members. RAS uses
these members for the Bandwidth Allocation Protocol (BAP). BAP is available only on
Windows 2000 or later versions.

Windows 2000 and later: If the RAS client is using Bandwidth Allocation Protocol (BAP)
with server callback, the registry value BapListenTimeout specifies the length of time,
in seconds, the client will wait for the server to callback. This value is located beneath
the registry key:

HKEY _LOCAL_MACH I N E\SYSTEM\CurrentControISet\Services\RasMan\ppp

BapListenTimeout is of type REG_DWORD. BapListenTimeout can be any number in
the range 0 to OxFFFFFFFF.lt has a default value of 30.

Windows 2000 and later: If dwEncryptionType is ET _None, but
RASEO_RequireDataEncryption is specified, it is as though dwEncryptionType was
ET _Require.

236 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RASADFunc, RasGetCountrylnfo, RasGetEntryProperties, RasSetEntryProperties,
RasSetSubEntryProperties

RASENTRYDLG
The RASENTRYDLG structure is used in the RasEntryDlg function to specify additional
input and output parameters.

Members
dwSize

Specifies the size of this structure, in bytes. Before calling RasEntryDlg, set this
member to sizeof(RASENTRYDLG) to indicate the version of the structure. If dwSize
is not a valid size, RasEntryDlg fails and sets the dwError member to
ERROR_INVALID_SIZE.

hwndOwner
Specifies the window that owns the modal RasEntryDlg dialog box. This member can
be any valid window handle, or it can be NULL if the dialog box has no owner.

dwFlags
A set of bit flags that indicate the options enabled for the dialog box. This parameter
can be a combination of the RASEDFLAG_PositionDlg flag and one of the other flags
listed following to indicate whether the RasEntryDlg function is creating, copying, or
editing a phone-book entry.

Value

RASEDFLAG_PositionDlg

RASEDFLAG_NewEntry

RASEDFLAG_CloneEntry

RASEDFLAG_NoRename

xDlg

Chapter 8 RAS Structures 237

Meaning

Causes RasEntryDlg to use the values specified by
the xDlg and yDlg members to position the dialog
box. If this flag is not set, the dialog box is centered on
the owner window, unless hwndOwner is NULL, in
which case, the dialog box is centered on the screen.

Causes RasEntryDlg to display a wizard for creating
a new phone-book entry.

Causes RasEntryDlg to create a new entry by
copying the properties of an existing entry. The
function displays a property sheet containing the
properties associated with the phone-book entry
specified by the /pszEntry parameter of RasEntryDlg.
The user can edit the properties and specify a name
for the new entry.

Causes RasEntryDlg to display a property sheet for
editing the properties of the phone-book entry
specified by the /pszEntry parameter of RasEntryDlg.
The user can change the properties of the entry but
not its name.

Specifies the horizontal screen coordinate of the upper-left corner of the dialog box.
This value is used only if the RASEDFLAG_PositionDlg flag is set.

yDlg
Specifies the vertical screen coordinate of the upper-left corner of the dialog box. This
value is used only if the RASEDFLAG_PositionDlg flag is set.

szEntry
On exit, szEntry is set to the name of the phone-book entry that was edited or
created.

dwError
The RasEntryDlg function sets this member to a system error code or RAS error
code if an error occurs. If no error occurs, the function sets dwError to zero. This
value is ignored on input.

reserved
Reserved; must be zero.

reserved2
Reserved; must be zero.

238 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasEntryDlg

RASENTRYNAME
The RASENTRYNAME structure contains an entry name from a remote access phone
book. The RasEnumEntries function returns an array of these structures.

Members
dwSize

Specifies the structure size, in bytes. Before using RASENTRYNAME in a function
call, set this member to sizeof(RASENTRYNAME).

szEntryName
Specifies a string containing the name of a remote access phone-book entry.

dwFlags
Windows 2000: Specifies whether the entry is in the system phone book in the
AIIUsers profile, or in the user's profile phone book. This member should be one of the
following values.

Value Meaning

szPhonebookPath

The phone book is a system phone book and is in the
AIIUsers profile.

The phone book is in the user's profile.

Windows 2000: Specifies the full path and file name of the Phone-Book (PBK) file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Chapter 8 RAS Structures 239

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasEnumEntries

RASIPADDR
The RASIPADDR structure contains an IP address. The RASENTRY structure uses this
structure to specify the IP addresses of various servers associated with an entry in a
RAS phone book.

Members
a, b, c, and d

These members specify the value of the corresponding location in the "a.b.c.d" IP
address.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RASENTRY

240 Volume 4 Remote Access Services

RASMONITORDLG
The RASMONITORDLG structure is used in the RasMonitorDlg function to specify
additional input and output parameters.

Members
dwSize

Specifies the size of this structure, in bytes. Before calling RasMonitorDlg, set this
member to sizeof(RASMONITORDLG) to indicate the version of the structure. If
dwSize is not a valid size, RasMonitorDlg fails and sets the dwError member to
ERROR_INVALID_SIZE.

hwndOwner
Specifies the window that owns the modal RasMonitorDlg property sheet. This
member can be any valid window handle, or it can be NULL if the property sheet has
no owner.

dwFlags
A bit flag that indicates the options that are enabled for the property sheet. You can
specify the following value.

Value

RASMDFLAG_PositionDlg

Meaning

Causes RasMonitorDlg to use the values specified
by the xDlg and yDlg members to position the
dialog box. If this flag is not set, the dialog box is
centered on the owner window,unless hwndOwner
is NULL, in which case, the dialog box is centered
on the screen.

Chapter 8 RAS Structures 241

dwStartPage
A set of bit flags that indicate the initial page of the property sheet to display on top.
You can specify one of the following values.

Value Meaning

RASMDPAGE_Status

RASMDPAGE_Summa~

RASMDPAG E_Preferences

xDlg

Display the Status page on top. This is the default.

Display the Summary page on top.

Display the Preferences page on top.

Specifies the horizontal screen coordinate of the upper-left corner of the property
sheet. This value is used only if the RASMDFLAG_PositionDlg flag is set.

yDlg
Specifies the vertical screen coordinate of the upper-left corner of the property sheet.
This value is used only if the RASMDFLAG_PositionDlg flag is set.

dwError
The RasMonitorDlg function sets this member to a system error code or RAS error
code if an error occurs. If no error occurs, the function sets dwError to zero. This
value is ignored on input.

reserved
Reserved; must be zero.

reserved2
Reserved; must be zero.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.

Remote Access Service (RAS) Overview, Remote Access Service Structures, .
RasMonitorDlg

RASNOUSER
The RASNOUSER structure is used with the RasPBDlgFunc callback function to
specify authentication credentials and other information. This structure enables dial-up
networking operations that begin before a user has logged on. It is provided to support
the WinLogon application, and is not typically used by other applications.

242 Volume 4 Remote Access Services

Members
dwSize

Specifies the size of this structure, in bytes. This member indicates the version of the
structure.

dwFlags
Reserved; must be zero.

dwTimeoutMs
Specifies the time, in milliseconds, before the RasPhonebookDlg dialog box closes
and returns to the caller as if the user had pressed the Close button. This feature is
required for code that displays a window during WinLogon. If the user leaves his or
her terminal for some time, the dialog box closes and Win Logon reverts to the
CTRL+AL T +DEL prompt.

szUserName
Specifies a null-terminated string that contains the name of the user. This string is
used to authenticate the user's right to access the remote access server.

szPassword
Specifies a null-terminated string that contains the user's password. This string is
used to authenticate the user's right to access the remote access server.

szDomain
Specifies a null-terminated string that contains the domain on which authentication is
to occur. An empty string ("") specifies the domain in which the remote access server
is a member.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasPBDlgFunc, RasPhonebookDlg

Chapter 8 RAS Structures 243

RASPBDLG
The RASPBDLG structure is used with the RasPhonebookDlg function to specify
additional input and output parameters.

Members
dwSize

Specifies the size of this structure, in bytes. Before calling RasPhonebookDlg, set
this member to sizeof(RASPBDLG) to indicate the version of the structure. If dwSize
is not a valid size, RasPhonebookDlg fails and sets the dwError member to
ERROR_INVALI D _SIZE.

hwndOwner
Specifies the window that owns the modal RasPhonebookDlg dialog box. This
member can be any valid window handle, or it can be NULL if the dialog box has no
owner.

dwFlags
A set of bit flags that indicate the options enabled for the dialog box. This parameter
can be a combination of the following values.

Value Meaning

RASPBDFLAG
Position Dig

RASPBDFLAG_
ForceCloseOn Dial

Causes RasPhonebookDlg to use the values specified by the
xDlg and yDlg members to position the dialog box. If this flag
is not set, the dialog box is centered on the owner window,
unless hwndOwner is NULL, in which case, the dialog box is
centered on the screen.

Turns on the close-on-dial option, overriding the user's
preference. This option is appropriate with features such as
RAS AutoDial where the user's goal is to make a connection
immediately.

(continued)

244 Volume 4 Remote Access Services

(continued)

Value

RASPBDFLAG_
NoUser

RASPBDFLAG_
Update Defaults

xDlg

Meaning

Causes the RasPBDlgFunc callback function specified by the
pCaliback member to receive a RASPBDEVENT _NoUser
notification when the dialog box is starting up. This flag is for
use in situations in which there is no logged-on user, as in the
WinLogon application. Typically, applications should not use
this flag.

Causes the default window position to be saved on exit. This
flag is used primarily by RASPHONEEXE and should not be
used by typical applications.

Specifies the horizontal screen coordinate of the upper-left corner of the dialog box.
This value is used only if the RASPBDFLAG_PositionDlg flag is set.

yDlg
Specifies the vertical screen coordinate of the upper-left corner of the dialog box. This
value is used only if the RASPBDFLAG_PositionDlg flag is set.

dwCalibackld
Specifies an application-defined value that is passed to the callback function specified
by pCaliback. You can use dwCalibackld to pass a pOinter to application-specific
context information.

pCaliback
Pointer to a RasPBDlgFunc callback function that receives notifications of user
activity while the dialog box is open. This member can be NULL if you do not want
notifications.

dwError
The RasPhonebookDlg function sets this member to a system error code or RAS
error code if an error occurs. If no error occurs, the function sets dwError to zero.
This value is ignored on input.

reserved
Reserved; must be zero.

reserved2
Reserved; must be zero.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasdlg.h.
Unicode: Declared as Unicode and ANSI structures.

Chapter 8 RAS Structures 245

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasPBDlgFunc, RasPhonebookDlg

RASPPPCCP
The RASPPPCCP structure contains information that describes the results of a
Compression Control Protocol (CCP) negotiation.

Members
dwSize

Size of the RASPPPCCP structure. Ensure that this member contains the size of the
structure before using the structure in a function call.

dwEi'ror
If the negotiation was unsuccessful, dwError contains the error that occurred.

dwCompressionAlgorithm
The compression algorithm in use by the client. The following table shows the
possible values for this member.

Value

RASCCPCA_MPPC

RASCCPCA_STAC

dwOptions

Meaning

Microsoft Point to Point Compression (MPPC)
Protocol (RFC 2118)

STAC option 4 (RFC 1974)

Specifies the compression options on the client. The following options are supported.

Option Meaning

RASCCPO_Compression

RASCCPO_HistoryLess

Compression without encryption.

Microsoft Point to Point Encryption (MPPE) in
stateless mode. The session key is changed after
every packet. This mode improves performance on
high latency networks, or networks that experience
significant packet loss.

(continued)

246 Volume 4 Remote Access Services

(continued)

Option Meaning

RASCCPO_Encryption56bit MPPE using 56-bit keys.

RASCCPO_Encryption40bit MPPE using 40-bit keys.

RASCCPO_Encryption128bit MPPE using 128-bit keys.

The last three options are used when a connection is made over Layer 2 Tunneling
Protocol (L2TP), and the connection uses IPSec encryption.

dwServerCompressionAlgorithm
The compression algorithm in use by the server. The following table shows the
possible values for this member.

Value Meaning

RASCCPCA_MPPC

RASCCPCA_STAC

dwServerOptions

Microsoft Point to Point Compression (MPPC)
Protocol

ST AC option 4

Specifies the compression options on the server. The following options are supported.

Option Meaning

RASCCPO_Compression

RASCCPO_HistoryLess

RASCCPO _Encryption56bit

RASCCPO_Encryption40bit

RASCCPO_Encryption 128bit

Compression without encryption.

Microsoft Point to Point Encryption (MPPE) in
stateless mode. The session key is changed after
every packet. This mode improves performance on
high latency networks, or networks that experience
significant packet loss.

MPPE using 56-bit keys.

MPPE using 56-bit keys.

MPPE using 56-bit keys.

The last three options are used when a connection is made over Layer 2 Tunneling
Protocol (L2TP), and the connection uses IPSec encryption.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetProjectionlnfo, RASPROJECTION, RASPPPLCP

Chapter 8 RAS Structures 247

RASPPPIP
The RASPPPIP structure contains the result of a PPP IP prOjection operation.

The RasGetProjectionlnfo function returns a RASPPPIP data structure when its
rasprojection parameter has the value RASP _Ppplp.

Members
dwSize

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionlnfo
function, set this member to indicate the version of the RASPPP.IP structure that you
are using. For information about earlier versions of this structure, see the following
Remarks section.

dwError
Contains the result of the PPP control protocol negotiation. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation, the error that prevented the projection from
completing successfully.

szlpAddress
Contains a zero-terminated string that is the clienfs IP address on the RAS
.connection. This address string has the form a.b.c.d; for example, "11.101..237.71".

szServerlpAddress
Contains a null-terminated string that is the IP address of the remote PPP peer (that
is, the server's IP address). This stringis in "a.b.c.d" form, PPP does not require that
servers provide this address, but Windows.NTlWindows 2000.serverswillconsistently
return the address anyway. Other PPP vendors may not provide the address. If the
address is not available, this member returns an empty string, "". .

dwOptions
Windows 2000 and later: Specifies IPCP options for the local computer. Currently,
the only option is RASIPO_ VJ. This option indicatesthatlP datagrams sent by the
local computer are compressed using Van Jacobson compreSSion.

248 Volume 4 Remote Access Services

dwServerOptions
Windows 2000 and later: Specifies IPCP options for the remote peer. Currently, the
only option is RASIPO_ VJ. This option indicates that IP datagrams sent by the remote
peer (that is, received by the local computer) are compressed using Van Jacobson
compression.

Remarks
The szServerlpAddress member was added to the RASPPPIP structure beginning with
Windows NT 3.51 and the initial release of Windows 95. Beginning with these systems,
RasGetProjectionlnfo will support both the current form of the structure and the old
form without the szServerlpAddress member. Use the dwSize member to indicate
which version you are using.

For Windows NT 4.0 and earlier versions, RasGetProjectionlnfo will return
ERROR_INVALID_SIZE ifdwSize specifies the current structure size. To retrieve PPP
IP information from older systems, dwSize must specify the size of the old structure
without the szServerlpAddress member.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetProjectionlnfo, RASPROJECTION

RASPPPLCP
The RASPPPLCP structure contains information that describes the results of a PPP Link
Control Protocol (LCP)/multi-link negotiation.

Members
dwSize

Chapter 8 RAS Structures 249

Size of the RASPPPLCP structure. Ensure that this member contains the size of the
structure before using the structure in a function call.

fBundled
If this member is TRUE, the connection is composed of multiple links. Otherwise, this
member is FALSE.

dwError
If the negotiation was unsuccessful, dwError contains the error that occurred.

dwAuthenticationProtocol
The authentication protocol used to authenticate the client. This member can be one
of the following values.

Value Meaning

RASLCPAP_PAP

RASLCPAP_SPAP

RASLCPAP_CHAP

RASLCPAP_EAP

dw AuthenticationData

Password Authentication Protocol

Shiva Password Authentication Protocol

Challenge Handshake Authentication Protocol

Extensible Authentication Protocol

Provides additional information about the authentication protocol specified by the
dwAuthenticationProtocol member. This member can be one of the following
values.

Value Meaning

RASLCPAD_CHAP_MD5

RASLCPAD_CHAP~MS

RASLCPAD_CHAP_MSV2

dwEapTypeld

MD5CHAP

Microsoft CHAP

Microsoft CHAP version 2

Provides the type ID of the extensible authentication protocol (EAP) used to
authenticate the local computer. The value of this member is valid only if
dwAuthenticationProtocol is RASLCPAPP _EAP.

250 Volume 4 Remote Access Services

dwServerAuthenticationProtocol
The authentication protocol used to authenticate the server. See the
dwAuthenticationProtocol member for a list of possible values.

dwServerAuthenticationData
Provides additional information about the authentication protocol specified by
dwServerAuthenticationProtocol. See the dwAuthenticationData member for a
list of possible values.

dwServerEapTypeld
Provides the type ID of the extensible authentication protocol (EAP) used to
authenticate the remote computer. The value of this member is valid only if
dwServerAuthenticationProtocol is RASLCPAP _EAP.

fMultilink
If this member is TRUE, the connection supports multi-link. Otherwise, this member is
FALSE.

dwTerminateReason
This member always has a value of zero.

dwServerTerminateReason
This member always has a value of zero.

szReplyMessage[RAS_MaxReplyMessage]
Pointer to a string that contains the message, if any, from the authentication protocol
success/failure packet.

dwOptions
Provides additional LCP options for the local computer. This member is a combination
of the following flags.

Flag Meaning

RASLCPO_PFC Protocol Field Compression (see RFC 1172)

RASLCPO_ACFC Address and Control Field Compression (see RFC 1172)

RASLCPO_SSHF Short Sequence Number Header Format (see RFC 1990)

RASLCPO_DES_56 DES 56-bit encryption

RASLCPO_3_DES Triple DES Encryption

dwServerOptions
Provides addition LCP options for the remote computer. This member is a
combination of the following flags.

Flag Meaning

RASLCPO_PFC Protocol Field Compression (see RFC 1172)

RASLCPO~CFC Address and Control Field Compression (see RFC 1172)

RASLCPO_SSHF Short Sequence Number Header Format (see RFC 1990)

RASLCPO_DES_56 DES 56-bit encryption

RASLCPO_3_DES Triple DES Encryption

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Chapter 8 RAS Structures 251

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetProjectionlnfo, RASPROJECTION, RASPPPCCP

RASPPPIPX
The RASPPPIPX structure contains the result of a PPP IPX projection operation.

The RasGetProjectionlnfo function returns a RASPPPIPX data structure when its
rasprojectionparameter has the value RASP _Ppplpx.

Members
dwSize

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionlnfo
function, set this member to sizeof(RASPPPIPX). The function can then determine
the version of the RASPPPIPX data structure that the caller of RasGetProjectionlnfo
is expecting. This allows backWards compatibility for compiled applications if there are
future enhancements to the data structure.

dwError
Contains the result of the PPP control protocol negoti:aiion. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation, fhe error that prevented the projection from
completing successfully.

szlpxAddress
Contains a zero-terminated string that is the client's IPX address on the RAS
connection. This address string has the form net. node; for example,
"1234ABCD.12AB34CD56EF".

252 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetProjectlonlnfo, RASPROJECTION

RASPPPNBF
The RASPPPNBF structure contains the result of a PPP NetBEUI Framer (NBF)
projection operation.

The RasGetProjectionlnfo function returns a RASPPPNBF data structure when its
rasprojection parameter has the value RASP _PppNbf.

Members
dwSize

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionlnfo
function, set this member to sizeof(RASPPPNBF). The function can then determine
the version of the RASPPPNBF data structure that the caller of
RasGetProjectionlnfo is expecting. This allows backwards compatibility for compiled
applications if there are future enhancements to the data structure.

dwError
Contains the result of the PPP control protocol negotiation. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation, the error that prevented the projection from
completing successfully.

Chapter 8 RAS Structures 253

dwNetBiosError
If dwError has the value ERROR_SERVER_NOT _RESPONDING or
ERROR_NETBIOS_ERROR, the dwNetBiosError field contains the NetBIOS error
that occurred. For other values of dwError, this field contains zero.

Windows 95: This member is undefined.

szNetBiosError
If dwError has the value ERROR_NAME_EXISTS_ON_NET, the szNetBiosError
field contains a zero-terminated string that is the NetBIOS name that caused the
conflict. For other values of dwError, this field contains the null string.

szWorkStationName
Contains a zero-terminated string that is the local workstation's computer name. This
unique computer name is the closest NetBIOS equivalent to a client's NetBEUI
address on a remote access connection.

bLana
Specifies the NetBIOS network adapter identifier, or LANA, on which the remote
access connection was established. This member contains the value OxFF if a
connection was not established.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetProjectionlnfo, RASPROJECTION

RASSLIP
The RASSLIP structure contains the results of at he Serial Line Internet Protocol (SLIP)
projection operation.

254 Volume4 Remote Access Services

Members
dwSize

Specifies the size, in bytes, of the RASSLIP structure. Before calling the
RasGetProjectionlnfo function, set dwSize to s i zeaf (RASS LI P) to identify the version
of the structure.

dwError
Specifies whether SLIP is configured. If dwError is zero, SLIP framing is configured.
Otherwise, dwError is ERROR_PROTOCOL_NOT _CONFIGURED.

szlpAddress
A nUll-terminated string that contains the client's IP address on the RAS connection.
This address string has the form a.b.c.d; for example, "11.101.237.71".

Remarks
If the RASENTRY structure for the phone-book entry used in a RAS connection specifies
SLIP framing, you can call RasGetProjectionlnfo with a RASPROJECTION of
RASP_Slip to determine whether SLIP framing was successfully configured.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RASENTRY, RasGetProjectionlnfo, RASPROJECTION

RASSUBENTRY
The RASSUBENTRY structure. contains information about a subentry of a RAS phone­
book entry. The RasSetSubEntryProperties and RasGetSubEntryProperties
functions use this structure to set and retrieve the properties of a subentry.

Members
dwSize

Chapter 8 RAS Structures 255

Specifies the size, in bytes, of the RASSUBENTRY structure. Before calling
RasSetSubEntryProperties or RasGetSubEntryProperties, set dwSize to
si zeof(RASSUBENTRY) to identify the version of the structure.

dwfFlags
Currently unused. The RasSetSubEntryProperties function sets this member to
zero. The RasGetSubEntryProperties function ignores this member.

szDeviceType
Specifies a null-terminated string indicating the RAS device type referenced by
szDeviceName. This member can be one of the following string constants.

String Description

RASDT _Modem

RASDT_lsdn

RASDT_X25

RASDT_Vpn

RASDT_Pad

A modem accessed through a COM port.

An ISDN card with the corresponding NDISWAN driver installed.

An X.25 card with the corresponding NDISWAN driver installed.

A virtual private network connection.

A Packet Assembler/Disassembler

Windows 95: The RASDT _ Vpn device type is supported on Windows 95 only if
Microsoft Dial-Up Networking Version 1.2 is installed. The RASDT _X25 and
RASDT _Pad device types are not supported on Windows 95.

Windows 98: The RASDT _ Vpn device type is supported on Windows 98. However,
the RASDT _X25 and RASDT _Pad device types are not currently supported on
Windows 98

szDeviceName
Specifies a null-terminated string containing the name of the T API device to use with
this phone-book entry. To enumerate all available RAS-capable devices, use the
RasEnumDevices function.

szLocalPhoneNumber
Specifies a null-terminated string containing a telephone number. The way RAS uses
this string depends on whether the RASEO_UseCountryAndAreaCodes flag is set in
the dwfOptions member of the RASENTRY structure for this phone-book entry. If the
flag is set, RAS combines szLocalPhoneNumber with the country and area codes
specified in the RASENTRY structure. If the flag is not set, RAS uses the
szLocalPhoneNumber string as the entire phone number.

256 Volume 4 Remote Access Services

dw AlternateOffset
Specifies the offset, in bytes, from the beginning of the structure to a list of
consecutive null-terminated strings. The last string is terminated by two consecutive
null characters. The strings are alternate phone numbers that RAS dials in the order
listed if the primary number (see szLocalPhoneNumber) fails to connect. The
alternate phone number strings are ANSI or Unicode, depending on whether you use
the ANSI or Unicode version of the structure.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.
Unicode: Declared as Unicode and ANSI structures.

Remote Access Service (RAS) Overview, Remote Access Service Structures,
RasGetSubEntryProperties, RasSetSubEntryProperties

CHAPTER 9

RAS Message and Enumeration
Types

Remote Access Service Message
Use WM_RASDIALEVENT to implement RAS functionality.

WM_RASDIALEVENT

257

The operating system sends a WM_RASDIALEVENT message to a window procedure
when a change of state event occurs during a RAS connection process, and a window
has been specified to handle notifications of such events by using the notifier parameter
of RasDial.

The two message parameters are equivalent to the parameters of the same names that
are used with RasDialFunc and RasDiaiFunc1 callback functions.

Parameters
rasconnstate

Value of wParam. Equivalent to the rasconnstate parameter of the RasDialFunc and
RasDiaiFunc1 callback functions. Specifies a RASCONNSTATE enumerator value
that indicates the state the RasDial remote access connection process is about to
enter.

dwError
Value of IParam. Equivalent to the dwError parameter of the RasDialFunc and
RasDiaiFunc1 callback functions. A nonzero value indicates the error that has
occurred, or zero if no error has occurred.

RasDial sends this message with dwError set to zero upon entry to each connection
state. If an error occurs within a state, the message is sent again for the state, this
time with a nonzero dwErrorvalue.

258 Volume 4 Remote Access Services

Return Values
If an application processes this message, it should return TRUE.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Messages, RasDial,
RasDialFunc, RasDialFunc1, RASCONNSTATE

Remote Access Service Enumeration Types

RASCONNSTATE
The RASCONNSTATE enumeration type contains values that specify the states that
may occur during a RAS connection operation. If you use the RasDial function to
establish a RAS connection, you can specify a window, or a RasDialFunc,
RasDialFunc1, or RasDiaiFunc2 callback function to receive notification messages that
report the current connection state. You can also use the RasGetConnectStatus
function to get the connection state for a specified connection.

Chapter 9 RAS Message and Enumeration Types 259

The enumerator values are listed here in the general order in which the connection
states occur. However, you shouldnotwrite code/that depends on the order or
occurrence of particular RASCONNSTATE connection states, because this may vary
between platforms.

Enumerator Value

RASCS_OpenPort

RASCS_PortOpened

RASCS_ConnectDevice

RASCS_DeviceConnected

Meaning

The communication port is about to be opened.

The communication port has been opened successfully.

A device is about to be connected. RasGetConnectStatus can
be called to determine the name and type of the device being
connected.

A device has connected successfully. RasGetConnectStatus
can be called to determine the name and type of the device
being connected.

(continued)

260 Volume 4 Remote Access Services

(continued)

Enumerator Value

RASCS_AIIDevicesConnected

RASCS_Authenticate

RASCS_AuthNotify

RASCS_AuthRetry

RASCS_AuthCaliback

Meaning

For a simple modem connection, RASCS_ConnectDevice and
RASCS_DeviceConnected will be called only once. For a dial­
up X.25 PAD connection, the pair will be called first for the
modem, then for the PAD. If a preconnect switch is configured,
the pair will be called for the switch before any other devices
connect. Likewise, the pair will be called for a postconnect
switch after any other devices connect.

Windows 95: Note that Windows 95 does not currently support
multistage connections such as the X.25 PAD connection
described earlier.

All devices in the device chain have successfully connected. At
this pOint, the physical link is established.

The authentication process is starting. Remote access does not
allow the remote client to generate any traffic on the LAN until
authentication has been successfully completed.

Remote access authentication on a Windows NT/
Windows 2000 or Windows 95 server consists of:

• Validating the user name/password on the specified domain.

• Projecting the client onto the LAN. This means that the
remote access server does what is necessary to send and
receive data on the LAN on behalf of the client. For example,
the remote access server might need to add a NetBIOS
name that corresponds to the client's computer name.

• Call-back processing in which the client hangs up and the
server calls back. (The user needs special permissions on
the remote access server for this.)

• Calculating the link speed. This is necessary to correctly set
transport time-outs to match the relatively slow speed of the
remote link.

An authentication event has occurred. If dwError is zero, this
event will be immediately followed by one of the more specific
authentication states following. If dwError is nonzero,
authentication has failed, and the error value indicates why.

The client has requested another validation attempt with a new
user name/password/domain. This state does not occur in
Windows NT version 3.1.

The remote access server has requested a callback number.
This occurs only if the user has "Set By Caller" callback
privilege on the server.

Chapter 9 RAS Message and Enumeration Types 261

Enumerator Value Meaning

RASCS_AuthChangePassword The client has requested to change the password on the
account. This state does not occur in Windows NT version 3.1.

RASCS_AuthProject The projection phase is starting.

RASCS_AuthLinkSpeed The link-speed calculation phase is starting.

RASCS_AuthAck An authentication request is being acknowledged.

RASCS_ReAuthenticate Reauthentication (after callback) is starting.

RASCS_Authenticated The client has successfully completed authentication.

RASCS_PrepareForCaliback The line is about to disconnect in preparation for callback.

RASCS_WaitForModemReset The client is delaying in order to give the modem time to reset
itself in preparation for callback.

RASCS_WaitForCaliback The client is waiting for an incoming call from the remote
access server.

RASCS_Projected This state occurs after the RASCS_AuthProject state. It
indicates that projection result information is available. You can
access the projection result information by calling
RasGetProjectionlnfo.

RASCS_StartAuthentication Windows 95 only: Indicates that user authentication is being
initiated or retried.

RASCS_CalibackComplete Windows 95 only: Indicates that the client has been called
back and isabout to resume authentication.

RASCS_LogonNetwork Windows 95 only: Indicates that the client is logging on to the
network.

RASCS_SubEntryConnected When dialing a multilink phone-book entry, this state indicates
that a subentry has been connected during the dialing process .

. The dwSubEntry parameter of a RasDiaiFunc2 callback
function indicates the index of the subentry. When the final
state of all subentries in the phone-book entry has been
determined, the connection state is RASCS_Connected if one
or more subentries have been connected successfully.

RASCS_SubEntryDisconnected When dialing a multilink phone-book entry, this state indicates
that a subentry has been disconnected during the dialing
. process. The dwSubEntry p~rameter of a RasDiaiFunc2
callback function indicates the index of the subentry.

RASCS_lnteractive This state corresponds to the terminal state supported by
RASPHONE.EXE. This state does not occur in Windows NT
version 3.1 .

RASCS_RetryAuthentication This state corresponds to the retry authentication state
supported by RASPHONE.EXE. This state does not occur in
Windows NT version 3.1.

(continued)

262 Volume 4 Remote Access Services

(continued)

Enumerator Value

RASCS_CalibackSetByCaller

RASCS_PasswordExpired

RASCS_lnvokeEapUI

RASCS_Connected

RASCS_Disconnected

Remarks

Meaning

This state corresponds to the callback state supported by
RASPHONE.EXE. This state does not occur in Windows NT
version 3.1 .

This state corresponds to the change password state supported
by RASPHONE.EXE. This state does not occur in Windows NT
version 3.1 .

An application can use this paused state to bring up a custom
authentication UI. The application should call the
RaslnvokeEapUI function to invoke the custom UI.
RASCS_lnvokeEapUI is a paused state.

Successful connection.

Disconnection or failed connection.

The connection process states are divided into three classes: running states, paused
states, and terminal states.

An application can easily determine the class of a specific state by performing Boolean
bit operations with the RASCS_PAUSED and RASCS_DONE bitmasks. Here are some
examples:

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Enumeration Types,
RasDial, RaslnvokeEapUI, RasGetConnectStatus, RasGetProjectionlnfo,
RASCON NSTATUS

Chapter 9 RAS Message and Enumeration Types 263

RASPROJECTION
The RASPROJECTION enumeration type defines values that specify a particular
authentication protocol or Point-to-Point Protocol (PPP) control protocol. An application
passes a value of this type to the RasGetProjectionlnfo function to specify the protocol
of interest.

Each of the RASPROJECTION enumerators has a corresponding data structure; the
RasGetProjectionlnfo function returns the specified information in a structure of
that type.

Enumerator
Value

RASP_Amb

RASP _PppNbf

RASP _Ppplpx

RASP _Ppplp

RASP _PppCcp

RASP _PppLcp

RASP_Slip

Meaning

Specifies the Authentication Message Block (AMB) authentication protocol.
AMB is a NetBlOS-based protocol used to authenticate with downlevel remote
access servers (all those prior to Windows NT 3.5). The corresponding data
structure is a RASAMB.

Specifies the NetBEUI Framer (NBF) protocol. NBFCP is a PPP network
control protocol used to negotiate the parameters necessary to ship NetBEUI
packets on a WAN link. The corresponding data structure is a RASPPPNBF.

Specifies the Internetwork Packet Exchange (IPX) control protocol. IPXCP is a
PPP network control protocol used to negotiate the parameters necessary to
ship IPX packets on a WAN link. The corresponding data structure is a
RASPPPIPX.

Specifies the Internet Protocol (IP) control protocol. IPCP is a PPP network
control protocol used to negotiate the parameters necessary to ship IP packets
on a WAN link. The corresponding data structure is a RASPPPIP.

Specifies the Compression Control Protocol (CCP). CCP enables computers
using PPP to negotiate compression algorithms and parameters. The
corresponding data structure is RASPPPCCP.

Specifies the Link Control Protocol (LCP). LCP is used by computers to
establish, modify, and terminate PPP connections. The corresponding data
structure is RASPPPlCP.

Specifies the Serial Line Internet Protocol (SLIP). SLIP is a framing protocol
used primarily in UNIX environments.

264 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, Remote Access Service Enumeration Types,
RasGetProjectionlnfo, RASAMB, RASPPPIP, RASPPPIPX, RASPPPNBF

CHAPTER 10

RAS Server Administration
Reference

RAS Server Administration Functions

265

For Microsoft® Windows NT® 4.0, use the following functions to implement RAS Server
Administration functionality. Microsoft® Windows® 95 does not provide RAS server
support.

RasAdminFreeBuffer
The RasAdminFreeBuffer function frees memory that was allocated by RAS on behalf
of the caller.

Parameters
Pointer

Pointer to the buffer to be freed.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

The Pointer parameter is invalid.

There is no extended error information for this function; do not call GetLastError.

Remarks
Use the RasAdminFreeBuffer function to free the buffers allocated by the
RasAdminPortEnum and RasAdminPortGetlnfo functions.

266 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.
Library: Use Rassapi.lib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RasAdminPortEnum, RasAdminPortGetlnfo

RasAdminGetErrorString
The RasAdminGetErrorString function retrieves a message string that corresponds to
a RAS error code returned by one of the RAS server administration (RasAdmin)
functions. These message strings are retrieved from the RASMSG.DLL that is installed
as part of RAS.

Parameters
Resourceld

Specifies an error code returned by one of the RasAdmin functions. This value must
be in the range of error codes from RASBASE to RASBASEEND that are defined in
Raserror.h.

IpszString
Pointer to a buffer that receives the error message corresponding to the specified
error code.

InBufSize
Specifies the size, in characters, of the lpszString buffer. Error messages are typically
80 characters or less; a buffer size of 512 characters is always adequate.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is an error code. This value can be a last error value
set by the LoadLibrary, GlobalAlloc, or LoadString functions; or it can be one of the
following error codes.

Value

Chapter 10 RAS Server Administration Reference 267

Meaning

The Resourceld or IpszString parameters are
invalid.

The size specified by the InBufSize parameter
is too small.

There is no extended error information for this function; do not call GetLastError.

Remarks
The RasAdmin functions can return error codes that are not in the range supported by
the RasAdminGetErrorString function. For example, the RasAdmin functions can
return error codes that are defined in Lmerr.h and Winerror.h. Before calling
RasAdminGetErrorString, verify that the error code is in the range RASBASE to
RASBASEEND, as defined in Raserror.h. .

WindowsNT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use Rassapi.lib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
. LoadLibrary, GlobalAlloc, LoadString

RasAdminGetUserAccountServer
The RasAdminGetUserAccountServer function retrieves the name of the server that
has the user account database. You can use the returned server name in the
RasAdminUserGetlnfo and RasAdminUserSetlnfo functions to get or set information
about a specified user.

268 Volume 4 Remote Access Services

Parameters
IpszDomain

Pointer to a null-terminated Unicode string that contains the name of the domain to
which the RAS server belongs. This parameter can be NULL if you are running your
RAS administration application on a Windows NT/2000 Workstation or Server that is
not participating in a Windows NT/2000 domain. If this parameter is NULL, the
IpszServer parameter must be non-NULL.

IpszServer
Pointer to a null-terminated Unicode string that contains the name of the
Windows NTlWindows 2000 RAS server. Specify the name with leading ''\\''
characters, in the form: \\servername. This parameter can be NULL if the IpszDomain
parameter is not NULL.

IpszUserAccountServer
Pointer to a buffer that receives a null-terminated Unicode string containing the name
of a domain controller that has the user account database. The buffer should be big
enough to hold the server name (UNCLEN + 1). The function prefixes the returned
server name with leading ''\\'' characters, in the form: \\servername.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

Both IpszDomain and IpszServer are NULL.

There is no extended error information for this function; do not call GetLastError.

Remarks
The RasAdminGetUserAccountServer function can obtain the name of the server with
the user accounts database given the name of the RAS server, or the name of the
domain in which the RAS server resides.

The IpszDomain parameter should specify a valid Windows NTlWindows 2000 domain
name. If you are running your RAS administration application on a
Windows NTlWindows 2000 Server that is not participating in a
Windows NTlWindows 2000 domain (for example, the server is in its own work group),
then set IpszDomain to NULL. In this case, the IpszServer parameter must specify the
server name. To get the server name, call the GetComputerName function. Be sure to
prefix the server name with the ''\\'' characters.

If the server name specified by IpszServer is a stand-alone Windows NTlWindows 2000
Server (that is, the server or workstation does not participate in a
Windows NTlWindows 2000 domain), then the server name itself is returned in the
IpszUserAccountServer buffer.

Chapter 10 RAS Server Administration Reference 269

You can then use the name of the user account server in a call to the
NetQueryDisplaylnformation function to enumerate the users in the user account
database.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use Rassapi.lib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
GetComputerName, RasAdminUserGetlnfo, RasAdminUserSetlnfo

RasAdminPortClearStatistics
The RasAdminPortClearStatistics function resets the counters representing the
various statistics reported by the RasAdminPortGetlnfo function in the
RAS_PORT_STATISTICS structure. The counters are reset to zero and start
accumulating from then on.

Parameters
IpszServer

Pointer to a null-terminated Unicode string that contains the name of the
Windows NTlWindows 2000 RAS server. Specify the name with leading ''\\''
characters, in the form: \\servername.

IpszPort
Pointer to a null-terminated Unicode string that contains the name of the port on the
server.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

The specified port is invalid.

270 Volume 4 Remote Access Services

There is no extended error information for this function; do not call GetLastError.

Remarks
The RasAdminPortClearStatistics function clears the statistics on the server, not
locally within the application that makes the call. This means that the statistics are also
reset for any other application that is monitoring the specified port.

If the fpszPort port is part of a multilink connection, RasAdminPortClearStatistics
resets the statistics for the specified port, The function also resets the cumulative
statistics for the multilink connection. However, the function does not effect the individual
statistics for other ports that are part of the multilink connection.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use RassapLlib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RAS_PORT _STATISTICS, RasAdminPortGetlnfo

RasAdminPortDisconnect
The RasAdminPortDisconnect function disconnects a port that is currently in use.

Parameters
fpszServer

Pointer to a null-terminated Unicode string that contains the name of the
Windows NTlWindows 2000 RAS server. Specify the name with leading ''\\''
characters, in the form: \\servername.

IpszPort
Pointer to a null-terminated Unicode string that contains the name of the port on the
server.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

Chapter 10 RAS Server Administration Reference 271

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_I NVALI D_PORT

NERR_UserNotFound

The specified port is invalid.

The port is not currently in use.

There is no extended error information for this function; do not call GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use RassapLlib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions

RasAdminPortEnum
The RasAdminPortEnum function enumerates all ports on the specified RAS server.
For each port on the server, the function returns a RAS_PORT_O structure that contains
information about the port.

Parameters
~szServer .

Pointer to a null-terminated Unicode string that contains the name of the
Windows NTlWindows ?OOO RAS server. Specify the name with leading ',\\"
characters, in the form: \\servername.

ppRasPortO
Pointer to a variable that receives a pointerto a buffer that contains an array of
RAS_PORT_O structures. When your application has finished with the memory, free it
by calling the RasAdminFreeBuffer function.

pcEntriesRead
Pointer to a 16-bit variable that receives the total number of RAS_PORT _0 structures
returned in the ppRasPortO array.

272 Volume 4 Remote Access Services

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

NERR_ltemNotFound No ports could be enumerated. This could be because all
configured ports on the server are currently being used for
dialing out.

There is no extended error information for this function; do not call GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use Rassapi.lib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RAS_PORT _0, RasAdminFreeBuffer

RasAdminPortGetlnfo
The RasAdminPortGetlnfo function retrieves information about a specified port on a
specified server.

Parameters
IpszServer

Chapter 10 RAS Server Administration Reference 273

Pointer to a null-terminated Unicode string that contains the name of the
Windows NTlWindows 2000 RAS server. Specify the name with leading ''\\''
characters, in the form: \\servername.

IpszPort
Pointer to a nUll-terminated Unicode string that contains the name of the port on the
server.

pRasPort1
Pointer to a RAS_PORT _1 structure that the function fills in with information about the
state of the port.

pRasStats
Pointer to a RAS_PORT _STATISTICS structure that the function fills in with statistics
about the port.

ppRasParams
Pointer to a variable that receives a pointer to an array of RAS_PARAMETERS
structures. Each structure contains the name of a media-specific key, such as
MAXCONNECTBPS, and its associated value. When your application is finished with
the memory painted to by * ppRasParams, free it by calling the RasAdminFreeBuffer
function.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_DEV _NOT _EXIST The specified port is invalid.

ERROR_NOT _ENOUGH_MEMORY Insufficient memory to allocate a buffer for the
ppRasParams array.

There is no extended error information for this function; do not call GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.
Library: Use Rassapi.lib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RAS_PARAMETERS, RAS_PORT _1, RAS_PORT _STATISTICS,
RasAdminFreeBuffer

274 Volume 4 Remote Access Services

RasAdminServerGetlnfo
The RasAdminServerGetlnfo function gets the server configuration of a RAS server.

Parameters
IpszServer

Pointer to a null-terminated Unicode string that contains the name of the
Windows NTlWindows 2000 RAS server. If this parameter is NULL, the function
returns information about the local computer. Specify the name with leading "\\"
characters, in the form: \\servername.

pRasServerO
Pointer to a RAS_SERVER_O structure that receives the number of ports configured
on the server, the number of ports currently in use, and the server version number.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is an error code. Possible error codes include those
returned by GetLastError for the Call Named Pipe function. There is no extended error
information for this function; do not call GetLastError.

Remarks
To enumerate all RAS servers in a Windows NTlWindows 2000 domain, call the
NetServerEnum function and specify SV _ TYPE_DIALIN for the servertype parameter.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use RassapLlib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
NetServerEnum, RAS_SERVER_O

Chapter 10 RAS Server Administration Reference 275

RasAdminUserGetlnfo
The RasAdminUserGetlnfo function gets the RAS permissions and callback phone
number information for a specified user.

Parameters
IpszUserAccountServer

Pointer to a null-terminated Unicode string that contains the name of the primary or
backup domain controller that has the user account database. Use the
RasAdmlnGetUserAccountServer function to get this server name.

IpszUser
Pointer to a null-terminated Unicode string that contains the name of the user for
whom to get RAS information.

pRasUserO
POinter to a RAS_USER_O structure that receives the RAS data for the specified
user.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

NERR_BufTooSmall Insufficient memory to perform this function.

There is no extended error information for this function; do not call GetLastError.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use Rassapi.lib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RAS_USER_O, RasAdminGetUserAccountServer, RasAdmlnUserSetlnfo

276 Volume 4 Remote Access Services

RasAdminUserSetlnfo
The RasAdminUserSetlnfo function sets the RAS permissions and call-back phone
number for a specified user.

Parameters
IpszUserAccountServer

Pointer to a nUll-terminated Unicode string that contains the name of the primary or
backup domain controller that has the user account database. Use the
RasAdminGetUserAccountServer function to get this server name.

IpszUser
Pointer to a null-terminated Unicode string that contains the name of the user for
whom RAS information is to be set.

pRasUserO
Pointer to a RAS_USER_O structure that contains the new RAS data for the specified
user.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Description

ERROR_INVALlD_DATA

ERROR_INVALlD_CALLBACK_
NUMBER

NERR_BufTooSmall

The pRasUserO buffer contains invalid data.

The callback number specified in the pRasUserO
buffer contains invalid characters.

Insufficient memory to perform this function.

There is no extended error information for this function; do not call GetLastError.

Remarks
When setting the RAS permissions for a user, the bfPrivilege member of the
RAS_USER_O structure must specify at least one of the call-back flags. For example, to
set a user's privileges to allow dial-in privilege but no call-back privilege, set bfPrivilege
to RASPRIV _DialinPrivilege I RASPRIV _NoCaliback.

Chapter 10 RAS Server Administration Reference 277

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.
Library: Use RassapLlib.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RAS_USER_O, RasAdminGetUserAccountServer, RasAdminUserGetlnfo

RAS Administration Dll Functions
Implement the following functions when developing a RAS administration DLL:

RasAdminAcceptNewConnection
RasAdminConnectionHangupNotification
RasAdminGetlpAddressForUser
RasAdminReleaselpAddress

RasAdminAcceptNewConnection
The RasAdminAcceptNewConnection function is an application-defined function that
is exported by a third-party RAS server administration DLL. RAS calls this function when
a user tries to establish a remote connection to a RAS server. The function decides
whether the user is allowed to connect.

The RAS server calls RasAdminAcceptNewConnection once for each port in a
multiJink connection.

Parameters
pRasPort1

Pointer to a RAS_PORT _1 structure that contains RAS data about the pending
connection. This structure contains the relevant connection information that you need
to make a decision about the connection.

278 Volume 4 Remote Access Services

pRasStats
Pointer to a RAS_PORT _STATISTICS structure that contains statistics about the
port.

pRasParams
Pointer to an array of RAS_PARAMETERS structures. Each structure contains the
name of a media-specific key, such as MAXCONNECTBPS, and its associated value.

Return Values
If the function returns TRUE, RAS accepts the new connection.

If the function returns FALSE, RAS does not accept the new connection. There is no
extended error information for this function; do not call GetLastError.

Remarks
The RasAdminAcceptNewConnection function gives more control to a RAS server
administration DLL to determine whether a specified remote user should be allowed to
connect to a server.

An additional application of RasAdminAcceptNewConnection would be to send a
popup message to newly connected clients. Use the NetMessageBufferSend function
to send the message to the client computer.

The setup program for a third-party RAS administration DLL must register the DLL with
RAS by providing information under the following key in the registry:

HKEY _LOCAL_MACH I NE\SOFTWARE\Microsoft\RAS\AdminDII

To register the DLL, set the following values under this key.

Value name

DisplayName

DLLPath

Value data

A REG_SZ string that contains the user-friendly display name of
the DLL.

A REG_SZ string that contains the full path of the DLL.

For example, the registry entry for a RAS administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDII
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's
registry entries.

Chapter 10 RAS Server Administration Reference 279

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RAS_PARAMETERS, RAS_PORT_1, RAS~PORT_STATISTICS

RasAdminConnectionHangupNotification
The RasAdminConnectionHangupNotification function is an application-defined
function that is exported by a third-party RAS server administration DLL. When RAS
disconnects an existing connection, it calls this function to notify your DLL.

The HAS server calls RasAdminConnectionHangupNotification once for each port in
a multilink connection.

Parameters
pRasPort1

Pointer to a RAS_PORT _1 structure that contains RAS data about the connection
that ended. This structure contains the relevant connection information that you can
use to determine how long the port was connected.

pRasStats
Pointer to a RAS_PORT_STATISTICS structure that contains statistics about the
port. RAS began accumulating these statistics when the connection was first
established.

pRasParams
Pointer to an array of RAS_PARAMETERS structures. Each structure contains the
name of a media-specific key, such as MAXCONNECTBPS, and its associated value.

280 Volume 4 Remote Access Services

Return Values
The function does not return a value. There are no extended error information for this
function; do not call GetLastError.

Remarks
The RAS call to the RasAdminConnectionHangupNotification function is just a
notification; no action is required from your DLL. You can use the information provided
by this function for accounting purposes.

The setup program for a third-party RAS administration DLL must register the DLL with
RAS by providing information under the following key in the registry:

HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDIl

To register the DLL, set the following values under this key.

Value name

DisplayName

DLLPath

Value data

A REG_SZ string that contains the user-friendly display name of
the DLL.

A REG_SZ string that contains the full path of the DLL.

For example, the registry entry for a RAS administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDIl
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's
registry entries.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RAS_PARAMETERS, RAS_PORT_1, RAS_PORT_STATISTICS

Chapter 10 RAS Server Administration Reference 281

RasAdminGetlpAddressForUser
The RasAdminGetlpAddressForUser function is an application-defined function that is
exported by a third-party RAS server administration DLL. RAS calls this function to get
an IP address for the dialed-in remote client.

Parameters
IpszUserName

Pointer to a null-terminated Unicode string that contains the name of the remote user
for whom an IP address is required.

IpszPortName
Pointer to a null-terminated Unicode string that contains the name of the port on which
the user specified by IpszUserName is attempting to connect.

pipAddress
Pointer to an IPADDR variable. On input, *pipAddress contains either zero or the IP
address that the RAS server proposes to use for the dialed-in remote client. The
function can set *pipAddress to a different IP address, or accept the passed-in IP
address. If *pipAddress is zero on input, the function must provide an IP address;
otherwise, the client will be unable to connect to this server using IP.

bNotifyRelease
Pointer to a BOOl variable. Set this variable to TRUE if you want RAS to call your
RasAdminReleaselpAddress function when the user disconnects from this port;
otherwise, set it to FALSE.

Return Values
If pipAddress points to an IP address that the client can use to connect to this RAS
server, the function should return NO_ERROR. This can occur if the function accepts the
IP address that was passed by the RAS server, or if the function provides a different IP
address.

If pipAddress does not pOint to an IP address, the function should return a nonzero error
code. This can occur if no IP address is available, or if the passed in IP address is
unacceptable. In this case, the client will be unable to connect to this server using IP.
There is no extended error information for this function; do not call GetlastError.

282 Volume 4 Remote Access Services

Remarks
The setup program for a third-party RAS administration DLL must register the DLL with
RAS by providing information under the following key in the registry:

HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDIl

To register the DLL, set the following values under this key.

Value name

DisplayName

DLLPath

Value data

A REG_SZ string that contains the user-friendly display name of
the DLL.

A REG_SZ string that contains the full path of the DLL.

For example, the registry entry for a RAS administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDIl
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's
registry entries.

Windows NT/2000: Requires Windows NT 4.0 or later.
. Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RasAdminReleaselpAddress

RasAdminReleaselpAddress
The RasAdminReleaselpAddress function is an application-defined function that is
exported by a third-party RAS server administration DLL. RAS calls this function to notify
your DLL that the remote client was disconnected and that the IP address should be
released.

Parameters
IpszUserName

Chapter 10 RAS Server Administration Reference 283

Pointer to a null-terminated Unicode string that contains the name of a remote user for
whom an I P address was previously obtained using the
RasAdminGetlpAddressForUser function.

IpszPortName
Pointer to a null-terminated Unicode string that contains the name of the port on which
the user specified by IpszUserName is connected.

pipAddress
Pointer to an IPADDR variable that contains the IP address returned for this user in a
previous call to RasAdminGetlpAddressForUser.

Return Values
There is no extended error information fOr this function; do no call GetLastError.

Remarks
The RAS server calls your RasAdminReleaselpAddres$ function only if your
application returned TRUE in the bNotifyRelease parameter during the earlier call to
RasAdminGetlpAddressForUser for the user specified by the IpszUserName
parameter.

The setup program for a third-party RAS administration DLL must register the DLL with
RAS by providing information under the following key in the registry: '

HKEY _LOCAL_MACHINE\SOFTW ARBMicrosoft\RAS\AdminDIl

To register the DLL, set the following values under this key.

Value name Value data

DisplayName

DLLPath

A REG_SZ string that contains the user-friendly display name of
the DLL.

A REG_SZ string that contains the full path of the DLL.

For example, the registry entry fora RAS administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY _LOCAL_MACHINE\SOFTW ARBMicrosoft\RAS\AdminDIi
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\systern32\ntwkadm.dll

The setup program for a RAS administration DLL should a/so provide remove/uninstall
fUnctionality. If a user removes the DLL, the setup program should delete the DLL's
registry entries.

284 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RasAdminGetlpAddressForUser .

RAS Security Dll Functions
Implement the following functions when developing a RAS security DLL:

RasSecurityDialogBegin
RasSecurityDialogComplete
RasSecurityDialogEnd
RasSecurityDialogGetlnfo .
RasSecurityDialogReceive
RasSecurityDialogSend

RasSecurityDialog8egin
The RasSecurityDialogBegin function is a third-party RAS security DLL entry point that
the Windows NTIWindows 2000 RAS server calls when a remote user tries to connect.
This enables the security DLL to begin its authentication of the remote user.

Note that Windows NTIWindows 2000 currently provides RAS security host support only
for serial devices; other types of connections, such as ISDN or a virtual private network
(VPN) connection, are not supported.

Parameters
hPort,

Chapter 10 RAS Server Administration Reference 285

Specifies a RAS port handle. The security DLL uses this handle in other RAS security
functions, such as RasSecurityDialogSend and RasSecurityDialogReceive, to
identify this authentication transaction.

Note that this handle is valid only in RAS security functions; you cannot use it in other
Win32 I/O functions.

pSendBuf
Pointer to a buffer allocated by the RAS server. The security DLL uses this buffer with
the RasSecurityDialogSendfunction to send text that is displayed in the RAS
terminal window on the remote computer.

SendBufSize
Specifies the size, in bytes, of the pSendBufbuffer.

pRecvBuf
Pointer to a buffer allocated by the RAS server. The security DLL uses this buffer with
the RasSecurityDialogReceive function to receive the response from the remote
user.

RecvBufSize
Specifies the size, in bytes, of the pRecvBuf buffer.

RasSecurityDialogComplete
Specifies a pointer to a RasSecurityDialogComplete function. When the security
DLL has completed the authentication of the remote user, it calls this function to
report the results to the RAS server.

Return Values
If the security DLL successfully starts the authentication operation,
RasSecurityDialogBegin should return NO_ERROR. In this case, the security DLL
must later terminate the authentication transaction by calling the function pointed to by
the RasSecurityDialogComplete parameter.

If an error occurs, RasSecurityDialogBegin should return a nonzero error code. In this
case, the RAS server hangs up the call and records the error in the
Windows NTIWindows 2000 event log. Returning a nonzero error code terminates the
authentication transaction, so the security DLL does not need to call the
RasSecurityDialogComplete function.

Remarks
When a Windows NTIWindows 2000 RAS server receives a call from a remote
computer, it calls the RasSecurityDlalogBegin function exported by the registered RAS
security DLL, if there is one. When the RAS server calls this function, it passes the
following information to the security DLL.

286 Volume 4 Remote Access Services

• A port handle to identify the connection

• Pointers to buffers to use when communicating with the remote user

• A pointer to a RasSecurityDialogComplete function to call when the authentication
has been completed

The port handle and buffer pointers are valid until you call RasSecurityDialogComplete
to terminate the authentication transaction.

Your RasSecurityDialogBegin implementation must return as soon as possible,
because the RAS server is blocked and cannot accept any other calls until
RasSecurityDialogBegin returns. The RasSecurityDialogBegin function should copy
the input parameters and create a thread to communicate with and authenticate the
remote user.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rasshost.h.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RasSecurityDialogComplete, RasSecurityDialogReceive, RasSecurityDialogSend

RasSecurityDialogComplete
The RasSecurityDialogComplete function notifies the RAS server of the results of a
third-party security authentication transaction. A third-party RAS security DLL calls
RasSecurityDialogComplete when it has completed its authentication of the remote
user.

The RAS server passes a pOinter to the RasSecurityDialogComplete function when the
server calls the RasSecurityDialogBegin entry pOint of the security DLL.

Parameters
pSecMsg

Pointer to a SECURITY_MESSAGE structure that contains the results of the
authentication transaction.

Return Values
None.

Remarks

Chapter 10 RAS Server Administration Reference 287

When a security DLL has finished authenticating the remote user, it calls the
RasSecurityDialogComplete function to report the results. The RAS server then
performs a cleanup sequence. As part of this cleanup sequence, the RAS server calls
the security DLL's RasSecurityDialogEnd function to give the DLL an opportunity to
perform its own cleanup, if necessary.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasshost.h.
Library: Included as a resource in Rasman.dll.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RasSecurityDialogBegin, RasSecurityDialogComplete, RasSecurityDialogEnd,
SECURITY_MESSAGE

RasSecurityOialogEnd
The RasSecurityDialogEnd function is a third-party RAS security DLL entry point that
the Windows NTlWindows 2000 RAS server calls to terminate an authentication
transaction.

Parameters
hPort

Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

Return Values
If the security DLL returns NO_ERROR, the RAS server does not terminate the
authentication transaction. In this case, the security DLL must later call the
RasSecurityDialogComplete function when it is ready to terminate.

288 Volume 4 Remote Access Services

If the security DLL returns a nonzero error code, the RAS server terminates the
authentication transaction. In this case, the security DLL does not need to make another
RasSecurityDialogComplete call. You should return an error code defined in
Winerror.h or Raserror.h, such as ERROR_PORT _DISCONNECTED.

Remarks
When a security DLL has finished authenticating the remote user, it calls the
RasSecurityDialogComplete function. The RAS server then performs a cleanup
sequence that includes a call to the DLL's RasSecurityDialogEnd function. This gives
the security DLL an opportunity to perform any necessary cleanup. To terminate the
authentication transaction, RasSecurityDialogEnd must return a nonzero error code.

The RAS server may also call RasSecurityDialogEnd if it needs to abnormally
terminate the authentication transaction before the security DLL calls
RasSecurityDialogComplete. In this case, the security DLL should terminate the
worker thread associated with the hPort port handle, and perform any other necessary
cleanup. If RasSecurityDialogEnd returns a nonzero value, the security DLL does not
need to call RasSecurityDialogComplete.

For either a normal or abnormal termination, your RasSecurityDialogEnd function can
return NO_ERROR to delay the termination. If it does so, it must later call
RasSecurityDialogComplete when it is ready to terminate.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rasshost.h.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
RasSecurityDialogBegin, RasSecurityDialogComplete

RasSecu rityDialogGetl nfo
The RasSecurityDialogGetlnfo function is called by a RAS security DLL to get
information about a port from the RAS server.

To call this function, you must first call the LoadLibrary function to load RASMAN.DLL.
Then call the GetProcAddress function to get the DLL's RasSecurityDialogGetlnfo
entry point.

Parameters
hPort

Chapter 10 RAS Server Administration Reference 289

Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin cali for this authentication transaction.

pBuffer
Pointer to a RAS_SECURITY _INFO structure that receives information about the
specified RAS port.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes defined in Raserror.h or
Winerror.h. Get Last Error does not provide extended error information.

Remarks
The RasSecurityDialogGetlnfo function retrieves information about the port associated
with a RAS security DLL authentication transaction.

The LastError member of the RAS_SECURITY _INFO structure indicates the state of
the last RasSecurityDialogReceive cali for the port. If the receive operation has been
completed successfully, LastError is SUCCESS and the BytesReceived member
indicates the number of bytes received. Otherwise, LastError is PENDING if the receive
operation is stili in progress, or a nonzero error code if the receive operation failed.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasshost.h.
Library: Included as a resource in Rasman.dll.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
GetProcAddress, LoadLibrary, RAS_SECURITY _INFO, RasSecurityDialogReceive

RasSecurityDialogReceive
The RasSecurityDialogReceive function starts an asynchronous operation that
receives a remote user's response to a security challenge. The response is the input that
the user typed in a terminal window on the remote computer. A third-party RAS security
DLL calis this function as part of its authentication of the remote user.

290 Volume 4 Remote Access Services

To call this function, you must first call the LoadLibrary function to load RASMAN.DLL.
Then call the GetProcAddress function to get the DLL's RasSecurityDialogReceive
entry point.

Parameters
hPort

Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

pBuffer
Pointer to the receive buffer that was passed to the security DLL in the
RasSecurityDialogBegin call. When the asynchronous receive operation has been
completed successfully, this buffer contains the response from the remote user.

pBufferLength
Pointer to a WORD variable. On input, this variable must specify the size, in bytes, of
the pBuffer buffer. When the receive operation has been completed, the variable
indicates the number of bytes returned in the pBuffer buffer.

Timeout
Specifies a time-out period, in seconds, after which the RAS server sets the hEvent
event object to the signaled state.

If this value is zero, there is no time-out period; that is, the RAS server does not signal
the event object until the receive operation has been completed.

hEvent
Specifies the handle of an event object created by the CreateEvent function. The
RAS server sets the event object to the signaled state when the receive operation has
been completed or when the time-out period has elapsed.

Return Values
If the function is successful, the return value is PENDING (defined in Raserror.h). This
indicates that the receive operation is in progress.

If an error occurs, the return value is one of the error codes defined in Raserror.h or
Winerror.h. GetLastError does not provide extended error information.

Chapter 10 RAS Server Administration Reference 291

Remarks
After calling the RasSecurityDialogSend function to send a security challenge to the
remote user, the security DLL must call the RasSecurityDialogReceive function to get
the user's response.

The RasSecurityDialogReceive function is asynchronous. When the function returns,
the security DLL must use one of the wait functions, such as WaitForSingleObject, to
wait for the hEvent event object to be signaled. The RAS server signals the event object
when the receive operation has been completed or when the time-out interval has
elapsed. If the receive operation is successful, the pBufferbuffer contains the response
from the remote user, and the pBufferLength parameter indicates the number of bytes
received. If the remote user sends more bytes than will fit in the buffer, the RAS server
buffers the excess bytes and returns them in the next RasSecurityDialogReceive call.

You can use the Timeout parameter to specify a time-out interval. If the time-out
elapses, the RAS server signals the event object, and the pBufferLength parameter
indicates that zero bytes were transferred. Alternatively, you can set Timeoutto zero,
and specify a time-out interval in the wait function that you use to wait for the event
object to be signaled.

When a security DLL is authenticating a remote user, the connection operation on the
remote computer enters a RASeS_Interactive paused state. The message sent by
RasSecurityDialogSend is displayed as output in a terminal window on the remote
computer. The response received by RasSecurityDialogReceive is the input that the
remote user types in the terminal window. The RASeS_Interactive value is defined in the
RASCONNSTATE enumeration.

Windows NT/2000: Requires Windows NT 4.0 orlater.
Windows 95/98: Unsupported.
Header: Declared in Rasshost.h.
Library: Included as a resource in Rasman.dll.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
CreateEvent, GetProcAddress, LoadLibrary, RASCONNSTATE,
RasSecurityDialogSend, .WaitForSingleObject

RasSecurityDialogSend
The RasSecurityDialogSend function sends a message to be displayed in a terminal
window on a remote computer. A third-party RAS security DLL sends this message as
part of its authentication of a remote user.

292 Volume 4 Remote Access Services

To call this function, you must first call the LoadLibrary function to load RASMAN.DLL.
Then call the GetProcAddress function to get the DLL's RasSecurityDialogSend entry
point.

Parameters
hPort

Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

pBuffer
Pointer to the send buffer that was passed to the security DLL in the call to
RasSecurityDialogBegin. Before calling RasSecurityDialogSend, copy into this
buffer the message to send to the remote user. The SendBufSize parameter of the
RasSecurityDialogBegin function indicates the maximum number of bytes you can
copy to this buffer.

BufferLength
Specifies the number of bytes to send in the pBuffer buffer.

Return Values
If the function is successful, the return value is PENDING (defined in Raserror.h). This
indicates that the send operation is in progress.

If an error occurs, the return value is one of the error codes defined in Raserror.h or
Winerror.h. GetLastError does not provide extended error information.

Remarks
The RasSecurityDialogSend function is asynchronous. After calling it to send a
message to the remote user, call the RasSecurityDialogReceive function, and then
wait for a response. The security DLL can make any number of
RasSecurityDialogSend calls, with each call followed by a RasSecurityDialogReceive
call.

When a security DLL is authenticating a remote user, the connection operation on the
remote computer enters a RASeS_Interactive paused state. The message sent by
RasSecurityDialogSend is displayed as output in a terminal window on the remote
computer. The response received by RasSecurityDialogReceive is the input that the
remote user types in the terminal window. The RASeS_Interactive value is defined in the
RASCONNSTATE enumeration.

Chapter 10 RAS Server Administration Reference 293

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasshost.h.
Library: Included as a resource in Rasman.dll.

Remote Access Service (RAS) Overview, RAS Server Administration Functions,
GetProcAddress, LoadLibrary, RASCONNSTATE, RasSecurityDialogBegin,
RasSecurityDialogReceive

RAS Server Administration Structures
For Windows NT version 4.0, use the following structures to implement RAS Server
Administration functionality. Windows 95 does not provide RAS server support.

RAS_PARAMETERS
RAS_PORT_O
RAS_PORT_1
RAS_PORT _STATISTICS
RAS_PPP_ATCP_RESULT
RAS_PPP _IPCP _RESULT
RAS_PPP _IPXCP _RESULT

RAS_PARAMETERS

RAS_PPP_NBFCP_RESULT
RAS_PPP _PROJECTION_RESULT
RAS_SECURITY _INFO
RAS_SERVER_O
RAS_STATS
RAS_USER_O
SECURITY_MESSAGE

The RAS_PARAMETERS structure is used by the RasAdminPortGetlnfo function to
return the name and value of a media-specific parameter associated with a port on a
Windows NTlWindows 2000 RAS Server.

Members
P_Key

Specifies the name of the key that represents the media-specific parameter, such as
MAXCONNECTBPS.

294 Volume 4 Remote Access Services

P_Type
Identifies the type of data associated with the parameter. This member can be one of
the following values from the RAS_PARAMS_FORMAT enumeration.

Value

ParamNumber

ParamString

P _Attributes
Reserved.

P _Value

Meaning

Indicates that the data associated with the key is a number.

Indicates that the data associated with the key is a string.

Specifies the value associated with the parameter. This member is a
RAS_PARAMS_VALUEunion. If the P _Type member is ParamNumber, the Number
member of the union contains the value. If P _Type is ParamString, the String
member of the union contains the value.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RasAdminAcceptNewConnection, RasAdminConnectionHangupNotification,
RasAdmin PortGetlnfo

The RAS_PORT _0 structure contains information that describes a RAS port.

Members
wszPortName

Chapter 10 RAS Server Administration Reference 295

A null-terminated Unicode string that specifies the name of the port, such as "COM1 ".

wszDeviceType
A null-terminated Unicode string that specifies the type of the device on which the
connection was made, such as "Modem" or "ISDN". The list of device types that might
be specified in this member includes all the device types installed on the server,
including third-party devices.

wszDeviceName
A null-terminated Unicode string that specifies the name of the device on which the
connection was made, such as "Hayes 9600" or "PCIMACISDN1".

wszMediaName
A null-terminated Unicode string that specifies the name of the media used for the
connection, such as "rasser" or "rastapi".

reserved
This member is reserved.

Flags
A set of bit flags that specify the nature of the connection made on this port. This
member can be a combination of the following flags.

Value Meaning

GATEWAY_ACTIVE

PORT _MUL TILINKED

PPP _CLIENT

USER_AUTHENTICATED

If this flag is set, the NetBIOSgateway is active on
the server.

If this flag is set, the Windows NTlWindows 2000
messenger service is running on the remote client.

If this flag is set, the port is multilinked with other
ports. You can use this information for displaying the
connection status as a multilinked port.

For a multilinked port, the RAS_PORT_STATISTICS
structure contains two sets of statistics: one for the
port alone, and another for the combined ports in the
multilink connection.

If this flag is set, the remote client connected using
PPP. If this flag is not set, the remote client
connected using the AMB protocol.

If this flag is set, the RemoteListen parameter of the
NetBlOS gateway is set t01 on the server.

If this flag is set, a remote client is connected to the
server and the user has been authenticated. You can
check this flag to ensure that a client is actually
connected to a port.

296 Volume 4 Remote Access Services

If the MESSENGER_PRESENT, GATEWAY_ACTIVE, and REMOTE_LISTEN
flags are set, you can use the Windows NTlWindows 2000 messenger service to
send an administrative message to the remote client. If MESSENGER_PRESENT
and REMOTE_LISTEN are set, but GATEWAY_ACTIVE is not, you can send a
message to the client only if you send the message from the RAS server the client is
dialed in to.

wszUserName
A null-terminated Unicode string that specifies the name of the remote user connected
to this port.

wszComputer
A null-terminated Unicode string that specifies the name of the remote client
computer.

dwStartSessionTime
Specifies the time, in seconds from January 1, 1970, that the client connected to the
RAS server on this port. You can use the standard Win32 time routines to format this
value for display.

wszLogonDomain
A nUll-terminated Unicode string that specifies the name of the
Windows NTlWindows 2000 domain on which the remote user was authenticated.
This string is the domain name only, with no ''\\'' prefix.

fAdvancedServer
A flag that is nonzero if the RASserver associated with this port is a
Windows NTlWindows 2000 Advanced Server. You can use this information to
determine the name of the server that has the user account database. If the RAS
server is an Advanced Server, you can get the name of the user account server by
concatenating the prefix ''\V' to the name returned in the wszLogonDomain member.
This is because for an Advanced Server the local logon domain name is the same as
the server name. If the RAS server is a Windows NTlWindows 2000 Workstation, you
can use the RasAdminGetUserAccountServer function to get the name of the user
account server.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RAS_PORT _1, RAS_PORT _STATISTICS, RasAdminGetUserAccountServer,
RasAdminPortEnum

Chapter 10 RAS Server Administration Reference 297

The RAS_PORT _1 structure contains information about a RAS port.

Members
rasPortO

A RAS_PORT _0 structure that contains information about the port, such as the name
of the port, the name of the remote user connected to the port, and so on.

Li neCondition
Specifies the state of the port. This member can be one of the following values.

Value

RAS_PORT _DISCONNECTED

RAS_PORT _CALLING_BACK

RAS_PORT _LISTENING

RAS_PORT _AUTH ENTICATING

RAS_PORT _AUTHENTICATED

RAS_PORT _INITIALIZING

HardwareCondition

Meaning

The port is not operational. Check the event
log for errors reported by the server.

The port is currently disconnected.

The RAS server is calling back the RAS
client.

The port is waiting for a client to call in.

The server is in the process of authenticating
the remote client.

The remote client is now authenticated.

The device attached to the port is being
initialized. The state of the port will change to
RAS_PORT _LISTENING when the
initialization has been completed.

Specifies one of the following values to indicate the state of the device attached to
the port.

298 Volume 4 Remote Access Services

Value

RAS_MODEM_OPERATIONAL

LineSpeed

Meaning

The modem attached to this port is
operational and is ready to receive client
calls.

The modem attached to this port has a
hardware problem.

Specifies the speed, in bits per second, with which the computer can communicate
with the port.

NumStatistics
This member is not used. The RAS administration functions, such as the
RasAdminPortGetlnfo function, use the RAS_PORT_STATISTICS structure to
return port statistics.

NumMediaParms
Specifies the number of media-specific parameters for this port. For serial media this
is typically the number of values that appear in the SERIALINI file.

SizeMediaParms
Specifies the size, in bytes, of the buffer required for all media-specific parameters.
The RasAdminPortGetlnfo function returns a buffer containing an array of
RAS_PARAMETERS structures with the media parameters and values for the port.

ProjResult
A RAS_PPP _PROJECTION_RESULT structure that specifies the PPP projection
information for this port. This structure provides information for each protocol that is
negotiated when a RAS client connects to a server.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RAS_PARAMETERS, RAS_PORT_O, RAS_PORT_STATISTICS,
RAS_PPP _PROJECTION....:.RESUL T, RasAdminAcceptNewConnection,
RasAdminConnectionHangupNotification, RasAdminPortGetlnfo

The RAS_PORT_STATISTICS structure reports the statistics that a RAS server collects
for a connected port. The RAS server resets the various statistic counters each time the
port is connected. You can call the RasAdminPortClearStatistics function to force the
RAS server to reset the statistic counters.

Chapter 10 RAS Server Administration Reference 299

For a port that is part of a multilink connection, this structure provides two sets of
statistics. The first set contains the cumulative statistics for all ports in the connection.
These statistics are the same for all ports in the connection. The second set contains the
statistics for just this port. If the port is not part of a multilink connection, both sets of
statistics have the same information. To determine whether a port is part of a multilink
connection, check the PORT _MUL TILINKED bit in the Flags member of the port's
RAS_PORT _0 structure.

300 Volume 4 Remote Access Services

Members
dwBytesXmited

Specifies the total number of bytes transmitted by the connection.

dwBytesRcved
Specifies the total number of bytes received by the connection.

dwFramesXmited
Specifies the total number of frames transmitted by the connection.

dwFramesRcved
Specifies the total number of frames received by the connection.

dwCrcErr
Specifies the total number of eRe errors on the connection. eRe errors are caused
by the failure of a cyclic redundancy check. A eRe error indicates that one or more
characters in the data packet received were found garbled on arrival.

dwTimeoutErr
Specifies the total number of time-out errors on the connection. Time-out errors occur
when an expected character is not received in time. When this occurs, the software
assumes that the data has been lost and requests that it be resent.

dwAlignmentErr
Specifies the total number of alignment errors on the connection. Alignment errors
occur when a character received is not the one expected. This usually happens when
a character is lost or when a time-out error occurs.

dwHardwareOverrun Err
Specifies the total number of hardware overrun errors on the connection. These errors
indicate the number of times the sending computer has transmitted characters faster
than the receiving computer hardware can process them. If this problem persists,
reduce the BPS connection rate on the client.

dwFramingErr
Specifies the total number of framing errors on the connection. A framing error occurs
when an asynchronous character is received with an invalid start or stop bit.

dwBufferOverrunErr
Specifies the total number of buffer overrun erro"rs on the connection. A buffer overrun
error occurs when the sending computer is transmitting characters faster than the
receiving computer can accommodate them. If this problem persists, reduce the BPS
connection rate on the client.

dwBytesXmitedUncompressed
Specifies the total number of bytes transmitted uncompressed by the connection.

dwBytesRcvedUncompressed
Specifies the total number of bytes received uncompressed by the connection.

dwBytesXmitedCompressed
Specifies the total number of bytes transmitted compressed by the connection.

dwBytesRcvedCompressed
Specifies the total number of bytes received compressed by the connection.

Chapter 10 RAS Server Administration Reference 301

dwPortBytesXmited
Specifies the total number of bytes transmitted by the port.

dwPortBytesRcved
Specifies the total number of bytes received by the port.

dwPortFramesXmited
Specifies the total number of frames transmitted by the port.

dwPortFramesRcved
Specifies the total number of frames received by the port.

dwPortCrcErr
Specifies the total number of eRe errors on the port. eRe errors are caused by the
failure of a cyclic redundancy check. A eRe error indicates that one or more
characters in the data packet received were found garbled on arrival.

dwPortTimeoutErr
Specifies the total number of time-out errors on the port. Time-out errors occur when
an expected character is not received in time. When this occurs, the software
assumes that the data has been lost and requests that it be resent.

dwPortAlignmentErr
Specifies the total number of alignment errors on the port. Alignment errors occur
when a character received is not the one expected. This usually happens when a
character is lost or when a time-out error occurs.

dwPortHardwareOverrunErr
Specifies the total number of hardware overrun errors on the port. These errors
indicate the number of times the sending computer has transmitted characters faster
than the receiving computer hardware can process them. If this problem persists,
reduce the BPS connection rate on the client.

dwPortFramingErr
Specifies the total number of framing errors on the port. A framing error occurs when
an asynchronous character is received with an invalid start Dr stop bit.

dwPortBufferOverrunErr
Specifies the total number of buffer overrun errors on the port. A buffer overrun error
occurs when the sending computer is transmitting characters faster than the receiving
computer can accommodate them. If this problem persists, reduce the BPS
connection rate on the client.

dwPortBytesXmitedUncompressed
Specifies the total number of bytes transmitted uncompressed by the port. If the port
is part of a multilink connection, this member is not valid. Use the compression
statistics for the connection instead.

dwPortBytesRcvedU ncompressed
Specifies the total number of bytes received uncompressed by the port. If the port is
part of a multilink connection, this member is not valid. Use the compression statistics
for the connection instead.

302 Volume 4 Remote Access Services

dwPortBytesXmitedCompressed
Specifies the total number of bytes transmitted compressed by the port. If the port is
part of a multilink connection, this member is not valid. Use the compression statistics
for the connection instead.

dwPortBytesRcvedCompressed
Specifies the total number of bytes received compressed by the port. If the port is part
of a multilink connection, this member is not valid. Use the compression statistics for
the connection instead.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RAS_PORT _0, RasAdminAcceptNewConnection,
RasAdminConnectionHangupNotification, RasAdminPortClearStatistics,
RasAdminPortGetlnfo

The RAS_PPP _ATCP _RESULT structure is used to report the result of an AppleTalk
protocol projection operation for a port. Windows NT version 4.0 does not use this
structure.

Members
dwError

Specifies a value that indicates the results of the AppleTalk projection operation. A
value of NO_ERROR indicates success, in which case, the wszAddress member is
valid. If the projection operation is not successful, dwError is an error code from
Winerror.h or Raserror.h.

wszAddress
Specifies a null-terminated Unicode string that specifies the IP address assigned to
the remote client.

Chapter 10 RAS Server Administration Reference 303

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RAS_PPP _PROJECTION_RE5UL T

The RAS_PPP _IPCP _RESULT structure is used to report the result of a PPP Internet
Protocol (IP) projection operation for a port.

Members
dwError

Indicates the results of the IP projection operation. A value of NO_ERROR indicates
success, in which case, the wszAddress member is valid. If the projection operation
was not successful, dwError is an error code from Winerror.h or Raserror.h.

wszAddress
A null-terminated Unicode string that specifies the IP address assigned to the remote
client. This string has the "a.b.c.d' form.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RAS_PORT _1, RAS_PPP _PROJECTION_RESULT, RasAdminPortGetlnfo

The RAS_PPP -,IPXCP _RESULT structure is used to report the result of a PPP
Internetwork Packet Exchange (fPX) projection operation for a port.

304 Volume 4 Remote Access Services

Members
dwError

Indicates the results of the IPX projection operation. A value of NO_ERROR indicates
success, in which case, the wszAddress member is valid. If the projection operation
was not successful, dwError is an error code from Winerror.h or Raserror.h.

wszAddress
A nUll-terminated Unicode string that specifies the IPX address assigned to the
remote client. This string has the "net.node" form.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RAS_PORT _1, RAS_PPP _PROJECTION_RESULT, RasAdminPortGetlnfo

The RAS_PPP _NBFCP _RESULT structure is used to report the result of a PPP
NetSEUI Framer (NSF) projection operation for a port.

Members
dwError

Indicates the results of the NSF projection operation. A value of NO_ERROR
indicates success, in which case, the wszWksta member contains the name of the
remote computer. If the projection operation was not successful, dwError is an error
code from Winerror.h or Raserror.h.

dwNetBiosError
Ignore this member on the server; it is relevant only on the client.

Chapter 10 RAS Server Administration Reference 305

szName
Ignore this member on the seNer; it is relevant only on the client.

wszWksta
A null-terminated Unicode string that specifies the NetBIOS name of the RAS client
workstation.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access SeNice (RAS) OveNiew, RAS SeNer Administration Structures,
RAS_PORT _1, RAS_PPP _PROJECTION_RESULT, RasAdminPortGetlnfo

The RAS_PPP _PROJECTION_RESULT structure is used to report the results of the
various PPP projection operations for a port.

Members
nbf

ip

A RAS_PPP _NBFCP _RESULT structure that reports the result of a PPP NetBEUI
Framer (NBF) projection operation.

A RAS_PPP _IPCP _RESULT structure that reports the result of a PPP Internet
Protocol (IP) projection operation.

ipx

at

A RAS_PPP _IPXCP _RESULT structure that reports the result of a PPP Internetwork
Packet Exchange (IPX) projection operation.

A RAS_PPP _ATCP _RESULT structure. Windows NT version 4.0 does not use this
member.

306 Volume 4 Remote Access Services

Remarks
Thi~ structure reports the projection results for NetBEUI, TCP/IP, and IPX protocols.
Each PPP structure has a dwError member that indicates whether the other information
in the structure is valid. If dwError is NO_ERROR, the other information is valid. If
dwError is one of the error codes in Winerror.h or Raserror.h, the other information is
not valid.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RAS_PORT_1, RAS_PPP _ATCP _RESULT, RAS_PPP _IPCP _RESULT,
RAS_PPP _IPXCP _RESULT, RAS_PPP _NBFCP _RESULT, RasAdminPortGetinfo

The RAS_SECURITV _INFO structure is used with the RasSecurityDialogGetlnfo
function to return information about the RAS port associated with a RAS security DLL
authentication transaction.

Members
LastError

Specifies an error code that indicates the state of the last RasSecurityDialogReceive
call for the port. If the receive operation failed, LastError is one of the error codes
defined in Raserror.h or Winerror.h. Otherwise, LastError is one of the following
values.

Value Meaning

SUCCESS

PENDING

The receive operation has been successfully completed. The
BytesReceived member indicates the number of bytes received.

The receive operation is pending completion.

Chapter 10 RAS Server Administration Reference 307

BytesReceived
Specifies the number of bytes received in the most recent
RasSecurityDialogReceive operation. This member is valid only if the value of the
LastError member is SUCCESS.

DeviceName
Specifies a null-terminated string that contains the user-friendly display name of the
device on the port, such as Hayes SmartModem 9600.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasshost.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RasSecurityDialogGetlnfo, RasSecurityDialogReceive

The RAS_SERVER_O structure is used by the RasAdminServerGetlnfo function to
return information about the ports configured on a RAS Server.

Members
TotalPorts

Specifies the total number of ports configured on the RAS server that are available for
remote clients to connect to. For example, if the total number of ports configured for
dialing in to a server is four, but one of the ports is currently in use for dialing out,
TotalPorts will be thre.e.

PortslnUse
Specifies the number of ports currently in use by remote clients.

RasVersion
Specifies the version of the RAS server. You can use this information to take version­
specific action. This member can be one of the following values.

308 Volume 4 Remote Access Services

Value

RASDOWNLEVEL

RASADMIN_35

RASADMIN_CURRENT

Description

Indicates a LAN Manager version 1.0 RAS server.

Indicates a Windows NT version 3.5 or 3.51 RAS
server or client.

Indicates a Windows NT version 4.0 RAS server or
client.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RasAdminServerGetlnfo

The RAS_STATS structure stores the statistics for a single-link RAS connection, or for
one of the links in a multilink RAS connection.

Members
dwSize

Specifies the version of the structure. Set this member to sizeof(RAS_STATS) before
sing the structure in a function call.

Chapter 10 RAS Server Administration Reference 309

dw BytesXm ited
The number of bytes transmitted through this connection or link.

dwBytesRcved
The number of bytes received through this connection or link.

dwFramesXmited
The number frames transmitted through this connection or link.

dwFramesRcved
The number of frames received through this connection or link.

dwCrcErr
The number of Cyclic Redundancy Check (CRC) errors on this connection or link.

dwTimeoutErr
The number of timeout errors on this connection or link.

dwAlignmentErr
The number of alignment errors on this connection or link.

dwHardwareOverrun Err
The number of hardware overrun errors on this connection or link.

dwFramingErr
The number of framing errors on this connection or link.

dwBufferOverrunErr
The number of buffer overrun errors on this connection or link.

dwCompressionRatioln
The compression ratio for the data being received on this connection or link.

dwCompressionRatioOut
The compression ratio for the data being transmitted on this connection or link.

dwBps
The speed of the connection or link, in bits per second.

For a single-link connection and for individual links in a multilink connection, this
speed is negotiated at the time the connection or link is established.

For multilink connections, this speed is equal to the sum of the speeds of the
individual links. For multilink connections, this speed will vary as links are added or
deleted.

This speed is not equal to the throughput ofthe connection or link. To calculate the
average throughput, divide the number of bytes transmitted (dwBytesXmited) and
received (dwBytesRcved) by the amount of time the connection or link has been up
(dwConnectDuration).

dwConnectDuration
The amount of time, in seconds, that the connection or link has been connected.

310 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in Ras.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RasClearConnectionStatistics, RasClearLinkStatistics,
RasGetConnectionStatistics, RasGetLinkStatistics

The RAS_USER_O structure is used in the RasAdminUserSetlnfo and
RasAdminUserGetinfo functions to specify information about a user.

Members
bfPrivilege

A set of bit flags that specify the RAS privileges of the user. This member can be a
combination of the RASPRIV _DialinPrivilege flag and one of the call-back flags. Note
that when you call the RasAdminUserSetinfo function, you must specify one of the
call-back flags. You can use the RASPRIV_CalibackType mask to identify the type of
call-back privilege provided to the user. The following flags are defined.

Value

RASPRIV _NoCaliback

RASPRIV _AdminSetCaliback

RASPRIV _CalierSetCaliback

RASPRIV _DialinPrivilege

szPhoneNumber

Meaning

The user has no call-back privilege.

The user account is configured to have the
administrator set the call-back number.

The remote user can specify a call-back phone
number when dialing in.

The user has permission to dial in to this server.

A nUll-terminated Unicode string that specifies the call-back phone number for
the user.

Chapter 10 RAS Server Administration Reference 311

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RasAdminUserGetlnfo, RasAdminUserSetinfo

SECURITY _MESSAGE
The SECURITY_MESSAGE structure is used with the RasSecurityDialogComplete
function to indicate the results of a RAS security DLL authentication transaction.

Members
dwMsgld

Indicates whether the RAS server should grant access to the remote user. This
member can be one of the following values.

Value Meaning

SECURITYMSG_SUCCESS

SECURITYMSG_FAILURE

SECURITYMSG_ERROR

The security DLL successfully authenticated the
remote user identified by the UserName member.
The RAS server will proceed with its PPP
authentication.

The security DLL denied access to the remote
user identified by the UserName member. The
RAS server will hang up the call and record the
failed authentication in the Windows NT/2000
event log.

An error occurred that prevented validation of the
remote user. The RAS server will hang up the call
and record the error in the Windows NT/2000
event log.

312 Volume 4 Remote Access Services

hPort
Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

dwError
Specifies an error code. If dwMsgld is SECURITYMSG_ERROR, set ~wError to one
of the nonzero error codes defined in Winerror.h or Raserror.h. The RAS server
records this error code in the Windows NTIWindows 2000 event log. If the dwMsgld
member indicates success or failure, set dwError to zero.

UserName
Specifies the name of the remote user if dwMsgld is SECURITYMSG_SUCCESS or
SECURITYMSG_FAILURE. This string can be empty if dwMsgld is
SECURITYMSG_ERROR.

Domain
Specifies the name of the logon domain for the remote user if dwMsgld is
SECURITYMSG_SUCCESS or SECURITYMSG_FAILURE. This string can be empty
if dwMsgld is SECURITYMSG_ERROR.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in Rasshost.h.

Remote Access Service (RAS) Overview, RAS Server Administration Structures,
RasSecurityDialogBegin, RasSecurityDialogComplete

RAS Server Administration Union
For Windows NT version 4.0, use the following union to implement RAS Server
Administration functionality. Windows 95 does not provide RAS server support.

RAS_PARAMS_VALUE

The RAS_PARAMS_VALUE union is used in the RAS_PARAMETERS structure to
store the data associated with a media-specific parameter. The P _Type member of the
RAS_PARAMETERS structure uses a value from the RAS_PARAMS_FORMAT
enumeration to indicate the type of value currently stored in RAS_PARAMS_VALUE.

Members
Number

Chapter 10 RAS Server Administration Reference 313

If the P _Type member of the RAS_PARAMETERS structure is ParamNumber, the
Number member contains the value of the media-specific parameter. For example,
the MAXCONNECTBPS parameter is of type ParamNumber, and the value might be
19200.

If the P _Type member of the RAS_PARAMETERS structure is ParamNumber, the
Number member contains the value of the media-specific parameter. For example,
the MAXCONNECTBPS parameter is of type ParamNumber, and the value might be
19200.

String
If the P _Type member of the RAS_PARAMETERS structure is ParamString, the
String member contains the value of the media-specific parameter.

length
Specifies the length, in characters, of the string pointed to by the Data member.

Data
Pointer to a buffer that contains the string value of a media-specific parameter.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Union,
RAS_PARAMETERS,RAS_PARAMS_FORMAT

RAS Server Administration Enumeration Types
For Windows NT version 4.0, use the following enumeration to implement RAS Server
Administration functionality. Windows 95 does not provide RAS server support.

RAS_PARAMS_FORMAT

314 Volume 4 Remote Access Services

The RAS_PARAMS_FORMAT enumeration type is used in the RAS_PARAMETERS
structure to indicate the type of data associated with a media-specific key.

Enumerator Value

ParamNumber

ParamString

Meaning

Indicates that the data associated with the key is a number.

Indicates that the data associated with the key is a string.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service (RAS) Overview, RAS Server Administration Enumeration
Types, RAS_PARAMETERS

CHAPTER 11

RRAS Overview

About Routing and Remote Access Service
The following chapters describe the API for the Routing and Remote Access SeNice
(RRAS). RRAS is a feature of Microsoft® WindowS® 2000.

The RRAS API has the following components:

• RAS Administration

• Router Administration

• Routing Protocol Interface

• Routing Table Manager Version 1

• Routing Table Manager Version 2

• Extensible·Authentication Protocol

• Tracing

Windows 2000 RRAS Registry Layout
The following syntax showsan example registry layout for the router seNice.

315

(continued)

316 Volume 4 Remote Access Services

(continued)

Chapter 11 RRAS Overview 317

(continued)

318 Volume 4 Remote Access Services

(continued)

Every router manager installed in the system will have a registry key created under the
Router key. The DLLPath variable specifies the location of the DLL corresponding to the
router manager and the ProtocoliD variable specifies the protocol family identifier for the
router manager.

The Interfaces key is populated with the interfaces that have been added to the local
system from the Router configuration. Each interface has an associated Type (Internal,
Dedicated, or Dynamic) and subkeys for each router manager (IP and IPX for example).

About Remote Access Service Administration
Microsoft® Windows® 2000 provides a set of functions for administering user
permissions and ports on Windows 2000 RAS servers. Using these functions, you can
develop a RAS server administration application to perform the following tasks:

• Enumerate those users who have a specified set of RAS permissions

• Assign or revoke RAS permissions for a specified user

• Enumerate the configured ports on a RAS server

• Get information and statistics about a specified port on a RAS server

• Reset the statistics counters for a specified port

• Disconnect a specified port

You can also install a RAS server administration DLL for auditing user connections and
assigning IP addresses to dial-in users. The DLL exports a set of functions that the RAS
server calls whenever a user tries to connect or disconnect.

RAS User Administration
A Windows® 2000 RAS server uses a user account database that contains information
about a set of user accounts. The information includes a user's RAS privileges, which
are a set of bit flags that determine how the RAS server responds when the user calls to
connect. You can use the RAS server administration functions to locate the user account
database, and to get and set the RAS privileges for user accounts.

Chapter 11 RRAS Overview 319

A Windows 2000 RAS server can be part of a Windows 2000 domain, or it can be a
stand-alone Windows 2000 Server or Windows 2000 Professional workstation that is not
part of a domain. For a server that is part of a domain, the user account database is
stored on the Windows NTlWindows 2000 server that is the Primary Domain Controller
(PDC). A stand-alone server stores its own local user account database. To get the
name of the server that stores the user account database used by a specified RAS
server, you can call the MprAdminGetPDCServer function. You can then use the name
of the user account server in a call to the NetQueryDisplaylnformation function to
enumerate the users in a user account database. You can also use the server name in
calls to the MprAdminUserGetlnfo and MprAdminUserSetlnfo functions to get and set
the RAS privileges for a specified user account.

The MprAdminUserGetlnfo and MprAdminUserSetlnfo functions use the
RAS_USER_O structure to specify a user's RAS privileges and call-back phone number.
The RAS privileges indicate the following information:

• Whether the user can make a remote connection to the server or the domain to which
the server belongs.

• Whether the user can establish a connection through a call back, in which the RAS
server hangs up and then calls back to the user to establish the connection.

Each user account specifies one of the following flags to indicate the user's call-back
privileges.

Value Meaning

RASPRIV _NoCaliback The RAS server will not call back the user to establish a
connection.

RASPRIV _AdminSetCaliback When the user calls, the RAS server hangs up and calls a preset
call-back phone number stored in the user account database.
The szPhoneNumber member of the RAS_USER_O structure
contains the user's call-back phone number.

RASPRIV _CalierSetCaliback When the user calls, the RAS server provides the option of
specifying a phone number to call back. The user can also
choose to connect immediately without a call back. The
szPhoneNumber member contains a default number that the
user can override.

RAS Server and Port Administration
You can use the RAS server administration functions to get information about a specified
RAS server and its ports. These functions can also be used to terminate a connection on
a specified RAS server port.

320 Volume 4 Remote Access Services

The MprAdminServerGetlnfo function returns a MPR_SERVER_O structure that
contains information about the configuration of a RAS server. The returned information
includes the number of ports currently available for connection, the number of ports
currently in use, and the server version number.

The MprAdminPortEnum function retrieves an array of RAS_PORT _0 structures that
contains information for each of the ports configured on a RAS server. The information
for each port includes:

• The name of the port

• Information about the device attached to the port

• Whether the RAS server associated with the port is a Windows NTlWindows 2000
Server

• Whether the port is currently in use, and, if it is, information about the connection

You can call the MprAdminPortGetlnfo function to get additional information about a
specified port on a RAS server. This function returns a RAS_PORT_1 structure that
contains a RAS_PORT _0 structure and additional information about the current state of
the port. The RasAdminPortGetlnfo function also returns an array of
RAS_PARAMETERS structures that describe the values of any media-specific keys
associated with the port. A RAS_PARAMETERS structure uses a value from the
RAS_PARAMS_FORMAT enumeration to indicate the format of the value for each
media-specific key.

The MprAdminPortGetlnfo function also returns a RAS_PORT_STATISTICS structure
that contains various statistic counters for the current connection, if any, on the port. For
a port that is part of a multilink connection, MprAdminPortGetlnfo returns statistics for
the individual port and cumulative statistics for all ports involved in the connection. You
can use the MprAdminPortClearStats function to reset the statistic counters for the
port. The MprAdminPortDisconnect function disconnects a port that is in use.

Use the MprAdminBufferFree function to free memory allocated by the
MprAdminPortEnum, and MprAdminPortGetlnfo functions. Use the
MprAdminGetErrorString function to get a string that describes a RAS error code
returned by one of the RAS server administration (RasAdmin) functions.

RAS Administration Dll
Microsofl® Windows NT® version 4.0 makes it possible for you to install a RAS
administration DLL on a Windows NT version 4.0 RAS server. The DLL exports functions
that the RAS server calls whenever a user tries to connect or disconnect. You can use
the DLL to perform the following administrative functions:

• Decide whether to allow a user to connect to the server. This can provide a security
check in addition to the standard RAS user authentication.

• Record the time that each user connects to and disconnects from the server. This can
be useful for billing or auditing purposes.

Chapter 11 RRAS Overview 321

• Assign an IP address to each user. This can be useful for security, since you can use
this feature to map a user's connection to a specific computer.

Implement the following functions when developing a RAS server administration DLL:

• MprAdminAcceptNewConnection

• MprAdminConnectionHangupNotification

• MprAdminGetlpAddressForUser

• MprAdminReleaselpAddress

A RAS administration DLL must implement and export all of the above functions. If any
of the functions are not implemented, the remote access service will not start.

The MprAdminAcceptNewConnection and
MprAdminConnectionHangupNotification functions enable the DLL to audit user
connections to the server. A Windows NTlWindows 2000 RAS server calls the
MprAdminAcceptNewConnection function whenever a user tries to connect. This
function can prevent the user from connecting. You can also use the
MprAdminAcceptNewConnection function to generate an entry in a log for billing or
auditing. When the user disconnects, the RAS server calls the
MprAdminConnectionHangupNotification function, which can log the time at which
the user disconnected.

After the RAS server has authenticated a caller, it calls the
MprAdminGetlpAddressForUser function to get an IP address for the remote client.
The DLL can use this function to provide an alternate scheme to map an IP address to a
dial-in user. If MprAdminGetlpAddressForUser is not implemented, a RAS server
connects a remote user to an IP address that is selected from a static pool of IP
addresses, or one selected by a Dynamic Host Configuration Protocol (DHCP) server.
The MprAdminGetlpAddressForUser function allows the DLL to override this default IP
address and specify a particular IP address for each user. The
MprAdminGetlpAddressForUser function can set a flag that causes RAS to call the
MprAdminReleaselPAddress function when the user disconnects. The DLL can use
MprAdminReleaselPAddress to update its user-to-IP-address map.

RAS serializes calls into the administration DLL. A call into one of the DLL's functions for
a given RAS client will not be preempted by a call to that function for a different RAS
client; RAS will not call the function for the other client until the initial call is complete.
Furthermore, serialization extends to certain groups of functions. The IP address
functions are serialized as a group; a call into either MprAdminGetlpAddressForUser
or MprAdminReleaselpAddressblocks calls into both functions until the initial call is
complete. MprAdminAcceptNewConnection and
MprAdminConnectionHangupNotification are also serialized as a group.

322 Volume 4 Remote Access Services

RAS executes the functions for assigning IP addresses in one process; the functions for
connection and disconnection notifications are executed in another process.
Consequently, the DLL should not depend on shared data between these two sets of
functions.

The RAS server logs an error in the system event log if an error occurs when it tries to
load a RAS administration DLL or when calling one of the DLL's functions. This can
happen, for example, if the DLL specified the wrong name for an exported function, or if
it did not include the function name in the DEF file. The entry in the event log indicates
the reason for the failure.

Windows 2000 and later: RAS administration DLLs that implement this function
interface do not work on Windows 2000 and later versions. For Windows 2000 and later
versions, use the MprAdmin function interface provided with the more recent versions of
Windows. For more information, see the RAS Administration Reference in the Routing
and RAS documentation.

RAS Administration Dll Registry Setup
The setup program for a third-party RAS administration DLL must register the DLL with
RAS by providing information under the following key in the registry:

HKEY _lOCAl_MACHINE\SOFTWARE\Microsoft\RAS\AdminDII

To register the DLL, set the following values under this key.

Value name Value data

DisplayName

DLLPath

A REG_SZ string that contains the user-friendly display name of
the DLL.

A REG_SZ string that contains the full path of the DLL.

For example, the registry entry for a RAS administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY _lOCAl_MACHINE\SOFTWARE\Microsoft\RAS\AdminDIl

DisplayName : REG_SZ : Netwerks RAS Admin Dll

DllPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the registry
entries for the DLL.

CHAPTER 12

Remote Access Service
Administration

Remote Access Services Administration Overview
Microsoft® Windows® 2000 provides a set of functions for administering user
permissions and ports on Windows 2000 RAS servers. Using these functions, you
can develop a RAS server administration application to perform the following tasks:

• Enumerate those users who have a specified set of RAS permissions

• Assign or revoke RAS permissions for a specified user

• Enumerate the configured ports on a RAS server

• Get information and statistics about a specified port on a RAS server

• Reset the statistics counters for a specified port

• Disconnect a specified port

323

You can also install a RAS server administration DLL for auditing user connections and
assigning IP addresses to dial-in users. The DLL exports a set of functions that the RAS
server calls whenever a user tries to connect or disconnect.

RAS User Administration
A Windows® 2000 HAS server uses a user account database that contains information
about a set of user accounts. The information includes a user's RAS privileges, which
are a set of bit flags that determine how the RAS server responds when the user calls to
connect. You can use the RAS server administration functions to locate the user account
database, and to get and set the RAS privileges for user accounts.

A Windows 2000 RAS server can be part of a Windows 2000 domain, or it can be a
stand-alone Windows 2000 Server or Windows 2000 Professional workstation that is not
part of a domain. For a server that is part of a domain, the user account database is
stored on the Windows NTlWindows 2000 server that is the Primary Domain Controller
(PDC). A stand-alone server stores its own local user account database. To get the
name of the server that stores the user account database used by a specified RAS
server, you can call the MprAdmlnGetPDCServer function. You can then use the name
of the user account server in a call to the NetQueryDisplaylnformation function to
enumerate the users in a user account database. You can also use the server name in
calls to the MprAdminUserGetlnfo and MprAdminUserSetlnfo functions to get and set
the RAS privileges for a specified user account.

324 Volume 4 Remote Access Services

The MprAdminUserGetlnfo and MprAdminUserSetlnfo functions use the
RAS_USER_O structure to specify a user's RAS privileges and call-back phone number.
The RAS privileges indicate the following information:

• Whether the user can make a remote connection to the server or the domain to which
the server belongs.

• Whether the user can establish a connection through a call back, in which the RAS
server hangs up and then calls back to the user to establish the connection.

Each user account specifies one of the following flags to indicate the user's call-back
privileges.

Value Meaning

RASPRIV _NoCaliback

RASPRIV _AdminSetCaliback

RASPRIV _ CalierSetCaliback

The RAS server will not call back the user to
establish a connection.

When the user calls, the RAS server hangs up and
calls a preset call-back phone number stored in the
user account database. The szPhoneNumber
member of the RAS_USER_O structure contains the
user's call-back phone number.

When the user calls, the RAS server provides the
option of specifying a phone number to call back.
The user can also choose to connect immediately
without a call back. The szPhoneNumber member
contains a default number that the user can
override.

RAS Server and Port Administration
You can use the RAS server administration functions to get information about a specified
RAS server and its ports. These functions can also be used to terminate a connection on
a specified RAS server port.

The MprAdminServerGetlnfo function returns a MPR_SERVER_O structure that
contains information about the configuration of a RAS server. The returned information
includes the number of ports currently available for connection, the number of ports
currently in use, and the server version number.

The MprAdminPortEnum function retrieves an array of RAS_PORT _0 structures that
contains information for each of the ports configured on a RAS seNer. The information
for each port includes:

• The name of the port

• Information about the device attached to the port

Chapter 12 Remote Access Service Administration 325

• Whether the RAS server associated with the port is a Windows NTlWindows 2000
Server

• Whether the port is currently in use, and, if it is, information about the connection

You can call the MprAdminPortGetlnfo function to get additional i,",formation about a
specified port on a RAS server. This function returns a RAS_PORT~.J structure that
contains a RAS_PORT ~O structure and additional information about the current state of
the port. The RasAdminPortGetlnfo function also returns an array of
RAS_PARAMETERS structures that describe the values of any medi~-specific keys
associated with the port. A RAS_PARAMETERS structure uses a value from the
RAS_PARAMS_FORMAT enumeration to indicate the format of the value for each
media-specific key.

The MprAdminPortGetlnfo function also returns a RAS_PORT_STATISTICS structure
that contains various statistic counters for the current connection, if any, on the port. For
a port that is part of a multilink connection, MprAdminPortGetlnfo returns statistics for
the individual port and cumulative statistics for all ports involved in the connection. You
can use the MprAdminPortClearStats function to reset the statistic counters for the
port. The MprAdminPortDisconnect function disconnects a port that is in use.

Use the MprAdminBufferFree function to free memory allocated by the
MprAdminPortEnum and MprAdminPortGetlnfo functions. Use the
MprAdminGetErrorString function to get a string that describes a RAS error code
returned by one of the RAS server administration (RasAdmin) functions.

RAS Administration DLL
Microsoft® Windows NT® version 4.0 makes it possible for you to install a RAS
administration DLL on a Windows NT version 4.0 RAS server. The DLL exports functions
that the RAS server calls whenever a user tries to connect or disconnect. You can use
the DLL to perform the following administrative functions:

• Decide whether to allow a user to connect to the server. This can provide a security
check in addition to the standard RAS user authentication.

• Record the time that each user connects to and disconnects from the server. This can
be useful for billing or auditing purposes.

• Assign an IP address to each user. This can be useful for security, since you can use
this feature to map a user's connection to a specific computer.

Implement the following functions when developing a RAS server administration DLL:

• MprAdminAcceptNewConnection

• MprAdminConnectionHangupNotification

• MprAdminGetlpAddressForUser

• MprAdminReleaselpAddress

326 Volume 4 Remote Access Services

A RAS administration DLL must implement and export all of the above functions. If any
of the functions are not implemented, the remote access service will not start.

The MprAdminAcceptNewConnection and
MprAdminConnectionHangupNotification functions enable the DLL to audit user
connections to the server. A Windows NTlWindows 2000 RAS server calls the
MprAdminAcceptNewConnection function whenever a user tries to connect. This
function can prevent the user from connecting. You can also use the
MprAdminAcceptNewConnection function to generate an entry in a log for billing or
auditing. When the user disconnects, the RAS server calls the
MprAdminConnectionHangupNotification function, which can log the time at which
the user disconnected.

After the RAS server has authenticated a caller, it calls the
MprAdminGetlpAddressForUser function to get an IP address for the remote client.
The DLL can use this function to provide an alternate scheme to map an IP address to a
dial-in user. If MprAdminGetlpAddressForUser is not implemented, a RAS server
connects a remote user to an IP address that is selected from a static pool of IP
addresses, or one selected by a Dynamic Host Configuration Protocol (DHCP) server.
The MprAdminGetlpAddressForUser function allows the DLL to override this default IP
address and specify a particular IP address for each user. The
MprAdminGetlpAddressForUser function can set a flag that causes RAS to call the
MprAdminReleaselPAddress function when the user disconnects. The OLL can use
MprAdminReleaselPAddress to update its user-to-IP-address map.

RAS serializes calls into the administration DLL. A call into one of the DLL's functions for
a given RAS client will not be preempted by a call to that function for a different RAS
client; RAS will not call the function for the other client until the initial call is complete.
Furthermore, serialization extends to certain groups of functions. The IP address
functions are serialized as a group; a call into either MprAdminGetlpAddressForUser
or MprAdminReleaselpAddress blocks calls into both functions until the initial call is
complete. MprAdminAcceptNewConnection and
MprAdminConnectionHangupNotification are also serialized as a group.

RAS executes the functions for assigning IP addresses in one process; the functions for
connection and disconnection notifications are executed in another process.
Consequently, the DLL should not depend on shared data between these two sets of
functions.

The RAS server logs an error in the system event log if an error occurs when it tries to
load a RAS administration DLL or when calling one of the DLL's functions. This can
happen, for example, if the DLL specified the wrong name for an exported function, or if
it did not include the function name in the DEF file. The entry .in the event log indicates
the reason for the failure.

Chapter 12 Remote Access Service Administration 327

Windows 2000 and later: RAS administration DLLs that implement this function
interface do not work on Windows 2000 and later versions. For Windows 2000 and later
versions, use the MprAdmin function interface provided with the more recent versions of
Windows. For more information; see the RAS Administration Reference in the Routing
and RAS documentation.

RAS Administration DLL Registry Setup
The setup program for a third-party RAS administration DLL must register the DLL with
RAS by providing information under the following key in the registry:

HKEY _LOCAL_MACH IN E\SOFTW ARE\Microsoft\RAS\AdminDII

To register the DLL, set the following values under this key.

Value name Value data

DisplayName

DLLPath

A REG_SZ string that contains the user-friendly display name of
. the DLL.

A REG_SZ string that contains the full path of the DLL.

For example, the registry entry for a RAS administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDII

DisplayName : REG_SZ : Netwerks RAS Admin DLL

DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program fora RAS administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the registry
entries for the DLL.

Remote Access Service Administration Reference
This chapter describes.the reference elements used to implement the Remote Access
Service (RAS) for MicrosOft® Windows NT® version 4.0.

The RAS API is distributed as a feature of Microsoft Windows 2000. HAS can also be
downloaded and used asa component of either Windows 2000 or Windows NT 4.0.
RAS in either of these forms provides the same functionality. The only difference is the
naming convention that is used for the reference elements in each version of the
RASAPI.

The functions that are used to implement RAS for Windows NT 4.0 typically begin with
the "RasAdmin" prefix. The analogous functions for RRAS begin with the "MprAdmin"
prefix.

328 Volume 4 Remote Access Services

For example, Windows NT 4.0 RAS provides a function called RasAdminPortGetlnfo.
The analogous function in RRAS is called MprAdminPortGetlnfo. Another example:
Windows NT 4.0 RAS provides the callback function RasAdminGetlpAddressForUser.
RRAS provides a similar callback function called MprAdminGetlpAddressForUser.
Exceptions to this rule are RasAdminPortClearStatistics, which, under RRAS is
MprAdminPortClearStats, and RasAdminFreeBuffer, which under RRAS is
MprAdminBufferFree.

The following table lists the Windows NT 4.0 RAS functions and the corresponding
RRAS functions. .

Windows NT 4.0 RAS

RasAdminAcceptNewConnection

RasAdminConnectionHangupNotification

RasAdminFreeBuffer

RasAdminGetErrorString

RasAdminGetlpAddressForUser

RasAdminPortClearStatistics

RasAdminPortDisconnect

RasAdminPortEnum

RasAdminPortGetlnfo

RasAdminReleaselpAddress

RasAdminUserGetlnfo

RasAdminUserSetlnfo

RRAS

MprAdminAcceptNewConnection

MprAdminConnectionHangupNotification

MprAdminBufferFree

MprAdminGetErrorString

MprAdminGetlpAddressForUser

MprAdminPortClearStats

MprAdminPortDisconnect

MprAdminPortEnum

MprAdminPortGetlnfo

MprAdminReleaselpAddress

MprAdminUserGetlnfo

MprAdminUserSetlnfo

Although the RRAS functions are similar to their Windows NT 4.0 RAS counterparts in
functionality, RRAS functions often take a different set of parameters. See the reference
page for a particular function for complete information on that function's parameter list.

The RRAS redistributabJe for Windows NT 4.0 adds the following functions, which have
no counterparts in Windows NT 4.0 RAS:

MprAdminAcceptNewLink

MprAdminConnectionClearStats

MprAdminConnectionEnum

MprAdminConnectionGetlnfo

MprAdminGetPDCServer

MprAdminlsServiceRunning

MprAdminLinkHangupNotification

MprAdminPortReset

MprAdminServerConnect

MprAdminServerDisconnect

Chapter 12 Remote Access Service Administration 329

In addition to the preceding functions, Windows 2000 adds the following functions:

MprAdminSendUserMessage

MprAdminAcceptNewConnection2

MprAdminConnectionHangupNotification2

RAS Administration Functions
This documentation describes RRAS functions that are used to develop software to
administer RAS dial-up connections. These functions include:

MprAdminConnectionClearStats

MprAdminConnectionEnum

MprAdminConnectionGetlnfo

MprAdminPortClearStats

MprAdminPortDisconnect

MprAdminPortEnum

MprAdminPortGetlnfo

MprAdminPortReset

Additional functions are used for both RAS administration and router administration.
These functions are listed following and are documented in the Router Administration
Functions reference:

MprAdminBufferFree

MprAdminGetErrorString

MprAdminlsServiceRunning

MprAdminServerConnect

MprAdminServerDisconnect

MprAdminConnectionClearStats
The MprAdminConnectionClearStats function resets the statistics counters for the
specified connection.

330 Volume 4 Remote Access Services

Parameters
hRasServer

Handle to the Remote Access Server on which to execute
MprAdminConnectionClearStats. Obtain this handle by calling
MprAdminServerConnect.

hRasConnection
Handle to the connection for which to reset the statistics. Obtain this handle by calling
MprAdminConnectionEnum.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_INVALlD_PARAMETER.

Remarks
This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of MprapLdll that ships with the RRAS redistributable exports the
function as RasAdminConnectionClearStats rather than
MprAdminConnectionClearStats. Therefore, when using the RRAS redistributable,
use LoadLibrary and GetProcAddress to access this function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminConnectionEnum, MprAdminServerConnect

MprAdminConnectionEnum
The MprAdminConnectionEnum function enumerates all active connections.

Parameters
hRasServer

Chapter 12 Remote Access Service Administration 331

Handle to the Remote Access Server on which connections are enumerated. Obtain
this handle by calling MprAdminServerConnect.

dwLevel
Specifies the format of the information returned through the IplpbBuffer parameter.

Windows NT 4.0: This parameter must be zero.

Windows 2000 and later: This parameter should be zero, one, or two, corresponding
to RAS_CONNECTION_O, RAS_CONNECTION_1, or RAS_CONNECTION_2.

IplpbBuffer
Upon successful execution, IplpbBuffer points to an array of structures that describe
the enumerated connections. These structures are of type RAS_CONNECTION_O,
RAS_CONNECTION_1, or RAS_CONNECTION_2 depending on the value of the
dwLevel parameter. Free this memory by calling MprAdminBufferFree.

dwPrefMaxLen
Preferred maximum length of returned data (in 8-bit bytes). If dwPrefMaxLen is -1, the
buffer returned is large enough to hold all available information.

IpdwEntriesRead
Pointer to a DWORD variable. Upon successful return, this variable contains the total
number of connections enumerated from the current resume position.

IpdwTotalEntries
Pointer to a DWORD variable. Upon successful return, this variable contains the total
number of connections that could have been enumerated from the current resume
position.

IpdwResumeHandle
Pointer to a DWORD variable. Upon successful return, this variable contains a
resume handle that can be used to continue the enumeration. The
IpdwResumeHandle parameter should be zero on the first call, and left unchanged on
subsequent calls. If the return code is ERROR_MORE_DATA,another call may be
made using this handle to retrieve more data. If the handle is NULL upon return, the
enumeration cannot be continued. This handle is invalid for other types of error
returns.

332 Volume 4 Remote Access Services

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID _LEVEL

ERROR_INVALlD_PARAMETER

Remarks

The value passed for dwLevel is not zero, one, or two.
Levels one and two are supported only on Windows 2000
and later operating systems.

At least one of the following parameters is NULL or does
not point to valid memory: IplpBuffer, IpdwEntriesRead, or
IpdwTotalEntries ..

Not all of the data was returned with this call. To obtain
additional data, call the function again using the resume
handle.

The handle passed in the hRasServer parameter is NULL
or invalid ..

This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of Mprapi.dll that ships with the RRAS redistributable exports the
function as RasAdminConnectionEnum rather than MprAdminConnectionEnum.
Therefore, when using the RRAS redistributable, use LoadLibrary and
GetProcAddress to access this function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use MprapLlib.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminServerConnect, MprAdminBufferFree, RAS_CONNECTION_O

MprAdminConnectionGetlnfo
The MprAdminConnectionGetlnfo function provides information on a specific
connection.

Parameters
hRasServer

Chapter 12 Remote Access Service Administration 333

Handle to the computer on which connection information is gathered. This computer
should be running RRAS for Windows NTlWindows 2000. Obtain this handle by
calling MprAdminServerConnect.

dwLevel
Specifies the format and content of the returned information. Acceptable values for
dwLevel are zero or one. A value of zero returns a RAS_CONNECTION_O structure;
a value of one returns a RAS_CONNECTION_1 structure.

hConnection
Handle to the connection for which to obtain information. Obtain this handle by calling
MprAdminConnectionEnum.

IplpbBuffer
Pointer to a pOinter variable that points to a RAS_CONNECTION_O or
RAS_CONNECTION_1 structure upon successful execution. Free this memory by
calling MprAdminBufferFree.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_INVALlD_PARAMETER.

Remarks
This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of MprapLdll that ships with the RRAS redistributable exports the
function as RasAdminConnectionGetlnfo rather than MprAdminConnectionGetlnfo.
Therefore, when using the RRAS redistributable, use LoadLibrary and
GetProcAddress to access this function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.
Library: Use MprapLlib.

334 Volume 4 Remote Access Services

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminServerConnect, MprAdminBufferFree, MprAdminConnectionEnum,
RAS_CONNECTION_O, RAS_CONNECTION_1

Mpr Adm in PortClearStats
The MprAdminPortClearStats function resets the statistics for the specified port.

Parameters
hRasServer

Handle to the Remote Access Server on which to clear the statistics for the specified
port. Obtain this handle by calling MprAdminServerConnect.

hPort
Handle to the port for which statistics are reset. Obtain this handle by calling
MprAdminPortEnum.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_INVALlD_PARAMETER.

Remarks
This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of MprapLdll that ships with the RRAS redistributable exports the
function as RasAdminPortClearStats rather than MprAdminPortClearStats.
Therefore, when using the RRAS redistributable, use LoadLibrary and
GetProcAddress to access this function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Chapter 12 Remote Access Service Administration 335

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminServerConnect, MprAdminPortEnum

Mpr Admi n PortDisconnect
The MprAdminPortDisconnect function disconnects a connection on a specific port.

Parameters
hRasServer

Handle to the Remote Access Server on which to disconnect the port. Obtain this
handle by calling MprAdminServerConnect.

hPort
Handle to the port to disconnect. Obtain this handle by calling MprAdminPortEnum.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_INVALID_PARAMETER.

Remarks
This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of MprapLdll that ships with the RRAS redistributable exports the
function as RasAdminPortDisconnect rather than MprAdminPortDisconnect.
Therefore, when using the RRAS redistributable, use LoadLibrary and
GetProcAddress to access this function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminServerConnect, MprAdminPortEnum

336 Volume 4 Remote Access Services

MprAdminPortEnum
The MprAdminPortEnum function enumerates all active ports in a specific connection,
or all ports available for use or currently in use by RAS.

Parameters
hRasServer

Handle to the remote access server on which to enumerate ports. Obtain this handle
by calling MprAdminServerConnect.

dwLevel
Specifies the level of information returned in the enumeration. This parameter must
be zero.

hConnection
Handle to a connection within which the active ports are enumerated. If hConnection
is INVALID_HANDLE_VALUE, all the ports in use or available for use by RRAS are
enumerated. Obtain the hConnection handle by calling MprAdminConnectionEnum.

IplpbBuffer
Pointer to a pointer variable that will point to an array of RAS_PORT _0 structures on
successful return. Free this memory by calling MprAdminBufferFree.

dwPrefMaxLen
Preferred maximum length of returned data (in a-bit bytes). If dwPrefMaxLen is -1,
the buffer returned is large enough to hold all available information.

IpdwEntriesRead
Pointer to a DWORD variable. Upon successful return, this variable contains the total
number of ports enumerated from the current resume position.

IpdwTotalEntries
Pointer to a DWORD variable. Upon successful return, this variable contains the total
number of ports that could have been enumerated from the current resume position.

Value

Chapter 12 Remote Access Service Administration 337

IpdwResumeHandle
Pointer to a DWORD variable. Upon successful execution, IpdwResumeHandle
contains a handle that can be used to resume the enumeration. The
IpdwResumeHandle parameter should be zero on the first call, and left unchanged on
subsequent calls. If the return code is ERROR_MORE_DATA, the call may be
reissued with the handle to retrieve more data. If the handle is NULL upon return, the
enumeration cannot be continued. This handle is invalid for other types of error
returns.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Meaning

ERROR_ACCESS_DENIED

ERROR_DDM_NOT _RUNNING

The calling application does not have sufficient privileges.

The Demand Dial Manager (DDM) is not running, possibly
because the Dynamic Interface Manager (DIM) is
configured to run only on a LAN.

ERROR_INVALlD_PARAMETER

Remarks

At least one of the following parameters is NULL or does
not point to valid memory: IplpBuffer, IpdwEntriesRead, or
IpdwTotalEntries.

Not all of the data was returned with this call. To obtain
additional data, call the function again using the handle that
was returned in the IpdwResumeHandle parameter.

The dwLevel parameter is not zero.

This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of MprapLdll that ships with the RRAS redistributable exports the
function as RasAdminPortEnum rather than MprAdminPortEnum. Therefore, when
using the RRAS redistributable, use LoadLibrary and GetProcAddress to access this
function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

338 Volume 4 Remote Access Services

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminBufferFree, MprAdminServerConnect, MprAdminConnectionEnum

MprAdminPortGetlnfo
The MprAdminPortGetlnfo function gets information for a specific port.

Parameters
hRasServer

Handle to the Remote Access Server computer on which to collect port information.
Obtain this handle by calling MprAdminServerConnect.

dwLevel
Specifies the format and content of the returned information. Acceptable values for
dwLevel are zero or one. A value of zero will return a RAS_PORT_O structure; a
value of one will return a RAS_PORT _1 structure.

hPort
Handle to the port for which to collect information. Obtain this handle by calling
MprAdminPortEnum.

IplpbBuffer
Pointer toa pointer variable that will pOint to a RAS_PORT_O or RAS_PORT_1
structure on successful return. Free this memory by calling MprAdminBufferFree.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_INVALlD_PARAMETER.

Remarks
This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of MprapLdll that ships with the RRAS redistributable exports the
function as RasAdminPortGetlnfo rather than MprAdminPortGetlnfo. Therefore, when
using the RRAS redistributable, use LoadLibrary and GetProcAddress to access this
function.

Chapter 12 Remote Access Service Administration 339

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Remote Access Service Administration Reference, RAS Administration. Functions,
MprAdminServerConnect, MprAdminBufferFree, MprAdminPortEnum

MprAdminPortReset
The MprAdminPortReset function resets the communication device attached to the
specified port.

Parameters
hRasServer

Handle to the Remote Access Server on which to reset the specified port. Obtain this
handle by calling MprAdminServerConnect.

hPort
Handle to the port to be reset. Obtain this handle by calling MprAdminPortEnum.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is ERROR_INVALID_PARAMETER.

Remarks
This function is available on Windows NT 4.0 ifthe RRAS redistributable is installed.
However, the version of Mprapi.dll that ships with the RRAS redistributable exports the
function as RasAdminPortReset rather than MprAdminPortReset. Therefore, when
using the RRAS redistributable, use LoadLibrary and GetProcAddress to access this
function.

340 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminServerConnect, MprAdminPortEnum

RAS Admin DLL Functions
A RAS server administration DLL allows you to customize the following aspects of RAS:

• Access control for remote access clients

• Remote access client connection and disconnection event logging
• Logging and control of IP address allocation to remote access clients.

A RAS Admin DLL must implement and export all of the following functions:

MprAdminAcceptNewLink

MprAdminConnectionHangupNotification

Mpr AdminConnection HangupNotification2

MprAdminGetlpAddressForUser

MprAdminLinkHangupNotification

MprAdminReleaselpAddress

In addition, the RAS Admin DLL must implement and export either

MprAdminAcceptNewConnection, and

MprAdminConnectionHangupNotification

or

MprAdminAcceptNewConnection2, and

MprAdminConnectionHangupNotification2

If not all of the required functions are implemented, the remote access service will fail to
start.

RAS serializes calls into the administration DLL. A call into one of the DLL's functions for
a given RAS client will never be preempted by a call to that function for a different RAS
client; the initial call is guaranteed to complete before RAS calls the function for the other
client. Furthermore, serialization extends to certain groups of functions. The IP address
functions are serialized as a group; a call into either MprAdminGetlpAddressForUser

Chapter 12 Remote Access Service Administration 341

or MprAdminReleaselpAddress will block calls into both until the initial call completes.
Together, the new connection/link and connection/link-hang-up notification functions are
also serialized asa group.

Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside a callout function. Calls to these functions will not return when
made from within a callout function.

MprAdminAcceptNewConnection
Remote Access Service calls the MprAdminAcceptNewConnection function each time
a new user dials in and successfully completes RAS authentication.
MprAdminAcceptNewConnection determines whether the user is allowed to connect.

Parameters
pRasConnectionO

Pointer to a RAS_CONNECTION_O structure describing this connection.

pRasConnection 1
Pointer to a RAS_CONNECTION_1 structure describing this connection.

Return Values
If MprAdminAcceptNewConnection accepts the connection, the return value should be
TRUE.

If MprAdminAcceptNewConnection rejects the connection, the return value should be
FALSE.

Remarks
If MprAdminAcceptNewConnection does not accept the new connection, RAS will not
call the MprAdminConnectionHangupNotification function.

Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside MprAdminAcceptNewConnection. Calls to these functions will
not return when made from within a callout function.

342 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminAcceptNewConnection2, MprAdminConnectionHangupNotification,
MprAdminConnectionHangupNotification2, RAS_CONNECTION_O,
RAS_CONNECTION_1

MprAdminAcceptNewConnection2
Remote Access Service calls the MprAdminAcceptNewConnection2 function each
time a new user dials in and successfully completes RAS authentication.
MprAdminAcceptNewConnection2 determines whether the user is allowed to connect.

Parameters
pRasConnectionO

Pointer to a RAS_CONNECTION_O structure describing this connection.

pRasConnection 1
Pointer to a RAS_CONNECTION_1 structure describing this connection.

pRasConnection2
Pointer to a RAS_CONNECTION_2 structure describing this connection.

Return Values
If MprAdminAcceptNewConnection2 accepts the connection, the return value should
be TRUE.

If MprAdminAcceptNewConnection2 rejects the connection, the return value should
be FALSE.

Remarks
If MprAdminAcceptNewConnection2 does not accept the new connection, RAS will not
call the MprAdminConnectionHangupNotification2 function.

Chapter 12 Remote Access Service Administration 343

Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside MprAdminAcceptNewConnection2. Calls to these functions will
not return when made from within a callout function.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminConnectionHangupNotification2, RAS_CONNECTION_O,
RAS_CONNECTION_1, RAS_CONNECTION_2

MprAdminAcceptNewLink
RAS calls the MprAdminAcceptNewLink function each time a link is created for a
particular connection. RAScalis this function once immediately after .
MprAdminAcceptNewConnection returns, and an additional time for every new link
thatis to.be used with the connection.

Parameters
pRasPortO

Pointer to a RAS_PORT _0 structure that describes the port being used by the link.

pRasPort1
Pointer to a RAS_PORT _1 structure that describes the port being used by the link.

Return Values
.If RAS should accept the new link, the return value should be. TRUE.

If RAS should nofaccept the new link, the return value should be FALSE.

Remarks
If RAS does not accept the new link, RAS will not call the
MprAdminLinkHangupNotification function.

Do not call any of the RAS Administration Functions or RAS User Administration
Functions from inside MprAdminAcceptNewLink. Calls to these functions will not return
when made from within a callout function.

344 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Acces/S Service Administration Reference, RAS Administration Functions,
MprAdminAcceptNewConnection, MprAdminConnectionHangupNotification,
MprAdminLinkHangupNotification, RAS_PORT _0, RAS_PORT_1

MprAdminConnectionHangupNotification
Remote Access Service calls the MprAdminConnectionHangupNotification function
after the last link for the specified connection has been dismantled.

Parameters
pRasConnectionO

Pointer to a RAS_CONNECTION_O structure describing this connection.

pRasConnection 1
Pointer to a RAS_CONNECTION_1 structure describing this connection.

Return Values
This function does not have a return value.

Remarks
Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside MprAdminConnectionHangupNotification. Calls to these
functions will not return when made from within a callout function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Chapter 12 Remote Access Service Administration 345

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminAcceptNewConnection, MprAdminAcceptNewLink,
MprAdminConnectionHangupNotification2, RAS_CONNECTION_O,
RAS_CONNECTION_1

MprAdminConnectionHangupNotification2
Remote Access Service calls the MprAdminConnectionHangupNotification2 function
after the last link for the specified connection has been dismantled.

Parameters
pRasConnectionO

Pointer to a RAS_CONNECTION_O structure describing this connection.

pRasConnection 1
Pointer to a RAS_CONNECTION_1 structure describing this connection.

pRasConnection2
Pointer to a RAS_CONNECTIOI'C2 structure describing this connection.

Return Values
This function does not have a return value.

Remarks
Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside MprAdminConnectionHangupNotification2. Calls to these
functions will not return when made from within a callout function.-

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminAcceptNewConnection2, MprAdminAcceptNewLink,
RAS_CONNECTION_O, RAS_CONNECTION_1, RAS_CONNECTION_2

346 Volume 4 Remote Access Services

MprAdminGetlpAddressForUser
RAS calls MprAdminGetlpAddressForUser once for each user that requires an IP
address. RAS calls the function with the IP address that RAS selects for the user. The
third-party DLL that implements this function may change this ad~ress to one of its own
choosing.

Parameters
IpwszUserName

Pointer to a Unicode string cont~ining the name of the user requiring an IP address.

IpwszPortName
Pointer to a Unicode string containing the name of the port on which the user is
attempting to connect.

IpdwlpAddress
Pointer to a DWORD variable. When RAS calls the function, this variable contains
either the IP address RAS intends to allocate for the user or zero. If the variable
contains an IP address, the DLL can either accept the address or substitute a different
one. Ifthe variable contains a zero, the DLL must allocate an IP address for the user.
If this variable is zero, and the DLL does not allocate an IP address, the user will not
be able to connect.

bNotifyRelease
Pointer to a BOOl variable. If the DLL sets this variable to TRUE, RAS will call
MprAdminReleaselpAddress when the user disconnects. Otherwise, RAS will not
notify the DLL when this IP address is released.

Return Values
If function succeeds, the return value should be NO_ERROR.

If the function returns anything other than NO_ERROR, RAS will terminate the
connection.

Remarks
Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside MprAdminGetlpAddressForUser. Calls to these functions will
not return when made from within a callout function.

Chapter 12 Remote Access Service Administration 347

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminReleaselpAddress

MprAdminLinkHangupNotification
RAS calls the MprAdminLinkHangupNotification function whenever a link for a
particular connection is dismantled.

Parameters
pRasPortO

Pointer to a RAS_PORT _0 structure that describes the port being used by the link.

pRasPort1
Pointer to a RAS_PORT _1 structure that describes the port being used by the link.

Return Values
This function does not have a return value.

Remarks
Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside MprAdminLinkHangupNotification. Calls to these functions will
not return when made from within a callout function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

348 Volume 4 Remote Access Services

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminConnectionHangupNotification,
MprAdminConnectionHangupNotification2, MprAdminAcceptNewConnection,
MprAdminAcceptNewConnection2, MprAdminAcceptNewLink, RAS_PORT _0,
RAS_PORT_1

MprAdminReleaselpAddress
The MprAdminReleaselpAddress function is called when a user disconnects and the
user's IP address is about to be released.

Parameters
IpwszUserName

Pointer to a Unicode string containing the name of the user requiring an IP address.

IpwszPortName
Pointer to a Unicode string containing the name of the port on which the user is
attempting to connect.

IpdwlpAddress
Pointer to a DWORD variable. This variable contains the IP address to be released.

Return Values
This function does not have a return value.

Remarks
Do not call any of the RAS Administration Functions or Ras User Administration
Functions from inside MprAdminReleaselpAddress. Calls to these functions will not
return when made from within a callout function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.

Chapter 12 Remote Access Service Administration 349

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminConnectionHangupNotification, MprAdminGetlpAddressForUser

RAS User Administration Functions
Use the following functions to manage dial-up users:

MprAdminGetPDCServer

MprAdminSendUserMessage

MprAdminUserGetlnfo

MprAdminUserSetlnfo

To obtain a list of current users on a particular domain, use the
NetQueryDisplaylnformation function. The prototype for this function is in the
Imaccess.h header file.

MprAdminGetPDCServer
The MprAdminGetPDCServer function retrieves the name of the server with the master
User Accounts Subsystem (UAS) from either a domain name or a server name. Either
the domain name parameter or the server name parameter may be NULL, but not both.

Parameters
IpwsDomainName

Pointer to a null-terminated Unicode string that contains the name of the domain to
which the RAS server belongs. This parameter can be NULL if you are running your
RAS administration application on a Windows NTlWindows 2000 Server that is not
participating in a domain. If this parameter is NULL, the IpwsServerName parameter
must not be NULL.

IpwsServerName
Pointer to a null-terminated Unicode string that contains the name of the
Windows NTlWindows 2000 RAS server. Specify the name with leading ''\\''
characters, in the form: \\servername. This parameter can be NULL if the IpwsDomain
parameter is not NULL.

350 Volume 4 Remote Access Services

IpwsPDCName
Pointer to a buffer that receives a nUll-terminated Unicode string containing the name
of a domain controller that has the user account database. The buffer should be big
enough to hold the server name (UNCLEN + 1). The function prefixes the returned
server name with leading "W' characters, in the form: \\servername.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails the return value is one of the following values.

Value Meaning

ERROR_NO_SUCH_DOMAIN

NERR_lnvalidComputer

Remarks

The domain specified is not valid.

The IpwsDomainName is NULL, and
IpwsServerName parameter is not valid.

The MprAdminGetPDCServer function can obtain the name of the server with the user
accounts database given the name of the RAS server, or the name of the domain in
which the RAS server resides. To get the server name, call the GetComputerName
function

If the server name specified by IpszServer is part of a domain, The server returned by
MprAdminGetPDCServer will be either the primary domain controller or a backup
domain controller.

If the server name specified by IpszServer is a stand-alone Windows NTlWindows 2000
Server (that is, the server or workstation does not participate in a
Windows NTIWindows2000 domain), then the server name itself is returned in the
IpszUserAccountServer buffer.

You can then use the name of the user account server in a call to the
NetQueryDisplaylnformation function to enumerate the users in the user account
database. You can also use the server name in calls to the MprAdminUserGetlnfo and
MprAdminUserSetlnfo functions to get and set RAS privileges for a specified user
account.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Chapter 12 Remote Access Service Administration 351

Remote Access Service Administration Reference, RAS Administration Functions,
GetComputerName, MprAdminUserGetlnfo, MprAdminUserSetlnfo,
NetQueryDisplaylnformation

MprAdminSendUserMessage
The MprAdminSendUserMessage function sends a message to the user connected on
the specified connection.

Parameters
hConnection

Handle to the connection on which the user is connected. Use
MprAdminConnectionEnum to obtain this handle.

IpwszMessage
Pointerto a Unicode string containing the message to the user.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALlD_PARAMETER

The caller does not have sufficient
privileges.

The Demand Dial Manager (DDM) is
nofrunning, possibly because the
Dynamic Interface Manager (DIM) is
configured to run only on a LAN.

The hCormection parameter is not
valid.

The IpwszMessage parameter
is NULL.

352 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.
Library: Use MprapLlib.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminConnectionEnum

MprAdminUserGetlnfo
The MprAdminUserGetlnfo function retrieves all RAS information for a particular user.

Parameters
IpwsServerName

Pointer to a Unicode string containing the name of the server computer with the
master User Accounts Subsystem (UAS). If the remote access server is part of a
domain, the computer with the UAS will be either the primary domain controller or the
backup domain controller. If the remote access server is not part of a domain, then
the server itself will store the UAS. In either case, call the MprAdminGetPDCServer
function to obtain the value for this parameter.

If the server itself stores the UAS, this parameter may be NULL.

IpwsUserName
Pointer to a Unicode string containing the name of the user for which to get RAS
information.

dwLevel
This parameter must be zero.

Windows 2000 and later: This parameter may be zero or one.

IpbBuffer
Pointer to a RAS_USER_O structure. The caller must allocate (and free) the memory
for this structure. Upon successful return, this structure contains the RAS data for the
specified user.

Windows 2000 and later: If the dwLevel parameter specifies one, IpbBuffer should
point to a RAS_USER_1 structure.

Chapter 12 Remote Access Service Administration 353

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails the return value is one of the following values.

Value Meaning

ERROR_ACCESS_DEN I ED

ERROR_INVALI D _LEVEL

ERROR_INVALlD_PARAMETER

ERROR_NO_SUCH_USER

Remarks

The caller does not have sufficient privileges.

The value of dwLevel is invalid.

IpbBuffer is NULL

The user specified by IpwsUserName does not
exist on the server specified by
Ipws$erverName.

This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of Mprapi.dll that ships with the RRAS redistributable exports the
function as RasAdminUserGetlnfo rather than MprAdminUserGetlnfo. Therefore,
when using the RRAS redistributable, use LoadLibrary and GetProcAddress to access
this function.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.
Library: Use Mprapi.lib.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminGetPDCServer, MprAdminUserSetlnfo, RAS_USER_O

MprAdminUserSetlnfo
The MprAdminUserSetlnfo function sets RAS information for the specified user.

354 Volume 4 Remote Access Services

Parameters
IpwsServerName

Pointer to a Unicode string containing the name of the server computer with the
master User Accounts Subsystem (UAS). If the remote access server is part of a
domain, the computer with the UAS will be either the primary domain controller or the
backup domain controller. If the remote access server is not part of a domain, then
the server itself will store the UAS. In either case, call the MprAdminGetPDCServer
function to obtain the value for this parameter.

If the server itself stores the UAS, this parameter may be NULL.

IpwsUserName
Pointer to a Unicode string containing the name of the user for which to set RAS
information.

dwLevel
This parameter must be zero.

Windows 2000 and later: This parameter may be zero or one.

IpbBuffer
Pointer to a RAS_USER_O structure that specifies the new RAS information for the
user.

Windows 2000 and later: If the dwLevel parameter specifies one, IpbBuffer should
point to a RAS_USER_1 structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following values.

Value

ERROR_ACCESS_DENI ED

ERROR _INVALID_LEVEL

ERROR_NOT _ENOUGH_MEMORY

Remarks

Meaning

The caller does not have sufficient privileges.

The value of dwLevel is invalid.

There are insufficient resources to complete
the operation.

The user specified by IpwsUserName does
not exist on the server specified by
IpwsServerName.

This function is available on Windows NT 4.0 if the RRAS redistributable is installed.
However, the version of MprapLdll that ships with the RRAS redistributable exports the
function as RasAdminUserSetlnfo rather than MprAdminUserSetlnfo. Therefore,
when using the RRAS redistributable, use LoadLibrary and GetProcAddress to access
this function.

Chapter 12 Remote Access Service Administration 355

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.
Library: Use Mprapi.lib.

Remote Access Service Administration Reference, RAS Administration Functions,
MprAdminGetPDCServer, MprAdminUserGetlnfo, RAS_USER_O

RAS Administration Structures
The RAS Administration Functions use the following structures:

PPP _ATCP _INFO
PPP _CCP _INFO
PPP_INFO
PPP_INFO_2
PPP _IPCP ~INFO
PPP _IPCP _INF02
PPP _IPXCP _INFO
PPP _LCP _INFO

PPP .:..ATCP _INFO

PPP ...:NBFCP:INFO
RAS_CONNECTION_O
RAS_CONNECTION_1

. RAS_CONNECTION_2
RAS_PORT_O
RAS_PORT_1
RAS-,USER_O
RAS_USER_1

The PPP _ATCP _INFO structure contains the result of a PPP AppleTalk projection
operation.

Members
dwError

Specifies the result of the PPP control protocol negotiation. A vallie of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation.

wszAddress
Specifies a Unicode string that holds the client's AppleTalk address on the RAS
connection.

356 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
PPP_INFO

The PPP _CCP _INFO structure contains information that describes the results of a
Compression Control Protocol (CCP) negotiation.

Members
dwError

Specifies an error if the negotiation is unsuccessful.

dwCompressionAlgorithm
Specifies the compression algorithm that the local computer is using. The following
table shows the possible values for this member.

Value

RASCCPCA_MPPC

RASCCPCA_STAC

dwOptions

Meaning

Microsoft Point-to-Point Compression (MPPC) Protocol

ST AC option 4

Specifies the compression options on the local computer. The following options are
supported:

Chapter 12 Remote Access Service Administration 357

Option

PPP _CCP _COMPRESSION

PPP _CCP _HISTORYLESS

PPP _CCP _ENCRYPTION40BITOLD

PPP _CCP _ENCRYPTION40BIT

PPP _CCP _ENCRYPTION56BIT

PPP _CCP _ENCRYPTION128BIT

dwRemoteCompressionAlgorithm

Meaning

Compression without encryption.

Microsoft Point to Point Encryption (MPPE)
in stateless mode. The session key is
changed after every packet. This mode
improves performance on high latency
networks, or networks that experience
significant packet loss.

MPPE using 40-bit keys.

MPPE using 40-bit keys.

MPPE using 56-bit keys.

MPPE using 128-bit keys.

Specifies the compression algorithm that the remote computer is using. The following
table shows the possible values for this member.

Value Meaning

RASCCPCA_MPPC

RASCCPCA_STAC

dwRemoteOptions

Microsoft Point-to-Point Compression
(MPPC) Protocol

ST AC option 4

Specifies the compression options on the remote computer. The following options are
supported.

Option

PPP _CCP _COMPRESSION

PPP _CCP _HISTORYLESS

PPP _CCP _ENCRYPTION40BITOLD

PPP _CCP _ENCRYPTION40BIT

PPP _CCP _ENCRYPTION56BIT

PPP _CCP _ENCRYPTION128BIT

Meaning

Compression without encryption.

Microsoft Point to Point Encryption (MPPE)
in stateless mode. The session key is
changed after every packet. This mode
improves performance on high latency
networks, or networks that experience
significant packet loss.

MPPE using 40-bit keys.

MPPE using 40-bit keys.

MPPE using 56-bit keys.

MPPE using 128-bit keys.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Mprapi.h.

358 Volume 4 Remote Access Services

PPP _INFO
The PPP _INFO structure is used to report the results of the various PPP projection
operations for a connection.

Members
nbf

Specifies a PPP _NBFCP _INFO structure.

ip
Specifies a PPP _IPCP _INFO structure.

ipx
Specifies a PPP _IPXCP _INFO structure.

at
Specifies a PPP _ATCP _INFO structure.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.

Remote Access Service Administration Reference, RAS Administration Structures,
PPP _ATCP _INFO, PPP _IPCP _INFO, PPP _IPXCP _INFO, PPP _NBFCP _INFO,
RAS_CONNECTION_1

PPP INFO 2
- - i

The PPP _INFO_2 structure is used to report the results of the various PPP projection
operations for a connection.

Members
nbf

Chapter 12 Remote Access Service Administration 359

Specifies a PPP _NBFCP _INFO structure.
ip

Specifies a PPP _IPCP _INFO structure.

ipx
Specifies a PPP _IPXCP _INFO structure.

at
Specifies a PPP _ATCP _INFO structure.

eep
Specifies a PPP _CCP_INFO structure.

lep
Specifies a PPP _LCP _INFO structure.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
PPP _ATCP _INFO, p.pp _IPCP _INFO, PPP _IPXCP _INFO, PPP _NBFCP _INFO,
PPP ~CCP _INFO, PPP _LCP _INFO, RAS_CONNECTION_2

PPP IPCP INFO -
The PPP_IPCP _INFO structure contains the result of a ppp Internet Protocol (IP)
negotiation.

360 Volume 4 Remote Access Services

Members
dwError

Specifies the result of the PPP control protocol negotiation. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation.

wszAddress
Specifies a Unicode string that holds the local computer's IP address for the
connection. This string has the form a.b.c.d; for example, "11.101.237.71".

The PPP _IPCP _INFO structures provides address information from the perspective of
the server. For example, if a remote access client is connecting to a RAS server, this
member holds the IP address of the server.

wszRemoteAddress
Specifies a Unicode string that holds the IP address of the remote computer. This
string has the form "a.b.c.d". If the address is not available, this member is an empty
string, "".

The PPP _IPCP _INFO structures provides address information from the perspective of
the server. For example, if a remote access client is connecting to a RAS server, this
member holds the IP address of the client.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
PPP _INFO, PPP _IPCP _INF02

PPP _IPCP _INF02
The PPP _IPCP _INF02 structure contains the result of a PPP Internet Protocol (IP)
negotiation.

Members
dwError

Chapter 12 Remote Access Service Administration 361

Specifies the result of the PPP control protocol negotiation. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation.

wszAddress
Specifies a Unicode string that holds the local computer's IP address for the
connection.

The PPP _IPCP _INF02 structures proviqes address information from the perspective
of the server. For example, if a remote access client is connecting to a RAS server,
this member holds the IP address of the server.

wszRemoteAddress
Specifies a Unicode string that holds the IP address of the remote computer. If the
address is not available, this member specifies an empty string, "".

The PPP _IPCP _INF02 structures provides address information from the perspective
of the server. For example, if a remote access client is connecting to a RAS server,
this member holds the IP address of the client.

dwOptions
Specifies IPCP options for the local computer. Currently, the only option is
PPP _IPCP _ VJ. This option indicates that IP datagrams sent by the local computer
are compressed using Van Jacobson compression.

dwRemoteOptons
Specifies IPCP options for the remote peer. Currently, the only option is
PPP _IPCP _ VJ. This option indicates that IP datagrams sent by the remote peer (that
is, received by the local computer) are compressed using Van Jacobson
compression.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
PPP _INFO, PPP _IPCP _INFO

PPP _IPXCP _INFO
The PPP _IPXCP _INFO structure contains the result of a PPP Internetwork Packet
Exchange (IPX) projection operation.

362 Volume 4 Remote.Access Services

Members
dwError

Specifies the result of the PPP control protocol negotiation. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation.

wszAddress
Specifies a Unicode string that holds the client's IPX address on the RAS connection.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
PPP_INFO

The PPP _LCP _INFO structure contains information that describes the results of an PPP
Link Control Protocol (LCP) negotiation.

Members
dwError

Chapter 12 Remote Access Service Administration 363

Specifies the error that occurred if the negotiation was unsuccessful.

dw Authentication Protocol
Specifies the authentication protocol used to authenticate the local computer. This
member can be one of the following values.

Value Meaning

PPP_LCP_PAP

PPP _LCP _SPAP

PPP _LCP _CHAP

PPP _LCP _EAP

dw AuthenticationData

Password Authentication Protocol

Shiva Password Authentication Protocol

Challenge Handshake Authentication Protocol

Extensible Authentication Protocol

Specifies additional information about the authentication protocol specified by the
dwAuthenticationProtocol member. This member can be one of the following
values.

Value Meaning

PPP _LCP _CHAP _MD5

PPP _LOP _CHAP _MS

PPP_LCP_CHAP_MSV2

MD5CHAP

Microsoft CHAP

Microsoft CHAP version 2

dwRemoteAuthenticationprotocol
Specifies the authentication protoC()1 used to authenticate the remote computer. See
the dwAuthenticationProtocol member for a list of possible values.

dwRemoteAuthenticationData
Specifies additional information about the authentication protocol specified by
dwRemoteAuthenticationProtocol. See thedwAuthenticationData member for a
list of possible values.

dwTerminateReason
This member always has a value of zero.

dwRemoteTerminateReason
This member always has a value of zero.

dwOptions
SpeCifies information about LCP options in use by the local computer. This member is
a combination of the following flags.

Flag

PPP _LCP _MUL TILlNK_FRAMING

RASLCPO_PFC

RASLCPO_ACFC .

Meaning

The connection is using multilink.

Protocol Field Compression

Address and Control Field Compression

(continued)

364 Volume 4 Remote Access Services

(continued)

Flag

RASLCPO_SSHF

RASLCPO_DES_56

RASLCPO_3_DES

dwRemoteOptions

Meaning

DES 56-bit encryption

Triple DES Encryption

Specifies information about LCP options in use by the remote computer. This member
is a combination of the following flags.

Flag Meaning

PPP _LCP _MUL TILlNK_FRAMING

RASLCPO_PFC

RASLCPO_ACFC

RASLCPO_DES_56

RASLCPO_3_DES

dwEapTypeld

The connection is using multilink.

Protocol Field Compression (see RFC 1172)

Address and Control Field Compression
(see RFC 1172)

Short Sequence Number Header Format
(see RFC 1990)

DES 56-bit encryption

Triple DES Encryption

Specifies the type identifier of the Extensible Authentication Protocol (EAP) used to
authenticate the local computer. The value of this member is valid only if
dwAuthenticationProtocol is PPP _LCP _EAP.

dwRemoteEapTypeld
Specifies the type identifier of the Extensible Authentication Protocol (EAP) used to
authenticate the remote computer. The value of this member is valid only if
dwRemoteAuthenticationProtocol is PPP _LCP _EAP.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

PPP _NBFCP _INFO
The PPP _NBFCP _INFO structure contains the result of a PPP NetBEUI Framer (NBF)
projection operation.

Members
dwError

Chapter 12 Remote Access Service Administration 365

Specifies the result of the PPP control protocol negotiation. A value of zero indicates
success. A nonzero value indicates failure, and is the actual fatal error that occurred
during the control protocol negotiation.

wszWksta
Specifies a Unicode string that is the local workstation's computer name. This unique
computer name is the closest NetBlOS equivalent to a client's NetBEUI address on a
remote access connection.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
PPP_INFO

The RAS_CONNECTION_O structure contains general information regarding a specific
connection, such as user name or domain. For more detailed information about a
specific connection, such as bytes sent or received, see RAS_CONNECTION_1.

366 Volume 4 Remote Access Services

Members
hConnection

Handle to the connection.

hlnterface
Handle to the interface.

dwConnectDuration
Specifies the duration of the current connection, in seconds.

dwlnterfaceType
Specifies the interface type of the current connection.

dwConnectionFlags
Specifies one of a set of flags that describe this connection. This member can contain
the following flags.

Flag

RAS_FLAGS_RAS_CONNECTION

wszlnterfaceName

Meaning

The connection is using
Point-to-Point Protocol (PPP).

The messenger service is active on
the client, and that messages can be
sent to the client using
MprAdminSendUserMessage.

The connection is a NetBlOS
connection from a Windows 3.11 or
Windows for Workgroups client.

The connection is using AppleTalk
Remote Access. Protocol (ARAP).

Specifies a unicode string that contains the name of the interface for this connection.

wszUserName
Specifies a unicode string that contains the name of the user that is logged on to the
connection.

wszLogonDomain
Specifies a· unicode string that contains the domain which the connected user is
logged onto.

wszRemoteComputer
Specifies a unicode string that contains the name of the remote computer.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Mprapi.h.

Chapter 12 Remote Access Service Administration 367

Remote AccessService Administration Reference, RAS Administration Structures,
RAS_CONNECTION_1, RAS_CONNECTION_2

The RAS_CONNECTION_1 structure contains detailed information regarding a specific
connection, such as error counts and bytes received. For more general information
about a specific connection, such as user name or domain, see RAS_CONNECTION_O.

Members
hConnection

Handle to the connection.

hlnterface
Handle to the interface.

pppinfo
Specifies a PPP _INFO structure.

dwBytesXmited
Specifies the bytes transmitted on the current connection.

dwBytesRcved
Specifies the bytes received on the current connection.

dw FramesXm ited
Specifies the frames transmitted on the current connection.

dwFramesRcved
Specifies the frames received on the current connection.

368 Volume 4 Remote Access Services

dwCrcErr
Specifies the CRC (Cyclic Redundancy Check) errors on the current connection.

dwTimeoutErr
Specifies the time-out errors on the current connection.

dwAlignmentErr
Specifies the alignment errors on the current connection.

dwHardwareOverrunErr
Specifies the number of hardware overrun errors on the current connection.

dwFramingErr
Specifies the number of framing errors for the current connection.

dwBufferOverrunErr
Specifies the number of buffer overrun errors.

dwCompressionRatioln
Specifies a percentage that indicates the degree to which data received on this
connection is compressed. The ratio is the size of the compressed data divided by the
size of the same data in an uncompressed state.

dwCompressionRatioOut
Specifies a percentage that indicates the degree to which data transmitted on this
connection is compressed. The ratio is the size of the compressed data divided by the
size of the same data in an uncompressed state.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
RAS_CONNECTION_O, RAS_CONNECTION_2, PPP _INFO

The RAS_CONNECTION_2 structure contains information for a connection, including
the GUID that identifies the connection.

Chapter 12 Remote Access Service Administration 369

Members
hConnection

Handle to the connection.

wszUserName[UNLEN + 1]
Specifies a unicode string that contains the name of the user on this connection.

dwlnterfaceType
Specifies the type of interface.

guid
Specifies a GUID (Globally Unique IDentifier) that identifies the connection. For
incoming connection, this GUID is valid only as long as the connection is active.

Ppplnfo2
Specifies aPPP _IN FO_2 structure that contains information about the PPP
negotiation for this connection.

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
MprAdminConnectionEnum, RAS_CONNECTION_O, RAS_CONNECTION_1

TheRAS_PORT _0 structure contains general information regarding a specific RAS port,
such as port condition and port name. For more detailed information about a specific
port, such as line speed or errors, see RAS_PORT_1.

(continued)

370 Volume 4 Remote Access Services

(continued)

Members
hPort

Handle to the port.

hConnection
Handle to the connection.

dwPortCondition
RAS_PORT _CONDITION structure.

dwTotalNumberOfCal/s
Specifies the cumulative number of calls this port has serviced.

dwConnectDuration
Specifies the duration of the current connection, in seconds.

wszPortName
Specifies the port name.

wszMediaName
Specifies the media name.

wszDeviceName
Specifies the device name.

wszDevice Type
Specifies the device type.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service Administration Reference, RAS Administration Structures,
RAS_PORT _1, RAS_PORT _CONDITION

The RAS_PORT _1 structure contains detailed information regarding a specific RAS port,
such as line speed or errors. For more general information about a port, such as port
condition or port name, see RAS_PORT_O.

Members
hPort

Handle to the port.

hConnection
Handle to the connection.

dwHardwareCondition

Chapter 12 Remote Access Service Administration 371

Specifies a RAS_HARDWARE_CONDITION structure.

dwLineSpeed
Specifies the line speed of the port, represented in bits per second.

dwBytesXmited
Specifies the bytes transmitted on the port.

dwBytesRcved
Specifies the bytes received on the port.

dwFramesXmited
Specifies the frames transmitted on the port.

dwFramesRcved
Specifies the frames received on the port.

dwCrcErr
Specifies the eRe errors on the port.

dwTimeoutErr
Specifies the time-out errors on the port.

dwAlignmentErr
Specifies the alignment errors on the port.

372 Volume 4 Remote Access Services

dwHardwareOverrunErr
Specifies the hardware overrun errors on the port.

dwFramingErr
Specifies the framing errors on the port.

dwBufferOverrunErr
Specifies the buffer overrun errors on the port.

dwCompressionRatioln
Specifies a percentage that indicates the degree to which data received on this
connection is compressed. The ratio is the size· of the compressed data divided by the
size of the same data in an uncompressed state.

dwCompressionRatioOut
Specifies a percentage indicating the degree to which data transmitted on this
connection is compressed. The ratio is the size of the compressed data divided by the
size of the same data in an uncompressed state.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in RassapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
RAS_PORT_O, RAS_HARDWARE_CONDITION

The RAS_USER_O structure contains information for a particular Remote Access
Service user.

Members
bfPrivilege

Specifies the types of remote access privilege available to the RAS user.

Chapter 12 Remote Access Service Administration 373

The following remote access privilege constants are defined in Mprapi.h.

Value Meaning

RASPRIV _DialinPrivilege

RASPRIV _NoCaliback

RASPRIV _AdminSetCaliback

RASPRIV _CalierSetCaliback

The user has permission to dial-in to the RAS
server.

The RAS server will not call back the user to
establish a connection.

When the user calls, the RAS server hangs up and
calls a preset call-back phone number stored in the
user account database. The wszPhoneNumber
member of the RAS_USER_O structure contains
the user's call-back phone number.

When the user calls, the RAS server provides the
option of specifying a call-back phone number. The
user can also choose to connect immediately
without a call back. The wszPhoneNumber
member contains a default number that the user
can override.

Use the following constant as a mask to isolate the call-back privilege. (This constant
is also defined in Mprapi.h.)

RASPRIV _CalibackType

wszPhoneNumber
Pointer to a Unicode string containing the phone number at which the RAS user
should be called back.

Windows NT/2000: Requires Windows NT 4.0 or later.
Header: Declared in Rassapi.h.

Remote Access Service Administration Reference, RAS Administration Structures,
MprAdminUserGetlnfo, MprAdminUserSetlnfo, RAS_USER_1

The RAS_USER_1 structure contains information for a particular Remote Access
Service user. The RAS_USER_1 structure is similar to the RAS_USER_O structure,
except that RAS_USER_1 supports an additional member, bfPrivilege2.

374 Volume 4 Remote Access Services

Members
bfPrivilege

Specifies the types of remote access privilege available to the RAS user.

The following remote access privilege constants are defined in Mprapi.h.

Value Meaning

RASPRIV _DialinPrivilege

RASPRIV _NoCaliback

RASPRIV _AdminSetCaliback

RASPRIV _CalierSetCaliback

The user has permission to dial-in to the RAS
server.

The RAS server will not call back the user to
establish a connection.

When the user calls, the RAS server hangs up
and calls a preset call-back phone number
stored in the user account database. The
wszPhoneNumber member of the
RAS_USER_O structure contains the user's call­
back phone number.

When the user calls, the RAS server provides
the option of specifying a call-back phone
number. The user can also choose to connect
immediately without a call back. The
wszPhoneNumber member contains a default
number that the user can override.

Use the following constant as a mask to isolate the call back privilege. (This constant
is also defined in Mprapi.h.)

RASPRIV _CalibackType

wszPhoneNumber
Pointer to a Unicode string containing the phone number at which the RAS user
should be called back.

bfPrivilege2
Specifies flags specifying additional remote access privileges that are available to the
RAS user.

The following remote access privilege constants are defined in Mprapi.h.

Value Meaning

RASPRIV2_DialinPolicy Remote access policies determine whether the
user is allowed dial-in access.

,

Chapter 12 Remote Access Service Administration 375

Windows NT/2000: Requires Windows 2000.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Structures,
MprAdminUserGetlnfo, MprAdminUserSetlnfo,RAS~USER_O

RAS Administration Enumerated Types
The RAS Administration Functions use the following enumerated types:

RAS_HARDWARE_CONDITION

RAS_PORT _CONDITION

RAS_HARDWARE_ CONDITION
The RAS_HARDWARE_CONDITION enumeration type specifies hardware status
information about a given RASport.

Values
RAS_HARDWARE_OPERATIONAL

The port is operational.

RAS_HARDWARE_FAILURE
The port is not operational, due to a hardware failure.

WindOWs.NT/2000: Requires Windows 2000. Available as a redistributableJor
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service. Administration Reference, RASAdministration Enumerated
Types

376 Volume 4 Remote Access Services

The RAS_PORT_CONDITION enumerated type specifies information regarding the
connection condition of a given RAS port.

Values
RAS_PORT _NON_OPERATIONAL

The port is not operational.

RAS_PORT _DISCONNECTED
The port is disconnected.

RAS_PORT _CALLING_BACK
The port is in the process of a call back.

RAS_PORT_LISTENING
The port is listening for incoming calls.

RAS_PORT _AUTHENTICATING
The port is authenticating a user.

RAS_PORT _AUTHENTICATED
The port has authenticated a user.

RAS_PORT _INITIALIZING
The port is initializing.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in MprapLh.

Remote Access Service Administration Reference, RAS Administration Enumerated
Types

CHAPTER 13

Extensible Authentication
Protocol (EAP)

EAP Overview

377

Microsoft® Windows® 2000 supports the Extensible Authentication Protocol (EAP). EAP
allows third-party authentication modules to interact with the implementation of the Point­
to-Point Protocol (PPP) included in Windows 2000 Remote Access Service (RAS).

EAP is an extension to PPP, providing a standard support mechanism for authentication
schemes such as token cards, Kerberos, Public Key, and S/Key. EAP has been made
available in response to increasing demand to augment RAS authentication with third­
party security devices.

EAP is fully supported on both the Windows 2000 Dial-Up Server and the Dial-Up
Networking Client. EAP is a critical technology component for secure Virtual Private
Networks (VPN), protecting them against "brute force" or "dictionary" attacks and
password guessing.

EAP improves on previous authentication protocols such as Password Authentication
Protocol (PAP) and Challenge Handshake Authentication Protocol (CHAP).
Windows 2000 supports these earlier authentication protocols as well.

EAP and Internet Authentication Service
The Extensible Authentication Protocol (EAP) is supported on RAS servers running
Microsoft® Windows® 2000. It is also supported on Windows 2000 Servers running
Internet Authentication Service (lAS). lAS provides remote authentication services using
Remote Access Dial-In User Service (RADIUS). The following documentation is
applicable to implementing an EAP on a RAS server or on an lAS server. If you are
implementing EAP on lAS, simply treat references to RAS as though they refer to lAS.

EAP Installation
Vendors implement EAPs, also known as authentication protocols, in Dynamic-Link
Libraries (DLLs). A DLL for the authentication protocol must reside on both the client and
server computers. For simplicity, the client and server DLLs may be identical; however,
this is not a requirement. Also, note that the same DLL may support more than one
authentication protocol.

378 Volume 4 Remote Access Services

The vendor should provide setup software to install and remove the DLL. The setup
software should also create the appropriate keys and values for the authentication
protocol in the system registry. The installation of each EAP DLL should create the
following registry key.

HKEY _LOCAL_MACHINE\System\CurrentControISet\Services\Rasman\PPP\
EAP\<eaptypeid>

In the preceding path, <eaptypeid> is the identifier of the authentication protocol. The
vendor must obtain this identifier from the Internet Assigned Numbers Authority (lANA).

The setup software should remove this key when uninstalling the DLL. The system
removes this key if the user uninstalls RAS.

For a description of the supported values for this key, see Authentication Protocol
Registry Values.

Authentication Protocol Registry Values
The setup software for the EAP DLL may create the following registry values below
<eaptypeid>. These registry values are defined in the Raseapif.h header file. The
RAS_EAP _VALUENAME_PATH and RAS_EAP _VALUENAME_FRIENDLY_NAME
values are required. The setup software may create other keys and values as well.
These could be used by the authentication protocol itself. For an example of registry
configuration, see Registry Values Example.

RAS_EAP_VALUENAME_PATH

RAS_EAP _ VALUENAME_FRIENDL Y _NAME

RAS_EAP _VALUENAME_CONFIGUI

RAS_EAP_VALUENAME_DEFAULT_DATA

RAS_EAP _ VALUENAME_REQUIRE_CONFIGUI

RAS_EAP _ VALUENAME_CONFIG_CLSID

RAS_EAP _ VALUENAME_IDENTITY

RAS_EAP _ VALUENAME_INTERACTIVEUI

RAS_EAP _ VALUENAME_INVOKE_NAMEDLG

RAS_EAP _ VALUENAME_INVOKE_PWDDLG

RAS_EAP _ VALUENAME_ENCRYPTION

RAS_EAP_VALUENAME_STANDALONE_SUPPORTED

Constant Value

Type

Description

Path

REG_EXPAND_SZ

Specifies the path to the EAP DLL.

Constant Value

Type

Description

Constant Value

Type

Description

Constant Value

Type

Description

Constant Value

Type

Description

Constant Value

Type

Description

Chapter 13 Extensible Authentication Protocol (EAP) 379

FriendlyName

REG_SZ

Specifies a friendly name for the authentication protocol.
This name will appear in the Dial-Up Networking user
interface.

ConfigUIPath

REG_EXPAND_SZ

Specifies the path to the DLL that implements the
configuration user interface.

ConfigData

REG_BINARY

Specifies default configuration data for the authentication
protocol.

RequireConfigUI

REG_DWORD

Specifies whether the user must provide configuration
data in the Dial-Up Networking user interface. If this
value is 1, the user will not be allowed to exit the Dial-Up
Networking UI without providing configuration data. The
default value is O.

ConfigCLSID

REG_SZ

Specifies the class identifier of the configuration UI on the
server.

RAS_EAP _ VALUENAMEJOENTITY

Constant Value

Type

Description

IdentityPath

REG_EXPAND_SZ

Specifies the path to the DLL that implements functions to
obtain the user's identity.

380 Volume 4 Remote Access Services

RAS_EAP _ VALUENAMEJNTERACTIVEUI

Constant Value

Type

Description

InteractiveUIPath

REG_EXPAND_SZ

Specifies the path to the DLL that implements the
interactive user interface.

RAS_EAP _ VALUENAMEJNVOKE_NAMEDLG

Constant Value

Type

Description

Constant Value

Type

Description

I nvokeUsernameDialog

REG_DWORD

Specifies whether the RAS Connection Manager should
display the standard Windows NT/2000 user name dialog
(value of 1) or invoke RasEapGetldentity (value of 0).
The default value is 1.

InvokePasswordDialog

REG_DWORD

Specifies whether the RAS Connection Manager should
display the standard Windows NT/2000 password dialog.
If this value exists and is 0, RAS will not display the
password dialog. The default value is 1.

RAS_EAP _ VALUENAME_ENCRYPTION

Constant Value

Type

Description

Constant Value

Type

Description

MPPEEncryptionSupported

REG_DWORD

If this value is 1, the authentication protocol can generate
keys for the Microsoft Point-to-Point Encryption (MPPE)
style of encryption. Possible values are 0 or 1. The
default value is O.

StandaloneSupported

REG_DWORD

Specifies whether this authentication protocol is
supported on stand-alone Windows 2000 servers. A
value of 0 indicates that the EAP is not supported. The
default value is 1 .

Chapter 13 Extensible Authentication Protocol (EAP) 381

Registry Values Example
The following example shows possible data for some of the authentication protocol
registry values.

User Authentication
The authentication protocol may authenticate the user itself. EAP-TLS is an example of
such a protocol. Alternatively, the authentication protocol may rely on a separate
authentication provider to authenticate the user. Two authentication providers are built
into Microsoft® Windows® 2000: Windows 2000 domain authentication (accessed via
Directory Services) and RADIUS (Remote Access Dial In User Service).

In the case where RADIUS is the authentication provider, the EAP DLL is installed on
the RADIUS server rather than on the RAS server. The RAS server passes EAP packets
directly from the client to the authentication protocol on the RADIUS server. The RAS
server does not process any of the information in the EAP packets.

EAP Implementation Details
Microsoft® Windows® 2000 RAS interacts with EAP implementations through the use of
function calls that must be exported by the third-party EAP DLL. This interaction is
detailed in the following topics:

• RAS Connection Manager Initialization

• Authentication Protocol Initialization

• RAS and Authentication Protocol Interaction

• Completion of the Authentication Session

RAS Connection Manager Initialization
After initialization, the Remote Access Service (RAS) Connection Manager queries the
registry ·for installed authentication protocols. RAS calls the exported function
RasEapGetlnfo one time for each authentication protocol. The RasEapGetlnfo function
receives a single parameter of type PPP _EAP _INFO. RAS uses the dwEapTypeld
member of this structure to specify the authentication protocol (note that a single DLL
may support more than one protocol). If RasEapGetlnfo returns any value other than
NO_ERROR; RAS assumes that the authentication protocol is unavailable.

382 Volume 4 Remote Access Services

On return from RasEapGetinfo the PPP _EAP _INFO structure contains pointers to the
functions RasEaplnitialize, RasEapBegin, RasEapMakeMessage, and RasEapEnd in
the EAP DLL. RAS uses these functions to interoperate with the authentication protocol.
RAS immediately calls RasEaplnitialize for each authentication protocol, to initialize it.
When RAS shuts down it calls RasEaplnitialize again, this time with a value of FALSE,
indicating that the authentication protocol should shut itself down.

Authentication Protocol Initialization
To create a phone-book entry for a particular connection, the user selects an
authentication protocol to use for that connection. The selected authentication protocol
may require configuration. If so, the Dial-Up Networking user interface (UI) displays a
configuration UI by calling the RasEaplnvokeConfigUI function. The Dial-Up
Networking UI stores the configuration information returned by RasEaplnvokeConfigUI
in the phone-book entry. The setup program for the authentication protocol may also
store default configuration information in the registry. For more information, see EAP
Installation.

The configuration information stored in the phone-book entry should be generic to all
users on the client computer. Information specific to a particular user or users should not
be stored in the phone-book entry. The authentication protocol should obtain user­
specific information via the identity function interface or interactive user-interface. The
authentication protocol can store this information in the registry by passing it to RAS in
the pEapOutput parameter of RasEapMakeMessage.

The configuration information should not be specific to the current machine; it should be
portable from machine to machine.

When the client attempts to establish the connection, RAS obtains identity information
for the user. If the RAS_EAP _VALUENAME_INVOKE_NAMEDLG value is present in the
registry for this authentication protocol, and this value is set to zero, RAS calls
RasEapGetldentity. This function typically displays a user interface that allows the
identity information to be of a type specific to the authentication protocol; for example, a
certificate or numeric ID. If RAS_EAP _VALUENAME_INVOKE_NAMEDLG is not
present, or is set to one, RAS displays the standard Windows NTlWindows 2000
user-name dialog.

Once RAS has obtained the identity information for the user, RAS calls the
authentication protocol's implementation of RasEapBegin. This call allows the protocol
to allocate and initialize a work buffer that RAS passes on subsequent calls to
RasEapMakeMessage and RasEapEnd. In RasEapBegin, RAS also passes a
PPP _EAP _INPUT structure that contains pOinters to the configuration information for the
connection, and the identity information for the user. RAS always passes in a value for
the pszldentity member of PPP _EAP _INPUT. However, the pszPassword member of
PPP _EAP _INPUT may be NULL.

Within the PPP _EAP _INPUT structure, the fAuthenticator member indicates whether
the authentication protocol is being invoked to be authenticated (on the client) or as the
authenticator (on the server).

Chapter 13 Extensible Authentication Protocol (EAP) 383

On the server, the blnitialiD member of PPP _EAP _INPUT specifies the identifier that
the server should use for the first EAP packet. The server should increment this identifier
for subsequent packets.

Also on the server, the pUserAttributes pointer in PPP _EAP _INPUT points to an array
of attributes of the RAS_AUTH_ATTRIBUTE_ TYPE type. These are attributes for the
user that were obtained from the client.

If the RasEapBegin call returns any value other than NO_ERROR, the session is
disconnected. The returned error is logged (on the server), or displayed to the user
(on the client).

RAS and Authentication Protocol Interaction During Authentication
The RasEapMakeMessage function controls the majority of the interaction between the
authentication protocol and the RAS Connection Manager. RasEapMakeMessage
processes incoming EAP packets and creates EAP packets for transmission to the
remote peer. It also processes events such as time outs and authentication completion.

If a message is received from the remote peer, RAS calls RasEapMakeMessage,
passing a pointer to the received message in the pReceivePacket parameter.

If RAS calls RasEapMakeMessage with pReceivePacket set to NULL, RAS is either
initiating the dialog by using the authentication protocol, or requesting that the protocol
resend the last packet. The authentication protocol should determine which action RAS
is taking based on its state and from the message context.

On return from RasEapMakeMessage, the value of the Action member of the
PPP _EAP _OUTPUTstructure indicates what action,if any, RAS should take. The
Action member takes values from the PPP _EAP _ACTION enumerated type.

If Action is EAPACTION_Send, EAPACTION_SendAndDone,
EAPACTION_SendWithTimeout, or EAPACTION_SendWithTimeoutlnteractive, the RAS
Connection Manager transmits the packet that is pOinted to by the pSendPacket
parameter to the remote peer.

If Action is EAPACTION_SendWithTimeout, or
EAPACTION_SendWithTimeoutlnteractive, the authentication protocol should set the
dwldExpected member of the PPP _EAP _OUTPUT structure to the identifier of the next
packet that is expected from the remote peer. Regardless of whether the next packet
received from the peer matches this value, RAS passes the packet to the authentication
protocol in a subsequent call to RasEapMakeMessage. The authentication protocol may
silently discard the packet by simply returning ERROR_PPP_INVALlDc..PACKET. If a
packet that has the expected identifier is not received within the configured time-out
period, RAS calls RasEapMakeMessage. The call is made with the pReceivePacket
parameter set to NULL, to indicate that the previous packet must be sentagain.

The EAPACTION_SendWithTimeout value allows for a time out, after which time the
RAS Connection Manager Service disconnects the session.

384 Volume 4 Remote Access Services

The EAPACTION_SendWithTimeoutlnteractive value provides for an infinite amount of
time out to occur. The authenticator should use this value when expecting user input on
the client. This time out allows the user an unspecified amount of time to complete the
required input.

If the Action member is EAPACTION_Done or EAPACTION_SendAndDone, RAS
examines the dwAuthResultCode member of PPP _EAP _OUTPUT. If
dwAuthResultCode is NO_ERROR, the authentication succeeded. If
dwAuthResultCode is a value other than NO_ERROR, the authentication failed. The
error code returned for the failure case should come from Raserror.h, Mprerror.h, or
Winerror.h. Possible return codes include, but are not limited to, the following:

ERROR_NO_DIALlN_PERMISSION

ERROR_PASSWD _EXPIRED

ERROR_ACCT _DISABLED

ERROR_RESTRICTED _LOGON_HOURS

ERROR_AUTH_INTERNAL

In the case where Action is EAPACTION_Done or EAPACTION_SendAndDone, the
pUserAttributes member should point to attributes that override attributes of the same
type that were passed to the server in the call to RasEapBegin.

The authentication protocol can request that RAS invoke the current authentication
provider by returning EAPACTION_Authenticate in the Action member in
PPP _EAP _OUTPUT. In this case, the pUserAttributes pointer in PPP _EAP _OUTPUT
should point only to attributes that were generated by the authentication protocol on the
server. It need not include any of the attributes that were passed to the server in the call
to RasEapBegin. When RAS responds to the EAPACTION_Authenticate action,
pUserAttributes (in PPP _EAP _INPUT), will point to all attributes generated during
authentication. These attributes will also be returned to the authentication protocol on
the client.

If the authentication protocol authenticates the user without relying on an authentication
provider, there is no need for the protocol to ever set Action to
EAPACTION_Authenticate. An example of this case is EAP-TLS.

The EAP success packet is not acknowledged. Therefore, it may be lost and not resent
by the server. If the RAS Connection Manager on the client receives a Network Control
Protocol (NCP) packet, RAS is programmed to proceed as though the authentication
was successful, but the EAP success packet was lost. This is because the server has
moved on to the NCP phase of PPP. Accordingly, RAS calls RasEapMakeMessage with
the fSuccessPacketReceived member of the PPP _EAP _INPUT structure set to TRUE.

During the course of the authentication session, the authentication protocol may need to
interact directly with the user on the client. The authentication protocol vendor can
provide an interactive user interface for this purpose. The authentication protocol can
request that RAS display the interactive UI by setting the flnvokelnteractiveUI,
pUIContextData, and dwSizeOfUIContextData members in the PPP _EAP _OUTPUT
structure. For more information on using an interactive UI, see Interactive User Interface.

Chapter 13 Extensible Authentication Protocol (EAP) 385

The authentication protocol should display a user interface only through the mechanism
described under Interactive User Interface. If the authentication protocol itself displays
the user interface, the PPP thread blocks until the user interface is dismissed.

If during the authentication process, RasEapMakeMessage returns any value other than
NO_ERROR or ERROR_PPP _INVALID_PACKET, the session is disconnected and the
error is logged (on the server) or displayed to the user (on the client).

Completion of the Authentication Session
After the authentication session is completed, the RAS Connection Manager calls the
RasEapEnd function to allow the authentication protocol to deallocate its work buffer.
This action is taken regardless of whether authentication was successful. Calling the
RasEapEnd function guarantees that no further calls are made to the authentication
protocol using that particular user or context without first calling RasEapBegin.

Configuration User Interface
Configuration user interfaces (UI) for authentication protocols are implemented
differently depending on whether the UI configures the authentication protocol on the
client, or on the server. The following topics describe the process used to implement a
configuration UI for the client and for the server:

• Server-Side Configuration User Interface

• Client-Side Configuration User Interface

Server-Side Configuration User Interface
Implement a configuration UI for the server by implementing the COM interface,
IEAPProviderConfig. This COM interface derives from IUnknown and adds three
methods: IEAPProviderConfig: :Initialize,
IEAPProviderConfig::ServerlnvokeConfigUI, and IEAPProviderConfig::Uninitialize.

The UI should support remote administration. In other words, although the UI will
configure the authentication protocol on the server, the UI itself may be running on a
different computer. To support remote administration, separate the UI code from the
code that actually performs the configuration. (The configuration code resides on the
server on which the authentication protocol runs.)

Microsoft recommends using the Active Template Library (ATl) to implement
IEAPProviderConfig. See the sample server-side configuration UI in the SDK samples
directory for more details. The ClSID for the configuration UI object should be placed in
the registry with a value name of RAS_EAP _ VAlUENAME_CONFIG_ClSID. (For more
information, see Authentication Protocol Registry Values.)

When the user clicks the Configure button for an authentication protocol (in the
Properties dialog box for Routing and RAS), the system checks if a
RAS_EAP _VAlUENAME_CONFIG_ClSID for this authentication protocol exists in the
registry. If so, COM instantiates the configuration UI object. If the system is unable to

386 Volume 4 Remote Access Services

find RAS_EAP _VALUENAME_CONFIG_CLSID in the registry, and the system has
access to Directory Services (DS) (Windows 2000 only), the system attempts to
instantiate the object from the Class Store.

In the case where the user is connected to multiple machines simultaneously, multiple
configuration UI objects are instantiated.

Client-Side Configuration User Interface
The vendor that implements the authentication protocol may also provide a configuration
User Interface (UI) for the protocol. The configuration UI may be implemented in the
same DLL as the authentication protocol, or in a separate DLL. Also, the DLL that
implements the configuration UI may support more than one authentication protocol. The
path to the DLL for the configuration user interface is stored in the
RAS_EAP _ VALUENAME_CONFIGUI registry value, under the key for the authentication
protocol. For more information about creating this registry value, see EAP Installation.

The DLL for the configuration user interface should export entry pOints for the following
functions:

RasEaplnvokeConfigUI

RasEapFreeMemory

When the user creates a phone-book entry for a particular RAS server in the
Dial-Up-Networking UI, the user is able to select the authentication protocol that RAS
should use with that entry. If the authentication protocol is configurable, the
Dial-Up-Networking UI calls RasEaplnvokeConfigUI to invoke the configuration UI. The
Dial-Up-Networking UI stores the configuration information returned by
RasEaplnvokeConfigUI in the phone-book entry

The configuration information stored in the phone-book entry should·be generic to all
users on the client computer. Information specific to a particular user or users should not
be stored in the phone-book entry. The authentication protocol should obtain user­
specific information by using the identity functions or interactive user-interface. The
authentication protocol can store this information in the registry by passing it to RAS in
the pEapOutput parameter of RasEapMakeMessage.

The configuration information should also not be specific to the current machine; it
should be portable from machine to machine.

When RAS calls the RasEapBegin function for the authentication protocol, it passes a
PPP _EAP _INPUT structure that contains a pOinter to the configuration information. After
RasEapBegin returns, RAS calls RasEapFreeMemory to free the memory occupied by
the configuration information. Therefore, the authentication protocol should copy the
configuration information into a private memory buffer during the call to RasEapBegin.

The vendor may add a value under the registry key for the authentication protocol that
specifies default configuration information for the protocol. The vendor may also add a
value that specifies whether the user is required to enter configuration information when
they create a phone-book entry. For more information, see Authentication Protocol
Registry Values.

Chapter 13 Extensible Authentication Protocol (EAP) 387

Obtaining Identity Information
The vendor that implements the authentication protocol may also provide a function
interface that obtains initial identifying information for the user requesting authentication.
The vendor should implement the following functions:

RasEapGetldentity

RasEapFreeMemory

These functions may be implemented in the same DLL as the authentication protocol, or
in a separate DLL. Also, the DLL that implements the identity functions may support
more than one authentication protocol. The path to the DLL for these functions is stored
in the RAS_EAP _ VALUENAME_IDENTITY registry value, under the key for the
authentication protocol. For more information about creating this registry value, see EAP
Installation.

The RasEapGetldentity function typically displays a User Interface (UI) to obtain identity
information for the user. However, if the dwFlags parameter contains the
RAS_EAP _FLAG_NON--,INTERACTIVE flag, RasEapGetldentity should not display
a UI. .

If RasEapGetldentity does display a UI, the Ulmust support WM_COMMAND
messages where the value of LOWORO(wParam) is equal to IDCANCEL.

The RAS Connection Manager calls RasEapGetldentity if the
RAS_EAP,-VALUENAME_INVOKE_NAMEDLG value that is in the registry for this EAP
is set to zero. If RAS_EAP _ VALUENAME_INVOKE_NAMEDLG is not present, or is
present and is set to one, RAS displays the standard Windows NTJWindows2000 user
name dialog box.

In addition to RAS_EAP _VALUENAME_INVOKE_NAMEDLG, the EAP vendor may
create a related value in the registry: RAS_EAP _VALUENAME_INVOKE_PWDDLG.
If this value is present and is set to zero, RAS will not display the standard
Windows NTlWindows 2000 password dialog. This value can be useful to implement a
biometric method such as a fingerprint scan to authenticate the user. If both the
RAS_EAP _ VALUENAME_INVOKE~NAMEDLG and
RAS_EAP_ VALUENAME_INVOKE_PWDDLG values are zero, an identity Ulcan be
used to obtain both the identity and biometric information. However, if only
RAS_EAP _ VALUENAME_INVOKE_PWDDLG is zero, RAS will not call
RasEapGetldentity. In this case, use the interactive user interface to obtain the
biometric information.

For more information on these registry values, see Authentication Protocol Registry
Values.

388 Volume 4 Remote Access Services

The information obtained by RasEapGetidentity is passed to the authentication protocol
during the call to RasEapBegin. The information is pOinted to by the pszldentity and
pUserData members of the PPP _EAP _INPUT structure. To save this information in the
registry on the client computer, the authentication protocol should return the information
in the pEapOutput parameter of RasEapMakeMessage.

After the call to RasEapBegin, RAS calls RasEapFreeMemory to free the memory
occupied by this data. Therefore, the authentication protocol should copy the information
into a private memory buffer during the call to RasEapBegin.

Interactive User Interface
The vendor that implements the authentication protocol may also provide an interactive
User Interface (UI) for the protocol. The interactive UI allows the authentication protocol
to obtain additional information from the user as needed during the course of the
authentication session.

The interactive UI can be implemented in the same DLL as the authentication protocol,
or in a separate DLL. Also, the DLL that implements the interactive UI can support more
than one authentication protocol. The path to the DLL for the interactive UI is stored in
the RAS_EAP _VALUENAME_INTERACTIVEUI registry value, under the key for the
authentication protocol. For more information about creating this registry value, see EAP
Installation.

The DLL for the interactive UI should export entry pOints for the following functions:

RasEaplnvokelnteractiveUI

RasEapFreeMemory

The interactive user interface must support WM_COMMAND messages where
LOWORD(wParam) equals IDCANCEL.

To display the interactive UI, the authentication protocol should set the
flnvokelnteractiveUI member of the PPP _EAP _OUTPUT structure to TRUE. The
authentication protocol may optionally set the pUIContextData and
dwSizeOfUIContextData members as well. RAS uses the values of these members to
pass context data to the interactive UI. The authentication protocol returns this
PPP _EAP _OUTPUT structure as a parameter in the RasEapMakeMessage function.

RAS invokes the interactive UI by calling RasEaplnvokelnteractiveUI. RAS passes the
authentication protocol a pOinter to the data that was returned by the interactive UI in the
subsequent call to RasEapMakeMessage. The pOinter is passed as a member of a
PPP _EAP _INPUT structure. After RasEapMakeMessage returns, RAS calls
RasEapFreeMemory to free the memory occupied by the ir;lformation. Therefore, the
authentication protocol should copy the information into a private memory buffer during
the call to RasEapMakeMessage.

Chapter 13 Extensible Authentication Protocol (EAP) 389

Multilink and Callback Connections
For the first link in a multilink connection, RAS sets the RAS_EAP _FLAG_FIRST _LINK
flag in the fFlags member of the PPP _EAP _INPUT structure. The authentication
protocol can use the presence of this flag to determine whether to present a user
interface specifically for the first link of a multilink connection.

If the connection is configured so that the server calls back the client computer, the
RAS_EAP _FLAG_FIRST _LINK flag will not be set on the callback.

If the authentication protocol sets the fSaveConnectionData member of
PPP _EAP _OUTPUT to TRUE, subsequentlinks in the multilink connection will receive
the new connection-specific data. In the case of user-specific data, however, the
authentication protocol continues to get the original user-specific data even if it sets the
fSaveUserData member of PPP _EAP _OUTPUT to TRUE.

The authentication protocol may use an interactive user interface to collect data for a
particular link of a multilink connection. In this case, RAS makes the resulting data
available to the authentication protocol during subsequent links. This data is never saved
to persistent storage, however.

EAP Reference
This section describes the reference elements that are used to implement the Extensible
Authentication Protocol (EAP). Among these reference elements are functions that you
can use to program authentication protocols, authentication providers, and accounting
providers. This section also includes the structures and enumerated types that these
functions use.

EAP Functions
Implement the following functions for authentication protocols and authentication
providers:

RasEapBegin
RasEapEnd
RasEapFreeMemory
RasEapGetldentity

RasEapBegin

RasEapGetlnfo
RasEaplnvokeConfigUI
RasEaplnvokelnteractiveUI
RasEapMakeMessage

The Connection Manager calls the RasEapBegin function to initiate an authentication
session.

390 Volume 4 Remote Access Services

Parameters
ppWorkBuffer

Pointer to a pointer that, on successful return, points to a work buffer. This buffer is
opaque to RAS; the contents of the buffer are used only by the authentication
protocol. The Connection Manager passes a pointer to this buffer to the authentication
protocol in subsequent calls to RasEapMakeMessage.

pPppEaplnput
Pointer to a PPP _EAP _INPUT structure that contains initialization information for the
authentication session.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h,
Raserror.h, or Mprerror.h.

Remarks
The RasEapBegin function is not part of the RRAS API; it is implemented in the EAP
DLL. When the Connection Manager calls the RasEapGetlnfo function, it receives a
PPP _EAP _INFO structure for the authentication protocol. This structure contains a
pOinter to the RasEapBegin function.

The memory for the work buffer (pointed to by * ppWorkBuffel) is allocated by the
authentication protocol. The authentication protocol should free this memory in its
implementation of RasEapEnd.

WindowsNT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Funqtions, RasEapEnd,
RasEapGetlnfo, RasEapMakeMessage, PPP _EAP _'NFO, PPP _EAP _'NPUT

Chapter 13 Extensible Authentication Protocol (EAP) 391

RasEapEnd
The Connection Manager calls the RasEapEnd function to end an authentication
session. RAS will call RasEapEnd regardless of whether the session completed
successfully.

Parameters
pWorkBuffer

Pointer to the work buffer to free.

Return Values
If the function succeeds, the return value is NO_ERROR.

Ifthe function fails, the return value should be an appropriate error code from Winerror.h,
Raserror.h, or Mprerror.h. If RasEapEnd returns an error code, HAS terminates the
authentication session.

Remarks
The RasEapEndfunctionis not part of the. RRAS API; it is implemented in the EAP DLL.
When the Connection Manager calls the RasEapGetlnfo function, it receives a
PPP _EAP _INFO structure for the authentication protocol. This structure contains a
pOinter to the RasEapEnd function.

Provided that RasEapBegin returned successfully, the Connection manager calls the
RasEapEnd function when authentication has completed.

Window$ NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP. Functions, RasEapBegin,
RasEapGetlnfo, PPP;EAP _INFO, PPP _EAP _INPUT

RasEapFreeMemory
The Connection Manager calls RasEa:pFreeMemoryto free memory buffers returned by

. RasEaplnvokeConfigUI,. RasEapGetldentity, and· RasEaplnvokelnteractiveUI.

392 Volume 4 Remote Access Services

Parameters
pMemory

Pointer to the memory to free.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h,
Raserror.h, or Mprerror.h.

Remarks
An authentication protocol may implement its various user interfaces in different Dlls. In
such a case, each Dll must implement the RasEapFreeMemory function.

It is also possible that a single Dll may implement multiple user interfaces. For
example, a single Dll may implement both the configuration and identity user interface
for an authentication protocol. Another example would be a Dll that implements two
configuration user interfaces, each to support a different authentication protocol. In these
cases, the Dll must implement a single version of RasEapFreeMemory that can free
memory returned from any of the user interfaces implemented in the Dll.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Functions, RasEaplnvokeConfigUI,
RasEapGetldentity, RasEaplnvokelnteractiveUI

~asEapGetldentity
The RAS Connection Manager calls the RasEapGetldentity function to obtain identity
information for the· user requesting authentication.

Parameters
dwEapTypeld

Chapter 13 Extensible Authentication Protocol (EAP) 393

Specifies the authentication protocol for which to invoke the identity user interface.

hwndParent
Handle to the parent window for the user interface dialog. If the dwFlags parameter
contains the RAS_EAP _FLAG_NON_INTERACTIVE flag, then hwndParent is NULL.

dwFlags
Specifies zero or more of the following flags that qualify the authentication process.

Flag Description

Specifies that the computer that is
dialing in is a router. The absence of
this flag indicates that the computer
dialing in is a RAS client.

Specifies that the authentication
protocol should not bring up a user­
interface. If the authentication protocol
is not able to determine the identity
from the data supplied, it should return
an error. If this flag is specified, the
hwndParent parameter will be NULL.

Specifies that the user data is obtained
from Win logon.

Specifies that the user should be
prompted for identity information
before dialing.

(continued)

394 Volume 4 Remote Access Services

(continued)

Flag

pwszPhonebook

Description

Indicates that this connection is the
first link in a multilink connection. See
Multilink and Callback Connections for
more information.

Pointer to a Unicode string that contains the full path of the Phone-Book (PBK) file. If
this parameter is NULL, the function uses the system phone book.

pwszEntry
Pointer to a Unicode string that contains an existing entry name.

pConnectionDataln
Pointer to the connection-specific data currently stored in the phone-book entry.

dwSizeOfConnectionDataln
Size of the connection-specific data currently stored in the phone-book entry.

pUserDataln
Pointer to the user-specific data currently stored for this user in the registry.

dwSizeOfUserDataln
Specifies the size of the user-specific data currently stored for this user in the registry.

ppUserDataOut
Pointer to a pointer that, on successful return, points to the identity data for the user.
This data will be passed to the authentication protocol in the pUserData member of
PPP _EAP _INPUT during the call to RasEapBegin.

The authentication protocol should allocate the memory buffer for the identity data.
RAS will free this memory by calling RasEapFreeMemory.

pdwSizeOfUserDataOut
Pointer to a DWORD value that, on successful return, contains the size of the data
pOinted to by the ppUserDataOut parameter.

ppwszldentity
Pointer to a pointer that, on successful return, points to a Unicode string that identifies
the user requesting authentication. This string will be passed to the authentication
protocol in the pszldentity member of PPP _EAP _INPUT during the call to
RasEapBegin ..

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function was not able to allocate memory for the user data, the return value should
be ERROR_NOT _ENOUGH_MEMORY.

If the function is called with the RAS_EAP _FLAG_NON_INTERACTIVE flag, but must
invoke a user interface to determine the user's identity, the function should return
ERROR_INTERACTIVE_MODE.

Chapter 13 Extensible Authentication Protocol (EAP) 395

If the function fails in some other way, the return value should be an appropriate error
code from Winerror.h, Raserror.h, or Mprerror.h.

Remarks
The DLL that implements RasEapGetldentity and RasEapFreeMemory may support
more than one authentication protocol. The dwEapTypeld parameter specifies for which
protocol to invoke the identity user interface.

The authentication protocol receives the data returned from RasEapGetldentity in the
pUserData member of PPP _EAP _INPUT during RasEapBegin. To store the data for
this user in the registry, the authentication protocol should set the pUserData member of
PPP _EAP _OUTPUT to point to the data, and thefSaveUserData member of
PPP _EAP _OUTPUT to TRUE.

This function is called by the RAS function, RasGetEapUserldentity.

If RasEapGetldentity displays a user interface, the user interface must support
WM_COMMAND messages where LOWORD(wParam) equals IDCANCEL.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Functions, Obtaining Identity
Information, RasEapFreeMemory, RasEapMakeMessage, RasGetEapUserldentity,
PPP _EAP _INPUT

RasEapGetlnfo
The Connection Manager calls RasEapGetlnfo to obtain a set of function pOinters for a
specified authentication protocol.

Parameters
dwEapTypeld

Specifies the authentication protocol for which to obtain information.

396 Volume 4 Remote Access Services

pEap/nfo
Pointer to a PPP _EAP _INFO structure. The structure contains members that RAS
sets to identify the structure version and the authentication protocol for which function
pOinters are requested. For more information, see PPP_EAP_'NFO.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h,
Raserror.h, or Mprerror.h.

Remarks
The DLL that implements RasEapGetlnfo may support more than one authentication
protocol. The dwEapType/d parameter specifies for which authentication protocol to
obtain information.

Implementations of EAP must export the RasEapGetlnfo function, since RAS uses
RasEapGetlnfo to obtain pointers to the other authentication protocol functions.

Upon initialization, the Connection Manager calls RasEapGetlnfo for each EAP DLL
installed in the registry subkey, as explained in the EAP Overview.

If the function returns any value other than NO_ERROR, RAS considers the
authentication protocol to be non-functional. RAS posts an error to the Microsoft®
Windows NT®IWindows® 2000 Event Log indicating that this protocol did not start
correctly and therefore is not available.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Functions, EAP (Extensible
Authentication Protocol) Overview, PPP _EAP _INFO

RasEaplnitialize
The RAS Connection Manager calls the RasEaplnitialize function to initialize or
deinitialize the authentication protocol.

Chapter 13 Extensible Authentication Protocol (EAP) 397

Parameters
flnitialize

Specifies whether the authentication protocol should initialize or deinitialize. This
parameter is TRUE if the protocol should initialize and FALSE if the protocol should
deinitialize.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h,
Raserror.h, or Mprerror.h.

Remarks
The RasEaplnitialize function is not part of the RRAS API; it is implemented in the EAP
DLL. When the Connection Manager calls the RasEapGetinfo function, it receives a
PPP _EAP _INFO structure for the authentication protocol. This structure contains a
pointer to the RasEaplnitialize function.

The authentication protocol may set the RasEaplllitialize member in PPP _EAP _INFO
to NULL. A NULL value indicates that the authentication protocol does not require
initialization or deinitialization. Therefore, RAS need not call this function.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Functions, PPP _EAP _INFO,
RasEapBegin, RasEapGetlnfo

RasEaplnvokeConfigUI
The Connection Manager calls the RasEaplnvokeConfigUIl function to display a dialog
to obtain configuration information from the user. RAS calls RasEaplnvokeConfigUI
when a new phone-book entry is created or an existing phone-book entry is edited,
provided that the authentication protocol for the entry provides a configuration user
interface.

(continued)

398 Volume 4 Remote Access Services

(continued)

Parameters
dwEapTypeld

Specifies the authentication protocol for which to invoke the configuration UI.

hwndParent
Handle to the parent window for the UI dialog.

dwFlags
Specifies whether the computer that is dialing in is a router or a RAS client. If the
computer is a router, this parameter should be set to:

RAS_EAP_FLAG_ROUTER

Otherwise, this parameter should be zero.

pConnectionDataln
Pointer to the connection data currently stored in the phone-book entry. If the phone­
book entry does not contain any data, this parameter is NULL.

dwSizeOfConnectionDataln
Specifies the size of the connection data currently stored in the phone-book entry. If
the phone-book entry for this connection does not contain any data, this parameter
will be zero.

ppConnectionDataOut
Pointer to a pointer that, on successful return, points to the new connection data to
store in the phone-book entry. None of this data should be specific to the current
machine; phone-book entries should be portable from machine to machine.

pdwSizeOfConnectionDataOut
Pointer to a DWORD that, on successful return, paints to the size of the new
connection data to store in the phone-book entry.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function was not able to allocate memory for the configuration data, the return
value should be ERROR_NOT _ENOUGH_MEMORY.

If the function fails in some other way, the return value should be an appropriate error
code from Winerror.h, Raserror.h, or Mprerror.h.

Chapter 13 Extensible Authentication Protocol (EAP) 399

Remarks
The DLL that implements RasEaplnvokeConfigUI and RasEapFreeMemory may
support more than one authentication protocol. The dwEap Typeld parameter specifies
for which protocol to invoke the configuration UI.

RAS stores the connection data returned by RasEaplnvokeConfigUI in the phone-book
entry for the connection on the client computer.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Functions, Client-Side Configuration
User Interface,

RasEapFreeMemory,

RasEapGetldentity, RasEaplnvokelnteractiveUI

RasEaplnvokelnteractiveUI
The RAS Gonnection Manager calls the RasEaplnvokelnteractiveUI function to display
a dialog to obtain authentication data from the uSer.

Parameters
dwEapTypeld

Identifies the authentication protocol for whicll to invoke the interactive UL

hwndParent
Handle to the parent window for the dialog.

400 Volume 4 Remote Access Services

pUIContextData
Pointer to context data for the interactive UI. The authentication protocol provides a
pointer to this data asa member of the PPP _EAP _OUTPUT structure. The RAS
Connection Manager receives the PPP _EAP _OUTPUT structure as an output
parameter from the RasEapMakeMessage function.

dwS;zeofUIContextData
Specifies the size of the context data. The authentication protocol provides the size as
a member of the PPP _EAP _OUTPUT structure. The RAS Connection Manager
receives the PPP _EAP _OUTPUT structure as an output parameter from the
RasEapMakeMessage function.

ppDataFromlnteract;veUI
Pointer to a pointer variable. On successful return, this pOinter variable will point to a
memory buffer that contains the data obtained by the interactive UI. The interactive UI
allocates this memory. RAS passes this data back to the authentication protocol in the
PPP _EAP _INPUT structure, then RAS frees this memory by calling
RasEapFreeMemory.

If the interactive UI does not obtain any user-specific data, the pOinter that
ppUserData pOints to should be set to NULL.

pdwS;zeOfDataFromlnteract;veUI
Pointer to a DWORD variable to receive the size of the data returned from the
interactive UI. If the interactive UI does not obtain any user-specific data, the DWORD
variable should be set to zero.

Return Values
If the function succeeds, the return value is NO_ERROR. Check the
ppDataFromlnteract;veUI and IpdwS;zeOfDataFromlnteract;veUi parameters to
determine if the function returned data from the interactive UI.

If the function was not able to allocate memory for the data, the return value should be
ERROR_NOT _ENOUGH_MEMORY.

If the function fails in some other way, the return value should be an appropriate error
code from Winerror.h, Raserror.h, or Mprerror.h.

Remarks
The DLL that implements the RasEaplnvokelnteractiveUI and RasEapFreeMemory
functions may support more than one authentication protocol. The dwEapTypeld
parameter specifies the authentication protocol for which to invoke the interactive UI.

A pointer to the data returned from the interactive UI is passed back to the authentication
protocol in the pDataFromlnteractiveUI member of PPP _EAP _INPUT structure. The
PPP _EAP _INPUT structure is passed as a parameter to the RasEapMakeMessage
function.

The interactive user interface must support WM_COMMAND messages where
LOWORD(wParam) equals IDCANCEL.

Chapter 13 Extensible Authentication Protocol (EAP) 401

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Functions, Interactive User Interface,
RasEapFreeMemory, RasEaplnvokeConfigUI, RasEapGetldentity,
RasEapMakeMessage, PPP _EAP _INPUT, PPP _EAP _OUTPUT

RasEapMakeMessage
The RasEapMakeMessage function is the framework within which incoming and
outgoing EAP packets, time outs, and other events such as authentication completion
are processed for an EAP. RAS calls the RasEapMakeMessage function every time
there is an incoming or outgoing packet.

Parameters
pWorkBuf

Pointer to the work buffer. The authentication protocol provides RAS with a pointer to
this buffer via the RasEapBegin function.

pReceivePacket
Pointer to a PPP _EAP _PACKET structure that contains a received packet. A
pReceivePacketvalue of NULL indicates either that RAS is initiating the dialog with
the authentication protocol, or that a time out has occurred and the authentication
protocol should resend the last packet. The authentication protocol must determine,
based on context, which of these two cases is true.

402 Volume 4 Remote Access Services

pSendPacket
Pointer to a PPP _EAP _PACKET structure. The authentication protocol can use this
structure to specify a packet to send.

cbSendPacket
Specifies the size, in bytes, of the buffer pointed to by pSendPacket.

pEapOutput
Pointer to PPP _EAP _OUTPUT structure.

pEaplnput
Pointer to a PPP _EAP _INPUT structure. This parameter may be NULL.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value should be an appropriate error code from Winerror.h,
Raserror.h, or Mprerror.h. Any error except for ERROR_PPP _INVALID_PACKET,
terminates the authentication session. For more information on the
ERROR_PPP _INVALID_PACKET return code, see EAP Implementation Details.

Remarks
The RasEapMakeMessage function is not part of the RRAS API; it is implemented in
the EAP DLL. When the Connection Manager calls the RasEapGetlnfo function, it
receives a PPP _EAP _INFO structure for the authentication protocol. This structure
contains a pOinter to the RasEapMakeMessage function.

RAS allocates the buffers pointed to by pReceivePacket, pSendPacket, pEapOutput,
and pEaplnput. The authentication protocol does not allocate any of these buffers.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Functions, RasEapGetlnfo,
PPP _EAP _INFO, PPP _EAP _INPUT, PPP _EAP _OUTPUT, PPP _EAP _PACKET

EAP Structures
Vendors should use the following structure types for authentication protocols and
authentication providers.

PPP _EAP _INFO

PPP _EAP _INPUT

PPP_EAP_OUTPUT

PPP _EAP _PACKET

RAS_AUTH_A TTRIBUTE

PPP _EAP _INFO

Chapter 13 Extensible Authentication Protocol (EAP) 403

The PPP _EAP _INFO structure provides the Connection Managerwith information about
the authentication protocol, including pointers to functions located in the EAP DLL.

Members
dwSizel n Bytes

Specifies the size of the PPP ~EAP _INFO structure. RAS passes this value to the
EAP DLL. The DLL uses this value to determine which version of the
PPP _EAP _INFO structure RAS is using.

404 Volume 4 Remote Access Services

dwEapTypeld
Specifies a particular authentication protocol. This identifier must be unique
throughout industry-wide implementation of EAP (see IETF Internet Draft 1310). The
implementer of an authentication protocol must obtain this identifier from the Internet
Assigned Numbers Authority (lANA).

(* RasEaplnitialize)
Pointer to the RasEaplnitialize function for the authentication protocol. The
authentication protocol sets the value of this member. The authentication protocol
may set this member to NULL, in which case the protocol does not require RAS to call
this function.

(* RasEapBegin)
Pointer to the RasEapBegin function for the requested authentication protocol. The
authentication protocol sets the value of this member. This member may be NULL, in
which case, the authentication protocol does not require any initialization. If this
member is NULL, RAS ignores the RasEapEnd member.

(* RasEapEnd)
Pointer to the RasEapEnd function for the authentication protocol. The authentication
protocol sets the value of this member.

(* RasEapMakeMessage)
Pointer to the RasEapMakeMessage for the requested authentication protocol. The
authentication protocol sets the value of this member.

Remarks
A given EAP DLL may implement more than one authentication protocol. Use the
dwEapTypeld member to specify for which protocol to retrieve information.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Structures, RasEapBegin,
RasEapEnd, RasEapGetlnfo, RasEapMakeMessage.

PPP _EAP _INPUT
The PPP _EAP _INPUT structure is used in the interaction between the RAS Connection
Manager Service PPP implementation and the EAP to provide user information, and to
facilitate the use of authentication providers such as Windows 2000 domain
authentication or RADIUS.

Chapter 13 Extensible Authentication Protocol (EAP) 405

406 Volume 4 Remote Access Services

Members
dwSizelnBytes

Specifies the size in bytes of the PPP _EAP _INPUT structure. The value of this
member can be used to distinguish between current and future versions of this
structure.

fFlags
Specifies zero or more of the following flags that qualify the authentication process.

Flag Description

fAuthenticator

Specifies whether the computer dialing
in is a router or a RAS client. If the
computer is a router, this parameter
should be set.

Specifies that the authentication
protocol should not bring up a user­
interface. If the authentication protocol
is not able to determine the identity
from the data supplied, it should return
an error.

Specifies that the user data from
obtained from Winlogon.

Indicates that this connection is the
first link in a multilink connection. See
Multilink and Callback Connections for
more information.

Specifies whether the authentication protocol is operating on the server or client. A
value of TRUE indicates that the authentication protocol is operating on the server as
the authenticator. A value of FALSE indicates that the authentication protocol is
operating on the client as the as the process to be authenticated.

pwszldentity
Pointer to an Unicode that identifies the user requesting authentication. This string is
of the form domain\user or machine\user.

If the authentication protocol is able to derive the user's identity from an additional
source, for example a certificate, it should verify that the identity so derived matched
the value of pszldentity.

pwszPassword
Pointer to a Unicode string that contains the user's account password. Available only
if fAuthenticator is FALSE. This member may be NULL.

blnitialld
Specifies the identifier of the initial EAP packet sent by the DLL. This value is
incremented by one for each subsequent request packet.

Chapter 13 Extensible Authentication Protocol (EAP) 407

pUserAttributes
Pointer to an array of RAS_AUTH_ATTRIBUTE structures. The array is terminated
by a structure with an raaType member that has a value of raatMinimum (see
RAS_AUTH_A TTRIBUTE_ TYPE) During the RasEapBegin call, this array contains
attributes that describe the currently dialed-in user. When the
fAuthenticationComplete member is TRUE, this array may contain attributes
returned by the authentication provider.

fAuthenticationComplete
Specifies a Boolean value indicating whether the authentication provider has
authenticated the user. A value of TRUE indicates authentication completion. Check
the dwAuthResultCode field to determine if the authentication was successful. Ignore
this field if the authentication protocol is not using an authentication provider.

dwAuthResultCode
Specifies the result of the authentication provider's authentication process. Successful
authentication results in NO_ERROR. Authentication failure codes for
dwAuthResultCode must come only from Winerror.h, Raserror.h or Mprerror.h.
Ignore this field if the authentication protocol is not using an authentication provider.

hTokenlmpersonateUser
Handle to an impersonation token for the user requesting authentication. This
member is valid only on the client side. For more information on impersonation
tokens, see Access Tokens.

fSuccessPacketReceived
RAS sets this member to TRUE if the client receives an Network Control Protocol
(NCP) packet even though the client has not yet received an EAP success packet.
The EAP success packet is a non-acknowledged packet. Therefore, it may be lost
and not resent by the server. In this situation, the receipt of an NCP packet indicates
that authentication must have been successful, since the server has moved on to the
NCP phase of PPP. This member should be examined only on the client side.

fDataReceivedFromlnteractiveUI
RAS sets this member to TRUE whenever the user exits from the authentication
protocol's interactive user interface.

pDataFromlnteractiveUI
Pointer to data received from the authentication protocol's interactive user interface.
This pointer is non-NULL if the fDataReceivedFromlnteractiveUI member is TRUE
and the interactive user interface did, in fact, return data. Otherwise, this pointer
is NULL.

If non-NULL, the authentication protocol should make a copy of the data in its own
memory space. RAS frees the memory occupied by this data on return from the call in
which the PPP _EAP _INPUT structure was passed. To free the memory, RAS calls
the RasEapFreeMemory function.

dwSizeOfDataFromlnteractiveUI
Specifies the size, in bytes, of the data pOinted to by pDataFromlnteractiveUi. If no
data is returned from the interactive user interface, this member is zero.

408 Volume 4 Remote Access Services

pConnectionData
Pointer to connection data received from the authentication protocol's configuration
user interface. This data is available only when the PPP _EAP _INPUT structure is
passed in RasEapBegin. It is not available in calls to RasEapMakeMessage.

The authentication protocol should make a copy of this data in its own memory space.
RAS frees the memory occupied by this data on return from the call in which the
PPP _EAP _INPUT structure was passed. To free the memory, RAS calls the
RasEapFreeMemory function.

If the authentication protocol's configuration user interface does not return any data,
this member is NULL.

dwSizeOfConnectionData
Specifies the size in bytes of the data pointed to by pConnectionData. If
pConnectionData is NULL, this member is zero.

pUserData
Pointer to user data received from the authentication protocol's RasEapGetldentity
function on the client computer. If the authentication protocol does not implement
RasEapGetldentity, this member points to data from the registry for this user.

This data is available only when the PPP _EAP _INPUT structure is passed in
RasEapBegin. It is not available in calls to RasEapMakeMessage.

The authentication protocol should make a copy of this data in its own memory space.
RAS frees the memory occupied by this data on return from the call in which the
PPP _EAP _INPUT structure was passed.

If the RasEapGetldentity function is not implemented or did not return any data, and
no data exists for the user in the registry, this member is NULL.

dwSizeOfUserData
Specifies the size, in bytes, of the data pointed to by pUserData. If pUserData is
NULL, this member is zero.

hReserved
This member is reserved.

Remarks
The PPP _EAP _INPUT structure is passed by RAS to the authentication protocol in calls
to RasEapBegin and RasEapMakeMessage.

The pszldentity and pszPassword members of the PPP _EAP _INPUT structure are
used by the RasEapBegin function to obtain user information. The pszPassword
member is non-NULL only if the fAuthenticator member is FALSE, that is, the
authentication protocol is running on the client computer.

If the authentication protocol is using an authentication provider, such as Radius or
Windows 2000 domain authentication, the following members are used to interface with
the authentication provider:

Chapter 13 Extensible Authentication Protocol (EAP) 409

pUserAttributes

fAuthenticationComplete

dwAuthResultCode

Note that the array of RAS_AUTH_ATTRIBUTE structures is passed only if
fAuthenticator is TRUE. This array contains current session information such as port
identifier and 10cailP address.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Structures, RasEapBegin,
RasEapGetldentity, RasEapFreeMemory, RasEapMakeMessage,
RAS_AUTH_A TTRIBUTE

PPP_EAP_OUTPUT
The authentication protocol uses the PPP _EAP _OUTPUT structure to communicate
requests and status information to the Connection Manager on return from calls to
RasEapMakeMessage.

(continued)

410 Volume 4 Remote Access Services

(continued)

Members
Action

Specifies a PPP _EAP _ACTION value. The Connection Manager carries out this
action on behalf of the authentication protocol.

dwAuthResultCode
Specifies whether authentication was successful. Any non-zero value for
dwAuthResultCode indicates failure. The failure code must come from Winerror.h,
Raserror.h or Mprerror.h. This member is valid only if the Action member has a value
of EAPACTION_Done or EAPACTION_SendAndDone.

pUserAttributes
Pointer to an optional array of RAS_AUTH_ATTRIBUTE structures. The array is
terminated by a structure with an raaType member that has a value of raatMinimum
(see RAS_AUTH_A TTRIBUTE_ TYPE).

This member should be set on the authenticator side when Action is
EAPACTION_Authenticate, or when Action is EAPACTION_Done or
EAPACTION_SendAndDone. and dwAuthResultCode is zero.

When Action is EAPACTION_Authenticate, the array may contain additional
attributes necessary to authenticate the user, e.g. the user-password. If the
authentication protocol passes in only the user name, RASdoes not invoke the
authentication provider to authenticate the user, Instead, RAS just passes back the
current attributes for the user.

When Action is EAPACTION_Done or EAPACTION_SendAndDone, and
dwAuthResultCode is zero, the array may contain additional attributes to assign to
the user. These attributes overwrite any attributes of the same type returned by the
authentication provider.

The authentication protocol should free this memory in its RasEapEnd function.

flnvokelnteractiveUI
Specifies whether RAS should invoke the authentication protocol's interactive UI. If
the authentication protocol sets this member to TRUE, RAS invokes the interactive UI,
by calling the RasEaplnvokelnteractiveUi function provided by the authentication
protocol.

Chapter 13 Extensible Authentication Protocol (EAP) 411

pUIContextData
. Pointer to context data that RAS should pass in the call to

RasEaplnvokelnteractiveUI. The authentication protocol should free this memory in
its implementation of RasEapEnd.

dwSizeOfUIContextData
Specifies the size of the context data that RAS should pass in the call to
RasEaplnvokelnteractiveUI.

fSaveConnectionData
Specifies whether RAS should save the information pointed to by the
pConnectionData member. If fSaveConnectionDatais TRUE, RAS will save the
data in the phone book. This is only valid for the process that is being authenticated.

pConnectionData
Specifies data specific to the connection, that iSI data that is not specific to any
particular user. If the fSaveConnectionData member is TRUE, RAS saves the
connection data in the phone book. The authentication protocol should free the
memory occupied by this data during the call to RasEapEnd.

dwSizeOfConnectionData;
Specifies the size, in bytes, of the data pOinted to by the pConnectionData member.

fSaveUserData
Specifies whether RAS should save the user data pOinted to by the pUserData
member. If this parameter is TRUE, RAS saves the user-specific data in the registry
under HKEY _CURRENT_USER.

pUserData
Pointer to user data that RAS should save in the registry. RAS.savesthis data in the
registry under HKEY _CURRENT_USER. The authentication protocol should free this
memory during the call to RasEapEnd.

dwSizeofUserData
Specifies the size in bytes of the data pointed to by pUserData.

Remarks
Use the RasEapMakeMessage function to pass the PPP _EAP _OUTPUT structure
between the authentication protocol and the Connection Manager

The authentication protocol may use the PPP _EAP _OUTPUT structure to return the
Microsoft Point to Point EncrYption (MPPE) session key. The authentication protocol
should place the session key in.the value field of a sub-attribute contained within the
value field of an attribute of type raatVendorSpecific (see
RAS_AUTH_ATTRIBUTE_TYPE). The sub-attribute should have aVendor-ID of311
(Microsoft) and a Vendor-Type of 12 (MS-CHAP-MPPE-Keys). The authentication
protocol should set the pUserAttributes member to point to the raatVendorSpecific
attribute, and set the Action member to EAPACTION_Done or
EAPACTION_SendAndDone. For more information about the format of the MPPE sub­
attribute see http://search.ietf.org/internet-drafts/draft-ietf-radius-mschap-attr-01.txt.

412 Volume 4 Remote Access Services

For more information about attribute formats see RAS_AUTH_A TTRIBUTE,
RAS_AUTH_A TTRIBUTE_ TYPE, and
http://src.doc.ic.ac.uk/computing/internetlrfc/rfc2138.txt.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Structures,
RAS_AUTH_ATTRIBUTE, PPP _EAP _ACTION, RasEaplnvokelnteractiveUI,
RasEapMakeMessage

PPP_EAP_PACKET
The PPP _EAP _PACKET structure specifies information about a packet being processed
by the authentication protocol.

Members
Code

Id

Specifies the type of packet that is being sent or received by the authentication
protocol. This parameter can be one of the four following values.

Value Meaning

EAPCODE_Request

EAPCODE_Response

EAPCODE_Success

EAPCODE_Failure

The packet is a request.

The packet is a response.

The packet indicates success.

The packet indicates failure.

Specifies the identifier of the packet. The authentication protocol is responsible for
maintaining packet counts for sessions, as that packet count pertains to EAP activity.

Length[2]
Specifies the length of the packet.

Chapter 13 Extensible Authentication Protocol (EAP) 413

Data[1]
Specifies the data transmitted by this packet. If the packet is a request or a response
packet, the first byte of this member signifies its type. For more information about
packet types and requirements for type reservation, refer to the PPP EAP Internet
draft, found at http://ds2.internic.neVinternet-drafts/draft-ietf-pppext-eap-auth-02.txt.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Structures, RasEapGetlnfo,
RasEapMakeMessage, PPP _EAP _INFO, PPP _EAP _INPUT, PPP _EAP _OUTPUT

The RAS_AUTH_ATTRIBUTE structure is used to pass authentication attributes, of type
RAS_AUTH_ATTRIBUTE_TYPE, during an EAP session.

Members
raaType

Specifies the type of attribute, as defined in the RAS_AUTH_ATTRIBUTE_ TYPE
enumerated type.

dwLength
Specifies the length in bytes of the value of this attribute. If the Value member is a
pOinter, dwLength specifies the length of the buffer painted to. If the Value member
is the value itself, dwLength specifies how much of the length of the Value member
is taken up by the value.

Value
Specifies the value of the attribute. Although this member is of the PVOID type, this
member sometimes contains the value of the attribute rather than pointing to the
value. The only way to know whether to interpret the Value member as a pointer to
the value or the value itself, is to check the raaType member. See the reference page
for RAS_AUTH_ATTRIBUTE_TYPE for information about how the Value member
should be interpreted for different types.

414 Volume 4 Remote Access Services

Remarks
Often an array of these structures is used to store or obtain a set of attributes for a given
user. Since the number of attributes for a session is unknown, the array must be
dynamic. The array is terminated by a structure with an raaType member that has a
value of raatMinimum

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Structures,
RAS_AUTH_A TTRIBUTE_ TYPE

EAP Enumerated Types
Use the following enumerated types for authentication protocols and authentication
providers:

PPP _EAP _ACTION

RAS_AUTH_ATTRIBUTE_ TYPE

PPP _EAP _ACTION
The PPP _EAP _ACTION enumerated type specifies actions that the Connection
Manager should take on behalf of the authentication protocol.

Values
EAPACTION_NoAction

Chapter 13 Extensible Authentication Protocol (EAP) 415

Directs the Connection Manager to be passive.

EAPACTION_Done
Directs the Connection Manager Service to end the authentication session.
EAPACTION_Done indicates that the dwAuthResultCode member of the
PPP _EAP _OUTPUT structure is set with an appropriate value.

EAPACTION_SendAndDone
Directs the Connection Manager to send a message (without a time out), then end the
authentication session. EAPACTION_SendAndDone indicates that the
dwAuthResultCode member of the PPP _EAP _OUTPUT structure is set with an
appropriate value.

EAPACTION_Send
Directs the Connection Manager to send a message without setting a time out to wait
for a reply.

EAPACTION_SendWithTimeout
Directs the Connection Manager to send a message and set a time out to wait for a
reply.

EAPACTION_SendWithTimeoutinteractive
Directs the Connection Manager to send a message and set a time out to wait for a
reply, but instructs the Connection Manager not to increment the retry counter.

EAPACTION~uthenticate

Directs the Connection Manager to invoke the authentication provider to authenticate
the user.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Enumerated Types,
PPP _EAP_INPUT, PPP _EAP _OUTPUT

The RAS_AUTH_ATTRIBUTE_TYPE enumerated type specifies attribute values used
for session authentication. Further details for values in this enumerated type may be
obtained by referring to one of the three following references: RFC 2138, RFC 2139, or
draft-ietf-radius-ext-04.

416 Volume 4 Remote Access Services

Chapter 13 Extensible Authentication Protocol (EAP) 417

(continued)

418 Volume 4 Remote Access Services

(continued)

Values
raatMinimum

Specifies a value that is equal to zero, and used as the null-terminator in any array of
RAS_AUTH_ATTRIBUTE structures.

raatUserName
Specifies the name of the user to be authenticated. The value field in
RAS_AUTH_ATTRIBUTE for this type is a painter. For more information, see
RFC2138.

raatUserPassword
Specifies the password of the user to be authenticated. The value field in
RAS_AUTH_ATIRIBUTE for this type is a painter. For more information, see
RFC2138.

raatMD5CHAPPassword
Specifies the password provided by the user in response to an MD5 Challenge
Handshake Authentication Protocol (CHAP) challenge. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see
RFC2138.

Chapter 13 Extensible Authentication Protocol (EAP) 419

raatNASIPAddress
Specifies the Network Access Server (NAS) IP address. An Access-Request should
specify either an NAS IP address or an NAS identifier. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC 2138.

raatNASPort
Specifies the physical or virtual private network (VPN) through which the user is
connecting to the NAS. Note that this value is not a port number in the sense of TCP
or UDP. The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral
value. For more information, see RFC 2138.

raatSeNice Type
Specifies the type of service the user has requested or the type of service to be
provided. The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral
value. For more information, see RFC 2138.

raatFramedProtocol
Specifies the type of framed protocol to use for framed access, for example SLIP,
PPP, or ARAP (AppleTalk Remote Access Protocol). The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC 2138.

raatFramedlPAddress
Specifies the IP address to be configured for the user requesting authentication. This
attribute is typically returned by the authentication provider. However, the NAS may
use it in an authentication request to specify a preferred IP address. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC2138.

raatFramedlPNetmask
Specifies the IP network mask for a user that is a router to a network. The value field
in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more
information, see RFC 2138.

raatFramedRouting
Specifies the routing method for a user that is a router to a network. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC2138.

raatFilterld
Specifies the filter list for the user requesting authentication. The value field in
RAS_AUTH_ATTRIBUTE for this type is a painter. For more information, see
RFC2138.

raatFramedMTU
Specifies the Maximum Transmission Unit (MTU) for the user. This attribute is used in
cases where the MTU is not negotiated through some other means, such as PPP.
The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For
more information, see RFC 2138.

420 Volume 4 Remote Access Services

raatFramedCompression
Specifies a compression protocol to use for the connection. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC 2138.

raatLoginlPHost
Specifies the system with which to connect the user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC 2138.

raatLoginService
Specifies the service to use to connect the user to the host specified by
raatLoginlPHost. The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit
integral value. For more information, see RFC 2138.

raatLogin TCPPort
Specifies the port to which to connect the user. This attribute is present only if the
raatLoginService attribute is present. The value field in RAS_AUTH_ATTRIBUTE for
this type is a 32-bit integral value. For more information, see RFC 2138.

raatUnassigned1
This value is currently unassigned.

raatReplyMessage
Specifies a message to display to the user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see
RFC2138.

raatCallbackNumber
Specifies a callback number. The value field in RAS_AUTH_ATTRIBUTE for this type
is a pointer. For more information, see RFC 2138.

raatCallbackld
Specifies a location to call back. The value of this attribute is interpreted by the NAS.
The value field in RAS_AUTH_ATTRIBUTE for this type is a pointer. For more
information, see RFC 2138.

raatUnassigned2
This value is currently unassigned. The value field in RAS_AUTH_ATTRIBUTE for
this type is also undefined.

raatFramedRoute
Specifies routing information to configure on the NAS for the user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pOinter. For more information, see
RFC2138.

raatFramedlPXNetwork
Specifies the IPX network number to configure for the user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC 2138.

raatState
Refer to RFC 2138 for detailed information about this value. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer.

Chapter 13 Extensible Authentication Protocol (EAP) 421

raatClass
Specifies a value that is provided to the NAS by the authentication provider. The NAS
should use this value when communicating with the accounting provider. The value
field in RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see
RFC2138.

raatVendorSpecific
Specifies a field for extended attributes. The value field in RAS_AUTH_ATTRIBUTE
for this type is a pOinter. For more information, see RFC 2138.

raatSession Timeout
Specifies the maximum number of seconds for which to provide service to the user.
After this time, the session is terminated. The value field in RAS_AUTH_ATTRIBUTE
for this type is a 32-bit integral value. For more information, see RFC 2138.

raat/dle Timeout
Specifies the maximum number of consecutive seconds the session can be idle. If the
idle time exceeds this value, the session is terminated. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC 2138.

raatTerminationAction
Refer to the above-referenced files at ds.internic.net for detailed information about this
value. The value field in RAS_AUTH_ATTRIBUTE for this type is 32-bit integral
value. For more information, see RFC 2138.

raatCalledStationld
Specifies the number that the user dialed to connect to the NAS. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see
RFC2138.

raatCallingStationld
Specifies the number from which the user is calling. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see
RFC2138.

raatNASldentifier
Specifies the NAS identifier. An Access-Request should specify either an NAS
identifier or an NAS IP address. The value field in RAS_AUTH_ATTRIBUTE for this
type is a pointer. For more information, see RFC 2138.

raatProxyState
Specifies a value that a proxy server includes when forwarding an authentication
request. The value field in RAS_AUTH_A TTRIBUTE for this type is a pointer. For
more information, see RFC 2138.

raatLoginLA TService
Specifies an attribute that is not currently used for authentication on Windows 2000.
For more information, see RFC 2138.

raatLoginLA TNode
Specifies an attribute that is not currently used for authentication on Windows 2000.
For more information, see RFC 2138.

422 Volume 4 Remote Access Services

raatLoginLA TGroup
Specifies an attribute that is not currently used for authentication on Windows 2000.
For more information, see RFC 2138.

raatFramedApple TalkLink
Specifies the AppleTalk network number for the user when the user is another router.
The value field in RAS_AUTH_ATTRIBUTE for this type is 32-bit integral value. For
more information, see RFC 2138.

raatFramedApple TalkNetwork
Specifies the AppleTalk network number that the NAS should use to allocate an
AppleTalk node for the user. This attribute is used only when the user is not another
router. The value field in RAS_AUTH_ATTRIBUTE for this type isa 32-bit integral
value. For more information, see RFC 2138.

raatFramedApple TalkZone
Specifies the AppleTalk default zone for the user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pOinter. For more information, see
RFC2138.

raatAcctStatus Type
Specifies whether the accounting provider should start or stop accounting for the user.
The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For
more information, see RFC 2139.

raatAcctOelayType
Specifies the length of time that the client has been attempting to send the current
request. The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral
value. For more information, see RFC 2139.

raatAcct/nputOctets
Specifies the number of octets that have been received during the current accounting
session. The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral
value. For more information, see RFC 2139.

raatAcctOutputOctets
Specifies the number of octets that were sent during the current accounting session.
The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For
more information, see RFC 2139.

raatAcctSessionld
Specifies a value to enable the identification of matching start and stop records within
a log file. The start and stop records are sent in the raatAcctStatusType attribute. The
value field in RAS_AUTH_ATTRIBUTE for this type is a pointer. For more
information, see RFC 2139.

raatAcctAuthentic
Specifies, to the accounting provider, how the user was authenticated; for example by
Windows 2000 Directory Services, RADIUS, or some other authentication provider.
The value field in RAS_AUTH_ATTRIBUTEfor this type is a 32-bit integral value. For
more information, see RFC 2139.

Chapter 13 Extensible Authentication Protocol (EAP) 423

raatAcctSessionTime
Specifies the number of seconds that have elapsed in the current accounting session.
The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For
more information, see RFC 2139.

raatAcctlnputPackets
Specifies the number of packets that have been received during the current
accounting session. The value field in RAS_AUTH_ATTRIBUTE for this type is a
32-bit integral value. For more information, see RFC 2139.

raatAcctOutputPackets
Specifies the number of packets that have been sent during the current accounting
session. The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral
value. For more information, see RFC 2139.

raatAcctTerminateCause
Specifies how the current accounting session was terminated. The value field in
RAS_AUTH~TTRIBUTE for this type is a 32-bit integral value. For more information,
see RFC 2139. '

raatAcctMultiSessionld
Specifies a value to enable. the identification of related accounting sessions within a
log file. The value field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral
value. For more information, see RFC2139.

raatAcctLinkCount
Specifies the number of links if the current accounting session is using a multilink
connection. The value field in RAS_AUTH~TTRIBUTE for this type is a 32-bit
integral value. For more information, see RFC 2139.

raatAcctEventTimeStamp
Specifies an attribute that is included in an accounting request packet. It specifies the
time that the event took place. The value field in RAS_AUTH_ATTRIBUTE for this
type is a 32-bit integral value. For more information, see the Radius Extensions 04
internet draft.

raatMD5CHAPChallenge
Specifies the CHAP challenge sent by the NAS toa CHAP user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see
RFC2138.

raatNASPortType
Specifies the type of the port through which the user is connecting, for example,
asynchronous, ISDN, virtual. The value field in RAS~AUTH_ATTRIBUTE for this type
is a 32-bit integral value. For more information, see RFC 2138.

raatPortLimit
Specifies the number of ports the NAS should make available to the user for multilink
sessions. The value field in RAS...:.AUTH_ATTRIBUTE for this type is a 32-bit integral
value. For more information, see RFC 2138.

424 Volume 4 Remote Access Services

raatLoginLA TPort
Specifies an attribute that is not currently used for authentication on Windows 2000.
Please refer to the above-referenced files at ds.internic.net for detailed information
about this value.

raatARAPPassword
Specifies a password to use for AppleTalk Remote Access Protocol (ARAP)
authentication. The value field in RAS_AUTH_ATTRIBUTE for this type is a pointer.
For more information, see the Internet draft, draft-ietf-radius-ext-04.

raatARAPFeatures
Specifies information that an NAS should send back to the user in an ARAP "feature
flags" packet. The value field in RAS_AUTH_ATTRIBUTE for this type is a pOinter.
For more information, see the Internet draft, draft-ietf-radius-ext-04.

raatARAPZoneAccess
Specifies how to use the ARAP zone list for the user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see the Internet draft, draft-ietf-radius-ext-04.

raatARAPSecurity
Specifies an ARAP security module to use during a secondary authentication phase
between the NAS and the user. The value field in RAS_AUTH_ATTRIBUTE for this
type is a 32-bit integral. For more information, see the Internet draft,
draft-ietf-radius-ext-04.

raatARAPSecurityData
Specifies the data to use with an ARAP security module. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see the
Internet draft, draft-ietf-radius-ext-04.

raatPasswordRetry
Specifies the number of password retry attempts to permit the user. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value.

raatPrompt
Specifies whether the NAS should echo the user response to a challenge. The value
field in RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more
information, see the Internet draft, draft-ietf-radius-ext-04.

raatConnect/nfo
Specifies information about the type of connection the user is using. The value field in
RAS_AUTH_ATTRIBUTE for this type is a Pointer. For more information, see the
Internet draft, draft-ietf-radius-ext-04.

raatConfiguration Token·
Specifies user-profile information in communications between RADIUS Proxy Servers
and RADIUS Proxy Clients. The value field in RAS_AUTH_ATTRIBUTE for this type
is a pointer. For more information, see the Internet draft, draft-ietf-radius-ext-04.

Chapter 13 Extensible Authentication Protocol (EAP) 425

raatEAPMessage
Specifies that EAP information be sent directly between the user and the
authentication provider. The value field in RAS_AUTH_ATTRIBUTE for this type is a
pointer. For more information, see the Internet draft, draft-ietf-radius-ext-04.

raatSignature
Specifies a signature to include with CHAP, EAP, or ARAP packets. The value field in
RAS_AUTH_ATTRIBUTE for this type is a painter. For more information, see the
Internet draft, draft-ietf-radius-ext-04.

raatAcctlnterimlnterval
Specifies the time, in seconds, between accounting updates. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see the Internet draft, draft-ietf-radius-ext-04.

raatARAPChallenge
Specifies a Apple Remote Access Protocol (ARAP) challenge. In ARAP, both the
server and the client may issue challenges. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see the
Internet draft, draft-ietf-radius-ext-04.

raatARAPGuestLogon
Specifies a Apple Remote Access Protocol (ARAP) guest logon. The value field in
RAS_AUTH_ATTRIBUTE for this type is a 32-bit integral value. For more information,
see the Internet draft, draft-ietf-radius-ext-04.

raatARAPChallengeResponse
Specifies the response to a Apple Remote Access Protocol (ARAP) challenge. In
ARAP, either the server or the client may respond to challenges. The value field in
RAS_AUTH_ATTRIBUTE for this type is a pointer. For more information, see the
Internet draft, draft-ietf-radius-ext-04.

raatReserved
The value field in RAS_AUTH_ATTRIBUTE for this type is undefined.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Raseapif.h.

Extensible Authentication Protocol Reference, EAP Enumerated Types,
RAS_AUTH_A TTRIBUTE

Extensible Authentication Protocol COM Interfaces
Implement the following COM interfaces when implementing an authentication protocol
for Microsoft® Windows® 2000 Server:

IEAPProviderConfig

426 Volume 4 Remote Access Services

IEAPProviderConfig

When to Implement
Implement the IEAPProviderConfig interface to provide a configuration UI for an EAP
provider. This interface is for configuring the EAP provider on the server. For information
about the client-side configuration, see the reference page for the
RasEaplnvokeConfigUI function.

When to Use
The system calls the methods of this interface when a user chooses to configure an EAP
provider in the R RAS snap-in.

Methods in Vtable Order
IUnknown Methods

Query Interface

AddRef

Release

IEAPProviderConfig Methods

Initialize

Uninitialize

ServerlnvokeConfigUI

RouterlnvokeConfigUI

RouterlnvokeCredentialsUI

Description

Returns pointers to supported interfaces

Increments reference count

Decrements reference count

Description

Initializes an EAP configuration session

Shuts down an EAP configuration session

Invokes the EAP configuration user interface

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rrascfg.h.

Extensible Authentication Protocol Reference, Extensible Authentication Protocol COM
Interfaces

IEAPProviderConfig::lnitialize
The system calls the IEAPProviderConfig::lnitialize method to initialize an EAP
configuration session with the specified computer.

Parameters
pszMachineName

Chapter 13 Extensible Authentication Protocol (EAP) 427

Pointer to a string that contains the name of the computer on which to configure EAP.

dwEapTypeld
Specifies the EAP for which to initialize a configuration session.

puConnectionParam
Pointer to an unsigned integer variable. On successful return, the value of this
variable identifies this configuration session.

Return Values
If the function succeeds, the return value should be S_OK.

If the function fails, the return value should be one of the following codes.

Value

E_FAIL

E_INVALIDARG

E_OUTOFMEMORY

Remarks

Description

Non-specific error

One of the arguments is invalid

The method failed because it was unable to
allocate required memory

An unexpected error occurred

The configuration UI should allow the user to configure the EAP provider on a remote
computer. Establish the connection to the remote computer during the call to
IEAPProviderConfig:: In itialize.

The DLL that implements IEAPProviderConfig may support more than one
authentication protocol. The dwEapTypeld parameter specifies for which authentication
protocol to initialize a configuration session.

Windows NTl2000: Requires Windows 2000.
Header: Declared in Rrascfg.h.

428 Volume 4 Remote Access Services

Extensible Authentication Protocol Reference, Extensible Authentication Protocol COM
Interfaces, IEAPProviderConfig, IEAPProviderConfig:: RouterlnvokeConfigUI,
IEAPProviderConfig::RouterlnvokeCredentialsUI,
IEAPProviderConfig::ServerlnvokeConfigUI, IEAPProviderConfig::Uninitialize

IEAPProviderConfig::Uninitialize
The system calls the IEAPProviderConfig::Uninitialize method to shutdown the
specified EAP configuration session.

Parameters
dwEapType/d

Specifies the EAP for which to shut down the configuration session.

uConnectionParam
Specifies the configuration session to shut down.

Return Values
If the function succeeds, the return value should be S_OK.

If the function fails, the return value should be one of the following codes.

Value

E_FAIL

E_INVALIDARG

E_OUTOFMEMORY

Remarks

Description

Non-specific error

One of the arguments is invalid

The method failed because it was unable to
allocate required memory

An unexpected error occurred

The configuration UI should allow the user to configure the EAP provider on a remote
computer. Delete the connection to the remote computer during the call to
I EAPProviderConfig:: Uninitialize.

The DLL that implements IEAPProviderConfig may support more than one
authentication protocol. The dwEapType/d parameter specifies for which authentication
protocol to shut down the configuration session.

Chapter 13 Extensible Authentication Protocol (EAP) 429

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rrascfg.h.

Extensible Authentication Protocol Reference, Extensible Authentication Protocol COM
Interfaces, IEAPProviderConfig, IEAPProviderConfig:: Initialize,
IEAPProviderConfig:: RouterlnvokeConfigUI,
IEAPProviderConfig::RouterlnvokeCredentialsUI,
IEAPProviderConfig::ServerlnvokeConfigUI

I EAPProviderConfig: : ServerlnvokeConfig U I
The system calls the IEAPProviderConfig::ServerlnvokeConfigUI method to invoke
the configuration user interface for EAP authentication between a remote access client
and server.

Parameters
dwEapTypeJd

Specifies the EAP for which to invoke the configuration user interface.

uConnectionParam
Specifies the configuration session for which to invoke the user interface.

hWnd
Handle to the parent window for the configuration user interface.

dwReserved1
This parameter is reserved and should be zero.

dwReserved2
This parameter is reserved and should be zero.

Return Values
If the function succeeds, the return value should be S_OK.

430 Volume 4 Remote Access Services

If the function fails, the return value should be one of the following codes.

Value

E_FAIL

E_INVALIDARG

E_OUTOFMEMORY

Remarks

Description

Non-specific error

One of the arguments is invalid

The method failed because it was unable to
allocate required memory

An unexpected error occurred

The DLL that implements IEAPProviderConfig may support more than one
authentication protocol. The dwEapType/d parameter specifies for which authentication
protocol to invoke the configuration user interface.

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rrascfg.h.

Extensible Authentication Protocol Reference, Extensible Authentication Protocol COM
Interfaces, IEAPProviderConfig, IEAPProviderConfig:: Initialize,
IEAPProviderConfig::Uninitialize, IEAPProviderConfig::RouterlnvokeConfigUI,
IEAPProviderConfig::RouterlnvokeCredentialsUI

IEAPProviderConfig::RouterlnvokeConfigUI
The system calls the IEAPPrQviderConfig::RouterlnvokeConfigUI method to invoke
the configuration user interface for EAP authentication between two routers:

Parameters
dwEapTypeld

Chapter 13 Extensible Authentication Protocol (EAP) 431

Specifies the EAP for which to invoke the configuration user interface.

uConnectionParam
Specifies the configuration session for which to invoke the user interface.

hwndParent
Handle to the parent window for the configuration user interface.

dwFlags
Specifies the RAS_EAP _FLAG_ROUTER flag. This is the only valid flag for this
parameter and it indicates that authentication is between two routers. This parameter
will always include this flag.

pConnectionDataln
Pointer to the current configuration data for the interface.

dwSizeOfConnectionDataln
Specifies the size of the current configuration data pointed to by the
pConnectionDataln parameter.

ppConnectionDataOut
Pointer to a pOinter to a buffer that contains the new configuration data for the
interface.

pdwSizeOfConnectionDataOut
Pointer to a DWORD variable to receive the size of the new configuration data.

Return Values
If the function succeeds, the return value should be S_OK.

If the function fails, the return value should be one of the following codes.

Value Description

E_FAIL

E_INVALIDARG

E_OUTOFMEMORY

Non-specific error

One of the arguments is invalid

The method failed because it was unable to
allocate required memory

An unexpected error occurred

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rrascfg.h.

432 Volume 4 Remote Access Services

Extensible Authentication Protocol Reference, Extensible Authentication Protocol COM
'Interfaces, IEAPProviderConfig, IEAPProviderConfig:: Initialize,
IEAPProviderConfig::RouterlnvokeCredentialsUI,
IEAPProviderConfig: :ServerlnvokeConfigUI, IEAPProviderConfig: :Uninitialize

I EAPProviderConfig: : RouterlnvokeCredentialsU I
The system calls the IEAPProviderConfig::RouterlnvokeCredentialsUI method to
invoke the credentials user interface for EAP authentication between two routers.

Parameters
dwEapTypeld

Specifies the EAP for which to invoke the configuration user interface.

uConnectionParam
Specifies the configuration session for which to invoke the user interface.

hwndParent
Handle to the parent window for the configuration user interface.

dwFlags
Specifies the RAS_EAP _FLAG_ROUTER flag. This is the only valid flag for this
parameter and it indicates that authentication is between two routers. This parameter
will always include this flag.

pConnectionDataln
Pointer to the current configuration data for the interface.

dwSizeOfConnectionDataln
Specifies the size of the current configuration data pointed to by the
pConnectionDataln parameter.

Chapter 13 Extensible Authentication Protocol (EAP) 433

pUserDataln
Pointer to the current credential data for the interface.

dwSizeOfUserDataln
Specifies the size of the current credentials data.

ppUserDataOut
Pointer to a pointer to a buffer to receive the new credentials data for the interface.

pdwSizeOfUserDataOut
Pointer to a DWORD variable to receive the size of the new credentials data.

Return Values
If the function succeeds, the return value should be S_OK.

If the function fails, the return value should be one of the following codes.

Value Description

E_FAIL

E_INVALIDARG

E_OUTOFMEMORY

Non-specific error

One of the arguments is invalid

The method failed because it was unable to
allocate the required memory

An unexpected error occurred

Windows NT/2000: Requires Windows 2000.
Header: Declared in Rrascfg.h.

Extensible Authentication Protocol Reference, Extensible Authentication Protocol COM
Interfaces, IEAPProviderConfig, IEAPProviderConfig::lnitialize,
IEAPProviderConfig:: RouterlnvokeConfigUI,
IEAPProviderConfig::ServerlnvokeConfigUI, IEAPProviderConfig::Uninitialize

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I.

435

CHAPTER 14

Tracing

Tracing Overview
The following documentation describes the implementation of the common tracing DLL,
which provides a uniform mechanism for generating diagnostic output for the Microsoft®
Windows NT®IWindows® 2000 Routing and RAS components as well as any other
application that wishes to use the DLL. The DLL provides dynamic configuration change,
allowing a user to direct output to a console or to a specified file. In the case of files, the
user can specify the maximum size for the file.

Using Tracing
Each application or service component calls TraceRegister to obtain an Identifier (ID) to
use in calls to the output functions. On this call, the DLL reads configuration information
for the caller from the registry, and sets up the console or file to which output will be
sent. In addition, a critical section is created that will be used to synchronize calls to the
tracing DLL functions by the registering component's threads. An event is associated
with the registry key for the caller, so that changes to the tracing parameters for the
caller can be handled dynamically.

After registering, the application may call the output functions, passing the ID returned by
TraceRegister. When the application no longer requires the tracing DLL's support, it
should call TraceDeregister so that handles associated with it can be closed.

There are two versions of each output function. One version prefixes the output it
generates with standard information such as the name associated with the caller, the
thread ID of the caller, and the current time. The other version allows the caller to omit
the standard information normally generated. For instance, TracePrintf includes
standard information, but TracePrintfEx does not, unless the flag passed to it specifies
that it should.

Support for Unicode clients is built into the tracing DLL. All that is required is that the
client define the constant UNICODE before including the header containing definitions
for the tracing DLL functions.

436 Volume 4 Remote Access Services

Configuration
In order to enable console tracing, the value EnableConsoleTracing must exist under
the registry key

HKEY _LOCAL_MACHINE\SOFTWARE\MICROSOFT\TRACING

and be non-zero. If this value does not exist, or is zero, console tracing is disabled. This
value is read when rtutils.dll is loaded; changes to this value after rtutils.dll is already
loaded will have no effect until the DLL is unloaded and loaded again.

In addition to the preceding "global" value, the registry may also contain values for
individual clients. When a client "xyz" calls TraceRegister, the tracing DLL looks under
the registry key

HKEY _LOCAL_MACHINE\SOFTWARE\MICROSOFT\TRACING\xYZ

for the following values:

• EnableConsoleTracing: this is a REG_DWORD that defaults to zero; tracing to the
console is enabled if this value is non-zero.

• EnableFileTracing: this is a REG_DWORD that defaults to zero; tracing to a file
named XYZ.LOG is enabled if this value is non-zero.

• ConsoleTracingMask: this is a REG_DWORD that defaults to OxFFFFOOOO; the bits
in the high-order word correspond to components in the client. If a call to one of the
extended output functions has the flag TRACE_USE_MASK set, this registry value is
compared against the high-order word of the flag passed to the output function, to
decide whether or not to send the output to the console.

• FileTracingMask: this is a REG_DWORD that defaults to OxFFFFOOOO; it operates
similarly to ConsoleTracingMask.

• MaxFileSize: this is a REG_DWORD that defaults to Ox10000; this is the maximum
size a tracing file can grow to before it is renamed.

• FileDirectory: this is a REG_EXPAND_SZ that defaults to %WINDIR%\TRACING;
this is the directory in which the tracing file is created.

The defaults are used only if the key is found (or can be created) but some values are
absent from the key. If the registry key is not found and cannot be created, the call to
TraceRegister fails.

Alternatively, a client "xyz" could call TraceRegisterEx, which takes a flag allowing the
caller to specify the settings to use. Thus, a client could use the tracing DLL without
creating any key in the registry. For instance:

would register the client "xyz" to use the console for tracing, and the tracing DLL would
not attempt to read the registry key for the client. Similarly.

Chapter 14 Tracing 437

would register the client "abc" to use a file for tracing, bypassing the registry key for the
client. However, for console tracing, using TraceRegisterEx still requires that the global
EnableConsoleTracing value exist under

HKEY _LOCAL_MACH INE\SOFTW ARE\MICROSOFn TRACING

and be non-zero.

Console Manipulation
The tracing DLL creates a thread that runs in the background, detecting changes to the
configuration of clients that use the registry, as well as handling the following key­
presses in the console:

Key pressed

Control-Tab

Control-Shift-Tab

Pause

Space-bar

Up-arrow

Down-arrow

Left-arrow

Right-arrow

Page-up

Page-down

Tracing Reference

Action taken

displays the screen for the next console client

displays the screen for the previous console client

toggles tracing for the displayed console client

toggles tracing for the displayed console client

moves screen up by one line

moves screen down by one line

moves screen left by one column

moves screen right by one column

moves screen up by one page

moves screen down by one page

Use the following functions to add tracing functionality to your software:

TraceDeregister TracePutsEx
TraceDump TraceRegister
TraceDumpEx TraceRegisterEx
TracePrintf TraceVprintf
TracePrintfEx TraceVprintfEx
TracePuts

438 Volume 4 Remote Access Services

TraceDeregister
The TraceDeregister function frees resources and closes files associated with tracing
registration on behalf the calling service or application. Call TraceDeregister no more
than once for a service or application, regardless of how many calls were made on the
service or application's behalf.

Parameters
dwTracelD

The handle returned by the calling service or application's initial TraceRegister call.

Return Values
If the function succeeds, the return value is O.

If the function fails, the return value is an error code. Call GetLastError for further
information.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TraceRegister, TracePrintf, TraceVprintf,
TracePuts, TraceDump

TraceDump
The TraceDump function outputs a hexadecimal dump of size dwByteCount, prefixed
with the name associated with the calling service or application's dwTracelD, the
associated Thread identifier used with the RRAS tracing functionality, the current system
time, and a brief description of the dump.

Parameters
dwTracelD

Chapter 14 Tracing 439

The handle returned by the calling service or application's initial TraceRegister call.

IpbBytes
A pointer to the buffer from which the hex dump is to be generated

dwByteCount
The number of bytes to dump from the buffer.

dwGroupSize
The output's byte grouping size. Valid values are 1,2, or 4.

bAddressPrefix
Boolean value that determines whether each line of the hex dump has its memory
address as a prefix. A value of TRUE includes the memory address.

IpszPrefix
Pointer to the prefix.

Return Values
Successful execution of TraceDump returns the number of characters output.

Otherwise, TraceDump returns zero. Call GetLastError to get the error code.

Remarks
TraceDump generates debug style dumps, with the byte-ordering dependent on the
processor's endian setting. Also note that the last line of the dump is padded with
zeroes.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TraceDumpEx, TraceRegister, TraceDeregister,
TracePrintf, TraceVprintf, TracePuts

440 Volume 4 Remote Access Services

TraceDumpEx
The TraceDumpEx function outputs a hexadecimal dump of size dwByteCount.
TraceDumpEx differentiates itself from TraceDump in its Extended (Ex) output options,
implemented through the use of non-zero dwFlags values. Output from TraceDumpEx
can include information with a prefix of the name associated with the calling service or
application's dwTracelD, the associated Thread identifier used with the RRAS tracing
functionality, the current system time, and a brief description of the dump.

Parameters
dwTracelD

The handle returned by the calling service or application's initial TraceRegister call.

dwFlags
Flags that control appearance of TraceDumpEx output. Ensure dwFlags is one or
more of the following:

TRACE_NO _STDINFO
Suppresses output of the standard information associated with dwTracelD.

TRACE_USE_MASK
Determines whether file and/or console output will be generated by comparing the
high-order word of dwFlags against registry values FileTracingMask and
ConsoleTracingMask.

IpbBytes
A pointer to the buffer from which the hex dump is to be generated.

dwByteCount
The number of bytes to dump from the buffer.

dwGroupSize
The output's byte grouping size. Valid values are 1, 2, or 4.

bAddressPrefix
Boolean value that determines whether each line of the hex dump is prefixed with its
memory address. A value of TRUE includes the memory address.

IpszPrefix
Pointer to the prefix.

Chapter 14 Tracing 441

Return Values
Successful execution of TraceDump returns the number of characters output.

Otherwise, TraceDump returns zero. Call GetLastError to get the error code.

Remarks
TraceDumpEx generates debug style dumps, with the byte-ordering dependent on the
processor's end ian setting. Also note that the last line of the dump is padded with
zeroes.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TraceDump, TraceRegisterEx, TracePrintfEx,
TraceVprintfEx, TracePutsEx

TracePrintf
The TracePrintf function outputs tracing information, including the following: calling
service or application's name, the current time, and tracing information in the format
specified by the optional argument or arguments included in IpszFormat. See the note
below for an example of TracePrintf results.

Parameters
dwTrace/D

The handle returned by the calling service or application's initial TraceRegister call.

IpszFormat
Pointer to a null-terminated string containing printf-style format control information.

One or more optional arguments, depending on the format control specified in
IpszFormat.

442 Volume 4 Remote Access Services

Return Values
If the function succeeds, TracePrintf returns the number of characters output, excluding
the terminating null-character.

If the function fails, the return value will be zero. This may also indicate that tracing is
disabled in the registry. See Tracing Configuration for more information.

Remarks
The following is an example for the output from TracePrintf. In the following example,
the service or application calling TracePrintf is IPRIP, and its associated Thread
identifier for use with the RRAS tracing functionality is 129:

To suppress the prefixes, use TracePrintfEx.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TracePrintfEx, TraceRegister, TraceDeregister,
TraceVprintf, TracePuts, TraceDump

TracePri ntfEx
The TracePrintfEx function outputs tracing information. TracePrintfEx differentiates
itself from TracePrintf by offering Extended options (Ex) implemented through non-zero
dwFlags values. Output generated by TracePrintfEx includes up to the following: calling
service or application name, the current time, and tracing information in the format
specified by the optional included in IpszFormat.

If dwFlags is zero, TracePrintfEx behaves exactly as TracePrintf.

Parameters
dwTraceID

Chapter 14 Tracing 443

The handle returned by the calling service or application's initial TraceRegister call.

dwFlags
Specifies optional flags that control appearance of TracePrintfEx output. Ensure
dwFlags is one or more of the following:

TRACE_NO_STDINFO
Suppresses output of the standard information associated with dwTraceID.

TRACE_USE_MASK
Determines whether file and/or console output will be generated by comparing the
high-order word of dwFlags against registry values FileTracingMask and
ConsoleTracingMask.

IpszFormat
Pointer to a null-terminated string containing printf-style format control information.

One or more optional arguments, depending on the format control specified in
IpszFormat.

Return Values
If the function is successful, TracePrintfEx returns the number of characters output,
excluding the terminating null-character.

If the function fails, the return value is zero. This may indicate that tracing is disabled in
the registry. See Tracing Configuration for more information.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TracePrintf, TraceRegisterEx, TraceVprintfEx,
TracePutsEx, TraceDumpEx

444 Volume 4 Remote Access Services

TracePuts
The TracePuts function is an efficient way to retrieve information associated with a
registered service or application's identifier (dwTraceID). TracePuts also outputs the
string literal passed as the function's second argument.

Parameters
dwTracelD

The handle returned by the calling service or application's initial TraceRegister call.

IpszString
The string to be output.

Return Value
If the function is successful, TracePuts returns the number of characters output,
excluding the terminating null-character.

If the function fails, the return value is zero. This may also indicate that tracing is
disabled in the registry. See Tracing Configuration for more information.

Remarks

TracePuts outputs the name associated with dwTracelD, the internal thread identifier
used to identify the caller, the current time, and the literal string specified by IpszString.
Since TracePuts performs no formatting on its arguments, it is more efficient than
TracePrintf or TraceVprintf. To suppress the prefixes and prevent output from starting
on a new line, see TracePutsEx.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TracePutsEx, TraceRegister, TraceDeregister,
TracePrintf, TraceVprintf, TraceDump

Chapter 14 Tracing 445

TracePutsEx
The TracePutsEx function is an efficient way to retrieve information associated with a
registered service or application's identifier (dwTracelO). TracePutsEx differs from
TracePuts in its Extended (Ex) flexibility with regard to output, achieved through the use
of non-zero flags implemented with dwFlags. TracePutsEx also outputs the string literal
passed as the function's second argument.

Parameters
dwTracelO

The handle returned by the calling service or application's initial TraceRegister call.

dwFlags
Flags that control appearance of TracePutsEx output. Ensure dwFlags is one or
more of the following: .

TRACE_NO_STDINFO
Suppresses output of the standard information associated with dwTracelD.

TRACE_USE_MASK
Determines whether file and/or console output will be generated by comparing the
high-order word of dwFlags against registry values FileTracingMask and
ConsoleTracingMask.

IpszString
The string to be output.

Return Values
If the function is successful, TracePuts returns the number of characters output,
excluding the terminating null-character.

If the function fails, the return value is zero. This may indicate that tracing is disabled in
the registry. See Tracing Configuration for more information.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

446 Volume 4 Remote Access Services

About Tracing, Tracing Reference, TracePuts, TraceRegisterEx, TracePrintfEx,
TraceVprintfEx, TraceDumpEx

TraceRegister
Use the TraceRegister function to register services or applications with the tracing DLL.
Its successful return value is an identifier that provides a handle to subsequent tracing
functions available in Windows NTlWindows 2000. This function, or its extended
functionality counterpart TraceRegisterEx, must be called before any other tracing
functions are called. TraceDeregister or TraceDeregisterEx should be called when
trace functions are no longer needed, in order to free resources.

Parameters
IpszCallerName

Pointer to a null-terminated string containing the service or application name being
registered. This is the name with which the service tracing functions will identify the
caller.

Return Values
If successful, this function will return a DWORD to be used as the service or application's
identifier (handle) for subsequent calls to tracing functions.

If the function fails, INVALlD_ TRACEID is returned. This indicates the caller could not be
registered. Call GetLastError to retrieve the error code.

Remarks
Upon successful execution of TraceRegister, configuration for the service or application
calling TraceRegister will be created and kept in the registry path
\System\CurrentControISet\Services\Tracing\<lpszCallerName> under the
HKEY _LOCAL_MACHINE key. Such configuration parameters are kept intact, even if
the service or application is deregistered from tracing utilities by calling TraceDeregister.
If the registry entries cannot be created, the call to TraceRegister will fail. There are
certain values within this key that can be modified to change the behavior of trace
output.

EnableConsoleTracing
A REG_DWORD that determines whether tracing to the console is enabled. Console
tracing is enabled if the value is non-zero. The default value is 1.

Chapter 14 Tracing 447

EnableFileTracing
A REG_DWORD that determines whether tracing information should be sent to a file
called IpzsCallerName.log. File tracing is enabled if the value is non-zero. The default
value is 1.

ConsoleTracingMask
A REG_DWORD that regulates whether output from an extended tracing function call
is directed to the console. The bits in the high-order word correspond to components
in the client; if a call to an extended output function has the flag TRACE_USE_MASK
set, the value of ConsoleTracingMask is compared to the flag sent to the function to
determine whether to send output to the console. The default value is OxFFFFOOOO.

FileTracingMask
A REG_DWORD that works in a similar way to ConsoleTracingMask, regulating
whether the extended tracing function calls direct their output to File Tracing. The
default value is OxFFFFOOOO.

MaxFileSize
A REG_DWORD that defines the maximum size a tracing file can become before it is
renamed. The default value is Ox1 0000.

FileDirectory
A REG_EXPAND_SZ that controls the directory in which the tracing file is created.
The default is %windir<>lo\tracing.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TraceRegisterEx, TraceDeregister, TracePrintf,
TraceVprintf, TracePuts, TraceDump

TraceRegisterEx
The TraceRegisterEx function registers services or applications with the tracing DLL.
TraceRegisterEx differentiates itself from TraceRegister by providing Extended
flexibility (Ex) with regard to the creation or reading of registry keys.

448 Volume 4 Remote Access Services

Successful execution of TraceRegisterEx returns an identifier used as a handle to
subsequent tracing functions available in Microsoft® Windows NT®IWindows® 2000.
This function, or its counterpart TraceRegister, must be called before any other tracing
functions are called. If no flags are passed to TraceRegisterEx (if dwFlags is zero),
TraceRegisterEx behaves exactly as TraceRegister. TraceDeregister or
TraceDeregisterEx should be called when trace functions are no longer needed, in
order to free resources.

Parameters
IpszCallerName

A pOinter to a null-terminated string containing the service or application name being
registered. This is the name with which the service tracing functions will identify the
caller.

dwFlags
Flags that control the nature of the calling service or application's registration. Ensure
dwFlags is one or more of the following:

TRACE_USE_CONSOLE
Tracing output is sent to the console; using this parameter avoids loading or writing
settings from the registry.

TRACE_USE_FILE
Tracing output is sent to a file; using this parameter avoids reading or writing
settings from the registry.

Return Values
Success will return a DWORD to be used as the service or application identifier (handle)
for subsequent calls to tracing functions.

INVALID_ TRACEID
The caller could not be registered. Call GetLastError to retrieve the error code.

Remarks
Upon successful execution of TraceRegisterEx, configuration for the service or
application calling TraceRegisterEx will be taken from the parameters passed as
dwFlags, and registry reads or writes will not occur. If the value of dwFlags is zero, then
a call to TraceRegisterEx will behave exactly as a call to TraceRegister, and
initialization and configuration parameters will be created and kept in the registry path
\System\CurrentControISet\Services\Tracing\<lpszCallerName> under the
HKEY _LOCAL_MACHINE key.

Chapter 14 Tracing 449

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TraceRegister, TracePrintfEx, TraceVprintfEx,
TracePutsEx, TraceDumpEx

TraceVprintf
Functionality of TraceVprintf is very similar to that ofTracePrintf, except that it takes
a prepared variable argument list as its third variable. See TracePrintffor more
information.

Parameters
dwTracelD

The handle returned by the calling service or application's initial TraceRegister call.

IpszFormat
Pointer to a null-terminated string containing printf-style format control information.

arglist
A prepared list of printf()-style arguments that define the format of TraceVprintf
output.

Return Values
If the function succeeds, TraceVprintf returns the number of characters output,
excluding the terminating null-character.

If the function fails, the return value is zero. This may also indicate that tracing is
disabled in the registry. See Tracing Configuration for more information.

450 Volume 4 Remote Access Services

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TraceVprintfEx, TraceRegister, TraceDeregister,
TracePrintf, TracePuts, TraceDump

TraceVprintfEx
Functionality of TraceVprintfEx is very similar to that of TracePrintfEx, except that
it takes a prepared variable argument list as its third variable. TraceVprintfEx
differentiates itself from TraceVprintf in its ability to customize output through the use
of non-zero flags. See TracePrintfExfor more information:

Parameters
dwTrace/D

The handle returned by the calling service or application's initial TraceRegister call.

dwFlags
Flags that control appearance of TraceVprintfEx output. Ensure dwFlags is one or
more of the following:

TRACE_NO_STDINFO
Suppresses output of the standard information associated with dwTracelD.

TRACE_USE_MASK
Determines whether file and/or console output will be generated by comparing the
high-order word of dwFlags against registry values FileTracingMask and
ConsoleTracingMask.

IpszFormat
Pointer to a null-terminated string containing printf-style format control information.

arglist
A prepared list of printf()-style arguments that define the format of TraceVprintf
output.

Chapter 14 Tracing 451

Return Values
If the function is succesful, TraceVprintfEx returns the number of characters output,
excluding the terminating null-character.

If the function fails, the return value is zero. This may indicate that tracing is disabled in
the registry. See Tracing Configuration for more information.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Header: Declared in Rtutils.h.
Library: Use Rtutils.lib.

About Tracing, Tracing Reference, TraceVprintf, TraceRegisterEx, TracePrintfEx,
TracePutsEx, TraceDumpEx

Part 3 453

IN D E X

Networking Services Programming Elements
Alphabetical Listing

This final part, found in each volume in the Networking Services Library, provides a
comprehensive programming element index that has been designed to make your life
easier.

Rather than cluttering the TOCs of each individual volume in this library with the names
of programming elements, I've relegated such per-element information to a central
location: the back of each volume. This index points you to the volume that has the
information you need, and organizes the information in a way that lends itself to easy
use.

Also, to keep you as informed and up-to-date as possible about Microsoft technologies,
I've created (and maintain) a live Web-based document that maps Microsoft
technologies to the locations where you can get more information about them. The
following link gets you to the live index of technologies:

www.iseminger.com/winprs/technologies

The format of this index is in a constant state of improvement. I've designed it to be as
useful as possible, but the real test comes when you put it to use. If you can think of
ways to make improvements, send me feedback at winprs@microsoft.com. While I can't
guarantee a reply, I'll read the input, and if others can benefit, I Will incorporate the idea
into future libraries.

Locators are arranged by Volume Number followed by Page Number.

A B
accept ... Vol. 1, 133 bind ... Vol. 1, 139
AcceptEx .. Vol. 1, 135 Binding Option Constants Vol. 3, 333
ACTION_HEADER Vol. 2,147 Binding Time-out Constants Vol. 3, 333
ADAPTER_STATUS Vol. 2,148 BLOB .. Vol. 1,378
Addlnterface Vol. 5, 266 BlockConvertServicesToStatic Vol. 5, 316
AddlPAddress Vol. 2, 239 BlockDeleteStaticServices Vol. 5, 317
ADDRESS_LIST _DESCRiPTOR Vol. 1, 835
AFPROTOCOLS Vol. 1, 377
AsnAny '" Vol. 2, 336 c
AsnCounter64 Vol. 2, 338
AsnObjectldentifier Vol. 2, 339
AsnOctetString Vol. 2, 339
Authentication-Level Constants Vol. 3, 330
Authentication-Service Constants Vol. 3, 331
Authorization-Service Constants Vol. 3, 332

cbpAdmitRsvpMsg Vol. 1,860
cbpGetRsvpObjects Vol. 1,861
Change Notification Flags Vol. 5, 505
CIAddFlowComplete Vol. 1,830
CIDeleteFlowComplete Vol. 1,831
CIModifyFlowComplete Vol. 1,831

454 Volume 4 Remote Access Services

CINotifyHandler Vol. 1, 832 Enumeration Flags Vol. 5, 505
CloseServiceEnumerationHandle Vol. 5, 318 ENUMERATION_BUFFER Vol. 1, 835
closesocket.. Vol. 1, 142 EnumProtocols Vol. 1, 149
connect ... Vol. 1, 145
ConnectClient.. Vol. 5, 268
CONNECTDLGSTRUCT Vol. 3, 656 F
CreatelpForwardEntry Vol. 2, 240
CreatelpNetEntry Vol. 2, 242
CreateProxyArpEntry Vol. 2, 242
CreateServiceEnumerationHandle ... Vol. 5, 319
CreateStaticService Vol. 5, 320
CSADDR_INFO Vol. 1,378

fd set .. Vol. 1,380
FIND NAME BUFFER Vol. 2,151
FIND-NAME - HEADER Vol. 2,152
FlxED_INFO-:-.................................... Vol. 2, 277
FLOWSPEC Vol. 1,380
FLOWSPEC Vol. 1,791
FlushlpNetTable Vol. 2, 246

D
DCE_C_ERROR_STRING_LEN Vol. 3, 336 G
DceErrorlnqText Vol. 3, 349
Deletelnterface Vol. 5, 269
DeletelPAddress Vol. 2, 243
DeletelpForwardEntry Vol. 2, 244
DeletelpNetEntry Vol. 2, 245
DeleteProxyArpEntry Vol. 2, 245
DeleteStaticService Vol. 5, 321
DemandDiaIRequest.. Vol. 5, 306
DhcpCApiCleanup Vol. 2, 74
DhcpCApilnitialize Vol. 2, 74
DhcpDeRegisterParamChange Vol. 2, 80
DhcpRegisterParamChange Vol. 2, 78
DhcpRequestParams Vol. 2, 75
DhcpUndoRequestParams Vol. 2, 77
DISCDLGSTRUCT Vol. 3, 658
DisconnectClient Vol. 5, 270
DnsAcquireContextHandle Vol. 2, 49
DnsExtractRecordsFromMessage Vol. 2, 50
DnsFreeRecordList Vol. 2, 51
DnsModifyRecordslnSet.. Vol. 2, 51
DnsNameCompare Vol. 2, 53
DnsQuery ... Vol. 2, 61
DnsQueryConfig Vol. 2, 63
DnsRecordCompare Vol. 2, 55
DnsRecordCopyEx Vol. 2, 55
DnsRecordSetCompare Vol. 2, 56
DnsRecordSetCopyEx Vol. 2, 57
DnsRecordSetDetach Vol. 2, 58
DnsReleaseContextHandle Vol. 2, 54
DnsReplaceRecordSet.. Vol. 2, 59
DnsValidateName Vol. 2, 64
DnsWriteQuestionToBuffer Vol. 2, 67
DoUpdateRoutes Vol. 5, 271
DoUpdateServices Vol. 5, 271

GetAcceptExSockaddrs Vol. 1,153
GetAdapterlndex Vol. 2,247
GetAdapterslnfo Vol. 2, 248
GetAddressByName Vol. 1, 154
GetBestlnterface Vol. 2, 249
GetBestRoute Vol. 2, 250
GetEventMessage Vol. 5, 272
GetFirstOrderedService Vol. 5, 323
GetFriendlylflndex Vol. 2, 251
GetGlobalinfo Vol. 5, 274
gethostbyaddr Vol. 1, 159
gethostbyname Vol. 1, 160
gethostname Vol. 1, 162
GetlcmpStatistics Vol. 2, 252
GetlfEntry .. Vol. 2, 252
GetifTable ... Vol. 2, 253
Getlnterfacelnfo Vol. 2, 254
Getlnterfacelnfo Vol. 5, 275
GetlpAddrTable Vol. 2, 255
GetlpForwardTable Vol. 2, 256
GetipNetTable Vol. 2, 257
GetlpStatistics Vol. 2,258
GetMfeStatus Vol. 5, 277
GetNameByType Vol. 1, 163
GetNeighbors Vol. 5, 278
GetNetworkParams Vol. 2, 258
GetNextOrderedService Vol. 5, 324
GetNumberOflnterfaces Vol. 2,260
getpeername Vol. 1, 164
GetPerAdapterlnfo Vol. 2, 260
getprotobyname Vol. 1, 165
getprotobynumber Vol. 1, 167
GetRTTAndHopCount Vol. 2, 262
getservbyname Vol. 1, 168
getservbyport Vol. 1, 169

E GetService .. Vol. 1, 171
GetServiceCount Vol. 5, 325

EnumerateGetNextService Vol. 5, 322 getsockname Vol. 1,175

Index Networking Services Programming Elements - Alphabetical Listing 455

getsockopt .. Vol. 1, 176
GetTcpStatistics Vol. 2, 263
GetTcpTable Vol. 2, 263
GetTypeByName Vol. 1, 185
GetUdpStatistics Vol. 2, 264
GetUdpTable Vol. 2, 265
GetUniDirectionalAdapterlnfo Vol. 2, 266
GLOBAL_FILTER Vol. 5, 262
GUARANTEE Vol. 1,413
GUID ... Vol. 1, 848
GUID ... Vol. 3, 295

H
hostent.. .. Vol. 1, 381
htonl .. Vol. 1, 186
htons ... Vol.1, 187

IEAPProviderConfig Vol. 4, 426
I EAPProviderConfig::

RouterlnvokeConfigUI Vol. 4, 430
IEAPProviderConfig::

RouterlnvokeCredentialsUI Vol. 4, 432
I EAPProviderConfig::

ServerlnvokeConfigUI Vol. 4, 429
IEAPProviderConfig::lnitialize Vol. 4, 426
IEAPProviderConfig::Uninitialize Vol. 4, 428
in addr .. Vol. 1, 381
inat addr ... Vol. 1, 187
inet-ntoa ... Vol. 1, 189
Interface Registration Flags Vol. 3, 336
InterfaceStatus Vol. 5, 280
ioctlsocket.. Vol. 1, 190
IP Info Types for Router

Information Blocks Vol. 5,183
IP ADAPTER_BINDING_INFO , Vol. 5, 149
IP - ADAPTER_INDEX_MAP Vol. 2, 278
IP -ADAPTER INFO , Vol. 2, 279
IP -INTERFACE_INFO Vol. 2, 280
IP-LOCAL BINDING Vol. 5,150
IP -NETWORK Vol. 5, 352
IP-NEXT HOP ADDRESS Vol. 5, 352
IP - PATTERN .. ~ Vol. 1, 842
IP -PER ADAPTER INFO Vol. 2, 281
IP -SPECIFIC DATA Vol. 5, 353
IP - UNIDIRECTIONAL_ADAPTER_

ADDRESS Vol. 2, 282
IPNG ADDRESS Vol. 2, 88
IpReleaseAddress Vol. 2, 267
IpRenewAddress Vol. 2, 268
IPX Info Types for Router

Information Blocks Vol. 5, 184

IPX ADAPTER_BINDING_INFO Vol. 5,151
IPX-ADDRESS DATA Vol.1,670
IPX -IF INFO ... ~vol. 5,181
IPX - NETNUM DATA Vol. 1, 672
IPX - NETWORK Vol. 5, 355
IPX - NEXT HOP ADDRESS Vol. 5, 355
IPX -SERVER ENTRY Vol. 5, 327
IPX - SERVICE-.................................. Vol. 5, 328
IPX -SPECIFIC DATA Vol. 5, 356
IPX - SPXCONNSTATUS_DATA Vol. 1,673
IPX -STATIC SERVICE INFO Vol. 5,181
IPXWAN IF INFO ~ Vol. 5,182
ISensLoion~ Vol. 2, 212
ISensLogon::DisplayLock Vol. 2, 216
ISensLogon::DisplayUnLock Vol. 2, 217
ISensLogon::Logoff Vol. 2, 214
ISensLogon::Logon Vol. 2, 213
ISensLogon::StartScreenSaver Vol. 2, 218
ISensLogon::StartShell Vol. 2, 215
ISensLogon::StopScreenSaver Vol. 2, 219
ISensNetwork Vol. 2, 220
ISensNetwork::

ConnectionMadeNoQOClnfo Vol. 2, 222
ISensNetwork::

DestinationReachable Vol. 2, 225
ISensNetwork::

DestinationReachable
NoQOClnfo Vol. 2, 226

ISensNetwork::ConnectionLost Vol. 2,223
ISensNetwork::ConnectionMade Vol. 2, 221
ISensOnNow Vol. 2, 228
ISensOnNow::BatteryLow Vol. 2, 231
ISensOnNow::OnACPower Vol. 2, 229
ISensOnNow::OnBatleryPower Vol. 2, 230
IsService ... Vol. 5, 326
ISyncMgrEnumltems Vol. 2,166
ISyncMgrRegister Vol. 2,193
ISyncMgrRegister: :

GetHandlerRegistrationlnfo Vol. 2, 195
ISyncMgrRegister: :

RegisterSyncMgrHandler Vol. 2, 194
ISyncMgrRegister: :

UnregisterSyncMgrHandler Vol. 2, 194
ISyncMgrSynchronize Vol. 2, 168
ISyncMgrSynchronize::

EnumSyncMgrltems Vol. 2,171
ISyncMgrSynchronize: :

GetHandlerlnfo Vol. 2, 170
ISyncMgrSynch ronize::

GetitemObject.. Vol. 2,172
ISyncMgrSynchronize::

PrepareForSync Vol. 2,175
ISyncMgrSynchronize: :

SetitemStatus Vol. 2, 178

456 Volume 4 Remote Access Services

ISyncMgrSynchronize:: MCAST _SCOPE_ENTRY Vol. 2, 90
SetProgressCaliback Vol. 2,174 McastApiCleanup Vol. 2, 82

ISyncMgrSynchronize:: McastApiStartup Vol. 2, 82
ShowProperties Vol. 2, 173 McastEnumerateScopes Vol. 2, 83

ISyncMgrSynch ronize:: McastGenUID Vol. 2, 85
Synchronize Vol. 2, 176 McastReleaseAddress Vol. 2, 87

ISyncMgrSynchronize::lnitialize Vol. 2, 169 McastRenewAddress Vol. 2, 86
ISyncMgrSynchronize::ShowError ... Vol. 2, 179 McastRequestAddress Vol. 2, 85
ISyncMgrSynchronizeCaliback Vol. 2, 180 MesBufferHandleReset.. Vol. 3, 350
ISyncMgrSynchronizeCaliback: : MesDecodeBufferHandleCreate Vol. 3, 351

DeleteLogError Vol. 2, 189 MesDecodelncrementalHandle
ISyncMgrSynch ronizeCaliback:: Create .. Vol. 3, 353

EnableModeless Vol. 2,186 MesEncodeDynBufferHandle
ISyncMgrSynchronizeCallback:: Create .. Vol. 3, 354

EstablishConnection Vol. 2, 190 MesEncodeFixedBufferHandle
ISyncMgrSynch ronizeCaliback:: Create .. Vol. 3, 355

LogError. .. Vol. 2, 187 MesEncodelncrementalHandle
ISyncMgrSynch ronizeCaliback:: Create .. Vol. 3, 356

PrepareForSyncCompleted Vol. 2, 184 MesHandleFree Vol. 3, 357
ISyncMgrSynchronizeCallback:: MeslncrementalHandleReset Vol. 3, 358

Progress .. Vol. 2, 182 MeslnqProcEncodingld Vol. 3, 359
ISyncMgrSynchronizeCaliback: : MESSAGE .. Vol. 5, 297

ShowErrorCompleted Vol. 2, 188 MGM_ENUM_TYPES Vol. 5, 564
ISyncMgrSynch ronizeCaliback:: MGM_IF _ENTRY Vol. 5, 561

ShowPropertiesCompleted Vol. 2, 183 MgmAddGroupMembershipEntryvol. 5, 524
ISyncMgrSynchronizeCallback:: MgmDeleteGroupMembership

SynchronizeCompleted Vol. 2, 185 Entry ... Vol. 5, 526
ISyncMgrSynchronizelnvoke Vol. 2, 191 MgmDeRegisterMProtocol. Vol. 5, 527
ISyncMgrSynchronizelnvoke:: MgmGetFirstMfe Vol. 5, 528

UpdateAII Vol. 2, 192 MgmGetFirstMfeStats Vol. 5, 530
ISyncMgrSynch ronize Invoke:: MgmGetMfe Vol. 5, 531

Update Items Vol. 2, 191 MgmGetMfeStats Vol. 5, 533
MgmGetNextMfe Vol. 5, 534

L MgmGetNextMfeStats Vol. 5, 536
MgmGetProtocoIOnlnterface Vol. 5, 537

LANA_ENUM Vol. 2, 152
linger ... Vol. 1, 382
listen ... Vol. 1, 192
LPM_AdmitRsvpMsg Vol. 1,863
LPM_CommitResv Vol. 1, 866
LPM_Deinitialize Vol. 1, 867
LPM_DeleteState Vol. 1, 868
LPM_GetRsvpObjects Vol. 1,870
LPM_lnitialize Vol. 1, 872
Lpm_lpAddressTable Vol. 1,874
LPMIPTABLE Vol. 1,875

MgmGroupEnumerationEnd Vol. 5, 539
MgmGroupEnumerationGetNext Vol. 5, 539
MgmGroupEnumerationStart Vol. 5, 541
MgmRegisterMProtocol Vol. 5, 542
MgmReleaselnterfaceOwnership Vol. 5, 543
MgmSetMfe Vol. 5, 545
MgmTakelnterfaceOwnership Vol. 5, 545
MIB_BEST_IF Vol. 5, 202
MIB_ICMP ... Vol. 5, 203
MIB_IFNUMBER Vol. 5, 203
MIB_IFROW Vol. 5, 204
MIB_IFSTATUS Vol. 5, 206

M
MIB_IFTABLE Vol. 5, 207
MIB_IPADDRROW Vol. 5, 207

MACYIELDCALLBACK Vol. 3, 575
MCAST _CLIENT _UID Vol. 2, 89
MCAST _LEASE_REQUEST.. Vol. 2, 90
MCAST _LEASE_RESPONSE Vol. 2, 92
MCAST_SCOPE_CTX Vol. 2, 89

MIB_IPADDRTABLE Vol. 5, 208
MIB_IPFORWARDNUMBER Vol. 5, 209
MIB_IPFORWARDROW Vol. 5, 210
MIB_IPFORWARDTABLE Vol. 5, 212
MIB_IPMCAST_GLOBAL Vol. 5, 212
MIB_IPMCAST _IF_ENTRY Vol. 5, 213

Index Networking Services Programming Elements - Alphabetical Listing 457

MIB_IPMCAST _IF_TABLE Vol. 5, 214 MprAdminConnectionHangup
MIB_IPMCAST_MFE Vol. 5, 214 Notification2 Vol. 4, 345
MIB_IPMCAST_MFE_STATS Vol. 5, 216 MprAdminDeregisterConnection
MIB_IPMCAST_OIF Vol. 5, 218 Notification Vol. 5, 71
MIB_IPMCAST_OIF _STATS Vol. 5, 219 MprAdminGetErrorString Vol. 5, 72
MIB_IPNETROW Vol. 5, 220 MprAdminGetipAddressForUser Vol. 4, 346
MIB_IPNETT ABLE Vol. 5, 221 MprAdminGetPDCServer Vol. 4, 349
MIB_IPSTATS Vol. 5, 222 MprAdminlnterfaceConnect.. Vol. 5, 73
MIB_MFE_STATS_ TABLE Vol. 5, 224 MprAdminlnterfaceCreate Vol. 5, 75
MIB_MFE_ TABLE Vol. 5, 224 MprAdminlnterfaceDelete Vol. 5, 76
MIB_OPAQUE_INFO Vol. 5, 225 MprAdminlnterfaceDisconnect... Vol. 5, 77
MIB_OPAQUE_QUERY Vol. 5, 225 MprAdminlnterfaceEnum Vol. 5, 78
MIB_PROXYARP Vol. 5, 226 MprAdminlnterfaceGetCredentials Vol. 5, 80
MIB_ TCPROW Vol. 5, 227 MprAdminlnterfaceGetCredentials
MIB_TCPSTATS Vol. 5, 228 Ex ... Vol. 5, 82
MIB_TCPTABLE VOL 5, 230 MprAdminlnterfaceGetHandle Vol. 5, 83
MIB_UDPROW Vol. 5, 230 MprAdminlnterfaceGetlnfo Vol. 5, 84
MIB_UDPSTATS Vol. 5, 231 MprAdminlnterfaceQueryUpdate
MIB_UDPTABLE Vol. 5, 232 Result ... Vol. 5, 86
MibCreate ... Vol. 5, 281 MprAdminlnterfaceSetCredentials Vol. 5, 87
MibDelete ... Vol. 5, 282 MprAdminlnterfaceSetCredentials
MibEntryCreate Vol. 5, 307 Ex ... Vol. 5, 89
MibEntryDelete Vol. 5, 308 MprAdminlnterfaceSetlnfo Vol. 5, 90
MibEntryGet... Vol. 5, 309 MprAdminlnterfaceTransport
MibEntryGetFirst Vol. 5, 311 Getlnfo ... Vol. 5, 93
MibEntryGetNext Vol. 5, 312 MprAdminlnterfaceTransport
MibEntrySet.. Vol. 5, 313 Remove .. Vol. 5, 94
MibGet. ... Vol. 5, 283 MprAdminlnterfaceTransport
MibGetFirst.. Vol. 5, 284 Setlnfo .. Vol. 5, 95
MibGetNext... Vol. 5, 285 MprAdminlnterfaceTransportAdd Vol. 5, 91
MibGetTraplnfo Vol. 5, 286 MprAdminlnterfaceUpdate
MIBICMPINFO Vol. 5, 232 Phonebooklnfo Vol. 5, 97
MIBICMPSTATS Vol. 5, 233 MprAdminlnterfaceUpdateRoutes Vol. 5, 98
MibSet .. Vol. 5, 287 MprAdminlsServiceRunning Vol. 5, 100
MibSetTraplnfo Vol. 5, 288 MprAdminLinkHangupNotification Vol. 4, 347
MPR_CREDENTIALSEX_O Vol. 5, 152 MprAdminMIBBufferFree Vol. 5, 188
MPR_IFTRANSPORT _0 Vol. 5, 152 MprAdminMIBEntryCreate Vol. 5,188
MPR_INTERFACE_O Vol. 5,153 MprAdminMIBEntryDelete Vol. 5,190
MPR_INTERFACE_1 Vol. 5, 154 MprAdminMIBEntryGet.. Vol. 5, 191
MPR_INTERFACE_2 Vol. 5, 156 MprAdminMIBEntryGetFirst.. Vol. 5, 193
MPR_ROUTING_ MprAdminMIBEntryGetNext : Vol. 5,195

CHARACTERISTICS Vol. 5, 297 MprAdminMIBEntrySet Vol. 5, 196
MPR_SERVER_O Vol. 5, 166 MprAdminMIBGetTraplnfo Vol. 5, 198
MPR_SERVICE_ MprAdminMIBServerConnect.. Vol. 5, 199

CHARACTERISTICS Vol. 5, 301 MprAdminMIBServerDisconnect Vol. 5, 200
MPR_ TRANSPORT _0 Vol. 5, 167 MprAdminMIBSetTraplnfo Vol. 5, 200
MprAdminAcceptNewConnection Vol. 4, 341 MprAdminPortClearStats Vol. 4, 334
MprAdminAcceptNewConnection2 .. Vol. 4, 342 MprAdminPortDisconnect Vol. 4, 335
MprAdminAcceptNewLink Vol. 4, 343 MprAdminPortEnum Vol. 4, 336
MprAdminBufferFree Vol. 5, 70 MprAdminPortGetlnfo Vol. 4, 338
MprAdminConnectionClearStats Vol. 4, 329 MprAdminPortReset Vol. 4, 339
MprAdminConnectionEnum Vol. 4, 330 MprAdminRegisterConnection
MprAdminConnectionGetlnfo Vol. 4, 332 Notification Vol. 5, 100
MprAdminConnectionHangup MprAdminReleaselpAddress Vol. 4, 348

Notification Vol. 4, 344 MprAdminSendUserMessage Vol. 4, 351

458 Volume 4 Remote Access Services

MprAdminServerConnect... Vol. 5, 102 NCB .. Vol. 2,154
MprAdminServerDisconnect Vol. 5, 102 NDR_USER_MARSHAUNFO Vol. 3, 296
MprAdminServerGetlnfo Vol. 5, 103 NdrGetUserMarshallnfo Vol. 3, 360
MprAdminTransportCreate Vol. 5,104 Netbios .. Vol. 2,145
MprAdminTransportGetlnfo Vol. 5, 106 NETCONNECTINFOSTRUCT Vol. 3, 659
MprAdminTransportSetlnfo Vol. 5, 108 NETINFOSTRUCT Vol. 3, 661
MprAdminUserGetlnfo Vol. 4, 352 NETRESOURCE Vol. 3, 663
MprAdminUserSetlnfo Vol. 4, 353 Next Hop Flags Vol. 5, 503
MprConfigBufferFree Vol. 5, 110 NotifyAddrChange Vol. 2, 268
MprConfigGetFriendlyName Vol. 5, 110 NotifyRouteChange Vol. 2, 269
MprConfigGetGuidName Vol. 5, 112 NS_SERVICE_INFO Vol. 1, 383
MprConfiglnterfaceCreate Vol. 5, 114 NSPCleanup Vol. 1, 497
MprConfiglnterfaceDelete Vol. 5,115 NSPGetServiceClasslnfo Vol. 1,498
MprConfiglnterfaceEnum .. , Vol. 5, 116 NSPlnstallServiceClass Vol. 1,499
MprConfiglnterfaceGetHandle Vol. 5, 118 NSPLookupServiceBegin Vol. 1,500
MprConfiglnterfaceGetinfo Vol. 5, 119 NSPLookupServiceEnd Vol. 1,504
MprConfiglnterfaceSetlnfo Vol. 5, 121 NSPLookupServiceNext Vol. 1,505
MprConfiglnterfaceTransport NSPRemoveServiceClass Vol. 1,509

Enum ... Vol. 5, 124 NSPSetService Vol. 1, 510
MprConfigl nterface Transport NSPStartup Vol. 1, 513

GetHandle Vol. 5,126 ntohl .. Vol. 1, 194
MprConfig Interface Transport ntohs ... VoI.1, 195

Getlnfo ... Vol. 5, 128
MprConfiglnterfaceTransport

Remove ... Vol. 5, 130 o
MprConfiglnterfaceTransport

Setlnfo ... Vol. 5, 131
ORASADFunc Vol. 4, 103

MprConfiglnterfaceTransportAdd Vol. 5, 122
MprConfigServerBackup Vol. 5, 133 p
MprConfigServerConnect.. Vol. 5, 134
MprConfigServerDisconnect Vol. 5, 135
MprConfigServerGetinfo Vol. 5, 136
MprConfigServerlnstall Vol. 5, 113
MprConfigServerRestore Vol. 5, 137
MprConfigTransportCreate Vol. 5, 138
MprConfigTransportDelete Vol. 5, 140
MprConfigTransportEnum Vol. 5, 141
MprConfigTransportGetHandle Vol. 5, 143
MprConfigTransportGetlnfo Vol. 5, 144
MprConfigTransportSetinfo Vol. 5, 147
MprlnfoBlockAdd Vol. 5, 170
MprlnfoBlockFind Vol. 5, 172
MprlnfoBlockQuerySize Vol. 5, 173
MprlnfoBlockRemove Vol. 5, 174
MprlnfoBlockSet Vol. 5, 175
MprlnfoCreate Vol. 5, 176
MprlnfoDelete Vol. 5, 177
MprlnfoDuplicate Vol. 5, 178
MprlnfoRemoveAII ; Vol. 5, 179
M ultinetGetConnection

Performance Vol. 3, 609

PALLOCMEM Vol. 1,876
PF _FILTER_DESCRIPTOR Vol. 5, 256
PF _FILTER_STATS , Vol. 5, 257
PF _INTERFACE_STATS Vol. 5, 258
PF _LATEBIND_INFO Vol. 5, 260
PfAddFiltersTolnterface Vol. 5, 239
PfAddGlobalFilterTolnterface Vol. 5, 241
PFADDRESSTYPE Vol. 5, 262
PfBindlnterfaceTolndex Vol. 5, 241
PfBindlnterfaceTolPAddress Vol. 5, 242
PfCreatelnterface Vol. 5, 243
PfDeletelnterface Vol. 5, 245
PfDeleteLog Vol. 5, 246
PFFORWARD_ACTION Vol. 5, 263
PFFRAMETYPE Vol. 5, 264
PfGetinterfaceStatistics Vol. 5, 246
PFLOGFRAME Vol. 5, 260
PfMakeLog .. Vol. 5, 248
PfRebindFilters Vol. 5, 249
PFREEMEM Vol. 1,876
PfRemoveFilterHandles Vol. 5, 250
PfRemoveFiltersFromlnterface Vol. 5, 250
ptRemoveGlobalFilterFrom

N nterface .. Vol. 5, 252

NAME_BUFFER Vol. 2,153
PfSetLogBuffer Vol. 5, 252

Index Networking Services Programming Elements - Alphabetical Listing 459

PtTestPacket Vol. 5, 253 OOS_OBJECT_DS_CLASS Vol. 1,857
PfUnBindlnterface Vol. 5, 255 OOS_OBJECT _HDR Vol. 1, 799
PMGM_CREATION_ALERT _ OOS_OBJECT_SD_MODE Vol. 1,801

CALLBACK Vol. 5, 547 OOS_OBJECT_SHAPING_RATE Vol. 1,802
PMGM_DISABLE_IGMP _ OOS_OBJECT _TRAFFIC_CLASS .. Vol. 1, 856

CALLBACK Vol. 5, 549 OueryPower Vol. 5, 289
PMGM_ENABLE_IGMP _

CALLBACK Vol. 5, 549
PMGM_JOIN_ALERT _ R

CALLBACK Vol. 5, 550
PMGM_LOCAL_JOIN_

CALLBACK Vol. 5, 552
PMGM_LOCAL_LEAVE_

CALLBACK Vol. 5, 554
PMGM_PRUNE_ALERT _

CALLBACK Vol. 5, 555
PMGM_RPF _CALLBACK Vol. 5, 558
PMGM_WRONG_IF _CALLBACK Vol. 5, 560
Portability Macros Vol. 3, 583
PPP _ATCP _INFO Vol. 4, 355
PPP _CCP _INFO Vol. 4, 356
PPP _EAP _ACTION Vol. 4, 414
PPP _EAP _INFO Vol. 4, 403
PPP _EAP _INPUT Vol. 4, 404
PPP _EAP _OUTPUT Vol. 4, 409
PPP _EAP _PACKET.. Vol. 4, 412
PPP _INFO .. Vol. 4, 358
PPP _INFO_2 Vol. 4, 358
PPP _IPCP _INFO Vol. 4, 359
PPP _IPCP _INF02 Vol. 4, 360
PPP _IPXCP _INFO Vol. 4, 361
PPP _LCP _INFO Vol. 4, 362
PPP _NBFCP _INFO Vol. 4, 364
Protection Level Constants Vol. 3, 337
Protocol Identifiers Vol. 5, 235
Protocol Sequence Constants Vol. 3, 338
PROTOCOL_INFO Vol. 1 , 384
PROTOCOL_SPECIFIC_DATA Vol. 5, 357
protoent .. Vol. 1, 387
PROTSEO .. Vol. 3, 317
PS~ADAPTER_STATS Vol. 1,851
PS_COMPONENT_STATS Vol.1, 850
PS_CONFORMER_STATS Vol. 1,853
PS_DRRSEO_STATS Vol.1, 854
PS_FLOW_STATS Vol.1, 852
PS_SHAPER~STATS Vol. 1, 853

RADIUS_ACTION Vol. 2,112
RADIUS_ATTRIBUTE Vol. 2,110
RADIUS_ATTRIBUTE_ TYPE Vol. 2,112
RADIUS_AUTHENTICATION_

PROVIDER Vol. 2,120
RADIUS_DATA_TYPE Vol. 2,121
RadiusExtensionlnit.. Vol. 2, 107
RadiusExtensionProcess Vol. 2, 108
RadiusExtensionProcessEx Vol. 2, 109
RadiusExtensionTerm Vol. 2,107
RAS_AUTH_ATTRIBUTE Vol. 4, 413
RAS_AUTH_ATTRIBUTE_TYPE Vol. 4, 415
RAS_CONNECTION_O Vol. 4, 365
RAS_CONNECTION_1 Vol. 4, 367
RAS_CONNECTION_2 Vol. 4, 368
RAS_HARDWARE_CONDITIONvol. 4, 375
RAS_PARAMETERS Vol. 4, 293
RAS_PARAMS_FORMAT Vol. 4, 314
RAS_PARAMS_VALUEvol. 4, 312
RAS_PORT _O Vol. 4, 294
RAS_PORT _O Vol. 4, 369
RAS_PORT _1 Vol. 4, 297
RAS_PORT _1 Vol. 4, 370
RAS PORT CONDITION Vol. 4, 376
RAS -PORT - STATISTICS Vol. 4, 298
RAS=PPP _ATCP _RESULT Vol. 4, 302
RAS PPP IPCP RESULT.. Vol. 4, 303
RAS - PPP -IPXCP RESUL T.. Vol. 4, 303
RAS=PPP =NBFCP_RESUL T.. Vol. 4, 304
RAS PPP PROJECTION_

RESUL T-:-.. Vol. 4, 305
RAS_SECURITY _INFO Vol. 4, 306
RAS SERVER Ovol. 4, 307
RAS - STATS ... ~ Vol. 4, 308
RAS-USER O Vol. 4, 310
RAS - USER - O Vol. 4, 372
RAS -USER -1 Vol. 4, 373
RASADFun~ Vol. 4,105

Q RasAdminAcceptNewConnection Vol. 4, 277
RasAdminConnectionHangup

OOCINFO ... Vol. 2, 209 Notification Vol. 4, 279
OOS .. Vol. 1, 388 RasAdminFreeBuffer Vol. 4, 265
OOS · Vol. 1, 797 RasAdminGetErrorString Vol. 4, 266
OOS DIFFSERV RULE Vol. 1, 844
OOS - OBJECT D-ESTADDR Vol. 1, 800
OOS=OBJECT =DIFFSERV Vol. 1, 858

RasAdminGetlpAddressForUser Vol. 4, 281
RasAdminGetUserAccountServer Vol. 4, 267
RasAdminPortClearStatistics Vol. 4, 269

460 Volume 4 Remote Access Services

RasAdminPortDisconnect Vol. 4, 270 RasFreeBuffer Vol. 4, 199
RasAdminPortEnum Vol. 4, 271 RasFreeEapUserldentity Vol. 4, 142
RasAdminPortGetinfo Vol. 4, 272 RasGetAutodialAddress Vol. 4, 143
RasAdminReleaselpAddress Vol. 4, 282 RasGetAutodialEnable Vol. 4,144
RasAdminServerGetlnfo Vol. 4, 274 RasGetAutodialParam Vol. 4,145
RasAdminUserGetinfo Vol. 4, 275 RasGetBuffer Vol. 4,198
RasAdminUserSetlnfo Vol. 4, 276 RasGetConnectionStatistics Vol. 4,147
RASADPARAMS Vol. 4, 205 RasGetConnectStatus Vol. 4,148
RASAMB .. Vol. 4, 206 RasGetCountrylnfo Vol. 4,149
RASAUTODIALENTRY Vol. 4, 207 RasGetCredentials Vol. 4,151
RasClearConnectionStatistics Vol. 4, 107 RasGetCustomAuthData Vol. 4,153
RasClearLinkStatistics Vol. 4, 107 RasGetEapUserData Vol. 4, 155
RASCONN .. Vol. 4, 208 RasGetEapUserldentityvol. 4, 156
RasConnectionNotification Vol. 4, 109 RasGetEntryDiaIParamsvol. 4, 158
RASCONNSTATE Vol. 4, 258 RasGetEntryProperties Vol. 4, 160
RASCONNSTATUS Vol. 4, 210 RasGetErrorStringvol. 4, 162
RasCreatePhonebookEntry Vol. 4, 110 RasGetLinkStatistics Vol. 4, 164
RASCREDENTIALS Vol. 4, 211 RasGetProjectionlnfo Vol. 4, 165
RASCTRyINFO Vol. 4, 212 RasGetSubEntryHandle Vol. 4,167
RasCustomDeleteEntryNotify Vol. 4, 111 RasGetSubEntryProperties Vol. 4, 168
RasCustomDial Vol. 4, 112 RasHangUpvol. 4, 170
RasCustomDialDlg Vol. 4, 114 RaslnvokeEapUI Vol. 4,171
RasCustomEntryDlg Vol. 4, 116 RASIPADDR Vol. 4, 239
RasCustomHangUp Vol. 4, 118 RasMonitorDlg Vol. 4, 173
RasCustomScriptExecute Vol. 4, 197 RASMONITORDLG Vol. 4, 240
RasDeleteEntry Vol. 4, 119 RASNOUSER Vol. 4, 241
RASDEVINFO Vol. 4, 214 RASPBDLG Vol. 4, 243
RasDial ... Vol. 4, 120 RasPBDlgFunc Vol. 4,174
RasDialDlg Vol. 4,123 RasPhonebookDlg Vol. 4,176
RASDIALDLG Vol. 4, 215 RASPPPCCP Vol. 4, 245
RASDIALEXTENSIONS Vol. 4, 217 RASPPPIP .. Vol. 4, 247
RasDiaIFunc Vol. 4,125 RASPPPIPX Vol. 4, 251
RasDiaiFunc1 Vol. 4,127 RASPPPLCP Vol. 4, 248
RasDialFunc2 Vol. 4, 129 RASPPPNBF Vol. 4, 252
RASDIALPARAMS Vol. 4, 219 RASPROJECTION Vol. 4, 263
RasEapBegin Vol. 4, 389 RasReceiveBuffer Vol. 4, 201
RasEapEnd Vol. 4, 391 RasRenameEntry Vol. 4,178
RasEapFreeMemory Vol. 4, 391 RasRetrieveBuffer Vol. 4, 203
RasEapGetidentity Vol. 4, 392 RasSecurityDialogBegin Vol. 4, 284
RasEapGetlnfo Vol. 4, 395 RasSecurityDialogComplete Vol. 4, 286
RASEAPINFO Vol. 4, 222 RasSecurityDialogEnd Vol. 4, 287
RasEaplnitialize Vol. 4, 396 RasSecurityDialogGetlnfo Vol. 4, 288
RasEaplnvokeConfigUI Vol. 4, 397 RasSecurityDialogReceive Vol. 4, 289
RasEaplnvokelnteractiveUI. Vol. 4, 399 RasSecurityDialogSend Vol. 4, 291
RasEapMakeMessage Vol. 4, 401 RasSendBuffer Vol. 4, 200
RASEAPUSERIDENTITY Vol. 4, 222 RasSetAutodiaIAddress Vol. 4,179
RasEditPhonebookEntry Vol. 4, 131 RasSetAutodiaIEnable Vol. 4,181
RASENTRY Vol. 4, 223 RasSetAutodialParam Vol. 4,182
RasEntryDlg Vol. 4, 133 RasSetCredentials Vol. 4, 184
RASENTRYDLG Vol. 4, 236 RasSetCustomAuthData Vol. 4,186
RASENTRYNAME Vol. 4, 238 RasSetEapUserData Vol. 4,187
RasEnumAutodialAddresses Vol. 4, 135 RasSetEntryDiaIParams Vol. 4,189
RasEnumConnections Vol. 4, 136 RasSetEntryProperties Vol. 4, 191
RasEnumDevices Vol. 4,137 RasSetSubEntryProperties Vol. 4, 193
RasEnumEntries Vol. 4, 139 RASSLIP ... Vol. 4, 253

Index Networking Services Programming Elements - Alphabetical Listing 461

RASSUBENTRY Vol. 4, 254 RpcBindingServerFromClient Vol. 3, 385
RasValidateEntryName Vol. 4, 195 RpcBindingSetAuthlnfo Vol. 3, 387
recv ... Vol. 1, 196 RpcBindingSetAuthlnfoEx Vol. 3, 389
recvfrom .. Vol. 1, 199 RpcBindingSetObject... Vol. 3, 391
RegisterProtocol. Vol. 5, 290 RpcBindingSetOptionvol. 3, 392
REMOTE_NAME_INFO Vol. 3, 665 RpcBindingToStringBinding Vol. 3, 394
Route Flags Vol. 5, 501 RpcBindingVectorFree Vol. 3, 395
ROUTER_CONNECTION_STATE .. Vol. 5,167 RpcCanceIThread Vol. 3, 396
ROUTER_INTERFACE_ TYPE Vol. 5, 168 RpcCanceIThreadEx Vol. 3, 397
Routing Table Ouery Flags Vol. 5, 504 RpcCertGeneratePrincipalName Vol. 3, 398
ROUTING_PROTOCOL_CONFIG .. Vol. 5, 562 RpcEndExcept Vol. 3, 586
RPC_ASYNC_EVENT Vol. 3, 315 RpcEndFinally Vol. 3, 586
RPC_ASYNC_STATE Vol. 3, 298 RpcEpRegister Vol. 3, 399
RPC_AUTH_IDENTITY _HANDLE ... Vol. 3, 318 RpcEpRegisterNoReplace Vol. 3, 401
RPC_AUTH_KEY _RETRIEVAL_ RpcEpResolveBinding Vol. 3, 404

FN .. Vol. 3, 576 RpcEpUnregister Vol. 3, 405
RPC_AUTHZ_HANDLE Vol. 3, 319 RpcExcept... Vol. 3, 587
RPC_BINDING_HANDLE Vol. 3, 319 RpcExceptionCode Vol. 3, 407
RPC_BINDING_ VECTOR Vol. 3, 301 RpcFinally ... Vol. 3, 588
RPC_CLlENT _INTERFACE Vol. 3, 302 RpclfldVectorFree Vol. 3, 407
RPC_DISPATCH_TABLE Vol. 3, 302 Rpclflnqldvol. 3, 408
RPC_EP _INO_HANDLE Vol. 3, 320 RpclmpersonateClient Vol. 3, 409
RPC_IF _CALLBACK_FN Vol. 3, 577 RpcMacSetYieldlnfo Vol. 3, 410
RPC_IF _HANDLE Vol. 3, 321 RpcMgmtEnableldleCleanup Vol. 3, 411
RPC_IF _ID Vol. 3, 303 RpcMgmtEpEltlnqBegin Vol. 3, 412
RPC_IF_ID_VECTOR Vol. 3, 304 RpcMgmtEpEltlnqDone Vol. 3, 415
RPC_MGMT _AUTHORIZATION_ RpcMgmtEpEltlnqNext Vol. 3, 416

FN .. Vol. 3, 577 RpcMgmtEpUnregister Vol. 3, 417
RPC_MGR_EPV Vol. 3, 321 RpcMgmtlnqComTimeout... Vol. 3, 418
RPC_NOTIFICATION_TYPES Vol. 3, 315 RpcMgmtlnqDefaultProtectLevel. Vol. 3, 419
RPC_NS_HANDLE Vol. 3, 322 RpcMgmtlnqlflds Vol. 3, 421
RPC_OBJECT _INO_FN Vol. 3, 579 RpcMgmtlnqServerPrincName Vol. 3, 422
RPC_POLlCY Vol. 3, 304 RpcMgmtlnqStats Vol. 3, 423
RPC_PROTSEO_ VECTOR Vol. 3, 308 RpcMgmtlsServerListening Vol. 3, 425
RPC_SECURITY _OOS Vol. 3, 308 RpcMgmtSetAuthorizationFn Vol. 3, 426
RPC_STATS_VECTOR Vol. 3, 310 RpcMgmtSetCanceITimeout... Vol. 3, 427
RPC_STATUS Vol. 3, 323 RpcMgmtSetComTimeout Vol. 3, 428
RpcAbnormaITermination Vol. 3, 362 RpcMgmtSetServerStackSize Vol. 3, 429
RpcAsyncAbortCall Vol. 3, 362 RpcMgmtStatsVectorFree Vol. 3, 430
RpcAsyncCanceICall Vol. 3, 363 RpcMgmtStopServerListening Vol. 3, 431
RpcAsyncCompleteCall. Vol. 3, 365 RpcMgmtWaitServerListen Vol. 3, 432
RpcAsyncGetCaIiHandle Vol. 3, 585 RpcNetworklnqProtseqs Vol. 3, 433
RpcAsyncGetCaIiStatus , Vol. 3, 366 RpcNetworklsProtseqValid Vol. 3, 434
RpcAsynclnitializeHandle Vol. 3, 367 RPCNOTIFICATION_ROUTINE Vol. 3, 579
RpcAsyncRegisterlnfo Vol. 3, 368 RpcNsBindingExport Vol. 3, 435
RpcBindingCopy Vol. 3, 369 RpcNsBindingExportPnP Vol. 3, 438
RpcBindingFree Vol. 3, 370 RpcNsBindinglmportBegin Vol. 3, 440
RpcBindingFromStringBinding Vol. 3, 372 RpcNsBindinglmportDone Vol. 3, 442
RpcBindinglnqAuthClient Vol. 3, 373 RpcNsBindinglmportNext Vol. 3, 443
RpcBindinglnqAuthClientEx Vol. 3, 375 RpcNsBindinglnqEntryName Vol. 3, 445
RpcBindinglnqAuthlnfo ; Vol. 3, 377 RpcNsBindingLookupBegin Vol. 3, 446
RpcBindinglnqAuthlnfoEx Vol. 3, 380 RpcNsBindingLookupDone Vol. 3, 449
RpcBindinglnqObject... Vol. 3, 382 RpcNsBindingLookupNext Vol. 3, 450
RpcBindinglnqOption Vol. 3, 383 RpcNsBindingSelect Vol. 3, 452
RpcBindingReset... Vol. 3, 384 RpcNsBindingUnexport Vol. 3, 453

462 Volume 4 Remote Access Services

RpcNsBindingUnexportPnP Vol. 3, 456 RpcSmEnableAliocate Vol. 3, 542
RpcNsEntryExpandName Vol. 3, 457 RpcSmFree Vol. 3, 543
RpcNsEntryObjectlnqBegin Vol. 3, 458 RpcSmGetThreadHandle Vol. 3, 544
RpcNsEntryObjectlnqDone Vol. 3, 460 RpcSmSetClientAllocFree Vol. 3, 545
RpcNsEntryObjectlnqNext Vol. 3, 461 RpcSmSetThreadHandle Vol. 3, 546
RpcNsGroupDelete Vol. 3, 462 RpcSmSwapClientAllocFree Vol. 3, 547
RpcNsGroupMbrAdd Vol. 3, 463 RpcSsAliocate Vol. 3, 548
RpcNsGroupMbrlnqBegin Vol. 3, 465 RpcSsDestroyClientContext Vol. 3, 549
RpcNsGroupMbrlnqDone Vol. 3, 466 RpcSsDisableAliocate Vol. 3, 550
RpcNsGroupMbrlnqNext Vol. 3, 467 RpcSsDontSerializeContext Vol. 3, 550
RpcNsGroupMbrRemove Vol. 3, 468 RpcSsEnableAliocate Vol. 3, 551
RpcNsMgmtBindingUnexport Vol. 3, 470 RpcSsFreevol. 3, 552
RpcNsMgmtEntryCreate Vol. 3, 473 RpcSsGetThreadHandle Vol. 3, 553
RpcNsMgmtEntryDelete Vol. 3, 474 RpcSsSetClientAllocFree Vol. 3, 554
RpcNsMgmtEntrylnqlflds Vol. 3, 475 RpcSsSetThreadHandle Vol. 3, 555
RpcNsMgmtHandleSetExpAge Vol. 3, 476 RpcSsSwapClientAllocFree Vol. 3, 556
RpcNsMgmtlnqExpAge Vol. 3, 478 RpcStringBindingCompose Vol. 3, 558
RpcNsMgmtSetExpAge Vol. 3, 480 RpcStringBindingParse Vol. 3, 559
RpcNsProfileDelete Vol. 3, 481 RpcStringFree Vol. 3, 561
RpcNsProfileEltAdd Vol. 3, 482 RpcTestCancel Vol. 3, 562
RpcNsProfileEltlnqBegin Vol. 3, 484 RpcTryExcept Vol. 3, 590
RpcNsProfileEltlnqDone Vol. 3, 488 RpcTryFinally Vol. 3, 590
RpcNsProfileEltlnqNext Vol. 3, 488 RpcWinSetYieldlnfo Vol. 3, 563
RpcNsProfileEltRemove Vol. 3, 490 RpcWinSetYieldTimeout... Vol. 3, 566
RpcObjectlnqType Vol. 3, 492 RSVP _ADSPEC Vol. 1,802
RpcObjectSetlnqFn Vol. 3, 493 RSVP _RESERVE_INFO Vol. 1, 803
RpcObjectSetType Vol. 3, 494 RSVP _STATUS_INFO Vol. 1,805
RpcProtseqVectorFree Vol. 3, 496 RTM_DEST_INFO Vol. 5, 480
RpcRaiseException Vol. 3, 497 RTM_ENTITY _EXPORT _
RpcRevertToSelf Vol. 3, 501 METHOD Vol. 5, 477
RpcRevertToSelfEx Vol. 3, 502 RTM_ENTITY _EXPORT _
RpcServerlnqBindings Vol. 3, 503 METHODS Vol. 5, 481
RpcServerlnqDefaultPrincName Vol. 3, 504 RTM_ENTITY_ID Vol. 5, 482
RpcServerlnqlf Vol. 3, 505 RTM_ENTITY _INFO Vol. 5, 483
RpcServerListen Vol. 3, 506 RTM_ENTITY _METHOD_
RpcServerRegisterAuthlnfo Vol. 3, 508 OUTPUT .. Vol. 5, 484
RpcServerRegisterlf Vol. 3, 511 RTM_ENTITY _METHOD_INPUT Vol. 5, 483
RpcServerRegisterlf2 Vol. 3, 512 RTM_EVENT _CALLBACK Vol. 5, 478
RpcServerRegisterlfEx Vol. 3, 514 RTM_EVENT_TYPE Vol. 5, 506
RpcServerTestCancel Vol. 3, 516 RTM_IP _ROUTE Vol. 5, 357
RpcServerUnregisterlf Vol. 3, 517 RTM_IPV4_GET _ADDR_AND_
RpcServerUseAIiProtseqs Vol. 3, 519 LEN .. Vol. 5, 492
RpcServerUseAIiProtseqsEx Vol. 3, 521 RTM_IPV4_GET _AD DR_AN D_
RpcServerUseAIiProtseqslf Vol. 3, 523 MASK ... Vol. 5, 493
RpcServerUseAIiProtseqslfEx Vol. 3, 524 RTM_IPV4_LEN_FROM_MASK Vol. 5, 494
RpcServerUseProtseq Vol. 3, 526 RTM_IPV4_MAKE_NET _
RpcServerUseProtseqEp Vol. 3, 530 ADDRESS Vol. 5, 495
RpcServerUseProtseqEpEx Vol. 3, 532 RTM_IPV4_MASK_FROM_LEN Vol. 5, 496
RpcServerUseProtseqEx Vol. 3, 528 RTM_IPV4_SET _ADDR_AND_
RpcServerUseProtseqlf Vol. 3, 534 LEN .. Vol. 5, 497
RpcServerUseProtseqlfEx Vol. 3, 536 RTM_IPV4_SET _ADDR_AND_
RpcSmAliocate Vol. 3, 538 MASK ... Vol. 5, 498
RpcSmClientFree Vol. 3, 539 RTM_IPX_ROUTE Vol. 5, 358
RpcSmDestroyClientContext Vol. 3, 540 RTM_NET _ADDRESS Vol. 5, 485
RpcSmDisableAliocate Vol. 3, 541 RTM_NEXTHOP _INFO Vol. 5, 486

Index Networking Services Programming Elements - Alphabetical Listing 463

RTM_NEXTHOP _LIST Vol. 5, 487 RtmHoldDestination Vol. 5, 451
RTM_PREF _INFO Vol. 5, 488 RtmlgnoreChangedDests Vol. 5, 452
RTM_REGN_PROFILE Vol. 5, 488 RtmlnsertlnRouteList Vol. 5, 453
RTM_ROUTE_INFO Vol. 5, 489 RtmlnvokeMethod Vol. 5, 454
RTM_SIZE_OF _DEST _INFO Vol. 5, 499 RtmlsBestRoute Vol. 5, 455
RTM_SIZE_OF _ROUTE_INFO Vol. 5, 500 RtmlsMarkedForChange
RtmAddNextHop Vol. 5, 405 Notification Vol. 5, 456
RtmAddRoute Vol. 5, 335 RtmlsRoute Vol. 5, 340
RtmAddRouteToDest Vol. 5, 406 RtmLockDestination Vol. 5, 457
RtmBlockDeleteRoutes Vol. 5, 347 RtmLockNextHop Vol. 5, 459
RtmBlockMethods Vol. 5, 409 RtmLockRoute Vol. 5, 460
RtmCloseEnumerationHandle Vol. 5, 346 RtmMarkDestForChange
RtmCreateDestEnum Vol. 5, 410 Notification Vol. 5, 461
RtmCreateEnumerationHandle Vol. 5, 343 RtmReferenceHandlesvol. 5, 463
RtmCreateNextHopEnum Vol. 5, 413 RtmRegisterClient...vol. 5, 331
RtmCreateRouteEnum Vol. 5, 414 RtmRegisterEntity Vol. 5, 464
RtmCreateRouteList... Vol. 5, 417 RtmRegisterForChange
RtmCreateRouteListEnum Vol. 5, 418 Notificationvol. 5, 466
RtmDeleteEnumHandle Vol. 5, 419 RtmReleaseChangedDests Vol. 5, 467
RtmDeleteNextHop Vol. 5, 420 RtmReleaseDestlnfo Vol. 5, 469
RtmDeleteRoute Vol. 5, 338 RtmReleaseDestsvol. 5, 469
RtmDeleteRouteList Vol. 5, 421 RtmReleaseEntities Vol. 5, 471
RtmDeleteRouteToDest Vol. 5, 422 RtmReleaseEntitylnfovol. 5, 471
RtmDequeueRouteChange RtmReleaseNextHoplnfovol. 5, 472

Message .. Vol. 5, 333 RtmReleaseNextHops Vol. 5, 473
RtmDeregisterClient Vol. 5, 332 RtmReleaseRoutelnfo Vol. 5, 474
RtmDeregisterEntity Vol. 5, 423 RtmReleaseRoutes Vol. 5, 475
RtmDeregisterFromChange RtmUpdateAndUnlockRoute Vol. 5, 476

Notification Vol. 5, 424
RtmEnumerateGetNextRoute Vol. 5, 345
RtmFindNextHop Vol. 5, 425 s
RtmGetChangedDests Vol. 5, 426
RtmGetChangeStatus Vol. 5, 428
RtmGetDestlnfo Vol. 5, 429
RtmGetEntitylnfo Vol. 5, 430
RtmGetEntityMethods Vol. 5, 431
RtmGetEnumDests Vol. 5, 432
RtmGetEnumNextHops Vol. 5, 434
RtmGetEnumRoutes Vol. 5, 435
RtmGetExactMatchDestination Vol. 5, 436
RtmGetExactMatchRoute Vol. 5, 438
RtmGetFirstRoute Vol. 5, 348
RtmGetLessSpecificDestination Vol. 5, 440
RtmGetListEnumRoutes Vol. 5, 441
RtmGetMostSpecificDestination Vol. 5, 443
RtmGetNetworkCount Vol. 5, 341
RtmGetNextHoplnfo Vol. 5, 444
RtmGetNextHopPointer Vol. 5, 445
RtmGetNextRoute Vol. 5, 350
RtmGetOpaquelnformation

Pointer ... Vol. 5, 446
RtmGetRegisteredEntities Vol. 5, 447
RtmGetRouteAge Vol. 5, 342
RtmGetRoutelnfo Vol. 5, 449
RtmGetRoutePointer Vol. 5, 450

SEC_WINNT_AUTH_IDENTITYvol. 3, 312
SECURITY_MESSAGEvol. 4, 311
select... .. VoI. 1,202
send .. Vol. 1,206
SendARP .. Vol. 2, 270
sendto ... Vol. 1,209
SENS_QOCINFO Vol. 2, 227
servent .. Vol. 1,388
SERVICE_ADDRESS ; Vol. 1, 389
SERVICE_ADDRESSES Vol. 1, 390
SERVICE_INFO Vol. 1, 390
SERVICE_ TYPE_INFO_ABS Vol. 1,393
SERVICE_TYPE_VALUE_ABS Vol. 1,394
SESSION __ BUFFER Vol. 2,160
SESSION_HEADER Vol. 2,162
SetGlobalinfo Vol. 5, 291
SetlfEntry .. Vol. 2, 271
Setinterfacelnfo Vol. 5,292
SetinterfaceReceiveType Vol. 5, 314
SetlpForwardEntry Vol. 2, 272
SetlpNetEntry Vol. 2, 273
SetipStatisticsvol. 2, 274
SetipTTL ... Vol. 2, 275
SetPower .. Vol. 5, 293

464 Volume 4 Remote Access Services

SetService .. Vol. 1,212 SnmpOpen .. Vol. 2, 428
setsockopt .. Vol. 1,215 SnmpRecvMsg Vol. 2, 430
SetTcpEntry Vol. 2, 276 SnmpRegister Vol. 2, 433
shutdown .. Vol. 1, 223 SnmpSendMsg Vol. 2, 436
smiCNTR64 Vol. 2, 458 SnmpSetPduData Vol. 2, 438
smiOCTETS Vol. 2, 459 SnmpSetPort Vol. 2, 440
smiOID .. Vol. 2, 460 SnmpSetRetransmitMode Vol. 2, 442
smiVALUE .. Vol. 2, 461 SnmpSetRetry Vol. 2, 444
smiVENDORINFO Vol. 2, 464 SnmpSetTimeout Vol. 2, 445
SNMPAPLCALLBACK Vol. 2, 375 SnmpSetTranslateMode Vol. 2, 446
SnmpCancelMsg Vol. 2, 376 SnmpSetVb Vol. 2, 448
SnmpCleanup Vol. 2, 378 SnmpStartup Vol. 2, 450
SnmpClose Vol. 2, 379 SnmpStrToContext Vol. 2, 453
SnmpContextToStr. Vol. 2, 380 SnmpStrToEntity Vol. 2, 455
SnmpCountVbl Vol. 2, 382 SnmpStrToOid Vol. 2, 456
SnmpCreatePdu Vol. 2, 383 SnmpSvcGetUptime Vol. 2, 314
SnmpCreateSession Vol. 2, 385 SnmpSvcSetLogLevel Vol. 2, 315
SnmpCreateVbl Vol. 2, 388 SnmpSvcSetLogType Vol. 2, 316
SnmpDecodeMsg Vol. 2, 390 SnmpUtilAsnAnyCpy Vol. 2, 317
SnmpDeleteVb Vol. 2, 392 SnmpUtilAsnAnyFree Vol. 2, 317
SnmpDuplicatePdu Vol. 2, 394 SnmpUtilDbgPrint Vol. 2, 318
SnmpDuplicateVbl. Vol. 2, 395 SnmpUtilidsToA Vol. 2, 319
SnmpEncodeMsg Vol. 2, 396 SnmpUtilMemAlioc Vol. 2, 321
SnmpEntityToStr Vol. 2, 398 SnmpUtiIMemFree Vol. 2, 321
SnmpExtensionClose Vol. 2, 290 SnmpUtilMemReAlloc Vol. 2, 322
SnmpExtensionlnit Vol. 2, 291 SnmpUtilOctetsCmp Vol. 2, 323
SnmpExtensionlnitEx Vol. 2, 293 SnmpUtiiOctetsCpy Vol. 2, 324
SnmpExtensionMonitor Vol. 2, 294 SnmpUtilOctetsFree Vol. 2, 325
SnmpExtensionQuery Vol. 2, 295 SnmpUtiIOctetsNCmp Vol. 2, 325
SnmpExtensionQueryEx Vol. 2, 298 SnmpUtiiOidAppend Vol. 2,326
SnmpExtensionTrap Vol. 2, 302 SnmpUtilOidCmp Vol. 2, 327
SnmpFreeContext Vol. 2, 399 SnmpUtilOidCpy Vol. 2, 328
SnmpFreeDescriptor Vol. 2, 401 SnmpUtilOidFree Vol. 2, 329
SnmpFreeEntity Vol. 2, 402 SnmpUtilOidNCmp Vol. 2, 330
SnmpFreePdu Vol. 2, 403 SnmpUtiiOidToA Vol. 2, 331
SnmpFreeVbl Vol. 2, 404 SnmpUtilPrintAsnAny Vol. 2, 331
SnmpGetLastError Vol. 2, 406 SnmpUtilPrintOid Vol. 2, 332
SnmpGetPduData Vol. 2, 407 SnmpUtilVarBindCpy Vol. 2, 333
SnmpGetRetransmitMode Vol. 2, 411 SnmpUtilVarBindFree Vol. 2, 335
SnmpGetRetry Vol. 2, 412 SnmpUtilVarBindListCpy Vol. 2, 334
SnmpGetTimeout Vol. 2, 414 SnmpUtilVarBindListFree Vol. 2, 335
SnmpGetTranslateMode Vol. 2, 416 SnmpVarBind Vol. 2, 340
SnmpGetVb Vol. 2, 417 SnmpVarBindList Vol. 2, 341
SnmpGetVendorlnfo Vol. 2, 420 sockaddr ... Vol. 1,396
SnmpListen Vol. 2, 421 SOCKADDR_IRDA Vol. 1,397
SnmpMgrClose Vol. 2, 304 socket.. .. VoI. 1,225
SnmpMgrGetTrap Vol. 2, 305 SOCKET ~DDRESS Vol. 1,397
SnmpMgrOidToStr Vol. 2, 307 SOURCE_GROUP _ENTRY Vol. 5, 563
SnmpMgrOpen Vol. 2, 308 StartComplete Vol. 5, 293
SnmpMgrRequest Vol. 2, 309 StartProtocol Vol. 5, 294
SnmpMgrStrToOid Vol. 2, 311 Stop Protocol Vol. 5, 295
SnmpMgrTrapListen Vol. 2, 312 String Binding Vol. 3, 324
SnmpOidCompare Vol. 2, 423 String UUID Vol. 3, 329
SnmpOidCopy Vol. 2, 425 SUPPORT_FUNCTIONS Vol. 5, 305
SnmpOidToStr. Vol. 2, 427 SYNCMGRFLAG Vol. 2,196

Index Networking Services Programming Elements - Alphabetical Listing 465

SYNCMGRHANDLERFLAGS Vol. 2, 197 UPDATE_COMPLETE_
SYNCMGRHANDLERINFO Vol. 2, 201 MESSAGE Vol. 5, 303
SYNCMGRINVOKEFLAGS Vol. 2, 200 UUID ... Vol. 3, 313
SYNCMGRITEM Vol. 2, 203 UUID_VECTORvol. 3, 314
SYNCMGRITEMFLAGS Vol. 2,199 UuidComparevol. 3, 567
SYNCMGRLOGERRORINFO Vol. 2, 202 UuidCreatevol. 3, 568
SYNCMGRLOGLEVEL Vol. 2, 199 UuidCreateNil... Vol. 3, 570
SYNCMGRPROGRESSITEM Vol. 2, 201 UuidCreateSequential. Vol. 3, 569
SYNCMGRSTATUS Vol. 2,198 UuidEqual , Vol. 3, 570

UuidFromStringvol. 3, 571

T UuidHash .. Vol. 3, 572
UuidlsNil. ... VoI. 3, 573

TC_GEN_FIL TER Vol. 1,845 UuidToString Vol. 3, 574

TC_GEN_FLOW Vol. 1, 846
TC_IFC_DESCRIPTOR Vol. 1, 847
TcAddFilter Vol. 1,807 v
TcAddFlow .. Vol. 1,809 ValidateRoute Vol. 5, 315
TcCloselnterface Vol. 1, 811 View Flags .. Vol. 5, 501
TcDeleteFilter Vol. 1,812
TcDeleteFlow Vol. 1,813
TcDeregisterClient... Vol. 1, 814 w
TcEnumerateFlows Vol. 1,815
TcEnumeratelnterfaces Vol. 1,817
TcGetFlowName Vol.1, 819
TCLCLIENT _FUNC_LlST Vol. 1,847
TcModifyFlow Vol. 1,820
TcOpenlnterface Vol. 1, 822
TcQueryFlow Vol. 1, 823
TcQuerylnterface Vol. 1,824
TcRegisterClient Vol. 1,826
TcSetFlow ... Vol. 1, 827
TcSetinterface Vol. 1,828
The ProviderSpecific Buffer Vol. 1, 799
timeval .. Vol. 1, 398
TraceDeregister Vol. 4, 438
TraceDump Vol. 4, 438
TraceDumpEx Vol. 4, 440
TracePrintf .. Vol. 4, 441
TracePrintfEx , Vol. 4, 442
TracePuts ... Vol. 4, 444
TracePutsEx Vol. 4, 445
TraceRegister Vol. 4, 446
TraceRegisterEx Vol. 4, 447
TraceVprintf Vol. 4, 449
TraceVprintfEx Vol. 4, 450
TRANSMIT _FILE_BUFFERS Vol. 1, 399
TransmitFile Vol. 1,228
Transport Identifiers Vol. 5, 235

WM_RASDIALEVENT Vol. 4, 257
WNetAddConnection Vol. 3, 611
WNetAddConnection2 Vol. 3, 613
WNetAddConnection3 Vol. 3, 616
WNetCancelConnection Vol. 3, 620
WNetCanceiConnection2 Vol. 3, 622
WNetCloseEnum Vol. 3, 624
WNetConnectionDialog Vol. 3, 625
WNetConnectionDialog1 Vol. 3, 626
WNetDisconnectDialog Vol. 3, 628
WNetDisconnectDialog1 Vol. 3, 629
WNetEnumResource Vol. 3, 630
WNetGetConnection Vol. 3, 632
WNetGetLastError Vol. 3, 634
WNetGetNetworklnformation Vol. 3, 635
WNetGetProviderName Vol. 3, 636
WNetGetResourcelnformation Vol. 3, 638
WNetGetResourceParent Vol. 3, 640
WNetGetUniversalName Vol. 3, 642
WNetGetUser Vol. 3, 645
WNetOpenEnum Vol. 3, 647
WNetUseConnection Vol. 3, 650
WPUCloseEvent Vol. 1,515
WPUCloseSocketHandle Vol. 1,515
WPUCloseThread Vol. 1,516
WPUCompleteOverlapped

Request... Vol. 1,517
WPUCreateEvent VoI.1, 520

u WPUCreateSocketHandle Vol. 1, 521
WPUFDlsSet... Vol. 1, 523

Unbindlnterface Vol. 5, 296 WPUGetProviderPath Vol. 1, 524
UNIVERSAL_NAME_INFO Vol. 3, 667 WPUGetQOSTemplate Vol. 1, 783

WPUModifyIFSHandle Vol. 1, 525

466 Volume 4 Remote Access Services

WPUOpenCurrentThread Vol. 1,527 WSARecv .. Vol. 1, 326
WPUPostMessage Vol. 1,528 WSARecvDisconnect... Vol. 1,332
WPUQueryBlockingCaliback Vol. 1, 529 WSARecvEx Vol. 1, 334
WPUQuerySocketHandleContext Vol. 1, 530 WSARecvFrom Vol. 1,337
WPUQueueApc Vol. 1, 531 WSARemoveServiceClass Vol. 1,343
WPUResetEvent Vol. 1, 533 WSAResetEvent Vol. 1,344
WPUSetEvent Vol. 1, 534 WSASend ... Vol. 1,345
WSAAccept Vol. 1, 231 WSASendDisconnect Vol. 1,350
WSAAddressToString Vol. 1, 235 WSASendTo Vol. 1, 352
WSAAsyncGetHostByAddr Vol. 1, 236 WSASERVICECLASSINFOvol. 1,411
WSAAsyncGetHostByName Vol. 1, 239 WSASetBlockingHook Vol. 1, 357
WSAAsyncGetProtoByName Vol. 1, 242 WSASetEvent Vol. 1,358
WSAAsyncGetProtoByNumber. Vol. 1, 245 WSASetLastError Vol. 1,359
WSAAsyncGetServByName Vol. 1, 248 WSASetService Vol. 1, 360
WSAAsyncGetServByPort Vol. 1,251 WSASocket Vol. 1,363
WSAAsyncSelect Vol. 1, 254 WSAStartup Vol. 1,367
WSABUF .. Vol. 1, 399 WSAStringToAddress Vol. 1, 371
WSACanceIAsyncRequest... Vol. 1, 263 WSATHREADID Vol. 1,412
WSACanceIBlockingCall Vol. 1, 265 WSAUnhookBlockingHook Vol. 1, 372
WSACleanup Vol. 1, 265 WSAWaitForMultipleEvents Vol. 1, 373
WSACloseEvent Vol. 1,267 WSCDeinstaliProvider Vol. 1, 535
WSAConnect... Vol. 1, 268 WSCEnableNSProvider. Vol. 1,536
WSACreateEvent Vol. 1, 272 WSCEnumProtocols Vol. 1, 537
WSADATA .. Vol. 1,400 WSCGetProviderPath Vol. 1,539
WSADuplicateSocket Vol. 1, 273 WSClnstaliNameSpace Vol. 1,540
WSAECOMPARATOR Vol. 1,413 WSClnstaIiProvider Vol. 1,541
WSAEnumNameSpaceProviders Vol. 1, 276 WSClnstaIlQOSTemplate Vol. 1,786
WSAEnumNetworkEvents Vol. 1, 277 WSCRemoveQOSTemplate Vol. 1, 788
WSAEnumProtocols Vol. 1, 279 WSCUnlnstaIiNameSpace Vol. 1,543
WSAEventSelect Vol. 1, 281 WSCWriteProviderOrder Vol. 1,543
WSAGetLastError Vol. 1,287 WSPAccept Vol. 1,545
WSAGetOverlappedResult Vol. 1, 288 WSPAddressToString Vol. 1,549
WSAGetQOSByName Vol. 1, 290 WSPAsyncSelect... Vol. 1,550
WSAGetQOSByName Vol. 1, 784 WSPBind ... Vol. 1,558
WSAGetServiceClasslnfo Vol. 1, 292 WSPCanceIBlockingCall. Vol. 1, 560
WSAGetServiceClassNameBy WSPCleanup Vol. 1,562

Classld ... Vol. 1,293 WSPCloseSocket Vol. 1,564
WSAHtonl ... Vol. 1, 294 WSPConnect Vol. 1, 566
WSAHtons .. Vol. 1, 295 WSPDuplicateSocket... Vol. 1, 570
WSAlnstaIiServiceClass , Vol. 1,296 WSPEnumNetworkEvents Vol. 1, 573
WSAloctl. .. Vol. 1, 297 WSPEventSelect Vol. 1, 576
WSAlsBlocking Vol. 1, 308 WSPGetOverlappedResult Vol. 1, 581
WSAJoinLeaf Vol. 1, 309 WSPGetPeerName Vol. 1,584
WSALookupServiceBegin Vol. 1, 313 WSPGetQOSByName Vol. 1, 585
WSALookupServiceEnd Vol. 1, 317 WSPGetQOSByName Vol. 1, 789
WSALookupServiceNext Vol. 1, 318 WSPGetSockName Vol. 1,586
W$ANAMESPACE_INFO Vol. 1, 401 WSPGetSockOpt Vol. 1, 588
WSANETWORKEVENTS Vol. 1, 402 WSPloctl ... Vol. 1,593
WSANtohl ... Vol. 1, 322 WSPJoinLeaf Vol. 1,604
WSANtohs .. Vol. 1, 323 WSPListen .. Vol. 1,608
WSAOVERLAPPED Vol. 1, 403 WSPRecv .. Vol. 1,610
WSAPROTOCOUNFO Vol. 1, 404 WSPRecvDisconnect... Vol. 1,617
WSAPROTOCOLCHAIN Vol. 1, 408 WSPRecvFrom Vol. 1,618
WSAProviderConfigChange Vol. 1, 324 WSPSelect... Vol. 1,624
WSAQUERYSET Vol. 1, 409 WSPSend ... Vol. 1,628

Index Networking Services Programming Elements - Alphabetical Listing 467

WSPSendDisconnect Vol. 1, 633 WSPStringToAddress Vol. 1,654
WSPSendTo Vol. 1, 634
WSPSetSockOpt Vol. 1, 640
WSPShutdown Vol. 1, 644 v
WSPSocket Vol. 1, 645
WSPStartup Vol. 1,649

YieldFunctionName Vol. 3, 580

Thank you for acquiring this MicrosoffID MSDNTM Universal Subscription. You are eligible to receive
a rebate by mail on this product.

To receive your rebate, simply fill out the coupon below and return it along with required proof
of purchase to Microsoft. Offer expires December 31, 2000. Coupons must be received by
January 31, 2001.

The Microsoft MSDN Universal Subscription makes it easy to take advantage of the latest
Microsoft tools and technologies. You'll get all the Microsoft operating systems (including client and server platforms),
SDKs, DDKs, all the Visual Studio® tools, the BackOffice® Test Platform and Microsoft Office® Developer 2000. Plus,
you'll stay ahead of the curve with early releases, service packs, betas, and updates for a full year - automatically!
You will also get exclusive, online access to subscription content and updates. MSDN Universal is a timely, convenient,
comprehensive resource for developers.

http://msdn.microsoft.com/subscriptions/

MSDN Universal Subscription:

Feature Benefit

MSDN Library More than 1.5 GB of programming information and sample code, plus extensive
(updated quarterly) keyword indexing and full-text search engine.

Complete set of Microsoft Includes Microsoft Windows® 98, Microsoft Windows NT" Workstation,
operating systems, Microsoft Windows NT Server, and Microsoft Windows 2000, software
SDKs, and DDKs development kits (SDK), and driver development kits (DDK).

Microsoft Visual Studio Includes Visual Studio 6.0, the complete suite of tools to create solutions using
6.0 Enterprise Edition Microsoft technologies.

Microsoft BackOffice Develop and test distributed solutions with the BackOffice Test Platform server
Test Platform family products and applications.

Microsoft Office
Developer Edition

Get all the essential tools for building and deploying solutions with Office.

Updates Includes Service Packs, betas, and other product releases for a full year.

To receive your U.S. $200' mail-in rebate, follow each of the steps below.

'Canadian consumers will receive a check funded in U.S. currency, which will be converted to, and paid in, Canadian
funds. The conversion will be calculated by reference to the exchange rate at the time the check is deposited at a
financial institution.

1. Get an MSDN™ Universal Subscription.

2. If purchased from a Microsoft reseller, enclose proof of purchase from the MSDN Universal Subscription
you acquired. Eligible proof of purchase is the product box top, with the product name and bar code clearly identified.

3. Enclose a copy of your dated sales receipt (with date and store name clearly identified) for the MSDN Universal
Subscription you just acquired, OR the packing slip from your initial shipment (if you purchased direct from Microsoft)
indicating price paid.

4. Print your name, address, and phone number here:

First name Last name

Company name (if company licenses product)

Mailing address (sorry, no PO boxes)

City State/Province ZIP/Postal code

Daytime phone, including area code (in case we have a question about your rebate)

Retailer (store) where MSDN Universal Subscription was acquired City

5. Mail completed rebate coupon and all required proof of purchase to:

MSDN Universal Subscription
Promotion #497-00-675
P.O. Box 1140
Ridgely, MD 21681

Country

State/Province

In the United States and Canada, if you have questions about this offer, call (800) 622-4445 (8:30 A.M. to 5:30 P.M.
eastern time, except weekends and holidays). No rebates will be authorized over the phone. .

Please allow 6 to 8 weeks for delivery of your rebate. This offer allows one rebate of U.S. $200' per coupon. Offer
good in the 50 United States, the District of Columbia, and Canada only. Offer not valid in U.S. Territories, including
Puerto Rico, U.S. Virgin Islands, and Guam. Offer not valid where prohibited, taxed, or restricted by law. OFFER
EXPIRES DECEMBER 31, 2000. Coupons must be received by January 31, 2001. Only original coupons will be
accepted. Rebate is not valid: if the product was acquired directly from Microsoft and amount of rebate was deducted
at time of purchase; in conjunction with other Microsoft offers or rebates; or for upgrades from or on Academic Edition
or Not-for-Resale products, or Microsoft products pre-installed or supplied by a manufacturer. Rebate is for Full
Package Product MSDN Universal products only. Rebate is good for new subscribers only. Cash redemption value
1/100 of 1 ¢. Limit one rebate per address.

©1999 Microsoft Corporation. All rights reserved. Microsoft, MSDN, Visual Studio, BackOffice, Office, Windows and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

Q Occasionally, we offer non-Microsoft products and services to our customers. If you do not wish to receive them,
please check here.

Part # 098-86742

Part No. 097-0002786

Remote Access
Services
This essential reference book is part of the five-volume
NETWORKING SERVICES DEVELOPER'S REFERENCE LIBRARY.

In its printed form, this material is portable, easy to use,
and easy to browse-a highly condensed, completely
indexed, intelligently organized complement to the
information available on line and through the Microsoft
Developer Network (MSDN"'). Each book includes an
overview of the five-volume library, an appendix of
programming elements, an index of referenced MicrosoW
technologies, and tips on how and where to find other
Microsoft developer reference resources you may need.

Remote Access Services

This volume focuses on programming guides and reference
materials associated with remote access. It covers Remote
Access Service (RAS) and the remote access capabilities
built into Routing and Remote Access Service (RRAS),
which Microsoft Windows NT~ Server 4.0 and Microsoft
Windows~ 2000 Server support. The RAS API and the
remote access components built into the RRAS API let you
create applications to connect a remote client computer
to a Local Area Network (LAN) and enable you to implement
a virtual private network (VPN) so that remote computers
can participate on the network as if they're connected
locally.

Microsoft

