B Part of the five-volume 1 -
Networking Services Developer’s Reference Library ’cms

The essential reference set for developing with
Microsoft® Windows® networking technologies

David Iseminger
Series Editor

e [S@MINZer com

RPC and
Windows' Networking

BASED ON

msdn ibrary

Microsoft

David Iseminger
Series Editor

RPC and
Windows Networking

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-
Networking Services Developer’s Reference Library / David Iseminger.
p. cm.
ISBN 0-7356-0993-4
1. Application Software--Development. 2. Microsoft Windows (Computer file). 3.
Computer networks. 1. Title.
QA76.76.A65 184 2000
005.4'4769--dc21 00-020241

Printed and bound in the United States of America.

123456789 WCWC 543210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Intel is a registered trademark of Intel Corporation. Active Directory, BackOffice, FrontPage, Microsoft,
Microsoft Press, MSDN, MS-DOS, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual
J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either registered trade-
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product
and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002785

Acknowledgements

First, thanks to Ben Ryan at Microsoft Press for continuing to share my enthusiasm
about the series. Many thanks to Ben and Steve Guty for also managing the business
details associated with publishing this series. We're just getting started!

Wendy Zucker again kept step with the difficult and tight schedule at Microsoft Press
and orchestrated things in the way only project editors can endure. John Pierce was
also instrumental in seeing the publishing process through completion, many thanks to
both of them. The cool cover art that will continue through the series is directed by Greg
Hickman—thanks for the excellent work. I'm a firm believer that artwork and packaging
are integral to the success of a project.

Thanks also to the marketing team at Microsoft Press that handles this series: Cora
McLaughlin and Cheri Chapman on the front lines and Jocelyn Paul each deserve
recognition for their coordination efforts with MSDN, openness to my ideas and
suggestions, creative marketing efforts, and other feats of marketing ingenuity.

On the Windows SDK side of things, thanks again to Morgan Seeley for introducing me
to the editor at Microsoft Press, and thereby routing this series to the right place.

Thanks also to Margot (Maley) Hutchison for doing all those agent-ish things so well.

Author’s Note In Part 2 you'll see some code blocks that have unusual margin
settings, or code that wraps to a subsequent line. This is a result of physical page
constraints of printed material; the original code in these places was indented too much
to keep its printed form on one line. I've reviewed every line of code in this library in an
effort to ensure it reads as well as possible (for example, modifying comments to keep
them on one line, and to keep line-delimited comment integrity). In some places,
however, the word wrap effect couldn't be avoided. As such, please ensure that you
check closely if you use and compile these examples.

Contents

ACKNOWIEAGEMENLSesssussssssssssssssmsssmssssssssssssssssssssssssssssssssssssss s i
Part 1
Chapter 1: Getting Around in the Networking Services Library.........umccesssssessisssssinns 1
How the Networking Services Library Is Structured..........ccccvveiiniieniinciinnniee e 2
How the Networking Services Library Is Designedccccoveeveiiieciieessienseeneeseene 3
Chapter 2: What’s In This VOIUME?ccmmmmmmmsmmmmsssas 5
Microsoft RPC MOGEIooieiiriieiieeieet et 5
Installing The RPC Programming Environmentcccoeriininennecnnee e 6
Building RPC ApPlICAtIONScoociiiiieriiiereeiecre e e 6
Connecting the Client and the SErVer ... 6
LT 1 (o] =TT OU PP 6
IDL @NA ACF FilES ..ottt sttt s e me s ean e sneenneennens 6
Data and Language Featurescccccerriieiiiiiiniie i e 6
Arrays and POINTEIS........cooieiiiiitieere et s sr s e e snee s ne e 6
T oL SRR 6
Binding and HandIes ... e e 6
Memory Managementcciei i nne 6
Serialization SEIVICESccuiiuiiie ettt e e s s nre e 6
SBCUNEY ... ittt e e e st e e s e e e e e e e e e e e e e et e e annane s errreeean 7
Installing and Configuring RPC Applicationsccccceeirinreriennieeniee e enieens 7
ASYNChronous RPC ...t a e 7
RPC Message QUEUING.......coeeermiirerieeeeeesiesie e e s ssessenesre s snnsssesnesnesesssesresns 7
Remote Procedure Calls USING HTTPccciviiiiiiiiieie e s 7
SAMPIES ..t b e et e e n e e b e ne e neere s 7
RPC REfEIENCEeeineiiee ittt et sn et s neesne e 7
Chapter 3: Using Microsoft Reference RESOUICEScucsmsmmmsmsmmsmmmssssssssssssssssmsssssssssssssssassssass 9
The Microsoft Developer NEtWOIKcccoieeirerriiee et 10
Comparing MSDN with MSDN OnliNe..........cccoviiieriminrin s ssee e sve e 11
MSDN SUDSCHIPHONScueieiiiiriiese ettt st s e s s s 13
MSDN Library SUDSCHPLONccciiiiiiieee it e e 13
MSDN Professional SUDSCHIPHONc.cueveevereererseseciecsesssessesessssssseessseesasssesnes 14

MSDN Universal SUDSCHPON......ccccviiiiiiecci e e 14

vi

Volume 3 RPC and WNet

Part 2

Purchasing an MSDN SubscCription ... 14
USING MSDN ...ttt s e e a e s e e sr s s re e st e e e saae e s e e s eneesareennnes 15
Navigating MSDN ... e e e 16
(O T To] QI O STRRP 18
USING MSDN ONlINE....coouiiiiiicteeeecieesiete e stn s e ee s se e reesns s e sssssane s snneesnees 20
Navigating MSDN ONliNec.c.coiieiiiiineerie e e 22
MSDN OnliNg FEAUIES........eiieieiie ettt 23
MSDN Online Registered USErSccocviinineneeiniiiisescns s s 29
The Windows Programming Reference Series.........oooovveeiieiiiiciinnie e 30
Chapter 4: Finding the Developer Resources You Need...........cc.uuunnrnnans 31
[DI2AVZ1 (o] o T=Y g ST U o] oo o AT TORRTPTN 31
ONIINE RESOUITES. ... eieuie ettt st e e e s r e s e r e e s eeresan s st enne e sneens 33
INternet STANAAIAS.......c.ceveiieie e e e e e 34
=T T o T aTo T o (o [0 Lo £ PPN 35
1070701 {=1 =1 o ot =T PRSPPI 37
OthEr RESOUICEScouiiiiieeiieeieerte s st et e re et e e s se e e sse s ne e se s seesene e s s snaesaneesnessneean 37
Chapter 5: Avoiding Common RPC Programming Errors.........ceummmussesessesnes 39
SOIULION SUMMAIY ...t e 39
Common RPC Programming EITOIScceiviiiieenieeniies e see e sreeseessssee s saie s s e sneas 40
Pointer_default(unique) and embedded POINtErscccvvveeinicieenecivee e, 40

A valid switch_is value in an RPC-capable structure doesn’t ensure a
NON-NULL POINEET..... . e e s 41
A NULL DACL affords no proteCtion..........cc.ceeeceerivmnireneeisee e e 41
Call RpcimpersonateClient() before any security-relevant operation.................... 42
Starting and stopping IMPersoNationcceeieererierin e 43
Strings are only zero-terminated when declared with string in the .idl 44
Don’t copy arbitrary length data into independently sized buffers..............ccccc...... 45
size_is may result in a zero-length structureccccviiiriinin e, 45
Calculations in a size_is or length_is specification are susceptible to overflow.... 46
Strict context NANAIES........ccceeeeeeieee e et 46
Chapter 6: Microsoft RPC Modelcoureusessmsmmsssmssssssssmssssssssssessessanns 47
The Programming MOdElcooriiiiiie e e 47
The ClENt-SEIVET MOTELc..eeeeeeeeeeeereseeses st see s es s eeseessssessssssssss s s sentassessessesneans 49
The Compute-Server MOEL..........oociiiiiiee e 51

[(01 A o O VLY oY = RSN 51

Contents vii

OSF Standards for RPC..........ooiiiiieeeieessee ettt se s s s s st esene s 53
Microsoft RPC COMPONENTES........cccoiiiiirieeii ettt et snesae e sne s 54
RPC Extends Client-Server COMPULINGceoeeiiereenienieieree e e e e 55
Chapter 7: Installing the RPC Programming ENVironmentc.cumsmmmmsemmsmsmsssssssssssss 57
Developing 32-Bit Windows AppliCations..........ccceceiiierreenriie e 57
Developing Macintosh Client Applicationscoocviieiiiie i 59
Chapter 8: Building RPC Applicationscumesmmmsmssessssessssessssssssses 61
General Build PrOCEAUIEceccuieeierecsee ettt see e te e se e ste s esan e e e e s nnn e e e benanns 61
Developing the INTErface ... 62
Generating Interface UUIDS..........ccci e e 63
L] T To 11,1 S 64
DeVveloping the SEIVET.........oo et n s 66
Developing the ClENTooiii et neee s 67
Environment, Compiler, and APl Set ChOICESccccveviiiiieiiiieees e 68
Exception Handling.........c.coceeveiinnieninececcee S SRS PRSP 69
Chapter 9: Connecting the Client and the Server ... ————— 7
Essential RPC Binding Terminologycocvreeeriierieriereese st s 71
How the Server Prepares for @ CONNECHONcooveeeiiiiiiiiiiie s 72
Registering the Interface ... 73
Creating Binding INfOrmMation............ccoiiiiiieiniiie i ammiaiieie 73
Advertising the Server Program ... iiiieenire e e e 74
Registering ENAPOINEScooiiiiiii ettt 75
Listening for Client CallS...........ooco oottt 75
How the Client Establishes a Connectionoocceoiriiiiiecccni e 76
Making a Remote Procedure Callcccceriireriiriniiee e 78
Finding the Server HOSt COMPULET.........ceiiiiiiriie et 78
Finding the Server Programocoieereenies i e 79
Creating @ BiNAINGoouiiieiee et et st r e e sn e 79
Chapter 10: An RPC TULOKAlccccmeaiesmesmssmessssessssssssssssssssesssssssesssssmsmassssssssssssssssssssssssssssssssassss 81
The Stand-Alone APPIICALION...........cciiieiirie et n e e 81
Defining the INTErface ..o e 82
Generating the UUID ...t s n e e sne e 82
TRE IDL FlE ...ttt st e e ettt e st e s b anae e sb e e ne e b e e s neasannaneasens 83
TRE ACFE FlB ...ttt s b et s s se e sae e s s neennnennee e 83
Generating the StUD Files.........ooueiiiieeeee e e e e 84
The Client APPlICAtIoNcccoiiiiieciieeiiiie e ceee e e e s e sreeste e e e rer e e e sesbeee s e esanneesennns 86

The Server APPLICALIONcooiiiiiiiiei et ree et st e e sraare e e s srnneessanns 88

viii

Volume 3 RPC and WNet

Stopping the Server APPICAtION.........ccoi e e e 90
Compiling and LINKING.......ccooeeiieeiiieiir e esiee s s s s essaeesssee s e e e sneessessnneeas 91
Running the APPlICAtIoNoii e 92
Chapter 11: The IDL and ACF Filescccuuusussesnaceses cerssresnn s 93
The Interface Definition Language (IDL) File.......c.ccooieiiiiriinieie e 93
The IDL Interface Headercco i 94
The IDL Interface Bodycccoiiiriinniiieii e 95
The Application Configuration File (ACF)cooiiiiieceereeeecres e 96
THE ACKF HEAUETeeceeee ettt s e e e e e s ne e s sre e sae s 96
THE ACF BOQY.......eiiieieieieiie ettt sttt e e s en e e e st en e e 96
MIDL Compiler QULPULeeeeeeieeerier ettt s e st re s s s esreesree e 97
Chapter 12: Data and Language FEaturescoumnmsmmssmsmssmsssssssnmsnssssssssssssssssssssssenss 99
S T1ce] oo T Y] 11 o o TR U PRSPPI 99
BaASE TYPES . ereeeieiiiecie ettt e sttt e sttt e e s eab e s s eee e s ae e e s e e e e e e e e s e nr e e e e anre e e sanneenens 100
Signed and UNnSigNed TYPES......coiiirererreereee e e 101
Wide-CharacCter TYPES ..ccoveirieieiieeiiee e csee e be s s s s sre e e e e s sneeeen e seneesneeenns 101
(Uo7 (1] (= SR RR TR 101

L8 1T] L= DS PPPPRT 101
ENUMErated TYPES.....coecieecie ettt ettt e n e st bar e s e e e s 103
Arrays.......ccoceenene e eteuteeteeteetestesEessestestesseeeessesseiseeseeseeatentesseeteereaaeeseateaneeseeeernaneans 103
FUNCHON AIDULES ...t 103
= (o N 11] 10 (= S 103
TRIEE POINTEN TYPES .oeeieeiiiieiiie it rtie sttt st e e b e e s ee e e smre e e s e e e e nnne s 104
TYPE ALIDULES ...ttt e e 105
Directional (Parameter) ArDULES..........cceeriiiiieecee e 106
Data Representation ... e e e e e naeeeas 108
The transmit_as and represent_as Attributes..........cccoviiiniiei e 109
The transmit_as AttribDULE..........eeiiiiiiiiieieeeeeee e 109

The type_to_xmit FUNCHONooiveeiiiiciicece s 111

The type_from_xmit Function T S F U OE S S SRR 112

The type_free_xmit FUNCHONcoveiiiiiii i 114

The type_free_inst FUNCHONcoooiiiiiiiiiie e 114

The represent_as ALHDULEoooiiiiie e 115

The named_type_from_local FUNCHON ... e 118

The named_type_to_local FUNCHON..........ccoiiiiiiiee e 118

The named_type_free_local FUNCHONcooiiiiiiiiiiiiec e 118

The named_type_free_inst FUNCHONcccviiiiiiiciieeeece e 118

The wire_marshal and user_marshal Attributescccccvceiiiiiniriicccc e, 119

Contents ix

The wire_marshal AtHDULEcoei i 119

The user_marshal AHADULEcco i 120

The type_UserSize FUNCHONcueeieiiecee et 121

The type_UserMarshal FUNCHONcccoorverriii e e 122

The type_UserUnmarshal FUNCHONcccooviiiiiiiiiiie e e 123

The type_UserFree FUNCHON ...t 124
Marshaling Rules for user_marshal and wire_marshal..............cccocieeiiminiecrnnennnn. 124
Chapter 13: Arrays and Pointers.... 127
Arrays @nd RPC.... ..ottt e e re e na e b nar e e 127
KNGS Of AITAYS ..ottt st e bbb e e aae s ann e e nnnaeesans 127
FIXEA AITAYSeiieieeciiie et e e s sbe e s sae e s am et e e s e e e nsn e e s e e e anr e e e nanen s 127
Varying Arrays......coccceeveirieeesnesssiessseresveessseesnns R G PR SOOI 128
CONFOIMANT AITAYS ...cieiieeiiereeseeee st eset e e b e b e ib et aan s se e s e s n e e sk sabensaeeenes 129

Array AMTIDULES ... e et aa s 130
MIDL Array Attributes Used in RPC.........ccocoiiiie sl enee e s 132

The [Size_iS] ALHDULEcoeiiiii et e s e s s anr e aan 132

The [length_iS] AUFHDULEoovveeieiicieeccie i 133

The [first_is] and [last_is] AHMDULESccccvriiiiiiiiriisees e 133

The [Max_iS] AIDULEcciiiiieiiiiiis et e s e a b s iee e s 134
Combining Array AHHDULESoc.eiiiiiiiee et 134

The [string] Attribute in Arrays......cccovoe i 135
MURIIMENSIONAI ATTAYScoioieieeir ittt et sae e sare s e b e e e n e e e b e e e 135
Pointers and RPC...... ..ottt e s e s s e nrne e 137
KiNdS Of POINTEIScoiiiiiece i 137
Reference POINTErS.. ..ottt s 137
UNIQUE POINEEISeciiii et srea e n e e nnne s 139

UL T) T £ S 140
Pointers and Memory AlOCALION.cociriiiiiiiii e s 141
Default POINIEr TYPES....ciiiiiiir e cciir sttt ceees e s et e e st e e stre s e e e sasreessa s e e s s sarneeean 142
Pointer-Attribute Type INNertanCeo s e 143
Using Arrays, Strings, and POINTETScooieriiiiinee it see e see st s 144
Counted Character Arrays........... T SRR g P 110 R SN A e 145
[in, out, Size_iS] ProtOlYPEccii et ie et st e et e e e e e e eans 145

[in, size_is and out, size_is] Prototype........... S R IRt SETRE TE 146
11 o - S S S R SO PRR 147
[in, out, StrNG] PrototyPe ... c.cooiiiirii ittt 148

[in, string] and [out, string] Prototypecccccvieiiimnniinineiee st 149

Multiple Levels of Pointers ..., Jidamsaniiisnineansieins 149

X

Volume3 RPC and WNet

Chapter 14: PIPeS...ummmmmmmmssasssssssssssssassssssssssssssnsesssses 151
Essential Pipe TerminolOgycccecceiiieieriieeie ettt e e se e s r e 151
ThE PIPE SEAE ...t e e r e e e nne s 152
Defining Pipes iN IDL FlES.........eeieireeiteierie e st 152
Client-Side Pipe Implementation............ccouiiieriiiiiiinneiie e s e sseesrsssreeseesssesssessenens 153
Implementing Input Pipes on the Client............occeveiiniiineesceee e 154
Implementing Output Pipes on the Clientcccoeviieiriesiesecee e 157
Server-Side Pipe Implementationccccooirreiiiicnenererr e 159
Implementing Input Pipes on the Server ... iiiivncn e 159
Implementing Output Pipes on the Server...........ccocoriiini e 160
Rules for Multiple Pipes treemteeesmessioreeactasseeasereesntisaneiseraaras ressenessnnsaarensttarantnaseans 161
Combining Pipe and Nonpipe Parameterscccccerererininnesceeseseeesie e s 162
Chapter 15: Binding and Handles...........coummmmmmmmmmmsmsmmsesssssssssssssessesssssens 163
BiNding HaNAIESccooiiiiiiieeee e e 163
Types of Binding HANAIESocceiiieiieeeeeece e 163
Automatic Binding Handles...........ccccoviirciiniineee e 164
Implicit Binding HandIes............ccooeiiii it 165
Explicit BINding HANAIEScoiiiiiiii et 167
Primitive and Custom Binding Handlescccccorinicinnnn e 167
Client-Side BiNAINGcceoiiriiriiieeee sttt be e s s ennes 170
Selecting a ProtoCol SEQUENCE............coieeriiriiiiieice et ee et ee e e eae s 171
Finding Server Host Systems ..o e ——————— 172
[gTe [T g Tl =g To o o101 £ S U PSP 176
Server-Side BiNINGccoeeiiriiriee ettt st a e e e sae e s 177
Registering INterfacesccovcieriieriie e et 177
Specifying Protocol SEQUENCESccceeiireiiiee et 186
Specifying ENAPOINEScoviiiriiiiiiiinie ettt st 187
Advertising Server INterfaces.occeviriiiiiic s 189
Listening for Remote Procedure Calls..........c.cccociviiniriienniecsiensenscsseeseeeseenee s 190

Fully and Partially Bound Handles.........c.ccccuriririiiiiniinncn e e s esate e e 191
Interpreting Binding INformation...........coceiiiiiiinii e e 191
Microsoft RPC Binding-Handle EXtENSIONScccccocieriniinenne e seesee e 193
Binding-Handle FUNCHONS.............cccerriiee et 194
The RPC Name-Service Database............ccoceerieiiiciiicnceenn R SRR 195
Name-Service Application GUIJENNEScccocceeieriinriiniieriei e 196

An Overview of the Name Service Entrycccccovveivrrcnviecie s 197
Criteria for Name Service ENtriesccovciiieciciinsnnie s esee e 197

Name Service Entry Cleanupccocvviiiieiiincie st esessiese e e sseesae e nns 198

Contents xi

What Happens During @ QUETYcoocueiriiiriin e et seessees s esiesessnseesree s 198
Using MiCrosoft LOCALON..........cocuieieeieeeereeeree et e 199

Using the Cell Directory Service (CDS)cccvviriereiniinie st ssreee 200
NAME SYNTAX ... eiiitiietieieeie ettt sre e bt se e e r e saeeereere e e 201
CoNtEXt HANGIESoveiieecece ettt bbbt se e s e e naeenas 201
Interface Development Using Context Handlesccooi e 202
Server Development Using Context Handles...........cccccvviercvniiecscn e 203
Client Development Using Context Handlescccocvicninecrie e 205
Server Context RUNdown ROULINE.........ccocuiiiiiciiieciiisirs e 207
Client Context RESELcccuviiiee it s e e 208
Multi-Threaded Clients and Context Handlescccceevevervomreeneincieeccseees e 208
Chapter 16: Memory Management 209
Introduction to RPC Memory Management..............ccocciieriinnieieeses e enee e 209
How Memory Is Allocated and Deallocatedccccciveiiiieiniiiccieee e 210
The midl_user_allocate FUNCLONcciviceiimmriii et 210
The midl_user_free FUNCHON.........ccoiiii ittt s 211
RpcSs Memory Management Package........cooeeveieree e s 212
Memory-Management MOAEIS.........c.coociriiiiiiiecesie e e e 213
Node-by-Node Allocation and Deallocationcccccceviiiieiinins i 213
Stub-Allocated BUFfEIS......c.uiiciiiiiir it 214
Application-Allocated BUFfer ... et 214
Persistent Storage on the SEIVET ..o 215
Who Manages MEMOIY?cooi ettt et sst e e s et e s ae e e e s s e e e s sense e e e senneaeennns 216
Top-Level and Embedded POINTErS.........coccvriiriiiiiiei et 216
Directional Attributes Applied to the Parametercccoiiiinininieeeees 216
Length, Size, and Directional AttHDULESccveiiiiiieniin e e 217
Pointer Attributes Applied to the Parameter.........cccoocvevnicciiniiin i 219
Combining Pointer and Directional Attributesccooeeieiiiieiiinreeeee, 219
Embedded Out-Only Reference PoINters.........c.ccuviiiieieienis e 219
Out-Only Unique or Full Pointer Parameters Not Accepted..........ccccccovvvnveennenn. 220
FUNCHion RetUrN ValUES........cooiiiiiiiiiie ittt s e e et e s s saen e e 220

[[T 40T T g @ 14] = 1o 1o T OO O S BRSPS 221
Summary of Memory Allocation RUIEScccoiiiiiiiniiseeieee et 221
Chapter 17: Serialization Services 223
Using Serialization SErVICES........coiiviieiieieeie ettt e e 224
Procedure Serializationccooiieiiiiiceecie e e e e 225
TYPE SEHANIZALON ... ese st ees s ss e s s ese e st ene s enen 225

Serialization HANAIES.......ooveieeriee ettt et e et eee e e e e e e e e ta e e e e e e e e e b e s e aereennnans 226

Xii Volume 3 RPC and WNet

Implicit Versus Explicit Handles ... 227
Serialization SIYIES.......covci e 227
Fixed Buffer Serializationccovcercciiiinciec it 228
Dynamic Buffer Serialization............ccoccvviericnie et 230
Incremental SerialiZation...........c..cvreireeie i e 230
Obtaining an Encoding 1dentitycccooceririenniise e 233
Chapter 18: Security 235
RPC Security ESSENHAIScccceerieiiieecere st 235
PrinCIPal NAMEScco it 235
Authentication LEVEIS...........ccuuiiiiiiiiiiiiiec ettt s e 236
AUthentiCation SEIVICESc.ueviiiciiiiieciiie et ree e ee s e sne e ean 237
Client Authentication CredentialS............coeeeeeeirienie e e 237
AUTNOMZAtION SEIVICES ...coivveiriiiiiieerie e e e s see s 237
QUAILY OF SEIVICE ...veiierieeee ettt n e n e s nesnnenreeas 237
AUthorization FUNCHIONSccceiiiiieiiierie et 238
Key Acquisition FUNCHONScccoriiiiiiieriecer e 239
Client IMPersonationoceiiieiiie e e s s e e ene s saeas 239
SecUrity MEhOUScociiieei et e e e s eaees 240
Security Support Provider Interface (SSPI)cccooceviiiieceneiee e 240
SSPI Architectural OVEIVIBW...........couvcuieiverireree et 240
Security SUpport Providers (SSPS).......ccciiiiirrieiiinieessee e sneene 241
Writing an Authenticated SSPI Client ..o 242
Writing an Authenticated SSPI Server.........c.cciincciec e 245
Windows NT and Windows 2000 Transport SECUILYcccceevvieveeiieiirerien e 246
Using Transport-Level Security on the Server...........cocooiiieencenin e 247
Using Transport-Level Security on the Clientccccivinnvienniininiennenee e 247
Chapter 19: Installing and Configuring RPC Applications 249
Configuring the Name Service Provider.........cccviveiiieeniinnsere et 249
Configuring the Name Service for Windows 95c.cccovirimnimiciesen i 250
Editing the WINdows 95 REQISIYcciiiiieieeeen e e 250
Configuring the Name Service for Windows NT or Windows 2000c.ccceeeeuee. 251
Configuring the Name Service for Windows 3.x or MS-DOScoooeriviniceneennens 252
Starting and Stopping Microsoft LOCatOr..........cuvvvovievriiiein e s 253
Registry INfOrMAtioNccceei it e e e 253
Using RPC Registry ENtriesc.ooceiiieeeeceeee st 253
Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective BINAINGcoocuviiieiciiiciie ettt see s n e s s ere e s sae S rne e e 255

Using RPC with WINSOCK PrOXYccceiiiiiiiiniiinsinscescressses st essie s ssenenesei s snesssensseenns 257

Contents xiii

SPX/AIPX INSTAllAtION ...ttt et st sae s sne e e 258
Configuring RPC fOr SPX/IPXcoiiiirereeieiesie sttt s n 258
Configuring SAP and RPCooiiiiiciee et sr e s s 260

Configuring the SECUNitY SEIVET ..o 261

Chapter 20: Asynchronous RPC ... 263

Declaring Asynchronous FUNCHONS..........ccoioiiiieniieeee e 264

Client-Side ASYyNchronous RPCcooiiiiiiiiieie st se e nee e 264
Making the Asynchronous Call..............cooiiiiiiiiiiiieeccee e s ne e 265
Waiting for the Asynchronous RepIYcceeeeeieririe it 267
Receiving the ASynchronous REPIYcceeveeriiiriieniie e 268

Server-Side Asynchronous RPC ... e 269
Handling ASynchronous CallScccueiiieriiieniiencieerieesee e srvee e e aeessreessreaas 269
Receiving Cancellations...........c.coo ittt et ne s 269
Sending the Asynchronous REPIYcceeceriieiiiiriinee s sresesre s s sae e 269
Asynchronous 1/0 and Asynchronous RPC ..o 271

Causal Ordering of ASynchronous Callsocceeeieeceeecieesiee e et 272

Error Handling rmeiafsbem s amnbaeingiab st iuneHeranegenmntiuns ey ions Vit e S 64 o ne bbbt adran 272

Asynchronous RPC Over the Named-Pipe Protocol...........ccccviereeiivirciicnecneeseenneenn 273

Using Asynchronous RPC with DCE Pipes..........cciccierieinierniiesie e eiis e seee e 274
ASYNCHIONOUS PIPES......ceiiiieiitieeitie ittt st s e s sie e sre e sb e s s re e s ssae s reenreeanas 274
Declaring ASyNnChronous PIPEScccueirieiiiiniiecee e 274
Client-Side Asynchronous Pipe Handlingcccocvcvininiiinninennieesie e 275
Server-Side Asynchronous Pipe Handlingcccccevueiniinniiniienise e 276

ASYNCHIoNOUS DOOM......coouiiiiiiiiieiri ettt e e st e sare e s e s be e e sare e s sbeenseeeeanenanes 280

Chapter 21: RPC Message QUEUING......ccummmmssmsusssssssssssssessassasssssssenss - 281

Overview of Message Queuing Services Architecture...........ccccevceeeieivceeeccieecceecceee, 281

Message and Message QuUeue Properties.........ccoceveererieniieniesiecees e 283

Using MSMQ as an RPC TranSPOrtcooeeeeineeieeniiensernessieesse e seessseeseessessssesnesseens 283

System Requirements for RPC-MQ AppliCations...........ccceceervieiniesiieensinssieesieeesaee e 284

Developing RPC-MQ ApPPIICAtIONScccocciiiiiiecii e 284

MSMQ SECUNItY SEIVICEScccveiiiiiiiiieiieie et er et rr e esae e s re et e s se e s s ae e e sseeannseeeaneensees 286

Chapter 22: Remote Procedure Calls Using HTTPccunnnncsmmsssssnsssssasens 287

Using HTTP as an RPC TranSPOrtcccoiveiiiiiieniiniinee et saes s s sse e s sseesseseeens 287

HTTP RPC SECUNMY......eieiiieitieie ettt a e s s e s 290

System Requirements for HTTP RPC........ccccoo it 291

Configuring Computers for HTTP RPCcccoiiiiiieeieeeeeree e 291

Chapter 23: RPC Samples.......cuummmmmmmmsmsmssmsmssmssssesssssssssssssssess 293

Xiv

Volume 3 RPC and WNet

Part 3

Chapter 24: RPC Data Types, Structures, and Constants.........c....... 295
RPC SHUCIUIESeeeieee ettt n e s e san e s sn e n e s sns 295
RPC ENUMETrated TYPES .oeeuveeieiiiieieiieirie et s st stn e e sre s s sne e sne s ssneessneeesneesenssnnnssnneesas 315
OFher RPC TYPES....iiieiiiiiieteesiee st ietesae s e e s s e s ssee s s e sans s s sne e s s e s sneessssssaesssnnsanenans 316
RPC CONSIANESecueeiiiieiieeieieeie et se e n e e n s r e e e eme s 329
RPC RetUrN ValUES........ooiiieeeesee e e 340
Chapter 25: RPC Function Referenceusemsmnmssssssmssssssssesssssssssssssans 347
o O 1T 14 o7 o4 T TR 347
Chapter 26: RPC Callback and Notification FUNCHIONS.........coresmmmsmssssssmmmssssssssssssssessasssssans 575
Chapter 27: RPC Macrosoueuesenns T, 583
Chapter 28: Windows Networking (WNet)ccucsmemesmssnsessessenss 591
About Windows Networkingcccccvvviiiiiiiiniin i 591
WNEL FUNCLIONS ...ttt e ar e e e e s 592
Windows Networking Operations..........ccoceeireereesiienniie e 594
Using WIindows NetWOIKINGccooueeiiiriienii st 595
Using the Connections Dialog BOXcccvcvieciiiieniinin s 595
Enumerating Network RESOUICEScooviiiiiriiiiincriiin e 595
Adding a Network CONNECHIONcccvviiiiiiiieeeciee e 599
AsSIgNING @ Drive 10 @ SNAecoviiiiee it 600
Determining the Location of a Shareccccceiiiiiciiiin e 601
Retrieving the Connection Name............ccoooiiriiiiienciie 603
Retrieving the User Name...........cooiiiiie e 604
Canceling a Network CONNECHION.cocviicier e et e e 605
Retrieving NetwOrk EFfOrS........c.vvviiiiiiiiceee et 606
Windows Networking Reference........coooviiiiiiiiiiieee e 608
Windows Networking FUNCHONS..........ccooviiiiie e s 608
ODbSO0IEte FUNCHIONSiiiciee et sne e s e e 608
Windows Networking StruCIUrEScccovveiiiieniiees e 656
11T LT T 669

Index: Networking Services Programming Elements — Alphabetical Listing........ccocsessensens 677

Part 1 1

CHAPTER 1

Getting Around in the Networking
Services Library

Networking is pervasive in this digital age in which we live. Information at your fingertips,
distributed computing, name resolution, and indeed the entire Internet—the advent

of which will be ascribed to our generation for centuries to come—imply and require
networking. Everything that has become the buzz of our business and personal lives,
including e-mail, cell phones, and Web surfing, is enabled by the fact that networking
has been brought to the masses (and we’ve barely scraped the beginning of the trend).
You, the network-enabled Windows application developer, need to know how to lasso
this all-important networking services capability and make it a part of your application.
You've come to the right place.

Networking isn’t magic, but it can seem that way to those who aren’t accustomed to

it (or to the programmer who isn’t familiar with the technologies or doesn’t know how to
make networking part of his or her application). That's why the Networking Services
Developer’s Reference Library isn't just a collection of programmatic reference
information; it would be only half-complete if it were. Instead, the Networking Services
Library is a collection of explanatory and reference information that combine to provide
you with the complete set that you need to create today’s network-enabled Windows
application.

The Networking Services Library is the comprehensive reference guide to network-
enabled application development. This library, like all libraries in the Windows
Programming Reference Series (WPRS), is designed to deliver the most complete,
authoritative, and accessible reference information available on a given subject of
Windows network programming—without sacrificing focus. Each book in each library is
dedicated to a logical group of technologies or development concerns; this approach has
been taken specifically to enable you to find the information you need quickly, efficiently,
and intuitively.

In addition to its networking services development information, the Networking Services
Library contains tips designed to make your programming life easier. For example,

a thorough explanation and detailed tour of MSDN Online is included, as is a section
that helps you get the most out of your MSDN subscription. Just in case you don’t have
an MSDN subscription, or don’t know why you should, I’'ve included information about
that too, including the differences between the three levels of MSDN subscription, what
each level offers, and why you’d want a subscription when MSDN Online is available
over the Internet. '

2

Volume 3 RPC and WNet

To ensure that you don’t get lost in all the information provided in the Networking
Services Library, each volume’s appendixes provide an all-encompassing programming
directory to help you easily find the particular programming element you're looking for.
This directory suite, which covers all the functions, structures, enumerations, and other
programming elements found in network-enabled application development, gets you
quickly to the volume and page you need, saving you hours of time and bucketsful

of frustration.

How the Networking Services Library Is Structured

The Networking Services Library consists of five volumes, each of which focuses on
a particular aspect of network programming. These programming reference volumes
have been divided into the following:

Volume 1: Winsock and QOS

Volume 2: Network Interfaces and Protocols

Volume 3: RPC and WNet

Volume 4: Remote Access Services

Volume 5: Routing

Dividing the Networking Services Library into these categories enables you to quickly
identify the Networking Services volume you need, based on your task, and facilitates
your maintenance of focus for that task. This approach enables you to keep one
reference book open and handy, or tucked under your arm while researching that aspect
of Windows programming on sandy beaches, without risking back problems (from toting
around all 3,000+ pages of the Networking Services Library) and without having to
shuffle among multiple less-focused books.

Within the Networking Services Library—and in fact, in all WPRS Libraries—each
volume has a deliberate structure. This per-volume structure has been created to further
focus the reference material in a developer-friendly manner, to maintain consistency
within each volume and each Library throughout the series, and to enable you to easily
gather the information you need. To that end, each volume in the Networking Services
Library contains the following parts:

e Part 1: Introduction and Overview
e Part 2: Guides, Examples, and Programmatic Reference
e Part 3: Intelligently Structured Indexes

Chapter 1 Getting Around in the Networking Services Library 3

Part 1 provides an introduction to the Networking Services Library and to the WPRS
(what you’re reading now), and a handful of chapters designed to help you get the most
out of networking technologies, MSDN, and MSDN Online. MSDN and WPRS Libraries
are your tools in the developer process; knowing how to use them to their fullest will
enable you to be more efficient and effective (both of which are generally desirable
traits). In certain volumes (where appropriate), I've also provided additional information
that you’ll need in your network-enabled development efforts, and included such
information as concluding chapters in Part 1. For example, Volume 3 includes a chapter
that explains terms used throughout the RPC development documentation; by putting

it into Chapter 5 of that volume, you always know where to go when you have a question
about an RPC term. Some of the other volumes in the Networking Services Library
conclude their Part 1 with chapters that include information crucial to their volume’s
contents, but I've been very selective about including such information. Publishing
constraints have limited the amount of information | can provide in each volume

(and in the library as a whole), so I've focused on the priority: getting you the most
useful information possible within the number of pages | have to work with.

Part 2 contains the networking reference material particular to its volume. You'll notice
that each volume contains much more than simple collections of function and structure
definitions. A comprehensive reference resource should include information about how
to use a particular technology, as well as definitions of programming elements.
Consequently, the information in Part 2 combines complete programming element
definitions with instructional and explanatory material for each programming area.

Part 3 is a collection of intelligently arranged and created indexes. One of the biggest
challenges of the IT professional is finding information in the sea of available resources
and network programming is probably one of the most complex and involved of any
development discipline. In order to help you get a handle on network programming
references (and Microsoft technologies in general), Part 3 puts all such information into
an understandable, manageable directory (in the form of indexes) that enables you

to quickly find the information you need.

How the Networking Services Library Is Designed

The Networking Services Library (and all libraries in the WPRS) is designed to deliver
the most pertinent information in the most accessible way possible. The Networking
Services Library is also designed to integrate seamlessly with MSDN and MSDN Online
by providing a look and feel consistent with their electronic means of disseminating
Microsoft reference information. In other words, the way a given function reference
appears on the pages of this book has been designed specifically to emulate the way
that MSDN and MSDN Online present their function reference pages.

The reason for maintaining such integration is simple: to make it easy for you to use the
tools and get the ongoing information you need to create quality programs. Providing a
“‘common interface” among reference resources allows your familiarity with the
Networking Services Library reference material to be immediately applied to MSDN or
MSDN Online, and vice-versa. In a word, it means consistency.

4

Volume 3 RPC and WNet

You'll find this philosophy of consistency and simplicity applied throughout WPRS
publications. I've designed the series to go hand-in-hand with MSDN and MSDN Online
resources. Such consistency lets you leverage your familiarity with electronic reference
material, then apply that familiarity to enable you to get away from your computer if you'd
like, take a book with you, and—in the absence of keyboards and e-mail and upright
chairs—get your programming reading and research done. Of course, each of the
Networking Services Library volumes fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Networking Services Library provide you with a comprehensive,
presharpened toolset to build compelling Windows applications.

CHAPTER 2

What’s In This Volume?

Volume 3 of the Networking Services Developer’s Reference Library provides in-depth
information about the world of Remote Procedure Calls (RPC), as well as detailed
information about Microsoft Windows Networking (WNet) programming.

This volume also has information about how you can use development resources such
as MSDN, MSDN Online, and developer support resources. This helpful information is
found in various chapters in Part 1, chapters common to all WPRS volumes. By including
this information in each library and volume, a few goals of the WPRS are achieved:

e | don’t presume you have bought, or expect you to have to buy another WPRS Library
to get access to this information. Maybe your primary focus is network programming
and your budget doesn’t allow for you to purchase the Active Directory Developer’s
Reference Library. Since I've included this information in this library, you don’t have
to.

e You can access this important and useful information regardless of which volume you
have in your hand. You don’t have to (nor should you have to) fumble with another
physical book to access information about how to get the most out of MSDN or where
to get support for questions you have about a particular Windows development
problem you’re having.

e Each volume becomes more useful, more portable, and more complete in and of
itself. This goal of the WPRS makes it easier for you to grab one of its libraries’
volumes and take it with you, rather than feeling like you must bring multiple volumes
with you to have access to the library’s important overview and usability information.

These goals have steered this library’s content and choices of included technologies;
| hope you find its information is useful, portable, a good value, and as accessible as it
can be.

Part 2 of this volume is broken into two sections:

e RPC programmer’s guide and reference information, in Chapters 6-27
¢ WNet information, all wrapped up in Chapter 28

The following provides information about what you will find in this volume’s treatment
of RPC:

Microsoft RPC Model

Provides an overview of the client-server programming model, standards for distributed
application programming, and a description of how Microsoft RPC works.

6

Volume 3 RPC and WNet

Installing The RPC Programming Environment

Tells how to install the files and tools needed to develop distributed applications with
Microsoft RPC.

Building RPC Applications

Describes the MIDL compiler and the necessary environment for building distributed
applications with Microsoft RPC.

Connecting the Client and the Server

Provides an overview of the process of initializing and running distributed applications.

Tutorial

Provides an overview of the development of a small distributed application. This example
demonstrates all the steps in developing a distributed application, the tools you use, and
the components that make up the executable programs.

IDL and ACF Files

Describes the IDL and ACF files used to specify the interface to the remote procedure
call and the MIDL compiler switches that control how these files are processed.

Data and Language Features
Demonstrates the use of standard data types.

Arrays and Pointers
Explains how to pass arrays pointers as parameters.

Pipes

Describes how to use named pipes as the transport mechanism for remote procedure

_calls.

Binding and Handles

Describes the binding handle—the data structure that allows the developer to bind the
calling application to the remote procedure.

Memory Management

Offers ideas about how to manage memory on the client and server when performing
remote procedure calls.

Serialization Services
Describes the methods for encoding or decoding data.

Chapter2 What’s In This Volume?

Security

Describes the methods for implementing security features in your distributed
applications.

Installing and Configuring RPC Applications

Discusses installing your client and server applications in the MS-DOS, Microsoft
Windows 3.x, Windows 95, and Windows NT/Windows 2000 environments. Describes
how to configure the name service provider and the security service. This section also
contains network transport information for RPC.

Asynchronous RPC

Presents information on the Microsoft asynchronous extensions to the RPC definition.
Asynchronous remote procedure calls return immediately without waiting for output.
When the remote procedure finishes executing on the server, it transfers return data to
the client.

RPC Message Queuing

Describes the use of the Message Queuing Service (MSMQ), which lets users
communicate across networks and systems regardless of the current state of the
communicating applications and systems.

Remote Procedure Calls Using HTTP

Provides RPC clients with the ability to securely connect across the internet to RPC
server programs and execute remote procedure calls.

Samples

Contains a description of the example RPC programs shipped with the Microsoft
Platform Software Developer’s Kit.

RPC Reference

This collection of chapters provides a complete treatment of RPC programming
reference elements.

CHAPTER 3

Using Microsoft Reference
Resources

Keeping current with all the latest information on the latest networking technology is like
trying to count the packets going through routers at the MAE-WEST Internet service
exchange by watching their blinking activity lights: It's impossible. Often times,
application developers feel like those routers might feel at a given day’s peak activity; too
much information is passing through them, none of which is being absorbed or passed
along fast enough for their boss’ liking.

For developers, sifting through all the available information to get to the required
information is often a major undertaking, and can impose a significant amount of
overhead upon a given project. What's needed is either a collection of information that
has been sifted for you, shaking out the information you need the most and putting that
pertinent information into a format that's useful and efficient, or direction on how to sift
the information yourself. The Networking Services Developer’s Reference Library does
the former, and this chapter and the next provide you with the latter.

This veritable white noise of information hasn’t always been a problem for network
programmers. Not long ago, getting the information you needed was a challenge
because there wasn’t enough of it; you had to find out where such information might be
located and then actually get access to that location, because it wasn’t at your fingertips
or on some globally available backbone, and such searching took time. In short, the
availability of information was limited.

Today, the volume of information that surrounds us sometimes numbs us; we're
overloaded with too much information, and if we don’t take measures to filter out what
we don’t need to meet our goals, soon we become inundated and unable to discern
what’s “white noise” and what'’s information that we need to stay on top of our respective
fields. In short, the overload of available information makes it more difficult for us to find
what we really need, and wading through the deluge slows us down.

This fact applies equally to Microsoft’s reference material, because there is so much
information that finding what you need can be as challenging as figuring out what to do
with it once you have it. Developers need a way to cut through what isn’t pertinent to
them and to get what they’re looking for. One way to ensure you can get to the
information you need is to understand the tools you use; carpenters know how to use
nail-guns, and it makes them more efficient. Bankers know how to use ten-keys, and it
makes them more adept. If you're a developer of Windows applications, two tools you
should know are MSDN and MSDN Online. The third tool for developers—reference
books from the WPRS—can help you get the most out of the first two.

10

Volume 3 RPC and WNet

Books in the WPRS, such as those found in the Networking Services Developer’s
Reference Library, provide reference material that focuses on a given area of Windows
programming. MSDN and MSDN Online, in comparison, contain all of the reference
material that all Microsoft programming technologies have amassed over the past few
years, and create one large repository of information. Regardless of how well such
information is organized, there’s a lot of it, and if you don’'t know your way around,
finding what you need (even though it's in there, somewhere) can be frustrating, time-
consuming, and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online and enable you to use each of them to the fullest of their capabilities. Also, other
Microsoft reference resources are investigated, and by the end of the chapter, you'll
know where to go for the Microsoft reference information you need (and how to quickly
and efficiently get there).

The Microsoft Developer Network

MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don’t have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you’ve heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of

' these questions during the process of getting up to speed with either resource:

e Why do | need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

¢ What is the difference between the three levels of MSDN subscriptions?

e |s there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked any of these questions, then lurking somewhere in the back of your
thoughts has probably been a sneaking suspicion that maybe you aren’t getting the most
out of MSDN. Maybe you're wondering whether you’re paying too much for too little, or
not enough to get the resources you need. Regardless, you want to be in the know and
not in the dark. By the end of this chapter, you’ll know the answers to all these questions
and more, along with some effective tips and hints on how to make the most effective
use of MSDN and MSDN Online.

Chapter 3 Using Microsoft Reference Resources - 11

Comparing MSDN with MSDN Online

Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

¢ MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD or DVD.

¢ MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its “customers” with the best possible presentation of material. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less “immediate” than MSDN Online because it gets to its subscribers
in the form of CDs or DVDs that come in the mail. However, MSDN can sit in your
CD/DVD drive (or on your hard drive), and isn’t subject to Internet speeds or failures.
Also, MSDN has a software download feature that enables subscribers to automatically
update their local MSDN content over the Internet, as soon as it becomes available,
without having to wait for the update CD/DVD to come in the mail. The interface with
which MSDN displays its material—which looks a whole lot like a specialized browser
window—is also linked to the Internet as a browser-like window. To further coordinate
MSDN with the immediacy of the Internet, MSDN Online has a section of the site
dedicated to MSDN subscribers that enable subscription material to be updated (on their
local machines) as soon as it’s available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based Web sites. MSDN Online also
has a customizable interface (somewhat similar to MSN.com) that enables visitors to
tailor the information that’s presented upon visiting the site to the areas of Windows
development in which they are most interested. However, MSDN Online, while full of
up-to-date reference material and extensive online developer community content,
doesn’t come with Microsoft product software, and doesn’t reside on your local machine.

Because it’s easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences—and similarities—between MSDN and MSDN Online
into a quickly identifiable format.

12 Volume 3 RPC and WNet

Figure 3-1: The similarities and differences in coverage between MSDN and
MSDN Online.

One feature you'll notice is shared between MSDN and MSDN Online is the interface—
they are very similar. That's almost certainly a result of attempting to ensure that
developers’ user experience with MSDN is easily associated with the experience had on
MSDN Online, and vice-versa. i

Chapter 3 Using Microsoft Reference Resources 13

Remember, t0o, that if you are an MSDN subscriber, you can still use MSDN Online and
its features. So it isn’t an “either/or” question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions

If you’re wondering whether you might benefit from a subscription to MSDN, but you
aren’t quite sure what the differences between its subscription levels are, you aren’t
alone. This section aims to provide a quick guide to the differences in subscription levels,
and even provides an estimate for what each subscription level costs.

The three subscription levels for MSDN are: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level’'s
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription

The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn’t come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

e The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

Lots of sample code, which you can cut-and-paste into your projects, royalty free
The complete Microsoft Knowledge Base—the collection of bugs and workarounds
Technology specifications for Microsoft technologies

The complete set of product documentation, such as Microsoft Visual Studio,
Microsoft Office, and others

Complete (and in some cases, partial) electronic copies of selected books and
magazines

e Conference and seminar papers—if you weren’t there, you can use MSDN's notes

In addition to these items, you also get:

¢ Archives of MSDN Online columns

¢ Periodic e-mails from Microsoft chock full of development-related information
¢ A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks
® Access to subscriber-exclusive areas and material on MSDN Online

14

Volume 3 RPC and WNet

MSDN Professional Subscription

The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

¢ Complete set of Windows operating systems, including release versions of
Windows 95, Windows 98, and Windows NT 4 Server and Workstation.

¢ Windows SDKs and DDKs in their entirety
¢ International versions of Windows operating systems (as chosen)
¢ Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription

The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

¢ The latest version of Visual Studio, Enterprise Edition

¢ The Microsoft BackOffice test platform, which includes all sorts of Microsoft product
software incorporated in the BackOffice family, each with a special 10-connection
license for use in the development of your software products

¢ Additional development tools, such as Office Developer, Microsoft FrontPage, and
Microsoft Project

¢ Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription

Of course, all the features that you get with MSDN subscriptions aren’t free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does
each escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you’re an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you’re an existing Library subscriber who’s upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level, there’s an in-the-box rebate for $200.

Chapter 3 Using Microsoft Reference Resources 15

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal—and in most cases, the
deal is in fact much better. Also, if your organization is using lots of Microsoft products,
whether or not MSDN is a part of that group, ask your purchasing department to look into
the Microsoft Open License program; the Open License program gives purchasing
breaks for customers who buy lots of products. Check out www.microsoft.com/licensing
for more details. Who knows, if your organization qualifies you could end up getting an
engraved pen from your purchasing department, or if you’re really lucky maybe even a
plaque of some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, | know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions.

As an added bonus for owners of this Networking Services Developer’s Reference
Library, in the back of Volume 1, you'll find a $200 rebate good toward the purchase of
an MSDN Universal subscription. For those of you doing the math, that means you
actually make money when you purchase the Networking Services Developer’s
Reference Library and an MSDN Universal subscription. With this rebate, every
developer in your organization can have the Networking Services Developer’s Refence
Library on their desk and the MSDN Universal subscription on thier desktop, and still
come out $50 ahead. That's the kind of math even accountants can like.

Using MSDN

MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There’s no need to tell you how
to use Microsoft product software, but there’s a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

The interface is familiar and straightforward enough, but if you don’t have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

16

Volume 3 RPC and WNet

Navigating MSDN

One of the primary features of MSDN—and to many, its primary drawback—is the sheer
volume of information it contains, over 1.1GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN'’s content.

[Entire Collection)

MSDN Library -
October 1999

Welcome to the October 1999
release of the MSDN Library.

What's
> MNew
@ Visual Studio 6.0 Documentation
Office Developer Documentation
Windows CE Documentation
@ Platform SDK

SDK Documentation
DDK Documentation

The MSDN Library is the essential reference for developers, with
more than a gigabyte of technical programming information,
including sample code, documentation, technical articles, the

@ Windows Resource Kits
@ Tools and Technologies
& @ Knowledge Base

@ Technical Articles

8 Backgrounders
Specifications

@ Books

@ Pattial Books

@ Periodicals

@ Samples

Microsoft Developer Knowledge Base, and anything else you
might need to develop solutions that implement Microsoft
technology.

Dr. GUI's Espresso Stand

Dr. GUI introduces the October 1999 release of the MSDN Library. The
good doctor examines new Library content, including articles and

documentation about Windows 2000, Windows CE, Office 2000, and
databases and data access, plus several new technical article sample
suites.

What's New on the Library

Read through this document for summaries of what's new and follow
the links to the new titles.

Figure 3-2: The MSDN interface.

Basic navigation through MSDN is simple and is a lot like navigating through Microsoft
Windows Explorer and its folder structure. Instead of folders, MSDN has books into
which it organizes its topics; expand a book by clicking the + box to its left, and its
contents are displayed with its nested books or reference pages, as shown in Figure 3-3.
If you don’t see the left pane in your MSDN viewer, go to the View menu and select
Navigation Tabs and they’ll appear.

The four tabs in the left pane of MSDN—increasingly referred to as property sheets
these days—are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

Chapter 3 Using Microsoft Reference Resources

17

Library - October
‘Welcome to the MSDN Library
VYisual Studio 6.0 Documentation
Office Developer Documentation
Windows CE Documentation

0 Getting Started
2] 0 Design Strategies and Standards
® @ Base Services

MADCAP

Purpose

MADCAP, or Multicast Address
Dynamic Client Allocation
Protocol, is a technology
aimed at making it easy for
clients to renew and release
Multicast addresses, enabling

Overview

General
information
about
MADCAP,

Reference
Documentation

e} Component Services
= Data Access Services
§ Graphics and Multimedia Services

clients to dynamically of MADCAP
"connect" and "disconnect" functions and
from multicast network structures.
transmissions.

The development of Feedback

2] fManagement Services
je3] Messaging and Collaboration Services
= @ Networking and Directory Services

@ @ Active Directory, ADSI, and Directory Services standards for MADCAP is

5 @ Common Intemet File System Pratocol ongoing, and falls under the
® @ Fax Service Multicast Address allocation
2] : Internet Protocol Helper (malloc) Working Group at the

Make error
reports and
feature
requests

Microsoft SNA Server
tulticast &ddress Dynamic Clhent &llocation Prot
Metwork Management

E2]
i3]
P

Microsoft.

§ Lightweight Directory Access Protocol {LDAP) Al IETF. directly to

Where Applicable

Developers can use MADCAP
to:

Figure 3-3: Basic navigation through MSDN.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry. This enables you to better find the
information you’re really looking for. In the Index tab, results that might match your
inquiry but aren’tin the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren’t displayed.

MSDN comes with the following predefined subsets (these subsets are subject to
change, based on documentation updates and TOC reorganizations):

Entire Collection

MSDN, Books and Periodicals

MSDN, Content on Disk 2 only
(CD only — not in DVD version)

MSDN, Content on Disk 3 only
(CD only — not in DVD version)

MSDN, Knowledge Base

MSDN, Technical Articles and
Backgrounders

Platform SDK, Networking Services
Platform SDK, Security

Platform SDK, Tools and Languages
Platform SDK, User Interface Services

Platform SDK, Web Services
Platform SDK, Win32 API
Repository 2.0 Documentation
Visual Basic Documentation
Visual C++ Documentation

Volume 3 RPC and WNet

Office Developer Documentation

Platform SDK, BackOffice

Platform SDK, Base Services

Platform SDK, Component Services

Platform SDK, Data Access Services

Platform SDK, Getting Started

Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management Services

Visual C++, Platform SDK and
WinCE Docs

Visual C++, Platform SDK, and
Enterprise Docs

Visual FoxPro Documentation

-Visual InterDev Documentation

Visual J++ Documentation
Visual SourceSafe Documentation
Visual Studio Product Documentation

Platform SDK, Messaging and Windows CE Documentation

Collaboration Services

As you can see, these filtering options essentially mirror the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK’s ADSI, Networking Services, and Management Services
subsets, as well as a little section that’s nested way into the Base Services subset?
Simple—you define your own subset by choosing the View menu, and then selecting the
Define Subsets menu item. You're presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

You can also delete entire subsets from the MSDN installation. Simply select the subset
you want to delete from the Select Subset To Display drop-down box, and then click the
nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the predefined
subsets, and filters the information available in the four Navigation Tabs, just like the
predefined subsets do.

Quick Tips

Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page’s location in the information tree. Even if you know the general technology in which
your reference page resides, it’s nice to find out where it is in the content structure.

Chapter 3 Using Microsoft Reference Resources 19

This is easy to fix. Simply click the Locate button in the navigation toolbar and all will be
synchronized.

] MSDN Library - October 1939 £ MSDN Library - October 1939
—Q Welcome to the MSDN Library Ll:ﬂ Platform SDK
% Visual Studio 6.0 Documentation m] Networking and Directory Services
-@ Office Developer Documentation |:[}2| Quality of Service: Platform SDK |
%2 Windows CE Documentation § etz Platform SDK
- Platform SDK

Q Getting Started

Design Strategies and Standards
Base Services

Component Services
Data Access Services

Q Graphics and Multimedia Service
Management Services

Figure 3-4: The Define Subsets window.

Use the Back button just like a browser. The Back button in the navigation toolbar
functions just like a browser’s Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like | said at the beginning of this chapter,
the volume of information available these days can sometimes make it difficult to get our
work done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box shows
only a few subsets at a time (making it difficult to get a grip on available subsets, | think).
Underscores come before letters in alphabetical order, so if you use an underscore on all
of your defined subsets, you get them placed at the front of the Active Subset listing of
available subsets. Also, by using an underscore, you can immediately see which subsets
you've defined, and which ones come with MSDN—it saves a few seconds at most, but
those seconds can add up.

20

Volume 3 RPC and WNet

Using MSDN Online

MSDN underwent a redesign in December of 1999, aimed at streamlining the
information provided, jazzing things up with more color, highlighting hot new
technologies, and various other improvements. Despite its visual overhaul, MSDN Online
still shares a lot of content and information delivery similarities with MSDN, and those
similarities are by design; when you can go from one developer resource to another and
immediately work with its content, your job is made easier. However, MSDN Online is
different enough that it merits explaining in its own right—it’s a different delivery medium,
and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used MSN’s home page before (www.msn.com), you’re familiar with the fact
that you can customize the page to your liking; choose from an assortment of available
national news, computer news, local news, local weather, stock quotes, and other
collections of information or news that suit your tastes or interests. You can even insert a
few Web links and have them readily accessible when you visit the site. The MSDN
Online home page can be customized in a similar way, but its collection of headlines,
information, and news sources are all about development. The information you choose
specifies the information you see when you go to the MSDN Online home page, just like
the MSN home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Personalize This Site button near
the top of the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from (many
more options can be found when you scroll down through available technologies). If
you're interested in Web development, you can select the checkbox at the left of the
page next to Standard Web Development, and a predefined subset of Web-centered
technologies is selected. For technologies centered more on Network Services, you can
go through and choose the appropriate technologies. If you want to choose all the
technologies in a given technology group more quickly, click the Select All button in the
technology’s shaded title area.

You can also choose which tab is selected by default in the home page that MSDN
Online presents to you, which is convenient for dropping you into the category of MSDN
Online information that interests you most. All five of the tabs available on MSDN
Online’s home page are available for selection; those tabs are the following:

e Features

¢ News

e Columns

Technical Articles

Training & Events

Chapter 3 Using Microsoft Reference Resources 21

" Save Clear Enit

Preset Templates

Select or clear the check baxes

below to choose a pre-set Personalize the information that appears on your MSDN Online home page.

temnplate of information for that

technology Select your preferences from the sections below, then return here and choose Save. (Yes, we
know it's a lot of choices. There's a lot of information on this site.) You can update your choices

[T Database

- . at any time by visiting this Personalization page.
Development/administration ¥ ¥ 9 pag

Database Web Development

Office/vBA Developer

- Components {General Info) ~ ActiveX Controls

" standard web Development
o

Windows Development - Component Object Model {COM) I~ com+ {Component Services)
“pcom - Design-Time Controls
Message Queuing (MSMQ) I Microsoft Transaction Server (MTS)

D oLe " server components

[Databases (General Info) I~ apo
| Cpao ~ Data Binding

I Data transformation - English Query

Figure 3-5: The MSDN Online Personalize Page.

Once you've defined your profile—that is, customized the MSDN Online content you
want to see—MSDN Online shows you the most recent information pertinent to your
profile when you go to MSDN Online’s home page, with the default tab you’ve chosen
displayed upon loading of the MSDN Online home page.

Finally, if you want your profile to be available to you regardless of which computer
you’re using, you can direct MSDN Online to store your profile. Storing a profile for
MSDN Online results in your profile being stored on MSDN Online’s server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of storing your profile is available
when you customize your MSDN Online home page (and can be done any time
thereafter). The storing of a profile, however, requires that you become a registered
member of MSDN Online. More information about becoming a registered MSDN Online
user is provided in the section titted MSDN Online Registered Users.

22

Volume 3 RPC and WNet

Navigating MSDN Online

Once you're done customizing the MSDN Online home page to get the information
you’re most interested in, navigating through MSDN Online is easy. A banner that sits
just below the MSDN Online logo functions as a navigation bar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

SDN Online - Microsoft Internet Explmer

Windows 2000
What's New in XML for Microsoft %ML
windows 2000

Learn about the new features, bug fixes, and other
improvements to the Microsoft XML parser coming in
Windows 2000, in this column by Charlie Heinemann of

Yisual Studio

DLL Help
Database

& MSDN Subscriptions
& MSDN Training

& Product.s the Microsoft XML team. Charlie also explains why the
Partnering new version of the parser is better equipped for server
International use. {Dse 21, Column) £

My Links
* IT Professionals

raining

E) MSDN Flash
(e-newsletter)

¢ Send Us
Your Feedback

) Site Guide

st

Tune in to the MSDN Show
Learn about new technologies coming out of Microsoft in MSDN Online's
first streaming media show. This show's topics include XML and BizTalk.

{Dec 15, Strearning viden) 8

Introducing the New MSDN Online

Figure 3-6: The MSDN Online Navigation Bar with Its Drop-Down Menus.

Following is a list of available menu categories, which groups the available sites and
features within MSDN Online:

- Home Resources
Magazines Downloads
Libraries Search MSDN
Developer Centers

The navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online’s feature offerings.

Chapter 3 Using Microsoft Reference Resources 23

MSDN Online Features

Each of MSDN Online’s seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
information about technologies that you’ve indicated you're interested in reading about.

Magazines is a collection of columns and articles that comprise MSDN Online’s
magazine section, as well as online versions of Microsoft’'s magazines such as MSJ,
MIND, and the MSDN Show (a Webcast feature introduced with the December 1999
remodeling of MSDN Online). The Magazines feature of MSDN Online can be linked to
directly at msdn.microsoft.com/resources/magazines.asp. The Magazines home page is
shown in Figure 3-7.

Voices =
MSI e
MIND =
.

.

Magazines
Print and online publications for current information on all types of development.

MSON Ne ape:
vspaper Microsoft Systems Journal {(MS1}
MSDN Show

MS7 is the magazine that brings developers monthly features on the most important toals and

technologies such as XML, Windows 2000, ATL, MFC, Windows CE, DirectX, C++, as well as monthly
n‘% columns on visual programming, Win 32, COM, debugging, security, and more.

Microsoft Internet Developer {MIND)

MIND is the monthly magazine for Internet and intranet developers that covers tools and technologies
including XML, Visual Basic, scripting, ADO, SQL Server, 113, and anything else a developer might need
to build an interactive or e-commerce site.

MSDN News

The MSDN News is a printed newspaper, published bi-monthly for the developer audience, The
newspaper features new technical articles and ongoing columns, including the popular "Ask Dr. GUL," as
well as a reqular series of posters, Subscriptions are free to MSDN subscribers.

The MSDN Show

This regular Webcast brings you inside Microsoft to talk with developers and planners about our hottest
new technologies. The segments range from broad overviews to down-and-dirty coding, with some
news and entertainment mixed in, too.

Figure 3-7: The Magazines Home Page.

For those of you familiar with the Voices feature section that formerly found its home on
the MSDN Online navigation banner, don’t worry; all content formerly in the Voices
section is included the Magazines section as a subsite (or menu item, if you prefer) of
the Magazines site. For those of you who aren’t familiar with the Voices subsite, you'll

24

Volume 3 RPC and WNet

find a bunch of different articles or “voices” there, each of which adds its own particular
twist on the issues that face developers. Both application and Web developers can get
their fill of magazine-like articles from the sizable list of different articles available (and
frequently refreshed) in the Voices subsite. With the combination of columns and online
developer magazines offered in the Magazines section, you're sure to find plenty of
interesting insights.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between Windows application development and Web development.
Choosing Library from the Libraries menu takes you to a page through which you can
navigate in traditional MSDN fashion, and gain access to traditional MSDN reference
material. The Library home page can be linked to directly at msdn.microsoft.com/library.
Choosing Web Workshop takes you to a site that enables you to navigate the Web
Workshop in a slightly different way, starting with a bulleted list of start points, as shown
in Figure 3-8. The Web Workshop home page can be linked to directly at
msdn.microsoft.com/workshop.

SDN Online Web Workshop - Microsoft I'nte‘met Explorer

@ hitp://msdn.microsoft. com/workshop/

ESSENTIALS «

Component Development » COmMponent Welcome
Content & Cormponent Delivery » Development The MSDN Online Web
Data Access & Databases » This section contains Workshop provides the latest
Design » information you'll need to information about Internet
CHTML, HTML & CSS » create components for your technologies, including
Languages & Development Tools « Web pages, using either reference material and in-

Messaging & Collaboratian « ACtiveX or DHTML scriptlet | depth art'icles on all aspects
Networking, Protocols » technology, as well as related of Web site design and
2 Data Formats information about COM, development. Choose the
Reusing Browser Tachnalogy « ACtiveX Scripting, Active catggories'on the Ieft.toA
Security & Cryptography Documents, and offline nawgate’ via content listings.
browsing. Use the index to look up

Server Technologies keywords, and the search

page for specific queries.
Web Content Management » Check our What's New page
®ML (Extensible Markup Languzgsa) for updates.

st

Streaming & Interactive Madia e

The MSDN Online team

© 1999 Microsoft Corporation, All rights reserved. Terms of use.

Figure 3-8: The Web Workshop Home Page.

Chapter 3 Using Microsoft Reference Resources 25

Developer Centers is a hub from which developers who are interested in a particular
area of development—such as Windows 2000, SQL Server, or XML—can go to find
focused Web site centers within MSDN Online. Each developer center is dedicated to
providing all sorts of information associated with its area of focus. For example, the
Windows 2000 developer center has information about what’s new with Windows 2000,
including newsgroups, specifications, chats, knowledge base articles, and news, among
others. At publication time, MSDN Online had the following developer centers:

e Microsoft Windows 2000
Microsoft Exchange
Microsoft SQL Server
Microsoft Windows Media
e XML

In addition to these developer centers is a promise that new centers would be added to
the site in the future. To get to the Developer Centers home page directly, link to
msdn.microsoft.com/resources/devcenters.asp. Figure 3-9 shows the Developer Centers
home page.

Microsoft Windows + MSDN Developer Centers

MSDN Developer Centers provide access to all the developer resources MSDN has to offer for specific
Microsoft SQL Server products and technologies. From the Developer Centers you can also find the latest links to all the best
Microsoft Windows new technical articles, downloads, samples, product news, and more. While we'll be adding more
Media Developer Centers to the site in the future, you can visit the following Developer Centers today:
HML: e

Microsoft Exchange

«

*

»

Microsoft Windows 2000
Microsoft Exchange
Microsoft SGL Server
Microsoft Windows Media
XML

¢

Figure 3-9: The Developer Centers Home Page.

26

) Volume 3 RPC and WNet

Resources is a place where developers can go to take advantage of the online forum of
Windows and Web developers, in which ideas or techniques can be shared, advice can
be found or given (through MHM, or Members Helping Members), and the MSDN User
Group Program can be joined or perused to find a forum to voice their opinions or chat
with other developers. The Resources site is full of all sorts of useful stuff, including
featured books, a DLL help database, online chats, case studies, and more. The
Resources home page can be linked to directly at msdn.microsoft.com/resources. Figure
3-10 provides a look at the Resources home page.

3 MSDN Online Resources »“ﬁicmsﬂ Internet Explorer

€] htp: #/msdn microsoft. com/resources/

msdn online

DLL Help Database
MSDHN Online Support

Additional MSDN Online Resources

MSDN Online is about more than just technical articles and documentation. Check out the wide variety

Mewsgroups N
of resources we offer to help you get your job done.

Peer Journal

¢ & B e @

Members Helping The DLL Help Database

MSDN User Group » Microsoft's DLL Help database provides a searchable database of information about file versions that
Program ship with a selected set of Microsoft products.
MSDN Online Chats

MSDHM Training

Events

MSDN Online Support

MSDN Online Support offers a large variety of technical resources, including the Microsoft Knowledge
Base; service packs, hotfixes, and tools; and Support Web Casts, live presentations by Support
B ~—— professionals.

E . h Newsgroups

MSDN Online provides access to selected developer-focused public newsgroups through our browser-
based newsreader. Microsoft's public newsgroups allow you to interact with the Microsoft developer
community and MVPs (Most Valuable Professionals). Public newsgroups are a great way to solve
technical problems, learn more about a specific product or technology, or keep up with the latest buzz
in the developer community. Microsoft employees do not rmonitor Microsoft's public newsgroups.

b e

Developer Books

Peer Journal

Microsoft's collection of code, tips, and articles written b

Figure 3-10: The Resources Home Page.

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-11.

Chapter 3 Using Microsoft Reference Resources 27

M5DMN Online Downloads - Microsoft Internet Explorer

http://msdn. microsoft. com/downloads/default. asp

Se’”‘;e Pajk‘ * Welcome to the MSDN Online Downloads Area
amples »

Tools * garvice Packs
Beta and Preview

Releases Service Packs and product updates provide bug fixes and address other issues that customers have

Images discovered since a product's release.

-

Sounds
iSoftware Development Samples
Kits (SDKs) In this section, you will find a great variety of samples that demonstrate ways to use the latest and
MSDN Subscriber greatest Microsoft technologies to make your applications the best they can be, all samples have code
Downloads that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.

% Entries prefixed with £ are for users registered with Visual Studio only. To get access to these, register

your product today.

Tools
Want to try out somne great new products? Check out our tools area, where users can download more
than 40 trial, beta, and full versions of the latest developer products,

Visit the Visual Studio Solutions Center for sample solutions designed to help yvou learn and understand
end-to-end application architecture and design.

Beta and Preview Releases
Bet. d i | i

Figure 3-11: The Downloads Home Page.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), as well as other fine-tune search capabilities. The Search MSDN home page
can be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-12.

There are two other destinations within MSDN Online of specific interest, neither of
which is immediately reachable through the MSDN navigation bar. The first is the MSDN
Online Member Community home page, and the other is the Site Guide.

28

Volume 3 RPC and WNet

http://search.microsoft.com/us/dev/default. as,

e s e | AllWords

ity youk search scope.

Choosing this aption will allow you to search the developer topics in the Microsoft Knowledge Base.
Or you can go to the Support area for an advanced Knowledge Base Search.

Figure 3-12: The Search MSDN Home Page.

The MSDN Online Member Community home page can be directly reached at
msdn.microsoft.com/community. Many of the features found in the Resources
navigation menu are actually subsites of the Community page. Of course, becoming a
member of the MSDN Online member community requires that you register (see the next
section for more details on joining), but doing so enables you to get access to Online
Special Interest Groups (OSIGs) and other features reserved for registered members.
The Community page is shown in Figure 3-13.

Another destination of interest on MSDN Online that isn’t displayed on the navigation
banner is the Site Guide. The Site Guide is just what its name suggests—a guide to the
MSDN Online site that aims at helping developers find items of interest, and includes
links to other pages on MSDN Online such as a recently posted files listing, site maps,
glossaries, and other useful links. The Site Guide home page can be linked to directly at
msdn.microsoft.com/siteguide.

Chapter 3 Using Microsoft Reference Resources 29

http://msdn. microsoft. com/community/

msdn online
munity

Welcome to the MSDN Online Member Community

Jein* Updated October 14, 1999 tommeres

Your Membership » -
. ‘Embedded
OS1Gs ¢ Wlth an MEDN Online membership, developers can easily access technical pevelopment

information, tools, and a community of developers ready to help solve the
toughest challenges. Join now and take advantage of member benefits.

Paer Journal « Exchange /Outlook
Intzemut '

Online Special-Interest Groups Information
Server

Case Studies »
Downloads «

Members Helping «

Members Access the information you need, when you need it, with Online Special-interest . .

Offers « Groups (OSIGs), Web-based access to relevant newsgroups, sorted by product, MSDN s“"scﬂp‘m“

make i§ easy for you to get iljformatiun you need to do your job, Take advantage ;Gfﬁcéoeveloper'

of special offers, find useful links, and stay up to date with the latest product and . .
technology news.

Training
MSDN Stares » SQL Server

Uisuaf~§a§§c .
msg| Members Helping Members S

Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the
developer community. Get answers quickly by searching the MHM database for
people who can answer your technical questions. Or, register as a volunteer and
help other developers when they need it. Sign up naw!

Roaming Profiles

) Windows 2000
Sign up f :

Figure 3-13: The MSDN Online Member Community Home Page.

MSDN Online Registered Users

You may have noticed that some features of MSDN Online—such as the capability to
create a store profile of the entry ticket to some community features—require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won’t cost you anything more but a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough to register; rather than attempting to call your developer buddy
for an answer to a question (only to find out that she’s on vacation for two days, and your
deadline is in a few hours), you can go to MSDN Online’s Community site and ferret
through your OSIG to find the answer in a handful of clicks. Who knows; maybe your
developer buddy will begin calling you with questions—you don’t have to tell her where
you’re getting all your answers.

30

Volume 3 RPC and WNet

There are a number of advantages to being a registered user, such as the choice to
receive newsletters right in your inbox if you want to. You can also get all sorts of other
timely information, such as chat reminders that let you know when experts on a given
subject will be chatting in the MSDN Online Community site. You can also sign up to get
newsletters based on your membership in various OSIGs—again, only if you want to. It's
easy for me to suggest that you become a registered user for MSDN Online—I'm a
registered user, and it's a great resource.

The Windows Programming Reference Series

The WPRS provides developers with timely, concise, and focused material on a given
topic, enabling developers to get their work done as efficiently as possible. In addition to
providing reference material for Microsoft technologies, each Library in the WPRS also
includes material that helps developers get the most out of its technologies, and
provides insights that might otherwise be difficult to find.

The WPRS currently includes the following libraries:

o Microsoft Win32 Developer’s Reference Library
¢ Active Directory Developer’s Reference Library
® Networking Services Developer’s Reference Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
WPRS Libraries that cover the following material:

Web Technologies Library

e Web Reference Library

¢ MFC Developer’s Reference Library
e Com Developer’s Reference Library

What else might you find in the future? Planned topics such as a Security Library,
Programming Languages Reference Library, BackOffice Developer’s Reference Library,
or other pertinent topics that developers using Microsoft products need in order to get
the most out of their development efforts, are prime subjects for future membership in
the WPRS. If you have feedback you want to provide on such libraries, or on the WPRS
in general, you can send email to winprs @ microsoft.com.

If you’re sending mail about a particular library, make sure you put the name of the
library in the subject line. For example, e-mail about the Networking Services
Developer’s Reference Library would have a subject line that reads “Networking
Services Developer’s Reference Library.” There aren’t any guarantees that you'll get a
reply, but I'll read all of the mail and do what | can to ensure your comments, concerns,
or (especially) compliments get to the right place.

31

CHAPTER 4

Finding the Developer Resources
You Need

Networking is complex, and its resource information vast. With all the resources
available for developers of network-enabled applications, and the answers they can
provide to questions or problems that developers face every day, finding the developer
information you need can be a challenge. To address that problem, this chapter is
designed to be your one-stop resource to find the developer resources you need,
making the job of actually developing your application just a little easier.

Microsoft provides plenty of resource material through MSDN and MSDN Online, and the
WPRS provides a great filtered version of focused reference material and development
knowledge. However, there is a lot more information to be had. Some of that information
comes from Microsoft, some of it from the general development community, and yet
more information comes from companies that specialize in such development services.
Regardless of which resource you choose, in this chapter you can find out what your
development resource options are, and be more informed about the resources that are
available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft’s resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn’t go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support

Microsoft’s support sites cover a wide variety of support issues and approaches,
including all of Microsoft’s products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be reached at www.microsoft.com/support/customer/develop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between.

The Web page displayed in Figure 4-1 is a good starting point from which you can

find out more information about Microsoft’s support services.

32 Volume 3 RPC and WNet

Welcome to Microsoft Product Support Services for Developers - Microsoft Internet Explorer

@ http:/fwami. microsoft comfsypponfcustomeridevelop htrm

All Products

Get Help Now!
B i

Whether you are a Software or Web Developer, developing or porting
comrnercial applications to run on Microsoft platforms requires a unique
level of support to ensure those applications optimize both current and
Online Support: Find emerging technologies. Microsoft provides access to a wide range of
ans 3 your support product and application development expertise to help developers
gl s anline accelerate the development cycle and produce succebsful applications.
This includes the Microsoft Developer Network (MSDN™) - a specially
i dedicated Web site packed with news, resources and technical services.
| » Premier Support for
; Developers

|) professional Support
far Developers

n Go to Support Phone Numbers Click here

PREMIER SUPPORT FOR DEYELOPERS

For large organizations developing products using Microsoft technologies
who require a direct, proactive and managed support relationship with
Microsoft, Premier Support offers comprehensive and flexible high-end
support,

! ;“ ; \i) Click here for details
which support
'iight

option i

for

PROFESSIONAL SUPPORT FOR DEYELOPERS
Professional Support for Developers provides information services and
incident-based support to help create and enhance your software

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and
includes different packages geared toward specific Microsoft customer needs. The
packages of Premier Support that Microsoft provides are:

* Premier Support for Enterprises

¢ Premier Support for Developers

® Premier Support for Microsoft Certified Solution Providers

* Premier Support for OEMs

If you’re a developer, you could fall into any of these categories. To find out more
information about Microsoft's Premier Support, contact them at (800) 936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft.

Chapter 4 Finding the Developer Resources You Need 33

e Priority Comprehensive Support
e Priority Developer Support
® Priority Desktop Support

The best support option for you as a developer is the Priority Developer support. To
obtain more information about Priority Developer Support, call Microsoft at
(800) 936-3500.

Microsoft also offers a Pay-Per-Incident Support option so you can get help if there’s just
one question that you must have answered. With Pay-Per-Incident Support, you call a toll-
free number and provide your Visa, MasterCard, or American Express account number,
after which you receive support for your incident. In loose terms, an incident is a problem
or issue that can’t be broken down into subissues or subproblems (that is, it can’t be
broken down into smaller pieces). The number to call for Pay-Per-Incident Support

is (800) 936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional subscription, and provides four priority technical support incidents as part
of the MSDN Universal subscription.

You can also submit questions to Microsoft engineers through Microsoft’s support Web
site, but if you're on a time line you might want to rethink this approach and consider
going to MSDN Online and looking into the Community site for help with your
development question. To submit a question to Microsoft engineers online,

go to support.microsoft.com/support/webresponse.asp.

Online Resources

Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online’s Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online’s Community site, simply go to msdn.microsoft.com/community.

Microsoft’s MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft’s corporate site. You can search the Knowledge
Base online at support.microsoft.com/support/search.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
information about creating Windows applications. To find out which newsgroups are
available and how to get to them, go to support.microsoft.com/support/news.

The following newsgroups will probably be of particular interest to readers of the
Microsoft Active Directory Developer’s Reference Library:
microsoft.public.win2000.*

microsoft.public.msdn.general

microsoft.public.platformsdk.active.directory
microsoft.public.platformsdk.adsi

34

Volume 3 RPC and WNet

microsoft.public.platformsdk.dist_svcs
microsoft.public.vb.*

microsoft.public.ve.*

microsoft.public.vstudio. *microsoft.public.cert.*
microsoft.public.certification. *

Of course, Microsoft isn’t the only newsgroup provider on which newsgroups pertaining
to developing on Windows are hosted. Usenet has all sorts of newsgroups—too many to
list—that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you’ll need to contact your ISP to find out the name of the
mail server and then use a newsreader application to visit, read, or post to the

Usenet groups.

For network developers with a taste for Winsock (and QOS) programming, another site
of interest is www.stardust.com, which is chock full of up-to-date information about
Winsock development and other network-related information. There’s other information
about network programming on the site, so it's worth a look.

Internet Standards

Many of the network protocols and services implemented in Windows platforms conform
to one or more Internet standards recommendations that have gone through a process
of review and comments. One especially useful source of information about such
standards, recommendations, and ongoing comment periods is the Internet Engineering
Task Force, or IETF. Rather than go into some long-winded (page-eating) explanation
of what the IETF is, does, and stands for, let me simply say that this is the place where
networking protocols and other various Internet-related services are often born,
scrutinized, recast, commented upon, and although not standardized or implemented,
recommended in a final form called a request for comment, or RFC, even though it's
essentially a standard by the time it gets to RFC stage.

If you want to get a clear technical picture of a given technology or protocol, or if you're
inclined to comment on the creation and subsequent scrutiny of such things, the place
you should go is www.jetf.org. This site can tell you all you want to know about the
goings on of the IETF, their (non-profit) mission, their Working Groups, and all the
information you might ever want about almost anything that has to do with networking
recommendations.

If you’re curious about a given protocol or networking technology, and want to find an
unadulterated (albeit technical) version of its explanation, this is a great place to go.
It's a virtual hangout for the brightest people in networking, and it's worth a look or two,
even just for the sake of satisfying curiosity.

Chapter 4 Finding the Developer Resources You Need 35

Learning Products

Microsoft provides a number of products that enable developers to get versed in

the particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering series, and its
products provide comprehensive, well-structured interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft contains interactive tools that group books and CDs
together so that you can master the topic in question, and there are products available
based on the type of application you’re developing. To obtain more information about the
Mastering series of products, or to find out what kind of offerings the Mastering series
has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors as well, such as other
publishers, other application providers that create tutorial-type content and applications,
and companies that issue videos (both taped and broadcast over the Internet)

on specific technologies. For one example of a company that issues technology-based
instructional or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as C++,
FoxPro, or Microsoft Visual Basic), for a particular operating system, or for a particular
product (such as Microsoft SQL Server or Microsoft Commerce Server) is to read the
preparation materials available for certification as a Microsoft Certified Solutions
Developer (MCSD). Before you get defensive about not having enough time to get
certified, or not having any interest in getting your certification (maybe you do—there are
benefits, you know), let me just state that the point of the journey is not necessarily to
arrive. In other words, you don’t have to get your certification for the preparation
materials to be useful; in fact, the materials might teach you things that you thought you
knew well but actually didn’t know as well as you thought you did. The fact of the matter
is that the coursework and the requirements to get through the certification process are
rigorous, difficult, and quite detail-oriented. If you have what it takes to get your
certification, you have an extremely strong grasp of the fundamentals (and then some) of
application programming and the developer-centric information about Windows
platforms.

You are required to pass a set of core exams to get an MCSD certification, and then
you must choose one topic from many available electives exams to complete your
certification requirements. Core exams are chosen from among a group of available
exams; you must pass a total of three exams to complete the core requirements. There
are “tracks” that candidates generally choose which point their certification in a given
direction, such as C++ development or Visual Basic development. The core exams and
their exam numbers (at the time of publication) are as follows.

36 Volume 3 RPC and WNet

Desktop Applications Development (one required):

¢ Designing and Implementing Desktop Applications with Visual C++ 6.0 (70-016)
¢ Designing and Implementing Desktop Applications with Visual FoxPro 6.0 (70-156)
¢ Designing and Implementing Desktop Applications with Visual Basic 6.0 (70-176)

Distributed Applications Development (one required):

¢ Designing and Implementing Distributed Applications with Visual C++ 6.0 (70-015)
¢ Designing and Implementing Distributed Applications with Visual FoxPro 6.0 (70-155)
¢ Designing and Implementing Distributed Applications with Visual Basic 6.0 (70-175)

Solutions Architecture:

® Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams

to complete their MCSD exam requirements. The following MCSD elective exams are

available:

e Any Desktop or Distributed exam not used as a core requirement

¢ Designing and Implementing Data Warehouses with Microsoft SQL Server 7.0
(70-019)

® Developing Applications with C++ Using the Microsoft Foundation Class Library
(70-024)

¢ |mplementing OLE in Microsoft Foundation Class Applications (70-025)

¢ Implementing a Database Design on Microsoft SQL Server 6.5 (70-027)

¢ Designing and Implementing Databases with Microsoft SQL Server 7.0 (70-029)

e Designing and Implementing Web Sites with Microsoft FrontPage 98 (70-055)

¢ Designing and Implementing Commerce Solutions with
Microsoft Site Server 3.0, Commerce Edition (70-057)

e Application Development with Microsoft Access for Windows 95 and the
Microsoft Access Developer’s Toolkit (70-069)

¢ Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications (70-091)

¢ Designing and Implementing Database Applications with Microsoft Access 2000
(70-097)

¢ Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5 (70-105)

¢ Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0
(70-152)

¢ Developing Applications with Microsoft Visual Basic 5.0 (70-165)

Chapter 4 Finding the Developer Resources You Need 37

The good news is that because there are exams you must pass to become certified,
there are books and other material out there to teach you how to meet the knowledge
level necessary to pass the exams. That means those resources are available to you—
regardless of whether you care about becoming an MCSD.

The way to leverage this information is to get study materials for one or more of these
exams and go through the exam preparation material (don’t be fooled by believing that if
the book is bigger, it must be better, because that certainly isn’'t always the case.) Exam
preparation material is available from such publishers as Microsoft Press, IDG, Sybex, and
others. Most exam preparation texts also have practice exams that let you assess your
grasp on the material. You might be surprised how much you learn, even though you may
have been in the field working on complex projects for some time.

Exam requirements, as well as the exams themselves, can change over time; more
electives become available, exams based on previous versions of software are retired,
and so on. You should check the status of individual exams (such as whether one of the
exams listed has been retired) before moving forward with your certification plans. For
more information about the certification process, or for more information about the
exams, check out Microsoft’s certification web site at www.microsoft.com/train_cert/dev.

Conferences

Like any industry, Microsoft and the development industry as a whole sponsor
conferences on various topics throughout the year and around the world. There are
probably more conferences available than any one human could possibly attend and still
maintain his or her sanity, but often a given conference is geared toward a focused topic,
so choosing to focus on a particular development topic enables developers to winnow
the number of conferences that apply to their efforts and interests.

MSDN itself hosts or sponsors almost one hundred conferences a year (some of them
are regional, and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one—the Professional Developers Conference (PDC).
Regardless of which conference you’re looking for, Microsoft has provided a central site
for event information, enabling users to search the site for conferences, based on many
different criteria. To find out what conferences or other events are going on in your area
of interest of development, go to events.microsoft.com.

Other Resources

Other resources are available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The list of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need; it's geared toward getting you 100 percent of
the way, but there are always exceptions.

38

Volume 3 RPC and WNet

Perhaps you're just getting started and you want more hands-on instruction than MSDN
Online or MCSD preparation materials provide. Where can you go? One option is to
check out your local college for instructor-led courses. Most community colleges offer
night classes, and increasingly, community colleges are outfitted with pretty nice
computer labs that enable you to get hands-on development instruction and experience
without having to work on a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you know of a resource that should be shared, send me
e-mail at winprs @ microsoft.com, and who knows—maybe someone else will benefit
from your knowledge.

If you're sending mail about a particularly useful resource, simply put “Resources” in the
subject line. There aren’t any guarantees that you’'ll get a reply, but I'll read all of the mail
and do what | can to ensure that your resource idea gets considered.

39

CHAPTER 5

Avoiding Common RPC
Programming Errors

This chapter presents a series of simple but common RPC programming errors that
developers of Microsoft Windows applications should look out for during the
development process.

If you own the Microsoft Win32 Developer’s Reference Library, some of this information
might look familiar, since common RPC programming pitfalls are also included in that
library. However, | thought this information was pertinent to this Networking Services
Developer’s Reference Library and especially to this volume, so 've included it here for
your reading and pitfall-avoiding pleasure.

The chapter begins with the Solution Summary, which presents you with the short-
version solutions to each of the numbered, underiined common coding errors you should
look out for. The chapter then moves into common RPC programming errors, which
provides further detail on the problems and pitfalls you should take special care to avoid
when using RPC.

Solution Summary

This section provides short answer listings for each of the problems explained in the rest
of the chapter. For more information about any of these issues, read the corresponding
explanation provided later in this chapter.

1. pointer_default(unique) and embedded pointers: Check unique pointers for NULL
before dereferencing.

2. A valid switch_is value in an RPC-capable structure doesn’t ensure a non-NULL
pointer: When using a switch_is construct that has a default clause:
¢ Verify that the value switching on is within expected range.
¢ Verify that pointers within the switched object are not null before dereferencing

them.

3. A NULL DACL affords no protection: Don’t use NULL DACLs—they don’t protect
anything. ;

4. Call RpclmpersonateClient() before any security relevant operation: Impersonate
before acting on behalf of the caller and check the result.

5. Starting and stopping impersonation: Stop impersonating when finished acting on
behalf of the caller and then check the result.

40

Volume 3 RPC and WNet

10.

. Strings are only zero-terminated when declared with string in the .idl: Don't expect

strings to be zero-terminated unless string is specified in the .idl file.

. Don’t copy arbitrary length data into independently sized buffers: This one’s self-

answering!

. size_is may result in a zero-length structure; it is not safe to dereference this without

first checking its length: Check the length of size_is-specified data before
dereferencing corresponding pointers.

. Calculations in a size_is or length_is specification are susceptible to overflow: Be

aware that calculations in MIDL definitions using size_is and length_is can overflow
and that it may be impossible for the server to detect this.

Strict context handies: Use strict context handles.

Common RPC Programming Errors

The following sections explain common RPC programming errors in detail, and provide
you with pointers (pardon the pun) on how to avoid them.

Pointer_default(unique) and embedded pointers

When an RPC structure contains pointers, its pointers default to the default pointer type
(typically set by pointer_default(unique)). Under such circumstances, unique pointers
can be NULL and must be verified to be non-NULL before being dereferenced.

Example

Chapter 5 Avoiding Common RPC Programming Errors 4

A valid switch_is value in an RPC-capable structure doesn’t

ensure a non-NULL pointer

A valid value for the switch field does not change the default of embedded pointers from
unique. Thus, even when it is valid, the pointer must still be verified to be non-NULL
before being dereferenced.

Example

A NULL DACL affords no protection

A NULL DACL grants access to everyone and protects nothing; it doesn’t even protect
an object from having its DACL changed to deny access to everyone. In general, an
untrusted user should not be granted access to change a security-descriptor’s Owner or
DACL fields (unless they own the object, in which case no one else should be granted
such access).

Example

(continued)

42

Volume 3 RPC and WNet

(continued)

Remarks "

This example exposes this error for RPC, but the error’s scope goes beyond RPC. If you
create a publicly accessible securable object and do not secure it against unauthorized
users’ changing of the DACL, anyone can lock the object such that no one can access it.

Allowing “all” access—for example, applying a DACL granting EVENT_ALL_ACCESS to
everyone who accesses an event object—is an equally bad idea, because “all” access
typically grants WRITE_DAC and WRITE_OWNER permissions. Granting either of these
permissions explicitly enables objects to be locked up. Use (GENERIC_READ |
GENERIC_WRITE | GENERIC_EXECUTE) when it's necessary to grant broad access
to an object to any non-administrative-level user.

Call RpcimpersonateClient() before any security-relevant operation

The purpose of many RPC servers is to act on behalf of a client, but they must protect
system integrity while doing so. Many RPC servers run in the system context;
impersonating the caller enables the server to use the user’s credentials to access some
objects, while otherwise being a part of the secure side of the system.

Example

Remarks

Opening a process by pid without first impersonating can provide a caller with access to
the process that it normally would not have. The server now has a handle to a process—
LSASS for example—allowing it to scribble in the address of a process the user would
not have been allowed on its own.

Chapter 5 Avoiding Common RPC Programming Errors 43

Starting and stopping impersonation

There are a handful of issues that programmers should be on the lookout for when
starting and/or stopping impersonation.

Always check the result of RpcimpersonateClient() before a security relevant
operation.

The RpcimpersonateClient() function returns an indication of success or failure; skip

the check and you may as well have skipped the call (which, as we saw previously in this
chapter, can be dangerous).

Call RpcRevertToSelf() after security relevant operations

Once a server has acted on behalf of the user by impersonating, it should revert to its
own security context by calling RpcRevertToSelf(). Although the consequences of
failing to undo impersonation are typically not as drastic as failing to impersonate, it can
result in failure to function correctly, and cause spurious behavior such as extra audits.

Example

(continud)

44

Volume 3 RPC and WNet

(continued)

Remarks

This example shows how to avoid this programming error in RPC, the scope of this error
extends beyond RPC. Impersonation is possible over LPC, Named Pipes, and when
using Tokens. In all cases, a decision must be made as to whose context (typically
System versus untrusted user) should be used for various operations, and impersonation
used where appropriate.

Strings are only zero-terminated when declared with string
in the .idl

Variably sized RPC buffers can be tricky to deal with. For the most part, variably sized
RPC buffers consist of either character strings (which should contain NULL termination
defining the size) or amorphous buffers for which there is a corresponding size value
passed to the function. The examples that follow document some of the common errors
involved in dealing with such buffers.

A buffer that hasn’t been explicitly declared as a string type cannot be assumed to
contain a NULL terminator, and thus must not be passed to C runtime string functions
prior to verification of zero termination. This cannot be done by touching a byte outside
the valid length of your buffer. '

Example

Remarks

The NameSize parameter should be checked and used to bound any operations, either
by explicitly attaching a NULL terminator (on the server side), or by using bounded string
operations with the size of the buffer specified.

Chapter 5 Avoiding Common RPC Programming Errors 45

Don’t copy arbitrary length data into independently sized buffers

Data buffers should not be assumed to be bound by an arbitrary size limit. An explicit
check of the size of the indicated data must be made prior to copying to local fixed-size
buffers.

Example

Remarks

string guarantees that the pwszName parameter is zero terminated, not that its length is
less than MAX_PATH.

size_is may result in a zero-length structure

A size_is specifier can result in a zero-length buffer but a non-NULL buffer pointer (as
reference pointers, such as passed parameters, cannot be NULL). A unique pointer can
always be NULL. The best practice is to verify both the pointer as non-NULL and the
buffer size as non-zero to avoid problems.

Example 1

Remarks

There is no guarantee in this example that the StructureSize parameter is sufficient to
cover the NameLength member, and in fact, the Structure pointer may be non-NULL,
while StructureSize, and thus the allocated buffer, indicate a zero length.)

46

Volume 3 RPC and WNet

- Example 2

Remarks

This example presents a similar problem. In this case, the StructureSize parameter could
be non-zero, but Structure—being defined as unique—could contain a NULL.)

Calculations in a size_is or length_is specification are susceptible

to overflow

Calculations in the MIDL definition for a size_is or length_is specification are subject to
overflow problems. If you perform a calculation in a size_is or length_is specification,
consider what difficulties overflow (or rounding) might cause.

Strict context handles

Context handles enable RPC servers to associate information with calls. RPC looks up
context handles in a linked list associated with each binding handle. If you have more
than one interface accessible from a single binding handle, then the code must be
prepared to reject invalid handles or use strict context handles. Interfaces end up being
accessible from a single binding handle if they share things like the same named pipe.
Using the [strict_context_handle] on the interface definition in the .acf file causes RPC to
only allow context handles to be used against interfaces that created them.

Part 2 47

CHAPTER 6

Microsoft RPC Model

Microsoft® Remote Procedure Call (RPC) for the C and C++ programming languages
is designed to help meet the needs of developers working on the next generation of
software for the Microsoft® family of operating systems: MS-DOS ®, Windows ®,
Windows 95, and Windows NT®/Windows 2000.

Microsoft RPC represents the convergence of three powerful programming models:

¢ The familiar model of developing C applications by writing procedures and libraries

¢ The model that uses powerful computers as network servers to perform specific tasks
for their clients

¢ The client-server model, in which the client usually manages the user interface while
the server handles data storage, queries, and manipulation

This section explains the convergence of these three models in distributed computing,
which delivers the ability to share computational power among the computers on a
network. It also describes the industry standard for RPC and provides an overview of
Microsoft RPC components and their operation.

The Programming Model

In the early days of computing, each program was written as a large monolithic chunk,
filled with goto statements. Each program had to manage its own input and output to
different hardware devices. As the programming discipline matured, this monolithic code
was organized into procedures, with the commonly used procedures packed in libraries
for sharing and reuse. Today, RPC takes the next step in the development of procedure
libraries. Now, procedure libraries can run on other remote computers. (See Figure 6-1.)

The C programming language supports procedure-oriented programming. In C, the
main procedure relates to all other procedures as black boxes. For example, the main
procedure cannot find out how procedures A, B, and X do their work. The main
procedure only calls another procedure; it has no information about how that procedure
is implemented. (See Figure 6-2.)

Procedure-oriented programming languages provide simple mechanisms for specifying
and writing procedures. For example, the ANSI-standard C-function prototype is a
construct used to specify the name of a procedure, the type of the result it returns (if any)
and the number, sequence, and type of its parameters. Using the function prototype is a
formal way to specify an interface between procedures.

48

Volume 3 RPC and WNet

In this topic, the term procedure is synonymous with the terms subroutine and
subprocedure and refers to any sequence of computer instructions that accomplishes
a functional purpose. In this topic, the term function refers to a procedure that returns
avalue.

Main
- goto I | Main
v % ~ v
6:? goto:f: (‘; / IB j Q C)
Sl % e L
—~ gotuf D)
| t} h{ain I | (h{ain —i‘:x\
A)BBL‘EW A Bpkcv l:E
D D ' F
Computer 1 Computer 2

Remote Procedure

Figure 6-1: Procedure Libraries Running on Remote Computers.

Related procedures are often grouped in libraries. For example, a procedure library
can include a set of procedures that performs tasks common to a single domain such
as floating-point math operations, formatted input and output, and network functions.

Main

F’rocedureA I ‘ Procedure B ’ l ProcedureXJ

u’rocedureY | ‘ Procedure Z l

Figure 6-2: Main Procedure Calling Another Procedure.

Chapter 6 Microsoft RPC Model 49

The procedure library is another level of packaging that makes it easy to develop
applications. Procedure libraries can be shared among many applications. Libraries
developed in C are usually accompanied by header files. Each program that uses the
library is compiled with the header files that formally define the interface to the library’s
procedures.

The Microsoft RPC tools represent a general approach in which procedure libraries
written in C can run on other computers. In fact, an application can link with libraries
implemented using RPC without indicating to the user that the application is using RPC.

The Client-Server Model

Client-server architecture is an effective and popular design for distributed applications.
In the client-server model, an application is split into two parts: a front-end client that
presents information to the user, and a back-end server that stores, retrieves, and
manipulates data, and generally handles the bulk of the computing tasks for the client.
In this model, the server is usually a more powerful computer than the client and works
as a central data store for many client computers, thus making the system easy to
administer.

Typical examples of client-server applications include shared databases, remote file
servers, and remote printer servers. Figure 6-3 illustrates the client-server model.

Figure 6-3: The Client-Server Model.

50

Volume 3 RPC and WNet

Network systems support the development of client-server applications through
an Interprocess Communication (IPC) facility in which the client and server can
communicate and coordinate their work. You can use NetBIOS NCBs (Network
Control Blocks), mailslots, or named pipes to transfer information between two or
more computers.

For example, the client can use an IPC mechanism to send an opcode and data to the
server requesting that a particular procedure be called. The server receives and decodes
the request and calls the appropriate procedure. The server then performs all the
computations needed to satisfy the request and returns the result to the client. Client-
server applications are usually designed to minimize the amount of data transmitted over
the network.

Using NetBIOS, mailslots, or named pipes to implement interprocess communication
means learning specific details relating to network communication. Each application
must manage the network-specific conditions. To write this network-specific level of
code, you must:

¢ |earn details relating to network communications and how to handle error conditions.

¢ Translate data to different internal formats, when the network includes different kinds
of computers.

e Support communications using multiple transport interfaces.

In addition to all the possible errors that can occur on a single computer, the network has
its own error conditions. For example, a connection can be lost, a server can disappear
from the network, the network security service can deny access to system resources, or
users can compete for and tie up system resources. Because the state of the network is
always changing, an application can fail in new and interesting ways that are difficult to
reproduce. For these reasons, each application must rigorously handle all possible error
conditions.

When you write a client-server application, you must provide the layer of code that
manages network communication. The advantage of using Microsoft RPC is that the
RPC tools provide this layer for you. RPC virtually eliminates the need to write network-
specific code, thus making it easier to develop distributed applications.

Using the remote procedure call model, RPC tools manage many of the details relating
to network protocols and communication. This allows you to focus on the details of the
application rather than the details of the network.

Chapter 6 Microsoft RPC Model 51

The Compute-Server Model

Networking software for personal computers has been built on the model of a powerful
computer—the server—that provides specialized services to workstations, or client
computers. In this model, servers are designated as file servers, print servers, or
communications (modem) servers, depending on whether they are assigned to file
sharing or are connected to printers or modems.

RPC represents an evolutionary step in this model. In addition to its traditional roles, a
server using RPC can be designated as a computational server or a compute server. In
this role, the server shares its own computational power with other computers on the
network. A workstation can ask the compute server to perform computations and return
the results. The client not only uses files and printers, it also uses the central processing
units of other computers.

How RPC Works

The RPC tools make it appear to users as though a client directly calls a procedure
located in a remote server program. The client and server each have their own address
spaces; that is, each has its own memory resource allocated to data used by the
procedure. Figure 6-4 illustrates the RPC architecture.

Client Server
Application I l Application |
L] et
Client Stub] Server Stub

Transport | l Transpurt

11 4‘

Figure 6-4: RPC Architecture.

52

Volume 3 RPC and WNet

As the illustration shows, the client application calls a local stub procedure instead of the
actual code implementing the procedure. Stubs are compiled and linked with the client
application. Instead of containing the actual code that implements the remote procedure,
the client stub code:

e Retrieves the required parameters from the client address space.

¢ Translates the parameters as needed into a standard network data representation
(NDR) format for transmission over the network.

o Calls functions in the RPC client run-time library to send the request and its
parameters to the server.

The server performs the following steps to call the remote procedure.
1. The server RPC run-time library functions accept the request and call the server stub
procedure. ' :

2. The server stub retrieves the parameters from the network buffer and converts them
from the network transmission format to the format the server needs.

3. The server stub calls the actual procedure on the server.

The remote procedure then runs, possibly generating output parameters and a return
value. When the remote procedure is complete, a similar sequence of steps returns the
data to the client.

1. The remote procedure returns its data to the server stub.

2. The server stub converts output parameters to the format required for transmission
over the network and returns them to the RPC run-time library functions.

3. The server RPC run-time library functions transmit the data on the network to the
client computer.

The client completes the process by accepting the data over the network and returning it
to the calling function.

1. The client RPC run-time library receives the remote-procedure return values and
returns them to the client stub.

2. The client stub converts the data from its network data representation to the format
used by the client computer. The stub writes data into the client memory and returns
the result to the calling program on the client.

3. The calling procedure continues as if the procedure had been called on the same
computer.

Chapter 6 Microsoft RPC Model 53

For Microsoft® Windows® 3.x, Windows 95, and Windows NT®Windows 2000, the
run-time libraries are provided in two parts: an import library, which is linked with the
application and the RPC run-time library, which is implemented as a Dynamic-Link

* Library (DLL).

The server application contains calls to the server run-time library functions which
register the server’s interface and allow the server to accept remote procedure calls.
The server application also contains the application-specific remote procedures that
are called by the client applications.

OSF Standards for RPC

The design and technology behind Microsoft® RPC is just one part of a complete
environment for distributed computing defined by the Open Software Foundation (OSF),
a consortium of companies formed to define that environment. The OSF requests
proposals for standards, accepts comments on the proposals, votes on whether to
accept the standards, and then promulgates them. The components of the OSF
Distributed Computing Environment (DCE) are shown in Figure 6-5.

Applications

Security anagement

Remote Procedure Call
and Presentation Services

Threads

Dperating System and Transport Services

Figure 6-5: Components of the OSF Distributed Computing Environment.

In selecting the RPC standard, the OSF cited the following rationale:

o The three most important properties of a remote procedure call are simplicity,
transparency, and performance.

e The selected RPC model adheres to the local procedure model as closely as
possible. This requirement minimizes the amount of time developers spend learning
the new environment.

54

Volume 3 RPC and WNet

¢ The selected RPC model permits interoperability; its core protocol is well defined and
cannot be modified by the user.

e The selected RPC model allows applications to remain independent of the transport
and protocol on which they run, while supporting a variety of other transports and
protocols.

¢ The selected RPC model can be easily integrated with other components of the DCE.

The OSF-DCE remote procedure call standards define not only the overall approach, but
the language and the specific protocols to use for communications between computers
as well, down to the format of data as it is transmitted over the network.

The Microsoft implementation of RPC is compatible with the OSF standard with some
minor exceptions. Client or server applications written using Microsoft RPC will
interoperate with any DCE RPC client or server whose run-time libraries run over a
supported protocol. For a list of supported protocols, see Building RPC Applications.

Microsoft RPC Components

The Microsoft® RPC product includes the following major components:

- o MIDL compiler

Run-time libraries and header files
Transport interface modules
Name service provider

Endpoint supply service

In the RPC model, you can formally specify an interface to the remote procedures using
a language designed for this purpose. This language is called the Interface Definition
Language, or IDL. The Microsoft implementation of this language is called the Microsoft
Interface Definition Language, or MIDL.

After you create an interface, you must pass it through the MIDL compiler. This compiler
generates the stubs that translate local procedure calls into remote procedure calls.
Stubs are placeholder functions that make the calls to the run-time library functions,
which manage the remote procedure call. The advantage of this approach is that the
network becomes almost completely transparent to your distributed application. Your
client program calls what appear to be local procedures; the work of turning them into
remote calls is done for you automatically. All the code that translates data, accesses the
network, and retrieves results is generated for you by the MIDL compiler and is invisible
to your application.

Chapter 6 Microsoft RPC Model 55

RPC Extends Client-Server Computing

Microsoft® RPC is an evolution of the procedural programming model familiar to all
developers. It also represents a new category of specialized server and extends the
model of client-server computing. Developers can use Microsoft RPC as a tool to
leverage the power of the single personal computer by expanding its computational
capacity far beyond its own resources. With RPC, you can harness all of the CPU
horsepower available on the network.

Microsoft RPC allows a process running in one address space to make a procedure call
that is executed in another address space. The call looks like a standard local procedure
call but is actually made to a stub that interacts with the run-time library and performs all
the steps necessary to execute the call in the remote address space.

As a tool for creating distributed applications, Microsoft RPC provides the following
benefits:

e The RPC programming model is already familiar. You can easily turn functions into
remote procedures that simplify development and test cycles.

¢ RPC hides many details of the network interface from the developer. You do not have
to understand specific network functions or low-level network protocols to implement
powerful distributed applications.

e RPC solves the data-translation problems that crop up in heterogeneous networks.
Individual applications can ignore this problem.

e The RPC approach is scalable. As a network grows, applications can be distributed to
more than one computer on the network.

e The RPC model is an industry standard. The Microsoft implementation is compatible
with both client and server.

57

CHAPTER 7

Installing the RPC Programming
Environment

You develop RPC distributed applications, for all supported platforms, on the 32-bit
Microsoft® Windows NT®/Windows® 2000 platform. This section describes the process
of installing the RPC application development environment in the following topics:

¢ Developing 32-bit Windows Applications

¢ Developing Macintosh Client Applications

Note See Building RPC Applications for information about various build environments.

Developing 32-Bit Windows Applications

When the Platform SDK is installed, the RPC development environment and the run-time
libraries are automatically installed. For 32-bit Windows platforms, no additional
installation is required. The Microsoft Platform SDK contains the Microsoft®

Windows NT®/Windows® 2000 and Windows 95 APIs. When you install the Platform
SDK, you install the following RPC tools and files:

e C/C++ language header (.H) files for the RPC run-time libraries and run-time
library (.lib and .dll) files for 32-bit Windows platforms

e 32-bit sample programs

e RPC reference Help files

¢ The uuidgen utility

When you install Windows NT/Windows 2000 or Windows 95, you install the following:

e RPC Run-time DLLs

® Microsoft Locator (Windows NT/Windows 2000 only) and RPC Endpoint-mapping
services

58

Volume 3 RPC and WNet

The following RPC import libraries are included for Microsoft 32-bit Windows clients and

servers.

Import library Description Platform

Rpcndr.lib Helper functions Windows 95/98, Windows NT
version 4 and earlier.

Rpcns4.lib Name-service functions Windows 95/98, Windows NT
version 4 and earlier, Windows 2000.

Rpcrt4.lib 32-bit Windows run-time Windows 95/98, Windows NT

functions

version 4 and earlier, Windows 2000.

The following RPC libraries are included for Microsoft 32-bit Windows clients and

servers:
Dynamic-link
library Description Platform
Rpcltci.dll Client named-pipe Windows 95/98, Windows NT
transport version 4 and earlier.
Rpclts1.dll Server named-pipe Windows 95/98, Windows NT
transport version 4 and earlier.
Rpclic3.dli Client TCP/IP transport Windows 95/98, Windows NT
version 4 and earlier.
Rpclts3.dll Server TCP/IP transport Windows 95/98, Windows NT
version 4 and earlier.
Rpcltc5.dll Client NetBIOS transport Windows 95/98, Windows NT
version 4 and earlier.
Rpclts5.dll Server NetBIOS transport Windows 95/98, Windows NT
version 4 and earlier.
Rpclic6.dll Client SPX transport Windows 95/98, Windows NT
version 4 and earlier.
Rpclis6.dll Server SPX transport Windows 95/98, Windows NT
version 4 and earlier.
Rpcdgc6.dil Client IPX transport Windows 95/98, Windows NT
(Windows NT/ version 4 and eatrlier.
Windows 2000 only)
Rpcdgs6.dll Server IPX transport Windows 95/98, Windows NT

(Windows NT/
Windows 2000 only)

version 4 and earlier.

Chapter 7 Installing the RPC Programming Environment 59

Dynamic-link
library Description Platform
Rpcdgce3.dil Client UDP transport Windows 95/98, Windows NT
(Windows NT/ version 4 and earlier.
Windows 2000 only)
Rpcdgs3.dli Server UDP transport Windows 95/98, Windows NT
(Windows NT/ version 4 and earlier.
Windows 2000 only)
Rpcns4.dll Name service Windows 95/98, Windows NT
version 4 and earlier, Windows 2000.
Rpcri4.dll 32-bit Windows run-time Windows 95/98, Windows NT
library version 4 and earlier, Windows 2000.

You will also need the Microsoft Interface Definition Language (MIDL) compiler. For
more information, see Using The MIDL Compiler.

Developing Macintosh Client Applications

To develop client-side applications for the Macintosh, you must have the following:

e The Microsoft® Visual C++® development system for the Macintosh. The RPC
runtime has been compiled using Visual C++ cross-development tools. In order to use
Rpc.lib, you must link against the C run-time and swapper library (Swap.lib) provided
with Visual C++, version 2.0 or later.

e The Macintosh RPC SDK, which is contained in a disk image in the Platform SDK
directory \rpc_sdk. Run SETUP.EXE from Disk 1 to install the Macintosh header and
library files. Note that the current Rpc.lib is native 68K. We currently do not provide a
native Power Mac library. RPC runs in emulation on Power Macs.

e The target computer must have a microprocessor of 68020 or later, and it must be
running System 7.0 or later.

» To connect to the Windows NT/Windows 2000 or Windows 95 server

e Current Windows NT/Windows 2000-supported protocols for the Macintosh are ADSP
and TCP/IP. In order to use ADSP, the Windows NT/Windows 2000 server must have
both the AppleTalk protocol and Services for Macintosh. Windows 95 supports only
the TCP/IP protocol for the Macintosh.

60 Volume 3 RPC and WNet

» To write an RPC client

1. If you use atexit to perform cleanuvp during shutdown, do not call any RPC APlIs in
your exit processing function.

2. If ayielding function is not registered, an RPC will not yield on the Macintosh.
Register a yielding function by calling RpcMacSetYieldinfo.

3. Most client-side APlIs that are supported by Windows 3.x are also supported by the
Macintosh. The Macintosh does not support the following APls:

e RpcNs* APIs
e RpcMgmt* APIs
¢ RpcWinSetYieldinfo (replaced by RpcMacSetYieldinfo)

The only authentication service currently supported for the Macintosh is
RPC_C_AUTHN_WINNT.

The following protocol sequences are supported:

e ADSP:ncacn_at_dsp
e TCP:ncacn_ip_tcp

61

CHAPTER 8
Building RPC Applications

The exact procedure for building a distributed Remote Procedure Call (RPC) application
varies slightly, depending on:

¢ the operating-system platform you are developing on

the target platform

¢ the version of the MIDL and C or C++ compiler you use

the API libraries you use

For details, see Environment, Compiler, and API Set Choices. This section discusses the
process of building client/server applications with Microsoft® Remote Procedure Call.

General Build Procedure

The process for creating a client/server application using Microsoft® RPC is:

e Develop the interface.
¢ Develop the server that implements the interface.
¢ Develop the client that uses the interface.

Figure 8-1 illustrates these steps.

Develop the Interface

\\

T~

Develop the Client Develop the Server

Figure 8-1: Creating a Client/Server Application Using RPC.

Note that it is not only feasible to develop the client and server applications concurrently,
it is likely that you will do so. However, since both the client and server programs are
dependent on the interface, the interface between them must be developed before the
client and server are developed, as shown in the preceding diagram.

This section discusses the steps required for building a client/server application
with RPC.

62

Volume 3 RPC and WNet

Developing the Interface

An RPC interface describes the remote functions that the server program implements.
The interface ensures that the client and server programs communicate using the same
rules when the client invokes a remote procedure that the server offers. An interface
consists of an interface name, some attributes, optional type or constant definitions, and
a set of procedure declarations. Each procedure declaration must contain a procedure
name, return type, and parameter list.

Interfaces are defined in the Microsoft® Interface Definition Language (MIDL). If you are
familiar with C or C++, MIDL interface definitions will seem fairly straightforward. MIDL
resembles C and C++ in many ways.

When developing an RPC application, you use a text editor to define the interface and
store it in a text file with an .idl extension. For more information, see The IDL and ACF
Files. You use the MIDL compiler to generate a header file that your program includes in
the client and server source files. The MIDL compiler also generates two C source files.
You compile and link one of these to your client program, and the other to your server
program. These two C source files are the client and server stubs. For an overview of
the client and server stubs, see How RPC Works. For an overview on the MIDL
compiler, see Compiling a MIDL File.

Figure 8-2 shows the process of creating an interface.

MyApp.idl

l

MyApp.h

MyApp_c.c MyApp_s.c

Client Stub Server Stub

Figure 8-2: Creating an Interface.

It is possible that you will also need to specify an application configuration file (ACF) for
input to the MIDL compiler as well. For more information on application configuration
files, see The IDL and ACF Files.

Chapter 8 Building RPC Applications 63

In addition to the MIDL compiler, you will typically need to use the Uuidgen utility to
generate a Universal Unique Identifier (UUID). This section presents information on both
of these tools, divided into the following topics:

¢ Generating Interface UUIDs
e Using MIDL

Generating Interface UUIDs

This section pfesents information on Universal Unique Identifiers (UUIDs) and the
Uuidgen utility in the following topics:

e What is a UUID?
e Using Uuidgen

What is a UUID?

All interfaces must be uniquely identified on a network so that clients can find them. On
small networks, the interface’s name alone may be sufficient to identify it. However, that
is usually not feasible on large networks. Therefore, developers typically assign a
Universal Unique Identifier (UUID) to each interface. A UUID is a string that contains a
set of hexadecimal digits. Each interface has a different UUID. For details, see String
UuID.

The textual representation of a UUID is a string consisting of 8 hexadecimal digits
followed by a hyphen, followed by three hyphen-separated groups of 4 hexadecimal
digits, followed by a hyphen, followed by 12 hexadecimal digits. The following example is
a valid UUID string:

&

Empty UUIDs are referred to as nil UUIDs rather than NULL UUIDs. The term nil
indicates anything that is zero, blank, empty, or uninitialized. An empty string, an empty
database record, or an uninitialized UUID are all examples of nil values.

Note The value NULL is the specific value zero. It is often used in C and C++
programming in conjunction with pointers. Nil is a more general term than NULL.
Uninitialized object interface UUIDs should always be referred to as nil UUIDs rather
than NULL UUIDs.

Using Uuidgen

Microsoft provides a utility program called Uuidgen, that you can use to generate your
UUIDs. The Uuidgen program is a command-line utility that creates unique identifiers in
the required format using both a time identifier and a computer identifier. It guarantees
that any two UUIDs produced on the same computers are unique because they are
produced at different times, and that any two UUIDs produced at the same time are
unique because they are produced on different machines. The Uuidgen utility generates
the UUID in IDL file format or C-language format.

64

Volume 3 RPC and WNet

When you run the Uuidgen utility from the command line, you can use the following
command switches.

Uuidgen switch Description

n Outputs UUID to an IDL interface template.

Is Outputs UUID as an initialized C structure.

lo<filename> Redirects output to a file; specified immediately after
the /o switch.

In<number> Specifies the number of UUIDs to generate.

A Displays version information about Uuidgen.

hor? Displays command-option summary.

Typically, you will use the Uuidgen utility as shown in the following example:

This command generates a UUID and stores it in a MIDL file that you can use as a
template. When the preceding command is executed, the contents of MyApp.id! are
similar to the following:

i e s

The next step would be to replace the placeholder name, INTERFACENAME, with the
actual name of your interface.

Using MIDL

All interfaces for programs using RPC must be defined in Microsoft Interface Definition
Language (MIDL) and compiled with the MIDL compiler. The following topics present a
brief overview of creating and compiling a MIDL interface:

¢ Defining an Interface with MIDL

e Compiling a MIDL File

For a detailed discussion of these topics, see The IDL and ACF Files.

Defining an Interface with MIDL

MIDL files are text files that you.can create and edit with a text editor. If you generate a
UUID for your interface, you will typically store the output in a template MIDL file. For
more information on UUIDs, see Generating Interface UUIDs.

Chapter 8 Building RPC Applications 65

All interfaces in MIDL follow the same format. They begin with a header that contains a
list of interface attributes and the interface name. The attributes are enclosed in square
brackets. The interface header is followed by its body, which is enclosed in curly
brackets. A simple interface is shown in the following example:

Some of the attributes that typically appear in a MIDL interface definition are the UUID
and the interface version number. The body of the interface definition must contain the
procedure declarations of all of the remote procedures in the interface. It can also
contain the declarations of data types and constants that the interface requires.

All parameters in the remote procedure declarations must be declared as [in], [out], or
[in,out]. These declarations specify that the client program passes data into a remote
procedure, gets data out of a remote procedure, or both. For more detailed information
about interface parameter declarations, see The IDL Interface Body.

Compiling a MIDL File

The MIDL compiler is a command-line tool that is automatically installed with the
Platform SDK. Invoke it in an MS-DOS® window: by typing the command midl, followed
by the name of a MIDL file, at the command line. Make sure that the directory containing
the MIDL compiler is in your path. The following example illustrates its use:

Note that you do not have to include the extension if the file name has the .idl extension.
You can also use the MIDL compiler command-line switches by inserting them between
the midl command and the file name. This is demonstrated in the following example:

In this example, the MIDL compiler is executed using the file MyApp.idl as the input file.
The command line switch /acf instructs the compiler to use an application configuration
file (ACF) for input as well. Application configuration files are discussed more thoroughly
in The IDL and ACF Files. '

66 Volume 3 RPC and WNet

For more detailed information on using the MIDL compiler, see the MIDL Programmer’s
Guide and Reference on MSDN, which contains information on the following topics:

e C-Preprocessor Requirements and Options

e C-Compiler Requirements and Options

¢ Files Generated for an RPC Interface

¢ MIDL Command-line Reference

e MIDL Language Reference

e MIDL Compiler Errors and Warnings

Developing the Server

When you create a server program for a distributed application, you must use the header
file and server stub that the MIDL compiler generates. For details, see Developing the
Interface. Include the header file in your server C program file. Compile the server stub
with the C source files that compose your application. Link the resulting object files
together with the RPC run-time library. This process is illustrated in Figure 8-3.

MyApp.idi

MyApp.h MySrvr.c RProcs.c
#Include

MyApp_s.c

Server Stub

l

MySrvr.exe

Figure 8-3: Creating a Server Program for a Distributed Application.

Chapter 8 Building RPC Applications 67

As you can see from the example in the illustration, a MIDL file called MyApp.idl was
used to define the interface. The MIDL compiler used MyApp.idl to produce MyApp_s.c
and MyApp.h. It also produces a C source file for the client stub, but that is not relevant
to this particular discussion. The C source file for the server program (in this case,
Mysrvr.c) must include the file MyApp.h. It will also need to include the files RPC.h and
RPCNDR.h.

The server application was developed in two files, MySrvr.c and RProcs.c. The file
MySrvr.c contains the functions necessary for getting the server program up and
running. The remote procedures that the server program offers are contained in the file
RProcs.c. ’

The files MySrvr.c and RProcs.c were compiled together with MyApp_s.c to produce
object files. The object files were then linked with the RPC run-time library, and any other
libraries that they might need. The result is an executable server program named
MySrvr.exe.

If you do not compile your IDL file in Open Software Foundation (OSF) compatibility
mode (/osf), your server program must provide a function for allocating memory and a
function for deallocating it. For details, see How Memory Is Allocated and Deallocated,
and Pointers and Memory Allocation.

Developing the Client

Developing an RPC client program is similar to developing the server program. For
information on developing an RPC server program, see Developing the Server.

As in server development, your client program must include the header file that the MIDL
compiler generates from your .idl file. The MIDL compiler also generates a C source file
containing the client stub. You must compile this C source file and link it to your client
program. (In addition, the MIDL compiler generates a C source file containing the server
stub, but that is not relevant to this discussion.)

In addition to compiling and linking the server stub with your program files, you must link
the RPC run-time library (and any other libraries your client program needs) to your
client program. The process of creating an RPC client programis illustrated in

Figure 8-4.

The example in the preceding illustration demonstrates the creation of an RPC client
program called MyCint.exe. The first step is to define the interface in the file MyApp.idl.
The MIDL compiler uses MyApp.idl to generate the file MyApp_c.c, which contains the
client stub. It also generates the file MyApp.h, which the client program must include.
The client program will also need to include the files RPC.h and RPCNDR.h.

The client program itself is created in the file MyCint.c. In a real project, the client
program would typically be composed of several C source files. All of them would need
to be compiled and linked together. However, this example uses only one file for
simplicity.

68

Volume 3 RPC and WNet

MyApp.idl

MyApp.h MyClint.c

MyApp_c.c #Include

Client Stub

1

MyClnt.exe

Figure 8-4: Creating an RPC Client Program.

The files MyCint.c and MyApp_c.c are compiled and linked together with the RPC run-
time library, and any other libraries that the client program needs. The result is an
executable client program named MyClint.exe.

If you do not compile your IDL file in OSF compatibility mode (/osf), your client program
must provide a function for allocating memory and a function for deallocating it. For
details, see How Memory Is Allocated and Deallocated, and Pointers and Memory
Allocation.

Environment, Compiler, and APl Set Choices

You can develop RPC applications for different target environments: Microsoft®
MS-DOS®, Microsoft® Windows® 3.x, Windows 95/98, and Microsoft®

Windows NT®/Windows® 2000. You can also develop the executable applications for
these target environments using different build environments. Accordingly, you can
choose among several development environments, MIDL and C compilers, and API sets.

Available tools and libraries are described in the fdllowing table.

Chapter 8 Building RPC Applications 69

Development tool Description

MIDL 3.0 for 32-bit Produces C source code for 16-bit or 32-bit

environment environments.

C and MSVC for 16-bit Produces 16-bit object files only.

environment

C and MSVC for 32-bit Produces 32-bit object files only.

environment (Platform SDK)

Microsoft® Win32® API Provided for 32-bit environment only (RPC functions
are provided as 32-bit DLLs).

Windows 3.x API Provided for 16-bit environment only (RPC functions

are provided as 16-bit Windows DLLs).

Exception Handling

RPC uses the same approach to exception handling as the Microsoft® Win32® API.

With Microsoft® Windows® 95 and Windows NT®Windows 2000, the RpcTryFinally /
RpcFinally / RpcEndFinally structure is equivalent to the Win32 try-finally statement.
The RPC exception construct RpcTryExcept / RpcExcept / RpcEndExcept is
equivalent to the Win32 try-except statement.

The exception-handler structures in RPC are provided so they can also be supported on
‘computers with the Microsoft® MS-DOS® and Windows 3.x operating systems. When
you use the RPC exception handlers, your client-side source code is portable to
Windows NT/Windows 2000, Windows 95/98, Windows 3.x, and MS-DOS. The different
RPC header files provided for each platform resolve the RpcTry and RpcExcept
structures for each platform. In the Win32 environment, these macros map directly to the
Win32 try-finally and try-except statements. In other environments, these macros map
to other platform-specific implementations of exception handlers.

Potential exceptions raised by these structures include the set of error codes returned by
the RPC functions with the prefixes RPC_S_ and RPC_X and the set of exceptions
returned by Win32. For details, see RPC Return Values.

Exceptions that occur in the server application, server stub, and server run-time library
(above the transport layer) are propagated to the client. This propagation feature
includes multiple layers of callbacks. No exceptions are propagated from the server
transport level. Figure 8-5 shows how exceptions are returned from the server to the
client.

70 Volume 3 RPC and WNet

Client Server
Application Application

Client Server

Stub Stub

v —1

Client 1 Server
Run-Time -1 Bun-Time
Transport -} Transport
{. Reururseurn P S

Figure 8-5: Returning Exceptions from Server to Client.

The RPC exception handlers differ slightly from the Open Software Foundation-
Distributed Computing Environment (OSF-DCE) exception-handling macros TRY,
FINALLY, and CATCH. Various vendors provide include files that map the OSF-DCE
RPC functions to the Microsoft RPC functions, including TRY, CATCH, CATCH_ALL,
and ENDTRY. These header files also map the RPC_S_* error codes onto the OSF-
DCE exception counterparts, rpc_s_*, and map RPC_X_* error codes to rpc_x_*. For
OSF-DCE portability, use these include files.

For more information about the RPC exception handlers, see RpcExcept and
RpcFinally. For more information about the Win32 exception handlers, see the
Platform SDK documentation.

n

CHAPTER 9

Connecting the Client and
the Server

To communicate, client and server programs must establish a communication session
across the network or networks that connect them. Once they establish the connection,
the client can call remote procedures in the server program as if they were local to the
client program.

This section provides a conceptual overview of how to establish a connection between
clients and servers for remote procedure calls. It does not provide an in-depth discussion
of this topic. All of the concepts in this section are presented in detail in later chapters
and in the RPC Function Reference section.

Note that the discussion assumes automatic binding handles for the sake of simplicity.
However, if your application uses implicit or explicit binding handles, you must take some
extra steps in addition to what is presented in this section. For details, see Binding and
Handles.

Essential RPC Binding Terminology

To better aid in a discussion of the client/server connection process, it is helpful to know
the following terms.

Protocol Sequence
When network operating systems communicate with each other, they must listen and
speak the same language. These languages are called protocol sequences. Client
and server programs must use protocol sequences that the network connecting them
supports. Microsoft® RPC supports a variety of protocol sequences. For details, see
Selecting a Protocol Sequence, Specifying Protocol Sequences, and endpoint.

Server Host Computer or Server Host System
The server program runs on the server host computer. However, much literature on
client/server computing refers to both the server program and the server host
computer as the “server.” The result is that it is not always clear which is being
discussed.

Endpoint
Server programs listen to a port or a group of ports on the server host computer for
client requests. Server host systems maintain a database of these ports, which are
called endpoints in RPC. The database is called the endpoint map.

72

Volume 3 RPC and WNet

Binding
Client and server programs create a binding to each other to establish a
communication session. A binding contains all of the information the client and server
applications need to create the session.

‘Name Service
A name service is a distributed database containing server program identification
information.

How the Server Prepares for a Connection

When a server program begins execution, it must first register the interface or interfaces
it contains with the RPC run-time library. It then creates the necessary binding
information, and advertises its presence in a name-service database. The server
program must also register the endpoint or endpoints it listens to. It can then begin
listening for client calls. This process is illustrated in Figure 9-1.

Server Program
. Register the
interface.

. Create Binding
Information.

3. Advertise the
server program.

. Register the
endpoints.
. Listen for client

Name Service
Database

RPC Run-time Library

Endpoint
Map

Figure 9-1: A Server Preparing for a Connection.

Chapter 9 Connecting the Client and the Server 73

This section presents information on the steps that a server process must take to
prepare for a connection.

Registering the Interface

Registering the interface that a server program supports enables client programs to find
out on which server host computer the server program runs. Server programs-call
RpcServerRegisterlf to register their interfaces. The following code fragment
demonstrates its use:

The first parameter to the RpcServerRegisterlf function is a structure the MIDL compiler
generates from the IDL file that defines the interface (or interfaces) for the server. The
second and third parameters are a UUID and an entry-point vector, respectively. They
are set to NULL in this example. In many instances, your server program will set these
parameter values to NULL. Server programs use the second and third parameters when
they provide multiple implementations of the same procedures in an interface. For more
information, see Entry-Point Vectors.

Server programs can also use RpcServerRegisterlfEx to register an interface. One
advantage of using this function is that it provides your application with the ability to set a
security-callback function. Using security-callback functions is more secure than using
entry-point vectors.

Creating Binding Information

To register an endpoint and advertise itself in a name-service database, a server
program must create binding information. However, before creating the binding
information, your server application must select one or more protocol sequences. Most
server programs, use all of the protocol sequences that are available on the network. To
do this, they invoke the RpcServerUseAllProtseqs function, as shown in the following
code fragment: '

The first parameter to the RpcServerUseAllProtseqs function is the maximum number
of remote procedure calls that the server program will accept at one time. As shown in
the code fragment, most server programs set this parameter to
RPC_C_PROTSEQ_MAX_REQS_DEFAULT. This sets the RPC library to use the
default maximum value. The second parameter is a security descriptor for secure RPC
bindings. See Security for details.

74 Volume 3 RPC and WNet

If you want your application to use just one protocol sequence, call
RpcServerUseProtseq, RpcServerUseProtseqEx, RpcServerUseProtseqEp, or
RpcServerUseProtseqEpEXx.

After it selects at least one protocol sequence, a server application must create binding
information for each protocol sequence that it uses. It stores the binding information in a
binding handle. For details, see Binding and Handles. If the server program uses more
than one protocol sequence, it must create more than one binding handle. A set of
binding handles is called a binding vector.

Use the RpcServeringBindings function to obtain a binding vector for the server
application as shown in the following code fragment:

The only parameter to the RpcServeringBindings function is a pointer to a pointer to an
RPC_BINDING_VECTOR structure. The RPC run-time library will dynamically allocate
an array of binding vectors and store the address of the array in the parameter variable
(in this case, rpcBindingVector). Before it terminates, your server application must call
the RpcBindingVectorFree function to free the memory that the
RpcServeringBindings function allocates.

Advertising the Server Program

After a server registers all interfaces it supports and creates the binding information, it
can advertise its presence in a name-service database. Use the RpcNsBindingExport
function to accomplish this, as shown in the following code fragment:

The first parameter to the RpcNsBindingExport function specifies the syntax of the
second parameter, EntryName. Microsoft® RPC currently supports only one name-
service syntax. Therefore, applications should set the first parameter of
RpcNsBindingExport to the value RPC_C_NS_SYNTAX_DEFAULT.

Chapter 9 Connecting the Client and the Server 75

Microsoft RPC does not force an entry name format on the application. However, the
client and server programs must use the same format. Set the IfSpec parameter to a
structure that specifies the interface to export to the name-service database. The MIDL
compiler generates this data structure. You will find it in the header file that the MIDL
compiler produces from your MIDL file.

The fourth parameter is a pointer to the binding vector that your server program obtained
from the RpcServeringBindings function.

In addition to exporting binding handles to the name-service database, your program can
export object UUIDs. In this example, only binding handles are exported. Therefore, the
last parameter to RpcNsBindingExport is set to NULL.

Registering Endpoints

Registering the server program in the endpoint map of the server host computer enables
client programs to determine which endpoint (usually a TCP/IP port or a named pipe) the
server program is listening to. To register itself in the server host system’s endpoint map,
a server program calls the RpcEpRegister function as shown in the following code
fragment:

The first parameter to RpcEpRegister is the structure that represents the interface. You
can find it in the header file that the MIDL compiler generated from your MIDL file for this
distributed application. See Developing the Interface. Next, RpcEpRegister needs your

application to pass a set of binding handles that are stored in a binding vector.

In addition to registering interface names, your server application can also register object
UUIDs in the endpoint map. In this example, there are no object UUIDs to register, so
the third parameter to RpcEpRegister is set to NULL.

The last parameter is a comment string. The RPC run-time library does not use this
string. Your client programs read this string from the endpoint map and, if you set it up to
do so, display it to users.

Listening for Client Calls

After your server application has registered its interfaces, created the necessary binding
information, advertised its interfaces in the name-service database, and registered its
endpoints, it is ready to begin listening for remote procedure calls from client programs.

76

Volume 3 RPC and WNet

To listen for remote procedure calls, your server program must call RpcServerListen, as
shown in the following code fragment:

The RpcServerListen function can create multiple threads to listen for concurrent
remote procedure calls. The first parameter to RpcServerListen is the minimum number
of threads to create.

The second parameter to RpcServerListen is the maximum number of concurrent
remote procedure calls to handle. If you want your application to use the default
maximum value, pass RPC_C_LISTEN_MAX_CALLS_DEFAULT as the value for this
parameter.

The DCE specification calls for RpcServerListen to keep running until it receives a
signal to stop. One Microsoft extension to this function is to enable it to begin listening
and return immediately. If you want your application to use the default DCE behavior, set
the third parameter to zero. See RpcServerListen, RpcMgmiStopServerListening,
and RpcMgmtWaitServerListen for details.

How the Client Establishes a Connection

To establish a client/server communication session with a server program, client
applications with automatic binding handles can simply call remote procedures. When
they do, the RPC run-time library finds the computer that hosts the server program. It
then finds the endpoint that the server program is listening to and creates a binding
handle. Once the client has a binding handle to the server program, it can execute any
remote procedures that the server program offers. Figure 9-2 illustrates this process.

Chapter9 Connecting the Client and the Server 77

1. Make remote procedure call. }

RPC Run-time Library

Endpoint 4. Create binding to
Map server process.

Name Service
Database

Figure 9-2: Establishing a Communication Session with a Server Program.

78 Volume 3 RPC and WNet

This section presents information about how the client connects to the server program
and executes remote procedures that it offers.

Making a Remote Procedure Call

The client program of distributed applications that use automatic binding handles can
simply execute remote procedures as if they were procedures local to the client program.

Microsoft® RPC also offers implicit and explicit binding handles. These binding handles
offer your client and server programs more control over the process of executing remote
procedures. However, with increased flexibility and control also comes increased
complexity. Implicit and explicit binding handles require that your application manage all
or part of the binding process. You must decide what features and levels of control are
appropriate for your application. For an in-depth discussion of the different handle types
and the flexibility they offer, see Binding and Handles.

Finding the Server Host Computer

When a client program invokes a remote procedure, it is actually calling a procedure in
the client stub that you compiled and linked to it. For more information on the client stub,
see How RPC Works.

Clients must be able to find server programs. Most networks are large enough to require
the use of a name-service database. Server programs register their interfaces in the
name server database. See Registering the Interface. The client stub uses the name-
service database to find the computer that currently hosts the interface.

Itis possible for multiple computers to host the same interface. With automatic binding
handles, your client program has no control over which server host computer it connects
to, as long as the server host computer offers the interface the client requires. Other
types of binding handles offer your client programs the ability to connect to specific
server programs. Your server applications can also selectively refuse to allow clients to
connect. This lets you specify which servers clients can and can’t connect to when
requesting services. For more information, see Binding and Handles.

Chapter 9 Connecting the Client and the Server 79

Finding the Server Program

After the client stub uses the name-service database to find a server host system that
offers the interface it is looking for, the client RPC run-time library finds the server
process. To do this, it queries the endpoint map on the server host system. The endpoint
map contains information about which endpoint the server is listening to.

Creating a Binding

When the RPC client run-time library finds a server host system that provides the
interface the client program needs and the endpoint that the server application is
listening to, it creates a binding handle.

A binding handle is a structure that contains the information that client and server
programs need to establish a communication session between the client and the server.
After they have created the binding handles they need, client and server program do not
need to continue to query the name-service database or endpoint map to maintain the
communication session.

Client and server programs must not try to access the contents of the binding handle
structure. The RPC run-time library functions use and manage the information in binding
handles. The most that client and server applications need to do is pass the binding
handle to RPC library calls and remote procedures. This is only the case if the
application does not use automatic binding handles. See Binding and Handles for
details.

81

CHAPTER 10

An RPC Tutorial

This chapter’s tutorial takes you through the steps required to create a simple, single-
client, single-server distributed application from an existing stand-alone application.
These steps are:

o Create interface definition and application configuration files.

e Use the MIDL compiler to generate C-language client and server stubs and headers
from those files.

e Wirite a client application that manages its connection to the server.
o Wirite a server application that contains the actual remote procedures.

. Corripile and link these files to the RPC run-time library to produce the distributed
application.

The client application passes a character string to the server in a remote procedure call,
and the server prints the string “Hello, World” to its standard output.

The complete source files for this example application, with additional code to handle
command-line input and to output various status messages to the user, are in the
Platform SDK directory \mstools\samples\rpc\hello and in the Code Samples, RPC
section of the Platform SDK documentation.

The Stand-Alone Application

This stand-alone application, which consists of a call to a single function, forms the basis
of our distributed application. The function, HelloProc, is defined in its own source file so
that it can be compiled and linked with either a stand-alone application or a distributed
application.

(contlnued

82 Volume 3 RPC WNet

(cohtinued)

Defining the Interface

An interface definition is a formal specification for how a client application and a server
application communicate with each other. The interface defines how the client and
server “recognize” each other, the remote procedures that the client application can call,
and the data types for those procedures’ parameters and return values. It also specifies
how the data is transmitted between client and server.

You define this interface in the Microsoft® Interface Definition Language (MIDL) which
consists of C-language definitions augmented with keywords, called attributes, which
describe how the data is transmitted over the network.

The interface definition (.IDL) file contains type definitions, attributes and function

- prototypes that describe how data is transmitted on the network. The application
configuration (.ACF) file contains attributes that configure your application for a particular
operating environment without affecting its network characteristics.

Generating the UUID

The first step in defining the interface is to use the uuidgen utility to generate a
universally unique identifier (UUID). A UUID enables the client and server applications
identify each other. The uuidgen utility (UUIDGEN.EXE) is automatically installed when
you install the Platform SDK. The following command generates a UUID and creates a
template file called hello.idl:

Your hello.idl template will look like this (with a different UUID, of course):

Chapter 10 An RPC Tutorial 83

The IDL File

The IDL file consists of one or more interface definitions, each of which has a header
and a body. The header contains information that applies to the entire interface, such as
the UUID. This information is enclosed in square brackets and is followed by the
keyword interface and the interface name. The body contains C-style data type
definitions and function prototypes, augmented with attributes that descrlbe how the data
is transmitted over the network.

In this example, the interface header contains only the UUID and the version number.
The version number ensures that when there are multiple versions of an RPC interface,
only compatible versions of the client and server will be connected.

The interface body contains the function prototype for HelloProc. In this prototype, the
function parameter pszString has the attributes [in] and [string]. The [in] attribute tells
the run-time library that the parameter is passed only from the client to the server. The
[string] attribute specifies that the stub should treat the parameter as a C-style character
string.

The client application should be able to shut down the server appllcatlon so the
interface contains a prototype for another remote function, Shutdown, that will be
implemented later in this tutorial.

The ACF File

The ACF file enables you to customize your client and/or server applications’ RPC
interface without affecting the network characteristics of the interface. For example, if
your client application contains a complex data structure that only has meaning on the
local machine, you can specify in the ACF file how the data in that structure can be
represented in a machine-independent form for remote procedure calls.

This tutorial demonstrates another use of the ACF file—specifying the type of binding
handle that represents the connection between client and server. The [implicit_handle]
attribute in the ACF header allows the client application to select a server for its remote
procedure call. The ACF defines the handle to be of the type handle_t (a MIDL primitive
data type). The MIDL compiler will put the binding handle name that the ACF specified,
hello_IfHandle into the header file it generates. Notice that this particular ACF file has an
empty body.

84 Volume 3 RPC WNet

The MIDL compiler has an option, /app_config, that lets you include certain ACF
attributes, such as implicit_handle, in the IDL file, rather than creating a separate ACF
file. Consider using this option if your application doesn’t require a lot of special
configuration and if strict OSF compatibility is not an issue. For more information, see
OSF Standards for RPC.

Generating the Stub Files

After defining the client/server interface, you usually develop your client and server
source files. Next use a single makefile to generate the stub and header files. Compile
and link the client and server applications. However, if this is your first exposure to the
distributed computing environment, you may want to invoke the MIDL compiler now to
see what MIDL generates before you continue. The MIDL compiler (MIDL.EXE) is
automatically installed when you install the Platform SDK.

When you compile these files, make sure that hello.idl and hello.acf are in the same
directory. The following command will generate the header file hello.h, and the client and
server stubs, hello_c.c and hello_s.c:

Notice that hello.h contains function prototypes for HelloProc and Shutdown, as well as
forward declarations for two memory management functions,midl_user_allocate and
midl_user_free. You will provide these two memory management functions in the server
application. If data were being transmitted from the server to the client (by means of an
[out] parameter) you would also need to provide these two memory management
functions in the client application.

Note the definitions for the global handle variable, hello_IfHandle, and the client and
server interface handle names, hello_v1_0_c_ifspec and hello_v1_0_s_ifspec. The client

and server applications will use the interface handle names in run-time calls.

At this point, you don’t need to do anything with the stub files hello_c.c and hello_s.c.

85

Chapter 10 An RPC Tutorial

.
.
L

L

i

.

86

Volume 3 RPC WNet

The Client Application

The helloc.c source file contains a directive to include the MIDL-generated header file,
hello.h. Within hello.h are directives to include rpc.h and rpcndr.h, which contain the
definitions for the RPC run-time routines and data types that the client and server
applications use.

Because the client is managing its connection to the server, the client application calls
run-time functions to establish a handle to the server and to release this handle after the
remote procedure calls are complete. The function RpcStringBindingCompose
combines the components of the binding handle into a string representation of that
handle and allocates memory for the string binding. The function
RpcBindingFromStringBinding creates a server binding handle, hello_IfHandle, for the
client application from that string representation.

In the call to RpcStringBindingCompose, the parameters do not specify the UUID
because this tutorial assumes there is just one implementation of the interface “hello.” In
addition, the call does not specify a network address because the application will use the
default, which is the local host machine. The protocol sequence is a character string that
represents the underlying network transport. The endpoint is a name which is specific to
the protocol sequence. This example uses named pipes (a native Microsoft®

Windows NT®/Windows® 2000 protocol) for its network transport, so the protocol
sequence is “ncacn_np”. The endpoint name is “\pipe\hello”.

The actual remote procedure calls, HelloProc and Shutdown, take place within the
RPC exception handler—a set of macros that let you control exceptions that occur
outside the application code. If the RPC run-time module reports an exception, control
passes to the RpcExcept block. This is where you would insert code to do any needed
cleanup and then exit gracefully. This example program simply informs the user that an
exception ocurred. If you do not want to use exceptions, you can use the ACF attributres
comm_status and fault_status to report errors.

After the remote procedure calls are completed, the client first calls RpcStringFree to
free the memory that was allocated for the string binding. Note that once the binding
handle has been created, a client program can free a string binding at any time. The
client next calls RpcBindingFree to release the handle.

87

Chapter 10 An RPC Tutorial

(continued)

88

Volume 3 RPC WNet

(continued)

The Server Application

The server side of the distributed application informs the system that its services are
available. It then waits for client requests.

Depending on the size of your application and your coding preferences, you can choose
to implement remote procedures in one or more separate files. In this tutorial program,
the source file hellos.c contains the main server routine. The file hellop.c contains the
remote procedure.

The benefit of organizing the remote procedures in separate files is that the procedures
.can be linked with a stand-alone program to debug the code before it is converted to a
distributed application. After the procedures work in the stand-alone program, you can
compile and link the the source files containing the remote procedures with the server
application. As with the client-application source file, the server-application source file
must include the hello.h header file.

The server calls the RPC run-time functions RpcServerUseProtseqEp and
RpcServerRegisterlf to make binding information available to the client. This example
program passes the interface handle name to RpcServerRegisterlf. The other
parameters are set to NULL. The server then calls the RpcServerListen function to
indicate that it is waiting for client requests.

The server application must also include the two memory management functions that the
server stub calls:midl_user_allocate and midl_user_free. These functions allocate and
free memory on the server when a remote procedure passes parameters to the server.
In this example program, midl_user_allocate and midl_user_free are simply wrappers
for the C-library functions malloc and free. (Note that, in the MIDL compiler- generated
forward declarations, “midl” is uppercase. The header file rpcndr.h defines
midl_user_free and midl_user_allocate to be MIDL_user_free and MIDL_user_allocate,
respectively).

Chapter 10 An RPC Tutorial 89

(continued)

90

Volume 3 RPC WNet

(continued)

Stopping the Server Application

A robust server application should stop listening for clients and clean up after itself
before shutting down. The two core server functions that accomplish this are
RpcMgmtStopServerListening and RpcServerUnregisterlf.

The server function RpcServerListen doesn’t return to the calling program until an
exception occurs or until a call to RpcMgmtStopServerListening occurs. By default,
only another server thread is allowed to halt the RPC server by using
RpcMgmtStopServerListening. Clients who try to halt the server will receive the error
RPC_S_ACCESS_DENIED. However, it is possible to configure RPC to allow some or
all clients to stop the server. See RpcMgmiStopServerListening for details.

You can also have the client application make a remote procedure call to a shutdown
routine on the server. The shutdown routine calls RpcMgmtStopServerListening and
RpcServerUnregisterlf. This tutorial’s example program application uses this approach
by adding a new remote function, Shutdown, to the file hellop.c.

In the Shutdown function, the single NULL parameter to
RpcMgmtStopServerListening indicates that the local application should stop listening
for remote procedure calls. The two NULL parameters to RpcServerUnregisterlf are
wildcards, indicating that all interfaces should be unregistered. The FALSE parameter
indicates that the interface should be removed from the registry immediately, rather than
waiting for pending calls to complete.

Chapter 10 An RPC Tutorial 91

Compiling and Linking

The following makefile shows the dependencies among the files needed to compile the
client and server applications and link them to the RPC run-time library and the standard
C run-time library.

This makefile can be used to build client and server applications from the source code in
this tutorial. The stubs and headers shown here were generated with MIDL version 2.0.
The compiler and linker commands and arguments may be different for your computer
configuration. See your compiler documentation for more information.

' continud)

92 Volume 3 RPC WNet

(continued)

Running the Application

To run the application on a single computer with Microsoft®
Windows NT®/Windows® 2000, open two console windows. In the first window, type:

and in the second window, type:

Because the distributed application uses named pipes as the transport protocol, the
server-side application will not run on Windows 95. To experiment with different protocol
sequences, endpoints, and other options, build the sample hello application from the
source files in \mstools\samples\rpc\hello on the Platform SDK CD. '

93

CHAPTER 11

The IDL and ACF Files

The syntax of the Microsoft® Interface Definition Language (MIDL) is based on the
syntax of the C programming language. When a language concept in this description
of MIDL is not fully defined, the C-language definition of that term is implied.

The MIDL design specifies two distinct files: the Interface Definition Language (IDL) file
and the Application Configuration File (ACF). These files contain attributes that direct the
generation of the C-language stub files that manage the remote procedure call (RPC).
The IDL file contains a description of the interface between the client and the server
programs. RPC applications use the ACF file to describe the characteristics of the
interface that are specific to the hardware and operating system that make up a
particular operating environment. The purpose of dividing this information into two files is
to keep the software interface separate from characteristics that affect only the operating
environment.

The IDL file specifies a network contract between the client and server—that is, the IDL
file specifies what is transmitted between the client and the server. Keeping this
information distinct from the information about the operating environment makes the IDL
file portable to other environments. The IDL file consists of two parts: an interface header
and an interface body.

The ACF specifies attributes that affect only local performance rather than the network
contract. Microsoft RPC allows you to combine the ACF and IDL attributes in a single
IDL file. You can also combine multiple interfaces in a single IDL file (and its ACF).

This section summarizes the attributes that are specified in the IDL and ACF files. It is
intended to only provide an overview. For more detailed information, see the MIDL
Language Reference, and the MIDL Command-Line Reference. The discussion in this
section is presented in the following topics:

¢ The Interface Definition Language (IDL) File

e The Application Configuration File (ACF)
e MIDL Compiler Output

The Interface Definition Language (IDL) File

An IDL file contains one or more interface definitions. Each interface definition is
composed of an interface header and an interface body. The interface header is
demarcated by square brackets. The interface body is contained in curly brackets.
This is illustrated in the example interface on the following page.

94 Volume 3 RPC and WNet

This section gives an overview of the components of an interface. It is organized into the
following topics:

‘e The IDL Interface Header
¢ The IDL Interface Body

DL Attributes

The IDL Interface Header

The IDL interface header specifies information about the interface as a whole. Unlike
the ACF, the interface header contains attributes that are platform-independent.

Attributes in the interface header are global to the entire interface. That is, they apply to
the interface and all of its parts. These attributes are enclosed in square brackets at the
beginning of the interface definition. An example is shown in the following interface
definition:

Notice that the interface header contains the [uuid] and [version] attributes. Since these
represent the UUID and version number of the interface respectively, they are attributes
of the entire interface.

The interface body can also contain attributes. However, they are not applicable to the
entire interface. They refer to specific items in the interface such as remote procedure
parameters.

For a complete discussion of the IDL header attributes, see the MIDL Language
Reference.

Chapter 11 The IDL and ACF Files 95

The IDL Interface Body

The IDL interface body contains data types used in remote procedure calls and the
function prototypes for the remote procedures. The interface body can also contain
imports, pragmas, constant declarations, and type declarations. In Microsoft-extensions
mode, the MIDL compiler also allows implicit declarations in the form of variable
definitions.

The following example shows an IDL file containing the definition of an interface. The
body of the interface definition, which occurs between the curly brackets, contains the
definition of a constant (BUFSIZE), a type (PCONTEXT_HANDLE_TYPE), and some
remote procedures (RemoteOpen, RemoteRead, RemoteClose, and Shutdown).

For more information see the' MIDL Language Réference.

96 Volume 3 RPC and WNet

The Application Configuration File (ACF)

The Application Configuration File (ACF) has two parts: an interface header, similar to
the interface header in the IDL file, and a body, which contains configuration attributes
that apply to types and functions defined in the interface body of the IDL file.

The ACF Header

The ACF header contains platform-specific attributes that apply to the interface as a
whole. Attributes applied to individual types and functions in the ACF body override
the attributes in the ACF header. No attributes are required in the ACF header.

The ACF header can include one of the following attributes: [auto_handle],
[implicit_handle], or [explicit_handie]. These handle attributes specify the type
of handle used for implicit binding when a remote function does not have an explicit
binding-handle parameter. When the ACF is not present or does not specify an
automatic, implicit, or explicit binding handle, MIDL uses [auto_handle] for implicit
binding.

Either [code] or [nocode] can appear in the interface header, but the one you choose
can appear only once. When neither attribute is present, the compiler uses [code] as a
default.

For more information, see ACF Attributes.

The ACF Body

The ACF body contains configuration attributes that apply to types and functions defined
in the interface body of the IDL file. The body of the ACF can be empty or it can contain
ACF include, typedef, function, and parameter attributes. All of these items are
optional. Attributes applied to individual types and functions in the ACF body override
attributes in the ACF header.

The ACF specifies behavior on the local computer and does not affect the data
transmitted over the network. It is used to specify details of a stub to be generated.
In DCE-compatibility mode (/osf), the ACF does not affect interaction between stubs,
but between the stub and application code.

A parameter specified in the ACF must be one of the parameters specified in the IDL file.
The order of specification of the parameter in the ACF is not significant because the
matching is by name, not by position. The parameter list in the ACF can be empty, even
when the parameter list in the corresponding IDL signature is not (but this is not
recommended). Abstract declarators (unnamed parameters) in the IDL file cause the
MIDL compiler to report errors while processing the ACF because the parameter is not
found.

Chapter 11 The IDL and ACF Files 97

The ACF include directive specifies the header files to appear in the generated header
as part of a standard C-preprocessor #include statement. The ACF keyword include
differs from an #include directive. The ACF keyword include causes the line “#include
filename” to appear in the generated header file, while the C-language directive
“#include filename” causes the contents of that file to be placed in the ACF.

The ACF typedef statement lets you apply ACF type attributes to types previously
defined in the IDL file. The ACF typedef syntax differs from the C typedef syntax.

The ACF function attributes let you specify attributes that apply to the function as a
whole. For more information, see [code], [optimize], and 0

The ACF parameter attributes let you specify attributes that apply to individual
parameters of the function. For more information, see [byte_count].

lapp_config, /osf, [auto_handle], [code], [explicit_handle], The Interface Definition
Language (IDL) File, [implicit_handle], include, midl, [nocode], [optimize],
[represent_as], typedef

MIDL Compiler Output

With the IDL and ACF files as input, the MIDL compiler generates up to five C-language
source files. By default, the MIDL compiler uses the base file name of the IDL file as part
of the generated stub files. When more than six characters are present in the base file
name, some file systems may not accept the full stub name. The following table shows
conventions used for file names.

Default portion

File of base file name Example
IDL file Abcdefgh.idl
Header .h Abcdef.h
Client stub c.c Abcdef_c.c

Server stub : S.C Abcdef_s.c

99

CHAPTER 12

Data and Language Features

The Microsoft® Interface Definition Language (MIDL) provides the set of features that
extend the C programming language to support remote procedure calls. MIDL is not a
variation of C; it is a strongly typed formal language through which you can control the
data transmitted over a network. MIDL is designed so that developers familiar with C can
learn it quickly.

Strong Typing

C is a weakly typed language, that is, the compiler allows operations such as
assignment and comparison among variables of different types. For example, C allows
the value of a variable to be cast to another type. The ability to use variables of different
types in the same expression promotes flexibility as well as efficiency.

A strongly typed language imposes restrictions on operations among variables of
different types. In those cases, the compiler issues an error prohibiting the operation.
These strict guidelines regarding data types are designed to avoid potential errors.

The difficulty with using a weakly typed language such as C for remote procedure calls is
that distributed applications can run on several different computers with different C
compilers and different architectures. When an application runs on only one computer,
you don’t have to be concerned with the internal data format because the data is
handled in a consistent manner. However, in a distributed computing environment,
different computers can use different definitions for their base data types. For example,
some computers define the int type, so its internal representation is 16 bits, while other
computers use 32 bits. One computer architecture, known as “little endian,” assigns the
least significant byte of data to the lowest memory address and the most significant byte
to the highest address. Another architecture, known as “big endian,” assigns the least
significant byte to the highest memory address associated with that data.

Remote procedure calls require strict control over parameter types. To handle data
transmission and conversion over the network, MIDL strictly enforces type restrictions for
data transferred over the network. For this reason, MIDL includes a set of well-defined
base types. MIDL enforces strong typing by mandating the use of keywords that
unambiguously define the size and type of data. The most visible effect of strong typing
is that MIDL does not allow variables of the type void *.

In the following topics, this section discusses the MIDL language features that enforce
strong data typing.

100 Volume 3 RPC and WNet

e Base Types

¢ Signed and Unsigned Types
¢ Wide-Character Types

"o Structures
e Unions

e Arrays

Function Attributes
Field Attributes
Three Pointer Types
Type Attributes

e Enumerated Types

Base Types

To prevent the problems that implementation-dependent data types can cause on
different computer architectures, MIDL defines its own base data types.

Base type Description

boolean A data item that can have the value TRUE or FALSE.

byte An 8-bit data item guaranteed to be transmitted without any change.

char An 8-bit unsigned character data item.

double A 64-bit floating-point number.

float A 32-bit floating-point number.

handle_t A primitive handle that can be used for RPC binding or data serializing.

hyper A 64-bit integer that can be declared as either signed or unsigned Can
also be referred to as _int64.

int A 32-bit integer that can be declared as either signed or unsigned.

long A modifier for int that indicates a 64-bit integer. Can be declared as
either signed or unsigned.

short A 16-bit integer that can be declared as either signed or unsigned.

small A modifier for int that indicates an 8-bit integer. Can be declared as
either signed or unsigned.

wchar_t Wide-character type that is supported as a Microsoft® extension to IDL.

Therefore, this type is not available if you compile using the /osf switch.

The header file Rpcndr.h provides definitions for most of these base data types. The
keyword int is recognized and is transmittable on 32-bit platforms. On 16-bit platforms,
the int data type requires a modifier, such as short or long, to specify its length.

Although void * is recognized as a generic pointer type by the ANSI C standard, MIDL
restricts its usage. Each pointer used in a remote or serializing operation must point to
either base types or types constructed from base types. (There is an exception: context
handles are defined as void * types. For more information see Context Handles.)

Chapter 12 Data and Language Features 101

Signed and Unsigned Types

Compilers that use different defaults for signed and unsigned types can cause software
errors in your distributed application. You can avoid these problems by explicitly
declaring your character types as signed or unsigned.

MIDL defines the small type to take the same default sign as the char type in the target
C compiler. If the compiler assumes that char is unsigned, small will also be defined as
unsigned. Many C compilers let you change the default as a command-line option. For
example, the Microsoft C compiler /JJ command-line option changes the default sign of
char from signed to unsigned.

You can also control the sign of variables of type char and small with the MIDL compiler
command-line switch /char. This switch allows you to specify the default sign used by
your compiler. The MIDL compiler explicitly declares the sign of all char types that do
not match your C-compiler default type in the generated header file.

Wide-Character Types

Microsoft RPC supports the wide-character type wchar_t. The wide-character type uses
2 bytes for each character. The ANSI C-language definition allows you to initialize long
characters and long strings as:

Structures

Normal C semantics apply to the fields of base types. Fields of more complex types,
such as pointers, arrays, and other constructed types, can be modified by type or
field_attributes. For more information, see struct.

Unions

Some features of the C language, such as unions, require special MIDL keywords to
support their use in remote procedure calls. A union in the C language is a variable that
holds objects of different types and sizes. The developer usually creates a variable to
keep track of the types stored in the union. To operate correctly in a distributed
environment, the variable that indicates the type of the union, or the discriminant, must
also be available to the remote computer. MIDL provides the [switch_type] and
[switch_is] keywords to identify the discriminant type and name.

MIDL requires that the discriminant be transmitted with the union in one of two ways:

¢ The union and the discriminant must be provided as parameters.
e The union and the discriminant must be packaged in a structure.

102

Volume 3 RPC and WNet

Two fundamental types of discriminated unions are provided by MIDL:
nonencapsulated_union and encapsulated_union. The discriminant of a
nonencapsulated union is another parameter if the union is a parameter. It is another
field if the union is a field of a structure. The definition of an encapsulated union is turned
into a structure definition whose first field is the discriminant and whose second and last
fields are the union. The following example demonstrates how to provide the union and
discriminant as parameters:

The union in the preceding example can contain a single value: either short, float, or
char. The type definition for the union includes the MIDL switch_type attribute that
specifies the type of the discriminant. Here, [switch_type(short)] specifies that the
discriminant is of type short. The switch must be an integer type.

If the union is a member of a structure, then the discriminant must be a member of the
same structure. If the union is a parameter, then the discriminant must be another
parameter. The prototype for the function UnionParamProc in the preceding example
shows the discriminant sUtype as the last parameter of the call. (The discriminant can
appear in any position in the call.) The type of the parameter specified in the [switch_is]
attribute must match the type specified in the [switch_type] attribute.

The following example demonstrates the use of a single structure that packages the
discriminant with the union:

Chapter 12 - Data and Language Features 103

The Microsoft RPC MIDL compiler allows union declarations outside of typedef
constructs. This feature is an extension to DCE IDL. For more information, see union.

Enumerated Types

‘The enum declaration is not translated into #define statements as it is by some DCE
compilers, but is reproduced as a C-language enum declaration in the generated header
file.

Arrays

For information on arrays, see MIDL Arrays.

Function Attributes

The [callback] and [local] attributes can be applied as function attributes.

A callback is a remote call from server to client that executes as part of a conceptual
single-execution thread. A callback is always issued in the context of a remote call (or
callback) and is executed by the thread that issued the original remote call (or callback).

It is often desirable to place a local procedure declaration in the IDL file, since this is the
logical place to describe interfaces to a package. The [local] attribute indicates that a
procedure declaration is not actually a remote function, but a local procedure. The MIDL
compiler does not generate any stubs for functions with the [local] attribute.

Field Attributes

Field attributes are the attributes that can be applied to fields of an array, structure,
union, or character array:

e [ignore], [size_is]

e [max_is]

e [length_is]

o [first_is]

e [last_is]

e [switch_is]

e [string]

e pointer attributes

For example, field attributes are used in conjunction with array declarations to specify
either the size of the array or the portion of the array that contains valid data. This is
done by associating another parameter, structure field, or a constant expression with the
array.

104 Volume 3 RPC and WNet

The [ignore] attribute designates pointer fields to be ignored during the marshaling
process. Such an ignored field is set to NULL on the receiver side.

MIDL provides conformant, varying, and open arrays. An array is called conformant if its
bounds are determined at run time. The [size_is] attribute designates the upper bound
on the allocation size of the array and the [max_is] attribute designates the upper bound
on the value of a valid array index. For more information, see [arrays].

An array is called varying if its bounds are determined at compile time, but the range of
transmitted elements is determined at run time. An open array (also called a conformant
varying array) is an array whose upper bound and range of transmitted elements are
determined at run time. To determine the range of transmitted elements of an array, the
array declaration must include a [length_is], [first_is], or [last_is] attribute.

The [length_is] attribute designates the number of array elements to be transmitted and
the [first_is] attribute designates the index of the first array element to be transmitted.
The [last_is] attribute designates the index of the last array element to be transmitted.

The [switch_is] field attribute designates a union discriminator. When the union is a
procedure parameter, the union discriminator must be another parameter of the same
procedure. When the union is a field of a structure, the discriminator must be another
field of the structure at the same level as the union field. The discriminator must be a
Boolean, char, int, or enum type, or a type that resolves to one of these types. For
more information, see Nonencapsulated Unions and [switch_is].

The [string] field attribute designates that a one-dimensional character or byte array, or
a pointer to a zero-terminated character or byte stream, is to be treated as a string. The
string attribute applies only to one-dimensional arrays and pointers. The element type is
limited to char, byte, wchar_t, or a named type that resolves to one of these types.

For information about the context in which field attributes appear, see MIDL, MIDL
Structures, and MIDL Unions.

Three Pointer Types

MIDL supports three types of pointers to accommodate a wide range of applications. The
three different levels are called reference, unique, and full pointers, and are indicated by
the attributes [ref], [unique], and [ptr], respectively. The pointer classes described by
these attributes are mutually exclusive. Pointer attributes can be applied to pointers in
type definitions, function return types, function parameters, members of structures or
unions, or array elements.

Embedded pointers are pointers that are members of structures or unions. They can also
be elements of arrays. In the [in] direction, embedded [ref] pointers are assumed to be
pointing to valid storage and must not be null. This situation is recursively applicable to
any [ref] pointers they are pointing to. In the [in] direction, embedded [unique] and full
pointers (pointers with the [ptr] attribute) may or may not be null.

Chapter 12 Data and Language Features "105

Any pointer attribute placed on a parameter in the syntax of a function declaration affects
only the rightmost pointer declarator for that parameter. To affect other pointer
declarators, intermediate named types must be used.

Functions that return a pointer can have a pointer attribute as a function attribute. The
[unique] and [ptr] attributes must be applied to function return types. Member
declarations that are pointers can specify a pointer attribute as a field attribute. A pointer
attribute can also be applied as a type attribute in typedef constructs.

When no pointer attribute is specified as a field or type attribute, pointer attributes are
applied according to the rules for an unattributed pointer declaration as follows.

In DCE-compatibility mode, pointer attributes are determined in the defining IDL file. If
there is a [pointer_default]attribute specified in the defining interface, that attribute is
used. If no [pointer_default] attribute is present, all unattributed pointers are full
pointers.

In Microsoft-extensions mode, pointer attributes can be determined by importing IDL files
and are applied in the following order:

1. An explicit pointer attribute applied at the use site.

2. The [ref] attribute, when the unattributed pointer is a top-level pomter parameter.

3. A [pointer_default] attribute specified in the defining interface.

4. A [pointer_default] attribute specified in the base interface.

5. The [unique] attribute.

The [pointer_default] interface attribute specifies the default pointer attributes to be
applied to a pointer declarator in a type, parameter, or return type declaration when that
declaration does not have an explicit pointer attribute applied to it. The [pointer_default]
interface attribute does not apply to an unattributed top-level pointer of a parameter,
which is assumed to be [ref].

Type Attributes
Type attributes are the MIDL attributes that can be applied to type declarations:
[handle]
[context_handie]
[switch_type]
e pointer type attributes

The [switch_type] attribute designates the type of a union discriminator. This attribute
applies only to a nonencapsulated union.

106

Volume3 RPC and WNet

A context handle is a pointer with a [context_handle] attribute. The [context_handie]
attribute allows you to write procedures that maintain state information between remote
procedure calls. A context handle with a non-null value represents saved context and
serves two purposes:

¢ On the client side, it contains the information needed by the RPC run-time library to
direct the call to the server.

¢ On the server side, it serves as a handle on active context.

The [handle] attribute specifies that a type can occur as a user-defined (generic) handle.
This feature permits the design of handles that are meaningful to the application. The
user must provide binding and unbinding routines to convert between the user-defined
handle type and the RPC primitive handle type, handle_t. A primitive handle contains
destination information meaningful to the RPC run-time libraries. A user-defined handle
can only be defined in a type declaration, not in a function declaration. A parameter with
the [handle] attribute has a double purpose. It is used to determine the binding for the
call, and it is transmitted to the called procedure as a normal data parameter.

Directional (Parameter) Attributes

Directional attributes describe whether the data is transmitted from client to server,
server to client, or both. All parameters in the function prototype must be associated with
directional attributes. The three possible combinations of directional attributes are: 1)
[in], 2) [out], and 3) [in, out]. These describe the way parameters are passed between
calling and called procedures. When you compile in the default (Microsoft-extended
mode) and you omit a directional attribute for a parameter, the MIDL compiler assumes a
default value of [in].

An [out] parameter must be a pointer. In fact, the [out] attribute is not meaningful when
applied to parameters that do not act as pointers because C function parameters are
passed by value. In C, the called function receives a private copy of the parameter value;
it cannot change the calling function’s value for that parameter. If the parameter acts as
a pointer, however, it can be used to access and modify memory. The [out] attribute
indicates that the server function should return the value to the client’s calling function,
and that memory associated with the pointer should be returned in accordance with the
attributes assigned to the pointer.

The following interface demonstrates the three possible combinations of directional
attributes that can be applied to a parameter. The function InOutProc is defined in the
IDL file as:

Chapter 12 Data and Language Features 107

The first parameter, s1, is [in] only. Its value is transmitted to the remote computer, but
is not returned to the calling procedure. Although the server application can change its
value for s1, the value of s7 on the client is the same before and after the call. (See
Figure 12-1.)

In parameters

Figure 12-1: In Parameter.

The second parameter, ps2, is defined in the function prototype as a pointer with both
[in] and [out] attributes. The [in] attribute indicates that the value of the parameter is
passed from the client to the server. The [out] attribute indicates that the value pointed
to by ps2 is returned to the client.

ient
S

Servel

In, out
parameters

Figure 12-2: Parameter with In and Out Attributes.

108

Volume 3 RPC and WNet

The third parameter is [out] only. Space is allocated for the parameter on the server, but
the value is undefined on entry. As mentioned above, all [out] parameters must be
pointers. ’

3

Servel

Dut parameters

Figure 12-3: Out Parameter.

The remote procedure chénges the value of all three parameters, but only the new
values of the [out] and [in, out] parameters are available to the client.

On return from the call to InOutProc, the second and third parameters are modified. The
first parameter, which is [in] only, is unchanged.

Data Representation

Computing environments can differ significantly, as can network architectures. To
accommodate these differences, MIDL enables you to modify the way you represent
data. You can sometimes simplify development by converting data into a format that
your application can more easily handle. You can alter your application’s data format so
that it can be more efficiently transmitted over the network.

The [transmit_as] and [represent_as] attributes instruct the compiler to associate a
transmissible type that the stub passes between client and server, with a user type that
the client and server applications use. You must supply the routines that carry out the

Chapter 12 Data and Language Features 109

conversion between the user type and the transmissible type, and the routines to release
the memory that was used to hold the converted data. Using the [transmit_as] IDL
attribute or the [represent_as] ACF attribute instructs the stub to call these conversion
routines before and after transmission. The [transmit_as] attribute lets you convert one
data type to another data type for transmission over the network. The [represent_as]
attribute lets you control the way data from the network is presented to the application.

The [wire_marshal] and [user_marshal] attributes are Microsoft extensions to the
OSF-DCE IDL. Their syntax and functionality are similar to that of the DCE-specified
[transmit_as] and [represent_as] attributes, respectively. The difference is that, instead
of converting the data from one type to another, you marshal the data directly. To do
this, you must supply the external routines for sizing the data buffer on the client and
server sides, marshaling and unmarshaling the data on the client and server sides, and
freeing the data on the server side. The MIDL compiler generates format codes that
instruct the NDR engine to call these external routines when needed.

The [wire_marshal] and [user_marshal] attributes make it possible to marshal data
types that otherwise could not be transmitted across process boundaries. Also, because
there is less overhead associated with the type conversion, [wire_marshal] and
[user_marshal] provide improved performance at run time, when compared to
[transmit_as] and [represent_as]. The [wire_marshal] and [user_marshal] attributes
are mutually exclusive with respect to each other and with respect to the [transmit_as]
and [represent_as] attributes for a given type.

The transmit_as and represent_as Attributes

This section discusses the implementation of programmer data type conversion using
the MIDL [transmit_as] and [represent_as] attributes.

The transmit_as Attribute

The [transmit_as] attribute offers a way to control data marshaling without worrying
about marshaling data at a low level—that is, without worrying about data sizes or byte
swapping in a heterogeneous environment. By letting you reduce the amount of data
transmitted over the network, the [transmit_as] attribute can make your application
more efficient.

You use the [transmit_as] attribute to specify a data type that the RPC stubs will
transmit over the network instead of using the data type provided by the application. You
supply routines that convert the data type to and from the type that is used for
transmission. You must also supply routines to free the memory used for the data type
and the transmitted type. For example, the following defines xmit_type as the data type
transmitted for all application data specified as being of type type_spec:

The following table describes the four programmer-supplied routine names. Type is the
data type known to the application, and xmit_type is the data type used for
transmission.

110 Volume 3 RPC and WNet

Routine Description

type_to_xmit Allocates an object of the transmitted type and converts
from application type to type transmitted over the network
(caller and object called).

Type_from_xmit Converts from transmitted type to application type (caller
and object called).

Type_free_inst Frees resources used by the application type (object
called only).

Type_free_xmit Frees storage returned by the type_to_xmit routine (caller

and object called).

Other than by these four programmer-supplied functions, the transmitted type is not
manipulated by the application. The transmitted type is defined only to move data over
the network. After the data is converted to the type used by the application, the memory
used by the transmitted type is freed.

These programmer-supplied routines are provided by either the client or the server
application based on the directional attributes. If the parameter is [in] only, the client
transmits to the server. The client needs the type_to_xmit and type_free_xmit
functions. The server needs the type_from_xmit and type_free_inst functions. For an
[out]-only parameter, the server transmits to the client. The server application must
implement the type_to_xmit and type_free_xmit functions, while the client program
must supply the type_from_xmit function. For the temporary xmit_type objects, the
stub will call type_free_xmit to free any memory allocated by a call to type_to_xmit.

Certain guidelines apply to the application type instance. If the application type is a
pointer or contains a pointer, then the type_from_xmit routine must allocate memory for
the data that the pointers point to (the application type object itself is manipulated by the
stub in the usual way).

For [out] and [in, out] parameters, or one of their components, of a type that contains
the [transmit_as] attribute, the type_free_inst routine is automatically called for the
data objects that have the attribute. For in parameters, the type_free_inst routine is
called only if the [transmit_as] attribute has been applied to the parameter. If the:
attribute has been applied to the components of the parameter, the type_free_inst
routine is not called. There are no freeing calls for the embedded data and at-most-one
call (related to the top-level attribute) for an in only parameter.

Effective with MIDL 2.0, both client and server must supply all four functions. For
example, a linked list can be transmitted as a sized array. The type_to_xmit routine
walks the linked list and copies the ordered data into an array. The array elements are
ordered so that the many pointers associated with the list structure do not have to be
transmitted. The type_from_xmit routine reads the array and puts its elements into a
linked-list structure.

Chapter 12 Data and Language Features 1

The double-linked list (DOUBLE_LINK_LIST) includes data and pointers to the previous
and next list elements:

Rather than shipping the complex structure, the [transmit_as] attribute can be used to
send it over the network as an array. The sequence of items in the array retains the
ordering of the elements in the list at a lower cost:

In the following example, ModifyListProc defines the parameter of type
DOUBLE_LINK_TYPE as an [in, out] parameter:

The four programmer-defined functions use the name of the type in the function names,
and use the presented and transmitted types as parameter types, as required:

The type_to_xmit Function

The stubs call the type_to_xmit function to convert the type that is presented by the
application into the transmitted type. The function is defined as:

112

Volume 3 RPC and WNet

The first parameter is a pointer to the application data. The second pafameter is set by
the function to point to the transmitted data. The function must allocate memory for the
transmitted type.

In the following example, the client calls the remote procedure that has an [in, out]
parameter of type DOUBLE_LINK_TYPE. The client stub calls the type_to_xmit
function, here named DOUBLE_LINK_TYPE_to_xmit, to convert double-linked list data
into a sized array.

The function determines the number of elements in the list, allocates an array large
enough to hold those elements, then copies the list elements into the array. Before the
function returns, the second parameter, ppArray, is set to point to the newly allocated
data structure.

The type_from_xmit Function

The stubs call the type_from_xmit function to convert data from its transmitted type to
the type that is presented to the application. The function is defined as:

Chapter 12 Data and Language Features 113

The first parameter is a pointer to the transmitted data. The function sets the second
parameter to point to the presented data.

The type_from_xmit function must manage memory for the presented type. The
function must allocate memory for the entire data structure that starts at the address
indicated by the second parameter, except for the parameter itself (the stub allocates
memory for the root node and passes it to the function). The value of the second
parameter cannot change during the call. The function can change the contents at that
address.

In this example, the function DOUBLE_LINK_TYPE_from_xmit converts the sized array
to a double-linked list. The function retains the valid pointer to the beginning of the list,
frees memory associated with the rest of the list, then creates a new list that starts at the
same pointer. The function uses a utility function, InsertNewNode, to append a list node
to the end of the list and to assign the pNext and pPrevious pointers to appropriate
values.

114

Volume 3 RPC and WNet

The type_free_xmit Function

The stubs call the type_free_xmit function to free memory assocnated with the
transmitted data. After the type_from_xmit function converts the transmitted data to its
presented type, the memory is no longer needed. The function is defined as:

The parameter is a pointer to the memory that contains the transmitted type.

In this example, the memory contains an array that is in a single structure. The function
DOUBLE_LINK_TYPE_free_xmit uses the user-supplled function midl_user_free to
free the memory:

The type_free_inst Function

The stubs call the type_free_inst function to free memory associated with the presented
type. The function is defined as:

The parameter points to the presented type instance. This object should not be freed.
For a discussion on when to call the function, see The transmit_as Attribute.

In the following example, the double-linked list is freed by walking the list to its end, then
backing up and freeing each element of the list.

Chapter 12 Data and Language Features 115

The represent_as Attribute

The [represent_as] attribute lets you specify how a particular transmittable data type is
represented to the application. This is done by specifying the name of the represented
type for a known transmittable type and supplying the conversion routines. You must
also supply the routines to free the memory used by the data type objects.

Use the [represent_as] attribute to present an application with a different, possibly
untransmittable, data type rather than the type that is actually transmitted between the
client and server. It is also possible that the type the application manipulates can be
unknown at the time of MIDL compilation. When you choose a well-defined transmittable
type, you need not be concerned about data representation in the heterogeneous
environment. The [represent_as] atiribute can make your application more efficient by
reducing the amount of data transmitted over the network.

The [represent_as] attribute is similar to the [transmit_as] attribute. However, while
[transmit_as] lets you specify a data type that will be used for transmission,
[represent_as] lets you specify how a data type is represented for the application. The
represented type need not be defined in the MIDL processed files; it can be defined at
the time the stubs are compiled with the C compiler. To do this, use the include directive
in the application configuration file (ACF) to compile the appropriate header file. For
example, the following ACF defines a type local to the application, repr_type, for the
transmittable type named_type:

The following table describes the four programmer-supplied routines.

Routine Description

named_type_from_local Allocates an instance of the network type and converts
from the local type to the network type.

named_type_to_local Converts from the network type to the local type.

named_type_free_local Frees memory allocated by a call to the
named_type_to_local routine, but not the type itself.

named_type_free_inst Frees storage for the network type (both sides).

Other than by these four programmer-supplied routines, the named type is not
manipulated by the application. The only type visible to the application is the represented
type. The application uses the represented type name instead of the transmitted type
name in the prototypes and stubs generated by the compiler. You must supply the set of
routines for both sides.

For temporary named_type objects, the stub will call named_type_free_inst to free any
memory allocated by a call to named_type_from_local.

116

Volume 3 RPC and WNet

If the represented type is a pointer or contains a pointer, the named_type_to_local
routine must allocate memory for the data to which the pointers point (the represented
type object itself is manipulated by the stub in the usual way). For [out] and [in, out]
parameters of a type that contain [represent_as or one of its components, the
named_type_free_local routine is automatically called for the data objects that contain
the attribute. For [in] parameters, the named_type_free_local routine is called only if
the [represent_as] attribute has been applied to the parameter. If the attribute has been
applied to the components of the parameter, the *_free_local routine is not called.
Freeing routines are not called for the embedded data and at-most-once call (related to
the top-level attribute) for an [in] only parameter.

Note It is possible to apply both the [transmit_as] and [represent_as] attributes to the
same type. When marshaling data, the [represent_as] type conversion is applied first
and then the [transmit_as] conversion is applied. The order is reversed when
unmarshaling data. Thus, when marshaling, *_from_local allocates an instance of a
named type and translates it from a local type object to the temporary named type
object. This object is the presented type object used for the *_to_xmit routine. The
*_to_xmit routine then allocates a transmitted type object and translates it from the
presented (named) object to the transmitted object.

An array of long integers can be used to represent a linked list. In this way, the
application manipulates the list, and the transmission uses an array of long integers
when a list of this type is transmitted. You can begin with an array, but using a construct
with an open array of long integers is more convenient. The following example shows
how to do this.

Chapter 12 Data and Language Features 117

Note that the prototypes of the routines that use the LONGARR type are actually
displayed in the Stub.h files as PLOC_BOX in place of the LONGARR type. The same is
true of the appropriate stubs in the Stub_c.c file.

You must supply the following four functions:

The routines shown above do the following:

e The LONGARR_from_local routine counts the nodes of the list, allocates a
LONGARR object with the size sizeof(LONGARR) + Count*sizeof(long), sets the
Size field to Count, and copies the data to the DataArr field.

e The LONGARR_to_local routine creates a list with Size nodes and transfers the
array to the appropriate nodes.

e The LONGARR_free_inst routine frees nothing in this case.
o The LONGARR_free_local routine frees all the nodes of the list.

118

Volume 3 RPC and WNet

The named_type_from_local Function

The stubs call the named_type_from_local function. It converts the type that the
application uses into the type the stubs transmit across the network. The function is
defined as:

The first parameter is a pointer to the application data. The second parameter is a
pointer to a pointer. The function points it to the transmitted data. The function must
allocate memory for the transmitted type.

The named_type_to_local Function

The stubs call the named_type_to_local function to convert data from a transmitted
type to the type that they present to the application. The function is defined as:

The first parameter points to the transmitted data. The function sets the second
parameter to point to the presented data.

The named_type_to_local function must manage memory for the presented type. The
function must allocate memory for the entire data structure that starts at the address
indicated by the second parameter, except for the parameter itself (the stub allocates
memory for the root node and passes it to the function). The value of the second
parameter cannot change during the call. The function can change the contents at that
address.

The named_type_free_local Function

The stubs call the type_free_local function to free the memory allocated by a call to the
named_type_to_local routine. It does not free the memory allocated by the stub. The
function prototype is defined as:

The parameter is a pointer to the memory allocated by named_type_to_local.

The named_type_free_inst Function

The stubs call the named_type_free_inst function to free memory associated with the
transmitted type. The function is defined as:

The parameter points to the instance of the transmitted type. This object should not be
freed. For a discussion on when to call the function, see The represent_as Attribute.

Chapter 12 Data and Language Features 119

The wire_marshal and user_marshal Attributes

This section discusses the implementation of programmer data type conversion using
the MIDL [wire_marshal] and [user_marshal] attributes.

The wire_marshal Attribute

The [wire_marshal] attribute is an IDL-type attribute similar in syntax to [transmit_as],
but providing a more efficient way to marshal data across a network.

You use the [wire_marshal] attribute to specify a data type that will be transmitted in
place of the application-specific data type. Each application-specific type has a
corresponding transmittable type that defines the wire representation (the representation
used on the network).The application-specific type need not be transmittable, but it must
be a type that MIDL recognizes. To marshal a type unknown to MIDL, use the ACF
attribute [user_marshal].

Your application-specific type can be a simple, composite, or pointer type. The main
restriction is that the type instance must have a fixed, well-defined memory size. If the
size of your type instance needs to change, use a pointer field rather than a conformant
array. Alternatively, you can define a pointer to the changeable type.

You must supply the routines for sizing, marshaling, and unmarshaling the data as well
as freeing the associated memory. The following table describes the four user-supplied
routine names. The <type> is the userm-type specified in the [wire_marshal] type

definition.

Routine : Description

<type>_UserSize Sizes the RPC data buffer before marshaling on
the client or server side.

<type>_UserMarshal Marshals the data on the client or server side.

<type>_UserUnmarshal Unmarshals the data on the client or server side.

<type>_UserFree Frees the data on the server side.

These programmer-supplied routines are provided by either the client or the server
application based on the directional attributes.

If the parameter is [in] only, the client transmits to the server. The client needs the
<type>_UserSize and <type>_UserMarshal functions. The server needs the
<type>_UserUnmarshal, and <type>_UserFree functions.

For an [out]-only parameter, the server transmits to the client. The server needs the
<type>_UserSize and <type>_UserMarshal functions, while the client needs the
<type>_UserMarshal function.

120

Volume 3 RPC and WNet

The user_marshal Attribute, Marshaling Rules for user_marshal and wire_marshal,
wire_marshal, user_marshal, NdrGetUserMarshalinfo

The user_marshal Attribute

The [user_marshal] attribute is an ACF-type attribute similar in syntax to
[represent_as]. As with the IDL attribute, [wire_marshal], it offers a more efficient way
to marshal data across a network. As an ACF attribute, [user_marshal] lets you marshal
custom data types that are unknown to MIDL. Each application-specific type has a
corresponding transmittable type that defines the wire representation.

Your application-specific type can be a simple, composite, or pointer type. The main
restriction is that the type instance must have a fixed, well-defined memory size. If the
size of your type instance needs to change, use a pointer field rather than a conformant
array. Alternatively, you can define a pointer to the changeable type.

As with the [wire_marshal] attribute, you supply routines for the sizing, marshaling,
unmarshaling, and freeing passes. The following table describes the four user-supplied
routine names. The <type> is the userm-type specified in the [user_marshal] type
definition.

Routine Description

<type>_UserSize Sizes the RPC data buffer before marshaling on
the client or server side.

<type>_UserMarshal Marshals the data on the client or server side.

<type>_UserUnmarshal Unmarshals the data on the client or server side.

<type>_UserFree Frees the data on the server side.

These user-supplied routines are provided by either the client or the server application,
based on the directional attributes.

If the parameter is [in] only, the client transmits to the server. The client needs the
<type>_UserSize and <type>_UserMarshal functions. The server needs the
<type>_UserUnmarshal and <type>_UserFree functions.

For an [out]-only parameter, the server transmits to the client. The server needs the
<type>_UserSize and <type>_UserMarshal functions, while the client needs the
<type>_UserMarshal function.

The wire_marshal Attribute, Marshaling Rules for user marshal and wire_marshal,
[user_marshal], [wire_marshal], NdrGetUserMarshallnfo

Chapter 12 Data and Language Features 121

The type_UserSize Function

The <type>_UserSize function is a helper function for the [wire_marshal] and
[user_marshal] attributes. The stubs call this function to size the RPC data buffer for the
user data object before the data is marshaled on the client or server side. The function is
defined as:

The <type> in the function name means the userm-type, as specified in the
[wire_marshal] or [user_marshal] type definition. This type may be untransmittable or
even—when used with the [user_marshal] attribute— unknown to the MIDL compiler.
The wire type name (the name of the type transmitted across the network) is not used in
the function prototype. Note, however, that the wire type defines the layout for the data
as specified by OSF DCE. All data must be converted to Network Data Representation
(NDR) format.

The pFlags argument is a pointer to an unsigned long flag field. The upper word of the
flag contains NDR format flags as defined by OSF DCE for floating point, byte order, and
character representations. The lower word contains a marshaling context flag as defined
by the COM channel. The exact layout of the flags within the field is shown in the
following table.

Bits Flag Value
31-24 Floating-point representation 0=IEEE
1 =VAX
2 = Cray
3=1BM
23-20 Integer and floating-point byte 0 = Big-endian
order 1 = Little-endian
19-16 Character representation 0 =ASCll
1 = EBCDIC
15-0 Marshaling context flag 0 = MSHCTX_LOCAL

1 = MSHCTX_NOSHAREDMEM
2 = MSHCTX_DIFFERENTMSCHINE
3 = MSHCTX_INPROC

The marshaling context flag makes it possible to alter the behavior of your routine
depending on the context for the RPC call. For example, if you have a handle (long) to a
block of data, you could send the handle for an in-process call, but you would send the
actual data for a call to a different machine. The marshaling context flag and its values
are defined in the Wtypes.h and Wtypes.idl files in the Platform SDK.

122

Volume 3 RPC and WNet

Note When the wire type is properly defined, you do not have to use the NDR format
flags, as the NDR engine performs the necessary conversions.

The StartingSize argument is the current buffer offset. The starting size indicates the
buffer offset for the user object, and it may or may not be aligned properly. Your routine
should account for whatever padding is necessary.

The pMyObj argument is a pointer to a user type object.

The return value is the new offset or buffer position. The function should return the
cumulative size, which is the starting size plus possible padding plus the data size.

The <type>_UserSize function can return an overestimate of the size needed. The
actual size of the sent buffer is defined by the data size, not by the buffer allocation size.

The <type>_UserSize function is not called if the wire size can be computed at compile
time. Note that for most unions, even if there are no pointers, the actual size of the wire
representation can be determined only at run time.

Marshaling rules for user_marshal and wire_marshal, [user_marshal],
[wire_marshal]

The type_UserMarshal Function

The <type>_UserMarshal function is a helper function for the [wire_marshal] and
[user_marshal] attributes. The stubs call this function to marshal data on the client or
server side. The function is defined as:

The <type> in the function name means the userm-type specified in the [wire_marshal]
or [user_marshal] type definition. This type may be untransmittable or even—when
used with the [user_marshal] attribute—a type unknown to the MIDL compiler. The wire
type name (the name of transmissible type) is not used in the function prototype. Note,
however, that the wire type defines the wire layout for the data as specified by

OSF DCE.

The pFlags argument is.a pointer to an unsigned long flag field. The upper word of the
flag contains NDR data representation flags as defined by OSF DCE for floating point,
byte order, and character representations. The lower word contains a marshaling context
flag as defined by the COM channel. The exact layout of the flags within the field is
described in The type_UserSize Function.

Chapter 12 Data and Language Features 123

The pBuffer argument is the current buffer pointer. This pointer may or may not be
aligned on entry. Your <type>_UserMarshal function should align the buffer pointer
appropriately, marshal the data, and return the new buffer position, which is the address
of the first byte after the marshaled object. Keep in mind that the wire type specification
determines the actual layout of the data in the buffer.

The pMyObj argument is a pointer to a user type object.

The return value is the new buffer position, which is the address of the first byte after the
unmarshaled object.

Buffer overflow can occur when you incorrectly calculate the size of the data and attempt
to marshal more data than expected. You should be careful to avoid this situation. You
can check against it by using the pointer that <type>_UserMarshal returns. Otherwise,
you risk having the NDR engine raise a buffer-overflow exception later.

Marshalmg Rules for user_marshal and wire_ marshal [wnre marshal],
[user_marshal]

The type_UserUnmarshal Function

The <type>_UserUnmarshal function is a helper function for the [wire_marshal] and
[user_marshal] attributes. The stubs call this function to unmarshal data on the client or
server side. The function is defined as:

The <type> in the function name means the userm-type specified in the [wire_marshal]
or [user_marshal] type definition. This type may be untransmittable or even—when
used with the [user_marshal] attribute—unknown to the MIDL compiler. The wire type
name (the name of transmissible type) is not used in the function prototype. Note,
however, that the wire type defines the wire layout for the data as specified by

OSF DCE.

The pFlags argument is a pointer to an unsigned long flag field. The upper word of the
flag contains NDR data representation flags as defined by OSF DCE for floating point,
byte order, and character representations. The lower word contains a marshaling context
flag as defined by the COM channel. The exact layout of the flags within the field is
described in The type_UserSize Function.

The pBuffer argument is the current buffer pointer. This pointer may or may not be
aligned on entry. Your <type>_UserUnmarshal function should align the buffer pointer
appropriately, unmarshal the data, and return the new buffer position, which is the
address of the first byte after the unmarshaled object.

124

Volume 3 RPC and WNet

The pMyObj argument is a pointer to a user-defined type object.

In a heterogeneous environment, the NDR engine performs any data conversion
necessary before calling the <type>_UserUnmarshal function. Note that the NDR
engine carries out this data conversion according to the wire-type definition supplied for
this user data type. The flag indicates the data representation of the sender.

Marshaling Rules for user_marshal and wire_marshal, [wire_marshal],
[user_marshal]

The type_UserFree Function

The <type>_UserFree function is a helper function for the [wire_marshal] and
[user_marshal] attributes. The stubs call this function to free the data on the server
side. The function is defined as:

The <type> in the function name means the userm-type specified in the [wire_marshal]
or [user_marshal] type definition.

The pFlags argument is a pointer to an unsigned long flag field. The upper word of the
flag contains NDR data representation flags as defined by OSF DCE for floating point,
byte order, and character representations. The lower word contains a marshaling context
flag as defined by the COM channel. The exact layout of the flags within the field is
described in The type_UserSize Function.

The pMyObj argument is a pointer to a user type object. The NDR engine frees the top-
level object. You are responsible for freeing any objects to which the top-level object
may point.

Marshaling Rules for user_marshal and wire_marshal, [wire_marshal],
[user_marshal]

Marshaling Rules for user_marshal and wire_marshal

The OSF-DCE specification for marshaling embedded pointer types requires that you
observe the following restrictions when implementing the <type>_UserSize,
<type>_UserMarshal, and <type>_UserUnMarshal functions. (The rules and examples
given here are for marshaling. However, your sizing and unmarshaling routines must
follow the same restrictions):

Chapter 12 Data and Language Features 125

o If the wire-type is a flat type with no pointers, your marshaling routine for the
corresponding userm-type should simply marshal the data according to the layout of
the wire-type. For example:

Note that the wire type, long, is a flat type. Your HANDLE_HANDLE_UserMarshal
function marshals a long whenever a HANDLE_HANDLE object is passed to it.

e |f the wire-type is a pointer to another type, your marshaling routine for the
corresponding userm-type should marshal the data according to the layout for the
type that the wire-type points to. The NDR engine takes care of the pointer. For
example

i

Note that the wire type, WIRE_TYPE, is a pointer type. Your
HANDLE_DATA_UserMarshal function marshals the data related to the handle, using
the HDATA layout, rather than the HDATA * layout.

e A wire-type must be either a flat data type or a pointer type. If your transmissible type
must be something else (a structure with pointers, for example), use a pointer to your
desired type as the wire-type.

The effect of these restrictions is that the types defined with the [wire_marshal] or
[user_marshal] attributes can be freely embedded in other types.

[wire_marshal], [ﬁser_marshal], The'fyp‘e"_UserSize Function, The
type_UserMarshal Function, The type_UserUnMarshal Function, The
type_UserFree Function

127

CHAPTER 13

Arrays and Pointers

Remote Procedure Call (RPC) is designed to be mostly transparent to developers. To
achieve this transparency, the client stub transmits to the server both the pointer and the
data object to which it points. If the remote procedure changes the data, the server must
transmit the new data back to the client so that the client can copy the new data over the
original data.

In general, a remote procedure call behaves just like a local procedure call. That is,
when a pointer is a parameter, the remote procedure can access the data object the
pointer refers to in the same way that a local procedure can.

Since client and server programs run in different address spaces, developers must use
Microsoft Interface Definition Language (MIDL) attributes to describe how array and
pointer data is transmitted between the client and the server. This chapter presents an
overview of how to use arrays and pointers in distributed applications.

Arrays and RPC

The C and C++ programming languages provide essentially two types of arrays: single-
dimensional and multidimensional. RPC enables developers to specify additional array
types using MIDL attributes to describe the characteristics of arrays in distributed
applications.

This section describes the types of arrays available under RPC. It also discusses the
MIDL attributes that developers can use to describe single-dimensional and
multidimensional arrays.

Kinds of Arrays
MIDL provides the ability to specify the following types of arrays in your RPC application:
¢ Fixed Arrays
e Varying Arrays
e Conformant Arrays

All three array types can be used as [in], [out], or [in,out] parameters.

Fixed Arrays

If your interface specifies an array with a specific number of elements as a parameter, it
is using a fixed array. When using MIDL, you define fixed arrays in the same way you
define them in C. You specify the array’s type, name, and size.

128

Volume 3 RPC and WNet

The following example demonstrates how to define a fixed array.

When a client program passes a fixed array to a server program, the client stub sends
the entire array to the server stub. The server stub allocates memory for the array and
stores the array data it receives across the network into the allocated memory. It then

passes the array to the remote procedure on the server. The server may modify the data
in the array.

When the remote procedure terminates, the server stub sends the contents of the array
back to the client. The client stub copies the data it received from the server stub into the
original array. The client program can then use the data as it would if it received the data
from a local procedure call.

Varying Arrays
In MIDL, varying arrays are fixed in size. They allow clients to pass different portions of

arrays from clients to servers. The size of the array portion can vary from invocation to
invocation. However, the size of the overall array is fixed.

For instance, the following example shows the definition of a remote procedure in an
interface in a MIDL file. The size of the array that the client passes to the server is fixed
by the constant ARRAY_SIZE. The interface specifies the portion of the array that the
client passes to the server in the parameters firstElement and chunkSize.

Chapter 13 Arrays and Pointers 129

The interface definition uses the MIDL attribute [first_is] to specify the index number of
the first element in the portion of the array that the client passes to the server. The
[length_is] attribute specifies the total number of array elements that the client passes.
For more information on these MIDL attributes, see Array Afttributes.

The following code fragment illustrates how a client might invoke the remote procedure
defined in the preceding MIDL file.

This fragment calls the remote procedure MyRemoteProc twice. On the first invocation it
passes the array elements numbered 20 through 119, as indicated by the values in the
variables firstArrayElementNumber and totalElementsPassed. On the second call, the
client passes the array elements numbered 120 through 319.

Conformant Arrays

The size of a conformant array can vary or conform each time the client passes it to a
remote procedure on the server. The interface definition in the application’s MIDL file
enables the client to specify the size of the array each time it invokes the remote
procedure. Use empty square brackets ([]) or an asterisk in the square brackets ([*])
in the array definition to indicate a conformant array.

The following sample contains the definition of a remote procedure in an interface in a
MIDL file. The client specifies the size of the array that it passes to the server by the
parameter arraySize.

130 Volume 3 RPC and WNet

The interface definition uses the MIDL attribute [size_is] to specify the size of the array
that the client passes to the server. If you would rather indicate the maximum value of
the array’s index numbers, use the [max_is] attribute instead. For more information on
these MIDL attributes, see Array Attributes.

The following code fragment illustrates how a client might invoke the remote procedure
defined in the preceding MIDL file.

This fragment calls the remote procedure MyRemoteProc twice. On the first invocation it
passes an array of 20 elements. On the second call, the client passes an array of 200
elements.

Array Attributes

There is a close relationship between arrays and pointers in the C language. When
passed as a parameter to a function, an array name is treated as a pointer to the first
element of the array, as shown in the following example:

Chapter 13 Arrays and Pointers 131

In a local call, you can use the pointer parameter to march through memory and examine
the contents of other addresses:

When a client passes a pointer to a remote procedure, the client stub transmits both the
pointer and the data it points to. Unless the pointer is restricted to its corresponding data,
all the client’'s memory must be transmitted with every remote call. By enforcing strong
typing in the interface definition, MIDL limits client-stub processing to the data that
corresponds to the specified pointer.

The size of the array and the range of array elements transmitted to the remote
computer can be constant or variable. When these values are variable, and thus
determined at run time, you must use attributes in the IDL file to specify how many array
elements to transmit. The following MIDL attributes support array bounds.

Attribute Description® Default
[first_is] Index of the first array element transmitted. 0
[last_is] Index of the last array element transmitted. -
[length_is] Total number of array elements transmitted. -
[max_is] Highest valid array index value. -
[min_is] Lowest valid array index value. : 0
[size_is] Total number of array elements allocated for -
the array.

Note The min_is attribute is not implemented in RPC. The minimum array index is
always treated as zero.

132 Volume 3 RPC and WNet

MIDL Array Attributes Used in RPC

This section discusses the MIDL array attributes in the following topics:
® The [size_is] Attribute

The [length_is] Attribute

The [first_is] and [last_is] Attributes

The [max_is] Attribute

Combining Array Attributes

The [string] Attribute in Arrays

The [size_is] Attribute

The [size_is] attribute is associated with an integer constant, expression, or variable that
specifies the allocation size of the array. Consider a character array whose length is
determined by user input:

Note The asterisk (*) that marks the placeholder for the variable-array dimension is
optional.

The server stub must allocate memory on the server that corresponds to the memory on
the client for that parameter. The variable that specifies the size must always be at least
an [in] parameter. The [in] directional attribute is required so that the size value is
defined on entry to the server stub. This size value provides information that the server
stub requires to allocate the memory.

The size parameter can also be [in, out]. This is useful if, for instance, the array the
client sends is not large enough for the data that the server needs to store in it. You can
use an [in, out] size parameter to send the required size back to the client program.

Multiple Levels of Pointers

Chapter 13 Arrays and Pointers 133

The [length_is] Attribute

The [size_is] attribute lets you specify the maximum size of the array. When this is the
only attribute, all elements of the array are transmitted. Instead of sending all elements
of the array, you can specify the transmitted elements using the [length_is] attribute, as
follows:

Size describes allocation while length describes transmission. The number of elements
transmitted must always be less than or equal to the number of elements allocated. The
value associated with length_is is always less than or equal to size_is.

The [first_is] and [last_is] Attributes
You can determine the number of transmitted elements by specifying the first and last
elements. Use the [first_is] and [last_is] attributes as shown:

134

Volume 3 RPC and WNet

The [max_is] Attribute

You can specify the valid bounds of the index numbers of an array using the [max_is]
attribute.

Combining Array Attributes

Field attributes can be supplied in various combinations as long as the stub can use the
information to determine the size of the array and the number of bytes to transmit to the
server. The relationships between the attributes are defined using the following formulas:

The values associated with the attributes must obey several common-sense rules based
on those formulas. These rules are:

¢ Do not specify a [first_is] index value smaller than zero or a [last_is] value greater
than [max_is].

¢ Do not specify a negative size for an array. Define the first and last elements so that
they result in a length value of zero or greater. Define the [max_is] value so that the
size is zero or greater. If MIDL was invoked with the /error bounds_check option,
then the stub raises an exception when the size is less than zero, or the transmitted
length is less than zero.

¢ Do not use the [length_is] and [last_is] attributes at the same time, nor the [size_is]
and [max_is] attributes at the same time.

Because of the close relationship in C between arrays and pointers, MIDL also lets you
declare arrays in parameter lists using pointer notation. MIDL treats a parameter that is a
pointer to a type as an array of that type if the parameter has any of the attributes
commonly associated with arrays.

Chapter 13 Arrays and Pointers 135

In the preceding example, the array and pointer parameters in the functions fArray6 and
fArray7 are equivalent.

The [string] Attribute in Arrays

You can use the [string] attribute for one-dimensional character arrays, wide-character
arrays, and byte arrays that represent text strings. If you use the [string] attribute, the
client stub uses the C-library functions strlen or wstrlen to count the number of
characters in the string. To avoid possible inconsistencies, MIDL does not let you use
the [string] attribute at the same time as the [first_is], [last_is], and [size_is]
attributes.

With null-terminated strings in C, you must allow space for the null character at the end
of the string. For example, when declaring a string that will hold up to 80 characters,
allocate 81 characters. The following sample IDL file demonstrates how to declare arrays
with the [string] attribute.

Multidimensional Arrays

Array attributes can also be used with multidimensional arrays. However, be careful to
ensure that every dimension of the array has a corresponding attribute. For example:

(continued)

136

Volume 3 RPC and WNet

(continued)

The preceding array is a conformant array (of size d7size) of 30 element arrays (with
d2len elements shipped for each). The comma in the parentheses of the [size_is]
attribute specifies that value in d7size is applied to the first dimension of the array.
Likewise, the command in the parentheses of the [length_is] attribute indicates that the
value in d2/en is applied to the second dimension of the array.

The MIDL 2.0 compiler provides two methods for marshaling parameters: mixed-mode
(/Os) and fully-interpreted (/Oif or /Oicf). By defaut, the MIDL compiler compiles
interfaces in mixed mode. You do not need to explicitly specify the /Os switch to get
mixed-mode marshaling.

The fully-interpreted method marshals data completely offline. This reduces the size of
the stub code considerably, but it also results in decreased performance. In mixed-mode
marshaling, the stubs marshals some parameters online. While this results in a larger
stub size, it also offers increased performance.

Tip Caution needs to be exercised when compiling IDL files in this mode. Using
multidimenstional arrays in mixed mode can result in parameters that are not marshaled
correctly. The /Oicf command line switch is recommended when your interface defines
parameters that are multidimensional arrays.

The [string] attribute can also be used with multidimensional arrays. The attribute
applies to the least significant dimension, such as a conformant array of strings. You can
also use multidimensional pointer attributes. For example:

In the preceding example, the variable ptr2d is a pointer to a d1/en-sized block of
pointers, each of which points to d2/en pointers to long.

Chapter 13 Arrays and Pointers 137

Multidimensional arrays are not equivalent to arrays of pointers. A multidimensional
array is a single, large block of data in memory. An array of pointers only contains a
block of pointers in the array. The data that the pointers point to can be anywhere in
memory. Also, ANSI C syntax allows only the most significant (leftmost) array dimension
to be unspecified in a multidimensional array. Therefore, the following is a valid
statement:

Compare this to the following invalid statement:

Pointers and RPC

It is very efficient to use pointers as C-function parameters. The pointer costs only a few
bytes and can be used to access a large amount of memory. However, in a distributed
application, the client and server procedures reside in different address spaces—they
can be on different computers. Therefore, the client and the server usually do not have
access to the same memory space.

When one of the remote procedure’s parameters is.a pointer to an object, the client must
transmit a copy of that object and its pointer to the server. If the remote procedure
modifies the object through its pointer, the server returns the pointer and its

modified copy.

MIDL offers pointer attributes to minimize the amount of required overhead and the size
of your application. This section discusses the purpose and uses of MIDL pointer
attributes. It also presents information on pointer handling in RPC applications.

Kinds of Pointers
MIDL enables RPC applications to define the following pointer types:

e Reference Pointers
¢ Unique Pointers
e Full Pointers

Reference Pointers

Reference pointers are the simplest pointers and require the least amount of processing
by the client stub. When a client program passes a reference pointer to a remote
procedure, the reference pointer always contains the address of a valid block of memory.
It will still be pointing to the same memory block when the remote procedure completes.
These pointers are mainly used to implement reference semantics, and to allow for [out]
parameters in C.

138 Volume 3 RPC and WNet

In Figure 13-1, the value of the pointer does not change during the call, although the
contents of the data at the address indicated by the pointer can change.

Belore the call:

100 110

110 | The board of directors met on Friday to... |

After the call:

100 110

110 | The group elected its principal shareholder to preside. .

Figure 13-1: Reference Pointer Before and After a Call.

A reference pointer has the following characteristics:

It always points to valid storage and never has the value NULL.

It never changes during a call and always points to the same storage before and after
the call.

Data returned from the remote procedure is written into the existing storage.

The storage pointed to by a reference pointer cannot be accessed by any other
pointer or any other name in the function.

Use the [ref] attribute to specify reference pointers in interface definitions, as shown in
the following example:

This example defines the parameter pChar as a pointer to a single character, not an
array of characters. It is an [out] parameter and a reference pointer that points to
memory that the server routine RemoteFn will fill with data.

Chapter 13 Arrays and Pointers 139

Unique Pointers

In C programs, more than one pointer can contain the address of data. The pointers are
said to create an alias for the data. Aliases are also created when pointers point at
declared variables. The following code fragment illustrates both of these methods of
aliasing:

In a typical C program, you might specify a binary tree using the following definition:

More than one pointer can access the contents of a tree node. This is generally fine for
nondistributed applications. However, this style of programming generates more
complicated RPC support code. The client and server stubs require the additional code
to manage the data and the pointers. The underlying stub code must resolve the various
pointers to the addresses and determine which copy of the data represents the most
recent version.

The amount of processing can be reduced if you guarantee that your pointer is the only
way the application can access that area of memory. The pointer can still have many of
the features of a C pointer. For example, it can change between null and non-null values
or stay the same. The following example illustrates this. The pointer is null before the call
and points to a valid string after the call, as shown in Figure 13-2.

By default, the MIDL compiler applies the [unique] pointer attribute to all pointers that
are not parameters. This default setting can be changed with the [pointer_default]
attribute.

140

Volume 3 RPC and WNet

jelore the call:

After the call:

100 110

110 l Accounts receivable exceeded accounts payable by...

Figure 13-2: Null and Non-Null Values Before and After a Call.

A unique pointer has the following characteristics:

e |t can have the value null.

e |t can change from null to non-null during the call. When the value changes to non-
null, new memory is allocated on return.

e |t can change from non-null to null during the call. When the value changes to NULL,
the application is responsible for freeing the memory.

e The value can change from one non-null value to another.

e The storage that a unique pointer points to cannot be accessed by any other pointer
or name in the operation.

e Return data is written into existing storage if the pointer does not have the value null.

The following example demonstrates how to define a unique pointer:

Full Pointers

Unlike unique pointers, full pointers support aliasing. This means that multiple pointers
can refer to the same data, as shown in Figure 13-3.

Chapter 13 Arrays and Pointers 141

jetore the call:

After the call:

100 110

110 | Accounts receivable exceeded accounts payable by...

Figure 13-3: Multiple Pointers Referring to the Same Data.

A full pointer has the following characteristics:

e |t can have the value null.

e |t can change from null to non-null during the call. When the value changes to non-
null, the client stub allocates new memory allocated on return. The client program
should free this memory before it terminates.

e |t can change from non-null to null during the call. When the value changes to null, the
application is responsible for freeing the memory.

e The value can change from one non-null value to another.

e The storage that a unique pointer points to may be accessed by another pointer or
name in the operation.

® Return data is written into existing storage if the pointer does not have the value null.

Use the [ptr] attribute to specify a full pointer, as shown in the following example:

Pointers and Memory Allocation

The ability to change memory through pointers often requires that the server and the
client allocate enough memory for the elements in the array.

142 Volume 3 RPC and WNet

When a stub must allocate or free memory, it calls run-time library functions that in turn
call the functions midl_user_allocate and midl_user_free. These functions are not
included as part of the run-time library. You need to write your own versions of these
functions and link them with your application. In this way, you can decide how to manage
memory. When compiling your IDL file in OSF-compatibility (/osf) mode, you do not
need to implement these functions. You must write these functions to the following
prototypes:

For example, the versions of these functions for an application can simply call standard
library functions:

Default Pointer Types

For a variety of reasons, pointers in interface definitions may not have an attribute
specification. When they don’t, the MIDL compiler must use a default pointer attribute.
MIDL allows you to specify which pointer attribute you want as the default by using the
[pointer_default] attribute. The following example illustrates its use:

This example sets the default so that the MIDL compiler will treat all unattributed pointers
as reference pointers.

Chapter 13 Arrays and Pointers 143

The MIDL compiler offers three different default cases for unattributed pointers. Note that
these cases use the terms top-level pointer and embedded pointer. A top-level pointer is
a parameter that is a pointer. An embedded pointer is a pointer in a structure or union.
The default cases for unattributed pointers are:

e Function parameters that are top-level pointers default to [ref] pointers.

¢ Pointers embedded in structures and pointers to other pointers default to the type
specified by the [pointer_default] attribute.

e When no [pointer_default] attribute is supplied, pointers to pointers default to the
[unique] attribute if the MIDL compiler is in Microsoft-extensions mode. If the
compiler is set to DCE-compatible mode the default is [ptr].

Remote procedures always return a [unique] or a full pointer. The MIDL compiler
reports an error if a function return value is, either explicitly or by default, a reference
pointer.

Functions that return a pointer value can specify a pointer attribute as a function
attribute. They cannot, however, specify a reference pointer. If a pointer attribute is not
present, the function return pointer uses the value that the [pointer_default] attribute
specifies.

Note To ensure unambiguous pointer-attribute behavior, always use explicit pointer
attributes when defining a pointer.

Pointer-Attribute Type Inheritance

According to the DCE specification, each IDL file must define attributes for its pointers. If
an explicit attribute is not assigned to a pointer, the pointer uses the value specified by
the [pointer_default] keyword. Some DCE implementations do not allow unattributed
pointers. If a pointer does not have an explicit attribute, the IDL file must have a
[pointer_default] specification so that the pointer attribute can be set.

In default (Microsoft-extensions) mode, you can specify a pointer’s attribute in the IDL
file that imports the defining IDL file. Pointers defined in one IDL file can inherit attributes
that are specified in other IDL files. Also, in default mode, IDL files can include
unattributed pointers. If neither the base nor the imported IDL files specify a pointer
attribute or [pointer_default], unattributed pointers are interpreted as unique pointers.

The MIDL compiler assigns pointer attributes to pointers using the following priority rules
(1 is highest).

144

Volume 3 RPC and WNet

Priority Description

1 Explicit pointer attributes are applied to the pointer at the definition or
use site.

2 The default is the [pointer_default] attribute in the IDL file that defines
the type. ;

3 The default is the [pointer_default] attribute in the IDL file that imports
the type.

4 The default is [ptr] in DCE-compatibility mode, or [unique] in

Microsoft-extensions mode.

Using Arrays, Strings, and Pointers

The Doctor program (see \samples\rpc\doctor in the Platform SDK) is a good example of
an application that demonstrates the design trade-offs involved with array and string
attributes. The Doctor program is a small sample version of a better-known program,
Eliza, developed by artificial intelligence researcher Joseph Weizenbaum at MIT in the
1960s. The program mimics a therapist by using simple pattern-matching to respond to

natural language input.

The Eliza program recorded the following session:

User

Eliza

Men are all alike.

They're always bugging us about
something or other.

Well, my boyfriend made me come here.
He says I’'m depressed much of the time.

It's true, | am unhappy.

I need some help; that much seems
certain.

Perhaps | could learn to get along with
my mother.

My mother takes care of me.
My father.
You are like my father in some ways.

In what way?
Can you think of a specific example?

Your boyfriend made you come here.
| am sorry to hear that you are depressed.

Do you think coming here will help you not
to be unhappy?

What would it mean to you if you got
some help?

Tell me more about your family.

Who else in your family takes care of you?
Your father.
What resemblance do you see?

Chapter 13 Arrays and Pointers 145

The Doctor program can be split into client-side and server-side applications. The client
side prompts the patient for input and displays the doctor’s response. The server side
processes the patient input and generates the doctor’s response. This is a classic
example of a client-server application: the client is responsible for user interaction while
the server handles the extensive computational load. Not much data is passed to and
returned by the function but, because the data can require a significant amount of
processing, the server processes it.

The Doctor program uses a character array for input and returns another character array
as output. The table below lists four ways to pass character arrays between the client
and server, and the attributes and functions needed to implement each approach.

Approach Attributes or functions

Counted character arrays [size_is], [length_is], [ref]

Stub-managed strings [string], [ref], midl_user_allocate on server

Stub-managed strings [string], [unique], midl_user_allocate on client and
server

Function that returns a string [unique]

Within the constraints associated with these combinations of attributes, there are
alternative ways of sending one character array from client to server and of returning
another character array from server to client.

Counted Character Arrays

The [size_is] attribute indicates the upper bound of the array while the [length_is]
attribute indicates the number of array elements to transmit. In addition to the array, the
remote procedure prototype must include any variables representing length or size that
determine the transmitted array elements (they can be separate parameters or bundled
with the string in a structure). These attributes can be used with wide-character or single-
byte character arrays just as they would be with arrays of other types.

The information in this section describes remote procedure parameter prototypes for
character arrays. It is divided into the following topics:

e [in, out, size_is] Prototype
e [in, size_is and out, size_is] Prototype

[in, out, size_is] Prototype
The following function prototype uses a single-counted character array that is passed
both ways: from client to server and from server to client.

146

Volume 3 RPC and WNet

As an [in] parameter, ach/nOut must point to valid storage on the client side. The
developer allocates memory associated with the array on the client side before making
the remote procedure call.

The stubs use the [size_is] parameter strsize to allocate memory on the server and then
use the [length_is] parameter pcbSize to transmit the array elements into this memory.
The developer must make sure the client code sets the [length_is] variable before
calling the remote procedure:

In the previous example, the character array achinOut is also used as an [out]
parameter. In C, the name of the array is equivalent to the use of a pointer. By default,
all pointers are reference pointers—they do not change in value and they point to the
same area of memory on the client before and after the call. All memory that the remote
procedure accesses must fit the size that the client specifies before the call, or the stubs
will generate an exception.

Before returning, the Analyze function on the server must reset the pcbSize parameter
to indicate the number of elements that the server will transmit to the client as shown:

Instead of using a single string for both input and output, you may find it more efficient
and flexible to use separate parameters.

[in, size_is and out, size_is] Prototype
The following function prototype uses two counted strings. The developer must write

code on both client and server to keep track of the character array lengths and pass
parameters that tell the stubs how many array elements to transmit.

Chapter 13 Arrays and Pointers 147

Note the parameters that describe the array length are transmitted in the same direction
as the arrays: cbln and achin are [in] parameters while pcbOut and achOut are [out]
parameters. As an [out] parameter, the parameter pcbOut must follow C convention and
be declared as a pointer.

The client code counts the number of characters in the string, including the trailing zero,
before calling the remote procedure as shown:

The remote procedure on the server supplies the length of the return buffer in cbOut as
shown:

Knowing that the parameter is a string allows us to use the [string] attribute. This
attribute directs the stub to calculate the string size, thus eliminating the overhead
associated with the [size_is] parameters.

Strings
The [string] attribute indicates the parameter is a pointer to an array of type char, byte,
or w_char. As with a conformant array, the size of a [string] parameter is determined at
run time. Unlike a conformant array, the developer does not have to provide the length
associated with the array—the [string] attribute tells the stub to determine the array size
by calling strlen. A [string] attribute cannot be used at the same time as the [length_is]
or [last_is] attributes.

148

Volume 3 RPC and WNet

The [in, string] attribute combination directs the stub to pass the string from client to
server only. The amount of memory allocated on the server is the same as the
transmitted string size plus one.

The [out, string] attributes direct the stub to pass the string from server to client only.
The call-by-value design of the C language insists that all [out] parameters must be
pointers.

The [out] parameter must be a pointer and, by default, all pointer parameters are
reference pointers. The reference pointer does not change during the call—it points to
the same memory as before the call. For string pointers, the additional constraint of the
reference pointer means the client must allocate sufficient valid memory before making
the remote procedure call. The stubs transmit the string that the [out, string] attributes
indicate into the memory already allocated on the client side.

The following topics describe the remote procedure parameter prototypes for strings:

e [in, out, string] Prototype
e [in, string] and [out, string] Prototype

[in, out, string] Prototype

The following function prototype uses a single [in, out, string] parameter for both the
input and output strings. The string first contains patient input and is then overwritten
with the doctor response as shown:

This example is similar to the one that employed a single-counted string for both input
and output. As with that example, the [size_is] attribute determines the number of
elements allocated on the server. The [string] attribute directs the stub to call strlen to
determine the number of transmitted elements.

The client allocates all memory before the call as:

Note that the Analyze function no longer must calculate the length of the return string as
it did in the counted-string example where the [string] attribute was not used. Now the
stubs calculate the length as shown:

Chapter 13 Arrays and Pointers 149

[in, string] and [out, string] Prototype
The following function prototype uses two parameters: an [in, string] parameter and an
[out, string] parameter:

The first parameter is [in] only. This input string is only transmitted from the client to the
server. The server uses it as the basis for further processing. The string is not modified
and is not required again by the client, so it does not have to be returned to the client.

The second parameter, representing the doctor’s response, is [out] only. This response
string is only transmitted from the server to the client. The allocation size is provided so
that the server stubs can allocate memory for it. Since pszOutput is a [ref] pointer, the
client must have sufficient memory allocated for the string before the call. The response
string is written into this area of memory when the remote procedure returns.

Multiple Levels of Pointers

You can use multiple pointers such as a [ref] pointer to another [ref] pointer that points
to the character array as shown:

When there are multiple levels of pointers, the attributes are associated with the pointer
closest to the variable name. The client is still responsible for allocating any memory
associated with the response.

The following example allows the stub to call the server without knowing in advance how
much data will be returned:

(continued)

150

Volume 3 RPC and WNet

(continueq)

In this example, the stub passes the server a unique pointer, which the server initializes
to NULL. The server then allocates a block of BARs, sets the pointer, sets the size
argument and returns. Note that in order for the server to have an effect on the caller you
must pass a [ref] pointer to a [unique] pointer to your data. Also note the comma in
[size_is(, *pSize)], which indicates that the top-level pointer is not a sized pointer, but
that the lower-level pointer is.

On the client side, the stub allocates the block, assigns the address to the ppBar
argument and unmarshals BAR objects. The size argument indicates the size of the
block (and the number of unmarshaled BARs).

size_is

151

CHAPTER 14
Pipes

The pipe type constructor is a highly efficient mechanism for passing large amounts

of data, or any quantity of data that is not all available in memory at one time. By using
a pipe, RPC run time handles the actual data transfer, eliminating the overhead
associated with repeated remote procedure calls.

After a client invokes a remote procedure that has a pipe parameter, the client and
server enter loops to transfer data. The data can be produced on the client or the server.
Either way, the amount of data (in bytes) does not have to be known in advance.

The data can be produced or consumed incrementally. While in the data-transfer loop,
the server calls stub routines that load or unload a buffer of data. The client calls
programmer-defined procedures to allocate buffers, load data into and unload data

from the buffers.

For more information on pipe syntax and restrictions, see pipe in the MIDL Language
Reference. The PIPES sample program in the Platform SDK samples\rpc directory
demonstrates how to use [in,out] pipes to transfer data between a client and a server.

Essential Pipe Terminology

Like other types of parameters to remote procedure calls, pipes can be [in] or [out]
parameters. Since the server controls the transfer of data through a pipe, pipes with the
[in] attribute are said to pull data to the server. Similarly, output pipes push data from the
server to the client. The procedures that do the data transfer are called the pull
procedure and the push procedure, respectively.

The MIDL compiler generates the push and pull procedures for the server. In addition,

it manages the allocation of data buffers in memory. However, the client must provide
its own push and pull procedures. It must also provide a procedure for allocating the .
memory buffers used by the pipe. These are automatically called at the appropriate time
by the client stub. The allocation procedure is often called the alloc procedure or the
alloc function.

152

Volume 3 RPC and WNet

The Pipe State

On the server, the MIDL compiler creates a state variable that coordinates push, pull,
and alloc procedures. On the client side, the developer must create the state variable.
Therefore, the state variable is local to both sides—that is, the client and server each
maintain their own pipe state. The server stub code maintains the state variable on the
server. You should not attempt to modify its contents directly. The client must initialize
the fields in the pipe control structure and maintain its state variable. It uses the state
variable to identify where to locate or place data.

The client state variable can be as simple as a file handle, if you are transferring data
from one file to another. It can also be an integer that points to an element in an array.
Or you can define a fairly complex state structure to perform additional tasks, such

as coordinating the push and pull routines on an [in, out] parameter.

Defining Pipes in IDL Files

When a pipe is defined in an IDL file, the MIDL compiler generates a pipe control
structure whose members are pointers to push, pull, and alloc procedures as well as
a state variable that coordinates these procedures. The client application initializes the
fields in the pipe control structure, maintains its state variable, and manages the data
transfer with its own push, pull, and alloc functions. The client stub code calls these
application functions in loops during data transfer. For an input pipe, the client stub
marshals the transfer data and transmits it to the server stub. For an output pipe, the
client stub unmarshals the data into a buffer and passes a pointer to that buffer back
to the client application.

The server stub code initializes the fields of the pipe control structure to a state variable,
as well as pointers to push and pull routines. The server stub maintains the state and
manages its private storage for the transfer data. The server application calls the pull
and push routines in loops during the remote procedure call as it receives and
unmarshals data from the client stub, or marshals and transmits data to the client stub.

The following example IDL file defines a pipe type LONG_PIPE, whose element size
is defined as long. It also declares function prototypes for the remote procedure calls
InPipe and OutPipe, to send and receive data, respectively. When the MIDL compiler
processes the IDL file, it generates the header file shown in the example:

Example

Chapter 14 Pipes 153

Client-Side Pipe Implementation

The client application must implement the following procedures, which the client stub will
call during data transfer:

o A pull procedure (for an input pipe)
o A push procedure (for an output pipe)
e An alloc procedure to allocate a buffer for the transfer data

Al of these procedures must use the arguments specified by the MIDL-generated
header file. In addition, the client application must have a state variable to identify where
to locate or place data.

The alloc procedure can also be as simple or as complex as needed. For example, it can
return a pointer to the same buffer every time the stub calls the function, or it can
allocate a different amount of memory each time. If your data is already in the proper
form (an array of pipe elements, for example) you can coordinate the alloc procedure
with the pull procedure to allocate a buffer that already contains the data. In that case,
your pull procedure could be an empty routine.

154 Volume 3 RPC and WNet

The buffer allocation must be in bytes. The push and pull procedures, on the other hand,
manipulate elements, whose size in bytes depends on how they were defined.

Implementing Input Pipes on the Client

When using an input pipe to transfer data from the client to the server, you must
implement a pull procedure. The pull procedure must find the data to be transferred,
read the data into the buffer, and set the number of elements to send. Not all of the data
has to be in the buffer when the server begins to pull data to itself. The pull procedure
can fill the buffer incrementally.

When there is no more data to send, the procedure sets its last argument to zero. When
all the data is sent, the pull procedure should do any needed cleanup before returning.
For a parameter that is an [in, out] pipe, the pull procedure must reset the client's state
variable after all the data has been transmitted, so that the push procedure can use it to
receive data.

The following example is extracted from the Pipedemo program included with the
Platform SDK.

Chapter 14 Pipes 155

(continue

156

Volume 3 RPC and WNet

(continued)

This example includes the header file generated by the MIDL compiler. For details see
Defining Pipes in IDL Files. It also declares a variable it uses as the data source called
globalPipeData. The variable globalBuffer is a buffer that the pull procedure uses

to send the blocks of data it obtains from globalPipeData.

The SendLongs function declares the input pipe, and allocates memory for the data
source variable globalPipeData. In your client/server program, the data source can be
a file or structure that the client creates. You can also have your client program obtain
data from the server, process it, and return it to the server using an input pipe. In this
simple example, the data source is a dynamically allocated buffer of long integers.

Before the transfer can begin, the client must set pointers to the state variable, the pull
procedure, and the alloc procedure. These pointers are kept in the pipe variable the
client declares. In this case, SendLongs declares inPipe. You can use any appropriate
data type for your state variable.

Clients initiate data transfers across a pipe by invoking a remote procedure on the
server. Calling the remote procedure tells the server program that the client is ready
to transmit. The server can then pull the data to itself. This example invokes a remote
procedure called InPipe. After the data is transferred to the server, the SendLongs
function frees the dynamically allocated buffer.

Rather than allocate memory each time a buffer is needed. the alloc procedure in this
example simply sets a pointer to the variable globalBuffer. The pull procedure reuses
this buffer each time it transfers data. More complex client programs may need

to allocate a new buffer each time the server pulls data from the client.

The client stub calls the pull procedure. The pull procedure in this example uses the
state variable to track the next position in the global data source buffer to read from.

It reads data from the source buffer into the pipe buffer. The client stub transmits the
data to the server. When all the data has been sent, the pull procedure sets the buffer
size to zero. This tells the server to stop pulling data.

Chapter 14 Pipes 157

Implementing Output Pipes on the Client

When using an output pipe to transfer data from the server to the client, you must
implement a push procedure in your client. The push procedure takes a pointer to .
a buffer and an element count from the client stub and, if the element count is greater
than 0, processes the data. For example, it could copy the data from the stub’s buffer
to its own memory. Alternately, it could process the data in the stub’s buffer and save
it to a file. When the element count equals zero, the push procedure completes any
needed cleanup tasks before returning.

In the following example, the client function ReceiveLongs allocates a pipe structure
and a global memory buffer. It initializes the structure, makes the remote procedure call,
and then frees the memory.

Example

(continued)

158 Volume 3 RPC and WNet

(continued)

This example includes the header file generated by the MIDL compiler. For details see
Defining Pipes in IDL File. It also declares a variable, globalPipeData, that it uses as the
data sink. The variable globalBuffer is a buffer that the push procedure uses to receive
blocks of data it stores in globalPipeData.

Chapter 14 Pipes 159

The ReceivelLongs function declares a pipe and allocates memory space for the global
data sink variable. In your client/server program, the data sink can be a file or data
structure the client creates. In this simple example, the data source is a dynamically
allocated buffer of long integers.

Before the data transfer can begin, your client program must initialize the output pipe
structure. It must set pointers to the state variable, the push procedure, and the alloc
procedure. In this example, the output pipe variable is called outputPipe.

Clients signal servers that they are ready to receive data by invoking a remote procedure
on the server. In this example, the remote procedure is called OutPipe. When the client
calls the remote procedure, the server begins the data transfer. Each time data arrives,
the client stub calls the client’s alloc and push procedures as needed.

Rather than allocate memory each time a buffer is needed, the alloc procedure in this
example simply sets a pointer to the variable globalBuffer. The pull procedure then
reuses this buffer each time it transfers data. More complex client programs may need
to allocate a new buffer each time the server pulls data from the client.

The push procedure in this example uses the state variable to track the next position
where it will store data in the global data sink buffer. It writes data from the pipe buffer
into sink buffer. The client stub then receives the next block of data from the server and
stores it in the pipe buffer. When-all the data has been sent, the server transmits a zero-
sized buffer. This cues the push procedure to stop receiving data.

Server-Side Pipe Implementation

Server programs for distributed applications that use pipes need not implement any
push, pull, or alloc functions. They do need to contain procedures that clients can invoke
remotely to initiate data transfers.

Implementing Input Pipes on the Server

To begin sending data to a server, a client calls one of the server’s remote procedures.
This procedure must repeatedly call the pull procedure in the server’s stub. The MIDL
compiler uses the application’s IDL file to automatically generate the server’s pull
procedure. '

Each time the server program invokes the pull procedure in its stub, the pull procedure
receives blocks of data from the client. It unmarshals the data into the server’s buffer.
The server's remote procedure can then process this data in any way required. The loop
continues until the server receives a buffer of zero length.

The following example is from the Pipedemo program contained in the samples that
come with the Platform SDK. It illustrates a remote server procedure that uses a pipe to
pull data from the client to the server.

160 Volume 3 RPC and WNet

Implementing Output Pipes on the Server

To begin receiving data from a server, a client calls one of the server's remote
procedures. This procedure must repeatedly call the push procedure in the server’s stub.
The MIDL compiler uses the application’s IDL file to automatically generate the server’s
push procedure.

The remote server routine must fill the output pipe’s buffer with data before it calls the
push procedure. Each time the server program invokes the push procedure in its stub,
the push procedure marshals the data and transmits it to the client. The loop continues
until the server sends a buffer of zero length.

The following example is from the Pipedemo program contained in the samples that
come with the Platform SDK. It illustrates a remote server procedure that uses a pipe
to push data from the server to the client.

Chapter 14 Pipes 161

Rules for Multiple Pipes

You can combine [in], [out], and [in, out] pipe parameters in any combination
in a single call, but you must process the pipes in a specific order, as shown in
the following pseudocode example:

o Get the data from every input pipe, starting with the first (leftmost) [in] parameter, and
continuing in order, draining each pipe before beginning to process the next.

o After every input pipe has been completely processed, send the data for the output

pipes, again starting with the first [out] parameter, and continuing in order, filling each
pipe before beginning to process the next.

(continued)

162 Volume 3 RPC and WNet

(continued)

Combining Pipe and Nonpipe Parameters

When you combine pipe types and other types in a remote procedure call, the data is
transmitted according to the direction of the parameter:

¢ In the [in] direction, the data for all nonpipe arguments is transmitted first, followed by
pipe data.

¢ In the [out] direction, the server sends the pipe data first. After the manager routine
returns, the server transmits the nonpipe data.

o When there are [in,out] pipe arguments combined with [in,out] non-pipe arguments
first the input data is transmitted in its entirety, as previously described. Then, the
output data is transmitted as previously described.

The following restriction applies to this (MIDL 3.0) implementation of pipes: When you
combine pipe types and other types in a single remote procedure call, the nonpipe
parameters must have a well-defined size in order to allow the MIDL compiler to
calculate the buffer size needed. For example, you cannot combine pipe parameters with
a [unique] pointer or a conformant structure, since their sizes cannot be determined at
compile time.

163

CHAPTER 15

Binding and Handles

This chapter explains creating and using bindings and binding handles between client
and server programs. It also discusses client/server contexts and context handles.

Note In addition to binding and context handles, Microsoft® RPC also supports
serialization handles used to encode or decode data. These are used for serialization on
a local computer and do not involve remote binding. For additional information on
serialization handles, see Serialization Services.

Binding Handles

Binding is the process of creating a logical connection between a client program and a
server program. The information that composes the binding between client and server is
represented by a structure called a binding handle.

A binding handle is analogous to a file handle that the fopen C run-time library function
returns, or a window handle that the function CreateWindow returns. As with these
handles, your application cannot directly access and manipulate the information in the
binding handle. The information in a binding handle data structure is available only to the
RPC run-time libraries. You provide the handle, the run-time libraries access and
manipulate the appropriate data.

Types of Binding Handles

Binding handles can be automatic, implicit, or explicit. The difference between these
binding handle types is in how much control you want your application to have over the
binding process. As the name suggests, automatic binding handles automate binding.
The client and server applications do not need code to handle the binding process.

Implicit binding handles allow client programs to configure the binding handle before the
binding takes place. After the client establishes a binding, the RPC run-time library
handles the rest.

Explicit binding handles move complete control over the binding process into the source
code of the client and the server programs. With this control comes increased
complexity. Your application must call RPC functions to manage the binding. It does not
happen automatically.

Figure 15-1 illustrates the differences between automatic, implicit, and explicit binding
handles.

164 Volume 3 RPC and WNet

Automatic Implicit Explicit
Set Binding
Set Binding Information,
Client Application Invoke Remote Information Create Binding
Source Code Procedure and Create Handle and Pass
Binding Handle to RPC Run-time
Library

RPC Run-time
Library

Respond to Respond to Respond to
Server Application Remote Remote Remote
Source Code Procedure Procedure Procedure
Call Call Call

Code that manages the binding handle
Figure 15-1: Differences Between Binding Handles.

In addition, every binding handle is either primitive or custom. Each of these types of
binding handies are discussed in the following topics:

e Automatic Binding Handles

¢ Implicit Binding Handles

e Explicit Binding Handles

¢ Primitive and Custom Binding Handles

Automatic Binding Handles

Automatic binding handles are useful when the application does not require a specific
server and when it does not need to maintain any state information between the client
and server. When you use an automatic binding handie, you do not have to write any
client application code to deal with binding and handles—you simply specify the use of
the automatic binding handle in the Application Configuration File (ACF). The stub then
defines the handle and manages the binding.

For example, a time-stamp operation can be implemented using an auto handle. It
makes no difference to the client application which server provides it with the time stamp
because it can accept the time from any available server.

Chapter 15 Binding and Handles 165

Note Auto handles are not supported for the Macintosh platform.

You specify the use of auto handles by including the [auto_handle] attribute in the ACF.
The time-stamp example uses the following ACF:

When the ACF does not include any other handle attribute, and when the remote
procedures do not use explicit handles, the MIDL compiler uses automatic handles by
default. It also uses automatic handles as the default when the ACF is not present.

The remote procedures are specified in the IDL file. The auto handle must not appear as
an argument to the remote procedure. For example:

The benefit of the auto handle is that the developer does not have to write any code to
manage the handle; the stubs manage the binding automatically. This is significantly
different from the Hello, World example, where the client manages the implicit primitive
handle defined in the ACF and must call several run-time functions to establish the
binding handle.

Implicit Binding Handles

Implicit binding handles allow your application to select a specific server to execute its
remote procedure calls. For details, see Client-Side Binding. They also enable your
client/server program to use authenticated bindings. That is, the client can specify
authentication information in an implicit binding handle. The RPC run-time library uses
the authentication information to establish an authenticated RPC session between the
client and the server. For more information, see Security.

166 Volume 3 RPC and WNet

When your application uses implicit bindings, the client must set the binding information
so that it can create the binding. After the client creates an implicit binding, it does not
need to pass any binding handles to remote procedures. The RPC library handles the
rest of the mechanics of the communication session.

The client stores the binding information for an implicit handle in a global variable. When
the MIDL compiler generates the client stub and header file from the interface
specification in your MIDL file, it also generates code for a global binding handle
variable. Your client program initializes the handle and then does not refer to it again
until it destroys the binding.

You create an implicit handle by specifying the [implicit_handle] attribute in the ACF for
an interface as follows:

The handle_t type, which is used in the preceding example, is a MIDL data type used
for defining binding handles.

After creating the implicit handle, the application needs to use it as a parameter to the
RPC run-time library functions. Do not use the implicit handle as a parameter to remote
procedure calls. The following code sample demonstrates the use of implicit binding
handles.

In the preceding example, the RPC run-time library functions
RpcBindingFromStringBinding and RpcBindingFree both required the implicit
binding handle to be passed in their parameter lists. However, the remote procedure
MyRemoteProcedure did not, since it is not an RPC run-time library function.

Chapter 15 Binding and Handles 167

Explicit Binding Handles

For maximum control over the binding process, client/server applications may use
explicit binding handles. Like implicit handles, explicit binding handles enable your client
application to select a server to execute its calls. In addition, explicit binding handles
enable your client/server application to create an authenticated RPC communication
session. With explicit handles, your client can connect to more than one server and
execute remote procedures on multiple servers. Multithreaded and asynchronous client
applications can even connect to multiple servers and execute multiple remote
procedures at the same time.

Your client application must pass the explicit handle as a parameter to each remote
procedure call. To conform to the OSF standard, the handle should be specified as the
first parameter on each remote procedure. However, the Microsoft extensions to RPC
enable you to specify the binding handle in other positions. For details, see Microsoft
RPC Binding-Handle Extensions.

To create an explicit handle, declare the handle as a parameter to the remote operations
in the IDL file. The Hello, World example can be redefined to use an explicit handle as
shown:

You can combine explicit and implicit handles in a single interface. If a function has an
explicit handle in its parameter list, that handle will be used. If a function in an interface
using implicit handles does not specify an explicit handle, then the default implicit handle
will be used.

Primitive and Custom Binding Handles

All handles declared with the handle_t or RPC_BINDING_HANDLE types are primitive
binding handles. You can extend the handle_t or RPC_BINDING_HANDLE types to

include more or different information than the primitive handle type contains. When you
do, you create a custom binding handle. ‘

To make a custom binding handle for your distributed application, you will need to create
your own data type and specify the [handle] attribute on a type definition in your IDL file.
Ultimately, the stub files map custom binding handles to primitive handles.

168 Volume 3 RPC and WNet

If you do create your own binding handle type, you must also supply bind and unbind
routines that the client stub uses to map a custom handle to a primitive handle. The stub
calls your bind and unbind routines at the beginning and end of each remote procedure
call. The bind and unbind routines must conform to the following function prototypes.

Function prototype Description
handle_t fype_bind(type) Binding routine
void type_unbind(type, handle_t) Unbinding routine

The following example shows how a custom binding handle can be defined in the IDL
file:

The programmer-defined bind and unbind routines appear in the client application. In the
following example, the bind routine calls RpecBindingFromStringBinding to convert the
string-binding information to a binding handle. The unbind routine calls RpcBindingFree
to free the binding handle.

The name of the programmer-defined binding handle, DATA_HANDLE_TYPE, appears
as part of the name of the functions. It is also used as the parameter type in the function
parameters. :

Chapter 15 Binding and Handles 169

170 Volume 3 RPC and WNet

Both implicit and explicit binding handles can either be primitive or custom handles. That
is, a handle may be:

e Primitive and implicit
e Custom and implicit
¢ Primitive and explicit
e Custom and explicit

Client-Side Binding
Binding handles are composed of a protocol sequence, the name or address of a server

program host computer, and a server program endpoint. Therefore, your client program
must obtain or provide this information to create a binding.

If your client program uses automatic binding handles, you do not need to write any
special source code in it to create or manage the binding. The client stub calls the RPC
functions that are required to establish and maintain the binding. All you have to do is
specify that your client uses automatic binding handles in the Application Configuration
File (ACF), and design the interface accordingly. For details, see Automatic Binding
Handles.

Suppose, for example, that you were developing a client program that called remote
time-stamping functions. Here, the stubs do all the work and the client only needs to
include the generated header file Auto.h to obtain the function prototypes for the remote
procedures. The client application calls to the remote procedures appear just as if they
were calls to local procedures, as shown in the following example:

Chapter 15 Binding and Handles 171

As you can see in the preceding example, the client application does not have to make
any explicit calls to the RPC run-time library functions. The client stub manages them.

If your application uses implicit or explicit binding handles, the client must obtain the
binding information and call the RPC functions to create the handles. Where the client
obtains the binding information from depends on the requirements of your application.
The setup program that installs your client application can store binding information in
environment variables that it creates. It can also save binding information in an
application-specific configuration file. Since binding information in environment variables
or configuration files is usually stored as strings, your client application will need to
convert the string to a binding. For more information, see Using String Bindings.

Most networks have a name service. Server programs can advertise themselves in the
name-service database. When a client begins execution, it can obtain its binding
information from the name-service database. For details, see Importing from Name
Service Databases.

The steps required for binding with implicit and explicit handles are discussed in the
following topics:

e Selecting a Protocol Sequence

¢ Finding Server Host Systems

¢ Finding Endpoints

For a brief overview of these topics, see Connecting the Client and the Server.

Selecting a Protocol Sequence

A protocol sequence is the language that a network operating system uses to talk over
the network to other computers. In more specific terms, RPC applications must specify a
string that represents a combination of an RPC protocol, a transport protocol, and a
network protocol.

Microsoft RPC supports three RPC protocols:

e Network Computing Architecture connection-oriented protocol (NCACN)
e Network Computing Architecture datagram protocol (NCADG)
¢ Network Computing Architecture local remote procedure call (NCALRPC)

RPC applications can use the NCALRPC protocol to invoke procedures offered by
server programs running on the same computer that the client program runs on.
Developers often use this capability for debugging.

172

Volume 3 RPC and WNet

The transport and network protocols that your application uses depend on what
protocols the network supports. Many networks today, including the Internet, support
TCP/IP. Other common transport and network protocols are IPX/SPX, NetBIOS, and
AppleTalk DSP. Microsoft RPC supports these and other transport and network
protocols. For a complete list, see PROTSEQ.

When your application uses automatic binding handles, it does not need to specify the
protocol sequence. If it uses implicit or explicit handles, it must obtain or specify the
protocol sequence. The preferred method is for the server program to advertise its host
address and protocol sequence in a name-service database. The client can then query
the name service to set up a binding handle. For details, see Importing from Name
Service Databases.

Clients can also specify protocol sequence information that they obtain from environment
variables created and initialized by the setup program, from application-specific
configuration files, or from literal strings in the program source code.

In addition, your client program can invoke RpcNetworkinqProtseqs to query the RPC
run-time library for all of the protocol sequences that it and the network both support.
After your client obtains the list of possible protocol sequences, it can call
RpcNetworkisProtseqValid to see which protocol sequence it can use to connect to the
server.

After your client program has a valid protocol sequence string, it can pass that
information to the RpcStringBindingCompose and RpcBindingFromStringBinding
functions to create the binding handle.

Finding Server Host Systems

A server host system is the computer that executes the distributed application’s server
program. There may be one or many server host systems on a network. How your client
program finds a server to connect to depends on the needs of your program.

There are two methods of finding server host systems. The first is to query a name-
service database for the location of a server program. The second is to use information
stored in strings in the client source code, environment variables, or application-specific
configuration files. Your client application can use the data in the string to compose a
binding between the client and the server.

This section presents information on both of these techniques in the following topics:

¢ |mporting from Name Service Databases
¢ Using String Bindings

Importing from Name Service Databases

The preferred method of finding server host systems on a network is to query a name-
service database. This gives both the distributed application and the network
administrator greater flexibility. If it queries the name-service database, the distributed
application can be more easily ported from network to network. Network administrators
can more easily move server programs from host to host, as needed.

Chapter 15 Binding and Handles 173

Name-service databases store, among other things, binding handles and UUIDs. Your
client application can search for either or both of these when it needs to bind to the
server. For a discussion of the information that a name service stores, and the storage
format, see The RPC Name-Service Database.

The RPC library provides two sets of functions that your client program can use to
search the name-service database. The names of one set begin with
RpcNsBindinglmport. The names of the other set begin with RpcNsBindingLookup.
The difference between the two groups of functions is that the RpcNsBindinglmport
functions return a single binding handle per call and the RpcNsBindingLookup
functions return groups of handles per call.

To begin a search with the RpcNsBindinglmport functions, first call
'RpcNsBindingimportBegin, as shown in the following code fragment.

When the RPC functions search the name-service database, they need a place to begin
the search. In RPC terminology, this is called the entry name. Your client program
passes the entry name as the second parameter to RpcNsBindingimportBegin. This
parameter can be NULL if you want to search the entire name-service database.
Alternatively, you can search the server entry by passing a server-entry name or search
the group entry by passing a group-entry name. Passing an entry name restricts the
search to the contents of that entry.

In the preceding example, the value RPC_C_NS_SYNTAX_DEFAULT is passed as the
first parameter to RpcNsBindinglmportBegin. This selects the default entry name
syntax. Currently, this is the only entry-name syntax that Windows NT/Windows 2000
supports.

Your client application can search the name-service database for an interface name, a
UUID, or both. If you want to have it search for an interface by name, pass the global
interface variable that the MIDL compiler generates from your IDL file as the third
parameter to RpcNsBindinglmportBegin. You'll find its declaration in the header file
that the MIDL compiler generated when it generated the client stub. If you want your
client program to search by UUID only, set the third parameter to NULL.

When searching the name-service database for a UUID, set the fourth parameter of
RpcNsBindinglmportBegin to the UUID that you want to search for. If you are not
searching for a UUID, set this parameter to NULL.

174

Volume 3 RPC and WNet

The RpcNsBindinglmportBegin function passes the address of a name service—search
context handle through its fifth parameter. You pass this parameter to other
RpcNsBindinglmport functions.

In particular, the next function your client application would call is
RpcNsBindinglmportNext. Client programs use this function to retrieve compatible
binding handles from the name-service database. The following code fragment
demonstrates how this function might be called:

Once it has called the RpcNsBindinglmportNext function to obtain a binding handle,
your client application can determine if the handle it received is acceptable. If not, your
client program can execute a loop and call RpcNsBindinglmportNext again to see if
the name service contains a more appropriate handle. For each call to
RpcNsBindinglmportNext, there must be a corresponding call to RpcNsBindingFree.
When your search is complete, call the RpcNsBindinglmportDone function to free the
lookup context.

After your client application has an acceptable binding handle, it should check to ensure
that the server application is running. There are two methods your client can use to
perform this verification. The first is to call a function in the client interface. If the server
program is running, the call will complete. If not, the call will fail. A better way to verify
that the server is running is to invoke RpcEpResolveBinding, followed by a call to
RpcMgmtisServerListening. For more information on the name-service database, see
The RPC Name-Service Database.

Using String Bindings

Applications can create bindings from information stored in strings. Your client
application composes this information as a string, then calls the '
RpcBindingFromStringBinding function. The client must supply the following
information to identify the server:

e The interface name, the Globally Unique Identifier (GUID) of the object, or UUID of
the object. For more information, see Generating Interface UUIDs and String UUID.

o The transport type to communicate over, such as named pipes or TCP/IP. For details,
see Essential RPC Binding Terminology and Selecting a Protocol Sequence.

o The network address or the name of the server host computer.

e The endpoint of the server program on the server host computer. For more
information, see Finding Endpoints, and Specifying Endpoints.

(The object UUID and the endpoint information are optional.)

Chapter 15 Binding and Handles 175

In the following examples, the pszNetworkAddress parameter and other parameters
include embedded backslashes. The backslash is an escape character in the C
programming language. Two backslashes are needed to represent each single literal
backslash character. The string-binding structure must contain four backslash characters
to represent the two literal backslash characters that precede the server name.

The following example shows that the server name must be preceded by eight
backslashes so that four literal backslash characters will appear in the string-binding
data structure after the sprintf function processes the string.

In the following example, the string binding appears as:

The client then calls RpcBindingFromStringBinding to obtain the binding handle:

A convenience function, RpcStringBindingCompose assembles the object UUID,
protocol sequence, network address, and endpoint in the correct syntax for the call to
RpcBindingFromStringBinding. You do not have to worry about putting the
ampersand, colon, and the various components for each protocol sequence in the right
place; you just supply the strings as parameters to the function. The run-time library
even allocates the memory needed for the string binding.

(continued)

176

Volume 3 RPC and WNet

(continued)

Another convenience function, RpcBindingToStringBinding, takes a binding handle as
input and produces the corresponding string binding.

Finding Endpoints
Server programs listen to endpoints for client requests. The syntax of the endpoint string

depends on the protocol sequence you use. For example, the endpoint for TCP/IP is a
port number, and the endpoint syntax for named pipes is a valid pipe name.

There are two types of endpoints: well-known and dynamic. Your choice of which type of
endpoint your program uses determines whether the distributed application or the run-
time library specifies the endpoint.

This section discusses endpoints and presents information on how to find them. It is
organized into the following topics:

e Using Well-Known Endpoints
¢ Using Dynamic Endpoints

Note that it is possible for your client application to use the endpoint map to determine
whether or not a server program is currently running. Your client can call
RpcMgmtinqlfids, RpcMgmtEpEIltingBegin, and RpcMgmtEpEIltingDone to see if the
server has registered the particular interface it requires in the endpoint map.

Using Well-Known Endpoints

Well-known endpoints are pre-assigned endpoints that the server program uses every
time it runs. Because the server always listens to that particular endpoint, the client
always attempts to connect to it. Well-known endpoints are usually assigned by the
authority responsible for the transport protocol. Because server host computers have a
finite number of available endpoints, well-known endpoints are not recommended for
most applications.

A distributed application can specify a well-known endpoint in a string and pass that
string as a parameter to the function RpcServerUseProtseqEp. Alternatively, the
endpoint string can appear in the IDL file interface header as part of the [endpoint]
interface attribute.

Chapter 15 Binding and Handles 177

You can use two approaches to implement the well-known endpoint:

e Specify all information in a string binding
e Store the well-known endpoint in the name-service database

You can write all of the information needed to establish a binding into a distributed
application when you develop it. The client can specify the well-known endpoint directly
in a string, call RpcStringBindingCompose to create a string that contains all the
binding information, and supply this string to the function
RpcBindingFromStringBinding to obtain a handle. The client and server can be hard-
coded to use a well-known endpoint, or written so that the endpoint information comes
from the command line, a data file, a configuration file, or the IDL file.

Your client application can also query a name-service database for well-known endpoint
information. -

Using Dynamic Endpoints

The number of communication ports for a particular server are usually limited. For
example, when you use the ncacn_nb_nb protocol sequence, indicating that RPC
network communication occurs using NetBIOS over NetBEUI, only 234 ports are
available. The RPC run-time libraries allow you to assign endpoints dynamically, as
needed.

By default, the RPC run-time library functions search for endpoint information when they
query a name-service database. If the endpoint is dynamic, the name-service database
will not contain endpoint information. However, the query will give your client program
the name of a server. It can then search the server’s endpoint map.

The client can instruct the RPC library to search the endpoint map and resolve a binding
by invoking the RpcEpResolveBinding function. If you need more specific control over
endpoint selection, you can make your client search the endpoint map one entry at a
time by calling the RpcMgmtEpEItinqgBegin, RpcMgmtEpEItingNext, and
RpcMgmtEpEitingDone functions.

Server-Side Binding

This section presents a discussion of a server program’s role in providing binding
information to its clients. '

Registering Interfaces

This section presents a detailed discussion of the process of registering an RPC
interface. For an overview of registering server interfaces, see Registering the Interface.

Interface Registration Functions

Servers register their interfaces by calling the RpcServerRegisterlf function. Complex
server programs often support more than one interface. Server applications must call
this function once for each interface they support.

178

Volume 3 RPC and WNet

Also, servers can support multiple versions of the same interface, each with its own
implementation of the interface’s functions. If your server program does this, it must
provide a set of entry points. An entry point is a manager routine that dispatches calls for
a version of an interface. There must be one entry point for each version of the interface.
The group of entry points is called an entry point vector. For details, see Entry-Point
Vectors.

In addition to the standard function RpcServerRegisterlf, Microsoft RPC also supports
other interface registration functions. The RpcServerRegisterlf2 function extends the
capabilities of RpcServerRegisterlf by enabling you to specify a set of registration flags
(see Interface Registration Flags), the maximum number of concurrent remote procedure
call requests the server can accept, and the maximum size in bytes of incoming data
blocks.

The Microsoft RPC library also contains a function called RpcServerRegisterlfEx. Like
the RpcServerRegisterlf function, this function registers an interface. Your server
program can also use this function to specify a set of registration flags (see Interface
Registration Flags), the maximum number of concurrent remote procedure call requests
the server can accept, and a security callback function.

The RpcServerRegisterlf, RpcServerRegisterlfEx, and RpcServerRegisterlf2
functions set values in the internal interface registry table. This table is used to map the
interface UUID and object UUIDs to a manager EPV. The manager EPV is an array of
function pointers that contains exactly one function pointer for each function prototype in
the interface specified in the IDL file.

For information on supplying multiple EPVs to provide multiple implementations of the
interface, see Multiple Interface Implementations.

The run-time library uses the interface registry table (set by calls to the function
RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2) and the
object registry table (set by calls to the function RpcObjectSetType) to map interface
and object UUIDs to the function pointer.

When you want your server program to remove an interface from the RPC run-time
library registry, call the RpcServerUnregisterlf function. After the interface is removed
from the registry, the RPC run-time library will no longer accept new calls for that
interface.

Entry-Point Vectors

The manager Entry-Point Vector (EPV) is an array of function pointers that point to
implementations of the functions specified in the IDL file. The number of elements in the
array corresponds to the number of functions specified in the IDL file. Microsoft RPC
supports multiple entry-point vectors representing multiple implementations of the
functions specified in the interface.

The MIDL compiler automatically generates a manager EPV data type for use in
constructing manager EPVs. The data type is named if-name_SERVER_EPV, where
if-name specifies the interface identifier in the IDL file.

Chapter 15 Binding and Handles 179

The MIDL compiler automatically creates and initializes a default manager EPV on the
assumption that a manager routine of the same name exists for each procedure in the
interface and is specified in the IDL file.

When a server offers multiple implementations of the same interface, the server must
create one additional manager EPV for each implementation. Each EPV must contain
exactly one entry point (address of a function) for each procedure defined in the IDL file.
The server application declares and initializes one manager EPV variable of type
if-name_SERVER_EPV for each additional implementation of the interface. To register
the EPVs it calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 once for each object type it supports.

When the client makes a remote procedure call to the server, the EPV containing the
function pointer is selected based on the interface UUID and the object type. The object
type is derived from the object UUID by the object-inquiry function or the table-driven
mapping controlled by RpcObjectSetType.

Manager EPVs

By default, the-MIDL compiler uses the procedure names from an interface’s IDL file to
generate a manager EPV, which the compiler places directly into the server stub. This
default EPV is statically initialized using the procedure names declared in the interface
definition.

To register a manager using the default EPV, specify NULL as the value of the MgrEpv
argument (a null EPV).If the routine names used by a manager correspond to those of
the interface definition, you can register this manager using the default EPV of the
interface generated by the MIDL compiler. You can also register a manager using an
EPV that the server application supplies.

A server can (and sometimes must) create and register a non-null manager EPV for an
interface. To select a server application-supplied EPV, pass the address of an EPV
whose value has been declared by the server as the value of the MgrEpv argument.

A non-null value for the MgrEpv argument always overrides a default EPV in the server
stub. '

The MIDL compiler automatically generates a manager EPV data type
(RPC_MGR_EPV) for a server application to use in constructing manager EPVs.
A manager EPV must contain exactly one entry point (function address) for each
procedure defined in the IDL file.

A server must supply a non-null EPV in the following cases:

¢ When the names of manager routines differ from the procedure names declared in the
interface definition

¢ When the server uses the default EPV for registering another implementation of the
interface

A server declares a manager EPV by initializing a variable of type
if-name_SERVER_EPV for each implementation of the interface.

180

Volume 3 RPC and WNet

Registering a Single Implementation of an Interface

When a server offers only one implementation of an interface, the server calls
RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2 only once. In
the simplest case, the server uses the default manager EPV. (The exception is when the
manager uses routine names that differ from those declared in the interface.)

For the simple case, you supply the following values for calls to RpcServerRegisterlf,
RpcServerRegisterlfEx, or RpcServerRegisterlf2:

e Manager EPVs
. To use the default EPV, specify a null value for the MgrEpv argument.
e Manager type UUID

When using the default EPV, register the interface with a nil manager type UUID by
supplying either a null value or a nil UUID for the MgrTypeUuid argument. In this
case, all remote procedure calls, regardless of the object UUID in their binding
handle, are dispatched to the default EPV, assuming no RpcObjectSetType calls
have been made.

You can also provide a non-nil manager type UUID. In this case, you must also call
the RpcObjectSetType routine.

Registering Multiple Implementations of an Interface

You can supply more than one implementation of the remote procedure(s) specified in
the IDL file. The server application calls RpcObjectSetType to map object UUIDs to
type UUIDs and calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 to associate manager EPVs with a type UUID. When a remote
procedure call arrives with its object UUID, the RPC server run-time library maps the
object UUID to a type UUID. The server application then uses the type UUID and the
interface UUID to select the manager EPV.

You can also specify your own function to resolve the mapping from object UUID to
manager type UUID. You specify the mapping function when you call
RpcObjectSetingFn.

To offer multiple implementations of an interface, a server must register each
implementation by calling RpcServerRegisterlf, RpcServerRegisterlfEx or
RpcServerRegisterlf2 separately. For each implementation a server registers, it
supplies the same IfSpec argument, but a different pair of MgrTypeUuid and MgrEpv
arguments.

In the case of multiple managers, use RpcServerRegisterlf, RpcServerRegisterlfEx or
RpcServerRegisterlf2 as follows:
e Manager EPVs

To offer multiple implementations of an interface, a server must:

¢ Create a non-null manager EPV for each additional implementation.

e Specify a non-null value for the MgrEpv argument in RpcServerRegisterlf,
RpcServerRegisterlfEx, or RpcServerRegisterlf2.

Chapter 15 Binding and Handles 181.

Please note that the server can also register with the default manager EPV.
e Manager type UUID

Provide a manager type UUID for each EPV of the interface. The nil type UUID
(or null value) for the MgrTypeUuid argument can be specified for one of the manager
EPVs. Each type UUID must be different.

Rules for Invoking Manager Routines

The RPC run-time library dispatches an incoming remote procedure call to a manager
that offers the requested RPC interface. When multiple managers are registered for an
interface, the RPC run-time library must select one of them. To select a manager, the
RPC run-time library uses the object UUID specified by the call’s binding handle.

The run-time library applies the following rules when interpreting the object UUID of a
remote procedure call:

o Nil object UUIDs

A nil object UUID is automatically assigned the nil type UUID (it is illegal to specify a
nil object UUID in the RpcObjectSetType routine). Therefore, a remote procedure
call whose binding handle contains a nil object UUID is automatically dispatched to
the manager registered with the nil type UUID, if any.

e Non-nil object UUIDs

In principle, a remote procedure call whose binding handle contains a non-nil object
UUID should be processed by a manager whose type UUID matches the type of the
object UUID. However, identifying the correct manager requires that the server has
specified the type of that object UUID by calling the RpcObjectSetType routine.

If a server fails to call the RpcObjectSetType routine for a non-nil object UUID, a
remote procedure call for that object UUID goes to the manager EPV that services
remote procedure calls with a nil object UUID (that is, the nil type UUID).

Remote procedure calls with a non-nil object UUID in the binding handle cannot be
executed if the server assigned that non-nil object UUID a type UUID by calling the
RpcObjectSetType routine, but did not also register a manager EPV for that type
UUID by calling RpcServerRegisterlf, RpcServerRegisterlfEx or
RpcServerRegisterlf2.

The following table summarizes the actions that the run-time library uses to select the
manager routine.

Server set Server
Object UUID type for object registered
of call uuID? EPV type? Dispatching action
Nil Not applicable Yes Uses the manager with the nil type UUID.
Nil Not applicable No Error (RPC_S_UNSUPPORTED_TYPE);

rejects the remote procedure call.

(continued)

182

Volume 3 RPC and WNet

(continued)
Server set Server

Object UUID type for object registered

of call UuID? EPV type? Dispatching action

Non-nil Yes Yes Uses the manager with the same type
UUID.

Non-nil No Ignored Uses the manager with the nil type UUID. If

: no manager with the nil type UUID, error
(RPC_S_UNSUPPORTEDTYPE); rejects
the remote procedure call.

Non-nil Yes ' No Error (RPC_S_UNSUPPORTEDTYPE);

rejects the remote procedure call.

The object UUID of the call is the object UUID found in a binding handle for a remote
procedure call.

The server sets the type of the object UUID by calling RpcObjectSetType to specify the
type UUID for an object.

The server registers the type for the manager EPV by calling RpcServerRegisterif,
RpcServerRegisterlfEx or RpcServerRegisterlf2 using the same type UUID.

Note The nil object UUID is always automatically assigned the nil type UUID. lt is illegal
to specify a nil object UUID in the RpcObjectSetType routine.

Dispatching a Remote Procedure Call to a Server-Manager Routine
The following tables show the steps that the RPC run-time library takes to dispatch a
remote procedure call to a server-manager routine.

A simple case where the server registers the default manager EPV, is described in the
following tables.

Interface Registry Table

Interface UUID Manager type UUID Entry-point vector
uuid1 Nl Default EPV

Object Registry Table

Object UUID Object type

Nil Nil

(Any other object UUID) Nil

Chapter 15 Binding and Handles 183

Mapping the Binding Handle to an Entry-Point Vector (EPV)

Object type
Interface UUID Object UUID (from (from object Manager EPV
(from client client binding registry (from interface registry
binding handle) handle) table) table)
uuid1 Nil Nil Default EPV
Same as above uuidA Nil Default EPV

The following steps describe the actions that the RPC server’s run-time library take, as
shown in the preceding tables, when a client with interface UUID uuid1 calls it.

1.

The server calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 to associate an interface it offers with the nil manager type
UUID and with the MIDL-generated default manager EPV. This call adds an entry in
the interface registry table. The interface UUID is contained in the /fSpec argument.

. By default, the object registry table associates all object UUIDs with the nil type UUID.

In this example, the server does not call RpcObjectSetType.

. The server run-time library receives a remote procedure code containing the interface

UUID that the call belongs to and the object UUID from the call’s binding handle.

See the following function reference entries for discussions of how an object UUID is
set into a binding handle:

¢ RpcNsBindingimportBegin
RpcNsBindingLookupBegin
RpcBindingFromStringBinding
e RpcBindingSetObject

. Using the interface UUID from the remote procedure call, the server’s run-time library

locates that interface UUID in the interface registry table.

If the server did not register the interface using RpcServerRegisterlf,
RpcServerRegisterlfEx, or RpcServerRegisterlf2, then the remote procedure call
returns to the caller with an RPC_S_UNKNOWN_IF status code.

. Using the object UUID from the binding handle, the server’s run-time library locates

that object UUID in the object registry table. In this example, all object UUIDs map to
the nil object type.

. The server’s run-time library locates the nil manager type in the interface registry

table.

. Combining the interface UUID and nil type in the interface registry table resolves to

the default EPV, which contains the server-manager routines to be executed for the
interface UUID found in the remote procedure call.

Assume that the server offers multiple interfaces and multiple implementations of each
interface, as described in the following tables.

184 Volume 3 RPC and WNet

Interface Registry Table

Interface UUID Manager-type UUID Entry-point vector
uuid1 Nil epvi
uuid1 uuid3 epv4
uuid2 uuid4 epv2
uuid2 uuid7 epv3
Object Registry Table

Object UUID Object type
uuidA uuid3

uuidB ' , uuid7

uuidC uuid7

uuidD ' uuid3

uuide uuid3

uuidF uuid8

Nil Nil

(Any other UUID) ~Nil

Mapping the Binding Handle to an Entry-Point Vector

Interface UUID Object UUID Object type

(from client (from client (from object ° Manager EPV (from
binding handle) binding handle) registry table) interface registry table)
uuid1 Nil Nil epvi

uuid1 uuidA uuid3 epv4

uuid1 uuidD uuid3 epv4

uuid1 uuidE uuid3 epv4

uuid2 uuidB uuid7 epv3

uuid2 uuidC uuid7 epv3

The following steps describe the actions that the server’s run-time library take, as shown
in the preceding tables when a client with interface UUID uuid2 and object UUID uuidC
“calls it.

1. The server calls RpcServerRegisterlf, RpcServerRegisterlfEx, or
RpcServerRegisterlf2 to associate the interfaces it offers with the different manager
EPVs. The entries in the interface registry table reflect four calls of
RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2 to offer
two interfaces, with two implementations (EPVs) for each interface.

Chapter 15 Binding and Handles 185

2. The server calls RpcObjectSetType to establish the type of each object it offers. In
addition to the default association of the nil object to a nil type, all other object UUIDs
not explicitly found in the object registry table also map to the nil type UUID.

In this example, the server calls the RpcObjectSetType routine six times.

3. The server run-time library receives a remote procedure call containing the interface
UUID that the call belongs to and an object UUID from the call’s binding handle.

4. Using the interface UUID from the remote procedure call, the server’s run-time library
locates the interface UUID in the interface registry table.

5. Using the uuidC object UUID from the binding handle, the server’s run-time library
locates the object UUID in the object registry table and finds that it maps to
type uuid7.

6. To locate the manager type, the server’s run-time library combines the interface
UUID, uuid2, and type uuid7 in the interface registry table. This resolves to epv3,
which contains the server manager routine to be executed for the remote
procedure call.

The routines in epv2 will never be executed because the server has not called the
RpcObjectSetType routine to add any objects with a type UUID of uuid4 to the object
registry table. :

A remote procedure call with interface UUID uuid2 and object UUID uuidF returns to the
caller with an RPC_S_UNKNOWN_MGR_TYPE status code because the server did not
call RpcServerRegisterlf, RpcServerRegisterlfEx, or RpcServerRegisterlf2 to
register the interface with a manager type of uuid8.

Return Values

This function returns one of the following values.

Value Meaning
RPC_S_OK Success

RPC_S_TYPE_ALREADY_REGISTERED Type UUID already registered

RpcBindingFromStringBinding, RpcBindingSetObject, RpcNsBindingExport,
RpcNsBindingimportBegin, RpcNsBindingLookupBegin, RpcObjectSetType,
RpcServerRegisterlf, RpcServerRegisterlfEx, RpcServerRegisterif2,
RpcServerUnregisterlf

Supplying Your Own Object-Inquiry Function

Consider a server that manages thousands of objects of many different types. Whenever
the server started, the server application would have to call the function
RpcObjectSetType for every one of the objects, even though clients might refer to only

186

Volume 3 RPC and WNet

a few of them (or take a long time to refer to them). These thousands of objects are likely
to be on disk, so retrieving their types would be time consuming. Also, the internal table
that is mapping the object UUID to the manager type UUID would essentially duplicate
the mapping maintained with the objects themselves.

For convenience, the RPC function set includes the function RpcObjectSetingFn. With
this function, you provide your own object-inquiry function.

As an example, you can supply your own object-inquiry function when you map objects
100-199 to type number 1, 200—299 to type number 2, and so on. The object inquiry
function can also be extended to a distributed file system, where the server application
does not have a list of all the files (object UUIDs) available, or when object UUIDs name
files in the file system and you do not want to preload all of the mappings between object
UUIDs and type UUIDs.

Specifying Protocol Sequences

Server applications must select one or more protocol sequences to use when
communicating with the client over the network. The choice of protocol sequences is
network-dependent. See Creating Binding Information and Selecting a Protocol
Sequence.

- Your server program should typically allow clients to connect using any protocol

sequence that the network supports. To do this, invoke RpcServerUseAllProtseqgs and
pass RPC_C_PROTSEQ_MAX_REQS_DEFAULT as the first parameter.

If you want your client to restrict port allocation for dynamic endpoints to a specific port
range, call RpcServerUseAllProtseqsEx instead. This function is specific to Microsoft
RPC, and is extremely useful for remote procedure calls that pass through a firewall. It
uses an extra parameter to pass port allocation control flags to the function. See
Configuring the Windows NT and Windows 2000 Registry for Port Allocations and
Selective Binding.

You can specify protocol sequences and endpoint information in your MIDL file when
you develop the server’s interfaces. If you do, your server should use
RpcServerUseAllProtseqslf to register all the protocol sequences and associated
endpoint information provided in the IDL file. In addition, there is a corresponding
RpcServerUseAllProtsegsIfEx function that also allows the server to pass port
allocation-control flags.

If you want to restrict your client and server programs to communicating with a specified
protocol sequence, the server application should call RpcServerUseProtseq. This may
be particularly appropriate during debugging. For instance, you can force your
application to use the ncacn_ip_tcp protocol to avoid the time-out problems that are
introduced with other protocols when your debugger program stops your application at a
breakpoint. For a complete list of Microsoft RPC protocol sequences, see PROTSEQ.

Microsoft RPC also provides RpcServerUseProtseqEx to enable applications to select
specific protocol sequences and control dynamic port allocation.

Chapter 15 Binding and Handles 187

In addition to connection-oriented protocols, Microsoft RPC supports datagram
(connectionless) protocols as well. Some of the features available when using datagram
protocols are:

] Datagrarhs support the UDP and IPX connectionless transport protocols.

e Because it is not necessary to establish and maintain a connection, the datagram
RPC protocol requires less resource overhead.

e Datagrams enable faster binding.

¢ As with connection-oriented RPC, datagram RPC calls are by default nonidempotent.
This means the call is guaranteed not to be executed more than once. However, a
function can be marked as idempotent in the IDL file telling RPC that it is harmless to
execute the function more than once in response to a single, client request. This
allows the run time to maintain less state on the server. Note that an idempotent call
would be re-executed only in rare circumstances on an unstable network.

e Datagram RPC supports the broadcast IDL attribute. Broadcast enables a client to
issue messages to multiple servers at the same time. This lets the client locate one of
several available servers on the network, or control multiple servers simultaneously.
Broadcast calls are implicitly idempotent. If the call contains [out] parameters, only
the first server response is returned. Once a server responds, all future RPCs over
that binding handle will be sent to that server only, including calls with the broadcast
attribute. To send another broadcast, create a new binding handle or call
RpcBindingReset on the existing handle.

e Datagram RPC supports the maybe IDL attribute. This lets the client send a call to
the server without waiting for a response or confirmation. The call cannot contain [out]
parameters. Calls using the [maybe] calls are implicitly idempotent.

Specifying Endpoints

An endpoint is a hardware port or named pipe that the server application listens to for
client remote procedure calls. Client/server applications can use either well-known or
dynamic applications. This section presents the techniques that server programs use to
specify well-known and dynamic endpoints. The information is discussed in the following
topics:

e Specifying Well-Known Endpoints
e Specifying Dynamic Endpoints

Specifying Well-Known Endpoints

When your server uses a well-known endpoint, it can include the endpoint data as part
of its name-service database entry. If it does, the client’s binding handle contains a
complete server address that includes the well-known endpoint when the client imports
the binding handle from the server entry.

188

Volume 3 RPC and WNet

Your server program can also specify well-known endpoints at the same time it specifies
protocol sequences. Invoke either the RpcServerUseProtseqEp or
RpcServerUseProtseqEpEx function. The difference between the two is that the latter
function has an extra parameter your server can use to control dynamic port allocation.

If your server program specifies its endpoint information in this way, it should also call
the RpcEpRegister function to register the endpoint in the endpoint map. Even though
the endpoint is always the same, the client may use the endpoint map to find the server.

Like protocol sequences, an application can specify endpoint information in its IDL file.
When it does, it should register both the protocol sequences and endpoints at the same
time by invoking the RpcServerUseAllProtsegslf or RpcServerUseAllProtseqsIfEx
function. In this case, the client has access to the endpoint information through the
interface specification in the IDL file. Therefore, it is not necessary to call the
RpcEpRegister function.

Specifying Dynamic Endpoints

A dynamic endpoint is an endpoint that the server host computer assigns when the
server begins execution. Most server applications use dynamic endpoints to avoid
conflict with other programs over the limited number of ports that are available on the
server host computer system. However, programs using named pipes or the ncalrpc
protocol sequence have a very large endpoint name space. They benefit less from
dynamic endpoints than programs using other transports.

Server programs register dynamic endpoints in an endpoint map database. If you want
the server to use any available endpoint, call RpcServerUseAllProtSeqs. This sets the
RPC run-time library to use all valid protocol sequences with dynamic endpoints. The
server should then call RpcServeringBindings to obtain a set of valid binding handles.
The server passes the set of binding handles, or binding vector, to the function
RpcEpRegister to register all suitable endpoints in the endpoint map. For each call your
server makes to RpcEpRegister, there should be a corresponding call to
RpcBindingVectorFree to release the memory that the binding vector uses.

Note that server programs can use the RpcEpRegisterNoReplace function rather than
RpcEpRegister. Programs typically use RpcEpRegisterNoReplace when multiple
copies of a server program must run on a server host system.

Both the RpcEpRegister and RpcEpRegisterNoReplace functions add the server’s
interfaces and binding handles to the endpoint mapper database. When the client makes
a remote procedure call using a partially bound handle, the client’s run-time library asks
the server machine’s endpoint mapper for the endpoint of a compatible server instance.
The client library supplies the interface UUID, protocol sequence, and, if present, the
object UUID in the client binding handle. The endpoint mapper looks for a database
entry that matches the client’s information. The client/server interface UUID, the interface
major version, and protocol sequence must all match exactly. In addition, the server's
interface minor version must be greater than or equal to the client’s minor version.

Chapter 15 Binding and Handles 189

If all tests are successful, the endpoint mapper returns the valid endpoint and the client
run-time library updates the endpoint in the binding handle.

Dynamic endpoints expire when the server instance stops running. To remove the
endpoint from the endpoint mapper database before the server program exits, call
RpcEpUnregister.

Advertising Server Interfaces

The server side of an application that uses automatic handles must call the function
RpcNsBindingExport to make binding information about the server available to clients.
Automatic binding handles require a name service running on a server that is accessible
to the client. The Microsoft implementation of the name service, Microsoft Locator,
manages automatic handles. Server applications that use implicit and explicit binding
handles can also advertise their presence in the name-service database.

Typically, the server calls the following run-time functions:

The calls to the first two functions in this code fragment are similar to the Hello, World
example. These functions make information about the binding available to the client. The
calls to RpcServeringBindings and RpcNsBindingExport put the information in the
name-service database. The call to RpcServeringBindings fills the binding vector with
valid binding handles before the handles are exported to the name service. After the
server program exports the handles to the database, the client (or client stubs) can call
RpcNsBindingimportBegin and RpcNsBindingimportNext to obtain this information.
For details, see Finding Server Host Systems.

The calls to RpcServeringBindings and RpcNsBindingExport and their associated
data structures look similar to the following:

(continued)

190

Volume 3 RPC and WNet

(continued)

Note that the RpcServerlngBindings parameter &pBindingVector is a pointer to a
pointer to RPC_BINDING_VECTOR. Also remember that each call to
RpcNsBindingExport must be followed by a call to RpcBindingVectorFree.

To remove the exported interface from the name-service database, the server calls
RpcNsBindingUnexport as shown:

The RpeNsBindingUnexport function should be used only when the service is being
permanently removed. It should not be used when the service is temporarily disabled,
such as when the server is shut down for maintenance. A server program can register
itself with the name-service database, yet be unavailable because the server is

temporarily offline. The client application should contain exception-handling code for
such a condition.

For more information on the content and format of the name-service database, see
The RPC Name-Service Database.

Applications can utilize the Active Directory service if both the client and server programs
are running under Windows 2000. The computers running the client and server
programs must both be members of a Windows 2000 domain.

To advertise its presence using the Active Directory service, the server program should
run in the security context of a domain administrator. If it is running.in the context of
domain users, a domain administrator must modify the Access Control List (ACL) on the
RPC Services container. For more details, see the Active Directory documentation.

Listening for Remote Procedure Calls

After a server program registers its binding information and advertises its presence in a
name-service database, it can begin listening to the endpoint for remote procedure calls.
Server programs call the RpcServerListen function to monitor endpoints for client
invocations of remote procedures.

Chapter 15 Binding and Handles 191

The DCE specification of RpcServerListen indicates that it should not return until a
function in the server program calls RpcMgmtStopServerListening. The Microsoft RPC
implementation of RpcServerListen uses two parameters that do not appear in the DCE
specification: DontWait and MinimumCallThreads. Your server program can pass a
nonzero value for the DontWait parameter. If it does, the RpcServerListen function will
return immediately. Use the RpcMgmtWaitServerListen routine to perform the wait
operation usually associated with RpcServerListen.

Fully and Partially Bound Handles

When you use dynamic endpoints, the run-time libraries obtain endpoint information as
they need it. The run-time libraries make the distinction between a fully bound handle
(one that includes endpoint information) and a partially bound handle (one that does not
include endpoint information).

The client run-time library must convert the partially bound handle to a fully bound
handle before the client can bind to the server. The client run-time library tries to convert
the partially bound handle for the client application by obtaining the endpoint information
as shown:

e From the client’s interface specification
e From an endpoint-mapping service running on the server

If the client tries to use a partially bound handle when the endpoint information is not
available in the interface specification and the server’s endpoint-mapper does not have
information about the server endpoint, the client will not have enough information to
make its remote procedure call and that call will fail. To prevent this, you must register
the endpoint in the endpoint mapper when your distributed application uses partially
bound handles. For more information about the endpoint mapper, see Specifying
Dynamic Endpoints.

When a remote procedure call fails, the client application can call RpcBindingReset to
remove out-of-date endpoint information. When the client tries to call the remote
procedure, the client run-time library again tries to convert the fully bound handle to a
partially bound handle. This is useful when the server has been stopped and restarted
using a different dynamic endpoint.

Interpreting Binding Information

Microsoft RPC enables your client and server programs access to and interpret the
information in a binding handle. This does not mean that you can or should try to access
the contents of a binding handle directly. Microsoft RPC provides functions that set and
retrieve the information in binding handles.

To get the information in a binding handle, pass the handle to
RpcBindingToStringBinding. It returns the binding information as a string. For every
call to RpeBindingToStringBinding, you must have a corresponding call to the function
RpcStringFree.

192 Volume 3 RPC and WNet

You can call the function RpeStringBindingParse to parse the string you obtain from
RpcBindingToStringBinding. This function allocates strings to contain the information
it parses. If you do not want it to parse a particular piece of binding information, pass a
NULL as the value of that parameter. Be sure to call RpcStringFree for each of the
strings it allocates.

The following code fragment illustrates how an application might call these functions.

The preceding sample code calls the functions RpecBindingToStringBinding and
RpcStringBindingParse to get and parse the information in a valid binding handle. Note
that the value NULL was passed as the second parameter to RpcStringBindingParse.

Chapter 15 Binding and Handles 193

This causes that function to skip parsing the object UUID. Since it doesn’t parse the
UUID, RpcStringBindingParse will not allocate a string for it. This technique enables
your application to only allocate memory for the information you are interested in parsing
and analyzing. ;

Microsoft RPC Binding-Handle Extensions

The Microsoft extensions to the IDL language support multiple handle parameters that
appear in positions other than the first, leftmost, parameter.

The following table describes the sequence of steps that the MIDL compiler goes
through to resolve the binding-handle parameter in DCE-compatibility mode (/osf) and in
default (Microsoft-extended) mode.

DCE-compatibility mode Default mode
1. Binding handle that appears in 1. Leftmost explicit binding handle.
first parameter position.
2. Leftmost [in, context_handie] 2. Implicit binding handle specified by
parameter. [implicit_handle] or [auto_handle].
3. Implicit binding handle specified 3. If no ACF present, default to use of
by [implicit_handle] or [auto_handie].
[auto_handle]. ;
4. If no ACF present, default to

use of [auto_handle].

DCE IDL compilers look for an explicit binding handle as the first parameter. When the
first parameter is not a binding handle and one or more context handles are specified,
the leftmost context handle is used as the binding handle. When the first parameter is
not a handle and there are no context handles, the procedure uses implicit binding using
the ACF attribute [implicit_handle] or [auto_handie].

The Microsoft extensions to the IDL allow the binding handie to be in a position other
than the first parameter. The leftmost [in] explicit-handle parameter—whether it is a
primitive, programmer-defined, or context handle—is the binding handle. When there are
no handle parameters, the procedure uses implicit binding using the ACF attribute
[implicit_handle] or [auto_handie].

The following rules apply to both DCE-compatibility (/osf) mode and default mode:

e Auto-handle binding is used when no ACF is present.

o Explicit [in] or [in, out] handles for an individual function pre-empt any implicit binding
specified for the interface.

e Multiple [in] or [in, out] primitive handles are not supported.
o Multiple [in] or [in, out] explicit context handles are allowed.

o All programmer-defined handle parameters except the binding-handle parameter are
treated as transmissible data.

194 Volume 3 RPC and WNet

The following table contains examples and describes how binding handles are assigned

in each compiler mode.

Example

Descriptidn

Binding-Handle Functions

No explicit handle is specified. The implicit
binding handle, specified by
[implicit_handle] or [auto_handle], is used.
When no ACF is present, an auto handle is
used.

An explicit handle of type handle_t is
specified. The parameter H is the binding
handle for the procedure.

The first parameter is not a handle.

In default mode, the leftmost handle
parameter, H, is the binding handle. In /osf
mode, implicit binding is used. An error is
reported because the second parameter is
expected to be transmissible, and handle_t
cannot be transmitted.

The first parameter is not a handle. In default
mode, the leftmost handle parameter, H, is
the binding handle. The stubs call the user-
supplied routines MY_HDL_bind and
MY_HDL_unbind. In/osf mode, implicit
binding is used. The programmer-defined
handle parameter H is treated as
transmissible data.

The first parameter is a binding handle. The
parameter H is the binding-handle parameter.
The second programmer-defined handle
parameter is treated as transmissible data.

The binding handle is a context handle. The
parameter H is the binding handle.

The following table contains the list of RPC run-time routines that operate on binding
handles and specifies the type of binding handle allowed.

Chapter 15 Binding and Handles 195

Routine

Input argument

Output argument

RpcBindingCopy
RpcBindingFree
RpcBindingFromStringBinding
RpcBindingingAuthClient
RpcBindingingAuthinfo
RpcBindinginqObject
RpcBindingReset
RpcBindingSetAuthinfo
RpcBindingSetObject
RpcBindingToStringBinding
RpcBindingVectorFree
RpcNsBindingExport
RpcNsBindinglmportNext
RpcNsBindingLookupNext
RpcNsBindingSelect
RpcServeringBindings

The RPC Name-Service Database

Server

Server

None

Client

Server

Server or client
Server

Server

Server

Server or client
Server

Server

None

None

Server

None

Server
None
Server
None
None
None
None
None

" None

None
None
None
Server
Server
Server
Server

A name service is a service that maps names to objects, and usually maintains the
(name, object) pairs in a database. Generally, the name is a logical name that is easy for
users to remember and use. For example, a name service would allow a user to use the
logical name “laserprinter.” The name service maps this name to the network-specific

name used by the print server.

To use a simplified explanation, the RPC name service maps a name to a binding
handle and maintains the (name, binding handle) mappings in the RPC name-service
database. The RPC name service allows client applications to use a logical name
instead of a specific protocol sequence and network address. The use of the logical
name makes it easier for network administrators to install and configure your distributed

application.

An RPC name-service database entry has one of the following attributes: server, group,
or profile. In the Microsoft implementation, entries can have only one attribute, so these
entries are also known as server entries, group entries, and profile entries.

The server entry consists of interface UUIDs, object UUIDs (needed when the server
implements multiple-entry points), network address, protocol sequence, and any
endpoint information associated with well-known endpoints. When a dynamic endpoint is
used, the endpoint information is kept in the endpoint-map database rather than the
name-service database, and the endpoint is resolved like any other dynamic endpoint.
Server entries are managed by functions that start with the prefix RpcNsBinding.

196

Volume 3 RPC and WNet

The group entry can contain server entries or other group entries. Group entries are
managed by functions that start with the prefix RpcNsGroup.

The profile entry can contain profile, group, or server entries. Profile entries are
managed by the functions that start with the prefix RpcNsProfile.

This section presents an overview of the name-service database in the following topics:

e Name-Service Application Guidelines

e An Overview of the Name Service Entry
e Criteria for Name Service Entries

e Name Service Entry Cleanup

e What Happens During a Query

e Using Microsoft Locator

e Using the Cell Directory Service (CDS)
e Name Syntax

Name-Service Application Guidelines

When you develop your distributed application, you need to provide the application users
with a method for specifying the name under which they can register the application in
the name-service database. This method can consist of a data file, command-line input,
or dialog box.

Although the RPC name-service architecture supports various methods for organizing an
application’s server entries, it is optimized for lookups. As a result, frequent updates can
hinder the performance of both the name service and the application. To avoid exporting
information unnecessarily, choose a design that lets the server determine whether its
information is in the name-service database. In addition, each server instance should
export to its own entry name. Otherwise, it will be difficult for an instance to change its
supported object UUIDs or protocol sequences without disturbing another instance’s
information.

The following method avoids these pitfalls and provides good performance, no matter
what name service your network uses.

To begin with, design your application so that the first time a given server instance starts,
it picks a unique server-entry name and saves this name in an .ini file along with the
application’s other configuration information. Then, have it export its binding handles and
object UUIDs, if any, to its name-service entry.

Subsequent invocations of the server instance should check that the name-service entry
is present and contains the correct set of object UUIDs and binding handles. A missing
entry may mean that an administrator removed it, or that a power outage caused the
name-service information to be lost. It is important to verify that the binding handles in
the entry are correct; if an administrator adds TCP/IP support to a computer, for
example, RPC servers will listen on that protocol sequence when they call
RpcServerUseAllProtseqs. However, if the server does not update the name-service
entry, clients will not be informed that TCP is supported.

Chapter 15 Binding and Handles 197

When the client imports, it should specify NULL as the entry name. Specifying NULL
causes the Microsoft RPC library functions to search for the interface in all name-service
entries in the client machine’s domain or workgroup, thus finding the information for
every instance.

If you use object UUIDs to represent well-known objects such as printers, you can use a
variation of this method. Instead of exporting bindings to one entry, design your
application so that ach instance creates an entry for each supported object, such as
“/.:/printers/Laser1” and “/.:/printers/Laser2.” Then, have the server export its binding
handles to each server entry, along with the object UUID relevant to that entry.

In this case, a client can look up a resource by name by importing from the relevant
server entry; it does not require the object UUID of the resource. If it has the resource
UUID but not the name, it can import from the null entry.

An Overview of the Name Service Entry

The name-service entry consists of three distinct sections. The first section is for
interfaces (UUID + version), the second section contains the object UUIDs, and the third
section is for binding handles. You provide a name for the entry that will serve as a way
to identify it.

When calling RpcNsBindingExport, the server specifies the name of the entry in which
to place the exported information. This newly exported interface is then added to the
interface section of the name-service entry. Any interfaces that are already present in the
name-service entry remain as well. This same process is followed for object UUIDs and
binding handles.

The client calls RpcNsBindingLookupBegin (or RpcNsBindinglmportBegin) to
search for an appropriate binding handle. The entry name, interface handle, and an
object UUID are extracted. These restrict the entries from which binding handles are
returned. If an entry matches the search criteria, all the binding handles in that entry are
returned from RpcNsBindingimportNext.

Criteria for Name Service Entries
The following criteria are used when processing name-service entries:

e |f you provide a non-NULL entry name for RpcNsBindingLookupBegin, that entry
will be the only entry searched for binding handles. If you pass NULL, all entries in
your logon domain will be searched. Note that this does not include trusted domains.

¢ |f you provide an interface handle, binding handles are returned from an entry only if
the interface section of the entry contains a compatible version of that interface UUID.
That is, the major version number must be the same as your interface UUID, while the
minor version number must be equal to or greater than yours.

¢ If you provide an object UUID, binding handles are returned from an entry only if the
object UUID section of the entry contains that particular object UUID.

198

Volume 3 RPC and WNet

If a name-service entry survives the criteria described above, all the binding handles
from those entries are gathered. Handles with a protocol sequence that is unsupported
by the client are discarded and the remaining handles are returned to you as the output
from RpcNsBindingLookupNext.

Name Service Entry Cleanup

A name-service entry should contain information that does not change frequently. For
this reason, do not include dynamic endpoints in your exported binding handles because
they will change at each invocation of the server and will clutter up your name-service
entry. To remove these binding handles, use RpcBindingReset. For example, a
reasonable sequence of server operations would be:

For more than one transport:

To place bindings in the endpoint mapper:

To remove endpoints from bindings:

To add bindings to the name service:

What Happens During aQuefy

This section describes how the network handles the query when a 32-bit client searches
for a name in its own domain.

When your client application calls RpcNsBindinglmportBegin, the locator residing on
your client computer will try to satisfy this request. If there is nothing in the cache, it will
forward the request by RPC to a master locator. If the master locator finds nothing in its
cache, it sends the request to all the computers in the domain using a mail-slot
broadcast. If there is a match, the locator on each computer will respond by a directed
mail slot. (For example, if a process on that computer has exported the interface.) The
responses are collated and the RPC is completed from the client’s process locator,
which will reply to the client process itself.

Chapter 15 Binding and Handles 199

In a domain, the client locator searches for a master locator in the following places:

® On the primary domain controller
® On each backup domain controller

If a match is not found, the client locator declares itself to be the master locator. As such,
it will broadcast queries if they cannot be satisfied locally.

In a workgroup, the client locator maintains a cache of the computers whose locators .
have broadcast. It uses the one that has been running the longest as the master locator.
If that computer is unavailable, the next, longest-broadcasting computer is used, and so
on. If the client needs a master locator and the cache is empty, it replenishes the cache
by sending a special mail-slot broadcast that requests master locators to respond. If
there are no responses, the client locator declares itself to be the master locator and will
broadcast queries if they cannot be satisfied locally.

This changes if your client application is a Microsoft® Windows® 3.x or MS-DOS®
program. In this case, there is no locator running on the client computer, and Rpcns1.dll
or Rpcnslm.rpc contains the code to find a master locator. All requests are forwarded
directly to the master locator.

These guidelines are valid for names in the client's domain, such as names for
“/.:/entryname”. If the client requests a name from another domain through the use of
“/....DOMAIN/entryname;” the client locator forwards the request to the specified domain
which will broadcast it if it does not have the answer. If the domain is down or is actually
a workgroup, the request will fail.

Note Remember the following when working with entries in the name service:

¢ A client cannot use the “/.../DOMAIN/entryname” syntax to find an entry in its own
domain. Use the syntax “/.:/entryname”. However, you can use
“/.../DOMAIN/entryname” to find an entry in another domain.

e The domain name in “/.../DOMAIN/entryname” must be uppercase. When looking for
a match, the locator is case-sensitive.

e Locator entry names are also case-sensitive, but need not be uppercase.

¢ When the client uses the “/.:/entryname” syntax, the locator will not search for entries
in other domains, even if they have a trust relationship with the logon domain.

¢ Broadcasts do not cross LAN segments (for example, subnets). Thus, the usefulness
of the locator is limited in an organization with multiple subnets.

Using Microsoft Locator

Microsoft Locator is the default name service that ships with Microsoft®
Windows NT®/Windows 2000. The RPC run-time library uses it to find server programs
on server host systems. ’

200

Volume 3 RPC and WNet

Prior to Windows 2000, Microsoft Locator did not provide persistent name-service
entries. All entries in the name service were stored in a memory cache on the server
program’s host computer. The locator used a broadcast mechanism to discover the
location of servers as requested by clients. Whenever the host system shut down, all
name-service entries were lost. ’

Beginning with the release of Windows 2000, Microsoft Locator now supports persistent
name-service entries. To accomplish this, Windows 2000 employs a distributed directory
service to store name-service entries. This mechanism has several advantages:

¢ Persistence. Server programs are no longer required to export their binding
information to the name service each time they start up. The name service now stores
the information until the server program on the network administrator explicitly
removes it.

¢ Efficiency. By eliminating the majority of broadcasting for.name-service entries, the
locator reduces network traffic. It also finds name-service entries more rapidly.

¢ Cross-Domain Interopability. Clients are now able to make name-service requests
across multiple domains.

Current versions of Microsoft Locator are backward compatible. For instance, a server
host system running the locator that ships with Windows 2000 can operate correctly on a
network that contains server host systems running the locator that ships with

Windows NT 4.0.

In addition, the current version of Microsoft Locator supports the use of Access Control
Lists in name-service entries. This ability enhances the security of the network.

Plug and Play support is now included in Microsoft Locator. Therefore, it can
transparently handle Plug and Play events such as domain changes. For more
information, see RpcNsBindingExportPnP and RpcNsBindingUnexportPnP.

Using the Cell Directory Service (CDS)

If you have CDS, you can use it instead of Microsoft Locator. Change the registry entries
as shown:

Chapter 15 Binding and Handles 201

Changing these entries will point to a gateway computer that is running the NSID. This
will be used as the master locator. In the event of a crash, there will be no search for a
replacement.

Name Syntax
Microsoft RPC accepts names that conform to the following syntax:

Parameters

name
Specifies an identifier that can contain any character except the delimiting slash (/)
character.

domainname
Specifies the name of the Windows NT/Windows 2000 domain.

A parameter that selects the name-syntax type and the string that specifies the name are
supplied to many of the name-service interface (NSI) RPC functions.

Only one name-syntax type is supported by Microsoft RPC, as specified by the constant
RPC_C_NS_SYNTAX_DCE. This constant is defined in the header file RPCNSI.H.

The name syntax specified by RPC_C_NS_SYNTAX_DCE is an extension of the
OSF_DCE Cell Directory Service (CDS) name syntax. The ability to specify a domain
name represents an extension to that syntax. There is no absolute limit on the number of
names that can be separated by slash characters as long as the overall string is less
than 256 characters.

The slashes allow you to specify a logical structure to the name, but they do not
correspond to a logical structure in the objects themselves.

Context Handles

It is sometimes the case that distributed applications require the server program to
maintain status information between client calls. Server programs that service more than
one client at a time must keep the status information for each client. Because the client
and the server use different address spaces on different computers, common
approaches to data sharing often don’t work. For instance, the client and server are
unable to maintain status information on their remote session in global variables
because they don’t share the same global address space. It is difficult to keep the
information in a shared file because they run on different computers.

Microsoft® RPC provides a mechanism called context handles for keeping status
information on a server. The status information is called the server’s context. Clients can
obtain a context handle to identify the server’s context for their individual RPC sessions.

202

Volume 3 RPC and WNet

As an example, each client in a distributed application can have the server program
create and update a data file for their RPC session. The server can use its file handle for
each client’s data file as the context handle. Each time a client requests operations on
the data file that the server creates for it, the client passes the context handle to the
server. Since the context handle is really a file handle, the context handle only makes
sense in the server’s address space. However, the client program can use the context
handle to tell the server on which file to perform updates.

Other data can also be context handles. For instance, a client and server can use a
record number of a database record as a file handle. If the client needed to perform a
number of updates on a particular record, it could obtain the record number as a context
handle. It would pass the record number to the server each time it invoked a remote
procedure to update the database record.

Interface Development Using Context Handles

Typically, you create a context handle by specifying the [context_handle] attribute ona -
type definition in the IDL file. The type definition also implicitly specifies a context
rundown routine, which you must provide. If communication between the client and
server breaks down, the server run time invokes this routine to perform any needed
cleanup. For more information on context rundown routines, see Server Context
Rundown Routine.

An interface that uses a context handle must have a binding handle for the initial binding,
which has to take place before the server can return a context handle. You can use an
automatic, implicit, or explicit binding handle to create the binding and establish the
context. ’ '

A context handle must be of the void * type, or a type that resolves to void *. The server
program casts it to the required type.

The following fragment of a sample interface definition shows how a distributed
application can use a context handle to have a server open and update a data file for
each client.

The interface must contain a remote procedure call to initialize the handle and setitto a
non-null value. In this example, the RemoteOpen function performs this operation. It
specifies the context handle with an [out] directional attribute. Alternatively, you could
return the context handle as the procedure’s return value. However in this example, we’ll
pass the context handle out through the parameter list.

In this example, the context information is a file handle. It keeps track of the current
location in the file. The interface packages the file handle as a context handle and

. passes it as a parameter to remote procedure calls. A structure contains the file name

and the file handle.

Chapter 15 Binding and Handles 203

The RemoteOpen function creates a valid, non-null context handle. It passes the
context handle to the client. Subsequent remote procedure calls, such as RemoteRead,
use the context handle as an in pointer:

In addition to the remote procedure that initializes the context handle, the interface must
contain a procedure that frees the server context and sets context handle to NULL. In
the preceding example, the RemoteClose function performs this operation.

Server Development Using Context Handles

From the perspective of server program development, a context handle is an untyped
pointer. Server programs initialize context handles by pointing them at data in memory or
on some other form of storage (such as files on disks).

For instance, suppose that a client uses a context handle to request a series of updates
to a record in a database. The client calls a remote procedure on the server and passes
it a search key. The server program searches the database for the search key and
obtains the integer record number of the matching record. The server can then point a
pointer to void at a memory location containing the record number. When it returns, the
remote procedure would need to return the pointer as a context handle through its return
value or its parameter list. The client would need to pass the pointer to the server each
time it called remote procedures to update the record. During each of these update
operations, the server would cast the void pointer to be a pointer to an integer.

After the server program points the context handle at context data, the handle is
considered active. Handles containing a NULL value are inactive. The server maintains
an active context handle until the client calls a remote procedure that frees it. If the client
terminates while the handle is active, the server can free the handle. In addition, the
server will free the handle when communication between the client and the server
breaks down.

204

Volume 3 RPC and WNet

The following code fragment demonstrates how a server might implement a context
handle. In this example, the server maintains a data file that the client writes to using
remote procedures. The context information is a file handle that keeps track of the
current location in the file where the server will write data. The file handie is packaged as
a context handle in the parameter list to remote procedure calls. A structure contains the
file name and the file handle. The interface definition for this example is shown in
Interface Development Using Context Handles.

Chapter 15 Binding and Handles 205

The function RemoteClose closes a file on the server. Note that the server application
has to assign NULL to the context handle as part of the close function. This
communicates to the server stub and the RPC run-time library that the context handle

has been deleted. Otherwise, the connection will be kept open and eventually a context
rundown will occur.

Client Development Using Context Handles

The only use a client program has for a context handle is to pass it to the server each
time the client makes a remote procedure call. The client application does not need to
access the contents of the handle. It should not try to change the context handle data in

any way. The remote procedures that the client invokes perform all necessary operations
on the server’s context.

206 Volume 3 RPC and WNet

Prior to requesting a context handle from a server program, clients must establish a
binding with the server. The client may use an automatic, implicit, or explicit binding
handle. With a valid binding handle, the client can call a remote procedure on the server
that either returns an active (non-NULL) context handle or passes one through an [out]
parameter in the remote procedure’s parameter list.

Clients may use active context handles in any way they require. They should, however,
invalidate the handle when they no longer need it. To do this, the client should invoke a
remote procedure offered by the server program that frees the context and sets the
context handle as inactive (NULL).

The following code fragment presents an example of how a client might use a context
handle. To view the definition of the interface that this example uses, see Interface
Development Using Context Handles. For the server implementation, see Server
Development Using Context Handles.

In this example, the client calls RemoteOpen to obtain a context handle that contains
valid data. The client can then use the context handle in remote procedure calls.
Because it no longer needs the binding handle, the client can free the explicit handle it
used to create the context handle:

The client application in this example uses a procedure called RemoteRead to read a
data file on the server until it encounters an end of file. It then closes the file by calling
RemoteClose. The context handle appears as a parameter in the RemoteRead and
RemoteClose functions as:

Chapter 15 Binding and Handles 207

Server Context Rundown Routine

If communication breaks down while the server is maintaining context on behalif of the
client, a cleanup routine may be needed to reset the context information. This cleanup
routine is called a context rundown routine. When a connection breaks, the server stub
and the run-time library will call this routine on every context handle opened by the client.

The context rundown routine is required, and is implicitly declared and named, when you
apply the [context_handle] attribute to a type definition. The server will not call the
context rundown routine if the [context_handle] attribute was applied directly to a
parameter.

The context rundown routine syntax is:

Note that the type name determines the name of the context rundown routine.

The code fragment that follows presents a sample context rundown routine. that calls the
RemoteClose procedure used in the example in Interface Development Using Context
Handles, Server Development Using Context Handles, and Client Development Using
Context Handles. This procedure closes the file handle, frees the memory associated
with the file, and assigns NULL to the context handle. The NULL value indicates to the
run-time library that the context handle is inactive so that the rundown routine will not be
called when the connection is removed. Your context rundown routine could perform
other tasks, such as logging an event when a connection fails.

208 Volume 3 RPC and WNet

Client Context Reset

When the server becomes unavailable, the client application can free its context data by
calling the RPC function RpcSsDestroyClientContext.

Multi-Threaded Clients and Context Handles

When you have a multi-threaded client where multiple threads are using the same
context handle, the calls will be serialized at the server. This saves the server manager
from having to guard against another thread from the same client changing the context
or from the context running down while a call is dispatched. However, in certain cases
serialization may create deadlock. For example, consider the following sequence:

Thread 1: Gets a context handle and makes a call. This call blocks on some
synchronization event sitting on the server.

Thread 2: Makes a call to the same server, using the same context handle. This call is
intended to trigger the event that thread 1 is blocking on. Because the calls are
serialized, the event is never triggered.

If you have a situation like this you can use the RpcSsDontSerializeContext function to
allow multiple calls to be dispatched on a single context handle. Calling this function
does not disable serialization entirely. When a context rundown occurs, your context
rundown routine will not run until all outstanding client requests have completed. Be
aware that a call to RpcScDontSerializeContext affects the entire process and is not
revertible.

209

CHAPTER 16

Memory Management

This chapter discusses how RPC programs allocate and deallocate memory for data
passed between client and server programs.

Introduction to RPC Memory Managément

In the context of RPC, memory management involves:

¢ Allocating and deallocating the memory needed to simulate a single conceptual
address space between the client and the server in the different address spaces
of the client and server’s threads.

e Determining which software component is responsnble for managing memory—the
application or the MIDL-generated stub.

e Selecting MIDL attributes that affect memory management: directional attributes,
pointer attributes, array attributes, and the ACF attributes [byte_count], [allocate],
and [enable_allocate].

When a program calls a function or procedure in its address space, memory
management is more straightforward than in a distributed application. To illustrate,
Figure 16-1 depicts a binary tree. To pass this data structure to a procedure in its
address space, a program simply passes a pointer to the root of the tree.

Data
/ ‘
Data \D.ata
./ l \,) \
Data ' Data | Data
L ‘ [] [J ‘ e ® i ®

Figure 16-1: Binary Tree.

210

Volume 3 RPC and WNet

Client/server RPC applications share data across two different memory spaces. These
memory spaces may or may not be on the same computer. Either way, the client and
server have no direct access to each other's memory space. RPC depends on the ability
to simulate the client program’s address space in the server program’s address space.

It must also return data, including new and changed data, from the server to the

client memory.

In cases such as the binary tree depicted in the preceding diagram, it is not sufficient
to pass a pointer to the root node to a remote procedure. Either the program or the
stubs must pass the entire tree to the server's address space for the remote procedure
to operate on it.

How Memory Is Allocated and Deallocated

By default, stub code generated by the MIDL compiler calls user-supplied functions
to allocate and free memory. These functions, named midl_user_allocate and
midl_user_free, must be supplied by the developer and linked with the application.

All applications must supply implementations of midl_user_allocate and
midl_user_free, even though the names of these functions may not appear explicitly
in the stubs. The only exception is when you are compiling in OSF-compatibility (/osf)
mode. These user-supplied functions must match a specific, defined function prototype
but otherwise, can be implemented in any way that is convenient or useful for the
application. Alternatively, applications can use the RpcSs Memory Management
Package. The Microsoft® RPC run-time library supplies this group of functions.

The midl_user_allocate Function

The midl_user_allocate function is a procedure that must be supplied by developers
of RPC applications. It allocates memory for the RPC stubs and library routines.

Your midl_user_allocate function must match the following prototype:

o

The cBytes parameter specifies the number of bytes to allocate. Both client applications
and server applications must implement the midl_user_allocate function uniess you are
compiling in OSF-compatibility (/osf) mode. Applications-and generated stubs call
midl_user_allocate directly or indirectly to manage allocated objects. For example:

e The client and server applications call midl_user_allocate to allocate memory for the
application, such as when creating a new node in a tree or linked list.

e The server stub calls midl_user_allocate when unmarshaling data into the server
address space.

Chapter 16 Memory Management 211

¢ The client stub calls midl_user_allocate when unmarshaling data from the server
that is referenced by an [out] pointer. Note that for [in, out, unique] pointers, the
client stub calls midl_user_allocate only if the [unique] pointer value was null on
input and changes to a non-null value during the call. If the [unique] pointer was non-
null on input, the client stub writes the associated data into existing memory.

If midl_user_allocate fails to allocate memory, it should return a null pointer or raise
a user-defined exception.

The midl_user_allocate function should return a pointer such that:
e For Microsoft® Windows NT®/Windows® 2000 running on Intel platforms, the pointe
is 4 bytes aligned. ‘

e For Windows NT/Windows 2000 running on MIPS and Alpha platforms, the pointer
is 8 bytes aligned.

e For Microsoft Windows 95, the pointer is 4 bytes aligned.
e For Windows 3.x and MS-DOS® platforms, the pointer is 2 bytes aligned.

For example, the sample programs provided with the Platform SDK implement
midl_user_allocate in terms of the C function malloc:

Note If the RpcSs package is enabled (for example, as the result of using the
[enable_allocate] attribute), use RpecSmAllocate to allocate memory on the server
side. For additional information on [enable_allocate], see MIDL Reference.

The midl_user_free Function

The midl_user_free function must be supplied by RPC developers. It allocates memory
for the RPC stubs and library routines. Your midl_user_free function must match the
following prototype:

The pBuffer parameter specifies a pointer to the memory that is to be freed. Both client
application and server application must implement the midl_user_free function unless
you are compiling in OSF-compatibility (/osf) mode. The midl_user_free function must
be able to free all storage allocated by midl_user_allocate.

Applications and stubs call midl_user_free when dealing with allocated objects:

212 Volume 3 RPC and WNet

e The server application should call midl_user_free to free memory allocated by the
application, such as when deleting a dynamically allocated node of data.

o The server stub calls midl_user_free to release memory on the server after
marshaling all [out] arguments, [in,out] arguments, and the function return value.

For example, the RPC Win32 sample program that displays “Hello, world” implements
midi_user_free in terms of the C function free:

Note If the RpcSs package is enabled (for example, as the result of using the
[enable_allocate] attribute), your server program should use RpcSmFree to free
memory. For more information, see RpcSs Memory Management Package.

RpcSs Memory Management Package

The default allocator/deallocator pair used by the stubs and run time when allocating
memory on behalf of the application is midl_user_allocate/midl_user_free. However,
you can choose the RpcSs package instead of the default by using the ACF attribute
[enable_allocate]. The RpcSs package consists of RPC functions that begin with the
prefix RpcSs or RpcSm. It is the recommended memory management model and
provides the best overall stub performance for memory management.

In /osf mode, the RpcSs package is enabled for MIDL-generated stubs automatically
when full pointers are used, when the arguments require memory allocation, or as a
result of using the [enable_allocate] attribute. In the default (Microsoft extended) mode,
the RpcSs package is enabled only when the [enable_allocate] attribute is used. The
[enable_allocate] attribute enables the RpcSs environment by the server-side stubs.
The client side becomes alerted to the possibility that the RpcSs package may be
enabled. In /osf mode, the client side is not affected.

When the RpcSs package is enabled, allocation of memory on the server side is
accomplished with the private RpcSs memory management allocator and deallocator
pair. You can allocate memory using the same mechanism by calling RpcSmAllocate
(or RpcSsAllocate). Upon return from the server stub, all the memory allocated by the
RpcSs package is automatically freed. The following example shows how to enable the
RpcSs package:

Chapter 16 Memory Management 213

Your application can explicitly free memory by invoking the RpcSsFree or RpcSmFree
function. Note that these functions do not actually free memory. They mark it for deletion.
‘The RPC library releases the memory when your program calls RpcSsDisableAllocate
or RpcSsDisableAllocate.

You can also enable the memory management environment for your application by
calling the RpcSmEnableAllocate routine (and you can disable it by calling the
RpcSmDisableAllocate routine). Once enabled, application code can allocate and
deallocate memory by calling functions from the RpcSs package.

Memory-Management Models

As a developer, you have several choices for how memory is allocated and freed.
Consider a complex data structure that consists of nodes connected with pointers, such
as a linked list or a tree. You can apply attributes that select one of the following models:

Node-by-node allocation and deallocation.

A single linear buffer allocated by the stub for the entire tree.

A single linear buffer allocated by the client application for the entire tree.
e Persistent storage on the server.

Node-by-Node Allocation and Deallocation

Node-by-node allocation and deallocation of data structures by the stubs is the default
method of memory management for all parameters on both the client and the server. On
the client side, the stub allocates each node with a separate call to midl_user_allocate.
On the server side, rather than calling midl_user_allocate, private memory is used
whenever possible. If midl_user_allocate is called, the server stubs will call
midl_user_free to free the data. In most cases, using node-by-node allocation and
deallocation instead of using [allocate (all_nodes)] will result in increased performance
of the server side stubs.

214 Volume 3 RPC and WNet

Stub-Allocated Buffers

Rather than forcing a distinct call for each node of the tree or graph, you can direct the
stubs to compute the size of the data and to allocate and free memory by making a
single call to midl_user_allocate or midl_user_free. The ACF attribute
[allocate(all_nodes)] directs the stubs to allocate or free all nodes in a single call to the
user supplied—memory management functions.

For example, an RPC application might use the following binary tree data structure:

The ACF attribute [allocate(all_nodes)] applied to this data type appears in the typedef
declaration in the ACF as:

The [allocate] attribute can only be applied to pointer types. The [allocate] ACF
attribute is a Microsoft extension to DCE IDL and, as such, is not available if you compile
with the MIDL /osf switch. When [allocate(all_nodes)] is applied to a pointer type, the
stubs generated by the MIDL compiler traverse the specified data structure to determine
the allocation size. The stubs then make a single call to allocate the entire amount of
memory needed by the graph or tree. A client application can free memory much more
efficiently by making a single call to midl_user_free. However, server-stub performance
is generally increased when using node-by-node memory allocation because the server
stubs can often use private memory that requires no allocations.

For additional information, see Node-by-Node Allocation and Deallocation.

Application-Allocated Buffer

The ACF attribute [byte_count] directs the stubs to use a preallocated buffer that is not
allocated or freed by the client support routines. The [byte_count] attribute is applied to
a pointer or array parameter that points to the buffer. It requires a parameter that
specifies the buffer size in bytes.

The client-allocated memory area can contain complex data structures with multiple
pointers. Because the memory area is contiguous, the application does not have to
make several calls to free each pointer and structure individually. As when using the

Chapter 16 Memory Management 215

[allocate(all_nodes)] attribute, the memory area can be allocated or freed with one call
to the memory-allocation routine or the free routine. However, unlike using the
[allocate(all_nodes)] atiribute, the buffer parameter is not managed by the client stub
but by the client application.

The buffer must be an [out]-only parameter and the buffer length in bytes must be an in-
only parameter. The [byte_count] attribute can only be applied to pointer types. The
[byte_count] ACF attribute is a Microsoft extension to DCE IDL and, as such, is not
available if you compile using the MIDL /osf switch.

In the following example, the parameter pRoot uses byte count:

The [byte_count] attribute appears in the ACF as:

The client stub generated from these IDL and ACF files does not allocate or free the
memory for this buffer. The server stub allocates and frees the buffer in a single call
using the provided size parameter. If the data is too large for the specified buffer size, an
exception is raised. ‘

Persistent Storage on the Server

You can optimize your application so the server stub does not free memory on the server
at the conclusion of a remote procedure call. For example, when a context handle will be
manipulated by several remote procedures, you can use the ACF attribute
[allocate(dont_free)] to retain the allocated memory on the server.

The [allocate(dont_free)] attribute is added to the ACF typedef declaration in the ACF.
For example:

When the [allocate(dont_free)] attribute is specified, the tree data structure is allocated,
but not freed, by the server stub. When you make the pointers to such persistent data
areas available to other routines—for example, by copying the pointers to global
variables—the retained data is accessible to other server functions. The
[allocate(dont_free)] attribute is particularly useful for maintaining persistent pointer
structures as part of the server state information associated with a context-handle type.

>

216 Volume 3 RPC and WNet

Who Manages Memory?

Generally, the stubs are responsible for packaging and unpackaging data, allocating and
freeing memory, and transferring the data to and from memory. In some cases, however,
the application is responsible for allocating and freeing memory.

Top-Level and Embedded Pointers

To understand how pointers and their associated data elements are allocated in
Microsoft RPC, you have to differentiate between top-level pointers and embedded
pointers. It is also useful to refer to the set of all pointers that are not top-level pointers.

Top-level pointers are those that are specified as the names of parameters in function
prototypes. Top-level pointers and their referents are always allocated on the server.

Embedded pointers are pointers that are embedded in data structures such as arrays,
structures, and unions. When embedded pointers are [out]-only and null on input, the
server application can change their values to non-null. In this case, the client stubs
allocate new memory for this data.

If the embedded pointer is not null on the client before the call, the stubs do not allocate
memory on the client on return. Instead, the stubs attempt to write the memory
associated with the embedded pointer into the existing memory on the client associated
with that pointer, overwriting the data already there.

Embedded [out]-only pointers are discussed in Combining Pointer and Directional
Attributes.

The term nontop-level pointers refers to all pointers that are not specified as parameter
names in the function prototype, including both embedded pointers and multiple levels of
nested pointers.

Directional Attributes Applied to the Parameter

The directional attributes [in] and [out] determine how the client and server allocate and
free memory. The following table summarizes the effect of directional attributes on
memory allocation.

Chapter 16 Memory Management 217

Directional

attribute Memory on client Memory on server

[in] Client application must Server stub allocates.
allocate before the call.

[out] Client stub allocates on Server stub allocates top-level pointer only; the server
return. application must allocate all embedded pointers. The

server also allocates new data as needed.
[in, out] Client application must Server stub allocates initial data transmitted from

’ _ allocate initial data client; the server application allocates new data as

transmitted to server; needed.

client stub allocates
additional data.

In all of these cases the client stub does not free memory. The client application must
free the memory before it terminates. The server stub frees memory when the remote
procedure call returns (subject to the [allocate] ACF attribute).

Length, Size, and Directional Attributes

In passing arrays between the client and the server, the size-related attributes [max_is]
and [size_is] determine how many array elements the server stub allocates. The length-
related attributes [length_is], [first_is], and [last_is] determine how many elements are
transmitted to both the server and the client.

Different directional attributes can be applied to parameters. However, some
combinations of directional attributes can cause errors. As an example, suppose you are
writing an interface that specifies a procedure with two parameters, an array, and the
transmitted length of the array. The italicized term dir_attr refers to the directional
attribute applied to the parameter as:

The MIDL compiler behavior for each combination of directional attributes is described
in the following table.

Length Stub actions during call Stub actions on return
Array parameter from client to server from server to client
[in] [in] Transmit the length and the No data transmitted.

number of elements indicated by
the parameter.

[in] [out] Not legal; MIDL compiler error. Not legal; MIDL compiler error.
(continued)

218

Volume 3 RPC and WNet

(continued)
Length Stub actions during call Stub actions on return

Array parameter from client to server from server to client

[in] [in, out] Transmit the length and the Transmit the length only.
number of elements indicated by
the length parameter.

[out] [in] Transmit the length. Transmit the number of elements
If array size is fixed, allocate the indicated by the length.
array size on the server, but Note that the length can be changed
transmit no elements. and can have a different value from
legal: MIDL compiler error. transmit the length.

[out] [out] Allocate space for the length Transmit the length and the number
parameter on the server but do of elements indicated by the length
not transmit the parameter. as set by the server application.

If the array size is fixed, allocate
the array size on the server, but
transmit no elements.

If array size is not fixed, not
legal: MIDL compiler error.

[out] [in, out] Transmit the length parameter. Transmit the length.

If the array size is bound, Transmit the number of array
allocate the array size on the elements indicated by the length.
server, but transmit no elements.

If array size is not bound, not

legal: MIDL compiler error. ,

[in, out] [in] Transmit the length and the . Do not transmit the length.
number of elements indicated by Transmit the number of elements
the parameter. indicated by the length.

. Note that the length can be changed
and can have a different value from
: the original value on the client.
[in, out] [out] Not legal; MIDL compiler error. Not legal; MIDL compiler error.
[in, out] [in, out] Transmit the length and the Transmit the length and the number

number of elements indicated by
the parameter.

of elements indicated by the
parameter.

In general, you should not modify the length or size parameters on the server side. If you
change the length parameter, you can orphan memory. For more information, see
Memory Orphaning.

Chapter 16 Memory Management 219

Pointer Attributes Applied to the Parameter

Each pointer attribute ([ref], [unique], and [ptr]) has characteristics that affect memory
allocation. The following table summarizes these characteristics.

Pointer attribute Client Server

Reference ([ref]) Client application must allocate. Special handling needed for
[out]-only nontop-level pointers.

Unique ([unique]) If a parameter, the client application
must allocate; if embedded, can be null.

Changing from null to non-null causes
the client stub to allocate; changing from
non-null to null can cause orphaning.

Full ([ptr]) If a parameter, the client application
must aIIQcate; if embedded, can be null.

Changing from null to non-null causes
the client stub to allocate; changing from
non-null to null can cause orphaning.

The [ref] attribute indicates that the pointer points to valid memory. By definition, the
client application must allocate all the memory that the reference pointers require.

The unique pointer can change from null to non-null. If the unique pointer changes from
null to non-null, new memory is allocated on the client. If the unique pointer changes
from non-null to null, orphaning can result. For more information, see Memory
Orphaning.

Combining Pointer and Directional Attributes

A few caveats apply to certain combinations of directional attributes and pointer
attributes. These are discussed in the following sections.

Embedded Out-Only Reference Pointers

When you use [out]-only reference pointers in Microsoft RPC, the generated server
stubs allocate only the first level of pointers accessible from the reference pointer.
Pointers at deeper levels are not allocated by the stubs, but must be allocated by the
server application layer. For example, suppose an interface specifies an [out]-only array
of reference pointers: :

220

Volume 3 RPC and WNet

In this example, the server stub allocates memory for 10 pointers and sets the value of
each pointer to null. The server application must allocate the memory for the 10 short
integers referenced by the pointers and then set the 10 pointers to point to the integers.

When the [out]-only data structure includes nested reference pointers, the server stubs
allocate only the first pointer accessible from the reference pointer. For example:

In the preceding example, the server stubs allocate the pointer psTop and the structure
STRUCT_TOP_TYPE. The reference pointer ps7in STRUCT_TOP_TYPE is set to null.
The server stub does not allocate every level of the data structure, nor does it allocate
the STRUCT1_TYPE or its embedded pointer, psValue.

Out-Only Unique or Full Pointer Parameters Not Accepted

Unique or full pointers that are [out]-only are not accepted by the MIDL compiler. Such
specifications cause the MIDL compiler to generate an error message.

The automatically generated server stub has to allocate memory for the pointer referent
so that the server application can store data in that memory area. According to the
definition of an [out]-only parameter, no information about the parameter is transmitted
from client to server. In the case of a unique pointer, which can take the value null, the
server stub does not have enough information to correctly duplicate the unique pointer in
the server’s address space, nor does the stub have any information about whether the
pointer should point to a valid address or whether it should be set to null. Therefore, this
combination is not allowed.

Rather than [out, unique] or [out, ptr] pointers, use [in, out, unique] or [in, out, ptr]
pointers, or use another level of indirection such as a reference pointer that points to the
valid unique or full pointer.

Function Return Values

Function return values are similar to [out]-only parameters because their data is not
provided by the client application. However they are managed differently. Unlike [out]-
only parameters, they are not required to be pointers. The remote procedure can return
any valid data type except reference pointers and nonencapsulated unions.

Chapter 16 Memory Management 221

Function return values that are pointer types are allocated by the client stub with a call to
midl_user_allocate. Accordingly, only the unique or full pointer attribute can be applied
to a pointer function-return type.

Memory Orphaning

If your distributed application uses an [in, out, unique] or [in, out, ptr] pointer
parameter, the server side of the application can change the value of the pointer
parameter to null. When the server subsequently returns the null value to the client,
memory referenced by the pointer before the remote procedure call is still present on the
client side, but is no longer accessible from that pointer (except in the case of an aliased
full pointer). This memory is said to be orphaned. This is also termed a memory leak.
Repeated orphaning of memory on the client causes the client to run out of available
memory resources.

Memory can also be orphaned whenever the server changes an embedded pointer to a
null value. For example, if the parameter points to a complex data structure such as a
tree, the server side of the application can delete nodes of the tree and set pointers
inside the tree to null.

Another situation that can lead to a memory leak involves conformant, varying, and open
arrays containing pointers. When the server application modifies the parameter that
specifies the array size or transmitted range so that it represents a smaller value, the
stubs use the smaller value(s) to free memory. The array elements with indices larger
than the size parameter are orphaned. Your application must free elements outside the
transmitted range.

Summary of Memory Allocation Rules

The following table summarizes key rules regarding memory allocation.

MIDL element Description

Top-level [ref] pointers Must be non-null pointers.

Function return value New memory is always allocated for pointer return values.
[unique, out] or [ptr, out] pointer Not allowed by MIDL.

Non-top-level [unique, in, out] or Client stubs allocate new memory on client on return.

[ptr, in, out] pointer that changes

from null to non-null

Non-top-level [unique, in, out] Memory is orphaned on client; client application is
pointer that changes from non-null to responsible for freeing memory and preventing leaks.

null
Non-top-level [ptr, in, out] pointer Memory will be orphaned on client if not aliased; client
that changes from non-null to null application is responsible for freeing and preventing

memory leaks in this case.
(continued)

222 Volume 3 RPC and WNet

(continued)
MIDL element

Description

[ref] pointers
Non-null [in, out] pointer

Client-application Iayef usually allocates.

Stubs attempt to write into existing storage on client. If
[string] and size increases beyond size allocated on the
client, it will cause a GP-fault on return.

The following table summarizes the effects of key IDL and ACF attributes on memory

management.
MIDL feature

Client issues

Server issues

[allocate(single_node)],
[allocate(all_nodes)]

[allocate(free)] or
[allocate(dont_free)]

array attributes [max_is]
and [size_is]

[byte_count]

[enable_allocate]

[in]attribute

[out] attribute

[ref] attribute

[unique] attribute

[ptr] attribute

Determines whether one
or many calls are made to
the memory functions.

(None; affects server.)

(None; affects server.)

Client must allocate
buffer; not allocated or
freed by client stubs.

Usually, none. However,
the client may be using a
different memory
management
environment.

Client application
responsible for allocating
memory for data.

Allocated on client by
stubs.

Memory referenced by
pointer must be allocated
by client application.

Non-null to null can result
in orphaned memory; null
to non-null causes client
stub to call
midl_user_allocate.

(See [unique].)

Same as client, except private memory
can often be used for allocate
(single_node) [in] and [in,out] data.
Determines whether memory on the
server is freed after each remote
procedure call.

Determines size of memory to be
allocated.

ACF parameter attribute determines size
of buffer allocated on server.

Server uses a different memory
management environment.
RpcSmAllocate should be used for
allocations.

Allocated on server by stubs.

[out]-only pointer must be [ref] pointer;
allocated on server by stubs.

Top-level and first-level reference
pointers managed by stubs.

(Affects client.)

(See [unique].)

223

CHAPTER 17

Serialization Services

Microsoft® RPC supports two methods for encoding and decoding data, collectively
called serializing data. Serialization means that the data is marshaled to and
unmarshaled from buffers that you control. This differs from the traditional usage of RPC,
in which the stubs and the RPC run-time library have full control of the marshaling
buffers, and the process is transparent. You can use the buffer for storage on permanent
media, encryption, and so on. When you encode data, the RPC stubs marshal the data
to a buffer and pass the buffer to you..When you decode data, you supply a marshaling
buffer with data in it, and the data is unmarshaled from the buffer to memory. You can
serialize on a procedure or type basis.

Note The term pickling is commonly used among developers to describe serialization.
In fact, the Platform SDK samples contains a directory called pickle that preserves the
RPC serialization sample programs.

Serialization leverages the RPC mechanisms for marshaling and unmarshaling data for
other purposes. For example, instead of using several I/O operations to serialize a group
of objects to a stream, an application can optimize performance by serializing several
objects of different types into a buffer and then writing the entire buffer in a single
operation. The functions that manipulate serialization handles are independent of the
type of serialization you are using.

As another example, if you need to use a network transport mechanism besides RPC,
such as Microsoft® Windows® Sockets (Winsock). With RPC serialization, your program
can make calls to functions that marshal your data into buffers and then transmit this
data using Winsock. When your application receives data, it can use the RPC
serialization mechanism to unmarshal data from buffers filled by the Winsock routines.
This provides you with many of the advantages of RPC-style applications, and at the
same time, it enables you to use non-RPC transport mechanisms.

You can also use serialization for purposes unrelated to network communications. For
example, once you use the RPC encoding functions to marshal data to a buffer, you can
store it in a file for use by another application. You can also encrypt it. You can even use
it to store a hardware- and operating system-independent representation of data in a
database. ‘

224

Volume 3 RPC and WNet

Using Serialization Services

MIDL generates a serialization stub for the procedure with the attributes [encode] and
[decode]. When you call this routine, you execute a serialization call instead of a remote
call. The procedure arguments are marshaled to or unmarshaled from a buffer in the
usual way. You then have complete control of the buffers.

In contrast, when your program performs type serialization (a type is labeled with
serialization attributes), MIDL generates routines to size, encode, and decode objects of
that type. To serialize data, you must call these routines in the appropriate way. Type
serialization is a Microsoft extension and, as such, is not available when you compile in
DCE-compatibility (/osf) mode. By using the [encode] and [decode] attributes as
interface attributes, RPC applies encoding to all the types and routines defined in the
IDL file.

You must supply adequately aligned buffers when using serialization services. The
beginning of the buffer must be aligned at an address that is a multiple of 8, or 8-byte
aligned. For procedure serialization, each procedure call must marshal into or unmarshal
from a buffer position that is 8-byte aligned. For type serialization, sizing, encoding, and
decoding must start at a position that is 8-byte aligned.

One way for your application to ensure that its buffers are aligned is to write the
midl_user_allocate function such that it creates aligned buffers. The following code
sample demonstrates how this can be done. '

Chapter 17 Serialization Services 225

Procedure Serialization

When you use procedure serialization, a procedure is labeled with the [encode] or
[decode] attribute. Instead of generating the usual remote stub, the compiler generates
a serialization stub for the routine.

Just as a remote procedure must use a binding handle to make a remote call, a
serialization procedure must use a serialization handle to use serialization services. If a
serialization handle is not specified, a default implicit handle is used to direct the call. On
the other hand, if the serialization handle is specified, either as an explicit handle_t
argument of the routine or by using the [explicit_handle] attribute, you must pass a
valid handle as an argument of the call. For additional information on how to create a
valid serialization handle, see Serialization Handles, Examples of Fixed Buffer Encoding,
and Examples of Incremental Encoding.

Note Microsoft® RPC allows remote and serialization procedures to be mixed in one
interface. However, use caution when doing so.

For remote procedures with implicit binding handles, the MIDL compiler generates a
global handle variable of type handle_t. Procedures and types with implicit serialization
handles use this same global handle variable.

For implicit handles, the global implicit handle must be set to a valid binding handle
before a remote call. The implicit handle must be set to a valid serialization handle
before a serialization call. Therefore, a procedure cannot be both remote and serialized.
It must be one or the other.

Type Sérialization

The MIDL compiler generates up to three functions for each type to which the [encode]
or [decode] attribute is applied. For example, for a user-defined type named MyType,
the compiler generates code for the MyType_Encode, MyType_Decode, and
MyType_AlignSize functions. For these functions, the compiler writes prototypes to
Stub.h and source code to Stub_c.c. Generally, you can encode a MyType object with
MyType_Encode and decode an object from the buffer using MyType_Decode.
MyType_AlignSize is used if you need to know the size of the marshaling buffer before
allocating it.

226 Volume 3 RPC and WNet

The following encoding function is generated by the MIDL compiler. This function
serializes the data for the object pointed to by pObject, and the buffer is obtained
according to the method specified in the handle. After writing the serialized data to the
buffer, you control the buffer. Note that the handle inherits the status from the previous
calls, and the buffers must be aligned at 8.

For an implicit handle:

For an explicit handle:

The following function deserializes the data from the application’s storage into the object
pointed to by pObject. You supply a marshaled buffer according to the method specified

in the handle. Note that the handle can inherit the status from the previous calls and the
buffers must be aligned at 8.

For an implicit handle:

For an explicit handle:

b

The following function returns a size, in bytes, that includes the type instance plus any
padding bytes needed to align the data. This enables serializing a set of instances of the
same or different types into a buffer while ensuring that the data for each object is
appropriately aligned. MyType_AlignSize assumes that the instance pointed to by
pObject will be marshaled into a buffer beginning at the offset aligned at 8.

For an implicit handle:

T

For an explicit handle:

5

Note that both remote procedures with implicit binding handles and serialized types with
implicit serialization handles use the same global handle variable. Therefore, it is
advisable not to mix type serialization and remote procedures in an interface with implicit
handles. For details, see Implicit Versus Explicit Handles.

Serialization Handles

An application uses the serializing procedures or the serializing support routines
generated by the MIDL compiler in conjunction with a set of library functions to
manipulate a serialization handle. Together, these functions provide a mechanism for
customizing the way an application serializes data. “

Chapter 17 Serialization Services 227

A serializing handle is required for any serializing operation, and all serializing handles
must be managed explicitly by you. To do this, you first create a valid handle by calling
one . of the following routines:

¢ MesDecodeBufferHandleCreate

¢ MesDecodelncrementalHandleCreate

¢ MesEncodeDynBufferHandleCreate

¢ MesEncodeFixedBufferHandleCreate
- o MesEncodeincrementalHandleCreate

You release the handle with a call to MesHandleFree. Once the handle has been
created or reinitialized, it represents a valid serialization context and can be used to
encode or decode, depending on the type of the handle.-

Implicit Versus Explicit Handles

To declare a serialization handle, use the primitive handle type handle_t. Serialization
handles can be explicit or implicit. Specify implicit handles in your application’s ACF by
using the [implicit_handle] attribute. The MIDL compiler will generate a global
serialization handle variable. Serialization procedures with an implicit handle use this
global variable in order to access a valid serializing context.

When using type encoding, the generated routines supporting serialization of a particular
type use the global implicit handle to access the serialization context. Note that remote
routines may need to use the implicit handle as a binding handle. Be sure that the
implicit handle is set to a valid serializing handle prior to making a serializing call.

An explicit handle is specified as a parameter of the serialization procedure prototype in
the IDL file, or it can also be specified by using the [explicit_handle] attribute in the
ACF. The explicit handle parameter is used to establish the proper serialization context
for the procedure. To establish the correct context in the case of type serialization, the
compiler generates the supporting routines that use explicit handle_t parameter as the
serialization handle. You must supply a valid serializing handle when calling a
serialization procedure or serialization type support routine.

Serialization Styles
' There are three styles you can use to manipulate serialization handles. These are:
¢ Fixed Buffer Serialization
¢ Dynamic Buffer Serialization
¢ Incremental Serialization

228

Volume 3 RPC and WNet

Regardless of the style you use, you must create a serialization handle, serialize the
data, and then free the handle. The style is set when your program creates the handle
and defines the way a buffer is manipulated. The handle maintains the appropriate
context associated with each of the three serialization styles.

Fixed Buffer Serialization

When using the fixed buffer style, specify a buffer that is large enough to accommodate
the encoding (marshalling) operations performed with the handle. When unmarshaling,
you provide the buffer that contains all of the data to decode.

The fixed buffer style of serialization uses the following routines:

MesEncodeFixedBufferHandleCreate
MesDecodeBufferHandleCreate
MesBufferHandleReset
MesHandleFree

The MesEncodeFixedBufferHandleCreate function allocates the memory needed for
the encoding handle, and then initializes it. The application can call
MesBufferHandleReset to reinitialize the handle, or it can call MesHandleFree to free
the handle’s memory. To create a decoding handle corresponding to the fixed style—
encoding handle, you must use MesDecodeBufferHandleCreate.

The application calls MesHandleFree to free the encoding or decoding buffer handle.

Examples of Fixed Buffer Encoding

The following section provides an example of how to use a fixed buffer style—serializing
handle for procedure encoding.

Chapter 17 Serialization Services 229

The following excerpt represents a part of an application.

The following section provides an example of how to use a fixed buffer style—serializing
handle for type encoding.

(ontinued)

230 Volume 3 RPC and WNet

(continued)

The following excerpt represents the relevant application fragments.

Dynamic Buffer Serialization

When using the dynamic buffer style of serialization, the marshalling buffer is allocated
by the stub, and the data is encoded into this buffer and passed back to you. When
unmarshaling, you supply the buffer that contains the data.

The dynamic buffer style of serialization uses the following routines:
¢ MesEncodeDynBufferHandleCreate

e MesDecodeBufferHandleCreate

MesBufferHandleReset

MesHandleFree _ .

‘ The MesEncodeDynBufferHandleCreate function allocates the memory needed for the
encoding handle and then initializes it. The application can call MesBufferHandleReset
to reinitialize the handle. It calls MesHandleFree to free the handle’s memory. To create
a decoding handle corresponding to the dynamic buffer encoding handle, use
MesDecodeBufferHandleCreate.

Incremental Serialization

When using the incremental style serialization, you supply three routines to manipulate
the buffer. These routines are: Alloc, Read, and Write. The Alloc routine allocates a

. buffer of the required size. The Write routine writes the data into the buffer, and the
Read routine retrieves a buffer that contains marshaled data. A single serialization call
can make several calls to these routines.

Chapter 17 Serialization Services 231

- The incremental style of serialization uses the following routines:

¢ MesEncodelncrementalHandleCreate

e MesDecodelncrementalHandleCreate

o MeslncrementalHandleReset

e MesHandleFree ' :

The prototypes for the Alloc, Read, and Write functions that you must provide are
shown below:

The State input argument for all three functions is the application-defined pointer that
was associated with the encoding services handle. The application can use this pointer
to access the structure containing application-specific information, such as a file handle
or stream pointer. Note that the stubs do not modify the State pointer other than to pass
it to the Alloc, Read, and Write functions. During encoding, Alloc is called to obtain a
buffer into which the data is serialized. Then, Write is called to enable the application to
control when and where the serialized data is stored. During decoding, Read is called to
return the requested number of bytes of serialized data from where the application
stored it.

An important feature of the incremental style is that the handle keeps the state pointer
for you. This pointer maintains the state and is never touched by the RPC functions,
except when passing the pointer to Alloc, Write, or Read function. The handle also
maintains an internal state that makes it possible to encode and decode several type
instances to the same buffer by adding padding as needed for alignment. The
MesincrementalHandleReset function resets a handle to its initial state to enable
reading or writing from the beginning of the buffer.

232

Volume 3 RPC and WNet

The Alloc and Write functions, along with an application-defined pointer, are associated
with an encoding-services handle by a call to the
MesEncodelncrementalHandleCreate function.
MesEncodelncrementalHandleCreate allocates the memory needed for the handle
and then initializes it.

The application can call MesDecodelncrementalHandleCreate to create a decoding
handle, MesIncrementalHandleReset to reinitialize the handle, or MesHandleFree to
free the handle’s memory. The Read function, along with an application-defined
parameter, is associated with a decoding handle by a call to the
MesDecodelncrementalHandleCreate routine. The function creates the handle and
initializes it. '

The UserState, Alloc, Write, and Read parameters of MesIincrementalHandleReset can
be NULL to indicate no change.

Examples of Incremental Encoding

The following section provides an example of how to use the incremental style serializing
handle for type encoding.

The following excerpt represents the relevant application fragments.

Chapter 17 Serialization Services 233

Obtaining an Encoding Identity

An application that is decoding encoded data can obtain the identity of the routine used
to encode the data, prior to calling a routine to decode it. The MesingProcEncodingld
routine provides this identity.

Each procedure in an interface is assigned an integer identification number, called a
procedure ID or a proc ID, by the MIDL compiler. Numbering begins with zero. The RPC
run-time libraries are not involved in translating the procedure ID into an actual
procedure call. Given a proc 1D, your application must provide a means of calling the
correct procedure. Typically, application developers use a series of if statements, or
(when using C/C++) a switch statement for this purpose.

235

CHAPTER 18

Security

With the increased use of distributed applications, the need for secure communications
between the client and server portions of applications is of paramount importance. The
Remote Procedure Call (RPC) run-time library provides a standardized interface to
authentication services for both clients and servers. The authentication services on the
server host system provide RPC authentication. Applications use authenticated remote
procedure calls to ensure that all calls come from authorized clients. They can also help
ensure that all server replies come from authenticated servers.

RPC Security Essentials

To complete any remote procedure call, all distributed applications must create a binding
between the client and the server. For more information on bindings, see Binding and
Handles. After the client obtains a binding to the server, both the client and server
portions of the distributed application use the RPC authorization functions to create an
authenticated binding. The binding is predicated upon the rights contained in the user’s
security credentials.

This section explains the essential concepts and information required to use the RPC
functions to create a client and server for an authenticated distributed application.

Principal Names

In order for a client to create an authenticated session with a server program, it must
provide the server’s expected principal name. A principal is an entity that the security
system recognizes. This includes human users as well as autonomous processes. All
principal names take the same form for a given security support provider (SSP). An SSP
is a software module that performs security validation. For more information, see SSP/
Architectural Overview. Strictly speaking, the SSP cannot tell the difference between
users who are logged on and processes running on the computer. It sees both as
principals with principal names. Therefore, principal names take the same form as user
names.

The server registers its principal name for the security provider. The SSP dictates the
format of the principal name. For example, the Kerberos protocol SSP requires that the
principal name be in the form servername or domain\servername, where servername
is the server program’s account name.

236

Volume 3 RPC and WNet

The SCHANNEL SSP takes principal names in either of two forms. The first is the msstd
form. Names in msstd form generally follow the pattern

msstd:servername @serverdomain.com. This is referred to as an email name
property. If the certificate contains an email name property, and it contains an at sign
(@), the principal name is msstd:email name. Otherwise it must contain the common
name property. If neither exists, SCHANNEL SSP returns the message
ERROR_INVALID_PARAMETER. Internal backslashes are doubled, just as in string
bindings.

The second SCHANNEL principal name form is fullsic form. This is a series of
RFC1779-compliant names bounded by angle brackets and separated by backslashes.
It typically follows the pattern fullsic:\<\Authority\SubAuthority\.....\Person> or
fullsic:\<\Authority\SubAuthority\.....\ServerProgram>.

Server programs invoke the RpcServerRegisterAuthinfo function to register their
principal names. Pass the server’s principal name as the first parameter.

To query for the server’s principal name, applications can call
RpcMgmtingServerPrincName. This allocates a null-terminated string to hold the
principal name. Before it terminates, your application must invoke RpcStringFree to
release the memory this string occupies

Querying for the server name in this manner is not the most secure method of
connecting to a server. For server authentication, the client program should “know” the
name of the secure server by some method that does not involve transmitting the
server’s name over the network.

Authentication Levels

Microsoft® RPC provides multiple levels of authentication. Authentication can take place
each time the client establishes a connection with the server, each time the client
executes a remote procedure call, or each time the client and the server exchange a
packet of data.

In addition, the RPC run-time library can validate that the packet came from the client
program. This does not mean, however, that the packet was not modified or corrupted
en route, only that it came from the authenticated client. For greater security, distributed
applications can set the RPC run-time library to verify that none of the data exchanged
between the client and server is modified. The RPC library can also encrypt the contents
of every packet before sending it.

Be aware that higher levels of authentication require higher computational overhead.
You, as the developer, must decide which is more important for your application speed
or security. Most developers find that with some performance testing, they can achieve
acceptable performance levels while maintaining adequate security. '

The client and the server portions of the distributed application must use the same
authentication level. For a list of RPC authentication levels, see
Authentication-Level Constants.

Chapter 18 Security 237

Authentication Services

The Security Support Provider Interface (SSPI) provides the underlying authentication
services for RPC. Therefore, when your application specifies an authentication service, it
selects an SSP. For a list of the SSPs that SPPI currently supports, see
Authentication-Service Constants. For more information on the SSPI, see Security
Support Provider Interface (SSPI). :

Client Authentication Credentials

Every authenticated client must provide authentication credentials to the server. Under
RPC, the client stores its authentication credentials in the binding between the client and
the server. To do this, it calls RpcBindingSetAuthinfo or RpcBindingSetAuthinfoEx.
The fifth parameter of these two functions is of type RPC_AUTH_IDENTITY_HANDLE.
This is a flexible type that is a pointer to a data structure. What the data structure
actually contains can differ with each authentication service. Currently, the SSPs that
RPC supports require that your application set RPC_AUTH_IDENTITY_HANDLE to
point to a SEC_WINNT_AUTH_IDENTITY structure. The
SEC_WINNT_AUTH_IDENTITY structure contains fields for a user name, domain, and
password.

Authorization Services

An authorization service is the method that the SSP uses to authorize access to a
remote procedure. SSPs can provide more than one authorization service. However,
they usually select one as a default.

Your application can use the default authorization method for the current SSP, or it can
specify one. At present, Microsoft RPC supports two methods of authorization. One is for
the server to provide authorization based on the name of the client program. The other is
for the server to compare the client’s authentication credentials against the server’s
access control list (ACL).

For a list of authorization services, see Authorization-Service Constants.

Quality of Service

Client programs can use the RpcBindingSetAuthinfoEx function rather than the
RpcBindingSetAuthinfo function to create an authenticated binding. If they do, they
pass a pointer to an RPC_SECURITY_QOS structure as the final parameter of
RpcBindingSetAuthinfoEx. This structure contains information about the quality of
service. Specifically, the information in this structure allows client programs to set the
security services provided to the distributed application. Client programs can also specify
the identity tracking and select the impersonation type. In addition, client programs can
use it to validate the RPC version number.

238

'Volume 3 RPC and WNet

Use the Capabilities member of the RPC_SECURITY_QOS structure to set which
portions of your client/server application are authenticated. If you select
RPC_C_QOS_CAPABILITIES_DEFAULT, the RPC run-time library will authenticate the
client or server according to the default for the SSP. By default, the Kerberos protocol
SSP authenticates both the client and the server. The default for all other SSPs that
Microsoft provides is to authenticate the client to the server, but not to authenticate the
server to the client.

If you always want the client and the server to authenticate themselves to each other, set
the Capabilities member of the RPC_SECURITY_QOS structure to
RPC_C_QOS_CAPABILITIES_MUTUAL_AUTH. If you are using the SCHANNEL SSP,
you can also set the Capabilities member to
RPC_C_QOS_CAPABILITIES_ANY_AUTHORITY. This constant specifies that the SSP
will validate the remote procedure call even if the certificate authority that issued the
client’s authentication certificate is not in the SSP’s root certificate store. The default is to
reject the certificate if the SSP does not recognize the certificate authority. The certificate
authority is an independent company or organization, such as Verisign, that issues
‘authentication certificates.

Your application can also set the identity tracking that the RPC run-time library uses.
Typically, programs use static identity tracking, which is the fastest. With static tracking,
the client’s credentials are set when it calls RpcBindingSetAuthinfo. The RPC run-time
library then uses those credentials for all RPC calls on the binding. In addition,
applications can select dynamic identity tracking. Dynamic identity tracking means that
the RPC run-time library will use the credentials of the calling thread, rather than the
binding handle, for authentication each time the client calls a remote procedure. It is
typically only used if the client impersonates different users, or if the server calls the
RpcimpersonateClient function. Static identity tracking is faster.

As part of the QOS specification, the client program can also set the type of
impersonation that a server program can perform on its behalf. For more information on
impersonation, see Client Impersonation.

The version number field of the RPC_SECURITY_QOS structure should always be set
to RPC_C_SECURITY_QOS_VERSION.

Authorization Functions

Each time a server program receives a client request for access to a remote procedure,
the RPC run-time library invokes a default authorization function. This function uses the
SSP to check the client's credentials and authorize or reject the request.

Your server program can override the authorization function that the SSP provides.
Invoke the function RpcMgmtSetAuthorizationFn and pass it the address of your
authorization function. Once the server program sets the authorization function, the RPC
run-time library will call it every time the server program receives a client request. For
related information, see RpcMgmtlsServerListening, RpcMgmtStopServerListening,
RpcMgmtinqlifids, RpcMgmtingServerPrincName, and RpcMgmtingStats.

Chapter 18 Security 239

Key Acquisition Functions
By default, the SSP supplies encryption keys to the server programs that request them.

Each SSP implements its own system of generating keys. The format of the keys the
SSP generates are specific to the SSP.

RPC provides you with the ability to override the default method of generating encryption
keys. Your application can call the RpcServerRegisterAuthinfo function and pass it a
pointer to a key acquisition function. You can write the key acquisition function so that it
generates keys using any method you choose. However, the key it passes to the server
program must match the format that the SSP requires.

Client Impersonation

Impersonation is useful in a distributed computing environment when servers must pass
client requests to other server processes or to the operating system. In Figure 18-1, a
server impersonates the client’s security context. Other server processes can then
handle the request as if the original client made it.

Request for Service

RPC Client RPC Server
Program Program A
Request Fulfilled

Server Impersonates Client
Request Fulfilled and Sends the
Request for Services to B

RPC Server
Program B

Figure 18-1: Server Impersonating the Client’s Security Context.

For example, a client makes a request to Server A. If Server A must query Server B to
complete the request, Server A impersonates the client security context and makes the
request to Server B on behalf of the client. Server B uses the original client’s security
context, instead of the security identity for Server A, to determine whether to complete
the task.

The server calls RpclmpersonateClient to overwrite the security for the server thread
with the client security context. After the task is completed, the server calls
RpcRevertToSelf or RpcRevertToSelfEx to restore the security context defined for the
server thread.

240

Volume 3 RPC and WNet

When binding, the client can specify quality-of-service information about security which
specifies how the server can impersonate the client. For example, one of the settings
lets the client specify that the server is not allowed to impersonate it. For more
information, see Quality of Service.

Security Methods

Microsoft® RPC supports two different methods for adding security to your distributed
application. The first method is to use the Security Support Provider Interface (SSPI),
which can be accessed using the RPC functions. In general, it is best to use this method.
The SSPI provides the most flexible and network-independent authentication features.

The second method is to use the security features built into the Microsoft®

Windows NT® and Windows® 2000 operating system transport protocols. The transport-
level security method is not the preferred method. Using the SSPI is recommended
because it works on all transports, across platforms, and provides high levels of security,
including privacy. The following sections provide overviews of both SSPI and transport-
level security.

Security Support Provider Interface (SSPI)

In conjunction with its operating systems, Microsoft offers the Security Support Provider
Interface (SSPI). The SSPI provides a universal, industry-standard interface for secure
distributed applications. SSPI is supported by Microsoft RPC for Windows NT,
Windows 2000, Windows 95/98, MS-DOS®, Windows 3.1, and Macintosh.

SSPI Architectural Overview

SSPI is a software interface. Distributed programming libraries such as RPC can use it
for authenticated communications. One or more software modules provide the actual
authentication capabilities. Each module, called a security support provider (SSP), is
implemented as a dynamic link library (DLL). An SSP provides one or more security
packages.

A variety of SSPs and packages are available. For instance, Windows NT and
Windows 2000 ship with the NTLM security package. Beginning with Windows 2000,
Microsoft also provides the Microsoft Kerberos protocol security package. In addition,
you may choose to install the Secure Socket Layer (SSL) security package. These
security packages are implemented by the Microsoft® Win32® SSP, which is
implemented in Secur32.dll. You may also choose to install any other
SSPI-compatible SSP.

Using SSPI ensures that no matter which SSP you select, ybur application accesses the
authentication features in a uniform manner. This capability provides your application
greater independence from the implementation of the network than was available in the
past.

The architecture of SSPI is illustrated in Figure 18-2.

Chapter 18 Security 241

Distributed Applications

Security Support Provider interface (SSPI)

Figure 18-2: SSPI Architecture.

The preceding illustration shows that distributed applications communicate through the
RPC interface. The RPC software in turn, accesses the authentication features of an
SSP through the SSPI.

For more information, see Security Support Provider Interface.

Security Support Providers (SSPs)

Beginning with Windows 2000, RPC supports a variety of security providers and
packages. These include:

¢ Kerberos Protocol Security Package. Kerberos v5 protocol is an industry-standard
security package. It uses fullsic principal names.

e SCHANNEL SSP. This SSP implements the Microsoft Unified Protocol Provider
security package, which unifies SSL, Private Communication Technology (PCT), and
Transport Level Security (TLS) into one security package. It recognizes msstd and
fullsic principal names.

¢ Distributed Password Authentication (DPA) Security Package. Written primarily
for authentication over the Internet, the DPA security package provides the
capabilities for a user database that scales to millions of users. It uses the same
principal name form as the NTLM security package.

242

Volume 3 RPC and WNet

¢ MSN Security Package. MSN™, the network of Internet services, currently uses this
security package. It uses the same principal name form as the NTLM security
package.

¢ NTLM Security Package. This was the primary security package for NTLM networks
prior to Windows 2000.

¢ Distributed Computing Environment (DCE) Security Package. The DCE security
package is an industry-standard security protocol that provides private and key
authentication. '

In addition, Microsoft RPC provides a pseudo-SSP that enables applications to negotiate
between the use of real SSPs. This pseudo-SSP, called the Simple GSS-API
Negotiation Mechanism (Snego) SSP, does not provide any actual authentication
features. Its only use is to help applications select a real SSP. Currently, client and
server programs can use the Snego SSP to negotiate between the use of the NTLM
security package and Kerberos protocol security package.

For more information on selecting SSPs, see Authentication-Service Constants.

All of the SSPs that Microsoft Corporation provides recognize authentication credentials
in the form provided by the SEC_WINNT_AUTH_IDENTITY structure. For details, see
Client Authentication Credentials. For information on how to use specific SSPs, see
SSPI Functions and Using the Schannel Security Provider in the Security documentation
of the Platforms SDK.

Writing an Authenticated SSPI Client

All RPC client/server sessions require a binding between the client and the server. To
add security to client/server applications, the programs must use an authenticated
binding. This section describes the process of creating an authenticated binding
between the client and the server. It also presents special platform-specific
considerations that are imposed on developers of client programs.

e Creating Client-side Binding Handles

e MS-DOS Considerations

e Windows 95/98 Considerations

e Providing Client Credentials to the Server

For related information, see Procedures Used with Most Security Packages and
Protocols in the Platform SDK.

Creating Client-side Binding Handles

To create an authenticated session with a server program, client applications must
provide authentication information with their binding handle. To set up an authenticated
binding handle, clients invoke the RpcBindingSetAuthinfo or
RpcBindingSetAuthinfoEx function. These two functions are nearly identical. The only

Chapter 18 Security 243

difference between them is that the client can specify the quality of service with the
RpcBindingSetAuthinfoEx function. The following code fragment shows how a call to
RpcBindingSetAuthinfo might look.

After the client successfully calls the RpcBindingSetAuthinfo or
RpcBindingSetAuthinfoEx functions, the RPC run-time library automatically
authenticates all RPC calls on the binding. The level of security and authentication that
the client selects applies only to that binding handle. Context handles derived from the
binding handle will use the same security information, but subsequent modifications to
the binding handle will not be reflected in the context handles. For more information on
context handles, see Context Handles.

The authentication level stays in effect until the client chooses another level, or until the
process terminates. Most applications will not require a change in the security level.

The client can query any binding handle to obtain its authorization information. Invoke
the function RpcBindinglngqAuthClient and pass it the binding handle.

MS-DOS Considerations

When developing applications for MS-DOS, you must manually feed the password and
credential information into RpeBindingSetAuthinfo. This is optional for a 16-bit or 32-bit
Windows platform because the default is to use the credentials of the current user. If a
computer running Windows 95/98, Windows for Workgroups, or Windows 3.x is not part
of a domain, the user will be prompted for the password.

To manually pass credentials to RpcBindingSetAuthinfo, create a pointer to the
SEC_WINNT_AUTH_IDENTITY structure. Pass in the credential information using the
Authldentity parameter. Note that this structure must remain valid for the lifetime of the
binding handle.

244

Volume 3 RPC and WNet

Windows 95/98 Considerations

For systems configured for Novell NetWare clients on a Windows 95/98 network, the
server side of the application must obtain the server principal name, and then pass this
value to RpcServerRegisterAuthinfo. Use the RpcServeringDefaultPrincName
routine to obtain the server principal name. In this situation, the client calls
RpcBindingSetAuthinfo in the usual manner, but specifies a value of NULL for
PrincipalName. Behind the scenes, the Windows 95/98 run-time library queries the
server to obtain the value of the PrincipalName parameter specified to
RpcServerRegisterAuthinfo. This is the name that is actually used. The binding handle
will be authenticated on the NetWare server.

For Windows 95/98, if RpcBindingSetAuthinfo is called with a NULL server principal
name (as described above), the binding handle must be fully bound. For more
information on fully-bound handles, see Binding and Handles. If it is a dynamic endpoint
in which the server registers the endpoint with the endpoint mapper and, therefore, is not
known by the client, you must use RpcEpResolveBinding to bind the handle. This is
because in order to obtain the principal name from the server, the Windows 95/98 run-
time library implicitly calls RpcMgmtingServerPrincName. Calls to management
interfaces cannot be made to unbound handles. All RPC server processes have the
same management interface. Registering the handle with the endpoint mapper is not
sufficient to uniquely identify a server. For more information on endpoints and the
endpoint mapper, see endpoint.

Note The Windows 95/98 run-time library ignores the ncacn_np and ncalrpc security
descriptors, because Windows 95/98 does not support the Windows NT/Windows 2000
security model.

Providing Client Credentials to the Server

Servers use the client’s binding information to enforce security. Clients always pass a
binding handle as the first parameter of a remote procedure call. However, servers
cannot use the handle unless it is declared as the first parameter to remote procedures
in either the IDL file or in the server’s Application Configuration File (ACF). You can
choose to list the binding handle in the IDL file, but this forces all clients to declare and
manipulate the binding handle rather than using automatic or implicit binding. For further
information, see The IDL and ACF Files.

Another method is to leave the binding handles out of the IDL file and to place the
explicit_handle attribute into the server's ACF. In this way, the client can use whatever
type of binding is best suited to the application, while the server uses the binding handle
as though it were declared explicitly.

The process of extracting the client credentials from the binding handle is as follows:

¢ RPC clients call RpcBindingSetAuthinfo and include their authentication information
as part of the binding information passed to the server.

Chapter 18 Security 245

e Usually, the server calls RpclmpersonateClient in order to behave as though it were
the client. If the binding handle is not authenticated, the call fails with
RPC_S_NO_CONTEXT_AVAILABLE. To obtain the client’s user name, call
GetUserName while impersonating.

e The server will normally use the Windows NT or Windows 2000 call
CreatePrivateObjectSecurity to create objects with ACLs. After this is accomplished,
later security checks become automatic.

Writing an Authenticated SSPI Server

Before authenticated communication can take place between the client and server
programs, the server must register its authentication information. In particular, the server
must register its principal name and specify the authentication service it uses. For more
information on principal names, see Principal Names. For details about authentication
services, see Authentication Services.

To register its authentication information, servers call the RpcServerRegisterAuthinfo
function. Pass a pointer to the principal name as the value of the first parameter. Set the
second parameter to a constant indicating the authentication service that the application
will use. For a description of authentication services, see Authentication-Service
Constants.

The server may also pass the address of a key acquisition function as the value of the
third parameter. See Key Acquisition Functions. To use the default key acquisition
function for the selected authentication service, set the third parameter to NULL. The last
parameter to the RpcServerRegisterAuthinfo function is a pointer data to pass to the
key acquisition function, if you provide a key acquisition function. A call to
RpcServerRegisterAuthinfo is shown in the following code fragment.

In addition, the server may provide the RPC run-time library with an authorization
function. This callback function allows server programs to implement custom
authentication methods. For details, see Authorization Functions. Every time a client
request arrives, the RPC run-time library calls the authorization function. Your
authorization function can then examine the query and authorize or deny the completion
of the remote procedure call. To set an authorization function, call the
RpcMgmtSetAuthorizationFn function.

The server portion of a distributed application can call the function
RpcBindingingAuthinfo to query a binding handle for authentication information.

246

Volume 3 RPC and WNet

If your server registers with a security support provider, client calls with invalid
credentials will not be dispatched. However, calls with no credentials will be dispatched.
There are three ways to keep this from happening:

* Register the interface using RpcServerRegisterlfEx, with a security callback
function; this will cause the RPC run-time library to automatically reject
unauthenticated calls to that interface.

¢ Call RpcBindingingAuthClient to determine the security level that the client is using.
Your stub can then return an error if the client is unauthenticated.

e Only allow calls using the RPC_C_AUTHN_PACKET_PRIVACY level. Then, all
server replies will be encrypted during transmission.

Note If you are using the NTLM security package (with the authentication-service
constant RPC_C_AUTHN_WINNT), you should be aware that a client whose credentials
specify an unknown user name will be given guest access permission. If you do not want
this behavior, remove the guest account from your server.

The NTLM security package also lets your server impersonate the client. To do this, call
the RpcimpersonateClient function. For more information on the Windows NT security
model, see Access Control Model.

If you need additional information on how to write a secure server, check with the
manufacturer of your security support provider.

Windows NT and Windows 2000 Transport Security

Although this is not the preferred method, you can use the security settings that the
Windows NT and Windows 2000 named pipe transport offers to add security features to
your distributed application. These security settings are used with the Microsoft RPC
functions that start with the prefixes RpcServerUseProtseq and
RpcServerUseAllProtseqs, and the functions RpcimpersonateClient and
RpcRevertToSelf. Microsoft Windows 95/98 does not support transport security in
named pipes or local procedure calls.

Note If you are running an application that is a service and you are using NTLM for
security, you must add an explicit service dependency for your application. The
Secur32.dll will call the Service Controller (SC) to begin the NTLM security package
service. However, an RPC application that is a service and is running as a system, must
also contact the SC unless it is connecting to another service on the same computer.

Chapter 18 Security 247

Using Transport-Level Security on the Server

This section presents discussions of transport-level security, divided into the following
topics: '

e Using Transport-Level Security on the Server
® Using Transport-Level Security on the Client

When you use ncacn_np or ncalrpc as the protocol sequence, the server specifies a
security descriptor for the endpoint at the time it selects the protocol sequence. For more
information on protocol sequences, see Specifying Protocol Sequences. Your
application provides the security descriptor as an additional parameter (an extension to
the standard OSF-DCE parameters) on all functions that start with the prefixes
“RpcServerUseProtseq” and “RpcServerUseAllProtseqs”. The security descriptor
controls whether a client can connect to the endpoint.

Each Windows NT and Windows 2000 process and thread is associated with a security
token. This token includes a default security descriptor that is used for any objects that
the process creates, such as the endpoint. If your application does not specify a security
descriptor when calling a function with the prefixes “RpcServerUseProtseq” and
“RpcServerUseAllProtseqs”’, the RPC run-time library applies the default security
descriptor from the process security token to the endpoint.

To guarantee that the server application is accessible to all clients, the administrator

'should start the server application on a process that has a default security descriptor that

all clients can use. On Windows NT and Windows 2000, generally only system
processes have a default security descriptor.

For more information about these functions and the functions RpclmpersonateClient
and RpcRevertToSelf.

Using Transport-Level Security on the Client

The client specifies how the server impersonates the client when the client establishes
the string binding. This quality-of-service information is provided as an endpoint option in
the string binding. The client can specify the level of impersonation, dynamic or static
tracking, and the effective-only flag.

To supply quality-of-service information for the server
1. The client imports a handle from the name-service database.

The client specifies the name of the name-service database entry and obtains a
binding handle.

-2. The client calls RpeBindingToStringBinding to obtain the protocol sequence,

network address, and endpoint.

3. The client calls RpcStringBindingParse to split the string binding into its component
substrings.

248

Volume 3 RPC and WNet

4. The client verifies that the protocol sequence is equal to ncacn_np or ncalrpc.

Client quality-of-service information is supported only on named pipes and LRPC in
Microsoft RPC.

5. The client adds the security information to the endpoint string as an option.
For more information about the syntax, see String Binding.

6. The client calls RpcStringBindingCompose to reassemble the component strings,
including the new endpoint options, in the correct string-binding syntax.

7. The client calls RpeBindingFromStringBinding to obtain a new binding handle and
to apply the quality-of-service information for the client.

8. The client makes remote procedure calls using the handle.

Microsoft RPC supports Windows NT and Windows 2000 security features only on
ncacn_np and ncalrpc. Windows NT and Windows 2000 security options for other
transports are ignored.

Note Because it does not support the Windows NT and Windows 2000 security
models, the Windows 95 run-time library ignores the security descriptors ncalrpc and
ncacn_np.

The client can associate the following security parameters to the binding for the named-
pipe transport ncacn_np or ncalrpc:

¢ Identification, Impersonation, or Anonymous. Specifies the type of security used.

¢ Dynamic or Static. Determines whether security information associated with a thread
is a copy of the security information created at the time the remote procedure call is
made (static) or a.pointer to the security information (dynamic).

Static security information does not change. The dynamic setting reflects the current
security settings, including changes made after the remote procedure call is made.

¢ TRUE or FALSE. Specifies the value of the effective-only flag. A value of TRUE
indicates that only security settings set to on at the time of the call are effective. A
value of FALSE indicates that all security settings are available and that the
application can modify them.

Any combination of these settings can be assigned to the binding, as shown in the
following example:

Default security-parameter settings vary according to the transport protocol.

For more information about the security features of Windows NT and Windows 2000,
see your Windows NT and Windows 2000 documentation. For additional information
about the syntax of the endpoint options, see endpoint.

249

CHAPTER 19

Installing and Configuring
RPC Applications

When the Microsoft® Windows NT®, Microsoft Windows® 2000, or Windows 95
operating system is installed on a server or client, setup automatically installs the RPC
run-time files. No further RPC installation is required. You must ensure, however, that
the version of Windows you install supports all the features used in your distributed
application.

When you use an RPC application on a Windows 3.x or Microsoft® MS-DOS® operating
system, you must copy the RPC run-time executable files to the Windows 3.x or
MS-DOS computers that will be using the application. The directory \mstools\rpc_rt16 on
the Platform SDK CD contains a disk image of these files along with a setup program to
install the files. Use this disk image to create an install disk for distribution with your RPC
application. You can also use 16-bit client applications targeted toward MS-DOS or
Windows on a 32-bit Windows operating system. However, your application’s installation
program must install the executable files contained in this disk image.

When you build an RPC application for a Macintosh client, you must link the necessary
files to the application at build time. No additional RPC installation is needed.

For more details about redistributable files and licensing agreements, see
\LICENSE\Redist.txt and \LICENSE\License.txt on the Platform SDK CD.

Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>