a &Y MICROSOFT® PROFESSIONAL EDITIONS Micmsoﬂ.®

The comprehensive, must-have reference for
anyone who develops drivers for Windows 2000

Driver Development
Reference

Volume 2

Microsoft

Driver Development
Reference

Volume 2

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

23456789 WCWC 543210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Kodak is a registered
trademark of Eastman Kodak Company. ActiveX, BackOffice, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX, JScript, Microsoft, Microsoft
Press, MS-DOS, MSN, Natural, NetShow, Visual Basic, Visual C++, WebTV, Win32, Win32s, Windows,
and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. All rights reserved. Other product and company names mentioned herein may
be the trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Management and Production: Online Training Solutions, Inc.
Project Editor: John Pierce

Acknowledgments to: the Microsoft Corporation Windows 2000 Team

Part No. 097-0002734

Contents

Part 1

Kernel-Mode Support ROULINEScc.ceecessssmmssmsssssmsmssssssssscsssssssansssssases 1
Chapter 1 Summary of Kernel-Mode Support Routines..........counees 3
Initialization and Unloadccccoveneiiiiieieneniiieninenicrcteeeee e 4
TRPS..c.. oottt st 14
SYDNCATONIZALION ...evveeieereiienreeeeeeeeteee et ettt et 21
MEINOTY ..ceoviirirmreiieetitire ettt st a st sr e esa s e srs s ens 32
DIMA ettt sttt et 41
PIO ..ottt 43
Driver-Managed QUEUES.........cvueceerrereririeneeeerreiesrenteneeeieeeeseesnenesasanses 44
Driver System Threadsccocceveeiriiineeneeieiinennnereseneeseseee s 46
SHANES ettt st bbb e 47
Data COnVErSIONScccoiiireierriir ettt ettt e sasnes s s 49
Access to Driver-Managed ObJECtScovvvvreeereriierseesieeesierireeesceseesnens 50
Error Handlingcovveveeniiniinieieccee sttt st 52
Chapter2 Executive Support ROUINESc.ccenmmsmmsersessssessessessasanss 55
EXACQUIreFastMUteXccovvuireiniiniiicieiinicrc it 55
ExAcquireFastMutexUnsafe...........ccovervenncininnnennnincoicniicnnnenennn, 56
ExAcquireResourceEXCIUSIVE.ccovrereririiiineeceniitieneeccnnes 57
ExAcquireResource EXCIUSIVELAEc..evveeeiririenerie et 57
ExAcquireResourceSharedcoocvvivenniiinciniiiinccncneneen, 58
ExAcquireResourceSharedLite.........coceeeevierierniienenneicinnienieeecienesnenne 58
ExAcquireSharedStarveEXCIUSIVEcocoviviiiiiniiiiiiiiin 60
ExAcquireSharedWaitForEXCIUSIVec.cccoiviviiiecevccnniiniiniccciicns 61
ExAllocateFromNPagedLookasideList :......ccccevverirveerenreneruinienreereniencnienes 63
ExAllocateFromPagedLookasideListoovieveeevnicniinnenniniiniienns 64

iv

Windows 2000 Driver Development Reference, Volume 2

EXAIIOCAtEPOOL......coouiiiciiieecreccriec ettt te e s s sbae e s eanne 65
ExAllocatePool WithQUOta.......cccceeiviivirieeienciriresreee et sn e ve e 66
ExAllocatePoolWithQuotaTag........cccoeeeevirereenieneneenienenenere e seenieens 67
ExAllocatePOOTWIthTag.cocveriiiieierene ettt 69
ExAllocatePoolWithTagPrioritycccccerteeenrierieenseenerieseeieeesrerveennens 70
ExConvertExclusiveToSharedcccovvenieenviicininneeeicnicenni e 71
ExConvertExclusiveToSharedLiteccccooveeuieiiieiiiiieiiieniee e eeieeveenns 72
EXCreateCallbackccccviiiiiieeeeieeeeree e ecree st eeerreeseeee e sare e esrreeseseeesennne 72
ExDeleteNPagedLooKasideList........ccvecieeerieriineneniieeeeeneessireeseeesveseens 74
ExDeletePagedLookasideList......c.cceeverirerreriniriinenncriieeeineeeseceeneenenns 75
EXDEIEtERESOUICEeecveeereeiereeiiieeieeteecteerretesrtestaaess e sraessseessssesrnnereneenes 75
EXDeleteRESOUICELILE .. .cc.veiireerieriieirieireetiesrestteeraeesrreseresaeesenaesenessvesanns 76
EXEXIENAZONEocoiiiiieie et erie e ette s reeteseteesste st e e saaessaesaneennenanes 76
EXFIEEPO0O0]iiciiiiiiiiiiee sttt ettt te s e e sia e e st et nabaesans 77
ExFreeToNPagedLooKasideList........ccecveveeverrenrieennieniieneneecreeneeenreeeneens 77
ExFreeToPagedLooKasideListcovevtereiveriieneereneeniieeeee e s 78
EXFrE@TOZONEeccceeireiriiiniieeeceerenireessiaeesreesreessvaessnessssaseasssssesessenessnes 80
ExGetCurrentResourceThreadocoovveeveeeicieecrrieccieeesieeeeeieeeeieee e 80
EXGetEXClusiveWaiteTCOUNEcveiieiiirieieeriiieeerireeiesceeeesesienreeeeseessseeseseens 80
EXGetPreviouSMOUEcc..eeiiveiiieeiieeiie et ete et et eveasaeeeerbeesaeeaneans 81
ExGetSharedWaiterCOuntcnrerrsns. e 82
ExInitialiZEFastIMULEXccvvieieeririeieeiieeieeeeeseesieesaeeseesrresseneeaeessneesnenans 83
ExInitializeNPagedL.ookasideList.........c..cocoviniiiiiiininiiniciiiciniiieenns 84
ExInitializePagedLookasideList.........coceoriverrenrieneniorereneeieneecsncnenaeene 87
EXInitialiZERESOUICEcvereuieiiriieieeieeierereste st see et e e sre e e e e nes 89
ExInitialiZERESOUICELILEcoveeerieereeeieeieeeie et cete e stresreeeeesaeearneens 90
ExInitialiZeSLIStHEAdccoveeeiieiiiiiiiiene ettt eae s ans 91
ExInitialiZ€WOrKItem ... cc.veeveieieieeeiienieeiiciereetesieresie e ee e e sreeee e eanns 92
EXINIAlIZEZONE ...ooevveeereecriieeeieerieeteeeteeevteseeetesteeesseestaessseeeabeeesasessseenseas 92
ExInterlocked AddLargeIntegeroccveveviiieinincneeiniieniciiiceniesiine e 92
ExInterlocked AddLargeStatiSticcocueververrereereneresienreneeneneeeseseeeeeneas 94
ExInterlockedAdAULIONE.........coveriereereniinieiiiiiniesieeeie et enean 94
ExInterlockedAllocate FTOMZONEoooveereeeieeeereeeeeieeeiteeeeeeereeeese e e 96
ExInterlockedCompareEXchange64cccceveveeeeneenenenieensesisceeneene 96
ExInterlockedDecrementlongc....cccoiiieiecieniiicieneeeeesiieeeenees 97

ExInterlockedExchange AddLargeIntegercocveveeeerveeneeeseeeneeneecreneenne 97

Contents v

ExInterlockedExchangelUlIongcocceiveevevininiecenenininineecereeeecenenee 98
ExInterlockedEXtendZoneccceeveeeieveererrenieeenieiesiessessesesesnessessessens 99
ExInterlockedFIuShSLISEcc.eeveiuiririieciieienieeieieenieseesie s ee e sae e 99
ExInterlockedFreeTOZOMNEcocveveeieeureieeieeeireereeeeereeeeseessssreesnenseens 100
ExInterlockedIncrementLongcocevueeeenceneniinieneeseenieneneesieesnens 100
ExInterlockedInsertHeadliStcccccevveeiecienririerieeieeereee e seesresreeeseens 100
ExInterlockedInsertTaillLiSt........ccvevcveerieirveenieeineneeeiieeeeecrecie e eveenens 101
ExInterlockedPOPENIIYLISE ..c.covecirveiriiicrineriiiiicirceee et 103
ExInterlockedPOPENIySLASEc.ooereeieniiininccnreieiecrne e e 104
ExInterlockedPUShENtryListc.cocereiieninieniinieenenieneeeeeecieieveneens 105
ExInterlockedPUShEntrySLiSt........ccccceveriieiieiieieceesee et sesveereeveneens 107
ExInterlockedRemoveHeadList.........cccocvvverrerinensieeienienrenceeneniseereeneens 108
EXISFUIIZONEveoviieirieieciieetceteetee vttt ete e e steesse e sanesersesnteesnneesasenns 109
ExIsObjectInFirstZoneSegment.......c..cccvvuruereierieereereneniieneenueneeceesseneerenns 109
ExIsProcessorFeaturePreSent......c.c.vveieeeieriecieinieneesineenenieeesreneenssessennes 109
ExIsResource AcqQUIredEXCIUSIVE.cocveeriiiiiinieecieiiieninreerecerree e esiseens 110
ExIsResource AcqUiredEXCIUSIVELILEvvvvvererienniesiieerieenriesinesirencieeiaeenns 111
ExIsResourceAcquiredSharedLite........cccoooveeiirinvceiceninnieieienineeens 111
ExLocalTimeToSystemTime.c.cccuvvveeirerieieinierieieieneeneeeeeseesssessesseens 112
EXNOtfYCAlIDACKooveeiviiereieirieeiseetertetetereniesiesiesrsiness e e e aneesaeieens 113
ExQUeryDepthSLISt....cccovririiricreinenecenenstecreesesese st et stecreseeeseens 114
EXQUeNeWOTKIteMc.oooviiiiciecieeiectctcereeee et er st e e v e e 114
EXRaiSeACCESS VIOIAtION.couvierieiieiinreriiaiieetiesieieesiesieesane e s eeseeessesvesenas 115
ExRaiseDatatypeMiSaliNmentccoveveereeeerenienenieneneeeeeeresassenreens 115
EXRAISESTALUS 1..veeiiiieirieiiiciieenitesnieiesteesre e et st e aeesee s sraeesssessbaessaesabas e 116
EXRegiStErCallbackcccovcierirrinirririreraniinsesserisesnsesssessesessesseessaesanss 116
ExReinitializeReSOUrCeLAteccevvvirviirieeiienieirieeiiesieeene e e eeiessaeseeens 119
EXReleaseFastMULEXcccoveeceenivinieensienirernriesearinessseessveesnssoseessnesssnsnne 120
ExReleaseFastMuteXUNSafecoeeeviivniiiiieeieeeciiecie e creeeieeenee e 120
EXREICASERESOUICE......covveerreiiriiiieeetieiterireetiesreeieeetressnresseesbessanesesesnnes 121
ExReleaseResourceForThread...........cccooieienineeiiininneeiienieeneeieeeeneenen 121
ExReleaseResource FOrThreadliteocoeeevevveeeiiereiennieeieceienisessneenns 122
ExReleaseResourcellitecocoeeviiiiiriiinniinsieciesieesee et e e 122
ExSetResourceOWnerPOINEr......c.cvviiveeriiieniineniieeierintesssiresesnenesineesssnes 123
ExSetTimerResolution..........c.ocveiieeiieiieniieieceeeeie st 124

ExSystemTimeToLocalTime........c.ccoveveeivieninnenininiiieinicieeeeraenne 124

vi Windows 2000 Driver Development Reference, Volume 2

ExTryTOACqUIreFastMULEXccccervveeerieereereenieieneneeeeee e s eeenes 125
ExTryToAcquireResourceExclusiveLite..........ccocvvererieneneicenrerinrcrieniennas 126
ExUnregisterCallbackc.coceeiverennvnniiniiecennint e 127
EXUULACTEALEoovviriiiiinrereecrinie ettt st sr e ae s 127
InterlockedCompareEXChangeccceevcericeeeneneniiieineenenreninesneennens 128
InterlockedCompareExchangePointerccccoveeviireenveeccnvenvenenrceneenne. 129
InterlockedDeCrementc.cceeervererervuenienrenreerenneeseeseseressesseesaesressessans 130
InterlockedEXChangecocoecvecieiiecieniine ettt 131
InterlockedEXChangeAddcocervereineeeenceeeriiieresieseeeieseseesesessesessenns 132
InterlockedExchangePoInter.........c.coccrveeeireecmniieieeriieeeerere e 133
InterlockedINCIEment........covvuveiririiririenene ettt 134
PAGED_CODE......ccicoiitriiiniiiiteineeietsiteeeesest st st seessesessensens 135
ProbeFOrREad.......cocveviiiiieieie ettt seseeeeeas 135
PrOBEFOIWILLEoveeieeeeiieteecetee ettt ettt st e se s n et e snene 136
Chapter 3 Hardware Abstraction Layer Routines........cuuceseanenns 139
Allocate AdapterChannelcoveccveeverierreneercneninieeieee et 139
AllocateCommOonBUfferoccveiiirieiiiniierere e e 141
FlushAdapterBULfersocoeevevireeieinicerieineneeeeeec et e 143
Free AdapterChannel............cccoeevinereienenininenenencnie et sens 145
FreeCommonBuffer........ccccocvviiniiiniiiniciiiin e 146
FreeMapREZISTETSc.ocveeireriiiiirceeeeeeieie ettt 147
GetDMAaALIZNMENLcovveeirierieertecie ettt see s esee e 148
GetScatterGatherLiSto.vvcveveiiinicrce ettt 149
HalAllocateCommonBuffercovveveeiiniiiiininincnniiicciicnieines 151
HalAssigNSIOtRESOUICESccovervimeeirreiiereniriierteee et ereenensene e seenes 151
HalExamineMBRcoociiiiiiriiincenen et 152
HalFreeCommonBuffer..........cccviviceniinincnieninennne e eneseseeee oo 153
HalGEtAAPLETcvireieeeeieireeietecie ettt ettt e 153
HalGetBusData.........cocvicvieiniiiiiniiiinenrcerie e sscer e esreseesnes 153
HalGetBusDataByOffSetccoeoiverenreieniineeeecenene e 154
HalGetDmaAlignmentRequirementccovecivceemnniiniinneensenneneenns 154
HalGetINteITUPLVECIOTcorverieeeereirteeiie st eeteereeie st e seeeee st eseesneeessesne 154
HalReadDmaCounterccoeriinuiiiiiniininiinicnienesennesenseseses oo sasane 155
HalSetBUuSDALAcooviireeeiiiis et sre s neens 155

HalSetBusDataByOffset............coceveeiiniiiicieiineeieseereesteessese e eeees 157

Contents vii

HalTranslateBusAddressccccevvicvenieininininniiinionencncneeinenns 157
MaAPTIANSTEToovniiiiiiicetc et 158
PutDmMAaAdapLErcccoiiieriniireetiteeecee ettt 160
PutScatterGatherListcocoeieriereninieeniinecereneerreeseeesee e eeeeseeeas 160
ReadDmMAaCOUNLET........iiieeeiiiintiteentit et see st et see e s saennens 162
READ_PORT_BUFFER_UCHARccocoviiiiiiiiriinineeeniieceeneeeniens 163
READ_PORT_BUFFER_ULONGccoececmreineinneercneeeseneneeeenens 163
READ_PORT_BUFFER_USHORTcoocvitinininneeencreecnennresieeeens 164
READ_PORT_UCHAR0coccoviiiiiiiieriinctneceeereeereeeeseenesesreneeeenens 165
READ_PORT_ULONGccooerniiiiriiniienieiineestseeesesaenestsieseeesens 165
READ_PORT_USHORTcoiititriinitriereirteeneereneeeeenee et anaeseenens 166
READ_REGISTER_BUFFER_UCHARccccoceeiniiiniiricnninieneecnies 167
READ_REGISTER_BUFFER_ULONGccocovvrvrerereeiieraerensenenienanns 167
READ_REGISTER_BUFFER_USHORTcccccccovininininencnenennns 168
READ_REGISTER_UCHARccccoovtrremtrriniienentnnieseeetesie e seeseens 169
READ_REGISTER_ULONGcocecveniriinierereniemniireeeneereeseeeeseeneenens 169
READ_REGISTER_USHORTcccoceviniinriiineinnenceeenenieenrereeneenens 170
WRITE_PORT_BUFFER_UCHAR.........ccooitiiiintnieteerineeeseaeeeenens 171
WRITE_PORT_BUFFER_ULONG........cccciectertmrenrenrereeneeneneeeseenee e 171
WRITE_PORT_BUFFER_USHORT.........coceoiiriiiinieinenieieensceenene 172
WRITE_PORT_UCHAR.......c.cocoieiiecrtiieecntrnieee ettt sseneenesseneenens 173
WRITE_PORT_ULONG......coccctieteireniereneneecienieesneressestseeeesesseneeseenens 173
WRITE_PORT_USHORTcocoviiiiiiiniciiinrciiitinecsncsseneesaenes 174
WRITE_REGISTER_BUFFER_UCHAR.......cccocececmenritninieieeeenes 175
WRITE_REGISTER_BUFFER_ULONG.......ccoccccsemiirieriereerreecrennen 175
WRITE_REGISTER_BUFFER_USHORTccccooemmieceriiriienereenns 176
WRITE_REGISTER_UCHAR.......coceotriininniiniiieneetsesretsiecnennenes 177
WRITE_REGISTER_ULONG.......c.ccceiteiiiiiimiiinieieeteiceeeneseeeeeesaenes 177
WRITE_REGISTER_USHORTcccociintiiiniiincncnieneeceiete e 178
Chapter 4 1/0 Manager ROULINEScccccsmmsmsmssssssssmsesssssmssssssessssns 179
ToAcquireCancelSPinLock..........cceceieerrerinenieinenieserieneeseeresesresreeeens 179
TIoACqQUIreREMOVELOCK.ccvevviiiiririieeeetceecrie et 180
IoAcquireRemOVELOCKEXcoouiiiieiiiniiiiiccecceeree e 180
IoAdjustPagingPathCountccccovveniiiiiiinnniennininnnre e 180

IoAllocateAdapterChannelcoccceveieiinencinininiiceercreteeeeeeaens 180

viii

Windows 2000 Driver Development Reference, Volume 2

TOASSIGNATCNAINEoovviveniiriiriccrenierirereet et sseeeeneas 181
TOASSIGNRESOUICEScvviuriiiiiiriiiniieniint ettt s reses e eeesae e 182
TOAHACADIEVICE........evvecveneeieeeeresierreeeesesreeteeesteseensaseestssesseessssessssssassanns 185
ToAttachDeviCeBYPOINLET.........coceririiveeiierrenereeiese et 186
JoAttachDeviceToDEVICEStaCKccuivirvecrerririernieniinrniiereseeeesesseesnseenns 186
IoBuildAsynchronousFSAREQUESTc.coveeerueririenerieriereieicieeeeereseeene 188
IoBuildDeviceIoControlREQUESLccvvecveveiernienerinsiisrereeseesensesssesasneas 189
ToBuildPartialMdL...........cccoerieirneieriiieeneeieieneeeetsese et neee st e srasaaeeens 191
IoBuildSynchronousFSAdReqUEstc.ccvereiniiiieeiniienenniiecerenne 193
TOCAIIDIIVELc.covtrtinrereireeieresiesretessesee e esessessestassesssssasessessesssesesssensnns 195
TOCANCEIIIP ...ttt ettt st e te ettt sb e s e st e es e e vasnsaen 196
TOChECKSNArEACCESSeeuveereereieiririeeeeeereereeesestesseseeeereeseesessessesseeanes 197
TIoCompleteREqUESTccoviuiiieiriiiiieniiiicente et 198
TOCONNECHINEETTUPL ..evvveveerieireireeierirecreereese et eseesaeeseesaessessaessessnessnesneeneas 199
IoCopyCurrentIrpStackLocationTONEXEcceveererrreirienierrieseseeneeeans 202
JOCreateCONLIOLLErcocvevviireeireienesenesesesestessesesststesvessessresasseassenes 203
TOCTEAtEDEVICEc..eveevereieiieeeseetse e tesese s stesne et e s e eb s bs s eanseons 204
JOCTEAEFILE ..ottt ettt et v et asaa st ons 207
ToCreateNotificatioNEVENL........cccceriiieenieiinieinrecie st tesneseneeeens 217
ToCreateSymbOLICLINKccvvereeiriiniicrenieninienienenietecreenreseesie e siessvensens 218
ToCreateSynchronizationEvent...........c.covevenerrinieieniienennenieeeessescaeennas 219
IoCreateUnprotectedSymbolicLink...........cceceeeveenieniinscenenenieneneesceenes 220
10DeassSiZNATCNAINEccevuierieiiiiniiirtie e esieestesveeseeseressaneseessrnessneensns 221
ToDeleteControllercvvveieeirireiiniiiie ettt e 222
TODEIELEDEVICEcovveerenieriririeieenrerense et sresressseesessaasereseessassessnsessassanenses 223
ToDeleteSYMDBOLICLINKccoovveeirieiirieienirrieriesierenaesteesresneseesessnessesveas 224
TIoFree AdapterChanneloocevcevreniineneniinienenierennesseeresasessesessssssens 224
TOFTEECONLIONIETcveeveereieieieeiesieitetetet et et sea et s aa st e iesbesaneneens 224
JOFTEEIIP ...ttt ettt 225
TOFreeMAapREGISIETSuccevurremiiiiiireirieeccreenee et snenees 226
TOFTEEMUL.......coviiiieienicitcinieecenese sttt te sttt aae e 226
TOFTEEWOIKIIENL «......o.coooo oo ssesseseessesessemeeseessesesseees 227
IoGetAttachedDeviceReferenceoeevveeereiereniereneneeineceeeeeeeenaens 228
IoGetBootDiskInformation...........o.ceccecceerieieceinennnceeeeenenesieesseaseene 228
ToGetConfigurationInformationccoceeerierecenieninienieseneieeesenenieneens 229

I0GetCurrentIrpStackLOCAtIONoveueviivireirinieriieirieeeniesiersersereseseesenes 231

Contents ix

JoGetCUurTentPIOCESSveveiiriiriiniiisiertiesiesie ettt s sbecnens 232
ToGetDeviceInterfaCCALIAsccevvvveereeeririireeeerriresee s eeerereseesvesesnesens 232
ToGetDeviCeINEITACEScveeiereeiierieieieeieseeire et sre e 232
T0GetDeVICEODJECIPOINLETcveeuirreerieeieieneeesineesee e sesrreeeseessesreennas 233
ToGEtDEVICEPIOPEILYeoveereiriiriirieriiercieieseesr ettt et sve e seens 234
10GetDevicETOVETIY ..c.oocuiiiiiiiiiiiiircciit et 234
ToGEtDMAAJAPLET.....coeoriireireeeecieetre ettt ettt sre s 235
T0GetDIiVErObJECtEXIENSIONevvvervverersieeressssinenessssseessastessssssssesessnsns 237
ToGetFileObjectGenericMappingccccevvereereererresresrenrenesessessesiessessens 237
IoGetFunctionCodeFromCtlCode..........ocvevirimeicreniiniineeniiiiiiieirinenns 238
TOGEtINItialStACKcoveevceriiieeeneeiet ettt st sbe e s sensbeesesse s 239
TIoGetNextIrpStackLocCation.........coceeeiiviiniereinineesieiinniniesisneneeeseeniseens 239
JoGetRelatedDeviCEODIECE ..covevevrirrerieeererieeeertrireresteseesteseesieseesenssessessens 240
TIoGetRemainingStackSiZecoeeeeeererienierenieriereniese et 241
TOGEtStaCKLAMILS ..c..verveererreeeeeetiseseesesteseeeeeresae e sresaaesanesbassnesvesneas 242
ToInitialiZEDPCREGUESLcveevireecreriieeieieie et se et e e e 243
ToINtAlIZEITP .ottt 244
IoInitialiZEREMOVELOCKcoceveriereeeieriinererectesree e st eeae e eseeseens 245
ToInitialiZeRemMOVELOCKEXcc.ciciiiriiiiiiiiieitenieccccne et e 245
TOINItiAliIZETIMEToeeeiririerieeeireere ettt s se s asin bt e e srn s eseenean 245
IoInvalidateDeviCEeRElAtioNS.......cceruerrreriereereierieeeeeereeeieeseer s see s eeneenss 246
ToInvalidateDeVICESIALE.....c.ccerrerrerieeerenineereerieerestesensresse s e sresasesesrens 246
IOISErrorUserInducedccoveveineiiiiniinicniniiecienniniseissesesnesseenenens 246
TIoIsWdmVersionAvailableccccevmirerreennierenenereieneneseenensseevesiens 247
ToMake ASSOCIALEAIIP ...c.couererriuiiieiinieriienerermete ettt see e esaenens 248
TIOMaAPTIANSTET ..ottt s st ee e 249
ToMarkIrpPending........ccoeeceeeeveenerieeeeientee et st se s seesee s nnas 251
IoOpenDevicelnterfaceRegiStryKeycocvevvvvirirvenrerenrenieniencesienresernens 252
TIoOpenDeviceRegISEYKEYccoveveeeeieririiirceiieceeesieeceeteeeieeseeenens 252
ToQueryDeviceDeSCIIPLioncocccvueiruireereeriinieeeecteierersetseeese e saeaes 252
ToQUEUEWOIKILEIN ...t etieee et et re e te et eeer e ae e eve e ebeeeanee s 255
ToRaiSEHATAETTOL ...c..ccvieriiiiieieisiccsereerct e e 257
IoRaiseInformationalHardEITOrcoceovirieevecreiinieieieeeeereesernese s 258
IoReadPartitionTable.........ccccoeeveciiiirveereniinsienreiecieenieeae et 260
IoRegisterDeviceInterfaceccocevveveeeierereeceecieeecree et 262

IoRegisterDriverReinitialization...........cocceveecenernennvenieeereneeseeeeeeene 262

X

Windows 2000 Driver Development Reference, Volume 2

ToRegisterPlugPlayNOtifiCation........cceveecrerercerrieieeeeereresese s eereenes 263
IoRegisterShutdownNoOtificationccveeevirerceninenienerecienieneerreseeseennas 263
IoReleaseCancelSPinLocK........coveveeeervrerierericrrenrenienieeeeneniesiesesseseessens 264
ToReleaseRemMOVELOCK.......c.cecivrirvirierirenener e sieet et sne s 265
IoReleaseREMOVELOCKEXcoccoeevierenriinienereeniennireniessessessnessasessesnenees 265
IoReleaseRemoveLoCKANAWaitcccoerieveerieniinirireeneineee et 265
IoReleaseRemoveLOCKANAWAILEX.......ccccveiineninineninenenienecnecsineenean 265
TOREMOVESNATEACCESScuvenvireieiiiieererienr ettt saee et besbesbesreesesenaens 266
ToReportDetectedDEVICEc..ovvvveiienireriiiieeinieieceee et 266
TIoReportResourceFOrDetectioncvcevieveereernienenieineeneeneecressaeseeeeenes 267
IoReportResourcelUSageccvvvviiiniinecreiiiiiinieeetiieeeteeee e 267
TIoReportTargetDeviceChange..........ccovvveeeverieerenineneseneeresiessessesreseenns 269
IoReportTargetDeviceChange Asynchronous..........oceeceeeeneneneeninierennes 270
IoRequestDEVICEEJECLc..ocvueiimiireiiieieictceecteee e e 270
TOREQUESTDPC ...ttt sttt st an b e nn 270
TORGUSEITD ..ottt ettt sre st sttt saese s ssesbesb e sb e baa et sasans 271
JoSetCancelROULNEcccerirermieriereriertee et e sttt stesne e sen s b e neas 271
T0SetCompletioNROULINEcc.everrerrererreierenieciereesienieseesr e seste b esanabesseeeane 273
ToSetDeviceInterfaceStatecooeeeereeeieiieeneeeeerieeereeere et 274
T0SetHardErrorOrVerifyDevicecvvvvevenririieenenienieniesienesenieieaie e 275
T0SetNexXtIrpStackLOCALONc.cvevvevererreeeeceeeeestesecae s essesesassesss s 275
ToSetPartitionInformation...........ccecureeverrneiininienenene e 276
TOSEtSRATEACCESSvivireeeririrrenterieeerereerere e st besae e seee et e sbesbas e sbeseeane 278
IoSetThreadHardErrorMode.........ovveveeieneeiiiireneeinieictceeeeeec v 279
JOSIZEOLIIP .c.vevieerie ettt ettt s e st sbeeba b eeba st e sbesbasen 280
ToSkipCurrentIrpStackLOCationccvevvveeeeeerierieriereeneerrnrerienessersereens 281
TOSHArtNEXIPACKEL....c..eeeeiierierictert ettt st snese st e senesreeneesaeens 281
ToStartNeXtPacketBYKEeYcocecevierinineceneenteisneeeeeeieniete e eeveseennens 282
TOSEArtPACKELoueeieviiertiercniiieseect ettt ste ettt st s 283
TOSTATTIMEToeeeiiiiciecicicrer ettt e se et se vt sb e besnenne 284
TOSTOPTIMET ..c.oeuirieeiieiieteteteercteree sttt sr bbb e et eenes 285
ToUnregisterPlugPlayNOtificationceeeevernnieneereenrecennenieseseenesieens 286
JoUnregisterShutdownNOtifiCationcceeceevirieenieereerienieneese e, 286
ToUpPdateShare ACCESS......cocvvetrueerienirienenirieneecreetnreeesee ettt esesreseseeseene 287
IoWMIAllocateInstanCeldscoveererveninieieneniesesercreeererneesee s 288

Contents Xi

TIoWMIRegistrationControl...........coccvieeeviinreineiinieniireteneeseeeereseeesiene 290
ToWMISuggestInstancelNAMEcoeeererierirerriienreecinieeneeseeneeeeereneeseens 291
TOWMIWTUEEVENLcceentiiieieriiteeeninereniesteeeresieeessesessessassesssessasssseons 292
ToWTIteErrOorLOgENLIY ...c.eoviiiireieiereteiereene et sie et sie e seeena 294
ToWTitePartitionTablecovvevevverrerinineriniieiriieneeseesevesee e esneessneseens 294
Chapter 5 Kernel Routinescccuursnens e —————— 297
KeAcquireSpinLockcceverciereereriinnreninieeeieneeeeeeseeeaeseesasesseseens 297
KeAcquireSpinLoCKAIDPCLEVEL.......c.oueeieeeeernecerecrenieneerereenreeeniaene 298
KeBUGCHECKcoitiiiieeiiiniteceiecetirtesete ettt st ae s 299
KeBUZCRECKEX ...ucveririerieieieiieeenttee ettt sesrese et see s ssesrens 300
KeCanCeITIMETcc.coentireinieririeenieieeerresiecesesiesesassse st esnessestansessanes 301
KeCIEArEVENLc.cveiiiririiictieee ettt e sneas 301
KeDelayExecutionThread...........ccoceciverenireenienenineescnnnneesenneseseseeeens 302
KeDeregisterBugCheckCallbackc..coverereinenieineeninrieeeecneeseeennene 305
KeEnterCritiCalREZION.cccuerveeuieeerieeireerieniererteeteevnesneeseneve e seesesseens 306
KeFIuShIOBULTELS. ...c.coveivrerieniniininiiseneerrteies et weeeee 306
KeGetCutrentIrgl.......cocevveeeeireneeiniieeierseseeese e eeseseseseeeesaasasseens 307
KeGetCurrentProcessorNUMDETcccoiveieeeiniennniicinie e 307
KeGetCurrentTRreadocoecveveverieeiinenerisccereneeencsnneeesrasesesresseseeens 308
KeGetDcacheFilISizZe.cocveviiirneeriiiriiinicecireeecetcnee e 309
KelnitializeCallbaCKRECOT..........coeiririeienreiiieieesresiesessesrenseeesaesensons 309
KelnitializeDeviCEQUEUE.......c.eoeveeceicreeiieeeecesiee e eereeeree e v saeeenns 310
KeIntalizeDPCcoveeeeieriericreriin et eesies et seseese e e s sseseens 310
KeInitialiZEEVENtcoieiviiirerceerieterecerce ettt sbasassse e 311
KeInitialiZEMULEXeovrvereererinrierieieteestsesesresiessessensessessesssessessanasseons 313
KelnitializeSemaphore...........ccccvvreeininenriniiinennnencereee s ceressesesveseeens 314
KeInitializeSPINLocKcccovverierienienieniecieerienresirreeesresiesiesiessesseseessesensens 315
KeInitializZ€TImETccc.cereereiiricieiieteiectrtee e sietrees e ereseenenens 315
KeInitialiZE€ TIMETEXocceceniiiririiinieieiereeretee et 316
KelnsertByKeyDeviceQueue..........c..cocevevievevinininnnicnienininnenieneneesenne 317
KelnsertDeviCEQUEUEccecriieeiecreeere et cere e eebee e e tneeeseeeeennes 318
KeInsertQUeuEDPC.....c..couveeiiiinveriiiinciiinteiiee sttt e seene 319
KeLeaveCritiCalREZIONcovivverreinreniercriinienirereicsieeer e siennreeeesneneeneens 320
KeLOWETIIGLoviviieiciireciinectee ettt s 321

KEPUISEEVENL.......utviiiiiiiiiiiiieeeeteeee ettt ettt e e ettt a e e e s s ssmeeessnnns 321

Xii

Windows 2000 Driver Development Reference, Volume 2

KeQueryInterruptTimeccoeeveereereienennienieeie et se e 322
KeQueryPerformanceCOUnterc.oovecererireniecereriniesieeseerereneenes 323
KeQueryPriotityThread.c.covevereveniiniieiiniereesienieeee et 324
KeQuerySystemTimecccoveriiiiineniiniiicieniieieeecnee s 325
KeQUEryTiCKCOUNLcoceeviiiieieneeeietie ettt ee et st sa e 326
KeQueryTimeInCrement.ooverierrerresveceinrenrerenieniesneeseerenresresesseeeses 326
KERAISEITGL.....eeiiireiiecierirte ettt st sttt 327
KeRaiseIrqIToDPCLEVEL.......c.oooviiiiviiiiiiieitietneesrcstee e 328
KeReadStateEVenLt.........cccovvirieririeieeereeceteteseeee et et s et se s e sve e seen 328
KeReadStateMULEXc..oveiiininiinieieiinie ittt et eeasenes 329
KeReadStateSemaphorecccoevievirersienreiieneeiinieseeeneesese s svesaesnnes 330
KeReadStateTImMe!ccevvvviiviniiiiiiiceiiriieercecieencie e 330
KeRegisterBugCheckCallbackcocevveviivierenniiiniereerinesrineresresenenens 331
KEREICASEMULEXeceveriimieririerienieienieiere et eseesie sttt sae e ebe b 333
KeReleaseSemaphorecovvvieiereeniinieniiniereneeienieeeeee et eseeneeoees 334
KeReleaseSPinlLoCkcoceercreeiieriieienieninenienereneeit et eee e 335
KeReleaseSpinLockFromDpcLevel ..., 336
KeRemoveByKeyDeviceQUEUEc.ccevmirerverrermernneiereeeeniesre e 337
KeRemoveDevViCEQUEUEceveeiiveiieieiiiiiiieeeeitiie et esrre e e seareeeeees 338
KeRemoveEntryDevICEQUEUEccveverevireereeriinieneenieniesreeeeeeseeseeenns 339
KeRemoveQUEUEDPC.....c..cocivieriiereriirecienieneeeteste e 340
KERESELEVENLcovvireiiceriecnieieeetcteieeee sttt st sresee s sbee s ne s e sneeeae 340
KeRestoreFloatingPOointStatecccceeeereerrerrcenennieneeneenieieseesaesessneenne 341
KeSaveFloatingPointState.........cc.eeveereeieeennreeeninenineeeee e 342
KeSetBasePriorityThread.........cc.ceevieveeeerineciinerecnenieereeese s 343
KESELEVENL........ocoooeeeeeeeeese oo eeseeeeessessessssssssesessesemsseseseesesn e 344
KeSetImportanCceDPCcovevieveeeieriirieiintetente st saeetesee s esaeeeseesaeseesns 346
KeSetTargetProcessorDPC. ... covecveviirierieenieicrtieecnieseenree e siesaansneens 347
KeSetPriority TRIEad.c.covvoveeeiiirieeeereeetere ettt 348
KESEITIIMET ..ottt ettt st sre e e seeseee e 349
KeSetTIMEIEX ..c..eiviiriieiiniirietieie ettt s ae e 351
KeStallEXeCutionPIOCESSOLc.vevuveririreereieerreiererentecre et eseerens 353
KeSynchronizeEXECUtIONcc.coverierueriereerinrineneenercceeeresrereneereneesaeseeens 353
KeWaitForMultipleObJectsccoerviererieniieeierrenrieeeseeereereeereresaasaeeas 355
KeWaitFOrMUuteXODBJECtcveeeerririneneieinieeecnreceenesrereeeneertsseenenas 359

KeWaitForSingleODbJectc..veveriiiieeerieiiiecieseeieetesie e ae e 362

Contents Xiii

Chapter 6 Memory Manager ROULINEScccoveevsrececrsasescasensseannns 367
ADDRESS_AND_SIZE_TO_SPAN_PAGES......ccoooiiineinicininnenee 367
ARGUMENT_PRESENTootriiiiiiiiiieniiniceneneceenne e sreeresiene e 368
BYTE_OFFSET ...ttt ettt sttt et ssens 369
BYTES_TO_PAGES......ooooretneneeinerreieneereseniee e sieseeerse s e 369
COMPUTE_PAGES_SPANNEDcccceeitmiiiinenienieiestenrestereneeseenns 370
CONTAINING_RECORDccootririeiriiiecirtcnecnieeeereicnreeeeeeseenens 370
FIELD_OFFSETcccoirtetieieeeeniesesesietnaereeie st e stestesssevessesaensesvenns 371
MmAllocateContiguousMemOTcccceienmimiicieniiniiiineniescnenenesene 372
MmAllocateContiguousMemorySpecifyCache.........cccocevvvvrveevvrsienenneen. 373
MmAllocateNonCachedMemory.........coccovierieeenieesenenneeneeneeseenesseeeeas 374
MmAllocatePagesFOrMdL..........ccccccviiiriinieneneniniertenceeeniessee e 375
MmBuildMdIForNonPagedPool...........c.cccevvrnrieeneerinnieerenieneeienc e 377
MMCreateMdL.....c.covririeieirietirienieniiese b ee et ese b besrenes 378
MmFreeContiguousMemOorycccoceevereeeeeneeieneneeseneesieresresreseeseenne 378
MmFreeContiguousMemorySpecifyCacheococeeveevievrceveninnernennne 379
MmFreeNonCachedMemOrycccvcvieriiinieriienrcniiene et svenieerenae 379
MmFreePagesFromMdL..........ccooveveinierieenienieneniereentesreeeeseesseesvesseesnas 380
MmGEetMAIBYtECOUNLc...eeiiieiiiiiiiiteieeie ittt eete e e seeeree e 381
MMmGEtMAIBYtEOLTSEL. .. ccoveeiiiiieeeiiiiieeeiiriresee e ssieesrnsssseesereseseastnesnes 381
MMGEtMAIPINATTAY ...ttt 382
MmGetMdLVirtUalAddresscoceeriermererinineieneneseneer et evesresseens 383
MmGetPhysiCAlAAAIESSccveveererrririeneeeieeerere ettt eseas 384
MmGetSystemAddressForMdl...........coooiniiinnnininiiiiine, 384
MmGetSystemAddressForMdISafe.........cocoevvevvierinieneeneniereeieeee, 385
MmInitializeMdL.......cccioiiiiiiie et 387
MmISAdAressValid........ccccoeiiineneiineiiieneciiceiererete e s 388
MmIsNonPagedSystemAddressValid..........ccoviviininiininniiniinninnn, 388
MmISThiSANNtASSYSIEML......cuevveirireiericenei et 389
MmLockPagableCodeSectionccccoveerieneeresiierieneencereenesseeseseesaeas 389
MmIockPagableDataSectionccccevirveeemirernenieeneeieceeeeeeeenee e 393
MmLockPagableSectionByHandle..........cccccovvvviveniniinsnneninneeeeneen, 394
MIMMAPIOSPACE. .. e veireerirrerrenrereriesiesiesresesresrerasressessaesssssessassessonsassensons 396
MmMapLOCKEdPAZEScocieeeriereieienerreees ettt nee e 397

MmMapLockedPagesSpecifyCache.........cooveeveeviernieinnenenieenecrecneenes 398

xiv Windows 2000 Driver Development Reference, Volume 2

MmPageEntireDIivercccoiviiiniiiiiii 399
MmResetDriverPaging ... 400
MmPrepareMdIFOrREUSEcoviveeeriiicieirieeeenstieeesecse e 401
MmProbe AndLOCKPAgeS........coooereiinieniiiieniecieneeitieere s 401
MmQUETYSYSIEMSIZEeeeveireeriereietenierteeestrreee e esseeseesesseesessnesareane 402
MmSIZEOIMdL.......ooviiiciiriiiiii 403
MMmUDIOCKPAZESc.eveevernieriieiieierieeeecre ettt see s seeesseeesnenne 404
MmUnlockPagableImageSectionccevervieniiveernininnenisinienenneneenns 404
MmUnmapIoSpace.........cccvviiniiiniiici s 406
MmUnmapLockedPagesccccevimrerniinienniiiicienent e 406
PAGE_ALIGNooviiiiiiienenecinterctcieestnrene et eesesi e s nnenes 407
ROUND_TO_PAGEScotiittetceercietcertnretereresnessessesnss s sres 408
Chapter 7 Object Manager ROULINES......cccrrucessmssmssssssscasssssssensns 409
ObDereferenceODJECtcocvvviiiiniiniininiiici e 409
ODbGELODJECISECULILYoeenvernieiireirrieeereeeeeeete e s 410
ObREfEreNCEODIECTveeneiieeieiiieciie ettt ae e 411
ObReferenceObjectByHandlec.coveeeeeiiviiericcnnienineeneeeeeereneeeeeenee 412
ObReferenceObjectBYPOINLETc..covevereenieeinireeereenercecee e 414
ODbReleaseODbJeCtSECUTILY ...cc.ueiiierriiiiienieriieerete et sne 415
Chapter 8 Process Structure Routings.........coouesmnesecessassensssnanes 417
PsCreateSystemThread.......c..cceeiviieecinnicniinieceee et 417
PSGetCutrentPrOCeSSoveeuirriereeciiiieninieee ettt s et ens 419
PsGetCurrentProcessId. ... 419
PsGetCurrentThreadco.eoveeeirieiecnicen it 420
PsGetCurrentThreadld.........c.cccoveiiciiienniinniiiicicene e 420
PSGEEVETSIONccuieetiiiieciteec ettt e s 421
PsSetCreateProcessNOUTYROULNEcc.cveviercviiieceniiineeiniencnevenenns 422
PsSetCreateThreadNotif yROULINEcovvevvveiiniiiniriniiiiinici, 424
PsSetLoadImageNotifYROULINEccccorireenieririeeiercctceccee e 425
PsTerminateSystemThread.........coccoviiiiviniiiniin e 427
Chapter 9 Run-time Library ROUtINESc.ccunmesmmmsmmsmsssnassssssnanns 429
InttializeLASTHEAdvvevieiiiieeeee ettt e e et ae e 429
InitialiZEObJECtALIIDULESccvvvirrieriiriiciirctc s 430

INSEItHEAALISE ...eoeeeeeieeie et e rr e ee e e e e e e e eeee e s e e e e s ens 431

Contents XV

INSEItTaIlLISt cveeeriiieiierecii ettt 432
ISLASTEMPLYeictiiiieiiiiiicninennirit ettt esnesssressestesassasme e e ns 433
POPENIIYLISE ..ottt ettt et et ebe e 434
PushEnDtryLList ...ccovviiiiiiiiiiiniiiiiinicricniniccr ittt eneens 434
ReMOVEENIIYLASE ..c.veeterviieieniitetriiecntesiesrenr st e e ststsneesenate e sneeveans 435
RemoveHeadListccoviiivininiiniiniiiinininncinceee e 436
RemMOVETAIILISEeevieiieriririeresrc ettt neseemeans 437
RtlAnsiStringToUnicodeSizeccuvvvierireecrirninieneiesiesteee et sre e 437
RtlAnsiString TOUnIiCOdeSIINgccovvveieeniicicicicneceeeceenceeeennene 438
RtIAppendUnicodeStringTOStrNgc.evvevieererieneniieiereeee e reeseeneens 439
RtIAppendUnicodeTOSIINGccvevvevirerereniicieceee et 440
RUUATEBILSCIEALcveoteiiiieiiniiiesiceeee ettt e sttt eeveenens 441
RUATEBILSSEL.....cevriiieieiieeriieeterit ettt nee 442
RUCHAITOINIEZET ...c.eevveereereeiieriete ettt st cer st cb e s eeere e seesenbaessennan 443
REUCRECKBIL ..ottt ettt et et ae e 444
RICheckREZISITYKEY ...ccueveuimeiieireirerieieteetete ettt 445
RUCIEATAIIBILS ..ceevevereenirieirieirieintecseeee ettt se et st eene 446
RUCIEAIBILSeeeviiceeieiieceeertrereeesen ettt snene 447
RUCOMPATEMEMIOTYcovervinirieirieinieeereneieseereeeeeeseseesteseebe e sesseeneenes 448
RUUCOMPATESITINGevenvevereiierecre ettt er e e rene e 448
RtICompareUnicodeString.........cooeeererirerrieinieieneenereeseeseeseesieseesneneesenns 449
RtlConvertLongToLargeIntegerc.coevievveiircneninneniniercnnenceneireennenene 450
RtIConvertLongToLuidcocerirvierieriiiieceieieeiesese et ee e 451
RitlConvertUlongToLargeInteger.........cccceererirerenuenseennerieenenneneceeneennes 452
RtlConvertUlongToLuid.coovveiriiinieiiicncccre e 452
REUCOPYBYLES .cuveeveeriietieveeiere ettt sttt ebe b sareseesee e ssaesatans 453
RUCOPYMEIMIOTY ...covvvemiiirerieieinieniesrietesribeseseessesreseeeseeseenessessessessessenne 454
RICOPYMEMOTY32ueeieiieiieiieciiereeiteieere st sieesseie et e sraeseeesessessesasesseas 455
RUCOPYSIING «...ooveiireiirinririirieceretnt ettt sesseeaenaesnens 455
RUCOPYUNICOAESLIANG.c..cveeuernreieeririieienieteirteenre et sneeseens 456
RtUCTreateRegiStIYKEYccvecerreieieireeireeieerececn e sesrenens 457
RtICreateSecurityDesCriptor.....ccovvieerrieeeieeerenee st esi s seeerens 458
RtlDeleteRegistry Valuecovviieeiivieiniiecieenicice et 459
RtlEnlargedIntegerMultiplyccceoreererrinceriniereenrentieeneeseeeeseeeenens 461
RtlEnlargedUnsignedDivide..........cocceieeeriineininiciirineciieneesneeeniecnninees 461

RtlEnlargedUnsignedMUultiply........c.coceveeineerineimnceeincinceneceereeeeeas 461

Xvi

Windows 2000 Driver Development Reference, Volume 2

RUEQUAILUIA ..ottt sttt s 461
RUEQUAIMEIMOLYceveveetiriiierienieieentsiee et 462
RUEQUAISIIING ...eeenvreeneereeerereeeeteieiese et sreseersse e st i e ssasnens 463
RUEQUalUNICOAESIIINGoovivveviiiieieniecrineiirerentsee st s e 464
RtlExtendedIntegerMultiplyc..ccoovieiiiinininniincincieeas 465
RtlExtendedLargelntegerDivide........c.cccovevieneicinenennenciennnecncceeenes 465
RtIExtendedMagicDivide........ccoeevreriereenrineeniinenensee e 465
RUFIIBYLES ..oveeiereiereniieieriiereeriereetestessesieesseesesseesassressesneessessessessassnns 465
RUFIIMEMOTYecveeienreeecriteeenee st recctese e s s st ennes 466
REUFINACIEArBILS.......coveeviriienieenieitrencsri ettt et s sresnennes 466
RtIFIndClearBits ANASEL......c.coeivuerieierierierininincne sttt enaes 468
RUFINACIEarRUNScccuevieriiieneceieeenti ittt st 469
RUFINAFIrstRUNCIEATc.vervevirieiiieninniiiecicceee s 470
RtIFindLastBackwardRUNCIEATocceeeereriireenicreneece e s 471
RtlFindLeastSignificantBit.............c.......... e e 472
RtlFindMostSignificantBit ettt 473
RtIFIndLongestRUNCIEAT..........cocveereeerienienieneentee et 473
RUFindNextForwardRUNCIEarc.ccoeeueercineiinencnnieneeceneerce s 474
REUFINASEIBILSooveeniiieeiereteieceetireeteie ettt st sr s 475
RUUFIindSetBitS ANACIEAT.........cccecerererririereresrecierese et 476
RUFTEEANSIStING. ... cveviieteiieeentces et ere s 477
RUFreeUniCOdeSIINg.....cvevveererereeriericereeeeeeneeneeetesresieeseeeesiesneeseeseennes 478
RUGEEVEISION.......oouiiiiiiiitieieie et st s 479
RUGUIDFIOMSIANG.....oecveiviierenieriinineeireniesesiese e seesss e 480
RUINIEADSISTING ..evvovveriririeieie ettt s 480
RtInitialiZEBitIMIADccvvecrerrerrinintinienteneeetenee s sresee s esresaeestesresaesns 481
RUINIESHING.c..ooveiiiiiiiii i 482
RtINitUnICOdeSIINGovceiviviniiiiiiiiicniiiiieni s 483
RtINt64ToUniCOdeSIING ..c.coveevimiiiiiiceeeicerreiiccrieeese s 484
RtlIntegerToUnicodeStringc..cevvveneriereeiininniniinieniiesnnnesnnees 485
RtUIntPtaToUnicodeString ..o 486
RtlLargeIntegerAdd........coceeireecineniiieiireeereeie ettt 487
RULargeIntegerAnd........cccevvveveeruerveeceneeneneeseenteeeses et 487
RtlLargelnteger ArithmeticShiftcceceoiininninniiiis 487
RtlLargeIntegerDivide.......ccoouvviererienierecnienierenenen e eeeereeeseeeenne 488

RtlLargeIntegerEqualTo.......cccccviieieninnininentcccieneccie et 488

Contents xvii

RtlLargelntegerEqQUalTOZETO.cccervevieriiiinieeeeeieeeecee e 488
RtlLargelntegerGreaterThan.........cooceeiiiiiiniiiniiniineneineens 488
RtlLargeIntegerGreaterThanOrEqualTo.........ccoooiiiiiiniiiininncn, 489
RtlLargelntegerGreaterOrEqualTOZerocccocvveevevreenenieeninieeieceenen, 489
RtlLargeIntegerGreaterThanZerocccveeenieriereneneencenrerencneseennens 489
RtlLargelntegerLesSThancccovieeieeieiieeiecie et 489
RtlLargelntegerLessThanOrEqQualToccccovvevivicnnenincninicninnenenas 490
RtlLargeIntegerLessOrEqUalTOZErocooueevieiieneieniniiinccneceeiee e 490
RtlLargeIntegerLessThanZero.........ccceeeereniineeeienencnenienenennesneoneas 490
Rt]LargeIntegerNEgate.c.cvueevuieriereeiiereeiereerereetesee sttt e 490
RilLargelntegerNotEqualToc.ccooviiiiniiiiiiies 491
RtlLargeIntegerNOtEqUalTOZETO.cccevverieireeeerenreneerieieeceetee e 491
RtlLargeIntegerShiftLeftcoccoviiieiniiiinicn e 491
RitlLargelntegerShiftRIghtccoiveeeriinieriere e 491
RtlLargeIntegerSubLract.......c.cccueeriereerienerienenene et et st ne e 492
RtILengthSecurityDescriptorecvvvereeererineeeneeneecneceeeesesree e 492
RUIMOVEMEINOLYeoviiniirireniententenrertenreeeeseese et see e eneasateseee st e sanesesseas 493
RUNumMberOfCIearBitscocoeeruievininienerierenieeeeresecesine e svese e enessens 493
RINUMbBETOfSetBits......coveruiieriiiieieecieee et 494
RUPTefix UniCOdeSIIiNgGc..evververicienriieeeieeeriesieieeetsieeresaeseesveseeennens 495
RIQueryRegistry ValUes.....ccveceeviereerierieienentete ettt 496
RUREIEVEULODGieveenrerereiierietenitereereesreneeniesie st ereseesree e sssesanessbenane 500
RUORErIEVEUSROIT ..ottt 501
RUSELAIIBIES ..ottt erreer e s e eveesaennens 502
REISEBILS ...ttt ettt ettt et ese st 503
Rit1SetDaclSecurityDeSCIIPLOTcvveverreerrenriririerieeeeeeneeesresreeseeaseesreenes 504
RISIOTEULONG ..ttt ettt et et e 505
RUSIOrEULONGIONGeovrenierieieiiiecieteieieiee sttt s seese e easonens 506
RUSLOTEUIONGPLT ...ttt 506
REStOrEUSROLT ..ottt 507
RUUStringFromGUIDcccoiiiieiiiieiieeecrertctee ettt sne e 508
RUOTImMeFieldSTOTIMEccoovveeviiiiriiiiieniiiiiciiciieie e 509
RUTIMETOTIMEFIELASoveeevinieieiiieieee et 510
RUUIONZBYLESWAD «.cvverereieeiieiieierteie ettt sae st ve e s e e 511
RtIUIonglongByteSWapcccviiiiiiiniiiniiiccniirece i 512

RtlUnicodeString TOANSISIZEccereeereimmeiireneeceeere e eenes 512

xviii

Windows 2000 Driver Development Reference, Volume 2

RtlUnicodeStringTOARSISIIINGcocvevveiiiiiiiiiiiiince e 513
RtUnicodeStringTOINtEETcovereeerierrerieneneneenesieneesst e st sessie s 514
RtlUpcaseUnicodeCharcccccevirererinienniiiinincieninee e 515
RtIUpcaseUniCodeStringccecererierenriererneienceteeereeiieereesisseressienas 516
RUUPPEICRArccoiiverveiieiereeeiicreettecie ettt s 517
RUUPPEISIIING .ottt ettt s 517
RUShOItBYLESWaD....ceoriiieititieciieceiitenit et 518
RtlValidSecurityDesCriptorcooviiiiiiiniiiniiciicieeecc e 519
RUVerify VersionInfoocooeeviieerniieinionieeninereestineee e esneeenesieens 519
RtIVolumeDeviceTODOSNamE..........cooevivviiiirinmeniiiiiiiicee 523
RUWTiteRegiStry ValUeccoveevieiieieieie st 523
Rt1xUnicodeString TOANSISIZEcccvevienirriciniiiiiiiiiriicnniicsienen 525
RUZEIOBYLES ..ottt sttt esee e e et 526
RUZEIOMEINOLYvevvieerieenietierienieeie st esee et tsat s sebtsree s sbesnsebseneosaens 526
Chapter 10 Security Reference Monitor Routines.............ccermeus 527
SEACCESSCRECKuvveveriiriireiienitie ettt ettt st s e sre e 527
SEASSIZNSECULILY....veereruieereriesiierieetee ettt ebe s sn b s 529
SEASSIGNSECUTILYEX ..ovirurieieinieiicreeeenieniee et 531
SeDEASSIZNSECULILY ...oeveruriereeniirieereire ettt ere s srassre e 535
SeSinglePrivilegeCheckcovvveeiereriinerrineieierecreee e 536
SeValidSecurityDeSCIIPLOLc.couveerieininenetieresiecreree et 537
Chapter 11 ZWXXX ROULINES......ccervermersemesstressessesmessssssssssssnssssans 539
ZIWCILOSE «evvevverireieierseeeestertesste e sntesbees e sbe e bessaenstebaeee bt aseeastsnneeeesneenaee 539
ZWCreateDirectoryODJECTccvervtereeriiiiietieeeiee et 540
ZWCTEAEFILL ...ttt 542
ZWCTRALEKEYvieviieeeiee et ereeee ettt et et e ettt st e et st e 552
ZWDERIELEKEY......ceveirrerieiiieniectctesccrenitseces sttt st 554
ZWENUMETAtEKEYvieeiiiiiiiceecere ettt 555
ZWENumerateValueKeycccocvevvirierneiiiineiiinertccncecncnenne e 557
ZWEFTUSHKEY ...ttt st 559
ZwMakeTemporaryODbjectcccveverierierenniieniie e 559
ZWMapVieWOLSECtION. ..c..eieieierirerieiereeiterreiecee et s 560
ZWOPCHFIIE ...ttt s 562
ZWOPENKEY ...cooviiiiiiiiiiiriincic e 564

ZWOPENSECION ..vevveeerenierieeerietertranseeresitensreeesseassessesssesesseesseensesesssesnes 565

Contents Xix

ZwOpenSymbolicLinKODJECtc.ccuecerirereniereirierecreneetesesesvesiesreeesans 566
ZwQueryInformationFile...........cccovirieiinerenencenieie e 567
ZWQUETYKEY ...oouviiieiiiienietisitet ettt ee sttt st esate st esbesasasse e basseensaas 569
ZwQuerySymbolicLInKODJEC.......ccevirrirrierriieierrese e evesaevesieas 571
ZWQUETYVAIUEKEYooviiviirireieiceieee ettt 572
ZWREAAFIIL.....c.eoneieviieiiereieieree sttt ee et e e sre s e s e bn e ssnssnssnons 574
ZwSetInformationFile........c..occoeeiiiineiieieinieiece e 577
ZwSetInformationThread...........ccoooviiinvenninicninieeeecrreeeens 579
ZwSetValueKey......cccocovevrirencaranene ettt et e ettt st e st e anebe e 580
ZwUnmapViewWOESECtionc.coeverererireinrinecieneiniesseenteneesressesreeesenns 582
ZWWIEFILE.......ooviiiiiiiiiiii ettt 584
Chapter 12 System StruCtUIesc.oceuesmmmssssessesmsesssssssesssasssseass 587
ANSL STRING ..ottt sae st seeseseesiens 587
CM_EISA_FUNCTION_INFORMATIONcccccooviniirrrniniinininninann. 588
CM_EISA_SLOT_INFORMATIONccoecerumreiemiientrereeereeereearnencens 591
CM_FLOPPY_DEVICE_DATA.....cccoiitirreinerreee s stsn s seeeneeeseesees 592
CM_FULL_RESOURCE_DESCRIPTOR.......c.cccecrtveecreinineneenceeecnnene 595
CM_INT13_DRIVE_PARAMETERc.ccoccviiririnrenirneeearerneaneneens 595
CM_KEYBOARD_DEVICE_DATA ...ccccosrenieiiernerieeenreenecreneeaenens 596
CM_MCA_POS_DATA ...ttt seerenenesseaseneene 597
CM_PARTIAL_RESOURCE_DESCRIPTORccoccecemenierirreieraeenens 598
CM_PARTIAL_RESOURCE_LISTcccootiieiireerinceereeeneieennens 604
CM_RESOURCE_LIST ..ottt eeet st seseeenens 604
CM_SCSI_DEVICE_DATAccooceetmertmeereniieieeeinesntereesveseeeseeneene 605
CM_SERIAL_DEVICE_DATA......ccooriinnetrere e srenineneeees e aeieneas 606
CONTROLLER_OBJIECTocoviiiriitrieinieiniriieie st sesieeeesresesaneenens 607
DEVICE_DESCRIPTION.......cc.ceitrtirerrirerrientesreneesreeseeseessnessessesseessns 608
DEVICE_OBJECT ..ottt eeseeieste e e e stese e saate e esesen 610
DMA_ADAPTER........ccecceueneucn e 613
DMA_OPERATIONS ...ttt ettt sttt ee e eenens 614
DRIVER_OBJIECTcooiirirenereinreineteeseeee et stneceesesecnesnenens 616
FILE_ALIGNMENT_INFORMATIONccccocentmientaninanteenieeneenenienens 619
FILE_BASIC_INFORMATIONccccectmmminrerinreierenreneniesereesesnsensens 619
FILE_DISPOSITION_INFORMATIONccoooiiinitrriinnnieneenneeennee e, 620

FILE_END_OF_FILE_INFORMATIONcccovcummnrniniiiinniiininins 621

XX

Windows 2000 Driver Development Reference, Volume 2

FILE_FS_DEVICE_INFORMATION.......cccecceumemtriererinreninienienierenenaeaens 621
FILE_FULL_EA_INFORMATIONccoceermiimceniereeereenreneeennenenes 622
FILE_NAME_INFORMATION......cccecstiiirierenieninieneeeneseseesteseveesvanens 623
FILE_OBJIECTc.coiiiiiiieteeenenieeetsrse e reteeeseesssan et eraeseesessassessesens624
FILE_POSITION_INFORMATIONccecosiiinieinnrenriteneeesrenseseseeranens 625
FILE_STANDARD_INFORMATIONcccecereenrieneerirreninreneesieeernenens 626
IO_RESOURCE_DESCRIPTOR........cc.cceomrinieinieinennenreeeresie e seeneees 627
TIO_RESOURCE _LISTocotiivtetntrcneriererieniseseeiesessessessssessesessansensnenens 631
IO_RESOURCE_REQUIREMENTS_LISTccoceiiniiiinientneeeeneenens 631
TO_STACK_LOCATIONccootioimiiriieniiretnceneeseseeesesesseneesesseseseons 632
TIO_STATUS_BLOCKoccoviriiireireeiirereiieereseseeeerereese e sesesenene 635
IRP..cooiiiiiiiett ettt ettt 636
KEY_BASIC_INFORMATIONcccccoimiiimerieentnrerecsreneesessenesesssnnnees 640
KEY_FULL_INFORMATION......ccooeeintrimeieenieineeeereiesinie st eeeeeeaens 640
KEY_NODE_INFORMATION........cococeiimerinienirenierentereniereeensseeresseneene 642
KEY_VALUE_BASIC_INFORMATION........ccccecerteriirinnenienieeeeeeens 643
KEY_VALUE_FULL_INFORMATIONccecesmiimeimrininienteieneereenens 644
KEY_VALUE_PARTIAL_INFORMATION......cccocvvtmreirienrircreenenees 645
OEM_STRING.......ooitiitiiiiriiectiinctntet ettt eseesbebe st saeaesnes 646
PCI_COMMON_CONFIG.......ccctrurtririnirieinieriniesieeneetsretesessesaesessnsaneas 647
PCI_SLOT_NUMBER.........cccconirimmimiinienecsiineeeniee et 650
POOL_TYPE......ci ettt see st 651
RTL_OSVERSIONINFOWcccccoviimiiieniinintiinreesesiesceseseenscenes 652
RTL_OSVERSIONINFOEXWcoosiiirieiietrieineenenes et 653
SCATTER_GATHER _LIST....c..ccoiiiiiiteriincieitee ettt sceeieneeaens 655
UNICODE_STRING.......ccoooeetiireiriieiriieirieses ettt eseestesnene e s 656
Chapter 13 IRP Function Codes and IOCTLS.........cceusessssmssescasnnse 659
Determining Required /O Support by Device Object Typeccocevenee. 659
Input and Output Parameters for Common I/O Requests..........ccoveuenneenn 661
IRP_MJ_CLEANUP ...ttt ettt ettt et 661
TIRP_MUI_CLOSE ...ttt bes b et se st seanes 662
IRP_MIJ_CREATE ...ttt et ere et sae s 663
IRP_MJ_DEVICE_CONTROLc.coccesviiireiedonnireiereeeese e 663
IRP_MJ_FLUSH_BUFFERS.......cccccovttirtrieninieneneneeesieseesesecnse e 664

IRP_MJ_INTERNAL_DEVICE_CONTROLcccecvintrinrenienrennes 665

Contents XXi

Part 2

TRP_MUI_PNP...coooiiiiieieteniec ettt steb sttt 666
TIRP_MIJ_POWERccoiiiriiiiinietiieeteeeeret ettt et 667
IRP_MJI_READccoiiititiiintiieieertetncreste et sbe s a st aenaebens 667
IRP_MIJ_SHUTDOWNccocotiiiiiiiiiicss s 668
TIRP_MI_WRITEocoiiiiiiiiineneetece ettt seenens 669
Defining I/O Control Codes........ccoeverrrerieneniieniniesiesicrcessessesrasseseenians 670
Device-type-specific I/O ReqUESLSccccuvveuimeieiiciciniciieeeeenne 674
Serial and Parallel DIVers........commnmmsmssssss 677
Chapter 1 Serial Driver Referencec.ounesmsessesssmssssnssesesnans 679
Serial Major I/O ReqQUESES......coevvererrreieeeienereeenieseereesieneesieseceaneneereenns 680
IRP_MIJ_CREATE.......ooecmiieinieinieniereie ettt st et esaeessesnene 680
IRP_MI_DEVICE_CONTROL.........ccceorimirmmrireneniereneeineeecrensaseenians 681
IRP_MIJ_FLUSH_BUFFERScccecvtimiinieinenieeenree e 682
IRP_MIJ_INTERNAL_DEVICE_CONTROL..........cccceoveeirririenineennns 683
TRP_MI_PNP.....ooiiiiintiieniretsterteiester ettt et et enee e 683
IRP_MJ_POWERcooiiiiiiiiinininiienentetcteeeteie s eesne e eseestaressesenne 684
IRP_MJ_QUERY_INFORMATIONccoootiimmirimreiniercceereeineeseseniene 684
IRP_MIJ_READcconiiiiiiiiiennreinrcrtnreceenc et retsee et sne s e enene 685
IRP_MIJ_SET_INFORMATIONc.ccceitmmiiieirinecereteereeneeeneeseniene 686
IRP_MIJ_SYSTEM_CONTROLccottiemriiinririreeer e 687
IRP_MI_WRITEcociiiiiiiiiiieentecre ettt st sae e vt areeveesene 689
Serial Device Control REqUESESccvveeeiieienieniiniieterieeieeie e 690
IOCTL_SERIAL_CLEAR_STATScecterniereeeereeeeeesenee e 691
IOCTL_SERIAL_CLR_DTR....ccccestiiririiinieiriecneneesicrentrete s 692
IOCTL_SERIAL_CLR_RTS.....ccectitrteectnererieeriennieeereentsvesnenesressenens 692
IOCTL_SERIAL_CONFIG_SIZEccccceiuirrinririinienieerieteteenesenenns 693
IOCTL_SERIAL_GET_BAUD_RATEccceceveniiiietricrieiceereeenens 693
IOCTL_SERIAL_GET_CHARS ..ottt 694
IOCTL_SERIAL_GET_COMMSTATUScccooviniiemriiiiciiiecnierinees 694
IOCTL_SERIAL_GET_DTRRTS.....coeciiirinirinenireneeeeeteiesie e 695
IOCTL_SERIAL_GET_HANDFLOWccccoviniiiniinenerninreeercenennes 696
IOCTL_SERIAL_GET_LINE_CONTROLcccocevininiiniriencieneane. 696
IOCTL_SERIAL_GET MODEM_CONTROL......ccccccceeerienivniinenne. 697
IOCTL_SERIAL_GET_MODEMSTATUS.......ccooctmeeierereneceeereeens 698

IOCTL_SERIAL_GET_PROPERTIEScccceovviiiinnicierenenrneens 698

Xxii Windows 2000 Driver Development Reference, Volume 2

IOCTL_SERIAL_GET_STATS ..ottt 699
IOCTL_SERIAL_GET_TIMEOUTSccccecniiiimiiriireneniiiene e 699
" IOCTL_SERIAL_GET_WAIT_MASK.....ccccevviiiminiiininiinicnniceeninn, 700
IOCTL_SERIAL_IMMEDIATE_CHARccccoviimiiniiiicece e 701
IOCTL_SERIAL_LSRMST_INSERTcccermiiimmiriiinieniiiiecenes 701
TIOCTL_SERIAL_PURGEc..cceoitmiienteicinreeeictereie et s 702
IOCTL_SERIAL_RESET _DEVICEccoccoviiiiiniiiiiiiennnns 703
IOCTL_SERIAL_SET_BAUD_RATEccccceoetimrinireinieenieeeeereenes 703
IOCTL_SERIAL_SET_BREAK_OFFccccovniiiiminniiiiiiiiesenns 704
IOCTL_SERIAL_SET_BREAK_ON.....cccceieniiiirniiiircieereiesevenenes 704
TIOCTL_SERIAL_SET_CHARScccciiiiiriircnineireeniesee e 705
IOCTL_SERIAL_SET _DTR ...coociiiiriiiiirerercereneeeteieeree e 705
IOCTL_SERIAL_SET_FIFO_CONTROL.......cccecoveiiiiineiiieneneeennenne 706
IOCTL_SERIAL_SET_HANDFLOWccccocecniiniiiiinicicininninieneennen, 706
IOCTL_SERIAL_SET_LINE_CONTROLccccccceoeimmerreirimnenecnen. 707
IOCTL_SERIAL_SET_MODEM_CONTROL.........cccoceotmevnriiniricnranenn. 707
IOCTL_SERIAL_SET_QUEUE_SIZEcccoeciniiiiieinencneeeneen, 708
IOCTL_SERIAL_SET_RTS.....cccciiiiininniiiienteeeieseseeenene 708
IOCTL_SERIAL_SET _TIMEOUTSccoviotieirireiecrenieeneeseereennenne 709
IOCTL_SERIAL_SET_WAIT_MASKcccccocnvininiiiiiiiiiciienn, 709
TIOCTL_SERIAL_SET_XOFFocoosiirininireineeieeseerese e senreseeneene 710
TIOCTL_SERIAL_SET_XON.....coccoviirieeereriecrerneeneesseeneeesseenenes 710 -
IOCTL_SERIAL_WAIT_ON_MASK....cccocsrrirrrtrairierenieererieseniesenneene 711
IOCTL_SERIAL_XOFF_COUNTERcccoceetmimnireineereesceieennene 711
Serial Internal Device Control REQUESLScccevveveicinieneneiiiiceeennens 712
IOCTL_SERIAL_INTERNAL_BASIC_SETTINGS.........cccceeririnancnn. 713
IOCTL_SERIAL_INTERNAL_CANCEL_WAIT_WAKE............c.c..... 714
IOCTL_SERIAL_INTERNAL_DO_WAIT_WAKEccccccocvrveiunnrnn. 714
IOCTL_SERIAL_INTERNAL_RESTORE_SETTINGS..........cccceccunee. 715
Chapter 2 Serenum Driver Reference.........oesmmesmesnasssissnscsnasnas 717
Serenum Device Control REqUESTES.........c.ecuieeriiiiiveneniiineeenicicie e 718
IOCTL_SERENUM_PORT_DESC.....cccccosritrrrcnrernirecnienieereneevenes 718
IOCTL_SERENUM_GET_PORT_NAME........cccccosmmmiennrrcreerennens 719
Serenum Internal Device Control Requests........cocueeveeviereenreeerieneennenneens 720

IOCTL_INTERNAL_SERENUM_REMOVE_SELFccccccovvinennnne 720

Contents XXiii

Chapter 3 Parport Driver Reference ... 721
Parport Major I/O ReqUESEScceveieeeiririieieiieenere et 721
IRP_MIJ_CREATE ..ottt evaesnens 722
IRP_MJ_INTERNAL_DEVICE_CONTROL........ccocceceitrernreinerienienens 723
Parport Internal Device Control ReqUestscccceecveererenreiniesienvinieennen. 723
IOCTL_INTERNAL_DESELECT _DEVICEccccecovvreiecieciereiennens 724
IOCTL_INTERNAL_GET_MORE_PARALLEL_PORT_INFO........... 725
JOCTL_INTERNAL_GET_PARALLEL_PNP_INFO........ccccceccrunennens 725
IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO......c.cccecvuerenncn. 726
JOCTL_INTERNAL_INIT_1284_3_BUS.....ccoocriererinereneerinresnnrinneens 727
IOCTL_INTERNAL_PARALLEL_CLEAR_CHIP_MODE 727
IOCTL_INTERNAL_PARALLEL_CONNECT_INTERRUPT............. 728
IOCTL_INTERNAL_PARALLEL_DISCONNECT_INTERRUPT, 730
IOCTL_INTERNAL_PARALLEL_PORT ALLOCATE.........cceceeunnen. 731
IOCTL_INTERNAL_PARALLEL_PORT_FREEcccceccvivvivrreennn, 731
IOCTL_INTERNAL_PARALLEL_SET_CHIP_MODEccccoceneen. 732
IOCTL_INTERNAL_RELEASE_PARALLEL_PORT_INFO 733
IOCTL_INTERNAL_SELECT_DEVICEcccocoiiincinctnncnenens 733
TOCTL_INTERNAL_XXX...ceeeterterreerrereenierresenesenrestesssessesssesssessasssssanes 734
Parport Data TYPES ..cccveeviierieeiinieteiereertc e sie e ere e ss e e 735
MORE_PARALLEL_PORT_INFORMATIONcccceceememmmmenenereens 735
PARALLEL_1284 COMMAND.....c.ccccoirtriiaiieteieeenenieereeeniesianreeveees 737
PARALLEL_CHIP_MODEcccotitntetniieniinieneseesenneneneeesneeeesnens 738
PARALLEL_PNP_INFORMATION.......ccveitimirinienrenienreresiesieraeieeens 738
PARALLEL_PORT_INFORMATION.......cccceitniriiererrirreneneeeseenne 741
PARALLEL_INTERRUPT_INFORMATIONcccoririimraninnrienens 742
PARALLEL_INTERRUPT_SERVICE_ROUTINE..........cccoevuemivenennene 743
Parport Callback ROULINESccccveeeiiiiieriiiiceneeecteeeeers e svreeneeaneaiens 744
ClearChipMOde......c.ccueiimiirieirietnreeecrt ettt ettt ettt ebe 745
DESEIECIDEVICEeovenienieriirieiertret ettt st se e s sre s 746
BIEEPOTIt...c.ooiiiiiiiiiiiiinitcrctt et 747
FreePortFromInterruptLevel..........coooviininiiiiine, 748
QUErYNUMWAILETS ..ottt sttt se bbb st s ens 749
TIYALOCALEPOIT ...ttt sttt et e e 749

TryAllocatePortAtInterruptLevelccooerieieeniineniiieecceeeeecennen 750

Xxiv Windows 2000 Driver Development Reference, Volume 2

TIYSEIECtDEVICEeerviiinierieriieie sttt ettt st s sat e seeens 751
TrySetChipPMOCEcoveevereirieeereerertireeree et e e sineenee b eneseress 753
Chapter 4 Parclass Driver Reference........cuosmsmmnssassssnsssssssases 755
Parclass Major I/O ReqUESEScocevvvireniiriinciiiiiineneceenecne s 756
IRP_MIJ_CREATE ..ottt e 756
IRP_MIJ_DEVICE_CONTROLcccoeovrivrimaiiiriniiiiiniiieie s 757
IRP_MJ_INTERNAL_DEVICE_CONTROLccccoouvcinreiriireirninnnnn. 758
IRP_MJ_QUERY_INFORMATIONccosirirrrereiirirencerireeseeneeenennas 758
IRP_MIJ_READ ...ttt et e 760
IRP_MI_WRITE ...ttt se s snes 761
Parclass Device Control REqUESTScccevveeienviniiiieniiniiiiesiinienecnne 762
IOCTL_IEEE1284_GET_MODEcccociiniieieeniccecnereeinrenreneenes 762
IOCTL_IEEE1284_NEGOTIATEccccoviiiniiniiiiniircisiincceninaenns 763
IOCTL_PAR_GET_DEFAULT_MODES........c.ccocermenmirreeirmeeenreenas 764
IOCTL_PAR_GET_DEVICE_CAPScccoterririenene et 765
IOCTL_PAR_IS_PORT_FREEccccectiininiritninineeeniiece e 765
JIOCTL_PAR_QUERY_DEVICE_ID......ccccceeieniirnenininenricieseniniennnns 766
IOCTL_PAR_QUERY_DEVICE_ID_SIZE.........cccoecovermnneneirreneene 767
IOCTL_PAR_QUERY_INFORMATION........cceovirtierrerereenrernecneane 767
IOCTL_PAR_QUERY_RAW_DEVICE_ID......ccccoceeererrinerenrenereneene 768
IOCTL_PAR_SET_INFORMATIONcceceotiimireniinrenienienienerinsieeneenes 768
IOCTL_PAR_SET_READ_ADDRESScccccoovivmminnnininiensineanens 769
IOCTL_PAR_SET_WRITE_ADDRESS.......cceccevmimirinenirenieeeeenns 770
IOCTL_SERIAL_GET_TIMEOUTSccoooiniririniciieneeiiienens 771
IOCTL_SERIAL_SET_TIMEOUTScccoceotiirneirieincreerereeeerecnenene 771
Parclass Internal Device Control ReqUests.........ceeeevreereererceinsrcriesennnnens 772
IOCTL_INTERNAL_DISCONNECT_IDLEccoceciiimiiiiininiiienens 773
IOCTL_INTERNAL_LOCK _PORTccoeceniirieiineneenenieeeressenenennene 773
TIOCTL_INTERNAL_PARCLASS_CONNECTccccocvivriniimiicrenns 774
IOCTL_INTERNAL_PARCLASS_DISCONNECTcccccoevrmeininennns 774
IOCTL_INTERNAL_PARDOT3_CONNECT........cccccsemieririrniirninnae 775
TIOCTL_INTERNAL_PARDOT3_DISCONNECTcccectvrireeninineenins 775
IOCTL_INTERNAL_UNLOCK_PORT.......cccceoeverireeirrenneiiecieenions 775
Parclass Data TYPes......cocuvcvevviiiiiciciiiiiini et 776

PAR_QUERY_INFORMATION........cccoumviiiiininiininnniiinie i, 776

Contents XXV

Part 3

PAR_SET_INFORMATION.........ccoetecriiieieniieiienieseeeieeeereeesseessesnesneeas 777
PARCLASS_INFORMATIONcocoiiiiiiinieriieieeieseteieeeeraressessseseeennens 778
PARCLASS_NEGOTIATION_MASKcooiriririenrenreenenerereenreneeneees 780
Parclass Callback ROULNESccvecvieiieieriieieeiiereeeniereeereeneeerereenesensen 780
DetermineleeeMOodescoovverieirirriennieniicreeeieeeeer et sne e 781
TeeeFWATOREVIMOUEoooieiiiiiiecie ettt e b s s 782
TeeeReEVTOFWAMOUEcooovviiiiiiiiieiiiertceieesesre et senresne e 783
NegotiateIeeeMOodeovvecerrerrenereriiereeeeereesc s 784
ParallelREadcccceeeiiiiieiiie ittt ne e ee e e s eenaeseeeeane 785
ParallelWTitec.cvvreriiiciirienn s 787
TerminateleeeMOdecuviieiieieieeiieecee e e 788
Drivers for Input DeViCesummsmmmsmsmsmmmmsmssmsmsmssessssasssmssssssssrsasnns 789
Chapter 1 HID I/O ReqUEeSLS.......c.covmmmmnmmsimsmsssmsssssssessssmsssssssscasesss 791
I/0 Requests Serviced by HID Class DIiver......ccceeeevvcrnerieneeneeeeneennnee 791
IOCTL_HID_GET_POLL_FREQUENCY_MSECccccecoerirriecreneene 791
IOCTL_HID_SET_POLL_FREQUENCY_MSEC......ccccevvviirierrerrennne. 792
IOCTL_GET_NUM_DEVICE_INPUT_BUFFERSccccccevvvereneanne 793
IOCTL_SET_NUM_DEVICE_INPUT_BUFFERS........ccccccevctrivreriennenn 793
IOCTL_HID_GET_COLLECTION_INFORMATIONccceecverrereenne 794
IOCTL_HID_GET_COLLECTION_DESCRIPTORcccceceevueeennnenn 795
IOCTL_HID_FLUSH_QUEUEcocooiviiiieiieeieereeceeereseeerereseeas 795
IOCTL_HID_GET_FEATURE........ccociteitiriiieeenieereeteetesseeneessreneeseeas 796
TIOCTL_HID_SET_FEATURE........ccieviiieiririeceeeeecete et 796
IOCTL_GET_PHYSICAL_DESCRIPTOR ...ccccccevtiiirirecienenreneenes 797
JOCTL_HID_GET_HARDWARE_ID.......ccoecviiiriicierieeeiecrenieeeeeen 797
IOCTL_HID_GET_MANUFACTURER_STRINGc..cceceevrirreerreneennes 798
IOCTL_HID_GET_PRODUCT_STRING.......ccicoevirrierireeerereeneeneene 799
IOCTL_HID_GET_SERIALNUMBER_STRINGcccccecvevremvenrrenennne 799
IOCTL_HID_GET_INDEXED_STRING.......cccecovvterieierireereceienreeneeenen 800
I/0 Requests Serviced by HID Minidrivers.......coocovcerceeriinnivcnvennnennennnes 800
IOCTL_GET_PHYSICAL_DESCRIPTORocoeiiiieiiecicreeeceees 801
IOCTL_HID_ACTIVATE_DEVICEcccoctiiiientenienieeeeenee e 801
IOCTL_HID_DEACTIVATE_DEVICE........ccocoootnitereeeieieneieeeneneene 802
TIOCTL_HID_GET_DEVICE_ATTRIBUTES.........cccceevenerreecreneenne 803

IOCTL_HID_GET_DEVICE_DESCRIPTOR..........cccoovniiiiiiiiinnnns 803

XXVi Windows 2000 Driver Development Reference, Volume 2

IOCTL_HID_GET _FEATUREcccoceiiimirireieineeneeeeneeeeeveeeas 804
IOCTL_HID_GET_INDEXED_STRINGccoccvvtvirrreneerinrenienreneereenens 805
IOCTL_HID_GET_REPORT_DESCRIPTOR.........cccccoeiirrmrririrrrrrnns 805
TIOCTL_HID_GET_STRINGcecteieritimiieereereetneeeneecreeeseresieeeaes 806
IOCTL_HID_READ_REPORTc.cccoiiitaiteieienenieneiestesteeee s 807
IOCTL_HID_SET_FEATUREccccceoeniitiiiireniinrennreieenese e sreaeenaas 808
TIOCTL_HID_WRITE_REPORTccecimiiiiinineenetceeneeerecernennes 809
Chapter2 HID Support Routines for Clientsc.uummmmssrareasnss 811
HidD_FIuShQUEUE.......cccveeiieiictieirrereccerceeiecereeereeneeevnecveeveesaassnnsenneens 811
HidD_FreePreparsedData..........cccooceviviiniecieeieeeecie et snensee s 812
HidD_GEtAIIDULESvviveeeeirieeeeiieeeceeiireee et ee e eeerree e s esnre e e ssaees e saae 812
HidD_GetConfigurationc.coeeeiveeriiinicieieiereeene e 813
HidD_GEtFEAtULEc..covimieriiiieriniicinicniesretcrese e st sresreeeraseereesaas 813
HidD_GetHidGuidccovevreirinieeniieniencineeteeeeneeiene et snenas 814
HidD_GetIndeXedSIrng.cccovvivveriiniiniiiiniiiiieeniereseeerieres e e eseesnes 814
HidD_GetManufacturerString........oovevevererreseeiesiesesieseseseesseesiessessenns 815
HidD_GetNumInputBuffersccoceverinenrinieniesieneresiesreeeeenece s 816
HidD_GetPhysicalDEsCriptor........cveviicvinientenvenienieniennnsensensernesesesvessenses 817
HidD_GetPreparsedDatacccoceererereeenieieriennienienenienseseseeveseeseeeeeenes 818
HidD_ GetProdUuCtSIIingccveeveeveeeeieeerirereeriesreesreeseeseeseneeeseessessnsseeenes 818
HidD_GetSerialNUMbBErStringcoceeveeririierieeeecieniesieeeeereeesreesveesens 819
HidD_SetConfiguration........cccceeverierrieriernenseerienienseesiesieeseeesseesesssesssesnes 820
HidD_SetFEatUreccoeiieeveiieieeeeeeeeceeeie ettt s e e reeeees 821
HidD_SetNumInputBuffers..........coeevevniieeeinrinniienreiee s 822
HidP_GetButtonCapscccoovvrererureiereieeneereesssssessessessessessesesessessessenes 823
HidP_GetBUttons.cuevveiviiiirineniiiee et ereereene e se e s senenenas 824
HidP_GetBULtONSEXeviiieiiiiieieteeeee ettt e ssee e eeeeeesareeseve s seaeeas 826
HidP_GetCaps ..o, s 828
HidP_GetLinkColleCtionNOdES.cvevverrereeriererenenenrenresesienseasensinssenne 829
HidP_GetScaledUsageValue........ccceoeriecierirntenicnnienieesieniesresesreessessenns 831
HidP_GetSpecificButtonCapscoceveverieriereriennnesesesiasiorsessssssessenns 833
HidP_GetSpecificValueCapsc.covevuerrereerienencnnnienesiese et 835
HidP_GetUsageValuecccoieviiiiiiiniiiniiicicinircieser e 837
HidP_GetUsageValUCAITAYccceveruirrerrereneneeieteteeeteieesreseateasnnens 839

HidP_GetValueCapscoceevvererieininierienrenieassiessessessessesesssessessssssessens 842

Contents XXVii

HidP_MaxUsageListLengthcccccoeveervereenieniriiieeee e e 843
HIdP_SetBULLONS.ccoivieiiiiiiiiieiccrree e et eerte et eeerreeearee e erraeseeereseeaneens 844
HidP_SetScaledUsageValue..........ccccevvecirneniiiinieienesieieneeneeeseeneneeniens 847
HidP_SetUsageValue.........ccccoeiriiereniiineeiiiiiceeiereieresreneneseesesennens 849
HidP_SetUsage ValUCATITAYcoeevrerieereeiienreninieneesiiseseesseeneeesueeseensens 851
HidP_TranslateUsagesToI8042ScanCodesc.cuecerercerrvenieeneenneneens 853
HidP_UsageListDIfference..........coceeveeirieeneeioeninneeeeeseesieseeresneeeens 854
Chapter 3 HID Structures for Clients.........counmercenmsssssmssesssssscnss 855
HID_COLLECTION_INFORMATIONcccoceoiniiimemicriiiiniinneeneneens 855
HIDP_COLLECTION_DESCccectrteertnirerireinieerieenresteseeeeseeesseneene 856
HIDD_ATTRIBUTESooottiiiiteieieeieneerentenienieniereeneeeeessresseenceneans 857
HIDD_CONFIGURATION.......ccetetiiieierieeiretenieereeeresee e seeneneenes 858
HIDP_BUTTON_CAPS ...ttt sttt seeanes 858
HIDP_CAPS ...ttt ettt et ssestesesse e e 861
HIDP_LINK_COLLECTION_NODEccociitmimiinirineneneceeenens 863
HIDP_VALUE_CAPS ...ttt eeeseee e 865
USAGE_AND_PAGEcoocniirietrtreeieieiteiiereeeerest e ssssesnsneen 870
Chapter 4 HID Support Routines for MiniDrivers............cuesesnsene 871
HidRegisterMinidriVer.........ocovcvieerieieieieneeeeeie ettt 871
Chapter 5 HID Structures for Minidrivers...........cousmsmmmmmssensaes 873
HID_DEVICE_ATTRIBUTESccceeiiiiiiiecinceceneceeenerenenens 873
HID_DEVICE_EXTENSIONccceomeieriinreiiieeiereneeeneereeeneeneneesens 874
HID_MINIDRIVER_REGISTRATIONcecoviiiiieiicireneneeereens 875
HID_XFER_PACKET......cocitiiritetreietterteeie ittt et see e 876
Chapter 6 Kbdclass Driver Referencecusmsmssssessssessssansans 877
Kbdclass Major I/O REqUESLScccceoveiviriiiiiniiicreei et 878
Kbdclass Device Control REqQUESLEScccevvrereriierirenenseeneenensnrenieseennne 884
Kbdclass Class Service Callback Routinecocccoueveevecrvinninncniinnns 891
Chapter 7 Mouclass Driver Reference..........cosnmmmsssmncsscnns 893
Mouclass Major /O ReqUESLS.......coccevvvvreriininiiieniniincircnie e 894
Mouclass Device Control REqUESLEScccociiiiiieeininiciiiiiccecie, 900

Mouclass Class Service Callback ROUtIne..........cccooovevvmmevvvemveermeineieienens 902

Xxviii

Windows 2000 Driver Development Reference, Volume 2

Part 4

Chapter 8 18042prt Driver Reference.........msesesssmsssssessasessnns 905
18042prt Keyboard Major I/O Requestscoeveevvrverecrrcnrecienieeieeenne 905
18042prt Keyboard Internal Device Control Requestscc.ccceeeveeuen. 909
18042prt Mouse Major I/O ReqUESLScocevveririienererieiereeeeceeneeneeens 916
18042prt Mouse Internal Device Control Requestscoccevverveveereennee. 919
18042prt Keyboard Callback ROULINEScc..eevvevevrivercrcrrenireererecnrerseeennees 923
18042prt Mouse Callback ROULINEScevvererrieniencniiieienriceeiersne e 927
Chapter 9 Kbfiltr Driver Reference.......ccoouumssssmssesessmssscssessssenas 931
Kbfiltr Internal Device Control Requests.......cocccueceeveivircennsiinienenercnenns 931
Kbfiltr Callback ROULNES........cocvcirviirieiiiieieeneniereistisrenencerinie e 934
Chapter 10 Moufiltr Driver Referencecoummmmmmsmnssemmssssssnases 939
Moufiltr Internal Device Control ReqUestsccecvecereerecrrecirveernenee. 939
Moufiltr Callback ROULINEScccevivmivriiriiininiciiinniciiiiiense e 942
2001 £ ———— 945
Chapter 1 1/O Requests for USB Client Driverscsessasesens 947
IOCTL_INTERNAL_USB_SUBMIT_URBcccccumviirrcreineneeeneenne 947
IOCTL_INTERNAL_USB_RESET_PORTcccccceemmrinrecncreeneninene 948
IOCTL_INTERNAL_USB_GET_PORT_STATUS......ccecccermcrerereennn. 948
IOCTL_INTERNAL_USB_ENABLE_PORT.......ccccoecnemennrinrceeninene 949
IOCTL_INTERNAL_USB_GET_HUB_COUNT.......ccccceceevrinriernaenn. 949
TOCTL_INTERNAL_USB_CYCLE_PORTccccececumevencrncrneircene e 949
IOCTL_INTERNAL_USB_GET_ROOTHUB_PDO.........ccccrerurcerennne 950
IOCTL_INTERNAL_USB_GET_HUB_NAME........cccocevivininniincnenee 950
IOCTL_INTERNAL_USB_GET_BUS_INFO.......ccccccoecinciniirranenne 950
JOCTL_INTERNAL_USB_GET_CONTROLLER_NAME................... 951
Chapter 2 USB Client Support Routines........onmsmmmmsmensmsssssnnins 953
GET_ISO_URBL_SIZEc.oooiitiiieiicieteenent et snere e 953
GET_SELECT_CONFIGURATION_REQUEST_SIZEccccevcuuee. 954
GET_SELECT_INTERFACE_REQUEST_SIZEccoccccoinvniencnne 954
GET_USBD_INTERFACE_SIZEccccoivimminnenmennetieneeeecnaennene 955
UsbBuildFeatureReqUEStcveveeveieienierreieiereeneeeeseneereseeseesresseesane 956
UsbBuildGetDescriptorREqUEStoovereereecrineenieniieneeitesee e seeereenae 957

UsbBuildGetStatuSREeqUESLcccererveerierereeneeiene e 959

Contents XXix

UsbBuildInterruptOrBulkTransferRequest.........ccccovevenenienceenncernneenen. 960
UsbBuildSelectConfigurationRequestccveerericrenenrenrercnieneereneennae 962
UsbBuildSelectInterfaceRequestocevviimniiiicrerncenennenieeneerenennen 963
UsbBuildVendorRequestcceeveeerereeeniineentinienieenteseeeeseeseneeneeseene 964
USBD_CreateConfigurationRequestc.ccoceveerervrrveererecrenienienesenennnens 966
USBD_CreateConfigurationRequestEXccccceveruieeniresierienereesensenenenns 967
USBD_GetInterfaceLengthcccceerievirererveenenieinenreneenecreeseeseenaeens 968
USBD_GetUSBDIVETSION ...c.uceeueueeeenereeieneeereereretsienesiessesessenseseeseseesens 969
USBD_ParseConfigurationDeSsCIiptorcccvuetenrerrvenieenensieneesrensnensens 970
USBD_ParseConfigurationDesCptOrEXcceceveviiviiriennieenerenienseneens 970
USBD_ParseDeSCIAPLOTS......c.cecvievieeereerieeeriesreeeenseesesseesseessessaesseessansens 972
USBD_RegiSteTHCFIIETcoveviuieiiceercieierercnirccreereeseseeneeseceeeseesens 973
Chapter 3 USB Structures ceresssemssras R Ranene 975
URB ...ttt ettt sttt st be e st sttt 975
_URB_BULK_OR_INTERRUPT_TRANSEERcccccccenuereimrnannane 978
_URB_CONTROL_DESCRIPTOR_REQUESTccccoecnivininiennenens 980
_URB_CONTROL_FEATURE_REQUESTcccceccoivnirenrnricrecinreneens 982
_URB_CONTROL_GET_CONFIGURATION_REQUEST 983
_URB_CONTROL_GET_INTERFACE_REQUEST........ccccoevevrinninncne 984
_URB_CONTROL_GET_STATUS_REQUESTccccocrtrrennineennene 985
_URB_CONTROL_TRANSFER.ccosmritriiieinerercnenenieneeeerenenens 986
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST.......ccccceceeuuen. 988
_URB_FRAME_LENGTH_CONTROL........ccccceceetimiatrnenineneneeceereneenens 990
_URB_GET_CURRENT_FRAME_NUMBER.........cccccceovirmmmererancns 991
_URB_GET_FRAME_LENGTH.......cccccecetmriimninrininteseestneenteenecrenienens 992
_URB_HEADERccceiitmitiininieneeeteeeesererestesteseesteseesaessesssesessessensens 992
_URB_ISOCH_TRANSFER......cccecesmermrirermirereteesieteeeseetsseseeseeeserees 997
_URB_PIPE_REQUESTc.cotiiiinetnerneeeretteteeteeeeseeeeneeeeesannens 999
_URB_SELECT_CONFIGURATION........cccectreriemretereenerreenreseeeenae 1000
_URB_SELECT_INTERFACE.........cccccoeitiiinriercnneereneneeeneennens 1001
_URB_SET_FRAME_LENGTHcccecstutmuiimninrentreeseeeeeneeereneneene 1002
USB_CONFIGURATION_DESCRIPTORcccccoevevererieirereeeeennenne 1003
USB_DEVICE_DESCRIPTOR........ccccettmrtrreteirecreeenreteeneeeereneens 1004
USB_ENDPOINT_DESCRIPTORcccoceteurriirnieeereneeereenenreneene 1006

USB_INTERFACE_DESCRIPTORcccoctniitnirnenennineceenenaenes 1007

XXX Windows 2000 Driver Develobment Reference, Volume 2

USB_HUB_NAMEccoooririinnrireeeseresssssesssssssss s ssssssssssssssssssnses 1008
USB_ROOT_HUB_NAMEcovcrsitmmrinmeinsiesinnsssessesssssssssssssssensasesses 1009
USB_STRING_DESCRIPTORco.oomrrumrirnrrnrnisnsssnsissssssssnsssnens 1009
USBD_INTERFACE_INFORMATIONccocomuenrrnrirnrnsnnsnsnnsenniens 1010
USBD_INTERFACE_LIST_ENTRYoovvrumrrinrrenernnssnssssnssnsssnnns 1012
USBD_PIPE_INFORMATIONcoocomrrimmrirnerinesesessenisesssnssnssssnnes 1012
USBD_ISO_PACKET_DESCRIPTORcouvrrrrerrermmrermniesnsesnsssnnns 1014
Part5 IEEE 1394 DIIVErS......cosmmummsssmmsssssssmmssssmmssssssssssessssssssssssssssssssssssanes 1015
Chapter 1 IEEE 1394 Bus I/O ReqUESLScccouescusessrssesssssanescnsas 1017
TOCTL_CLASS_1394.....comrimrrirnrriniriersesnessnssssnsssssssessssssssnssssessssnnss 1017
REQUEST_ALLOCATE_ADDRESS_RANGEcccoocommirnrirmnrrrn, 1018
REQUEST_ASYNC_LOCKcnvvrririreenmenssisssessnsssnesssssssnsssessssenss 1023
REQUEST_ASYNC_READ.......cocommiimmriernerinsssensssesssssssensssenssessienns 1027
REQUEST_ASYNC_STREAMccoconrrmmrremrrrnrrsrisnsasnssnsssssissssssssnnes 1029
REQUEST_ASYNC_WRITEcovvtirinriireernissssnessesssssssss s 1031
REQUEST_BUS_RESETceecuiiumiririinerinesnssesessaessssesssssssssaeens 1033
REQUEST_BUS_RESET_NOTIFICATIONcoccoevverrinmerrnrirerrirnns 1034
REQUEST_CONTROLcvsrireriinnrerieesasessnsessssessesssssssssssssssssssssnnes 1035
REQUEST_FREE_ADDRESS_RANGEccoocosvieerirnriernrieresseniinnns 1037
REQUEST_GET_ADDR_FROM_DEVICE_OBJECTcccocesmrvrnnr 1038
REQUEST_GET_CONFIGURATION_INFOccccovvmrrermrernrnrenenns 1039
REQUEST_GET_GENERATION_COUNToecorerrrmrrrrerirnrrnnrsnnees 1042
REQUEST_GET_LOCAL_HOST _INFOccoccesvmrrrmrernrrrnrisrensennnes 1043
REQUEST_GET_SPEED_BETWEEN_DEVICESccc.ccoeovrmmrrnnnn 1045
REQUEST_GET_SPEED_TOPOLOGY_MAPS........c.cccormrrrrrrrmrernrnns 1046
REQUEST_ISOCH_ALLOCATE_BANDWIDTHcooovrmrrrrrrrnnns 1047
REQUEST_ISOCH_ALLOCATE_CHANNEL...........ccccoemuummvveerermans 1049
REQUEST_ISOCH_ALLOCATE_RESOURCES..........cccccooomrrermrrnnn. 1050
REQUEST_ISOCH_ATTACH_BUFFERS..........ccoocovsimmrirmrrennirnnisnnnes 1053
REQUEST_ISOCH_DETACH_BUFFERS..........ccoocosutmmrinmriorerennnssnins 1055
REQUEST_ISOCH_FREE_BANDWIDTH........coccosvurmirnrernrrensrienneens 1056
REQUEST_ISOCH_FREE_CHANNELccccoooerimrinrrnnsenseessiennnn. 1057
REQUEST_ISOCH_FREE_RESOURCESccccesvvrieririrrrersriannnn. 1058
REQUEST_ISOCH_LISTENcovvmmirerrinniinieenssessssssssisssssessessssnsnns 1059

REQUEST_ISOCH_QUERY_CYCLE_TIME........c.ccccooevinvrnrnnennnnes 1060

Contents XXXi

Part 6

REQUEST_ISOCH_QUERY_RESOURCES...........cccccovumrermrererrnrrernnns 1061
REQUEST_ISOCH_SET_CHANNEL_BANDWIDTH.........c.covvuenev. 1062
REQUEST_ISOCH_STOP........coostuerirrimeriieseneeesssessesessenssessassinens 1063
REQUEST_ISOCH_TALKccocoururmemmeeeeeeiserssesssesssesasssesssesesesseens 1064
REQUEST_SEND_PHY_CONFIG_PACKETcccouvurrrurermrincrenens 1065
REQUEST_SET_DEVICE_XMIT_PROPERTIESccc.coovrrvmmrenns 1066
REQUEST_SET_LOCAL_HOST_PROPERTIESccocovumrrmrrnnns 1067
Chapter 2 IEEE 1394 Structures.....c.oucmsssssmessussssessessessessenses 1069
ADDRESS_FIFO.........coruiitiriissssessssessssssssssssssssssssssssssesssssssessessssesss 1069
ADDRESS_OFFSETecuntierieririesisesseisesesssesssessssesessssessessessssesss 1069
ADDRESS_RANGEcoovvuiiriiiiniinsiessesssessss st ssssesene 1070
CONFIG_ROMvrermiimrianrisnissesssssssessssssss s ssessessssssssssssssssssssssssses 1070
CYCLE_TIMEccovuurimiursimreseesenresessssssesssessssssssssssssssssssssesssssssessnnes 1071
GET_LOCAL_HOST_INFOL.....orturierreirneirrrenmeseneeseseaneeseeesesesessenseees 1072
GET_LOCAL_HOST_INFO2......ocrsuurrrurmeererrmsranseseeessesseessesssesssessnes 1072
GET_LOCAL_HOST _INFO3.....cocosrumremeenersnsersnssaresesssseseesiessseseseces 1074
GET_LOCAL_HOST _INFOA4.......osvuerurerrcerrnerrrreererenens SRR 1074
GET_LOCAL_HOST _INFOS........covvuemremreneeeenesissensssesssssesssssssesnees 1075
GET_LOCAL_HOST_INFOB..........covemreermermreerisiereresenssssessaessseessces 1075
TO_ADDRESScoviuiireireisrissssessssssssssessssesseresssssss s s s sssessssessanses 1076
IRBooorieeeaneseseetaeiseesse s s ss st s st b st s s ess e 1077
ISOCH_DESCRIPTORcouoieeereemneeerresesseeessssssssssssssesssesssssssesssees 1079
NODE_ADDRESSvuuiiniinisneessssnsssssssssssesssssssssssssssessssssssssssssses 1082
NOTIFICATION_INFOo.ocueeeeeenreneesessseesessssssssssessessssssssssseeens 1082
PHY_CONFIGURATION_PACKETcoocurmieurmrenerineerennceseceerianeens 1085
SELF_ID....comeereeeeneeerenannans: ettt Rt 1086
SELF_ID_MOREcootvimriemmeememmeisnenssesiessssessssssssssssessssassesessaeses 1087
SPEED_MARPootuiieieeiniienienss st ssssesesssssssssssssssssssssssesssssnessesens 1089
TEXTUAL_LEAF............. et a et 1090
TOPOLOGY _MAPcootrrirriererensnesssessesessessssnsssesssssssessesssessssssessns 1090
PCMCIA DIVEXS .coucucusmssnsscrsmsssssssssssnssmssssssssessssssssssssssssssessessassssssssss 1093
Chapter1 PCMCIA_INTERFACE_STANDARD Interface

Memory Card Routines.........ccccvuesrnesmssssmssssesssssssessens 1095

PCMCIA_IS_WRITE_PROTECTED...................... e 1096

Xxxii

Windows 2000 Driver Development Reference, Volume 2

Part 7

Part 8

PCMCIA_MODIFY_MEMORY_WINDOW.......cceceemriirrinrerernnrerne 1097
PCMCIA_SET _VPP ...ttt sttt svasse b 1099
SMB Client DFVErScummsmmmimsmsssmessssssmssessssssesssssssssssssssssssssens 1101
Chapter 1 SMB IOCTLScorecemrmsmmresmsmsesnssssssssesresesssssssessssssenes 1103
SMB_BUS_REQUESTccveiirrieriereiitntrieicsenieieveieesisesieiesesseseaenens 1103
SMB_DEREGISTER_ALARM_NOTIFY ...ccccecvvnmririnrenirierenenrerennenns 1104
SMB_REGISTER_ALARM_NOTIFYc.ccoveerrrienrenerenireereneenenns 1105
Chapter 2 SMB Structurescooverenemssismsssssssesssesssssmsessmsasenes 1107
SMB_CLASS ...ttt sttt bt s e seeaas 1107
SMB_REGISTER_ALARMcccccevtririninianmrinneieerie e saeeesnseesenns 1109
SMB_REQUEST ..ottt rercsiee sttt eene s sesaesssasesas 1110
WMI Kernel-Mode Data Providers..........couumsesmsmmsmmmmmsscsssssasssseass 1113
Chapter 1 WMIIRPS........cccrcmmsecnsenssmsesmesemsssssssssmsesssssssnssssasens 1115
IRP_MN_CHANGE_SINGLE_INSTANCE.......ccccoceveeicinreririnenennnen 1116
IRP._ MN_CHANGE_SINGLE_ITEM.......ccececeetrinirereiiereerenereeereveens 1118
IRP_MN_DISABLE_COLLECTIONcccocectriinrininnennereerernnaeenennns 1120
IRP_MN_DISABLE_EVENTScooiiiiinirinieeeireeeeeeeeeieeeaeeeesnevenns 1121
IRP_MN_ENABLE_COLLECTION.......ccteectrertreireeinneneseerernensenns 1123
IRP_MN_ENABLE_EVENTSciootiiiiiiriiriniereneniese e eeee e 1124
IRP_MN_EXECUTE_METHODccccecectntrieinininienenenennereeeeaeeenenes 1126
IRP_MN_QUERY_ALL_DATA ..ottt sen e 1129
IRP_MN_QUERY_SINGLE_INSTANCE........cccsverriiirrieeneeenn 1131
IRP_MN_REGINFOc.ccceetimirierenineeienerieieentstsisesteieseeseesassesesesnenes 1134
Chapter2 WMI Library Support ROUtINES......cumsesmssesmsessrsenses 1139
WmiCompleteREqUESL.........coeveriereriererenenierecrirenee et eseebenees 1139
WIIFITEEVENLooviiviieiieeieieeeee et be e vt e s 1141
WmiSystemCONLIOL.....cc.eiviivierierenie ettt st s eas 1142
Chapter 3 WMI Library Callback Routinesccremmsnnacnsencs 1145
DpWmiEXecuteMethod.........c.coeuimerieiviierieniteceereeereee et s 1145
DpWmiFunctionComtrol........cccevveriererererrereininiecesesseseresssssssseseseseesesesnes 1147
DpWmiQueryDataBlocKc.eevvvveieienieriesieieeeeieeeeeeeees e e eveeens 1149
DpWmiQueryReginfocccoververinnenneneneeeceeieneeee et 1151

DpWmiSetDataBIocKc.ccuevereenieiinienienenentetitesereesesiensesssaessennes 1153

Contents xxxiii

DpWmiSetDataltem.ccccveviririiinieriierierieneeeeriencee et senenee 1155
Chapter 4 WMI SErUCLUIES.......oceimucensessssnsessssssessesssssessssssssessesses 1157
WMILIB_CONTEXTccumriremmeinenseesnnssseessmesssesssesssesssessssssessnsssesss 1157
WMIGUIDREGINFOcooitiniiriiniieieseseesenesssssssssssessssssssssesssssnenes 1159
WMIREGGUID.........cooiiieeineireniseises e seseesssessssessessssessesssssssssssssanses 1160
WMIREGINTFOooovvvimmririarmrisneessessseesisssssssssssssssessssssssssssessassssenes 1163
WNODE_ALL_DATA.......oetrtmrirmiirinrissesiseesneesisssssessssssssessssssssssnes 1165
WNODE_EVENT_ITEM.......oouiieiinrinreeesiessesssessesssesssessssssssnes 1167
WNODE_EVENT_REFERENCE..........cccooevmeierermmneresnesinsssnsssesenenes 1168
WNODE_HEADERoooiiiiiiirineireeiesesesisessesessesss s sssesssesssssseses 1169
WNODE_METHOD _ITEM......cooniitmernresisnesinsssseeesessesssssssnsssssnses 1174
WNODE_SINGLE_INSTANCEocormrieeiernrssnresnsisessessssenssnenes 1175
WNODE_SINGLE_ITEM........ooorsverrirerrersesnesssssssessssessssssssssssssssess 1176
WNODE_TOO_SMALL.......osvvumririrriresiesesnsssssssssisesssssssssesesses 1178
Chapter5 WMI Event Trace Structures...........coconmummmmsmsssssassnnas 1179

EVENT_TRACE_HEADERcccccevivvininiiiriiiicncnennnie e 1179

P ART 1

Kernel-Mode Support Routines

Chapter 1 Summary of Kernel-Mode Support Routines 3
Chapter 2 Executive Support Routines 55

Chapter 3 Hardware Abstraction Layer Routines 139
Chapter 4 1/0 Manager Routines 179

Chapter 5 Kernel Routines 297

Chapter 6 Memory Manager Routines 367

Chapter 7 Object Manager Routines 409

Chapter 8 Process Structure Routines 417

Chapter 9 Run-time Library Routines 429

Chapter 10 Security Reference Monitor Routines 527
Chapter 11 ZwXxx Routines 539

Chapter 12 System Structures 587

Chapter 13 IRP Function Codes and IOCTLs 659

CHAPTETR 1

Summary of Kernel-Mode Support Routines

This chapter summarizes the kernel-mode support routines that can be called by Microsofte
Windows NTe/Windowse 2000 and WDM kernel-mode drivers. Drivers can also use rou-
tines provided by a compiler, such as C string manipulation routines.

Support routines are categorized as follows:

Initialization and unload

IRPs

Synchronization

Memory

DMA

PIO

Driver-managed queues

Driver-dedicated system threads and system worker threads
Strings

Data conversions

Access to and access rights on driver-managed objects

Handling errors

Some routines are listed in more than one section or subsection of this chapter.

4 Part1 Kernel-Mode Support Routines

Initialization and Unload

This section summarizes kernel-mode support routines that can be called by drivers from
their DriverEntry, AddDevice, Reinitialize, or Unload routines.

The categories of kernel-mode support routines include those that drivers can call to:

= Get and report hardware configuration information about their devices and the
current platform

= Get and report configuration information and register interfaces in the registry
= Set up certain standard driver routines
» Set up and free the objects and resources they might use

= [Initialize driver-managed internal queues

Hardware Configuration

loGetDeviceProperty

Retrieves device setup information from the registry. Use this routine, rather than accessing
the registry directly, to insulate a driver from differences across platforms and from possible
changes in the registry structure.

loReportDetectedDevice
Reports a nonPnP device to the PnP Manager.

loReportResourceForDetection

Claims hardware resources in the configuration registry for a legacy device. This routine is
for drivers that detect legacy hardware which cannot be enumerated by PnP.

loGetDmaAdapter

Returns a pointer to the DMA adapter structure that represents either the DMA channel to
which a device is connected or the driver's busmaster adapter.

loGetConfigurationinformation

Returns a pointer to the I/O Manager's configuration information structure, which indicates
the number of disk, floppy, CD-ROM, tape, SCSI HBAs, serial, and parallel device objects
that have already been named by previously loaded drivers, as well as whether certain ad-
dress ranges have been claimed by "AT" disk-type drivers.

HalExamineMBR
Returns data from the master boot record (MBR) of a disk.

Chapter 1 Summary of Kernel-Mode Support Routines 5

loReadPartitionTable

Returns a list of partitions on a disk with a given sector size.

loInvalidateDeviceRelations

Notifies the PnP Manager that the relations for a device have changed. The types of device
relations include bus relations, ejection relations, removal relations, and the target device
relation.

loInvalidateDeviceState

Notifies the PnP Manager that some aspect of the PnP state of a device has changed. In
response, the PnP Manager sends an IRP_MN_QUERY_PNP_DEVICE_STATE to the
device stack.

loRegisterPlugPlayNotification

Registers a driver callback routine to be called when a PnP event of the specified category
occurs.

loUnregisterPlugPlayNotification
Removes the registration of a driver's callback routine for a PnP event.

loRequestDeviceEject

Notifies the PnP Manager that the device eject button was pressed. This routine reports a
request for device eject, not media eject.

loReportTargetDeviceChange

Notifies the PnP Manager that a custom event has occurred on a device. The PnP Manager
sends notification of the event to drivers that registered for notification on the device.

Registry
loGetDeviceProperty

Retrieves device setup information from the registry. Use this routine, rather than accessing
the registry directly, to insulate a driver from differences across platforms and from possible
changes in the registry structure.

loOpenDevicelnterfaceRegistryKey
Returns a handle to a registry key for storing information about a particular device interface.

loOpenDeviceRegistryKey

Returns a handle to a device-specific or a driver-specific registry key for a particular device
instance.

Part 1 Kernel-Mode Support Routines

loRegisterDevicelnterface

Registers device functionality (a device interface) that a driver will enable for use by appli-
cations or other system components. The I/O Manager creates a registry key for the device
interface. Drivers can access persistent storage under this key using IoOpenDevice-
InterfaceRegistryKey.

loSetDevicelnterfaceState

Enables or disables a previously registered device interface. Applications and other system
components can open only interfaces that are enabled.

RtICheckRegistryKey
Returns STATUS_SUCCESS if a key exists in the registry along the given relative path.

RtiCreateRegistryKey
Adds a key object in the registry along the given relative path.

RtlQueryRegistryValues

Gives the driver-supplied QueryRegistry callback (read only) access to the entries for the
specified value name along the specified relative path in the registry after the QueryRegistry
routine is given control.

RtIWriteRegistryValue

Writes caller-supplied data into the registry along the specified relative path at the given
value name.

RtiDeleteRegistryValue

Removes the specified value name (and the associated value entries) from the registry along
the given relative path.

InitializeObjectAttributes

Sets up a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a
ZwCreateXxx or ZwOpenXxx routine.

ZwCreateKey

Creates a new key in the registry with the given object's attributes, allowed access, and
creation options (such as whether the key is created again when the system is booted).
Alternatively, opens an existing key and returns a handle for the key object.

ZwOpenKey

Returns a handle for a key in the registry given the object's attributes (which must include
a name for the key) and the desired access to the object.

Chapter 1 Summary of Kernel-Mode Support Routines 7

ZwQueryKey

Returns information about the class of a key, and the number and sizes of its subkeys. This
information includes, for example, the length of subkey names and the size of value entries.

ZwEnumerateKey
Returns the specified information about the subkeys of an opened key in the registry.

ZwEnumerateValueKey

Returns the specified information about the value entry, as selected by a zero-based index,
of an opened key in the registry.

ZwQueryValueKey

Returns the value entry, as selected by a zero-based index, for an opened key in the registry.

ZwSetValueKey

Replaces (or creates) a value entry for an opened key in the registry.

ZwFlushKey

Forces changes made by ZwCreateKey or ZwSetValueKey for the opened key object to be
written to disk.

ZwDeleteKey

Removes a key and its value entries from the registry as soon as the key is closed.

ZwClose

Releases the handle for an opened object, causing the handle to become invalid and
decrementing the reference count of the object handle.

Standard Driver Routines

loRegisterDriverReinitialization

Sets up the driver-supplied Reinitialize routine, together with its context, so that the
Reinitialize routine is called after each subsequently loaded driver's DriverEntry routine
returns control.

loConnectinterrupt

Registers an ISR and sets up interrupt objects using values supplied in the PnP IRP_MN_
START_DEVICE request. Returns a pointer to a set of interrupt objects that must be passed,
along with the driver's SynchCritSection entry point, to KeSynchronizeExecution.

loDisconnectinterrupt
Releases a driver's interrupt objects.

Part 1 Kernel-Mode Support Routines

lolnitializeDpcRequest

Associates a driver-supplied DpcForlsr routine with a given device object, so that the Dpc-
Forlsr can complete interrupt-driven I/O operations.

KelnitializeDpc
Initializes a DPC object, setting up a driver-supplied CustomDpc routine that can be called
with a given context.

KelnitializeTimer
Initializes a notification timer object to the Not-Signaled state.

KelnitializeTimerEx
Initializes a notification or synchronization timer object to the Not-Signaled state.

lolnitializeTimer

Associates a timer with the given device object and registers a driver-supplied IoTimer
routine for the device object.

MmLockPagableCodeSection

Locks a set of driver routines marked with a special compiler directive into system space.
This operation can occur during driver initialization but usually occurs in the driver's
DispatchCreate routine.

MmLockPagableDataSection

Locks a named data section, which is marked with a special compiler directive, into system
space if that data is used infrequently, predictably, and at an IRQL less than DISPATCH_
LEVEL.

MmLockPagableSectionByHandle

Locks a pageable section into system memory using a handle returned from MmLock-
PagableCodeSection or MmLockPagableDataSection.

MmUnlockPagablelmageSection

Releases a set of driver routines or a set of data that was locked into nonpaged system space
when the driver is no longer processing IRPs.

MmPageEntireDriver

Allows a driver to page out all of its code and data, regardless of the attributes of the various
sections in the driver's image.

MmResetDriverPaging

Resets a driver's pageable status to that specified by the sections which make up the driver's
image.

Chapter 1 Summary of Kernel-Mode Support Routines 9

Objects and Resources

loCreateDevice

Initializes a device object, which represents a physical, virtual, or logical device for which
the driver is being loaded into the system. Then it allocates space for the driver-defined
device extension associated with the device object.

loDeleteDevice

Removes a device object from the system when the underlying device is removed from the
system.

loGetDeviceObjectPointer

Requests access to a named device object and returns a pointer that device object if the re-
quested access is granted. Also returns a pointer to the file object referenced by the named
device object. In effect, this routine establishes a connection between the caller and the next-
lower-level driver.

loAttachDeviceToDeviceStack

Attaches the caller's device object to the highest device object in a chain of drivers and
returns a pointer to the previously highest device object. I/O requests bound for the target
device are routed first to the caller.

loGetAttachedDeviceReference

Returns a pointer to the highest level device object in a driver stack and increments the
reference count on that object.

loDetachDevice
Releases an attachment between the caller's device object and a target driver's device object.

loAllocateDriverObjectExtension
Allocates a per-driver context area with a given unique identifier.

loGetDriverObjectExtension
Retrieves a previously allocated per-driver context area.

loRegisterDevicelnterface

Registers device functionality (a device interface) that a driver will enable for use by ap-
plications or other system components. The /O Manager creates a registry key for the
device interface. Drivers can access persistent storage under this key using IoOpenDevice-
InterfaceRegistryKey.

lolsWdmVersionAvailable
Checks whether a given WDM version is supported by the operating system.

10

Part 1 Kernel-Mode Support Routines

loDeleteSymbolicLink

Releases a symbolic link between a device object name and a user-visible name.

loAssignArcName

Sets up a symbolic link between a named device object (such as a tape, floppy, or
CD-ROM) and the corresponding ARC name for the device.

loDeassignArcName
Releases the symbolic link created by calling IoAssignArcName.

loSetShareAccess

Sets the access allowed to a given file object that represents a device. (Only highest-level
drivers can call this routine.)

loConnectinterrupt

Registers a driver's ISR according to the parameters supplied in the IRP_MN_START_
DEVICE request. Returns a pointer to a set of allocated, initialized, and connected interrupt
objects that is used as an argument to KeSynchronizeExecution.

loDisconnectinterrupt
Releases a driver's interrupt objects when the driver unloads.

loReadPartitionTable
Returns a list of partitions on a disk with a given sector size.

loSetPartitioninformation
Sets the partition type and number for a (disk) partition.

loWritePartitionTable

Writes partition tables for a disk, given the device object that represents the disk, the sector
size, and a pointer to a buffer containing the drive layout structure.

loCreateController

Initializes a controller object that represents a physical device controller which is shared by
two or more similar devices that have the same driver, and specifies the size of the controller
extension.

loDeleteController
Removes a controller object from the system.

KelnitializeSpinLock
Initializes a variable of type KSPIN_LOCK.

Chapter 1 Summary of Kernel-Mode Support Routines 11

KelnitializeDpc
Initializes a DPC object, setting up a driver-supplied CustomDpc routine that can be called

with a given context.

KelnitializeTimer
Initializes a notification timer object to the Not-Signaled state.

KelnitializeTimerEx
Initializes a notification or synchronization timer object to the Not-Signaled state.

KelnitializeEvent

Initializes an event object as a synchronization (single waiter) or notification (multiple
waiters) type event and sets up its initial state (Signaled or Not-Signaled).

ExInitializeFastMutex

Initializes a fast mutex variable that is used to synchronize mutually exclusive access to
a shared resource by a set of threads.

KelnitializeMutex
Initializes a mutex object at a given level number as set to the Signaled state.

KelnitializeSemaphore
Initializes a semaphore object to a given count and specifies an upper bound for the count.

loCreateNotificationEvent

Initializes a named notification event to be used to synchronize access between two or more
components. Notification events are not automatically reset.

loCreateSynchronizationEvent

Initializes a named synchronization event to be used to serialize access to hardware between
two otherwise unrelated drivers.

PsCreateSystemThread

Creates a kernel-mode thread that is associated with a given process object or with the
default system process. Returns a handle for the thread.

PsTerminateSystemThread

Terminates the current thread and satisfies as many waits as possible for the current thread
object.

KeSetBasePriorityThread

Sets up the run-time priority, relative to the system process, for a driver-created thread.

12

Part 1 Kernel-Mode Support Routines

KeSetPriorityThread

Sets up the run-time priority for a driver-created thread with a real-time priority attribute.

MmIsThisAnNtAsSystem

Returns TRUE if the current platform is a server, indicating that more resources are likely to
be necessary to process I/O requests than if the machine were a client.

MmQuerySystemSize

Returns an estimate (small, medium, or large) of the amount of memory available on the
current platform.

ExinitializeNPagedLookasideList

Initializes a lookaside list of nonpaged memory. After a successful initialization, fixed-size
blocks can be allocated from and freed to the lookaside list.

ExInitializePagedLookasideList

Initializes a lookaside list of paged memory. After a successful initialization, fixed-size
blocks can be allocated from and freed to the lookaside list.

ExInitializeResourceLite

Initializes a resource, for which the caller provides the storage, to be used for synchro-
nization by a set of threads.

ExReinitializeResourceLite
Reinitializes an existing resource variable.

ExDeleteResourcelLite
Deletes a caller-initialized resource from the system's resource list.

ObReferenceObjectByHandle

Returns a pointer to the object body and handle information (attributes and granted access
rights), given the handle for an object, the object's type, and a mask. Specifies the desired
access to the object and the preferred access mode. A successful call increments the refer-
ence count for the object.

ObReferenceObjectByPointer

Increments the reference count for an object so the caller can ensure that the object is not
removed from the system while the caller is using it.

ObReferenceObject

Increments the reference count for an object, given a pointer to the object.

Chapter 1 Summary of Kernel-Mode Support Routines 13

ObDereferenceObject

Releases a reference to an object (decrements the reference count), given a pointer to the
object body.

RtlInitString

Initializes a counted string in a buffer.

RtlinitAnsiString

Initializes a counted ANSI string in a buffer.

RtlInitUnicodeString

Initializes a counted Unicode string in a buffer.

InitializeObjectAttributes

Initializes a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a Zw-
CreateXxx or ZwQOpenXxx routine.

ZwCreateDirectoryObject

Creates or opens a directory object with a specified set of object attributes and requests one
or more types of access for the caller. Returns a handle for the directory object.

ZwCreateFile

Creates or opens a file object that represents a physical, logical, or virtual device, a direc-
tory, a data file, or a volume. Returns a handle for the file object.

ZwCreateKey

Creates or opens a key object in the registry and returns a handle for the key object.

ZwDeleteKey
Deletes an existing, open key in the registry after the last handle for the key is closed.

ZwMakeTemporaryObject

Resets the "permanent” attribute of an opened object, so that the object and its name can be
deleted when the reference count for the object becomes zero.

ZwClose

Releases the handle for an opened object, causing the handle to become invalid, and decre-
ments the reference count of the object handle.

PsGetVersion

Indicates whether the driver is running on a free or checked build of Windows NT/
Windows 2000, and optionally supplies information about the operating system version
and build number.

14

Part 1 Kernel-Mode Support Routines

ObGetObjectSecurity

Returns a buffered security descriptor for a given object.

ObReleaseObjectSecurity
Releases the security descriptor returned by ObGetObjectSecurity.

Initializing Driver-Managed Queues

IRPs

KelnitializeSpinLock
Initializes a variable of type KSPIN_LOCK. An initialized spin lock is a required parameter
to the Ex..InterlockedList routines.

InitializeListHead
Sets up a queue header for a driver's internal queue, given a pointer to driver-supplied
storage for the queue header and queue.

ExInitializeSListHead

Sets up the queue header for a sequenced, interlocked, singly-linked list.

KelnitializeDeviceQueue

Initializes a device queue object to a Not Busy state, setting up an associated spin lock for
multiprocessor-safe access to device queue entries.

This section describes kernel-mode support routines that drivers can call:
= While processing IRPs
= To allocate and set up IRPs for requests from higher-level drivers to lower drivers

= To use file objects

Processing IRPs

loGetCurrentirpStackLocation
Returns a pointer to the caller's I/O stack location in a given IRP.

loGetNextlrpStackLocation

Returns a pointer to the next-lower-level driver's I/O stack location in a given IRP.

Chapter 1 Summary of Kernel-Mode Support Routines 15

loCopyCurrentirpStackLocationToNext

Copies the IRP stack parameters from the current stack location to the stack location of the
next-lower driver and allows the current driver to set an I/O completion routine.

loSkipCurrentirpStackLocation

Copies the IRP stack parameters from the current stack location to the stack location of the
next-lower driver and does not allow the current driver to set an I/O completion routine.

loGetRelatedDeviceObject

Returns a pointer to the device object represented by a given file object.

loGetFunctionCodeFromCtiCode
Returns the value of the function field within a given IOCTL_XXX or FSCTL_XXX.

loSetCompletionRoutine

Registers a driver-supplied IoCompletion routine for an IRP, so the IoCompletion routine
is called when the next-lower-level driver has completed the requested operation in one or
more of the following ways: successfully, with an error, or by canceling the IRP.

loCallDriver
Sends an IRP to a lower-level driver.

PoCallDriver
Sends an IRP with major function code IRP_MJ_POWER to the next-lower driver.

loMarkirpPending

Marks a given IRP indicating that STATUS_PENDING was returned because further
processing is required by another driver routine or by a lower-level driver.

loStartPacket

Calls the driver's Startlo routine with the given IRP for the given device object or inserts the
IRP into the device queue if the device is already busy, specifying whether the IRP is can-
celable.

loAcquireCancelSpinLock
Synchronizes cancelable state transitions for IRPs in a multiprocessor-safe manner.

loSetCancelRoutine

Sets or clears the Cancel routine in an IRP. Setting a Cancel routine makes an IRP
cancelable.

16

Part1 Kernel-Mode Support Routines

loReleaseCancelSpinLock

Releases the cancel spin lock when the driver has changed the cancelable state of an IRP or
releases the cancel spin lock from the driver's Cancel routine.

loCancellrp
Marks an IRP as canceled.

loReadPartitionTable

Returns a list of partitions on a disk with a given sector size.

loSetPartitioninformation
Sets the partition type and number for a (disk) partition.

loWritePartitionTable

Writes partition tables for a disk, given the device object representing the disk, the sector
size, and a pointer to a buffer containing the drive geometry.

loAllocateErrorLogEntry

Allocates and initializes an error log packet; returns a pointer so that the caller can supply
error-log data and call IoWriteErrorLogEntry with the packet.

loWriteErrorLogEntry

Queues a previously allocated and filled-in error log packet to the system error logging
thread.

lolsErrorUserinduced

Returns a Boolean value indicating whether an I/O request failed due to one of the
following conditions: STATUS_IO_TIMEOUT, STATUS_DEVICE_NOT_READY,
STATUS_UNRECOGNIZED_MEDIA, STATUS_VERIFY_REQUIRED, STATUS _
WRONG_VOLUME, STATUS_MEDIA_WRITE_PROTECTED, or STATUS_NO_
MEDIA_IN_DEVICE. If the result is TRUE, a removable-media driver must call
IoSetHardErrorOrVerifyDevice before completing the IRP.

loSetHardErrorOrVerifyDevice

Supplies the device object for which the given IRP was failed due to a user-induced error,
such as supplying the incorrect media for the requested operation or changing the media
before the requested operation was completed. A file system driver uses the associated
device object to notify the user, who can then correct the error or retry the operation.

loGetDeviceToVerify

Returns a pointer to the device object, representing a removable-media device that is the
target of the given thread's I/O request. Useful only to file systems or other highest-level
drivers. '

Chapter 1 Summary of Kernel-Mode Support Routines 17

loRaiseHardError

Notifies the user that the given IRP was failed on the given device object for an optional
VPB, so that the user can correct the error or retry the operation.

loRaiselnformationalHardError

Notifies the user of an error, providing an I/O error status and an optional string supplying
more information.

ExRaiseStatus

Raises an error stjatus and causes a caller-supplied structured exception handler to be called.
Useful only to highest-level drivers that supply exception handlers, in particular to file
systems.

IoStartNextPacket

Dequeues the next IRP for a given device object, specifies whether the IRP is cancelable,
and calls the driver's Startlo routine.

loStartNextPacketByKey

Dequeues the next IRP for a device object according to a specified sort-key value, specifies
whether the IRP is cancelable, and calls the driver's Startlo routine.

loCompleteRequest

Completes an I/O request, giving a priority boost to the original caller and returning a
given IRP to the I/O system for disposal: either to call any IoCompletion routines supplied
by higher-level drivers, or to return status to the original requestor of the operation.

loGetCurrentProcess
Returns a pointer to the current process. Useful only to highest-level drivers.

loGetlnitialStack

Returns the initial base address of the current thread's stack. Useful only to highest-level
drivers.

loGetRemainingStackSize
Returns the amount of available stack space. Useful only to highest-level drivers.

loGetStackLimits

Returns the boundaries of the current thread's stack frame. Useful only to highest-level
drivers.

18 Part 1 Kernel-Mode Support Routines

Driver-Allocated IRPs

loBuildAsynchronousFsdRequest

Allocates and sets up an IRP that specifies a major function code (IRP_MJ_PNP, IRP_
MJ_READ, IRP_MJ_WRITE, IRP_MJ_SHUTDOWN, or IRP_MJ_FLUSH_BUFFERS)
with a pointer to:

The lower driver's device object on which the I/O should occur

A pointer to a buffer which will contain the data to be read or which contains the
data to be written

The length of the buffer in bytes
The starting offset on the media

The I/0 status block where the called driver can return status information and the
caller's IoCompletion routine can access it

Returns a pointer to the IRP so the caller can set any necessary minor function code and set
up its JoCompletion routine before sending the IRP to the target driver.

loBuildSynchronousFsdRequest

Allocates and sets up an IRP specifying a major function code IRP_MJ_PNP, IRP_MJ_
READ, IRP_MJ_WRITE, IRP_MJ_SHUTDOWN, or IRP_MJ_FLUSH_BUFFERS) with
a pointer to:

The lower driver's device object on which the I/0 should occur

A buffer which will contain the data to be read or which contains the data to be
written

The length of the buffer in bytes
The starting offset on the media

An event object to be set to the Signaled state when the requested operation
completes

The 1/0 status block where the called driver can return status information and the
caller's IoCompletion routine can access it.

Returns a pointer to the IRP so the caller can set any necessary minor function code and set
up its IoCompletion routine before sending the IRP to the target driver.

Chapter 1 Summary of Kernel-Mode Support Routines 19

loBuildDeviceloControlRequest

Allocates and sets up an IRP specifying a major function code (either IRP_MJ_
INTERNAL_DEVICE_CONTROL or IRP_MJ_DEVICE_CONTROL) with an optional
input or output buffer; a pointer to the lower driver's device object; an event to be set to the
Signaled state when the requested operation completes; and an I/O status block to be set by
the driver that receives the IRP. Returns a pointer to the IRP so the caller can set the appro-
priate IOCTL_XXX before sending the IRP to the next-lower-level driver.

PoRequestPowerirp

Allocates and initializes an IRP with major function code IRP_MJ_POWER and then sends
the IRP to the top-level driver in the device stack for the specified device object.

loSizeOflrp

Returns the size in bytes required for an IRP with a given count of I/O stack locations.

loAllocatelrp

Allocates an IRP, given the number of I/O stack locations (optionally, for the caller, but
at least one for each driver layered under the caller) and whether to charge quota against
the caller. Returns a pointer to an IRP in nonpaged system space if successful; otherwise,
returns NULL.

lolnitializelrp

Initializes an IRP, given a pointer to an already allocated IRP, its length in bytes, and its
number of I/O stack locations.

loSetNextirpStackLocation

Sets the current IRP stack location to the caller's location in an IRP. The stack location
must have been allocated by a preceding call to IoAllocatelrp that specified a stack-size
argument large enough to give the caller its own stack location.

loAllocateMd|

Allocates an MDL large enough to map the starting address and length supplied by the
caller; optionally associates the MDL with a given IRP.

loBuildPartialMd|

Builds an MDL for the specified starting virtual address and length in bytes from a given
source MDL. Drivers that split large transfer requests into a number of smaller transfers can
call this routine.

loFreeMdl
Releases a given MDL allocated by the caller.

20

Part 1 Kernel-Mode Support Routines

loMakeAssociatedirp

Allocates and initializes an IRP to be associated with a master IRP sent to the highest-level
driver, allowing the driver to "split" the original request and send associated IRPs on to
lower-level drivers or to the device.

loSetCompletionRoutine

Registers a driver-supplied IoCompletion routine with a given IRP, so that the Io-
Completion routine is called when lower-level drivers have completed the request. The
IoCompletion routine lets the caller release the IRP it allocated with IoAllocatelrp or
IoBuildAsynchronousFsdRequest; to release any other resources it allocated to set up
an IRP for lower drivers; and to perform any I/O completion processing necessary.

loCallDriver
Sends an IRP to a lower-level driver.

loFreelrp
Releases an IRP that was allocated by the caller.

loReuselrp
Reinitializes for reuse an IRP that was previously allocated by IoAllocatelrp.

File Objects

InitializeObjectAttributes

Initializes a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a Zw-
CreateXxx or ZwOpenXxx routine.

ZwCreateFile

Creates or opens a file object representing a physical, logical, or virtual device, a directory,
a data file, or a volume.

ZwQueryinformationFile
Returns information about the state or attributes of an open file.

loGetFileObjectGenericMapping

Returns information about the mapping between generic access rights and specific access
rights for file objects.

ZwReadFile

Returns data from an open file.

ZwSetInformationFile
Changes information about the state or attributes of an open file.

Chapter 1 Summary of Kernel-Mode Support Routines

21

ZwWriteFile

Transfers data to an open file.

ZwClose

Releases the handle for an opened object, causing the handle to become invalid and
decrementing the reference count of the object handle.

Synchronization

This section describes the kernel-mode support routines that drivers can call to:

= Synchronize the execution of their own standard driver routines

= Temporarily change the current IRQL for a call to a support routine or that return

the current IRQL

» Synchronize access to resources with spin locks or to perform interlocked
operations without spinlocks

= Manage time-outs or determine system time

» Use system threads or to manage synchronization within a non-arbitrary thread

context

Driver Routines and I/O Objects
KeSynchronizeExecution

Synchronizes the execution of a driver-supplied SynchCritSection routine with that of the

ISR associated with a set of interrupt objects, given a pointer to the interrupt objects.

loRequestDpc

Queues a driver-supplied DpcForlsr routine to complete interrupt-driven I/O processing at

a lower IRQL.

KelnsertQueueDpc

Queues a DPC to be executed as soon as the IRQL of a processor drops below DISPATCH _

LEVEL; returns FALSE if the DPC object is already queued.

KeRemoveQueueDpc

Removes a given DPC object from the DPC queue; returns FALSE if the object is not in

the queue.

22

Part 1 Kernel-Mode Support Routines

KeSetimportanceDpc

Controls how a particular DCP is queued and, to some degree, how soon the DPC routine
is run.

KeSetTargetProcessorDpc
Controls on which processor a particular DCP subsequently will be queued.

AllocateAdapterChannel

Connects a device object to an adapter object and calls a driver-supplied AdapterControl
routine to carry out an I/O operation through the system DMA controller or a busmaster
adapter as soon as the appropriate DMA channel and any necessary map registers are
available. (This routine reserves exclusive access to a DMA channel and map registers for
the specified device.)

FreeAdapterChannel

Releases an adapter object, representing a system DMA channel, and optionally releases
map registers, if any were allocated.

FreeMapRegisters

Releases a set of map registers that were saved from a call to AllocateAdapterChannel,
after the registers have been used by IoMapTransfer and the busmaster DMA transfer is
complete.

loAllocateController

Connects a device object to a controller object and calls a driver-supplied ControllerControl
routine to carry out an I/O operation on the device controller as soon as the controller is not
busy. (This routine reserves exclusive access to the hardware controller for the specified
device.)

loFreeController

Releases a controller object, provided that all device operations queued to the controller for
the current IRP have completed.

loStartTimer

Enables the timer for a given device object and calls the driver-supplied IoTimer routine
once per second thereafter.

loStopTimer

Disables the timer for a given device object so that the driver-supplied IoTimer routine is
not called unless the driver re-enables the timer.

Chapter 1 Summary of Kernel-Mode Support Routines 23

KeSetTimer

Sets the absolute or relative interval at which a timer object will be set to the Signaled state
and optionally supplies a timer DPC to be executed after the interval expires.

KeSetTimerEx

Sets the absolute or relative interval at which a timer object will be set to the Signaled state,
optionally supplies a timer DPC to be executed when the interval expires, and optionally
supplies a recurring interval for the timer.

KeCancelTimer

Cancels a timer object before the interval passed to KeSetTimer expires; dequeues a timer
DPC before the timer interval, if any was set, expires.

KeReadStateTimer

Returns whether a given timer object is set to the Signaled state.

loStartPacket

Calls the driver's Startlo routine with the given IRP for the given device object or inserts
the IRP into the device queue if the device is already busy, specifying whether the IRP is
cancelable.

loStartNextPacket

Dequeues the next IRP for a given device object, specifying whether the IRP is cancelable,
and calls the driver's Startlo routine.

loStartNextPacketByKey

Dequeues the next IRP, according to the specified sort-key value, for a given device object.
Specifies whether the IRP is cancelable and cails the driver's StartIo routine.

loSetCompletionRoutine

Registers a driver-supplied IoCompletion routine with a given IRP, so the IToCompletion
routine is called when the next-lower-level driver has completed the requested operation in
one or more of the following ways: successfully, with an error, or by canceling the IRP.

loSetCancelRoutine

Sets or clears the Cancel routine in an IRP. Setting a Cancel routine makes an IRP
cancelable.

KeStallExecutionProcessor
Stalls the caller (a device driver) for a given interval on the current processor.

24

Part 1 Kernel-Mode Support Routines

IRQL

ExAcquireResourceExclusiveLite

Acquires an initialized resource for exclusive access by the calling thread and optionally
waits for the resource to be acquired.

ExTryToAcquireResourceExclusiveL.ite
Acquires a given resource for exclusive access immediately or returns FALSE.

ExAcquireResourceSharedLite

Acquires an initialized resource for shared access by the calling thread and optionally waits
for the resource to be acquired.

ExAcquireSharedStarveExclusive

Acquires a given resource for shared access without waiting for any pending attempts to
acquire exclusive access to the same resource.

ExAcquireSharedWaitForExclusive

Acquires a given resource for shared access, optionally waiting for any pending exclusive
waiters to acquire and release the resource first.

ExReleaseResourceForThreadLite
Releases a given resource that was acquired by the given thread.

ZwReadFile

Reads data from an open file. If the caller opened the file object with certain parameters,
the caller can wait on the file handle for completion of the 1/0.

ZwWriteFile

Writes data to an open file. If the caller opened the file object with certain parameters, the
caller can wait on the file handle for completion of the I/O.

KeRaiselrql

Raises the hardware priority to a given IRQL value, thereby masking off interrupts of
equivalent or lower IRQL on the current processor.

KeRaiselrgiToDpcLevel

Raises the hardware priority to IRQL DISPATCH_LEVEL, thereby masking off interrupts
of equivalent or lower IRQL on the current processor.

KelLowerirqg|
Restores the IRQL on the current processor to its original value.

Chapter 1 Summary of Kernel-Mode Support Routines 25

KeGetCurrentirql

Returns the current hardware priority IRQL value.

Spin Locks and Interlocks

loAcquireCancelSpinLock
Synchronizes cancelable state transitions for IRPs in a multiprocessor-safe manner.

loSetCancelRoutine

Sets or clears the Cancel routine in an IRP during a cancelable state transition. Setting a
Cancel routine makes an IRP cancelable.

loReleaseCancelSpinLock

Releases the cancel spin lock when the driver has changed the cancelable state of an IRP
or releases the cancel spin lock from the driver's Cancel routine.

KelnitializeSpinLock

Initializes a variable of type KSPIN_LOCK, used to synchronize access to data shared
among nonISR routines. An initialized spin lock also is a required parameter to the Ex-
InterlockedXxx routines.

KeAcquireSpinLock

Acquires a spin lock so the caller can synchronize access to shared data safely on multi-
processor platforms.

KeReleaseSpinLock

Releases a spin lock that was acquired by calling KeAcquireSpinLock and restores the
original IRQL at which the caller was running.

KeAcquireSpinLockAtDpcLevel

Acquires a spin lock, provided that the caller is already running at IRQL DISPATCH_
LEVEL.

KeReleaseSpinLockFromDpcLevel
Releases a spin lock that was acquired by calling KeAcquireSpinLockAtDpcLevel.

Exinterlocked..List

Insert and remove IRPs in a driver-managed internal queue, which is protected by an
initialized spin lock for which the driver provides the storage.

Ke..DeviceQueue

Insert and remove IRPs in a driver-allocated and managed internal device queue object,
which is protected by a built-in spin lock.

26

Part 1 Kernel-Mode Support Routines

ExinterlockedAddUlong

Adds a value to a variable of type ULONG as an atomic operation, using a spin lock to en-
sure multiprocessor-safe access to the variable; returns the value of the variable before the
call occurred.

ExinterlockedAddLargelnteger

Adds a value to a variable of type LARGE_INTEGER as an atomic operation, using a spin
lock to ensure multiprocessor-safe access to the variable; returns the value of the variable
before the call occurred.

InterlockedIincrement

Increments a variable of type LONG as an atomic operation. The sign of the return value
is the sign of the result of the operation.

InterlockedDecrement

Decrements a variable of type LONG as an atomic operation. The sign of the return value is
the sign of the result of the operation.

InterlockedExchange

Sets a variable of type LONG to a specified value as an atomic operation; returns the value
of the variable before the call occurred.

InterlockedExchangeAdd

Adds a value to a given integer variable as an atomic operation; returns the value of the
variable before the call occurred.

InterlockedCompareExchange

Compares the values referenced by two pointers. If the values are equal, resets one of the
values to a caller-supplied value in an atomic operation.

InterlockedCompareExchangePointer

Compares the pointers referenced by two pointers. If the pointer values are equal, resets one
of the values to a caller-supplied value in an atomic operation.

ExinterlockedCompareExchange64

Compares one integer variable to another and, if they are equal, resets the first variable to a
caller-supplied ULONGLONG-type value as an atomic operation.

KeGetCurrentProcessorNumber
Returns the current processor number when debugging spin lock usage in SMP machines.

Chapter 1 Summary of Kernel-Mode Support Routines 27

Timers

lolnitializeTimer

Associates a timer with the given device object and registers a driver-supplied IoTimer
routine for the device object.

loStartTimer

Enables the timer for a given device object and calls the driver-supplied IoTimer routine
once every second.

loStopTimer

Disables the timer for a given device object so the driver-supplied IoTimer routine is not
called unless the driver re-enables the timer.

KelnitializeDpc

Initializes a DPC object and sets up a driver-supplied CustomTimerDpc routine that can be
called with a given context.

KelnitializeTimer
Initializes a notification timer object to the Not-Signaled state.

KelnitializeTimerEx
Initializes a notification or synchronization timer object to the Not-Signaled state.

KeSetTimer

Sets the absolute or relative interval at which a timer object will be set to the Signaled state;
optionally supplies a timer DPC to be executed when the interval expires.

KeSetTimerEx

Sets the absolute or relative interval at which a timer object will be set to the Signaled state;
optionally supplies a timer DPC to be executed when the interval expires; and optionally
supplies a recurring interval for the timer.

KeCancelTimer

Cancels a timer object before the interval passed to KeSetTimer expires; dequeues a timer
DPC before the timer interval, if any was set, expires.

KeReadStateTimer
Returns TRUE if a given timer object is set to the Signaled state.

KeQuerySystemTime

Returns the current system time.

28 Part1 Kernel-Mode Support Routines

KeQueryTickCount

Returns the number of interval-timer interrupts that have occurred since the system was
booted.

KeQueryTimelncrement

Returns the number of 100-nanosecond units that are added to the system time at each
interval-timer interrupt.

KeQuerylinterruptTime
Returns the current value of the system interrupt-time count in 100-nanosecond units.

KeQueryPerformanceCounter
Returns the system performance counter value in hertz.

Driver Threads, Dispatcher Objects, and Resources

KeDelayExecutionThread
Puts the current thread into an alertable or nonalertable wait state for a given interval.

ExInitializeResourceL.ite

Initializes a resource, for which the caller provides the storage, to be used for synchro-
nization by a set of threads (shared readers, exclusive writers).

ExReinitializeResourceLite
Reinitializes an existing resource variable.

ExAcquireResourceExclusiveLite

Acquires an initialized resource for exclusive access by the calling thread and optionally
waits for the resource to be acquired.

ExTryToAcquireResourceExclusiveLite
Either acquires a given resource for exclusive access immediately, or returns FALSE.

ExAcquireResourceSharedLite

Acquires an initialized resource for shared access by the calling thread and optionally waits
for the resource to be acquired.

ExAcquireSharedStarveExclusive

Acquires a given resource for shared access without waiting for any pending attempts to
acquire exclusive access to the same resource.

Chapter 1 Summary of Kernel-Mode Support Routines 29

ExAcquireSharedWaitForExclusive

Acquires a given resource for shared access, optionally waiting for any pending exclusive
waiters to acquire and release the resource first.

ExisResourceAcquiredExclusivelite
Returns whether the calling thread has exclusive access to a given resource.

ExisResourceAcquiredSharedLite
Returns how many times the calling thread has acquired shared access to a given resource.

ExGetExclusiveWaiterCount

Returns the number of threads currently waiting to acquire a given resource for exclusive
access.

ExGetSharedWaiterCount

Returns the number of threads currently waiting to acquire a given resource for shared
access.

ExConvertExclusiveToSharedLite
Converts a given resource from acquired for exclusive access to acquired for shared access.

ExGetCurrentResourceThread
Returns the thread ID of the current thread.

ExReleaseResourceForThreadLite
Releases a given resource that was acquired by the given thread.

ExDeleteResourceLite
Deletes a caller-initialized resource from the system's resource list.

loQueueWorkltem

Queues an initialized work queue item so the driver-supplied routine will be called when a
system worker thread is given control.

KeSetTimer

Sets the absolute or relative interval at which a timer object will be set to the Signaled state,
and optionally supplies a timer DPC to be executed when the interval expires.

KeSetTimerEx

Sets the absolute or relative interval at which a timer object will be set to the Signaled state.
Optionally supplies a timer DPC to be executed when the interval expires and a recurring
interval for the timer.

30

Part 1 Kernel-Mode Support Routines

KeCancelTimer

Cancels a timer object before the interval passed to KeSetTimer expires. Dequeues a timer
DPC before the timer interval (if any) expires.

KeReadStateTimer
Returns TRUE if a given timer object is set to the Signaled state.

KeSetEvent

Returns the previous state of a given event object and sets the event (if not already Signaled)
to the Signaled state.

KeClearEvent
Resets an event to the Not-Signaled state.

KeResetEvent
Returns the previous state of an event object and resets the event to the Not-Signaled state.

KeReadStateEvent

Returns the current state (nonzero for Signaled or zero for Not-Signaled) of a given event
object.

ExAcquireFastMutex

Acquires an initialized fast mutex, possibly after putting the caller into a wait state until it is
acquired, and gives the calling thread ownership with APCs disabled.

ExTryToAcquireFastMutex

Acquires the given fast mutex immediately for the caller with APCs disabled, or returns
FALSE.

ExReleaseFastMutex

Releases ownership of a fast mutex that was acquired with ExAcquireFastMutex or
ExTryToAcquireFastMutex.

ExAcquireFastMutexUnsafe

Acquires an initialized fast mutex, possibly after putting the caller into a wait state until it is
acquired.

ExReleaseFastMutexUnsafe
Releases ownership of a fast mutex that was acquired with ExAcquireFastMutexUnsafe.

Chapter 1 Summary of Kernel-Mode Support Routines 31

KeReleaseMutex

Releases a given mutex object, specifying whether the caller will call one of the KeWaitXxx
routines as soon as KeReleaseMutex returns the previous value of the mutex state (a zero
for Signaled; otherwise, Not-Signaled).

KeReadStateMutex

Returns the current state (one for Signaled or any other value for Not-Signaled) of a given
mutex object.

KeReleaseSemaphore

Releases a given semaphore object. Supplies a (run-time) priority boost for waiting threads
if the release sets the semaphore to the Signaled state. Augments the semaphore count by a
given value and specifies whether the caller will call one of the KeWaitXxx routines as soon
as KeReleaseSemaphore returns.

KeReadStateSemaphore

Returns the current state (zero for Not-Signaled or a positive value for Signaled) of a given
semaphore object. '

KeWaitForSingleObject

Puts the current thread into an alertable or nonalertable wait state until a given dispatcher
object is set to the Signaled state or (optionally) until the wait times out.

KeWaitForMutexObject

Puts the current thread into an alertable or nonalertable wait state until a given mutex is set
to the Signaled state or (optionally) until the wait times out.

KeWaitForMultipleObjects

Puts the current thread into an alertable or nonalertable wait state until any one or all of
a number of dispatcher objects are set to the Signaled state or (optionally) until the wait .
times out.

PsGetCurrentThread

Returns a handle for the current thread.

KeGetCurrentThread

. Returns a pointer to the opaque thread object that represents the current thread.

loGetCurrentProcess
Returns a handle for the process of the current thread.

PsGetCurrentProcess
Returns a pointer to the process of the current thread.

32 Part 1-Kernel-Mode Support Routines

KeEnterCriticalRegion

Temporarily disables the delivery of normal kernel APCs while a highest-level driver is
running in the context of the user-mode thread that requested the current I/O operation.
Special kernel-mode APCs are still delivered.

KeLeaveCriticalRegion

Re-enables, as soon as possible, the delivery of normal kernel-mode APCs that were dis-
abled by a preceding call to KeEnterCriticalRegion.

KeSaveFloatingPointState

Saves the current thread's nonvolatile floating-point context so that the caller can carry out
its own floating-point operations.

KeRestoreFloatingPointState

Restores the previous nonvolatile floating-point context that was saved with KeSave-
FloatingPointState.

ZwSetinformationThread
Sets the priority of a given thread for which the caller has a handle.

PsGetCurrentProcessld
Returns the system-assigned identifier of the current process.

PsGetCurrentThreadld

Returns the system-assigned identifier of the current thread.

PsSetCreateProcessNotifyRoutine

Registers a highest level driver's callback that is subsequently notified whenever a new
process is created or existing process deleted.

PsSetCreateThreadNotifyRoutine

Registers a highest level driver's callback that is subsequently notified whenever a new
thread is created or an existing thread is deleted.

PsSetLoadlmageNotifyRoutine

Registers a callback routine for a highest level system-profiling driver. The callback is
subsequently notified whenever a new image is loaded for execution.

Memory

This section describes the kernel-mode support routines and macros that drivers can call to:

= Allocate and free temporary buffers

Chapter 1 Summary of Kernel-Mode Support Routines 33

= Allocate long-term internal driver buffers

= Manage buffered data or to initialize driver-allocated buffers

= Get mapped addresses and to allocate or manage MDLs (memory descriptor lists)
= Manipulate buffers and MDLs

= Communicate with their respective devices

= Lock and unlock their pageable code or data sections, or that they can call to make
their entire driver pageable

= Set up mapped sections and views of memory

Buffer Management

ExAllocatePool
Allocates (optionally cache-aligned) memory from paged or nonpaged system space.

ExAllocatePoolWithQuota

Allocates pool memory charging quota against the original requestor of the I/O operation.
(Only highest-level drivers can call this routine.)

ExAllocatePoolWithTag

Allocates (optionally cache-aligned) tagged memory from paged or nonpaged system space.
The caller-supplied tag is put into any crash dump of memory that occurs.

ExAllocatePoolWithQuotaTag

Allocates tagged pool memory charging quota against the original requestor of the I/O
operation. The caller-supplied tag is put into any crash dump of memory that occurs. Only
highest-level drivers can call this routine.

ExFreePool
Releases memory to paged or nonpaged system space.

ExinitializeNPagedLookasideList

Initializes a lookaside list of nonpaged memory. After successful initialization of the list,
fixed-size blocks can be allocated from, and freed to, the lookaside list.

ExAllocateFromNPagedLookasideList

Removes the first entry from the specified lookaside list in nonpaged memory. If the look-
aside list is empty, allocates an entry from nonpaged pool. '

34

Part 1 Kernel-Mode Support Routines

ExFreeToNPagedLookasideList

Returns an entry to the specified lookaside list in nonpaged memory. If the list has reached
its maximum size, returns the entry to nonpaged pool.

ExDeleteNPagedLookasideList

Deletes a nonpaged lookaside list.

ExInitializePagedLookasideList

Initializes a lookaside list of paged memory. After successful initialization of the list,
fixed-size blocks can be allocated from and freed to the lookaside list.

ExAllocateFromPagedLookasideList

Removes the first entry from the specified lookaside list in paged memory. If the lookaside
list is empty, allocates an entry from paged pool.

ExFreeToPagedLookasideList

Returns an entry to the specified lookaside list in paged memory. If the list has reached its
maximum size, returns the entry to paged pool.

ExDeletePagedLookasideList
Deletes a paged lookaside list.

MmQuerySystemSize

Returns an estimate (small, medium, or large) of the amount of memory available on the
current platform.

MmlsThisAnNtAsSystem

Returns TRUE if the machine is running as a Windows NT/Windows 2000 server. If this
routine returns TRUE, the caller is likely to require more resources to process I/O requests,
and the machine is a server so it is likely to have more resources available.

Long-Term Internal Driver Buffers

MmAllocateContiguousMemory
Allocates a range of physically contiguous, cache-aligned memory in nonpaged pool.

MmFreeContiguousMemory
Releases a range of physically contiguous memory when the driver unloads.

MmAllocateNonCachedMemory

Allocates a virtual address range of noncached and cache-aligned memory in nonpaged
system space (pool).

Chapter 1 Summary of Kernel-Mode Support Routines 35

MmFreeNonCachedMemory

Releases a virtual address range of noncached memory in nonpaged system space when the
driver unloads.

AllocateCommonBuffer

Allocates and maps a logically contiguous region of memory that is simultaneously
accessible both from the processor and from a device, given access to an adapter object,
the requested length of the memory region to allocate, and access to variables where the
starting logical and virtual addresses of the allocated region are returned. Returns TRUE if
the requested length was allocated. Can be used for continuous busmaster DMA or for
system DMA using the autoinitialize mode of a system DMA controller.

FreeCommonBuffer

Releases an allocated common buffer and unmaps it, given access to the adapter object,
the length, and the starting logical and virtual addresses of the region to be freed when the
driver unloads. Arguments must match those passed in the call to AllocateCommonBuffer.

Buffered Data and Buffer Initialization
RtiCompareMemory

Compares data, given pointers to caller-supplied buffers and the length in bytes for the
comparison. Returns the number of bytes that are equal.

RtlICopyMemory

Copies the data from one caller-supplied buffer to another, given pointers to both buffers
and the length in bytes to be copied.

RtiIMoveMemory

Copies the data from one caller-supplied memory range to another, given pointers to the
base of both ranges and the length in bytes to be copied.

RtiFillMemory

Fills a caller-supplied buffer with the specified UCHAR value, given a pointer to the buffer
and the length in bytes to be filled.

RtiZeroMemory

Fills a buffer with zeros, given a pointer to the caller-supplied buffer and the length in bytes
to be filled.

RtiStoreUshort
Stores a USHORT value at a given address, avoiding alignment faults.

36

Part 1 Kernel-Mode Support Routines

RtiRetrieveUshort

Retrieves a USHORT value at a given address, avoiding alignment faults, and stores the
value at a given address, that is assumed to be aligned.

RtiStoreUlong

Stores a ULONG value at a given address, avoiding alignment faults.

RtiRetrieveUlong

Retrieves a ULONG value at a given address, avoiding alignment faults, and stores the value
at a given address, that is assumed to be aligned.

Address Mappings and MDLs

MmGetPhysicalAddress

Returns the corresponding physical address for a given valid virtual address.

MmGetMdIVirtualAddress

Returns a (possibly invalid) virtual address for a buffer described by a given MDL,; the
returned address, used as an index to a physical address entry in the MDL, can be input to
MapTransfer for drivers that use DMA.

MmGetSystemAddressForMdl

Returns a system-space virtual address that maps the physical pages described by a given
MDL for drivers whose devices must use PIO. If no virtual address exists, one is assigned. If
none are available, a bug check is issued. Windows 2000 drivers should use MmGet-
SystemAddressForMdlSafe instead.

MmGetSystemAddressForMdiSafe

Returns a system-space virtual address that maps the physical pages described by a given
MDL for drivers whose devices must use PIO. If no virtual address exists, one is assigned.

MmBuildMdiForNonPagedPool

Fills in the corresponding physical addresses of a given MDL that specifies a range of
virtual addresses in nonpaged pool.

MmGetMdIByteCount
Returns the length in bytes of the buffer mapped by a given MDL.

MmGetMdIByteOffset
Returns the byte offset within a page of the buffer described by a given MDL.

Chapter 1 Summary of Kernel-Mode Support Routines 37

MmMapLockedPages

Maps already locked physical pages, described by a given MDL, to a returned virtual
address range.

MmUnmapLockedPages
Releases a mapping set up by MmMapLockedPages.

MmisAddressValid

Returns whether a page fault will occur if a read or write operation is done at the given
virtual address.

MmSizeOfMdl|

Returns the number of bytes required for an MDL describing the buffer specified by the
given virtual address and length in bytes.

MmCreateMdl

Allocates and initializes an MDL describing a buffer specified by the given virtual address
and length in bytes; returns a pointer to the MDL.

MmPrepareMdiForReuse
Reinitializes a caller-created MDL for reuse.

MminitializeMd|

Initializes a caller-created MDL to describe a buffer specified by the given virtual address
and length in bytes.

MmMaploSpace

Maps a physical address range to a cached or noncached virtual address range in nonpaged
system space.

MmUnmaploSpace
Unmaps a virtual address range from a physical address range.

MmProbeAndLockPages

Probes the pages specified in an MDL for a particular kind of access, makes the pages
resident, and locks them in memory; returns the MDL updated with corresponding physical
addresses. (Usually, only highest-level drivers call this routine.)

MmUnlockPages
Unlocks the previously probed and locked pages specified in an MDL.

38 Part 1 Kernel-Mode Support Routines

loAllocateMdl

Allocates an MDL large enough to map the starting address and length supplied by the
caller; optionally associates the MDL with a given IRP.

loBuildPartialMdi

Builds an MDL for the specified starting virtual address and length in bytes from a given
source MDL. Drivers that split large transfer requests into a number of smaller transfers can
call this routine.

loFreeMdl
Releases a given MDL allocated by the caller.

Buffer and MDL Management
ADDRESS_AND_SIZE_TO_SPAN_PAGES

Returns the number of pages required to contain a given virtual address and size in bytes.

BYTE_OFFSET

Returns the byte offset of a given virtual address within the page.

BYTES_TO_PAGES

Returns the number of pages necessary to contain a given number of bytes.

PAGE_ALIGN

Returns the page-aligned virtual address for the page that contains a given virtual address.

ROUND_TO_PAGES

Rounds a given size in bytes up to a page-size multiple.

Device Memory Access

For the following, XXX_REGISTER_XXX indicates device memory that is mapped onto
system space, while XXX PORT_XXX indicates device memory in I/O space.

READ_PORT_UCHAR
Reads a UCHAR value from the given I/O port address.

READ_PORT_USHORT
Reads a USHORT value from the given I/O port address.

READ_PORT_ULONG
Reads a ULONG value from the given I/O port address.

Chapter 1 Summary of Kernel-Mode Support Routines

39

READ_PORT_BUFFER_UCHAR
Reads a given count of UCHAR values from the given I/O port into a given buffer.

READ_PORT_BUFFER_USHORT
Reads a given count of USHORT values from the given I/O port into a given buffer.

READ_PORT_BUFFER_ULONG
Reads a given count of ULONG values from the given I/O port into a given buffer.

WRITE_PORT_UCHAR
Writes a given UCHAR value to the given I/O port address.

WRITE_PORT_USHORT
Writes a given USHORT value to the given I/O port address.

WRITE_PORT_ULONG
Writes a given ULONG value to the given I/O port address.

WRITE_PORT_BUFFER_UCHAR
Writes a given count of UCHAR values from a given buffer to the given I/O port.

WRITE_PORT_BUFFER_USHORT
Writes a given count of USHORT values from a given buffer to the given I/O port.

WRITE_PORT_BUFFER_ULONG
Writes a given count of ULONG values from a given buffer to the given I/O port.

READ_REGISTER_UCHAR

Reads a UCHAR value from the given register address in memory space.

READ_REGISTER_USHORT

Reads a USHORT value from the given register address in memory space.

READ_REGISTER_ULONG

Reads a ULONG value from the given register address in memory space.

READ_REGISTER_BUFFER_UCHAR

Reads a given count of UCHAR values from the given register address into the given buffer.

READ_REGISTER_BUFFER_USHORT

Reads a given count of USHORT values from the given register address into the given

buffer.

40

Part 1 Kernel-Mode Support Routines

READ_REGISTER_BUFFER_ULONG

Reads a given count of ULONG values from the given register address into the given buffer.

WRITE_REGISTER_UCHAR

Writes a given UCHAR value to the given register address in memory space.

WRITE_REGISTER_USHORT

Writes a given USHORT value to the given register address in memory space.

WRITE_REGISTER_ULONG

Writes a given ULONG value to the given register address in memory space.

WRITE_REGISTER_BUFFER_UCHAR

Writes a given count of UCHAR values from a given buffer to the given register address.

WRITE_REGISTER_BUFFER_USHORT

Writes a given count of USHORT values from a given buffer to the given register address.

WRITE_REGISTER_BUFFER_ULONG

Writes a given count of ULONG values from a given buffer to the given register address.

Pageable Drivers

MmLockPagableCodeSection

Locks a set of driver routines marked with a special compiler directive into system space.

MmLockPagableDataSection

Locks data marked with a special compiler directive into system space, when that data is
accessed infrequently, predictably, and at an IRQL less than DISPATCH_LEVEL.

MmLockPagableSectionByHandle

Locks a pageable section into system memory using a handle returned from MmLock-
PagableCodeSection or MmLockPagableDataSection.

MmUnlockPagablelmageSection

Releases a section that was previously locked into system space when the driver is no longer
processing IRPs, or when the contents of the section is no longer required.

MmPageEntireDriver

Lets a driver page all of its code and data regardless of the attributes of the various sections
in the driver's image.

Chapter 1 Summary of Kernel-Mode Support Routines 4

MmResetDriverPaging

Resets a driver's pageable status to that specified by the sections which make up the driver's
image.

Sections and Views

InitializeObjectAttributes

Sets up a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a Zw-
CreateXxx or ZwOpenXxx routine.

ZwOpenSection
Obtains a handle for an existing section, provided that the requested access can be allowed.

ZwMapViewOfSection

Maps a view of an open section into the virtual address space of a process. Returns an offset
into the section (base of the mapped view) and the size mapped.

ZwUnMapViewOfSection

Releases a mapped view in the virtual address space of a process.

Access to Structures
ARGUMENT_PRESENT
Returns FALSE if an argument pointer is NULL; otherwise returns TRUE.

CONTAINING_RECORD

Returns the base address of an instance of a structure given the structure type and the
address of a field within it.

FIELD_OFFSET

Returns the byte offset of a named field in a known structure type.

DMA
loGetDmaAdapter

Returns a pointer to an adapter object that represents either the DMA channel to which the
driver’s device is connected or the driver’s busmaster adapter. Also returns the maximum
number of map registers the driver can specify for each DMA transfer.

MmGetMdIVirtualAddress

Returns the base virtual address of a buffer described by a given MDL. The returned
address, used as an index to a physical address entry in the MDL, can be input to Map-
Transfer.

42

Part 1 Kernel-Mode Support Routines

MmGetSystemAddressForMdISafe

Returns a nonpaged system-space virtual address for the base of the memory area described
by an MDL. It maps the physical pages described by the MDL into system space, if they are
not already mapped to system space. WDM drivers should use MmGetSystemAddress-
ForMdl instead.

ADDRESS_AND_SIZE_TO_SPAN_PAGES

Returns the number of pages spanned by the virtual range defined by a virtual address and a
length in bytes. A driver can use this macro to determine whether a transfer request must be
split into partial transfers.

AllocateAdapterChannel

Reserves exclusive access to a DMA channel and map registers for a device. When the
channel and registers are available, this routine calls a driver-supplied AdapterControl
routine to carry out an I/O operation through either the system DMA controller or a bus-
master adapter.

AllocateCommonBuffer

Allocates and maps a logically contiguous region of memory that is simultaneously
accessible from both the processor and a device. This routine returns TRUE if the requested
length was allocated.

FlushAdapterBuffers

Forces any data remaining in either a busmaster adapter’s or the system DMA controller’s
internal buffers to be written into memory or to the device.

FreeAdapterChannel

Releases an adapter object that represents a system DMA channel, and optionally releases
any allocated map registers.

FreeCommonBuffer

Releases and unmaps a previously allocated common buffer. Arguments must match those
passed in an earlier call to AllocateCommonBuffer.

FreeMapRegisters

Releases a set of map registers that were saved from a call to AllocateAdapterChannel.
A driver calls this routine after using the registers in one or more calls to MapTransfer,
flushing the cache by calling FlushAdapterBuffers, and completing the busmaster DMA
transfer. '

GetDmaAlignment
Returns the buffer alignment requirements for a DMA controller or device.

Chapter 1 Summary of Kernel-Mode Support Routines 43

PIO

GetScatterGatherList

Prepares the system for scatter/gather DMA for a device and calls a driver-supplied routine
to carry out the I/O operation. For devices that support scatter/gather DMA, this routine
combines the functionality of AllocateAdapterChannel and MapTransfer.

KeFlushloBuffers

Flushes the memory region described by an MDL from all processors’ caches into memory.

MapTransfer

Sets up map registers for an adapter object previously allocated by AllocateAdapter-
Channel to map a transfer from a locked-down buffer. Returns the logical address of the
mapped region and, for busmaster devices that support scatter/gather, the number of bytes
mapped.

PutDmaAdapter
Frees an adapter object previously allocated by loGetDmaAdapter.

PutScatterGatherList
Frees map registers and scatter/gather list previously allocated by GetScatterGatherList.

ReadDmaCounter

Returns the number of bytes yet to be transferred during the current system DMA operation
(in autoinitialize mode).

MmProbeAndLockPages

Probes the pages specified in an MDL for a particular kind of access, makes the pages
resident, and locks them in memory; returns the MDL updated with corresponding physical
addresses.

MmGetSystemAddressForMdISafe

Returns a system-space virtual address that maps the physical pages described by a given
MDL for drivers whose devices must use PIO. If no virtual address exists, one is assigned.
Windows 98 drivers should use MmGetSystemAddressForMdl instead.

KeFlushloBuffers

Flushes the memory region described by a given MDL from all processors' caches into
memory.

MmUnlockPages
Unlocks the previously probed and locked pages specified in an MDL.

44 Part 1 Kernel-Mode Support Routines

MmMaploSpace

Maps a physical address range to a cached or noncached virtual address range in nonpaged
system space.

MmUnmaploSpace
Unmaps a virtual address range from a physical address range.

Driver-Managed Queues

KelnitializeSpinLock

Initializes a variable of type KSPIN_LOCK. An initialized spin lock is a required parameter
to the Ex..InterlockedList routines. :

InitializeListHead

Sets up a queue header for a driver's internal queue, given a pointer to driver-supplied
storage for the queue header and queue. An initialized queue header is a required parameter
to the ExInterlockedInsert/Remove..List routines.

ExInterlockedinsertTailList

Inserts an entry at the tail of a doubly-linked list, using a spin lock to ensure
multiprocessor-safe access to the list and atomic modification of the list links.

ExiInterlockedInsertHeadList

Inserts an entry at the head of a doubly-linked list, using a spin lock to ensure
multiprocessor-safe access to the list and atomic modification of the links in the list.

ExInterlockedRemoveHeadList

Removes an entry from the head of a doubly-linked list, using a spin lock to ensure
multiprocessor-safe access to the list and atomic modification of the links in the list.

ExinterlockedPopEntryList

Removes an entry from the head of a singly-linked list as an atomic operation, using a
spin lock to ensure multiprocessor-safe access to the list.

ExInterlockedPushEntryList

Inserts an entry at the head of a singly-linked list as an atomic operation, using a spin lock
to ensure multiprocessor-safe access to the list.

IsListEmpty

Returns TRUE if a queue is empty. (This type of doubly-linked list is not protected by a spin
lock, unless the caller explicitly manages synchronization to queued entries with an initial-
ized spin lock for which the caller supplies the storage.)

Chapter 1 Summary of Kernel-Mode Support Routines

InsertTailList
Queues an entry at the end of the list.

InsertHeadList
Queues an entry at the head of the list.

RemoveHeadList
Dequeues an entry at the head of the list.

RemoveTailList
Dequeues an entry at the end of the list.

RemoveEntryList
Returns whether a given entry is in the given list and dequeues the entry if it is.

PushEntryList

Inserts an entry into the queue. (This type of singly-linked list is not protected by a spin
lock, unless the caller explicitly manages synchronization to queued entries with an ini-
tialized spin lock for which the caller supplies the storage.)

PopEntryList

Removes an entry from the queue.

ExinterlockedPopEntrySList

Removes an entry from the head of a sequenced, singly-linked list that was set up with
ExInitializeSListHead.

ExinterlockedPushEntrySList

Queues an entry at the head of a sequenced, singly-linked list that was set up with
ExInitializeSListHead.

ExQueryDepthSList

Returns the number of entries currently queued in a sequenced, singly-linked list.

ExInitializeNPagedLookasideList

Sets up a lookaside list, protected by a system-supplied spin lock, in nonpaged pool from
which the driver can allocate and free blocks of a fixed size.

KelnitializeDeviceQueue

Initializes a device queue object to a not-busy state, setting up an associated spin lock for
multiprocessor-safe access to device queue entries.

46

Part 1 Kernel-Mode Support Routines

KelnsertDeviceQueue

Acquires the device queue spin lock and queues an entry to a device driver if the device
queue is not empty; otherwise, inserts the entry at the tail of the device queue.

KelnsertByKeyDeviceQueue

Acquires the device queue spin lock and queues an entry to a device driver if the device
queue is not empty; otherwise, inserts the entry into the queue according to the given sort-
key value.

KeRemoveDeviceQueue

Removes an entry from the head of a given device queue.

KeRemoveByKeyDeviceQueue

Removes an entry, selected according to the specified sort-key value, from the given device
queue.

KeRemoveEntryDeviceQueue
Determines whether a given entry is in the given device queue and, if so, dequeues the entry.

Driver System Threads

PsCreateSystemThread

Creates a kernel-mode thread associated with a given process object or with the default
system process. Returns a handle for the thread.

PsTerminateSystemThread

Terminates the current thread and satisfies as many waits as possible for the current thread
object.

PsGetCurrentThread

Returns a handle for the current thread.

KeGetCurrentThread

Returns a pointer to the opaque thread object that represents the current thread.

KeQueryPriorityThread

Returns the current priority of a given thread.

KeSetBasePriorityThread

Sets up the run-time priority, relative to the system process, for a driver-created thread.

KeSetPriorityThread

Sets up the run-time priority for a driver-created thread with a real-time priority attribute.

Chapter 1 Summary of Kernel-Mode Support Routines 47

KeDelayExecutionThread
Puts the current thread into an alertable or nonalertable wait state for a given interval.

loQueueWorklitem

Queues an initialized work queue item so the driver-supplied routine will be called when a
system worker thread is given control.

ZwSetInformationThread
Sets the priority of a given thread for which the caller has a handle.

Strings
RtlInitString

Initializes the specified string in a buffer.

RtiinitAnsiString
Initializes the specified ANSI string in a buffer.

RtlinitUnicodeString

Initializes the specified Unicode string in a buffer.

RtlAnsiStringToUnicodeSize

Returns the size in bytes required to hold a Unicode version of a given buffered ANSI
string.

RtlAnsiStringToUnicodeString

Converts a buffered ANSI string to a Unicode string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.) You can also
use the string manipulation routines provided by a compiler to convert ANSI strings to
Unicode.

RtlFreeUnicodeString

Releases a buffer containing a Unicode string, given a pointer to the buffer returned by
RtlAnsiStringToUnicodeString.

RtlUnicodeStringToAnsiString

Converts a buffered Unicode string to an ANSI string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.)

48

Part1 Kernel-Mode Support Routines

RtlFreeAnsiString

Releases a buffer containing an ANSI string, given a pointer to the buffer returned by
RtlUnicodeStringToAnsiString.

RtlAppendUnicodeStringToString

Concatenates a copy of a buffered Unicode string with a buffered Unicode string, given
pointers to both buffers.

RtlAppendUnicodeToString

Concatenates a given input string with a buffered Unicode string, given a pointer to the
buffer.

RtlCopyString

Copies the source string to the destination, given pointers to both buffers, or sets the length
of the destination string (but not the length of the destination buffer) to zero if the optional
pointer to the source-string buffer is NULL.

RtlCopyUnicodeString

Copies the source string to the destination, given pointers to both buffers, or sets the length
of the destination string (but not the length of the destination buffer) to zero if the optional
pointer to the source-string buffer is NULL.

RtlEqualString '
Returns TRUE if the given ANSI alphabetic strings are equivalent.

RtiIEqualUnicodeString
Returns TRUE if the given buffered strings are equivalent.

RtICompareStrirng

Compares two buffered, single-byte character strings and returns a signed value indicating
whether they are equivalent or which is greater.

RtiCompareUnicodeString

Compares two buffered Unicode strings and returns a signed value indicating whether they
are equivalent or which is greater.

RtlUpperString

Converts a copy of a buffered string to uppercase and stores the copy in a destination buffer.

RtiUpcaseUnicodeString

Converts a copy of a buffered Unicode string to uppercase and stores the copy in a
destination buffer.

Chapter 1 Summary of Kernel-Mode Support Routines 49

RtlintegerToUnicodeString

Converts an unsigned integer value in the specified base to one or more Unicode characters
in a buffer.

RtlUnicodeStringTolnteger

RtlUnicodeStringToInteger converts the Unicode string representation of an integer into
its integer equivalent.

Data Conversions

InterlockedExchange

Sets a variable of type LONG to a given value as an atomic operation; returns the original
value of the variable.

RtiConvertLongToLargelnteger
Converts a given LONG value to a LARGE_INTEGER value.

RtiConvertUlongToLargelnteger
Converts a given ULONG value to a LARGE_INTEGER value.

RtiTimeFieldsToTime

Converts information in a TIME_FIELDS structure to system time.

RtiTimeToTimeFields
Converts a system time value into a buffered TIME_FIELDS value.

ExSystemTimeToLocalTime

Adds the time-zone bias for the current locale to GMT system time, converting it to
local time.

ExLocalTimeToSystemTime
Subtracts the time-zone bias from the local time, converting it to GMT system time.

RtlAnsiStringToUnicodeString

Converts a buffered ANSI string to a Unicode string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.)

RtlUnicodeStringToAnsiString

Converts a buffered Unicode string to an ANSI string, given a pointer to the source-string
buffer and the address of caller-supplied storage for a pointer to the destination buffer. (This
routine allocates a destination buffer if the caller does not supply the storage.)

50

Part 1 Kernel-Mode Support Routines

RtlUpperString

Converts a copy of a buffered string to uppercase and stores the copy in a destination buffer.

RtlUpcaseUnicodeString

Converts a copy of a buffered Unicode string to uppercase and stores the copy in a
destination buffer.

RtiCharTolnteger

Converts a single-byte character value into an integer in the specified base.

RtlintegerToUnicodeString

Converts an unsigned integer value in the specified base to one or more Unicode characters
in the given buffer.

RtlUnicodeStringTolnteger

Converts a Unicode string representation of an integer into its integer equivalent.

Access to Driver-Managed Objects

ExCreateCallback

Creates or opens a callback object.

ExNotifyCallback

Calls the callback routines registered with a previously created or opened callback object.

ExRegisterCallback

Registers a callback routine with a previously created or opened callback object, so that the
caller can be notified when conditions defined for the callback occur.

ExUnregisterCallback

Cancels the registration of a callback routine with a callback object.

loRegisterDevicelnterface

Registers device functionality (a device interface) that a driver can enable for use by
applications or other system components.

loSetDevicelnterfaceState

Enables or disables a previously registered device interface. Applications and other system
components can open only interfaces that are enabled.

Chapter 1 Summary of Kernel-Mode Support Routines 51

loGetDevicelnterfaceAlias

Returns the alias device interface of the specified interface class, if the alias exists. Device
interfaces are considered aliases if they are exposed by the same underlying device and have
identical interface reference strings, but are of different interface classes.

loGetDevicelnterfaces

Returns a list of device interfaces of a particular device interface class (such as all devices
on the system that support a HID interface).

loGetFileObjectGenericMapping

Returns information about the mapping between generic access rights and specific access
rights for file objects.

loSetShareAccess

Sets the access allowed to a given file object representing a device. (Only highest-level
drivers can call this routine.)

loCheckShareAccess

Checks whether a request to open a file object specifies a desired access that is compatible
with the current shared access permissions for the open file object. (Only highest-level
drivers can call this routine.)

loUpdateShareAccess

Modifies the current share-access permissions on the given file object. (Only highest-level
drivers can call this routine.)

loRemoveShareAccess

Restores the shared-access permissions on the given file object that were modified by a
preceding call to loUpdateShareA ccess.

RtiLengthSecurityDescriptor

Returns the size in bytes of a given security descriptor.

RtiValidSecurityDescriptor

Returns whether a given security descriptor is valid.

RtiCreateSecurityDescriptor

Initializes a new security descriptor to an absolute format with default values (in effect, with
no security constraints).

RtiSetDaclSecurityDescriptor

Sets the discretionary ACL information for a given security descriptor in absolute format.

52

Part1 Kernel-Mode Support Routines

SeAssignSecurity

Builds a security descriptor for a new object, given the security descriptor of its parent
directory (if any) and an originally requested security for the object.

SeDeassignSecurity

Deallocates the memory associated with a security descriptor that was created with
SeAssignSecurity.

SeValidSecurityDescriptor

Returns whether a given security descriptor is structurally valid.

SeAccessCheck

Returns a Boolean indicating whether the requested access rights can be granted to an object
protected by a security descriptor and, possibly, a current owner.

SeSinglePrivilegeCheck

Returns a Boolean indicating whether the current thread has at least the given privilege
level.

Error Handling

loAllocateErrorLogEntry

Allocates and initializes an error log packet; returns a pointer so the caller can supply
error-log data and call loWriteErrorLogEntry with the packet.

loWriteErrorLogEntry

Queues a previously allocated error log packet, filled in by the driver, to the system error
logging thread.

lolsErrorUserinduced

Returns a Boolean indicating whether an I/O request failed due to one of the following
(user-correctable) conditions: STATUS_IO_TIMEOUT, STATUS_DEVICE_NOT_
READY, STATUS_UNRECOGNIZED_MEDIA, STATUS_VERIFY_REQUIRED,
STATUS_WRONG_VOLUME, STATUS_MEDIA_WRITE_PROTECTED, or STATUS_
NO_MEDIA_IN_DEVICE. If the result is TRUE, a removable-media driver must call Io-
SetHardErrorOrVerifyDevice before completing the IRP.

loSetHardErrorOrVerifyDevice

Supplies the device object for which the given IRP was failed due to a user-induced error,
such as supplying the incorrect media for the requested operation or changing the media
before the requested operation was completed. (A file system driver uses the associated

Chapter 1 Summary of Kernel-Mode Support Routines 53

device object to send a popup to the user; the user can then correct the error or retry the
operation.)

loSetThreadHardErrorMode

Enables or disables error reporting for the current thread using IoRaiseHardError or
IoRaiseInformationalHardError.

loGetDeviceToVerify

Returns a pointer to the device object, representing a removable-media device, that is the
target of the given thread's I/O request. (This routine is useful only to file systems or other
highest-level drivers.)

loRaiseHardError

Causes a popup to be sent to the user indicating that the given IRP was failed on the
given device object for an optional VPB, so that the user can correct the error or retry the
operation.

loRaiselnformationalHardError

Causes a popup to be sent to the user, showing an I/O error status and optional string
supplying more information.

ExRaiseStatus

Raises an error status so that a caller-supplied structured exception handler is called. (This
routine is useful only to highest-level drivers that supply exception handlers, in particular to
file systems.)

KeBugCheckEx

Brings down the system in a controlled manner, displaying the bugcheck code and possibly
more information, after the caller discovers an unrecoverable inconsistency that will corrupt
the system unless it is brought down. After the system is brought down, this routine displays
bug-check and possibly other information. (This routine can be called when debugging
under-development drivers. Otherwise, drivers should never call this routine when they can
handle an error by failing an IRP and by calling IoAllocateErrorLogEntry and IoWrite-
ErrorLogEntry.)

KeBugCheck

Brings down the system in a controlled manner when the caller discovers an unrecoverable
inconsistency that will corrupt the system if the caller continues to run. KeBugCheckEx is
preferable.

KelnitializeCallbackRecord

Initializes a bug-check callback record before a device driver calls KeRegisterBugCheck-
Callback.

54

Part1 Kernel-Mode Support Routines

KeRegisterBugCheckCallback

Registers the device driver's bug-check callback routine, that is called if a system bug check
occurs. Such a driver-supplied routine saves driver-determined state information, such as
the contents of device registers, that would not otherwise be written into the system crash-
dump file.

KeDeregisterBugCheckCallback

Removes a device driver's callback routine from the set of registered bug-check callbacks.

55

CHAPTETR 2

Executive Support Routines

References for the ExXxx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel-
Mode Support Routines.

ExAcquireFastMutex

VOID
ExAcquireFastMutex(
IN PFAST_MUTEX FastMutex
):

The ExAcquireFastMutex support routine acquires the given fast mutex with APCs to the
current thread disabled.

Parameters

FastMutex
Pointer to an initialized fast mutex for which the caller provides the storage.

Include
wdm.h or ntddk.h

Comments

ExAcquireFastMutex puts the caller into a wait state if the given fast mutex cannot be
acquired immediately. Otherwise, the caller is given ownership of the fast mutex with APCs
to the current thread disabled until it releases the fast mutex.

Use ExTryToAcquireFastMutex if the current thread can do other work before it waits on
the acquisition of the given mutex.

Any fast mutex acquired using ExAcquireFastMutex or ExTryToAcquireFastMutex
must be released with ExReleaseFastMutex.

56 Part 1 Kernel-Mode Support Routines

Callers of ExAcquireFastMutex must be running at IRQL < DISPATCH_LEVEL.
ExAcquireFastMutex sets the IRQL to APC_LEVEL, and the caller continues to run at
APC_LEVEL after ExAcquireFastMutex returns. ExAcquireFastMutex saves the caller's
previous IRQL in the mutex, however, and that IRQL is restored when the caller invokes
ExReleaseFastMutex.

See Also

ExAcquireFastMutexUnsafe, ExInitializeFastMutex, ExReleaseFastMutex,
ExTryToAcquireFastMutex

ExAcquireFastMutexUnsafe

VOID
ExAcquireFastMutexUnsafe(
IN PFAST_MUTEX FastMutex
)s

The ExAcquireFastMutexUnsafe support routine acquires the given fast mutex for the
current thread.

Parameters

FastMutex
Pointer to an initialized fast mutex for which the caller provides the storage.

Include
wdm.h or ntddk.h

Comments

ExAcquireFastMutexUnsafe puts the caller into a wait state if the given fast mutex cannot
be acquired immediately. Otherwise, the caller is given ownership of the fast mutex and ex-
clusive access to the resource it protects until it releases the fast mutex.

Any fast mutex acquired using ExAcquireFastMutexUnsafe must be released with
ExReleaseFastMutexUnsafe.

Callers of ExAcquireFastMutexUnsafe must ensure that APCs are not delivered to the
current thread while the fast mutex is held. This can be accomplished in two ways:

1. Callers can set the IRQL = APC_LEVEL before calling ExAcquireFastMutexUnsafe or

2. Callers can invoke ExAcquireFastMutexUnsafe from within a critical section by calling
KeEnterCriticalRegion prior to calling ExAcquireFastMutexUnsafe.

Chapter 2 Executive Support Routines 57

If the caller chooses to invoke ExAcquireFastMutexUnsafe from within a critical section,
then the caller must be running at IRQL < DISPATCH_LEVEL.

See Also

ExAcquireFastMutex, ExInitializeFastMutex, ExReleaseFastMutexUnsafe,
KeEnterCriticalRegion, KeLeaveCriticalRegion

ExAcquireResourceExclusive

BOOLEAN
ExAcquireResourceExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
):

The ExAcquireResourceExclusive support routine is exported to support existing driver
binaries and is obsolete. Use ExAcquireResourceExclusiveLite instead.

ExAcquireResourceExclusiveLite

BOOLEAN
ExAcquireResourceExclusivelite(
IN PERESOURCE Resource,

IN BOOLEAN Wait
);

The ExAcquireResourceExclusiveLite support routine acquires the given resource for
exclusive access by the calling thread.

Include
ntddk.h

Parameters
Resource
Pointer to the resource to acquire.
Wait
Set to TRUE if the caller should be put into a wait state until the resource can be acquired if
it cannot be acquired immediately.

58 Part1 Kernel-Mode Support Routines

Return Value

ExAcquireResourceExclusiveLite returns TRUE if the resource is acquired. This routine
returns FALSE if the input Wait is FALSE and exclusive access cannot be granted
immediately.

Comments

Normal kernel APCs must be disabled before calling ExAcquireResourceExclusiveLite.
Otherwise a bugcheck occurs. Normal kernel APCs can be disabled by calling KeEnter-
CriticalRegion or by raising the calling thread's IRQL to APC_LEVEL.

For better performance, call ExTryToAcquireResourceExclusiveLite, rather than calling
ExAcquireResourceExclusiveLite with Wait set to FALSE.

Callers of ExAcquireResourceExclusiveLite must be running at IRQL < DISPATCH_
LEVEL.

See Also

ExAcquireResourceSharedLite, ExGetExclusiveWaiterCount, ExGetShared-
WaiterCount, ExInitializeResourceLite, ExReinitializeResourceLite,
ExIsResourceAcquiredExclusiveLite, ExReleaseResourceForThreadLite,
ExTryToAcquireResourceExclusiveLite, KeEnterCriticalRegion

ExAcquireResourceShared

BOOLEAN
ExAcquireResourceSharedLite(
IN PERESOURCE Resource,
IN BOOLEAN Wait
)s

The ExAcquireResourceShared support routine is exported to support existing driver
binaries, and is obsolete. Use ExAcquireResourceSharedLite instead.

ExAcquireResourceSharedLite

BOOLEAN
ExAcquireResourceSharedLite(
IN PERESOURCE Resource,

IN BOOLEAN Wait
)3

The ExAcquireResourceSharedLite support routine acquires the given resource for shared
access by the calling thread.

Chapter 2 Executive Support Routines 59

Parameters

Resource
Pointer to the resource to acquire.

Wait
Set to TRUE if the resource cannot be acquired immediately and if the caller should be put
into a wait state until the resource can be acquired.

Include
ntddk.h

Return Value
ExAcquireResourceSharedLite returns TRUE if (or when) the resource is acquired. This
routine returns FALSE if the input Wait is FALSE and shared access cannot be granted
immediately.

Comments

Whether or when the caller is given;shared access to the given resource depends on the
following:

= If the resource is currently unowned, shared access is granted immediately to the current
thread.

= If the caller already has acquired the resource, the current thread is granted the same type
of access recursively. Note that making this call does not convert a caller’s exclusive
ownership of a given resource to shared.

= If the resource is currently owned as shared by another thread and no thread is waiting for
exclusive access to the resource, shared access is granted to the caller immediately. The
caller is put into a wait state if there is an exclusive waiter.

= [f the resource is currently owned as exclusive by another thread or if there is another
thread waiting for exclusive access and the caller does not already have shared access to
the resource, the current thread either is put into a wait state (Wait set to TRUE) or
ExAcquireResourceSharedLite returns FALSE.

Callers of ExAcquireResourceSharedLite must be running at IRQL < DISPATCH_
LEVEL.

60 Part1 Kernel-Mode Support Routines

See Also

ExAcquireResourceExclusiveLite, ExAcquireSharedStarveExclusive,
ExAcquireSharedWaitForExclusive, ExConvertExclusiveToSharedLite,
ExGetExclusiveWaiterCount, ExGetSharedWaiter Count, ExInitializeResource-
Lite, ExReinitializeResourceLite, ExIsResourceAcquiredSharedLite,
ExReleaseResourceForThreadLite

ExAcquireSharedStarveExclusive

BOOLEAN
ExAcquireSharedStarveExclusive(
IN PERESOURCE Resource,

IN BOOLEAN Wait
)

The ExAcquireSharedStarveExclusive support routine acquires a given resource for
shared access without waiting for any pending attempts to acquire exclusive access to the
same resource.

Parameters

Resource
Pointer to the resource to be acquired for shared access.

Wait
Set to TRUE if the caller will wait until the resource becomes available when access cannot
be granted immediately.

Include
ntddk.h

Return Value

ExAcquireSharedStarveExclusive returns TRUE if the requested access is granted. This
routine returns FALSE if the input Wair is FALSE and shared access cannot be granted
immediately.

Comments

Whether or when the caller is given shared access to the given resource depends on the
following:

= [f the resource is currently unowned, shared access is granted immediately to the current
thread.

Chapter 2 Executive Support Routines 61

= [f the caller already has acquired the resource, the current thread is granted the same type
of access recursively. Note that making this call does not convert a caller’s exclusive
ownership of a given resource to shared.

= [f the resource is currently owned as shared by another thread, shared access is granted to
the caller immediately, even if another thread is waiting for exclusive access to that
resource.

= If the resource is currently owned as exclusive by another thread, the caller either is put
into a wait state (Wair set to TRUE) or ExAcquireSharedStarveExclusive returns
FALSE.

Callers of ExAcquireSharedStarveExclusive usually need quick access to a shared re-
source in order to save an exclusive accessor from doing redundant work. For example, a
file system might call this routine to modify a cached resource, such as a BCB pinned in the
cache, before the Cache Manager can acquire exclusive access to the resource and write

the cache out to disk.

Callers of ExAcquireSharedStarveExclusive must be running at IRQL < DISPATCH_
LEVEL.

See Also
ExAcquireResourceSharedLite, ExAcquireSharedWaitForExclusive,
ExConvertExclusiveToSharedLite, ExGetExclusiveWaiterCount,
ExIsResourceAcquiredExclusiveLite, ExIsResourceAcquiredSharedLite,
ExTryToAcquireResourceExclusiveLite

ExAcquireSharedWaitForExclusive

BOOLEAN
ExAcquireSharedWaitForExclusive(
IN PERESOURCE Resource,

IN BOOLEAN Wait
)s

The ExAcquireSharedWaitForExclusive support routine acquires the given resource for
shared access immediately if shared access can be granted. Optionally, the caller can wait
for other threads to acquire and release exclusive ownership of the resource.

Parameters

Resource
Pointer to the resource to be acquired for shared access.

62 Part 1 Kernel-Mode Support Routines

Wait
Set to TRUE if the caller will wait until the resource becomes available when access cannot
be granted immediately.

Include

ntddk.h

Return Value

ExAcquireSharedWaitForExclusive returns TRUE if the requested access is granted or
an exclusive owner releases the resource. This routine returns FALSE if the input Wait is
FALSE and shared access cannot be granted immediately.

Comments

Whether or when the caller is given shared access to the given resource depends on the
following:

If the resource is currently unowned, shared access is granted immediately to the current
thread.

If the caller already has exclusive access to the resource, the current thread is granted the
same type of access recursively.

If the resource is currently owned as shared and there are no pending attempts to acquire
exclusive access, shared access is granted to the caller immediately.

If the resource is currently owned as shared but there is a pending attempt to acquire
exclusive access, the caller either is put into a wait state (Wait set to TRUE) or
ExAcquireSharedWaitForExclusive returns FALSE.

When the current thread waits to acquire the resource until after a pending exclusive
ownership has been released, ExAcquireShared WaitForExclusive returns TRUE when
the current thread is granted shared access to the resource and resumes execution.

Callers of ExAcquireSharedWaitForExclusive must be running at IRQL < DISPATCH_
LEVEL.

See Also

ExAcquireResourceSharedLite, ExAcquireSharedStarveExclusive,
ExConvertExclusiveToSharedLite, ExGetExclusiveWaiterCount, ExIsResource-
AcquiredExclusiveLite, ExIsResourceAcquiredSharedLite,
ExTryToAcquireResourceExclusiveLite

Chapter 2 Executive Support Routines 63

ExAllocateFromNPagedLookasideList

PVOID
ExAllocateFromNPagedLookasideList(
IN PNPAGED_LOOKASIDE_LIST Lookaside
)

The ExAllocateFromNPagedLookasideList support routine returns a pointer to a non-
paged entry from the given lookaside list, or it returns a pointer to a newly allocated
nonpaged entry.

Parameters

Lookaside

Pointer to the head of the lookaside list, which the caller already initialized with
ExInitializeNPagedLookasideList.

Include
wdm.h or ntddk.h

Return Value

ExAllocateFromNPagedlLookasideList returns a pointer to an entry if one can be
allocated. Otherwise, it returns NULL.

Comments

If the given lookaside list is not empty, ExAllocateFromNPagedLookasideList removes
the first entry from the list and returns a pointer to this entry. Otherwise, ExAllocateFrom-
NPagedLookasideList either calls the Allocate routine specified at list initialization or
ExAllocatePoolWithTag to return an entry pointer.

The caller then can set up the returned entry with any caller-determined data. For example,
a driver might use each such fixed-size entry to set up command blocks, like SCSI SRBs, to
peripheral devices on a particular type of I/O bus. The caller should release each entry with
ExFreeToNPagedLookasideList when it is no longer in use.

Callers of ExAllocateFromNPagedLookasideList must be running at IRQL <=
DISPATCH_LEVEL.

See Also

ExInitializeNPagedLookasideList, ExAllocateFromPagedLookasideList,
ExFreeToNPagedLookasideList

64 Part1 Kernel-Mode Support Routines

ExAllocateFromPagedLookasideList

PVOID
ExAllocateFromPagedLookasidelist(
IN PPAGED_LOOKASIDE_LIST Lookaside
)

The ExAllocateFromPagedLookasideList support routine returns a pointer to a paged
entry from the given lookaside list, or it returns a pointer to a newly allocated paged entry.

Parameters

Lookaside

Pointer to the resident head of the lookaside list, which the caller already initialized with
ExInitializePagedLookasideList.

Include
wdm.h or ntddk.h

Return Value

ExAllocateFromPagedLookasideList returns a pointer to an entry if one can be allocated.
Otherwise, it returns NULL.

Comments

If the given lookaside list is not empty, ExAllocateFromPagedLookasideList removes
the first entry from the list and returns a pointer to this entry. Otherwise, ExAllocateFrom-
PagedLookasideList either calls the Allocate routine specified at list initialization or
ExAllocatePoolWithTag to return an entry pointer.

The caller then can set up the returned entry with any caller-determined data. Because the
entries in a paged lookaside list are allocated from pageable memory, access to these entries
must not cause a page fault. Consequently, the user of a paged lookaside list must ensure
that each such entry cannot be accessed from an arbitrary thread context or at raised IRQL.
The caller should release each entry with ExFreeToNPagedLookasideList when it is no
longer in use.

Callers of ExAllocateFromPagedLookasideList must be running at IRQL < DISPATCH_
LEVEL.

See Also
ExInitializePagedLookasideList, ExFreeToPagedl.ookasideList

Chapter 2 Executive Support Routines 65

ExAllocateFromZone

PVOID
ExAllocateFromZone(
IN PZONE_HEADER Zone
)

The ExAllocateFromZone support routine is exported to support existing driver binaries.
This routine is obsolete; use lookaside lists instead. See Buffer Management in Chapter 1 for
more information.

ExAllocatePool

PVOID
ExAllocatePool(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes
)

The ExAllocatePool support routine allocates pool memory of the specified type and returns
a pointer to the allocated block. This routine is used for general pool allocation of memory.

Parameters

PoolType

Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes

Specifies the number of bytes to allocate.

Include
wdm.h or ntddk.h

Return Value

If the PoolType is one of the XxxMustS(ucceed) values, this call succeeds if the system has
any available must-succeed memory, and ExAllocatePool returns a pointer to allocated pool
memory.

ExAllocatePool returns a NULL pointer if the PoolType is not one of the XxxMust-
S(ucceed) values and not enough free pool exists to satisfy the request.

66

Part1 Kernel-Mode Support Routines

Comments

If the NumberOfBytes requested is >= PAGE_SIZE, a page-aligned buffer is allocated.
Memory requests for <= PAGE_SIZE do not cross page boundaries. Memory requests for
< PAGE_SIZE are not necessarily page-aligned but are aligned on an 8-byte boundary.

For the PoolType NonPagedPoolMustSucceed, somewhat less than PAGE_SIZE memory
is available. If such a call fails to allocate sufficient memory, ExAllocatePool causes a
system crash. Consequently, a caller should request this type of memory only if that caller
needs it to prevent the system from crashing or being corrupted. Very few drivers ever
encounter a situation that requires them to allocate this type of memory.

A successful allocation requesting NumberOfBytes < PAGE_SIZE of nonpaged pool gives
the caller exactly the number of requested bytes of memory. Any successful allocation that
requests NumberOfBytes > PAGE_SIZE wastes all unused bytes on the last-allocated page.

Callers of ExAllocatePool must be running at IRQL <= DISPATCH_LEVEL. A caller at
DISPATCH_LEVEL must specify a NonPagedXxx PoolType. Otherwise, the caller must be
running at IRQL < DISPATCH_LEVEL.

If ExAllocatePool returns NULL, the caller should return the NTSTATUS value STATUS_
INSUFFICIENT_RESOURCES or should delay processing to another point in time.

See Also

ExAllocatePoolWithTag, ExFreePool

ExAllocatePoolWithQuota

PVOID
ExAllocatePooiWithQuota(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes
)

The ExAllocatePoolWithQuota support routine allocates pool memory, charging quota
against the current thread.

Parameters

PoolType

Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes

Specifies the number of bytes to allocate.

Chapter 2 Executive Support Routines 67

Include
wdm.h or ntddk.h

Return Value
ExAllocatePoolWithQueota returns a pointer to the allocated pool.

If the request cannot be satisfied, ExAllocatePoolWithQuota raises an exception.

Comments

This routine is called by highest-level drivers that allocate memory to satisfy a request in
the context of the thread that originally made the I/O request. Lower-level drivers call Ex-
AllocatePool instead.

If the NumberOfBytes requested is >= PAGE_SIZE, a page-aligned buffer is allocated.
Quota is not charged to the thread for allocations >= PAGE_SIZE.

Memory requests for < PAGE_SIZE are allocated within a page and do not cross page
boundaries. Memory requests for < PAGE_SIZE are not necessarily page-aligned but are
aligned on an 8-byte boundary.

ExAllocatePoolWithQuota raises an exception if the pool allocation fails.

Callers of ExAllocatePoolWithQuota must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAllocatePool, ExAllocatePoolWithQuotaTag, ExFreePool

ExAllocatePoolWithQuotaTag

PVOID
ExAllocatePoolWithQuotaTag(
IN POOL_TYPE PoolType,

IN SIZE_T NumberOfBytes,
IN ULONG Tag
)

The ExAllocatePoolWithQuetaTag support routine allocates pool memory, charging the
quota against the current thread. A call to this routine is equivalent to calling ExAllocate-
PoolWithQuota, except it inserts a caller-supplied tag before the allocation. This tag
appears in any crash dump of the system that occurs.

68

Part1 Kernel-Mode Support Routines

Parameters

PoolType

Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes

Specifies the number of bytes to allocate.

Tag
Specifies a string, delimited by single quote marks, with up to four characters. The string is
usually specified in reversed order.

Include

wdm.h or ntddk.h

Return Value

ExAllocatePoolWithQuotaTag returns a pointer to the allocated pool.

If the request cannot be satisfied, ExAllocatePoolWithQuotaTag raises an exception.

Comments

During driver development on a checked build of the system, this routine can be useful for
crash debugging. Calling this routine, rather than ExAllocatePoolWithQuota, causes the
caller-supplied tag to be inserted into a crash dump of pool memory.

The Tag passed to this routine is more readable if its bytes are reversed when this routine is
called. For example, if a caller passes ‘Fred’ as a Tag, it would appear as ‘derF’ if the pool is
dumped or when tracking pool usage in the debugger.

Callers of ExAllocatePoolWithQuotaTag, like callers of ExAllocatePoolWithQuota,
must be running at IRQL < DISPATCH_LEVEL.

See Also

ExAllocatePoolWithQuota, ExFreePool

Chapter 2 Executive Support Routines 69

ExAllocatePoolWithTag

PVOID
ExAllocatePoolWithTag(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag

)s

The ExAllocatePoolWithTag support routine allocates pool memory. A call to this routine
is equivalent to calling ExAllocatePool, except that ExAllocatePoolWithTag inserts a
caller-supplied tag before the allocation. This tag appears in any crash dump of the system
that occurs.

Parameters

PoolType
Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes

Specifies the number of bytes to allocate.

Tag
Specifies a string, delimited by single quote marks, with up to four characters. The string is
usually specified in reversed order.

Include
wdm.h or ntddk.h

Return Value
If the PoolType is one of the XxxMustS(ucceed) values, and if the system has any available
memory, this call succeeds and ExAllocatePoolWithTag returns a pointer to allocated pool
memory.

ExAllocatePoolWithTag returns a NULL pointer if the PoolType is not one of the
XxxMustS(ucceed) values and not enough free pool exists to satisfy the request.

Comments
During driver development on a checked build of the system, this routine can be useful
for crash debugging. Calling this routine, rather than ExAllocatePool, inserts the caller-
supplied tag into a crash dump of pool memory.

70

Part 1 Kernel-Mode Support Routines

The Tag passed to this routine is more readable if its bytes are reversed when this routine
is called. For example, if a caller passes ‘Fred’ as a Tag, it would appear as ‘derF’ if pool is
dumped or when tracking pool usage in the debugger.

Callers of ExAllocatePoolWithTag, like callers of ExAllocatePool, can be running at
IRQL DISPATCH_LEVEL only if the requested PoolType is one of the NonPagedXxx.
Otherwise, callers must be running at IRQL < DISPATCH_LEVEL.

See Also

ExAllocatePool, ExAllocatePoolWithQuotaTag, ExAllocatePoolWithTagPriority,
ExFreePool

ExAllocatePoolWithTagPriority

NTKERNELAPI
PVOID
NTAPI
ExAtlocatePoolWithTagPriority(
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag,
IN EX_POOL_PRIORITY Priority
);

ExAllocatePoolWithTagPriority allocates pool memory of the specified type.

Parameters

PoolType

Specifies the type of pool memory to allocate. See POOL_TYPE for a description of the
available pool memory types.

NumberOfBytes

Specifies the number of bytes to allocate.

Tag
Specifies the four-character tag used to mark the allocated buffer. See ExAllocatePool-
WithTag for a description of how to use tags.

Priority

Indicates the importance of this request.

Chapter 2 Executive Support Routines 4!

Priority Value Description

LowPoolPriority Specifies the system may fail the request when it runs low on resources.
Driver allocations that can recover from an allocation failure use this
priority.

NormalPoolPriority Specifies the system may fail the request when it runs very low on

resources. Most drivers should use this value.

HighPoolPriority Specifies the system must not fail the request, unless it is completely out
of resources. Drivers only use this value when it is critically important
for the request to succeed.

The XxxSpecialPoolOverrun and XxxSpecialPoolUnderrun variants specify how memory
should be allocated when Driver Verifier (or special pool) is enabled. If the driver specifies
XxxSpecialPoolUnderrun, when the Memory Manager allocates memory from special pool,
it allocates it at the beginning of a physical page. If the driver specifies XxxSpecialPool-
Overrun, the Memory Manager allocates it at the end of a physical page.

Include
ntddk.h

Comments

Callers of ExAllocatePoolWithTagPriority, like callers of ExAllocatePoolWithTag, can
be running at IRQL DISPATCH_LEVEL only if the requested PoolType is one of the Non-
PagedXxx. Otherwise, callers must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAllocatePool, ExAllocatePoolWithTag, ExAllocatePoolWithQuotaTag, ExFreePool

ExConvertExclusiveToShared

VOID

ExConvertExclusiveToShared(
IN PERESOURCE Resource
)

The ExConvertExclusiveToShared support routine is exported to support existing driver
binaries, and is obsolete. Use ExConvertExclusiveToSharedLite instead.

72 Part1 Kernel-Mode Support Routines

ExConvertExclusiveToSharedLite

VOID
ExConvertExclusiveToSharedLite(
IN PERESOURCE Resource
)s

The ExConvertExclusiveToSharedLite support routine converts a given resource from
acquired for exclusive access to acquired for shared access.

Parameters

Resource
Pointer to the resource for which the access should be converted.

Include
ntddk.h

Comments

The caller must have exclusive access to the given resource. During this conversion, the
current thread and any other threads waiting for shared access to the resource are given
shared access.

Callers of ExConvertExclusiveToSharedLite must be running at IRQL < DISPATCH_
LEVEL.

See Also
ExIsResourceAcquiredExclusiveLite

ExCreateCallback

NTSTATUS
ExCreateCallback(
OUT PCALLBACK_OBJECT =CallbackObject,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN BOOLEAN Create,
IN BOOLEAN ATJTowMultipleCallbacks
)

The ExCreateCallback support routine either creates a new callback object or opens an
existing callback object on behalf of the caller.

Chapter 2 Executive Support Routines 73

Parameters
CallbackObject

Pointer to the newly created or opened callback object if the routine completes with
STATUS_SUCCESS.

ObjectAttributes

Pointer to a structure that contains the callback object's attributes, previously initialized by
InitializeObjectAttributes.

Create
Requests that a callback object be created if the requested object cannot be opened.

AllowMultipleCallbacks

Specifies whether a newly created callback object should allow multiple registered callback
routines. This parameter is ignored when Create is FALSE or when opening an existing
object.

Include
wdm.h or ntddk.h

Return Value

ExCreateCallback returns STATUS_SUCCESS if a callback object was opened or created.
Otherwise, it returns an NTSTATUS error code to indicate the nature of the failure.

Comments

A driver calls ExCreateCallback to create a new callback object or to open an existing
callback object. After the object has been created or opened, other components can call
ExRegisterCallback to register callback routines with the callback object.

Before calling ExCreateCallback, the driver must call InitializeObjectAttributes to
initialize the OBJECT_ATTRIBUTES structure for the callback object. The caller must
specify a name for the object; otherwise, the call fails with STATUS_UNSUCCESSFUL.
Unnamed callback objects are not permitted. The caller should also specify any appropriate
attributes, such as OBJ_CASE_INSENSITIVE.

When all operations have been completed with the callback object, the driver must call
ObDereferenceObject to ensure that the object is deleted to prevent a memory leak.

74 Part 1 Kernel-Mode Support Routines

The system creates the following callback objects for driver use:

Callback Object Name Usage

\Callback\SetSystemTime The system calls any callback routines registered for this object
whenever the system time changes.

\Callback\PowerState The system calls any callback routines registered for this object
whenever certain system power characteristics change. When a driver
registers for callback notification (ExRegisterCallback), it can
specify the changes for which it should be notified.

Callers of this routine must be running at IRQL PASSIVE_LEVEL.

See Also

ExRegisterCallback, ExNotifyCallback, InitializeObjectAttributes, ObDereference-
Object

ExDeleteNPagedLookasideList

VOID
ExDeleteNPagedLookasidelist(
IN PNPAGED_LOOKASIDE_LIST Lookaside
)s

The ExDeleteNPagedLookasideList support routine destroys a nonpaged lookaside list.

Parameters

Lookaside

Pointer to the head of the lookaside list to be deleted, which the caller originally set up with
ExInitializeNPagedLookasideList.

Include
wdm.h or ntddk.h

Comments

ExDeleteNPagedLookasideList is the reciprocal of ExInitializeNPagedLookasideList. It
frees any remaining entries in the specified lookaside list and then removes the list from the
system-wide set of active lookaside lists.

The caller of ExDeleteNPagedLookasideList is responsible for subsequently releasing the
memory that the caller provided to contain the list head.

Callers of ExDeleteNPagedLookasideList must be running at IRQL <= DISPATCH_
LEVEL.

Chapter 2 Executive Support Routines 75

See Also
ExInitializeNPagedLookasideList

ExDeletePagedLookasideList

VOID
ExDeletePagedLookasidelist(
IN PPAGED_LOOKASIDE_LIST Lookaside
)

The ExDeletePagedLookasideList support routine destroys a paged lookaside list.

Parameters

Lookaside

Pointer to the head of the lookaside list to be deleted, which the caller originally set up with
ExInitializePagedLookasideList.

Include
wdm.h or ntddk.h

Comments

ExDeletePagedLookasideList is the reciprocal of ExInitializePagedL.ookasideList. It
frees any remaining entries in the specified lookaside list and then removes the list from the
system-wide set of active lookaside lists.

The caller of ExDeletePagedLookasideList is responsible for subsequently releasing the
memory that the caller provided to contain the list head.

Callers of ExDeletePagedLookasideList must be running at IRQL < DISPATCH_LEVEL.

See Also
ExInitializePagedLookasideList -

ExDeleteResource

NTSTATUS
ExDeleteResource(
IN PERESOURCE Resource
)s

The ExDeleteResource support routine is exported to support existing driver binaries and is
obsolete. Use ExDeleteResourceLite instead.

76 Part1 Kernel-Mode Support Routines

ExDeleteResourcelLite

NTSTATUS
ExDeleteResourcelLite(
IN PERESOURCE Resource
):

The ExDeleteResourceLite support routine deletes a given resource from the system’s
resource list.

Parameters

Resource
Pointer to the caller-supplied storage for the initialized resource variable to be deleted.

Include
ntddk.h

Return Value
ExDeleteResourceLite returns STATUS_SUCCESS if the resource was deleted.

Comments

After calling ExDeleteResourceLite, the caller can free the memory it allocated for its
resource.

Callers of ExDeleteResourceLite must be running at IRQL < DISPATCH_LEVEL.

See Also

ExFreePool, ExInitializeResourceLite, ExReinitializeResourceLite

ExExtendZone

NTSTATUS
ExExtendZone(
IN PZONE_HEADER Zone,
IN PVOID Segment,
IN ULONG SegmentSize
)

The ExExtendZone support routine is exported to support existing driver binaries and
is obsolete. Driver writer should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

Chapter 2 Executive Support Routines 77

ExFreePool

VOID
ExFreePool(
IN PVOID P
)

The ExFreePool support routine deallocates a block of pool memory.

Parameters

p
Specifies the address of the block of pool memory being deallocated.

Include
wdm.h or ntddk.h

Comments

This routine releases memory allocated by ExAllocatePool, ExAllocatePoolWithTag,
ExAllocatePoolWithQuota, or ExAllocatePoolWithQuotaTag. The memory block must
not be accessed after it is freed.

Callers of ExAllocatePool must be running at IRQL <= DISPATCH_LEVEL.

A caller at DISPATCH_LEVEL must have specified a NonPagedXxx PoolType when the
memory was allocated. Otherwise, the caller must be running at IRQL < DISPATCH. _
LEVEL.

See Also

ExAllocatePool, ExAllocatePoolWithQuota, ExAllocatePoolWithQuotaTag,
ExAllocatePoolWithTag '

ExFreeToNPagedLookasideList

VOID
ExFreeToNPagedLookasidelList(
IN PNPAGED_LOOKASIDE_LIST Lookaside,
IN PVOID Entry
)

The ExFreeToNPagedLookasideList support routine returns a nonpaged entry to the given
lookaside list or to nonpaged pool.

78 Part 1 Kernel-Mode Support Routines

Parameters

Lookaside

Pointer to the head of the lookaside list, which the caller already initialized with Ex-
InitializeNPagedLookasideList.

Entry

Pointer to the entry to be freed. The caller obtained this pointer from a preceding call to
ExAllocateFromNPagedLookasideList.

Include
wdm.h or ntddk.h

Comments

ExFreeToNPagedLookasideList is the reciprocal of ExAllocateFromNPagedLookaside-
List. It releases a caller-allocated entry back to the caller's lookaside list or to nonpaged pool
when that entry is no longer in use.

The same entry can be reallocated or another entry allocated later with a subsequent call to
ExAllocateFromNPagedlL ookasideList. The user of the lookaside list can allocate and free
such entries dynamically on an "as needed" basis until it calls ExDeleteNPagedL.ookaside-
List, which releases any outstanding entries in the list before it clears the system state for
the given lookaside list and returns control.

If the specified lookaside list has not yet reached the system-determined maximum number
of entries, ExFreeToNPagedLookasideList inserts the given entry at the front of the list.
Otherwise, the buffer at Entry is released to nonpaged pool using the caller-supplied Free
routine, if any, that was set up when the lookaside list was initialized or ExFreePool.

Callers of ExFreeToNPagedLookasideList must be running at IRQL <= DISPATCH_
LEVEL.

See Also

ExAllocateFromNPagedLookasideList, ExDeleteNPagedLookasideList,
ExInitializeNPagedLookasideList

ExFreeToPagedLookasideList

VOID
ExFreeToPagedlLookasidelist(
IN PPAGED_LOOKASIDE_LIST Lookaside,
IN PVOID Entry
)

Chapter 2 Executive Support Routines 79

The ExFreeToPagedLookasideList support routine returns a pageable entry to the given
lookaside list or to paged pool.

Parameters

Lookaside

Pointer to the resident head of the lookaside list, which the caller already initialized with
ExInitializePagedLookasideList.

Entry

Pointer to the entry to be freed. The caller obtained this pointer from a preceding call to
ExAllocateFromPagedLookasideList.

Include
wdm.h or ntddk.h

Comments

ExFreeToPagedLookasideList is the reciprocal of ExAllocateFromPagedLookasideList.
It releases a caller-allocated entry back to the caller's lookaside list or to paged pool when
that entry is no longer in use.

The same entry can be reallocated or another entry can be allocated later with a subsequent
call to ExAllocateFromPagedLookasideList. The user of a lookaside list can allocate and
free such entries dynamically, as needed, until it calls ExDeletePagedLookasideList. Ex-
DeletePagedLookasideList releases any outstanding entries in the list before it clears the
system state for the given lookaside list and returns control.

If the specified lookaside list has not yet reached the system-determined maximum number
of entries, ExFreeToPagedLookasideList inserts the given entry at the front of the list.
Otherwise, the buffer at Entry is released back to paged pool using the caller-supplied Free
routine, if any, that was set up when the lookaside list was initialized or ExFreePool.

Callers of ExFreeToPagedLookasideList must be running at IRQL < DISPATCH._
LEVEL.

See Also

ExAllocateFromPagedLookasideList, ExDeletePagedLookasideList, ExInitialize-
PagedLookasideList

80 Part 1 Kernel-Mode Support Routines

ExFreeToZone

PVOID
ExFreeToZone(
PZONE_HEADER Zone,
PVOID Block
):

The ExFreeToZone support routine is exported to support existing driver binaries and is
obsolete. Driver writer should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

ExGetCurrentResourceThread

ERESOURCE_THREAD
ExGetCurrentResourceThread(
);)

The ExGetCurrentResourceThread support routine identifies the current thread for a
subsequent call to ExReleaseResourceForThreadLite.

Include
ntddk.h

Return Value
ExGetCurrentResourceThread returns the thread ID of the current thread.

Comments

Callers of ExGetCurrentResourceThread must be running at IRQL <= DISPATCH_
LEVEL.

See Also

ExIsResourceAcquiredExclusiveLite, ExIsResourceAcquiredSharedLite, ExRelease-
ResourceForThreadLite

ExGetExclusiveWaiterCount

ULONG
ExGetExclusiveWaiterCount(
IN PERESOURCE Resource
)

The ExGetExclusiveWaiterCount support routine returns the number of waiters on
exclusive access to a given resource.

Chapter 2 Executive Support Routines 81

Parameters

Resource
Pointer to the resource to be tested.

Include
ntddk.h

Return Value

ExGetExclusiveWaiterCount returns the number of threads currently waiting to acquire
the given resource for exclusive access.

Comments

ExGetExclusiveWaiterCount can be called to get an estimate of how many other threads
might be waiting to modify the data protected by a particular resource variable. The caller
cannot assume that the returned value remains constant for any particular interval.

Callers of ExGetExclusiveWaiterCount can be running at IRQL <= DISPATCH_LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExAcquire-
SharedStarveExclusive, ExAcquireShared WaitForExclusive, ExGetShared-
WaiterCount, ExReleaseResourceForThreadLite

ExGetPreviousMode

KPROCESSOR_MODE
ExGetPreviousMode(
VOID
N

The ExGetPreviousMode support routine returns the previous processor mode for the
current thread.

Return Value

ExGetPreviousMode returns a KPROCESSOR_MODE value, one of .KernelMode or
UserMode. This value specifies the previous processor mode for the current thread.

Include
wdm.h or ntddk.h

82 Part 1 Kernel-Mode Support Routines

Comments

If an I/O request can originate either in user mode or kernel mode and the caller passes
pointers to data structures used for I/O, the driver must be able to determine whether the
caller's pointers are valid in user mode or kernel mode.

If drivers are processing I/O requests using the normal IRP-based I/O dispatch method, they
can determine the previous processor mode by checking the RequestMode parameter in the
IRP header. (The RequestMode parameter is set by the I/O Manager.)

Alternatively, ExGetPreviousMode can be used to determine the previous processor mode.
This routine is particularly useful in situations where a previous mode parameter is not
available, for example, in a file driver that uses fast I/O.

Callers of ExGetPreviousMode must be running at IRQL <= DISPATCH_LEVEL.

See Also
KeGetCurrentThread

ExGetSharedWaiterCount

ULONG
ExGetSharedWaiterCount(
IN PERESOURCE Resource
)

The ExGetShared WaiterCount support routine returns the number of waiters on shared
access to a given resource.
Parameters

Resource
Pointer to the resource to be tested.

Include
ntddk.h

Return Value

ExGetSharedWaiter Count returns the number of threads currently waiting to acquire the
given resource for shared access.

Chapter 2 Executive Support Routines 83

Comments

ExGetSharedWaiterCount can be called to get an estimate of how many other threads
might be waiting to read the data protected by a particular resource variable. The caller
cannot assume that the returned value remains constant for any particular interval.

Callers of ExGetSharedWaiterCount can be running at IRQL <= DISPATCH_LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExAcquireShared-
StarveExclusive, ExAcquireShared WaitForExclusive, ExGetExclusiveWaiterCount,
ExReleaseResourceForThreadLite

ExInitializeFastMutex

VOID
ExInitializeFastMutex(
IN PFAST_MUTEX FastMutex
)

The ExInitializeFastMutex support routine initializes a fast mutex variable, used to
synchronize mutually exclusive access by a set of threads to a shared resource.

Parameters

FastMutex

Pointer to a caller-allocated FAST_MUTEX structure, which represents the fast mutex, in
the nonpaged memory pool.

Include
wdm.h or ntddk.h

Comments

ExInitializeFastMutex must be called before any calls to other Ex..FastMutex routines
occur.

Although the caller supplies the storage for the given fast mutex, the FAST_MUTEX
structure is opaque: that is, its members are reserved for system use.

For better performance, use the Ex..FastMutex routines instead of the Ke..Mutex routines.
However, a fast mutex cannot be acquired recursively, as a kernel mutex can.

Callers of ExInitializeFastMutex must be running at IRQL <= DISPATCH_LEVEL.

84 Part1 Kernel-Mode Support Routines

See Also

ExAcquireFastMutex, ExAcquireFastMutexUnsafe, ExReleaseFastMutex,
ExReleaseFastMutexUnsafe, ExXTryToA cquireFastMutex, KelInitializeMutex

ExInitializeNPagedLookasideList

VOID
ExInitializeNPagedLookasidelist(
IN PNPAGED_LOOKASIDE_LIST Lookaside,
IN PALLOCATE_FUNCTION AT77ocate OPTIONAL,
IN PFREE_FUNCTION Free OPTIONAL,
IN ULONG FTlags,
IN SIZE_T Size,
IN ULONG Tag,
IN USHORT Depth
)

The ExInitializeNPagedLookasideList support routine initializes a lookaside list for
nonpaged entries of the specified size.

Parameters

Lookaside

Pointer to the caller-supplied memory for the lookaside list head to be initialized. The caller
must provide at least sizeof(NPAGED_LOOKASIDE_LIST) in nonpaged system space for
this opaque list head.

Allocate

Either points to a caller-supplied routine for allocating an entry when the lookaside list is
empty, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

PVOID

(#PALLOCATE_FUNCTION) (
IN_POOL_TYPE PoolType, // NonPagedPool
IN ULONG NumberOfBytes, // value of Size
IN ULONG Tag // value of Tag

)s
If Allocate is NULL, subsequent calls to ExAllocateFromNPagedLookasideList automati-

cally allocate entries whenever the lookaside list is empty.

Free

Either points to a caller-supplied routine for freeing an entry whenever the lookaside list is
full, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

Chapter 2 Executive Support Routines 85

VOID

(*PFREE_FUNCTION) (
PVOID Buffer
);

If Free is NULL, subsequent calls to ExFreeToNPagedLookasideList automatically
release the given entry back to nonpaged pool whenever the list is full, that is, currently
holding the system-determined maximum number of entries.

Flags

Reserved. Must be zero.

Size
Specifies the size in bytes for each nonpaged entry to be allocated subsequently.

Tag

Specifies the pool tag for lookaside list entries. The Tag is a string of four characters deli-
mited by single quote marks (for example, ‘derF’). The characters are usually specified in
reverse order so they are easier to read when dumping pool or tracking pool usage with the
PoolHitTag variable in the debugger.

Depth

Reserved. Must be zero.

Include
wdm.h or ntddk.h

Comments

After calling ExInitializeNPagedLookasideList, memory blocks of the caller-specified
Size can be allocated from and freed to the lookaside list with calls to ExAllocateFrom-
NPagedLookasideList and ExFreeToNPagedLookasideList, respectively. Such dyna-
mically allocated and freed entries can be any data structure or fixed-size buffer that the
caller uses while the system is running, particularly if the caller cannot predetermine how
many such entries will be in use at any given moment. The layout and contents of each
fixed-size entry are caller-determined.

ExInitializeNPagedLookasideList initializes the system state to track usage of the given
lookaside list, as follows:

s Zero-initializes the counters to be maintained for entries

= Stores the entry points of the caller-supplied Allocate and Free routines, if any, or sets
these entry points to ExAllocatePoolWithTag and ExFreePool, respectively

86

Part 1 Kernel-Mode Support Routines

= Initializes a system spin lock to control allocations from and frees to the lookaside list in
a multiprocessor-safe manner if necessary

= Stores the caller-supplied entry Size and list Tag

= Sets up the system-determined limits (minimum and maximum) on the number of entries
to be held in the lookaside list, which can be adjusted subsequently if system-wide de-
mand for entries is higher or lower than anticipated

s Sets up the system-determined flags, which control the type of memory from which
entries will be allocated subsequently

The OS maintains a set of all lookaside lists currently in use. As demand for lookaside list
entries and on available nonpaged memory varies while the system runs, the OS adjusts its
limits for the number of entries to be held in each nonpaged lookaside list dynamically.

ExInitializeNPagedLookasideList sets up the opaque list head at the caller-supplied
location but preallocates no memory for list entries. Subsequently, the initial entries are
allocated dynamically as calls to ExAllocateFromNPagedLookasideList occur, and

these initial entries are held in the lookaside list as reciprocal calls to ExFreeToNPaged-
LookasideList occur. Entries collect in the given lookaside list until the system-determined
maximum is reached, whereupon any additional entries are returned to nonpaged pool as
they are freed. If the list becomes empty, allocate requests are satisfied by the Allocate
routine specified at list initialization or by ExAllocatePoolWithTag.

It is more efficient to pass NULL pointers for Allocate and Free to ExInitializeNPaged-
LookasideList if the user of a lookaside list does nothing more than allocate and release
fixed-size entries within these caller-supplied routines. However, any component that uses
a lookaside list might supply these routines to do additional caller-determined processing,
such as tracking its own dynamic memory usage by maintaining state about the number of
entries it allocates and frees.

If the caller of ExInitializeNPagedLookasideList supplies an Allocate routine, that routine
must allocate entries for the lookaside list using the given input parameters when it calls
ExAllocatePoolWithTag.

Callers of ExInitializeNPagedLookasideList can be running at IRQL <= DISPATCH_
LEVEL, but are usually running at PASSIVE_LEVEL.

See Also

ExAllocateFromNPagedLookasideList, ExAllocatePoolWithTag, ExDeleteNPaged-
LookasideList, ExFreeToNPagedLookasideList, ExFreePool, ExInitializePaged-
LookasideList

Chapter 2 Executive Support Routines 87

ExInitializePagedLookasideL.ist

VOID
ExInitializePagedLookasidelList(
IN PPAGED_LOOKASIDE_LIST Lookaside,
IN PALLOCATE_FUNCTION Al77ocate OPTIONAL,
IN PFREE_FUNCTION Free OPTIONAL,
IN ULONG Flags,
IN SIZE_T Size,
IN ULONG Tag,
IN USHORT Depth
)

The ExInitializePagedLookasideList support routine initializes a lookaside list for
pageable entries of the specified size.

Parameters

Lookaside

Pointer to the caller-supplied memory for the lookaside list head to be initialized. The caller
must provide at least sizeof(PAGED_LOOKASIDE_LIST) in nonpaged system space for
this opaque list head, even though the entries in this lookaside list will be allocated from
pageable memory.

Allocate

Either points to a caller-supplied routine for allocating an entry when the lookaside list is
empty, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

PVOID

(*PALLOCATE_FUNCTION) (
IN_POOL_TYPE PoolType, // PagedPool
IN ULONG NumberOfBytes, // value of Size
IN ULONG Tag // value of Tag

)

If Allocate is NULL, subsequent calls to ExAllocateFromPagedL ookasideList auto-
matically allocate entries whenever the lookaside list is empty.

Free

Either points to a caller-supplied routine for freeing an entry whenever the lookaside list is
full, or this parameter can be NULL. Such a caller-supplied routine is declared as follows:

VOID

(*PFREE_FUNCTION) (
PVOID Buffer
)

88

Part1 Kernel-Mode Support Routines

If Free is NULL, subsequent calls to ExFreeToPagedLookasideList automatically release
the given entry back to paged pool whenever the list is full, that is, currently holding the
system-determined maximum number of entries.

Flags

Reserved. Must be zero.

Size

Specifies the size in bytes of each entry in the lookaside list.

Tag

Specifies the pool tag for lookaside list entries. The Tag is a string of four characters deli-
mited by single quote marks (for example, ‘derF’). The characters are usually specified in
reverse order so they are easier to read when dumping pool or tracking pool usage with the
PoolHitTag variable in the debugger.

Depth

Reserved. Must be zero.

Include

wdm.h or ntddk.h

Comments

After calling ExInitializePagedl.ookasideList, blocks of the caller-specified Size can

be allocated from and freed to the lookaside list with calls to ExAllocateFromPaged-
LookasideList and ExFreeToPagedLookasideList, respectively. Such dynamically
allocated and freed entries can be any data structure or fixed-size buffer that the caller uses
while the system is running, particularly if the caller cannot predetermine how many such
entries will be in use at any given moment. The layout and contents of each fixed-size entry
are caller-determined.

ExInitializePagedLookasideList initializes the system state to track usage of the given
lookaside list, as follows:

» Zero-initializes the counters to be maintained for entries

= Stores the entry points of the caller-supplied Allocate and Free routines, if any, or sets
these entry points to ExAllocatePoolWithTag and ExFreePool, respectively

= Initializes a system spin lock to control allocations from and frees to the lookaside list in
a multiprocessor-safe manner if necessary

= Stores the caller-supplied entry Size and list Tag

Chapter 2 Executive Support Routines 89

= Sets up the system-determined limits (minimum and maximum) on the number of entries
to be held in the lookaside list, which can be adjusted subsequently if system-wide
demand for entries is higher or lower than anticipated

= Sets up the system-determined flags, which control the type of memory from which
entries will be allocated subsequently

The OS maintains a set of all lookaside lists in use. As demand for lookaside list entries
and on available paged memory varies while the system runs, the OS adjusts its limits for
the number of entries to be held in each paged lookaside list dynamically.

ExInitializePagedL ookasideList sets up the opaque list head at the caller-supplied location
but preallocates no memory for list entries. Subsequently, the initial entries are allocated
dynamically as calls to ExAllocateFromPagedLookasideList occur, and these initial
entries are held in the lookaside list as reciprocal calls to ExFreeToPagedLookasideList
occur. Entries collect in the given lookaside list until the system-determined maximum is
reached, whereupon any additional entries are returned to paged pool as they are freed. If the
list becomes empty, allocate requests are satisfied by the Allocate routine specified at list
initialization or by ExAllocatePoolWithTag.

It is more efficient to pass NULL pointers for Allocate and Free to ExInitializePaged-
LookasideList if the user of a lookaside list does nothing more than allocate and release
fixed-size entries within these caller-supplied routines. However, any component that uses
a lookaside list might supply these routines to do additional caller-determined processing,
such as tracking its own dynamic memory usage by maintaining state about the number of
entries it allocates and frees.

If the caller of ExInitializePagedl.ookasideList supplies an Allocate routine, that routine
must allocate entries for the lookaside list using the given input parameters when it calls
ExAllocatePoolWithTag.

Callers of ExInitializePagedLookasideList must be running at IRQL < DISPATCH _
LEVEL.

See Also

ExAllocateFromPagedLookasideList, ExAllocatePoolWithTag, ExDeletePaged-
LookasideList, ExFreePool, ExFreeToPagedLookasideList, ExInitializeNpaged-
LookasideList

ExInitializeResource

NTSTATUS
ExInitializeResource(
IN PERESOURCE Resource
)

90 Part 1 Kernel-Mode Support Routines

The ExInitializeResource support routine is exported to support existing driver binaries and
is obsolete. Use ExInitializeResourceLite instead.

ExInitializeResourceLite

NTSTATUS
ExInitializeResourcelite(
IN PERESOURCE Resource
)

The ExInitializeResourceLite support routine initializes a resource variable.

Parameters

Resource

Pointer to the caller-supplied storage, which must be at least sizeof(ERESOURCE), for the
resource variable being initialized.

Include
ntddk.h

Return Value
ExInitializeResourceLite returns STATUS_SUCCESS.

Comments
The storage for ERESOURCE must not be allocated from paged pool.
The resource variable can be used for synchronization by a set of threads. Although the

caller provides the storage for the resource variable, the ERESOURCE structure is opaque:
that is, its members are reserved for system use.

Call ExDeleteResourceLite before freeing the memory for the resource.

Callers of ExInitializeResourceLite must be running at IRQL <= DISPATCH_LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExAcquire-
SharedStarveExclusive, ExAcquireShared WaitForExclusive, ExConvertExclusive-
ToSharedLite, ExDeleteResourceLite, ExIsResourceAcquiredExclusiveLite,
ExIsResourceAcquiredSharedLite, ExReinitializeResourceLite, ExRelease-
ResourceForThreadLite, ExXTryToAcquireResourceExclusiveLite

Chapter 2 Executive Support Routines 91

ExInitializeSListHead

VOID
ExInitializeSListHead(
IN PSLIST_HEADER SListHead
)

The ExInitializeSListHead support routine initializes the head of a sequenced, interlocked,
singly linked list.

Parameters
SListHead

Pointer to caller-supplied memory for the list head to be initialized. The caller must provide
at least sizeof (SLIST_HEADER) in nonpaged memory for this opaque list head.

Include
wdm.h or ntddk.h

Comments

ExInitializeSListHead initializes the system-maintained state for the S-List and sets the
first-entry pointer to NULL. The caller must provide resident storage for and initialize a spin
lock with KelnitializeSpinLock before inserting any caller-allocated entry into its initial-
ized S-List.

The sequence number for an S-List is incremented each time an entry is inserted into or
removed from the S-List. To determine the number of entries currently in an S-List, call
ExQueryDepthSList.

Subsequent calls to ExInterlockedPushEntrySList and ExInterlockedPopEntrySList
insert and remove caller-allocated entries into and from the S-List. All entries for an S-List
must be allocated from nonpaged pool.

Drivers that retry I/O operations should use a doubly linked interlocked queue and the
ExInterlockedInsert/Remove..List routines, rather than an S-List.

To manage a dynamically sized set of fixed-size entries, consider setting up a lookaside list
with ExInitializeNPageL.ookasideList or ExInitializePagedLookasideList, instead of
using an S-List.

Callers of ExInitializeSListHead must be running at IRQL <= DISPATCH_LEVEL.

92 Part 1 Kernel-Mode Support Routines

See Also

ExInitializeNPagedLookasideList, ExInitializePagedLookasideList, ExInterlocked-
InsertTailList, ExInterlockedPopEntrySList, ExInterlockedPushEntrySList,
ExQueryDepthSList, ExQueueWorkItem, KelnitializeSpinLock

ExInitializeWorkltem

VOID
ExInitializeWorkItem(
IN PWORK_QUEUE_ITEM TItem,
IN PWORKER_THREAD_ROUTINE Routine,
IN PVOID Context
)

The ExInitializeWorkItem support routine is exported to support existing driver binaries
and is obsolete. Use IoAllocateWorkItem instead.

ExInitializeZone

NTSTATUS
ExInitializeZone(
IN PZONE_HEADER Zone,
IN ULONG BTlockSize,
IN PVOID InitialSegment,
IN ULONG InitialSegmentSize
);

The ExInitializeZone support routine is exported to support existing driver binaries and is
obsolete. Driver writers should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

ExinterlockedAddLargelnteger

LARGE_INTEGER
ExInterlockedAddLargelInteger(
IN PLARGE_INTEGER Addend,

IN LARGE_INTEGER Increment,
IN PKSPIN_LOCK Lock
)s

The ExInterlockedAddLargelnteger support routine adds a large integer value to a given
addend as an atomic operation.

Chapter 2 Executive Support Routines 93

Parameters
Addend

Pointer to a large integer to be adjusted by the Increment value.

Increment
Specifies a value to be added to Addend.

Lock

Pointer to a spin lock to be used to synchronize access to Addend.

Include
wdm.h or ntddk.h

Return Value
ExInterlockedAddLargeInteger returns the initial value of the Addend.

Comments

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP com-
puters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExInterlockedXxx.

The Lock passed to ExInterlockedAddLargeInteger is used to assure that the add opera-
tion on Addend is atomic with respect to any other operations on the same value which syn-
chronize with this same spin lock.

ExInterlockedAddLargelnteger masks interrupts. Consequently, it can be used for syn-
chronization between an ISR and other device driver code, provided that the same Lock is
never reused in a call to a routine that runs at IRQL DISPATCH_LEVEL.

Note that calls to InterlockedXxx are guaranteed to be atomic with respect to other
InterlockedXxx calls without caller supplied spin locks.

Callers of ExInterlockedAddLargelnteger run at any IRQL.

See Also

ExInterlockedAddUlong, InterlockedIncrement, InterlockedDecrement, Kelnitialize-
SpinLock

94 Part1 Kernel-Mode Support Routines

ExinterlockedAddLargeStatistic

VOID
ExInterlockedAddlLargeStatistic (
IN PLARGE_INTEGER Addend,

IN ULONG Increment
)

ExInterlockedAddLargeStatistic performs an interlocked addition of a ULONG increment
value to a LARGE_INTEGER addend value.

Parameters

Addend
Pointer to a LARGE_INTEGER value that is incremented by the value of Increment.

Increment
Specifies a ULONG value that is added to the value that Addend points to.

Include
wdm.h or ntddk.h

Comments

Support routines that do interlocked operations must not cause a page fault. Neither their
code nor any of the data they access can cause a page fault without bringing down the
system.

ExInterlocked AddLargeStatistic masks interrupts, and can be safely used to synchronize
an ISR with other driver code.

ExInterlockedAddLargeStatistic runs at any IRQL.

See Also
ExInterlocked AddLargeInteger, ExInterlockedAddUlong

ExinterlockedAddUlong

ULONG
ExInterlockedAddUTong(
IN PULONG Addend,

IN ULONG Increment,

PKSPIN_LOCK Lock

) ’

Chapter 2 Executive Support Routines 95

The ExInterlockedAddUleng support routine adds an unsigned long value to a given
unsigned integer as an atomic operation.

Parameters
Addend

Pointer to an unsigned long integer whose value is to be adjusted by the Increment value.

Increment
Is an unsigned long integer to be added.

Lock

Pointer to a spin lock to be used to synchronize access to the Addend.

Include
wdm.h or ntddk.h

Return Value
ExInterlockedAddUlong returns the original (unsummed) value of the Addend.

Comments

Consider using InterlockedExchangeAdd instead of this routine. InterlockedExchange-
Add can be more efficient because it does not use a spin lock and it is inlined by the
compiler.

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu-
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExInterlockedXxx.

The Lock passed to ExInterlockedAddULong is used to assure that the add operation on
Addend is atomic with respect to any other operations on the same value which synchronize
with this same spin lock.

ExInterlocked AddUlong masks interrupts. Consequently, it can be used for synchroniza-
tion between an ISR and other driver code, provided that the same Lock is never reused in
a call to a routine that runs at IRQL DISPATCH_LEVEL.

Note that calls to InterlockedXxx are guaranteed to be atomic with respect to other
InterlockedXxx calls without caller supplied spin locks.

Callers of ExInterlockedAddUlong run at any IRQL.

96 Part 1 Kernel-Mode Support Routines

See Also

ExInterlockedAddLargelnteger, InterlockedIncrement, InterlockedDecrement,
KelnitializeSpinLock

ExinterlockedAllocateFromZone

PVOID
ExInterlockedAllocateFromZone(
IN PZONE_HEADER Zone,

IN PKSPIN_LOCK Lock
)

The ExInterlockedAllocateFromZone support routine is exported to support existing
driver binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExinterlockedCompareExchange64

LONGLONG
ExInterlockedCompareExchange64(
IN OUT PLONGLONG Destination,
IN PLONGLONG Exchange,

IN PLONGLONG Comparand,
IN PKSPIN_LOCK Lock
'H

The ExInterlockedCompareExchange64 support routine compares one integer variable to
another and, if they are equal, sets the first variable to a caller-supplied value.

Parameters
Destination

Pointer to an integer that will be compared and possibly replaced.

Exchange

Pointer to an integer that will replace the one at Destination if the comparison results in
equality.

Comparand

Pointer to an integer with which the value at Destination will be compared.

Lock

Pointer to a caller-allocated spin-lock that is used if the host system does not support an
8-byte atomic compare and exchange operation.

Chapter 2 Executive Support Routines 97

Include
wdm.h or ntddk.h

Return Value

ExInterlocked CompareExchange64 returns the value of the variable at Destination when
the call occurred.

Comments

ExInterlockedCompareExchange64 tests and, possibly, replaces the value of a given
variable. For most underlying microprocessors, this routine is implemented inline by the
compiler to execute as an atomic operation. If a spin lock is used, this routine can only be
safely used on nonpaged parameters.

If the Destination and Comparand are unequal, ExInterlockedCompareExchange simply
returns the value of Destination.

ExInterlocked CompareExchange64 is atomic only with respect to other
(Ex)InterlockedXxx calls.

Callers of ExInterlockedCompareExchange64 can be running at any IRQL.

See Also
InterlockedCompareExchange, InterlockedExchange, InterlockedExchangeAdd

ExInterlockedDecrementLong

INTERLOCKED_RESULT
ExInterlockedDecrementLong(
IN PLONG Addend,

IN PKSPIN_LOCK Lock
)

The ExInterlockedDecrementLong support routine is exported to support existing driver
binaries and is obsolete. Use InterlockedDecrement instead.

ExinterlockedExchangeAddLargelnteger

LARGE_INTEGER
ExInterlockedExchangeAddLargeInteger(
IN PLARGE_INTEGER Addend,

IN LARGE_INTEGER Increment,
IN PKSPIN_LOCK Lock
)

98 Part 1 Kernel-Mode Support Routines

The ExInterlockedExchangeAddLargelnteger support routine performs an atomic opera-
tion that increments the Addend value by the Increment value.

Parameters
Addend

Pointer to a value that is incremented by the value of Increment.

Increment
The increment value added to the value pointed to by Addend.

Lock

Pointer to a spin lock that is used to synchronize access to Addend. (Lock might not be used;
see the Comments section).

Include
ntddk.h

Return Value ,
ExInterlockedExchangeAddLargelnteger returns the input value pointed to by Addend.

Comments

If supported by the processor, ExInterlockedExchangeAddLargeInteger uses a memory-
locked, atomic exchange operation. If such an exchange operation is supported, the routine
does not use the spin lock and is probably faster than ExInterlockedAddLargelnteger. If
such an exchange operation is not supported, this routine uses the spin lock and is equivalent
to ExInterlockedAddLargeInteger.

See Also

ExInterlockedAddLargelnteger, ExInterlockedAddUlong, InterlockedDecrement,
InterlockedIncrement

ExinterlockedExchangeUlong

ULONG
ExInterTockedExchangeUlong(
IN PULONG Target,

IN ULONG Value,
IN PKSPIN_LOCK Lock
)

Chapter 2 Executive Support Routines 99

The ExInterlockedExchangeUlong support routine is exported to support existing driver
binaries and is obsolete. Use InterlockedExchange instead.

ExinterlockedExtendZone

NTSTATUS
ExInterlockedExtendZone(
IN PZONE_HEADER Zone,
IN PVOID Segment,

IN ULONG SegmentSize,
IN PKSPIN_LOCK Lock
)s

The ExInterlockedExtendZone support routine is exported to support existing driver
binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExinterlockedFlushSList

PSINGLE_LIST_ENTRY

ExInterlockedFlushSList (
IN PSLIST_HEADER ListHead
);

ExInterlockedFlushSList removes all entries on a sequenced, single-linked list (S-List) in a
synchronized, multiprocessor-safe way.

Parameters
ListHead

Pointer to an S-List header.

Include
ntddk.h

Return Value

If there are entries on the specified S-List, ExInterlockedFlushSList returns a pointer to the
first entry on the S-List; otherwise, it returns NULL.

Comment
ExInterlockedFlushSList sets the pointer to the first entry on the specified S-List to NULL.

See Also
ExInitializeSListHead

100 Part1 Kernel-Mode Support Routines

ExInterlockedFreeToZone

PVOID
ExInterlockedFreeToZone(
IN PZONE_HEADER Zone,
IN PVOID Block,

IN PKSPIN_LOCK Lock
)

The ExInterlockedFreeToZone support routine is exported to support existing driver
binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExInterlockedincrementLong

INTERLOCKED_RESULT
ExInterlockedIncrementlong(
IN PLONG Addend,

IN PKSPIN_LOCK Lock
)

The ExInterlockedIncrementLong support routine is exported to support existing driver
binaries and is obsolete. Use InterlockedIncrement instead.

ExInterlockedinsertHeadList

PLIST_ENTRY
ExInterlockedInsertHeadList(
IN PLIST_ENTRY ListHead,

IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
)

The ExInterlockedInsertHeadList support routine inserts an entry at the head of a doubly
linked list so that access to the list is synchronized in a multiprocessor-safe way.
Parameters

ListHead
Pointer to the head of the doubly linked list into which an entry is to be inserted.

ListEntry
Pointer to the entry to be inserted at the head of the list.

Lock

Pointer to a caller-supplied spin lock used to synchronize access to the list.

Chapter 2 Executive Support Routines 101

Include
wdm.h or ntddk.h

Return Value

ExInterlockedInsertHeadList returns a pointer to the entry that was at the head of the
interlocked queue before this entry was inserted. If the queue was empty, it returns NULL.

Comments

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu-
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExInterlockedXxx. A caller must not be
holding this spin lock when it calls ExInterlockedInsertHeadList.

The caller also must supply resident storage for the interlocked queue. The ListHead must
be initialized with InitializedListHead before the initial call to an ExInterlocked..List.

If the caller uses only ExInterlocked..List routines to manipulate the list, then these rou-
tines can be called from a single IRQL that is <= DIRQL. If other driver routines access the
list using any other routines, such as the noninterlocked InsertHeadList, then callers of
ExInterlocked..List must be at <= DISPATCH_LEVEL.

Usually, drivers call ExInterlockedInsertTailList to insert an IRP into a driver-managed
interlocked queue. They call ExInterlockedInsertHeadList only to requeue an IRP for

aretry.

See Also

ExInterlockedInsertTailList, ExInterlockedRemoveHeadList, InitializeListHead,
KelnitializeSpinLock

ExinterlockedinsertTailList

PLIST_ENTRY
ExInterlockedInsertTaillList(
IN PLIST_ENTRY ListHead,
IN PLIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock

)

The ExInterlockedInsertTailList support routine inserts an entry at the tail of a doubly
linked list so access to the list is synchronized in a multiprocessor-safe way.

102 Part 1 Kernel-Mode Support Routines

Parameters

ListHead
Pointer to the head of the doubly linked list into which an entry is to be inserted.

ListEntry
Pointer to the entry to be inserted at the tail of the list.

Lock

Pointer to a caller-supplied spin lock, used to synchronize access to the list.

Include
wdm.h or ntddk.h

Return Value

ExInterlockedInsertTailList returns a pointer to the entry that was at the tail of the inter-
locked queue before this entry was inserted. If the queue was empty, it returns NULL.

Comments

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu-
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExInterlockedXxx. A caller must not be
holding this spin lock when it calls ExInterlockedInsertTailList.

The caller also must supply resident storage for the interlocked queue. The ListHead must
be initialized with InitializeListHead before the initial call to an ExInterlocked..List
routine.

If the caller uses only ExInterlocked..List routines to manipulate the list, then these rou-
tines can be called from a single IRQL that is <= DIRQL. If other driver routines access the
list using any other routines, such as the noninterlocked InsertHeadList, then callers of
ExInterlocked..List must be at <= DISPATCH_LEVEL.

See Also
ExInterlockedInsertHeadList, InitializeListHead, KelnitializeSpinLock

Chapter 2 Executive Support Routines 103

ExinterlockedPopEntryList

PSINGLE_LIST_ENTRY
ExInterlockedPopEntryList(
IN PSINGLE_LIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
)

The ExInterlockedPopEntryList support routine removes an entry from the front of
a simple singly linked list so access to the queue is synchronized in a multiprocessor-safe
manner.

Parameters
ListHead

Pointer to the head of the singly linked list from which an entry is to be removed.

Lock

Pointer to a caller-supplied spin lock.

Include
wdm.h or ntddk.h

Return Value

If the list has no entries, ExInterlockedPopEntryList returns a NULL pointer. Otherwise,
it returns a pointer to the dequeued entry.

Comments

The ExInterlocked..EntryList routines manipulate a simple, singly linked list and

use a spin lock for multiprocessor-safe synchronization. For greater efficiency, use the
ExInterlocked..EntrySList routines that manipulate a sequenced, singly linked list (an
S-List), instead of a simple singly linked list.

Drivers that retry I/O operations should use a doubly linked interlocked queue and the Ex-
InterlockedInsert/Remove..List routines, rather than a singly linked queue or an S-List.

ExInterlockedPopEntryList removes the first entry from the specified singly linked list.

104

Part 1 Kernel-Mode Support Routines

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu-
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the initial call to an ExInterlockedXxx. A caller must not be
holding this spin lock when it calls ExInterlockedPush/PopEntryList.

The caller also must provide the storage for the interlocked queue. The memory at ListHead
should be zero-initialized before the initial call to ExInterlockedPushEntryList.

Any of the Ex..Interlocked routines can be called at DIRQL from a device driver’s ISR or
SynchCritSection routine(s), provided that other driver routines do not make calls to the
ExInterlockedXxx while running at < DIRQL with the same spin lock. Otherwise, callers of
ExInterlockedPopEntryList must be running at IRQL <= DISPATCH_LEVEL.

See Also

ExInitializeSListHead, ExInterlockedPopEntrySList, ExInterlockedPushEntryList,
KelnitializeSpinLock

ExinterlockedPopEntrySList

PSINGLE_LIST_ENTRY
ExInterlockedPopEntrySList(
IN PSLIST_HEADER ListHead,
IN PKSPIN_LOCK Lock
)s

The ExInterlockedPopEntrySList support routine removes the first entry from a
sequenced, singly linked list so access to this queue is synchronized in a multiprocessor-
safe manner.

Parameters

ListHead

Pointer to the head of the sequenced, singly linked list from which an entry is to be
removed.

Lock

Pointer to a caller-supplied spin lock.

Include

wdm.h or ntddk.h

Chapter 2 Executive Support Routines 105

Return Value

ExInterlockedPopEntrySList returns a pointer to the first entry in the list. If the list was
empty, it returns NULL.

Comments

ExInterlockedPopEntrySList removes the entry at the head of the list. Before calling
this routine, the list must be initialized with ExInitializeSListHead and one or more
caller-allocated entries should be inserted with ExInterlockedPushEntrySList.

Drivers that retry I/O operations should use a doubly linked interlocked queue and the
ExInterlockedInsert/Remove..List routines, rather than an S-List.

The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the first call to ExInterlockedPushEntrySList. A caller
must not be holding this spin lock when it calls ExInterlockedPush/PopEntrySList.

Callers of ExInterlockedPopEntrySList can be running at IRQL <= DISPATCH_LEVEL.

See Also

ExInitializeSListHead, ExInterlockedRemoveHeadList, ExInterlockedPushEntrySList,
ExQueryDepthSList, KelnitializeSpinLock

ExinterlockedPushEntryList

PSINGLE_LIST_ENTRY
ExInterlockedPushEntryList(
IN PSINGLE_LIST_ENTRY ListHead,
IN PSINGLE_LIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
);

The ExInterlockedPushEntryList support routine inserts an entry at the head of a singly
linked list so access to this queue is synchronized in a multiprocessor-safe way.
Parameters

ListHead
Pointer to the head of the singly linked list into which the specified entry is to be inserted.

ListEntry

Pointer to the entry to be inserted, which the caller allocated from nonpaged pool.

106

Part 1 Kernel-Mode Support Routines

Lock

Pointer to a caller-supplied spin lock, already initialized with a call to KelnitializeSpin-
Lock.

Include

wdm.h or ntddk.h

Return Value

ExInterlockedPushEntryList returns NULL if the list had no entries. Otherwise, it returns
a pointer to the entry that is pushed (the previous list head).

Comments

The ExInterlocked..EntryList routines manipulate a simple, singly linked list and use

a spin lock for multiprocessor-safe synchronization. For greater efficiency, use the Ex-
Interlocked..EntrySList routines that manipulate a sequenced, singly linked list (an S-List),
rather than a simple singly linked list.

Drivers that retry I/O operations should use a doubly linked interlocked queue and the
ExInterlockedInsert/Remove..List routines, rather than a singly linked list.

ExInterlockedPushEntrySList inserts a caller-allocated entry at the front of the specified
singly linked list.

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu-
ters. The caller must provide resident storage for the Lock, which must be initialized with
KelnitializeSpinLock before the first call to ExInterlockedPushEntryList. A caller must
not be holding this spin lock when it calls ExInterlockedPush/PopEntryList.

The caller also must provide resident storage for the head of the interlocked queue. The
memory containing the ListHead should be zero-initialized before the initial call to Ex-
InterlockedPushEntryList.

Any of the Ex..Interlocked routines can be called at DIRQL from a device driver’s ISR or
SynchCritSection routine(s), provided that other driver routines do not make calls to the Ex-
InterlockedXxx while running at < DIRQL with the same spin lock. Otherwise, callers of
ExInterlockedPushEntryList must be running at IRQL <= DISPATCH_LEVEL.

See Also

ExInitializeSListHead, ExInterlockedInsertTailList, ExInterlockedPushEntrySList,
ExInterlockedPopEntryList, KelInitializeSpinLock

Chapter 2 Executive Support Routines 107

ExinterlockedPushEntrySList

PSINGLE_LIST_ENTRY
ExInterlockedPushEntrySList(
IN PSLIST_HEADER ListHead,
IN PSINGLE_LIST_ENTRY ListEntry,
IN PKSPIN_LOCK Lock
);

The ExInterlockedPushEntrySList support routine inserts an entry at the head of a se-
quenced, singly linked list so access to the queue is synchronized in a multiprocessor-safe
manner.

Parameters

ListHead

Pointer to the head of the sequenced, singly linked list into which the specified entry is to
be inserted. The given list head must be in nonpaged system space and initialized with Ex-
InitializeSListHead before the first call to ExInterlockedPushEntrySList.

ListEntry

Pointer to the caller-allocated entry to be inserted.

Lock

Pointer to a caller-supplied spin lock, which must be initialized with KelInitializeSpinLock
before the first call to ExInterlockedPushEntrySList.

Include
wdm.h or ntddk.h :

Return Value

ExInterlockedPushEntrySList returns a pointer to the previous first entry in the list, if any.
If the list was empty, it returns NULL.

Comments

ExInterlockedPushEntrySList inserts ListEntry at the head of the list. Before each call to
this routine, the caller either allocates the entry to be inserted or reinserts an entry obtained
from a preceding call to ExInterlockedPopEntrySList. All entries in a sequenced, singly
linked interlocked queue must be allocated from nonpaged pool.

Drivers that retry I/O operations should use a doubly linked interlocked queue and the
ExInterlockedInsert/Remove..List routines, rather than an S-List.

108 Part 1 Kernel-Mode Support Routines

The caller must provide resident storage for the ListHead and Lock, which must be initia-
lized before the first call to ExInterlockedPushSList. A caller must not be holding this
spin lock when it calls ExInterlockedPush/PopEntrySList routine.

Callers of ExInterlockedPushEntrySList should be running at IRQL <= DISPATCH_
LEVEL.

See Also

ExInitializeSListHead, ExInterlockedInsertTailList, ExInterlockedPopEntrySList,
ExQueryDepthSList, KelnitializeSpinLock

ExinterlockedRemoveHeadList

PLIST_ENTRY
ExInterlockedRemoveHeadList(
IN PLIST_ENTRY ListHead,
IN PKSPIN_LOCK Lock
)

The ExInterlockedRemoveHeadList support routine removes an entry from the head of a
doubly linked list so access to this queue is synchronized in a multiprocessor-safe manner.

Parameters
ListHead

Pointer to the head of the doubly linked list from which an entry is to be removed.

Lock

Pointer to a caller-supplied spin lock.

Include
wdm.h or ntddk.h

Return Value

If the list is empty, a NULL pointer is returned. Otherwise, a pointer to the dequeued entry is
returned. '

Comments

Support routines that do interlocked operations are assumed to be incapable of causing a
page fault. That is, neither their code nor any of the data they touch can cause a page fault
without bringing down the system. They use spin locks to achieve atomicity in SMP compu-
ters. The caller must provide resident storage for the Lock, which must be initialized with

Chapter 2 Executive Support Routines 109

KelnitializeSpinLock before the initial call to an ExInterlockedXxx. A caller must not be
holding this spin lock when it calls ExInterlockedRemoveHeadList.

The caller also must supply resident storage for the interlocked queue. The ListHead must
be initialized with InitializeListHead before the initial call to an ExInterlocked..List
routine.

If the caller uses only ExInterlocked..List routines to manipulate the list, then these rou-
tines can be called from a single IRQL that is <= DIRQL. If other driver routines access the
list using any other routines, such as the noninterlocked InsertHeadList, then callers of
ExInterlocked..List must be at <= DISPATCH_LEVEL.

See Also

ExInterlockedInsertHeadList, ExInterlockedInsertTailList, InitializeListHead,
KelnitializeSpinLock

ExisFullZone

BOOLEAN
ExIsFullZone(
IN PZONE_HEADER Zone
)

The ExIsFullZone support routine is exported to support existing driver binaries and is
obsolete. Driver writer should use lookaside lists instead. See Buffer Management in
Chapter 1 for more information.

ExlsObjectinFirstZoneSegment

BOOLEAN

ExIsObjectInFirstZoneSetment(

IN PZONE_HEADER Zone,

IN PVOID Object

)3
The ExIsObjectInFirstZoneSegment support routine is exported to support existing driver
binaries and is obsolete. Driver writer should use lookaside lists instead. See Buffer
Management in Chapter 1 for more information.

ExisProcessorFeaturePresent

BOOLEAN ‘
ExIsProcessorFeaturePresent(
IN ULONG Processorfeature
)

110 Part1 Kernel-Mode Support Routines

The ExIsProcessorFeaturePresent support routine queries for the existence of a specified
processor feature.

Parameters
ProcessorFeature

Specifies one of the following constant values:

PF_FLOATING:_POINT_PRECISION_ERRATA
Pentium processor has divide bug.

PF‘FLOATING_POINT;EMULATED
Processor does not have floating point hardware.

PF_COMPARE_EXCHANGE_DOUBLE
Processor has a CMPXCHGSB instruction (8-byte, memory-locked compare and exchange).

PF_MMX_INSTRUCTIONS_AVAILABLE
Processor supports MMX instructions in hardware.

PF_3DNOW_INSTRUCTIONS_AVAILABLE
Processor supports AMD 3DNow instructions.

PF_RDTSC_INSTRUCTION_AVAILABLE
Processor supports a RDTSC instruction (read timestamp counter instruction).

Include
ntddk.h

Return Value

ExIsProcessorFeaturePresent returns TRUE if the specified processor feature is present;
otherwise it returns FALSE. ‘

Comments
Callers of ExIsProcessorFeaturePresent must be running at IRQL PASSIVE_LEVEL.

ExisResourceAcquiredExclusive

BOOLEAN
ExIsResourceAcquiredExclusive(
IN PERESOQURCE Resource
)

Chapter 2 Executive Support Routines 111

The ExIsResourceAcquiredExclusive support routine is exported to support existing driver
binaries, and is obsolete. Use ExIsResourceAcquiredExclusiveLite instead.

ExlsResourceAcquiredExclusiveLite

BOOLEAN
ExIsResourceAcquiredExclusivelite(
IN PERESOURCE Resource
);

The ExIsResourceAcquiredExclusiveLite support routine returns whether the current
thread has exclusive access to a given resource.

Parameters

Resource
Pointer to the resource to be queried.

Include
ntddk.h

Return Value

ExIsResourceAcquiredExclusiveLite returns TRUE if the caller already has exclusive
access to the given resource.

Comments

Callers of ExIsResourceAcquiredExclusiveLite must be running at IRQL <= DISPATCH_
LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExIsResourceAcquiredSharedLite, ExTryTo-
AcquireResourceExclusiveLite

ExisResourceAcquiredSharedLite

USHORT
ExIsResourceAcquiredSharedLite(
IN PERESOURCE Resource
);

The ExIsResourceAcquiredSharedLite support routine returns whether the current thread
has shared access to a given resource.

112 Part 1 Kernel-Mode Support Routines

Parameters

Resource
Pointer to the resource to be queried.

Include
ntddk.h

Return Value

ExIsResourceAcquiredSharedLite returns the number of times the caller has acquired
shared access to the given resource.

Comments

Callers of ExIsResourceAcquiredSharedLite must be running at IRQL <= DISPATCH_
LEVEL.

See Also

ExAcquireResourceSharedLite, ExA cquireSharedStarveExclusive,
ExAcquireSharedWaitForExclusive, ExIsResourceAcquiredExclusiveLite

ExLocalTimeToSystemTime

VOID
ExLocalTimeToSystemTime(
IN PLARGE_INTEGER LocalTime,
OUT PLARGE_INTEGER SystemTime
)

The ExLocalTimeToSystemTime support routine converts a system time value for the
current time zone to an unbiased, GMT value.
Parameters

LocalTime
Pointer to a variable set to the locale-specific time.

SystemTime
Pointer to the returned value for GMT system time.

Include
ntddk.h

Chapter 2 Executive Support Routines 113

Comments

ExLocalTimeToSystemTime adds the time-zone bias at the current locale to compute the
corresponding GMT system time value.

Callers of ExLocalTimeToSystemTime can be running at any IRQL.

See Also
ExSystemTimeToLocalTime

ExNotifyCaliback

VOID
ExNotifyCallback(
IN PCALLBACK_OBJECT CallbackObject,
IN PVOID Argumentl,
IN PVOID Argument2
)

The ExNotifyCallback support routine causes all callback routines registered for the given
object to be called.

Parameters
CallbackObject

Pointer to the callback object for which all registered callback routines will be called.

Argumenti
Specifies the parameter that is passed as Argumentl of the callback routine.

Argument2
Specifies the parameter that is passed-as Argument2 of the callback routine.

Include
ntddk.h

Comments

Driver writers must not call ExNotifyCallback for any of the system-defined callback
objects listed in ExCreateCallback.

The system calls callback routines in order of their registration.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL. The system calls
all registered callback routines at the caller's IRQL.

114 Part 1 Kernel-Mode Support Routines

See Also
ExCreateCallback, ExRegisterCallback

ExQueryDepthSList

USHORT
ExQueryDepthSList(
IN PSLIST_HEADER SListHead
)s

The ExQueryDepthSList support routine returns the number of entries currently in a given
sequenced, singly linked list.

Parameters
SListHead

Pointer to the head of the sequenced, singly linked list to be queried, which the caller has
already initialized with ExInitializeSListHead.

Include
wdm.h or ntddk.h

Return Value
ExQueryDepthSList returns the current number of entries in the S-List.

Comments
Callers of ExQueryDepthSList can be running at IRQL <= DISPATCH_LEVEL.

See Also
ExInitializeSListHead, ExInterlockedPushEntrySList, ExInterlockedPopEntrySList

ExQueueWorkltem

VOID
ExQueueWorkItem(
IN PWORK_QUEUE_ITEM WorkItem,
IN WORK_QUEUE_TYPE QueueType
) :

The ExQueueWorkItem support routine is exported to support existing driver binaries and
is obsolete. Use IoQueueWorkItem instead. .

Chapter 2 Executive Support Routines 115

ExRaiseAccessViolation

VOID
ExRaiseAccessViolation(
VOID
)

The ExRaiseAccessViolation support routine can be used with structured exception
handling to throw a driver-determined exception for a memory access violation that occurs
when a driver processes I/O requests.

Include
ntddk.h

Comments
ExRaiseAccessViolation raises an exception with the exception code set to STATUS_
ACCESS_VIOLATION.
Callers of ExRaiseAccessViolation must be running at IRQL PASSIVE_LEVEL.

Because ExRaiseAccessViolation can only be used at IRQL PASSIVE_LEVEL, only high-
level drivers typically use this routine—for example, file system drivers.

See Also

ExRaiseDatatypeMisalignment, ExRaiseStatus, IoAllocateErrorLogEntry,
KeBugCheckEx

ExRaiseDatatypeMisalignment

VOID
ExRaiseDatatypeMisalignment(
VvOID
)

The ExRaiseDatatypeMisalignment support routine can used with structured exception
handling to throw a driver-determined exception for a misaligned data type that occurs when
a driver processes I/O requests.

Include
ntddk.h

Comments

ExRaiseDatatypeMisalignment raises an exception with the exception code set to
STATUS_DATATYPE_MISALIGNMENT.

116 Part 1 Kernel-Mode Support Routines

Callers of ExRaiseDatatypeMisalignment must be running at IRQL PASSIVE_LEVEL.

Because ExRaiseDatatypeMisalignment can only be used at IRQL PASSIVE_LEVEL,
only high-level drivers typically use this routine — for example, file system drivers.

See Also
ExRaiseAccessViolation, ExRaiseStatus, IoAllocateErrorLogEntry, KeBugCheckEx

ExRaiseStatus

VOID
ExRaiseStatus(
IN NTSTATUS Status
)

The ExRaiseStatus support routine is called by drivers that supply structured exception
handlers to handle particular errors that occur while they are processing I/O requests.

Parameters

Status
Is one of the system-defined STATUS_XXX values.

Include
wdm.h or ntddk.h

Comments
Highest-level drivers, particularly file systems, can call ExRaiseStatus.

Callers of ExRaiseStatus must be running at IRQL PASSIVE_LEVEL.

See Also

ExRaiseAccessViolation, ExRaiseDatatypeMisalignment, IoAllocateErrorLogEntry,
KeBugCheckEx

ExRegisterCallback

PVOID
ExRegisterCallback(
IN PCALLBACK_OBJECT CallbackObject,
IN PCALLBACK_FUNCTION CallbackFunction,
IN PVOID CallbackContext
)s

Chapter 2 Executive Support Routines 117

The ExRegisterCallback support routine registers a given callback routine with a given
callback object.

Parameters
CallbackObject

Pointer to a callback object obtained from ExCreateCallback.

CallbackFunction
Pointer to a driver callback routine, which must be nonpageable. The callback routine must
conform to the following prototype:

VvOID
(*PCALLBACK_FUNCTION) (
IN PVOID CallbackContext,
IN PVOID Argumentl,
IN PVOID Argument2
H

The callback routine parameters are as follows:

CallbackContext

Pointer to a driver-supplied context area as specified in the CallbackContext parameter of
ExRegisterCallback.

Argumenti
Pointer to a parameter defined by the callback object.

Argument2
Pointer to a parameter defined by the callback object.

CallbackContext

Pointer to a caller-defined structure of data items to be passed as the context parameter of
the callback routine each time it is called. Typically the context is part of the caller's device
object extension.

Include
wdm.h or ntddk.h

Return Value

ExRegisterCallback returns a pointer to a callback registration handle that should be
treated as opaque and reserved for system use. This pointer is NULL if ExRegisterCallback
completes with an error.

118

Part 1 Kernel-Mode Support Routines

Comments

A driver calls ExRegisterCallback to register a callback routine with a specified callback
object.

If the object allows only one registered callback routine, and such a routine is already
registered, ExRegisterCallback returns NULL.

Callers of ExRegisterCallback must save the returned pointer for use later in a call to
ExUnregisterCallback. The pointer is required when removing the callback routine from
the list of registered callback routines for the callback object.

The meanings of Argumentl and Argument?2 of the registered callback routine depend on
the callback object and are defined by the component that created it. The following are the
parameters for the system-defined callback objects:

\Callback\SetSystemTime

Argument 1
Not used.

Argument 2
Not used.

\Callback\PowerState

Argument 1

PO_CB_AC_STATUS - Indicates that the system has changed from A/C to battery power,
or vice versa.

PO_CB_SYSTEM_POWER_POLICY - Indicates that the system power policy has
changed.

PO_CB_SYSTEM_STATE_LOCK - Indicates that a system power state change is immi-
nent. Drivers in the paging path can register for this callback to receive early warning of
such a change, allowing them the opportunity to lock their code in memory before the power
state changes.

Argument 2

If Argumentl is PO_CB_AC_STATUS, Argument2 contains TRUE if the current power
source is AC and FALSE otherwise.

If Argumentl is PO_CB_SYSTEM_POWER_POLICY, Argument2 is not used.

If Argumentl is PO_CB_SYSTEM_STATE_LOCK, Argument2 contains zero if the system
is about to leave SO and one if the system has just reentered SO.

Callers of this routine must be running at IRQL < DISPATCH_LEVEL.

Chapter 2 Executive Support Routines 119

The system calls registered callback routines at the same IRQL at which the driver that
created the callback called ExNotifyCallback.

See Also
ExCreateCallback, ExNotifyCallback, ExUnregisterCallback

ExReinitializeResourcel.ite

VOID
ExReinitializeResourcelite(
IN PERESOURCE Resource
)s

The ExReinitializeResourceLite support routine reinitializes an existing resource variable.

Parameters

Resource
Pointer to the caller supplied resource variable to be reinitialized.

Include
ntddk.h

Return Value
ExReinitializeResourceLite returns STATUS_SUCCESS.

Comments

With a single call to ExReinitializeResource, a driver writer can replace three calls:

one to ExDeleteResourceLite, another to ExAllocatePool, and a third to ExInitialize-
ResourceLite. As contention for a resource variable increases, memory is dynamically
allocated and attached to the resource in order to track this contention. As an optimization,
ExReinitializeResourceLite retains and zeroes this previously allocated memory.

The ERESOURCE structure is opaque; that is, the members are reserved for system use.
Callers of ExReinitializeResourceLite must be running at IRQL <= DISPATCH_LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExInitialize-
ResourceLite, ExDeleteResourceLite, ExAcquireSharedStarveExclusive,
ExAcquireSharedWaitForExclusive, ExConvertExclusiveToSharedLite, ExIs-
ResourceAcquiredExclusiveLite, ExIsResourceAcquiredSharedLite,
ExReleaseResourceForThreadLite, ExTryToAcquireResourceExclusiveLite

120 Part 1 Kernel-Mode Support Routines

ExReleaseFastMutex

VOID
ExReleaseFastMutex(
IN PFAST_MUTEX FastMutex
)s

ExReleaseFastMutex releases ownership of a fast mutex that was acquired with Ex-
AcquireFastMutex or ExXTryToAcquireFastMutex.

Parameters
FastMutex

Pointer to the fast mutex to be released.

Include
wdm.h or ntddk.h

Comments

ExReleaseFastMutex releases ownership of the given fast mutex and re-enables the
delivery of APCs to the current thread.

It is a programming error to call ExReleaseFastMutex with a FastMutex that was acquired
using ExAcquireFastMutexUnsafe.

Callers of ExReleaseFastMutex must be running at IRQL = APC_LEVEL. In most cases
the IRQL will already be set to APC_LEVEL before ExReleaseFastMutex is called. This is
because ExAcquireFastMutex has already set the IRQL to the appropriate value automati-
cally. However, if the caller changes the IRQL after ExAcquireFastMutex returns, the
caller must explicitly set the IRQL to APC_LEVEL prior to calling ExReleaseFastMutex.

See Also
ExAcquireFastMutex, ExInitializeFastMutex, ExTryToAcquireFastMutex

ExReleaseFastMutexUnsafe

VOID
ExReleaseFastMutexUnsafe(
IN PFAST_MUTEX FastMutex
)

The ExReleaseFastMutexUnsafe support routine releases ownership of a fast mutex that
was acquired using ExAcquireFastMutexUnsafe.

Chapter 2 Executive Support Routines 121

Parameters
FastMutex

Pointer to the fast mutex to be released.

Include
wdm.h or ntddk.h

Comments

It is a programming error to call ExReleaseFastMutexUnsafe with a FastMutex that was
acquired using ExAcquireFastMutex or ExTryToAcquireFastMutex.

Callers of ExReleaseFastMutexUnsafe must be running at IRQL = APC_LEVEL unless
the caller invokes both ExAcquireFastMutexUnsafe and ExReleaseFastMutexUnsafe
from within a critical section, in which case the caller must be running at IRQL <= APC_
LEVEL.

See Also
ExAcquireFastMutexUnsafe, ExInitializeFastMutex

ExReleaseResource

vOID
ExReleaseResource(
IN PERESOURCE Resource
)

The ExReleaseResource support routine has been superseded by the ExReleaseResource-
Lite support routine. ExReleaseResource is exported only to support existing driver bina-
ries. Use ExReleaseResourceLite instead.

ExReleaseResourceForThread

VOID
ExReleaseResourceForThreadLite(
IN PERESOURCE Resource,
IN ERESOURCE_THREAD ResourceThreadld
)s

The ExReleaseResourceForThread support routine is exported to support existing driver
binaries and is obsolete. Use ExReleaseResourceForThreadLite instead.

122 Part1 Kernel-Mode Support Routines

ExReleaseResourceForThreadLite

VOID
ExReleaseResourceForThreadlLite(
IN PERESOURCE Resource,
IN ERESOURCE_THREAD ResourceThreadld
N

The ExReleaseResourceForThreadLite support routine releases the input resource of the
indicated thread.

Include
ntddk.h

Parameters

Resource
Pointer to the resource to release.

ResourceThreadld
Identifies the thread that originally acquired the resource.

Comments

Callers of ExReleaseResourceForThreadLite must be running at IRQL <= DISPATCH_
LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExAcquireShared-
StarveExclusive, ExAcquireSharedWaitForExclusive, ExGetCurrentResourceThread,
ExInitializeResourceLite, ExReinitializeResourceLite, ExTryToAcquireResource-
ExclusiveLite

ExReleaseResourcelLite

VvOoID
ExReleaseResourceLite(
IN PERESOURCE Resource,
)

The ExReleaseResourceLite support routine releases a specified executive resource owned
by the current thread.

Chapter 2 Executive Support Routines 123

Parameters

Resource
Pointer to an executive resource owned by the current thread.

Include
ntddk.h

Comments
Callers of ExReleaseResourceLite must be running at IRQL <= DISPATCH_LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExAcquireResourceSharedLite, ExAcquireShared-
StarveExclusive, ExAcquireSharedWaitForExclusive, ExGetCurrentResourceThread,
ExInitializeResourceLite, ExReinitializeResourceLite, ExReleaseResourceLite, ExTry-
ToAcquireResourceExclusiveLite

ExSetResourceOwnerPointer

VOID
ExSetResourceOwnerPointer(
IN PERESOURCE Resource,

IN PVOID OwnerPointer
)s

The ExSetResourceOwnerPointer support routine sets the owner thread pointer for an
executive resource.
Parameters

Resource
Pointer to an executive resource owned by the current thread.

OwnerPointer

Pointer to an owner thread pointer of type ERESOURCE_THREAD (for additional require-
ments, see the Comments section).

Include
ntddk.h

124 Part1 Kernel-Mode Support Routines

Comments

ExSetResourceOwnerPointer, used in conjunction with ExReleaseResourceForThread-
Lite, provides a means for one thread (acting as an resource manager thread) to acquire and
release resources for use by another thread (acting as a resource user thread).

After calling ExSetResourceOwnerPointer for a specific resource, the only other routine
that can be called for that resource is ExReleaseResourceForThreadLite.

The resource manager thread acquires ownership of the resource and passes ownership to
the user thread by calling ExSetResourceOwnerPointer. The caller must allocate the
memory for the ERESOURCE_THREAD value pointed to by OwnerPointer in system
memory, and this memory must remain allocated until ExReleaseResourceForThreadLite
returns. The caller must also set the two low-order bits of the ERESOURCE_THREAD
value pointed to by OwnerPointer to one—this encoding is used internally by the resource
services to distinguish between owner and thread addresses.

When the user thread is done with the resource, the resource manager thread releases the
user thread's ownership of the resource by calling ExReleaseResourceForThreadLite. The
ResourceThreadld input parameter is set to the value of the OwnerPointer parameter used in
the previous call to ExSetResourceOwnerPointer that gave the worker thread ownership of
the resource.

Callers of ExSetResourceOwnerPointer must be running at IRQL <= DISPATCH_
LEVEL.

See Also
ExReleaseResourceForThreadLite

ExSetTimerResolution

ULONG
ExSetTimerResolution(
IN ULONG DesiredTime,
IN BOOLEAN SetResolution
)

More information on ExSetTimerResolution will be provided in a future DDK release.

ExSystemTimeToLocalTime

VOID
ExSystemTimeToLocalTime(
IN PLARGE_INTEGER SystemTime,
OUT PLARGE_INTEGER LocalTime
)

Chapter 2 Executive Support Routines 125

The ExSystemTimeToLocalTime support routine converts a GMT system time value to the
local system time for the current time zone.

Parameters
SystemTime

Pointer to a variable set to the unbiased, GMT system time.

LocalTime
Pointer to the returned value for the current locale.

Include
ntddk.h

Comments

ExSystemTimeToLocalTime subtracts the time-zone bias from the GMT system time
value to compute the corresponding time at the current locale.

Callers of ExSystemTimeToLocalTime can be running at any IRQL.

See Also

ExLocalTimeToSystemTime

ExTryToAcquireFastMutex

BOOLEAN
ExTryToAcquireFastMutex(
IN PFAST_MUTEX FastMutex
N

The ExTryToAcquireFastMutex support routine acquires the given fast mutex, if possible,
with APCs to the current thread disabled.
Parameters

FastMutex
Pointer to the fast mutex to be acquired if it is not currently owned by another thread.

Include
ntddk.h

126 Part1 Kernel-Mode Support Routines

Return Value

ExTryToAcquireFastMutex returns TRUE if the current thread is given ownership of the
fast mutex.

Comments

If the given fast mutex is currently unowned, ExXTryToAcquireFastMutex gives the caller
ownership with APCs to the current thread disabled uvntil it releases the fast mutex.

Use ExAcquireFastMutex if the current thread must wait on the acquisition of the given
mutex before it can do useful work.

Any fast mutex acquired with ExTryToAcquireFastMutex or ExAcquireFastMutex must
be released with ExReleaseFastMutex.

Callers of ExTryToAcquireFastMutex must be running at IRQL < DISPATCH_LEVEL.

See Also
ExAcquireFastMutex, ExInitializeFastMutex, ExReleaseFastMutex

ExTryToAcquireResourceExclusiveLite

BOOLEAN
ExTryToAcquireResourceExclusivelite(
IN PERESOURCE Resource
);

The ExTryToAcquireResourceExclusiveLite support routine attempts to acquire the given
resource for exclusive access.
Parameters

Resource
Pointer to the resource to be acquired.

Include
ntddk.h

Return Value

ExTryToAcquireResourceExclusiveLite returns TRUE if the given resource has been
acquired for the caller.

Chapter 2 Executive Support Routines 127

Comments
Use ExAcquireResourceExclusiveLite if the caller must have exclusive access to the
resource before it can do further useful work.

Callers of ExTryToAcquireResourceExclusivelite must be running at IRQL <
DISPATCH_LEVEL.

See Also

ExAcquireResourceExclusiveLite, ExAcquireSharedWaitForExclusive, ExIsResource-
AcquiredExclusiveLite

ExUnregisterCallback

VOID
ExUnregisterCallback(
IN PVOID CallbackRegistration
)

The ExUnregisterCallback support routine removes a callback routine previously regis-
tered with a callback object from the list of routines to be called during the notification
process.

Parameters

CbRegistration

Is the pointer returned by ExRegisterCallback to identify this registration. This value
should be treated as opaque and reserved for system use.

Include
wdm.h or ntddk.h

Comments
Callers of this routine must be running at IRQL < DISPATCH_LEVEL.

See Also
ExCreateCallback, ExRegisterCallback

ExUuidCreate

NTSTATUS
ExUuidCreate(
OUT UUID =Uuid
s

128 kPart 1 Kernel-Mode Support Routines

The ExUuidCreate support routine sets a new UUID (GUID) structure.

Parameters
Uuid
Pointer to a caller-allocated UUID (GUID) structure that is set to a new UUID value.

Include
ntddk.h

Return Value

ExUuidCreate returns STATUS_SUCCESS if successful; otherwise, if the system is not
ready to generate a new UUID, it returns STATUS_RETRY.

Comments
A UUID and a GUID are the same data type.

The caller can iteratively attempt to obtain a new UUID value.

This routine must run at IRQL PASSIVE_LEVEL.

InterlockedCompareExchange

LONG
InterlockedCompareExchange(
IN OUT PLONG Destination,
IN LONG Exchange,

IN LONG Comparand
)

The InterlockedCompareExchange support routine performs an atomic operation that
compares the input value pointed to by Destination with the value of Comparand. If the
two compared values are equal, InterlockedCompareExchange sets the output value
pointed to by Destination to the value of Exchange.

Parameters

Destination
Pointer to the input value that is compared with the value of Comparand.

Exchange

The output value pointed to by Destination if the input value pointed to by Destination
equals the value of Comparand.

Chapter 2 Executive Support Routines 129

Comparand
The value that is compared with the input value pointed to by Destination.

Include
wdm.h or ntddk.h

Return Value
InterlockedCompareExchange returns the value pointed to by Destination.

Comments

InterlockedCompareExchange provides a fast, atomic way to synchronize the testing

and updating of a variable that is shared by multiple threads. If the input value pointed to by
Destination equals the value of Comparand, the output value of Destination is set to the
value of Exchange.

InterlockedCompareExchange is designed for speed and, typically, is implemented
inline by a compiler. InterlockedCompareExchange is atomic only with respect to other
InterlockedXxx calls. It does not use a spin lock and can be safely used on pageable data.

Callers of InterlockedCompareExchange can be running at any IRQL.

See Also

ExInterlockedCompareExchange64, Interlocked CompareExchangePointer,
InterlockedDecrement, InterlockedExchange, InterlockedExchangePointer,
InterlockedIncrement

InterlockedCompareExchangePointer

PYOID
InterlockedCompareExchangePointer(
IN OUT PVOID =Destination,

IN PVOID Exchange,
IN PVOID Comparand
)3

The InterlockedCompareExchangePointer support routine performs an atomic opera-
tion that compares the input pointer value pointed to by Destination with the pointer
value Comparand. If the two compared pointer values are equal, InterlockedCompare-
ExchangePointer sets the output pointer value pointed to by Destination to the pointer
value of Exchange.

130

Part 1 Kernel-Mode Support Routines

Parameters

Destination
Pointer to the input pointer value compared with the pointer value of Comparand.

Exchange

The output pointer value that Destination points to if the input pointer value of Destination
equals the pointer value of Comparand.

Comparand
The pointer value compared with the input pointer value pointed to by Destination.

Include

wdm.h or ntddk.h

Return Value

Interlocked CompareExchangePointer returns the pointer value pointed to by Destination.

Comments

InterlockedCompareExchangePointer provides a fast, atomic way to synchronize the
testing and updating of a pointer variable that is shared by multiple threads. If the input
value pointed to by Destination equals the value of Comparand, the value pointed to by
Destination is set to the value of Exchange.

InterlockedCompareExchangePointer is designed for speed and, typically, is implemen-
ted inline by a compiler. InterlockedCompareExchangePointer is atomic only with re-
spect to other InterlockedXxx calls. It does not use a spin lock and can be safely used on
pageable data.

The InterlockedCompareExchangePointer routine is atomic only with respect to other
InterlockedXxx calls.

Callers of InterlockedCompareExchangePointer can be running at any IRQL.

See Also

InterlockedCompareExchange, InterlockedExchange, InterlockedExchangePointer

InterlockedDecrement

LONG
InterlockedDecrement(
IN PLONG Addend
'

Chapter 2 Executive Support Routines

The InterlockedDecrement support routine decrements a caller supplied variable of type
LONG as an atomic operation.

Parameters
Addend

Pointer to a variable to be decremented.

Include
wdm.h or ntddk.h

Return Value

InterlockedDecrement returns the decremented value.

Comments

InterlockedDecrement should be used instead of ExInterlockedDecrementlong because
it is both more efficient and faster.

InterlockedDecrement is implemented inline by the compiler when appropriate and possible.

It does not require a spin lock and can therefore be safely used on pageable data.
InterlockedDecrement is atomic only with respect to other InterlockedXxx calls.

Callers of InterlockedDecrement can be running at any IRQL.

See Also

InterlockedExchange, InterlockedIncrement, ExInterlockedAddLargelnteger,
ExInterlockedAddUlong

InterlockedExchange

LONG
InterlockedExchange(
IN OUT PLONG Target,
IN LONG Value
)

The InterlockedExchange support routine sets an integer variable to a given value as an
atomic operation.

Parameters
Target

Pointer to a variable to be set to the supplied Value as an atomic operation.

132 Part1 Kernel-Mode Support Routines

Value
Specifies the value to which the variable will be set.

Include
wdm.h or ntddk.h

Return Value

InterlockedExchange returns the value of the variable at Target when the call occurred.

Comments

InterlockedExchange should be used instead of ExInterlockedExchangeUlong, because it
is both faster and more efficient.

InterlockedExchange is implemented inline by the compiler when appropriate and
possible. It does not require a spin lock and can therefore be safely used on pageable data.

A call to InterlockedExchange routine is atomic only with respect to other InterlockedXxx
calls.

Callers of InterlockedExchange can be running at any IRQL.

See Also

InterlockedIncrement, InterlockedDecrement, ExInterlockedAddLargelInteger,
ExInterlockedAddUlong

InterlockedExchangeAdd

LONG
InterlockedExchangeAdd(
IN OUT PLONG Addend,
IN LONG Value
)

The InterlockedExchangeAdd support routine adds a value to a given integer as an atomic
operation and returns the original value of the given integer.

Parameters
Addend

Pointer to an integer variable.

Value
Is the value to be added to Addend.

Chapter 2 Executive Support Routines 133

Include
wdm.h or ntddk.h

Return Value

InterlockedExchangeAdd returns the original value of the Addend variable when the call
occurred.

Comments

InterlockedExchangeAdd should be used instead of ExInterlockedAddUlong because it
is both faster and more efficient.

InterlockedExchangeAddis implemented inline by the compiler when appropriate and
possible. It does not require a spin lock and can therefore be safely used on pageable data.

InterlockedExchangeAdd is atomic only with respect to other InterlockedXxx calls.

Callers of InterlockedExchangeAdd can be running at any IRQL.

See Also

InterlockedIncrement, InterlockedDecrement, ExInterlockedAddLargelnteger,
ExInterlockedAddUlong

InterlockedExchangePointer

PVOID
InterlockedExchangePointer(
IN OUT PVOID *Target,

IN PVOID Value
)3

The InterlockedExchangePointer support routine performs an atomic operation that sets a
pointer to a new value.

Parameters
Target

Pointer to a pointer set to the value of Value.

Value
The new value for the pointer pointed to by Target.

Include
wdm.h or ntddk.h

134 Part1 Kernel-Mode Support Routines

Return Value
InterlockedExchangePointer returns the input value pointed to by Target.

Comments

InterlockedExchangePointer provides a fast, atomic way to synchronize updating a pointer
variable that is shared by multiple threads.

InterlockedExchangePointer is designed for speed and, typically, is implemented
inline by a compiler. InterlockedExchangePointer is atomic only with respect to other
InterlockedXxx calls. It does not use a spin lock and can be safely used on pageable data.

A call to InterlockedExchangePointer is atomic only with respect to other InterlockedXxx
calls.

Callers of InterlockedExchangePointer can be running at any IRQL.

See Also

InterlockedCompareExchange, InterlockedCompareExchangePointer, Interlocked-
Exchange

Interlockedincrement

LONG
InterlockedIncrement(
IN PLONG Addend
)

The InterlockedIncrement support routine increments a caller supplied variable as an
atomic operation.

Parameters

Addend
Pointer to a variable of type LONG.

Include
wdm.h or ntddk.h

Return Value

InterlockedIncrement returns the incremented value.

Chapter 2 Executive Support Routines 135

Comments

InterlockedIncrement should be used instead of ExInterlockedIncrementlong because it
is both more efficient and faster.

InterlockedIncrement is implemented inline by the compiler when appropriate and
possible. It does not require a spin lock and can therefore be safely used on pageable data.

InterlockedIncrement is atomic only with respect to other InterlockedXxx calls.

Callers of InterlockedIncrement can be running at any IRQL.

See Also

InterlockedDecrement, InterlockedExchange, ExInterlockedAddLargeInteger,
ExInterlockedAddUlong

PAGED_CODE

VOID PAGED_CODE();

The PAGED_CODE macro ensures that the calling thread is running at an IRQL that is low
enough to permit paging. If the IRQL > APC_LEVEL, PAGED_CODE() causes the system
to ASSERT.

Include

wdm.h or ntddk.h

Comments

A call to this macro should be made at the beginning of every driver routine that either con-
tains pageable code or touches pageable code.

The PAGED_CODE macro only checks IRQL at the point the code executes the macro.
If the code subsequently raises IRQL, it will not be detected. Driver writers should use the
driver verifier to detect when the IRQL is raised improperly.

PAGED_CODE only works in checked builds.

ProbeForRead

VOID
ProbeForRead (
IN CONST VOID *Address,
IN ULONG Length,
IN ULONG Alignment
)

136

Part 1 Kernel-Mode Support Routines

The ProbeForRead support routine probes a structure for read accessibility and ensures
correct alignment of the structure. If the structure is not accessible or has incorrect
alignment, then an exception is raised.

Parameters

Address
Supplies a pointer to the structure to be probed.

Length
Length of structure.

Alignment

Supplies the required alignment of the structure expressed as the number of bytes in the
primitive datatype (e.g., 1 for char, 2 for short, 4 for long, and 8 for quad).

Include

wdm.h or ntddk.h

Comments

Kernel-mode drivers must use ProbeForRead to validate read access to buffers allocated in

user space. It is most commonly used during METHOD_NEITHER /O to valid the user
buffer pointed to by Irp -> UserBuffer.

Drivers should call ProbeForRead inside a try-except block, so that any exceptions raised
are handled properly, and the driver completes the IRP with an error.

Callers of ProbeForRead must be running at IRQL < APC_LEVEL.

See Also

ProbeForWrite

ProbeForWrite

VOID
ProbeForWrite (
IN CONST VOID *Address,
IN ULONG Length,
IN ULONG ATignment
)

The ProbeForWrite support routine probes a structure for write accessibility and ensures
correct alignment of the structure. If the structure is not accessible or has incorrect align-
ment, then an exception is raised.

Chapter 2 Executive Support Routines 137

Parameters
Address

Supplies a pointer to the structure to be probed.

Length

Length of structure.

Alignment

Supplies the required alignment of the structure expressed as the number of bytes in the
primitive datatype (e.g., 1 for char, 2 for short, 4 for long, and 8 for quad).

Include
wdm.h or ntddk.h

Comments

Kernel-mode drivers must use ProbeForWrite to validate write access to buffers allocated
in user space. It is most commonly used during METHOD_NEITHER I/O to valid the user
buffer pointed to by Irp -> UserBuffer.

Drivers should call ProbeForWrite inside a try-except block, so that any exceptions raised
are handled properly, and the driver completes the IRP with an error.

Callers of ProbeForWrite must be running at IRQL < APC_LEVEL.

See Also
ProbeForRead

139

CHAPTETR 3

Hardware Abstraction Layer Routines

References for the routines and macros described in this chapter are in alphabetical order.

For an overview of the functionality of these routines and macros, see Chapter 1, Summary
of Kernel-Mode Support Routines.

AIIocateAdapterChanheI

NTSTATUS
AllocateAdapterChannel(
IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN ULONG NumberOfMapRegisters,
IN PDRIVER_CONTROL ExecutionRoutine,
IN PVOID Context
)s

AllocateAdapterChannel prepares the system for a DMA operation on behalf of the target
device object. As soon as the appropriate DMA channel and/or any necessary map registers
are available, AllocateAdapterChannel calls a driver-supplied routine to carry out an I/O
operation through the system DMA controller or a busmaster adapter.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

DeviceObject

Points to the device object that represents the target device for a requested DMA operation.

140 Part1 Kernel-Mode Support Routines

NumberOfMapRegisters

Specifies the number of map registers to be used in the transfer. This value is the lesser of
(the number of map registers needed to satisfy the current transfer request) and (the number
of available map registers returned by IoGetDmaAdapter).

ExecutionRoutine

Points to a driver-supplied AdapterControl routine to be called as soon the system DMA
controller or busmaster adapter is available. This routine is declared as follows:

TO_ALLOCATION_ACTION
(*PDRIVER_CONTROL) (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID MapRegisterBase,
IN PVOID Context
);

Context
Points to the driver-determined context to be passed to the AdapterControl routine.

Include
wdm.h or ntddk.h
Return Value
This routine can return one of the following NTSTATUS values:
Value Meaning
STATUS_SUCCESS The adapter channel has been allocated.
STATUS_INSUFFICIENT_RESOURCES The NumberOfMapRegisters is larger than the

value returned by IoGetDmaAdapter.

Comments

AllocéteAdapterChannel is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

This routine reserves exclusive access to a DMA controller channel and/or map registers
for the one or more DMA operations required to satisfy the current IRP’s transfer request for
the specified device.

If the system DMA controller or busmaster adapter is already busy or if insufficient resour-
ces are available, the driver's request is queued until the controller or adapter is free and
resources are available. Otherwise, the driver-supplied AdapterControl routine is called

Chapter 3 ‘Hardware Abstraction Layer Routines 141

immediately. Only one such request can be queued for a driver object at any one time.
Therefore, the driver should not call AllocateAdapterChannel again for another DMA
operation on the same driver object until the AdapterControl routine has completed
execution. In addition, a driver must not call AllocateAdapterChannel from within its
AdapterControl routine.

If AllocateAdapterChannel is called from a driver's Startlo routine to process the same IRP
passed in to the Startlo routine, AllocateAdapterChannel passes that Irp to the Adapter-
Control routine. Otherwise, the Irp has no meaning, and a driver should consider the Irp a
system-reserved parameter to its AdapterControl routine.

Drivers should save the value of MapRegisterBase for use when calling FreeAdapter-
Channel.

The return value of the AdapterControl routine depends on whether the device is a bus-
master or uses system DMA. Drivers of busmaster devices return DeallocateObject-
KeepRegisters; drivers of slave devices return KeepObject.

Callers of AllocateAdapterChannel must be running at IRQL DISPATCH_LEVEL.

See Also

FlushAdapterBuffers, FreeAdapterChannel, FreeMapRegisters, loGetDmaAdapter,
MapTransfer, ReadDmaCounter, DMA_OPERATIONS

AllocateCommonBuffer

PVOID
AllocateCommonBuffer(
IN PDMA_ADAPTER DmaAdapter,
IN ULONG Length,
OUT PPHYSICAL_ADDRESS LogicalAddress,
IN BOOLEAN CacheEnabled
)

AllocateCommonBuffer allocates memory and maps it so that it is simultaneously
accessible from both the processor and a device for DMA operations.
Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Length

Specifies the number of bytes of memory to allocate.

142

Part 1 Kernel-Mode Support Routines

LogicalAddress

Points to a variable that receives the logical address the device can use to access the
allocated buffer. Use this address rather than calling MmGetPhysicalAddress because
the system can take into account any platform-specific memory restrictions.

CacheEnabled

Specifies whether the allocated memory can be cached.

Include

wdm.h or ntddk.h

Return Value

AllocateCommonBuffer returns the base virtual address of the allocated range. If the buffer
cannot be allocated, it returns NULL.

Comments

AllocateCommonBuffer is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

AllocateCommonBuffer supports DMA in which the device and the processor continuously
communicate through system memory, as in a control structure for a busmaster DMA
device.

AllocateCommonBuffer also supports slave devices whose drivers use a system DMA con-
troller’s autoinitialize mode.

AllocateCommonBuffer does the following:

= Allocates memory that can be reached from both the processor and the device. This
memory appears contiguous to the device.

= Allocates map registers to map the buffer, if required by the system.

= Sets up a translation for the device, including loading map registers if necessary.

To use resident system memory economically, drivers should allocate as few of these buff-
ers per device as possible. AllocateCommonBuffer allocates at least a page of memory,
regardless of the requested Length. After a successful allocation requesting fewer than
PAGE_SIZE bytes, the caller can access only the requested Length. After a successful
allocation requesting more than an integral multiple of PAGE_SIZE bytes, any remaining
bytes on the last allocated page are inaccessible to the caller.

Chapter 3 Hardware Abstraction Layer Routines 143

If a driver needs several pages of common buffer space, but the pages need not be contigu-
ous, the driver should make several one-page requests to AllocateCommonBuffer instead
of one large request. This approach conserves contiguous memory.

Drivers typically call AllocateCommonBuffer as part of device start-up, during their
response to a PnP IRP_MN_START_DEVICE request. After start-up, it is possible that
only one-page requests will succeed, if any.

Callers of AllocateCommonBuffer must be running at IRQL PASSIVE_LEVEL.

See Also
FreeCommonBuffer, IoGetDmaAdapter, DMA_OPERATIONS

FlushAdapterBuffers

BOOLEAN
FlushAdapterBuffers(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL MdT,
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN ULONG Length,
IN BOOLEAN WriteToDevice
):

FlushAdapterBuffers flushes any data remaining in the system DMA controller’s internal
cache or in a busmaster adapter’s internal cache at the end of a DMA transfer operation.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Mdi

Points to the MDL that describes the buffer previously passed in the driver’s call to Map-
Transfer.

MapRegisterBase

Points to the handle passed to the driver's AdapterControl routine by AllocateAdapter-
Channel.

144

Part 1 Kernel-Mode Support Routines

CurrentVa

Points to the current virtual address in the buffer, described by the Mdl, where the I/O
operation occurred. This value must be the same as the initial CurrentVa value passed to
MapTransfer.

Length
Specifies the length, in bytes, of the buffer.

WriteToDevice

Specifies the direction of the DMA transfer operation: TRUE for a transfer from a buffer in
system memory to the driver’s device.

Include

wdm.h or ntddk.h

Return Value

FlushAdapterBuffers returns TRUE if any data remaining in the DMA controller’s or bus-
master adapter’s internal cache has been successfully flushed into system memory or out to
the device.

Comments

FlushAdapterBuffers is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

To ensure that a DMA transfer is complete, every driver that performs DMA operations
must call FlushAdapterBuffers before completing the IRP that requested the DMA transfer
and before freeing the map registers.

A driver can get the initial CurrentVa for the start of a packet-based DMA transfer by
calling MmGetMdlVirtual Address. However, the value returned is an index into the Mdl,
rather than a valid virtual address. If the driver must split a large transfer request into more
than one DMA operation, it must update CurrentVa and Length for each DMA operation.

Callers of FlushAdapterBuffers must be running at IRQL <= DISPATCH_LEVEL.

See Also

AllocateAdapterChannel, IoGetDmaAdapter, KeFlushloBuffers, MapTransfer,
MmGetMdlVirtualAddress, DMA_OPERATIONS

Chapter 3 Hardware Abstraction Layer Routines 145

FreeAdapterChannel

VOID
FreeAdapterChannel(
IN PDMA_ADAPTER DmaAdapter
)i

FreeAdapterChannel releases the system DMA controller when a driver has completed all
DMA operations necessary to satisfy the current IRP.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Include
wdm.h or ntddk.h

Comments

FreeAdapterChannel is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

After a driver has transferred all the data and called FlushAdapterBuffers, it calls Free-
AdapterChannel to release the system DMA controller that was previously allocated with
a call to AllocateAdapterChannel.

FreeAdapterChannel frees any map registers that were allocated by an earlier call to
AllocateAdapterChannel. A driver calls this routine only if its AdapterControl routine
returns KeepObject.

Callers of FreeAdapterChannel must be running at IRQL DISPATCH_LEVEL.

See Also

AllocateAdapterChannel, FlushAdapterBuffers, FreeMapRegisters, IoGetDma-
Adapter, MapTransfer, DMA_OPERATIONS

146

Part1 Kernel-Mode Support Routines

FreeCommonBuffer

VOID
FreeCommonBuffer(
IN PDMA_ADAPTER DmaAdapter,
IN ULONG Length,
IN PHYSICAL_ADDRESS LogicalAddress,
IN PVOID VirtuailAddress,
IN BOOLEAN CacheEnabled
)

FreeCommonBuffer frees a common buffer allocated by AllocateCommonBuffer, along
with all resources the buffer uses.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Length

Specifies the number of bytes to deallocate.

LogicalAddress

Specifies the logical address of the allocated memory range.

VirtualAddress

Points to the corresponding virtual address of the allocated memory range.

CacheEnabIed

Indicates whether the allocated memory is cached.

Include

wdm.h or ntddk.h

Comments

FreeCommonBuffer is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

To release a common buffer, a driver calls FreeCommonBuffer to unmap both its logical
and virtual addresses. The parameters passed to FreeCommonBuffer must match exactly
those passed to and returned from AllocateCommeonBuffer. A driver cannot free part of an
allocated common buffer.

Chapter 3 Hardware Abstraction Layer Routines 147

Callers of FreeCommonBuffer must be running at IRQL PASSIVE_LEVEL.

See Also
AllocateCommonBuffer, IoGetDmaAdapter, DMA_OPERATIONS

FreeMapRegisters

VOID
FreeMapRegisters(
IN PDMA_ADAPTER DmaAdapter,
PVOID MapRegisterBase,
ULONG NumberOfMapRegisters
)

FreeMapRegisters releases a set of map registers that were saved from a call to
AllocateAdapterChannel.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

MapRegisterBase
Points to the handle returned by the driver’s call to AllocateAdapterChannel.

NumberOfMapRegisters

Specifies the number of map registers to be released. This value must match the number
specified in an earlier call to AllocateAdapterChannel.

Include
wdm.h or ntddk.h

Comments

FreeMapRegisters is not a system routine that can be called directly by name. This routine
is only callable by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

When the driver of a busmaster device has completed the current packet-based DMA trans-
fer request, it calis FreeMapRegisters to release the map registers previously allocated by a
call to AllocateAdapterChannel and retained because its AdapterControl routine returned
DeallocateObjectKeepRegisters. The driver must call FreeMapRegisters after calling
FlushAdapterBuffers.

148 Part1 Kernel-Mode Support Routines

Callers of FreeMapRegisters must be running at IRQL DISPATCH_LEVEL.

See Also
AllocateAdapterChannel, IoGetDmaAdapter, MapTransfer, DMA_OPERATIONS

GetDmaAlignment

ULONG
GetDmaAlignment (
IN PDMA_ADAPTER DmaAdapter
);

GetDmaAlignment returns the alignment requirements of the DMA system.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

Include
wdm.h or ntddk.h

Return Value
GetDmaAlignment returns the alignment requirements of the DMA system.

Comments

GetDmaAlignment is not a system routine that can be called directly by name. This routine
is callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

A driver can call this routine to determine alignment requirements for DMA buffers it
allocates. The returned value should be used to set the AlignmentRequirement field in the
device object. A driver may need to increase this value because of additional hardware
device restrictions.

Callers of GetDmaAlignment must be running at IRQL PASSIVE_LEVEL.

See Also
IoGetDmaAdapter, DMA_OPERATIONS , DEVICE_OBJECT

Chapter 3 Hardware Abstraction Layer Routines 149

GetScatterGatherList

NTSTATUS
GetScatterGatherList (
IN PDMA_ADAPTER DmaAdapter,
IN PDEVICE_OBJECT DeviceObject,
IN PMDL MdT,
IN PVOID CurrentVa,
IN ULONG Length,
IN PDRIVER_LIST_CONTROL ExecutionRoutine,
IN PVOID Context,
IN BOOLEAN WriteToDevice
)3

GetScatterGatherList prepares the system for a DMA operation on behalf of the target
device object through either the system DMA controller or a busmaster adapter. As soon as
the appropriate DMA channel and any necessary map registers are available, GetScatter-
GatherList creates a scatter/gather list, initializes the map registers, and then calls a driver-
supplied routine to carry out the I/O operation.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

DeviceObject
Points to the device object that represents the target device for the DMA operation.

Mdi
Points to the MDL that describes the buffer at MdlAddress in the current IRP.

CurrentVa

Points to the current virtual address in the MDL for the buffer to be mapped for a DMA
transfer operation.

Length
Specifies the length, in bytes, to be mapped.

150

Part 1 Kernel-Mode Support Routines

ExecutionRoutine

Points to a driver-supplied AdapterControl routine to be called when the system DMA
controller or busmaster adapter is available. This routine is declared as follows:

VOID

(*PDRIVER_LIST_CONTROL)(
IN struct _DEVICE_OBJECT *DeviceObject,
IN struct _IRP *Irp,
IN PSCATTER_GATHER_LIST ScatterGather,
IN PVOID Context
)

Context

Points to the driver-determined context passed to the driver’s Execution routine when it is
called.

WriteToDevice

Indicates the direction of the DMA transfer: TRUE for a transfer from the buffer to the
device, and FALSE otherwise.

Include

wdm.h or ntddk.h

Return Value

This routine can return one of the following NTSTATUS values:

Value Meaning

STATUS_SUCCESS The operation succeeded.

STATUS_INSUFFICIENT_RESOURCES The routine could not allocate sufficient memory or the
number of map registers required for the transfer is
larger than the value returned by IoGetDmaAdapter.

STATUS_BUFFER_TOO_SMALL The buffer is too small for the requested transfer.

Comments

GetScatterGatherList is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

GetScatterGatherList combines the actions of the AllocateAdapterChannel and Map-
Transfer routines for drivers that perform scatter/gather DMA. GetScatterGatherList
determines how many map registers are required for the transfer, allocates the map registers,
maps the buffers for DMA, and fills in the scatter/gather list. It then calls the supplied

Chapter 3 Hardware Abstraction Layer Routines 151

AdapterControl routine, passing a pointer to the scatter/gather list in ScatterGather. The
driver should retain this pointer for use when calling PutScatterGatherList. Note that
GetScatterGatherList does not have the queuing restrictions that apply to Allocate-
AdapterChannel.

In its AdapterControl routine, the driver should perform the I/O. On return from the driver-
supplied routine, GetScatterGatherList keeps the map registers but frees the DMA adapter
structure. The driver must call PutScatterGatherList (which flushes the buffers) before it
can access the data in the buffer.

This routine can handle chained MDLs, provided that the total number of map registers
required by all chained MDLs does not exceed the number available.

Callers of GetScatterGatherList must be running at IRQL DISPATCH_LEVEL.

See Also

IoGetDmaAdapter, PutScatterGatherList, AllocateAdapterChannel, DMA _
OPERATIONS, SCATTER_GATHER_LIST

HalAllocateCommonBuffer

PVOID
HalAllocateCommonBuffer(
IN PADAPTER_OBJECT AdapterObject,
IN ULONG Length,
OUT PPHYSICAL_ADDRESS LogicalAddress,
IN BOOLEAN CacheEnabled
)

HalAllocateCommonBuffer is obsolete and is exported only to support existing driver
binaries. See AllocateCommonBuffer instead.

HalAssignSlotResources

NTSTATUS
HalAssignSlotResources(
IN PUNICODE_STRING RegistryPath,
IN PUNICODE_STRING DriverClassName,
IN PDRIVER_OBJECT DriverObject,
IN PDEVICE_OBJECT DeviceObject,
IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,
IN ULONG STotNumber,
IN OUT PCM_RESOURCE_LIST =AJJocatedResources
)

HalAssignSlotResources is obsolete and is exported only to support existing drivers.

152

Part 1 Kernel-Mode Support Routines

Drivers of PnP devices are assigned resources by the PnP Manager, which passes resource
lists with each IRP_MN_START_DEVICE request.

Drivers that must support a legacy device that cannot be enumerated by the PnP Manager
should use IoReportDetectedDevice and IoReportResourceForDetection.

See Also

CM_RESOURCE_LIST, ExFreePool, HalGetBusData, IoAssignResources,
IoReportDetectedDevice, IoReportResourceForDetection

HalExamineMBR

VOID
HalExamineMBR(
IN PDEVICE_OBJECT DeviceObject,
IN ULONG SectorSize,
IN ULONG MBRTypeldentifier,
OUT PVOID Buffer,
)

HalExamineMBR reads the master boot record (MBR) of a disk and returns data from the
MBR if the MBR is of the type specified by the caller.

Parameters

DeviceObject

Points to the device object for the device being examined.

SectorSize

Specifies the minimum number of bytes that an I/O operation can fetch from the device
being examined. If this value is less than 512, HalExamineMBR reads 512 bytes to ensure
that it reads an entire partition table.

MBRTypeldentifier
Specifies the type of MBR that may be on the disk.

Buffer

Points to a buffer that returns data from the MBR. The layout of the buffer depends on the
MBRTypeldentifier. The caller must deallocate this buffer as soon as possible with ExFree-
Pool. This routine returns NULL in Buffer if the MBRTypeldentifier of the disk does not
match that specified by the caller or if there is an error.

Include

ntddk.h

Chapter 3 Hardware Abstraction Layer Routines 153

Comments
Callers of HalExamineMBR must be running at IRQL PASSIVE_LEVEL.

See Also
ExFreePool

HalFreeCommonBuffer

VOID
HalFreeCommonBuffer(
IN PADAPTER_OBJECT AdapterObject,
IN ULONG Length,
IN PHYSICAL_ADDRESS LogicalAddress,
IN PVOID VirtualAddress,
IN BOOLEAN CacheEnabled
)

HalFreeCommonBuffer is obsolete and is exported only to support existing driver binaries.
See FreeCommonBuffer instead.

HalGetAdapter

PADAPTER_OBJECT
HalGetAdapter(
IN PDEVICE_DESCRIPTION DeviceDescription,
IN OUT PULONG NumberOfMapRegisters
);

HalGetAdapter is obsolete and is exported only for existing driver binaries. See
IoGetDmaAdapter instead.

HalGetBusData

ULONG
HalGetBusData(
IN BUS_DATA_TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG STotNumber,
IN PVOID Buffer,
IN ULONG Length
)

HalGetBusData is obsolete and is exported only to support existing drivers.

Drivers should use the PnP Manager's IRP_ MN_QUERY_INTERFACE and IRP_MN _
READ_CONFIG requests instead.

154 Part1 Kernel-Mode Support Routines

See Also

CM_EISA_FUNCTION_INFORMATION, CM_EISA_SLOT_INFORMATION, CM_
MCA_POS_DATA, HalAssignSlotResources, HalGetAdapter, HalGetBusDataBy-
Offset, HalGetInterruptVector, HalSetBusData, HalTranslateBusAddress, IoAssign-
Resources, PCI_COMMON_CONFIG, PCI_SLOT_NUMBER, IRP_MN_QUERY_
INTERFACE, IRP_MN_READ_CONFIG

HalGetBusDataByOffset

ULONG
HalGetBusDataByOffset(
IN BUS_DATA_TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG STotNumber,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
)s

HalGetBusData is obsolete and is exported only to support existing drivers.
Drivers should use the PnP Manager's IRP_ MN_QUERY_INTERFACE request instead.

See Also

HalAssignSlotResources, HalGetBusData, HalSetBusDataByOffset, HalTranslate-
BusAddress, IoAssignResources, PCI_COMMON_CONFIG, PCI_SLOT_NUMBER,
IRP_MN_QUERY_INTERFACE, IRP_MN_READ_CONFIG

HalGetDmaAlignmentRequirement

ULONG
HalGetDmaAlignmentRequirement(
);

HalGetDmaAlignmentRequirement is obsolete and exported only to support existing
drivers. See GetDmaAlignment instead.

HalGetinterruptVector

ULONG
HalGetInterruptVector(
IN INTERFACE_TYPE InterfaceType,
IN ULONG BusNumber,
IN ULONG BusInterruptlevel,
IN ULONG BuslInterruptVector,

Chapter 3 Hardware Abstraction Layer Routines 155

OUT PKIRQL Irgl,
OUT PKAFFINITY Affinity
)3

HalGetInterruptVector is obsolete and is exported only to support existing drivers.

Drivers of PnP devices are assigned resources by the PnP Manager, which passes resource
lists with each IRP_MN_START_DEVICE request.

Drivers that must support a legacy device that cannot be enumerated by the PnP Manager
should use IoReportDetectedDevice and IoReportResourceForDetection.

HalReadDmaCounter

ULONG
HalReadDmaCounter(
IN PADAPTER_OBJECT AdapterObject
)3

HalReadDmaCounter is obsolete and exported only to support existing driver binaries. See
ReadDmaCounter instead.

HalSetBusData

ULONG
HalSetBusDatal(
IN BUS_DATA_TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG STotNumber,
IN PVOID Buffer,
IN ULONG Length
)3

HalSetBusData is obsolete and is exported only to support existing drivers.

Drivers should use the PnP Manager's IRP_MN_QUERY_INTERFACE and IRP_MN_
WRITE_CONFIG requests instead.

HalSetBusData sets bus-configuration data for a given slot or address on a particular bus.

Parameters
BusDataType

Specifies the type of bus data to be set. Currently, its value can be the following: Cmos
or PCIConfiguration. However, additional types of bus configuration will be supported
in future versions of the operating system. The upper bound on the bus types supported is
always MaximumBusDataType.

156

Part1 Kernel-Mode Support Routines

BusNumber

Specifies the zero-based and system-assigned number of the bus in systems with more than
one bus of the same BusDataType.

SlotNumber

Specifes the logical slot number for the device. When PCIConfiguration is specified, this is
a PCI_SLOT_NUMBER-type value.

Buffer

Points to a caller-supplied buffer containing information specific to BusDataType.

When Cmos is specified, the buffer contains data to be written to CMOS (BusNumber
equals zero) or ECMOS (BusNumber equals one) locations starting with the location
specified by the SlotNumber.

When PCIConfiguration is specified, the buffer contains some or all of the PCI_
COMMON_CONFIG information for the given SlotNumber. The specified Length deter-
mines how much information is supplied. Certain members of PCI_COMMON_CONFIG
have read-only values, and the caller is responsible for preserving the system-supplied
values of read-only members.

Length

Specifies the number of bytes of configuration data in Buffer.

Include

ntddk.h

Return Value

HalSetBusData returns the number of bytes of data successfully set for the given Slot-
Number. If the given BusDataType is not valid for the current platform or if the supplied
information is invalid, this routine returns zero.

Comments

Calling HalSetBusDataByOffset with a BusDataType of PCIConfiguration and an input
Offset of zero is the same as calling HalSetBusData.

If the input BusDataType is PCIConfiguration, callers of HalSetBusData can be running
at IRQL <= DISPATCH_LEVEL. Otherwise, callers of HalSetBusData must be running at
IRQL PASSIVE_LEVEL.

Chapter 3 Hardware Abstraction Layer Routines 157

See Also

HalGetBusData, HalGetBusDataByOffset, HalSetBusDataByOffset, PCI_COMMON _
CONFIG, PCI_SLOT_NUMBER, IRP_MN_QUERY_INTERFACE, IRP_MN_WRITE_
CONFIG

HalSetBusDataByOffset

ULONG
HalSetBusDataByOffset(
IN BUS_DATA_TYPE BusDataType,
IN ULONG BusNumber,
IN ULONG STotNumber,
IN PVOID Buffer,
IN ULONG Offset,
IN ULONG Length
)

HalSetBusDataByOffset is obsolete and is exported only to support existing drivers.

Drivers should use the PnP Mvanager's IRP_MN_QUERY_INTERFACE and IRP_MN_
WRITE_CONFIG requests instead.

See Also

HalAssignSlotResources, HalGetBusData, HalGetBusDataByOffset, HalTranslate-
BusAddress, IoAssignResources, PCI_COMMON_CONFIG, PCI_SLOT_NUMBER,
IRP_MN_QUERY_INTERFACE, IRP_MN_WRITE_CONFIG

HaITrahsIateBusAddress

BOOLEAN
HalTranslateBusAddress(
IN INTERFACE_TYPE InterfaceType,
IN ULONG BusNumber,
IN PHYSICAL_ADDRESS BusAddress,
IN OUT PULONG AddressSpace,
OUT PPHYSICAL_ADDRESS TranslatedAddress
)

HalTranslateBusAddress is obsolete and is exported only to support existing drivers.

The PnP Manager passes lists of raw and translated resources in its IRP_MN_START_
DEVICE request for each device. Consequently, PnP drivers seldom, if ever, need to
translate bus addresses. However, if translation is required, drivers should use the PnP
IRP_MN_QUERY_INTERFACE request to get the standard bus interface.

158 Part1 Kernel-Mode Support Routines

See Also

HalAssignSlotResources, HalGetBusData, HalGetBusDataByOffset, IoAssign-
Resources, MmMaploSpace, IRP_MN_QUERY_INTERFACE

MapTransfer

PHYSICAL_ADDRESS
MapTransfer(
IN PDMA_ADAPTER DmaAdapter,
IN PMDL MdT,
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN OUT PULONG Length,
IN BOOLEAN WriteToDevice
)

MapTransfer sets up map registers for an adapter object to map a DMA transfer from a
locked-down buffer.

Parameters

DmaAdapter

Points to the DMA adapter object returned by IoGetDmaAdapter and previously passed to
AllocateAdapterChannel for the current IRP’s transfer request.

Mal

Points to one of the following: the MDL that describes the buffer at MdlAddress in the
current IRP or the MDL that describes the common buffer set up by the driver of a slave
device (auto-initialize mode).

MapRegisterBase
Points to the handle previously returned by AllocateAdapterChannel for the current IRP.

CurrentVa

Points to the current virtual address of the data to be transferred for a DMA transfer
operation.

Length

Specifies the length, in bytes, to be mapped. If the driver indicated that its device was a
busmaster with scatter/gather support when it called IoGetDmaAdapter, the value of
Length on return from MapTransfer indicates how many bytes were mapped. Otherwise,
the input and output values of Length are identical.

Chapter 3 Hardware Abstraction Layer Routines 159

WriteToDevice

Indicates the direction of the transfer operation: TRUE for a transfer from the locked-down
buffer to the device.

Include
wdm.h or ntddk.h

Return Value

MapTransfer returns the logical address of the region mapped, which the driver of a bus-
master adapter can use. Drivers of devices that use a system DMA controller cannot use this
value and should ignore it.

Comments

MapTransfer is not a system routine that can be called directly by name. This routine is
callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

The DmaAdapter must have already been allocated as a result of the driver's preceding call
to AllocateAdapterChannel.

The number of map registers that can be set up cannot exceed the maximum returned when
the driver called IoGetDmaAdapter.

A driver can get the initial CurrentVa for the start of a packet-based DMA transfer by
calling MmGetMdlVirtualAddress. However, the value returned is an index into the Mdl,
rather than a valid virtual address. If the driver must split a large transfer request into more
than one DMA operation, it must update CurrentVa and Length for each DMA operation.

The driver of a busmaster device with scatter/gather support can use the returned logical
address and updated Length value to build a scatter/gather list, calling MapTransfer repeat-
edly until it has used all available map registers for the transfer operation. However, such a
driver could more simply use the GetScatterGatherList routine.

Callers of MapTransfer must be running at IRQL <= DISPATCH_LEVEL.

See Also

ADDRESS_AND_SIZE_TO_SPAN_PAGES, AllocateCommonBuffer, IoGetDma-
Adapter, AllocateAdapter Channel, FlushAdapterBuffers, FreeAdapterChannel,
FreeMapRegisters, KeFlushloBuffers, MmGetMdlVirtualAddress

160 Part 1 Kernel-Mode Support Routines

PutDmaAdapter

VvoID

PutDmaAdapter(
PDMA_ADAPTER DmaAdapter
)s

PutDmaAdapter frees a DMA_ADAPTER structure previously allocated by IoGetDma-
Adapter.

Parameters

DmaAdapter
Points to the DMA_ADAPTER structure to be released.

Include
wdm.h or ntddk.h

Comments

PutDmaAdapter is not a system routine that can be called directly by name. This routine
is callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

PutDmaAdapter frees a DMA adapter object previously allocated by IoGetDmaAdapter.
Drivers should call PutDmaAdapter after completing DMA operations and freeing any
map registers and common buffer allocated with this adapter object. After PutDmaAdap-
ter returns, the driver can no longer use the DMA adapter object.

A driver must call PutDmaAdapter when it receives a PnP IRP._ MN_STOP_DEVICE
request.

Callers of PutDmaAdapter must be running at IRQL DISPATCH_LEVEL.

See Also
IoGetDmaAdapter, DMA_OPERATIONS

PutScatterGatherList

VOID
PutScatterGatherList(
IN PDMA_ADAPTER DmaAdapter,
IN PSCATTER_GATHER_LIST ScatterGather,
IN BOOLEAN WriteToDevice
)

Chapter 3 Hardware Abstraction Layer Routines 161

PutScatterGatherList frees the previously allocated map registers and scatter/gather list
used in scatter/gather DMA.

Parameters

DmaAdapter

Points to the DMA_ADAPTER structure returned by IoGetDmaAdapter that represents the
busmaster adapter or DMA controller.

ScatterGather
Points to a scatter/gather list previously returned by GetScatterGather.

WriteToDevice
Indicates the direction of the DMA transfer: specify TRUE for a transfer from the buffer to
the device, and FALSE otherwise.

Include
wdm.h or ntddk.h

Return Value
This routine can return the following NTSTATUS value:

Value Meaning

STATUS_SUCCESS The map registers and scatter/gather list were successfully deallocated.

Comments

PutScatterGatherList is not a system routine that can be called directly by name. This
routine is callable only by pointer from the address returned in a DMA_OPERATIONS
structure. Drivers obtain the address of this routine by calling IoGetDmaAdapter.

Drivers should call PutScatterGatherList after completing scatter/gather I/O. This routine
flushes the adapter buffers, frees the map registers, and frees the scatter/gather list previous-
ly allocated by GetScatterGatherList.

Callers of PutScatterGatherList must be running at IRQL DISPATCH_LEVEL.

See Also

IoGetDmaAdapter, GetScatterGatherList, DMA_OPERATIONS, SCATTER_
GATHER_LIST

162 Part 1 Kernel-Mode Support Routines

ReadDmaCounter

ULONG
ReadDmaCounter(
IN PDMA_ADAPTER DmaAdapter
)

ReadDmaCounter returns the number of bytes remaining to be transferred during the
current slave DMA operation.

Parameters

DmaAdapter

Points to the adapter object previously returned by IoGetDmaAdapter representing the
system DMA controller channel currently in use.

Include
wdm.h or ntddk.h

Return Value

ReadDmaCounter returns the number of bytes remaining to be transferred in the current
DMA operation.

Comments

ReadDmaCounter is not a system routine that can be called directly by name. This routine
is callable only by pointer from the address returned in a DMA_OPERATIONS structure.
Drivers obtain the address of this routine by calling IoGetDmaAdapter.

ReadDmaCounter can be called only by drivers of slave DMA devices. Usually, the caller
is the driver of a slave device that uses a system DMA controller’s autoinitialize mode.

Callers of ReadDmaCounter must be running at IRQL <= DISPATCH_LEVEL.

See Also
AllocateCommonBuffer, IoGetDmaAdapter, FlushAdapterBuffers, MapTransfer

Chapter 3 Hardware Abstraction Layer Routines 163

READ_PORT_BUFFER_UCHAR

VOID
READ_PORT_BUFFER_UCHAR(
IN PUCHAR Port,

IN PUCHAR Buffer,

IN ULONG Count
)s

READ_PORT_BUFFER_UCHAR reads a number of bytes from the specified port address
into a buffer.

Parameters

Port

Points to the port, which must be a mapped memory range in I/O space.

Buffer

Points to a buffer into which an array of UCHAR values is read.

Count
Specifies the number of bytes to be read into the buffer.

Include

wdm.h or ntddk.h

Comments

The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers of READ_PORT_BUFFER_UCHAR can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

READ_PORT_BUFFER_ULONG

VOID
READ_PORT_BUFFER_ULONG(
IN PULONG Port,

IN PULONG Buffer,
IN ULONG Count
)

READ_PORT_BUFFER_ULONG reads a number of ULONG values from the specified
port address into a buffer.

164 Part1 Kernel-Mode Support Routines

Parameters
Port

Points to the port, which must be a mapped memory range in I/O space.

Buffer

Points to a buffer into which an array of ULONG values is read.

Count
Specifies the number of ULONG values to be read into the buffer.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
ULONG values.

Callers of READ_PORT_BUFFER_ULONG can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

READ_PORT_BUFFER_USHORT

VOID
READ_PORT_BUFFER_USHORT(
IN PUSHORT Port,

IN PUSHORT Buffer,
IN ULONG Count
)

READ_PORT_BUFFER_USHORT reads a number of USHORT values from the specified
port address into a buffer.

Parameters
Port

Points to the port, which must be a mapped memory range in I/O space.

Buffer
Points to a buffer into which an array of USHORT values is read.

Count
Specifies the number of USHORT values to be read into the buffer.

Chapter 3 Hardware Abstraction Layer Routines 165

Include
wdm.h or ntddk.h

Comments

The size of the buffer must be large enough to contain at least the specified number of
USHORT values.

Callers of READ_PORT_BUFFER_USHORT can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

READ_PORT_UCHAR

UCHAR
READ_PORT_UCHAR(
IN PUCHAR Port
);

READ_PORT_UCHAR reads a byte from the specified port address.

Parameters
Port

Points to the port address, which must be a mapped memory range in I/O space.

Include
wdm.h or ntddk.h

Return Value
READ_PORT_UCHAR returns the byte read from the specified port address.

Comments

Callers of READ_PORT_UCHAR can be running at any IRQL, assuming the Port is
resident, mapped device memory.

READ_PORT_ULONG

ULONG
READ_PORT_ULONG(
IN PULONG Port
H

READ_PORT_ULONG reads a ULONG value from the specified port address.

166 Part1 Kernel-Mode Support Routines

Parameters
Port

Points to the port address, which must be a mapped range in I/O space.

Include
wdm.h or ntddk.h

Return Value
READ_PORT_ULONG returns the ULONG value read from the specified port address.

Comments

Callers of READ_PORT_ULONG can be running at any IRQL, assuming the Port is
resident, mapped device memory.

READ_PORT_USHORT

USHORT
READ_PORT_USHORT(
IN PUSHORT Port
)s

READ_PORT_USHORT reads a USHORT value from the specified port address.

Parameters
Port

Points to the port address, which must be a mapped range in I/O space.

Include
wdm.h or ntddk.h

Return Value

READ_POR166_USHORT returns the USHORT value read from the specified port
address.

Comments

Callers of READ_PORT_USHORT can be running at any IRQL, assuming the Port is
resident, mapped device memory.

Chapter 3 Hardware Abstraction Layer Routines 167

READ_REGISTER_BUFFER_UCHAR

VOID
READ_REGISTER_BUFFER_UCHAR(
IN PUCHAR Register,

IN PUCHAR Buffer,
IN ULONG Count
)

READ_REGISTER_BUFFER_UCHAR reads a number of bytes from the specified register
address into a buffer.

Parameters

Register
Points to the register, which must be a mapped range in memory space.

Buffer

Points to a buffer into which an array of UCHAR values is read.

Count
Specifies the number of bytes to be read into the buffer.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers of READ_REGISTER_BUFFER_UCHAR can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

READ_REGISTER_BUFFER_ULONG

VOID
READ_REGISTER_BUFFER_ULONG(
IN PULONG. Register,

IN PULONG Buffer,
IN ULONG Count
)

READ_REGISTER_BUFFER_ULONG reads a number of ULONG values from the
specified register address into a buffer.

168 Part1 Kernel-Mode Support Routines

Parameters
Register

Points to the register, which must be a mapped range in memory space.

Buffer

Points to a buffer into which an array of ULONG values is read.

Count
Specifies the number of ULONG values to be read into the buffer.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
ULONG values.

Callers of READ_REGISTER_BUFFER_ULONG can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

READ_REGISTER_BUFFER_USHORT

VOID
READ_REGISTER_BUFFER_USHORT(
IN PUSHORT Register,

IN PUSHORT Buffer,
IN ULONG Count
)

READ_REGISTER_BUFFER_USHORT reads a number of USHORT values from the
specified register address into a buffer.

Parameters
Register

Points to the register, which must be a mapped range in memory space.

Buffer
Points to a buffer into which an array of USHORT values is read.

Count
Specifies the number of USHORT values to be read into the buffer.

Chapter 3 Hardware Abstraction Layer Routines 169

Include
wdm.h or ntddk.h

Comments

The size of the buffer must be large enough to contain at least the specified number of
USHORT values.

Callers of READ_REGISTER_BUFFER_USHORT can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

READ_REGISTER_UCHAR

UCHAR
READ_REGISTER_UCHAR(
IN PUCHAR Register
)

READ_REGISTER_UCHAR reads a byte from the specified register address.

Parameters

Register
Points to the register address, which must be a mapped range in memory space.

Include
wdm.h or ntddk.h

Return Value
READ_REGISTER_UCHAR returns the byte read from the specified register address.

Comments

Callers of READ_REGISTER_UCHAR can be running at any IRQL, assuming the Register
is resident, mapped device memory.

READ_REGISTER_ULONG

ULONG
READ_REGISTER_ULONG(
IN PULONG Register
)

READ_REGISTER_ULONG reads a ULONG value from the specified register address.

170 Part 1 Kernel-Mode Support Routines

Parameters

Register
Points to the register address, which must be a mapped range in memory space.

Include
wdm.h or ntddk.h

Return Value

READ_REGISTER_ULONG returns the ULONG value read from the specified register
address.

Comments

Callers of READ_REGISTER_ULONG can be running at any IRQL, assuming the Register
is resident, mapped device memory.

READ_REGISTER_USHORT

USHORT
READ_REGISTER_USHORT(
IN PUSHORT Register
)

READ_REGISTER_USHORT reads a USHORT value from the specified register address.

Parameters

Register
Points to the register address, which must be a mapped range in memory space.

Include
wdm.h or ntddk.h

Return Value

READ_REGISTER_USHORT returns the USHORT value read from the specified register
address.

Comments

Callers of READ_REGISTER_USHORT can be running at any IRQL, assuming the
Register is resident, mapped device memory.

Chapter 3 Hardware Abstraction Layer Routines 17

WRITE_PORT_BUFFER_UCHAR

VOID |
WRITE_PORT_BUFFER_UCHAR(
IN PUCHAR Port,
IN PUCHAR Buffer,
IN ULONG Count
N

WRITE_PORT_BUFFER_UCHAR writes a number of bytes from a buffer to the speci-
fied port.

Parameters
Port

Points to the port, which must be a mapped memory range in /O space.

Buffer

Points to a buffer from which an array of UCHAR values is to be written.

Count
Specifies the number of bytes to be written to the port.

Include
wdm.h or ntddk.h

Comments

The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers of WRITE_PORT_BUFFER_UCHAR can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

WRITE_PORT_BUFFER_ULONG

VOID
WRITE_PORT_BUFFER_ULONG(
IN PULONG Port,

IN PULONG Buffer,
IN ULONG Count
);

WRITE_PORT_BUFFER_ULONG writes a number of ULONG values from a buffer to the
specified port address.

172

Part 1 Kernel-Mode Support Routines

Parameters

Port

Points to the port, which must be a mapped memory range in I/O space.

Buffer

Points to a buffer from which an array of ULONG values is to be written.

Count
Specifies the number of ULONG values to be written to the port.

Include

wdm.h or ntddk.h

Comments

The size of the buffer must be large enough to contain at least the specified number of
ULONG:s.

Callers of WRITE_PORT_BUFFER_ULONG can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

WRITE_PORT_BUFFER_USHORT

VOID
WRITE_PORT_BUFFER_USHORT(
IN PUSHORT Port,

IN PUSHORT Buffer,
IN ULONG Count
)s

WRITE_PORT_BUFFER_USHORT writes a number of USHORT values from a buffer to
the specified port address.

Parameters

Port

Points to the port, which must be a mapped memory range in I/O space.

Buffer

Points to a buffer from which an array of USHORT values is to be written.

Count
Specifies the number of USHORT values to be written to the port.

Chapter 3 Hardware Abstraction Layer Routines 173

Include
wdm.h or ntddk.h

Comments

The size of the buffer must be large enough to contain at least the specified number of
USHORTS.

Callers of WRITE_PORT_BUFFER_USHORT can be running at any IRQL, assuming the
Buffer is resident and the Port is resident, mapped device memory.

WRITE_PORT_UCHAR

VOID
WRITE_PORT_UCHAR(
IN PUCHAR Port,
IN UCHAR Value
s

WRITE_PORT_UCHAR writes a byte to the specified port address.

Parameters
Port

Points to the port, which must be a mapped memory range in I/O space.

Value
Specifies a byte to be written to the port.

Include
wdm.h or ntddk.h

Comments

Callers of WRITE_PORT_UCHAR can be running at any IRQL, assuming the Port is
resident, mapped device memory.

WRITE_PORT_ULONG

VOID
WRITE_PORT_ULONG(
IN PULONG Port,
IN ULONG Value
)

WRITE_PORT_ULONG writes a ULONG value to the specified port address.

174 Part 1 Kernel-Mode Support Routines

Parameters
Port

Points to the port, which must be a mapped memory range in I/O space.

Value
Specifies a ULONG value to be written to the port.

Include
wdm.h or ntddk.h

Comments

Callers of WRITE_PORT_ULONG can be running at any IRQL, assuming the Port is
resident, mapped device memory.

WRITE_PORT_USHORT

VOID
WRITE_PORT_USHORT(
IN PUSHORT Port,
IN USHORT Value
)

WRITE_PORT_USHORT writes a USHORT value to the specified port address.

Parameters
Port

Points to the port, which must be a mapped memory range in I/O space.

Value
Specifies a USHORT value to be written to the port.

Include
wdm.h or ntddk.h

Comments

Callers of WRITE_PORT_USHORT can be running at any IRQL, assuming the Port is
resident, mapped device memory.

Chapter 3 Hardware Abstraction Layer Routines 175

WRITE_REGISTER_BUFFER_UCHAR

VOID
WRITE_REGISTER_BUFFER_UCHAR(
IN PUCHAR Register,

IN PUCHAR Buffer,
IN ULONG Count
);

WRITE_REGISTER_BUFFER_UCHAR writes a number of bytes from a buffer to the
specified register.

Parameters

Register
Points to the register, which must be a mapped range in memory space.

Buffer

Points to a buffer from which an array of UCHAR values is to be written.

Count
Specifies the number of bytes to be written to the register.

Include
wdm.h or ntddk.h

Comments

The size of the buffer must be large enough to contain at least the specified number of bytes.

Callers of WRITE_REGISTER_BUFFER_UCHAR can be running at any IRQL,, assuming
the Buffer is resident and the Register is resident, mapped device memory.

WRITE_REGISTER_BUFFER_ULONG

VvOID
WRITE_REGISTER_BUFFER_ULONG(
IN PULONG Register,

IN PULONG Buffer,
IN ULONG Count
)s

WRITE_REGISTER_BUFFER_ULONG writes a number of ULONG values from a buffer
to the specified register.

176 Part1 Kernel-Mode Support Routines

Parameters
Register

Points to the register, which must be a mapped range in memory space.

Buffer

Points to a buffer from which an array of ULONG values is to be written.

Count
Specifies the number of ULONG values to be written to the register.

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
ULONGS.

Callers of WRITE_REGISTER_BUFFER_ULONG can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

WRITE_REGISTER_BUFFER_USHORT

VOID
WRITE_REGISTER_BUFFER_USHORT(
IN PUSHORT Register,

IN PUSHORT Buffer,
IN ULONG Count
)

WRITE_REGISTER_BUFFER_USHORT writes a number of USHORT values from a
buffer to the specified register.
Parameters

Register
Points to the register, which must be a mapped range in memory space.

Buffer

Points to a buffer from which an array of USHORT values is to be written.

Count
Specifies the number of USHORT values to be written to the register.

Chapter 3 Hardware Abstraction Layer Routines 177

Include
wdm.h or ntddk.h

Comments
The size of the buffer must be large enough to contain at least the specified number of
USHORTs.

Callers of WRITE_REGISTER_BUFFER_USHORT can be running at any IRQL, assuming
the Buffer is resident and the Register is resident, mapped device memory.

WRITE_REGISTER_UCHAR

VOID
WRITE_REGISTER_UCHAR(
IN PUCHAR Register,
IN UCHAR Value
);

WRITE_REGISTER_UCHAR writes a byte to the specified address.

Parameters

Register
Points to the register, which must be a mapped range in memory space.

Value
Specifies a byte to be written to the register.

Include
wdm.h or ntddk.h

Comments

Callers of WRITE_REGISTER_UCHAR can be running at any IRQL, assuming the
Register is resident, mapped device memory.

WRITE_REGISTER_ULONG

VvOID
WRITE_REGISTER_ULONG(
IN PULONG Register,
IN ULONG Value
)

WRITE_REGISTER_ULONG writes a ULONG value to the specified address.

178 Part 1 Kernel-Mode Support Routines

Parameters

Register
Points to the register which must be a mapped range in memory space.

Value ,
Specifies a ULONG value to be written to the register.

Include
wdm.h or ntddk.h

Comments

Callers of WRITE_REGISTER_ULONG can be running at any IRQL, assuming the
Register is resident, mapped device memory.

WRITE_REGISTER_USHORT

VOID
WRITE_REGISTER_USHORT(
IN PUSHORT Register,
IN USHORT Value
)

WRITE_REGISTER_USHORT writes a USHORT value to the specified address.

Parameters
Register

Points to the register, which must be a mapped range in memory space.

Value
Specifies a USHORT value to be written to the register.

Include
wdm.h or ntddk.h

Comments

Callers of WRITE_REGISTER_USHORT can be running at any IRQL, assuming the
Register is resident, mapped device memory.

179

CHAPTETR 4

I/0 Manager Routines

All kernel-mode drivers except video and SCSI miniport drivers and NDIS drivers call
YoXxx routines.

References for the IoXxx routines are in alphabetical order.

For an overview of the functionality of these routines, see Chapter 1, Summary of Kernel-
Mode Support Routines.

loAcquireCancelSpinLock

VOID
IToAcquireCancelSpinLock(
OUT PKIRQL Irql
)s

ToAcquireCancelSpinLock synchronizes cancelable-state transitions for IRPs in a
multiprocessor-safe way.

Parameters
Irgl

Points to a variable in which to save the current IRQL for a subsequent call to IoRelease-
CancelSpinLock. Usually, the Irgl is saved on the stack as a local variable.

Include
wdm.h or ntddk.h

Comments

A driver that uses the [/O-manager-supplied device queues in the device object must
be holding the cancel spin lock whenever it changes the cancelable state of an IRP with
IoSetCancelRoutine.

180

Part 1 Kernel-Mode Support Routines

A driver that manages its own queue(s) of IRPs does not need to hold the cancel spin lock
when calling IoSetCancelRoutine.

The holder of the cancel spin lock should release it promptly by calling IoReleaseCancel-
SpinLock.

A driver-supplied Cancel routine is called with the cancel spin lock held. It must release the
cancel spin lock when it has completed the IRP to be canceled.

Callers of IoAcquireCancelSpinLock must be running at IRQL <= DISPATCH_
LEVEL.

See Also

IoReleaseCancelSpinlock, IoSetCancelRoutine

loAcquireRemoveLock

This routine is documented in Volume 1 of the Windows 2000 Drivers Development
Reference. Please see loAcquireRemoveLock in that book for a full reference.

loAcquireRemoveLockEx

This routine is documented in Volume 1 of the Windows 2000 Drivers Development
Reference. Please see loAcquireRemoveLock in that book for a full reference.

loAdjustPagingPathCount

This routine is documented in Volume 1 of the Windows 2000 Drivers Development
Reference. Please see IoAcquireRemoveLock in that book for a full reference.

loAllocateAdapterChannel

NTSTATUS
IoAllocateAdapterChannel(
IN PADAPTER_OBJECT AdapteroObject,
IN PDEVICE_OBJECT DeviceObject,
IN ULONG NumberOfMapRegisters,
IN PDRIVER_CONTROL ExecutionRoutine,
IN PVOID Context
)s

ToAllocateAdapterChannel is obsolete and is exported only to support existing drivers.
Use AllocateAdapter Channel instead.

Chapter 4 1/0O Manager Routines 181

Return Value

IoAllocateWorkItem returns a pointer to a private IO_WORKITEM structure. Drivers
should not make any assumptions about the format of this structure nor attempt to access
information contained in this structure. IoAllocateWorkItem can return NULL in the case
of insufficient resources.

Comments
Drivers queue work items allocated by IoAllocateWorkItem with IoQueueWorkItem.

It is the caller's responsibility to free the resources associated with the work item returned
by IoAllocateWorkItem by calling IoFreeWorkItem in the callback routine passed to
ToQueueWorkItem.

Callers of IoAllocateWorkItem must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoQueueWorkItem, IoFreeWorkItem

loAssignArcName

VOiD
IoAssignArcName(
IN PUNICODE_STRING ArcName,
IN PUNICODE_STRING DeviceName
)s

IoAssignArcName creates a symbolic link between the ARC name of a physical device and
the name of the corresponding device object when it has been created.

Parameters

ArcName

Points to a buffer containing the ARC name of the device. The ARC name must be a
Unicode string.

DeviceName

Points to a buffer containing the name of the device object, representing the same device.
The device object name must be a Unicode string.

Include
ntddk.h

182 Part 1 Kernel-Mode Support Routines

Comments

Drivers of hard disk devices need not call this routine. Drivers of other mass-storage de-
vices, including floppy, CD_ROM, and tape devices, should call IoAssignArcName during
their initialization.

Callers of IoAssignArcName must be running at IRQL PASSIVE_LEVEL.

See Also

IoCreateDevice

loAssignResources

NTSTATUS
IoAssignResources(
IN PUNICODE_STRING RegistryPath,
IN PUNICODE_STRING DriverClassName OPTIONAL,
IN PDRIVER_OBJECT DriverObject,
IN PDEVICE_OBJECT DeviceObject OPTIONAL,
IN PIO_RESOURCE_REQUIREMENTS_LIST RequestedResources,
IN OUT PCM_RESOURCE_LIST =xAllocatedResources
)

IoAssignResources is obsolete and is exported only to support existing drivers.

Drivers of PnP devices are assigned resources by the PnP Manager, which passes resource
lists with each IRP_MN_START_DEVICE request.

Drivers that must support a legacy device that cannot be enumerated by the PnP Manager
should use IoReportDetectedDevice and IoReportResourceForDetection.

IoAssignResources takes an input list of requested hardware resources for a driver or device,
claims an available set of hardware resources, such as an interrupt vector, device memory
range and/or I/O port range, and possibly a particular DMA controller channel, in the
\Registry\Hardware\Machine\ResourceMap tree, and returns a list of allocated hardware
resources for the driver or device. As an alternative, drivers of PCI-type devices can call
HalAssignSlotResources.

Parameters

RegistryPath

Points to the \Registry\Machine\System\CurrentControlSet\Services\DriverName key
or one of its subkeys, depending on whether the input DeviceObject pointer is NULL. If a
driver uses resources in common for all its devices, RegistryPath is the pointer input to its
DriverEntry routine and the DeviceObject pointer must be NULL. A driver that needs
device-specific hardware resources, rather than driver-specific resources in common for all

Chapter 4 1/O Manager Routines 183

its devices, must pass a RegistryPath pointer to an updated, device-specific string naming
a subkey of DriverName, at each call to IoAssignResources with a nonNULL pointer to a
unique DeviceObject.

DriverClassName

Points to a buffered Unicode string that describes the class of driver under which the
driver’s configuration information should be stored. A default type Other is used if none
is given, and a new key is created in the registry if a unique name is supplied.

DriverObject

Points to the driver object that was input to the DriverEntry routine.

DeviceObject

This pointer is optional. If it is NULL, the caller-supplied RequestedResources list specifies
resources that the driver itself needs, possibly to control several devices that it supports.
Otherwise, DeviceObject points to the driver-created device object representing a physical
device for which the driver is attempting to claim device-specific hardware resources.

RequestedResources

Points to a caller-supplied IO_RESOURCE_REQUIREMENTS_LIST structure. This struc-
ture contains a list of raw hardware resources needed by one or more devices, which the
driver has found by calling HalGetBusData or HalGetBusDataByOffset, by interrogating
its devices, or by some other means. The driver can allocate the structure from paged
memory.

AllocatedResources

Points to the address of a location to receive a pointer to a CM_RESOURCE_LIST
structure, which describes the raw hardware resources allocated for the caller. The caller
is responsible for freeing the buffer.

Include
ntddk.h

Return Value

IoAssignResources returns STATUS_SUCCESS if it claimed a set of the specified hard-
ware resources for the caller and returned information in the AllocatedResources buffer.
Otherwise, it returns an error status, resets the pointer at AllocatedResources to NULL, and
logs an error if it finds a resource conflict.

Comments

For most device drivers, calling IoAssignResources after locating the device and getting
whatever configuration information HalGetBusData or HalGetBusDataByOffset can

184

Part 1 Kernel-Mode Support Routines

supply is preferable to making paired calls to IoQueryDeviceDescription and IoReport-
ResourceUsage. :

Note that IoAssignResources does not handle IO_RESOURCE_DESCRIPTOR entries
with the Type member set to CmResourceTypeDeviceSpecific. Drivers that have hardware
resources of this type can call IoReportResourceUsage to store this configuration informa-
tion in the \\Registry\..\ResourceMap tree. Otherwise, a successful call to IoAssign-
Resources writes the caller’s claims on every other type of hardware resource into the
registry \ResourceMap tree.

A driver can supply any number of IO_RESOURCE_LIST elements, each containing I0_
RESOURCE_DESCRIPTOR structures specifying both preferred and alternative hardware
resources the driver can use, if the device or I/O bus does not constrain the driver to using a
fixed range of I/O ports or device memory, a fixed bus-specific interrupt vector, and/or a
particular DMA channel or port number. In particular, drivers of devices that can be config-
ured to use alternate sets of hardware resources are expected to take advantage of this
capability, although drivers of PCI-type devices can call HalAssignSlotResources instead.
If IoAssignResources cannot claim a preferred set of resources, it tries an alternative set
and returns the set of resources claimed as soon as it can satisfy the request with a given
alternate resource list.

IoAssignResources automatically searches the registry for resource conflicts between
resources requested and resources claimed by previously installed drivers. It first matches
the preferred entries in the RequestedResources descriptor array against all other resource
lists stored in the registry to determine whether a conflict exists. If it finds a conflict, it then
matches any supplied alternative descriptors for the already claimed resource again, attempt-
ing to allocate a set of resources the caller can use.

The caller is responsible for releasing the AllocatedResources buffer, which is pageable,
with ExFreePool after it has consumed the returned information and before the DriverEntry
routine returns control.

If a driver claims resources on a device-specific basis for more than one device, the driver
must call this routine at least once for each such device, and must update the RegistryPath
string to supply a unique subkey name for each call with a unique DeviceObject pointer.

This routine can be called more than once for a given device or driver. If a new list of
RequestedResources is supplied, it will overwrite or, possibly, be appended to the previous
resource list in the registry. However, making a single call for each set of device-specific re-
sources makes a driver load much faster than if it calls IoAssignResources many times to
amend or incrementally construct the input RequestedResources for each of its devices. Note
that subsequent calls to IoAssignResources can reassign the caller’s previously claimed
resources if that caller does not adjust the input RequestedReources to “fix” its claim on the
resources to be kept.

Chapter 4 /0 Manager Routines 185

A driver must call IoAssignResources with a value of NULL for the RequestedResources
parameter to erase its claim on resources in the registry if the driver is unloaded.

Callers of IoAssignResources must be running at IRQL PASSIVE_LEVEL.

See Also
IRP_MN_START_DEVICE, IoReportDetectedDevice, IoReportResourceForDetection

loAttachDevice

NTSTATUS
ToAttachDevice(
IN PDEVICE_OBJECT SourceDevice,
IN PUNICODE_STRING TargetDevice,
OUT PDEVICE_OBJECT =*AttachedDevice
);

ToAttachDevice attaches the caller’s device object to a named target device object, so that
I/O requests bound for the target device are routed first to the caller.

Parameters

SourceDevice
Points to the caller-created device object.

TargetDevice

Points to a buffer containing the name of the device object to which the specified Source-
Device is to be attached.

AttachedDevice

Points to caller-allocated storage for a pointer. On return, contains a pointer to the target
device object if the attachment succeeds.

Include
wdm.h or ntddk.h

Return Value
ToAttachDevice can return one of the following NTSTATUS values:

STATUS_SUCCESS
STATUS_INVALID_PARAMETER
STATUS_OBJECT_TYPE_MISMATCH
STATUS_OBJECT_NAME_INVALID
STATUS_INSUFFICIENT_RESOURCES

186

Part1 Kernel-Mode Support Routines

Comments

IoAttachDevice establishes layering between drivers so that the same IRPs can be sent to
each driver in the chain.

This routine is used by intermediate drivers during initialization. It allows such a driver to
attach its own device object to another device in such a way that any requests being made to
the original device are given first to the intermediate driver.

The caller can be layered only at the top of an existing chain of layered drivers. IoAttach-
Device searches for the highest device object layered over TargetDevice and attaches to that
object (that can be the TargetDevice). Therefore, this routine must not be called if a driver
that must be higher-level has already layered itself over the target device.

Note that for file system drivers and drivers in the storage stack, IoAttachDevice opens the
target device with FILE_READ_ATTRIBUTES and then calls IoGetRelatedDeviceObject.
This does not cause a file system to be mounted. Thus, a successful call to IoAttachDevice
returns the device object of the storage driver, not that of the file system driver.

This routine sets the AlignmentRequirement in SourceDevice to the value in the next-
lower device object and sets the StackSize to the value in the next-lower-object plus one.

Callers of IoAttachDevice must be running at IRQL PASSIVE_LEVEL.

See Also

IoAttachDeviceToDeviceStack, IoGetRelatedDeviceObject, IoCreateDevice,
IoDetachDevice

loAttachDeviceByPointer

NTSTATUS
IoAttachDeviceByPointer(
IN PDEVICE_OBJECT SourceDevice,
IN PDEVICE_OBJECT TargetDevice
)

This routine is obsolete; use IoAttachDeviceToDeviceStack.

loAttachDeviceToDeviceStack

PDEVICE_OBJECT
ToAttachDeviceToDeviceStack(
IN PDEVICE_OBJECT SourceDevice,
IN PDEVICE_OBJECT TargetDevice
)

Chapter 4 VO Manager Routines 187

IoAttachDeviceToDeviceStack attaches the caller’s device object to the highest device
object in the chain and returns a pointer to the previously highest device object. I/O requests
bound for the target device are routed first to the caller.

Parameters

SourceDevice
Points to the caller-created device object.

TargetDevice

Points to another driver’s device object, such as a pointer returned by a preceding call to
IoGetDeviceObjectPointer.

Include
wdm.h or ntddk.h

Return Value

IoAttachDeviceToDeviceStack returns a pointer to the device object to which the Source-
Device was attached. The returned device object pointer can differ from TargetDevice if
TargetDevice had additional drivers layered on top of it.

IoAttachDeviceToDeviceStack returns NULL if it could not attach the device object
because, for example, the target device was being unloaded.

Comments

IoAttachDeviceToDeviceStack establishes layering between drivers so that the same IRPs
are sent to each driver in the chain.

An intermediate driver can use this routine during initialization to attach its own device
object to another driver’s device object. Subsequent I/O requests sent to TargetDevice are
sent first to the intermediate driver.

This routine sets the AlignmentRequirement in SourceDevice to the value in the next-
lower device object and sets the StackSize to the value in the next-lower-object plus one.

A driver writer must take care to call this routine before any drivers that must layer on top
of their driver. IoAttachDeviceToDeviceStack attaches SourceDevice to the highest device
object currently layered in the chain and has no way to determine whether drivers are being
layered in the correct order.

A driver that acquired a pointer to the target device by calling IoGetDeviceObjectPointer
should call ObDereferenceObject with the file object pointer that was returned by IoGet-
DeviceObjectPointer to release its reference to the file object before it detaches its own
device object, for example, when such a higher-level driver is unloaded.

188 Part 1 Kernel-Mode Support Routines

Callers of IoAttachDeviceToDeviceStack must be running at IRQL PASSIVE_LEVEL.

See Also ;
TIoAttachDevice, IoDetachDevice, ObDereferenceObject, IoGetDeviceObjectPointer

loBuildAsynchronousFsdRequest

PIRP

IoBuildAsynchronousFsdRequest(

IN ULONG MajorFunction,

IN PDEVICE_OBJECT DeviceObject,

IN OUT PVOID Buffer OPTIONAL,

IN ULONG Length OPTIONAL,

IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PIO_STATUS_BLOCK IoStatusBlock OPTIONAL
)s ’

IoBuildAsynchronousFsdRequest allocates and sets up an IRP to be sent to lower-level
drivers.

Parameters

MajorFunction

Specifies the major function code to be set in the IRP, one of IRP_MJ_PNP, IRP_M1J_
READ, IRP_MJ_WRITE, IRP_MJ_FLUSH_BUFFERS, or IRP_MJ_SHUTDOWN.

DeviceObject

Points to the next-lower driver’s device object, representing the target device for the read,
write, flush, or shutdown operation.

Buffer

Points to a buffer into which data is read or from which data is written. The value of this
argument is NULL for flush and shutdown requests.

Length

Specifies the length in bytes of Buffer. The value of this argument is zero for flush and shut-
down requests.

StartingOffset

Points to the starting offset on the input/output media. The value of this argument is zero for
flush and shutdown requests.

Chapter 4 1/0 Manager Routines 189

loStatusBlock

Points to the address of an I/O status block in which the to-be-called driver(s) return final
status about the requested operation.

Include
wdm.h or ntddk.h

Return Value

IoBuildAsynchronousFsdRequest returns a pointer to an IRP or a NULL pointer if the IRP
cannot be allocated.

Comments

Intermediate or highest-level drivers can call IoBuildAsynchronousFsdRequest to set up
IRPs for requests sent to lower-level drivers. Such a driver must set its IoCompletion routine
in the IRP so the IRP can be deallocated with IoFreelrp.

The IRP that gets built contains only enough information to get the operation started and to
complete the IRP. No other context information is tracked because an asynchronous request
is context-independent.

Callers of IoBuildAsynchronousFsdRequest must be running at IRQL <= DISPATCH_
LEVEL.

An intermediate or highest-level driver also can call IoBuildDeviceloControlRequest, Io-
Allocatelrp, or IoBuildSychronousFsdRequest to set up requests it sends to lower-level
drivers. Only a highest-level driver can call IoMakeAssociatedIrp.

See Also

I0_STACK_LOCATION, IoAllocatelrp, IoBuildDeviceIoControlRequest, IoBuild-
SynchronousFsdRequest, IoCallDriver, IoFreelrp, IoMakeAssociatedIrp, IoSet-
CompletionRoutine, IRP

loBuildDeviceloControlRequest

PIRP
IoBuildDeviceloControlRequest(
IN ULONG IoControlCode,
IN PDEVICE_OBJECT DeviceObject,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OQutputBufferLength,
IN BOOLEAN InternalDeviceloControl,

190 Part1 Kernel-Mode Support Routines
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK IoStatusBlock
)s
ToBuildDeviceIoControlRequest allocates and sets up an IRP for a device control request,
optionally with an I/O buffer if the I/O control code requires the caller to supply an input or
output buffer.
Parameters

loControlCode

Specifies the IOCTL_XXX to be set up. For more information about device-type-specific I/O
codes, see Part 2 of this volume.

DeviceObject

Points to the next-lower driver’s device object, representing the target device.

InputBuffer

Points to an input buffer to be passed to the lower driver or NULL if the request does not
pass input data to lower driver(s).

InputBufferLength

Specifies the length in bytes of the input buffer. If InputBuffer is NULL, this value must be
Zero.

OutputBuffer

Points to an output buffer in which the lower driver is to return data or NULL if the request
does not require lower driver(s) to return data.

OutputBufferLength

Specifies the length in bytes of the output buffer. If QusputBuffer is NULL, this value must
be zero.

InternalDeviceloControl

If InternalDeviceControl is TRUE the target driver’s Dispatch routine for IRP_MJ_
INTERNAL_DEVICE_CONTROL or IRP_MIJ_SCSI is called; otherwise, the Dispatch
routine for IRP_MJ_DEVICE_CONTROL is called.

Event

Points to an initialized event object for which the caller provides the storage. The event is
set to the Signaled state when lower driver(s) have completed the requested operation. The
caller can wait on the event object for the completion of the IRP allocated by this routine.

Chapter 4 I/O Manager Routines 191

loStatusBlock

Specifies an I/O status block to be set when the request is completed by lower drivers.

Include
wdm.h or ntddk.h

Return Value

IoBuildDeviceIoControlRequest returns a pointer to an IRP with the next-lower driver’s
I/0 stack location partially set up from the supplied parameters. The returned pointer is
NULL if an IRP cannot be allocated.

Comments

An intermediate or highest-level driver can call IoBuildDeviceIoControlRequest to set

up IRPs for requests sent to lower-level drivers. The next-lower driver’s I/O stack location
is set up with the given IoControlCode at Parameters.DeviceloControl.IoControlCode.
Because the caller can wait on the completion of this driver-allocated IRP by calling Ke-
WaitForSingleObject on the given Event, the caller need not set an IoCompletion routine
in the IRP before calling IoCallDriver. When the next-lower driver completes this IRP, the
I/O Manager releases it.

IRPs created using IoBuildDeviceIoControlRequest must be completed by calling Io-
CompleteRequest and not by merely deallocating the IRP with IoFreelrp. IoBuildDevice-
IoControlRequest queues the IRPs it creates in the IRP queue of the current thread. Freeing
these IRPs without completing them might result in a system crash when the thread
terminates as the thread attempts to deallocate the IRP's memory.

Callers of IoBuildDeviceloControlRequest must be running at IRQL PASSIVE_LEVEL.

See Also

I0_STACK_LOCATION, IoAllocatelrp, IoBuildAsynchronousFsdRequest, IoBuild-
SynchronousFsdRequest, IoCallDriver, IoCompleteRequest, IRP, KelnitializeEvent,
KeWaitForSingleObject

loBuildPartialMdl

VOID
IoBuildPartialMdl(
IN PMDL SourceMd],
IN OUT PMDL TargetMdl,
IN PVOID VirtualAddress,
IN ULONG Length
)

192 Part 1 Kernel-Mode Support Routines

IoBuildPartialMdl maps a portion of a buffer described by another MDL into an MDL..

Parameters
SourceMdl

Points to an MDL describing the original buffer, of which a subrange is to be mapped.

TargetMd!

Points to a caller-allocated MDL. The MDL must be large enough to map the subrange
specified by VirtualAddress and Length.

VirtualAddress
Points to the base virtual address for the subrange to be mapped in the TargetMdl.

Length

Specifies the length in bytes to be mapped by the TargetMdl. This value, in combination
with VirtualAddress, must specify a buffer that is a proper subrange of the buffer described
by SourceMdl. If Length is zero, the subrange to be mapped starts at VirtualAddress and
includes the remaining range described by the SourceMdl.

Include
wdm.h or ntddk.h

Comments

IoBuildPartialMdl maps a subrange of a buffer currently mapped by SourceMdl. The
VirtualAddress and Length parameters describe the subrange to be mapped from the
SourceMdl into the TargetMdl.

Drivers that must split large transfer requests can use this routine. The caller must release
the partial MDL. it allocated when it has transferred all the requested data or completed the
IRP with an error status.

Callers of IoBuildPaftialMdl can be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocateMdl, IoCallDriver, IoFreeMdl, IoSetCompletionRoutine

Chapter 4 1/O Manager Routines 193

loBuildSynchronousFsdRequest

PIRP
IoBuildSynchronousFsdRequest(
IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer OPTIONAL,
IN ULONG Length OPTIONAL,
IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK [IoStatusBlock
)

IoBuildSynchronousFsdRequest allocates and builds an IRP to be sent synchronously to
lower driver(s).

Parameters

MajorFunction

Specifies the major function code, one of IRP_MIJ_PNP, IRP_MJ_READ, IRP_MJ_
WRITE, IRP_MJ_FLUSH_BUFFERS, or IRP_MJ_SHUTDOWN.

DeviceObject

Points to the next-lower driver’s device object representing the target device for the read,
write, flush, or shutdown operation.

Buffer

Points to a buffer containing data to be written when MajorFunction is IRP_MJ_WRITE,

or is the location to receive data read when MajorFunction is IRP_MJ_READ. This parame-
ter must be NULL for the MajorFunction IRP_MJ_FLUSH_BUFFERS or IRP_MIJ_
SHUTDOWN.

Length

Specifies the length, in bytes, of Buffer. For devices such as disks, this value must be an
integral of 512. This parameter is required for read/write requests, but must be zero for flush
and shutdown requests.

StartingOffset

Points to the offset on the disk to read/write from/to. This parameter is required for read/
write requests, but must be zero for flush and shutdown requests.

194

Part 1 Kernel-Mode Support Routines

Event

Points to an initialized event object for which the caller provides the storage. The event is
set to the Signaled state when the requested operation completes. The caller can wait on the
event object for the completion of the IRP allocated by this routine.

loStatusBlock
Points to the I/O status block that is set when the IRP is completed by the lower driver(s).

Include

wdm.h or ntddk.h

Return Value

ToBuildSynchronousFsdRequest returns a pointer to the IRP or NULL if an IRP cannot be
allocated.

Comments

Intermediate or highest-level drivers can call IoBuildSynchronousFsdRequest to set up
IRPs for requests sent to lower-level drivers, only if the caller is ronning in a nonarbitrary
thread context and at IRQL PASSIVE_LEVEL.

IoBuildSynchronousFsdRequest allocates and sets up an IRP that can be sent to a device
driver to perform a synchronous read, write, flush, or shutdown operation. The IRP contains
only enough information to get the operation started.

The caller can determine when the I/O has completed by calling KeWaitForSingleObject
with the Event. Performing this wait operation causes the current thread to wait. Therefore,
this operation can be requested during the initialization of an intermediate driver or from an
FSD in the context of a thread requesting a synchronous I/O operation. A driver cannot wait
for a nonzero interval on the Event at raised IRQL in an arbitrary thread context.

Because the caller can wait on a given Event, the caller need not set an IoCompletion routine
in the caller-allocated IRP before calling IoCallDriver. When the caller completes the IRP,
the I/O Manager releases it.

IRPs created using IoBuildSynchronousFsdRequest must be completed by calling
IoCompleteRequest and not by merely deallocating the IRP with IoFreelrp. IoBuild-
SynchronousFsdRequest queues the IRPs it creates in the IRP queue of the current thread.
Freeing these IRPs without completing them might result in a system crash when the
thread terminates as the thread attempts to deallocate the IRP's memory.

See Also

IO_STACK_LOCATION, IoAllocatelrp, IoBuildAsynchronousFsdRequest, Io-
CompleteRequest, IRP, KelnitializeEvent, KeWaitForSingleObject

Chapter 4 1/O Manager Routines 195

loCallDriver

NTSTATUS
IoCalliDriver(
IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
)

IoCallDriver sends an IRP to the next-lower-level driver after the caller has set up the I[/O
stack location in the IRP for that driver.

Parameters

DeviceObject

Points to the next-lower driver’s device object, representing the target device for the
requested I/O operation.

Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Return Value
IoCallDriver returns the NTSTATUS value that a lower driver set in the I/O status block
for the given request or STATUS_PENDING if the request was queued for additional
processing.

Comments

IoCallDriver assigns the DeviceObject input parameter to the device object field of the IRP
stack location for the next lower driver.

An IRP passed in a call to IoCallDriver becomes inaccessible to the higher-level driver,
unless the higher-level driver has set up its loCompletion routine for the IRP with IoSet-
CompletionRoutine. If it does, the IRP input to the driver-supplied IoCompletion routine
has its I/O status block set by the lower driver(s) and all lower-level driver(s)’ I/O stack
locations filled with zeros.

Drivers must not use IoCallDriver to pass power IRPs JRP_MJ_POWER). Use PoCall-
Driver instead.

Callers of IoCallDriver must be running at IRQL <= DISPATCH_LEVEL.

196 Part1 Kernel-Mode Support Routines

See Also

IoAllocatelrp, IoBuildAsynchronousFsdRequest, IoBuildDeviceIloControlRequest,
ToBuildSynchronousFsdRequest, IoSetCompletionRoutine, PoCallDriver

loCancelirp

BOOLEAN
IoCancellIrp(
IN PIRP Irp
);

ToCancellrp sets the cancel bit in a given IRP and calls the cancel routine for the IRP if
there is one.

Parameters

Irp
Points to the IRP to be canceled.

Include
wdm.h or ntddk.h

Return Value

ToCancellrp returns TRUE if the IRP was canceled and FALSE if the IRP’s cancel bit was
set but the IRP was not cancelable.

Comments
If the IRP has a cancel routine, IoCancellrp sets the cancel bit and calls the cancel routine.

If Irp->CancelRoutine is NULL, and therefore the IRP is not cancelable, IoCancelIrp sets
the IRP’s cancel bit and returns FALSE. The IRP should be canceled at a later time when it
becomes cancelable.

If a driver that does not own the IRP calls IoCancellrp, the results are unpredictable. The
IRP might be completed with a successful status even though its cancel bit was set.

An intermediate driver should not arbitrarily call IoCancellrp unless that driver created the
IRP passed in the call. Otherwise, the intermediate driver might cancel an IRP that some
higher-level driver is tracking for purposes of its own.

Callers of ToCancellrp must be running at IRQL <= DISPATCH_LEVEL.

See Also

ToSetCancelRoutine

Chapter 4 1/0 Manager Routines 197

loCheckShareAccess

NTSTATUS
IoCheckShareAccess(
IN ACCESS_MASK DesiredAccess,
IN ULONG DesiredShareAccess,
IN OUT PFILE_OBJECT FileObject,
IN OUT PSHARE_ACCESS ShareAccess,
IN BOOLEAN Update
):

IoCheckShareAccess is called by FSDs or other highest-level drivers to check whether
shared access to a file object is permitted.

Parameters

DesiredAccess

Specifies the desired type(s) of access to the given FileObject for the current open request.
Generally, the value of this parameter is equal to the DesiredAccess passed to the file system
or highest-level driver by the I/O Manager when the open request was made. See IoCreate-
File for details.

DesiredShareAccess

Specifies the desired type(s) of shared access to FileObject for the current open request. The
value of this parameter is usually the same as the DesiredAccess passed to the file system or
highest-level driver by the /O Manager when the open request was made. This value can be
zero, one, or more of the following:

FILE_SHARE_READ
FILE_SHARE_WRITE
FILE_SHARE_DELETE

FileObject

Points to the file object for which to check access for the current open request.

ShareAccess

Points to the common share-access data structure associated with FileObject. Drivers should
treat this structure as opaque.

Update

Specifies whether to update the share-access status for FileObject. A Boolean value of
TRUE means this routine will update the share access information for the file object if the
open request is permitted.

198 Part 1 Kernel-Mode Support Routines

Include
wdm.h or ntddk.h

Return Value

ToCheckShareAccess returns STATUS_SUCCESS if the requestor’s access to the file
object is compatible with the way in which it is currently open. If the request is denied
because of a sharing violation, then STATUS_SHARING_VIOLATION is returned.

Comments

IoCheckShareAccess checks a file object open request to determine whether the types of
desired and shared accesses specified are compatible with the way in which the file object is
currently being accessed by other opens.

File systems maintain state about files through structures called file control blocks (FCBs).
The SHARE_ACCESS is a structure describing how the file is currently accessed by all
opens. This state is contained in the FCB as part of the open state for each file object. Each
file object should have only one share access structure. Other highest-level drivers might
call this routine to check the access requested when a file object representing such a driver’s
device object is opened.

IoCheckShareAccess is not an atomic operation. Therefore, drivers calling this routine
must protect the shared file object passed to IoCheckShareAccess by means of some kind
of lock, such as a mutex or a resource lock, in order to prevent corruption of the shared
access counts.

Callers of IoCheckShareA ccess must be running at IRQL PASSIVE_LEVEL.

See Also

IoCreateFile, loGetRelatedDeviceObject, IoORemoveShareAccess, IoSetShareAccess,
IoUpdateShareAccess

loCompleteRequest

VOID
IoCompleteRequest(
IN PIRP Irp,
IN CCHAR PriorityBoost
)s

IoCompleteRequest indicates the caller has completed all processing for a given /O
request and is returning the given IRP to the I/O Manager.

Chapter 4 1/0 Manager Routines 199

Parameters

Irp
Points to the IRP to be completed.

PriorityBoost

Specifies a system-defined constant by which to increment the runtime priority of the origi-
nal thread that requested the operation. This value is IO_NO_INCREMENT if the original
thread requested an operation the driver could complete quickly (so the requesting thread

is not compensated for its assumed wait on I/O) or if the IRP is completed with an error.
Otherwise, the set of PriorityBoost constants are device-type-specific. See ntddk.h or wdm.h
for these constants.

Include
wdm.h or ntddk.h

Comments

When a driver has finished all processing for a given IRP, it calls IoCompleteRequest. The
I/O Manager checks the IRP to determine whether any higher-level drivers have set up an
IoCompletion routine for the IRP. If so, each IoCompletion routine is called, in turn, until
every layered driver in the chain has completed the IRP.

When all drivers have completed a given IRP, the I/O Manger returns status to the original
requestor of the operation. Note that a higher-level driver that sets up a driver-created IRP
must supply an loCompletion routine to release the IRP it created.

Callers of IoCompleteRequest must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoSetCompletionRoutine

loConnectinterrupt

NTSTATUS
IoConnectInterrupt(
OUT PKINTERRUPT =InterruptObject,
IN PKSERVICE_ROUTINE ServiceRoutine,
IN PVOID ServiceContext,
IN PKSPIN_LOCK SpinLock OPTIONAL,
IN ULONG Vector,
IN KIRQL Irql,
IN KIRQL Synchronizelrql,
IN KINTERRUPT_MODE InterruptMode,
IN BOOLEAN ShareVector,

200 Part 1 Kernel-Mode Support Routines

IN KAFFINITY ProcessorEnableMask,
IN BOOLEAN FloatingSave
N

IoConnectInterrupt registers a device driver’s interrupt service routine (ISR) to be called
when its device interrupts on any of a given set of processors.

Parameters

InterruptObject

Points to the address of driver-supplied storage for a pointer to a set of interrupt objects.
This pointer must be passed in subsequent calls to KeSynchronizeExecution.

ServiceRoutine
Points to the entry point for the driver-supplied ISR declared as follows:
BOOLEAN
(*PKSERVICE_ROUTINE)(
IN PKINTERRUPT Interrupt,

IN PVOID ServiceContext
)

ServiceContext

Points to the driver-determined context with which the specified ISR will be called. The
ServiceContext area must be in resident memory: in the device extension of a driver-created
device object, in the controller extension of a driver-created controller object, or in non-
paged pool allocated by the device driver. See Basic ISR Functionality in Chapter 8 of the
Kernel-Mode Drivers Design Guide for details.

SpinLock

Points to an initialized spin lock, for which the driver supplies the storage, that will be used
to synchronize access to driver-determined data shared by other driver routines. This para-
meter is required if the ISR handles more than one vector or if the driver has more than one
ISR. Otherwise, the driver need not allocate storage for an interrupt spin lock and the input
pointer is NULL.

Vector
Specifies the interrupt vector passed in the interrupt resource at u.Interrupt.Vector.

Irgl

Specifies the DIRQL passed in the interrupt resource at u.Interrupt.Level.

Synchronizelrql

Specifies the DIRQL at which the ISR will execute. If the ISR handles more than one
interrupt vector or the driver has more than one ISR, this value must be the highest of the

Chapter 4 1/0 Manager Routines 201

Irql values passed at u.Interrupt.Level in each interrupt resource. Otherwise, the Irgl and
Synchronizelrgl values are identical.

InterruptMode

Specifies whether the device interrupt is LevelSensitive or Latched.

ShareVector
Specifies whether the interrupt vector is sharable.

ProcessorEnableMask

Specifies the set of processors on which device interrupts can occur in this platform. This
value is passed in the interrupt resource at u.Interrupt.Affinity.

FloatingSave

Specifies whether to save the floating-point stack when the driver’s device interrupts. For
X86-based platforms, this value must be set to FALSE.

Include
wdm.h or ntddk.h

Return Value
IoConnectInterrupt can return one of the following NTSTATUS values:

STATUS_SUCCESS
STATUS_INVALID_PARAMETER
STATUS_INSUFFICIENT_RESOURCES

Comments

A PnP driver should call IoConnectInterrupt as part of device start-up, before it completes
the PnP IRP_MN_START_DEVICE request.

A driver receives raw and translated hardware resources with the IRP_MN_START_
DEVICE request at Irp—>Parameters.StartDevice.AllocatedResources and Irp—>
Parameters.StartDevice.AllocatedResourcesTranslated, respectively. To connect its
interrupt, a driver uses the resources at AllocatedResourcesTranslated.List.Partial-
ResourceList.PartialDescriptors[]. The driver must scan the array of partial descriptors
for resources of type CmResourceTypelnterrupt.

If the driver supplies the storage for the SpinLock, it must call KelnitializeSpinLock before
passing its interrupt spin lock to IoConnectInterrupt.

On return from a successful call to loConnectInterrupt, the caller’s ISR can be called if
interrupts are enabled on the driver’s device or if ShareVector was set to TRUE.

202 Part 1 Kernel-Mode Support Routines

Callers of IoConnectInterrupt must be running at IRQL PASSIVE_LEVEL.

See Also

KelnitializeSpinLock, KeSynchronizeExecution, CM_PARTIAL_RESOURCE_
DESCRIPTOR

loCopyCurrentirpStackLocationToNext

VOID
IoCopyCurrentIrpStackLocationToNext(
IN PIRP Irp

)

TIoCopyCurrentIrpStackLocationToNext copies the IRP stack parameters from the current
I/0O stack location to the stack location of the next-lower driver and allows the current driver
to set an I/O completion routine.

Parameters

Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Comments

A driver calls IoCopyCurrentIrpStackLocationToNext to copy the IRP parameters from
its stack location to the next-lower driver’s stack location.

After calling this routine, a driver typically sets an I/O completion routine with IoSet-
CompletionRoutine before passing the IRP to the next-lower driver with IoCallDriver.
Drivers that pass on their IRP parameters but do not set an I/O completion routine should
call IoSkipCurrentIrpStackLocation instead of this routine.

Callers of IoCopyCurrentIrpStackLocationToNext must be running at IRQL <=
DISPATCH_LEVEL.

See Also

I0_STACK_LOCATION, IoCallDriver, IoSetCompletionRoutine, IoSkipCurrentIrp-
StackLocation

Chapter 4 1/0 Manager Routines 203

loCreateController

PCONTROLLER_OBJECT
IoCreateController(
- IN ULONG Size
)

IoCreateController allocates memory for and initializes a controller object with a con-
troller extension of a driver-determined size.

Parameters
Size
Specifies the number of bytes to be allocated for the controller extension.

Include
ntddk.h

Return Value

IoCreateController returns a pointer to the controller object or a NULL pointer if memory
could not be allocated for the requested device extension.

Comments

A controller object usually represents a physical device controller with attached devices

on which a single driver carries out I/O requests. The controller extension is allocated from
nonpaged pool and is guaranteed to be accessible by any driver routine and in an arbitrary
thread context.

The controller object is used to synchronize I/O operations to target devices for which I/O
requests can come in concurrently to a single, monolithic driver. A driver also might use a
controller object to synchronize operations through device channels.

If IoCreateController returns NULL, the driver should fail device start-up. ‘
Callers of IoCreateController must be running at IRQL PASSIVE_LEVEL.

See Also
CONTROLLER_OBIJECT, IoAllocateController, IoFreeController, IoDeleteController

204

Part 1 Kernel-Mode Support Routines

loCreateDevice

NTSTATUS
IoCreateDevice(
IN PDRIVER_OBJECT DriverObject,
IN ULONG DeviceExtensionSize,
IN PUNICODE_STRING DeviceName OPTIONAL,
IN DEVICE_TYPE DeviceType,
IN ULONG DeviceCharacteristics,
IN BOOLEAN Exclusive,
QUT PDEVICE_OBJECT =#DeviceObject
)

IoCreateDevice allocates memory for and initializes a device object for use by a driver. A
device object represents a physical, virtual, or logical device that the driver is supporting.

Parameters

DriverObject

Points to the driver object for the caller. Each driver receives a pointer to its driver object in
a parameter to its DriverEntry routine. PnP function and filter drivers also receive a driver
object pointer in their AddDevice routines.

DeviceExtensionSize

Specifies the driver-determined number of bytes to be allocated for the device extension of
the device object. The internal structure of the device extension is driver-defined. A driver
uses the device extension to maintain context about the I/O operations on the device
represented by the DeviceObject.

DeviceName

Optionally points to a buffer containing a zero-terminated Unicode string that names the
device object. The string must be a full path name.

Typically, only Physical Device Objects (PDOs), which are created by PnP bus drivers, are
named. PnP function drivers and filter drivers should not specify a DeviceName for a Func-
tional Device Object (FDO) or filter device object (filter DO). Naming an FDO or filter DO
bypasses the PnP Manager's security. If a user-mode component needs a symbolic link to

the device, the function or filter driver should register a device interface (see IoRegister-
Devicelnterface). If a kernel-mode component needs a legacy device name, the driver must
name the FDO, but naming is not recommended.

DeviceType

Specifies one of the system-defined FILE_ DEVICE_XXX constants indicating the type
of device (such as FILE_DEVICE_DISK, FILE_DEVICE_KEYBOARD, etc.) or a driver-

Chapter 4 I/O Manager Routines 205

defined value for a new type of device. For more information on device types, see Deter-
mining Required I/O Support by Device Object Type.

DeviceCharacteristics

Specifies one or more system-defined constants, ORed together, that provide additional
information about the driver’s device. The constants include:

FILE_AUTOGENERATED_DEVICE_NAME

Directs the I/O Manager to generate a name for the device, instead of the caller specifying
a DeviceName when calling this routine. The I/O Manager ensures that the name is unique.
This characteristic is typically specified by a PnP bus driver to generate a name for a physi-
cal device object (PDO) for a child device on its bus. This characteristic is new for Win-
dows 2000 and Windows 98.

FILE_DEVICE_IS_MOUNTED

Indicates that a filesystem is mounted on the device. Drivers should not set this charac-
teristic.

FILE_DEVICE_SECURE_OPEN
(Windows 2000 and Windows NTe SP5 only)

Directs the I/O manager to apply the security descriptor of the device object to relative
opens and trailing filename opens on the device.

FILE_FLOPPY_DISKETTE
Indicates that the device is a floppy disk device.

FILE_READ_ONLY_DEVICE
Indicates that the device is not writeable.

FILE_REMOTE_DEVICE
Indicates that the device is remote.

FILE_REMOVABLE_MEDIA
Indicates that the storage device supports removeable media.

Note that this characteristic indicates removeable media, not a removeable device. For
example, drivers for JAZ drive devices should specify this characteristic but drivers for
PCMCIA flash disks should not.

FILE_VIRTUAL_VOLUME
Indicates that the volume is virtual. Drivers should not set this characteristic.

FILE_WRITE_ONCE_MEDIA
Indicates that the device supports write-once media..

206 Part1 Kernel-Mode Support Routines

If none of the device characteristics are relevant to your device, specify zero for this
parameter.

Exclusive

Indicates whether the device object represents an exclusive device. That is, only one handle
at a time can send I/O requests to the corresponding device object. If the underlying device
supports overlapped /O, multiple threads of the same process can send requests through a
single handle.

DeviceObject

Points to the newly created device object if the call succeeds.

Include
wdm.h or ntddk.h

Return Value
IoCreateDevice can return one of the following NTSTATUS values:

STATUS_SUCCESS
STATUS_INSUFFICIENT_RESOURCES
STATUS_OBJECT_NAME_EXISTS
STATUS_OBJECT_NAME_COLLISION

Comments

IoCreateDevice creates a device object and returns a pointer to the object. The caller is
responsible for deleting the object when it is no longer needed by calling IoDeleteDevice.

PnP drivers call this routine to create PDOs, FDOs, and filter DOs. See the Plug and Play,
Power Management, and Setup Design Guide for information about the kinds of PnP drivers
and their associated device objects. Legacy, non-PnP drivers call this routine to create
legacy device objects.

Be careful to specify the DeviceType and DeviceCharacteristics values in the correct
parameters. Both parameters use system-defined FILE_XXX constants and some driver
writers specify the values in the wrong parameters by mistake.

If a PnP function or filter driver for a device sets any of the following DeviceCharacteris-
tics, the PnP Manager propagates the characteristic(s) to the FDO and filter DOs in the
device stack:

FILE_DEVICE_SECURE_OPEN
FILE_FLOPPY_DISKETTE
FILE_READ_ONLY_DEVICE

Chapter 4 /O Manager Routines 207

FILE_REMOVABLE_MEDIA
FILE_WRITE_ONCE_MEDIA

This routine allocates space in nonpaged pool for a driver-defined device extension associa-
ted with the device object, so that the device extension is accessible to the driver in any exe-
cution context and at any IRQL. The returned device extension is initialized with zeros.

The caller is responsible for setting certain fields in the returned device object, such as the
Flags field, and for initializing the device extension with any driver-defined information.
For other operations required on new device objects, see the Plug and Play, Power Manage-
ment, and Setup Design Guide or the device-type-specific documentation for your device.

Device objects for disks, tapes, CD ROMs, and RAM disks are given a Volume Parameter
Block (VPB) that is initialized to indicate that the volume has never been mounted on the
device.

If a driver’s call to IoCreateDevice returns an error, it should release any resources it allo-
cated for that device.

A PnP bus driver calls IoCreateDevice when it is enumerating a new device in response to
an IRP_MN_QUERY_DEVICE_RELATIONS for BusRelations. A PnP function or filter
driver calls IoCreateDevice in its AddDevice routine.

Callers of IoCreateDevice must be running at IRQL PASSIVE_LEVEL.

See Also

DEVICE_OBIJECT, IoAttachDevice, IoAttachDeviceToDeviceStack, IoCreate-
SymbolicLink, IoDeleteDevice

loCreateFile

NTSTATUS
IoCreateFile(
OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER A77locationSize OPTIONAL,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG Disposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG Ealength,
IN CREATE_FILE_TYPE CreatefFileType,

208

Part 1 Kernel-Mode Support Routines

IN PVOID ExtraCreateParameters OPTIONAL,

IN ULONG Options
) s

IoCreateFile either causes a new file or directory to be created, or it opens an existing file,
device, directory, or volume, giving the caller a handle for the file object. This handle can
be used by subsequent calls to manipulate data within the file or the file object's state or

attributes.

Parameters

FileHandle

Points to a variable that receives the file handle if the call is successful.

DesiredAccess

Specifies the type of access that the caller requires to the file or directory. The set of system-
defined DesiredAccess flags determines the following specific access rights for file objects:

DesiredAccess Flags

Meaning

DELETE
FILE_READ_DATA
FILE_READ_ATTRIBUTES
FILE_READ_EA

READ_CONTROL

FILE_WRITE_DATA
FILE_WRITE_ATTRIBUTES
FILE_WRITE_EA

FILE_APPEND_DATA
WRITE_DAC

WRITE_OWNER
SYNCHRONIZE

FILE_EXECUTE

The file can be deleted.
Data can be read from the file.
FileAttributes flags, described later, can be read.

Extended attributes associated with the file can be read. This flag is
irrelevant to device and intermediate drivers.

The access control list (ACL) and ownership information associated
with the file can be read.

Data can be written to the file.
FileAstributes flags can be written.

Extended attributes (EAs) associated with the file can be written.
This flag is irrelevant to device and intermediate drivers.

Data can be appended to the file.

The discretionary access control list (DACL) associated with the file
can be written.

Ownership information associated with the file can be written.

The returned FileHandle can be waited on to synchronize with the
completion of an I/O operation.

Data can be read into memory from the file using system paging
I/0. This flag is irrelevant to device and intermediate drivers.

Callers of IoCreateFile can specify one or a combination of the following, possibly ORed
with additional compatible flags from the preceding DesiredAccess Flags list, for any file
object that does not represent a directory file:

Chapter 4 1/0 Manager Routines 209

DesiredAccess to File Values Maps to DesiredAccess Flags

GENERIC_READ STANDARD_RIGHTS_READ, FILE_READ_DATA,
FILE_READ_ATTRIBUTES, and FILE_READ_EA

GENERIC_WRITE STANDARD_RIGHTS_WRITE, FILE_WRITE_DATA,

FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, and
FILE_APPEND_DATA
GENERIC_EXECUTE STANDARD_RIGHTS_EXECUTE, SYNCHRONIZE,

and FILE_EXECUTE. This value is irrelevant to device
and intermediate drivers.

The STANDARD_RIGHTS_XXX are predefined system values used to enforce security on
system objects.

To open or create a directory file, as also indicated with the CreateOptions parameter,
callers of IoeCreateFile can specify one or a combination of the following, possibly ORed
with one or more compatible flags from the preceding DesiredAccess Flags list:

DesiredAccess to Directory Values Meaning
FILE_LIST DIRECTORY Files in the directory can be listed.
FILE_TRAVERSE The directory can be traversed: that is, it can be part of the

pathname of a file.

The FILE_READ_DATA, FILE_WRITE_DATA, FILE_EXECUTE, and FILE_APPEND _
DATA DesiredAccess flags are incompatible with creating or opening a directory file.

ObjectAttributes

Points to a structure already initialized with InitializeObjectAttributes. Members of this
structure for a file object include the following:

Member Value

ULONG Length

Specifies the number of bytes of ObjectAttributes data supplied. This value must be at
least sizeof(OBJECT_ATTRIBUTES).

PUNICODE_STRING ObjectName

Points to a buffered Unicode string naming the file to be created or opened. This value
must be a fully qualified file specification or the name of a device object, unless it is
the name of a file relative to the directory specified by RootDirectory. For example,
\Device\Floppy 1\myfile.dat or \??\B:\myfile.dat could be the fully qualified file
specification, provided that the floppy driver and overlying file system are already
loaded. (Note: \?? replaces \DosDevices as the name of the Win32 object namespace.
\DosDevices will still work, but \?? is translated faster by the object manager.)

Continued

210

Part1 Kernel-Mode Support Routines

Member Value

HANDLE RootDirectory

Optionally specifies a handle to a directory obtained by a preceding call to Io-
CreateFile. If this value is NULL, the ObjectName member must be a fully qualified
file specification that includes the full path to the target file. If this value is nonNULL,
the ObjectName member specifies a file name relative to this directory.

PSECURITY_DESCRIPTOR SecurityDescriptor

Optionally specifies a security descriptor to be applied to a file. ACLs specified by
such a security descriptor are only applied to the file when it is created. If the value is
NULL when a file is created, the ACL placed on the file is file-system-dependent;
most file systems propagate some part of such an ACL from the parent directory file
combined with the caller's default ACL. Device and intermediate drivers can set this
member to NULL.

PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService

Specifies the access rights a server should be given to the client's security context. This

- value is non-NULL only when a connection to a protected server is established,
allowing the caller to control which parts of the caller’s security context are made
available to the server and whether the server is allowed to impersonate the caller.
Device and intermediate drivers usually set this member to NULL.

ULONG Attributes

Is a set of flags that controls the file object attributes. This value can be zero or
OBJ_CASE_INSENSITIVE, which indicates that name-lookup code should ignore the
case of ObjectName rather than performing an exact-match search. The value
OBJ_INHERIT is irrelevant to device and intermediate drivers.

loStatusBlock

Points to a variable that receives the final completion status and information about the re-
quested operation. On return from IoCreateFile, the Information member contains one of
the following values:

FILE CREATED
FILE_OPENED
FILE_OVERWRITTEN
FILE_SUPERSEDED
FILE_EXISTS
FILE_DOES_NOT_EXIST

AllocationSize

Optionally specifies the initial allocation size in bytes for the file. A nonzero value has no
effect unless the file is being created, overwritten, or superseded.

Chapter 4 I/O Manager Routines 211

FileAttributes

Explicitly specified attributes are applied only when the file is created, superseded, or, in
some cases, overwritten. By default, this value is FILE_ATTRIBUTE_NORMAL, which
can be overridden by any other flag or by an ORed combination of compatible flags.
Possible FileAttributes flags include the following:

FileAttributes Flags Meaning

FILE_ATTRIBUTE_NORMAL A file with standard attributes should be created.
FILE_ATTRIBUTE_READONLY A read-only file should be created.
FILE_ATTRIBUTE_HIDDEN A hidden file should be created.
FILE_ATTRIBUTE_SYSTEM A system file should be created.
FILE_ATTRIBUTE_ARCHIVE The file should be marked so that it will be archived.
FILE_ATTRIBUTE_TEMPORARY A temporary file should be created.

FILE_ATTRIBUTE_ATOMIC_WRITE An atomic-write file should be created. This flag is
irrelevant to device and intermediate drivers.

FILE_ATTRIBUTE_XACTION_WRITE A transaction-write file should be created. This flag is
irrelevant to device and intermediate drivers.

ShareAccess

Specifies the type of share access that the caller would like to the file, as zero, or as one or a
combination of the following:

ShareAccess Flags Meaning

FILE_SHARE_READ The file can be opened for read access by other
threads’ calls to IoCreateFile.

FILE_SHARE_WRITE The file can be opened for write access by other
threads’ calls to IoCreateFile.

FILE_SHARE_DELETE The file can be opened for delete access by other

threads’ calls to IoCreateFile.

Device and intermediate drivers usually set ShareAccess to zero, which gives the caller
exclusive access to the open file.

Disposition

Specifies what to do, depending on whether the file already exists, as one of the following:
Disposition Values Meaning

FILE_SUPERSEDE If the file already exists, replace it with the given file.

If it does not, create the given file.

Continued

212

Part 1 Kernel-Mode Support Routines

Disposition Values

Meaning

FILE_CREATE

FILE_OPEN

FILE_OPEN_IF

FILE_OVERWRITE

FILE_OVERWRITE_IF

If the file already exists, fail the request and do not
create or open the given file. If it does not, create the
given file.

If the file already exists, open it instead of creating a
new file. If it does not, fail the request and do not
create a new file.

If the file already exists, open it. If it does not, create
the given file.

If the file already exists, open it and overwrite it. If it
does not, fail the request.

If the file already exists, open it and overwrite it. If it
does not, create the given file.

CreateOptions

Specifies the options to be applied when creating or opening the file, as a compatible

combination of the following flags:

CreateOptions Flags

Meaning

FILE_DIRECTORY_FILE

FILE_NON_DIRECTORY_FILE

FILE_WRITE_THROUGH

FILE_SEQUENTIAL_ONLY
FILE_RANDOM_ACCESS

The file being created or opened is a directory file.
With this flag, the Disposition parameter must be set
to one of FILE_CREATE, FILE_OPEN, or FILE_
OPEN_IF. With this flag, other compatible
CreateOptions flags include only the following:
FILE_SYNCHRONOUS_IO_ALERT, FILE_
SYNCHRONOUS_IO_NONALERT, FILE_WRITE_
THROUGH, FILE_OPEN_FOR_BACKUP_INTENT,
and FILE_OPEN_BY_FILE_ID.

The file being opened must not be a directory file or
this call will fail. The file object being opened can
represent a data file, a logical, virtual, or physical
device, or a volume.

System services, FSDs, and drivers that write data to
the file must actually transfer the data into the file .
before any requested write operation is considered
complete. This flag is automatically set if the
CreateOptions flag FILE_NO_INTERMEDIATE _
BUFFERING is set. '

All accesses to the file will be sequential.

Accesses to the file can be random, so no sequential
read-ahead operations should be performed on the file
by FSDs or the system.

Chapter 4 /O Manager Routines 213

CreateOptions Flags

Meaning

FILE_NO_INTERMEDIATE_BUFFERING

FILE_SYNCHRONOUS_IO_ALERT

FILE_SYNCHRONOUS_IO_NONALERT

FILE_CREATE_TREE_CONNECTION

FILE_COMPLETE_IF_OPLOCKED

FILE_NO_EA_KNOWLEDGE

FILE_DELETE_ON_CLOSE

FILE_OPEN_BY_FILE ID

FILE_OPEN_FOR_BACKUP_INTENT

The file cannot be cached or buffered in a driver’s
internal buffers. This flag is incompatible with the
DesiredAccess FILE_APPEND_DATA flag.

All operations on the file are performed
synchronously. Any wait on behalf of the caller is
subject to premature termination from alerts. This
flag also causes the I/O system to maintain the file
position context. If this flag is set, the DesiredAccess
SYNCHRONIZE flag also must be set.

All operations on the file are performed
synchronously. Waits in the system to synchronize I/O
queueing and completion are not subject to alerts. This
flag also causes the I/O system to maintain the file
position context. If this flag is set, the DesiredAccess
SYNCHRONIZE flag also must be set.

Create a tree connection for this file in order to open it
over the network. This flag is irrelevant to device and
intermediate drivers.

Complete this operation immediately with an alternate
success code if the target file is oplocked, rather than
blocking the caller's thread. If the file is oplocked,
another caller already has access to the file over the
network. This flag is irrelevant to device and
intermediate drivers.

If the extended attributes on an existing file being
opened indicate that the caller must understand EAs
to properly interpret the file, fail this request because
the caller does not understand how to deal with EAs.
Device and intermediate drivers can ignore this flag.

Delete the file when the last handle to it is passed to
ZwClose.

The file name contains the name of a device and a 64-
bit ID to be used to open the file. This flag is irrelevant
to device and intermediate drivers.

The file is being opened for backup intent, hence, the
system should check for certain access rights and grant
the caller the appropriate accesses to the file before
checking the input DesiredAccess against the file's
security descriptor. This flag is irrelevant to device and
intermediate drivers.

214 Part1 Kernel-Mode Support Routines

EaBuffer

For device and intermediate drivers, this parameter must be a NULL pointer.

EalLength

For device and intermediate drivers, this parameter must be zero.

CreateFileType

Drivers must set this parameter to CreateFileTypeNone.

ExtraCreateParameters

Drivers must set this parameter to NULL.

Options

Specifies options to be used during the creation of the create request. These options can be

from the following list:

Options Flags Meaning

I0_NO_PARAMETER_CHECKING Indicates that the parameters for this call should not be
validated before attempting to issue the create request.
Driver writers should use this flag with caution as certain
invalid parameters can cause a system failure.

IO_FORCE_ACCESS_CHECK Indicates that the I/O Manager must check the operation
against the file's security descriptor.

Include

wdm.h or ntddk.h

Return Value

IoCreateFile cither returns STATUS_SUCCESS or an appropriate error status. If it returns
an error status, the caller can find additional information about the cause of the failure by
checking the IoStatusBlock.

Comments

There are two alternate ways to specify the name of the file to be created or opened with
IoCreateFile:

1. As afully qualified pathname, supplied in the ObjectName member of the input Object-
Attributes

2. As pathname relative to the directory file represented by the handle in the RootDirectoi‘y
member of the input ObjectAttributes

Chapter 4 1/0 Manager Routines 215

Certain DesiredAccess flags and combinations of flags have the following effects:

= For a caller to synchronize an I/O completion by waiting on the returned FileHandle,
the SYNCHRONIZE flag must be set. Otherwise, a caller that is a device or intermediate
driver must synchronize an I/O completion by using an event object.

= If only the FILE_APPEND_DATA and SYNCHRONIZE flags are set, the caller
can write only to the end of the file, and any offset information on writes to the file is
ignored. However, the file will automatically be extended as necessary for this type of
write operation.

= Setting the FILE_ WRITE_DATA flag for a file also allows writes beyond the end of the
file to occur. The file is automatically extended for this type of write, as well.

= If only the FILE_EXECUTE and SYNCHRONIZE flags are set, the caller cannot directly
read or write any data in the file using the returned FileHandle: that is, all operations on
the file occur through the system pager in response to instruction and data accesses. De-
vice and intermediate drivers should not set the FILE_EXECUTE flag in DesiredAccess.

The ShareAccess parameter determines whether separate threads can access the same file,
possibly simultaneously. Provided that both file openers have the privilege to access a file in
the specified manner, the file can be successfully opened and shared. If the original caller of
IoCreateFile does not specify FILE_SHARE_READ, FILE_SHARE_WRITE, or FILE_
SHARE_DELETE, no other open operations can be performed on the file: that is, the
original caller is given exclusive access to the file.

In order for a shared file to be successfully opened, the requested DesiredAccess to the file
must be compatible with both the DesiredAccess and ShareAccess specifications of all pre-
ceding opens that have not yet been released with ZwClose. That is, the DesiredAccess
specified to IoCreateFile for a given file must not conflict with the accesses that other
openers of the file have disallowed.

The Disposition value FILE_SUPERSEDE requires that the caller have DELETE access to
a existing file object. If so, a successful call to IeCreateFile with FILE_SUPERSEDE on
an existing file effectively deletes that file, and then recreates it. This implies that, if the file
has already been opened by another thread, it opened the file by specifying a ShareAccess
parameter with the FILE_SHARE_DELETE flag set. Note that this type of disposition is
consistent with the POSIX style of overwriting files.

The Disposition values FILE_OVERWRITE_IF and FILE_SUPERSEDE are similar. If
IoCreateFile is called with a existing file and either of these Disposition values, the file will
be replaced.

216

Part 1 Kernel-Mode Support Routines

Overwriting a file is semantically equivalent to a supersede operation, except for the
following:

» The caller must have write access to the file, rather than delete access. This implies that,
if the file has already been opened by another thread, it opened the file with the FILE_
SHARE_WRITE flag set in the input ShareAccess.

= The specified file attributes are logically ORed with those already on the file. This im-
plies that, if the file has already been opened by another thread, a subsequent caller of
IoCreateFile cannot disable existing FileAttributes flags but can enable additional flags
for the same file.

The CreateOptions FILE_DIRECTORY_FILE value specifies that the file to be created or
opened is a directory file. When a directory file is created, the file system creates an appro-
priate structure on the disk to represent an empty directory for that particular file system's

on-disk structure. If this option was specified and the given file to be opened is not a direc-
tory file, or if the caller specified an inconsistent CreateOptions or Dispostion value, the call
to IoCreateFile will fail.

The CreateOptions FILE_NO_INTERMEDIATE_BUFFERING flag prevents the file sys-
tem from performing any intermediate buffering on behalf of the caller. Specifying this

value places certain restrictions on the caller's parameters to the Zw..File routines, including
the following:

= Any optional ByteOffset passed to ZwReadFile or ZwWriteFile must be an integral of
the sector size.

s The Length passed to ZwReadFile or ZwWriteFile, must be an integral of the sector
size. Note that specifying a read operation to a buffer whose length is exactly the sector
size might result in a lesser number of significant bytes being transferred to that buffer if
the end of the file was reached during the transfer.

= Buffers must be aligned in accordance with the alignment requirement of the underlying
device. This information can be obtained by calling IoCreateFile to get a handle for the
file object that represents the physical device, and, then, calling ZwQueryInformation-
File with that handle. For a list of the system FILE_XXX_ALIGNMENT values, see
DEVICE_OBJECT in Chapter 12.

= Calls to ZwSetInformationFile with the FileInformationClass parameter set to File-
PositionInformation must specify an offset that is an integral of the sector size.

The CreateOptions FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_
IO_NONALERT, which are mutually exclusive as their names suggest, specify that all I/O
operations on the file are to be synchronous as long as they occur through the file object
referred to by the returned FileHandle. All /O on such a file is serialized across all threads

Chapter 4 1/O Manager Routines 217

using the returned handle. With either of these CreateOptions, the DesiredAccess
SYNCHRONIZE flag must be set so that the I/O Manager will use the file object as a
synchronization object. With either of these CreateOptions set, the /O Manager maintains
the “file position context” for the file object, an internal, current file position offset. This
offset can be used in calls to ZwReadFile and ZwWriteFile. Its position also can be
queried or set with ZwQueryInformationFile and ZwSetInformationFile.

Callers of IoCreateFile must be running at IRQL PASSIVE_LEVEL.

See Also
ZwCreateFile

loCreateNotificationEvent

PKEVENT
IoCreateNotificationEvent(
IN PUNICODE_STRING EventName,
OUT PHANDLE EventHandle
)s

IoCreateNotificationEvent creates or opens a named notification event used to notify one
or more threads of execution that an event has occurred.

Parameters

EventName
Points to a buffer containing a zero-terminated Unicode string that names the event.

EventHandle

Points to a location in which to return a handle for the event object. The handle includes
bookkeeping information, such as a reference count and security context.

Include
wdm.h or ntddk.h

Return Value

IoCreateNotificationEvent returns a pointer to the created or opened event object or NULL
if the event object could not be created or opened.

Comments
IoCreateNotificationEvent creates and opens the event object if it does not already exist.
IoCreateNotificationEvent sets the state of a new notification event to Signaled. If the
event object already exists, IoCreateNotificationEvent just opens the event object.

218

Part 1 Kernel-Mode Support Routines

When a notification event is set to the Signaled state it remains in that state until it is explic-
itly cleared.

Notification events, like synchronization events, are used to coordinate execution. Unlike

a synchronization event, a notification event is not auto-resetting. Once a notification event
is in the Signaled state, it remains in that state until it is explicitly reset (with a call to Ke-
ClearEvent or KeResetEvent).

To synchronize on a notification event:

1. Open the notification event with IoCreateNotificationEvent. Identify the event with the
EventName string.

2. Wait for the event to be signaled by calling KeWaitForSingleObject with the
* PKEVENT returned by IoCreateNotificationEvent. More than one thread of execution
can wait on a given notification event. To poll instead of stall, specify a Timeout of zero
to KeWaitForSingleObject.

3. Close the handle to the notification event with ZwClose when access to the event is no
longer needed.

Callers of IoCreateNotificationEvent must be running at IRQL PASSIVE_LEVEL.

See Also

IoCreateSynchronizationEvent, KeClearEvent, KeResetEvent, KeSetEvent,
KeWaitForSingleObject, RtlInitUnicodeString, ZwClose

loCreateSymbolicLink

NTSTATUS
IoCreateSymbolicLink(
IN PUNICODE_STRING SymboliclLinkName,
IN PUNICODE_STRING DeviceName
)

IoCreateSymbolicLink sets up a symbolic link between a device object name and a
user-visible name for the device.

Parameters

SymbolicLinkName

Points to a buffered Unicode string that is the user-visible name.

DeviceName
Points to a buffered Unicode string that is the name of the driver-created device object.

Chapter 4 1/0 Manager Routines 219

Include
wdm.h or ntddk.h

Return Value

IoCreateSymbolicLink returns STATUS_SUCCESS if the symbolic link object was
created.

Comments

PnP drivers do not name device objects and therefore should not use this routine. Instead,
a PnP driver should call IoRegisterDevicelnterface to set up a symbolic link.

Callers of IoCreateSymbolicLink must be running at IRQL PASSIVE_LEVEL.

See Also

IoRegisterDeviceInterface, [oAssignArcName, IoCreateUnprotectedSymbolicLink,
IoDeleteSymbolicLink

loCreateSynchronizationEvent

PKEVENT
IoCreateSynchronizationkEvent(
IN PUNICODE_STRING EventName,
OUT PHANDLE EventHandle
)

IoCreateSynchronizationEvent creates or opens a named synchronization event for use in
serialization of access to hardware between two otherwise unrelated drivers.

Parameters
EventName

Points to a buffer containing a zero-terminated Unicode string that names the event.

EventHandle

Points to a location in which to return a handle for the event object.

Include
ntddk.h

Return Value

IOCréateSynchronizationEvent returns a pointer to the created or opened event object or
NULL if the event object could not be created or opened.

220 Part 1 Kernel-Mode Support Routines

Comments

The event object is created if it does not already exist. loCreateSynchronizationEvent sets
the state of a new synchronization event to Signaled. If the event object already exists, it is
simply opened. The pair of drivers that use a synchronization event call KeWaitForSingle-
Object with the PKEVENT pointer returned by this routine.

When a synchronization event is set to the Signaled state, a single thread of execution that
was waiting on the event is released, and the event is automatically reset to the Not-Signaled
state.

To release the event, a driver calls ZwClose with the event handle.

Callers of IoCreateSynchronizationEvent must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateNotificationEvent, KeWaitForSingleObject, RtlInitUnicodeString, ZwClose

loCreateUnprotectedSymbolicLink

NTSTATUS .
IoCreateUnprotectedSymbolicLink(
IN PUNICODE_STRING SymbolicLinkName,
IN PUNICODE_STRING DeviceName
)

IoCreateUnprotectedSymbolicLink sets up an unprotected symbolic link between a device
object name and a corresponding Win32e-visible name.

Parameters
SymbolicLinkName

Supplies the symbolic link name as a Unicode string.
DeviceName

Supplies the name of the device object to which the symbolic link name refers.

Include
wdm.h or ntddk.h

Return Value
IoCreateUnprotectedSymbolicLink returns the final status of the operation.

Chapter 4 1/0 Manager Routines 221

Comments
PnP drivers do not name device objects and therefore should not use this routine. Instead,
a PnP driver should call IoRegisterDeviceInterface to set up a symbolic link.

IoCreateUnprotectedSymbolicLink can be used by drivers if the user needs to be able to
manipulate the symbolic link. For example, the parallel and serial drivers create unprotected
symbolic links for LPTx and COMZX, so that users can manipulate and reassign them by
using the MODE command.

In general, drivers should call this routine instead of IoCreateSymbolicLink if a protected
subsystem lets end users change what a named device references as, for example, when
using LPT1 to access a network printer.

Callers of IoCreateUnprotectedSymbolicLink must be running at IRQL PASSIVE _
LEVEL.

See Also

IoRegisterDevicelnterface, IoAssignArcName, IoCreateSymbolicLink, IoDelete-
SymbolicLink

loDeassignArcName

VOID
IoDeassignArcName(
IN PUNICODE_STRING ArcName
s

IoDeassignArcName removes a symbolic link between the ARC name for a device and the
named device object. This is generally called if the driver is deleting the device object, for
example, when the driver is unloading.

Parameters

ArcName
Points to a buffered Unicode string that is the ARC name.

Include
ntddk.h

Comments
Callers of IoDeassignArcName must be running at IRQL PASSIVE_LEVEL.

222 Part1 Kernel-Mode Support Routines

See Also

IoAssignArcName

loDeleteController

VOID
IoDeleteControlier(
IN PCONTROLLER_OBJECT ControllerObject
)

IoDeleteController removes a given controller object from the system, for example, when
the driver that created it is being unloaded.

Parameters
ControllerObject

Points to the controller object to be released.

Include
ntddk.h

Comments
IoDeleteController deallocates the memory for the controller object, including the con-
troller extension.

This routine must be called when a driver that created a controller object is being unloaded
or when the driver encounters a fatal error during device start-up, such as being unable to
properly initialize a physical device.

A driver must release certain resources for which the driver supplied storage in its controller
extension before it calls IoDeleteController. For example, if the driver stores the pointer to
its interrupt object(s) in the controller extension, it must call IoDisconnectInterrupt before
IoDeleteController.

Callers of IoDeleteController must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateController, IoDisconnectInterrupt

Chapter 4 1/O Manager Routines 223

loDeleteDevice

VOID
IoDeleteDevice(
IN PDEVICE_OBJECT DeviceObject
)s

IoDeleteDevice removes a device object from the system, for example, when the underlying
device is removed from the system.

Parameters

DeviceObject
Points to the device object to be deleted.

Include
wdm.h or ntddk.h

Comments

When handling a PnP IRP_MN_REMOVE_DEVICE request, a PnP driver calls IoDelete-
Device to delete any associated device objects.

A legacy driver should call this routine when it is being unloaded or when its DriverEntry
routine encounters a fatal initialization error, such as being unable to properly initialize a
physical device. This routine also is called when a driver reconfigures its devices dynami-
cally. For example, a disk driver called to repartition a disk would call IoDeleteDevice to
tear down the device objects representing partitions to be replaced.

A driver must release certain resources for which the driver supplied storage in its device
extension before it calls IoDeleteDevice. For example, if the driver stores the pointer to its
interrupt object(s) in the device extension, it must call IoDisconnectInterrupt before
calling IoDeleteDevice.

A driver can call IoDeleteDevice only once for a given device object.

When a driver calls IoDeleteDevice, the /O Manager deletes the target device object if
there are no outstanding references to it. However, if any outstanding references remain, the
I/0 Manager marks the device object as "delete pending” and deletes the device object when
the references are released.

Callers of IoDeleteDevice must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateDevice, IoDisconnectInterrupt

224 Part 1 Kernel-Mode Support Routines

loDeleteSymbolicLink

NTSTATUS
IoDeleteSymboTlicLink(.
IN PUNICODE_STRING SymboliclLinkName
)

ioDeleteSymbolicLink removes a symbolic link from the system.

Parameters
SymbolicLinkName

Points to a buffered Unicode string that is the user-visible name for the symbolic link.

Include
wdm.h or ntddk.h

Return Value
ToDeleteSymbolicLink returns STATUS_SUCCESS if the symbolic link object is deleted.

Comments
Callers of IoDeleteSymbolicLink must be running at IRQL PASSIVE_LEVEL.

See Also
IoCreateSymbolicLink, IoCreateUnprotectedSymbolicLink, IoDeassignArcName

loFreeAdapterChannel

VOID
IoFreeAdapterChannel(
IN PADAPTER_OBJECT AdapterObject
)

IoFreeAdapterChannel is obsolete and exported only to support existing drivers. See
FreeAdapterChannel instead.

loFreeController

VOID
IToFreeController(
IN PCONTROLLER_OBJECT ControllerObject
)

Chapter 4 1/O Manager Routines 225

IoFreeController releases a previously allocated controller object when the driver has
completed an I/O request.

Parameters
ControllerObject

Points to the driver’s controller object, which was allocated for the current I/O operation on
a particular device by calling IoAllocateController.

Include
ntddk.h

Comments
The connection between the current target device object and the controller object is re-
leased only if no requests are currently queued to the same device. Otherwise, the driver’s
ControllerControl routine is called with the next IRP bound through the device controller
to the target device.

Callers of IoFreeController must be running at IRQL DISPATCH_LEVEL.

See Also
ToAllocateController, IoCreateController, IoDeleteController
loFreelrp
VOID
IoFreelrp(
IN PIRP Irp

)

IoFreelrp releases a caller-allocated IRP from the caller’s IoCompletion routine.

Parameters
Irp
Points to the IRP that is to be released.

Include
wdm.h or ntddk.h

226 Part 1 Kernel-Mode Support Routines

Comments

This routine is the reciprocal to IoAllocatelrp or IoBuildAsynchronousFsdRequest. The
released IRP must have been allocated by the caller.

This routine also releases an IRP allocated with lToMakeAssociatedIrp in which the caller
set up its lToCompletion routine that returns STATUS_MORE_PROCESSING_REQUIRED
for the associated IRP.

Callers of IoFreelrp must be running at IRQL <= DISPATCH_LEVEL.

See Also

IoAllocatelrp, IoBuildAsynchronousFsdRequest, loMakeAssociatedIrp, IoSet-
CompletionRoutine

loFreeMapRegisters

VOID
IoFreeMapRegisters(
IN PADAPTER_OBJECT AdapterObject,
IN PVOID MapRegisterBase,
_IN ULONG NumberOfMapRegisters
)s :

IoFreeMapRegisters is obsolete and exported only to support existing drivers. See Free-
MapRegisters instead.

loFreeMdl

VOID
ToFreeMdl(
IN PMDL Md1
)

IoFreeMdl releases a caller-allocated MDL.

Parameters

Mdl
Points to the MDL to be released.

Chapter 4 1/O Manager Routines 227

Include
wdm.h or ntddk.h

Comments

If a driver allocates an MDL to describe a buffer, it must explicitly release the MDL when
operations on the buffer are done.

Callers of IoFreeMdl must be running at IRQL <= DISPATCH_LEVEL.

See Also
ToAllocateMdl, IoBuildPartialMdl

loFreeWorkitem

VOID
IoFreeWorkItem(
IN PIO_WORKITEM pIOWorkItem
);

IoFreeWorkItem frees the specified work item.

Parameters

plOWorkitem

Pointer to a private IO_WORKITEM structure that was returned by a previous call to
IoAllocateWorkItem.

Include
wdm.h or ntddk.h

Comments

Drivers should not make any assumptions about the format of the I[O_WORKITEM struc-
ture nor should they attempt to access information that is contained in this private structure.

See Also
TIoAllocateWorkItem, IoQueueWorkItem

228 Part 1 Kernel-Mode Support Routines

IoGetAttaéhedDeviceReference

PDEVICE_OBJECT
ToGetAttachedDeviceReference(
IN PDEVICE_OBJECT DeviceObject
)

IoGetAttachedDeviceReference returns a pointer to the highest level device object in a
driver stack and increments the reference count on that object.

Parameters
DeviceObject

Points to the device object for which the topmost attached device object is retrieved.

Include
wdm.h or ntddk.h

Return Value

IoGetAttachedDeviceReference returns a pointer to the highest level device object in
a stack of attached device objects after incrementing the reference count on the object.

Comments

If the device object at DeviceObject has no device objects attached to it, DeviceObject and
the returned pointer are equal.

Device driver writers must ensure that when they have completed all operations that re-
quired them to make this call, that they call ObDereferenceObject with the device object
pointer returned by this routine. Failure to do so will prevent the system from freeing or
deleting the device object because of an outstanding reference count.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
ObDereferenceObject

loGetBootDiskinformation

NTSTATUS

IoGetBootDiskInformation(
IN OUT PBOOTDISK_INFORMATION BootDiskInformation,
IN ULONG Size
)

Chapter 4 1/O Manager Routines 229

IoGetBootDiskInformation returns the offset and signature of the boot disk and the system
disk.

Parameters

BootDiskinformation
Pointer to a caller-allocated buffer that is used to output a BOOTDISK_INFORMATION
structure:

typedef struct _BOOTDISK_INFORMATION {
LONGLONG BootPartitionOffset;
LONGLONG SystemPartitionOffset;
ULONG BootDeviceSignature;
ULONG SystemDeviceSignature;
} BOOTDISK_INFORMATION, *PBOOTDISK_INFORMATION;

Size
Specifies the size in bytes of a BOOTDISK_INFORMATION structure.

Include
ntddk.h

Return Value
IoGetBootDiskInformation returns one of the following status values:

STATUS_SUCCESS

STATUS_TOO_LATE
The Loader Block has already been freed.

STATUS_INVALID_PARAMETER
The value of Size is less than the size in bytes of a BOOTDISK_INFORMATION structure.

Comments

IoGetBootDiskInformation can be used only by boot drivers that have registered for a
callback after disk devices have started.

loGetConfigurationinformation

PCONFIGURATION_INFORMATION
ToGetConfigurationInformation(
VOID
)

230

Part 1 Kernel-Mode Support Routines

Include
ntddk.h

IoGetConfigurationInformation returns a pointer to the I/O Manager’s global configu-
ration information structure, which contains the current values for how many physical disk,
floppy, CD-ROM, tape, SCSI HBA, serial, and parallel devices have device objects created
to represent them by drivers as they are loaded.

Return Value

IoGetConfigurationInformation returns a pointer to the configuration information
structure. This structure is defined as follows:

typedef struct _CONFIGURATIONAL_INFORMATION({

//

// Each field indicates the total number of physical

// devices of a particular type in the machine. The value

// should be used by the driver to determine the digit

// suffix for device object names. This field must be

// updated as the driver finds new devices of its own.

//

ULONG DiskCount; // Count of hard disks so far.
ULONG FloppyCount; // Count of floppy drives so far.
ULONG CDRomCount; // Count of CD-ROM drives so far.
ULONG TapeCount; // Count of tape drives so far.
ULONG ScsiPortCount; // Count of HBAs so far.

ULONG SerialCount; // Count of serial ports so far.
ULONG ParallelCount; // Count of parallel ports so far.
//

// The next two fields indicate ownership of

// either of the two I/0 address spaces

// that are used by WD1093-compatible disk controliers.

//

BOOLEAN AtDiskPrimaryAddressClaimed; //0x1F@-0x1FF
BOOLEAN AtDiskSecondaryAddressClaimed; //0x170-0x17F

} CONFIGURATION_INFORMATION,*PCONFIGURATION_INFORMATION

Comments

Certain types of device drivers can use the configuration information structure’s values to
construct device object names with appropriate digit suffixes when each driver creates its
device objects. Note that the digit suffix for device object names is a zero-based count,
while the counts maintained in the configuration information structure represent the number
of device objects of a particular type already created. That is, the configuration information
counts are one-based.

Chapter 4 /O Manager Routines 231

Any driver that calls IoGetConfigurationInformation must increment the count for its
kind of device in this structure when it creates a device object to represent a physical device.

The system-supplied SCSI port driver supplies the count of SCSI HBAs present in the com-
puter. SCSI class drivers can read this value to determine how many HBA-specific miniport
drivers might control a SCSI bus with an attached device of the class driver’s type.

The configuration information structure also contains a value indicating whether an already
loaded driver has claimed either of the “AT” disk /O address ranges.

Callers of IoGetConfigurationInformation must be running at IRQL PASSIVE_LEVEL.

See Also

HalAssignSlotResources, HalGetBusData, HalGetBusDataByOffset, IoAssign-
Resources, IoQueryDeviceDescription, IoReportResourceUsage

loGetCurrentirpStackLocation

PIO_STACK_LOCATION
IoGetCurrentIrpStackLocation(
IN PIRP Irp
);

IoGetCurrentIrpStackLocation returns a pointer to the caller’s stack location in the
given IRP.

Parameters

Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Return Value

The routine returns a pointer to the I/O stack location for the driver.

Comments
Every driver must call IoGetCurrentIrpStackLocation with each IRP it is sent to get any
parameters for the current request. Unless a driver supplies a Dispatch routine for each IRP_
MJ_XXX that driver handles, the driver also must check its I/O stack location in the IRP to
determine what operation is being requested.

232 Part 1 Kernel-Mode Support Routines

Intermediate and highest-level drivers also call IoGetCurrentIrpStackLocation so that
they can copy pertinent data from their own stack location into that of the next-lower driver
whenever they pass a request on to lower drivers.

See Also

IO_STACK_LOCATION, IoCallDriver, IoGetNextIrpStackLocation, IoSetNextIrp-
StackLocation '

loGetCurrentProcess

PEPROCESS
IoGetCurrentProcess();

Include
wdm.h or ntddk.h

Return Value

ToGetCurrentProcess returns a pointer to the current process.

Comments

In general, highest-level drivers, particularly file systems, are most likely to call this routine.
An intermediate or underlying device driver seldom is called in the context of a thread that
originates the current I/O request that the driver is processing, so it cannot get access to such
a thread’s process space.

Callers of IoGetCurrentProcess must be running at IRQL PASSIVE_LEVEL.

See Also
PsGetCurrentThread

loGetDevicelnterfaceAlias

This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoGetDeviceInterfaceAlias in that book for a full reference.

loGetDevicelnterfaces

This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoGetDeviceInterfaces in that book for a full reference.

Chapter 4 /O Manager Routines 233

loGetDeviceObjectPointer

NTSTATUS
IoGetDeviceObjectPointer(
IN PUNICODE_STRING ObjectName,
IN ACCESS_MASK DesiredAccess,
OUT PFILE_OBJECT =FjleObject,
OUT PDEVICE_OBJECT =DeviceObject
)

IoGetDeviceObjectPointer returns a pointer to a named device object and corresponding
file object if the requested access to the objects can be granted.

Parameters
ObjectName

Points to a buffer containing a Unicode string that is the name of the device object.

DesiredAccess

Specifies one or more (ORed) system-defined constants, usually FILE_READ_DATA,
(infrequently) FILE_WRITE_DATA, and/or FILE_ALL_ACCESS, requesting access rights
to the object.

FileObject

Points to the file object that represents the corresponding device object to user-mode code if
the call is successful.

DeviceObject
Points to the device object that represents the named logical, virtual, or physical device if
the call is successful.

Include
wdm.h or ntddk.h

Return Value
IoGetDeviceObjectPointer can return one of the following NTSTATUS values:

STATUS_SUCCESS
STATUS_OBJECT_TYPE_MISMATCH
STATUS_INVALID_PARAMETER
STATUS_PRIVILEGE_NOT_HELD
STATUS_INSUFFICIENT_RESOURCES
STATUS_OBJECT_NAME_INVALID

234

Part 1 Kernel-Mode Support Routines

Comments

IoGetDeviceObjectPointer establishes a “connection” between the caller and the next-
lower-level driver. A successful caller can use the returned device object pointer to initialize
its own device object(s). It can also be used as as an argument to IoAttachDeviceToDevice-
Stack, IoCallDriver, and any routine that creates IRPs for lower drivers. The returned
pointer is a required argument to IoCallDriver.

This routine also returns a pointer to the corresponding file object. When unloading, a driver
can dereference the file object as a means of indirectly dereferencing the device object. To
do so, the driver calls ObDereferenceObject from its Unload routine, passing the file object
pointer returned by GetDeviceObjectPointer. Failure to dereference the device object in a
driver's Unload routine prevents the next-lower driver from being unloaded. However,
drivers that close the file object before the unload process must take out an extra reference
on the device object before dereferencing the file object. Otherwise, dereferencing the file
object can lead to a premature deletion of the device object.

To get a pointer to the highest-level driver in the file system driver stack, a driver must
ensure that the file system is mounted; if it is not, this routine traverses the storage device
stack. To ensure that the file system is mounted on the storage device, the driver must
specify an appropriate access mask, such as FILE_READ_DATA or FILE_WRITE _
ATTRIBUTES, in the DesiredAccess parameter. Specifying FILE_READ_ATTRIBUTES
does not cause the file system to be mounted.

After any higher-level driver has chained itself over another driver by successfully calling
this routine, the higher-level driver must set the StackSize field in its device object to that of
the next-lower-level driver’s device object plus one.

Callers of IoGetDeviceObjectPointer must be running at IRQL PASSIVE_LEVEL.

See Also

DEVICE_OBIJECT, IoAllocatelrp, IoAttachDevice, IoAttachDeviceToDeviceStack,
ObDereferenceObject, ObReferenceObjectByPointer

loGetDeviceProperty

This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoGetDeviceProperty in that book for a full reference.

loGetDeviceToVerify

PDEVICE_OBJECT
IoGetDeviceToVerify(
IN PETHREAD Thread
)

Chapter 4 1/0 Manager Routines 235

IoGetDeviceToVerify returns a pointer to the device object, representing a removable-
media device, that is the target of the given thread’s I/O request.

Parameters

Thread

Points to the thread for which a highest-level driver is attempting to verify the validity of the
media on which the thread has opened a file.

Include
ntddk.h

Return Value

ToGetDeviceToVerify returns a pointer to the device object representing a device on which
the media should be verified, or it returns NULL.

Comments
In general, highest-level drivers, particularly file systems, are most likely to call this routine.

An underlying removable-media device driver is responsible for notifying higher-level
drivers, particularly the file system, when the media appears to have changed since the last
access to the target device. For more information about handling removable media, see the
Kernel-Mode Drivers Design Guide.

Callers of IoGetDeviceToVerify must be running at IRQL PASSIVE_LEVEL.

See Also
TolsErrorUserInduced, IoSetHardErrorOrVerifyDevice, PsGetCurrentThread

loGetDmaAdapter

PDMA_ADAPTER
ToGetDmaAdapter(
IN PDEVICE_OBJECT PhysicalDeviceObject,
IN PDEVICE_DESCRIPTION DeviceDescription,
IN OUT PULONG NumberOfMapRegisters
)

IoGetDmaAdapter returns a pointer to the DMA adapter structure for a physical device
object.

236 Part1 Kernei-Mode Support Routines

Parameters

PhysicalDeviceObject
Points to the physical device object for the device requesting the DMA adapter structure.

DeviceDescription

Points to a DEVICE_DESCRIPTION structure, which describes the attributes of the
physical device.

NumberOfMapRegisters

Points to, on output, the maximum number of map registers that the driver can allocate for
any DMA transfer operation.

Include
wdm.h or ntddk.h

Return Value

IoGetDmaAdapter returns a pointer to a DMA adapter structure that contains function
pointers to the system-defined set of DMA operations. If an adapter structure cannot be
allocated, the routine returns NULL.

Comments

Before calling this routine, a driver must zero-initialize the structure passed at Device-
Description and then supply the relevant information for its device.

When IoGetDmaAdapter returns a valid pointer, a driver can use the pointers to functions
within the DMA_ADAPTER structure to perform subsequent DMA operations.

PnP drivers call loGetDmaAdapter when handling a PnP IRP_MN_START _DEVICE
request for a device. This IRP includes information about the device's hardware resources
that the driver must supply in the DeviceDescription structure.

In NumberOfMapRegisters, the caller specifies the optimal number of map registers it can
use. On output, the I/O Manager returns the number of map registers it allocated. Drivers
should check the returned value; there is no guarantee a driver will receive the same number
of map registers it requested.

To free the adapter object, the driver should cali PutDmaAdapter through the pointer
returned in the DMA_ADAPTER structure.

Drivers must call this routine while running at IRQL PASSIVE_LEVEL.

Chapter 4 /0O Manager Routines 237

See Also
DEVICE_DESCRIPTION, DMA_ADAPTER, PutDmaAdapter

loGetDriverObjectExtension

PVOID
ToGetDriverObjectExtension(
IN PDRIVER_OBJECT ODriverObject,
IN PVOID C(ClientlIdentificationAddress
)

IoGetDriverObjectExtension retrieves a previously allocated per-driver context area.

Parameters
DriverObject

Specifies the driver object with which the context area is associated.

ClientldentificationAddress

Specifies the unique identifier, provided when it was allocated, of the context area to be
retrieved.

Include
wdm.h or ntddk.h

Return Value
IoGetDriverObjectExtension returns a pointer to the context area, if any or returns NULL.

Comments

Drivers call IoGetDriverObjectExtension to retrieve a pointer to a previously allocated
extension area.

Callers of this routine must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoAllocateDriverObjectExtension

loGetFileObjectGenericMapping

PGENERIC_MAPPING
ToGetFileObjectGenericMapping();

238 Part1 Kernel-Mode Support Routines

IoGetFileObjectGenericMapping returns information about the mapping between each
generic access right and the set of specific access rights for file objects.

Include
ntddk.h

Return Value
IoGetFileObjectGenericMapping returns a pointer to the generic mapping for file objects.

Comments
The generic mapping structure is defined as follows:

typedef struct _GENERIC_MAPPING {
ACCESS_MASK GenericRead;
ACCESS_MASK GenericWrite;
ACCESS_MASK GenericExecute;
ACCESS_MASK GenericAll;

} GENERIC_MAPPING;

typedef GENERIC_MAPPING #*PGENERIC_MAPPING;

Callers of IoGetFileObjectGenericMapping must be running at IRQL PASSIVE_LEVEL.

See Also
IoCheckShareAccess, IoSetShareA ccess, ZwCreateFile

loGetFunctionCodeFromCtiCode

ULONG
ToGetFunctionCodeFromCt1Code(
IN ULONG ControlCode
)

ToGetFunctionCodeFromCtlCode returns the value of the Function in a given IOCTL,_
XXX control code.

Parameters

ControlCode

Points to the IOCTL _XXX (or FSCTL_XXX) in the driver’s I/O stack location of the IRP at
Parameters.DeviceIoControl.IoControlCode.

Include
wdm.h or ntddk.h

Chapter 4 /O Manager Routines 239

Return Value

IoGetFunctionCodeFromCtlCode returns the value of the Function part of the given
IOCTL_XXX code.

Comments

See Defining I/0O Control Codes in Chapter 13 for more information about the layout of
IOCTL_XXX codes and using the CTL_CODE macro.

Callers of IoGetFunctionCodeFromCtlCode must be running at IRQL <= DISPATCH__
LEVEL.

See Also
CTL_CODE, IoBuildDeviceloControlRequest

loGetlnitialStack

PVOID
IoGetInitialStack();

ToGetlnitialStack returns the base address of the current thread's stack.

Include
ntddk.h

Return Value
TIoGetlInitialStack returns the initial base address of the current thread’s stack.

Comments

Highest-level drivers can call this routine, particularly file systems attempting to determine
whether they’ ve been passed a pointer to a location on the current thread’s stack.

Callers of IoGetInitialStack must be running at IRQL < DISPATCH_LEVEL.

See Also
IoGetRemainingStackSize, IoGetStackLimits

loGetNextlrpStackLocation

PIO_STACK_LOCATION
ToGetNextIrpStackLocation(
IN PIRP Irp
)3

240 Part 1 Kernel-Mode Support Routines

IoGetNextIrpStackLocation gives a higher level driver access to the next-lower driver’s
I/O stack location in an IRP so the caller can set it up for the lower driver.

Parameters

Irp
Points to the IRP.

Include
wdm.h or ntddk.h

Return Value

IoGetNextIrpStackLocation returns a pointer to the next-lower-level driver’s /O stack
location in the given IRP.

Comments

Each driver that passes IRPs on to lower drivers must set up the stack location for the next
lower driver. A driver calls IoGetNextIrpStackLocation to get a pointer to the next-lower
driver’s I/O stack location.

If a driver is passing the same parameters that it received to the next-lower driver, such a
driver can call IoCopyCurrentIrpStackLocationToNext or IoSkipCurrentIrpStack-
Location instead of getting a pointer to the next-lower stack location and copying the
parameters manually.

Callers of IoGetNextIrpStackLocation must be running at IRQL <= DISPATCH_LEVEL.

See Also

IO_STACK_LOCATION, IoCallDriver, IoGetCurrentIrpStackLocation, IoCopy-
CurrentIrpStackLocationToNext, IoSetNextIrpStackLocation, IoSkipCurrent-
IrpStackLocation

loGetRelatedDeviceObject

PDEVICE_OBJECT
IoGetRelatedDeviceObject(
IN PFILE_OBJECT FileObject
);

Given a file object, IoGetRelatedDeviceObject returns a pointer to the corresponding
device object.

Chapter 4 1/O Manager Routines 24

Parameters

FileObject
Points to the file object.

Include
wdm.h or ntddk.h

Return Value
IoGetRelatedDeviceObject returns a pointer to the device object.

Comments

When called on a file object that represents the underlying storage device, IoGetRelated-
DeviceObject returns the highest-level device object in the storage device stack. To obtain
the highest-level device object in the file system driver stack, drivers must call IoGet-
RelatedDeviceObject on a file object that represents the file system's driver stack, and

the file system must currently be mounted. (Otherwise, the storage device stack is traversed
instead of the file system stack.)

To ensure that the file system is mounted on the storage device, the driver must have
specified an appropriate access mésk, such as FILE_READ_DATA or FILE_WRITE_
ATTRIBUTES, when opening the file or device represented by the file object. Specifying
FILE_READ_ATTRIBUTES does not cause the file system to be mounted.

The caller must be running at IRQL <= DISPATCH_LEVEL. Usually, callers of this routine
are running at IRQL PASSIVE_LEVEL.

See Also
loGetDeviceObjectPointer

loGetRemainingStackSize

ULONG
IoGetRemainingStackSize();

IoGetRemainingStackSize returns the current amount of available kernel-mode stack
space.

Include
ntddk.h

242 Part 1 Kernel-Mode Support Routines

Return Value

IoGetRemainingStackSize returns the number of bytes of stack space in the current thread
context. "

Comments

Highest-level drivers, such as file systems, can call this routine, particularly drivers that use
recursive code paths. Such a driver would call IoGetRemainingStackSize before launching
a recursion to determine whether it should continue processing on an alternate code path.

Callers of IoGetRemainingStackSize must be running at IRQL < DISPATCH_LEVEL.

See Also
TJoGetlInitialStack, IoGetStackLimits

loGetStackLimits

VOID
IoGetStackLimits(
OUT PULONG LowLimit,
QUT PULONG HighLimit
)

ToGetStackLimits returns the boundaries of the current thread's stack frame.

Parameters

LowLimit

Points to a caller-supplied variable in which this routine returns the lower offset of the
current thread's stack frame.

HighLimit
Points to a caller-supplied variable in which this routine returns the higher offset of the
current thread's stack frame.

Include
ntddk.h

Comments

Highest-level drivers can call this routine, particularly file systems that have been passed a
pointer to a location on the current thread’s stack.

Callers of IoGetStackLimits must be running at IRQL < DISPATCH_LEVEL.

Chapter 4 1/O Manager Routines 243

See Also
IoGetInitialStack, IoGetRemainingStackSize

lolnitializeDpcRequest

VOID
IoInitializeDpcRequest(
IN PDEVICE_OBJECT DeviceObject,
IN PIO_DPC_ROUTINE DpcRoutine
)s

IoInitializeDpcRequest registers a driver-supplied DpcForlsr routine when a device driver
initializes.

Parameters
DeviceObject

Points to the device object representing the physical device that generates interrupts.

DpcRoutine
Points to the driver-supplied DpcForlsr routine, which is declared as follows:
VOID
(*PIO_DPC_ROUTINE)(
IN PKDPC Dpc,
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
)s

Include
wdm.h or ntddk.h

Comments

IoInitializeDpcRequest associates a driver-supplied DpcForlsr routine with a given device
object so the driver’s ISR can call IoRequestDpc to queue the DpcForlsr. This routine com-
pletes interrupt-driven I/O operations at a lower IRQL than that of the ISR. For details, see
DpcForlsr Routine and CustomDpc Routines in the Kernel-Mode Drivers Design Guide.

PnP drivers call ToInitializeDpcRequest from the AddDevice routine.
Callers of IoInitializeDpcRequest must be running at IRQL PASSIVE_LEVEL.

It is possible to call KelnitializeDpc to initialize another DPC at IRQL <= DISPATCH_
LEVEL.

244 Part 1 Kernel-Mode Support Routines

See Also
IoRequestDpc, KelnitializeDpc

lolnitializelrp

VvOID
IoInitializelrp(
IN OUT PIRP Irp,
IN USHORT PacketSize,
IN CCHAR StackSize
)s

IoInitializeIrp initializes a given IRP that was allocated by the caller.

Parameters

Irp
Points to the IRP to be initialized.

PacketSize
Specifies the size in bytes of the IRP.

StackSize

Specifies the number of stack locations in the IRP.

Include
wdm.h or ntddk.h

Comments

Drivers use IoInitializeIrp to initialize IRPs the driver allocated as raw memory. Drivers
must not call IoInitializeIrp on an IRP that was allocated by IoAllocatelrp. Drivers must
not use IoInitializeIrp to reinitialize an already initialized IRP. Instead, use IoReuselrp.

If the driver associates an MDL with the IRP it allocated, the driver is responsible for
releasing the MDL when the IRP is completed.

An intermediate or highest-level driver also can call IoBuildDeviceIoControlRequest, Io-
BuildAsynchronousFsdRequest, or IoBuildSynchronousFsdRequest to set up requests it
sends to lower-level drivers. Only a highest-level driver can call loMakeAssociatedIrp.

Callers of IolInitializeIrp must be running at IRQL <= DISPATCH_LEVEL.

Chapter 4 I/O Manager Routines 245

See Also

ToAllocatelrp, IoAllocateMdl, IoBuildPartialMdl, IoFreelrp, IoFreeMdl, IoReuselrp,
IoSetNextIrpStackLocation, IoSizeOfIrp, IRP

lolnitializeRemoveLock

This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see lolnitializeRemoveLock in that book for a full reference.

lolnitializeRemoveLockEx

This routine is documented in the Volume 1 of the Windows 2000 Driver Development
Reference. Please see lolnitializeRemoveLockEx in that book for a full reference.

lolnitializeTimer

NTSTATUS
IoInitializeTimer(
IN PDEVICE_OBJECT DeviceObject,
IN PIO_TIMER_ROUTINE TimerRoutine,
IN PVOID Context
)

IoInitializeTimer sets up a driver-supplied IoTimer routine associated with a given device
object.

Parameters
DeviceObject

Points to a device object representing a device on which I/O operations can time out.

TimerRoutine
Points to the driver-supplied IoTimer routine, which is declared as follows:

VoID

(*PTO_TIMER_ROUTINE) (
IN PDEVICE_OBJECT DeviceObject,
IN PVOID Context
);

Context
Points to the driver-determined context with which its IoTimer routine will be called.

Include
wdm.h or ntddk.h

Part 1 Kernel-Mode Support Routines

Return Value

IoInitializeTimer returns STATUS_SUCCESS if the IoTimer routine is set up.

Comments

A driver’s IoTimer routine is called once per second after the driver enables the timer by
calling ToStartTimer.

The driver can disable the timer by calling IoStopTimer and can re-enable it again with
IoStartTimer.

The driver's IoTimer routine is called at IRQL DISPATCH_LEVEL and therefore must not
contain pageable code.

When the timer is running, the I/O Manager calls the driver-supplied IoTimer routine once
per second. Drivers whose time-out routines should be called at variable intervals or at inter-
vals of finer granularity can set up a CustomTimerDpc routine and use the Ke..Timer rou-
tines.

Callers of IoInitializeTimer must be running at IRQL PASSIVE_LEVEL.

See Also

IoStartTimer, IoStopTimer, KelInitializeTimer, KeSetTimer

loinvalidateDeviceRelations

This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoInvalidateDeviceRelations in that book for a full reference.

lolnvalidateDeviceState

This routine is documented in Volume 1 of the Windows 2000 Driver Development
Reference. Please see IoInvalidateDeviceState in that book for a full reference.

lolsErrorUserinduced

BOOLEAN
TolsErrorUserInduced(
IN NTSTATUS Status
)s

JoIsErrorUserInduced determines whether an I/O error encountered while processing a
request to a removable-media device was caused by the user.

Chapter 4 I/O Manager Routines 247

Parameters

Status
Specifies the current NTSTATUS value, usually within the driver’s DpcForlsr routine.

Include
wdm.h or ntddk.h

Return Value

IoIsErrorUserInduced returns TRUE if an I/O request failed because of a user-induced
erTor.

Comments

This routine indicates whether an I/O request failed for one of the following user-correctable
conditions:

STATUS_DEVICE_NOT_READY
STATUS_IO_TIMEOUT
STATUS_MEDIA_WRITE_PROTECTED
STATUS_NO_MEDIA_IN_DEVICE
STATUS_UNRECOGNIZED_MEDIA
STATUS_VERIFY_REQUIRED
STATUS_WRONG_VOLUME

If ToIsErrorUserInduced returns TRUE, the removable-media driver must call IoSet-
HardErrorOrVerifyDevice before completing the IRP.

Callers of IoIsErrorUserInduced must be running at IRQL <= DISPATCH_LEVEL.

See Also
IoSetHardErrorOrVerifyDevice, IoAllocateErrorLogEntry, IoWriteErrorLogEntry

lolsWdmVersionAvailable

BOOLEAN
IoIsWdmVersionAvailable(
IN UCHAR MajorVersion,
IN UCHAR MinorVersion
)

IoIsWdmVersionAvailable checks whether a given WDM version is supported by the
operating system.

248 Part 1 Kernel-Mode Support Routines

Parameters

MajorVersion
Specifies the major version number of WDM that is requested.

MinorVersion
Specifies the minor version number of WDM that is requested.

Include
wdm.h or ntddk.h

Return Value

IoIsWdmVersionAvailable returns TRUE if the version of WDM that the operating system
provides is greater than or equal to the version number of WDM being requested.

Comments
Callers of this routine must be running at IRQL PASSIVE_LEVEL.

loMakeAssociatedirp

PIRP
IoMakeAssociatedIrp(
IN PIRP Irp,

IN CCHAR StackSize
)H

ToMakeAssociatedIrp allocates and initalizes an IRP to be associated with a master IRP
sent to a highest-level driver, allowing the caller to split the original request