
Part of the five-volume
~_ Mlcrosoft* Wln32e Developer's Reference Ubrary

The essential reference to Win32®
technologies· and APls

David Iseminger
Series Editor

"' · IS6mlngel.~m

t®

Indows
Shell

The essential reference to Win32®
technologies and APls

David Iseminger
Series Editor

t®

Indows
Shell

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Microsoft Win32 Developer's Reference Library I David Iseminger.
p. cm.

ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) I. Title.

QA76.76.063 174 1999
005.26'8--dc21 99-045609

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 4 3 2 1 0 9

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com

ActiveX, BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, Visual Basic, Visual C++, Visual
FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows
NT are either registered trademarks or trademarks of Microsoft Corporation in the United States andlor other
countries. Other product and company names mentioned herein may be the trademarks of their respective
owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002310

Acknowledgements
Acknowledgements are often tricky things; generally, the day after books are
printed you think of someone who absolutely should have been recognized,
whom you now have rudely omitted. You'd think authors would keep an
ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about
the series idea, and for keeping up with the myriad of issues that cropped up,
and for managing the business details associated with publishing this series.
Thanks also to Steve Guty at Microsoft Press for seeing certain publishing
issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft
Press, and orchestrated things in the way only project editors can endure.
John Pierce was also instrumental in seeing the publishing process through
completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman--thanks for the excellent work; I'm a firm believer
that artwork and packaging are integral to the success of a project. Marketing
acknowledgements go out to Jocelyn Paul, for her coordination efforts with
MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the
editor at Microsoft Press, and thereby routing this series to the right place.
Throughout the process, Julie Solon provided lots of Win32 feedback and
helped gather feedback from others, all of which was quite helpful in compiling
the right collection of technologies ... thanks to Julie for the help on that. Guy
Smith pointed me to the information I needed for Volumes 4 and 5, and was
always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh
Vaidyanathan for their help and openness, respectively, with letting me
provide the common coding errors found in Chapter 5 of each of these
volumes. Thanks on my behalf, and on behalf of anyone who finds that
information useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my
functional "circled i" logo into a 3D piece of art, as well as for his work on the
Iseminger.com site. You can see more of his artwork through links found at
www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things
great agents do best.

v

Contents

Chapter 1: Introduction .. 1

How the Win32 Library Is Structured .. 2
How the Win32 Library Is Designed '" 3

Chapter 2: What's In This Volume? .. 5

Chapter 3: Using Microsoft Reference Resources .. 7

The Microsoft Developer Network (MSDN) .. 8
Comparing MSDN and MSDN Online .. 8
MSDN Subscriptions ... 10

MSDN Library Subscription ... 11
MSDN Professional Subscription ... 11
MSDN Universal Subscription ... 11
Purchasing an MSDN Subscription .. 12

Using MSDN ... 13

Navigating MSDN .. 14
Quick Tips .. 16

Using MSDN Online .. 17
Navigating MSDN Online .. 19
MSDN Online Features .. 20
MSDN Online Registered Users ... 25

The Windows Programming Reference Series .. 26

Chapter 4: Finding the Developer Resources You Need ... 27

Developer Support .. 27

Online Resources .. 29
Learning Products ... 30
Conferences .. 32
Other Resources .. 33

Chapter 5: Getting the Most out of Win32 library Technologies: Part 5 35

Memory Abuse .. 35

Allocation failures .. : 36
Uninitialized memory ... 36

Avoiding leaks .. 37
Don't use freed resources ... 38
Resource attacks ... 39

vi Contents

Miscalculations ... 39

Division by zero ... 40

Signed versus unsigned variables ... 40

Floating-point variables .. 41

Solution Summary ... 42

Part 2 Introduction ... 43

Commonly Asked Shell Questions ... 43

Shell and Common Controls Versions ; .. 45

DLL Version Numbers .. 45

Using DllGetVersion to Determine the Version Number 46

Using DllGetVersion .. 46

Project Versions ... 48

Chapter 6: Shell Programmer's Guide ... 49

Programming the Shell .. 49

Integrating an Application with the Shell ... 49

The Shell Namespace ... 50

Introduction .. 50

Identifying Namespace Objects .. 51

Getting a Folder's ID ... 54

The SHBrowseForFolder Dialog Box .. 54

Special Folders and CSIDLs ... 54

An Example of How to Use CSIDLs and SHBrowseForFolder 56

Getting Information About the Contents of a Folder 57

Using the IShellFolder Interface ... 57

Enumerating the Contents of a Folder .. 58

Determining Display Names and Other Properties 58

Getting a Pointer to a Subfolder's IShellFolder Interface 59

Determining an Object's Parent Folder .. 59

Navigating the Namespace .. 61

An Example of Namespace Navigation .. 61
Launching Applications ... 63

Using ShellExecute and ShellExecuteEx ... 63

An Example of How to Use ShellExecuteEx ... 64

Managing the File System ... 66

Per-User File Management ... 66

The My Documents and My Pictures Folders .. 67

Connected Files .. 68

Moving, Copying, Renaming, and Deleting Files 68

Contents vii

An Example of Managing Files with SHFileOperation 70
Adding Files to the Shell's List of Recent Documents 72

Managing Printers .. 72
Printer Management ... 72
Printing Files with ShellExecuteEx .. 72

Transferring Shell Objects with Drag-Drop and the Clipboard 73

How Drag-Drop Works with Shell Objects ... 73
Clipboard Data Transfers .. 74

Drag-Drop Data Transfers .. 75
The Shell Data Object .. 76

How Data Objects Work ... 77
How a Source Creates a Data Object.. .. 79
How a Target Handles a Data Object ... 84

Using the Drag-Drop Helper Object.. ... 88
Shell Clipboard Formats .. 89

Formats for Transferring File System Objects ... 90
Formats for Transferring Virtual Objects ... 94
Formats for Communication Between Source and Target.. 94

Handling Shell Data Transfer Scenarios .. 97
General Guidelines ... 98
Copying File Names from the Clipboard to an Application 99

Copying the Contents of a Dropped File into an Application 100
Handling Optimized Move Operations ... 102
Handling Delete-on-Paste Operations .. 104

Transfering Data to and from Virtual Folders .. 105
Dropping Files on the Recycle Bin ... 106
Creating and Importing Scrap Files .. 107
Dragging and Dropping Shell Objects Asynchronously 109

Extending the Shell ... 110

Creating a File Association .. 110
Defining a File Class .. 111
Defining Attributes for a File Class .. 112

Excluding an Application from the Open With Dialog Box 113
Customizing Icons ... 114

Assigning a Custom Icon to a File Class .. 114
Assigning a Custom Icon and Label to a Drive Letter 116

Extending Context Menus .. 116
Context Menus for File System Objects ... 116
Verbs ... 118

viii Contents

Extending the Context Menu for a File Class ... 119
Extending the New Submenu ... 122

Customizing Folders with Desktop.ini... .. 124
Using Desktop.ini Files .. 124
Creating a Desktop.ini File ... 125

Creating an AutoPlay-Enabled CD-ROM Application 128

Creating an AutoPlay-Enabled Application ... 129
Creating an Autorun.infFile ... 129

Tips for Writing AutoPlay Startup Applications 130
Autorun.inf Commands .. 131
Enabling and Disabling AutoP1ay .. 135

Suppressing AutoPlay Programmatically ... 135
Using the Registry to Disable AutoPlay ... 137
AutoPlay for Other Types of Storage Media .. 138

Chapter 7: Shell Interfaces .. 139

Shell Interface Overview ... 139
Shell Interfaces .. 139

IACList .. 139
IACList2 .. 142
IActiveDesktop Interface ... 144
IAsyncOperation .. 160
IAutoComplete ... 165

IAutoComplete2 ... 169
IColumnProvider ... 172
ICommDlgBrowser .. 176

ICommDlgBrowser2 .. 179
IContextMenu .. 182
IContextMenu2 .. 188
IContextMenu3 .. 190
ICopyHook ... 192
ICurrentWorkingDirectory .. 194
IDeskBand ... 196

IDockingWindow ... 198
IDockingWindowFrame .. 201
IDragSourceHelper .. , 205
IDropTargetHelper ... 208
IDockingWindowSite .. 213
IEmptyVolumeCache ... 216

IEmptyVolumeCache2 .. , .. 223

Contents ix

IEmptyVolumeCacheCallBack .. 226
IEnumExtraSearch ... 229
IEnumIDList .. 232
IExtractIcon ... 236
IExtractImage ... 240

IExtractImage2 ... 243
IFileViewer .. 245
IFile ViewerSite .. 248
IInputObject ... 249
IInputObjectSite ... 252
INewShortcutHook .. 253
INotifyReplica ... 258
IObjMgr ... 260

IPersistFolder ... 261
IPersistFolder2 ... 263
IPersistFolder3 ... 264
IProgressDialog .. '" 267
IQueryAssociations .. 277

IQueryInfo ... 284
IReconcilableObject ... 286
IReconcileInitiator ... 291

IRemoteComputer .. 294
IResolveShellLink .. 295
IRunnableTask ... 297

IShellBrowser .. 301
IShellChangeNotify ... 316
IShellDetails ... 319
IShellExecuteHook .. 322
IShellExtInit ... 324

IShellFolder ... 326
IShellFolder2 ... 343
IShellIcon ... 350
IShellIconOverlay .. 352
IShellIconOverlayIdentifier ... 355
IShellLink .. 359
IShellLinkDataList ... 375

IShellPropSheetExt .. 381
IShellView ... 383
IShellView2 ... 395

x Contents

ITaskbarList ... 399
IUnifonnResourceLocator ... 403
IURLSearchHook .. 407

Chapter 8: Shell Functions .. 409

Shell Functions .. 409
Shell Callback Functions ... 481

Chapter 9: Shell Structures ... 485

Shell Structures ... 485

Chapter 10: Shell Enumerations and Macros .. 561

Shell Enumerations ... 561
Shell Macros .. 571

Chapter 11: Shell Lightweight Utility APls ... 575

String Functions .. 575
Path Functions ... 610
Registry Data Types .. 668

Registry Functions .. 670
Color Palette Functions ... 707
Miscellaneous .. 710

Chapter 12: Shell Messages and Notifications .. 721

Shell Messages and Notifications ... 721

Appendix A ... 751

Appendix B ... 759

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer's Reference Library, your comprehensive
reference guide to the Win32 development environment. This library, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming--without sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you-the time-pressed and information-overloaded applications
developer-to find the information you need quickly, efficiently, and intuitively.

In addition to its focus on Win32 reference material, the Win32 Library contains hard­
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN Subscription. Don't have
an MSDN subscription, or don't know why you should? I've included information about
that too, including the differences among the three levels of MSDN subscriptions, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet.

Microsoft is fairly well known for its programming, so doesn't it make sense to share
some of that knowledge? I thought it made sense, so that's why this-the Windows
Programming Reference Series-is the source where you'll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don't get lost in all the information provided in the Win32 Library,
each volume's appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you're looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

2 Volume 5 Microsoft Windows Shell

How the Win32 Library Is Structured
The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided include:

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphics Device Interface)

Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library-and therefore, dividing Win32-into these functional
categories enables a software developer who's focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,OOO-page Win32 tome),
and without having to shuffle among multiple, less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer friendly
manner and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview

Part 2: Reference

Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you're reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN and MSDN Online, including a collection of insider
tips and tricks. Just as each volume's Reference section (Part 2) contains different
reference material, each volume's Part 1 contains different tips and tricks. To ensure that
you don't miss out on some of them, make sure you take a look at Part 1 in each
Win32 Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions as well as instructional and explanatory
material for each programming area.

Chapter 1 Introduction 3

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

How the Win32 Library Is Designed
The Win32 Library, and all libraries in the Windows Programming Reference Series, is
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look-and-feel that is consistent with their electronic counterparts. In
other words, the way that a given function reference appears on the pages of this book
has been designed specifically to emulate the way that MSDN and MSDN Online
present their function reference pages.

The reason for maintaining such integration is simple: make it easy for you-the
developer of Windows applications-to use the tools and get the ongoing information
you need create quality programs. By providing a "common interface" among reference
resources, your familiarity with the Win32 Library reference material can be immediately
applied to MSDN or MSDN Online, and vice versa. In a word, it means consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in­
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and-in the absence of keyboards
and e-mail and upright chairs-get your programming reading and research done. Of
course, each of the Win32 Library books fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

5

CHAPTER 2

What's In This Volume?

Volume 5 of the Microsoft Win32 Developer's Reference Library is all about the Windows
shell. With the programmatic elements and programming techniques detailed in this
volume of the Win32 Library-Volume 5: The Windows she/~you can enhance or
change all sorts of different aspects of the Windows shell.

When programming to the Windows shell, you have to be prepared to deal with
versioning issues that are associated with Windows shell programming. Almost all of the
programmatic elements associated with the shell are contained within three .dll files
(ComctI32.dll, SheIl32.dll, and ShlwapLdll), and with each of these .dll files there are
versioning issues that must be kept in check throughout the development process.
Windows Common Controls share the versioning requirements of the Windows shell, so
when you're programming to either the Windows shell (explained in this volume of the
Win32 Library) or with Common Controls (explained in Volume 4 of the Win32 Library),
you must deal with the versioning requirements.

What are the versioning requirements, you ask? The introduction to Part 2 of this volume
(and Volume 4 of the Win32 Library) discusses these caveats in detail, and arms you
with all the information you need to keep the associated requirements straight. You
should read this explanatory introduction to Part 2 before jumping into the programmatic
use of any of the Windows shell programmatic elements detailed in this volume of the
Win32 Library.

The first chapter-found at the beginning of Part 2---provides guidelines to programming
the Windows shell:

Chapter 6: Shell Programming Guide

After this guideline-centric chapter, you'll find reference chapters that provide you with
the programmatic reference information you need to develop Windows applications that
make use of the Windows shell:

Shell Interfaces

Shell Functions

Shell Structures

Shell Enumerations and Macros

Shell Lightweight Utility APls

Shell Messages and Notifications

6 Volume 5 Microsoft Windows Shell

Programming to the Windows shell has some caveats and versioning requirements that
developers must keep in mind throughout the development process. These versioning
requirements, which are shared with common controls (see Volume 4 in the Win32
Library), are tied to the versions of three key .dll files. You're strongly urged to take a
thorough look at the introduction to Part 2 in this volume, which details the issues that
programmers must deal with when programming to the Windows shell.

CHAPTER 3

Using Microsoft Reference
Resources

These days it isn't the availability of information that's the problem, it's the availability of
information. You read that right.. .but I'll clarify.

Not long ago, getting the information you needed was a challenge because there wasn't
enough of it. To find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn't at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

7

Today, information surrounds us and sometimes stifles us. We're overloaded with too
much information, and if we don't take measures to filter out what we don't need to meet
our goals, soon we become inundated and unable to discern what's "junk information"
and what's information that we need to stay current, and therefore competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft's own reference material as well-not because there is
information that isn't needed, but rather because there is so much information that
finding what you need can be as challenging as figuring out what to do with it once you
have it. Developers need a way to cut through the information that isn't pertinent to them
and to get what they're looking for. One way to ensure you can get to the information
you need is to know the tools you use; carpenters know how to use nail guns, and it
makes them more efficient. Bankers know how to use ten-keys, and it makes them more
adept. If you're a developer of Windows applications, two tools you should know are
MSDN and MSDN Online. The third tool for developers-reference books from the
Windows Programming Reference Series-can help you get the most out of the first two.

Books in the Windows Programming Reference Series, such as those found in the
Microsoft Win32 Developer's Reference Ubrary, provide reference material that focuses
on a given area of Windows programming. MSDN and MSDN Online, in comparison,
contain all of the reference material that all Microsoft programming technologies have
amassed over the past few years, and create one large repository of information.
Regardless of how well such information is organized, there's a lot of it, and if you don't
know your way around, finding what you need (even though it's in there, somewhere)
can be frustrating and time-consuming and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,
other Microsoft reference resources are investigated, and by the end of the chapter,

8 Volume 5 Microsoft Windows Shell

you'll know where to go for the Microsoft reference information you need (and how to
quickly and efficiently get there).

The Microsoft Developer Network (MSDN)
MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don't have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What are the differences among the three levels of MSDN subscriptions?

• What happened to Site Builder Network ... or, What is this Web Library?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren't getting as much out of
MSDN as you could. Or, maybe you're wondering whether you're paying too much for
too little, or not enough to get the resources you need. Regardless, you want to be in the
know, not in the dark.

By the end of this chapter, you will know the answers to all these questions and more,
along with some effective tips and hints on how to make the most effective use of MSDN
and MSDN Online.

Comparing MSDN and MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their differences be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or in some cases, on DVD).

Chapter 3 Using Microsoft Reference Resources 9

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its customers with the best presentation of material possible. These strengths
and medium considerations enable MSDN and MSDN Online to provide developers with
different feature sets, each of which has its advantages.

MSDN is perhaps less immediate than MSDN Online because it gets to its subscribers in
the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on
your hard drive), and isn't subject to Internet speeds or failures. Also, MSDN has a
software download feature that enables subscribers to automatically update their local
MSDN content, over the Internet, as soon as it becomes available, without having to wait
for the update CD to come in the mail. The interface with which MSDN displays its
material-which looks a whole lot like a specialized browser window-is also linked to
the Internet as a browser-like window. To further coordinate MSDN with the immediacy
of the Internet, MSDN Online has a section of the site dedicated to MSDN subscribers
that enables subscription material to be updated (on their local machines) as soon as it's
available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based web sites. MSDN Online also
has a customizable interface (much like MSN.com) that enables visitors to tailor the
information that's presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn't come
with Microsoft product software, and doesn't reside on your local machine.

Since it's easy to become confused about the differences and similarities between
MSDN and MSDN Online, it makes sense to figure out a way to quickly identify how and
where they depart. Figure 3-1 puts the differences-and similarities-between MSDN
and MSDN Online into a quickly identifiable format.

One feature that you will notice is shared between MSDN and MSDN Online is the
interface-they are very similar. That's almost certainly a result of attempting to ensure
that developers' user experience with MSDN is easily associated with the experience on
MSDN Online, and vice versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

10 Volume 5 Microsoft Windows Shell

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what the differences between its subscription levels are, you aren't
alone. This section aims to provide a quick guide to the differences in subscription levels,
and what each subscription level costs.

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional

Chapter 3 Using Microsoft Reference Resources 11

subscription, you get everything provided in the Library subscription, plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription, plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut-and-paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Visual Studio, Office, and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription
The Professional subscription is a superset of the Library subscription. In addition to the
features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of Windows
95, Windows 98, and Windows NT 4 Server and Workstation.

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The Universal subscription is the all-encompassing version of the MSDN subscription. In
addition to everything provided in the Professional subscription, Universal subscribers
get the following:

12 Volume 5 Microsoft Windows Shell

• The latest version of Visual Studio, Enterprise Edition

• The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

• Additional development tools, such as Office Developer, Front Page, and Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all of the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality and features, so too does each
escalate in price. Please note that prices are subject to change.

The MSDN Library Subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional Subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal Subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level there's an in-the-box rebate for $200.

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal-and in most cases, the
deal is much better. Also, if your organization is using lots of Microsoft products, whether
MSDN is a part of that group or not, whomever's in charge of purchasing should look into
Microsoft Open License program. The Open License program gives purchasing breaks
for customers that buy lots of products. Check out www.microsoft.com/licensing for more
details. Who knows, if your organization qualifies, you could end up getting an engraved
pen from your purchasing department, or if you're really lucky maybe even a plaque of
some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions, too.

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For

Chapter 3 Using Microsoft Reference Resources 13

those of you dOing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

Figure 3-2: The MSDN interface.

MSDN Library
April 1999 release

Welcome to the April 1999
release of the MSDN Library, To
begin your exploration of what's
new in this release! click any of
the links on the right.

The MSDN Library is the
essential reference for
developers! with more than a
gigabyte of technical
programming information,
including sample code,
documentation, technical
articles, the Microsoft
Developer Knowledge Base, and
anything els8 you might need
to develop solutions that
implement Microsoft
technology,

Dr. GUt's Espresso Stand
Dr. GUI introduces the April
1999 release of tile MSDN
Librar\l,

What's New on thE Library
Click hEir€! for a
comprehensille hotlinked list
of new content in this release,

MSDM Features
Check out these packages of
articles about our latest
technologies.

MSDM Online
Find out what's new for MSDM
Online members and read
selected columns from our
Web site.

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

14 Volume 5 Microsoft Windows Shell

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains: over 1.1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Basic navigation through MSDN is simple, and a lot like navigating through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics; expand a book by clicking the + box to its left, and its contents are
displayed with its nested books or reference pages, as shown in Figure 3-3. If you don't
see the left pane in your MSDN viewer, go to the View menu and select Navigation Tabs
and they'll appear.

MSDN Librar,!.' . April
EtJ ., Welcome to the MSDN Library
ttl ., Visual Studio 6.0 Documentation
f±l .. Office Developer Documentation
EtJ 6: Windows CE Documentation
B (Q) Platform SDK

rtJ ., What's New?
r±J • BackOffice

(tlI Base 5 ervices
Ltl • Microsoft Clustering Service
(fl .. Debugging and ErrOl Handling
f:E .. DLLs, PlOcesses. and Threads
±I .. Files and 110
EJ (J2I Memory

Qj Memol,Y Management

8 (:Q) About Memol,Y Management
EB .. Virtual Address Space
!£ .. Virtual MemOlY Functions
~ Heap Functions

~ AS,m· ••
\fj .. Vel!) large Memof,Y (VLM)
~ Global and Local Functions
~ Standard C Library Functions

[£ .. Using the Virtual Memory Functions
1£ .. Memory Management Reference

File Mapping

Access Validation Functions

The Win32 API provides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses. The following
access validation functions are available.

address.

IsBadReadPtr

IsBad5trinqPtr Determines whether the calling
process has read access to the
memory pointed to by a null­
terminated string pointer. The
function validates access for a
specified number of characters or
until it encounters the string's
terminating null character.

Figure 3-3: Basic navigation through MSDN.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four navigation tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means

Chapter 3 Using Microsoft Reference Resources 15

that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, thereby enabling you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection

MSDN, Books and Periodicals

MSDN, Content on Disk 2 only

MSDN, Content on Disk 3 only

MSDN, Knowledge Base

MSDN, Office Development

MSDN, Technical Articles and
Backgrounders

Platform SDK, BackOffice

Platform SDK, Base Services

Platform SDK, Component Services

Platform SDK, Data Access Services

Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management Services

Platform SDK, Messaging and
Collaboration Services

Platform SDK, Networking Services

Platform SDK, Security

Platform SDK, Tools and Languages

Platform SDK, User Interface Services

Platform SDK, Web Services

Platform SDK, What's New?

Platform SDK, Win32 API

Repository 2.0 Documentation

Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK and WinCE Docs

Visual C++, Platform SDK, and Enterprise
Docs

Visual FoxPro Documentation

Visual InterDev Documentation

Visual J++ Documentation

Visual SourceSafe Documentation

Visual Studio Product Documentation

As you can see, this filtering option essentially mirrors the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK's Security, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subsets
menu item. You're presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

16 Volume 5 Microsoft Windows Shell

2. Add your selected information to the subset you're creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As
dialog box. Note that defined subsets (including any you create) are arranged in
alphabetical order.

Figure 3-4: The Define Subsets window.

Management Services
Networking Services
Security

You can also delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets, and filters the information available in the four navigation tabs just like the pre­
defined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Chapter 3 Using Microsoft Reference Resources 17

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure. This
is easy to fix: simply click the Locate button in the navigation toolbar, and all will be
synchronized.

Use the Back button just like a browser. The Back button in the Navigation toolbar
functions just like a browser's Back button; if you need information on a reference page

you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get our work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, I
think). Underscores come before letters in alphabetical order, so if you use an
underscore on all of your defined subsets, you get them placed at the front of the Active
Subset listing of available subsets. Also, by using an underscore, you can immediately
see which subsets you've defined, and which ones come with MSDN---it saves a few
seconds at most, but those seconds can add up.

Using MSDN Online
MSDN Online shares a lot of similarities with MSDN, and that probably isn't by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right...and it should be; it's a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used Microsoft's home page before (www.msn.comorhome.microsoft.com).
you're familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news, local weather,
stock quotes, and other collections of information or news that suit your tastes or
interests. You can even insert a few Web links, and have them readily accessible when
you visit the site. The MSDN Online home page can be customized in a similar way, but
its collection of headlines, information, and news sources are all about development.
The information you choose specifies the information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of

18 Volume 5 Microsoft Windows Shell

the page, or you can go there directly by pointing your browser to
msdn.microsoft.comlmsdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from. If you're
interested in Web development, you can choose the Option button near the top of the
Technologies section for Web Development, and a pre-defined subset of Web-centric
technologies is selected. For more Win32-centric technologies, you can go through and
choose the appropriate technologies. If you want to choose all the technologies in a
given technology group, check the Include All box in the technology's shaded title area.

Select or clear the
check bo};es above to
turn the categories on
or off, To change the
order in which the
categories appear on
the home page, click a
category name, and
then click the up or

do n arro: to the

right

customize ___ Roaming

Customize the information that appears on your MSDN Online home page, Select your preferences
from the sections below, then return here and choose Save, (Yes, we know it's a lot of choices,
There's a lot of information on this site,) You can update your choices at any time by visiting this
Customize page,

4,·;;;;'11.161*
You can cu.tomize the headline. you .ee on the MSDN Online home page by selecting from the list of
technologies below, or you can choose a template we've preselected iust for Web developers, Either
way J your selections will customize what you see under Developer News J Libraries, and Support.

('\ Web Development (0) None (clears all)
We'll soon offer more preselected technology templates for other developer specialties; write us and
let us know what you'd prefer,

If you select Allow Duplicate Headlines below, your home page will show multiple instances of some
headlines, each tagged for a different technology:

r: Allow Duplicate Headlines

Figure 3-5: The MSDN Online configuration page.

You can also choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:

Developer News

Categories

Libraries

Search

Member Community

Events & Training

Support

Personal Links

Chapter 3 Using Microsoft Reference Resources 19

Once you've defined your profile-that is, customized the MSDN Online content you want
to see-MSDN Online shows you the most recent information pertinent to your profile
when you go to MSDN Online's home page, with the categories you've chosen included in
the order you specify. Note that clearing a given category-such as Libraries-clears that
category from the body of your MSDN Online home page (and excludes headlines for that
category), but does not remove that category from the MSDN Online site navigation bar. In
other words, if you clear the category it won't be part of your customized MSDN Online
page's headlines, but it'll still be available as a site feature.

Finally, if you want your profile to be available to you regardless of which computer you're
using, you can direct MSDN Online to create a roaming profile. Creating a roaming profile
for MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of creating a roaming profile is
available when you customize your MSDN Online home page (and can be done any time
thereafter). The creation of a roaming profile, however, requires that you become a
registered member of MSDN Online. More information about becoming a registered MSDN
Online user is provided in the section titled MSDN Online Registered Users.

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the headlines you're
most interested in seeing, navigating through MSDN Online is really easy. A banner that
sits just below the MSDN Online logo functions as a navigation bar with drop-down
menus that can take you to the available areas on MSDN Online, as Figure 3-6
illustrates.

The list of available menu categories-which group the available sites and features
within MSDN Online-includes:

Home

Voices

Libraries

Community

Downloads

Site Guide

Search MSDN

20 Volume 5 Microsoft Windows Shell

The Navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

Photo Credits: PhotoDisc

online resource for developers. Here's some information to guide you through the site:

a chronological list all the latest information posted to the MSDN Online site,

Site Map can give you the view from above,

• See About MSDN to learn about the MSDN s:ubs:cription program, the MSDN ISV program,
newsletter, and more.
decode the latest term or acronym that has you stumped,

us how we can make the site easier to use and what kinds of information you'd like to see

Did you find this materiel useful? Gripes? Compliments? Suggestions for other articles? Write us.'

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

Figure 3-6: The MSDN Online Navigation bar with its drop-down menus.

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
headlines for technologies that you've indicated you're interested in reading about.

Voices is a collection of columns and articles that comprise MSDN Online's magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

More or Has'S •
Stone's: Way ~' ;

Ser ... in' It Up •.

Code Corner.
Geek Speak;-

Office Talk.
Deep C++.

Ask Jane +

Dr. GUI.

I:iiJ Voices Archive

Chapter 3 Using Microsoft Reference Resources 21

, .. ' ."':

New from MSON Online
cohunnisb and feature \~lriter5

Parsing and Sharing
XML is all about sharing. Columnist Charlie Heinemann talks about the Microsoft XML
parser, and how XML can make your data available.

Incorporating Digital Media Acquisition into Site Design
Nadja Vol Ochs details how to implement digital rights management on Web sites.

Handling EMceptions in C and C++, Part 3
In his third installment on exception handling, columnist Robert Schmidt addresses
the syntax and semantics of Standard c++ exception handling,

by Charlie
Heinemann

by Nadj.
Vol Ods:

Figure 3-7: The Voices home page.

There are a bunch of different ''voices'' in the Voices site, each of which adds its own
particular twist on the issues that face developers. Both application and Web developers
can get their fill of magazine-like articles from the sizable list of different articles available
(and frequently refreshed) in the Voices site.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can navigate in traditional MSDN fashion, and
gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to navigate the Web Workshop in a slightly different way, starting with a
bulleted list of start points, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.com/workshop.

22 Volume 5 Microsoft Windows Shell

ESSENTIALS.

Component Development.

Content & Component Delivery.

Data Access & Datab.3ses ..

Design.

DHTML, HTML 8< CSS •

Languages 8t Development Tools ..

Messaging Se Collaboration.

Networking, Protocols ..
& Data Formats

Reusing Bro ser Technology.

Security & Cryptography.

Server Technologies ..

Streaming & Interactive Media ..

Web Content Management.

XML (Extensible Markup Language) ..

II~

ESSENTIALS

This section contains core
information and references~
including information on
authoring for different
browsers and platforms, end­
to-end examples of working
Web sites, slides from
conferences, specs, and
comprehensive links to
references and standards.

Welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies:~ including
reference material and in­
depth articles on all aspects
of Web site design and
development. Choose the
categories on the left to
navigate via content listings.
Us. the index to look up
keywords, and the search
page for specific Queries.
Check our What's New page
for updates.

The MSDN Online team

© 1999 Microsoft Corporation. All rights reserlJed. Terms of use.

Figure 3-8: The Web Workshop home page, with its bulleted list of navigation start
points.

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/community. Figure 3-9 provides a look at
the Community home page.

Chapter 3 Using Microsoft Reference Resources 23

The Site Guide is just what its name suggests; a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. com/siteguide.

J.2io. •
Your Membership.

OSIGs.

Member Gazette.

Case Studies.

Downlo-eds.

Members Helping.
Members

Offers.

Training.

MSDN Stores.

Welcome to the MSDN Online Member Community
Updated June 4,1999

With an MSDN Online membership, developers can easily access technical
information, tools, and a community of developers ready to help solve the
toughest challenges. Join now and take advantage of member benefits.

Online Special-Interest Groups

Access the information you need J when you need itJ with Online Special-Interest
Groups (OSIGs). Web-based access to relevant newsgroupsJ sorted by productJ

make it easy for you to get information you need to do your job. Take advantage
of .pecial offers, find u.eful links, and stay up to date with the latest product and
technology new •.

Members Helping Members

Members Helping Member. (MHM) is a networking and support tool that helps
developers get connected J solve problems J and gain recognition within the
developer community. Get answers quickly by searching the MHM datab.s. for
people who can answer your technical question •. Or, register a •• volunteer and
help other developers when they need it. Sign up now!

MSDN Online Certified Membership

Figure 3-9: The Community home page.

li"N

"'SDN Subacriptlon

Office Developer

SQLserver

~II-

~c++

VlWalFox_

24 Volume 5 Microsoft Windows Shell

The Downloads site is where developers can find all sorts of items that can be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-10.

Tools: •

Samples.

Images.

Sounds +

Subscriber •
Downloads

Welcome to the MSDN Online Downloads Area

Tools
Want to tryout some great new products? Check out our tools areal where MSDN Online members and
guests can download over 40 trial~ beta and full versions of the latest developer products.

Samples
In this sections you will find a great variety of samples VIIhich demonstrate ways to use the latest and
greatest Microsoft technologies to make your appli~tion5 the best they can be. All samples have code
that can be downloaded j most can be browsed online) and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with ~ are for users registered with Visual Studio only -- to Qet access to these j

register your product today.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and underst~md
end-to-end application architecture and design.

Images
Download Web-ready images for free from our Images Downloads I!Irea. Currently, we have a great
collection created by Little Men's Studio! Inc. Little Men's Studio provides original clip art collections)
icons, and free quotes on affordable custom graphics. Our image categories include rules, clip art,
buttons, bullets, photographs! and more. We will be updating this collection with more images so be
sure to check back frequently.

Figure 3-10: The Downloads home page.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), in addition to other search capabilities. The Search MSDN home page can
be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-11.

Chapter 3 Using Microsoft Reference Resources 25

1. Enter your search word(s) or phrase, or select a saved phrase from the drop-down list:

! Enterphrase Isaved searchphras~slil 11m.
2. Select your search criteria:

!exactphrase lil

J. Specify your search scope:

C>:, All sections of MSDN library

r Selected sections of M5DN library

I'? Visual Studio Documentation

P' Visual Basic Documentation

P: Visual c++ Documentation

P; Visual Fox Pro Documentation

P; Visual InterDev Documentation

P: Visual J++ Documentation

Fl Visual Source Safe Documentation

r;t Tools 8< Technologies (including Win eE)

Figure 3-11: The Search home page.

MSDN Online Registered Users

r;t Other SDK Documentation

r;t DDK Documentation

P: Windows Resource Kits

r;t Specifications

r;t Technical Articles

r;t Background.rs

r;t Books and Partial Books

Search Tips:
Quick

Advanced

You may have noticed that some features of MSDN Online-such as the capability to
create a roaming profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more than a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an Online Special Interest Group
(OSIG) requires registration. That feature alone is incentive enough to register; rather
than attempting to call your developer buddy for an answer to a question (only to find out
that she's on vacation for two days, and your deadline is in a few hours), you can go to
MSDN Online's Community site and ferret through your OSIG to find the answer in a
handful of clicks. Who knows; maybe your developer buddy will begin calling you with
questions-you don't have to tell her where you're getting all your answers.

26 Volume 5 Microsoft Windows Shell

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox-if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs-again, only if
you want to. It's easy for me to suggest that you become a registered user for MSDN
Online-I'm a registered user, and it's a great resource.

The Windows Programming Reference Series
The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling developers to get their work done as
efficiently as possible. In addition to providing reference material for Microsoft
technologies, each Library in the Windows Programming Reference Series also includes
material that helps developers get the most out of its technologies, and provides insights
that might otherwise be difficult to find.

The Windows Programming Reference Series is currently planned to include the
following libraries:

Win32 Library

Active Directory Services Library

Networking Services Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
Windows Programming Reference Series Libraries that cover the following material:

Web Technologies Library

Web Reference Library

COM/DCOM 2.0 Library

What else might you find in the future? Topics such as a Security, Languages and MFC,
BackOffice, and other pertinent topiCS that developers using Microsoft products need in
order to get the most out of their development efforts, are prime subjects for future
libraries in the Windows Programming Reference Series. If you have feedback you want
to provide on such libraries, or on the Windows Programming Reference Series in
general, you can send mail to the following address: winprs@microsoft.com.

If you're sending mail about a particular Library, make sure you put the name of the
library in the subject line. For example, an e-mail about the Win32 Library would have a
subject line that reads "Win32 Library." There aren't any guarantees that you'll get a
reply, but I'll read all of the mail and do what I can to ensure your comments, concerns,
or (especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

27

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a lot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.comlsupportlcustomerldevelop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft's support services.

28 Volume 5 Microsoft Windows Shell

Microsoft offers a wide variet'1' of support for Developers, The Microsoft
Developer Network (MSDI'I) is packed with news, resources and technical

r=~~~~-=I ~:: ... ~~~~~~~a~~~ ~~~:~~a~I~:~rs~:~c~o~:r~'n~i~~~~;peoe~s~r;h~~: ~:~~nnt:9pef~~
our regular e-mail news watch.

ttl Business Solutions Microsoft offers de ... elopers with Premier Support for Developer, Pav-per-
ff.J Parblers 8t Resellers Incident Support, Priority Annual Support and special consulting services, If

Developers you need more than occasional delo'eloper support, one of these options is
Home User sure to be right for you,

Education

Do you need help now?

Go to the Microsoft De'Jeioper Network (MSDN) Support Ser ... keDesk,

Support Options

Premier SUPPOtt for Developers
Priority Annual Support
Pa'rPer-Incident support
Con:su[t Line

For additional information,. read the Premier Support for
Developers data sheet. (pre_dev.doc, 641<)

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out
more information about Microsoft's Premier Support, get in contact with them at
1-800-936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages of
Priority Annual Support offered by Microsoft:

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

Chapter 4 Finding the Developer Resources You Need 29

As a developer, the best support option for you is the Priority Developer Support. To
get more information about Priority Developer Support, you can reach Microsoft at
1-800-936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there's
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can't be broken down into sub-issues or sub-problems (that
is, it can't be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support. microsoft. comlsupport/webresponse. asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, go to msdn.microsoft.comicommunity.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupport/search.

Microsoft provides a number of news groups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.comlsupport/news.

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer's Reference Ubrary, and they are the following:

microsoft. public. win32.programmer. *

microsoft.public. vc. *

microsoft. public. vb. *

microsoft.public.platformsdk. *

microsoft.public.cert. *

microsoft. public. certification. *

30 Volume 5 Microsoft Windows Shell

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Use net has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products
Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topiCS.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as
Visual C++, Visual FoxPro, or Visual Basic), for a particular opera.ting system, or for a
particular product (such as Sal Server or Commerce Server) is to go through and read
the preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do-there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don't have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually
didn't know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are "tracks"
that candidates generally choose and that point their certification in a given direction,

Chapter 4 Finding the Developer Resources You Need 31

such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0
(70-016)

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft SOL Server 7.0 and
Microsoft Decision Support Services 1.0

• Developing Applications with C++ USing the Microsoft Foundation Class Library 4.0
Library

• Implementing OLE in Microsoft Foundation Class Library 4.0 Applications

• Implementing a Database Design on Microsoft SOL Server 6.5

• Designing and Implementing Databases with Microsoft SOL Server 7.0

• Designing and Implementing Web Sites with Microsoft FrontPage 98

• Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

• Microsoft Access for Windows 95 and the Microsoft Access Developer's Toolkit

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications

32 Volume 5 Microsoft Windows Shell

• Designing and Implementing Database Applications with Microsoft Access 2000

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

• Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

• Developing Applications with Microsoft Visual Basic 5.0

• DeSigning and Implementing Distributed Applications with Microsoft Visual Basic 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn't that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you-regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams-and don't be fooled by believing that if the book is bigger it must be better,
because that certainly isn't always the case-and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.comltrain_cert/dev.

Conferences
As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year-occurring throughout the country and around the
world-on various topiCS. There are probably more conferences available than any
human being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site

Chapter 4 Finding the Developer Resources You Need 33

for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events. microsoft. com.

Other Resources
There are other resources available for developers of Windows applications, some of
which might be mainstays for one developer and unheard of for another. The listing of
developer resources in this chapter has been geared toward getting you more than
started with finding the developer resources you need: it's geared toward getting you
100 percent of the way, but there are always exceptions.

Perhaps you're just getting started, and you want to get more hands-on instruction than
MSON Online or MeSO preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with
others, let me know about it by sending me e-mail at the following address, and-who
knows?-maybe someone else will benefit from your knowledge: winprs@microsoft.com

If you're sending e-mail about a particularly useful resource, type "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of
the e-mail and do what I can to ensure your resource idea gets considered.

CHAPTER 5

Getting the Most out of Win32
Library Technologies: Part 5

35

This chapter is the last of the five-part collection of common programming errors,
included in the Microsoft Win32 Developer's Reference Library to help you avoid these
simple programming pitfalls. This collection of common programming errors is distributed
in each Win32 Library volume's Chapter 5 in the following fashion:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers

Volume 4: Buffer Overflows and Miscellaneous Errors

Volume 5: Memory Abuse and Miscalculations

As you'll notice, not all of these pitfalls are necessarily confined to Win32 programming
(some are networking services based, for example). However, since these common
coding errors must be avoided in any Windows application, they're provided here in their
entirety to round out the benefits of owning the Win32 Library.

This, of course, is Volume 5, and the errors and examples found in this chapter provide
insights that can help you avoid problems with memory abuse and miscalculations in
your programming projects. So, without further ado, here they are!

Memory Abuse
Memory abuse is an ailment that can plague any development project and can cause all
sorts of unpleasant problems. Most problems associated with memory abuse can be
avoided with a little care and understanding of the following basic rules:

• Always check for allocation failure.

• Always initialize data.

• Release (free/delete) any allocation once it's no longer needed.

• After memory is released, don't access it again! (Suggestion: Set the pOinter to NULL
upon freeing the memory.)

• Have quotas for how much a client can allocate (and ensure that client-specific data is
protected).

36 Volume 5 Microsoft Windows Shell

Allocation failures
The most basic occurrence of allocation failures is the general allocation failure class.
Throughout many programming projects, there are numerous cases where an allocation
is not checked for failure before it's written to or read from. Don't fall victim to this
common error; always check for allocation failure.

Remarks
The programmer who wrote this code is in trouble for two reasons. First, allocations
sometimes fail, and code should behave gracefully when they do. The second problem
is far subtler: On Windows NT and Windows 2000 it is possible to map a page at
address OxO; get two of these in a row and you have a fairly serious collision. Worse still
is a kernel-mode caller that does this (as the example above implies), since the data can
no longer be trusted.

Uninitialized memory
Another common memory abuse error is reading or returning un initialized memory.
While the problems associated with un initialized memory are less obvious, the side
effects of reading or returning uninitialized memory can be difficult to track because they
can manifest themselves in seemingly random behavior. Non-static function variables
are not initialized by default. Use of uninitialized values can result in random behavior,
including exceptions and spurious failures. Good compilers might catch some of these
problems, but not all. Furthermore, if uninitialized memory is returned to an external
caller, it might contain sensitive application data. Somebody attacking your application or
your system could analyze and use this data, especially from a kernel-mode allocation.

Example
}.

Chapter 5 Getting the Most out of Win32 Library Technologies: Part 5 37

Remarks
If we get a yellow widget, what status is returned? We can't get a yellow widget because
no code calls this function with a yellow widget. That might be true today, but not
tomorrow. Why allow a bug to appear in the future? This is a good argument for a
"default" in all switch statements to handle unexpected situations.

Avoiding leaks
Memory leaks are common occurrences in any code that makes allocations. As a
general rule, make sure that allocated buffers that are not returned are freed when they
are no longer needed. Specifically, be sure that all appropriate memory is released when
you have common cleanup code for a number of paths.

(continued)

38 Volume 5 Microsoft Windows Shell

(continued)

Remarks
In this code sample, it's obvious that p leaks. Because p is freed in the success path, it
should be freed in appropriate failure paths as well.

Don't use freed resources
Once memory is freed, it shouldn't be accessed again. This is an obvious rule, but this
common programming error occurs all the time. This avoidance of using freed resources
includes memory, resources, and objects controlled by reference counts. A common way
that freed resources are accessed is when an attempt is made to release them a second
time; a common way to prevent such problems is to set pointers to NULL upon release.

Example

BOOL
Func(VOIO)
{" .

Remarks

Chapter 5 Getting the Most out of Win32 Library Technologies: Part 5 39

This example is a case in which rearranging code from the start would have prevented
the bug. Func should perform the allocation because Func releases it.

Resource attacks
While the other cases in this section are simple coding mistakes, protecting an
application or service against a resource attack is a more complicated process. In
general, a user should not be allowed to cause an application or a service to become
inaccessible (a pretty obvious statement). To prevent denial-of-service attacks, it is
important to set limits or quotas for any given application or service resource.
Furthermore, to ensure data integrity and privacy, client-specific data should be private
to each given client, and if the data must be global, it should be protected.

Miscalculations
Any time a calculation is made, the chance for errors crops up. Some of these
calculation errors are obvious, some are a bit more involved. By being aware of the
problems to look for, you're armed with most of what you need to know to prevent the
errors. Specifically, be aware of the following:

• Be sure to check for zero for any division.

• Any signed value can be negative. Furthermore, be wary of the following:

• Watch for implicit signed values. The values int and enum are Signed. The value
char is signed on Intel-based platforms (x86), but not on Alpha.

• Use unsigned values where Signed values don't make sense. Counts and lengths
shouldn't be negative.

• For range checks, check both upper and lower bounds (or specify unsigned).

• Floating-point operations: All floating-point operations should be surrounded by try­
except protection.

40 Volume 5 Microsoft Windows Shell

Division by zero
Division by zero is one of the most common math-based exceptions. Whenever you're
doing any division, make sure to check the divisor, even if the caller is supposed to be a
trusted source. On algorithms that require division with either user-supplied variables or
derivatives of user-supplied variables, take care not to allow a division by zero.

Remarks
Evaluate for x == 1.

Signed versus unsigned variables
A common blind spot when looking for programming errors is with negative numbers,
especially when the type is implicitly signed (such as int, enum, and char). In general,
check both upper and lower limits of the valid range. Furthermore, when negative values
don't make sense (such as lengths and counts), use unsigned types. In most cases,
unsigned variables make more sense. However, even unsigned variables must be used
properly, as shown in the following example:

Example

Chapter 5 Getting the Most out of Wln32 Library Technologies: Part 5 41

Remarks
Members of an enumerated type are signed. Passing Ox80000000 to this function will
probably cause an exception.

Floating-point variables
The basis of a floating-point variable problem is the fact that not all bit patterns are valid
floating-point values. The IEEE floating-point definition specifies some special floating­
point values, among them signaling values; these values cause exceptions to be raised
when used. Although most cases will succeed, a malicious caller could cause an
exception. To avoid such a situation, surround all floating-point calculations with
exception handlers. A case to be particularly concerned with is using floating-point
variables in kernel mode on Alpha computers.

Remarks
This example is simple enough, except that there are values defined as "signaling" in the
IEEE floating-point specification that cause exceptions to be raised whenever they are
encountered or created.

42 Volume 5 Microsoft Windows Shell

Solution Summary
It's nice to have a concise version of the solutions to these common programming
problems, so this section summarizes how to avoid the issues discussed in this chapter.

Memory Abuse
1. Allocation failures: Always check for allocation failure

2. Uninitialized memory: Always initialize data.

3. Avoiding leaks: Release (free/delete) any allocation after it's no longer needed.

4. Don't use freed resources: After memory is released, don't access it again!
(Suggestion: Set the pOinter to NULL upon freeing the memory.)

5. Resource attacks: Have quotas for how much a client can allocate (and ensure that
client-specific data is protected).

Miscalculations
1. Division by zero: Be sure to check for zero for any division.

2. Signed versus unsigned variables: Any Signed value can be negative. Furthermore,
be wary of the following:

• Implicit signed values. The values int and enum are signed; char is signed on x86,
but not on Alpha.

• Use unsigned values where signed values don't make sense. Counts and lengths
are not negative.

• For ranges, check both upper and lower bounds (or specify unsigned)

3. Floating-point variables: All floating-point operations should be surrounded by try­
except protection.

43

PAR T 2

Introduction

There are a handful of questions and versioning issues that, once addressed, can make
your Shell programming experience a little easier. This introduction provides answers to
questions that are commonly asked about the Windows Shell, and provides you with
easy to find Common Control and Shell version information.

Commonly Asked Shell Questions
This section provides answers to commonly asked questions about the Windows Shell.
For more information about any of these answers, read through the rest of this book's
Part 2, and get the insights into Windows shell programming you need.

What is the shell names pace? What is a namespace object?

The shell namespace organizes the file system and other objects managed by the
shell into a single tree-structured hierarchy. Conceptually, it is essentially a larger and
more inclusive version of the file system. Name space objects include file system
folders and files, along with "virtual" objects, such as the Recycle Bin and Printers
folders.

Is there a dialog box that I can display to let the user choose a folder?

The SHBrowseForFolder function displays a dialog box that allows a user to select
a directory, and returns its PIDL.

What is a PIDl? Why not just use file system paths?

A PIDL is a way of identifying any namespace object. You can also use paths to
identify namespace objects, but only if they are part of the file system. With
namespace objects that are not part of the file system, you must use PIDLs.

How do I get the PIDl of a namespace object?

There are a variety of ways to get an object's PIDL. Some common approaches are:

• Use the desktop's ISheIiFolder::ParseDisplayName method to convert a file
system path into an equivalent PIDL. This method will also convert the GUID that
identifies a virtual folder into a PIDL.

• Display a dialog box that allows the user to select a folder, and returns its PIDL.

• Use the folder's CSIDl to get its PIDL. Special folders, such as Program Files or
Printers are aSSigned a token called a CSIDL. You can use a special folder's
CSIDL to obtain its PIDL. If a special folder is in the file system, you can also use
its CSIDL to obtain its path.

• Navigate the namespace until you locate the object.

44 Volume 5 Microsoft Windows Shell

How do I use SHGetFolderPath on systems prior to Windows 2000?

It is available as a redistributable DLL, ShFolder.dll.

How do I convert a PIDL back into a file path?

With the shell API's SHGetPathFromlDList function.

What is the difference between relative and fully-qualified PIDLs?

It is much like the difference between a relative and fully-qualified file path. Like a
file path, a PIDL defines a path through the namespace, with one element for each
portion of the path. Fully-qualified PIDLS start from the root of the namespace, the
desktop. Relative PIDLS start from some other point in the namespace. Some shell
functions expect fully-qualified PIDLs, and others expect relative PIDLs, so it is
important to understand which is required.

How do I get a file's icon. How do I get a file's friendly name for a file?

The Shell API provides a function for this purpose: SHGetFilelnfo.

Is there a way to customize how objects are displayed in Windows Explorer?

There are two ways to customize Windows Explorer:

• Create a Desktop.ini file for a folder.

• Create a custom folder.htt file.

How can I use drag-drop or the clipboard to transfer namespace objects such as
files or folders?

There are a number of shell-specific clipboard formats that you can use to transfer
shell objects.

What is a file association? What is a file class? How do I create one? What are
they good for?

The terms file association and file class mean essentially the same thing. A file
association or file class consists of all the files that have the same filename extension.
File classes are created with the registry. Once a file class has been created, you can
customize the behavior of its files. For instance, you can replace the standard file icon
with a custom icon or add items to the context menu.

How can I get AutoPlay to launch my CD-ROM application?

By creating an AutoRun.inf file on the CD-ROM.

What exactly is the My Documents folder and how do I use it?

It provides a default location for the current user's document files. It automatically
maps to the location in the file system where the current user's document files are
stored. You use it much like a normal file system folder.

Part 2 Introduction 45

Shell and Common Controls Versions
This section describes how to determine which version of the Shell or Common Controls
DLLs your application is running on and how to target your application for a specific
version.

DLL Version Numbers
All but a handful of the programming elements discussed in the shell and common
controls documentation are contained in three DLLs: ComctI32.dll, SheIl32.dll, and
ShlwapLdl1. Because of ongoing enhancements, different versions of these DLLs
implement different features. Throughout this document, programming elements are
marked with a version number. This version number indicates that the programming
element was first implemented in that version and will also be found in all subsequent
versions of the DLL. If no version number is specified, the programming element is
implemented in all versions. The following table outlines the different DLL versions,
and how they were distributed:

Version DLL Distribution platform

4.00 All Microsoft Windows 95/windows NT 4.0.

4.70 All Microsoft Internet Explorer 3.x.

4.71 All Microsoft Internet Explorer 4.0 (see Note 2).

4.72 All Microsoft Internet Explorer 4.01 and Windows 98
(see Note 2).

5.00 ShlwapLdll Microsoft Internet Explorer 5 (see Note 3).

5.00 Shell32.dll Microsoft Windows 2000. (see Note 3).

5.80 Comctl32.dll Microsoft Internet Explorer 5 (see Note 3).

5.81 Comctl32.dll Microsoft Windows 2000(see Note 3).

Note The 4.00 versions of Shell32.dll and Comctl32.dll are found on the original
versions of Windows 95 and Windows NT 4. New versions of Commctl.dll were shipped
with all Internet Explorer releases. ShlwapLdll first shipped with Internet Explorer 4.0, so
its first version number is 4.71. The shell was not updated with the Internet Explorer 3.0
release, so Shell32.dll does not have a version 4.70. While Shell32.dll versions 4.71 and
4.72 were shipped with the corresponding Internet Explorer releases, they were not
necessarily installed (see Note 2). For subsequent releases, the version numbers for the
three DLLs are not identical. In general, you should assume that all three DLLs may
have different version numbers, and test each one separately.

Note All systems with Internet Explorer 4.0 or 4.01 will have the associated version of
Comctl32.dll and ShlwapLdll (4.71 or 4.72, respectively). However, for systems prior to
Windows 98, Internet Explorer 4.0 and 4.01 can be installed with or without the
integrated shell. If they are installed with the integrated shell, the associated version of
Shell32.dll will be installed. If they are installed without the integrated shell, Shell32.dll is

46 Volume 5 Microsoft Windows Shell

not updated. In other words, the presence of version 4.71 or 4.72 of Comctl32.dll or
ShlwapLdll on a system does not guarantee that Shell32.dll has the same version
number. All Windows 98 systems have version 4.72 of Shell32.dll.

Note Version 5.80 of Comctl32.dll and version 5.0 of ShlwapLdll are distributed with
Internet Explorer 5. They will be found on all systems on which Internet Explorer 5 is
installed, except Windows 2000. Internet Explorer 5 does not update the shell, so
version 5.0 of Shell32.dll will not be found on Windows NT, Windows 95, or Windows 98
systems. Version 5.0 of Shell32.dll will be distributed with Windows 2000, along with
version 5.0 of ShlwapLdll, and version 5.81 of Comctl32.dll.

Using DIIGetVersion to Determine the Version Number
Starting with version 4.71, the Shell and Common Controls DLLs, among others, began
exporting DIIGetVersion. This function can be called by an application to determine
which DLL version is present on the system. It returns a structure that contains version
information.

Note DLLs do not necessarily export DIIGetVersion. Always test for it before
attempting to use it.

For systems earlier than Windows 2000, DIIGetVersion returns a DLLVERSIONINFO
structure that contains the major and minor version numbers, the build number, and a
platform ID. For Windows 2000 and later systems, DIIGetVersion may instead return a
DLLVERSIONINF02 structure. This structure contains the QFE number that identifies
the service pack and provides a more robust way to compare version numbers than
DLLVERSIONINFO. Since the first member of DLLVERSIONINF02 is a
DLLVERSIONINFO structure, the new structure is backward-compatible.

Using DIIGetVersion
The following sample function loads a specified DLL and attempts to call its
DIIGetVersion function. If successful, it uses a macro to pack the major and minor
version numbers from the DLLVERSIONINFO structure into a DWORD that is returned
to the calling application. If the DLL does not export DIIGetVersion, the function returns
zero. With Window 2000 and later systems, you can modify the function to handle the
possibility that DIIGetVersion returns a DLLVERSIONINF02 structure. If so, use the
information contained in the uliVersion member to compare versions, build numbers,
and service pack releases. The MAKEDLLVERULL macro is designed to simplify the
task of comparing these values to those contained in uliVersion.

itdefine .PACKV t~SI 0.,* (~ajo'rini1n()r) MAl{ELQtt~(1lJ1 nor,llJajorj .. '

HINSTANCE hinstDll;
DWORD dwVersion = 0:

Part 2 Introduction 47

The following code fragment illustrates how you can use GetDllVersion to test if
Comctl32.dll is version 4.71 or later.

48 Volume 5 Microsoft Windows Shell

Project Versions
To ensure that your application is compatible with different targeted versions of
Comctl32.dll and SheIl32.dll, a version macro was added to the header files. This macro
is used to define, exclude, or redefine certain definitions for different versions of the DLL.
The macro name is _WIN32_IE and you, the developer, are responsible for defining the
macro as a hexadecimal number. This version number defines the target version of the
application that is using the DLL. The following are the currently available version
numbers and the effect each has on your application.

Version Description

Ox0200

Ox0300

Ox0400

Ox0401

Ox0500

Ox0501

The application will be compatible with Comctl32.dll and Shell32.dll
version 4.00 and later. The application will not be able to implement
features that were added after version 4.00 of Comctl32.dll.

The application will be compatible with Comctl32.dll and Shell32.dll
version 4.70 and later. The application will not be able to implement
features that were added after version 4.70 of Comctl32.dll.

The application will be compatible with Comctl32.dll and Shell32.dll
version 4.71 and later. The application will not be able to implement
features that were added after version 4.71 of Comctl32.dll.

The application will be compatible with Comctl32.dll and Shell32.dll
version 4.72 and later. The application will not be able to implement
features that were added after version 4.72 of Comctl32.dll.

The application will be compatible with Comctl32.dll version 5.80 and
later, and Shell32.dll and ShlwapLdll version 5.0 and later. The application
will not be able to implement features that were added after version 5.80
of Comctl32.dll or version 5.0 of Shell32.dll and ShlwapLdl1.

The application will be compatible with Comctl32.dll version 5.81 and later
and Shell32.dll and ShlwapLdll version 5.0 and later. The application will
not be able to implement features that were added after version 5.81 of
Comctl32.dll or version 5.0 of Shell32.dll and ShlwapLdl1.

If you do not define this macro in your project, it will automatically be defined as Ox0500.
To define a different value, you can add the following to the compiler directives in your
make file (substitute the desired version number for Ox0400):

,;,;""

Another method is to add a line similar to the following in your source code before
including the shell and common control header files (substitute the desired version
number for Ox0400). For example:

~~;rr:e~!~~~:~~:~;400; 'j,

49

CHAPTER 6

Shell Programmer's Guide

The Microsoft Windows user interface (UI) gives users access to a wide variety of
objects necessary for running applications and managing the operating system. The
most numerous and familiar of these objects are the folders and files that reside on
computer disk drives. There are also a number of virtual objects that allow the user to do
tasks, such as send files to remote printers or access the recycle bin.

The shell organizes these objects into a hierarchical structure called the namespace,
which provides users and applications with a consistent and efficient way to access and
manage objects. Users interact with the namespace through the shell's graphical UI or
through an application. Applications interact with the namespace through the shell's
application programming interface (API). This chapter is an introduction to the shell API.

The shell API consists of a collection of functions, Component Object Model (COM)
interfaces, and COM objects that provide applications with a rich set of tools to access
and manage the namespace. It can used anywhere in an application with one important
exception. Like all COM-based services, the shell API should not be used within a DLL's
DIiMain entry point function. Doing so may cause unpredictable behavior.

To use the shell API effectively in an application, you first need to understand the
structure of the namespace and how namespace objects are identified.

Programming the Shell
The Shell API allows applications to perform a variety of tasks. Some of the more
common ones are discussed in the following sections:

Getting a Folder's ID

Getting Information About the Contents of a Folder

Navigating the Namespace

Launching Applications

Managing the File System

Managing Printers

Transferring Shell Objects with Drag-Drop and the Clipboard

Integrating an Application with the Shell
By integrating your application with the shell, you can extend the shell's functionality and
customize certain aspects of its behavior. In order of increasing complexity, you can
extend the shell by:

50 Volume 5 Microsoft Windows Shell

1. Putting information in the registry or in special files.

2. Implementing a shell extension handler.

3. Implementing a namespace extension.

The first approach, which is used by many applications, is discussed here:

• Creating a File Association

• Customizing Icons

• Extending Context Menus

• Customizing Folders with Oesktop.ini

• Creating an AutoPlay-enabled CD-ROM Application

For a discussion of how to write extension handlers, see Creating Shell Extension
Handlers. For a discussion of how to write namespace extensions, see Namespace
Extensions.

Note To improve the readability of the sample code in Shell Basics, most of the normal
error-correction code has been removed. You should add error code, as appropriate, to
your own applications. To make registry samples more readable, key names are in a
bold font and values are in a normal font.

The Shell Namespace
The shell namespace organizes the file system and other objects managed by the shell
into a single tree-structured hierarchy. Conceptually, it is essentially a larger and more
inclusive version of the file system.

Introduction
One of the primary responsibilities of the shell is managing and providing access to the
wide variety of objects that make up the system. The most numerous and familiar of
these objects are the folders and files that reside on computer disk drives. However, the
shell manages a number of nonfile system, or virtual objects, as well. Some examples
include:

• Network printers

• Other networked computers

• Control Panel applications

• The Recycle Bin

Some virtual objects do not involve physical storage at all. The printer object, for
instance, contains a collection of links to networked printers. Other virtual objects, such
as the Recycle Bin, may contain data that is stored on a disk drive, but needs to be
handled differently than normal files. For example, a virtual object can be used to

Chapter 6 Shell Programmer's Guide 51

represent data stored in a database. In terms of the namespace, the various items in the
database could appear in the Windows Explorer as separate objects, even though they
are all stored in a single disk file.

Virtual objects may even be located on remote computers. For instance, to facilitate
roaming, a user's document files might be stored on a server. To give them access to
their files from multiple desktop PCs, the My Documents folder on the desktop PC they
are currently using will point to the server, not the desktop PC's hard disk. Its path will
include either a mapped network drive, or a UNC path name.

Like the file system, the namespace includes two basic types of object: folders and files.
Folder objects are the nodes of the tree; they are containers for file objects and other
folders. File objects are the leaves of the tree; they are either normal disk files or virtual
objects, such as printer links. Folders that are not part of the file system are sometimes
referred to as virtual folders.

Like file system folders, the collection of virtual folders generally varies from system to
system. There are three classes of virtual folders:

• Standard virtual folders, such as the Recycle Bin, that are found on all systems.

• Optional virtual folders that have standard names and functionality, but may not be
present on all systems.

• Non-standard folders that are installed by the user.

Unlike file system folders, users cannot create new virtual folders themselves. They can
only install ones created by third-party developers. The number of virtual folders is thus
normally much fewer than the number of file system folders.

You can see a visual representation of how the namespace is structured in the Explorer
Bar of the Windows Explorer. For example, Figure 6-1 shows a relatively simple
namespace in Windows Explorer.

The ultimate root of the namespace hierarchy is the desktop. Immediately below the root
are several virtual folders such as My Computer and the Recycle Bin.

The file systems of the various disk drives can be seen to be subsets of the larger
namespace hierarchy. The roots of these file systems are subfolders of the My
Computer folder. My Computer also includes the roots of any mapped network drives.
Other nodes in the tree, such as My Documents, are virtual folders.

Identifying Namespace Objects
Before you can use a namespace object, you must first have a way of identifying it. An
object in the file system could have a name such as MyFile.htm. Because there might be
other files with that name elsewhere in the system, uniquely identifying a file or folder
requires a fully-qualified path such as "C:\MyDocs\MyFile.htm". This path is basically an
ordered list of all folders in a path from the file system root, C:\, ending with the file.

52 Volume 5 Microsoft Windows Shell

My Documents
My Computer

3~ Floppy (A:)
Volume 1 (C:)
Compact Disc (0:)
Control Panel
Scheduled Tasks

My Network Places
Recycle Bin
Internet Explorer
Common Setup Paths

Figure 6-1: A simple namespace in Windows Explorer.

In the context of the namespace, paths are still quite useful for identifying objects located
in the file system part of the namespace. However, they cannot be used for virtual
objects. Instead, the shell provides an alternative means of identification that can be
used with any namespace object.

Item IDs
Within a folder, each object has an item 10, which is the functional equivalent of a file or
folder name. The item 10 is actually a SHITEMID structure:

The ablD member is the object's identifier. The length of ablD is not defined, and its
value is determined by the folder that contains the object. Because there is no standard
definition for how ablD values are assigned by folders, they are only meaningful to the
associated folder object. Applications should simply treat them as a token that identifies
an object in a particular folder. Because the length of ablD varies, the cb member holds
the size of the SHITEMID structure, in bytes.

Because item IDs aren't useful for display purposes, the folder that contains the object
normally assigns it a display name. This is the name that is used by Windows Explorer
when it displays the contents of a folder. For more information on how display names are
handled, see Getting Information From a Folder.

Chapter 6 Shell Programmer's Guide 53

Item 10 Lists
The item ID is rarely used by itself. Normally, it is part of an item ID list, which serves the
same purpose as a file system path. However, instead of the character string used for
paths, an item ID list is an ITEMIDLIST structure. This structure is an ordered sequence
of one or more item IDs, terminated by a two-byte NULL. Each item ID in the item ID list
corresponds to a namespace object. Their order defines a path in the namespace, much
like a file system path.

Figure 6-2 shows a schematic representation of the ITEMIDLIST structure that
corresponds to C:\MyDocs\MyFile.htm. The display name of each item ID is shown
above it. The varying widths of the ablD members are arbitrary; they illustrate the fact
that the size of this member can vary.

My Computer C:/ MyDocs MyFile.htm

cb I ablD ablD
I

Figure 6-2: Schematic representation of the ITEMIDLIST structure.

PIOLs
For the shell API, namespace objects are usually identified by a pOinter to their
ITEMIDLIST structure, or PIOL. For convenience, the term PIDL will generally refer in
this documentation to the structure itself rather than the pOinter to it.

The PIDL shown in the preceding illustration is referred to as a full, or absolute, PIDL. A
full PIDL starts from the desktop, and contains the item IDs of all intermediate folders in
the path. It ends with the object's item ID followed by a terminating two-byte NULL. A full
PIDL is essentially similar to a fully qualified path and uniquely identifies the object in the
shell namespace.

Full PIDLs are actually used relatively infrequently. Many functions and methods expect
a relative PIOL. Relative PIDLs have fewer item IDs, so they cannot be traced all the
way back to the desktop. As with relative paths, the series of item IDs that make up the
structure define a path in the namespace between two objects. Although they do not
uniquely identify the object, they are generally smaller than a full PIDL and sufficient for
many purposes.

The most commonly used relative PIDLs are relative to the object's parent folder; they
contain only the object's item ID and a terminating NULL. Note that a PIDL can contain
only a single item ID and still be a fully-qualified PIDL. In particular, desktop objects are
children of the desktop, so their fully-qualified PIDLs contain only one item ID.

As discussed in Getting a Folder's 10, the shell API provides a number of ways to get an
object's PIDL. Once you have it, you commonly just use it to identify the object when you
call other shell API functions and methods. In this context, a PIDL's internal contents are
opaque and irrelevant. For the purposes of this discussion, think of PIDLs as tokens that
represent particular namespace objects, and focus on how to use them for common
tasks.

54 Volume 5 Microsoft Windows Shell

Allocating PIDLs
Although PIDLs have some similarity to paths, using them requires a somewhat different
approach. The primary difference is in how to allocate and deallocate memory for them.

Like the string used for a path, memory must be allocated for a PIDL. If an application
creates a PIDL, it must allocate sufficient memory for the ITEMIDLIST structure. For
most of the cases discussed here, the shell creates the PIDL and handles memory
allocation. Regardless of what allocated the PIDL, the application is usually responsible
for deallocating the PIDL when it is no longer needed.

To allocate and deallocate PIDLs, you must use the IMalioc interface exposed by the
shell's allocator. To get a pointer to this interface, call SHGetMalioc. Use the
IMalloc::Alloc method to allocate the PIDL, and the IMalloc::Free method to deallocate
it. For an example of how to use this interface to handle shell memory allocation, see
Getting a Folder's 10.

Getting a Folder's 10
Before you can make use of a namespace object, you need a way to identify it. This
means obtaining either its PIDL or, in the case of file system objects, its path. This
section discusses two of the simpler ways to obtain object IDs.

A more powerful approach that will work with any folder is to use the ISheliFolder
interface. See Getting Information About the Contents of a Folderfor more details.

The SHBrowseForFolder Dialog Box
To enable the user to navigate the namespace and select a folder, your application can
simply invoke SHBrowseForFolder. Calling this function launches a dialog box with a
user interface (UI) that works somewhat like the Open or SaveAs common dialog boxes.

When the user selects a folder, SHBrowseForFolder returns its PIDL as well as its
display name. If it is a file system folder, the application can convert the PIDL to a path
by calling SHGetPathFromlDList. The application can also restrict the range of folders
that the user can select from by specifying a root folder. Only folders that are below that
root in the namespace will appear. Figure 6-3 shows the SHBrowseForFolder dialog
box, with the root folder set to Program Files.

A simple example of how to use SHBrowseForFolder is provided later.

Special Folders and CSIDLs
A number of commonly used folders are designated as special by the system. These
folders have a well-defined purpose, and most of them are present on all systems. Even

if they are not present initially, their names and locations are still defined, so they can be
added later. The collection of special folders includes all of the system's standard virtual
folders, such as Printers, My Documents, and Network Neighborhood. It also includes a
number of standard file system folders, such as Program Files and System.

Chapter 6 Shell Programmer's Guide 55

BroYise for Folder D £J

Choose a folder or file

Common Files
HtmlHelp Workshop
ICW-Internet Connection Wizard

Microsoft Script Debugger
Microsoft Visual Studio

Online Services
()"Hn"k Fvnr"""

Figure 6-3: The SHBrowseForFolder dialog box.

Even though the folders are a standard component of all systems, their names and
locations in the namespace can vary. For example, the System directory is
C:\Winnt\System32 on some systems and C:\Windows\System32 on others. In the past,
environment variables provided a way to determine the name and location of a special
folder on any particular system. The shell now provides a more robust and flexible way
to identify special folders, CSIDLs. You should generally use them instead of
environment variables.

CSIDLs provide a uniform way of identifying and locating special folders, regardless of
their name or location on a particular system. Unlike environment variables, CSIDLs can
be used with virtual folders as well as file system folders. Each special folder has a
unique CSIDL assigned to it. For example, the Program Files file system folder has a
CSIDL of CSIDL_PROGRAM_FILES, and the Network Neighborhood virtual folder has a
CSIDL of CSIDL_NETWORK.

A CSIDL is used in conjunction with one of several shell functions to retrieve a special
folder's PIDL, or a special file system folder's path. If the folder doesn't exist on a

system, your application can force it to be created by combining its CSIDL with
CSIDL_FLAG_CREATE.The CSIDL can be passed to the following functions:

• SHGetFolderLocation, which retrieves the PIDL of a special folder.

• SHGetFolderPath, which retrieves the path of a file system special folder.

56 Volume 5 Microsoft Windows Shell

Note these two functions were introduced with version 5.0 of the shell and supersede
the SHGetSpeeialFolderLoeation and SHGetSpeeialFolderPath functions. To use
SHGetFolderPath with earlier versions of the shell, you can include the redistributable
DLL, Shfo/der.dll.

An Example of How to Use CSIDLs and SHBrowseForFolder
The following sample function, PidlBrowse, illustrates how get a pointer to the shell
allocator's IMalioe interface, use CSIDLs to retrieve a folder's PIDL, and use
SHBrowseForFolder to have the user select a folder. It returns the PIDL and display
name of the selected folder.

Chapter 6 Shell Programmer's Guide 57

The calling application passes in a window handle, which is needed by
SHBrowseForFolder. The nCSIDL parameter is an optional CSIDL that is used to
specify a root folder. Only folders below the root folder in the hierarchy will be displayed.
The illustration shown earlier was generated by calling this function with nCSIDL set to
CSIDL_PROGRAM_FILES. The calling application also passes in a string buffer,
pszDisplayName, to hold the display name of the selected folder when PidlBrowse
returns.

PidlBrowse first calls SHGetMalloe to get a pointer to the shell's allocator. Although no
PIDLs are allocated by the function itself, the IMalloe interface will be needed later to
deallocate them. If the calling application specifies a root folder by passing in its CSIDL,
PidlBrowse calls SHGetFolderLoeation to retrieve the folder's PIDL. The function then
assigns appropriate values to a BROWSEINFO structure, and passes it to
SHBrowseForFolder.

After the user selects a folder, SHBrowseForFolder returns its PIDL. The folder's
display name is returned in the pszDisplayName member of the BROWSEINFO
structure, and is passed back to the calling application through the pszDisplayName
parameter. Finally, PidlBrowse deallocates the root PIDL, releases the IMalloe interface,
and returns the selected folder's PIDL to the calling application.

Getting Information About the Contents of a Folder
The Getting a Folder's ID section discussed two approaches to getting a namespace
object's PIDL. One obvious question is: Once you have a PIDL, what can you do with it?
A related question is: What if neither approach works, or is suitable for your application?
The answer to both questions requires taking a closer look at how the namespace is
implemented. The key is the IShellFolder interface.

Using the ISheliFolder Interface
Earlier in this documentation, namespace folders were referred to as objects. Although,
at that pOint, the term was used in a loose sense, it is actually true in a strict sense as
well. Every namespace folder is represented by a Component Object Model (COM)
object. Each folder object exposes a number of interfaces that can be used for a wide
variety of tasks. Some interfaces that are optional may not be exposed by all folders.
However, all folders must expose the fundamental interface, IShellFolder.

The first step in using a folder object is to get a pointer to its IShellFolder interface. In
addition to providing access to the object's other interfaces through its Querylnterfaee
method, IShellFolder exposes a group of methods that handle a number of common
tasks, several of which are discussed in this section.

To get a pointer to a namespace object's IShellFolder interface, you must first call
SHGetDesktopFolder. This function returns a pOinter to the ISheliFolder interface of
the namespace root, the desktop. Once you have the desktop's IShellFolder interface,
there a variety of ways to proceed.

58 Volume 5 Microsoft Windows Shell

If you already have the PIDL of the folder you are interested in-for instance, by calling
SHGetFolderLocation-you can get its ISheliFolder interface by calling the desktop's
ISheIiFolder::BindToObject method. If you have the path of a file system object, you
must first obtain its PIDL by calling the desktop's ISheIiFolder::ParseDisplayName
method and then caIiISheIiFolder::BindToObject. If neither of these approaches is
applicable, you can use other ISheliFolder methods to navigate the namespace. For
more information, see Navigating the Namespace.

Enumerating the Contents of a Folder
The first thing you usually want to do with a folder is to find out what it contains. You
must first call the folder's ISheIiFolder::EnumObjects method. The folder will create a
standard OLE enumeration object and return its IEnumlDList interface. This interface
exposes four standard methods-Clone, Next, Reset, and Skip-that can be used to
enumerate the contents of the folder.

The basic procedure for enumerating a folder's contents is:

1. Call the folders ISheIiFolder::EnumObjects method to get a pointer to an
enumeration object's IEnumlDList interface.

2. Pass an unallocated PIDL to IEnumIDList::Next. Next takes care of allocating the
PIDL, but the application must deallocate it when it is no longer needed. When Next
returns, the PIDL will contain just the object's item ID and the terminating NULLs. In
other words, it is not a full PIDL, but is instead relative to the folder.

3. Repeat step 2 until Next returns S_FALSE to indicate that all items have been
enumerated.

4. CaIiIEnumIDList::Release to release the enumeration object.

Note It is important to keep track of whether you are working with a full or relative PIDL.
Some functions and methods will accept either, but others will only take one or the other.

The remaining three IEnumlDList methods (Reset, Skip, and Clone) are useful if you
need to do repeated enumerations of the folder. They allow you to reset the
enumeration, skip one or more objects, and make a copy of the enumeration object to
preserve its state.

Determining Display Names and Other Properties
Once you have enumerated all the PIDLs that are contained by a folder, you can find out
what sort of objects they represent. The ISheliFolder interface provides a number of
useful methods, two of which are discussed here. Other ISheliFolder methods and other
shell folder interfaces are discussed later.

One of the most useful properties is the object's display name. To get the display name
of an object, pass its PIDL to ISheIiFolder::GetDisplayNameOf. Although the object
can be located anywhere below the parent folder in the namespace, its PIDL must be
relative to the folder.

Chapter 6 Shell Programmer's Guide 59

ISheIiFolder::GetDisplayNameOf returns the display name as part of a STRRET
structure. Because extracting the display name from a STRRET structure can be a little
tricky, the shell provides two functions that do the job for you, StrRetToStr and
StrRetToBuf. Both functions take a STRRET structure, and return the display name as
a normal string. They differ only in how the string is allocated.

In addition to its display name, an object can have a number of attributes, such as
whether it is a folder or whether it can be moved. You can retrieve an object's attributes
by passing its PIDL to ISheIiFolder::GetAttributesOf. The complete list of attributes is
quite large, so you should see the reference for details. Note that the PIDL that you pass
to GetAttributesOf must be relative to the folder and can contain only one item ID. In
particular, it will accept the PIDLs returned by IEnumIDList::Next. You can pass in an
array of PIDLs, and GetAttributesOf will return those attributes that all objects in the
array have in common.

If you have an object's fully-qualified path or PIDL, SHGetFilelnfo provides a simple way
to get information about an object that is sufficient for many purposes. SHGetFilelnfo
takes a fully-qualified path or PIDL, and returns a variety of information about the object
including:

• The object's display name

• The object's attributes

• Handles to the object's icons

• A handle to the system image list

• The path of the file containing the object's icon

Getting a Pointer to a Subfolder's ISheliFolder Interface
You can determine whether your folder contains any subfolders by calling
ISheIiFolder::GetAttributesOf and checking to see if the SFGAO_FOLDER flag is set.
If an object is a folder, you can bind to it, which provides you with a pOinter to its
ISheliFolder interface.

To bind to a subfolder, call the parent folder's ISheIiFolder::BindToObject method. This
method takes the subfolder's PIDL and returns a pointer to its ISheliFolder interface.
Once you have this pOinter, you can use the IShellFolder methods to enumerate the
subfolders contents, determine their properties, and so on.

Determining an Object's Parent Folder
If you have an object's PIDL, you may need a handle to one of the interfaces exposed by
its parent folder. For example, if you want to determine the display name associated with
a PIDL by using ISheIiFolder::GetDisplayNameOf, you must first get the ISheliFolder
interface of the object's parent. It is possible to do this with the techniques discussed in
the previous sections. However, a much simpler approach is to use the shell function,
SHBindToParent. This function takes the fully-qualified PIDL of an object and returns a
specified interface pointer on the parent folder. Optionally, it also returns the item's PIDL
relative to the parent for use in methods such as ISheIiFolder::GetAttributesOf.

60 Volume 5 Microsoft Windows Shell

The following sample console application gets the PIDL of the System special folder and
returns its display name:

The application first gets a pointer to the shell allocator's Imalloe interface and uses
SHGetFolderLoeation to get the System folder's PIDL. It then calls SHBindToParent,
which returns a pointer to the parent folder's ISheliFolder interface, and the System
folder's PIDL relative to its parent. It then uses the parent folder's
ISheIiFolder::GetDisplayNameOf method to get the display name of the System folder.

Chapter 6 Shell Programmer's Guide 61

Because GetDisplayNameOf returns a STRRET structure, StrRetToBuf is used to
convert the display name into a normal string. After displaying the display name, the
interface pointers are released and the System PIDL freed. Note that you must not free
the relative PIDL returned by SHBindToParent.

Navigating the Namespace
You now have all the essential elements needed to navigate anywhere in the
namespace. The simplest way to start is to have your application call
SHGetDesktopFolder to get the desktop's ISheliFolder interface. Then, to navigate
downward through the namespace, your application can follow these steps:

1. Enumerate the folder's contents.

2. Determine which objects are subfolders, and select one.

3. Bind to the subfolder to get its ISheliFolder interface.

Repeat these steps as often as necessary to reach the target.

An Example of Namespace Navigation
The following piece of sample code is a simple console application that illustrates a
number of the procedures discussed in the preceding sections. The application performs
the following tasks:

1. Gets the Program Files folder's ISheliFolder interface (Using the IShellFolder
Interface).

2. Enumerates the contents of the folder (Enumerating the Contents of a Folder).

3. Determines all the display names and prints them (Determining Display Names and
Other Properties).

4. Looks for a subfolder (Determining Display Names and Other Properties).

5. Binds to the first subfolder it finds (Getting a Pointer to a Subfolder's ISheliFolder
Interface).

6. Prints the display names of the objects in the subfolder.

#irtclude<sh 1 opj, h>.
, ,;'" ~ , . .,

tin.clude '{shT~ap:i .h>
JfnC:lude:'< 1«s t;r eam.n>

, ~ " c' ' • , , •

LPMAt l..j)C;~a },loc; .. ' .; ,
,"~' , .. <p.... .. ,. •... ,':'

LfLm::t>fiIlL 1 ST. P ltll R;r l):!lt il ~s' ,¢ttU (J,. ; .
. ;LPH~Mt(}L;lst;pidHtems.= NU'l..L;. •.
': ·TSh~ilFolde:t .. *psrFi rlltFold.ei' ""Nutt;
..~: I S,flt'l lIFt! lI,hir; *'.psfb.es.t<'Top.:=NULL;;

(continued)

62 Volume 5 Microsoft Windows Shell

(continued)

ISheljJolder *psfProgFil·es=>NULC;
LPENUMIDUSTppenumNULL~ ..
ULONGceltFetched;
HREsun hr;

~ut « pszDisplayName «
i f(!psfFirstFo 1 der}
{

·ppenumc>ReleaseO;

Chapter 6 Shell Programmer's Guide 63

hr = psfF1rstFolder->EnumObjects(NULL.SHCONTF_FOLDERS
SHCONTF_NONFOLDERS. &ppenum);

while((hr = ppenum->Next(l.&pidlltems. &celtFetched)
1- S_FA~SE) && (celtFetched) -- 1)

{

psfFirstFolder->GetDisplayNameOf(pidlltems.
SHGDN~INFOLDER, &strDispName):

}.

}

StrRetToBuf(&strDispName. pidl Items. pszDisplayName. MALPATH):
cout «pszOisplByN'me'« '\n~;

ppenum -> Re lea se 0 :
pMalloc->Frje(p1d'P~ogF11js):

pMalJoc->Free(pidlItems):
psfProgFil es ->Rel easeO ;
psfF1rstFotder-~R~1~ase(};

return 0:

Launching Applications
Once your application has located a file object, the next step is often to act on it in some
way. For instance, your application might want to launch another application that allows
the user to modify a data file. If the file of interest is an executable, your application
might want to simply launch it. This document discusses how to use Shell Execute or
ShellExecuteEx to perform these tasks.

Using Shell Execute and ShellExecuteEx
To use Shell Execute or ShellExecuteEx, your application must specify the file or folder
object that is to be acted on, and a verb that specifies the operation. For Shell Execute,
assign these values to the appropriate parameters. For ShellExecuteEx, fill in the
appropriate members of a SHELLEXECUTEINFO structure. There are also several
other members or parameters that can be used to fine-tune the behavior of the two
functions.

File and folder objects can be part of the file system or virtual objects, and they can be
identified by either paths or PIDLs. The available verbs are essentially the items that you
find on an object's context menu. As for context menus, the exact list of verbs available
depends on the particular object. Commonly available verbs include:

Open

Edit
Print

Display

Launches an application. If the file is not executable, it launches the
file's associated application.
Opens a file's editor.
Prints a document file.

Displays an object's properties.

64 Volume 5 Microsoft Windows Shell

Each verb corresponds to the command that would be used to launch the application
from a console window. The open verb is a good example, as it is commonly supported.
For .exe files, open simply launches the application. However, it is more commonly used
to launch an application that operates on a particular file. For instance, by default, .txt
files are opened by NotePad. The open verb for .txt file, thus, corresponds to something
like the following command:

:~',~.sy~tEl;m~9Qt~\S,,Y~tem32:\N (\:te;P Jfii\ e,Xe '," .,''njJ'' '

When you use Shell Execute or ShellExecuteEx to open a .txt file, NotePad.exe is
launched with the specified file as its argument. Some commands can have additional
arguments, such as flags, that can be added as needed to launch the application
properly. For further discussion of context menus and verbs, see Extending Context
Menus.

In general, trying to determine the list of available verbs for a particular file is somewhat
complicated. In many cases, you can simply set the IpVerb parameter to NULL, which
invokes the default command for the file class. This procedure is usually equivalent to
setting IpVerb to "open", but some file classes may have a different default command.
For further information, see Extending Context Menus and the ShellExecuteEx reference
documentation.

Using Shell Execute to Launch the Find Dialog Box
When a user right-clicks a folder icon in windows Explorer, one of the menu items is
"Find." If they select that item, the shell launches its Find utility. This utility displays a
dialog box that can be used to search files for a specified text string. An application can
programmatically launch the Find utility for a directory by calling Shell Execute, with
"find" as the IpVerb parameter, and the directory path as the IpFile parameter. For
instance, the following line of code launches the Find utility for the c:\MyPrograms
directory.

Shell Execute{ hwnd. "find" >,"c: \ \MYprqgraillS"':NtJH.}HUt,t :,~ Jri

An Example of How to Use SheilExecuteEx
The following sample console application illustrates the use of ShellExecuteEx.

#incl ude {shlobj .h)
#incl ud~ <shlwapi .h>·

mainO
{

LPMAuec ~Mall~c;
LPITEM1DLI,st pidlWinFiles~' NULL:
U)lIEMIDUSI 'I?idjn.elit~ = NUll.;..,}

'LPHEMrDL$STpidlFi fStt5lnp .,; NULL;
IShe'llFolder *psfWinFHi;!s;i:: NlJ,tL~
IShellFo.lder *psfDesklap ';'N;ULL.; .
LP£NUMIDLISI ppenum;,; NULL;

STRRET strD1spName:
TCHAR pszParseName[MAX_PATH]:
UlONG celtFetched~
SHELl.EXECUTEI NFO ShExeclnfo l
HRESUl:T' hr;

Chapter 6 Shell Programmer's Guide 65

" ;hr:,:.~:'.S~G~tf()ld~"ft'Q~~t1 ~M NUn:~'C$'~OLwtND6WSj .. N uit. ·'lIUL,L;.&p, dtWt nF:1J~s),:.: '.
~ ,~>',:,~~,:",>.tV : \-,'" . j~ 'f;.,:~:>. . . :~ .. '::,.: .. ~'::,~ ,," ": ~." ..

) ..•. , . ' . :. .,: , . ",: ~

;; "

.' ~.' .:

'.' ': .

: .,:'

(continued)

66 Volume 5 Microsoft Windows Shell

(continued)

The application first gets the PIDL of the Windows directory, and enumerates its
contents until it finds the first .bmp file. Unlike the earlier example,
ISheIiFolder::GetDisplayNameOf is used to get the file's parsing name instead of its
display name. Because this is a file system folder, the parsing name is a fully qualified
path, which is what is needed for ShellExecuteEx.

Once the first .bmp file has been located, appropriate values are assigned to the
members of a SHELLEXECUTEINFO structure. The IpFile member is set to the parsing
name of the file, and the IpVerb member to NULL, to begin the default operation. In this
case, the default operation is "open." The structure is then passed to ShellExecuteEx,
which launches MSPaint.exe to open the bitmap file. After the function returns, the
PIDLs are freed and the Windows folder's ISheliFolder interface is released.

Managing the File System
The shell provides a number of ways to manage file systems. The shell provides a
function, SHFileOperation, that allows an application to programmatically move, copy,
rename, and delete files. The shell also supports some additional file management
capabilities:

• HTML documents can be connected to related files, such as graphics files or style
sheets. When the document is moved or copied, the connected files are automatically
moved or copied as well.

• For systems that are available to more than one user, files can be managed on a per­
user basis. Users have easy access to their data files, but not to files belonging to
other users.

• If document files are added or modified, they can be added to the shell's list of recent
documents. When the user clicks the Documents command on the Start menu, a list
of links to the documents appears.

This document discusses how these new file management technologies work. It then
outlines how to use the shell to move, copy, rename, and delete files, and how to
manage objects in the recycle bin.

Per-User File Management
The Microsoft Windows 2000 shell allows files to be associated with a particular user, so
they remain hidden from other users. In terms of the file system, they are generally

Chapter 6 Shell Programmer's Guide 67

stored under the users profile folder, typically C:\Documents and Settings\Username\ on
Windows 2000 systems. This feature allows many individuals to use the same machine,
while maintaining the privacy of their files from other users. Different users can have
different programs available. It also provides a straightforward way for administrators
and applications to store such things as initialization (.ini) or link (.Ink) files. Applications
can thus preserve a different state for each user, and easily recover that particular state
when needed. There is also a profile folder for storing information that is common to all
users.

Because it is inconvenient to determine which user is logged in and where their files are
located, the standard per-user folders are special folders, and are identified by a CSIDL.
For instance, the CSIDL for the per-user Program Files folder is CSIDL_PROGRAMS. If
your application calls SHGetFolderLocation or SHGetFolderPath with one of the per­
user CSIDLs, the function will return the PIDL or path appropriate to the currently logged
in user. If your application needs to get the path or PIDL of the profile folder, its CSIDL is
CSIDL_PROFILE.

The My Documents and My Pictures Folders
One of the standard icons found on the desktop is My Documents. When you use the
Windows Explorer to look at the namespace, the My Documents folder is immediately
below the desktop. The My Pictures folder is a subfolder of My Documents. The purpose
of these folders is to provide a default location for the current user's document and
picture files.

There are actually separate My Documents and My Pictures file system folders for each
user. For example, the location of a user's My Documents folder in the file system will be
something like this: C:\Documents and Settings\Username\My Documents. However,
there is no need for the user to access this file system folder. They simply use My
Documents, which is automatically mapped to the corresponding personal file system
folder. Note that if multiple people use the same computer, this part of the file system
can be locked by an administrator to prevent users from accessing files belonging to
others. There is no way for a user to gain access to anyone else's files through My
Documents.

There is usually no need for an application to know which user is logged in or where in
the file system their My Documents folder is located. Instead, your application can get
the PIDL of the desktop icon by calling the desktop's ISheIiFolder::ParseDisplayName
method. The parsing name used to identify My Documents folder is not the file path, but
rather "::{CLSID_MYDOCUMENTS}" where CLSID_XXX is the text form of the
corresponding GUID. For example, to get the PIDL of My Documents, your application
should use:

hr='@;~\Q~~kToP;'>P!lr"eQ~§Pl!lYName(HutL. JlUll~ •
L';:~ iH50d8fba- ad25~ lld0-98a3-1f&00361b1l03}" ~.
Jch£aten. ;&~.i dl[)ptFi 1 es,HULL) ; .

68 Volume 5 Microsoft Windows Shell

Once your application has the My Documents PIDL, it can handle the PIDL as it would
any other folder. The shell will automatically map changes in My Documents to the
appropriate file system folder.

If your application needs access to the actual file system folders, the CSIDLs is
CSIDL_PERSONAL for My Documents. Your application can pass the CSIDL to
SHGetFolderLocation to get the PIDL of the current user's My Documents folder. Call
SHGetFolderPath to get the path.

Connected Files
HTML documents often have a number of associated graphics files, a stylesheet file,
several JScript files, and so on. When you move or copy the primary HTML document,
you also usually want to move or copy its associated files to avoid breaking links.
Unfortunately, there has been no easy way until now to determine which files are related
to any given HTML document other than by analyzing their contents. To alleviate this
problem, Windows 2000 provides a simple way to connect a primary HTML document to
its group of associated files. If file connection is enabled, when the document is moved
or copied, all its connected files go with it.

To create a group of connected files, the primary document must have an .htm or .html
file name extension. Create a subfolder of the primary document's parent folder. The
subfolder's name must be the name of the primary document, minus the extension,
followed by "files." For instance, if the primary document is named MyDoc.htm, the
subfolder must be named "My Doc files". Any files that are placed in this subfolder will be
connected to the primary document. If the primary document is moved or copied, the
subfolder and its files will be moved or copied as well.

Note For some locales, you may need to replace "files" with its localized equivalent.

Whether or not file connection is enabled is controlled by a REG_DWORD value,
NoFileFolderConnection, of the
HKEY _CURRENT _USER\Software\Microsoft\Windows\CurrentVersion\Explorer
registry key. By default, this value is not defined, and file connection is enabled. To
disable file connection, add this value to the key, if necessary, and set it to one. To
enable file connection again, set NoFileFolderConnection to zero.

Moving, Copying, Renaming, and Deleting Files
The namespace is not static, and applications commonly need to manage the file system
by performing one of the following operations:

• Copying an object to another folder.

• Moving an object to another folder.

• Deleting an object.

• Renaming an object.

Chapter 6 Shell Programmer's Guide 69

The move, copy, rename, and delete operations are all be performed with
SHFileOperation. This function takes one or more source files, and produces
corresponding destination files. In the case of the delete operation, the system attempts
to put the deleted files in the Recycle Bin.

To use the function, you must fill in the members of a SHFILEOPSTRUCT structure, and
pass it to SHFileOperation. The key members of the structure are pFrom and pTo.

The pFrom member contains one or more source file names. These names can be
either fully qualified paths, or standard DOS wild cards such as "*.*". Although this
member is declared as a null-terminated string, it is used as a buffer to hold multiple file
names. Each file name must be terminated by a single NULL character. An additional
NULL character must be appended to the end of the final name to indicate the end of
pFrom.

The pTo member contains the names of one or more fully qualified destination names.
They are packed into pTo in the same way as they are for pFrom. If pTo contains
multiple names, you must also set the FOF _MUL TIDESTFILES flag in the fFlags
member. The usage of pTo depends on the operation as described here:

• For copy and move operations, if all the files are going to a Single directory, pTo
contains the fully qualified directory name. If the files are going to different
destinations, pTo can also contain one fully qualified directory or file name for each
source file. If a directory doesn't exist, the system will create it.

• For rename operations, pTo contains one fully qualified path for each source file in
pFrom.

• For delete operations, pTo is not used.

Notifying the Shell
You should notify the shell of the change after using SHFileOperation to move, copy,
rename, or delete files, or after any taking any other action that affects the namespace.
Actions that should be accompanied by notification include:

• Adding or deleting files or folders.

• Moving, copying, or renaming files or folders.

• Changing a file association.

• Changing file attributes.

• Adding or removing drives or storage media.

• Creating or disabling a shared folder.

• Changing the system image list.

An application notifies the shell by calling SHChangeNotify with the details of what has
changed. The shell can then update its image of the namespace to accurately reflect its
new state.

70 Volume 5 Microsoft Windows Shell

An Example of Managing Files with SHFileOperation
The following sample console application illustrates the use of SHFileOperation to copy
files from one directory to another. The source and destination directories, C:\My_Docs
and C:\My-Docs2, are hard-coded into the application for simplicity.

:~~~i:~::t,'{:'::!~;!i.~h>·.···.·.,
", :~;,/:~~.: '::<.:': , .~'.:: (."" :':<~ :;', .:~.~. '.~ .~. ::"', :".. ": ~~~,:.: ".:, .

'in'aihh' t'·;·····

; ·::.· .• · •••• ··~~~:l~J~·.~::~.· •. ·.:·::·~~:!~!~s:=~.~~~.·~~'i·; .•... · .. ·.,
.' ,; IMa llt)¢*pMal l'Ot ""NULL: ' '. ...•... "";':.

'0 ;;':'LP IT EM{DtIST;pidftf,<;rcFj l'es.;io'NV.LL; .
... LPlTEMIDLrSI,ptdlItEl!DS= NUL.L;

". ,1lnulIIIOthst *ppenum,=NUtt; ,

,A;;;?i:~~:f~~~I:~,t~~"ji" ...
. ·~ .• ';l¢flAf'siS6.o~ceF'1:i(esr25ill:··

... ·· !.' .. «1~t .•.•.• ~.LfP~Si,:,j •. ~.; .. " i .••.• • .'.'

,;~tl40N(i',Jh~~i~n;·.,!;~;;; .

·/:~~~:tilfe~!:~t'ch;d~,!: .
''''\''''

, :hr .·.'::·psfDeskT<)p->parseDl sp] aYNpme(~I:J,Ll..NU(tl.·
l~ph,MY~DO:cs". &chEaten. &.PidlDocFije,s ;:~Ubl);
f:''t)r;'" pffD~sl(rop·>'irfn~toObjecf.(p1dlJjQcffleS'.Nu.LL;·.
rltl~l$hellFolder. {LPVOID*)!&PSfpocFil.~SJ; '

. hr~'psfDeskTop~>Rel easeO;' ,. ,......,.

i ·'hr •. = .. ,PS:fO'Q~' ~i. J~s,~ >En um9M~dt s{ NUW.:. SflCONlF~~4LIl~~S
,S~CONTr-41oNFOUIERS&ppenuIl6; , ::.' .•

;wIl11e('(hr =ppenum->Next (l.·&i1f~ 1 liti!ms· •• &ce)tFitched)
=:';5 __ 01$)'&& (c~ltFe,tchedlp i\ ' .. :. ,';' "

" ';P\i;foocFile~'-)GetDis:~iaYNameOftPi(n~tElin$:~"~mGD~~JORPxR$i~G •. ;J~trQ:ts~;N~~~Yr~'
. ·Str.R~tT()Buf~&strDispName.pidl1tem~: s:ipa;r;seNiHJ!e;.MI\X;-pllli)~" , .

';or(1:0 ;1<=1's tr.l ~n(SZparSeName'),; i+t:~. .i.'

Chapter 6 Shell Programmer's Guide 71

szSourceFll es [i BufPos++] = szPa rseName[1] :
}

J
ppeniilll- >Release();

The application first gets a pointer to the desktop's IShellFolder interface. It then gets
the source directory's PIDL by passing its fully qualified path to
ISheIlFolder::ParseDisplayName. Note that ParseDisplayName requires the
directory's path to be a Unicode string. The application then binds to the source directory
and uses its IShellFolder interface to get an enumerator object's IEnumlDList interface.

As each file in the source directory is enumerated, ISheIlFolder::GetDisplayNameOf is
used to get its name. The SHGDN_FORPARSING flag is set, which causes
GetDisplayNameOf to return the file's fully qualified path. The file paths, including the
terminating NULL characters, are concatenated into a single array, szSourceFiles. A
second NULL character is appended to the final path to terminate the array properly.

Once the enumeration is complete, the application assigns values to a
SHFILEOPSTRUCT structure. Note that the array assigned to pTo to specify the
destination must also be terminated by a double NULL. In this case, it is simply included
in the string that is assigned to pTo. Because this is a console application, the
FOF _SILENT, FOF _NOCONFIRMATION, and FOF _NOCONFIRMMKDIR flags are set
to suppress any dialog boxes that might appear. After SHFileOperation returns,
SHChangeNotify is called to notify the shell of the change. Then the application
performs the usual cleanup and returns.

72 Volume 5 Microsoft Windows Shell

Adding Files to the Shell's List of Recent Documents
The shell maintains a list of recently added or modified documents for each user. The
user can display a list of links to these files by clicking Documents on the Start menu. As
with My Documents, each user has a file system directory to hold the actual links. To get
the PIDL of the current user's Recent directory, your application can call
SHGetFolderLocation with CSIDL_RECENT, or call SHGetFolderPath to get its path.

Your application can enumerate the contents of the Recent folder using the techniques
discussed earlier in this document. However, an application should not modify the
contents of the folder as if it were a normal file system folder. If it does so, the shell's list
of recent documents will not be updated properly, and the changes will not be reflected
in the Start menu. Instead, to add a document link to the a user's Recent folder, your
application can call SHAddToRecentDocs. The shell will add a link to the appropriate
file system folder, as well as updating its list of recent documents and the Start menu.
You can also use this function to clear the folder.

Managing Printers
The shell Application Programming Interface (API) provides functions that you can use to
manage networked printers. If a file has the print verb associated with it, you can use
the ShellExecuteEx command to print it.

Printer Management
You can manage printers on a system with the SHlnvokePrinterCommand function.
This function allows you to:

• Install printers.

• Open printers.

• Get printer properties.

• Create printer links.

• Print a test page.

Printing Files with ShellExecuteEx
If a file type has a print command associated with it, you can print the file by calling
ShellExecuteEx with print as the verb. This command is often the same as that used
for the open verb, with the addition of a flag to tell the application to print the file. For
example, the default print command for .txt files is:

~:~~ii!(~~~~~&*~~'~\tl#'ig~~6~t,,*~~~'/tld,"'!.~?'\Z··;;:·j;"(:i~f:,··';;;,{\\qj;'~";i;i;i)i •• ~i'·;:·;::':".;;n;:';~~ .• ';.;'. '~:6t:!;i:':;;::

When you use ShellExecuteEx to print a .txt file, NotePad opens the file, prints it, and
then closes, returning control to the application. The following sample function takes a
fully qualified path, and uses Shell Execute Ex to print it, using the print command
associated with its file name extension.

Chapter 6 Shell Programmer's Guide 73

/11 ncl ud.e <shl obj ,h>

HI,.~:rAN.cE ,Prjl}tFp aCLPCT$TR:
{

Transferring Shell Objects with Drag-Drop
and the Clipboard

Many applications allow users to transfer data to another application by dragging and
dropping the data with the mouse, or by using the Clipboard. Among the many types of
data that can be transferred are shell objects such as files or folders. Shell data transfer
can take place between two applications, but users can also transfer shell data to or
from the desktop or Microsoft Windows Explorer.

Although files are the most commonly transferred shell object, shell data transfer can
involve any of the variety of objects found in the shell namespace. For instance, your
application might need to transfer a file to a virtual folder such as the Recycle Bin, or
accept an object from a third-party namespace extension. If you are implementing a
namespace extension, it must be able to behave properly as a drop source and target.

This document discusses how applications can implement drag-drop and Clipboard data
transfers with shell objects.

How Drag-Drop Works with Shell Objects
Applications often need to provide users with a way to transfer shell data. Some
examples are:

74 Volume 5 Microsoft Windows Shell

• Dragging a file from Windows Explorer or the desktop and dropping it on an
application.

• Copying a file to the Clipboard in Windows Explorer and pasting it into an application.

• Dragging a file from an application to the Recycle Bin.

For a detailed discussion of how to handle these and other scenarios, see Handling
Shell Data Transfer Scenarios. This document focuses on the general principles behind
shell data transfer.

Windows provides two standard ways for applications to transfer shell data:

• A user cuts or copies shell data, such as one or more files, to the Clipboard. The other
application retrieves the data from the Clipboard.

• A user drags an icon that represents the data from the source application and drops
the icon on a window owned by the target.

In both cases, the transferred data is contained in a data object. Data objects are COM
objects that expose the IDataObject interface. Schematically, there are three essential
steps that all shell data transfers must follow:

1. The source creates a data object that represents the data that is to be transferred.

2. The target receives a pOinter to the data object's IDataObject interface.

3. The target calls the IDataObject interface to extract the data from it.

The difference between Clipboard and drag-drop data transfers lies primarily in how the
IDataObject pointer gets from the source to the target.

Clipboard Data Transfers
The Clipboard is the simplest way to transfer shell data. The basic procedure is similar to
standard Clipboard data transfers. However, because you are transferring a pointer to a
data object, not the data itself, you must use the OLE clipboard API instead of the
standard clipboard API. The following procedure outlines how to use the OLE clipboard
API to transfer shell data with the Clipboard:

1. The data source creates a data object to contain the data.

2. The data source calls OleSetClipboard, which places a pOinter to the data object's
IDataObject interface on the Clipboard.

3. The target calls OleGetClipboard to retrieve the pointer to the data object's
IDataObject interface.

4. The target extracts the data by calling the IDataObject::GetData method.

5. With some shell data transfers, the target might also need to call the data object's
IDataObject::SetData method to provide feedback to the data object on the outcome
of the data transfer. See Handling Optimized Move Operations for an example of this
type of operation.

Chapter 6 Shell Programmer's Guide 75

Drag-Drop Data Transfers
While somewhat more complex to implement, drag-drop data transfer has some
significant advantages over the Clipboard:

• Drag-drop transfers can be done with a simple mouse movement, making operation
more flexible and intuitive to use than the Clipboard.

• Drag-drop provides the user with a visual representation of the operation. The user
can follow the icon as it moves from source to target.

• Drag-drop notifies the target when the data is available.

Drag-drop operations also use data objects to transfer data. However, the drop source
must provide functionality beyond that required for Clipboard transfers:

• The drop source must also create an object that exposes an IDropSource interface.
The system uses IDropSource to communicate with the source while the operation is
in progress.

• The drag-drop data object is responsible for tracking cursor movement and displaying
an icon to represent the data object.

Drop targets must also provide more functionality than is needed to handle Clipboard
transfers:

• The drop target must expose an IDropTarget interface. When the cursor is over a
target window, the system uses IDropTarget to provide the target with information
such as the cursor position, and to notify it when the data is dropped.

• The drop target must register itself with the system by calling RegisterDragDrop.
This function provides the system with the handle to a target window and a pointer to
the target application's IDropTarget interface.

Note For drag-drop operations, your application must initialize COM with Olelnitialize,
not Colnitialize.

The following procedure outlines the essential steps that are typically used to transfer
shell data with drag-drop:

1. The target calls RegisterDragDrop to give the system a pOinter to its IDropTarget
interface and register a window as a drop target.

2. When the user starts a drag-drop operation, the source creates a data object and
initiates a drag loop by calling DoDragDrop.

3. When the cursor is over the target window, the system notifies the target by calling
one of the target's IDropTarget methods. The system calls IDropTarget::DragEnter
when the cursor enters the target window, and IDropTarget::DragOver as the cursor
passes over the target window. Both methods provide the drop target with the current
cursor position and the state of keyboard modifier keys such as CTRL or ESCAPE.

76 Volume 5 Microsoft Windows Shell

When the cursor leaves the target window, the system notifies the target by calling
IDropTarget::DragLeave. When any of these methods return, the system calls the
IDropSource interface to pass the return value to the source.

4. When the user releases the mouse button to drop the data, the system calls the
target's IDropTarget::Drop method. Among the method's parameters is a painter to
the data object's IDataObject interface.

5. The target calls the data object's IDataObject: :GetData method to extract the data.

6. With some shell data transfers, the target might also need to call the data object's
IDataObject::SetData method to provide feedback to the source on the outcome of
the data transfer.

7. When the target is finished with the data object, it returns from IDropTarget::Drop.
The system returns the source's DoDragDrop call to notify the source that the data
transfer is complete.

8. Depending on the particular data transfer scenario, the source might need to take
additional action based on the value returned by DoDragDrop and the values that are
passed to the data object by the target. For instance, when a file is moved, the source
must check these values to determine whether it must delete the original file.

9. The source releases the data object.

While the procedures outlined above provide a good general model for shell data
transfer, there are many different types of data that can be contained in a shell data
object. There are also a number of different data transfer scenarios that your application
might need to handle. Each data type and scenario requires a somewhat different
approach to three key steps in the procedure:

• How a source constructs a data object to contain the shell data.

• How a target extracts shell data from the data object.

• How the source completes the data transfer operation.

The Shell Data Object provides a general discussion of how a source constructs a shell
data object, and how that data object can be handled by the target. Handling Shell Data
Transfer Scenarios discusses in detail how to handle a number of common shell data
transfer scenarios.

The Shell Data Object
The data object is central to all shell data transfers. It is primarily a container to hold the
transferred data. However, the target can also communicate with the data object to
facilitate some specialized types of shell data transfer such as optimized moves. This
documentation provides a general discussion of how shell data objects work, how they
are constructed by a source, and how they are handled by a target. For a detailed
discussion of how to use data objects to transfer different types of shell data, see
Handling Shell Data Transfer Scenarios.

Chapter 6 Shell Programmer's Guide 77

How Data Objects Work
Data objects are COM objects, created by the data source to transfer data to a target.
They typically carry more than one item of data. There are two primary reasons for this
practice:

• While almost any type of data can be transferred with a data object, the source
typically does not know what kind of data the target can accept. For instance, the data
might be a portion of a formatted text document. While the target might be able to
handle complex formatting information, it might also only be able to accept ANSI text.
For this reason, data objects often include the same data in several different formats.
The target can then extract the data in a format that it can handle.

• Data objects can also contain auxiliary data items that are not versions of source
data. This type of data item typically provides additional information about the data
transfer operation. For instance, the shell uses auxiliary data items to indicate whether
a file is to be copied or moved.

Clipboard Formats
Each item of data in a data object has an associated format, usually called a Clipboard
format. There are a number of standard clipboard formats, declared in Winuser.h, that
correspond to commonly used types of data. Clipboard formats are integers, but they are
normally referred to by their equivalent name, which has the form CF _XXx. For instance,
the clipboard format for ANSI text is CF _TEXT.

Applications can extend the range of available clipboard formats by defining private
formats. To define a private format, an application calls RegisterClipBoardFormat with
a string that identifies the format. The unsigned integer that the function returns is a valid
format value that can be used just like a standard clipboard format. However, both
source and target must register the format in order to use it. With one exception-
CF _HDROP-the clipboard formats used to transfer shell data are defined as private
formats. They must be registered·by the source and target before they can be used. For
a description of the available shell clipboard formats, see Shell Clipboard Formats.

Although there are some exceptions, data objects normally contain only one item of data
for each clipboard format they support. This one-to-one correlation between format and
data allows the format value to be used as an identifier for the associated data item. In
fact, when discussing the contents of a data object, a particular item of data is typically
called a "format" and is referred to by its format name. For example, phrases such as
"Extract the CF _TEXT formaL" are typically used when discussing a data object's ANSI
text data item.

When the target receives the pOinter to the data object, it enumerates the available
formats to determine what types of data are available. It then requests one or more of
the available formats and extracts the data. The specific way that the target extracts
shell data from a data object varies with the format; this is discussed in detail in How a
Target Handles a Shell Data Object.

78 Volume 5 Microsoft Windows Shell

With simple clipboard data transfers, the data is placed in a global memory object. The
address of that object is placed on the clipboard, along with its format. The clipboard
format basically tells the target what kind of data it will find at the associated address.
While simple clipboard transfers are easy to implement:

• Data objects provide a much more flexible way to transfer data.

• Data objects are better suited for transferring large amounts of data.

• Data objects must be used to transfer data with a drag-drop operation.

For these reasons, all shell data transfers use data objects. With data objects, clipboard
formats are not used directly. Instead, data items are identified with a generalization of
the clipboard format, a FORMATETC structure.

The FORMATETC Structure
The FORMATETC structure is essentially an extended version of a clipboard format. As
used for shell data transfers, the FORMATETC structure has the following
characteristics:

• A data item is still identified by its clipboard format, in the cfFormat member.

• Data transfer is not limited to global memory objects. The tymed member is used to
indicate the data transfer mechanism contained in the associated STGMEDIUM
structure. It is set to one of the TYMED_XXX values.

• The shell uses the IIndex member with its CFSTR_FILECONTENTS format to allow a
data object to contain more than one data item per format. See Using the

CFSTR_FILECONTENTS Format to Extract Data from a File for a discussion of how to
use this format.

• The dwAspect member is typically set to DVASPECT _CONTENT. However, there
are three values defined in Shlobj.h that can be used for shell data transfer.

DVASPECT _COPY Used with the CF _HDROP format to request a file
path with the names shortened to the 8.3 format.

DVASPECT_SHORTNAME

Used to indicate that the format represents a
shortcut to the data.

Used to indicate that the format represents a copy
of the data.

• The ptd member is not used for shell data transfers and is normally set to NULL.

The STGMEDIUM . structure
The STGMEDIUM structure provides access to the data being transferred. Three data
transfer mechanisms are supported for shell data:

• A global memory object.

• An IStream interface.

• An IStorage interface.

Chapter 6 Shell Programmer's Guide 79

The tymed member of the STGMEDIUM structure is a TYMED_XXX value that identifies
the data transfer mechanism. The second member is a pointer that is used by the target
to extract the data. The pOinter can be one of a variety of types, depending on the
tymed value. The three tymed values that are used for shell data transfers are
summarized in the following table, along with their corresponding STGMEDIUM member
name.

Member
tymed value name

TYMED_HGLOBAL hGlobal

TYMED_ISTREAM pstm

TYMED_ISTORAGE pstg

Description

A pOinter to a global memory object. This pOinter
type is typically used for transferring small
amounts of data. For instance, the shell uses
global memory objects to transfer short text strings
such as file names or URLs.

A pointer to an IStream interface. This pointer type
is preferred for most shell data transfers because it
requires relatively little memory compared to
TYMED_HGLOBAL. Also, the TYMED_ISTREAM
data transfer mechanism does not require the
source to store its data in any particular way.

A pointer to an IStorage interface. The target calls
the interface methods to extract the data. Like
TYMED_ISTREAM, this pointer type requires
relatively little memory. However, because
TYMED_ISTORAGE is less flexible than
TYMED_ISTREAM, it is not as commonly used.

How a Source Creates a Data Object
When a user initiates a shell data transfer, the source is responsible for creating a data
object and loading it with data. The following procedure summarizes the process:

1. Call RegisterClipBoardFormat to obtain a valid clipboard formatvalue for each shell
format that will be included in the data object. Remember that CF _HDROP is already
a valid clipboard format and does not need to be registered.

2. For each format to be transferred, either put the associated data into a global memory
object or create an object that provides access to that data through an IStream or
IStorage interface. The IStream and IStorage interfaces are created using standard
COM techniques. For a discussion of how to handle global memory objects, see How
to Add a Global Memory Object to a Data Object.

3. Create FORMATETC and STGMEDIUM structures for each format.

4. Instantiate a data object.

80 Volume 5 Microsoft Windows Shell

5. Load the data into the data object by calling the IDataObject::SetData method for
each supported format and passing in the format's FORMATETC and STGMEDIUM
structures.

6. With clipboard data transfers, call OleSetClipboard to place a pOinter to the data
object's IDataObject interface on the clipboard. For drag-drop transfers, initiate a
drag loop by calling DoDragDrop. The IDataObject pointer will be passed to the drop
target when the data is dropped, ending the drag loop.

The data object is now ready to be transferred to the target. For clipboard data transfers,
the object is simply held until the target requests it by calling OleGetClipboard. For
drag-drop data transfers, the data object is responsible for creating an icon to represent
the data and moving it as the user moves the cursor. While the object is in the drag loop,
the source receives status information through its IDropSource interface. For further
discussion, see Implementing /DropSource.

The source receives no notification if the data object is retrieved from the clipboard by a
target. When an object is dropped on a target by a drag-drop operation, the
DoDragDrop function that was called to initiate the drag loop will return.

How to add a global memory object to a data object
Many of the shell data formats are in the form of a global memory object. Use the
following procedure to create a format containing a global memory object and load it into
the data object:

1. Create a FORMATETC structure. Set the cfFormat member to the appropriate
clipboard format value and the tymed member to TYMED_HGLOBAL.

2. Create an STGMEDIUM structure. Set the tymed member to TYMED_HGLOBAL.

3. Create a global memory object by calling GlobalAlioc to allocate a suitably sized
block of memory.

4. Assign the block of data to be transferred to the address returned by GlobalAlioc.

5. Assign the global memory object's address to the hGlobal member of the
STGMEDIUM structure.

6. Load the format into the data object by calling IDataObject::SetData and passing in
the FORMATETC and STGMEDIUM structures created in the previous steps.

The following sample function creates a global memory object containing a DWORD
value and loads it into a data object. The pdtobj parameter is a pointer to the data
object's IDataObject interface, cf is the clipboard format value, and dw is the data value.

fll~i~:t;:~:~;t\J;:::~:-:~t~:~l~!rt~ii~~I(!lilf{l~

Chapter 6 Shell Programmer's Guide 81

HRESU.LT hres ... LOUTOFMEMORV:
DWORD*pdw .. (.DWORD *)G1 oba 1A 11 ac(GPlR. s1 zeof{DWORO»:

}

jf:(pdW)

{

Implementing IDataObject
IDataObject is a data object's primary interface. It must be implemented by all data
objects. It is used by both source and target for a variety of purposes, including:

• Loading data into the data object.

• Extracting data from the data object.

• Determining what types of data are in the data object.

• Providing feedback to the data object on outcome of the data transfer.

IDataObject supports a number of methods. This document discusses how to implement
the three most important methods for shell data objects, SetData, EnumFormatEtc, and
GetData. For a discussion of the other methods, see the IDataObject reference.

The SetData method

The primary function of the SetData method is to allow the source to load data into the
data object. For each format to be included, the source creates a FORMATETC
structure to identify the format and an STGMEDIUM structure to hold a pOinter to the
data. The source then calls the object's IDataObject::SetData method and passes in the
format's FORMATETC and STGMEDIUM structures. The method must store this
information so that it is available when the target calls GetData to extract data from the
object.

However, when transferring files, the shell often puts the information for each file to be
transferred into a separate CFSTR_FILECONTENTS format. To distinguish the different
files, the IIndex member of each file's FORMATETC structure is set to an index value
that identifies the particular file. Your SetData implementation must be capable of storing
multiple CFSTR_FILECONTENTS formats that differ only by their IIndex members.

82 Volume 5 Microsoft Windows Shell

While the cursor is over the target window, the target can use the drag-drop helper
object to specify the drag image. The drag-drop helper object calls SetData to load
private formats into the data object that are used for cross-process support. To support
the drag-drop helper object, your SetData implementation must be able to accept and
store arbitrary private formats.

After the data has been dropped, some types of shell data transfer require the target to
call SetData to provide the data object with information about the outcome of the drop
operation. For example, when moving files with an optimized move operation, the target
normally deletes the original files, but it is not required to do so. The target informs the
data object whether or not it deleted the files by calling Set Data with a
CFSTR_LOGICALPERFORMEDDROPEFFECT format. There are several other shell
clipboard formats that are also used by the target to pass information to the data object.
Your SetData implementation must be able to recognize these formats and respond
appropriately. For further discussion, see Handling Shell Data Transfer Scenarios.

The EnumFormatEtc method

When the target receives a data object, it commonly calls EnumFormatEtc to determine
what formats the object contains. The method creates an OLE enumeration object and
returns a pointer to the object's IEnumFORMATETC interface. The target then uses the
interface to enumerate the available formats.

An enumeration object for shell data is implemented in much the same way as for other
types of data transfer, with one notable exception. Because data objects typically contain
only one data item per format, they normally enumerate every format that is passed to

IDataObject::SetData. However, as discussed in the SetData method, shell data objects
can contain multiple CFSTR_FILECONTENTS formats.

Because the purpose of EnumFormatEtc is to allow the target to determine what types
of data are present, there is no need to enumerate more than one
CFSTR_FILECONTENTS format. If the target needs to know how many of these formats
the data object contains, the target can get that information from the accompanying
CFSTR_FILEDESCRIPTOR format. For further discussion of how to implement
EnumFormatEtc, see the method's reference documentation.

The GetData method

The target calls GetData to extract a particular data format. The target specifies the
format by passing in the appropriate FORMATETC structure. Get Data returns the
format's STGMEDIUM structure.

The target can set the tymed member of the FORMATETC structure to a specific
TYMED_XXXvalue to specify which data transfer mechanism it will use to extract the
data. However, the target can also make a more generic request and let the data object
decide. To ask the data object to select the data transfer mechanism, the target sets all
the TYMED_XXXvalues that it supports. GetData selects one of these data transfer

Chapter 6 Shell Programmer's Guide 83

mechanisms and returns the appropriate STGMEDIUM structure. For instance, tymed is
commonly set to TYMED_HGLOBALITYMED_ISTREAMITYMED_ISTORAGE to
request any of the three shell data transfer mechanisms.

Note Because there can be multiple CFSTR_FILECONTENTS formats, the cfFormat
and tymed members of the FORMATETC structure are not sufficient to indicate which
STGMEDIUM structure GetData should return. For the CFSTR_FILECONTENTS
format, GetData must also examine the FORMATETC structure's IIndex member in
order to return the correct STGMEDIUM structure.

The CFSTR_INDRAGLOOP format is placed in data objects to allow targets to check
the status of the drag-drop loop while avoiding expensive rendering of the object's data.
The format's data is a DWORD value that is set to a nonzero value if the data object is
within a drag loop. The format's data value is set to zero if the data has been dropped. If
a target requests this format and it has not been loaded by the source, GetData should
respond as if the source had loaded the format with a value of zero.

While the cursor is over the target window, the target can use the drag-drop helper
object to specify the drag image. The drag-drop helper object calls SetData to load
private formats into the data object that are used for cross-process support. It later calls
GetData to retrieve them. To support the drag-drop helper object, your Get Data
implementation must be able to return arbitrary private formats when they are requested.

Implementing IDropSource
The source must create an object that exposes an IDropSource interface. This interface
allows the source to update the drag image that indicates the current position of the
cursor, and provide feedback to the system on how to terminate a drag-drop operation.
IDropSource has two methods: GiveFeedback and QueryContinueDrag.

The GiveFeedback method

While in the drag loop, a drop source is responsible for keeping track of the cursor
position and displaying an appropriate drag image. However, in some cases you might
want to change the appearance of the drag image when it is over the drop target's
window.

When the cursor enters or leaves the target window and while it is moving over the
target window, the system periodically calls the target's IDropTarget interface. The
target responds with a DROPEFFECT value that is forwarded to the source through the
IDropSource::GiveFeedback method. If appropriate, the source can modify the
appearance of the cursor based on the DROPEFFECT value. For further details, see the
IDropSource::GiveFeedback and DoDragDrop references.

The QueryContinueDrag method

This method is called if the mouse button or keyboard state changes while the data
object is in the drag loop. It notifies the source whether the ESCAPE key has been

84 Volume 5 Microsoft Windows Shell

pressed and provides the current state of the keyboard modifier keys, such as
CONTROL or SHIFT. The QueryContinueDrag method's return value specifies one of
three actions:

• S_OK. Continue the drag operation.

• DRAGDROP _S_DROP. Drop the data. The system will then call the target's
IDropTarget::Drop method.

• DRAG DROP _S_CANCEL. Terminate the drag loop without dropping the data. This
value is normally returned if the ESCAPE key was pressed.

For further discussion, see the IDropSource::QueryContinueDrag and DoDragDrop
references.

How a Target Handles a Data Object
The target receives a data object when it either retrieves the data object from the
clipboard or has it dropped on the target window by the user. The target can then extract
data from the data object. If necessary, the target can also notify the data object of the
outcome of the operation. Prior to a shell data transfer, a drop target must prepare itself
for the operation:

1. The target must call RegisterClipBoardFormat to obtain a valid clipboard format
value for all shell formats, other than CF _HDROP, that might be included in the data
object. CF _HDROP is already a valid clipboard format and does not need to be
registered.

2. To support a drag-drop operation, the target must implement an IDropTarget
interface and register a target window. To register a target window, the target calls

RegisterDragDrop and passes in the window's handle and the IDropTarget interface
pOinter.

For clipboard transfers, the target does not receive any notification that a data object has
been placed on the clipboard. Typically, an application is notified that an object is on the
clipboard by a user action, such as clicking the Paste button on the application's toolbar.
The target then retrieves the data object's IDataObject pointer from the clipboard by
calling OleGetClipboard. For drag-drop data transfers, the system uses the target's
IDropTarget interface to provide the target with information about the progress of the
data transfer:

• The system calls IDropTarget::DragEnter when the cursor enters the target window.

• The system periodically calls IDropTarget::DragOver as the cursor passes over the
target window, to give the target the current cursor position.

• The system calls IDropTarget::DragLeave when the cursor leaves the target
window.

• The system calls IDropTarget::Drop when the user drops the data object on the
target window.

Chapter 6 Shell Programmer's Guide 85

For a discussion of how to implement these methods, see Implementing IDropTarget.

When the data is dropped, IDropTarget::Drop provides the target with a pointer to the
data object's IDataObject interface. The target then uses this interface to extract data
from the data object.

Extracting Shell Data from a Data Object
Once a data object has been dropped or retrieved from the clipboard, the target can
extract the data it needs. The first step in the extraction process is typically to enumerate
the formats contained by the data object:

• CaIiIDataObject::EnumFormatEtc. The data object creates a standard OLE
enumeration object and returns a pointer to its IEnumFORMATETC interface.

• Use the IEnumFORMATETC methods to enumerate the formats contained by the
data object. This operation usually retrieves one FORMATETC structure for each
format that the object contains. However, the enumeration object normally returns
only a single FORMATETC structure for the CFSTR_FILECONTENTS format,
regardless of how many such formats are contained by the data object.

• Select one or more formats to be extracted, and store their FORMATETC structures.

To retrieve a particular format, pass the associated FORMATETC structure to
IDataObject::GetData. This method returns an STGMEDIUM structure that provides
access to the data. To specify a particular data transfer mechanism, set the tymed value
of the FORMATETC structure to the corresponding TYMED_XXXvalue. To ask the data
object to select a data transfer mechanism, the target sets the TYMED_XXXvalues for
every data transfer mechanism that the target can handle. The data object selects one of
these data transfer mechanisms and returns the appropriate STGMEDIUM structure.

For most formats, the target can retrieve the data by passing the FORMATETC structure
that it received when it enumerated the available formats. One exception to this rule is
CFSTR_FILECONTENTS. Because a data object can contain multiple instances of this
format, the FORMATETC structure returned by the enumerator might not correspond to
the particular format you want to extract. In addition to specifying the cfFormat and
tymed members, you must also set the IIndex member to the file's index value. For
further discussion, see Using the CFSTR_FILECONTENTS Format to Extract Data from
a File.

The data extraction process depends on the type of pointer contained by the returned
STGMEDIUM structure. If the structure contains a pOinter to an IStream or IStorage
interface, use the interface methods to extract the data. The process of extracting data
from a global memory object is discussed in the next section.

How to extract a global memory object from a data object

Many of the shell data formats are in the form of a global memory object. Use the
following procedure to extract a format containing a global memory object from a data
object and assign its data to a local variable:

86 Volume 5 Microsoft Windows Shell

1. Create a FORMATETC structure. Set the cfFormat member to the appropriate
clipboard format value and the tymed member to TYMED_HGLOBAL.

2. Create an empty STGMEDIUM structure.

3. CaIiIDataObject::GetData, and pass in pOinters to the FORMATETC and
STGMEDIUM structures.

4. When IDataObject::GetData returns, the STGMEDIUM structure will contain a
pOinter to the global memory object that contains the data.

5. Assign the data to a local variable by calling GlobalLock and passing in the hGlobal
member of the STGMEDIUM structure.

6. Call GlobalUnlock to release the lock on the global memory object.

7. Call ReleaseStgMedium to release the global memory object.

The following example shows how to extract a DWORD value stored as a global memory
object from a data object. The pdtobj parameter is a pointer to the data object's
IDataObject interface, cf is the clipboard format that identifies desired data, and pdwOut
is used to return the data value.

Chapter 6 Shell Programmer's Guide 87

Implementing IDropTarget
The system uses the IDropTarget interface to communicate with the target while the
cursor is over the target window. The target's responses are forwarded to the source
through its IDropSource interface. Depending on the response, the source can modify
the icon that represents the data. If the drop target needs to specify the data icon, it can
do so by creating a drag-drop helper object.

With conventional drag-drop operations, the target informs the data object of the
outcome of the operation by setting the pdwEffect parameter of IDropTarget::Drop to
the appropriate DROP EFFECT value. With shell data objects, the target might also need
to caIiIDataObject::SetData. For a discussion of how targets should respond for
different data transfer scenarios, see Handling Shell Data Transfer Scenarios.

The following sections briefly discuss how to implement the DragEnter, DragOver, and
Drop methods. For further details, see the reference documentation.

The DragEnter method

The system calls the IDropTarget::DragEnter method when the cursor enters the target
window. Its parameters provide the target with the location of the cursor, the state of
keyboard modifier keys such as the CTRL key, and a pointer to the data object's
IDataObject interface. The target is responsible for using that interface to determine
whether it can accept any of the formats contained by the data object. If it can, it
normally leaves the value of pdwEffect unchanged. If it cannot accept any data from the
data object, it sets the pdwEffect parameter to DROPEFFECT _NONE. The system
passes the value of this parameter to the data object's IDropSource interface to allow it
to display the appropriate drag image.

Targets should not use the IDataObject::GetData method to render shell data before it
has been dropped. Fully rendering the object's data for each such occurrence might
cause the drag cursor to stall. To avoid this problem, some shell objects contain a
CFSTR_INDRAGLOOP format. By extracting this format, targets can check the status of
the drag loop while avoiding expensive rendering of the object's data. The format's data
value is a DWORD that is set to a nonzero value if the data object is within a drag loop.
The format's data value is set to zero if the data has been dropped.

If the target can accept data from the data object, it should examine grtKeyState to
determine whether any modifier keys have been pressed to modify the normal drop
behavior. For instance, the default operation is typically a move, but depressing the
CTRL key usually indicates a copy operation.

While the cursor is over the target window, the target can use the drag-drop helper
object to replace the data object's drag image with its own. If so, DragEnter should call
IDropTargetHelper::DragEnter to pass the information contained in the DragEnter
parameters to the drag-drop helper object.

88 Volume 5 Microsoft Windows Shell

The DragOver method

As the cursor moves within the target window, the system periodically calls the
IDropTarget::DragOver method. Its parameters provide the target with the location of
the cursor and the state of keyboard modifier keys such as the CTRL key. DragOver has
much the same responsibilities as DragEnter, and the implementations are usually very
similar.

If the target is using the drag-drop helper object, DragOver should call
IDropTargetHelper::DragOver to forward the information contained in the DragOver
parameters to the drag-drop helper object.

The Drop method

The system calls the IDropTarget::Drop method to notify the target that the user has
dropped the data, typically by releasing the mouse button. Drop has the same
parameters as DragEnter. The target normally responds by extracting one or more
formats from the data object. When finished, the target should set the pdwEffect
parameter to a DROPEFFECT value that indicates the outcome of the operation. For
some types of shell data transfer the target must also caIiIDataObject::SetData to pass
a format with additional information on the outcome of the operation to the data object.
For a detailed discussion, see Handling Shell Data Transfer Scenarios.

If the target is using the drag-drop helper object, Drop should call
IDropTargetHelper::Drop to forward the information contained in the DragOver
parameters to the drag-drop helper object.

Using the Drag-Drop Helper Object
The drag-drop helper object (CLSID_DragDropHelper) is exported by the shell to allow
targets to specify the drag image while it is over the target window. To use the drag-drop

helper object, create an in-process server object by calling CoCreatelnstance with a
CLSID of CLSID_DragDropHelper. The drag-drop helper object exposes two interfaces
that are used in the following way:

• The IDragSourceHelper interface allows the drop target to specify an icon to
represent the data object.

• The IDropTargetHelper interface allows the drop target to inform the drag-drop
helper object of the cursor location, and to show or hide the data icon.

Using the IDragSourceHelper Interface
The IDragSourceHelper interface is exposed by the drag-drop helper object to allow a
drop target to provide the image that will be displayed while the cursor is over the target
window. IDragSourceHelper provides two alternative ways to specify the bitmap to be
used as a drag image:

• Drop targets that have a window can register a DLGETDRAGIMAGE window
message for it by initializing the drag-drop helper object with

Chapter 6 Shell Programmer's Guide 89

IDragSourceHelper::lnitializeFromWindow. When the target receives a
DLGETDRAGIMAGE message, the handler puts the drag image bitmap information
in the SHDRAGIMAGE structure that is passed as the message's IParam value.

• Windowless drop targets specify a bitmap when they initialize the drag-drop helper
object with IDragSourceHelper::lnitializeFromBitmap.

Using the IDropTargetHelper Interface
This interface allows the drop target to notify the drag-drop helper object when the cursor
enters or leaves the target. While the cursor is over the target window,
IDropTargetHelper allows the target to give the drag-drop helper object the information
that the target receives through its IDropTarget interface.

Four of the IDropTargetHelper methods, IDropTargetHelper::DragEnter,
IDropTargetHelper: :DragLeave, IDropTargetHelper:: DragOver, and
IDropTargetHelper::Drop, are associated with the IDropTarget method of the same
name. To use the drag-drop helper object, each of the IDropTarget methods should call
the corresponding IDropTargetHelper method to forward the information to the drag­
drop helper object. The fifth IDropTargetHelper method, IDropTargetHelper::Show,
notifies the drag-drop helper object to show or hide the drag image. This method is used
when dragging over a target window in a low color-depth video mode. It allows the target
to hide the drag image while it is painting the window.

Shell Clipboard Formats
The shell clipboard formats are used to identify the type of shell data being transferred.
Most shell clipboard formats identify a type of data, such as a list of file names or PIDLs.
However, some formats are used for communication between source and target. They
can expedite the data transfer process by supporting shell operations such as optimized
move and delete-on-paste. Shell data is always contained in a data object that uses a

FORMATETC structure as a more general way to characterize data. The structure's
cfFormat member is set to the clipboard format for the particular item of data. The other
members provide additional information, such as the data transfer mechanism. The data
is contained in an accompanying STGMEDIUM structure.

Note Standard clipboard format identifiers have the form CF _XXx. A common example
is CF _TEXT, which is used for transferring ANSI text data. These identifiers have
predefined values and can be used directly with FORMATETC structures. With the
exception of CF _HDROP, shell format identifiers have the form CFSTR_XXX and are
not predefined. For simplicity, the CFSTR_XXXvalues are often referred to as formats.
However, unlike predefined formats, they must be registered by both source and target
before they can be used to transfer data. To register a shell format, include the Shlobj.h
header file and pass the CFSTR_XXX format identifier to RegisterClipBoardFormat.
This function returns a valid clipboard format value, which can then be used as the
cfFormat member of a FORMATETC structure.

90 Volume 5 Microsoft Windows Shell

The shell clipboard formats are organized here into three groups, based on how they are
used:

• Formats for Transferring File System Objects

• Formats for Transferring Virtual Objects

• Formats for Communication Between Source and Target

Formats for Transferring File System Objects
These formats are used to transfer one or more files or other shell objects.

• CF_HDROP

• CFSTR_FILECONTENTS

• CFSTR_FILEDESCRIPTOR

• CFSTR_FILENAME

• CFSTR_FILENAMEMAP

• CFSTR_MOUNTEDVOLUME

• CFSTR_SHELLIDLIST

• CFSTR_SHELLlDLISTOFFSET

CF_HDROP
This clipboard format is used when transferring the locations of a group of existing files.
Unlike the other shell formats, it is predefined, so there is no need to call
RegisterClipBoardFormat. The data consists of an STGMEDIUM structure that
contains a global memory object. The structure's hGlobal member pOints to a
DROPFILES structure as its hGlobal member.

The pFiles member of the DROPFILES structure contains an offset to a double NULL­
terminated character array containing the file names. If you are extracting a CF _HDROP
format from a data object, you can use DragQueryFile to extract individual file names
from the global memory object. If you are creating a CF _HDROP format to place in a
data object, you will need to construct the file name array.

The file name array consists of a series of strings, each containing one file's fully
qualified path, including the terminating NULL character. An additional NULL character is
appended to the final string to terminate the array. For example, if the files c:\temp1.txt
and c:\temp2.txt are being transferred, the character array looks like this:

Note In this example, '\0' is used to represent the NULL character, not the literal
characters that should be included.

If the object was copied to the clipboard as part of a drag-drop operation, the pt member
of the DROPFILES structure contains the coordinates of the point where the object was
dropped. You can use DragQueryPoint to extract the cursor coordinates.

Chapter 6 Shell Programmer's Guide 91

If this format is present in a data object, an OLE drag loop simulates WM_DROPFILES
functionality with non-OLE drop targets. This is important if your application is the source
of a drag-drop operation on a Microsoft Windows 3.1 system.

Note This format supports both ANSI and Unicode. However, only ANSI file paths can
be used with Windows 95 systems.

CFSTR_FILECONTENTS
This format identifier is used with the CFSTR_FILEDESCRIPTOR format to transfer data
as if it were a file, regardless of how it is actually stored. The data consists of an
STGMEDIUM structure that represents the contents of one file. The file is normally
represented as a stream object, which avoids having to place the contents of the file in
memory. In that case, the tymed member of the STGMEDIUM structure is set to
TYMED_ISTREAM, and the file is represented by an IStream interface. The file can also
be a storage or global memory object (TYMED_ISTORAGE or TYMED_HGLOBAL). The
associated CFSTR_FILEDESCRIPTOR format contains a FILEDESCRIPTOR structure
for each file that specifies the file's name and attributes.

The target treats the data associated with a CFSTR_FILECONTENTS format as if it
were a file. When the target calls IDataObject::GetData to extract the data, it specifies a
particular file by setting the lindex member of the FORMATETC structure to the zero­
based index of the file's FILEDESCRIPTOR structure in the accompanying
CFSTR_FILEDESCRIPTOR format. The target then uses the returned interface pointer
or global memory handle to extract the data.

CFSTR_FILEDESCRIPTOR
This format identifier is used with the CFSTR_FILECONTENTS format to transfer data
as a group of files. These two formats are the preferred way to transfer shell objects that
are not stored as file-system files. For example, these formats can be used to transfer a
group of e-mail messages as individual files, even though each e-mail is actually stored
as a block of data in a database. The data consists of an STGMEDIUM structure that
contains a global memory object. The structure's hGlobal member points to a
FILEGROUPDESCRIPTOR structure that is followed by an array containing one
FILEDESCRIPTOR structure for each file in the group. For each FILEDESCRIPTOR
structure, there is a separate CFSTR_FILECONTENTS format that contains the
contents of the file. To identify a particular file's CFSTR_FILECONTENTS format, set the
IIndex value of the FORMATETC structure to the zero-based index of the file's
FILEDESCRIPTOR structure.

The CFSTR_FILEDESCRIPTOR format is commonly used to transfer data as if it were a
group of files, regardless of how it is actually stored. From the target's perspective, each
CFSTR_FILECONTENTS format represents a single file and is treated accordingly.
However, the source can store the data in any way it chooses. While a
CSFTR_FILECONTENTS format might correspond to a single file, it could also, for
example, represent data extracted by the source from a database or text document.

92 Volume 5 Microsoft Windows Shell

CFSTR_FILENAME
This format identifier is used to transfer a single file. The data consists of an
STGMEDIUM structure that contains a global memory object. The structure's hGlobal
member pOints to a single null-terminated string containing the file's fully qualified file
path. This format has been superseded by CF _HDROP, but it is supported for backward
compatibility with Windows 3.1 applications.

CFSTR_FILENAMEMAP
This format identifier is used when a group of files in CF _HDROP format is being
renamed as well as transferred. The data consists of an STGMEDIUM structure that
contains a global memory object. The structure's hGlobal member pOints to a double
null-terminated character array. This array contains a new name for each file, in the
same order that the files are listed in the accompanying CF _HDROP format. The format
of the character array is the same as that used by CF _HDROP to list the transferred
files.

CFSTR_MOUNTEDVOLUME
This format identifier is used to transfer a path on a mounted volume. It is similar to
CF _HDROP, but it contains only a single path and can handle the longer path strings
that might be needed to represent a path when the volume is mounted on a folder. The
data consists of an STGMEDIUM structure that contains a global memory object. The
structure's hGlobal member pOints to a single null-terminated string containing the fully
qualified file path. The path string must end with a '\' character, followed by the
terminating NULL.

Prior to Microsoft Windows 2000, volumes could be mounted only on drive letters. For
Windows 2000 and later systems with an NTFS formatted drive, you can also mount
volumes on empty folders. This feature allows a volume to be mounted without taking up
a drive letter. The mounted volume can use any currently supported format, including
FAT, FAT32 , NTFS, and CDFS.

You can add pages to a Drive Properties property sheet by implementing a property
sheet handler. If the volume is mounted on a drive letter, the shell passes path
information to the handler with the CF _HDROP format. With Windows 2000 and later
systems, the CF _HDROP format is used when a volume is mounted on a drive letter,
just as with earlier systems. However, if a volume is mounted on a folder, the
CSFTR_MOUNTEDVOLUME format identifier is used instead of CF _HDROP.

If only drive letters will be used to mount volumes, only CF _HDROP will be used, and
existing property sheet handlers will work as they did with earlier systems. However, if
you want your handler to display a page for volumes that are mounted on folders as well
as drive letters, the handler must be able to understand both the
CSFTR_MOUNTEDVOLUME and CF _HDROP formats.

Chapter 6 Shell Programmer's Guide 93

CFSTR_SHELLlDLIST
This format identifier is used when transferring the locations of one or more existing
namespace objects. It is used in much the same way as CF _HDROP, but it contains
PIDLs instead of file system paths. Using PIDLS allows the CFSTR_SHELLlDLlST
format to handle virtual objects as well as file system objects. The data is an
STGMEDIUM structure that contains a global memory object. The structure's hGlobal
member pOints to a CIDA structure.

The aoffset member of the CIDA structure is an array containing offsets to the beginning
of the ITEMIDLIST structure for each PIDL that is being transferred. To extract a
particular PIDL, first determine its index. Then, add the aoffset value that corresponds to
that index to the address of the CIDA structure.

The first element of aoffset contains an offset to the fully qualified PIDL of a parent
folder. If this PIDL is empty, the parent folder is the desktop. Each of the remaining
Ellements of the array contains an offset to one of the PIDLs to be transferred. All of
these PIDLs are relative to the PIDL of the parent folder.

The following two macros can be used to retrieve PIDLs from a CIDA structure. The first
takes a pointer to the structure and retrieves the PIDL of the parent folder. The second
takes a pointer to the structure and retrieves one of the other PIDLs, identified by its
zero-based index.

Note The value that is returned by these macros is a pointer to the PIDL's ITEMIDLIST
structure. Since these structures vary in length, you must determine the end of the
structure by walking through each of the ITEMIDLIST structure's SHITEMID structures
until you reach the two-byte NULL that marks the end. For further discussion of PIDLs
and the ITEMIDLIST structure, see The Shell Namespace.

CFSTR_SHELLlDLISTOFFSET
This format identifier is used with formats such as CF _HDROP, CFSTR_SHELLlDLlST,
and CFSTR_FILECONTENTS to specify the position of a group of objects following a
transfer. The data consists of an STGMEDIUM structure that contains a global memory
object. The structure's hGlobal member pOints to an array of POINT structures. The first
structure specifies the screen coordinates, in pixels, of the upper-left corner of the
rectangle that encloses the group. The remainder of the structures specify the locations
of the individual objects relative to the group's position. They must be in the same order
as that used to list the objects in the associated format.

94 Volume 5 Microsoft Windows Shell

Formats for Transferring Virtual Objects
The CFSTR_SHELLlDLIST format can be used to transfer both file system and virtual
objects. However, there are also several specialized formats for transferring particular
types of virtual objects.

• CFSTR_NETRESOURCES

• CFSTR_PRINTERGROUP

• CFSTR_SHELLURL

CFSTR_NETRESOURCES
This format identifier is used when transferring network resources, such as a domain or
server. The data is an STGMEDIUM structure that contains a global memory object. The
structure's hGlobal member points to a single NULL-terminated string that identifies the
network resource. The drop target can then use the data with any of the WNet API
functions, such as WNetAddConnection, to perform network operations on the object.

CFSTR_PRINTERGROUP
This format identifier is used when transferring the friendly names of printers. The data is
an STGMEDIUM structure that contains a global memory object. The structure's
hGlobal member points to a string in the same format as that used with CF _HDROP.
However, the pFiles member of the DROPFILES structure contains one or more friendly
names of printers instead of file paths.

CFSTR_SHELLURL
This format identifier is used when transferring a single URL. The data is an
STGMEDIUM structure that contains a global memory object. The structure's hGlobal
member points to a single NULL-terminated string that contains the URL. This format is
equivalent to the CF _TEXT clipboard format, but it is useful for internet-related
appl ications.

Formats for Communication Between Source and Target
Several format identifiers were introduced with Internet Explorer 4.0 to allow
communication between source and target. These formats accompany the actual data
and give applications a greater degree of control over move-copy-paste or drag-drop
operations involving shell objects.

• CFSTR_INDRAGLOOP

• CFSTR_LOGICALPERFORMEDDROPEFFECT

• CFSTR_PASTESUCCEEDED

• CFSTR_PERFORMEDDROPEFFECT

• CFSTR_PREFERREDDROPEFFECT

• CFSTR_TARGETCLSID

Chapter 6 Shell Programmer's Guide 95

CFSTR_INDRAGLOOP
This format identifier is used by a data object to indicate whether it is in a drag-drop loop.
The data is an STGMEDIUM structure that contains a global memory object. The
structure's hGlobal member pOints to a DWORD value. If the DWORD value is nonzero,
the data object is within a drag-drop loop. If the value is set to zero, the data object is not
within a drag-drop loop.

Some drop targets might caIlIDataObject::GetData and attempt to extract data while
the object is still within the drag-drop loop. Fully rendering the object for each such
occurrence might cause the drag cursor to stall. If the data object supports
CFSTR_INDRAGLOOP, the target can instead use that format to check the status of the
drag-drop loop and avoid expensive rendering of the object until it is actually dropped.
The expensive-to-render formats should still be included in the FORMATETC
enumerator and in calls to IDataObject::QueryGetData. If the data object does not set
CFSTR_INDRAGLOOP, it should act as if the value is set to zero.

CFSTR_LOGICALPERFORMEDDROPEFFECT
Version 5.0. This format identifier allows a drop source to call the data object's
IDataObject::GetData method to determine the outcome of a shell data transfer. The
data is an STGMEDIUM structure that contains a global memory object. The structure's
hGlobal member pOints to a DWORD containing a DROPEFFECT value.

The CFSTR_PERFORMEDDROPEFFECT format identifier was intended to allow the
target to indicate to the data object what operation actually took place. However, the
shell uses optimized moves for file system objects whenever possible. In that case, the
shell normally sets the CFSTR_PERFORMEDDROPEFFECT value to
DROP EFFECT _NONE, to indicate to the data object that the original data has been
deleted. Thus, the source cannot use the CFSTR_PERFORMEDDROPEFFECT value to
determine which operation has taken place. While most sources do not need this
information, there are some exceptions. For instance, even though optimized moves
eliminate the need for a source to delete any data, the source might still need to update
a related database to indicate that the files have been moved or copied.

If a source needs to know which operation took place, it can call the data object's
IDataObject::GetData method and request the
CFSTR_LOGICALPERFORMEDDROPEFFECT format. This format essentially reflects
what happens from the user's point of view after the operation is complete. If a new file is
created and the original file is deleted, the user sees a move operation and the format's
data value is set to DROPEFFECT _MOVE. If the original file is still there, the user sees
a copy operation and the format's data value is set to DROPEFFECT _COPY. If a link
was created, the format's data value will be DROPEFFECT _LINK.

CFSTR_PASTESUCCEEDED
This format identifier is used by the target to inform the data object, through its
IDataObject::SetData method, that a delete-on-paste operation succeeded. The data is
an STGMEDIUM structure that contains a global memory object. The structure's

96 Volume 5 Microsoft Windows Shell

hGlobal member pOints to a DWORD containing a DROPEFFECT value. This format is
used to notify the data object that it should complete the cut operation and delete the
original data, if necessary. For more information, see Delete-on-Paste Operations.

CFSTR_PERFORMEDDROPEFFECT
This format identifier is used by the target to inform the data object through its
IDataObject::SetData method of the outcome of a data transfer. The data is an
STGMEDIUM structure that contains a global memory object. The structure's hGlobal
member points to a DWORD set to the appropriate DROPEFFECT value, normally
DROPEFFECT _MOVE or DROPEFFECT _COPY.

This format is normally used when the outcome of an operation can be either move or
copy, such as in an optimized move or delete-on-paste operation. It provides a reliable
way for the target to tell the data object what actually happened. It was introduced
because the value of pdwEffect returned by DoDragDrop did not reliably indicate which
operation had taken place. The CFSTR_PERFORMEDDROPEFFECT format is the
reliable way to indicate that an unoptimized move has taken place.

CFSTR_PREFERREDDROPEFFECT
This format identifier is used by the source to specify whether its preferred method of
data transfer is move or copy. A drop target requests this format by calling the data
object's IDataObject::GetData method. The data is an STGMEDIUM structure that
contains a global memory object. The structure's hGlobal member points to a DWORD
value. This value is set to DROPEFFECT _MOVE if a move operation is preferred or
DROPEFFECT _COpy if a copy operation is preferred.

This feature is used when a source can support either a move or copy operation. It uses
the CFSTR_PREFERREDDROPEFFECT format to communicate its preference to the
target. Because the target is not obligated to honor the request, the target must call the
source's IDataObject::SetData method with a CFSTR_PERFORMEDDROPEFFECT
format to tell the data object which operation was actually performed.

With a delete-on-paste operation, the CFSTR_PREFERREDDROPFORMAT format is
used to tell the target whether the source did a cut or copy. With a drag-drop operation,
you can use CFSTR_PREFERREDDROPFORMAT to specify the shell's action. If this
format is not present, the shell performs a default action, based on context. For instance,
if a user drags a file from one volume and drops it on another volume, the shell's default
action is to copy the file. By including a CFSTR_PREFERREDDROPFORMAT format in
the data object, you can override the default action and explicitly tell the shell to copy,
move, or link the file. If the user chooses to drag with the right button,
CFSTR_PREFERREDDROPFORMAT specifies the default command on the drag-drop
context menu. The user is still free to choose other commands on the menu.

Before Internet Explorer 4.0, an application indicated that it was transferring shortcut file
types by setting FD_LlNKUI in the dwFlags member of the FILEDESCRIPTOR
structure. Targets then had to use a potentially time-consuming call to
IDataObject::GetData to find out if the FD_LlNKUI flag was set. Now, the preferred way

Chapter 6 Shell Programmer's Guide 97

to indicate that shortcuts are being transferred is to use the
CFSTR_PREFERREDDROPEFFECT format set to DROPEFFECT _LINK. However, for
backward compatibility with older systems, sources should still set the FD_LlNKUI flag.

CFSTR_ TARGETCLSID
This format identifier is used by a target to provide its CLSID to the source. The data is
an STGMEDIUM structure that contains a global memory object. The structure's
hGlobal member pOints to the CLSID GUID of the drop target.

This format is used primarily to allow objects to be deleted by dragging them to the
Recycle Bin. When an object is dropped in the Recycle Bin, the source's
IDataObject::SetData method is called with a CFSTR_ TARGETCLSID format set to the
Recycle Bin's CLSID (CLSID_RecycleBin). The source can then delete the original
object.

Handling Shell Data Transfer Scenarios
The Shell Data Object document discussed the general approach that is used to transfer
shell data with drag-drop or the Clipboard. However, to implement shell data transfer in
your application, you must also understand how to apply these general principles and
techniques to the variety of ways that shell data can be transferred. This document
presents the following common shell data transfer scenarios and discusses how to
implement each one in your application.

General Guidelines

Copying File Names from the Clipboard to an Application

Copying the Contents of a Dropped File into an Application

Handling Optimized Move Operations

Handling Delete-an-Paste Operations

Transfering Data to and from Virtual Folders

Dropping Files on the Recycle Bin

Creating and Importing Scrap Files

Extracting Data Asynchronously

Note Although each of these scenarios discusses a specific data transfer operation,
many of them apply to a variety of related scenarios. For instance, the primary difference
between most Clipboard and drag-drop transfers is in how the data object gets to the
target. Once the target has a pointer to the data object's IDataObject interface, the
procedures for extracting information are largely the same for both types of data transfer.
However, some of the scenarios are limited to a specific type of operation. Refer to the
individual scenario for details.

98 Volume 5 Microsoft Windows Shell

General Guidelines
Each of the following sections discusses a single, fairly specific data transfer scenario.
However, data transfers are often more complex and might involve aspects of several
scenarios. You typically do not know, in advance, which scenario you will actually need
to handle. Here are a few general guidelines to keep in mind.

For data sources:

• The shell clipboard formats, with the exception of CF _HDROP, are not predefined.
Each format you want to use must be registered by calling
RegisterClipboardFormat.

• Include as many formats as you can support. You generally don't know where the
data object will be dropped. This practice improves the odds that the data object will
contain a format that the drop target can accept.

• Existing files should be offered with the CF _HDROP format.

• Offer file-like data with CFSTR_FILECONTENTS/ CFSTR_FILEDESCRIPTOR
formats. This approach allows the target to create a file from a data object without
needing to know anything about the underlying data storage. You should normally
present the data as an IStream interface. This data transfer mechanism is more
flexible than a global memory object and uses much less memory.

• Use standard feedback cursors.

• Support left and right drag.

• Use the data object itself from an embedded object. This approach allows your
application to get any extra formats the data object has to offer and avoids creating an
extra layer of containment. For instance, an embedded object from server A is
dragged from server/container B and dropped on container C. C should create an
embedded object of server A, not an embedded object of server B containing an
embedded object of server A.

• Remember that the shell might use optimized moves or delete-on-paste operations
when moving files. Your application should be able to recognize these operations and
respond appropriately.

For data targets:

• The shell clipboard formats, with the exception of CF _HDROP, are not predefined.
Each format you want to use must be registered by calling
RegisterClipboardFormat.

• Implement and register an OLE drop target. Avoid using Microsoft Windows 3.1
targets or the WM_DROPFILES message, if possible.

• The formats contained by a data object vary, depending on where the object comes
from. Since you generally don't know in advance where a data object comes from,
don't assume that a particular format will be present. Enumerate the formats, and then
select the best available format for your purposes.

Chapter 6 Shell Programmer's Guide 99

• When a file is dragged from the desktop or Windows Explorer and dropped on an
application's client area, the target application should first attempt to get a data format
that it can handle directly, such as CF _TEXT or CF _EMBEDDEDOBJECT. If none of
these are offered, the target should request CF _HDROP and call OleCreateFromFile
for each file. Scrap files will always offer CF _EMBEDDEDOBJECT and CF _HDROP
formats.

• Support right-drag. You can customize the drag context menu by creating a drag-drop
handler

• If your application will accept existing files, it must be able to handle the CF _HDROP
format.

• In general, applications that accept files should also handle the
CFSTR_FILECONTENTS/CFSTR_FILEDESCRIPTOR formats. While files from the
file system have the CF _HDROP format, files from providers such as namespace
extensions generally use CFSTR_FILECONTENTS/ CFSTR_FILEDESCRIPTOR.
Examples include Windows CE folders, FTP folders, Web folders, and CAB folders.
The source normally implements an IStream interface to present data from their
storage as a file. .

• Remember that the shell might use optimized moves or delete-on-paste operations
when moving files. Your application should be able to recognize these operations and
respond appropriately.

Copying File Names from the Clipboard to an Application
Scenario: A user selects one or more files in Windows Explorer and copies them to the
Clipboard. Your application extracts the file names and pastes them into the document.

This scenario could be used, for instance, to allow a user to create an HTML link by
cutting and pasting the file to your application. Your application can then extract the file
name from the data object and process it to create an anchor tag.

When a user selects a file in Windows Explorer and copies it to the Clipboard, the shell
creates a data object. It then calls OleSetClipboard to place a pointer to the data
object's IDataObject interface on the Clipboard.

When the user selects the Paste command from your application's menu or toolbar:

1. Call OleGetClipboard to retrieve the data object's IDataObject interface.

2. CaIiIDataObject::EnumFormatEtc to request an enumerator object.

3. Use the enumerator object's IEnumFORMATETC interface to enumerate the formats
contained by the data object.

Extracting the File Names from the Data Object
The next step is to extract one or more file names from the data object and paste them
into your application. Note that the procedure discussed in this section for extracting a
file name from a data object applies equally well to drag-drop transfers.

100 Volume 5 Microsoft Windows Shell

The simplest way to get file names from a data object is the CF _HDROP format:

1. CaIiIDataObject::GetData. Set the cfFormat member of the FORMATETC structure
to CF _HDROP and the tymed member to TYMED_HGLOBAL. The dwAspect
member is normally set to DVASPECT _CONTENT. However, if you need to have the
file's path in short (8.3) format, set dwAspect to DVASPECT_SHORT.

2. When IDataObject::GetData returns, the hGlobal member of the STGMEDIUM
structure points to a global memory object that contains the data.

3. Create an HDROP variable and set it to the hGlobal member of the STGMEDIUM
structure. The HDROP variable now points to a DROPFILES structure followed by a
double NULL-terminated string containing the fully qualified file paths of the copied
files.

4. Determine how many file paths are in the list by calling DragQueryFile with the iFile
parameter set to OxFFFFFFFF. The function returns the number of file paths in the
list. The file path's zero-based index in this list is used in the next step to identify a
particular path.

5. Extract the file paths from the global memory object by calling DragQueryFile once
for each file, with iFile set to the file's index.

6. Process the file paths as needed and paste them into your application.

Copying the Contents of a Dropped File into an Application
Scenario: A user drags one or more files from Windows Explorer and drops them on
your application's window. Your application extracts the content of the file and pastes it
into the application.

This scenario uses drag-drop to transfer the files from Windows Explorer to the
application. Prior to the operation, your application must:

1. Call RegisterClipboard to register any needed shell clipboard formats.

2. Call RegisterDragDrop to register a target window and your application's
IDropTarget interface.

After the user initiates the operation by selecting one or more files and starting to drag
them:

1. Windows Explorer creates a data object and loads the supported formats into it.

2. Windows Explorer calls DoDragDrop to initiate the drag loop.

3. When the drag image reaches your target window, the system notifies you by calling
IDropTarget:: DragEnter.

4. To determine what the data object contains, call the data object's
IDataObject::EnumFormatEtc method. Use the enumerator object returned by the
method to enumerate the formats contained by the data object. If your application
does not want to accept any of these formats, return DROPEFFECT _NONE. For the
purposes of this scenario, your application should ignore any data objects that do not
contain formats used to transfer files, such as CF _HDROP.

Chapter 6 Shell Programmer's Guide 101

5. When the user drops the data, the system calls IDropTarget::Drop.

6. Use the IDataObject interface to extract the contents of the files.

There are several different ways to extract the contents of a shell object from a data
object. In general, you should attempt them in the following order:

• If the file contains a CF _TEXT format, the data is ANSI text. You can use the
CF _TEXT format to extract the data, rather than opening the file itself.

• If the file contains a linked or embedded OLE object, the data object contains a
CF _EMBEDDEDOBJECT format. Use standard OLE techniques to extract the data.
Scrap files always contain a CF _EMBEDDEDOBJECT format.

• If the shell object is from the file system, the data object contains a CF _HDROP
format with the names of the files. Extract the file name from CF _HDROP and call
OleCreateFromFile to create a new linked or embedded object. For a discussion of
how to retrieve a file name from a CF _HDROP format, see Copying File Names from
the Clipboard to an Application.

• If the data object contains a CFSTR_FILEDESCRIPTOR format, you can extract a
file's contents from the file's CFSTR_FILECONTENTS format. For a discussion of this
procedure, see Using the CFSTR_FILECONTENTS Format to Extract Data from a
File.

• Prior to shell version 4.71, an application indicated that it was transferring a shortcut
file type by setting FD_LlNKUI in the dwFlags member of the FILEDESCRIPTOR
structure. For later versions of the shell, the preferred way to indicate that shortcuts
are being transferred is to use the CFSTR_PREFERREDDROPEFFECT format set to
DROPEFFECT _LINK. This approach is much more efficient than extracting the
FILEDESCRIPTOR structure just to check a flag.

If the data extraction process will be lengthy, you might want to do the operation
asynchronously on a background thread. Your primary thread can then proceed without
unnecessary delays. For a discussion of how to handle asynchronous data extraction,
see Extracting Data Asynchronously.

Using the CFSTR_FILECONTENTS Format to Extract Data from a File
The CFSTR_FILECONTENTS format provides a very flexible and powerful way to
transfer the contents of a file. It is not even necessary for the data to be stored as a
single file. All that is required for this format is that the data object present the data to the
target as if it were a file. For instance, the actual data might be a section of a text
document or a block of data extracted from a database. The target can treat the data as
a file and doesn't need to know anything about the underlying storage mechanism.

Namespace extensions normally use CFSTR_FILECONTENTS to transfer data because
it does not assume any particular storage mechanism. A namespace extension can use
whatever storage mechanism is convenient, and use this format to present its objects to
applications as if they were files.

102 Volume 5 Microsoft Windows Shell

The data transfer mechanism for CFSTR_FILECONTENTS is normally
TYMED_ISTREAM. Transferring an IStream interface pointer requires much less
memory than loading the data into a global memory object, and IStream is a more
flexible way to represent data than IStorage.

A CFSTR_FILECONTENTS format is always accompanied by a
CFSTR_FILEDESCRIPTOR format. You must examine the contents of this format first. If
more than one file is being transferred, the data object will actually contain multiple
CFSTR_FILECONTENTS formats, one for each file. The CFSTR_FILEDESCRIPTOR
format contains the name and attributes of each file, and provides an index value for
each file that is needed to extract a particular file's CFSTR_FILECONTENTS format.

To extract a CFSTR_FILECONTENTS format:

1. Extract the CFSTR_FILEDESCRIPTOR format. The hGlobal member of the returned
STGMEDIUM structure pOints to a global memory object containing a
FILEGROUPDESCRIPTOR structure followed by one or more FILEDESCRIPTOR
structures. Each FILEDESCRIPTOR structure contains a description of a file that is
contained by one of the accompanying CFSTR_FILECONTENTS formats.

2. Examine the FILEDESCRIPTOR structures to determine which one corresponds to
the file you want to extract. The zero-based index of that FILEDESCRIPTOR structure
is used to identify the file's CFSTR_FILECONTENTS format.

3. CaIiIDataObject::GetData with the cfFormat member of the FORMATETC structure
set to the CFSTR_FILECONTENTS value and the IIndex member set to the index
that you determined in the previous step. The tymed member is typically set to
TYMED_HGLOBAL I TYMED_ISTREAM I TYMED_ISTORAGE. The data object can
then choose its preferred data transfer mechanism.

4. The STGMEDIUM structure that IDataObject::GetData returns will contain a pOinter
to the file's data. Examine the tymed member of the structure to determine the data
transfer mechanism.

5. If tymed is set to TYMED_ISTREAM or TYMED_ISTORAGE, use the interface to
extract the data. If tymed is set to TYMED_HGLOBAL, the data is contained in a
global memory object. For a discussion of how to extract data from a global memory
object, see How to Extract a Global Memory Object from a Data Object.

Handling Optimized Move Operations
Scenario: A file is moved from the file system to a namespace extension using an
optimized move.

In a conventional move operation, the target makes a copy of the data and the source
deletes the original. This procedure can be inefficient because it requires two copies of
the data. With large objects such as databases, a conventional move operation might
not even be practical.

With an optimized move, the target uses its understanding of how the data is stored to
handle the entire move operation. There is never a second copy of the data, and there is
no need for the source to delete the original data. Shell data is well suited to optimized

Chapter 6 Shell Programmer's Guide 103

moves because the target can handle the entire operation using the shell API. A typical
example is moving files. Once the target has the path of a file to be moved, it can use
SHFileOperation to move it. There is no need for the source to delete the original file.

Note The shell normally uses an optimized move to move files. To handle shell data
transfer properly, your application must be capable of detecting and handling an
optimized move.

Optimized moves are handled in the following way:

1. The source calls DoDragDrop with the dwEffect parameter set to
DROPEFFECT _MOVE to indicate that the source objects can be moved.

2. The target receives the DROPEFFECT _MOVE value through one of its IDropTarget
methods, indicating that a move is allowed.

3. The target either copies the object (unoptimized move) or moves the object (optimized
move).

4. The target then tells the source whether or not it needs to delete the original data.

An optimized move is the default operation, with the data deleted by the target. To
inform the source that an optimized move was performed:

• The target sets the *pdwEffectvalue it received through its IDropTarget::Drop
method to some value other than DROPEFFECT _MOVE. It is typically set to either
DROPEFFECT _NONE or DROPEFFECT _COPY. The value will be returned to the
source by DoDragDrop.

• The target also calls the data object's IDataObject::SetData method and passes it a
CFSTR_PERFORMEDDROPEFFECT format identifier set to DROPEFFECT _NONE.
This method call is necessary because some drop targets might not set the pdwEffect
parameter of DoDragDrop properly. The CFSTR_PERFORMEDDROPEFFECT
format is the reliable way to indicate that an optimized move has taken place.

If the target did an unoptimized move, the data must be deleted by the source. To inform
the source that an unoptimized move was performed:

• The target sets the pdwEffectvalue it received through its IDropTarget::Drop method
to DROP EFFECT _MOVE. The value will be returned to the source by DoDragDrop.

• The target also calls the data object's IDataObject::SetData method and passes it a
CFSTR_PERFORMEDDROPEFFECT format identifier set to DROPEFFECT _MOVE.
This method call is necessary because some drop targets might not set the pdwEffect
parameter of DoDragDrop properly. The CFSTR_PERFORMEDDROPEFFECT
format is the reliable way to indicate that an unoptimized move has taken place.

• The source inspects the two values that can be returned by the target. If both are
set to DROP EFFECT _MOVE, it completes the unoptimized move by deleting the
original data. Otherwise, the target did an optimized move and the original data has
been deleted.

104 Volume 5 Microsoft Windows Shell

Handling Delete-on-Paste Operations
Scenario: One or more files are cut from a folder in Windows Explorer and pasted into a
namespace extension. Windows Explorer leaves the files highlighted until it receives
feedback on the outcome of the paste operation.

Traditionally, when a user cuts data it immediately disappears from view. This might not
be efficient, and it can lead to usability problems if the user becomes concerned about
what has happened to the data. An alternative approach is to use a delete-on-paste
operation.

With a delete-on-paste operation, the selected data is not immediately removed from
view. Instead, the source application marks it as selected, perhaps by changing the font
or background color. After the target application has pasted the data, it notifies the
source about the outcome of the operation. If the target performed an optimized move,
the source can simply update its display. If the target performed a normal move, the
source must also delete its copy of the data. If the paste fails, the source application
restores the selected data to its original appearance.

Note The shell normally uses delete-on-paste when a cuVpaste operation is used to
move files. Delete-on-paste operations with shell objects normally use an optimized
move to move the files. To handle shell data transfer properly, your application must be
capable of detecting and handling delete-on-paste operations.

The essential requirement for delete-on-paste is that the target must report the outcome
of the operation to the source. However, standard clipboard techniques cannot be used
to implement delete-on-paste because they do not provide a way for the target to
communicate with the source. Instead, the target application uses the data object's

IDataObject::SetData method to report the outcome to the data object. The data object
can then communicate with the source through a private interface.

The basic procedure for a delete-on-paste operation is as follows:

1. The source marks the screen display of the selected data.

2. The source creates a data object. It indicates a cut operation by adding the
CFSTR_PREFERREDDROPEFFECT format with a data value of
DROPEFFECT _MOVE.

3. The source places the data object on the Clipboard using OleSetClipboard.

4. The target retrieves the data object from the Clipboard using OleGetClipboard.

5. The target extracts the CFSTR_PREFERREDDROPEFFECT data. If it is set to only
DROPEFFECT _MOVE, the target can either do an optimized move or simply copy
the data.

6. If the target does not do an optimized move, it calls the IDataObject::SetData method
with the CFSTR_PERFORMEDDROPEFFECT format set to DROPEFFECT _MOVE.

7. When the paste is complete, the target calls the IDataObject::SetData method with
the CFSTR_PASTESUCCEEDED format set to DROPEFFECT _MOVE.

Chapter 6 Shell Programmer's Guide 105

8. When the source's IDataObject::SetData method is called with the
CFSTR_PASTESUCCEEDED format set to DROPEFFECT _MOVE, it must check to
see if it also received the CFSTR_PERFORMEDDROPEFFECT format set to
DROPEFFECT _MOVE. If both formats are sent by the target, the source will have to
delete the data. If only the CFSTR_PASTESUCCEEDED format is received, the
source can simply remove the data from its display. If the transfer fails, the source
updates the display to its original appearance.

Transfering Data to and from Virtual Folders
Scenario: A user drags an object from or drops it on a virtual folder.

Virtual folders contain objects that are generally not part of the file system. Some virtual
folders, such as the Recycle Bin, can represent data that is stored on the hard drive but
not as ordinary file system objects. Some can represent stored data that is on a remote
system, such as a hand-held PC, or an FTP site. Others, such as the Printers folder,
contain objects that do not represent stored data at all. While some virtual folders are
part of the system, developers can also create and install custom virtual folders by
implementing a namespace extension.

Regardless of the type of data or how it is stored, the folder and file objects that are
contained by a virtual folder are presented by the shell as if they were normal files and
folders. It is the responsibility of the virtual folder to take whatever data it contains and
present it to the shell appropriately. This requirement means that virtual folders normally
support drag-drop and clipboard data transfers.

There are thus two groups of developers who need to be concerned with data transfer to
and from virtual folders:

• Developers whose applications need to accept data that is transferred from a virtual
folder.

• Developers whose namespace extensions need to properly support data transfer.

Accepting Data from a Virtual Folder
Virtual folders can represent virtually any type of data and can store that data in any way
they choose. Some virtual folders might actually contain normal file system files and
folders. Others might, for instance, pack all their objects into a single document or
database.

When a file system object is transferred to an application, the data object normally
contains a CF _HDROP format with the object's fully qualified path. Your application can
extract this string, and use the normal file system functions to open the file and extract its
data. However, because virtual folders typically do not contain normal file system
objects, they generally do not use CF _HDROP.

Instead of CF _HDROP, data is normally transferred from virtual folders with the
CFSTR_FILEDESCRIPTOR/CFSTR_FILECONTENTS formats. The
CFSTR_FILECONTENTS format has two advantages over CF _HDROP:

106 Volume 5 Microsoft Windows Shell

• No particular method of data storage is assumed.

• The format is more flexible. It supports three data transfer mechanisms: a global
memory object, an IStream interface, or an IStorage interface.

Global memory objects are rarely used to transfer data to or from virtual objects because
the data must be copied into memory in its entirety. Transferring an interface pointer
requires almost no memory and is much more efficient. With very large files, an interface
pointer might be the only practical data transfer mechanism. Typically, data is
represented by an IStream pointer, because that interface is somewhat more flexible
than IStorage. The target extracts the pointer from the data object and uses the
interface methods to extract the data.

For further discussion of how to handle the CFSTR_FILEDESCRIPTORI
CFSTR_FILECONTENTS formats, see Using the CFSTR_FILECONTENTS Format to
Extract Data from a File.

Transferring Data to and from a NameSpace Extension
When you implement a namespace extension, you will normally want to support drag­
drop capabilities. Follow the recommendations for drop sources and targets discussed in
General Guidelines. In particular, a namespace extension must:

• Be able to handle the CFSTR_FILEDESCRIPTORI CFSTR_FILECONTENTS
formats. These two formats are normally used to transfer objects to and from
namespace extensions.

• Be able to handle optimized moves. The shell expects that shell objects will be moved
with an optimized move.

• Be able to handle a delete-on-paste operation. The shell uses delete-on-paste when
objects are moved from the shell with a cut/paste operation.

• Be able to handle data transfer through an IStream or Istorage interface. Data
transfer to or from a virtual folder is normally handled by transferring one of these two
interface pOinters, typically an IStream pOinter. The target then calls the interface
methods to extract the data.

• As a drop source, the namespace extension must extract the data from storage
and pass it through this interface to the target.

• As a drop target, a namespace extension must accept data from a source through
this interface and store it properly.

For a more thorough discussion of how to implement a namespace extension, see
Namespace Extensions.

Dropping Files on the Recycle Bin
Scenario: The user drops a file on the Recycle Bin. Your application or namespace
extension deletes the original file.

Chapter 6 Shell Programmer's Guide 107

The Recycle Bin is a virtual folder that is used as a repository for files that are no longer
needed. As long as the Recycle Bin has not been emptied, the user can later recover the
file and return it to the file system.

For the most part, transferring shell objects to the Recycle Bin works much like any other
folder. However, when a user drops a file on the Recycle Bin, the source needs to delete
the original, even if the feedback from the folder indicates a copy operation. Normally, a
drop source has no way of knowing which folder its data object has been dropped on.
However, for Windows 2000 and later systems, when a data object is dropped on the
Recycle Bin, the shell will call the data object's IDataObject::SetData method with a
CFSTR_TARGETCLSID format set to the Recycle Bin's CLSID (CLSID_RecycleBin). To
handle the Recycle Bin case properly, your data object should be able to recognize this
format and communicate the information to the source through a private interface.

Creating and Importing Scrap Files
Scenario: A user drags some data from an OLE application's data file and drops it on
the desktop or Windows Explorer.

Windows allows users to drag an object from an OLE application's data file and drop it
on the desktop or a file system folder. This operation creates a scrap file, which contains
the data or a link to the data. The file name is taken from the short name registered for
the CLSID of the object and the CF _TEXT data. For the shell to create a scrap file
containing data, the application's IDataObject interface must support the
CF _EMBEDSOURCE clipboard format. To create a file containing a link, IDataObject
must support the CF _LlNKSOURCE format.

There are also three optional features that an application can implement to support
scrap files:

• Round-trip support

• Cached data formats

• Delayed rendering

Round-trip support

A round trip involves transferring a data object to another container and then back to the
original document. For instance, a user could transfer a group of cells from a
spreadsheet to the desktop, creating a scrap file with the data. If the user then transfers
the scrap back to the spreadsheet, the data needs to be integrated into the document as
it was before the original transfer.

When the shell creates the scrap file, it represents the data as an embedding object.
When the scrap is transferred to another container, it is transferred as an embedding
object, even if it is being returned to the original document. Your application is
responsible for determining the data format contained in the scrap, and putting the data
back into its native format if necessary.

108 Volume 5 Microsoft Windows Shell

To establish the format of the embedded object, determine its CLSID by retrieving the
object's CF _OBJECTDESCRIPTOR format. If the CLSID indicates a data format that
belongs to the application, it should transfer the native data instead of calling
OleCreateFromData.

Cached data formats
When the shell creates a scrap file, it checks the registry for the list of available formats.
By default, there are two formats available: CF _EMBEDSOURCE and
CF _LlNKSOURCE. However, there are a number of scenarios where applications might
need to have scrap files in different formats:

• To allow scraps to be transferred to non-OLE containers, which cannot accepted
embedded object formats .

• To allow suites of applications to communicate with a private format.

• To make round trips easier to handle.

Applications can add formats to the scrap by caching them in the registry. There are two
types of cached formats:

• Priority cache formats. For these formats, the data is copied in its entirety into the
scrap from the data object.

• Delay-rendered formats. For these formats, the data object is not copied to the scrap.
Instead, rendering is delayed until a target requests the data. Delay-rendering is
discussed in more detail in the next section.

To add a priority cache or delay-rendered format, create a DataFormat subkey under
the CLSID key of the application that is the source of the data. Under that subkey, create
a PriorityCacheFormats or DelayRenderFormats subkey. For each priority cache or
delay-rendered format, create a numbered subkey starting with zero. Set the value of
this key to either a string with the registered name of the format, or a #X value, where X
represents the format number of a standard clipboard format.

The following sample shows cached formats for two applications. The MyProg1
application has the rich-text format as a priority cache format, and a private format "My
Formaf' as a delay-rendered format. The MyProg2 application has the CF _BITMAP
format ("#8") as a priority cache format.

Chapter 6 Shell Programmer's Guide 109

Additional formats can be added by creating additional numbered subkeys.

Delayed Rendering

A delayed rendering format allows an application to create a scrap file but delay the
expense of rendering the data until it is requested by a target. The IDataObject interface
of a scrap will offer the delayed rendering formats to the target along with native and
cached data. If the target requests a delayed rendering format, the shell will run the
application and provide the data to the target from the active object.

Note Because delayed rendering is somewhat risky, it should be used with caution. It
will not work if the server is not available, or on applications that are not OLE-enabled.

Dragging and Dropping Shell Objects Asynchronously
Scenario: A user transfers a large block of data from source to target. To avoid blocking
both applications for a significant amount of time, the target extracts the data
asynchronously.

Normally, drag-drop is a synchronous operation. In brief:

1. The drop source calls DoDragDrop and blocks its primary thread until the function
returns. Blocking the primary thread normally blocks UI processing.

2. After the target's IDropTarget::Drop method is called, the target extracts the data
from the data object on its primary thread. This procedure normally blocks the target's
UI processing for the duration of the extraction process.

3. Once the data has been extracted, the target returns the IDropTarget::Drop call, the
system returns DoDragDrop, and both threads can proceed.

In short, synchronous data transfer can block the primary threads of both applications for
a significant amount of time. In particular, both threads must wait while the target
extracts the data. For small amounts of data, the time required to extract data is small
and synchronous data transfer works quite well. However, synchronously extracting
large amounts of data can cause lengthy delays and interfere with the UI of both target
and source.

The IAsyncOperation interface is an optional interface that can be implemented by a
data object. It gives the drop target the ability to extract data from the data object
asynchronously on a background thread. Once data extraction is handed off to the
background thread, the primary threads of both applications are free to proceed.

How to use IASyncOperation

The essential purpose of IAsyncOperation is to allow the drop source and drop target to
negotiate whether data can be extracted asynchronously. The following procedure
outlines how the drop source uses the interface:

1. Create a data object that exposes IAsyncOperation.

110 Volume 5 Microsoft Windows Shell

2. CaIiIAsyncOperation::SetAsyncMode with fDoOpAsync set to VARIANT_TRUE to
indicate that an asynchronous operation is supported.

3. After DoDragDrop returns, caIiIAsyncOperation::lnOperation.

• If IAsyncOperation::lnOperation fails or returns VARIANT_FALSE, a normal
synchronous data transfer has taken place and the data extraction process is
finished. The source should do any cleanup that is required, and proceed .

• If IAsyncOperation::lnOperation returns VARIANT_TRUE, the data is being
extracted asynchronously. Cleanup operations should be handled by
IAsyncOperation:: EndOperation.

4. Release the data object.

5. When the asynchronous data transfer is complete, the data object normally notifies
the source through a private interface.

The following procedure outlines how the drop target uses the IAsyncOperation interface
to extract data asynchronously:

1. When the system calls IDropTarget::Drop, caIiIDataObject::Querylnterface and
request an IAsyncOperation interface (IID_IAsyncOperation) from the data object.

2. CaIiIAsyncOperation::GetAsyncMode. If the method returns VARIANT_TRUE, the
data object supports asynchronous data extraction.

3. Create a separate thread to handle data extraction and call
IAsyncOperation: :StartOperation.

4. Return the IDropTarget::Drop call, as you would for a normal data-transfer operation.
DoDragDrop will return and unblock the drop source. Do not call
IDataObject::SetData to indicate the outcome of an optimized move or delete-on­
paste operation. Wait until the operation is finished.

5. Extract the data on the background thread. The target's primary thread is unblocked
and free to proceed.

6. If the data transfer was an optimized move or delete-on-paste operation, call
IDataObject::SetData to indicate the outcome.

7. Notify the data object that extraction is finished by calling
IAsyncOperation: :EndOperation.

Extending the Shell

Creating a File Association
Files that contain a particular type of data commonly have the same file name extension.
It is appended to the file name, and typically consists of a dot, followed by three
alphanumeric characters. For example, ANSI text files commonly have a .txt file name
extension.

Chapter 6 Shell Programmer's Guide 111

Although it is customary, file name extensions are not restricted to three letters on
systems that support long file names. On Microsoft Windows 95 and later systems, you
can use any number of characters you like as long as the file name doesn't exceed 255
characters.

Note You can use multiple dots in a file name, but only those characters following the
final dot will be recognized as a file name extension. Any other dots will be treated as
part of the file name. Although file names can contain spaces, do not use spaces in file
name extensions.

Defining a File Class
Files with a common file name extension can be defined as members of a file class.
Defining a file class allows you to extend the shell by customizing the behavior of all files
in the class. The Shell Basics section discusses those behaviors that can be customized
by adding registry entries, including:

• Specifying the application used to open the file when it is double-clicked.

• Adding commands to the context menu .

• Specifying a custom icon.

For a greater degree of control over the behavior of a file class, you can write one or
more shell extension handlers. For more information, see Creating Shell Extension
Handlers.

To define a file class, first create a registry key for the extension, including the dot, under
HKEY _CLASSES_ROOT. Set the key's value to the ProglD for the associated
application. Next, create a second key under HKEY _CLASSES_ROOT for the
application's ProglD. Set it to a REG_SZ value that describes the application. For
example, to create a file class with a .myp extension and an associated application,
MyProgram.exe with a ProglD of MyProgram.1, the registry entries would be:

~'~1~~I~~~~~;;~pi~;~jt:'-;<:ji:,>
A user can act on a member of the file class in a variety of ways, such as double-clicking
or right-clicking the file in Windows Explorer. Once these two keys are in place, you can
add subkeys to them to customize the behavior of the file class and its associated
application. When a user acts on a member of the class, the shell's response will include
the information contained in these keys.

112 Volume 5 Microsoft Windows Shell

Defining Attributes for a File Class
Assigning attributes to a file class allows you to control some aspects of its behavior. It
also allows you to limit the extent to which the user can modify various aspects of the
class, such as its icon or verbs, with the Folder Options property sheet. The attributes
are defined as binary flags. To assign attributes to a file class, combine the selected
attributes with a logical OR to form a single attribute value. Add an EditFlags
REG_BINARY value to the class's ProglD key and set it to the attribute value. The
following table lists the file class attributes, and their numerical values.

Flag Value Description

FT A_Exclude

FTA_Show

FT A_Has Extension

FTA_NoEdit

FT A_No Remove

FTA_NoNewVerb

FTA_NoEditVerb

FTA_NoRemoveVerb

FT A_NoEditDesc

FT A_NoEditlcon

FT A_No Ed itDfIt

FTA_NoEditVerbCmd

FTA_NoEditVerbExe

FTA_NoDDE

FT A_NoEditMIME

FTA_OpenlsSafe

Ox00000001

Ox00000002

Ox00000004

Ox00000008

OxOOOOOO10

OxOOOOOO20

OxOOOOOO40

OxOOOOOO80

OxOOOOO100

OxOOOOO200

OxOOOOO400

OxOOOOO800

OxOOOO1000

OxOOOO2000

OxOOOO8000

OxOOO10000

Exclude the file class

Show file classes, such as folders, that
aren't associated with a filename extension.

The file class has a filename extension.

The registry entries associated with this file
class cannot be edited. New entries cannot
be added and existing entries cannot be
modified or deleted.

The registry entries associated with this file
class cannot be deleted.

No new verbs can be added to the file class.

Canonical verbs such as open and print
cannot be modified or deleted.

Canonical verbs such as open and print
cannot be deleted.

The description of the file class cannot be
modified or deleted.

The icon assigned to the file class cannot
be modified or deleted.

The default verb cannot be modified.

The commands associated with verbs
cannot be modified.

Verbs cannot be modified or deleted.

The DOE-related entries cannot be modified
or deleted.

The content-type and default-extension
entries cannot be modified or deleted.

The file class's open verb can be safely
invoked for downloaded files.

FT A_AlwaysUnsafe Ox00020000

FT A_AlwaysShowExt Ox00040000

FT A_NoRecentDocs Ox00100000

Chapter 6 Shell Programmer's Guide 113

Do not allow the "Never ask me" checkbox
to be enabled. The user can override this
attribute through the File Type dialog box.

Always show the file class's file name
extension, even if the user has selected the
"Hide Extensions" option.

Don't add members of this file class to the
Recent Documents folder.

The following example assigns the FTA_NoRemove and FTA_NoNewVerb attributes to
the .myp file class.

Excluding an Application from the Open With Dialog Box
The Open With dialog box, shown in Figure 6-4, is launched by default when the user
double-clicks a file that is not a member of a file class. It is also usually one of the items
that appears on the context menu that is displayed when the user right-clicks a file. The
purpose of this dialog box is to allow the user to specify which application they want to
use to open the file.

Figure 6-4: The Open With dialog box.

114 Volume 5 Microsoft Windows Shell

The applications that are listed on the Open With dialog are registered as subkeys of
HKEY _CLASSES_ROOT\Applicatlons. However, many applications should not be
used to open files that are not members of their associated file class. The preferred way
to exclude an application from the Open With dialog box is to add a NoOpenWith
REG_SZ value name to the application's subkey. For example, the following sample
registry entry excludes MyProgram.exe from the Open With dialog box.

An alternative way to exclude an application from the Open With dialog box is to append
the application's file name to Windows Explorer's kill list. This list is a REG_SZ value of
the HKEY _LOCAL_MACHINE\Software\Mlcrosoft\
Wlndows\CurrentVerslon\Explorer\FlleAssoclatlon key named KiliList. The kill list is
a string consisting of the file names of the applications, separated by semicolons (;). The
following example excludes MyProgram.exe from the Open With dialog box by
appending it to Windows Explorer's kill list, along with rundll.exe and taskman.exe.

Customizing Icons
Microsoft Windows supplies default icons for every item displayed on the desktop or in
the Windows Explorer. Mass storage devices, such as disk drives, are also assigned a
default icon. However, these icons often provide little insight to the user as to the
contents of the file or what program is associated with it. You can assign a custom icon
to a file system folder by creating a Desktop.ini file. This document discusses how use
the registry to associate custom icons with file classes and drive letters.

Assigning a Custom Icon to a File Class
By default, all files are displayed on the desktop or in Windows Explorer with a default
icon. For example, Figure 6-5 shows this icon used with MyDocs4.xyz.

All the files displayed in this screen shot contain ANSI text. The reason that the files with
the .txt extension do not display the default icon is that .txt has been registered as a file
class and assigned a custom icon.

Chapter 6 Shell Programmer's Guide 115

Figure 6-5: Default file icon.

Assigning a custom icon to a file class is a simple matter. Create a subkey, under the
key for the application's ProglD, and name it Defaultlcon. Assign it a REG_SZ value
containing the fully qualified path for the file with the icon. Any file containing an icon is
acceptable, including .ico, .exe, and .dll files. If there is more than one icon in the file, the
path should be followed by a comma, and then the index of the icon.

Figure 6-6 shows a custom icon that has been assigned to the .myp file class, which was
also used in the example in Creating a File Class. The My Documents directory now
looks like this:

Figure 6-6: Custom file icon.

In this example, the icon is in the c:\MyDir\MyProgram.exe file, with an index of two. The
registry entry that assigns the custom icon to all .myp files is:

116 Volume 5 Microsoft Windows Shell

Assigning a Custom Icon and Label to a Drive Letter
For shell versions 4.71 and later, you can use the registry to replace the standard drive
icon with a custom icon. With versions 5.0 and later, you can also add a custom label.
Custom drive icons and labels are normally used for removable mass storage devices,
such as tape drives, to allow users to easily distinguish them from their system's hard
and floppy drives.

To replace the standard drive icon with a custom icon, add a subkey named for the drive
letter to HKEY _LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Explorer\Drivelcons\. The drive letter should not be
fOllowed by a colon (:). Add a Defaultlcon subkey to the drive letter subkey and set its
default value to a string containing the location of the icon. The first part of the string
contains the fully-qualified path of the icon's file. If there is more than one icon in the file,
the path is followed by a comma, and then the zero-based index of the icon. To add a
custom label, add a DefaultLabel subkey to the drive letter subkey, and set its default
value to a string containing the label.

The following example specifies a custom icon and label for the E: drive. The icon is in
the C:\MyDir\MyDrive.exe file with a zero-based index of three.

If you change the registry programmatically, you must also call SHChangeNotify to notify
the shell to update its cache.

Extending Context Menus
Right clicking an object with Microsoft Windows 95 and later systems usually pops up a
context menu. This menu contains a list of commands that the user can select to perform
various actions on the object. This section is an introduction to context menus for file
system objects.

Context Menus for File System Objects
When a user right-clicks an object, such as a file, that is displayed in Windows Explorer
or on the desktop, a context menu appears with a list of commands. The user can then
perform an action on the file, such as opening or deleting it, by selecting the appropriate
command.

Chapter 6 Shell Programmer's Guide 117

Because context menus are often used for file management, the shell provides a set of
default commands, such as Cut and Copy, that will appear on the context menu for any
file. Note that although Open With is a default command, it is not displayed for some
standard file classes, such as .wav. Figure 6-7, a sample of the My Documents directory
that was also used as an example in Customizing Icons, shows a default context menu
that was displayed by right-clicking MyDocs4.xyz.

The reason that MyDocs4.xyz shows a default context menu is that it is not a member of
a registered file class. On the other hand, .txt is a registered file class. If you right-click
one of the .txt files, you will instead see a context menu with two additional commands in
its upper section: Open and Print. (See Figure 6-8.)

Once a file class is registered, you can extend its context with additional commands.
They are displayed above the default commands when any member of the class is right­
clicked. Although most of the commands added in this way are common ones, such as
Print or Open, you are free to add any command that a user might find helpful.

All that is required to extend the context menu for a file class is to create a registry entry
for each command. A more sophisticated approach is to implement a context menu
handler, which allows you extend the context menu for a file class on a file by file basis.
For more information, see Creating Context Menu Handlers.

MI'Docs1.txt MI'Docs2.txt MI'D ocs3. txt

Ci~SI1oUcul:
QeJele ,

Figure 6-7: Default context menu.

118 Volume 5 Microsoft Windows Shell

~, Send To ..

MyDoc GMt

Create,Shortcut
Delete'
Aena~e ." "

Figure 6-8: Context menu associated with a registered file class.

Verbs
Each command on the context menu is identified in the registry by its verb. These verbs
are the same as those used by ShellExecuteEx when launching applications
programmatically. For further information about the use of ShellExecuteEx, see the
discussion in Launching Applications.

A verb is a simple text string that is used by the shell to identify the associated
command. Each verb corresponds to the command string that would be used to launch
the command in a console window or batch (.bat) file. For example, the open verb
normally launches a program to open a file. Its command string typically looks something
like this:

My Program'; exs"%l"

Note If any element of the command string contains or might contain spaces, it must be
enclosed in quotation marks. Otherwise, if the element contains a space, it will not parse
correctly. For instance, "My Program.exe" will launch the application properly. If you use
My Program.exe, the system will attempt to launch "My" with "Program.exe" as its first
command line argument. You should always use quotation marks with arguments such
as "%1" that are expanded to strings by the shell, because you cannot be certain that the
string will not contain a space.

Chapter 6 Shell Programmer's Guide 119

Verbs can also have a display string associated with them, which is displayed on the
context menu instead of the verb string itself. For example, the display string for openas
is "Open With ... ". Like normal menu strings, including an ampersand (&) in the display
string allows keyboard selection of the command.

Canonical Verbs
In general, applications are responsible for providing localized display strings for the
verbs they define. However, to provide a degree of language independence, the system
defines a standard set of commonly used verbs called canonical verbs. A canonical verb
can be used with any language and the system will automatically generate a properly
localized display string. For instance, the open verb's display string will be set to "Open"
on an English system, and "Offnen" on a German system.

The canonical verbs include:

• open

• print
• explore

• find

• openas
• properties

The printto verb is also canonical, but never displayed. It allows the user to print a file
by dragging it to a printer object.

Extended Verbs
When the user right-clicks an object, the context menu contains all the normal verbs.
However, there may be commands that you wish to support, but not have displayed on
every context menu. For example, you may have commands that are not commonly
used, or intended for experienced users. For this reason, you can also define one or
more extended verbs. These verbs are also character strings, and are essentially similar
to normal verbs. They are distinguished from normal verbs by the way they are
registered. To have access to the commands associated with extended verbs, the user
must right-click an object while pressing the SHIFT key. They will then be displayed
along with the normal verbs.

Extending the Context Menu for a File Class
The simplest way to extend the context menu for a file class is with the registry. To do
this, add a shell subkey, below the key for the ProglD of the application associated with
the file class. Optionally, you can define a default verb for the file class by making it the
default value of the shell subkey.

The default verb is displayed first on the context menu. Its purpose is to provide the shell
with a verb it can use when ShellExecuteEx is called, but no verb is specified. The shell
does not necessarily select the default verb when ShellExecuteEx is used in this

120 Volume 5 Microsoft Windows Shell

fashion. For shell versions 5.0 and later, found on Windows 2000 and later systems, the
shell uses the first available verb from the following list. If none are available, the
operation fails.

1. The open verb

2. The default verb

3. The first verb in the registry

4. The openwith verb

For shell versions prior to version 5.0, omit item three.

Below the shell subkey, create one subkey for each verb you wish to add. Each of these
subkeys will have a REG_SZ value set to the verb's display string. You can omit the
display string for canonical verbs because the system will automatically display a
properly localized string. If you omit the display string for non-canonical verbs, the verb
string will be displayed. For each verb subkey, create a command subkey, with the
default value set to the command string.

Figure 6-9 shows a context menu for the .myp file class used in Creating a File
Association and Customizing Icons. It now has open, doit, print, and printto verbs on
its context menu, with doit as the default verb. The context menu will look like this:

MyDocs1.txt MyDocs2.txt MyDocs3.txt

Figure 6-9: Context menu for the .myp file class.

Chapter 6 Shell Programmer's Guide 121

The registry entries used to extend the context menu shown in the preceding illustration
are:

Although the "Open With ... " command is above the first separator, it is automatically
created by the system and doesn't require a registry entry. The system will automatically
create display names for the canonical verbs, open and print. Because do it is not a
canonical verb, it is assigned a display name, "&Do It", which can be selected by
pressing the 'd' key. The printto verb does not appear on the context menu, but
including it allows the user to print files by dropping them on a printer icon. In this
example, %1 represents the file name and %2 the printer name. You can ignore %3 and
%4 for Windows 95 and later systems. For Windows 3.1 systems, %3 represents the
driver name and %4 the port name. Unlike most similar arguments, the %3 and %4
arguments of printto should not be enclosed in quotation marks.

Defining Extended Verbs
You can also use the registry to define one or more extended verbs. The associated
commands will only be displayed when the user right-clicks an object while also pressing
the shift key. To define a verb as extended, simply add an "extended" REG_SZ value to
the verb's subkey. The value should not have any data associated with it. The following
sample registry entry shows the example from the previous section, with doit defined as
an extended verb.

(continued)

122 Volume 5 Microsoft Windows Shell

(continued)

Associating Verbs with DDE Commands
Invoking a verb normally launches the application specified by the verb's command
subkey. However, if your application supports DDE, you can instead have the shell
initiate a DDE conversation.

To specify that invoking a verb should initiate a DDE conversation, add a ddeexec
subkey to the verb's key. Set the default value of ddeexec to the DDE command string.
The ddeexec key has three optional subkeys that provide some control over the DDE
process.

• application. Set the default value of this subkey to the application name to be used to
establish the DDE conversation. If there is no application subkey, the default value of
the verb's command subkey is used as the application name.

• topic. Set the default value of this subkey to the topic name of the DDE conversation.
If there is no topic subkey, System is used as the topic name.

• ifexec. Set the default value of this subkey to the DDE command to be used if DDE
conversation cannot be initiated. When initiation fails, the application specified by the
default value of the verb's command subkey is launched. If an ifexec key exists, its
default value will then be used as the DDE command. If there is no ifexec subkey, the
default value of the ddeexec key will used again as the DDE command.

The following example specifies that invoking the open verb for MyProgram.1 initiates a
DDE conversation with a DDE command of Open("%1"), and an application name of
MyProgram.

Extending the New Submenu
When a user opens the File menu in Windows Explorer, the first command is New.
Selecting this command displays a submenu. By default, it contains two commands,
Folder and Shortcut, that allow users to create subfolders and shortcuts. This submenu
can be extended to include file creation commands for any file class.

Chapter 6 Shell Programmer's Guide 123

To add a file-creation command to the New submenu, your application's files must have
a file class associated with them. Include a SheliNew subkey, under the file extension
key. When the File menu's New command is selected, the shell will add it to the New
submenu. The command's display string will be the descriptive string that is assigned to
the program's ProglD.

Assign one or more data values to the SheliNew subkey to specify the file creation
method. The available values follow:

Value Description

Command Executes an application. This is an REG_SZ value specifying the path of
the application to be executed. For example, you could set it to launch a
wizard.

Data Creates a file containing specified data. Data can be either a REG_SZ or
REG_BINARY value with the file's data. Data is ignored if either NuliFile
or FileName are specified.

FileName Creates a file that is a copy of a specified file. FileName is a REG_SZ
value, set to the fully qualified path of the file to be copied.

NuliFile Creates an empty file. NuliFile is not assigned a value. If NuliFile is
specified, Data and FileName are ignored.

Figure 6-10 shows the New submenu for the .myp file class used as an example in
Creating a File Association and Customizing Icons. It now has a command, "MyProgram
Application". When a user selects MyProgram Application from the New submenu, the
shell will create a file named "New MyProgram Application.myp" and pass it to
MyProgram.exe.

Figure 6-10: The New submenu for the .myp file class.

124 Volume 5 Microsoft Windows Shell

The registry entry is now:

Customizing Folders with Desktop.ini
File system folders are commonly displayed with a standard icon and set of properties,
which specify, for instance, whether or not the folder is shared. You can customize the
appearance and behavior of an individual folder in two ways:

• Create a Desktop.ini file for the folder

• Create a Folder.htt template for the folder

Folders can be displayed in either Classic or Web style. For a detailed discussion of
these styles, see Web View. The Desktop.ini file, discussed here, applies to both styles.
It allows you to assign a custom icon to a folder and control its behavior in a limited way.

To customize the folder's style beyond what is possible with the Desktop.ini file, you
must create a custom Folder.htt template for the folder. This file will affect only the
appearance of the folder when the Web style is selected. If this template is not present in
the folder, the shell uses a default template. For further discussion of .htt templates, see
The Web View Template.

Using Desktop.ini Files
Folders are normally displayed with the standard folder icon. The most common use of
the Desktop.ini file is to assign a custom icon to a folder. This icon will be displayed in
Classic style as well as Web style, and it will appear next to the folder's name anywhere
the name appears. You can also use Desktop.ini to create an infotip that displays
information about the folder and controls some aspects of the folder's behavior, such as
whether it can be shared.

Chapter 6 Shell Programmer's Guide 125

Use the following procedure to customize a folder's style with Desktop.ini:

• Use PathMakeSystemFolder to make the folder a system folder. You can also make
a folder a system folder from the command line by using attrib +s Fo/derName .

• Create a Desktop.ini file for the folder. You should mark it as hidden and read-on/yto
protect it from being modified.

Creating a Desktop.ini File
The Desktop.ini file is a text file that allows you to specify how a file system folder will be
viewed. There are three sections in the file. The first two, [ExtSheIiFolderViews] and
[{5984FFEO-28D4-11CF-AE66-08002B2E1262}] are necessary only if you want to use a
custom Folder.htt template. If you omit them, the system will use the default template. To
use a custom Folder.htt template, you must include these two sections into the
Desktop.ini file exactly as they are shown:

t~xtShel tFo"ld£jt¥i:ewsl > » »/'" .<)' .~.:!} .. ; •. :>/. '·~:;'(>U··>
~eifauJ t~U98'4H£~>:,,2eL!4'ji:f:tCf· AJ;'66:~~$~s~~b a~~r ":;Ji .> •• • .,> '.>
{5984FFEf:l:,>~ zgn4;11Cf~AE>~6"~~~~Z&2q4$~:}~.{~.!ffl4ft~0~J~~;:,l;l:Rf •• >
"A£~6,1Q$lr~B2,~1~()~1<{';:' 'i,:; iY;, "·:i;·l,i ;{::.;;,.:.: > .', • ••

" '. ,,' ' ',' '~:'f-!'(f " ~/'!'\,L'

1.t'5~~4·FF~~:~2:ari4~ 1, fEF·.~~~~r:0~~~ 1i2E1~~2~}1··:J·" > '"

per~Ht.Mor\t~er~if:rle:.1i'.fo.l·def<titt .'

The third section, [.SheIiClasslnfo], allows you to customize the folder's view by
assigning values to several entries:

Entry Value

ConfirmFileOp Set this entry to 0 to avoid a "You Are Deleting a System Folder"
warning when deleting or moving the folder.

NoSharing Set this entry to 1 to prevent the folder from being shared.

Icon File If you want to specify a custom icon for the folder, set this entry to
the icon's file name. The .ico file extension is preferred, but it is also
possible to specify .bmp files, or .exe and .dll files that contain icons.
If you use a relative path, the icon will be available to people who
view the folder over the network. You must also set the Iconlndex
entry.

Iconlndex Set this entry to specify the index for a custom icon. If the file
assigned to IconFile only contains a single icon, set Iconlndex to O.

InfoTip Set this entry to an informational text string. It will be displayed as an
infotip when the cursor hovers over the folder. If the user clicks on
the folder in a Web view, the information text will be displayed in the
folder's information block, below the standard information.

126 Volume 5 Microsoft Windows Shell

The following illustrations are of the Music folder with a custom Desktop.ini file. The
folder now:

• Has a custom icon.

• Does not display a "You Are Deleting a System Folder" warning if the folder is moved
or deleted.

• Cannot be shared.

• Displays informational text when the cursor hovers over the folder.

The folder options in Figures 6-11 through 6-13 have been set to show hidden files, so
that Desktop.ini is visible. A folder needs only its own Folder.htt template if it does not
use the default template. The Web style view of the folder looks like this:

My Documents
Computer
3>:: Floppy (A:)
Volume1 (C:)

i!lCJ Documents and SE
!CJ MSDOS7
:CJ My Documents
BCJ MyDir
. LC"

Figure 6-11: Web view of the Music folder.

When the cursor hovers over the folder, the infotip is displayed.

u

Select an item to view its
description.

See also:
My Documents

My Network Places
My Computer

Chapter 6 Shell Programmer's Guide 127

Some sensible information

Figure 6-12: Infotip displayed over the folder.

The Classic style of this folder is similar, with the custom icon replacing the folder icon
everywhere the folder name appears.

The following desktop.ini file was used to customize the Music folder, as seen in Figures
6-11 through 6-13. For instructional purposes, it includes the optional sections that are
needed if you want to use a custom Folder.htt template.

Select an item to view its
description.

See also:
My Documents

Mv Network Places
My Computer

desktop. ini

Folder.ico

Figure 6-13: Custom icon in use throughout the dialog box.

128 Volume 5 Microsoft Windows Shell

Creating an AutoPlay-Enabled CD-ROM Application
Microsoft AutoPlay is a feature of the Microsoft Windows operating system. It automates
the procedures for installing and configuring products designed for Windows-based
platforms that are distributed on CD-ROMs. When users insert an AutoPlay-enabled
compact disc into their CD-ROM drive, AutoPlay automatically runs an application on the
CD-ROM that installs, configures, or runs the selected product. If you want your CO­
RaM product to display the Microsoft Windows 95 logo, it must be enabled for AutoPlay.

AutoPlay can be used to install and run CD-ROM applications written for MS-DOS,
Windows 3.0 and Windows 3.1, and all 32-bit versions of Windows. Although AutoPlay is
most commonly used for Windows applications, it can also be used to install, configure,
or run MS-DOS-based applications in a Windows MS-DOS session. You can configure
each MS-DOS-based application with its own unique icon, Config.sys file, and
Autoexec.bat file. Windows creates the correct configuration files for the MS-DOS-based
application. The startup application then starts the MS-DOS-based application in a
window.

There are two essential requirements that a system must meet in order for AutoPlay to
work.

• The system must be running Windows 95, Windows NT 4.0, or later versions. MS­
DOS, Windows versions 3.1 and earlier, and Windows NT versions 3.51 and earlier
do not support AutoPlay. You can use AutoPlay-enabled CD-ROMs in such systems.
However, the AutoPlay features will be ignored, and the CD-ROMs will behave as
ordinary CD-ROMs.

• The CD-ROM drive must have 32-bit device drivers that detect when a user inserts a
compact disc and notify the system. Device drivers for MS-DOS or 16-bit versions of
Windows do not have this feature.

The following sections discuss how to implement an AutoPlay-enabled CD-ROM
application.

Chapter 6 Shell Programmer's Guide 129

Creating an AutoPlay-Enabled Application
Creating an AutoPlay-enabled CD-ROM application is a straightforward procedure. You
simply include two essential files:

• An Autorun.inf file

• A startup application

When a user inserts a disc into a CD-ROM drive on a AutoPlay-compatible computer,
the system immediately checks to see if the disc has a personal computer file system. If
it does, the system searches for a file named Autorun.inf. This file specifies setup
application that will be run, along with a variety of optional settings. The startup
application typically installs, uninstalls, configures, and perhaps runs the application.

Creating an Autorun.inf File
Autorun.inf is a text file located in the root directory of the CD-ROM that contains your
application. Its primary function is to provide the system with the name and location of
the application's startup program that will be run when the disc is inserted. The
Autorun.inf file can also contain optional information including:

• The name of a file that contains an icon that will represent your application's CD-ROM
drive. This icon will be displayed by Microsoft Windows Explorer in place of the
standard drive icon.

• Additional commands for the context menu that is displayed when the user right-clicks
the CD-ROM icon. You can also specify the default command that is run when the
user double-clicks the icon.

Autorun.inf files are similar to .ini files. They consist of one or more sections, each
headed by a name enclosed in square brackets. Each section contains a series of
commands that will be run by the shell when the disc is inserted. There are two sections
that are currently defined for Autorun.inf files:

• The [autorun] section contains the default AutoPlay commands. All Autorun.inf files
must have an [autorun] section.

• An optional [autorun.alpha] section can be included for Microsoft Windows NT 4.0
and later systems running on RISC-based computers. When a disc is inserted in a
CD-ROM drive on a RISC-based system, the shell will run the commands in this
section instead of those in the [autorun] section.

Note The shell checks for an architecture-specific section first. If it does not find one, it
uses the information in the [autorun] section. After the shell finds a section, it ignores all
others, so each section must be self-contained.

130 Volume 5 Microsoft Windows Shell

Each section contains a series of commands that determine how the Autorun operation
takes place. There are five commands available:

Command Description

defaulticon

icon

open

shell

shell\verb

Specifies the default icon for the application.

Specifies the path and file name of an application-specific icon for the
CD-ROM drive.

Specifies the path and file name of the startup application.

Defines the default command in the CD-RaM's context menu.

Adds commands to the CD-RaM's context menu.

The following is an example of a simple Autorun.inf file. It specifies Filename.exe as the
startup application. The second icon in Filename.exe will represent the CD-ROM drive
instead of the standard drive icon.

This Autorun.inf sample runs different startup applications depending on the type of
computer:

Tips for Writing AutoPlay Startup Applications
There are essentially no constraints on how to write an AutoPlay startup application. You
can implement it to do whatever you find necessary to install, uninstall, configure, or run
your application. However, the following tips provide some guidelines to implementing an
effective AutoPlay startup application.

• Users should receive feedback as soon as possible after they insert an AutoPlay
compact disc into the CD-ROM drive. Startup applications should thus be small
programs that load quickly. They should clearly identify the application and provide an
easy way to cancel the operation.

Chapter 6 Shell Programmer's Guide 131

• Typically, the initial part of the startup application presents users with a user interface,
such as a dialog box, asking them how they would like to proceed. Check to see if the
program is already installed. If not, the next step will probably be the setup procedure.
The startup application can take advantage of the time the user spends reading the
dialog box by starting another thread to begin loading the setup code. By the time the
user clicks OK, your setup program will already be partly if not fully loaded. This
approach significantly reduces the user's perception of the amount of time it takes to
load your application.

• If the application has already been installed, the user probably inserted the disk to run
the application. As with the setup case, you can start another thread to begin loading
application code to shorten the waiting time for the user.

• Hard disk space may be a limited resource on many systems. Here are a few hints for
minimizing hard disk usage:

• Keep the number of files that must be on the hard disk to a minimum. They should
be restricted to files that are essential to running the program or that would take an
unacceptably large amount of time to read from the CD-ROM.

• In many cases, installing nonessential files on the hard disk is not necessary, but
may provide benefits such as increased performance. Give the user the option of
deciding how to make the tradeoff between the costs and benefits of hard disk
storage.

• Provide a way to uninstall any components that were placed on the hard disk. For
more information about uninstalling an application, see Installing Applications.

• If your application caches data, give the user some control over it. Include options
in the startup application such as setting a limit on the maximum amount of cached
data that will be stored on the hard disk, or having the application discard any
cached data when it terminates.

Autorun.inf Commands

icon

This document is a reference for the commands that can be used in an Autorun.inf file.

The icon command specifies an icon which represents the AutoPlay-enabled drive in the
Windows user interface.

Parameters
icon filename

Name of an .ico, .bmp, .exe, or .dll file containing the icon information. If a file
contains more than one icon, you must also specify zero-based index of the icon.

132 Volume 5 Microsoft Windows Shell

label

open

Remarks
The icon represents the AutoPlay-enabled drive in the Microsoft Windows user interface.
For instance, in Windows Explorer, the drive will have this icon instead of the standard
drive icon. The icon's file must be in the same directory as the file specified by the open
command.

The following example specifies the second icon in the MyProg.exe file.

The label command specifies a text label to represent the AutoPlay-enabled drive in the
Windows user interface.

Parameters
Labe/Text

A text string containing the label. It may contain spaces.

Remarks
The label represents the AutoPlay-enabled drive in the Microsoft Windows user
interface. If an icon is also specified, the label will be displayed below it.

The following example specifies "My Drive Label" as the drive's label.

The open command specifies the path and file name of the application that AutoPlay
runs when a user inserts a disc in the drive.

Parameters
exefi/e

Fully qualified path of an executable file that will be run when the compact disc is
inserted. If only a file name is specified, it must be in drive's root directory. To locate
the file in a subdirectory, you must specify a path. You can also include one or more
command-line parameters to be passed to the startup application.

Chapter 6 Shell Programmer's Guide 133

Remarks
See Tips for Writing AutoPlay Startup Applications for further discussion of startup
applications.

shellexecute

shell

The shellexecute command specifies an application or data file that AutoPlay will use to
call ShellExecuteEx.

~~~~.ii~~r;~~M;~~~~~::~~7::~·;,~~,.;'},::}':~;,::,,:;;',~j;;';;~'··.,:;.;d~~::t:;;,~·'::;~·:> 

Parameters 
filepath 

A string containing the fully-qualified path of the directory that contains the data or 
executable file. If no path is specified, the file must be in the drive's root directory. 

filename 
A string containing the file's name. If it is an executable file, it will be launched. If it is a 
data file, it must be a member of a file class. ShellExecuteEx will launch the default 
command associated with the file class. 

paramx 
Any additional parameters that should be passed to Shell Execute Ex. 

Remarks 
This command is similar to open, but it allows you to use file association information to 
run the application. 

The shell command specifies a default command for the drive's context menu. 

Parameters 
verb 

The verb that corresponds to the command. The verb and its associated command 
must be defined in the Autorun.inf file with a shell/verb command. 

Remarks 
When a user right-clicks the drive icon, a context menu will appear. If an Autorun.inf file 
is present, the default context menu command is taken from it. This command is also 
executed when the user double-clicks the drive's icon. 



134 Volume 5 Microsoft Windows Shell 

To specify the default context menu command, first define its verb, command string, and 
menu text with shell/verb. Then use shell to make it the default context menu command. 
Otherwise, the default menu item text will be "AutoPlay", which will launch the application 
specified by the open command. 

shell\verb 
The shell\verb command adds a custom command to the drive's context menu. 

Parameters 
verb 

The command's verb. The shell\verb\command command associates the verb with 
an executable file. Verbs must not contain embedded spaces. By default, verb is the 
text that is displayed in the context menu. 

Filename.exe 
The path and file name of the application that performs the command. 

MenuText 
This parameter specifies the text that is displayed in the context menu. If it is omitted, 
verb is displayed. MenuTextcan be mixed-case and may contain spaces. You can set 
a shortcut key for the menu item by putting an ampersand (&) in front of the letter. 

Remarks 
When a user right-clicks the drive icon, a context menu will appear. Adding shell/verb 
commands to the drive's Autorun.inf file allows you to add commands to this context 
menu. 

There are two parts to this command, which must be on separate lines. The first part is 
shell/verb/command, and is required. It associates a string, called a verb, with the 
application to be launched when the command is run. The second part is the shelVverb 
command, and is optional. It can be included to specify the text that is displayed in the 
context menu. 

To specify a default context menu command, define the verb with shell/verb, and make 
it the default command with shell. 

The following sample Autorun.inf fragment associates the readitverb with the command 
string "Notepad abc\readme.txt". The menu text is "Read Me", and 'M' is defined as the 
item's shortcut key. When the user selects this command, the drive's abc\readme.txt file 
will be opened with Notepad. 

:!tt't,rtt~::;iw~:t~::& 



Chapter 6 Shell Programmer's Guide 135 

Enabling and Disabling AutoPlay 
There are many situations where AutoPlay may need to be temporarily or persistently 
disabled. For example, AutoPlay might interfere with the operation of a running 
application and need to be disabled for the duration. The system provides several ways 
to disable AutoPlay. 

Suppressing AutoPlay Programmatically 
There are a variety of situations where AutoPlay may need to be suppressed 
programmatically. Two examples are: 

• Your application has a setup program that requires the user to insert another disc that 
may contain an Autorun.inf file. 

• During the operation of your application, the user may need to insert another disc that 
may contain an Autorun.inf file. 

In either case, you will normally not want to launch another application while the original 
is in progress. 

Users can manually suppress AutoPlay by holding down the SHIFT key when they insert 
the CD-ROM. However, it is usually preferable to handle this operation programmatically 
rather than depending on the user. 

With systems that have shell version 4.70 and later, Microsoft Windows sends a 
"QueryCanceIAutoPlay" message to the foreground window. Your application can 
respond to this message to suppress AutoPlay. This approach is used by system utilities 
such as the Open common dialog box to disable AutoPlay. You will not get a 
"QueryCanceIAutoPlay" message with versions of Windows 95 that do not have the 
Internet Explorer 4.0 integrated shell installed. 

The following code fragments illustrate how to set up and handle this message. Your 
application must be running in the foreground window. First, register ' 
"QueryCanceIAutoPlay" as a Windows message: 

Your application's window must be in the foreground to receive this message. The 
message handler should return TRUE to cancel AutoPlay and FALSE to enable it. The 
following code fragment illustrates how to use this message to disable AutoPlay. 



136 Volume 5 Microsoft Windows Shell 

If your application is using a dialog box and needs to respond to a 
"QueryCanceIAutoPlay" message, it cannot simply return TRUE or FALSE. Instead, call 
SetWindowLong with nlndex set to DWL_MSGRESUL T. Set the dwNewLong parameter 
to TRUE to cancel AutoPlay and FALSE to enable it. For example, the following sample 
dialog procedure cancels AutoPlay when it receives a "QueryCanceIAutoPlay" message. 



Chapter 6 Shell Programmer's Guide 137 

Using the Registry to Disable AutoPlay 
There are two registry values that can be used to persistently disable AutoPlay: 
NoDriveAutoRun and NoDriveTypeAutoRun. The first value disables AutoPlay for 
specified drive letters and the second disables AutoPlay for a class of drives. If either of 
these values is set to disable AutoPlay for a particular device, it will be disabled. 

Note The NoDriveAutoRun and NoDriveTypeAutoRun values should only be modified 
by system administrators to change the value for the entire system for testing or 
administrative purposes. Applications should not modify these values, as there is no way 
to reliably restore them to their original values. 

The NoDriveAutoRun value disables AutoPlay for specified drive letters. It is a 
REG_DWORD data value, found under the 
HKEY _CURRENT _USER\Software\Microsoft\ 
Windows\CurrentVersion\Policies\Explorer key. The first bit of the value corresponds 
to A:, the second to B:, and so on. To disable AutoPlay for one or more drive letters, set 
the corresponding bits. For example, to disable the A: and C: drives, set 
NoDriveAutoRun to Ox00000005. 

The NoDriveTypeAutoRun value disables AutoPlay for a class of drives. It is a 
REG_DWORD or 4-byte REG_BINARY data value, found under the 
HKEY _CURRENT _USER\Software\Microsoft\ 
Windows\CurrentVersion\Policies\Explorer key. By setting the bits of this value's first 
byte, different drives can be excluded from working with AutoPlay. 

The following table gives the bits and bitmask constants, that can be set in the first byte 
of NoDriveTypeAutoRun to disable AutoPlay for a particular drive type. For Microsoft 
Windows NT and Windows 2000, you must restart Windows Explorer before the 
changes take effect. 

Bit number Bitmask constant Description 

Ox04 DRIVE_REMOVEABLE Disk can be removed from drive (such as 
a floppy disk). 

Ox08 DRIVE_FIXED Disk cannot be removed from drive 
(a hard disk). 

Ox10 DRIVE_REMOTE Network drive. 

Ox20 DRIVE_CDROM CD-ROM drive. 

Ox40 DRIVE_RAMDISK RAM disk. 



138 Volume 5 Microsoft Windows Shell 

AutoPlay for Other Types of Storage Media 
AutoPlay is primarily intended for public distribution of applications on CD-ROM and 
DVD-ROM. However, it is often useful to enable AutoPlay on other types of removable 
storage media. This feature is typically used simplify the debugging of AutoRun.inf files. 
AutoPlay only works on removable storage devices when the following criteria are met: 

• The device must have AutoPlay-compatible drivers. To be AutoPlay-compatible, a 
driver must notify the system that a disk has been inserted by sending a 
WM_DEVICECHANGE message. 

• The root directory of the inserted media must contain an Autorun.inf file. 

• The device must not have AutoPlay disabled through the registry. 

• The foreground application has not suppressed AutoPlay. 

Note This feature should not be used to distribute applications on floppy disks. 
Because implementing AutoPlay on a floppy disk provides an easy way to spread 
computer viruses, users should be suspicious of any publicly distributed floppy disk that 
contains an Autorun.inf file. 

Normally, AutoPlay starts automatically, but it can also be started manually. If the device 
meets the criteria listed above, the drive letter's context menu will include an AutoPlay 
command. To run AutoPlay manually, either right-click the drive icon and select 
AutoPlay from the context menu or double-click the drive icon. If the drivers are not 
AutoPlay-compatible, the context menu will not have an AutoPlay item and AutoPlay 
can not be started. 

AutoPlay-compatible drivers are provided with some floppy disk drives, as well as some 
other types of removable media such as Compact Flash cards. AutoPlay also works with 
network drives that are mapped to a drive letter with Windows Explorer or mounted with 
the Microsoft Management Console (MMC). As with mounted hardware, a mounted 
network drive must have an Autorun.inf file in its root directory, and must not be disabled 
through the registry. 

Note Please see the companion DVD at the back of Volume 1: Base SeNices for 
information about advanced shell topics. 



139 

CHAPTER 7 

Shell Interfaces 

Shell Interface Overview 
As mentioned previously, a large number of standard interfaces are defined by the shell 
and declared in shlobj.h. Most fall into one of three general categories: 

• Interfaces that are exposed by folders and available for use by applications. 

• Interfaces that are exposed by folders but used only by the shell. These interfaces 
generally are not used by applications, but must be implemented by namespace 
extensions. 

• Interfaces that are used by shell extensions, such as shell extension handlers or band 
objects. These interfaces are covered in the discussion of the associated shell 
extension. 

This chapter provides comprehensive information for Shell Interfaces. The standard 
structure of the sections in this chapter is that the name of the interfaces is presented as 
a header (such as the first section, IACList), followed by the interface's associated 
methods (such as IACList::Expand). Some interfaces have only one interface, others 
have many; regardless, the presentation of the interface overview, followed by its 
methods, is consistent throughout the chapter. Hopefully, you'll find this presentation of 
Shell Interfaces intuitive, and it'll help you get your Shell programming information 
quickly and easily-because that is the intent behind this chapter's structure. 

If you have feedback about this structure, or suggestions on how to make it more 
intuitive or more accessible, you can send me an e-mail message at 
winprs@microsoft.com. While I can't guarantee I'll answer (nor can I provide technical or 
usage support), you can be assured that I'll read it and consider your suggestions. 

Shell Interfaces 

IACList 
The IACList interface is deSigned to improve the efficiency of autocompletion when the 
candidate strings are organized in a hierarchy. 

Autocompletion normally requires three components: 

• The autocompletion client. This client is a window, such as a dialog box, that hosts 
the edit control. 



140 Volume 5 Microsoft Windows Shell 

• The autocompletion object (CLSID_AutoComplete). This object is provided by the 
system, and handles the user interface, parsing, and background thread 
management. 

• The autocompletion list object. This object is responsible for providing lists of 
candidate strings to the autocompletion object. 

A simple autocompletion list object needs to export only IEnumString in addition to 
IUnknown. When the user starts to enter characters in the edit box, the autocompletion 
object calls the list object's IEnumString interface to enumerate the list of strings that 
can be used to complete the partial string. The list object is responsible for maintaining a 
namespace and deciding which of those strings are relevant. 

The simplest approach a list object can take is to return every string in its namespace 
every time the autocompletion object makes a request. For a discussion of how to 
implement this type of list object, see IAutoComplete. However, this approach is 
practical only if the namespace is relatively small. When large numbers of strings are 
involved, the list object needs to restrict itself to a small subset of the namespace. 

The IACList interface is exported by autocompletion list objects to help them choose a 
sensible subset of strings from a hierarchically organized namespace. With a large 
namespace, this procedure substantially increases the efficiency of autocompletion. The 
basic procedure is: 

1. The AutoComplete object calls the list object's IEnumString interface. The list object 
returns the names of the top-level items in the hierarchy. For instance, if the 
namespace consists of every file and folder on the C: drive, the list object returns the 
fully qualified paths of the folders and files contained by the C:\ directory. 

2. Users continue to type until they enter a delimiter. The '\' and 'f characters are 
recognized as delimiters by the autocompletion object. 

3. The autocompletion object calls the list object's IACList::Expand method and passes 
it the current partial string. 

4. The autocomplete object then calls the list object's IEnumString interface again to 
request a new list of strings. If the partial string matches one of the top-level items in 
the namespace, the list object returns the names of the items that fall immediately 
under the selected item. For instance, if the user has entered "C:\Program Files\", the 
list object returns the names of the files and folders contained in that directory. If the 
name passed to IACList::Expand does not match any top-level item, the list object 
can stop returning strings until the autocomplete object calls IACList::Expand with a 
string that is in the list object's namespace. 

5. The process continues until the user selects a string, typically by preSSing the 
ENTER key. 

When to Implement 
This interface is implemented by autocompletion list objects that maintain a hierarchically 
organized namespace. It is essential for acceptable performance if the namespace is 
large. 



Chapter 7 Shell Interfaces 141 

When to Use 
Applications normally do not use this interface. 

Methods 
lAC List exposes the following method in addition to IUnknown: 

Expand Requests that the autocomplete object expand a string. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IACList:: Expand 
Requests that the autocompletion client generate candidate strings associated with a 
specified item in its namespace. 

Parameters 
pszExpand 

[in] NULL-terminated string to be expanded by the autocomplete object. 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Remarks 
The autocomplete object calls this method when a delimiter is entered in the edit control. 
If the string pointed to by pszExpand matches an item in the autocompletion client's 
namespace, the client generates strings for those items that fall immediately under 
pszExpand in its namespace hierarchy. The client returns those strings next time the 
autocompletion object calls the client's IEnumString interface. 

Assume, for example, that the client's namespace consists of all the files and folders on 
the C: drive, and pszExpand is set to "C:\Program Files\". The client should generate a 
list of strings corresponding to the fully qualified paths of the files and subfolders of 
"C:\Program Files\". 



142 Volume 5 Microsoft Windows Shell 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

lAC List 

IACList2 
The IACList2 interface extends the IACList interface to allow clients of an autocomplete 
object to retrieve and set option flags. 

When to Implement 
Autocompletion clients implement this interface to allow the autocomplete object to 
retrieve and set options. The options are basically a request that the client generate a list 
with the names of all the files and subfolders contained by one or more specified folders. 
The autocomplete object then calls the client's IEnumString interface to request the 
strings. 

When to Use 
This interface normally is not used by applications. 

Methods 
IACList2 exposes the following methods in addition to IUnknown: 

GetOptions Retrieves the current autocomplete options. 

SetOptions Sets the current autocomplete options. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



IACList2: :GetOptions 
Retrieves the current autocomplete options. 

Parameters 
pdwFlag 

Chapter 7 Shell Interfaces 143 

[out] Address of a value that will hold the current option flag when the method returns. 
It can be a combination of the following values: 

ACLO_CURRENTDIR Enumerate the current working directory. 

ACLO_DESKTOP Enumerate the Desktop folder. 

ACLO_FAVORITES 

ACLO_MYCOMPUTER 

ACLO_NONE 

Return Values 

Enumerate the Favorites folder. 

Enumerate the My Computer folder. 

Do not enumerate anything. 

Returns S_OK if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IACList2 

IACList2: :SetOptions 
Sets the current autocomplete options. 

;HitSU· . 
. . " ;, ~ ... ;' """ :", 



144 Volume 5 Microsoft Windows Shell 

Parameters 
dwFlag 

[in] New option flags. They are used to ask the client to include the names of the files 
and subfolders of the specified folders the next time its IEnumString interface is 
called. It can be one or more of the following flags: 

ACLO_CURRENTDIR Enumerate the current working directory. 

ACLO_DESKTOP 

ACLO_FAVORITES 

ACLO_MYCOMPUTER 

ACLO_NONE 

Return Values 

Enumerate the Desktop folder. 

Enumerate the Favorites folder. 

Enumerate the My Computer folder. 

Do not enumerate anything. 

Returns S_OK if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IACList2 

IActiveDesktop Interface 
Allows a client program to manage the desktop items and wallpaper on a local computer. 

Methods 
AddDesktopltem 

AddDesktopltemWithUI 

AddUrl 

ApplyChanges 

GenerateDesktopltemHtml 

GetDesktopltem 

GetDesktopltemBylD 

Adds a desktop item. 

Adds a desktop item to the Active Desktop using a user 
interface. 

Adds the desktop item associated with the specified 
URL. 

Applies changes to the Active Desktop. 

Generates a generic HTML page containing the given 
desktop item. 

Retrieves the specified desktop item. 

Retrieves the desktop item that matches the given 
identification. 



GetDesktopltemBySource 

GetDesktopltemCount 

GetDesktopltemOptions 

GetPattern 

GetWalipaper 

GetWallpaperOptions 

ModifyDesktopltem 

RemoveDesktopltem 

SetDesktopltemOptions 

Set Pattern 

SetWalipaper 

SetWallpaperOptions 

Chapter 7 Shell Interfaces 145 

Retrieves a desktop item using its source URL. 

Retrieves a count of the desktop items. 

Retrieves the desktop item's options. 

Retrieves the pattern being used currently. 

Retrieves the wallpaper being used currently. 

Retrieves the wallpaper options. 

Modifies the desktop item. 

Removes the specified desktop item from the desktop. 

Sets the item's options. 

Sets the ActiveDesktop pattern. 

Sets the wallpaper for the Active Desktop. 

Sets the wallpaper options. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :AddDesktopltem Method 
Adds a desktop item. 

Parameters 
pcomp 

Address of the COMPONENT structure associated with the item to be added. 

dwReserved 
Reserved. Must be set to zero. 

Return Value 
Returns one of the following values: 



146 Volume 5 Microsoft Windows Shell 

E_INVAILDARG 

S_OK 

Remarks 

Failed to add the desktop item or an instance of the desktop item 
already exists on the Active Desktop. 

One or more of the parameters were invalid. 

Desktop item has been added successfully. 

The desktop item is added to the desktop, but it does not save it to the registry. The 
client application must caIiIActiveDesktop::ApplyChanges separately to update the 
registry. 

Version 4.71 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

Active Desktop Interface (overview), IActiveDesktop 

IActiveDesktop: :AddDesktopltemWith UI Method 
Adds a desktop item to the Active Desktop after displaying user interfaces that confirm 
the addition of the desktop item, verify security zone permissions, and ask if the user 
wants to create a subscription. 

h~.I!it~~~ 
Parameters 
hwnd 

Handle of the parent window. If NULL, the desktop item will be added without 
displaying any user interface. 

pcomp 
Address of the COMPONENT structure containing the details of the desktop item to 
be added. 



Chapter 7 Shell Interfaces 147 

dwFlags 
Unsigned long integer value that contains the flags that control how the desktop item 
is added. Can be one of the following values: 

Flag Description 

DTLADDULDEFAUL T Do default action. Identical to using zero. 

DTLADDULDISPSUBWIZARD 

DTLADDULPOSITIONITEM 

Return Value 
Returns one of the following values: 

Activate the subscription wizard to allow the user 
to subscribe to this desktop item. 

Instructs the system to look at the COMPPOS 
structure passed to the cpPos member of the 
COMPONENT structure to make sure that the 
values are within reasonable limits. This 
value was added for Microsoft 
Internet Explorer 5.0. 

E_FAIL Failed to add the desktop item or an instance of the desktop item 
already exists on the Active Desktop. 

E_INVAILDARG 

S_OK 

Remarks 

One or more of the parameters were invalid. 

If the ADDURL_SILENT flag has been set, the desktop item either 
has been added successfully or already exists on the Active 
Desktop. Otherwise, the desktop item has been added 
successfully. 

This method creates a second instance of the Active Desktop to add the desktop item, 
so the desktop item will not appear in the current instance. The application must call the 
IUnknown::Release method on this IActiveDesktop interface and use the 
CoCreatelnstance function to get the Active Desktop object with the newly added 
component. 

... '," 

, . ~ ;. : ' :. 

Version 4.71 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



148 Volume 5 Microsoft Windows Shell 

Active Desktop Interface Overview, IActiveDesktop 

IActiveOesktop: :AddUrl Method 
Adds the desktop item associated with the specified URL. 

Parameters 
hwnd 

Handle to the parent window for the user interface. 

pszSource 
Address of a string value that contains the URL of the desktop item. 

pcomp 
Address of the COMPONENT structure containing the details of the desktop item to 
be added. 

dwFlags 
Unsigned long integer value that controls this method. Can be set to 
ADDURL_SILENT to add a desktop item without displaying any user interfaces. 

Return Value 
Returns one of the following values: 

E_INVAILDARG 

S_OK 

Remarks 

Failed to add the desktop item or an instance of the desktop item 
already exists on the Active Desktop. 

One or more of the parameters were invalid. 

If the ADDURL_SILENT flag has been set, the desktop item either 
has been added successfully or already exists on the Active 
Desktop. Otherwise, the desktop item has been added 
successfully. 

By default, this method will display some user interface and then add the desktop item to 
the Active Desktop. Like IActiveDesktop::AddDesktopltem, the client application must 
caIlIActiveDesktop::ApplyChanges to have the changes saved to the registry. 



Chapter 7 Shell Interfaces 149 

a_~~~fs!,' 
Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

Active Desktop Interface Overview, IActiveDesktop 

IActiveDesktop: :ApplyChanges 
Applies changes to the Active Desktop and saves them in the registry. 

:r~#~·&~;':: '. 
Parameters 
dwFlags 

Unsigned long integer value that contains the changes to be applied. Can be one of 
the following values: 

AD_APPLY _ALL 

AD_APPLY_BUFFERED_REFRESH 

AD_APPLY _DYNAMICREFRESH 

AD_APPLY _FORCE 

AD_APPLY_HTMLGEN 

AD_APPLY_REFRESH 

AD_APPLY_SAVE 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). / 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



150 Volume 5 Microsoft Windows Shell 

IActiveDesktop: :GenerateDesktopltemHtml 
Generatesa generic HTML page containing the given desktop item. 

Parameters 
pwszFileName 

String value containing the name to store the HTML file under. 

pcomp 
Address of the COMPONENT structure of the desktop item to insert in the HTML 
page. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and lat~r of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: : GetDesktopltem 
Retrieves the specified desktop item. 

Parameters 
nComponent 

Unsigned long integer value that contains the desktop item's index. The index values 
start at zero. Use IActiveDesktop::GetDesktopltemCount to get a count on the total 
number of desktop items. 



Chapter 7 Shell Interfaces 151 

pcomp 
Address of the COMPONENT structure of the retrieved desktop item. 

dwReserved 
Reserved. Must be set to zero. 

Remarks 
The index values will change as desktop items are added and removed from the Active 
Desktop. Applications cannot assume that an index value always will be associated with 
a particular desktop item. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop:: GetDesktopltemByl D 
Retrieves the desktop item that matches the given identification. 

Parameters 
dwlD 

Unsigned long integer value that contains the desktop item's identification. 

pcomp 
Address of the COMPONENT structure of the retrieved desktop item. 

dwReserved 
Reserved. Must be set to zero. 

Remarks 
The desktop item's identification is returned in the dwlD member of the COMPONENT 
structure returned from the IActiveDesktop::GetDesktopltem method. This 
identification is valid only until the IActiveDesktop::ApplyChanges method is called. 



152 Volume 5 Microsoft Windows Shell 

Applications that need to get the same desktop item consistently should enumerate the 
desktop items using the IActiveDesktop::GetDesktopltem and 
IActiveDesktop: :GetDesktopltemCount methods. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :GetDesktopltemBySource 
Retrieves a desktop item using its source URL. 

Parameters 
pszSource 

String value containing the source URL of the desktop item. 

pcomp 
Address of the COMPONENT structure that will be used to store the details about the 
desktop item. The size of the structure must be initialized in order for it to work 
properly. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



IActiveDesktop: : GetPattern 
Retrieves the pattern being used currently. 

Parameters 
pwszPattern 

Chapter 7 Shell Interfaces 153 

Address of a string value that contains a string of decimals whose bit pattern 
represents a picture. Each decimal represents the on/off state of the 8 pixels in 
that row. 

cchPattern 
Unsigned long integer value that contains the size of the string. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows .95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :GetDesktopltemCount 
Retrieves a count of the desktop items. 

Parameters 
IpiCount 

Address of an integer value that contains the count. 

dwReserved 
Reserved. Must be set to zero. 



154 Volume 5 Microsoft Windows Shell 

Remarks 
The IpiCountvalue can be used to enumerate all desktop items. The index values start 
at zero and go to IpiCount minus one. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :GetDesktopltemOptions 
Retrieves the desktop item's options. 

Parameters 
peo 

Address of the COMPONENTSOPT structure containing the options that are set 
currently. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: : GetWalipaper 
Retrieves the wallpaper being used currently. 



HRESULT. GetWall pape.r( 
LPWSTRpwszWa lJpaper. 
UU.TC~«Wilrl~a~er~ . 
DWQ~DcfwRe5e'f'ired' 

Parameters 
p wsz Wallpaper 

Chapter 7 Shell Interfaces 155 

String value that contains the file name of the wallpaper. 

cchWallpaper 
Unsigned integer value that contains size of the string. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :GetWallpaperOptions 
Retrieves the wallpaper options. 

Parameters 
pwpo 

Address of a WALLPAPEROPT structure containing the options set currently. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



156 Volume 5 Microsoft Windows Shell 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop:: ModifyDesktopltem 
Modifies the desktop item. 

Parameters 
pcomp 

Address of the COMPONENT structure containing the modifications. The desktop 
item associated with the wszSource member of the structure will be modified. 

dwFlags 
Unsigned long integer value containing the flags used for the modification. This can 
be one of the following values: 

• COMP _ELEM_ALL 

• COMP_ELEM_CHECKED 

• COMP _ELEM_CURITEMSTATE 

• COMP _ELEM_FRIENDL YNAME 

• COMP_ELEM_NOSCROLL 

• COMP _ELEM_ORIGINAL_CSI 

• COMP _ELEM_POS_LEFT 

• COMP _ELEM_POS_ TOP 

• COMP _ELEM_POS_ZINDEX 

• COMP _ELEM_RESTORED_CSI 

• COMP _ELEM_SIZE_HEIGHT 

• COMP _ELEM_SIZE_ WIDTH 

• COMP _ELEM_ TYPE 

Remarks 
The client application must caIiIActiveDesktop::ApplyChanges separately to update 
the registry. For example, to change the friendly name, first call this function with either 
COMP _ELEM_FRIENDL YNAME or COMP _ELEM_ALL in the dwFlags member of 
COMPONENT. Then caIiIActiveDesktop::ApplyChanges. 



Chapter 7 Shell Interfaces 157 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop:: RemoveDesktopltem 
Removes the specified desktop item from the desktop. 

HRE5ijLT:~e~O'l~De~kt~ptt~m( 
. 'tPCCOMPQWE.KT ~~pcomp.,· . 

,;·,owo)ID r:twRe"Set~erJ.~'· 
)i· 

Parameters 
pcomp 

Address of the COMPONENT structure that specifies the item to be removed. The 
desktop item associated with the wszSource member of the structure will be 
removed. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :SetDesktopltemOptions 
Sets the item's options. 



158 Volume 5 Microsoft Windows Shell 

Parameters 
pcomp 

Address of the COMPONENTSOPT structure that contains the options to set. 

dwReseNed 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: : SetPattern 
Sets the Active Desktop pattern. 

Parameters 
pwszPattern 

Address of a string value that contains a string of decimals whose bit pattern 
represents a picture. Each decimal represents the onloff state of the 8 pixels in 
that row. 

dwReseNed 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 



Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :SetWalipaper 
Sets the wallpaper for the Active Desktop. 

Parameters 
pwszWallpaper 

Chapter 7 Shell Interfaces 159 

String value containing the file name of the wallpaper to be set. 

dwReserved 
Reserved. Must be set to zero. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). . 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IActiveDesktop: :SetWallpaperOptions 
Sets the wallpaper options. 

Parameters 
pwpo 

Address of the WALLPAPEROPT structure containing the options to be set. 

dwReserved 
Reserved. Must be set to zero. 



160 Volume 5 Microsoft Windows Shell 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IAsyncOperation 
Allows interfaces that are normally synchronous to function asynchronously. 

This interface is exported primarily by the data objects used with drag-drop and 
Clipboard operations. Normally, such operations are synchronous. However, if data 
rendering will be time-consuming, IASyncOperation can be used to allow data 
extraction to take place on a background thread. 

When to Implement 
IAsyncOperation is an optional interface that is implemented by a data object. It allows 
the drop target to negotiate with the drop source to extract data from the data object 
asynchronously. 

When to Use 
Drop sources and targets use this interface when they wish to have a lengthy data 
extraction processes handled by a background thread. 

Methods 
IAsyncOperation exposes the following methods in addition to IUnknown: 

EndOperation Notifies the data object that that asynchronous data extraction has 
ended. 

GetAsyncMode Called by a drop target to determine whether the data object 
supports asynchronous data extraction. 

InOperation Called by the drop source to determine whether the target is 
extracting data asynchronously. 

SetAsyncMode Called by a drop source to specify whether the data object supports 
asynchronous data extraction. 

StartOperation Called by a drop target to indicate that asynchronous data 
extraction is starting. 



Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IASyncOperation:: EndOperation 

Chapter 7 Shell Interfaces 161 

Notifies the data object that that asynchronous data extraction has ended. 

Parameters 
hResult 

[in] An HRESUL T value that indicates the outcome of the data extraction. Set to 
S_OK, if successful, or an OLE error code otherwise. 

pbcReserved 
[in] Reserved. Set to NULL. 

dwEffects 
[in] A DROPEFFECT value that indicates the result of an optimized move. This 
should be the same value that would be passed to the data object as 
a CFSTR_PERFORMMEDDROPEFFECT format with a normal data extraction 
operation. 

Return Values 
Returns S_OK if successful or an OLE error value otherwise. 

Remarks 
EndOperation retrieves the IAsyncOperation pOinter stored by 
IAsyncOperation::SetAsyncMode, and passes its parameter values to that interface's 
IAsyncOperation::EndOperation method. EndOperation then releases the 
IAsyncOperation pOinter. 

EndOperation is also responsible for any clean-up operations that are needed. When 
finished, EndOperation should notify the drop source through a private interface. 

Version 5.00 and later of Shell32.dll. 



162 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IASyncOperation 

IASyncOperation:: GetAsyncMode 
Called by a drop target to determine whether the data object supports asynchronous 
data extraction. 

Parameters 
pfisOpAsync 

[out] A Boolean value that is set to VARIANT_TRUE to indicate that an asynchronous 
operation is supported, VARIANT_FALSE otherwise. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
The purpose of this method is to give the drop target the value of the 
IAsyncOperation::SetAsyncMode method's fDoOpAsync parameter. This parameter 
is set to VARIANT_FALSE, by default. If the data object supports asynchronous data 
extraction, it must caIiIAsyncOperation::SetAsyncMode and set fDoOpAsync to 
VARIANT_TRUE. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IASyncOperation 



Chapter 7 Shell Interfaces 163 

IASyncOperation: :lnOperation 
Called by the drop source to determine whether the target is extracting data 
asynchronously. 

HRESULT ·.IhOpel'at 1 on ( 
.BO()~;«p.fInA$yncOp 

Parameters 
pflnAsyncOp 

[out] Set to VARIANT_TRUE if data extraction is being handled asynchronously, or 
VARIANT_FALSE otherwise. 

Return Values 
Returns S_OK if successful or an OLE error value otherwise. 

Remarks 
This method is called by the drop source after DoDragDrop returns. pflnAsyncOp 
should be set to VARIANT_TRUE only if the drop target has called 
IAsyncOperation: :StartOperation. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IASyncOperation 

IASyncOperation::SetAsyncMode 
Called by a drop source to specify whether the data object supports asynchronous data 
extraction. 



164 Volume 5 Microsoft Windows Shell 

Parameters 
fDoOpAsync 

[in] A Boolean value that is set to VARIANT ~ TRUE to indicate that an asynchronous 
operation is supported, VARIANT_FALSE otherwise. It's default value is 
VARIANT_FALSE. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method is called by the drop source to indicate that the data object supports 
asynchronous data extraction. Store the fDoOpAsync for future use by 
IAsyncOperation::GetAsyncMode. The drop target determines whether asynchronous 
data extraction is supported by calling IAsyncOperation::GetAsyncMode to retrieve 
the fDoOpAsync value. 

If fDoOpAsync is set to VARIANT _ TRU E, SetAsyncMode must call 
IAsyncOperation::AddRef, and store the interface pOinter for use by 
IAsyncOperation:: EndOperation. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IASyncOperation 

IASyncOperation:: StartOperation 
Called by a drop target to indicate that asynchronous data extraction is starting. 

Parameters 
pbcReserved 

[in]Reserved. Set this value to NULL. 



Chapter 7 Shell Interfaces 165 

Return Values 
Returns S_OK if successful or an OLE error value otherwise. 

Remarks 
The drop target calls this method to notify the data object that asynchronous data 
extraction is starting. The method should store this information, so that it can be returned 
by IAsyncOperation::lnOperation. Once StartOperation has been called, the drop 
target returns the IDropTarget::Drop call as it would for normal synchronous data 
extraction. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IASyncOperation 

IAutoComplete 
The IAutoComplete interface is exposed by the autocomplete object 
(CLSID_AutoComplete). It allows applications to initialize, enable, and disable the object. 

Autocompletion expands strings that have been entered partially in an edit control into 
complete strings. For example, when a user starts to enter a URL in the Address edit 
control that is embedded in the Internet Explorer toolbar, autocompletion expands the 
string into one or more complete URLs that are consistent with the existing partial string. 
A partial URL string such as "mic" might be expanded to .. http://www.microsoft.com .. or 
.. http://www.microsoft.com/windows ... Autocompletion is used typically with edit controls 
or with controls that have an embedded edit control such as the comboboxex control. 

Autocompletion has two modes for displaying the completed string. The modes are 
independent, so you can enable either or both. To specify the mode, call 
IAutoComplete2: :SetOptions. 

• In autoappend mode, autocompletion appends the remainder of the most likely 
candidate string to the existing characters, highlighting the appended characters. The 
edit control behaves as if the user had entered the entire string manually and then 
highlighted the appended characters. If the user continues to enter characters, they 
are added to the existing partial string. If the user adds a character that is identical to 



166 Volume 5 Microsoft Windows Shell 

the next highlighted character, the highlighting for that character will be turned off. The 
remaining characters will still be highlighted. If the user adds a character that does not 
match the next highlighted character, autocompletion will attempt to generate a new 
candidate string based on the larger partial string. It will append the remainder of the 
new candidate string to the current partial string, as before. If no candidate string can 
be found, only the typed characters will appear and the edit box will behave as it 
would without autocompletion. This process continues until the user accepts a string. 

• In autosuggest mode, autocompletion displays a drop-down list, with one or more 
suggested complete strings, beneath the edit control. The user can select one of the 
suggested strings, usually by clicking it with the mouse, or continue typing. As typing 
progresses, the drop-down list may be modified, based on the current partial string. If 
you set the ACO_SEARCH flag in the dwFlag parameter of 
IAutoComplete2::SetOptions, a "Search for "XXX"" item will be added to the bottom 
of the drop-down list. It will be displayed even if there are no suggested strings. "XXX" 
will be set to the current partial string and will be updated as the user continues to 
type. If the user selects "Search for "XXX"", your application should launch a search 
engine to assist them. 

The simplest way to implement autocompletion is to call SHAutoComplete. When this 
function is called for a system edit control, the control will autocomplete partially entered 
file-system paths or URLs. To enable autocompletion for other types of strings, or to 
have more control over how autocompletion works, you can use the underlying 
autocomplete object directly. 

When to Implement 
This interface normally is not implemented by applications. It is exposed by the shell's 
autocomplete object and used by applications. 

When to Use 
Use the IAutoComplete interface of the autocomplete object to initialize the object, and 
to enable or disable autocompletion. 

To implement autocompletion for an edit control using the autocomplete object: 

1. Implement a string list COM object that exports an IEnumString interface. This string 
list object is responsible for providing the list of strings that the autocomplete object 
will use as candidates for completed strings. 

2. Create an instance of the autocomplete object with CoCreatelnstance. Request a 
pOinter to its IAutoComplete interface. 

3. CaIiIAutoComplete::lnit. Set the hwndEdit parameter to the window handle of the 
edit control. If the edit control is embedded in another control, you must get the handle 
to the edit control itself. For example, to get a handle to the edit control embedded in 
a comboboxex control, send a CBEM_GETEDITCONTROL message. Set the 
punkACL parameter of IAutoComplete::lnit to the IUnknown pOinter of the string list 
object. 



Chapter 7 Shell Interfaces 167 

4. If you do not want to use the default options, get a pointer to the autocomplete 
object's IAutoComplete2 interface. CaIiIAutoComplete2::SetOptions to set the 
desired options. 

5. The autocomplete object uses the IUnknown pOinter of the string list object, passed 
as punkACL in step 4, to get a pOinter to that object's IEnumString interface. The 
autocomplete object then calls that interface to generate its list of candidate strings. It 
selects strings from that list that are an acceptable match to the partial string in the 
control. In autoappend mode, the characters needed to complete the string are 
appended to the partial string and highlighted. In autosuggest mode, a drop-down box 
with a list of one or more possible strings is displayed below the edit control. 

6. If the user accepts an autocompleted string, the edit control behaves as if the string 
had been entered manually. 

Autocompletion is enabled by default. Applications only need to call 
IAutoComplete::Enable to disable autocompletion, or to reenable it if it has been 
disabled. 

IAutoComplete exposes the following methods in addition to IUnknown: 

Methods Description 

Enable 

Init 

Enables or disables autocompletion. 

Initializes the autocomplete object. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in Shldisp.h. 

IAutoComplete2 

IAutoComplete:: Enable 
Enables or disables autocompletion. 



168 Volume 5 Microsoft Windows Shell 

Parameters 
tEnable 

[in] Value that is set to TRUE to enable autocompletion, or to FALSE to disable it. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
Autocompletion is enabled by default. Applications only need to call this method to 
disable autocompletion, or to reenable it if it has been disabled. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in Shldisp.h. 

IAutoComplete 

IAutoComplete: :Init 
Initializes the autocomplete object. 

Parameters 
hwndEdit 

[in] Window handle for the system edit control that is to have autocompletion enabled. 

punkACL 
[in] Pointer to the IUnknown interface of the string list object that is responsible for 
generating candidates for the completed string. The object must expose an 
IEnumString interface. 

pW5zRegKeyPath 
[in] Optional NULL-terminated Unicode string that gives the registry path, including the 
value name, where the format string is stored as a REG_SZ value. The autocomplete 



Chapter 7 Shell Interfaces 169 

object first looks for the path under HKEY _CURRENT _USER. If it fails, it then tries 
HKEY _LOCAL_MACHINE. For a discussion of the format string, see the definition of 
pW5zQuickComplete. 

pW5zQuickCompiete 
[in] String that specifies the format to be used if the user enters some text and 
presses CTRL-ENTER. The autocomplete object treats pW5zQuickCompiete as a 
sprintf format string, and the text in the edit box as its associated argument, to 
produce a new string. For example, set pW5zQuickCompieteto ''http://www.%s.comf'. 
When a user enters "MyURL" into the edit box and presses CTRL-ENTER, the text in 
the edit box is updated to ''http://www.MyURL.comf'. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in Shldisp.h. 

IAutoComplete 

IAutoComplete2 
The IAutoComplete2 interface extends IAutoComplete. It allows clients of the 
autocomplete object to retrieve and set a number of options that control how 
autocompletion operates. 

When to Implement 
This interface normally is not implemented by applications. It is exposed by the shell's 
autocomplete object and used by applications. 

When to Use 
Use this interface when you need to retrieve or set autocomplete options. The list of 
available options is given in the method references. 

IAutoComplete2 exposes the following methods in addition to IUnknown: 

Methods Description 

GetOptions 

SetOptions 

Retrieves the current autocomplete options. 

Sets the current autocomplete options. 



170 Volume 5 Microsoft Windows Shell 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in Shldisp.h. 

IAutoComplete2:: GetOptions 
Retrieves the current autocomplete options. 

Parameters 
pdwFlag 

[out] Flags that indicate the options that are set currently. This can be a combination 
of one or more of the following flags: 

Flag Description 

ACO_AUTOAPPEND Enable autoappend. 

ACO_AUTOSUGGEST Enable the autosuggest drop-down list. 

ACO_FILTERPREFIXES Do not match common prefixes, such as "www.", 
''http://', and so on. 

ACO_NONE No autocomplete. 

ACO_RTLREADING Normal windows display text left-to-right (L TR). 
Windows can be mirrored to display languages 
such as Hebrew or Arabic that read right-to-Ieft 
(RTL). Normally, a control's text is displayed in 
the same direction as the text in its parent 
window. If ACO_RTLREADING is set, the text 
reads in the opposite direction from the text in 
the parent window. 

ACO_SEARCH Add a search item to the list of completed 
strings. Selecting this item launches a search 
engine. 

ACF _UPDOWNKEYDROPSLlST Use the UP ARROW and DOWN ARROW keys 
to display the autosuggest drop-down list. 

ACO_USETAB Use the TAB key to select an item from the 
drop-down list. 



Chapter 7 Shell Interfaces 171 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in Shldisp.h. 

IAutoComplete2,IAutoComplete2::SetOptions 

IAutoComplete2: :SetOptions 
Sets the current autocomplete options. 

Parameters 
dwFlag 

[in] Flags that allow an application to specify autocomplete options. This can be a 
combination of one or more of the following flags: 

Flag Description 

ACO_AUTOAPPEND 

ACO_AUTOSUGGEST 

ACO_FILTERPREFIXES 

ACO_NONE 

ACO_RTLREADING 

Enable autoappend. 

Enable the autosuggest drop-down list. 

Do not match common prefixes, such as 
"www.", ''http://', and so on. 

No autocompletion. 

Normal windows display text from left to right 
(LTR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read 
from right to left (RTL). Normally, a control's 
text is displayed in the same direction as the 
text in its parent window. If 
ACO_RTLREADING is set, the text is read in 
the opposite direction from the text in the parent 
window. 

(continued) 



172 Volume 5 Microsoft Windows Shell 

(continued) 

Flag Description 

Add a search item to the dropdown list of 
completed strings. If this is item is selected, you 
should launch a search engine to assist the 
user. 

ACF _UPDOWNKEYDROPSLlST Use the UP ARROW and DOWN ARROW keys 
to display the autosuggest drop-down list. 

ACO_USETAB Use the TAB key to select an item from the 
drop-down list. This flag is disabled by default. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
The TAB key is disabled by default because it is used normally to move from control to 
control, not within a control. If you set the ACO_USETAB flag in dwFlag, users can move 
to a string in the drop-down list by pressing the TAB key. If the drop-down list is closed, 
the TAB key allows the user to move from control to control, as usual. The user can 
close the drop-down list by pressing the ESCAPE key. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in Shldisp.h. 

IAutoComplete2 

IColumnProvider 
The Windows Explorer Details view normally displays several standard columns. Each 
column lists information, such as the file size or type, for each file in the current folder. 
There can also be a number of columns that the user can choose to display. When the 
user right-clicks one of the column headers, a list of the available columns is displayed in 
a dialog box. By creating a column provider object that exports the IColumnProvider 
interface, you can add custom columns to that dialog box for display by Windows 
Explorer. For example, a collection of files that contain music could use a column 
provider to display columns listing the artist and piece contained by each file. 



Chapter 7 Shell Interfaces 173 

A column provider is a global object that is called every time Windows Explorer displays 
the Details view. Windows Explorer queries all registered column providers for their 
column characteristics. If the user has selected one of the column provider's columns, 
Windows Explorer queries the column provider for the associated data for each file in the 
folder. It then displays all the selected columns. 

Typically, column providers are used to display one or more custom columns for a 
particular file class. When a column provider receives a request for data, it provides it if 
the file is a member of its supported class. Otherwise, it ignores the request by returning 
S_FALSE. 

Columns are identified by an SHCOLUMNID structure that contains an FMTID/PID pair. 
If possible, use existing FMTIDs and PIDs. If a folder contains files from more than one 
file class, the data from different classes can be merged into the same column. For 
instance, the Author PID from the summary information property set can be used for a 
wide variety of purposes. If you use a custom SHCOLUMNID structure, the column will 
display data only for those files that are members of the supported class. If the folder 
contains other files, their entries will be blank. 

When to Implement 
Implement an object that exports this interface when you want to have one or more 
custom columns displayed in the Windows Explorer Details view. Windows Explorer calls 
the interface methods to request the information it needs to display the column. The 
procedure used by Windows Explorer is: 

1. CaIiIColumnProvider::lnitialize to specify the folder to be displayed. 

2. CaIiIColumnProvider::GetColumnlnfo to get the column's characteristics. 

3. If the column has been selected by the user, caIiIColumnProvider::GetltemData for 
each file in the folder to get the data that belongs in the file's column entry. 

In addition to normal COM registration, the column provider object must also be 
registered with Windows Explorer. To do so, add a subkey named with the string form of 
the object's GUID to the 
HKEY _CLASSES_ROOnFolder\shellex\ColumnHandlers key. 

When to Use 
This interface is called by Windows Explorer. It normally is not used by applications. 

IColumnProvider exposes the following methods in addition to IUnknown: 

Methods Description 

GetColumnlnfo 

GetltemData 

Initialize 

Requests information about a column. 

Requests column data for aspecified file. 

Initializes the interface. 



174 Voiume 5 . Microsoft Windows Shell 

Version 5.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IColumnProvider: :GetColumnlnfo 
Requests information about a column. 

Parameters 
dwlndex 

[in] Column's zero-based index. It is an arbitrary value that is used to enumerate 
columns. 

psci 
[out] Pointer to an SHCOLUMNINFO structure to hold the column information. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method is called to assign an index to the column and to ask for details on what 
kind of information the column will contain. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IColumnProvider 



IColumnProvider: :GetltemData 
Requests column data for a specified file. 

Parameters 
pscid 

Chapter 7 Shell Interfaces 175 

[in] SHCOLUMNID structure that identifies the column. 

pscd 
[in] SHCOLUMNDATA structure that specifies the file. 

pvarData 
[out] Pointer to a VARIANT with the data for the file specified by pscdthat belongs in 
the column specified by pscid. Set this value if the file is a member of the class 
supported by the column provider. 

Return Values 
Returns S_OK if file data is returned, S_FALSE if the file is not supported by the column 
provider and no data is returned, or an OLE error value otherwise. 

Remarks 
This method is called to get the data for a file to be displayed in the specified column. It 
should be thread-safe. 

This method is called for every file that Windows Explorer displays, even though many of 
them will not be supported by a particular column provider. To improve performance, first 
check the pwszExt member of the structure pOinted to by pscdto see if it has a file 
name extension that is supported by the column provider. If not, avoid unnecessary 
processing by immediately returning S_FALSE. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IColumnProvider 



176 Volume 5 Microsoft Windows Shell 

IColumnProvider::lnitialize 
Initializes an IColumnProvider interface. 

Parameters 
psci 

[in] SHCOLUMNINIT structure with initialization information, including the folder 
whose contents are to be displayed. 

Return Value 
Returns S_OK if successful, or an OLE error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDlgBrowser 
The ICommDlgBrowser interface is exposed by the common file dialog boxes to be 
used when they host a shell browser. If supported, ICommDlgBrowser allows a shell 
view to handle several cases that need to behave differently in a dialog box than in a 
normal shell view. You obtain an ICommDlgBrowserinterface pOinter by calling 
Querylnterface on the ISheliBrowser object. 

When to Implement 
This interface is implemented only by the common file dialog boxes. 

When to Use 
Use ICommDlgBrowser when you need to provide special behavior while hosted inside 
the common dialog boxes. 

ICommDlgBrowser methods Description 

IncludeObject 

OnDefaultCommand 

OnStateChange 

Allows the common dialog to filter objects that the 
view displays. 

Called when a user double-clicks in the view or 
presses the ENTER key. 

Called after a change of state has occurred in a 
common dialog box. 



Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDlgBrowser:: IncludeObject 

Chapter 7 Shell Interfaces 177 

Allows the common dialog to filter objects that the view displays. 

Parameters 
ppshv 

A pOinter to the view's ISheliView interface. 

pidl 
Pointer to an item identifier list (PIDL) that is relative to the folder. 

Return Values 
The browser should return S_OK to include the object in the view, or S_FALSE to hide it. 

Remarks 
This method is called by the IEnumlDList implementation when hosted in the file dialog 
boxes. The enumerator should call this method to let the common dialog box filter out 
objects that should not be displayed. Typically, the file dialog boxes will get the display 
text of the item, and filter by the extension. 

Note to Callers Call before returning an object in the shell folder's IDLIST enumerator. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



178 Volume 5 Microsoft Windows Shell 

ICommDlgBrowser 

ICom m Dig Browser: : On Defau ItCom mand 
Called when a user double-clicks in the view or presses the ENTER key. 

Parameters 
ppshv 

A pointer to the view's ISheliView interface. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
The browser should return S_OK if it has processed the action or S_FALSE to let the 
view perform the default action. 

Note to Callers This method allows the default command to be handled by the 
common dialog box instead of the view. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDlgBrowser 

ICom m Dig Browser: : OnStateChange 
Called after a state, identified by the uChange parameter, has changed in the 
ISheliView interface. 



Parameters 
ppshv 

A pointer to the view's ISheliView interface. 

uChange 

Chapter 7 Shell Interfaces 179 

Change in the selection state. This parameter can be one of the following values: 

Value Description 

CDBOSC_KILLFOCUS 

CDBOSC_RENAME 

CDBOSC_SELCHANGE 

CDBOSC_SETFOCUS 

Remarks 

The view has lost the focus. 

An item has been renamed. 

The selection has changed. 

The focus has been set to the view. 

This method is used to let the common file dialog boxes track the state of the view and 
change its user interface as needed. 

Note to Callers When items in the view are selected, or when the view loses the focus, 
it needs to call this method to notify the common dialog box that either the view state or 
selection state is changing. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDlgBrowser 

ICommDIgBrowser2 
The ICommDIgBrowser2 interface extends the capabilities of ICommDlgBrowser. It is 
used by the common file dialog boxes when they host a shell browser. A pointer to 
ICommDIgBrowser2 can be obtained by calling Querylnterface on the ISheliBrowser 
object. 



180 Volume 5 Microsoft Windows Shell 

When to Implement 
This interface is implemented only by common file dialog boxes. 

When to Use 
Use ICommDIgBrowser2 when your shell view is hosted inside a common dialog box. 

ICommDIgBrowser2 implements all the ICommDlgBrowser methods, as well as 
IUnknown. The following methods are specific to ICommDlgBrowser2: 

Method Description 

GetDefaultMenuText 

GetViewFlags 

Notify 

Called by the shell view to get the default context menu text. 

Called by the shell view to ask the common dialog box 
hosting it if all files, including system and hidden files, should 
be displayed. 

Called by a shell view to notify the common dialog box 
hosting it that an event has occurred. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDlg Browser2:: GetDefaultMen uText 
Called by the shell view to get the default context menu text. 

Parameters 
pshv 

Pointer to the ISheliView interface of the hosted view. 

pszText 
Buffer that is used by the shell browser to return the default context menu text. 

cchMax 
Size of the pszText buffer. It should be at least the maximum allowable path length 
(MAX_PATH) in size. 



Chapter 7 Shell Interfaces 181 

Return Values 
Returns S_OK if a new default context menu text was returned in pshv. If S_FALSE is 
returned, use the normal default text. Otherwise, returns a standard COM error value. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDIgBrowser2 

ICommDlgBrowser2: :GetViewFlags 
Called by the shell view to ask the common dialog box hosting it if all files, including 
system and hidden files, should be displayed. 

Parameters 
pdwFlags 

Pointer to a flag value that indicates which files should be shown. If it is set to 
CDB2GVF _SHOWALLFILES, all files, including hidden and system files, should be 
shown. Otherwise, it is set to NULL. 

Return Values 
Returns S_OK if successful, or a standard COM error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDIgBrowser2 



182 Volume 5 Microsoft Windows Shell 

ICommDlgBrowser2: :Notify 
Called by a shell view to notify the common dialog box hosting it that an event has 
occurred. 

Parameters 
pshv 

Pointer to the ISheliView interface of the hosted view. 

dwNotifyType 
Flag that can take one of two values: 

CDB2N_CONTEXTMENU~DONE Indicates that the context menu is no longer 
displayed. 

CDB2N_CONTEXTMENU_START Indicates that the context menu is about to be 
displayed. 

Return Values 
Returns S_OK if successful, or a standard COM error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICommDIgBrowser2 

IContextMenu 
The IContextMenu interface is called by the shell to either create or merge a context 
menu associated with a shell object. 

When to Implement 
Implement IContextMenu in the following situations: 

• Shell extension handlers implement this interface to add items dynamically to a shell 
object's context menu. 

• Namespace extensions implement this interface to specify their object's context 
menus. 



Chapter 7 Shell Interfaces 183 

See Creating Context Menu Handlers for a detailed discussion of how to implement 
IContextMenu. 

When to Use 
Applications use IContextMenu to get information about the items in an objects context 
menu, and to invoke the associated commands. To get an object's IContextMenu 
interface, an application must call the object's ISheIiFolder::GetUIObjectOf method. 

Methods 
GetCommandString 

InvokeCommand 

QueryContextMenu 

Remarks 

Retrieves a command's language-independent name or its 
Help text. The language-independent name is also referred to 
as a verb. 

Carries out the command associated with a context menu 
item. 

Adds commands to a context menu. 

Shell extension handlers that export this interface must also export IShellExtlnit. See 
Creating Shell Extension Handlers for details. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMen u: :GetCommandString 
Retrieves a context menu command's language-independent name or its Help text. 

Parameters 
idCmd 

Menu command identifier offset. 



184 Volume 5 Microsoft Windows Shell 

uFlags 
Flags specifying the information to return. It can have one of the following values: 

GCS_HELPTEXTA Sets pszName to an ANSI string containing the help text for 
the command. 

GCS_HELPTEXTW Sets pszName to a Unicode string containing the help text for 
the command. 

GCS_ VALIDATEA Returns S_OK if the menu item exists, S_FALSE otherwise. 

GCS_VALIDATEW 

GCS_VERBA 

GCS_VERBW 

pwReserved 

Returns S_OK if the menu item exists, S_FALSE otherwise. 

Sets pszName to an ANSI string containing the language­
independent command name for the menu item. 

Sets pszName to a Unicode string containing the language­
independent command name for the menu item. 

Reserved. Applications must specify NULL when calling this method, and handlers 
must ignore this parameter when called. 

pszName 
. Address of the buffer to receive the null-terminated string being retrieved. 

cchMax 
Size of the buffer to receive the null-terminated string. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
The language-independent command name, or verb is a name that can be passed to the 
IContextMenu::lnvokeCommand method to activate a command by an application. 
The Help text is a description of the command that Windows Explorer displays in its 
status bar. It should be reasonably short (under 40 characters). 

Even though pszName is declared as an LPSTR, you must cast it to LPWSTR and 
return a Unicode string if uFlags is set to either GCS_HELPTEXTW or GCS_ VERBW. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMenu 



Chapter 7 Shell Interfaces 185 

IContextMenu::lnvokeCommand 
Carries out the command associated with a context menu item. 

H&~Sn~tln~~~4~~~~~(>... ....,. 
, ~,ef!ll"VOK~t.~ND1NFO ~p1:t'l' 

Parameters 
pici 

;.> ,", >;J',: 

Pointer to a CMINVOKECOMMANDINFO or CMINVOKECOMMANDINFOEX 
structure containing information about the command. See the Remarks for further 
details. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
The IContextMenu interface is exported by several shell extension handlers and 
namespace extensions to add commands to context menus. When the user selects one 
of the commands that the handler or namespace extension added to a context menu, 
the shell will call its InvokeCommand method. The command may be specified by its 
menu identifier offset, defined when IContextMenu::QueryContextMenu was called, or 
by its associated verb. An application can invoke this method directly by obtaining an a 
pOinter to an object's IContextMenu interface. It also can invoke it indirectly by calling 
Shell Execute or shellExecuteEx, and specifying a verb that is supported by the 
namespace extension or handler. 

Although the pici parameter is declared in shlobj.h as a CMINVOKECOMMANDINFO 
structure, in practice it often points to a CMINVOKECOMMANDINFOEX structure. This 
structure is an extended version of CMINVOKECOMMANDINFO, and has several 
additional members that allow Unicode strings to be passed. 

Note to Users You can pass either structure to IContextMenu::lnvokeCommand. 
Either will work for ANSI strings, but you must use a CMINVOKECOMMANDINFOEX 
structure for Unicode strings. 

Note to Implementers Check the cbsize member of pici to determine which structure 
was passed in. If it is a CMINVOKECOMMANDINFOEX structure, and the fMask 
member has the CMIC_MASK_UNICODE flag set, you must cast picHo 
CMINVOKECOMMANDINFOEX in order to use the Unicode information contained in the 
last five members of the structure. 



186 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMenu 

IContextMenu: :QueryContextMenu 
Adds commands to a context menu. 

Parameters 
hmenu 

Handle to the menu. The handler should specify this handle when adding menu items. 

indexMenu 
Zero-based position at which to insert the first menu item. 

idCmdFirst 
Minimum value that the handler can specify for a menu item identifier. 

idCmdLast 
Maximum value that the handler can specify for a menu item identifier. 

uFlags 
Optional flags specifying how the context menu can be changed. This parameter can 
be set to any combination of the following values: 

CMF _CANRENAME This flag is set if the calling application supports 
renaming of items. A context menu extension or drag­
and-drop handler should ignore this flag. A 
namespace extension should add a rename item to 
the menu if applicable. 

CMF _DEFAUL TONL Y This flag is set when the user is activating the default 
action, typically by double-clicking. This flag provides 



CMF _EXPLORE 

CMF_EXTENDEDVERBS 

CMF _INCLUDESTATIC 

CMF _NODEFAULT 

CMF_NORMAL 

CMF _NOVERBS 

CMF _ VERBSONL Y 

Chapter 7 Shell Interfaces 187 

a hint for the context menu extension to add nothing if 
it does not modify the default item in the menu. A 
context menu extension or drag-and-drop handler 
should not add any menu items if this value is 
specified. A namespace extension should add only the 
default item (if any). 

This flag is set when Windows Explorer's tree window 
is present. 

This flag is set when the calling application wants 
extended verbs. Normal verbs are displayed when the 
user right-clicks an object. To display extended verbs, 
the user must right-click while pressing the SHIFT key. 

This flag is set when a static menu is being 
constructed. Only the browser should use this flag. All 
other context menu extensions should ignore this flag. 

This flag is set if no item in the menu should be the 
default item. A drag-and-drop handler should ignore 
this flag. A namespace extension should not set any 
of the menu items to the default. 

Indicates normal operation. A context menu extension, 
namespace extension, or drag-and-drop handler can 
add all menu items. 

This flag is set for items displayed in the "Send To:" 
menu. Context menu handlers should ignore this 
value. 

This flag is set if the context menu is for a shortcut 
object. Context menu handlers should ignore this 
value. 

The remaining bits of the low-order word are reserved by the system. The high-order 
word may be used for context-specific communications. The CMF _RESERVED value 
can be used to mask out the low-order word. 

Return Values 
If successful, returns an HRESUL T value that has its severity value set to 
SEVERITY_SUCCESS and its code value set to the largest command identifier that was 
assigned, plus one. Otherwise, returns an OLE error code. 

Remarks 
This method should call either InsertMenu or InsertMenultem to insert its menu items 
into the menu specified by hMenu. The indexMenu parameter holds the index that 
should be used for the first menu item. The identifier of each menu item must fall within 
the range defined by idCmdFirst and idCmdLast. 



188 Volume 5 Microsoft Windows Shell 

A common practice is to set the first command identifier to idCmdFirst (an offset of zero), 
and increment the offset for each additional command by one. This practice ensures that 
you do not exceed idCmdLast and preserves the range of identifiers that are available 
for use by other handlers. You should store the offsets for future reference because they 
may be used to identify the command in subsequent calls to 
IContextMenu: :GetCommandString and IContextMenu:: InvokeCommand. 

If the shell subsequently calls another context menu handler, it will use the code value of 
the returned HRESULT to set idCmdFirstwhen it calls that handler's 
QueryContextMenu method. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMenu 

IContextMenu2 
The IContextMenu2 interface is used to either create or merge a context menu 
associated with a certain object when the menu involves owner-drawn menu items. 

When to Implement 
Implement IContextMenu2 if your namespace extension or context menu handler needs 
to process one or more of the following messages: 

• WM_INITMENUPOPUP 

• WM_DRAWITEM 

• WM_MEASUREITEM 

These messages are forwarded to IContextMenu2-through the HandleMenuMsg 
method-only if a Querylnterface call for an IContextMenu2 interface pointer is 
successful, indicating that the object supports this interface. 

When to Use 
Applications normally do not call this interface directly. 



Chapter 7 Shell Interfaces 189 

Methods 
IContextMenu2 is derived from IContextMenu. The following method is specific to 
IContextMenu2: 

HandleMenuMsg Handles messages related to drawing owner-drawn menu 
items. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMenu2::HandleMenuMsg 
Allows client objects of the IContextMenu interface to handle messages associated with 
owner-drawn menu items. 

Parameters 
uMsg 

Message to be processed. If it is WM_INITPOPUP, WM_DRAWITEM, 
WM_MENUCHAR,or WM_MEASUREITEM, the client object being called may provide 
owner-drawn menu items. 

wParam 
Additional message information. The value of this parameter depends on the value of 
the uMsg parameter. 

IParam 
Additional message information. The value of this parameter depends on the value of 
the uMsg parameter. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 



190 Volume 5 Microsoft Windows Shell 

Remarks 
HandleMenuMsg is called when a client of IContextMenu determines that the 
IContextMenu2 interface is supported and receives one of the messages specified in 
the description of the uMsg parameter. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMenu3 
The IContextMenu3 interface is used to create or merge a context menu associated 
with a certain object when the menu implementation needs to process the 
WM_MENUCHAR message. 

When to Implement 
Implement IContextMenu3 if your context menu extension needs to process the 
WM_MENUCHAR message. 

These messages are forwarded to IContextMenu3-through the HandieMenuMsg2 
method-only if a Querylnterface call for an IContextMenu3 interface pointer is 
successful, indicating that the object supports this interface. 

When to Use 
You do not call this interface directly. IContextMenu3 is used by the operating system 
only when it has confirmed that your application is aware of this interface. 

IContextMenu3 is derived from IContextMenu2. The following method is specific to 
IContextMenu3: 

IContextMenu3 method 

HandieMenuMsg2 

Description 

Called when the window that owns the menu receives 
a WM_MENUCHAR message. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 



Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMenu3:: HandieMenuMsg2 

Chapter 7 SheJllnterfaces 191 

Allows context menu handlers to process the WM_MENUCHAR message. 

Parameters 
uMsg 

Message to be processed. At the present time, this method is called only 
for WM_MENUCHAR. 

wParam 
Additional message information. The value of this parameter depends on the value of 
the uMsg parameter. 

IParam 
Additional message information. The value of this parameter depends on the value of 
the uMsg parameter. 

plResult 
Address of an LRESUL T value that the owner of the menu will return from the 
message. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
HandleMenuM~2 is called when a client of IContextMenu determines that the 
IContextMenu3 interface is supported and receives one of the messages specified in 
the description of the uMsg parameter. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 



192 Volume 5 Microsoft Windows Shell 

Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IContextMenu2 

ICopyHook 
ICopyHook is a COM-based interface used to create a copy hook handler. A copy hook 
handler is a shell extension that determines if a shell folder or printer object can be 
moved, copied, renamed, or deleted. The shell calls the ICopyHook::CopyCaliback 
method prior to performing one of these operations. 

The copy hook handler, which is an OLE in-process server (a DLL), does not perform the 
task itself, but it does approve or disapprove the action. If the shell receives approval 
from the copy hook handler, it performs the file system operation. Copy hook handlers 
are not informed about the success of an operation, so they cannot monitor actions 
taken on folder objects unless FindFirstChangeNotification is used. 

A folder object can have multiple copy hook handlers. For example, even if the shell 
already has a copy hook handler registered for a particular folder object, you can still 
register one of your own. If two or more copy hook handlers are registered for an object, 
the shell calls each of them before performing one of the specified file-system 
operations. 

The shell initializes ICopyHook directly, without using the IShellExtlnit interface first. 

CopyCaliback returns an integer value that indicates whether or not the shell should 
perform the operation. The shell will call each copy hook handler registered for a folder 
object until all the handlers have been called or until one of them has returned a value 
other than IDYES. The handler returns IDYES to specify that the operation should be 
performed, or IDNO or IDCANCEL to specify that the operation should be discontinued. 

When to Implement 

Implement a copy hook handler when you want to be able to control when, or if, these 
file system operations are performed on a given object. You might want to use a copy 
hook handler on shared folders, for example. 

When to Use 

You do not call this shell extension directly. ICopyHook::CopyCaliback is called by the 
shell prior to moving, copying, deleting, or renaming a shell folder object. 

Method Description 

CopyCaliback Determines whether a move, copy, delete, or rename operation on 
a folder object should be allowed or disallowed. 



Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICopyHook: :CopyCaliback 

Chapter 7 Shell Interfaces 193 

Determines whether the shell will be allowed to move, copy, delete, or rename a folder 
or printer object. 

Parameters 
hwnd 

Handle to the window that the copy hook handler should use as the parent for any 
user interface elements the handler may need to display. If FOF _SILENT is specified, 
the method should ignore this parameter. 

wFunc 
Operation to perform. This parameter can be one of the values listed under the 
wFunc member of the SHFILEOPSTRUCT structure. 

wFlags 
Flags that control the operation. This parameter can be one or more of the values 
listed under the fFlags member of the SHFILEOPSTRUCT structure. 

pszSrcFile 
Address of a string that contains the name of the source folder. 

dwSrcAttribs 
Attributes of the source folder. This parameter can be a combination of any of the file 
attribute flags (FILE_ATTRIBUTE_*) defined in the Windows header files. 

pszOestFile 
Address of a string that contains the name of the destination folder. 



194 Volume 5 Microsoft Windows Shell 

dwDestAttribs 
Attributes of the destination folder. This parameter can be a combination of any of the 
file attribute flags (FILE_ATTRIBUTE_*) defined in the Windows header files. 

Return Values 
Returns an integer value that indicates whether or not the shell should perform the 
operation. It can be one of the following: 

Value Description 

IDCANCEL 

IDNO 

IDYES 

Remarks 

Prevents the current operation and cancels any pending operations. 

Prevents the operation on this folder but continues with any other 
operations that have been approved (for example, a batch copy 
operation). 

Allows the operation. 

The shell calls each copy hook handler registered for a folder or printer object until all the 
handlers have been called, or until one of them returns IDNO or IDCANCEL. 

Copy hook handlers for folders are registered under 
HKEY _CLASSES_ROOnDirectory\Shellex\CopyHookHandlers\youccopyhooM{ copy 
hook CLSID value}. Copy hook handlers for printers are registered under 
HKEY _CLASSES_ROOnPrinters\Shellex\CopyHookHandlers\your_ 
copyhooM{copyhook CLSID value}. 

When this method is called, the shell initializes the ICopyHook interface directly without 
using an IShellExtlnit interface first. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

SHFileOperation 

ICurrentWorkingDirectory 
The ICurrentWorkingDirectory interface allows a client to retrieve or set an object's 
current working directory. 



Chapter 7 Shell Interfaces 195 

When to Implement 
Implement this interface if your object allows clients to retrieve or set the current working 
directory. 

When to Use 
Use this interface to retrieve or set the working directory of the object that exports it. 

Methods 
ICurrentWorkingDirectory exposes the following methods in addition to IUnknown: 

GetDirectory 

SetDirectory 

Retrieves the current working directory. 

Sets the current working directory. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICurrentWorkingDirectory::GetDirectory 
Retrieves the current working directory. 

Parameters 
pwzPath 

[out] Address of a buffer. On return, it will hold a NULL-terminated Unicode string with 
the current working directory's fully qualified path. 

cchSize 
[in] Size of the buffer in Unicode characters, including the terminating NULL character. 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 



196 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICurrentWorkingDirectory 

ICurrentWorkingDirectory: :SetDirectory 
Sets the current working directory. 

Parameters 
pwzPath 

[in] Address of a NULL-terminated Unicode string with the fully qualified path of the 
new working directory. 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ICurrentWorkingDirectory 

IDeskBand 
IDeskBand is used to obtain information about a band object. See Band Objects for 
more information about band objects. 

When to Implement 
Implement IDeskBand if you are implementing a band object. 



Chapter 7 Shell Interfaces 197 

When to Use 
You do not call this interface directly. IDeskBand is used by the shell or the browser to 
obtain display information for a band object. 

IDeskBand is derived from IDockingWindow. The following method is specific to 
IDeskBand: 

IDeskBand method Description 

GetBandlnfo Retrieves the information for a band object. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDeskBand: :GetBandlnfo 
Retrieves the information for a band object. 

Parameters 
dwBandlD 

Identifier of the band. The container assigns this identifier. The band object can keep 
this value if it is required. 

dwViewMode 
View mode of the band object. This will be one of the following values: 

DBIF _ VIEWMODE_NORMAL The band object is being displayed in a 
horizontal band. 

DBIF _ VIEWMODE_ VERTICAL The band object is being displayed in a 
vertical band. 

DBIF _VI EWMODE_FLOATI NG The band object is being displayed in a 
floating band. 

DBIF _ VIEWMODE_ TRANSPARENT The band object is being displayed in a 
transparent band. 



198 Volume 5 Microsoft Windows Shell 

pdbi 
Address of a DESKBANDINFO structure that receives the band information for the 
object. The dwMask member of this structure indicates what information is being 
requested. 

Return Value 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindow 
The IDockingWindow interface is implemented by window objects that can be docked 
within the border space of a Windows Explorer window. 

When to Implement 
You implement IDockingWindow when you want to display a window inside a browser 
frame. This normally is used for user interface windows, such as toolbars. 

When to Use 
You normally do not use the IDockingWindow interface. The shell browser uses this 
interface to support docked windows inside the browser frame. 

IDockingWindow is derived from IOleWindow. The following are the methods specific 
to IDockingWindow: 

IDockingWindow method 

CloseDW 

ResizeBorderDW 

ShowDW 

Description 

Notifies the docking window object that it is about to be 
remo~ed: 

Notifies the docking window object that the frame's 
border space has changed. 

Instructs the docking window object to show or hide 
itself. 

Version 4.71 and later of Shell32.dll. 



Chapter 7 Shell Interfaces 199 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindow: :CloseDW 
Notifies the docking window object that it is about to be removed from the frame. The 
docking window object should save any perSistent information at this time. 

Parameters 
dwReserved 

Reserved. This parameter should always be zero. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindow, IDockingWindowFrame, IDockingWindowSite 

I Docki ngWindow:: ResizeBorderDW 
Notifies the docking window object that the frame's border space has changed. In 
response to this method, the IDockingWindow implementation must call 
IDockingWindowSite::SetBorderSpaceDW, even if no border space is required or a 
change is not necessary. 



200 Volume 5 Microsoft Windows Shell 

Parameters 
prcBorder 

Address of a RECT structure that contains the frame's available border space. 

punkToolbarSite 
Address of the site's IUnknown interface. The docking window object should call the 
Querylnterface method for this interface, requesting IID_ISheIlToolbarSite, and use 
that interface to negotiate its border space. It is the docking window object's 
responsibility to release this interface when it is no longer needed. 

fReseNed 
Reserved for future use. This parameter should always be zero. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
The prcBorder parameter will contain the frame's entire available border space. The 
docking window object should negotiate its border space and then use this information to 
position itself. 

For example, if the docking window object requires 25 pixels at the top of the border 
space, it should negotiate for this by allocating a BORDERWIDTHS structure, setting the 
top member to 25, calling IDockingWindowSite::RequestBorderSpaceDW, and then 
calling IDockingWindowSite::SetBorderSpaceDW. The docking window object can 
then position its window at prcBorder->left and prcBorder->top. The width of the 
docking window object's window is determined from prcBorder->right - prcBorder­
>Ieft, and its height is contained in the top member of the BORDERWIDTHS structure. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 7 Shell Interfaces 201 

IDockingWindow, IDockingWindowFrame, IDockingWindowSite 

IDockingWindow: :ShowDW 
Instructs the docking window object to show or hide itself. 

I~:"( 
Parameters 
bShow 

Boolean value indicating whether the docking window object should show or hide 
itself. If this parameter is nonzero, the docking window object should show its window. 
If it is zero, the docking window object should hide its window and return its border 
space by calling IDockingWindowSite::SetBorderSpaceDW with all zeros. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindow, IDockingWindowFrame, IDockingWindowSite 

IDockingWindowFrame 
The IDockingWindowFrame interface is implemented by the browser to support adding 
IDockingWindow objects to a frame. 

When to Implement 
You normally do not implement the IDockingWindowFrame interface. The shell 
browser implements this interface to support docked windows inside the browser frame. 



202 Volume 5 Microsoft Windows Shell 

When to Use 
You use IDockingWindowFrame to add, find, and remove docking window objects in a 
browser frame. 

IDockingWindowFrame is derived from IOleWindow. The following are the methods 
specific to IDockingWindowFrame: 

IDockingWindowFrame methods Description 

AddToolbar 

FindToolbar 

RemoveToolbar 

Version 4.71 and later of SheIl32.dll. 

Adds an IDockingWindow object to a frame. 

Finds an IDockingWindow object in a frame. 

Removes an IDockingWindow object from a 
frame. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindowFrame: :AddToolbar 
Adds the specified IDockingWindow object to the frame. 

Parameters 
punkSrc 

Address of the IDockingWindow object to be added. 

pwszltem 
Address of a null-terminated UNICODE string. This is an application-defined string 
used for identifying the docking window object. 

dwAddFlags 
Flags for the docking window object being added. This can be one or more of the 
following values: 

o The docking window is a regular, visible docking window. 

The docking window is added but is not shown. To show it at 
a later time, call its IDockingWindow::ShowDW method. 



Chapter 7 Shell Interfaces 203 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindowFrame, IDockingWindowSite 

IDockingWindowFrame::FindToolbar 
Finds the specified IDockingWindow object in the toolbar frame and returns an 
interface pointer to it. 

Parameters 
pW5zltem 

Address of a nUll-terminated UNICODE string. This is the same string that was 
passed to the AddToolbar method. 

riid 
Identifier of the desired COM interface. 

ppvObj 
Address to receive the interface pointer. If an error occurs, a NULL pOinter is placed in 
this address. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.71 and later of Shell32.dll. 



204 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindowFrame, IDockingWindowSite 

I Docki ngWi ndowFrame:: Remove Toolbar 
Removes the specified IDockingWindow from the toolbar frame. 

Parameters 
punkSrc 

Address of the IDockingWindow object to be removed. The IDockingWindowFrame 
implementation will call the IDockingWindow::CloseDWand Release methods. 

dwRemoveFlags 
Option flags for removing the docking window object. This parameter can be one or 
more of the following values: 

DWFRF _DELETECONFIGDATA 

Return Values 

In addition to deleting the toolbar, any 
configuration data is removed as well. 

The default delete processing is performed. 

Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Jnternet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 7 Shell Interfaces 205 

IDockingWindowSite 

IDragSourceHelper 
This interface is exposed by the shell to allow an application to specify the image that will 
be displayed during a shell drag-and-drop operation. 

When to Implement 
This interface is exposed by the shell's drag-image manager. It is not implemented by 
applications. 

When to Use 
Use this interface when you want to specify the image that will be displayed during a 
shell drag-and-drop operation. The IDragSourceHelper and IDropTargetHelper 
interfaces are exposed by the drag-image manager object to allow the IDropTarget 
interface to use custom drag images. To use either of these interfaces, you must create 
an in-process server drag-image manager object by calling CoCreatelnstance with a 
CLSID of CLSID_DragDropHelper. Get interface pointers using standard COM 
procedures. 

The IDragSourceHelper interface provides two alternative ways to specify the bitmap to 
be used as a drag image: 

• Controls that have a window can register a DI_GETDRAGIMAGE window message 
for it and initialize the drag-image manager with 
IDragSourceHelper::lnitializeFromWindow. When the DLGETDRAGIMAGE 

message is received, the handler puts the drag image bitmap information in the 
SHDRAGIMAGE structure that is passed as the message's IParam value. 

• Windowless controls can initialize the drag-image manager with 
IDragSourceHelper::lnitializeFromBitmap. This method allows an application 
simply to specify the bitmap. 

Note The drag-and-drop helper object calls IDataObject::SetData to load private 
formats into the data object that are used for cross-process support. It later retrieves 
these formats by calling IDataObject::GetData. To support the drag-drop helper object, 
the data object's SetData and GetData implementations must be able to accept and 
return arbitrary private formats. 

For further discussion of shell drag-and-drop operations, see Transferring Shell Data 
Using Drag-and-Drop or the Clipboard. 



206 Volume 5 Microsoft Windows Shell 

Methods 

IDragSourceHelper exposes the following methods in addition to IUnknown: 

InitializeFromBitmap Initializes the drag-image manager for a windowless control. 

InitializeFromWindow Initializes the drag-image manager for a control with a 
window. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDragSourceHelper::lnitializeFromBitmap 
Initializes the drag-image manager for a windowless control. 

HRESUl T Init1.al izeFrOIllBitmap:( 
LPSHDRAGlAAGE ps.h(!1. ., 

;lDataOf).jed;*p.D~ta{)bJect ' 
j~ 

Parameters 
pshdi 

[in] SHDRAGIMAGE structure that contains information about the bitmap. 

pDa ta Object 
[in] Pointer to the data object's IDataObject interface. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

;."J~~. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDragSourceHelper 



Chapter 7 Shell Interfaces 207 

I DragSou rceHel per:: Initial izeFrom Wi ndow 
Initializes the drag-image manager for a control with a window. 

HRESULT Initia11zeFrolllWindow( 
HWHO hwm;J • 

. POINt *ppt. . 
IPataObjeQt*;p[)at.aObject. 

Parameters 
hwnd 

[in] Handle to the window that will receive the DI_GETDRAGIMAGE message. 

ppt 
[in] Pointer to a POINT structure that specifies the location of the cursor within the 
drag image. The structure should contain the offset from the upper-left corner of the 
drag image to the location of the cursor. 

pDa ta Object 
[in] Pointer to the data object's IDataObject interface. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
The DI_GETDRAGIMAGE message allows you to source a drag image from a custom 
control. It is defined in Shlobj.h and must be registered with RegisterWindowMessage. 
When the window specified by hwnd receives the DI_GETDRAGIMAGE message, the 
IParam value will hold a pOinter to an SHDRAGIMAGE structure. The handler should fill 
the structure with the drag image bitmap information. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDragSourceHelper 



208 Volume 5 Microsoft Windows Shell 

IDropTargetHelper 
This interface allows drop targets to display a drag image while it is over the target 
window. 

When to Implement 
This interface is exposed by the shell's drag-image manager. It is not implemented by 
applications. 

When to Use 
This interface is used by drop targets to have the drag-image manager display the drag 
image while it is over the target window. The IDragSourceHelper and 
IDropTargetHelper interfaces are exposed by the drag-image manager object to allow 
the IDropTarget interface to use custom drag images. To use either of these interfaces, 
you must create an in-process server drag-image manager object by calling 
CoCreatelnstance with a CLSID of CLSID_DragDropHelper. Get interface pOinters 
using standard COM procedures. 

Four of the IDropTargetHelper methods correspond to the four IDropTarget methods. 
When you implement IDropTarget, each of its methods should call the corresponding 
IDropTargetHelper method to pass the information to the drag-image manager. The fifth 
IDropTargetHelper method notifies the drag-image manager to show or hide the drag 
image. This method is used when dragging over a target window in a low color-depth 
video mode. It allows the target to hide the drag image while it is painting the window. 

Note The drag-and-drop helper object calls IDataObject::SetData to load private 
formats into the data object that are used for cross-process support. It later retrieves 
these formats by calling IDataObject::GetData. To support the drag-and-drop helper 
object, the data object's SetData and GetData implementations must be able to accept 
and return arbitrary private formats. 

For further discussion of shell drag-drop operations, see Transferring Shell Data Using 
Drag-Drop or the Clipboard. 

Methods 

IDropTargetHelper exposes the following methods in addition to IUnknown: 

DragEnter Notifies the drag-image manager that the drop target's 
IDropTarget::DragEnter method has been called. 

Drag Leave Notifies the drag-image manager that the drop target's 
IDropTarget::DragLeave method has been called. 

DragOver Notifies the drag-image manager that the drop target's 
IDropTarget::DragOver method has been called. 

Drop Notifies the drag-image manager that the drop target's 
IDropTarget::Drop method has been called. 

Show Notifies the drag-image manager to show or hide the drag image. 



Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDragSourceHelper 

IDropTargetHelper:: DragEnter 

Chapter 7 Shell Interfaces 209 

Notifies the drag-image manager that the drop target's IDropTarget::DragEnter method 
has been called. 

Iflt~o~tj)~~g~~~wt;' 
~. ·,~~HP',~ttWP4~iri~t; • .. '.' , " 

:' ~1D,;t;iObJ'e~ti ~plJeft:aQ1Jle#ct~· 
. ~;~NTtpM;rj J 
;;DWOR~dwEit/$tt 

; ,") <;. 
,~,,,,,,?0.'" ~,f 

Parameters 
hwndTarget 

[in] Target's window handle. 

pDa ta Object 
[in] Pointer to the data object's IDataObject interface. 

ppt 
[in] POINT structure pOinter that was received in the IDropTarget::DragEnter 
method's ppt parameter. 

dwEffect 
[in] Value pointed to by the IDropTarget::DragEnter method's pdwEtfect parameter. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method is called by a drop target when its IDropTarget::DragEnter method is 
called. It notifies the drag-image manager that the drop target has been entered, and 
provides it with the information needed to display the drag image. 



210 Volume 5 Microsoft Windows Shell 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDropTargetHelper 

I Drop TargetHelper:: Drag Leave 
Notifies the drag-image manager that the drop target's IDropTarget::DragLeave 
method has been called. 

Parameters 
None. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method is called by a drop target when its IDropTarget::DragLeave method is 
called. It notifies the drag-image manager that the cursor has left the drop target. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDropTargetHelper 

I DropTargetHelper:: DragOver 
Notifies the drag-image manager that the drop target's IDropTarget::DragOver method 
has been called. 



HRESU~Tl)r_gOv.r( 
PON{'t:~ppt; .. 
QWO~D,.dwEffeC:t •.. 

Parameters 
ppt 

Chapter 7 Shell Interfaces 211 

[in] POINT structure pointer that was received in the IDropTarget::DragOver 
method's pt parameter. 

dwEffect 
[in] Value pOinted to by the IDropTarget::DragOver method's pdwEffect parameter. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method is called by a drop target when its IDropTarget::DragOver method is 
called. It notifies the drag-image manager that the cursor position has changed, and 
provides it with the information needed to display the drag image. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDropTargetHelper 

IDropTargetHelper::Drop 
Notifies the drag-image manager that the drop target's IDropTarget::Drop method has 
been called. 

Parameters 
pDa ta Object 

[in] Pointer to the data object's IDataObject interface. 



212 Volume 5 Microsoft Windows Shell 

ppt 
[in] POINT structure pointer that was received in the IDropTarget::Drop method's pt 
parameter. 

dwEffect 
[in] Value pointed to by the IDropTarget::Drop method's pdwEffect parameter. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method is called by a drop target when its IDropTarget::Drop method is called. It 
notifies the drag-image manager that the object has been dropped, and provides it with 
the information needed to display the drag image. 

Version 5.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDropTargetHelper 

IDropTargetHelper: :Show 
Notifies the drag-image manager to show or hide the drag image. 

Parameters 
fShow 

[in] Boolean value that is set to TRUE to show the drag image, and FALSE to hide it. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method is used when dragging over a target window in a low color-depth video 
mode. It allows the target to have the drag-image manager hide the drag image while it 
is painting the window. While you are painting a window that is currently being dragged 



Chapter 7 Shell Interfaces 213 

over, hide the drag image by calling Show with (Show set to FALSE. Once the window 
has been painted, display the drag image again by calling Show with (Show set to 
TRUE. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDropTargetHelper 

IDockingWindowSite 
The IDockingWindowSite interface is implemented by the browser to manage the 
border space for one or more IDockingWindow objects. This interface is similar to the 
IOlelnPlaceUIWindow interface. 

When to Implement 
You normally do not implement the IDockingWindowSite interface. The shell browser 
implements this interface to support docked windows inside the browser frame. 

When to Use 
You use IDockingWindowSite to negotiate the space for a docking window object in a 
browser frame. 

IDockingWindowSite is derived from IOleWindow. The following are the methods 
specific to IDockingWindowSite: 

IDockingWindowSite methods 

GetBorderDW 

RequestBorderSpaceDW 

SetBorderSpaceDW 

Version 4.71 and later of Shell32.dll. 

Description 

Retrieves the allocated border space for a 
particular IDockingWindow object. 

Processes border space requests for an 
IDockingWindow object. 

Allocates border space for an IDockingWindow 
object. 



214 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindowSite: :GetBorderDW 
Retrieves the border space allocated for the specified IDockingWindow object. 

Parameters 
punkSrc 

Address of the IDockingWindow object for which the border space is being 
requested. 

prcBorder 
Address of a RECT structure to receive the entire available border space for the 
browser. The docking window object should use this information to determine where 
to place itself. See the IDockingWindow::ResizeBorderDW method for more 
information. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindowFrame, IDockingWindowSite 



Chapter 7 Shell Interfaces 215 

IDockingWi ndowSite:: RequestBorderSpaceDW 
Approves, modifies, or refuses a request for an IDockingWindow object's border space. 
The border space is not allocated until the SetBorderSpaceDW method is called. 

Parameters 
punkSrc 

Address of the IDockingWindow object for which the border space is being 
requested. 

pbw 
Address of a BORDERWIDTHS structure. Before calling this method, the structure 
must be filled with the desired border space. After the method's successful 
completion, the structure will contain the approved border space. The 
IDockingWindowSite object may change these values. If border space is critical, it is 
the caller's responsibility to determine if the returned border space is sufficient. 

Return Values 
Returns NOERROR if the border space request is approved or modified, or an OLE­
defined error code otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindowFrame 

IDockingWindowSite: :SetBorderSpaceDW 
Allocates and reserves border space for an IDockingWindow object. 



216 Volume 5 Microsoft Windows Shell 

Parameters 
punkSrc 

Address of the IDockingWindow object for which the border space is being set. 

pbw 
Address of a BORDERWIDTHS structure that contains the IDockingWindow object's 
border space. The border space should have been approved by 
IDockingWindowSite through a successful call to the RequestBorderSpaceDW 
method. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDockingWindowFrame 

IEmptyVolumeCache 
This interface is used by the disk-cleanup manager to communicate with a disk-cleanup 
handler. Its methods allow the manager to request information from a handler, and notify 
it of events such as the start of a scan or purge. 

When to Implement 
This interface must be implemented by disk-cleanup handlers running on Windows 98. 
Handlers running on Windows 2000 also should expose IEmptyVolumeCache2. 



Methods 
Method Description 

Chapter 7 Shell Interfaces 217 

Deactivate Notifies the handler that the disk-cleanup manager is shutting 
down. 

GetSpaceUsed 

Initialize 

Purge 

ShowProperties 

Asks for the amount of disk space that the handler can free. 

Initializes the disk cleaner handler. 

Notifies the handler to clean up its unessential files. 

Asks the handler to display its user interface (UI). 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCacheCallBack 

IEmptyVolumeCache:: Deactivate 
This method is used to notify the handler that the disk-cleanup manager is shutting 
down. 

Parameters 
dwFlags 

[out] Flag that can be set to return information to the disk-cleanup manager. It can 
have the following value: 

EVCF_REMOVEFROMLIST 
If this flag is set, the disk-cleanup manager will delete the handler's registry subkey. 

Return Values 
S_OK This value should always be returned. 



218 Volume 5 Microsoft Windows Shell 

Remarks 
If the EVCF _REMOVEFROMLIST flag is set, the handler will not be run again unless the 
registry entries are reestablished. This flag typically is used for a handler that will run 
only once. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCache::GetSpaceUsed 
This method requests the amount of disk space that the disk-cleanup handler can free. 

Parameters 
pdwSpaceUsed 

[out] Amount of disk space, in bytes, that the handler can free. This value will be 
displayed in the disk-cleanup manager's list, to the right of the handler's check box. 
To indicate that you do not know how much disk space can be freed, set this 
parameter to -1 , and "???MB" will be displayed. If you set the 
EVCF _DONTSHOWIFZERO flag when Initialize was called, setting pdwSpaceUsed 
to zero will notify the disk-cleanup manager to omit the handler from its list. 

picb 
[in] Pointer to the disk-cleanup manager's IEmptyVolumeCacheCaliback interface. 
This pOinter can be used to call that interface's Scan Progress method to report on 
the progress of the operation. 

Return Values 
E_ABORT The scan operation was ended prematurely. 

This value usually is returned when a call to 
IEmptyVolumeCache::ScanProgress returns E_ABORT. This return 
value indicates that the user cancelled the operation by clicking the 
disk-cleanup manager's Cancel button. 

An error occurred when the handler tried to calculate the amount of 
disk space that could be freed. 

Success. 



Chapter 7 Shell Interfaces 219 

Remarks 
When this method is called by the disk-cleanup manager, the handler should start 
scanning its files to determine which of them can be deleted, and how much disk space 
will be freed. Handlers should caIlIEmptyVolumeCache::ScanProgress periodically to 
keep the user informed of the progress of the scan, especially if it will take a long time. 
Calling this method frequently also allows the handler to determine whether the user has 
cancelled the operation. If ScanProgress returns E_ABORT, the user has cancelled the 
scan. The handler should stop scanning immediately and return E_ABORT. 

You should set the pdwSpaceUsed parameter to -1 only as a last resort. The handler is 
of limited value to users if they do not know how much space will be freed. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCache::lnitialize 
This method is used to initialize the disk-cleanup handler, based on the information 
stored under the specified registry key. 

Parameters 
hkRegKey 

[in] Handle to the registry key that holds the information about the handler object. 

pcwszVolume 
[in] Pointer to a nUll-terminated Unicode string with the volume root-for example, 
"C:\". 

ppwszDisplayName 
[out] Pointer to a null-terminated Unicode string with the name that will be displayed in 
the disk-cleanup manager's list of handlers. If no value is assigned, the registry value 
will be used. 



220 Volume 5 Microsoft Windows Shell 

ppwszDescription 
[out] Pointer to a null-terminated Unicode string that will be displayed when this object 
is selected from the disk-cleanup manager's list of available disk-cleanup handlers. If 
no value is assigned, the registry value will be used. 

pdwFlags 
[in/out] Flags that are used to pass information to the handler, and back to the disk­
cleanup manager. 

These flags can be passed in to the object: 

EVCF _OUTOFDISKSPACE 
If this flag is set, the user is out of disk space on the drive. When this flag is 
received, the handler should be aggressive about freeing disk space, even if it 
results in a performance loss. The handler, however, should not delete files that 
would cause an application to fail, or the user to lose data. 

EVCF _SETTINGSMODE 
If the disk-cleanup manager is being run on a schedule, it will set this flag. You 
must assign values to the ppwszDisplayName and ppwszDescription parameters. If 
this flag is set, the disk-cleanup manager will not call GetSpaceUsed, Purge, or 
ShowProperties. Because Purge will not be called, cleanup must be handled by 
Initialize. The handler should ignore the pcwszVolume parameter and clean up 
any unneeded files regardless of what drive they are on. Because there is no 
opportunity for user feedback, only those files that are extremely safe to clean up 
should be touched. 

These flags can be passed by the handler back to the disk-cleanup manager: 

EVCF _DONTSHOWIFZERO 
Set this flag when there are no files to delete. When 
IEmptyVolumeCache::GetSpaceUsed is called, set the pdwSpaceUsed 
parameter to zero, and the disk-cleanup manager will omit the handler from its list. 

EVCF_ENABLEBYDEFAULT 
Set this flag to have the handler checked by default in the cleanup manager's list. It 
will run every time the Disk Cleanup utility runs, unless the user clears the 
handler's check box. Once the check box has been cleared, the handler will not be 
run until the user selects it again. 

EVCF_ENABLEBYDEFAULT_AUTO 
Set this flag to have the handler run automatically during scheduled cleanup. This 
flag should be set only when deletion of the files is low-risk. As with 
EVCF _ENABLEBYDEFAUL T, the user can choose not to run the handler by 
clearing its check box in the disk-cleanup manager's list. 

EVCF _HASSETTINGS 
Set this flag to indicate that the handler can display a user interface (UI). An 
example of a simple UI is a list box that displays the deletable files and allows the 
user to select which ones to delete. The disk-cleanup manager will then display a 



Chapter 7 Shell Interfaces 221 

button below the cleanup handler's description. The user clicks this button to 
request the UI. The default button text is "Settings", but the handler can specify a 
different text by setting the AdvancedButtonText value in its registry key. 

EVCF _REMOVEFROMLIST 
Set this flag to remove the handler from the disk-cleanup manager's list. All registry 
information will be deleted, and the handler cannot be run again until the key and 
its values are restored. This flag is used primarily for one-time cleanup operations. 

Return Values 
E_ABORT 

E_FAIL 

S_FALSE 

S_OK 

Remarks 

The cleanup operation was ended prematurely. 

The cleanup operation failed. 

There are no files to delete. 

Success. 

This method is used by the Windows 98 disk-cleanup manager. Windows 2000 uses the 
InitializeEx method exported by IEmptyVolumeCache2. 

Use CoTaskMemAlioc to allocate memory for the strings returned through 
ppwszDisp/ayName and ppwszDescription. The disk-cleanup manager will free the 
memory when it is no longer needed. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCache::Purge 
This method notifies the handler to start deleting its unneeded files. 

Parameters 
dwSpaceToFree 

[in] Amount of disk space that the handler should free. If this parameter is set to -1, 
the handler should delete all its files. 



222 Volume 5 Microsoft Windows Shell 

picb 
[in] Pointer to the disk-cleanup manager's IEmptyVolumeCacheCallBack interface. 
This pointer can be used to call the interface's PurgeProgress method to report on 
the progress of the operation. 

Return Values 
E_ABORT 

Remarks 

The operation was ended prematurely. This value usually is returned 
when IEmptyVolumeCache::PurgeProgress returns E_ABORT. This 
typically happens when the user cancels the operation by clicking the 
disk-cleanup manager's Cancel button. 

Success. 

For Windows 98, the dwSpaceToFree parameter is always set to the value specified by 
the handler when IEmptyVolumeCache::GetSpaceUsed was called. 

In general, handlers should be kept simple and delete all their files when this function is 
called. If there are significant performance advantages to deleting only a portion of the 
files, the handler should implement the ShowProperties method. When called, this 
method displays a UI that allows the user to select the files to be deleted. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

I EmptyVolumeCache:: ShowProperties 
This method is used to notify the handler to display its user interface (UI). 

Parameters 
hwnd 

[in] Parent window to be used when displaying the UI. 

Return Values 
S_OK The user changed one or more settings. 

S_FALSE No settings were changed. 



Chapter 7 Shell Interfaces 223 

Remarks 
A handler can display a UI, which typically is used to allow the user to select which files 
are to be cleaned up and how. To do so, the handler sets the EVCF _HASSETIINGS 
flag in the pdwFlags parameter when Initialize is called. The disk-cleanup manager then 
will display a Settings button. When that button is clicked, the disk-cleanup manager 
calls Show Properties to notify the handler to display its UI. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCache2 
This interface extends IEmptyVolumeCache. It defines one additional method, 
Initialize Ex, that provides better localization support than 
IEmptyVolumeCache::lnitialize 

When to Implement 
This interface should be exported by disk-cleanup handlers running on Windows NT 5.0. 
Handlers running on Windows 98 must export IEmptyVolumeCache. 

Methods 
In addition to the methods exported by IEmptyVolumeCache, IEmptyVolumeCache2 
exports: 

Method Description 

InitializeEx Initializes the disk-cleanup handler. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCacheCallBack 



224 Volume 5 Microsoft Windows Shell 

IEmptyVolumeCache2: :lnitializeEx 
This method is used to initialize the disk-cleanup handler. It provides better support for 
localization than IEmptyVolumeCache::lnitialize. 

Parameters 
hkRegKey 

[in] Handle to the registry key that holds the information about the handler object. 

pcwszVo/ume 
[in] Pointer to a null-terminated Unicode string with the volume root-for example, 
"C:\". 

pcwszKeyName 
[in] Pointer to a null-terminated Unicode string with the name of the handier'S 
registry key. 

ppwszOisp/ayName 
[out] Pointer to a null-terminated Unicode string with the name that will be displayed in 
the disk-cleanup manager's list of handlers. You must assign a value to this 
parameter. 

ppwszOescription 
[out] Pointer to a null-terminated Unicode string that will be displayed when this object 
is selected from the disk-cleanup manager's list of available disk cleaners. You must 
assign a value to this parameter. 

ppwszBtnText 
[out] Pointer to a null-terminated Unicode string with the text that will be displayed on 
the disk-cleanup manager's Settings button. If the EVCF _HASSETTINGS flag is set, 
you must assign a value to ppwszBtnText. Otherwise, you can set it to NULL. 

pdwF/ags 
[in/out] Flags that are used to pass information to the handler, and back to the disk­
cleanup manager. 

These flags can be passed into the object: 

EVCF _OUTOFDISKSPACE 
If this flag is set, the user is out of disk space on the drive. When this flag is 
received, the handler should be aggressive about freeing disk space, even if it 



Chapter 7 Shell Interfaces 225 

results in a performance loss. The handler, however, should not delete files that 
would cause an application to fail or the user to lose data. 

EVCF _SETTINGSMODE 
If the disk-cleanup manager is being run on a schedule, it will set the 
EVCF _SETTINGSMODE flag. You must assign values to the ppwszOisplayName 
and ppwszOescription parameters. If this flag is set, the disk-cleanup manager will 
not call GetSpaceUsed, Purge, or ShowProperties. Because Purge will not be 
called, cleanup must be handled by InitializeEx. The handler should ignore the 
pcwszVolume parameter and clean up any unneeded files regardless of what drive 
they are on. Because there is no opportunity for user feedback, only those files that 
are extremely safe to clean up should be touched. 

These flags can be passed by the handler back to the disk-cleanup manager: 

EVCF _DONTSHOWIFZERO 
Set this flag when there are no files to delete. When 
IEmptyVolumeCache2::GetSpaceUsed is called, set the pdwSpaceUsed 
parameter to zero, and the disk cleanup 

EVCF_ENABLEBYDEFAULT 
Set this flag to have the handler checked by default in the disk-cleanup manager's 
list. The handler will be run every time the disk cleanup utility runs, unless the user 
clears the handler's check box. Once the check box has been cleared, the handler 
will not be run until the user selects it again. 

EVCF_ENABLEBYDEFAULT_AUTO 
Set this flag to have the handler run automatically during scheduled cleanup. This 
flag should be set only when deletion of the files is low-risk. As with 

EVCF _ENABLEBYDEFAUL T, the user can choose not to run the handler by 
clearing its check box in the disk-cleanup manager's list. 

EVCF _HASSETTINGS 
Set this flag to indicate that the handler can display a user interface (UI). An 
example of a simple UI is a list box that displays the deletable files and allows the 
user to select which ones to delete. The disk-cleanup manager then will display a 
button below the cleanup handler's description. The user clicks this button to 
request the UI. Use the ppwszBtnTexf parameter to specify the button's text. 

EVCF _REMOVEFROMLIST 
Set this flag to remove the handler from the disk-cleanup manager's list. All registry 
information will be deleted, and the handler cannot be run again until the key and 
its values are restored. This flag is used primarily for one-time cleanup operations. 

Return Values 
E_ABORT 

E_FAIL 

S_FALSE 

S_OK 

The cleanup operation was ended prematurely. 

The cleanup operation failed. 

There are no files to delete. 

Success. 



226 Volume 5 Microsoft Windows Shell 

Remarks 
The Windows NT 5.0 disk-cleanup manager first will call 
IEmptyVolumeCache2::lnitializeEx to initialize a disk-cleanup handler. It will call 
IEmptyVolumeCache::lnitialize only if the IEmptyVolumeCache2 interface is not 
implemented. The Windows 98 disk-cleanup manager only supports 
IEmptyVolumeCache::lnitialize. 

InitializeEx is intended to provide better localization support than Initialize. When 
InitializeEx is called, the handler application must assign appropriately localized values 
to the ppwszOisplayName and ppwszOescription parameters. If the Settings button is 
enabled, you must also assign a value to the ppwszBtnText parameter. Unlike Initialize, 
if you set these strings to NULL to notify the disk-cleanup manager to get the default 
values from the registry, InitializeEx will fail. 

Use CoTaskMemAlloc to allocate memory for the strings returned through 
ppwszOisplayName, ppwszOescription, and ppwszBtnText. The disk-cleanup manager 
will free the memory when it is no longer needed. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCacheCallBack 
This interface is used by a disk-cleanup handler to communicate with the disk-cleanup 
manager. 

When to Use 
A disk-cleanup handler uses this interface to report to the disk-cleanup manager on the 
progress either of deleting files or of scanning for deletable files. It also provides a way to 
query the manager, to find out if the user has cancelled the operation. The handler 
receives a pointer to this interface when the manager calls the 
IEmptyVolumeCache: :GetSpaceUsed or IEmptyVolumeCache: :Purge methods. 

Methods 
Method 

PurgeProgress 

Scan Progress 

Description 

Reports the progress of a purge of deletable files. 

Reports the progress of a scan of the file system for deletable files. 

Version 5.00 and later of Shell32.dll. 



Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

Chapter 7 Shell Interfaces 227 

IEmptyVolumeCacheCaliback:: PurgeProgress 
This method is called periodically by a disk-cleanup handler to update the disk-cleanup 
manager on the progress of a purge of deletable files. 

Parameters 
dwSpaceFreed 

[in] Amount of disk space, in bytes, that has been freed at this point in the purge. The 
disk-cleanup manager uses this value to update its progress bar. 

dwSpaceToFree 
[in] Amount of disk space, in bytes, that remains to be freed at this point in the purge. 

dwFlags 
[in] Flag that can be sent to the disk-cleanup manager. It can have the following value: 

EVCCBF _LASTNOTIFICATION 
This flag should be set if the handler will not call this method again. Typically, it is 
set when the purge is near completion. 

pwszReserved 
[in] Reserved. 

Return Values 
E_ABORT 

Remarks 

This value is returned when the user clicks the Cancel button 
on the disk-cleanup manager's dialog box while a scan is in progress. 
The handler should stop purging files and shut down. 

The handler should continue purging deletable files. 

This method is called typically by the handler's IEmptyVolumeCache::Purge method 
while the handler is purging deletable files. Handlers should call PurgeProgress 
periodically to keep the user informed of progress, especially if the purge will take a long 
time. Calling this method frequently also allows the handler to shut down promptly if a 
user cancels a purge. 



228 Volume 5 Microsoft Windows Shell 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEmptyVolumeCacheCaliback: :ScanProgress 
This method is called by a disk-cleanup handler to update the disk-cleanup manager on 
the progress of a scan for deletable files. 

Parameters 
dwSpaceUsed 

[in] Amount of disk space that, at this point in the scan, the handler can free. 

dwFlags 
[in] Flag that can be sent to the disk-cleanup manager. This flag can have the 
following value: 

EVCCBF _LASTNOTI FICATION 
This flag should be set if the handler will not call this method again. It is set 
typically when the scan is near completion. 

pwszReserved 
[in] Reserved. 

Return Values 
E_ABORT This value is returned when the user clicks the Cancel button on the 

disk-cleanup manager's dialog box while a scan is in progress. The 
handler should stop scanning and shut down. 

S_OK The handler should continue scanning for deletable files. 

Remarks 
This method is called typically by the handler's IEmptyVolumeCache::GetSpaceUsed 
method while the handler is scanning for deletable files. 



Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in emptyvc.h. 

IEnumExtraSearch 

Chapter 7 Shell Interfaces 229 

The IEnumExtraSearch interface is a standard OLE enumerator that is used by a client 
to determine the available search objects for a folder. 

When to Implement 
Implement IEnumExtraSearch if your namespace extension supports one or more 
search objects. 

When to Use 
You do not call this interface directly. An IEnumExtraSearch interface is requested by a 
client only after it has determined that the ISheliFolder2 interface is exposed. Clients get 
a pointer to this interface by calling ISheIiFolder2::EnumSearches. 

IEnumExtraSearch implements IUnknown and the standard OLE enumeration 
methods. 

IEnumExtraSearch methods Description 

Clone Used to save the enumeration state by creating a 
duplicate of the current enumerator. 

Next Used to request one or more items. 

Reset Resets the enumerator to the first item. 

Skip Skips one or more items. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IEnumExtraSearch::Clone 
Used to request a duplicate of the enumerator object to preserve its current state. 



230 Volume 5 Microsoft Windows Shell 

Parameters 
ppEnum 

Pointer to the IEnumExtraSearch interface of a new enumerator object. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
The new enumerator should be created with the same state as the current one. Use the 
Skip method to advance the enumeration index to the appropriate value before 
returning. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IEnumExtraSearch:: Next 
Used to request information on one or more search objects. 

Parameters 
celt 

[in] Number of search objects to be enumerated, starting from the current object. If 
celt is too large, the method should stop and return the actual number of search 
objects in pceltFetched. 

rgelt 
[out] Pointer to an array of pceltFetched EXTRASEARCH structures containing 
information on the enumerated objects. 

pceltFetched 
[out] Number of objects actually enumerated. This may be less than celt. 



Chapter 7 Shell Interfaces 231 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IEnumExtraSearch:: Reset 
Used to reset the enumeration index to zero. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 5.00 and later of She1132.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IEnumExtraSearch: :Skip 
Skip past a specified number of objects. 

Parameters 
celt 

Number of objects to skip. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 



232 Volume 5 Microsoft Windows Shell 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IEnumlDList 
The IEnumlDList interface provides a standard set of methods that can be used to 
enumerate the item identifier lists (PIDLs) of the items in a shell folder. When a folder's 
ISheIiFolder::EnumObjects method is called, it creates an enumeration object and 
passes a pointer to the object's IEnumlDList interface back to the caller. 

When to Implement 
All shell folder objects must be able to respond to a call to their 
ISheIiFolder::EnumObjects method by creating an enumeration object that exports 
IEnumiDList. The shell, in particular, uses these objects to enumerate the items in a 
folder. 

When to Use 
Use this interface to enumerate the contents of a shell folder object. Call the folder's 
ISheIiFolder::EnumObjects method and use the returned IEnumlDList pointer to 
enumerate the PIDLs of the items in the folder. 

IEnumlDList methods Description 

Clone Creates a new item enumeration object identical to the 
current one. 

Next Retrieves the specified number of item identifiers. 

Reset Returns to the beginning of the enumeration. 

Skip Skips over the specified number of items. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 7 Shell Interfaces 233 

IEnumlDList: :Clone 
Creates a new item enumeration object with the same contents and state as the 
current one. 

HRESULT Clone! 

r;··. 
J¥l\u~IDpllt· 'i<:"fppen~(/{· 

Parameters 
ppenum 

Address of a pointer to the new enumeration object. The calling application eventually 
must free the new object by calling its Release member function. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
This method makes it possible to record a particular pOint in the enumeration sequence 
and then return to that point at a later time. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 

Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IEnumlDList 

IEnumlDList: :Next 
Retrieves the specified number of item identifiers in the enumeration sequence and 
advances the current position by the number of items retrieved. 



234 Volume 5 Microsoft Windows Shell 

Parameters 
celt 

Number of elements in the array pOinted to by the (gelt parameter. 

(gelt 
Address of an array of ITEMIDLIST pOinters that receives the item identifiers. The 
implementation must allocate these item identifiers using the shell's allocator 
(retrieved by the SHGetMalioc function). The calling application is responsible for 
freeing the item identifiers using the shell's allocator. 

Note The ITEMIDLIST returned in the (gelt array are relative to the ISheliFolder 
being enumerated. 

pceltFetched 
Address of a value that receives a count of the item identifiers actually returned in 
(gelt. The count can be smaller than the value specified in the celt parameter. This 
parameter can be NULL only if celt is one. 

Return Values 
Returns NOERROR if successful, S_FALSE if there are no more items in the 
enumeration sequence, or an OLE-defined error value otherwise. 

Remarks 
If this method returns a COM error code (as determined by the FAILED macro), then no 
entries in the (gelt array are valid on exit. If this method returns a success code (such as 
NOERROR or S_FALSE), then the ULONG pOinted to by the pceltFetched parameter 
determines how many entries in the (gelt array are valid on exit. 

The distinction is important in the case where celt> 1. For example, if you pass celt=1 0 
and there are only 3 elements left, *pceltFetched will be 3 and the method will return 
S_FALSE meaning that you reached the end of the file. The three fetched elements will 
indeed be stored into (gelt and are valid. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. . 
Header: Declared in shlobj.h. 

IEnumlDList 



Chapter 7 Shell Interfaces 235 

IEnumIDList:: Reset 
Returns to the beginning of the enumeration sequence . 

• ~"~iitf~f:cn:rf'iYi',,,;,:i, .• ': . ':", 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IEnumlDList 

IEnumlDList: :Skip 
Skips over the specified number of elements in the enumeration sequence. 

Parameters 
celt 

Number of item identifiers to skip. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



236 Volume 5 Microsoft Windows Shell 

IEnumlDList 

I Extractlcon 
This interface allows a client to retrieve the icon that is associated with one of the objects 
in a folder. 

There are two ways to get an object's icon. The simplest way is to call SHGetFilelnfo. 
However, this approach is inflexible and can be rather slow. A more flexible and efficient 
way to get an item's icon is to use IExtractlcon. The shell uses IExtractlcon to retrieve 
icons when it displays the contents of a folder. To use IExtractlcon to get an object's 
icon: 

1. Get a pointer to the ISheliFolder interface of the folder that contains the object. 

2. CaIiISheIiFolder::GetUIObjectOf with the PIOL of the object and the interface 10 of 
IExtractlcon (IIO_IExtractlcon). The folder creates an object to handle the icon 
extraction, and returns the object's IExtractlcon interface pointer. 

3. CaIiIExtractlcon::GetlconLocation to get the icon's location~ 

4. CaIiIExtractlcon::Extract to get the icon's handle. 

It can be possible also to extract icons asynchronously on a background thread. This 
approach is useful when extraction is time-consuming operation. See 
IExtractlcon::GetlconLocation for details. 

When to Implement 
Namespace extensions implement IExtractlcon to provide icons for their objects. A 
client obtains an IExtractlcon interface pointer for an object in a folder by calling the 
folder's ISheIiFolder::GetUIObjectOf method. The GetUIObjectOf implementation 
must create an object to handle the icon extraction, and return a pointer to the object's 
IExtractlcon interface. 

Icon handlers also implement IExtractlcon. An icon handler is a type of shell extension 
handler that allows you to assign icons dynamically to the members of a file class. 

When to Use 
Call this interface if your application needs a more flexible way to retrieve an object's 
icon than SHGetFilelnfo. 

Methods 
Extract 

GetlconLocation 

Extracts an icon from the specified location. 

Retrieves the icon location for an object. 



Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I Extractlcon:: Extract 
Extracts an icon image from the specified location. 

Parameters 
pszFile 

Chapter 7 Shell Interfaces 237 

[in] Pointer to a null-terminated string specifying the icon location. 

nlconlndex 
[in] The index of the icon in the file painted to by pszFile. 

phiconLarge 
[out] Pointer to an HICON value that receives the handle to the large icon. 

phiconSmall 
[out] Pointer to an HICON value that receives the handle to the small icon. 

nlconSize 
[in] Desired size of the icon, in pixels. The low word contains the size of the large icon, 
and the high word contains the size of the small icon. The size specified can be the 
width or height. The width of an icon always equals its height. 

Return Values 
Returns NOERROR if the function extracted the icon, or S_FALSE if the calling 
application should extract the icon. 

Remarks 
The icon location and index are the same values returned by the GetlconLocation 
method. If this function returns S_FALSE, these values must specify an icon file name 
and index that form legal parameters for a call to Extract. If Extract does not return 



238 Volume 5 Microsoft Windows Shell 

S_FALSE, no assumptions should be made about the meanings of the pszFile and 
nlconlndex parameters. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I Extractlcon 

I Extractlcon:: Getlcon Location 
Retrieves the location and index of an icon. 

h 
Parameters 
uFlags 

[in] Flags. This parameter can be zero or one or more of the following values: 

GIL_ASYNC A client sets this flag to discover whether or not the icon should 
be extracted asynchronously. If the icon can be extracted 
rapidly, this flag normally is ignored. If extraction will be time­
consuming, GetlconLocation should return E_PENDING. See 
the Remarks for further discussion. 

GIL_FORSHELL The icon is to be displayed in a shell folder. 

GIL_OPENICON 

szlconFile 

The icon should be in the open state if both open- and closed­
state images are available. If this flag is not specified, the icon 
should be in the normal or closed state. This flag is used 
typically for folder objects. 

[out] Pointer to a buffer that receives the icon location. The icon location is a null­
terminated string that identifies the file that contains the icon. 



Chapter 7 Shell Interfaces 239 

cchMax 
[in] Size of the buffer pOinted to by szlconFile. 

pilndex 
[out] Pointer to an INT that receives the index of the icon in the file pointed to by 
szlconFile. 

pwFlags 
[out] Pointer to a UINT value that receives zero or a combination of the following 
values: 

GIL_DONTCACHE The physical image bits for this icon should not be cached 
by the caller. This distinction is important to consider 
because a GIL_DONTCACHELOCATION flag may be 
introduced in future versions of the shell. 

GIL_NOTFILENAME 

GIL_SIMULATEDOC 

Return Values 

The location is not a file name/index pair. Callers that 
decide to extract the icon from the location must call this 
object's IExtractlcon::Extract method to obtain the 
desired icon images. 

All objects of this class have the same icon. This flag is 
used internally by the shell. Typical implementations of 
IExtractlcon do not require this flag because the flag 
implies that an icon handler is not required to resolve the 
icon on a per-object basis. The recommended method for 
implementing per-class icons is to register a Defaultlcon for 
the class. 

Each object of this class has its own icon. This flag is used 
internally by the shell to handle cases like Setup.exe, 
where objects with identical names can have different 
icons. Typical implementations of IExtractlcon do not 
require this flag. 

The caller should create a document icon using the 
specified icon. 

Returns S_OK if the function returned a valid location, or S_FALSE if the shell should 
use a default icon. If the GIL_ASYNC flag is set in uFlags, the method can return 
E_PENDING to indicate that icon extraction will be time consuming. 

Remarks 
When a client sets the GIL_ASYNC flag in uFlags and receives E_PENDING as a return 
value, it typically creates a background thread to extract the icon. It calls 
GetlconLocation from that thread, without the GIL_ASYNC flag, to retrieve the icon 
location. It then calls IExtractlcon::Extract to extract the icon. Returning E_PENDING 
implies that the object is free threaded. In other words, it can be called concurrently by 
multiple threads safely. 



240 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I Extractlcon: : Extract 

I Extractlmage 
The IExtractlmage interface is used to request a thumbnail image from a shell folder. 
There are two steps to the process. First, use GetLocation to request the path 
description of an image and specify how the image should be rendered. Then call 
Extract to extract the image. 

If the object is free-threaded it also must expose an IRunnableTask interface, so it can 
be stopped and started as needed. This feature can be particularly useful when 
extraction may be slow. 

When to Implement 
Implement IExtractlmage if your namespace extension needs to provide thumbnail 
images to be displayed in a shell view. 

When to Use 
Use IExtractlmage if you are implementing a view of namespace objects, and want to 
display thumbnail images. You can use a shell folder's ISheIiFolder::GetUIObjectOf 
method to bind to its IExtractlmage interface. 

IExtractlmage implements IUnknown and the following methods: 

IExtractlmage methods Description 

Extract 

GetLocation 

Used to request the image itself. 

Used to request location of the file containing the image. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 7 Shell Interfaces 241 

IExtractlmage:: Extract 
Used to request an image from an object, such as an item in a shell folder. 

H~$U~f~~~tta_ct( '_ , ' 
:':~:~;~iit~1':!p'AgnJp,imige;;' ':",i::',,' ,,' 

,.,,;{' 

Parameters 
phBmplmage 

[out] Buffer to hold the bitmapped image. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
You must caIiIExtractlmage::GetLocation prior to calling Extract. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IExtractlmage: :GetLocation 
Used to request the path description of an image and specify how the image should be 
rendered. 

Parameters 
pszPathBuffer 

[out] Buffer used to return the path description. This value to identifies the image so 
you can avoid loading the same one more than once. 



242 Volume 5 Microsoft Windows Shell 

cchMax 
[in] Size of pszPathBuffer in bytes. 

pdwPriority 
[out] Pointer used to return the priority of the item when the IEIFLAG_ASYNC flag is 
set in pdwFlags. This parameter is used normally to indicate the amount of time 
needed to extract the image. There are three standard priority levels: 

Level Description 

lEI_PRIORITY _MAX 

lEI_PRIORITY _MIN 

IELPRIORITY _NORMAL 

Maximum priority 

Minimum priority 

Normal priority 

If you want more control over the order in which thumbnails are extracted, you can 
define as many priority levels as you wish (up to 32 bits). As long as the integer 
values assigned to the different levels increase from low to high priority, the actual 
numbers you use are not important. They are used only to determine the order in 
which the images will be extracted. 

prgSize 
[in] Pointer to a SIZE structure with the desired width and height of the image. 

dwRecCIrDepth 
[in] Recommended color depth in units of bits per pixel. 

pdwFlags 
[in] Flags that specify how the image is to be handled. It can be a combination of the 
following: 

Flag Description 

lEI FLAG_ASPECT 

IEIFLAG_ASYNC 

lEI FLAG_ GLEAM 

IEIFLAG_ OFFLINE 

Used to ask the object to use the supplied aspect ratio. If 
this flag is set, a rectangle with the desired aspect ratio 
will be passed in prgSize. This flag cannot be used with 
lEI FLAG_SCREEN. 

Used to ask the object if it supports asynchronous (free­
threaded) extraction. If this flag is set, and GetLocation 
returns E_PENDING, the priority of the item should be 
returned in pdwPriority. 

Returned by the object to indicate that it will not cache the 
image. If this flag is returned, the shell will cache a copy of 
the image. 

Used to ask the object if it has a gleam. If so, this flag 
should be set when the method returns. 

Used to tell the object to use only local content for 
rendering. 



IEIFLAG_ORIGSIZE 

lEI FLAG_SCREEN 

Chapter 7 Shell Interfaces 243 

Version 5.0. Used to tell the object to render the image to 
the approximate size passed in prgSize, but crop it if 
necessary. 

Used to tell the object to render as if for the screen. This 
flag cannot be used with IEIFLAG_ASPECT. 

Return Values 
Value Description 

NOERROR 

If the IEIFLAG_ASYNC flag is set, this return value is used to indicate 
to the shell that the object is free-threaded. 

Success. 

It may also return an OLE-defined error code. 

Remarks 
If GetLocation is free-threaded, it can be placed in a background thread. The object 
must also expose an IRunnableTask interface, so the caller can start and stop the 
extraction process as needed. 

You should return images that fit within the boundaries defined by prgSize. With 
Windows 2000 and later systems, you can set IEIFLAG_ORIGSIZE to use objects that 
do not have a standard aspect ratio, and they will be displayed properly. You do not 
need to fill in the unused part of the rectangle. If you try to use a nonstandard aspect 

ratio image with earlier versions of the shell, it will be stretched to fit the prgSize 
rectangle. Depending on how much the aspect ratio differs from what is specified, the 
image might be badly distorted. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I Extractl mage2 
The IExtractimage2 interface extends the capabilities of IExtractlmage. 

When to Implement 
Implement IExtractimage2 to provide date stamps for your thumbnail images. 



244 Volume 5 Microsoft Windows Shell 

When to Use 
You do not call this interface directly. IExtractimage2 is used by the operating system 
only when it has confirmed that your application is aware of this interface. 

IExtractimage2 implements all the IExtractlmage methods as well as IUnknown. The 
following method is specific to IExtractlmage2: 

IExtractimage2 methods Description 

GetDateStamp Used to request the date the thumbnail was last modified. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I Extractlmage2: :GetDateStamp 
Used to request the date the image was last modified. This method allows the shell to 
determine whether or not cached images are out of date. 

Parameters 
pDateStamp 

Pointer to a FILETIME structure used to return the last time the image was modified. 

Return Values 
Return NOERROR if successful, or an OLE-defined error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 7 Shell Interfaces 245 

IFileViewer 
The IFileViewer interface designates an interface that allows a registered file viewer to 
be notified when it must show or print a file. 

Note File viewers are not supported by Windows 2000 and later systems. 

When to Implement 
You implement this interface to provide a means for your registered file types to be 
viewed and/or printed. 

When to Use 
You normally do not use this interface. The shell calls the interface when the user 
chooses the Quick View command from a file's context menu and the file is a type that 
the file viewer recognizes. 

IFileViewer methods Description 

PrintTo 

Show 

Showlnitialize 

Prints a file. 

Displays a file. 

Prepares to display a file. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IFileViewer:: PrintTo 
Prints a file. The shell specifies the name of the file to print by calling the file viewer's 
IPersistFile::Load method. 

Parameters 
pszDriver 

Address of a buffer that contains the name of the printer device driver that should print 
the file. If this parameter is NULL, the file viewer determines which device driver 
to use. 



246 Volume 5 Microsoft Windows Shell 

fSuppressUI 
User interface suppression flag. If this parameter is TRUE, the file viewer should not 
display any user interface, including error messages, during the print operation. If this 
parameter is FALSE, the file viewer can show dialog boxes, as needed. 

Return Values 
Returnsthe NOERROR value if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IFileViewer 

IFileViewer: :Show 
Displays a file. The shell specifies the name of the file to display by calling the file 
viewer's IPersistFile::Load method. 

Parameters 
pvsi 

Address of an FVSHOWINFO structure to contain information that the file viewer uses 
to display the file. A file viewer can return information to the shell by modifying the 
members of the structure. 

Return Values 
Returns NOERROR if successful, or E_UNEXPECTED if the 
IFileViewer::Showlnitialize method was not called before IFileViewer::Show. 

Version 4.00 and later of Shell32.dll. 



Windows NT/2000: Requires Windows NT 4.0. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IFileViewer 

IFileViewer: :Showlnitialize 

Chapter 7 Shell Interfaces 247 

Allows a file viewer to determine whether it can display a file and, if it can, to perform 
initialization operations before showing the file. 

Parameters 
/pfsi 

Address of an IFileViewerSite interface. A file viewer uses this interface to retrieve 
the handle to the current pinned window or to specify a new pinned window. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
The shell calls this method before the IFileViewer::Show method. The shell specifies 
the name of the file to display by calling the file viewer's IPersistFile::Load method. 

Showlnitialize must perform all operations that are prone to failure so that if it succeeds, 
IFileViewer::Show will not fail. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IFileViewer 



248 Volume 5 Microsoft Windows Shell 

IFileViewerSite 
The IFileViewerSite interface designates an interface that allows a file viewer to retrieve 
the handle to the current pinned window or to set a new pinned window. The pinned 
window is the window in which the current file viewer displays a file. When the user 
selects a new file to view, the shell directs the file viewer to display the new file in the 
pinned window rather than create a new window. 

Note File viewers are not supported by Windows 2000 and later systems. 

When to Implement 
You normally do not implement this interface. The shell implements this interface to 
provide a pinned window for the file viewer. 

When to Use 
You use this interface to obtain or set the window for a file viewer. 

IFileViewerSite methods Description 

GetPinnedWindow Retrieves the handle to the current pinned window. 

SetPinnedWindow Sets a new pinned window. 

Version 4.0 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I File ViewerSite: : GetPi n nedWi ndow 
Retrieves the handle to the current pinned window, if one exists. 

Parameters 
phwnd 

Address of the handle to the current pinned window, or NULL if no pinned window 
exists. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 



Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IFileViewerSite 

IFileViewerSite: :SetPinnedWindow 

Chapter 7 Shell Interfaces 249 

Sets the pinned window. When the user selects a new file to view, the shell directs the 
file viewer to display the new file in the pinned window instead of creating a new window. 

Parameters 
hwnd 

Handle to the new pinned window, or NULL if there is to be no pinned window. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IFileViewerSite 

IInputObject 
The IInputObject interface is used to change UI activation and process accelerators for 
a user input object contained in the shell. 



250 Volume 5 Microsoft Windows Shell 

When to Implement 
Implement IInputObject if you are implementing a shell object that takes user input. 

When to Use 
You do not call this interface directly. IInputObject is used by the shell or the browser to 
notify the object of UI activation changes and to translate keyboard accelerators. 

IInputObject is derived from IUnknown. The following methods are specific to 
IInputObject: 

IInputObject methods 

HasFocuslO 

TranslateAcceleratorlO 

UIActivatelO 

Description 

Determines if one of the object's windows has the keyboard 
focus. 

Passes keyboard accelerators to the object. 

Activates or deactivates the object. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IInputObject: :HasFocuslO 
Determines if one of the object's windows has the keyboard focus. 

Return Values 
Returns S_OK if one of the object's windows has the keyboard focus, or S_FALSE 
otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



IInputObject: :TranslateAcceleratorlO 
Allows the object to process keyboard accelerators. 

Parameters 
/pMsg 

Chapter 7 Shell Interfaces 251 

Address of an MSG structure that contains the keyboard message that is being 
translated. 

Return Values 
Returns S_OK if the accelerator was translated, or S_FALSE otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 

Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IInputObject:: UIActivatelO 
UI activates or deactivates the object. 

Parameters 
fActivate 

Indicates if the object is being activated or deactivated. If this value is nonzero, the 
object is being activated. If this value is zero, the object is being deactivated. 

/pMsg 
Address of an MSG structure that contains the message that caused the activation 
change. This value may be NULL. 



252 Volume 5 Microsoft Windows Shell 

Return Values 
Returns S_OK if the activation change was successful, or an OLE-defined error code 
otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IInputObjectSite 
The IInputObjectSite interface is used to communicate focus changes for a user input 
object contained in the shell. 

When to Implement 
You normally do not implement this interface. IInputObjectSite is implemented by the 
shell or the browser to maintain the input focus properly. 

When to Use 
You use IInputObjectSite if you are implementing a shell object that takes user input. 

IInputObjectSite is derived from IUnknown. The following method is specific to 
II nputObjectSite: 

IInputObjectSite method Description 

OnFocusChangelS Informs the browser that the focus has changed. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



IInputObjectSite: :OnFocusChangelS 
Informs the browser that the focus has changed. 

Parameters 
punkObj 

Chapter 7 Shell Interfaces 253 

Address of the IUnknown interface of the object gaining or losing the focus. 

fSetFocus 
Indicates if the object has gained or lost the focus. If this value is nonzero, the object 
has gained the focus. If this value is zero, the object has lost the focus. 

Return Values 
Returns S_OK if the method was successful, or an OLE-defined error code otherwise. 

Remarks 
The calling object should call this method whenever one of its windows gains or loses 
the input focus. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

INewShortcutHook 
The INewShortcutHook interface is used when creating a new Internet shortcut. 

When to Implement 
You normally do not implement INewShortcutHook. It is implemented by the shell for 
Internet shortcuts. 



254 Volume 5 Microsoft Windows Shell 

When to Use 
You use INewShortcutHook when creating a new Internet shortcut. The methods 
provided by this interface are supplied as a convenience. 

INewShortcutHook is derived from IUnknown. The following methods are specific to 
INewShortcutHook: 

INewShortcutHook methods 

GetExtension 

GetFolder 

GetName 

GetReferent 

SetFolder 

Set Referent 

Description 

Retrieves the file extension for the shortcut object. 

Retrieves the folder name for the shortcut object. 

Retrieves the file name of the shortcut object, without 
the extension. 

Retrieves the referent of the shortcut object. 

Sets the folder name for the shortcut object. 

Sets the referent of the shortcut object. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

INewShortcutHook: :GetExtension 
Retrieves the file extension for the shortcut object. 

Parameters 
psz£xtension 

Address of a character buffer that receives the extension. 

cch£xtension 
Size of the buffer at psz£xtension, in characters. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 



Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

INewShortcutHook 

INewShortcutHook: :GetFolder 
Retrieves the folder name for the shortcut object. 

lfi~tt~~!~,f,' 
:") 

Parameters 
pszFolder 

Chapter 7 Shell Interfaces 255 

Address of a character buffer that receives the folder name. 

cchFolder 
Size of the buffer at pszFolder, in characters. 

Return Values 
Returns S_OK if successful, S_FALSE if no folder has been assigned, or an OLE­
defined error code otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I NewShortcutHook 



256 Volume 5 Microsoft Windows Shell 

INewShortcutHook: :GetName 
Retrieves the file name of the shortcut object, without the extension. 

Parameters 
pszName 

Address of a character buffer that receives the name. 

cchName 
Size of the buffer at pszName, in characters. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

INewShortcutHook 

INewShortcutHook: : GetReferent 
Retrieves the referent of the shortcut object. 

Parameters 
pszReferent 

Address of a character buffer that receives the referent. 

cchReferent 
Size of the buffer at pszReferent, in characters. 



Chapter 7 Shell Interfaces 257 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
For Internet shortcut objects, this method is the same as 
IUniformResourceLocator: :GetURL. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

INewShortcutHook 

INewShortcutHook: :SetFolder 
Sets the folder name for the shortcut object. 

Parameters 
pszFolder 

Address of a character buffer that contains the folder name. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



258 Volume 5 Microsoft Windows Shell 

INewShortcutHook 

INewShortcutHook: :SetReferent 
Sets the referent of the shortcut object. 

Parameters 
pszReferenf 

Address of a character buffer that contains the referent. 

hWnd 
Handle to the window that will be used as the parent if the object needs to display a 
message box or dialog box. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 

Remarks 
For Internet shortcut objects, this method is the same as 
IUniformResourceLocator: :SetURL. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

INewShortcutHook 

INotifyReplica 
The INotifyReplica interface provides the object's creator with the means to notify an 
object that it might be subject to subsequent reconciliation. The briefcase reconciler is 
responsible for implementing this interface. 



Chapter 7 Shell Interfaces 259 

INotifyReplica method Description 

YouAreAReplica Notifies an object that it might be subject to reconciliation. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

I NotifyRepl ica: : YouAreARepl ica 
Notifies an object that it might be subject to subsequent reconciliation through the 
IReconciiableObject:: Reconcile method. 

Parameters 
ulcOtherReplicas 

Number of other replicas of the object. This parameter must not be zero. 

rgpmkOtherReplicas 
Address of an array that contains the addresses of the monikers to use to access the 
other replicas. 

Return Values 
Returns S_OK if successful, or E_UNEXPECTED otherwise. 

Remarks 
An object can be notified that it is a replica more than once. Briefcase reconcilers are not 
required to implement this interface. Initiators are not required to call this interface if it is 
implemented. However, an object's implementation of IReconciiableObject::Reconcile 
can fail if that object has not been notified through INotifyReplica::YouAreAReplica 
previously that it may be subject to reconciliation. 

The briefcase calis the INotifyReplica interface when objects are added to it. 

Version 4.00 and later of Shell32.dll. 



260 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

IObjMgr 
The IObjMgr interface allows a client to append or remove an object from a collection of 
objects managed by a server object. 

When to Implement 
This interface is implemented by objects that manage a collection of other objects. It is 
exported to allow clients of the object to request that objects be added to or removed 
from the collection. 

When to Use 
Use this interface to add or delete an object from the server object's collection of 
managed objects. 

Methods 

IObjMgr exposes the following methods in addition to IUnknown: 

Append Appends an object to the server object's collection of managed objects. 

Remove Removes an object from the server object's collection of managed 
objects. 

Version 5.00 and later of Shell32.dll. 
Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IObjMgr: :Append 
Appends an object to the collection of managed objects. 

Parameters 
punk 

[in] Address of the IUnknown interface of the object to be added to the list. 



Chapter 7 Shell Interfaces 261 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 
Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IObjMgr,IObjMgr::Remove 

IObjMgr:: Remove 
Removes an object from the collection of managed objects. 

Parameters 
punk 

[in] Address of the IUnknown interface of the object to be removed from the list. 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IObjMgr,IObjMgr::Append 

IPersistFolder 
The IPersistFolder interface is used to initialize shell folder objects. 



262 Volume 5 Microsoft Windows Shell 

When to Implement 
When implementing a shell namespace extension, specifically the IShellFolder 
interface, you need to implement this interface so the folder object can be initialized. 
Implementation of this interface is how the folder is told where it is in the shell 
namespace. 

When to Use 
You do not use this interface directly. It is used by the file system implementation of the 
ISheIlFolder::BindToObject interface when it is initializing a shell folder object. 

IPersistFolder is derived from IPersist. The following method is specific 
to IPersistFolder: 

IPersistFolder method Description 

Initialize Instructs a shell folder object to initialize itself based on the 
information passed. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IPersistFolder:: Initialize 
Instructs a shell folder object to initialize itself based on the information passed. 

Parameters 
pidl 

Address of the ITEMIDLIST (item identifier list) structure that specifies the absolute 
location of the folder. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
All objects that implement the IShellFolder interface for use in the shell's namespace 
must implement this method. When a folder's location in the namespace is not a relevant 



Chapter 7 Shell Interfaces 263 

consideration, this method can return NOERROR. When the location is relevant to the 
folder, you should store the fully qualified IDUST passed in for future reference. 

For example, if the folder implementation needs to construct a fully qualified PIDL to 
elements that it contains, the PIDL passed to this method should be used to construct 
the fully qualified PIDLs. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IPersistFolder 

IPersistFolder2 
The IPersistFolder2 interface is used to obtain information from shell folder objects. 

When implementing a shell namespace extension, specifically the IShellFolder 
interface, you need to implement this interface so that the shell folder object's 
ITEMIDLIST can be retrieved. 

IPersistFolder2 is derived from IPersistFolder. The following method is specific to 
IPersistFolder2: 

Methods 
GetCurFolder Retrieves the ITEMIDLIST for the folder object. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I PersistFolder2: : GetCu rFolder 
Retrieves the ITEMIDLIST for the folder object. 



264 Volume 5 Microsoft Windows Shell 

Parameters 
ppidl 

Address of an ITEMIDLIST pOinter that receives a copy of the PIDL that represents 
the absolute location of the folder. This PIDL must be relative to the desktop. This 
normally will be a copy of the PIDL that was passed to IPersistFolder::lnitialize. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 

Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IPersistFolder2 

I PersistFolder3 
The IPersistFolder3 interface allows a folder object to implement nondefault handling of 
folder shortcuts. It is an extension of the IPersistFolder2 interface. 

When to Implement 
Namespace extensions implement this interface if they need to perform nondefault 
handling of folder shortcuts. 

When to Use 
Applications normally do not use this interface directly. 

Methods 
This interface extends the IPersistFolder and IPersistFolder2 interfaces. The following 
methods are specific to IPersistFolder3: 



Chapter 7 Shell Interfaces 265 

GetFolderTargetlnfo Provides the location and attributes of a folder shortcut's target 
folder. 

Initialize Ex Initializes a folder, and specifies its location in the namespace. 
If the folder is a shortcut, the method also specifies the 
location of the target folder. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I PersistFi leSystem Folder: : GetFolderTargetl nfo 
Provides the location and attributes of a folder shortcut's target folder. 

<HRESO.LT .. Getf'old~r:Tar~etlnfn{.. : .' ' ... 
··PeRnST.:.fl·~ESYSTEM;;..fOLUEiLltmr .. 'I;pfsd 

, ~ , +, c', > ~'", ' , , '. ': '; ; " ," 0 

Parameters 
pfsfi 

" 

out] Address of a PERSIST _FOLDER_TARGET _INFO structure that is used to return 
the target folder's location and attributes. 

Return Values 
Returns NOERROR if successful, or an OLE error code otherwise. 

Remarks 
The PERSIST_FOLDER_TARGET_INFO structure might not be initialized by the caller. 
GetFolderTargetlnfo should assign values to all members of the structure before 
returning it to the caller. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IPersistFolder3 



266 Volume 5 Microsoft Windows Shell 

I PersistFi leSystem Folder: : Initial izeEx 
Initializes a folder, and specifies its location in the namespace. If the folder is a shortcut, 
the method also specifies the location of the target folder. 

Parameters 
pbc 

[in] Address of an IBindCtx interface that provides the bind context. This parameter is 
set to NULL if not used. 

pidlRoot 
[in] Address of a fully qualified PIDL that specifies the absolute location of a folder or 
folder shortcut. The caller allocates and frees this PIDL. 

ppfti 
[in] Address of a PERSIST_FOLDER_TARGET_INFO structure that specifies the 
location of the target folder and its attributes. If ppfti pOints to a valid structure, 
pidlRoot represents a folder shortcut. If ppfti is set to NULL, pidlRoot represents a 
normal folder. In that case, InitializeEx should behave as if IPersistFolder::lnitialize 
had been called. 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Remarks 
This function is an extended version of IPersistFolder::lnitialize. It allows the shell to 
initialize folder shortcuts as well as normal folders. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IPersistFolder3 



Chapter 7 Shell Interfaces 267 

IProgressDialog 
The IProgressDialog interface is exported by the progress dialog box object 
(CLSID_ProgressDialog). This object is a generic way to show a user how an operation 
is progressing. It is used typically when deleting, uploading, copying, moving, or 
downloading large numbers of files. 

The progress dialog box object creates a modeless dialog box and allows the client to 
set its title, animation, text lines, and progress bar. The object then handles updating on 
a background thread and allows the user to cancel the operation. Optionally, it estimates 
the time remaining until the operation is complete and displays the information as a line 
of text. 

When to Implement 
Applications normally do not implement this interface. It is exported by the progress 
dialog box object for use by applications. 

When to Use 
Use this interface when your application needs to display a progress dialog box. To 
initialize the object: 

1. Create an in-process progress dialog box object (CLSID_ProgressDialog) with 
CoCreatelnstance. Request a pointer to its IProgressDialog interface 
(1ID_IProgressDialog). 

2. CaIlIProgressDialog::SetTitle to specify the dialog box title. 

3. CaIlIProgressDialog::SetAnimation to specify an AVI clip to be played while the 
operation progresses. 

4. CaIlIProgressDialog::SetCanceIMsg to specify the message that will be displayed if 
the user cancels the operation. 

To display the progress of the operation: 

1. CaIlIProgressDialog::StartProgressDialog to display the dialog box. 

2. Assign a numerical value to the total amount of work the operation will perform. Use 
any number that allows you conveniently to define the progress of the operation. For 
example, set this value to 100 if you want to specify the progress of the operation in 
terms of the percent that has been completed. 

3. CaIlIProgressDialog::Timer to reset the timer. This method sets the starting point 
that the progress dialog box object uses to estimate the time remaining in the 
operation. If you do not call this method, the starting point will be the call to 
StartProgressDialog. 

4. As the operation progresses, caIlIProgressDialog::SetProgress periodically to 
update the dialog box as to how much of the operation has been completed. The 
progress dialog object will update its progress bar and recalculate its estimate of the 
remaining time. You can use any numerical measure of progress that is convenient. 



268 Volume 5 Microsoft Windows Shell 

However, if you want to use values larger than 4GB, you must call 
IProgressDialog::SetProgress64 instead of IProgressDialog::SetProgress. 

5. Your application does not receive a notification if the user clicks the Cancel button to 
cancel the operation. As the operation progresses, periodically call 
IProgressDialog::HasUserCancelied to see if the user has clicked the Cancel 
button. Applications typically call this method each time they call 
IProgressDialog: :SetProgress or IProgressDialog: :SetProgress64. 

6. The dialog box displays three lines of text. An application periodically can call 
IProgressDialog::SetLine to display a message on one of these lines. This method 
is used normally to provide information on the current status of the operation. A typical 
message is something like: "Currently processing item XXX .. ". Messages are 
displayed normally on lines 1 and 2. You can display messages on line 3 only if you 
have not instructed the progress dialog box object to estimate the remaining time by 
setting the PROGDLG_AUTOTIME flag in the dwFlags parameter of 
IProgressDialog::StartProgressDialog. In that case, the third text line is used to 
display the estimated time. 

When the operation is complete: 

1. CaIiIProgressDialog::StopProgressDialog to close the dialog box. 

2. Release the progress dialog box object. 

IProgressDialog exposes the following methods in addition to IUnknown: 

Methods Description 

HasUserCancelled 

SetAnimation 

SetCancelMsg 

SetLine 

SetProgress 

SetProgress64 

SetTitle 

StartProgressDialog 

StopProgressDialog 

Timer 

Checks whether the user has canceled the operation. 

Specifies an AVI clip that will run in the dialog box. 

Sets a message to be displayed if the user cancels the 
operation. 

Displays a message. 

Updates the progress dialog box with the current state of the 
operation. 

Updates the progress dialog box with the current state of the 
operation. 

Sets the title of the progress dialog box. 

Starts the progress dialog box. 

Stops the progress dialog box. 

Resets the timer. 

Version 5.00 and later of Shell32.dll. 



Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog:: HasUserCancelied 
Checks whether the user has canceled the operation. 

'9"~~" 1!~$g¥J.hc"':I"(c!>!(i~d( ~\~l~)·.~··.·. 

Parameters 
None. 

Remarks 

Chapter 7 Shell Interfaces 269 

The system does not send a message to the application when the user clicks the Cancel 
button. You must use this function periodically to poll the progress dialog box object to 
determine whether the operation has been canceled. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog::SetAnimation 
Specifies an AVI clip that will run in the dialog box. 

Parameters 
hlnstAnimation 

[in] Instance handle to the module from which the AVI resource should be loaded. 



270 Volume 5 Microsoft Windows Shell 

idAnimation 
[in] AVI resource identifier. To create this value, use the MAKEINTRESOURCE 
macro. The control loads the AVI resource from the module specified by 
hlnstAnimation. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method takes the instance handle specified by hlnstAnimation and uses the 
common control's animation control to open and run a silent AVI clip. There are several 
restrictions as to what types of AVI clips can be used: 

• Clips cannot include sound. 

• The size of the AVI clip cannot exceed 272 by 60 pixels. Smaller rectangles can be 
used, but they might not be centered properly. 

• AVI clips must be either uncompressed or compressed with run-length (BI_RLES) 
encoding. If you attempt to use an unsupported compression type, no animation will 
be displayed. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog: :SetCancelMsg 
Sets a message to be displayed if the user cancels the operation. 

Parameters 
pwzCancelMsg 

[in] Pointer to a NULL-terminated Unicode string that contains the message to be 
displayed. 



Chapter 7 Shell Interfaces 271 

pvReserved 
Reserved for future use. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
Even though the user clicks Cancel, the application cannot immediately call 
IProgressDialog::StopProgressDialog to close the dialog box. The application must 
wait until the next time it calls IProgressDialog::HasUserCancelied to discover that the 
user has canceled the operation. Since this delay might be significant, the progress 
dialog box provides the user with immediate feedback by clearing text lines 1 and 2, and 
displaying the cancel message on line 3. The message is intended to let the user know 
that the delay is normal and that the progress dialog box will be closed shortly. It typically 
is set to something like "Please wait while ... ". 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog::SetLine 
Displays a message. 

liREStlI..T. sitl il1~« 
.... ··DWClDo· dwL f rleNJI11:'; 
•. U'CWS1R: pwzs'trinu.; . 
>;;:<6{)QL"fCompa;t;t~;tb~';··· 

L~tV()llfpvRe$eJ'v.ed· . 
. , 

) : 

Parameters 
dwLineNum 

[in] Line number on which the text is to be displayed. Currently, there are three lines-
1, 2, and 3. If the PROGDLG_AUTOTIME flag was included in the dwFlags parameter 
when IProgressDialog::StartProgressDialog was called, only lines 1 and 2 can be 
used. The estimated time will be displayed on line 3. 



272 Volume 5 Microsoft Windows Shell 

pwzString 
[in] NULL-terminated Unicode string that contains the text. 

fCompactPath 
[in] Value that is set to TRUE to have path strings compacted if they are too large to fit 
on a line. The paths are compacted with PathCompactPath. 

pvReserved 
[in] Reserved for future use. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This function is used typically to display a message such as "Item XXX is now being 
processed." Normally, messages are displayed on lines 1 and 2, with line 3 reserved for 
the estimated time. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog::SetProgress 
Updates the progress dialog box with the current state of the operation. 

Parameters 
dwCompleted 

[in] Application-defined value that indicates what proportion of the operation has been 
completed at the time the method was called. 

dwTotal 
[in] Application-defined value that specifies what value dwCompletedwili have when 
the operation is complete. 



Chapter 7 Shell Interfaces 273 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
Use any convenient numerical measure of the progress of the operation. To use values 
larger than 4 GB, you can caIiIProgressDialog::SetProgress64 instead. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog: :SetProgress64 
Updates the progress dialog box with the current state of the operation. 

tliES,UU' '$$,tPr~rei$~( 
'. "'~ijt4ttG"0Il'e' yilC Qlftpjet ~ 11:., 
"~1..0HGCOtlGtJJ n:'otJ'l;~ , ••. 
Yi'~' : ~ 

Parameters 
ullCompleted 

[in] Application-defined value that indicates what proportion of the operation has been 
completed at the time the method was called. 

ullTotal 
[in] Application-defined value that specifies what value ullCompletedwili have when 
the operation is complete. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method has exactly the same function as IProgressDialog::SetProgress but 
allows you to use values larger than one DWORD (4 GB). 



274 Volume 5 Microsoft Windows Shell 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog: :SetTitle 
Sets the title of the progress dialog box. 

Parameters 
pwzTitle 

[in] Pointer to a NULL-terminated Unicode string that contains the dialog box title. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog::StartProgressDialog 
Starts the progress dialog box. 



Parameters 
hwndParent 

[in] Handle to the dialog box's parent window. 

punkEnableModless 
Reserved for future use. 

dwFlags 

Chapter 7 Shell Interfaces 275 

Flags that control the operation of the progress dialog box. This can be a combination 
of the following values: 

Flag Description 

PROGDLG~UTOTIME Automatically estimate the remaining time and 
display the estimate on line 3. If this flag is set, 
IProgressDialog::SetLine can be used only to 
display text on lines 1 and 2. 

PROGDLG_MODAL The progress dialog box will be modal to the 
window specified by hwndParent. By default, a 
progress dialog box is modeless. 

PROGDLG_NORMAL Normal progress dialog box behavior. 

PROGDLG_NOMINIMIZE Do not display a minimize button on the dialog 
box's caption bar. 

PROGDLG_NOPROGRESSBAR Do not display a progress bar. Normally, an 
application can determine quantitatively how 
much of the operation remains and pass 
periodically that value to 
IProgressDialog::SetProgress. The progress 
dialog box uses this information to update its 
progress bar. This flag is set typically when the 
calling application needs to wait for an operation 
to finish, but does not have any quantitative 
information it can use to update the dialog box. 

PROGDLG_NOTIME Do not show the "time remaining" text. 

pvReserved 
Reserved for future use. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Version 5.00 and later of Shell32.dll. 



276 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IProgressDialog::StopProgressDialog 
Stops the progress dialog box and removes it from the screen. 

!ff~~~LJ:tt';~tPpprogr.;$;llt~i(,}g{VOtllj ; 

Parameters 
None. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog,IProgressDialog::HasUserCancelled 

IProgressDialog: :Timer 
Resets the progress dialog box timer to zero. 

lJRtSI1~Tnme'r"':,', .. ' •.. 
":~'t:ij~~D ~WnmfJrAC~19n~ .. 
'··>,·{;l';/mHO:pYRe.$.el'.I(.ei(, ' c):>'" . , '.' ." ..... . 

Parameters 
dwTimerAction 

[in] Flags that indicate the action that should be taken by the timer. Currently, there is 
only one value. 



Chapter 7 Shell Interfaces 277 

Flag Description 

PDTIMER_RESET Resets the timer to zero. Progress will be calculated from the 
time this method is called. 

pvReserved 
Reserved for future use. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
The timer is used to estimate the remaining time. It is started when your application calls 
IProgressDialog::StartProgressDialog. Unless your application will start immediately, 
it should call Timer just before starting the operation. This practice ensures that the time 
estimates will be as accurate as possible. This method should not be called after the first 
call to IProgressDialog::SetProgress. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IProgressDialog 

IQuery Associations 
When you create a file association by defining a file class and associating it with an 
application, a variety of related information can be stored in the registry. This interface is 
a utility exposed by the shell that simplifies the process of retrieving this information from 
HKEY _CLASSES_ROOT and HKEY _CURRENT _USER. A complete registry path or 
HKEY value is not required. Instead, you can retrieve information based on criteria such 
as the file name extension or executable name. For a discussion of file associations, see 
Creating a File Association. 

When to Implement 
This interface is exposed by the shell or by namespace extensions to simplify handling 
file associations. 



278 Volume 5 Microsoft Windows Shell 

When to Use 
Use this interface if you need information from the registry related to file associations. 
For example, you can use this interface to retrieve information associated with a file 
name extension such as the command string of one of its verbs. 

To use this interface, you must first get a pointer to it. Typically, you get an 
IQuerylnterface pointer by calling a shell object's ISheIiFolder::GetUIObjectOf 
method. You can also get an interface pointer by calling AssocCreate. Then, initialize it 
with IQueryAssociations::lnit. This method sets the root key that will be used when you 
call any of the remaining three methods to retrieve information from the registry. They 
will look only below the root key. You must release the interface when you no longer 
need it. 

The IQueryAssociations interface is useful if you need to query the registry for 
information repeatedly. Once the interface is initialized, the overhead of calling the 
various methods is relatively small. There are also several related functions, listed in the 
See Also section, that allow you to get the same information from the registry with a 
single function call. While they are simpler to use, they incur the overhead of creating 
and initializing IQueryAssociations each time they are called. Because of this, they are 
best suited for single use. 

IQueryAssociations exposes the following methods: 

Method Description 

GetData 

GetEnum 

Get Key 

GetString 

Init 

Retrieves binary data associated with a specified value. 

Not implemented. 

Retrieves the HKEY value associated with a specified key. 

Retrieves the string associated with a specified value. 

Initializes the interface and sets the root key. 

Version 5.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

AssocQueryKey, AssocQueryString, AssocQueryStri ngByKey 



Chapter 7 Shell Interfaces 279 

IQuery Associations: :GetData 
Searches for and retrieves file association-related binary data from the registry. 

Parameters 
flags 

[in] ASSOCF value that can be used to control the search. 

data 
[in] ASSOCDATA value that specifies the type of data that is to be returned. 

pwszExtra 
[in] Pointer to an optional NULL-terminated Unicode string with information about the 
location of the data. It is set normally to a shell verb such as open. Set this parameter 
to NULL if it is not used. 

pvOut 
[out] Pointer used to return the data value. 

pcbOut 
[out] Pointer to a value that will hold the size of pvOut, in bytes. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

IQuery Associations 



280 Volume 5 Microsoft Windows Shell 

IQuery Associations: :GetEnum 
This method is not implemented currently. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

IQuery Associations 

IQuery Associations: : Get Key 
Searches for and retrieves a file association-related key from the registry. 

Parameters 
flags 

[in] ASSOCF value that can be used to control the search. 

key 
[in] ASSOCKEY value that specifies the type of key that is to be returned. 

pwszExtra 
[in] Pointer to an optional NULL-terminated Unicode string with information about the 
location of the key. It is set normally to a shell verb such as open. Set this parameter 
to NULL if it is not used. 

phkeyOut 
[out] Pointer to the key's HKEY value. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 



Chapter 7 Shell Interfaces 281 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

IQuery Associations 

IQuery Associations: :GetString 
Searches for and retrieves a file association-related string from the registry. 

Parameters 
flags 

[in] Flag that can be used to control the search. It can be any combination of the 
following ASSOCF values: 

• ASSOCF _IGNOREBASECLASS 

• ASSOCF _NOFIXUPS 

• ASSOCF_NOTRUNCATE 

• ASSOCF _NOUSERSETTINGS 

• ASSOCF_REMAPRUNDLL 

• ASSOCF_VERIFY 

str 
[in] ASSOCSTR value that specifies the type of string that is to be returned. 

pwszExtra 
[in] Pointer to an optional NULL-terminated Unicode string with information about the 
location of the string. It is set normally to a shell verb such as open. Set this 
parameter to NULL if it is not used. 



282 Volume 5 Microsoft Windows Shell 

pwszOut 
[out] Pointer to a NULL-terminated Unicode string used to return the requested string. 

pcchOut 
[in/out] Pointer to a value that is set to the number of characters in the pszOut buffer. 
It returns the number of characters actually placed in the buffer. If the 
ASSOCF _NOTRUNCATE flag is set in flags and the buffer specified in pcchOut is too 
small, the function will return E_POINTER and pcchOut will point to the required size 
of the buffer. 

Return Values 
Returns S_OK if successful, E_POINTER if the buffer is too small, or an OLE error value 
otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapLlib. 

IQuery Associations 

IQueryAssociations::lnit 
Initializes the IQueryAssociations interface and sets the root key to the appropriate 
ProglD. 

Parameters 
flags 

[in] Flag that specifies how the search is to be initialized. It is set normally to NULL, 
but it can also take one of the following ASSOCF values: 



Chapter 7 Shell Interfaces 283 

• ASSOCF _INIT _BYEXENAME 

• ASSOCF _INIT _DEFAUL TTOFOLDER 

• ASSOCF_INIT_DEFAULTTOSTAR 

pwszAssoc 
[in] Unicode string that is used to determine the root key. If a value is specified for 
hkProgid, set this parameter to NULL. Four types of string can be used. 

String type Description 

CLSID 

Executable name 

File name extension 

ProglD 

hkProgid 

A CLSID GUID in the standard "{GUID}" format. 

The name of an application's .exe file. The 
ASSOCF _OPEN_BYEXENAME flag must be set in flags. 

A file name extension, such as .txt. 

An application's ProglD, such as Word.Document.8. 

[in] HKEY value of the key that will be used as a root key. The search will look only 
below this key. If a value is specified for pwszAssoc, set this parameter to NULL. 

hwnd 
Reserved. Set to NULL. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This method initializes the interface, and is called each time you need to specify a new 
root key. You can use pwszAssocto specify a string, such as a file name extension or its 
associated ProglD, that identifies the root key. You also can specify the root key's HKEY 
value. Init will then use this information to locate the root key in the registry. Subsequent 
calls to the other IQueryAssociations methods will use it as their starting pOint and 
search for the information in the root key's subkeys. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 



284 Volume 5 Microsoft Windows Shell 

IQueryAssociations 

IQuerylnfo 
The shell uses the IQuerylnfo interface to retrieve flags and info tip information for an 
item that resides in an ISheliFolder implementation. Info tips are displayed usually 
inside of a tooltip control. 

When to Implement 
Implement IQuerylnfo to provide flags and text information that differs from the normal 
text that is displayed for an item in a folder. For example, if your folder contained file 
objects, you could use the info tip to provide the entire path and file name for the item 
rather than just the file name. 

This interface is obtained by calling ISheIiFolder::GetUIObjectOf and passing 
IID_IQuerylnfo for the interface identifier. The item for which info tip information is being 
requested is contained in the apidl argument of the ISheIiFolder::GetUIObjectOf call. If 
IQuerylnfo is not supplied by the folder, the shell will use the standard display text in the 
info tip. 

When to Use 
In most cases, you do not use this interface directly. The shell will use this interface 
when it requires additional information to display inside of an info tip. However, you can 
use IQuerylnfo directly if you want to obtain info tip information from another object. 

IQuerylnfo methods Description 

GetlnfoFlags Retrieves the information flags for an item. 

GetlnfoTip Retrieves the info tip text for an item. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IQuerylnfo: :GetlnfoFlags 
Retrieves the information flags for an item. This method is not used currently. 



HRESULT GetlnfoFlags( 
DWORD *pdwF7 ags 

) ; 

Parameters 
pdwFlags 

Chapter 7 Shell Interfaces 285 

[out] Pointer to a value that receives the flags for the item, If no flags are to be 
returned, this value should be set to zero, 

Return Values 
Returns S_OK if pdwFlags returns any flag values, or an OLE-defined error value 
otherwise, 

Version 4.71 and later of Shell32,dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4,0 with 
Internet Explorer 4,0 or later), 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4,0 
or later), 
Windows CE: Unsupported, 
Header: Declared in shlobj,h, 

IQuerylnfo 

IQuerylnfo: :GetlnfoTip 
Retrieves the info tip text for an item, 

Parameters 
dwFlags 

Not used currently, 

ppwszTip 
[out] Address of a Unicode string pointer that receives the tip string pOinter. 
Applications that implement this method must allocate memory for ppwszTip by 
calling SHGetMalloc, Calling applications must call SHGetMalioc to free the memory 
when it is no longer needed, 



286 Volume 5 Microsoft Windows Shell 

Return Values 
Returns S_OK if the function succeeds. If no info tip text is available, ppwszTip is set to 
NULL. Otherwise, returns an OLE-defined error value. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IQuerylnfo 

I ReconciiableObject 
The IReconciiableObject interface carries out the reconciliation of a document. The 
briefcase reconciler is responsible for implementing this interface. 

IReconciiableObject methods Description 

GetProgressFeedbackMaxEstimate 

Reconcile 

Version 4.00 and later of Shell32.dll. 

Receives estimate of work required to 
complete a reconciliation. 

Reconciles the state of an object with one or 
more other objects. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

IReconcilableObject: :GetProgressFeedbackMaxEstimate 
Retrieves an estimated measurement of the amount of work required to complete a 
reconciliation. Reconcilers typically use this method to estimate the work needed to 
reconcile an embedded document. This value corresponds to a similar value that is 
passed with the IReconcilelnitiator::SetProgressFeedback method during 
reconciliation. 



Chapter 7 Shell Interfaces 287 

HRESULT IReconc11ableObject::GetProgressFeedbackMaxEst1mate( 
IMonfk.er**pulProgressMax 

) : 
Parameters 
pulProgressMax 

Address of the variable to receive the work estimate value. 

Return Values 
Returns S_OK if successful, or one of the following error values otherwise: 

E_UNEXPECTED Unspecified error. 

OLE_E_NOTRUNNING The object is an OLE embedded document that must be 
run before this operation can be carried out. The object 
state is unchanged as a result of the call. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

IReconciiableObject 

IReconcilableObject:: Reconcile 
Reconciles the state of an object with one or more other objects. The reconciliation 
updates the internal state of the object by merging the states of all objects to form a 
combined state. 



288 Volume 5 Microsoft Windows Shell 

Parameters 
plnitiator 

Address of the IReconcilelnitiator interface for the initiator of the reconciliation 
process. This parameter must not be NULL. 

dwFlags 
Control flags for the reconciliation. This parameter can be zero or a combination of 
these values: 

RECONCILEF _FEEDBACKWINDOWVALID 

RECONCILEF _MAYBOTHERUSER 

RECONCILEF _NORESIDUESOK 

RECONCILEF _OMITSELFRESIDUE 

RECONCILEF _ONL YYOUWERECHANGED 

The hwndProgressFeedback parameter is valid. 

The briefcase reconciler can prompt for user 
interaction if it is needed. Without this value, user 
interaction is not permitted. The hwndOwner 
parameter is valid. 

The briefcase reconciler can ignore requests for 
residues and carry out reconciliation. Reconcilers 
that do not support residues should check for this 
value whenever an initiator requests residues. 
Without this value, a reconciler that does not 
support residues must return immediately 
REC_E_NORESIDUES. 

The briefcase reconciler can discard any residue 
associated with this object. Initiators typically use 
this value for reconciliations that loop from 
generation to generation. 

The Reconcile method is being called to 
propagate changes in the changed object to other 
unchanged objects. This value will be set only if 
the following key exists in the registry. 

If this key is not present in the registry, the initiator 
carries out reconciliation by making the other 
unchanged objects binary identical copies of the 
changed object. The rgpmkOtherlnput monikers 
identify the other objects. This value will be set 
only in dwFlags if 
RECONCILEF _ YOUMAYDOTHEUPDATES is 
also set. If the briefcase reconciler completes the 
updates itself successfully, 
REC_S_IDIDTHEUPDATES should be returned 
and the variable pointed to by the plOutlndex 
parameter should be set to -1 L. Note that S_ OK 



Chapter 7 Shell Interfaces 289 

should not be returned on success if this value is 
set in dwFlags. The initiator will not save the 
source object's storage if Reconcile returns 
REC_S_IDIDTHEUPDATES. If the reconciler 
wants to fall back to the initiator's bit copy 
implementation, it can return S_FALSE. 

RECONCILEF _RESUMEDRECONCILIATION The briefcase reconciler should resume 
reconciliation, using the partial residues provided. 
Without this value, the reconciler should ignore 
any "considered but rejected" information in any of 

RECONCILEF _ YOUMAYDOTHEUPDATES 

hwndOwner 

the input versions. 

The briefcase reconciler can perform the updates. 
Without this value, the reconciler cannot perform 
the updates. If reconciliation is completed 
successfully, the reconciler should return 
REC_S_IDIDTHEUPDATES if it performed the 
updates or S_OK if it did not perform the updates. 

Handle to the window to be used as the parent for any child windows that the 
briefcase reconciler creates. This parameter is valid only if 
RECONCILEF _MAYBOTHERUSER is specified in dwFlags. 

hwndProgressFeedback 
Handle to the progress feedback window to be displayed by the initiator. This 
parameter is valid only if RECONCILEF _FEEDBACKWINDOWVALID is specified in 
dwFlags. The briefcase reconciler may call the SetWindowText function using this 
window handle to display additional reconciliation status information to the user. 

ulclnput 
Number of versions or partial residues specified in dwFlags. This parameter must not 
be zero. 

rgpmkOfherlnput 
Address of an array that contains the addresses of the monikers to use to access the 
versions or partial residues to be reconciled. 

plOutlndex 
Address of the variable that receives an index value indicating whether the result of 
the reconciliation is identical to one of the initial versions. The variable is set to -1 L if 
the reconciliation result is a combination of two or more versions. Otherwise, it is a 
zero-based index, with 0 indicating this object, 1 indicating the first version, 2 
indicating the second version, and so on. 



290 Volume 5 Microsoft Windows Shell 

pstgNewResidues 
Address of the IStorage interface used to store the new residues. This parameter can 
be NULL to indicate that residues should not be saved. 

pvReserved 
Reserved; must be NULL. 

Return Values 
Returns one of the following values if successful: 

S_OK Reconciliation completed successfully, and the 
changes must be propagated to the other 
objects. 

S_FALSE No reconciliation actions were performed. The 
briefcase reconciler wishes to fall back to the 
initiator's bit copy implementation. This value 
may only be returned if 

REC_S_NOTCOMPLETEBUTPROPAGATE 

RECONCILEF _ONL YYOUWERECHANGED is 
set in dwFlags. 

Reconciliation was completed successfully, and 
all the objects involved (the object implementing 
the Reconcile method and all the other objects 
described by rgpmkOtherlnput) have been 
updated appropriately. The initiator does not 
need, therefore, to do anything further to 
propagate the changes. The variable pointed to 
by plOutindex should be set to -1 L if Reconcile 
returns this value. The initiator will not save the 
source object's storage if Reconcile returns this 
value. This value may only be returned if 
RECONCILEF _ YOUMAYDOTHEUPDATES was 
set in dwFlags. 

The briefcase reconciler completed some, but not 
all, of the reconciliation. It may need user 
interaction. The changes will not be propagated 
to other objects. 

The briefcase reconciler completed some, but not 
all, of the reconciliation. It may need user 
interaction. The changes will be propagated to 
the other objects. 



Chapter 7 Shell Interfaces 291 

Otherwise, this method returns one of the following error values: 

REC_E_INEEDTODOTHEUPDATES 

The briefcase reconciler does not support the 
generation of residues, so the request for residues is 
denied. The state of the object is unchanged. 

The briefcase reconciler stopped reconciliation in 
response to a termination request from the initiator (see 
IReconcilelnitiator: :SetAbortCaliback for more 
information). The state of the object is unspecified. 

Reconciliation cannot be carried out because the 
provided document versions are too dissimilar. 
The RECONCILEF _ YOUMAYDOTHEUPDATES flag 
was not set when the object's Reconcile 
implementation was called; this implementation requires 
that this value be set in the dwFlags parameter. 

The object is an OLE embedded object that must be run 
before this operation can be carried out. The state of 
the object is unchanged. 

Unspecified error. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

IReconciiableObject 

I Reconcilel n itiator 
The IReconcilelnitiator interface provides the briefcase reconciler with the means to 
notify the initiator of its progress, to set a termination object, and to request a given 
version of a document. The initiator is responsible for implementing this interface. 

IReconcilelnitiator methods Description 

SetAbortCaliback 

SetProgressFeedback 

Sets the object through which the initiator can 
terminate a reconciliation. 

Indicates the amount of progress in the reconciliation. 



292 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

I Reconci leln itiator: :SetAbortCallback 
Sets the object through which the initiator can asynchronously terminate a reconciliation. 
A briefcase reconciler typically sets this object for reconciliations that are lengthy or 
involve user interaction. 

Parameters 
pUnkForAbort 

Address of the IUnknown interface for the object. The initiator signals a request to 
terminate the reconciliation by using the IUnknown::Release method to release the 
object. This parameter may be NULL to direct the initiator to remove the previously 
specified object. 

Return Values 
Returns the S_OK value if successful, or one of the following error values otherwise: 

REC_E_NOCALLBACK The initiator does not support termination of reconciliation 
operations and does not hold the specified object. 

E_UNEXPECTED Unspecified error. 

Remarks 
The initiator can accept or reject the object. If the initiator accepts the object, the 
briefcase reconciler must remove the object by calling this method with a NULL 
parameter when the reconciliation is complete. Because the reconciler removes the 
object after completing reconciliation, there may be times when the initiator releases the 
object after reconciliation is complete. In such cases, the reconciler ignores the request 
to terminate. 

If the reconciliation is terminated, the IReconciiableObject::Reconcile method must 
return either the REC_E_ABORTED or REC_E_NOTCOMPLETE value. 

Version 4.00 and later of shell32.dll 



Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

IReconcilelnitiator 

Chapter 7 Shell Interfaces 293 

I Reconci leln itiator: : SetProg ressFeed back 
Indicates the amount of progress the briefcase reconciler has made toward completing 
the reconciliation. The amount is a fraction and is computed as the quotient of the 
ulProgress and ulProgressMax parameters. Reconcilers should call this method 
periodically during their reconciliation process. 

Parameters 
ulProgress 

Numerator of the progress fraction. 

ulProgressMax 
Denominator of the progress fraction. 

Return Values 
Returns the S_OK value if successful, or the E_UNEXPECTED value if an unspecified 
error occurred. 

Remarks 
The initiator typically uses this measure of progress to update a thermometer gauge or 
some other form of visual feedback for the user. The briefcase reconciler can change the 
value of ulProgressMax from call to call. This means successive calls to this method do 
not necessarily indicate steady forward progress. Backward progress is legal, although 
not desirable. It is the responsibility of the initiator to determine whether backward 
progress should be revealed to the user. 

Version 4.00 and later of shell32.dll 



294 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in reconcil.h. 

IReconcilelnitiator 

IRemoteComputer 
The IRemoteComputer interface is used to enumerate or initialize a namespace 
extension when it is invoked on a remote object. This interface is used, for example, to 
initialize the remote printers virtual folder. 

When to Implement 

Implement IRemoteComputer when your namespace extension may be invoked on a 
remote computer. 

When to Use 

You do not call this interface directly. IRemoteComputer is used by the operating 
system only when it has confirmed that your application is aware of this interface. 

IRemoteComputer implements IUnknown and the following methods: 

RemoteComputer methods 

Initialize 

Description 

Used by the Explorer to initialize or enumerate a 
namespace extension invoked on a remote object. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

I RemoteComputer:: Initial ize 
Used by Windows Explorer or Internet Explorer when it is initializing or enumerating a 
names pace extension invoked on a remote computer. 



Parameters 
pszMachine 

Machine name of the remote computer. 

bEnumerating 

Chapter 7 Shell Interfaces 295 

Value that is set to TRUE if Windows Explorer is enumerating the namespace 
extension, or FALSE if it is initializing it. 

Return Values 
Returns S_OK if successful, or standard OLE error values otherwise. 

Remarks 
If failure is returned, the extension won't appear for the specified computer. Otherwise, 
the extension will appear and target the remote computer. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IResolveSheliLink 
The IResolveShellLink interface allows an application to request that a shell folder 
object resolve a link for one of its items. With namespace extensions, shortcut objects 
(.Ink files) implement the essential functionality of ISheIlLink::Resolve by calling 
IResolveSheIlLink::ResolveSheIlLink. IResolveShellLink is exported by a link 
resolution object that is created on request by the shell folder. To get a pointer to a link 
resolution object's IResolveShellLink interface: 

• For an object that is contained by a folder, call the folder's 
ISheIlFolder::GetUIObjectOf method and request an IResolveShellLink pointer 
(1ID_IResolveSheIiLink). 

• For the folder object itself, call the folder's ISheIiFolder::CreateViewObject method 
and request an IResolveShellLink pOinter (IID_IResolveSheIiLink). 

When to Implement 
Namespace extensions implement this object to support link resolution. 

When to Use 
This interface is not normally used by applications. 



296 Volume 5 Microsoft Windows Shell 

Methods 

IResolveShellLink exposes the following method in addition to IUnknown: 

ResolveShellLink Requests that a folder object resolve a shell link. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IResolveSheIILink::ResolveSheIiLink 
Requests that a folder object resolve a shell link. 

Parameters 
punk 

[in] Address of the object's IShellLink interface. This interface can be queried to 
determine the contents of the link. 

hwnd 
[in] Handle to the window that the shell will use as the parent for a dialog box. The 
shell displays the dialog box if it needs to prompt the user for more information while 
resolving a shell link. 

fFlags 
[in] Action flags. This parameter can be a combination of the following values: 

SLR_INVOKE_MSI Call the Microsoft Windows Installer. 

SLR_NOLINKINFO Disable distributed link tracking. By default, distributed link 
tracking tracks removable media across multiple devices 
based on the volume name. It also uses the UNC path to track 
remote file systems whose drive letter has changed. Setting 
SLR_NOLINKINFO disables both types of tracking. 

SLR_NO_UI Do not display a dialog box if the link cannot be resolved. 
When SLR_NO_UI is set, the high-order word of fFlags 
specifies a time-out duration, in milliseconds. The function 
returns if the link cannot be resolved within the time-out 
duration. If the high-order word is set to zero, the time-out 
duration defaults to 3000 milliseconds (3 seconds). 



SLR_NOUPDATE 

SLR_NOSEARCH 

SLR_NOTRACK 

SLR_UPDATE 

Return Values 

Chapter 7 Shell Interfaces 297 

Do not update the link information. 

Do not execute the search heuristics. 

Do not use distributed link tracking. 

If the link object has changed, update its path and list of 
identifiers. If SLR_UPDATE is set, you do not need to call 
IPersistFile::lsDirty to determine whether the link object has 
changed. 

Returns S_OK if successful, or an OLE error code otherwise. 

Remarks 
This method should attempt to find the target of a shell link, even if the target has been 
moved or renamed. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IResolveSheliLink 

IRunnableTask 
The IRunnableTask interface is a free-threaded interface that can be exposed by a 
namespace extension. It allows a scheduler to manage processes such as the extraction 
of thumbnail images in conjunction with the IExtractlmage interface. 

When to Implement 
Implement IRunnableTask if your namespace extension is free-threaded, and you want 
to allow a task such as icon extraction to be managed by a scheduler. Only the Run and 
IsRunning methods must be implemented. If you don't wish to implement Kill, Resume, 
and Suspend, simply have them return E_NOTIMPL. If an object exposes 
IExtractlmage, Run is not necessary, as the system will use IExtractlmage::Extract to 
manage the task. 

When to Use 
You do not call this interface directly. IRunnableTask is used by the operating system 
only when it has confirmed that your application is aware of this interface. 



298 Volume 5 Microsoft Windows Shell 

IRunnableTask implements IUnknown and the following five methods: 

IRunnableTask methods 

IsRunning 

Kill 

Resume 

Run 

Suspend 

Description 

Used to determine the current state of the task. 

Use to stop execution. 

Use to resume execution. 

Use to start execution 

Use to suspend execution 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IRunnableTask: :lsRunning 
Used to request information on the state of a task, such as thumbnail extraction. 

Return Values 
Returns one of the following values to indicate the current execution state: 

IRTIR_ TASK_NOT _RUNNING 

IRTIR_ TASK_RUNNING 

IRTIR_ TASK_SUSPENDED 

IRTIR_ TASK_PENDING 

IRTIR_ TASK_FINISHED 

Remarks 

Extraction has not yet started. 

The task is running. 

The task is suspended. 

The thread has been killed but has not completely 
shut down yet. 

The task is finished. 

This method must be implemented. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



IRunnableTask:: Kill 
Used to request that a task be stopped. 

MR£SUtTKil1('· .. , 

~~QL . fUnt!sed 
). 

Parameters 
fUn used 

Not used currently. 

Return Values 

Chapter 7 Shell Interfaces 299 

Returns NOERROR if successful, or standard OLE-defined error codes otherwise. 

Remarks 
Implementation of this method is optional. If you do not wish to support this functionality, 
create a token implementation that simply returns E_NOTIMPL. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IRunnableTask:: Resume 
Used to request that a task resume. 

~RE!1f~Ti~ii#_t··~·if10~;.~t.·· . 

Return Values 
Return NOERROR if successful, or standard OLE-defined error codes otherwise. 

Remarks 
Implementation of this method is optional. If you do not wish to support this functionality, 
create a token implementation that simply returns E_NOTIMPL. 

Version 5.00 and later of Shell32.dll. 



300 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IRunnableTask: :Run 
Used to request that a task start. 

FjR~SQ Lr RllP·rvk>1':(i·)J··~· 

Return Values 
Return NOERROR when execution is complete. If execution is suspended, Run should 
return E_PENDING. Return standard OLE-defined error codes otherwise. 

Remarks 
This method must be implemented, unless your object exposes IExtractlmage. In that 
case, the system will use IExtractlmage::Extract to manage the task. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IRunnableTask: :Suspend 
Used to request that a task be suspended. 

;J:flfE~U~fSUSpe:lf~( ';voi;d'{l:·· 

Return Values 
Return NOERROR if successful, or standard OLE-defined error codes otherwise. 

Remarks 
Implementation of this method is optional. If you do not wish to support this functionality, 
create a token implementation that simply returns E_NOTIMPL. 

Version 5.00 and later of Shell32.dll. 



Chapter 7 Shell Interfaces 301 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShell Browser 
The ISheliBrowser interface provides services for namespace extensions and is the 
companion to the IShellView interface implemented by namespace extensions. It is 
similar to the site interfaces that are often found in OLE hosting situations, such as the 
IOleControl and IOleControlSite interfaces. This allows the extension to communicate 
with the host of the namespace by providing UI elements like menus, status text, and 
tool bars. This interface also provides the extension with a way to access storage to 
save its persistent view state. 

IShellBrowser derives from the IOleWindow interface, and it represents the container's 
top-level window. ISheliBrowser allows the contained views to insert their menus into 
the composite menu, install the composite menu into the appropriate window frame, and 
remove the container's menu elements from the composite menu. IShellBrowser sets 
and displays status text relevant to the in-place object. It also enables or disables the 
frame's modeless dialog boxes and translates accelerator keystrokes intended for the 
container's frame. 

When to Implement 
You do not implement this interface directly. ISheliBrowser is implemented by Windows 
Explorer and by the Windows File Open common dialog box. 

When to Use 
When implementing a namespace extension, notably the ISheliView interface, you will 
use the ISheliBrowser implementation that is passed to 
ISheIiView::CreateViewWindow to communicate with Windows Explorer. 

IShellBrowser is derived from IOleWindow. The following are the metho'ds specific to 
IShell Browser: 

IShellBrowser methods 

BrowseObject 

EnableModelessSB 

GetControlWindow 

GetViewStateStream 

InsertMenusSB 

Description 

Tells Windows Explorer to browse in another folder. 

Enables or disables modeless windows of Windows 
Explorer, such as a floating toolbar. 

Gets the window handle to a Windows Explorer control. 

Returns a view-specific stream that can be used to read 
and write the perSistent data for a view. 

Inserts Windows Explorer's menu items to an empty menu 
created by the view. 

(continued) 



302 Volume 5 Microsoft Windows Shell 

(continued) 

IShellBrowser methods 

OnViewWindowActive 

QueryActiveShellView 

RemoveMenusSB 

SendControlMsg 

SetMenuSB 

SetStatusTextSB 

SetToolbarltems 

TranslateAcceleratorSB 

Description 

Informs Windows Explorer that the view was activated. 

Returns the currently activated (displayed) shell view 
object. 

Instructs the container to remove its items from a 
composite menu. The tasks it performs are the opposite of 
InsertMenusSB tasks. 

Sends messages to Windows Explorer controls. 

Installs the composite menu in Windows Explorer. 

Sets and displays status text in the Windows Explorer 
window. 

Adds tool bar items to Windows Explorer's tool bar. 

Reserved for future use. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheIiBrowser:: BrowseObject 
Tells Windows Explorer to browse to another folder. 

HRES~I:;LBrows eOb.:tect(· 
L~CITEMIDLIST p1dT. 
UlNT >i'll/flags 

Parameters 
pidl 

Address of an ITEMIDLIST (item identifier list) structure that specifies an object's 
location. This value is dependent on the flag or flags set in the wFlags parameter. 

wFlags 
Flags specifying the folder to be browsed. It can be zero or one or more of the 
following values. These first three flags specify whether another window is to be 
created. 



SBSP _SAMEBROWSER 

SBSP _NEWBROWSER 

SBSP _DEFBROWSER 

Chapter 7 Shell Interfaces 303 

Browse to another folder with the same Windows 
Explorer window. 

Creates another window for the specified folder. 

The default behavior is to respect the view option 
(the user setting to create new windows or to 
browse in place). In most cases, callers should 
use this flag. 

The following flags specify either the open, explore, or default mode. These values 
are ignored if SBSP _SAMEBROWSER is specified or if SBSP _DEFBROWSER is 
specified and the user has selected Browse In Place: 

SBSP _OPENMODE Use a normal folder window. 

SBSP_EXPLOREMODE 

SBSP _DEFMODE 

Use a Windows Explorer window. 

Use the current window. 

The following flags specify the pidl parameter's category: 

SBSP _ABSOLUTE An absolute pidl (relative from the desktop). 

SBSP _RELATIVE A relative pidl (relative from the current folder). 

SBSP_PARENT 

SBSP _NAVIGATE BACK 

SBSP _NAVIGATE FORWARD 

Browse the parent folder (ignores the pidl). 

Navigate back (ignores the pidl). 

Navigate forward(ignores the pidl). 

The following two flags control how history is manipulated as a result of navigation: 

SBSP _WRITENOHISTORY Write no history (shell folder) entry. 

SBSP_NOAUTOSELECT Suppress selection in the history pane. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
Views can use this method to force Windows Explorer to browse to a specific place in 
the namespace. Typically, these are folders contained in the view. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



304 Volume 5 Microsoft Windows Shell 

ISheliBrowser 

ISheliBrowser: :EnableModelessSB 
Tells Windows Explorer to enable or disable its mode less dialog boxes. 

Parameters 
tEnable 

Specifies whether the mode less dialog boxes are to be enabled or disabled. If this 
parameter is nonzero, modeless dialogs are enabled. If this parameter is zero, 
modeless dialogs are disabled. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
This method is similar to the IOlelnPlaceFrame::EnableModeless method. Although 
the current version of Windows Explorer does not have any modeless dialog boxes, the 
view should call this method when it wants to disable or enable mode less dialog boxes 
associated with the Windows Explorer window. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellBrowser 

ISheliBrowser: :GetControlWindow 
Retrieves the window handle to a browser control. 



HRESULT 6etControlW1ndow( " 
UIHT1d • 

. " ,!Ht{H~;;'.f~fJh!t:l7,q' 
j,~ ;.,' ",c' .... ;. '. Ie: 

Parameters 
id 

Chapter 7 Shell Interfaces 305 

Control handle that is being requested. This parameter can be one of the following 
values: 

FCW_ TOOLBAR 

FCW_STATUS 

FCW_TREE 

FCW_PROGRESS 

/phwnd 

Retrieves the window handle to the browser's tool bar. 

Retrieves the window handle to the browser's status bar. 

Retrieves the window handle to the browser's tree view. 

Retrieves the window handle to the browser's progress bar. 

Address of the window handle to the Windows Explorer control. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
GetControlWindow is used so views can directly manipulate the browser's controls. 
FCW_ TREE should be used only to determine if the tree is present. 

Note to Callers GetControlWindow is used to manipulate and test the state of the 
control windows. Do not send messages directly to these controls; instead, use 
ISheIiBrowser::SendControIMsg. Be prepared for this method to return NULL. Future 
versions of Windows Explorer may not include a toolbar, status bar, or tree window. 

Note to Implementers GetControlWindow returns the window handle to these 
controls if they exist in your implementation. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShell Browser 



306 Volume 5 Microsoft Windows Shell 

IShe11 Browser:: GetViewStateStream 
Retrieves an IStream interface that can be used for storage of view-specific state 
information. 

Parameters 
grfMode 

Read/write access of the IStream interface. This may be one of the following values: 

STGM_READ Requests an IStream suitable for reading. 

STGM_WRITE 

STGM_READWRITE 

ppStrm 

Requests an IStream suitable for writing. 

Requests an IStream suitable for reading and writing. 

Address that receives the IStream interface pointer. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
This method is used to save and restore the persistent state for a view (the icon 
positions, the column widths, and the current scroll position, for example). 

Note to Callers Use GetViewStateStream when the view is being created to read in 
the saved view state and also when the view is being closed to save any changes to the 
view state. Typically, the view calls this method with STGM_READ when creating a view 
window and with STGM_WRITE when the SaveViewState method of its ISheliView 
interface is called. 

Note to Implementers Each shell view should have its own view stream. Windows 
Explorer implements a most recently used (MRU) list of view streams that are stored on 
a per-user basis in the registry. 

Version 4.00 and later of SheIl32.dll. 



Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliBrowser 

ISheliBrowser: :lnsertMenusSB 

Chapter 7 Shell Interfaces 307 

Allows the container to insert its menu groups into the composite menu that is displayed 
when an extended namespace is being viewed or used. 

Parameters 
hmenuShared 

Handle to an empty menu. 

IpMenuWidths 
Address of an OLEMENUGROUPWIDTHS array of six LONG values. The container 
fills in elements 0, 2, and 4 to reflect the number of menu elements it provided in the 
File, View, and Window menu groups. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
This method is similar to the IOlelnPlaceFrame::lnsertMenus method. Windows 
Explorer puts File and Edit drop-down menus in the File menu group, View and Tools 
menus in the Container menu group, and a Help menu in the Window menu group. Each 
drop-down menu will have a unique identifier, 
FCIDM_MENU_FILE/EDITNIEW/TOOLS/HELP. The view is allowed to insert menu 
items into those submenus by their identifiers, which is different from OLE's in-place 
activation mechanism. The command identifiers for menus that the view inserts into 
either Windows Explorer's submenus or its own submenus must be between 
FCIDM_SHVIEWFIRST and FCIDM_SHVIEWLAST. 



308 Volume 5 Microsoft Windows Shell 

Note to Callers This method is called by namespace extensions when they are first 
being activated so they can insert their menus into the frame-level user interface. 

The object application asks the container to add its menus to the menu specified in the 
hmenuSharedparameter and to set the group counts in the OLEMENUGROUPWIDTHS 
array pointed to by the IpMenuWidths parameter. The object application then adds its 
own menus and counts. Objects can call the IOlelnPlaceFrame::lnsertMenus method 
as many times as necessary to build up the composite menus. The container should use 
the initial menu handle associated with the composite menu for all items in the drop­
down menus. 

Note to Implementers For ISheliBrowser implementations, the menu identifiers must 
be in the range of FCIDM_BROWSERFIRST to FCIDM_BROWSERLAST. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShe11 Browser: :On ViewWindow Active 
Called by the shell view when the view window or one of its child windows gets the focus 
or becomes active. 

Parameters 
ppshv 

Address of the view object's ISheliView pointer. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
The view must pass its ISheliView implementation to this routine, although the current 
version of Windows Explorer does not use this parameter. 



Chapter 7 Shell Interfaces 309 

Note to Callers The shell view object must call this method before calling the 
ISheIiBrowser::lnsertMenusSB method. This method will insert a different set of menu 
items depending on whether the view has the focus. 

Note to Implementers This method informs the browser that the view is getting the 
focus (when the mouse is clicked on the view, for example). 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliBrowser 

IShe11 Browser:: Query ActiveShellView 
Returns the currently active (displayed) shell view object. 

Parameters 
ppshv 

Address of the pOinter to the currently active shell view object. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 

Note to Callers Because the ISheliBrowser interface can host several shell views 
simultaneously, this method provides an easy way to determine the active shell view 
object. 



310 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheIIBrowser:: RemoveMenusSB 
Permits the container to remove any of its menu elements from the in-place composite 
menu and to free all associated resources. 

Parameters 
hmenuShared 

Handle to the in-place composite menu that was constructed by calls to 
ISheIiBrowser::lnsertMenusSB and the Win32 InsertMenu function. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
This method is similar to the IOlelnPlaceFrame::RemoveMenus method. 

The object should always permit the container to remove its menu elements from the 
composite menu before deactivating the shared user interface. 

Note to Callers The method is called by the object application while it is being UI­
deactivated so the browser can remove its menus. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 7 Shell Interfaces 311 

IShellBrowser 

IShell Browser:: SendControlMsg 
Sends control messages to either the tool bar or the status bar in an Explorer window. 

Parameters 
id 

Identifier for either a toolbar (FCW_ TOOLBAR) or for a status bar window 
(FCW_STATUS). 

uMsg 
Message to be sent to the control. 

wParam 
Value depends on the message specified in the uMsg parameter. 

IParam 
Value depends on the message specified in the uMsg parameter. 

pret 
Address of the return value of the Send Message function. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
Refer to the Common Controls documentation for more information on the messages 
that can be sent to the tool bar or status bar control. 

Note to Callers Use of this call requires diligent attention, because leaving either the 
status bar or toolbar in an inappropriate state will affect the performance of Windows 
Explorer. 



312 Volume 5 Microsoft Windows Shell 

Note to Implementers If your Windows Explorer does not have these controls, you can 
return E_NOTIMPL. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellBrowser 

ISheliBrowser: :SetMenuSB 
Installs the composite menu in the view window. 

Parameters 
hmenuShared 

Handle to the composite menu constructed by calls to 
ISheIlBrowser::lnsertMenusSB and the Win32 InsertMenu function. 

holemenuReserved 
Reserved for future use. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
This method is similar to the IOlelnPlaceFrame::SetMenu method. However, Windows 
Explorer performs menu dispatch based on the menu item identifier. 

The availability of specific menu items depends on whether the view has the focus. 
Accordingly, it is necessary to call the ISheIlBrowser::OnViewWindowActive method 
whenever the view window (or one of its child windows) has the focus. 



Chapter 7 Shell Interfaces 313 

Note to Callers The object calls ISheliBrowsecSetMenuSB to ask the container to 
install the composite menu structure set up by calls to ISheIiBrowser::lnsertMenusSB. 

Note to Implementers A container's implementation of this method should call the 
Windows SetMenu function. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliBrowser 

ISheliBrowser: :SetStatusTextSB 
Sets and displays status text about the in-place object in the container's frame-window 
status bar. 

Parameters 
IpszStatusText 

Address of a null-terminated character string to contain the message to display. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
It is also possible to send messages directly to the status window by using the 
ISheliBrowser: :SendControlMsg method. 

Note to Callers Use this method to set the contents of the status bar. 



314 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellBrowser 

IShe11 Browser:: SetTool barltems 
Adds toolbar items to Windows Explorer's toolbar. 

Parameters 
IpButtons 

Address of an array of TBBUTTON structures. 

nButtons 
Number of TBBUTTON structures in the IpButtons array. 

uFlags 
Flags specifying where the toolbar buttons should go. This parameter can be one or 
more of the following values: 

FCT_ADDTOEND Add at the right side of the tool bar. 

FCT _CONFIGABLE 

FCT_MERGE 

Return Values 

Not implemented. 

Merge the toolbar items instead of replacing all of the 
buttons with those provided by the view. This is the 
recommended choice. 

Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of SheIl32.dll. 



Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliBrowser 

Chapter 7 Shell Interfaces 315 

ISheliBrowser: :TranslateAcceleratorSB 
Translates accelerator keystrokes intended for the browser's frame while the view is 
active. 

Parameters 
Ipmsg 

Address of an MSG structure containing the keystroke message. 

wID 
Command identifier value corresponding to the keystroke in the container-provided 
accelerator table. Containers should use this value instead of translating again. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
This method is similar to the IOlelnPlaceFrame::TranslateAccelerator method. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliBrowser 



316 Volume 5 Microsoft Windows Shell 

ISheliChangeNotify 
The ISheliChangeNotify is used to notify a shell namespace extension when the 10 of 
an item has changed. 

When to Implement 
This interface is implemented by all namespace extensions. 

When to Use 
You do not call this interface directly. ISheliChangeNotify is used by the operating 
system only when it has confirmed that your application is aware of this interface. 

ISheliChangeNotify implements IUnknown and one additional method: 

ISheliChangeNotify methods Description 

OnChange Called when an item in the namespace extension 
changes. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliChangeNotify: :OnChange 
Called to inform a namespace extension that an event has taken place that affects its 
items. 

HRESUlt OriCnange( " 
LGNGI£vent, . 
~ • c ~ \ ~ ~ 

, ;;LPCHEMIDlISr pidl1, 
;l;f!'Clt~I DLISr. p1.d~2. 

'c,~ c, ' , y' 

h 

Parameters 
IEvent 

Value that describes the event that has occurred. Typically, only one event is 
specified at a time. If more than one event is specified, the values contained in the 
pidl1 and pidl2 parameters must be the same, respectively, for all specified events. 
The IEvent parameter may contain one or more be one or more of the following flags: 



SHCNE_ALLEVENTS 

SHCNE_ASSOCCHANGED 

SHCNE_ATTRIBUTES 

SHCNE_DELETE 

SHCNE_DRIVEADD 

SHCNE_DRIVEADDGUI 

SHCN E_DRIVEREMOVED 

SHCNE_FREESPACE 

SHCNE_MEDIAINSERTED 

SHCNE_MEDIAREMOVED 

SHCNE_NETSHARE 

SHCNE_NETUNSHARE 

SHCNE_RENAMEFOLDER 

SHCNE_RENAMEITEM 

Chapter 7 Shell Interfaces 317 

All events have occurred. 

A file type association has changed. pidl1 and pidl2 are not 
used and must be NULL. 

The attributes of an item or folder have changed. pidl1 
contains the item or folder that has changed. pidl2 is not used 
and should be NULL. 

A nonfolder item has been created. pidl1 contains the item 
that was created. pidl2 is not used and should be NULL. 

A nonfolder item has been deleted. pidl1 contains the item 
that was deleted. pidl2 is not used and should be NULL. 

A drive has been added. pidl1 contains the root of the drive 
that was added. pidl2 is not used and should be NULL. 

A drive has been added and the shell should create a new 
window for the drive. pidl1 contains the root of the drive that 
was added. pidl2 is not used and should be NULL. 

A drive has been removed. pidl1 contains the root of the drive 
that was removed. pidl2 is not used and should be NULL. 

The amount of free space on a drive has changed. pidl1 
contains the root of the drive on which the free space 
changed. pidl2 is not used and should be NULL. 

Storage media has been inserted into a drive. pidl1 contains 
the root of the drive that contains the new media. pidl2 is not 
used and should be NULL. 

Storage media has been removed from a drive. pidl1 contains 
the root of the drive from which the media was removed. pidl2 
is not used and should be NULL. 

A folder has been created. pidl1 contains the folder that was 
created. pidl2 is not used and should be NULL. 

A folder on the local computer is being shared through the 
network. pidl1 contains the folder that is being shared. pidl2 is 
not used and should be NULL. 

A folder on the local computer is no longer being shared 
through the network. pidl1 contains the folder that is no longer 
being shared. pidl2 is not used and should be NULL. 

The name of a folder has changed. pidl1 contains the 
previous PIDL or name of the folder. pidl2 contains the new 
PIDL or name of the folder. 

The name of a nonfolder item has changed. pidl1 contains the 
previous PIDL or name of the item. pidl2 contains the new 
PIDL or name of the item. 

(continued) 



318 Volume 5 Microsoft Windows Shell 

(continued) 

SHCNE_RMDIR 

SHCNE_SERVERDISCONNECT 

SHCNE_UPDATEDIR 

SHCNE_UPDATEITEM 

A folder has been removed. pidl1 contains the folder that was 
removed. pidl2 is not used and should be NULL. 

The computer has disconnected from a server. pidl1 contains 
the server from which the computer was disconnected. pidl2 
is not used and should be NULL. 

The contents of an existing folder have changed, but the 
folder still exists and has not been renamed. pidl1 contains 
the folder that has changed. pidl2 is not used and should be 
NULL. If a folder has been created, deleted, or renamed, use 
SHCNE_MKDIR, SHCNE_RMDIR, or 
SHCNE_RENAMEFOLDER, respectively, instead. 

An existing nonfolder item has changed, but the item still 
exists and has not been renamed. pidl1 contains the item that 
has changed. pidl2 is not used and should be NULL. If a 
nonfolder item has been created, deleted, or renamed, use 
SHCNE_CREATE, SHCNE_DELETE, or 
SHCNE_RENAMEITEM, respectively, instead. 

The following values specify combinations of other events: 

SHCNE_DISKEVENTS Specifies a combination of all of the disk event 
identifiers. 

SHCNE_GLOBALEVENT Specifies a combination of all of the global event 
identifiers. 

The following value modifies other event values and cannot be used alone: 

SHCNE_INTERRUPT The specified event occurred as a result of a system 
interrupt. 

pidl1 
First event-dependent item identifier. 

pidl2 
Second event-dependent item identifier. 

Return Values 
Return S_OK if successful, or standard OLE error values otherwise. 

Remarks 
This method is similar in function and usage to SHChangeNotify. 

Version 4.71 and later of Shell32.dll. 



Chapter 7 Shell Interfaces 319 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShell Details 
The IShellDetaiis interface is exposed by shell folders to provide detailed information 
about the items in a folder. This is the same information that is displayed by the 
Windows Explorer when the view of the folder is set to Details. For Windows 2000 and 
later systems, IShellDetaiis is superseded by IShellFolder2. 

When to Implement 
For Windows 2000 and later systems, folder objects should implement ISheilFolder2 
instead of this interface. However, if your application needs to function on earlier 
systems, IShellDetaiis should also be exposed. 

When to Use 
This interface is exposed by some folder objects, including file system folders, on 
Windows 95, Windows NT 4.0, and later systems. However, you will need to include the 
version 5.0 shlobj.h header file. With Windows 2000 and later systems, use the 
ISheilFolder2 methods to get detailed information from shell folders. 

Method Description 

ISheIlDetails::ColumnClick Rearranges the column. 

ISheIlDetails::GetDetaiisOf Retrieves specified information for an item. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliDetails: :ColumnClick 
Rearranges a column. 



320 Volume 5 Microsoft Windows Shell 

Parameters 
IColumn 

The index of the column to be rearranged. 

Return Values 
Returns S_FALSE to tell the calling application to sort the selected column. Otherwise, 
returns S_OK if successful, a COM error code otherwise. 

Remarks 
This method is called when a client of a folder object wants to sort the object's items 
based on the contents of one of the Details columns. Folder objects typically return 
S_FALSE. 

Note to Users This interface is exposed by some folder objects, including file system 
folders, on Windows 95, Windows NT 4.0, and later systems. However, you will need to 
include the version 5.0 shlobj.h header file. 

Note to Implementers For Windows 2000 and later systems, folder objects should 
implement ISheliFolder2 instead of this interface. However, if your application needs to 
function on earlier systems, it should also expose ISheliDetaiis. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliDetails: :GetDetaiisOf 

IShell Details: : GetDetaiisOf 
Retrieves detailed information on an item in a shell folder. 



Parameters 
pidl 

Chapter 7 Shell Interfaces 321 

[in] The PIDL of the item that you are requesting information on. If this parameter is 
set to NULL, the title of the information field specified by iColumn will be returned in 
the SHELLDETAILS structure pOinted to by pDetaiis. 

iColumn 
[in] The zero-based index of the desired information field. It is identical to column 
number of the information as it is displayed in a Windows Explorer Details view. 

pDetaiis 
[out] A pOinter to a SHELLDETAILS structure with the information. 

Return Values 
Returns S_OK if successful. Returns E_FAIL if iColumn exceeds the number of columns 
supported by the folder. Otherwise, returns a standard COM error code. 

Remarks 
This method has been superseded by the ISheliFolder2 methods for shell version 5.0 
and later. 

The GetDetaiisOf method provides access to the information that is displayed in the 
Windows Explorer Details view of a shell folder. The column numbers, column titles, and 
item information that you see in the Details view are identical to those returned by 
GetDetaiisOf. 

The available information fields and their column numbers vary depending on the 
particular folder. To enumerate the available fields call GetDetaiisOf with pidl set to 
NULL for increasing values of iColumn. This approach provides you with the title 
associated with each column index. When iColumn exceeds the number of columns 
supported by the folder, GetDetaiisOf will return E_FAIL. Bear in mind that these titles 
are localizable, and may not be the same for all locales. 

File system folders have a large standard set of information fields. The first five fields are 
standard for all file system folders: 

Column index Column title 

0 Name 

Size 

2 Type 

3 Modified 

4 Attributes 

File system folders may support a number of additional fields. However, they are not 
required to do so and the column indexes assigned to these fields may vary. 



322 Volume 5 Microsoft Windows Shell 

Each virtual folder has its own unique set of information fields. Normally, the item's 
display name is in column zero, but the order and content of the available fields depend 
on the implementation of the particular folder object. 

Note to Users This interface is exposed by some folder objects, including file system 
folders, on Windows 95, Windows NT 4.0, and later systems. However, you will need to 
include the version 5.0 shlobj.h header file. With Windows 2000 and later systems, use 
the ISheliFolder2 methods to get detailed information from shell folders. 

Note to Implementers For Windows 2000 and later systems, folder objects should 
implement ISheliFolder2 instead of this interface. However, if your application needs to 
function on earlier systems, ISheliDetaiis should also be exposed. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellExecuteHook 
The IShellExecuteHook interface extends the behavior of the Shell Execute or 
ShellExecuteEx function. It is typically implemented by subsystems that expose the 
names of objects that the user can specify in the Run dialog box after clicking the 
Windows Start button. 

When to Implement 
You should implement IShellExecuteHook when you have named objects that the user 
would expect to be able to run from the Run dialog box after clicking the Windows Start 
button. 

When to Use 
You do not use this interface directly. It is generally used by the ShellExecuteEx 
function's code. 

IShellExecuteHook method Description 

Execute Called when Shell Execute or ShellExecuteEx is 
called for an object that is registered. 

Version 4.00 and later of Shell32.dll. 



Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShe11 ExecuteHook:: Execute 

Chapter 7 Shell Interfaces 323 

Called when Shell Execute or shellExecuteEx is called for an object that is registered. 

Parameters 
pei 

Address of a sHELLEXECUTEINFO structure that contains information about the 
object being executed. On successful completion of the hook, the hlnstApp member 
will be filled in by the hook. 

Return Values 
Returns one of the following values or an OLE-defined error value: 

S_OK The hook processed the execution. Shell Execute or shellExecuteEx 
should not perform any other processing. 

Remarks 

The hook is installed but did not process the execution. Shell Execute or 
shellExecuteEx should perform the default processing. 

This method provides an opportunity for the application to hook the execution of an 
object and change the default execution or perform some other action before the object 
is executed. 

If the item should not be executed, Execute can simply return S_OK. To prevent the 
shell from generating an error message box, set the hlnstApp member of 
sHELLEXECUTE to 32 or greater. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



324 Volume 5 Microsoft Windows Shell 

IShellExecuteHook 

IShell Extl n it 
The IShellExtlnit interface is used to initialize shell extensions for property sheets, 
context menus, and drag-and-drop handlers (extensions that add items to context 
menus during nondefault drag-and-drop operations). 

When to Implement 
Implement IShellExtlnit when you are writing a handler based on the IContextMenu or 
ISheliPropSheetExt interface. 

Note that shell extensions based on other interfaces do not use this method of 
initialization. 

When to Use 
You do not use this interface directly. The shell calls it to initialize the handler. 

IShellExtlnit method Description 

Initialize Initializes the shell extension. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheIlExtlnit::lnitialize 
Initializes a property sheet extension, context menu extension, or drag-and-drop handler. 



Parameters 
pidlFolder 

Chapter 7 Shell Interfaces 325 

Address of an ITEMIDLIST structure that uniquely identifies a folder. For property 
sheet extensions, this parameter is NULL. For context menu extensions, it is the item 
identifier list for the folder that contains the item whose context menu is being 
displayed. For nondefault drag-and-drop menu extensions, this parameter specifies 
the target folder. 

Ipdobj 
Address of an IDataObject interface object that can be used to retrieve the objects 
being acted upon. 

hkeyProglD 
Registry key for the file object or folder type. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
The meanings of some parameters depend on the extension type. For drag-and-drop 
handlers, the pidlFolder parameter specifies the destination folder (the drop target), the 
Ipdobj parameter identifies the items being dropped, and the hkeyProglD parameter 
specifies the file class of the destination folder. 

For context menu extensions, pidlFolder specifies the folder that contains the selected 
file objects, Ipdobj identifies the selected file objects, and hkeyProglD specifies the file 
class of the file object that has the focus. 

For property sheet extensions, pidlFolder is NULL, Ipdobj identifies the selected file 
objects, and hkeyProglD specifies the file class of the file object that has the focus. 

Notes to Implementers This is the first method that the shell calls after it creates an 
instance of a property sheet extension, context menu extension, or drag-and-drop 
handler. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellExtlnit 



326 Volume 5 Microsoft Windows Shell 

ISheliFolder 
The ISheliFolder interface is used to manage folders. It is exposed by all 
shell namespace folder objects. 

When to Implement 
Implement this interface for objects that extend the shell's namespace. For example, 
implement this interface to create a separate namespace that requires a rooted Windows 
Explorer or to install a new namespace directly within the hierarchy of the system 
namespace. You are most familiar with the contents of your namespace, so you are 
responsible for implementing everything needed to access your data. 

When to Use 
Use this interface when you need to display or perform an operation on the contents of 
the shell's namespace. Objects that support ISheliFolder are usually created by other 
shell folder objects. To get a folder's ISheliFolder interface, you normally start by calling 
SHGetDesktopFolder. This function returns a pointer to the desktop's ISheliFolder 
interface. You can then use its methods to get an ISheliFolder interface for a particular 
namespace folder. 

Note Some ISheliFolder methods, such as ISheIiFolder::BindToObject, only accept 
PIDLs that are relative to the parent folder. They must contain only a single SHITEMID 
structure plus the terminating NULL. When you enumerate the contents of a folder with 
IEnumlDList, you will receive PIDL of this form. Other methods, such as 
ISheIiFolder::ParseDisplayName, accept PIDLs with more than one SHITEMID 
structure that identify objects one or more levels below the parent folder. Check the 
reference to be sure what type of PIDL is expected by a particular method. 

ISheliFolder methods 

BindToObject 

BindToStorage 

ComparelDs 

CreateViewObject 

EnumObjects 

GetAttributesOf 

GetDisplayNameOf 

GetUIObjectOf 

ParseDisplayName 

SetNameOf 

Description 

Retrieves the ISheliFolder interface for the specified 
subfolder. 

Not currently implemented. 

Determines the relative order of two file objects or folders, 
given their item identifier lists. 

Creates a view object of the folder itself. 

Enumerates the objects in a folder. 

Retrieves the attributes of the specified file object or 
subfolder. 

Retrieves the display name of a file object or subfolder. 

Creates an OLE interface that can be used to carry out 
operations on a file object or subfolder. 

Translates a display name into an item identifier list. 

Sets the display name of the specified file object or subfolder 
and changes its identifier accordingly. 



_~~ruS. 
Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShe11 Folder: : B i ndToObject 

Parameters 
pidl 

Chapter 7 Shell Interfaces 327 

[in] Address of an ITEMIDLIST structure that identifies the subfolder relative to its 
parent folder. The structure must contain exactly one SHITEMID structure followed by 
a terminating zero. 

pbc 
[in] Optional address of an IBindCtx interface on a bind context object to be used 
during this operation. If this parameter is not used, set it to NULL. Because support for 
pbc is optional for folder object implementations, some folders may not support the 
use of bind contexts. 

riid 
[in] Identifier of the interface to return. 

ppvOut 
[out] Address that receives the interface pointer. If an error occurs, a NULL pOinter is 
returned in this address. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
Use this method to get a pointer to the ISheliFolder interface of a subfolder. 



328 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

SHGetDesktopFolder 

ISheIIFolder::BindToStorage 
Requests a pOinter to an object's storage interface. 

Parameters 
pidl 

[in] Address of an ITEMIDLIST structure that identifies the subfolder relative to its 
parent folder. The structure must contain exactly one SHITEMID structure followed by 
a terminating zero. 

pbc 
[in] Optional address of an IBindCtx interface on a bind context object to be used 
during this operation. If this parameter is not used, set it to NULL. Because support for 
pbc is optional for folder object implementations, some folders may not support the 
use of bind contexts. 

riid 
[in] liD of the requested storage interface. To retrieve an IStream, IStorage, or 
IPropertySetStorage interface pointer, set riidto IID_IStream, IID_IStorage, or 
II D _I PropertySetStorage, respectively. 

ppvOut 
[out] Address that receives the interface pOinter specified by riid. If an error occurs, a 
NULL pOinter is returned in this address. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error code otherwise. 



Chapter 7 Shell Interfaces 329 

Remarks 
Name space extensions have the option of allowing applications to bind to an object that 
represents an item's storage. If this option is supported, BindToStorage returns a 
specified interface pOinter that can then be used to access the contents of object. See 
the IMoniker::BindToStorage reference for further discussion. 

Version 4.00 and later of She1132.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheIiFolder::CompareIDs 
Determines the relative order of two file objects or folders, given their item identifier lists. 

H~EsuLT CplllpareI9s( 
. L.I!ARAM 1 fa r:im. . . 

. LPC IlEMIUbIST .. pHi 71 
tpc£r!MI~l:ISl7):jd12 

" . '"" 0 

\C. 
,I; 

Parameters 
IParam 

[in] Value that specifies how the comparison should be performed. 

The lower sixteen bits of IParam define the sorting rule. Most applications set the 
sorting rule to the default value of zero, indicating that the two items should be 
compared by name. The system does not define any other sorting rules. Some folder 
objects might allow calling applications to use the lower sixteen bits of IParam to 
specify folder-specific sorting rules. The rules and their associated IParam values are 
defined by the folder. 

The upper sixteen bits of IParam are used for flags that modify the sorting rule. The 
system currently defines one modifier flag: 

SCHIDS_ALLFIELDS Version 5.0. Compare all the information contained in 
the ITEMIDLIST structure, not just the display names. 
This flag is valid only for folder objects that support the 
ISheliFolder2 interface. For instance, if the two items 

are files, the folder should compare their names, sizes, 
file times, attributes, and any other information in the 
structures. If this flag is set, the lower sixteen bits of 
IParam must be zero. 



330 Volume 5 Microsoft Windows Shell 

pidl1 
[in] Address of the first item's ITEMIDLIST structure. It will be relative to the folder. 
This ITEMIDLIST structure can contain more than one element; therefore, the entire 
structure must be compared, not just the first element. 

pidl2 
[in] Address of the second item's ITEMIDLIST structure. It will be relative to the folder. 
This ITEMIDLIST structure can contain more than one element; therefore, the entire 
structure must be compared, not just the first element. 

Return Values 
If this method is successful, the CODE field of the status code (SCODE) contains one of 
the following values: 

Less than zero 

Greater than zero 

Zero 

The first item should precede the second 
(pidl1 < pidl2). 

The first item should follow the second (pidl1 > pidI2). 

The two items are the same (pidl1 = pidI2). 

If this method is unsuccessful, it returns an OLE error code. 

Remarks 

Note to Callers Do not set the SHCIDS_ALLFIELDS flag in IParam if the folder object 
does not support IShellFolder2. Doing so might have unpredictable results. If you use 
the SHCIDS_ALLFIELDS flag, the lower sixteen bits of IParam must be set to zero. 

Note to Implementers To extract the sorting rule, use a bitwise OR operator (&) to 
combine IParam with SHCIDS_COLUMNMASK (OXOOOOFFFF). This operation masks 
off the upper sixteen bits of IParam, including the SHCIDS_ALLFIELDS value. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellFolder 



IShe11 Folder: : Create ViewObject 
Creates a view object of a folder. 

Parameters 
hwndOwner 

Chapter 7 Shell Interfaces 331 

[in] Handle to the owner window from which to create the view object. 

riid 
[in] Identifier of the interface to return. 

ppvOut 
[out] Address of a pOinter to the view object. 

Return Values 
Returns NOERROR if successful, or an OLE defined error value otherwise. 

Remarks 
It is important to remember that the COM object created by CreateViewObject must be 
a different object than the shell folder object. Windows Explorer may call this method 
more than once to create multiple view objects, and each of these must behave as 
independent objects. A new view object must be created for each call. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellFolder 



332 Volume 5 Microsoft Windows Shell 

IShell Folder:: EnumObjects 
Allows a client to determine the contents of a folder by creating an item identifier 
enumeration object and returning its IEnumlDList interface. The methods supported by 
that interface can then be used enumerate the folder's contents. 

Parameters 
hwndOwner 

[in] If user input is required to perform the enumeration, this window handle should be 
used by the enumeration object as the parent window to take user input. An example 
would be a dialog box to ask for a password or prompt the user to insert a CD or 
floppy disk. If hwndOwner is set to NULL, the enumerator should not post any 
messages, and if user input is required, it should silently fail. 

grfFlags 
[in] Flags indicating which items to include in the enumeration. For a list of possible 
values, see the SHCONTF enumerated type. 

ppenumIDList 
[out] Address that receives a pOinter to the IEnumlDList interface of the enumeration 
object created by this method. If an error occurs, ppenumIDList is set to NULL. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
The calling application must free the returned IEnumlDList object by calling its Release 
method. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliFolder, SHGetDesldopFolder 



Chapter 7 Shell Interfaces 333 

ISheliFolder: :GetAttributesOf 

Value 

Retrieves the attributes of one or more file objects or subfolders. 

HR,£SUI..TQe,tAttr:1 butesUf( 
UINTptdl. •. 
t.PClrEMIOL,lST~ifPtdi. 
ULONG *rgflnOl4t 

,-. , -,'~,-'·f' , .... 

Parameters 
cidl 

[in] Number of file objects from which to retrieve attributes. 

apidl 
[in] Address of an array of pointers to ITEMIDLIST structures, each of which uniquely 
identifies a file object relative to the parent folder. Each ITEMIDLIST structure must 
contain exactly one SHITEMID structure followed by a terminating zero. 

rgflnOut 
[in/out] Address of a single ULONG value that, on entry, contains the attributes that 
the caller is requesting. On exit, this value contains the requested attributes that are 
common to all of the specified objects. Note that this is the address of a single 
ULONG value, not an array of ULONG values. The lists below describe the possible 
flags for this parameter. 

A file object's capability flags may be zero or a combination of the following values: 

Description 

SFGAO_CANCOPY The specified file objects or folders can be copied (same value 
as the DROPEFFECT _COPY flag). 

SFGAO_CANDELETE 

SFGAO_CANLINK 

SFGAO_CANMONIKER 

SFGAO_CANMOVE 

The specified file objects or folders can be deleted. 

Shortcuts can be created for the specified file objects or folders. 
This flag has the same value as DROPEFFECT _LINK. The 
normal use of this flag is to add a "Create Shortcut" item to the 
context menu that is displayed during drag-drop operations. 
However, SFGAO_CANLINK also adds a "Create Shortcut" 
item to the Windows Explorer's File menu, and to normal 
context menus. If this item is selected, your application's 
IContextMenu::lnvokeCommand will be invoked with the 
IpVerb member of the CMINVOKECOMMANDINFO structure 
set to "link". Your application is responsible for creating the link. 

It is possible to create monikers for the specified file objects or 
folders. 

The specified file objects or folders can be moved (same value 
as the DROP EFFECT _MOVE flag). 

(continued) 



334 Volume 5 Microsoft Windows Shell 

(continued) 

Value Description 

SFGAO_CANRENAME The specified file objects or folders can be renamed. Note that 
this flag is essentially a suggestion. It does not guarantee that a 
namespace client will rename the file or folder object. 

SFGAO_CAPABILITYMASK 

SFGAO_DROPTARGET 

SFGAO_HASPROPSHEET 

This flag is a mask for the capability flags. 

The specified file objects or folders are drop targets. 

The specified file objects or folders have property sheets. 

A file object's display attributes may be zero or a combination of the following values: 

Value Description 

SFGAO_DISPLAYA TTRMASK 

SFGAO_GHOSTED 

SFGAO_LlNK 

SFGAO_READONLY 

SFGAO_SHARE 

This flag is a mask for the display attributes. 

The specified file objects or folders should be 
displayed using a ghosted icon. 

The specified file objects are shortcuts. 

The specified file objects or folders are read-only. 

The specified folders are shared. 

A file object's contents flags may be zero or a combination of the following values: 

Value Description 

SFGAO_CONTENTSMASK 

SFGAO_HASSUBFOLDER 

This flag is a mask for the contents attributes. 

The specified folders may have subfolders, and 
are, therefore expandable in the left pane of 
Windows Explorer. 

Note The SFGAO_HASSUBFOLDER attribute is only advisory, and may be returned 
by shell folder implementations even if they do not contain subfolders. Returning 
SFGAO_HASSUBFOLDER is recommended whenever a significant amount of time is 
required to determine whether or not any subfolders exist. For example, the shell 
always returns SFGAO_HASSUBFOLDER when a folder is located on a network 
drive. 

A file object's miscellaneous attributes may be zero or a combination of the following 
values: 

Value Description 

SFGAO _BROWSABLE 

SFGAO_COMPRESSED 

The specified items can be browsed in place. 

The specified items are compressed. 



SFGAO_FILESYSTEM 

SFGAO_FILESYSANCESTOR 

SFGAO_FOLDER 

SFGAO_NEWCONTENT 

SFGAO_NONENUMERATED 

SFGAO_REMOVABLE 

Return Values 

Chapter 7 Shell Interfaces 335 

The specified folders or file objects are part of the 
file system (that is, they are files, directories, or 
root directories). 

The specified folders contain one or more file 
system folders. 

The specified items are folders. 

The objects contain new content. 

The items are nonenumerated items. 

The specified file objects or folders are on 
removable media. 

Validate cached information. The shell will 
validate that the objects specified in apidl still 
exist and will not use cached information when 
retrieving the attributes. If one or more of the 
items specified in apidl no longer exist, this 
method will return an error code. If cidl is zero, 
the shell will discard all cached information for the 
shell folder. This is similar to doing a refresh of 
the folder. 

Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
You can optimize this operation by not returning unspecified flags. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliFolder 

IShe11 Folder:: GetDisplayNameOf 
Retrieves the display name for the specified file object or subfolder. 



336 Volume 5 Microsoft Windows Shell 

Parameters 
pidl 

[in] Address of an ITEMIDLIST structure that uniquely identifies the file object or 
subfolder relative to the parent folder. The structure must contain exactly one 
SHITEMID structure followed by a terminating zero. 

uFlags 
[in] Flags used to request the type of display name to return. For a list of possible 
values, see the SHGNO enumerated type. 

IpName 
[out] Pointer to a STRRET structure in which to return the display name. The type of 
name returned in this structure may be the requested type, but the shell folder may 
return a different type. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
The simplest way to retrieve the display name from the structure pOinted to by IpName is 
to pass it to either StrRetToBuf or StrRetToStr. These functions take a STRRET 
structure and return the name. You can also by examine the structure's uType member 
and get the name from the appropriate member. 

The flags specified in uFlags are effectively hints about the intended use of the name. 
They do not guarantee that ISheliFolder will return the requested form of the name. If 
that form is not available, a different one may be returned. In particular, there is no 
guarantee that the name returned by the SHGDN_FORPARSING flag will be 
successfully parsed by ParseDisplayName. There are also some combinations of flags 
that may cause the GetDisplayName/ParseDisplayName roundtrip to not return the 
original identifier list. This occurrence is exceptional, but you should check to be sure. 

Note The parsing name that is returned when uFlags has the SHGDN_FORPARSING 
flag set is not necessarily a normal text string. Virtual folders such as My Computer may 
return a string containing the folder object's GUID in the form "::{GUID}". 

Version 4.00 and later of Shell32.dll. 



Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliFolder 

IShe11 Folder:: GetU IObjectOf 

Chapter 7 Shell Interfaces 337 

Retrieves an OLE interface that can be used to carry out actions on the specified file 
objects or folders. 

Parameters 
hwndOwner 

[in] Handle to the owner window that the client should specify if it displays a dialog 
box or message box. 

cidl 
[in] Number of file objects or subfolders specified in the apidl parameter. 

apidl 
[in] Address of an array of pointers to ITEMIDLIST structures, each of which uniquely 
identifies a file object or subfolder relative to the parent folder. Each item identifier list 
must contain exactly one SHITEMID structure followed by a terminating zero. 

riid 
[in] Identifier of the COM interface object to return. This can be any valid interface 
identifier that can be created for an item. The most common identifiers used by the 
shell are listed in the comments at the end of this reference. 

prgflnOut 
Reserved. 

ppvOut 
[out] Pointer to the requested interface. If an error occurs, a NULL pointer is returned 
in this address. 



338 Volume 5 Microsoft Windows Shell 

Return Values 
Returns NOERROR if successful, E_NOINTERFACE if the interface is not supported, or 
an OLE-defined error value otherwise. 

Remarks 
If cidl is greater than one, the GetUIObjectOf implementation should only succeed if it 
can create one object for all items specified in apidl. If the implementation cannot create 
one object for all items, this method should fail. . 

The following are the most common interface identifiers the shell uses when requesting 
an interface from this method. The list also indicates if cidl can be greater than one for 
the requested interface. 

Interface identifier 

IContextMenu 

IContextMenu2 

I DataObject 

I DropTarget 

IExtractlcon 

IQuerylnfo 

Allowed cidlvalue 

The cidl parameter can be greater than or equal to one. 

The cidl parameter can be greater than or equal to one. 

The cidl parameter can be greater than or equal to one. 

The cidl parameter can only be one. 

The cidl parameter can only be one. 

The cidl parameter can only be one. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliFolder 

IShe11 Folder:: ParseDisplayName 
Translates a file object's or folder's display name into an item identifier list. 



Parameters 
hwndOwner 

Chapter 7 Shell Interfaces 339 

[in] Optional window handle. The client should provide a window handle if it displays a 
dialog or message box. Otherwise set hwndOwnerto NULL. 

pbc 
[in] Optional bind context that controls the parsing operation. This parameter is set 
normally to NULL. 

/pwszDisp/ayName 
[in] Null-terminated UNICODE string with the display name. Because each shell folder 
defines its own parsing syntax, the form this string can take may vary. The desktop 
folder, for instance, accepts paths such as "c:\My Docs\My File.txt". It also will accept 
references to items in the names pace that have a GUID associated with them using 
the "::{GUIDY' syntax. For example, to retrieve a fully qualified identifier list for the 
control panel from the desktop folder, you can use: 

~~i?'_Vjiiift1,®~Qt'T~":!;t!Jift:e:~it:~)';;t~~~j:f;':;~:X<;~:':·;;:',·:.~';',:,i\,~(:,;t;';t,,;,\~;; 

pchEaten 
[out] Pointer to a ULONG value that receives the number of characters of the display 
name that was parsed. If your application does not need this information, set 
pchEaten to NULL, and no value will be returned. 

ppid/ 
[out] Pointer to an ITEMIDLIST pointer that receives the item identifier list for the 
object. The returned item identifier list specifies the item relative to the parsing folder. 
If the object associated with /pwszDisp/ayName is within the parsing folder, the 
returned item identifier list will contain only one SHITEMID structure. If the object is in 
a subfolder of the parsing folder, the returned item identifier list will contain multiple 
SHITEMID structures. If an error occurs, NULL is returned in this address. 

pdwAttributes 
[in/out] Optional parameter that can be used to query for file attributes. If not used, it 
should be set to NULL. To query for one or more attributes, initialize the pdwAttributes 
with the flags that represent the attributes of interest. On return, those attributes that 
are true andwere requested will be set. A file object's attribute flags may be zero or a 
combination of the following values: " 

Value Description 

SFGAO_CANCOPY 

SFGAO_CANDELETE 

SFGAO_CANLINK 

The specified file objects or folders can be copied 
(same value as the DROPEFFECT _COPY flag). 

The specified file objects or folders can be deleted. 

Shortcuts can be created for the specified file objects 
or folders. This flag has the same value as 
DROPEFFECT _LINK. The normal use of this flag is 
to add a "Create Shortcut" item to the context menu 
that is displayed during drag-drop operations. 
However, SFGAO_CANLINK also adds a "Create 

(continued) 



340 Volume 5 Microsoft Windows Shell 

(continued) 

Value Description 

Shortcut" item to the Windows Explorer's File menu, 
and to normal context menus. If this item is selected, 
your application's IContextMenu::lnvokeCommand 
will be invoked with the IpVerb member of the 
CMINVOKECOMMANDINFO structure set to "link". 
Your application is responsible for creating the link. 

SFGAO_CANMONIKER It is possible to create monikers for the specified file 
objects or folders. 

SFGAO_CANMOVE The specified file objects or folders can be moved 
(same value as the DROPEFFECT _MOVE flag). 

SFGAO_CANRENAME The specified file objects or folders can be renamed. 
Note that this flag is essentially a suggestion. It does 
not guarantee that a namespace client will rename 
the file or folder object. 

SFGAO_CAPABILITYMASK This flag is a mask for the capability flags. 

SFGAO_DROPTARGET The specified file objects or folders are drop targets. 

SFGAO_HASPROPSHEET The specified file objects or folders have property 
sheets. 

A file object's display attributes may be zero or a combination of the following values: 

Value Description 

SFGAO_DISPLAYATTRMASK This flag is a mask for the display attributes. 

SFGAO_GHOSTED The specified file objects or folders should be 
displayed using a ghosted icon. 

SFGAO_LlNK The specified file objects are shortcuts. 

SFGAO_READONL Y The specified file objects or folders are read-only. 

SFGAO_SHARE The specified folders are shared. 

A file object's contents flags may be zero or a combination of the following values: 

Value Description 

SFGAO_CONTENTSMASK 

SFGAO_HASSUBFOLDER 

This flag is a mask for the contents attributes. 

The specified folders have subfolders (and are, 
therefore, expandable in the left pane of Windows 
Explorer). 

A file object's miscellaneous attributes may be zero or a combination of the following 
values: 



Value 

SFGAO_BROWSABLE 

SFGAO_COMPRESSED 

SFGAO_FILESYSTEM 

SFGAO_FILESYSANCESTOR 

SFGAO_FOLDER 

SFGAO_NEWCONTENT 

SFGAO_NONENUMERATED 

SFGAO_REMOVABLE 

Return Values 

Chapter 7 SheJllnterfaces 341 

Description 

The specified items can be browsed in place. 

The specified items are compressed. 

The specified folders or file objects are part of the 
file system (that is, they are files, directories, or 
root directories). 

The specified folders contain one or more file 
system folders. 

The specified items are folders. 

The objects contain new content. 

The items are nonenumerated items. 

The specified file objects or folders are on 
removable media. 

This flag is used to confirm the existence of the 
folder or object that corresponds to 
/pwszDisp/ayName. Not every folder implements 
this flag, but if it is passed in to 
ParseDisplayName, and the folder or object does 
not exist, a failure code should be returned. 

Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
Some shell folders may not implement ParseDisplayName. Each folder that does will 
define its own parsing syntax. 

Querying for some attributes may be relatively slow and use significant amounts of 
memory. For example, to determine if a file is shared, the shell will load network 
components. This procedure may require the loading of several DLLs. The purpose of 
dwAttributes is to allow you to restrict the query to only that information that is needed. 
The following code fragment illustrates how to find out if a file is compressed: 



342 Volume 5 Microsoft Windows Shell 

Since pdwAttributes is an in/out parameter, it should always be initialized. If you pass in 
an uninitialized value, some of the bits may be set. ParseDisplayName will then query 
for the corresponding attributes, which may lead to undesirable delays or memory 
demands. If you do not wish to query for attributes, set pdwAttributes to NULL to avoid 
unpredictable behavior. 

This method is similar to the OLE IParseDisplayName::ParseDisplayName method. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliFolder, ISheliLink, ISheIiFolder::GetAttributesOf 

ISheliFolder: :SetNameOf 
Sets the display name of a file object or subfolder, changing the item identifier in the 
process. 

Parameters 
hwndOwner 

[in] Handle to the owner window of any dialog or message boxes that the client 
displays. 

pidl 
[in] Address of an ITEMIDLIST structure that uniquely identifies the file object or 
subfolder relative to the parent folder. The structure must contain exactly one 
SHITEMID structure followed by a terminating zero. 



Chapter 7 Shell Interfaces 343 

IpszName 
[in] Address of a null-terminated string that specifies the new display name. 

uFlags 
[in] Flags indicating the type of name specified by the IpszName parameter. For a list 
of possible values, see the description of the SHGNO enumerated type. 

ppidlOut 
[in/out] Address of a pointer to the new ITEMIDLIST structure. Note that there is no 
guarantee that this parameter will point to a valid ITEMIDLIST. Some implementations 
of SetNameOf may ignore the request. If you call SetNameOf with ppidlOut set to 
NULL, it will not return a new ITEMIDLIST for the object. If an error occurs, ppidlOut 
will point to NULL. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
Changing the display name of a file system object, or a folder within it, renames the file 
or directory. 

Before calling this method, applications should caIlISheIiFolder::GetAttributesOf and 
check that the SFGAO_CANRENAME flag is set. Note that this flag is essentially a hint 
to name space clients. It does not necessarily imply that ISheIiFolder::SetNameOf will 
succeed or fail. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliFolder 

IShe11 Folder2 
The ISheliFolder2 interface extends the capabilities of ISheliFolder. Its methods 
provide a variety of information about the contents of a shell folder. 

When to Implement 
Implement ISheliFolder2 if your namespace extension provides services to clients 
beyond those in ISheliFolder. 



344 Volume 5 Microsoft Windows Shell 

When to Use 
CaliiSheliFolder2 when you need detailed information on items contained by a shell 
folder. This interface supersedes ISheliDetaiis. 

ISheliFolder2 implements all the ISheliFolder methods as well as IUnknown. The 
following methods are specific to ISheliFolder2. 

Methods Description 

EnumSearches 

GetDefaultColumn 

GetDefaultColumnState 

GetDefaultSearchGUID 

GetDetaiisEx 

GetDetaiisOf 

MapNameToSCID 

Requests a pOinter to an interface that allows a client to 
enumerate the available search objects. 

Gets the default sorting and display columns. 

Gets the default state for a specified column. 

Requests the GUID of the default search object for the 
folder. 

Retrieves detailed information, identified by a property set 
ID (FMTID) and property ID (PI D), on an item in a shell 
folder. 

Retrieves detailed information, identified by a column 
index, on an item in a shell folder. 

Converts a column name to the appropriate property set 
ID (FMTID) and property ID (PI D). 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheIiFolder2::EnumSearches 
Requests a pOinter to an interface that allows a client to enumerate the available search 
objects. 

Parameters 
ppEnum 

Address of a pOinter to an enumerator object's IEnumExtraSearch interface. 



Chapter 7 Shell Interfaces 345 

Return Values 
Returns NOERROR if successful, or an OLE error code otherwise. 

Version 5.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShell Folder2:: GetDefau Iteol u mn 
Gets the default sorting and display columns . 

. I~i'":'''''-.:·''··''''' 
Parameters 
dwReserved 

[in] Reserved. Set to zero. 

pSort 
[out] Pointer to the index of the default sorted column. This column is the one that 
should be used for sorting the items in the folder. To determine the sorting order of 
any pair of items, pass their PIDLs to ISheIiFolder::CompareIDs. 

pOisp/ay 
[out] Pointer to the index of the default display column. If a view will display only one 
string to represent an item, it should be taken from this column. Pass this index and 
the item's PIDL to ISheIiFolder2::GetDetaiisOf to retrieve the string. 

Return Values 
Returns NOERROR if successful, or a COM error code otherwise. 

Remarks 
Both column indexes returned by this method are intended for use by an application that 
is presenting a view of this folder. 

Version 5.00 and later of SheIl32.dll. 



346 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShe11 Folder2:: GetDefau Iteol umnState 
Gets the default state for a specified column. 

Parameters 
iColumn 

[in] Column number. 

pcsFlags 
[out] Pointer to a value containing flags that indicate the default column state. It can 
be a combination of the following flags: 

Flag Description 

SHCOLSTATE_ TYPE_STR A string. 

SHCOLSTATE_ TYPE_I NT An integer. 

SHCOLSTATE_ TYPE_DATE A date. 

SHCOLSTATE_ONBYDEFAUL T Should be shown by default in the Windows 
Explorer Details view. 

SHCOLSTATE_SLOW Will be slow to compute. You should do the 
computation on a background thread. 

SHCOLSTATE_EXTENDED Provided by a handler, not the folder object. 

SHCOLSTATE_SECONDARYUI Not displayed in the context menu, but listed in 
the More. dialog box. 

SHCOLSTATE_HIDDEN Not displayed in the user interface. 

Return Values 
Returns NOERROR if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 7 Shell Interfaces 347 

ISheliFolder2: :GetDefaultSearchGUID 
Returns the GUID of the default search object for the folder. 

'~~~~~~Iu=S1,~j{if~~~4~~'~~~}~~:~4~;:~:t~I~~~"~'.~.'~'~.~S·;\;' " ':" 

Parameters 
IpGUIO 

[out] GUID of the default search object. 

Return Values 
Returns NOERROR if successful, or an OLE error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShe11 Folder2:: GetDetai IsEx 
Retrieves detailed information, identified by a property set ID (FMTID) and property ID 
(PID), on an item in a shell folder. 

Parameters 
pidl 

[in] Item's PIDL. 

pscid 

pv 
[in] Pointer to an SHCOLUMNID structure that identifies the column. 

[out] Pointer to a VARIANT with the requested information. The value will be fully 
typed. 

Return Values 
Returns NOERROR if successful, or a COM error code otherwise. 



348 Volume 5 Microsoft Windows Shell 

Remarks 
This function is a more robust version of ISheIiFolder2::GetDetaiisOf. It provides 
access to the information that is displayed in the Windows Explorer Details view of a 
shell folder. The primary difference is that GetDetaiisEx allows you to identify the 
column with an FMTID and PID instead of having to first determine the column index. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShe11 Folder2:: GetDetai 180f 
Retrieves detailed information, identified by a column index, on an item in a shell folder. 

Parameters 
pidl 

[in] PIDL of the item for which you are requesting information. If this parameter is set 
to NULL, the title of the information field specified by iColumn is returned. 

iColumn 
[in] Zero-based index of the desired information field. It is identical to the column 
number of the information as it is displayed in a Windows Explorer Details view. 

pDetails 
[out] Pointer to a SHELLDETAILS structure with the information. 

Return Values 
Returns S_OK if successful, or a standard COM error code otherwise. 

R.emarks 
The GetDetaiisOf method is identical to ISheIiDetails::GetDetaiisOf. For a more robust 
way to get item information that doesn't require you to know the column index, use 
GetDetaiisEx. 



Chapter 7 Shell Interfaces 349 

The GetDetaiisOf method provides access to the information that is displayed in the 
Windows Explorer Details view of a shell folder. The column numbers, headings, and 
information that you see in the Windows Explorer Details view are identical to those of 
GetDetaiisOf. Note that the available information fields and their column numbers vary 
depending on the particular folder. You can enumerate the available fields by calling this 
method with pidl set to NULL, and examining the title associated with each column 
index. Bear in mind that these titles are localizable and might not be the same for all 
locales. 

File system folders have a large, standard set of information fields. The first five fields 
are standard for all file system folders. 

Column index Column title 

0 Name 

Size 

2 Type 

3 Modified 

4 Attributes 

File system folders can support a number of additional fields. However, they are not 
required to do so, and the column indexes assigned to these fields might vary. 

Each virtual folder has its own unique set of information fields. Normally, the item's 
display name is in column zero, but the order and content of the remaining fields depend 
on the implementation of the particular folder object. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShe11 Folder2:: MapName ToSCID 
Converts a column name to the appropriate property set ID (FMTID) and property 
ID (PID). 



350 VQlume 5 Microsoft Windows Shell 

Parameters 
pwszName 

[in] Pointer to a NULL-terminated Unicode string with the column's name. 

pscid 
[out] Pointer to an SHCOLUMNID structure containing the FMTID and PID. 

Return Values 
Returns NOERROR if successful, or a COM error code otherwise. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellicon 
The IShellicon interface is used to obtain an icon index for an ISheliFolder object. 
IShellicon allows an application to obtain the icon for any object within a folder by using 
only one instance of the interface. IExtractlcon, on the other hand, requires that a 
separate instance of the interface be created for each object. 

When to Implement 
Implement IShellicon when creating an ISheliFolder implementation to provide a quick 
way to obtain the icon for an object in the folder. 

If IShellicon is not implemented by an ISheliFolder object, 
ISheIiFolder::GetUIObjectOf is used to get an icon for all objects. 

When to Use 
Use IShellicon when retrieving the icon index for an item in a shell folder. 

IShellicon method Description 

GetlconOf Retrieves an icon for an object in a folder. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in s~lobj.h. 



IShelllcon:: GetlconOf 
Retrieves an icon for an object inside a specific folder. 

HRESULt·'GetlconOf(· 
LPCnEMIOLIST ptd], 

~~~T.·.fl~!!$ .. »;.>\ ••..• 
t.:PtNT·lp;IcM~7trdex ..

c ,,~,~ ;, _ c _, >!. 0

i, ' ;;:- ,. ~ , c' ',- ,

Parameters
pidl

;::'>,'~~ >~ '~,~< ': '~' ,,"::,
;; "

,,";,,",m'.'/'"

Chapter 7 Shell Interfaces 351

Address of the ITEMIDLIST structure that specifies the relative location of the folder.

flags
Flags specifying how the icon is to display. This parameter can be zero or one of the
following values:

GIL_FORSHELL The icon is to be displayed in a shell folder.

Iplconlndex

The icon should be in the open state if both open- and closed­
state images are available. If this flag is not specified, the icon
should be in the normal or closed state. This flag is typically
used for folder objects.

Address of the index of the icon in the system image list. The following standard
image list indexes can be returned:

o Document (blank page, not associated)

Document (with data on the page)

2 Application (file extension must be .exe, .com, or .bat)

3 Folder (plain)

4 Folder (open)

Return Values
Returns NOERROR if Iplconlndex contains the correct system image list index, or
S_FALSE if an icon can't be obtained for this object.

Remarks
If you are unable to get an icon for this object using GetlconOf, use the
ISheIiFolder::GetUIObjectOf method to get an object that supports the
IExtractlcon::Extract method.

Note to Callers The index returned is from the system image list.

352 Volume 5 Microsoft Windows Shell

Note to Implementers If the icon index used is not one of the standard images listed, it
is the implementer's responsibility to add the image to the system image list and then
place the index into the Iplconlndex parameter. To prevent the system image list from
growing too large, each image should only be added once.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShelilcon

IShelllconOverlay
Icon overlays are small images placed at the lower-left corner of the icon that represents
a shell object. They are normally used to add some extra information to the icon. A
commonly used icon overlay is the small arrow that indicates that a file or folder icon
represents a link. A namespace extension can specify icon overlays for the objects it
contains by implementing an IShelilconOverlay interface.

Icon overlays are part of the system image list. They have two identifiers. One is a one­
based overlay index that identifies the overlay relative to other overlays in the image list.
The other is an image index that identifies the actual image. These two indexes are
equivalent to the values that you assign to the iOverlayand ilmage parameters,
respectively, when you add an icon overlay to a private image list with
ImageList_SetOverlaylmage.

Before displaying the icon for an object, the shell calls the associated folder's
IShelilconOverlay interface to query whether the object's icon should have an overlay.
Normally it calls IShelilconOverlay::GetOverlaylndex to request the overlay's overlay
index. In some cases, the shell might caIiIShelilconOverlay::GetOverlaylconlndex to
request the overlay's image index. To specify an icon overlay, the methods must return
the requested index. Otherwise, they return S_FALSE.

To specify an icon overlay, both methods must first get the overlay's overlay index in the
system image list by calling SHGetlconOverlaylndex. When SHGetlconOverlaylndex
is called for the first time, the shell uses the overlay's file name and index within the file
to add the image to the system image list. Once an overlay is in the system image list,
the shell simply uses the file name and index as an identifier. You can also use
SHGetlconOverlaylndex to get the overlay index of several standard system overlays.

Chapter 7 Shell Interfaces 353

IShelllconOverlay::GetOverlaylndex simply returns the overlay index to the shell.
IShelllconOverlay::GetOverlaylconlndex must call1NDEXTOOVERLAYMASK to
convert the overlay index to the equivalent image index.

Note The number of different icon overlay handlers that the system can support is
limited by the amount of space available for icon overlays in the system image list. There
are currently fifteen slots allotted for icon overlays, some of which are reserved by the
system. For this reason, icon overlays should be specified only if there are no
satisfactory alternatives.

When to Implement
This interface is implemented by namespace extensions that need to specify icon
overlays for their objects.

When to Use
This interface is not normally used by applications.

Methods
IShelllconOverlay implements the following methods in addition to IUnknown:

GetOverlaylndex Returns the overlay index in the system image list.

GetOverlaylconlndex Returns the index of the icon overlay in the system image list.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShelllconOverlay: : GetOverlaylcon Index
Returns the index of the icon overlay in the system image list.

1fRESU(f .Getoverl ayIcorifildex(
·/LPClTEMIDt.ISr .pfdlItein. '

. '1nt *plc()nl~d~X " '
);.'. '

Parameters
pidlltem

[in] Address of an ITEMIDLIST structure that identifies the object whose icon is being
displayed.

354 Volume 5 Microsoft Windows Shell

plconlndex
[out] Address of the zero-based index of the icon overlay's image in the system image
list. This index is equivalent to the ilmage value that is specified when you add an
overlay image to a private image list with the ImageLisCSetOverlaylmage function.

Return Values
Returns NOERROR if successful, or an OLE error code otherwise.

Remarks
To get the overlay's image index in the system image list, you must first call
SHGetlconOverlaylndex to get the overlay index. Then call
INDEXTOOVERLAYMASK to convert the overlay index into the equivalent image index.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShelllconOverlay

IShelllconOverlay: : GetOverlayl ndex
Returns the overlay index in the system image list.

Parameters
pidlltem

[in] Address of an ITEMIDLIST structure that identifies the object whose icon is being
displayed.

plndex
[out] Address of the overlay's one-based overlay index in the system image list. This
index is equivalent to the iOverlayvalue that is specified when you add an overlay
image to a private image list with the ImageLisCSetOverlaylmage function.

Return Values
Returns NOERROR if successful, or an OLE error code otherwise.

Chapter 7 Shell Interfaces 355

Remarks
To get the overlay index in the system image list, call SHGetlconOverlaylndex.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShelliconOverlay

IShelllconOverlayldentifier
Icon overlays are small images placed at the lower-left corner of the icon that represents
a shell object in Windows Explorer or on the desktop. They are used to add some extra
information to the object's normal icon. A commonly used icon overlay is the small arrow
that indicates that a file or folder is actually a link. You can specify custom icon overlays
for shell objects by implementing and registering an icon overlay handler.

Icon overlay handlers are COM objects that are associated with a particular icon overlay.
All communication between the shell and the handler takes place through the handler's
IShelliconOverlayldentifier interface. For a general discussion of icon overlay handlers,
see Creating Icon Overlay Handlers.

When to Implement
This interface must be implemented by all icon overlay handlers.

When to Use
This interface is not normally called by applications.

Methods
IShelliconOverlayldentifier implements the following methods in addition to IUnknown.

GetOverlaylnfo Provides the location of the icon overlay's bitmap.

GetPriority

IsMemberOf

Specifies the priority of an icon overlay.

Specifies whether an icon overlay should be added to a shell
object's icon.

Version 5.00 and later of Shell32.dll.

356 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShelllconOverlayldentifier: : GetOverlayl nfo
Provides the location of the icon overlay's bitmap.

Parameters
pwszlconFile

[out] NULL-terminated Unicode string that contains the fully qualified path of the file
containing the icon. The .dll, .exe, and .ico file types are all acceptable. You must set
the ISIOUCONFILE flag in pdwFlags if you return a file name.

cchMax
[in] Size of the pwszlconFile buffer.

plndex
[out] Address of the index of the icon in a file containing multiple icons. You must set
the ISIOUCONINDEX flag in pdwFlags if you return an index.

pdwFlags
Address of a flag that specifies what information is being returned. This parameter
can be one or both of the following values.

ISIOUCONFILE The path of the icon file is returned through pwszlconFile.

ISIOUCONINDEX There is more than one icon in pwszlconFile. The icon's index
is returned through plndex.

Remarks
This method is called by the shell at startup so that the handler's icon overlay can be
added to the system image list. After initialization is complete, the shell calls
GetOverlaylnfo when it needs to display the handler's icon overlay.

Note Once the image has been loaded into the system image list during initialization, it
cannot be changed. After initialization, the file name and index are used only to identify
the icon overlay. The system will not load a new icon overlay. When GetOverlaylnfo is
called, your handler must return the same file name and index that were specified when
the function was first called.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShelllconOverlayldentifier

Chapter 7 Shell Interfaces 357

IShelllconOverlayldentifier:: GetPriority
Specifies the priority of an icon overlay.

Parameters
pPriority

[out] Address of a value that indicates the priority of the overlay identifier. Possible
values range from zero to 100, with zero the highest priority.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Remarks
If more than one icon overlay is available for an object, the one with highest priority is
chosen. The shell has a set of internal rules that determine priority for many cases. The
value returned by GetPriority is used for those cases where the shell's internal rules do
not apply. Normally, you should set the value to zero. However, the priority value is
useful when you have implemented two or more icon overlay handlers that can request
icon overlay icons for the same object. By setting the priority values appropriately, you
can specify which of the requested icon overlays will be displayed.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

358 Volume 5 Microsoft Windows Shell

IShelllconOverlayldentifier

IShe'lllconOverlayldentifier:: IsMemberOf
Specifies whether an icon overlay should be added to a shell object's icon.

Parameters
pwszPath

Unicode string that contains the fully qualified path of the shell object.

dwAttrib
Object's attributes. For a complete list of file attributes and their associated flags, see
IShellFolder: :GetAttributesOf.

Return Values
This method returns one of the following:

S_OK The icon overlay should be displayed.

Remarks

The icon overlay should not be displayed.

The operation failed.

The shell calls this method to determine whether it should display a handler's icon
overlay for a particular object. Icon overlay handlers are normally intended to work with a
particular group of files. A typical example is a file class, identified by a specific file
name extension. An icon overlay handler might request an icon overlay for all members
of the file class. Some handlers request an icon overlay only if a member of the file class
is in a particular state. However, icon overlay handlers are free to request their icon
overlay for any object that they want.

Version 5.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 359

IShelllconOverlayldentifier

ISheliLink
The ISheliLink interface allows shell links to be created, modified, and resolved.

Methods
ISheliLink supports the following methods:

GetArguments

GetDescription

GetHotkey

GetlconLocation

GetlDList

GetPath

GetShowCmd

GetWorkingDirectory

Resolve

SetArguments

SetDescription

SetHotkey

SetlconLocation

SetlDList

Set Path

SetRelativePath

SetShowCmd

SetWorkingDirectory

Retrieves the command-line arguments associated with a
shell link object.

Retrieves the description string for a shell link object.

Retrieves the hot key for a shell link object.

Retrieves the location (path and index) of the icon for a shell
link object.

Retrieves the list of item identifiers for a shell link object.

Retrieves the path and file name of a shell link object.

Retrieves the show (SW_) command for a shell link object.

Retrieves the name of the working directory for a shell link
object.

Resolves a shell link by searching for the shell link object and
updating the shell link path and its list of identifiers (if
necessary).

Sets the command-line arguments associated with a shell
link object.

Sets the description string for a shell link object.

Sets the hot key for a shell link object.

Sets the location (path and index) of the icon for a shell link
object.

Sets the list of item identifiers for a shell link object.

Sets the path and file name of a shell link object.

Sets the relative path for a shell link object.

Sets the show (SW_) command for a shell link object.

Sets the name of the working directory for a shell link object.

360 Volume 5 Microsoft Windows Shell

Remarks

Note The ISheliLink interface has an ANSI version (ISheIiLinkA) and a Unicode
version (ISheIiLinkW). The version that will be used depends on whether you compile for
ANSI or Unicode. However, Windows 95 and Windows 98 only support ISheliLinkA.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink: :GetArguments
Retrieves the command-line arguments associated with a shell link object.

Parameters
pszArgs

Address of a buffer that receives the command-line arguments.

cchMaxPath
Maximum number of characters to copy to the buffer pointed to by the pszArgs
parameter.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

CJ,~,:AIS()
IShellLink

ISheliLink: :GetDescription

Parameters
pszName

Chapter 7 Shell Interfaces 361

Address of a buffer that receives the description string.

cchMaxName
Maximum number of characters to copy to the buffer pointed to by the pszName
parameter.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShellLink

ISheliLink: : GetHotkey
Retrieves the hot key for a shell link object.

JiRESU!.T .:;s;rD..uKODCALLrl',E:'~tIi(]t~.y(; ,
.', ·.WORD~P~H6tk~yj·':·j ~i":< .::':. \, •.•.

..)• "': \ .. :' ; : .. ' ".,..
. " . " ~".~. " ',." !."/. "" ,,~·::.'~l~

362 Volume 5 Microsoft Windows Shell

Parameters
pwHotkey

Address of the hot key. The virtual key code is in the low-order byte, and the modifier
flags are in the high-order byte. The modifier flags can be a combination of the
following values:

HOTKEYF _AL T

HOTKEYF _CONTROL

HOTKEYF _EXT

HOTKEYF _SHIFT

Return Values

ALT key

CTRL key

Extended key

SHIFT key

Returns NOERROR if successful, or an OLE-defined error value otherwise.

Version 4.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

ISheliLink: :GetlconLocation
Retrieves the location (path and index) of the icon for a shell link object.

Parameters
pszlconPath

Address of a buffer that receives the path of the file containing the icon.

cchlconPath
Maximum number of characters to copy to the buffer pointed to by the pszlconPath
parameter.

pi/con
Address of a value that receives the index of the icon.

Chapter 7 Shell Interfaces 363

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

ISheliLink: :GetlDList
Retrieves the list of item identifiers for a shell link object.

Parameters
ppidl

Address of a pointer to a list of item identifiers.

Return Values
Returns NOERROR if the operation is successful, and one or more valid PIDLs is
retrieved. If the operation is successful, but no PIDLs are retrieved, it returns S_FALSE
with ppidl set to NULL. Otherwise, it returns an OLE-defined error value.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

364 Volume 5 Microsoft Windows Shell

IShell Lin k:: GetPath
Retrieves the path and file name of a shell link object.

Parameters
pszFile

Address of a buffer that receives the path and file name of the shell link object.

cchMaxPath
Maximum number of bytes to copy to the buffer pOinted to by the pszFile parameter.

pfd
Address of a WIN32_FIND_DATA structure that contains information about the shell
link object.

fFlags
Flags that specify the type of path information to retrieve. This parameter can be a
combination of the following values:

Flag Description

SLGP _SHORTPATH Retrieves the standard short (8.3 format) file name.

SLGP _UNCPRIORITY

SLGP _RAW PATH

Return Values

Retrieves the Universal Naming Convention (UNC) path
name of the file.

Retrieves the raw path name. A raw path is something
that might not exist and may include environment
variables that need to be expanded.

Returns NOERROR if the operation is successful, and a valid path is retrieved. If the
operation is successful, but no path is retrieved, it returns S_FALSE and pszPath will be
empty. Otherwise, it returns an OLE-defined error value.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

ISheliLink: :GetShowCmd
Retrieves the show command for a shell link object.

:e_im~ti!g~~'J-'i,;0.E
Parameters
piShowCmd

Chapter 7 Shell Interfaces 365

Pointer to the command. The following commands are supported:

Value Description

SW_SHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, the system restores it to its
original size and position. An application should specify
this flag when displaying the window for the first time.

SW_SHOWMAXIMIZED Activates the window and displays it as a maximized
window.

SW_SHOWMINIMIZED Activates the window and displays it as a minimized
window.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
The show command is used to set the initial show state of the corresponding object. This
is one of the SW_xxx values described in ShowWindow.

Version 4.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

366 Volume 5 Microsoft Windows Shell

ISheliLink, ISheliLink: :SetShowCmd

IShellLink: :GetWorkingDirectory
Retrieves the name of the working directory for a shell link object.

Parameters
pszDir

Address of a buffer that receives the name of the working directory.

cchMaxPath
Maximum number of characters to copy to the buffer pointed to by the pszDir
parameter. The name of the working directory is truncated if it is longer than the
maximum specified by this parameter.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

IShe11 Li n k:: Resolve
Attempts to find the target of a shell link, even if it has been moved or renamed.

HRESltLT:, Resofve(:': -

..•)'}r.. t.· •. ~&1pt~~\'
.,. _ -.,. ~' ,'.~'"

Parameters
hwnd

Chapter 7 Shell Interfaces 367

Handle to the window that the shell will use as the parent for a dialog box. The shell
displays the dialog box if it needs to prompt the user for more information while
resolving a shell link.

fFiags
Action flags. This parameter can be a combination of the following values:

SLR_INVOKE_MSI
Call the Microsoft Windows Installer.

SLR_NOLINKINFO
Disable distributed link tracking. By default, distributed link tracking tracks
removable media across multiple devices based on the volume name. It also uses
the UNC path to track remote file systems whose drive letter has changed. Setting
SLR_NOLINKINFO disables both types of tracking.

SLR_NO_UI
Do not display a dialog box if the link cannot be resolved. When SLR_NO_UI is set,
the high-order word of fFlags can be set to a time-out value that specifies the
maximum amount of time to be spent resolving the link. The function returns if the
link cannot be resolved within the time-out duration. If the high-order word is set to
zero, the time-out duration will be set to the default value of 3,000 milliseconds (3
seconds). To specify a value, set the high word of fFiags to the desired time-out
duration, in milliseconds.

SLR_NOUPDATE
Do not update the link information.

SLR_NOSEARCH
Do not execute the search heuristics.

SLR_NOTRACK
Do not use distributed link tracking.

SLR_UPDATE
If the link object has changed, update its path and list of identifiers. If
SLR_UPDATE is set, you do not need to caIlIPersistFile::lsDirty to determine
whether or not the link object has changed.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
Following link creation, the name or location of the target may change. The
IShellLink::Resolve method first retrieves the path associated with the link. If the object
is no longer there or has been renamed, Resolve will attempt to find it. If successful, and
the following conditions are met:

368 Volume 5 Microsoft Windows Shell

• The SLR_UPDATE flag is set.

• The target has been moved or renamed, updating the internal state of the shell link
object to refer to the new target.

• The shell link object was loaded from a file through IPersistFile.

The file that the link object was loaded from will be updated to reflect the new state of
the link object. The client can also caIiIPersistFile::lsDirty method to determine
whether the link object has changed and the file needs to be updated.

Resolve has two approaches to finding target objects. The first is the distributed link
tracking service. If the service is available, it can find an object that was on an NTFS
version 5.0 volume and was moved to another location on that volume. It can also find
an object that was moved to another NTFS version 5.0 volume, including volumes on
other computers. To suppress the use of this service, set the SLR_NOTRACK flag.

If distributed link tracking is not available or fails to find the link object, Resolve attempts
to find it with search heuristics. It first looks in the object's last known directory for an
object with a different name but the same attributes and file creation time. Next, it
recursively searches subdirectories in the vicinity of the object's last known directory. It
looks for an object with the same name or creation time. Finally, Resolve looks for a
matching object on the desktop and other local volumes. To suppress the use of the
search heuristics, set the SLR_NOSEARCH flag.

If both approaches fail, the system will display a dialog box prompting the user for a
location. To suppress the dialog box, set the SLR_NO_UI flag.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

ISheliLink: :SetArguments
Sets the command-line arguments for a shell link object.

:J~~~$~I~t~~~'J~~;~PPt:~"f~~,re~r~~;;;/';·····
'~~'i::; ; ... ,' "

Parameters
pszArgs

Chapter 7 Shell Interfaces 369

Address of a buffer that contains the new command-line arguments.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

This method is useful when creating a link to an application that takes special flags as
arguments, such as a compiler.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

IShe11 Li n k:: SetDescri ption
Sets the description for a shell link object. The description can be any application­
defined string.

~~~~«E-l~~i\~t~t~t~{:i 
Parameters 
pszName 

Address of a buffer containing the new description string. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of Shell32.dll. 



370 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliLink 

ISheliLink: :SetHotkey 
Sets a hot key for a shell link object. 

Parameters 
wHotkey 

New hot key. The virtual key code is in the low-order byte, and the modifier flags are 
in the high-order byte. The modifier flags can be a combination of the values specified 
in the description of the ISheIiLink::GetHotkey method. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Remarks 
Setting a hot key allows the user to activate the object by pressing a particular 
combination of keys. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliLink 



Chapter 7 Shell Interfaces 371 

ISheIiLink::SetlconLocation 
Sets the location (path and index) of the icon for a shell link object. 

H8f~~!~!~~~ti'GJ~~~·~·f:;:t· 
:·}'t: . :, ~:·.~~t':~:~0:;:~.:,'~:<i~~~/: 

Parameters 
pszlconPath 

Address of a buffer to contain the path of the file containing the icon. 

ilcon 
Index of the icon. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 

ISheliLink 

ISheliLink: :SetlDList 
Sets the list of item identifiers for a shell link object. 

Parameters 
pidl 

Address of a list of item identifiers. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 



372 Volume 5 Microsoft Windows Shell 

Remarks 
This method is useful when an application needs to set a shell link to an object that is 
not a file, such as a Control Panel application, a printer, or another computer. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliLink 

ISheliLink: :SetPath 
Sets the path and file name of a shell link object. 

Parameters 
pszFile 

Address of a buffer that contains the new path. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliLink 



ISheliLink: :SetRelativePath 
Sets the relative path to the shell link object. 

HRESUL1:' SetRelattvePath( 
;"i.:PCSTR,'p$ZpathR~7: ' 
"':DWO~",dwRe$,er,ved " 

~;'i}:::',:·,""/7:";X;"" ',' , " 

Parameters 
pszPathRel 

Chapter 7 Shell Interfaces 373 

Address of a buffer that contains the new relative path. It should be a file name, not a 
folder name. 

dwReserved 
Reserved. Set this parameter to zero. 

Return Values 

Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Example 

Consider the following scenario: 

• You have a link: c:\MyLink.lnk 

• The link target is c:\MyDocs\MyFile.txt 

• You want to move the link and MyDocs\MyFile.txt to d:\. 

You can assist the resolution process by creating the original link with a relative path 
before the shortcut is saved: 

:;,~'~,~ijTi~~,'v~~~"(;~'~;~\~ftjrill~)ijk~;' 'HO;~Lj.~.' ',< 

Before the shortcut is resolved, set a new relative path, and the Resolve code will find 
the file in its new location. 

',Ej!~~~lit~:,~ai~i'1"~~~:~~~n,~~j6k!:;~;,jiU'!;i»)f""':':'U"" , 

Remarks ' 
Clients commonly ~efirie a r~lative link when it may be moved along with its target, 
,?ausing the.absolute ~ath ta\beco~e i~valid. The SetRelativePath method ca.n be used 
to help the link resolution process find Its target based on a common path prefiX between , 
the target and the relative path. To assist in the resolution process, clients should set the 
relative path as part of the link creation process. ' 

Version 4.00 and later of Shell32.dll. 



374 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheliLink, ISheIiLink::Resolve, ISheIiLink::SetPath, ISheIiLink::SetIDList 

ISheliLink: :SetShowCmd 
Sets the show command for a shell link object. The show command sets the initial show 
state of the window. 

Parameters 
iShowCmd 

Command. SetShowCmd accepts one of the following ShowWindow commands: 

SW_SHOWNORMAL Activates and displays a window. If the window is 
minimized or maximized, the system restores it to its 
original size and position. An application should specify 
this flag when displaying the window for the first time. 

SW_SHOWMAXIMIZED Activates the window and displays it as a maximized 
window. 

SW_SHOWMINIMIZED Activates the window and displays it as a minimized 
window. 

Return Values 
Returns NOERROR if successful, or an OLE-defined error value otherwise. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheIiLink,ISheIiLink::GetShowCmd 



Chapter 7 Shell Interfaces 375 

ISheliLink: :SetWorkingDirectory 
Sets the name of the working directory for a shell link object. 

~~~~~''''~t;,.~i 
Parameters
pszDir

Address of a buffer that contains the name of the new working directory.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
The working directory is optional unless the target requires a working directory. For
example, if an application creates a shell link to a Word document that uses a template
residing in a different directory, the application would use this method to set the working
directory.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLink

ISheliLinkDataList
The ISheliLinkDataList interface allows an application to attach extra data blocks to a
shell link. It provides methods to add, copy, or remove data blocks. The data blocks are
in the form of a structure. The first two members are the same for all data blocks. The
first member gives the structure's size. The second member is a Signature that identifies
the type of data block. The remaining members hold the block's data. There are five
types of data block currently supported.

376 Volume 5 Microsoft Windows Shell

Data block structure

EXP _DARWIN_LINK
EXP _SPECIAL_FOLDER

EXP _SZ_LINK

NT_CONSOLE_PROPS

NT_FE_CONSOLE_PROPS

When to Implement

Description

The link's Windows Installer 10.
Special folder information.

The target name.

Console properties.

The console's code page.

This interface is not implemented by applications.

When to Use
Use this interface if your application needs to add extra data blocks to a shell link.

Methods
ISheliLinkDataList exposes the following methods in addition to IUnknown:

AddDataBlock Adds a data block to a link.

CopyDataBlock

GetFlags

RemoveDataBlock

SetFlags

Gets a copy of a link's data block.

Gets the current option settings.

Removes a data block from a link.

Specifies the current option settings.

Version 4.71 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLinkDataList: :AddDataBlock
Adds a data block to a link.

Parameters
pDataBlock

Chapter 7 Shell Interfaces 377

[in] Data block structure. For a list of supported structures, see ISheliLinkDataList.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

",,"' .. >.:.

"',.: ""',

ISheliLinkDataList

IShe11 Li nkDataList:: CopyDataB lock

Parameters
dwSig

[in] Data block's signature. The signature value for a particular type of data block can
be found in its structure reference. For a list of supported data block types and their
associated structures, see ISheliLinkDataList.

ppDataBlock
[out] Address of a pOinter to a copy of the data block structure.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

378 Volume 5 Microsoft Windows Shell

IShellLinkDataList

ISheliLinkDataList: :GetFlags
Gets the current option settings.

Parameters
pdwFlags

[out] Address of a flag value that indicates the current option settings. This parameter
can be a combination of the following values.

SLDF _FORCE_NO_LlNKINFO Do not create link information. Distributed
tracking will be disabled.

SLDF _HAS_ARGS

SLDF _HAS_DARWINID

SLDF _HAS_EXP _ICON_SZ

SLDF _HAS_ICON LOCATION

SLDF _HAS_ID_LlST

SLDF _HAS_LlNK_INFO

SLDF _HAS_LOG03ID

SLDF _HAS_NAME

SLDF_HAS_RELPATH

SLDF _HAS_WORKINGDIR

SLDF_RUNAS_USER

SLDF _RUN_IN_SEPARATE

Return V5alues

The link has arguments.

The link is a special Windows Installer link.

The link contains an expandable environment
string for the icon path.

The link contains expandable environment strings
such as "%windir%".

The link has an icon location.

The shell link was saved with an ID list.

The shell link was saved with link information to
enable distributed tracking.

Not currently supported.

The link has a name.

The link has a relative path.

The link has a working directory.

Run this link as a different user.

Run the 16-bit target application in a separate
VDMIWOW.

Strings are in Unicode.

Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLinkDataList

Chapter 7 Shell Interfaces 379

IShe11 Li n kDataList: : RemoveDataBlock
Removes a data block from a link.

Parameters
dwSig

[in] Data block's signature. The signature value for a particular type of data block can
be found in its structure reference. For a list of supported data block types and their
associated structures, see ISheliLinkDataList.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLinkDataList

IShe11 Li nkDataList:: SetFlags
Specifies the current option settings.

380 Volume 5 Microsoft Windows Shell

Parameters
dwFlags

[in] Flags that specify the option settings. This parameter can be a combination of the
following values:

SLDF _FORCE_NO_LlNKINFO Do not create link information. Distributed
tracking will be disabled.

SLDF _HAS_ARGS

SLDF _HAS_DARWINID

SLDF _HAS_EXP _ICON_SZ

SLDF _HAS_ICON LOCATION

SLDF _HAS_ID_LlST

SLDF _HAS_LlNK_INFO

SLDF _HAS_LOG03ID

SLDF _HAS_NAME

SLDF_HAS_RELPATH

SLDF _HAS_WORKINGDIR

SLDF_RUNAS_USER

SLDF _RUN_IN_SEPARATE

Return Values

The link has arguments.

The link is a special WindowS® Installer link.

The link contains an expandable environment
string for the icon path.

The link contains expandable environment strings
such as U%windir%".

The link has an icon location.

The shell link was saved with an ID list.

The shell link was saved with link information to
enable distributed tracking.

Not currently supported.

The link has a name.

The link has a relative path.

The link has a working directory.

Run this link as a different user.

Run the 16-bit target application in a separate
VDMIWOW.

Strings are in Unicode.

Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliLinkDataList

Chapter 7 Shell Interfaces 381

IShe11 PropSheetExt
The ISheliPropSheetExt interface allows a property sheet handler to add or replace
pages in the property sheet displayed for a file object.

ISheliPropSheetExt methods Description

AddPages

ReplacePage

Adds one or more pages to a property sheet for a file
object.

Replaces a page in a property sheet for a Control
Panel object.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliPropSheetExt: :AddPages
Adds one or more pages to a property sheet that the shell displays for a file object.
When it is about to display the property sheet, the shell calls this method for each
property sheet handler registered to the file type.

Parameters
IpfnAddPage

Address of a function that the property sheet handler calls to add a page to the
property sheet. The function takes a property sheet handle returned by the
CreatePropertySheetPage function and the IParam parameter passed to the
AddPages method.

IParam
Parameter to pass to the function specified by the IpfnAddPage method.

Return Values
Returns S_OK if successful. If the method fails, an OLE-defined error code is returned.
Version 4.71. If successful, returns a one-based index to specify the page that should
be initially displayed. See the remarks for more information.

If the method fails, an OLE-defined error code is returned.

382 Volume 5 Microsoft Windows Shell

Remarks
For each page the property sheet handler needs to add to a property sheet, the handler
fills a PROPSHEETPAGE structure, calls the CreatePropertySheetPage function, and
then calls the function specified by the IpfnAddPage parameter.

Prior to Version 4.71, the property sheet determines which page will be initially
displayed. With Version 4.71 and later, you can request that a particular property sheet
page be displayed first, instead of the default page. To do so, return the one-based
index of the desired page. For example, if you want the second of three pages
displayed, the return value should be 2. Note that this return value is a request. The
property sheet may still display the default page.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliPropSheetExt

IShe11 PropSheetExt:: ReplacePage
Replaces a page in a property sheet for a Control Panel object.

Parameters
uPagelD

Identifier of the page to replace. The values for this parameter for Control Panels can
be found in the Cplext.h header file.

IpfnReplacePage
Address of a function that the property sheet handler calls to replace a page to the
property sheet. The function takes a property sheet handle returned by the
CreatePropertySheetPage function and the IParam parameter passed to the
ReplacePage method.

Chapter 7 Shell Interfaces 383

/Param
Parameter to pass to the function specified by the /pfnRep/acePage parameter.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
To replace a page, a property sheet handler fills a PROPSHEETPAGE structure, calls
CreatePropertySheetPage, and then calls the function specified by /pfnRep/acePage.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliPropSheetExt

ISheliView
The ISheliView interface is implemented to present a view in the Windows Explorer or
folder windows. The object that exposes ISheliView is created by a call to the
ISheIiFolder::CreateViewObject method. This provides the channel of communication
between a view object and Windows Explorer's outermost frame window. The
communication involves the translation of messages, the state of the frame window
(activated or deactivated), the state of the document window (activated or deactivated),
and the merging of menus and toolbar items.

When to Implement
This interface is implemented by namespace extensions that display themselves in
Windows Explorer's namespace. This object is created by the ISheliFolder object that
hosts the view.

When to Use
These methods are used by the shell view's Windows Explorer window to manipulate
objects while they are active.

ISheliView is derived from IOleWindow. The following are the methods specific to
IShellView:

384 Volume 5 Microsoft Windows Shell

IShellView methods

AddPropertySheetPages

CreateViewWindow

DestroyViewWindow

EnableModeless

EnableModelessSV

GetCurrentlnfo

GetitemObject

Refresh

SaveViewState

Selectltem

TranslateAccelerator

UIActivate

Description

Allows the view to add pages to the Options property
sheet.

Creates the view window.

Destroys the view window.

Enables or disables mode less dialog boxes. Not in use
by Windows Explorer at this time.

Not currently in use.

Returns the current folder settings.

Allows callers to get an object that represents something
in the view.

Refreshes the display in response to user input.

Saves the shell's view settings so the current state can
be restored during a subsequent browsing session.

Changes the state of items within the shell view window.

Translates accelerator key strokes when a namespace
extension's view has the focus.

Called whenever the activation state of the view window
is changed by an event not caused by the shell view
itself.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView: :AddPropertySheetPages
Allows the view to add pages to the Options property sheet from the View menu.

Parameters
dwReserved

Reserved for future use.

Chapter 7 Shell Interfaces 385

Ipfn
Address of the callback function used to add the pages.

Iparam
Value that must be passed to the callback function in the Ipfn parameter.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks

Note to Implementers Windows Explorer calls this method when it is opening the
Options property sheet from the View menu. Views can add pages by creating them and
calling the callback function with the page handles.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IShellView

ISheliView: :CreateViewWindow
Creates a view window. This can be either the right pane of Windows Explorer or the
client window of a folder window.

RiESUl.TCreateViewW1ndd",t
.... i~Eih.iNK~rpPte~Vje~;'

lPFOJ-DFRSE"l'"r~H$S}pf.$..
ISb~Il a1>'O\'iser*,ps /)'~:
R:E~T;tpr¢View.: .,
.HWND,*P#Nnd·

386 Volume 5 Microsoft Windows Shell

Parameters
IpPre v Vie w

Address of the view window being exited. Views can use this parameter to
communicate with a previous view of the same implementation. This can be used to
optimize browsing between like views. This pOinter may be NULL.

Ipfs
Address of a FOLDERSETTINGS structure. The view should use this when creating
its view.

psb
Address of the current instance of the ISheliBrowser interface. The view should call
this interface's Add Ref method and keep the interface pOinter to allow communication
with the Windows Explorer window.

preView
Dimensions of the new view, in client coordinates.

phWnd
Address of the window handle being created.

Return Values
Returns an OLE success code if successful, or an OLE error code otherwise. Use the
SUCCEEDED and FAILED macros to determine whether the operation succeeded or
failed.

Remarks

Note to Callers Call this method when the view needs to be created.

Note to Implementers Create your view window and restore any persistent state by
calling the ISheIiBrowser::GetViewStateStream method.

Version 4.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView

ISheIiView:: DestroyViewWindow
Destroys the view window.

HRESULl .. Dest.rQ¥V1ew'0l1d!!lw<vQJd>:.

Return Values

Chapter 7 Shell Interfaces 387

Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
Windows Explorer calls this method when a folder window or Explorer is being closed.

Note to Implementers Clean up all states that represent the view, including the
window and any other associated resources.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView

ISheIiView:: EnableModeless
Enables or disables mode less dialog boxes. This method is not currently implemented.

Parameters
tEnable

Nonzero to enable modeless dialog box windows or zero to disable them.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

388 Volume 5 Microsoft Windows Shell

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView

ISheIIView:: EnableModelessSV
Not currently implemented.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView: :GetCurrentlnfo
Retrieves the current folder settings.

Parameters
/pfs

Address of a FOLDERSETTINGS structure to receive the settings.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
Windows Explorer uses this method to query the view for standard settings.

Chapter 7 Shell Interfaces 389

Note to Callers This method is used to get the current view settings of the view.

Note to Implementers Return as many of the settings as apply. This is intended to
maintain the same basic settings when the user browses from view to view. For
example, if the user sets the Details view, that view should be maintained as the user
goes from one folder to the other in Windows Explorer mode.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView

ISheliView: :GetltemObject
Retrieves an interface that refers to data presented in the view.

Parameters
ultem

Constants that refer to an aspect of the view. This parameter can be any of the
following values:

SVGIO_BACKGROUND Refers to the background of the view. It is used with
IID_IContextMenu to get a context menu for the view
background.

SVGIO_SELECTION

SVGIO_ALLVIEW

Refers to the currently selected items. IID_IDataObject
uses this constant to get a data object that represents
the selected items.

Same as SVGIO_SELECTION but refers to all items in
the view.

390 Volume 5 Microsoft Windows Shell

riid
Identifier of the COM interface being requested.

ppv
Address that receives the interface pointer. If an error occurs, the pointer returned
must be NULL.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
Used by the common dialogs to get the selected items from the view.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView

ISheIIView:: Refresh
Refreshes the view's contents in response to user input.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
Tells the view to refresh its contents, revalidating any view information it has.

Note to Callers Windows Explorer calls this method when the F5 key is pressed on an
already open view.

Note to Implementers Refill the view by going to any underlying storage for the
contents.

_~,n~:"
Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView

ISheIIView:: Save ViewState

Chapter 7 Shell Interfaces 391

Saves the shell's view settings so the current state can be restored during a subsequent
browsing session.

~~Re$utliS~*-f!Yi.WSt~te(;Y~1dt "

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
The shell view obtains a view stream by calling the
ISheIiBrowser::GetViewStateStream method and stores the current view state in that
stream.

Note to Callers Windows Explorer calls this method when it wants to save the view
state for a view.

Note to Implementers Be sure to make the format of the data stored in the stream
robust enough that different versions of the implementation can read it without error.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

392 Volume 5 Microsoft Windows Shell

IShellView

ISheIIView:: Selectltem
Changes the selection state of one or more items within the shell view window.

Parameters
pidlltem

Address of the ITEMIDLIST structure.

uFlags
Flag specifying what type of selection to apply. This parameter can be one of the
following values:

SVSLDESELECT

SVSLDESELECTOTHERS

SVSLEDIT

SVSLENSUREVISIBLE

SVSLFOCUSED

SVSLSELECT

Return Values

Deselect the specified item.

Deselect all but the specified item. If pidlltem is
NULL, deselect all items.

Put pidlltem in edit mode.

Ensure the item is displayed on the screen.

The item should be given the focus.

The item should be selected.

Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks

Note to Implementers This method is used to implement the Target command from
the File menu of the shell shortcut property sheet.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 393

D~"A1$q·
ISheliView

ISheliView: :TranslateAccelerator
Translates accelerator key strokes when a namespace extension's view has the focus.

'HRESUL t'Ti<MisiateActi~ierllto'r (....
LPMS~lpm$g

Parameters
/pmsg

Address of the message to be translated.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

If the view returns S_OK, it indicates that the message was translated and should not be
translated or dispatched by Windows Explorer.

Remarks
This method is called by Windows Explorer to let the view translate its accelerators.

Note to Callers Windows Explorer calls this method before any other translation if the
view has the focus. If the view does not have the focus, it is called after Explorer
translates its own accelerators.

Note to Implementers By default, the view should return S_FALSE so that Windows
Explorer can either do its own accelerator translation or normal menu dispatching. The
view should return S_OK only if it has processed the message as the accelerator and
does not want Explorer to process it further.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

394 Volume 5 Microsoft Windows Shell

ISheliView

ISheIIView:: U IActivate
Called when the activation state of the view window is changed by an event that is not
caused by the shell view itself. For example, if the TAB key is pressed when the tree has
the focus, the view should be given the focus.

Parameters
uState

Flag specifying the activation state of the window. This parameter can be one of the
following values:

SVUIA_ACTIVATE_FOCUS Windows Explorer has just created the view
window with the input focus. This means the shell
view should be able to set menu items
appropriate for the focused state.

SVUIA_ACTIVATE_NOFOCUS The shell view is losing the input focus, or it has
just been created without the input focus. The
shell view should be able to set menu items
appropriate for the nonfocused state. This means
no selection-specific items should be added.

SVUIA_DEACTIVATE Windows Explorer is about to destroy the shell
view window. The shell view should remove all
extended user interfaces. These are typically
merged menus and merged modeless pop-up
windows.

SVUIA_INPLACEACTIVATE The shell view is active without focus. This flag is
only used when UIActivate is exposed through
the ISheliView2 interface.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
Before remerging menu items, the shell view typically hooks the WM_SETFOCUS
message and calls the ISheIiBrowser::OnViewWindowActive method. The shell view
should not hook the WM_KILLFOCUS message to remerge menu items.

Chapter 7 Shell Interfaces 395

Note to Callers Call this method to inform the view of an activation state change.

Note to Implementers Use this method to track the activation state and change any
behavior, as appropriate.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView

ISheilView2
The ISheliView2 interface extends the capabilities of ISheliView.

When to Implement
Implement ISheliView2 if your namespace extension provides services to clients beyond
those in IShellView.

When to Use
You do not call this interface directly. IShellView2 is used by the operating system only
when it has confirmed that your application is aware of this interface. Objects that
expose IShellView and ISheliView2 are usually created by other shell folder objects.

ISheliView2 implements all the IShellView methods as well as IUnknown. The
following methods are specific to ISheliFolder2.

IShellFolder2 methods Description

CreateViewWindow2

GetView

HandleRename

SelectAndPositionltem

Used to request the creation of a Shell View window.

Used to request the GUID of the default or current Shell
View.

Used to change an item's 10.

Used to reposition an item.

Version 4.71 and later of Shell32.dll.

396 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView2: : Create ViewWindow2
Used to request the creation of a new shell view window. It can be either the right pane
of Windows Explorer or the client window of a folder window.

Parameters
IpParams

Pointer to an SV2CVW2_PARAMS structure that defines the new view window.

Return Values
Returns an OLE success code if successful, or an OLE error code otherwise. Use the
SUCCEEDED and FAILED macros to determine whether the operation succeeded or
failed.

Remarks
This method supersedes ISheIiView::CreateViewWindow. With CreateViewWindow2,
developers are not restricted to the standard view modes provided by
ISheIiView::CreateWindow, but may also create their own. All view modes are now
identified by their globally unique identifier (GUID).

The size of the structure, previous view window, folder settings, parent shell browser,
and view rectangle are passed into CreateViewWindow2 in the first five members of
IpParams. The method is responsible for creating the new window and passing back its
window handle and the GUID of the view mode in the last two parameters.
CreateViewWindow2 should call the parent browser's ISheIiBrowser::AddRef method
and store the interface pointer. It can be used for communication with the Windows
Explorer window.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
I.nternet Explorer 4.0 or later).

Chapter 7 Shell Interfaces 397

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView2: :GetView
Used to request the GUID for either the current or default shell view.

Parameters
pvid

[out] Identifier (GUID) of the requested view.

uView
[in] Type of view requested:

SV2GV_CURRENTVIEW

SV2GV_DEFAULTVIEW

Return Values

Current shell view.

Default shell view.

Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheIIView2:: HandleRename
Used to change an item's identifier.

398 Volume 5 Microsoft Windows Shell

Parameters
pidlNew

Pointer to an ITEMIDLIST structure. The current identifier is passed in and is replaced
by the new one.

Return Values
Return NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheliView2: :SelectAndPositionltem
Used to select and position an item in a Shell view.

Parameters
pidlltem

Pointer to an ITEMIDLIST structure that uniquely identifies the item of interest.
uFlags

Flags specifying the selection type. You can combine one or more of the following:
SVSLDESELECT Deselect the specified item. This flag is

incompatible with SVSI_DESELECTOTHERS.

SVSI_DESELECTOTHERS

SVSLEDIT

SVSI_ENSUREVISIBLE

SVSLFOCUSED

SVSLSELECT

SVSLTRANSLATEPT

Deselect all but the specified item. If pidlltem is
NULL, deselect all items. This flag is incompatible
with SVSLDESELECTOTHERS.

Put pidlltem in edit mode.

Ensure the item is displayed on the screen.

The item should be given the focus.

The item should be selected.

Convert the point from screen coordinates to client
coordinates.

Chapter 7 Shell Interfaces 399

point
POINT structure containing the new position.

Return Values
Return NOERROR if successful, or an OLE-defined error code otherwise.

,', '.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ITaskbarList
The ITaskbarList interface is used to control the taskbar. It allows you to dynamically
add items to the taskbar, remove items from the taskbar, and activate items on the
taskbar. See Modifying the Contents of the Taskbarfor more information about using this
interface.

When to Implement
You do not implement ITaskbarList; it is implemented by the shell.

When to Use
You use ITaskbarList to add items to the taskbar, remove items from the taskbar, and
activate items on the taskbar.

ITaskbarList is derived from IUnknown. The following methods are specific to
ITaskbarList:

ITaskbarList methods

ActivateTab

AddTab

DeleteTab

Hrlnit

SetActiveAlt

Description

Activates an item on the taskbar.

Adds an item to the taskbar.

Deletes an item from the taskbar.

Initializes the taskbar list object.

Marks a taskbar item as active but does not visually
activate it.

.", ".

Version 4.71 and later of Shell32.dll.

400 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ITaskbarList: :ActivateTab
Activates an item on the taskbar. The window is not actually activated; the window's item
on the taskbar is merely displayed as active.

Parameters
hwnd

Handle to the window on the taskbar to be displayed as active.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ITaskbarList: :AddTab
Adds an item to the taskbar.

Parameters
hwnd

Handle to the window to be added to the taskbar.

Return Values

Chapter 7 Shell Interfaces 401

Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks
Any type of window can be added to the taskbar, but it is recommended that the window
at least have the WS_CAPTION style.

Any window added with this method must be removed with the DeleteTab method when
the added window is destroyed.

Version 4.71 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ITaskbarList: : Delete Tab
Deletes an item from the taskbar.

tlRESl:ltTD~ 1 e:~eTa be, ...
,- ~ -, '., - .' -,. -'

HWHD.hWl'ld·

Parameters
hwnd

Handle to the window to be deleted from the taskbar.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dll.

402 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ITaskbarList: :Hrlnit
Initializes the taskbar list object. This method must be called before any other
ITaskbarList methods can be called.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise. If the method
fails, no other methods can be called. The calling application should release the
interface pointer.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ITaskbarList: :SetActiveAlt
Marks a taskbar item as active but does not visually activate it.

Parameters
hwnd

Handle to the window to be marked as active.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Chapter 7 Shell Interfaces 403

Remarks
SetActiveAlt marks the item associated with hwnd as the currently active item for the
window's process without changing the pressed state of any item. Any user action that
would activate a different tab in that process will activate the tab associated with hwnd
instead. The active state of the window's item is not guaranteed to be preserved when
the process associated with hwnd is not active. To ensure that a given tab is always
active, call SetActiveAlt whenever any of your windows are activated. Calling
SetActiveAlt with a NULL hwnd clears this state.

Version 4.71 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IUniformResourceLocator
The IUniformResourceLocator interface contains methods that can be used to handle
an object's Uniform Resource Locator. There are three methods:

IUniformResourceLocator::GetURL Retrieves an object's uniform
resource locator.

IUn iformResourceLocator:: InvokeCommand

IUniformResourceLocator: :SetURL

Version 4.00 and later of SheIl32.dll.

Runs a command on an
object's URL.

Sets an object's URL.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

IUniformResourceLocator: :GetURL
Retrieves an object's uniform resource locator (URL).

404 Volume 5 Microsoft Windows Shell

Parameters
ppszURL

Address of an LPSTR that will be filled in with a pointer to the object's URL.

Return Value
Returns S_OK if the object's URL was retrieved successfully. If the object does not have
a URL associated with it, the function returns S_FALSE and sets ppszURL to NULL.
Otherwise, the return value is one of the following error codes:

E_OUTOFMEMORY

IS_E_EXEC_FAILED

U RL_E_INVALI D _SYNTAX

URL_E_UNREGISTERED_PROTOCOL

Remarks

There is not enough memory to complete
the operation.

The URL's protocol handler failed to run.

The URL's syntax is invalid

The URL's protocol does not have a
registered protocol handler

Because this method allocates memory for ppszURL, you must instantiate an IMalioc
interface and free the memory using IMalloc::Free when it is no longer needed. The
following code fragment provides an example of how this can be done.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

Chapter 7 Shell Interfaces 405

IUniformResourceLocator: :lnvokeCommand
Runs a command on an object's URL.

!::!~~~~F'i'"i· t,;cN)i.t\~j'::~i';~j!Pvt~.;~'L~;'
Parameters
pURLCommandlnfo

Address of a URLINVOKECOMMANDINFO structure that contains command
information for the function.

Return Value
Returns S_OK if the object's URL was opened successfully. If the object does not have a
URL associated with it, the function returns S_FALSE. Otherwise, the return value is one
of the following error codes:

E_OUTOFMEMORY There is not enough memory to complete
the operation.

IS_E_EXEC_FAILED The URL's protocol handler failed to run

URL_E_I NVALI D_SYNTAX The URL's syntax is invalid

URL_E_UNREGISTERED_PROTOCOL The URL's protocol does not have a
registered protocol handler.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

406 Volume 5 Microsoft Windows Shell

IUniformResourceLocator::SetURL
Sets an object's URL.

Parameters
pcszURL

Address of a zero-terminated string that contains the URL to set. The protocol
scheme may be included as part of the URL.

dwlnFlags
Flag value that specifies the behavior for setting the protocol scheme. This field can
contain one of the following values:

IURL_SETURL_FL_GUESS_PROTOCOL
If the protocol scheme is not specified in pcszURL, the system automatically
chooses a scheme and adds it to the URL.

IURL_SETURL_FL_USE_DEFAUL T _PROTOCOL
If the protocol scheme is not specified in pcszURL, the system adds the default
protocol scheme to the URL.

Return Value
Returns S_OK if the object's URL was set successfully. Otherwise, the return value is
one of the following error codes:

E_OUTOFMEMORY There is not enough memory to complete
the operation.

IS_E_EXEC_FAILED The URL's protocol handler failed to run.

URL_E_INVALlD_SYNTAX The URL's syntax is invalid.

URL_E_UNREGISTERED_PROTOCOL The URL's protocol does not have a
registered protocol handler.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

Chapter 7 Shell Interfaces 407

IURLSearchHook
The IURLSearchHook interface is used by the browser to translate the address of an
unknown URL protocol. When attempting to browse to a URL address that does not
contain a protocol, the browser will first attempt to determine the correct protocol from
the address. If this is not successful, the browser will create URL Search Hook objects
and call each object's Translate method until the address is translated or all of the
hooks have been queried.

URL Search Hooks are registered by adding a key that contains the object's CLSID
string under the following key in the registry:

~~1~rlt(2·:r:

When to Implement
Implement this interface if your application defines a custom URL protocol and if address
translation for this protocol is required.

When to Use
You do not normally use this interface; it is called by the browser.

IURLSearchHook method Description

Translate Called by the browser when the browser cannot
determine the protocol of a URL address.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IURLSearchHook: :Translate
Called by the browser when the browser cannot determine the protocol of a URL
address.

408 Volume 5 Microsoft Windows Shell

Parameters
IpwszSearchURL

Address of a wide character buffer that, on entry, contains the URL address for which
the browser is trying to determine the protocol. On exit, this buffer contains the
modified URL address if the method was successful. See the return value for more
information.

cchBufferSize
Size, in characters, of the buffer at IpwszSearchURL.

Return Values
This method must return one of the following values:

S_OK The URL address was completely translated. The IpwszSearchURL
parameter contains the full URL address. The browser will not call any
other URL Search Hooks and will attempt to browse to the modified
address.

The URL address has been partially processed, but further translation is
still required. The IpwszSearchURL parameter contains the result of the
processing. The browser will continue executing the rest of the URL
Search Hooks.

The URL address was not translated. The IpwszSearchURL parameter
has not been modified. The browser will continue executing the rest of
the URL Search Hooks.

:;: ~'. : .'

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

CHAPTER 8

Shell Functions

Shell Functions

CPIAppiet
Library-defined callback function that seNes as the entry point for a Control Panel
application.

Parameters
hwndCPI

Identifier of the main window of the controlling application. Use the hwndCPI
parameter for dialog boxes or other windows that require a handle to a parent
window.

uMsg
Message being sent to the Control Panel application.

IParam1
Additional message-specific information.

IParam2
Additional message-specific information.

Return Values
The return value depends on the message.

For more information, see the descriptions of the individual Control Panel messages.

409

410 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in cpl.h.
Import Library: user-defined.

DefScreenSaverProc
Provides default processing for any messages that a screen-saver application does not
process.

Parameters
hWnd

Identifier of the screen-saver window.

msg
Message to be processed. The DefScreenSaverProc function responds to messages
that affect the screen saver's operation, as detailed in the Remarks section.

If a screen-saver application must perform a different action in response to any of
these messages, the application's ScreenSaverProc window procedure should
process the message.

wParam
Additional message-specific information.

IParam
Additional message-specific information.

Return Values
The return value specifies the result of the message processing and depends on the
message sent.

Remarks
A screen-saver application's ScreenSaverProc window procedure should use
DefScreenSaverProc instead of the DefWindowProc function to provide default

Chapter 8 Shell Functions 411

message processing. The DefScreenSaverProc function passes any messages that do
not affect screen-saver operation to DefWindowProc.

The following table describes how the DefScreenSaverProc processes a variety of
window messages:

WM_ACTIVATE, WM_ACTIVATEAPP, WM_NCACTIVATE
Closes the screen saver if the wParam parameter is FALSE. A wParam value of
FALSE indicates that the screen saver is losing the input focus. The screen saver is
closed by sending a WM_CLOSE message.

WM_DESTROY
Posts a WM_CLOSE message to close the screen-saver window.

WM_LBUTTONDOWN, WM_RBUTTONDOWN, WM_MBUTTONDOWN,
WM_KEYDOWN, WM_KEYUP, WM_MOUSEMOVE

Calls the PostQuitMessage function to close the screen saver.

WM_SETCURSOR
Removes the cursor from the screen by setting the cursor to NULL.

WM_SYSCOMMAND
Returns FALSE if the wParam parameter of WM_SYSCOMMAND is either
SC_CLOSE or SC_SCREENSAVE.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in scrnsave.h.
Import Library: scrnsave.lib.

DllGetVersion
Implemented by many of the Windows shell DLLs to allow applications to obtain DLL­
specific version information.

Parameters
pdvi

Pointer to a DLLVERSIONINFO structure that receives the version information. The
cbSize member must be filled in before calling the function.

Version 5.0. DLLs that are shipped with Windows 2000 or later systems might return
a DLLVERSIONINF02 structure. To maintain backward compatibility, the first
member of a DLLVERSIONINF02 structure is a DLLVERSIONINFO structure.

412 Volume 5 Microsoft Windows Shell

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
This function is not an API. It is exported by name from each DLL that implements it.
Currently, most of the Windows shell and common controls DLLs implement
DIIGetVersion. These include, but are not limited to, SheIl32.dll, ComctI32.dll,
Shdocvw.dll, and ShlwapLdl1.

To call this function, use the LoadLibrary and GetProcAddress functions to obtain the
function pointer. The DLLGETVERSIONPROC type is used as the data type for the
function pointer. See Shell and Common Controls Versions for a detailed discussion of
shell and common controls versions, and how to use DIIGetVersion.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in shlwapLh.

DLLGETVERSIONPROC
This type definition is used to define a pointer to a DIIGetVersion function. This pointer
is used when calling the function dynamically by loading the library and getting the
function's address. For more information, see the example in DIIGetVersion.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: user_defined.

Chapter 8 Shell Functions 413

DoEnvironmentSubst
Parses an input string containing references to one or more environment variables, and
replaces them with their current values.

DtfORDDof;ny1 f'(!nlll6~tSu~t(,

, ':~~~~,'~ .•.• ~.Jj") ·sz.'"~.:S,'.,l,,,' .. f:i~ti~:," , ',' c- ", '~' ,', ...
, :~ .U . .l.JYF "'L.'7!F~."', .~~ .. ';.~,,~\, ';:.-: »',:::'0-, ""~ "~ ',~ , ,:.~ <.','::',< .-;;,T.~;,~:':~ " ' ;''''

)f~_:i':':I,?:;f·.";'; :,:,~,-,' }:',: ~,:~::,E,?';::)'~;;j. t,<, ":s ,.,·;,.,;;y<~:;s

Parameters
pszString

Null-terminated string that contains references to one or more environment variables
in the form:

J.V~t~¥p'e~~":S::':i><'

Case is ignored. Each % VariableName% string is replaced with the variable's current
value. The replacement rules are the same as those used by the command
interpreter. If the name is not found, the %variableName% string is left intact.

As environment variables can be added by the user or applications, the complete list
is system-dependent. The following environment variables are standard with Microsoft
Windows NT, and are available to both interactive applications and services:

COMPUTERNAME PROCESSOR_REVISION

NUMBER_OF _PROCESSORS PROGRAMFILES

OS SYSTEM DRIVE

PROCESSOR_ARCHITECTURE SYSTEM ROOT

PROCESSOR_IDENTIFIER USERPROFILE

PROCESSOR_LEVEL WINDIR

The remainder are available only to interactive applications.

HOMEDRIVE USERDOMAIN

HOMEPATH USERNAME

LOGONSERVER

Only the WINOIR variable is available on Windows 95/98 systems.

cbSize
Size of the pszString buffer. It must be large enough to hold the values that will be
returned.

414 Volume 5 Microsoft Windows Shell

Return Values
If the expanded values do not overfill the buffer, they replace the original pszString array.
TRUE is returned in the LOWORD, and the length of pszString is returned in the
HIWORD. If the buffer is too small, pszString is not modified. FALSE is returned in the
LOWORD and cbSize in the HIWORD.

Remarks
This function is retained for backward compatibility with Windows 3.1. Use
ExpandEnvironmentStrings, instead.

Because the string that is returned in pszString normally will be longer than the input
string, make sure that the buffer is large enough.

The environment variables that correspond to file-system folders can be mapped to an
equivalent CSIDL value and obtained with SHGetFolderLocation. CSIDLs are more
reliable than variable names and should be used if at all possible.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

DragAcceptFiles
Registers whether a window accepts dropped files.

Parameters
hWnd

Identifier of the window that is registering whether it will accept dropped files.

(Accept
Value that indicates if the window identified by the hWnd parameter accepts dropped
files. This value is TRUE to accept dropped files, or FALSE to discontinue accepting
dropped files.

Return Values
No return value.

Remarks

Chapter 8 Shell Functions 415

An application that calls DragAcceptFiles with the (Accept parameter set to TRUE has
identified itself as able to process the WM_DROPFILES message from File Manager.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

DragFinish
Releases memory that the system allocated for use in transferring file names to the
application.

Parameters
hDrop

Identifier of the structure that describes dropped files. This handle is retrieved from
the wParam parameter of the WM_DROPFILES message.

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: shell32.1ib.

416 Volume 5 Microsoft Windows Shell

DragQueryFile
Retrieves the file names of dropped files that have resulted from a successful drag-and­
drop operation.

Parameters
hDrop

Identifier of the structure containing the file names of the dropped files.

iFile
Index of the file to query. If the value of the iFile parameter is OxFFFFFFFF,
DragQueryFile returns a count of the files dropped. If the value of the iFile parameter
is between zero and the total number of files dropped, DragQueryFile copies the file
name with the corresponding value to the buffer pointed to by the IpszFile parameter.

IpszFile
Address of a buffer to receive the file name of a dropped file when the function
returns. This file name is a null-terminated string. If this parameter is NULL,
DragQueryFile returns the required size, in characters, of the buffer.

cch
Size, in characters, of the IpszFile buffer.

Return Values
When the function copies a file name to the buffer, the return value is a count of the
characters copied, not including the terminating null character.

If the index value is OxFFFFFFFF, the return value is a count of the dropped files.

If the index value is between zero and the total number of dropped files and the IpszFile
buffer address is NULL, the return value is the required size, in characters, of the buffer,
not including the terminating null character.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapi.h.
Import Library: sheIl32.lib.

Chapter 8 Shell Functions 417

\Dr~ieet\l$o
DragQueryPoint

DragQueryPoint
Retrieves the position of the mouse pointer at the time a file was dropped during a drag­
and-drop operation.

SOOL J)fsgOiferyPaintt
:'HDJWP;,#1:Dt:'6p., , ,
" '4PPQl({Jppt.

'0) "',

Parameters
hDrop

Identifier of the structure that describes the dropped file.

Ippt
Address of a POINT structure that the function fills with the coordinates of the mouse
pointer at the time the file was dropped.

Return Values
Returns nonzero if the drop occurred in the client area of the window, or zero if the drop
did not occur in the client area of the window.

Remarks
The window for which coordinates are returned is the window that received the
WM_DROPFILES message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

DragQueryFile

418 Volume 5 Microsoft Windows Shell

FindEnvironmentString
Looks up the specified environment variable and returns a pOinter to its value.

Parameters
pszEnvVar

Null-terminated string with the environment variable of interest. Case is ignored.
Because environment variables can be added by the user or applications, the
complete list is system-dependent. The following environment variables are standard
with Microsoft Windows NT, and are available to both interactive applications and
services:

COMPUTERNAME

NUMBER_OF_PROCESSORS

OS

PROCESSOR_ARCHITECTURE

PROCESSOR_IDENTIFIER

PROCESSOR_LEVEL

PROCESSOR_REVISION

PROGRAM FILES

SYSTEM DRIVE

SYSTEM ROOT

USERPROFILE

WINDIR

The remainder are available only to interactive applications.

HOMEDRIVE USERDOMAIN

HOMEPATH

LOGONSERVER

USERNAME

Only the WINDIR variable is available on Windows 95/98 systems.

Return Values
Returns the value of the environment variable, or returns NULL if the variable is not in
the environment.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shellapLh.

Chapter 8 Shell Functions 419

Find Executable
Retrieves the name of and handle to the executable (.exe) file associated with the
specified file name.

Parameters
IpFile

Address of a null-terminated string specifying a file name. This can be a document or
an executable file.

IpDirectory
Address of a null-terminated string specifying the default directory.

IpResult
Address of a buffer to receive the file name when the function returns. This file name
is a null-terminated string specifying the executable file started when an "open" by
association is run on the file specified in the IpFile parameter.

Return Values
Returns a value greater than 32 if successful, or a value less than or equal to 32
otherwise.

The following table lists the possible error values:

o
31

ERROR_BAD_FORMAT

ERROR_FILE_NOT _FOUND

ERROR_PATH_NOT _FOUND

Remarks

The system is out of memory or resources.

There is no association for the specified file type.

The .exe file is invalid (non-Win32 .exe or error in
.exe image).

The specified file was not found.

The specified path was not found.

When FindExecutable returns, the IpResult parameter might contain the path to the
DDE (Dynamic Data Exchange) server started if a server does not respond to a request
to initiate a DDE conversation with the DDE client application.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

420 Volume 5 Microsoft Windows Shell

Header: Declared in shellapLh.
Import Library: sheIl32.lib.

Shell Execute

GetMenuContextHelpld
Retrieves the Help context identifier associated with the specified menu.

tiWR6'G,lt~)nlioTl~~tH~lpj~{ "
.~. [1:If4tHU i; h",~l\!tJ: ~.

h<;

Parameters
hmenu

..

Handle to the menu for which the Help context identifier is to be retrieved.

Return Values
Returns the Help context identifier if the menu has one, or zero otherwise.

SetMenuContextHelpld

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.
Import Library: user32.lib.

GetWindowContextHelpld
Retrieves the Help context identifier, if any, associated with the specified window.

D~Otw·G.et~i!1·C\~~rivl:eX*llH~ t.)
' .. j.Hl(¥1>b~~<f '., . .

»)~ ..

Parameters
hwnd

Handle to the window for which the Help context identifier is to be retrieved.

Chapter 8 Shell Functions 421

Return Values
Returns the Help context identifier if the window has one, or zero otherwise.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95198: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.
Import Library: user32.lib.

SetWindowContextHelpld

I netlsOffl i ne
Determines whether or not the system is connected to the Internet.

Parameters
dwFlags

Input flags for the function. This must be set to zero.

Return Value
Returns TRUE if the local system in not connected currently to the Internet. Returns
FALSE if the local system is connected to the Internet or if no attempt has been made
yet to connect to the Internet.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

MIMEAssociationDialog
Runs the unregistered MIME content type dialog box.

422 Volume 5 Microsoft Windows Shell

Parameters
hwndParent

Handle to the parent window of any posted child windows.

dwlnFlags
Bit flag value that specifies if an association is to be registered. The bit flag is the
value MIMEASSOCDLG_FL_REGISTER_ASSOC (Ox0001). If this bit is set, the
selected application is registered as the handler for the given MIME type. If this bit is
clear, no association is registered.

An application is registered only if this flag is set and the user indicates that a
persistent association is to be made.

Registration is impossible if the string at pcszFile does not contain an extension.

pcszFile
Address of a null-terminated string that contains the name of the target file. This file
must conform to the content type described by the pcszMIMEContentType parameter.

pcszMIMEContentType
Address of a null-terminated string that contains the unregistered content type.

pszAppBuf
Address of a buffer that receives the path of the application specified by the user.

ucAppBufLen
Size of pszAppBuf, in characters.

Return Value
Returns one of the following values:

Returns S_OK if the content type was successfully associated with the extension. In this
case, the extension is associated as the default for the content type, and pszAppBuf pOints
to the string that contains the path of the specified application. The function returns
S_FALSE if nothing was registered. Otherwise, the return value will be one of the following:

E_ABORT The user canceled the operation.

E_FLAGS The flag combination passed in dwlnFlags is invalid.

E_OUTOFMEMORY There was insufficient memory available to complete the
operation.

E_POINTER One of the input pointers is invalid.

Chapter 8 Shell Functions 423

Remarks
This function does not validate the syntax of the input content type string at
pcszMIMEContentType. A successful return value does not indicate that the specified
MIME content type is valid.

D~;'~~i~rpents
Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

RegisterDialogClasses
Registers any nonstandard window classes required by a screen saver's configuration
dialog box.

BOOl.RegisterDialo9ClaSSes(
HAMDlE fiJn$t "

Parameters
hlnst

Identifier of an instance of the module registering the window classes.

Return Values
Returns nonzero if successful, or zero otherwise.

To get extended error information, call GetLastError.

Remarks
The RegisterDialogClasses function should not be exported. It is called by routines
defined in the Scrnsave.lib file.

If a screen saver does not register any special window classes for the configuration
dialog box, the RegisterDialogClasses function must return TRUE.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in scrnsave.h.
Import Library: scrnsave.lib.

424 Volume 5 Microsoft Windows Shell

ScreenSaverConfigureDialog

ScreenSaverConfigureDialog
Receives messages sent to a screen saver's configuration dialog box. A screen saver
that allows user configuration must define this function.

Parameters
hDlg

Identifier of the configuration dialog box.

message
Message that was sent to the screen saver's configuration dialog box.

wParam
Additional message-specific information.

IParam
Additional message-specific information.

Return Values
If the function successfully processes the message, it should return TRUE. If not, it
should return FALSE, except in response to a WM_INITDIALOG message. In response
to a WM_INITDIALOG message, ScreenSaverConfigureDialog should return FALSE if
it calls the Set Focus function to set the keyboard focus to one of the controls in the
dialog box. Otherwise, the function should return TRUE, in which case the system sets
the keyboard focus to the first control in the dialog box that can be given the focus.

Remarks
The dialog-box template for the configuration dialog box must have the
DLG_SCRNSAVECONFIGURE identifier.

The dialog-box procedure is used only if the application specifies the default window
class (WC_DIALOG) for the dialog box. The application uses the default class if no
explicit class is given in the dialog-box template. Although the dialog-box procedure is
similar to a window procedure, it must not call the DefWindowProc function to process
unwanted messages. Unwanted messages are processed internally by the default
dialog-box procedure.

Chapter 8 Shell Functions 425

The ScreenSaverConfigureDialog function must be exported by including it in the
EXPORTS statement in the application's module-definition (.def) file.

J~' f1:'lrem~nts

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in scrnsave.h.
Import Library: scrnsave.lib.

RegisterDialogClasses

ScreenSaverProc
Receives messages sent to the specified screen-saver window.

LONG $cr99I)Sa'lel'proc(, ,.'
;', HWND :iiWnit;. '.

) ;

UINT mes~age.
~"lIPAAAr4wP,aratil.
; LPAAAM7Param .,

Parameters
hWnd

Identifier of the window.

message
Message sent to the screen-saver window.

wParam
Additional message-specific information.

IParam
Additional message-specific information.

Return Value
The return value is the result of the message processing and depends on the message
sent.

Remarks
A screen saver's ScreenSaverProc window procedure should use the
DefScreenSaverProc function instead of the DefWindowProc function to provide

426 Volume 5 Microsoft Windows Shell

default message processing. The DefScreenSaverProc function passes any messages
that do not affect screen-saver operations to DefWindowProc.

The ScreenSaverProc function must be exported by including it in the EXPORTS
statement in the application's module-definition (.def) file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in scrnsave.h.
Import Library: scrnsave.lib.

SetMenuContextHelpld
Associates a Help context identifier with a menu.

Parameters
hmenu

Handle to the menu with which to associate the Help context identifier.

dwContextHelpld
Help context identifier.

Return Values
Returns nonzero if successful, or zero otherwise.

To get extended error information, call GetLastError.

Remarks
All items in the menu share this identifier. Help context identifiers cannot be attached to
individual menu items.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.
Import Library: user32.lib.

Chapter 8 Shell Functions 427

GetMenuContextHelpld

SetWindowContextHelpld
Associates a Help context identifier with the specified window.

B.lidf(S~iw~;··

Parameters
hwnd

Handle to the window with which to associate the Help context identifier.

dwContextHelpld
Help context identifier.

Return Values
Returns nonzero if successful, or zero otherwise.

To get extended error information, call GetLastError.

Remarks
If a child window does not have a Help context identifier, it inherits the identifier of its
parent window. Likewise, if an owned window does not have a Help context identifier, it
inherits the identifier of its owner window. This inheritance of Help context identifiers
allows an application to set just one identifier for a dialog box and all of its controls.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.
Import Library: user32.lib.

GetWindowContextHelpld

428 Volume 5 Microsoft Windows Shell

SHAddToRecentDocs
Adds a document to the shell's list of recently used documents, or clears all documents
from the list.

Parameters
uFlags

pv

[in] Flag that indicates the meaning of the pv parameter. This flag can be one of the
following values:

SHARD_PATH The pvparameter points to a NULL-terminated string with the
path and filename of the object.

SHARD_PIDL The pv parameter points to an ITEMIDLIST structure (PIDL)
that identifies the document's file object. PIDLs that identify
nonfile objects are not allowed.

[in] A pOinter to either a NULL terminated string with the path and file name of the
document, or a PIDL that identifies the document's file object. Set this parameter to
NULL, to clear all documents from the list.

Remarks
In addition to updating its list of recent documents, the shell adds a shortcut to the users
Recent directory (CSIDL_RECENT) and the Start menu's Documents submenu.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHGetFolderLocation, SHGetFolderPath

Chapter 8 Shell Functions 429

SHApp8arMessage
Sends an appbar message to the system.

UINl":SI:IApp.$arMessag.C
.I)W.o.~ dt;Mes.s.age, ..

. . ~.~.·.;PAP~aAAf)A1A:ji(Ja ta·
). . .

Parameters
dwMessage

Appbar message value to send. This parameter can be one of the following values:

ABM_ACTIVATE Notifies the system that an appbar has been
activated.

ABM_GETAUTOHIDEBAR Retrieves the handle to the autohide appbar
associated with a particular edge of the screen.

ABM_GETTASKBARPOS

ABM_SET AUTOH I DEBAR

ABM_SETPOS

ABM_WINDOWPOSCHANGED

pData

Retrieves the autohide and always-on-top
states of the Windows taskbar.

Retrieves the bounding rectangle of the
Windows taskbar.

Registers a new appbar and specifies the
message identifier that the system should use
to send notification messages to the appbar.

Requests a size and screen position for an
appbar.

Unregisters an appbar, removing the bar from
the system's internal list.

Registers or unregisters an autohide appbar for
an edge of the screen.

Sets the size and screen position of an appbar.

Notifies the system when an appbar's position
has changed.

Address of an APPBARDATA structure. The content of the structure depends on the
value set in the dwMessage parameter.

Return Values
Returns a message-dependent value. For more information, see the Microsoft Platform
SDK documentation for the appbar message sent.

Version 4.00 and later of Shell32.dll.

430 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

SHBindToParent
This function takes the fully qualified PIDL of a namespace object, and returns a
specified interface pointer on the parent object.

flRE;SUL.T SHBHldToParentX
.. LrClTEMIJ>:LlSTpjdl •.

RE£Un riid. .
,~P~ri>~~P'!£v., .. >..>.... '. . .. >'

LrCITE:lttQt.I~*ppid1L'q$t .
'i~ ,/' , C ,. , ,

Parameters
pidl

[in] The item's PIDL.

did
[in] The REFIID of one of the interfaces exposed by the item's parent object.

ppv
[out] A painter to the interface specified by riid. You must release the object when you
are finished.

ppidlLast
[out] The item's PIDL relative to the parent folder. This PIDL can be used with many of
the methods supported by the parent folder's interfaces. If you set ppidlLastto NULL,
the PIDL will not be returned.

Return Values
Returns S_OK if successful, an OLE-defined error value otherwise.

Example
The following code fragment uses SHBindToParent to get the display name from an
item's PIDL. The StrRetToBuf function is used to convert the STRRET structure
returned by ISheliFolder::GetDisplayNameOf into a string:

IShii! 11 fo 1 der *psfParent.; ttA~potnt'ertQt1:l~ parentfoliler'~
• .' f / ob~eH' 51 Shel1F,ol der' {l1ter.face'

LPITEMIOLIST piiilnem.,?NULli /ltheiteffl!s'PIQl' '.

LPITEMIDLISTpi ill Relati ve'" NUlL ;jlthen~m's;PJQt..
. . ". 1/ ·relat'v~to·th.e

Chapter 8 Shell Functions 431

/I parent folder
STRRET str; lIthe ~isplay name's STRRET structure .
TCHAR szDi spl ayName[MAX-PATH]; lIthe di.spJay name's s,tri ng

HRESU,-T, hres::'",; SHJ4'ndT6ParenHptdUtem.'I:Hl..;:IShellfol der. ",
&psf:Parent. &p1,d1Rel athe):' ..
i f(SUCC£E·DED(l'lr:f!:S).r:: ,
{ ." . '.' ' .. '

", ," .':.," ",'.:

,',t,-: .. " .

. ' ,,',.' P:$f,I>a-~~ni;~)~~tM,s:Pt{ljNam~~f;(tifaJ'R~fiA:tiv~'.';:S~P.tL:NoRMAL.",

:}',.: .•. ~mii!'~),IH~~:~~~};;7;tj:';:.:··~'···
,.,. :" ~',.' .. /.' . "--: .. • ,.;q:" ;, ' ""," .;';. f\·.>:.-;,.'.'·:····, ,"" ',:;' .:','.;.~'" .. . J:,.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000. Available as a redistributable
for Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHBrowseForFolder
Displays a dialog box that enables the user to select a shell folder .

. IPlTEIU OUST' SHBrow$J!forFolder(
'. ~P~~owsEftf~q;tR~{,j',:""

,~~ . ::;~ ,

Parameters
/pbi

, . '-, .. , "- ... -.--~.- -:" .'
,,"., .

[in] Pointer to a BROWSEINFO structure that contains information used to display the
dialog box.

Return Values
Returns a pOinter to an ITEMIDLIST structure (PIDL) that specifies the location of the
selected folder relative to the root of the namespace. If the user chooses the Cancel
button in the dialog box, the return value is NULL.

432 Volume 5 Microsoft Windows Shell

Remarks
You must initialize COM with Colnitialize or OLElnitialize prior to calling
SHBrowseForFolder.

The calling application is responsible for freeing the returned PIDL with the shell
allocator's IMalloc::Free method. To get a handle to the shell allocator's IMalioc
interface, call SHGetMalioc. See The Shell Namespace for further discussion of the
shell allocator and PIDLs.

There are two styles of dialog box available. The older style is displayed by default, and
is not resizable. To specify a new-style dialog box set the BIF _USENEWUI flag in the
ulFlags member of the BROWSEINFO structure. It has a number of additional features,
including: drag-and-drop capability within the dialog box, reordering, context menus, new
folders, delete, and other context menu commands. Initially, it is larger than the old
dialog box, but can be resized by the user.

If you implement a callback function, YOl-l will receive a handle to the dialog box. One use
of this window handle is to modify the layout or contents of the dialog box. Because it is
not resizable, modifying the old-style dialog box is relatively straightforward. Modifying
the new-style dialog box is much more difficult, and not recommended. It not only has a
different size and layout than the old style, its dimensions and the positions of its controls
change every time it is resized by the user.

If the BIF _RETURNONLYFSDIRS flag is set in the ulFlags member of the
BROWSEINFO structure, the OK button will remain enabled for ''\\server'' items, as well
as ''\\server\share'' and directory items. However, if the user selects a ''\\server'' item,
passing the PIDL returned by the dialog box to SHGetPathFromlDList will fail.

Version 4.00, and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

Open and Save Common Dialog Boxes

SHChangeNotify
Notifies the system of an event that an application has performed. An application should
use this function if it performs an action that might affect the shell.

VOID S.HChangeNot1 fy(.
. LON~u'It'El(en~J(f •.. '.
JJ;l:NJ;,.ottFl.i!4$,· '. ' .

. . j.pltV<uD dwt~nii~"
. " ;i;~~Y6.~!l;6~"··;'·;':'

Parameters
wEventld

: . .
, .~. ~." " .

Chapter 8 Shell Functions 433

". '< .,."

Describes the event that has occurred. Typically, only one event is specified at a time.
If more than one event is specified, the values contained in the dwltem1 and dwltem2
parameters must be the same, respectively, for all specified events. This parameter
can be one or more of the following values:

SHCNE_ALLEVENTS All events have occurred.

SHCNE_ASSOCCHANGED' A file-type association has changed.

SHCNE_A TTRIBUTES

SHCNE_CREATE

SHCNE_DRIVEADD

SHCNE_DRIVEADDGUI

SHCNF _IDUST must be specified in the uFlags
parameter. dwltem1 and dwltem2 are not used
and must be NULL.

The attributes of an item or folder have changed.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem1 contains the item or
folder that has changed. Dwltem2 is not used and
should be NULL.

A nonfolder item has been created.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem1 contains the item
that was created. dwltem2 is not used and should
be NULL.

A nonfolder item has been deleted.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem1 contains the item
that was deleted. dwltem2 is not used and should
be NULL.

A drive has been added. SHCNF _IDUST or
SHCNF _PATH must be specified in uFlags.
dwltem1 contains the root of the drive that was
added. dwltem2 is not used and should be NULL.

A drive has been added and the shell should
create a new window for the drive.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem1 contains the root of
the drive that was added. Dwltem2 is not used
and should be NULL.

(continued)

434 Volume 5 Microsoft Windows Shell

(continued)

SHCNE_DRIVEREMOVED

SHCNE_EXTENDED_EVENT

SHCNE_FREESPACE

SHCNE_MEDIAINSERTED

SHCNE_MEDIAREMOVED

SHCNE_NETSHARE

SHCNE_NETUNSHARE

SHCNE_RENAMEFOLDER

A drive has been removed. SHCNF _IDUST or
SHCNF _PATH must be specified in uFlags.
dwltem1 contains the root of the drive that was
removed. dwltem2 is not used and should be
NULL.

Not used currently.

The amount of free space on a drive has
changed. SHCNF _IDUST or SHCNF _PATH
must be specified in uFlags. Dwltem 1 contains
the root of the drive on which the free space
changed. dwltem2 is not used and should be
NULL.

Storage media has been inserted into a drive.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem 1 contains the root of
the drive that contains the new media. dwltem2 is
not used and should be NULL.

Storage media has been removed from a drive.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem 1 contains the root of
the drive from which the media was removed.
dwltem2 is not used and should be NULL.

A folder has been created. SHCNF _IDUST or
SHCNF _PATH must be specified in uFlags.
dwltem1 contains the folder that was created.
dwltem2 is not used and should be NULL.

A folder on the local computer is being shared via
the network. SHCNF _IDUST or SHCNF _PATH
must be specified in uFlags. Dwltem1 contains
the folder that is being shared. Dwltem2 is not
used and should be NULL.

A folder on the local computer is no longer being
shared via the network. SHCNF _IDUST or
SHCNF _PATH must be specified in uFlags.
dwltem1 contains the folder that is no longer
being shared. dwltem2 is not used and should be
NULL.

The name of a folder has changed.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem 1 contains the
previous PIDL or name of the folder. dwltem2
contains the new PIDL or name of the folder.

Chapter 8 Shell Functions 435

SHCNE_RENAMEITEM The name of a nonfolder item has changed.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem 1 contains the
previous PIDL or name of the item. dwltem2
contains the new PIDL or name of the item.

SHCNE_RMDIR A folder has been removed. SHCNF _IDUST or
SHCNF _PATH must be specified in uFlags.
dwltem1 contains the folder that was removed.
dwltem2 is not used and should be NULL.

SHCNE_SERVERDISCONNECT The computer has disconnected from a server.

SHCNE_UPDATEDIR

SHCNE_UPDATEIMAGE

SHCNE_UPDATEITEM

SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem 1 contains the server
from which the computer was disconnected.
dwltem2 is not used and should be NULL.

The contents of an existing folder have changed,
but the folder still exists and has not been
renamed. SHCNF _IDUST or SHCNF _PATH
must be specified in uFlags. Dwltem1 contains
the folder that has changed. Dwltem2 is not used
and should be NULL. If a folder has been
created, deleted, or renamed, use
SHCNE_MKDIR, SHCNE_RMDIR, or
SHCNE_RENAMEFOLDER, respectively,
instead.

An image in the system image list has changed.
SHCNF _DWORD must be specified in uFlags.
dwltem1 contains the index in the system image
list that has changed. dwltem2 is not used and
should be NULL.

An existing nonfolder item has changed, but the
item still exists and has not been renamed.
SHCNF _IDUST or SHCNF _PATH must be
specified in uFlags. dwltem 1 contains the item
that has changed. dwltem2 is not used and
should be NULL. If a nonfolder item has been
created, deleted, or renamed, use
SHCNE_CREATE, SHCNE_DELETE, or
SHCNE_RENAMEITEM, respectively, instead.

The following values specify combinations of other events:

SHCNE_DISKEVENTS Specifies a combination of all of the disk event
identifiers.

SHCNE_GLOBALEVENT Specifies a combination of all of the global event
identifiers.

436 Volume 5 Microsoft Windows Shell

The following value modifies other event values and cannot be used alone:

SHCNE_INTERRUPT

uFlags

The specified event occurred as a result of a
system interrupt.

Flags that indicate the meaning of the dwltem 1 and dwltem2 parameters. The uFlags
parameter must be one of the following values:

SHCNF _DWORD The dwltem1 and dwltem2 parameters are
DWORD values.

dwltem1 and dwltem2 are the addresses of
ITEMIDLIST structures that represent the item(s)
affected by the change. Each ITEMIDLIST must
be relative to the desktop folder.

dwltem1 and dwltem2 are the addresses of
NULL-terminated strings that contain the full path
names of the items affected by the change.

dwltem1 and dwltem2 are the addresses of
NULL-terminated strings that represent the
friendly names of the printer(s) affected by the
change.

The following flags modify other data-type flags and cannot be used by themselves:

SHCNF _FLUSH The function should not return until the
notification has been delivered to all affected
components.

SHCNF _FLUSHNOWAIT

dwltem1
First event-dependent value.

dwltem2
Second event-dependent value.

Version 4.00 and later of Shell32.dll.

The function should begin delivering notifications
to all affected components, but should return as
soon as the notification process has begun.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHCreateDirectoryEx
Creates a new file-system folder.

i"'~ StlCre~1feP1re~ory.E~(•.
.HWNDhwnd.. .

.. ·LPCsrRp$.i:paith~· .
·"::$~CUR~nJ,tfRtattn$·, *IWi;:,.:

Parameters
hwnd

Chapter 8 Shell Functions 437

[in] Handle to a parent window. This parameter can be set to NULL if no user interface
will be displayed.

pszPath
[in] Pointer to a string with the fully qualified path of the directory.

psa
[in] Pointer to a SECURITY_ATTRIBUTES structure with the directory's security
attribute. Set this parameter to NULL if no security attributes need to be set.

Return Values
Returns ERROR_SUCCESS if successful. If the operation fails, one of the following
error codes can be returned:

Error code Description

ERROR_BAD_PATHNAME The pszPath parameter was set to a relative
path.

ERROR_FILENAME_EXCED_RANGE The path pointed to by pszPath is too long.

ERROR_FILE_EXISTS The directory exists.

ERROR_ALREADY _EXISTS The directory exists.

ERROR_CANCELLED The user canceled the operation.

Remarks
This function creates a file-system folder whose fully qualified path is given by pszPath.
If one or more of the intermediate folders do not exist, they will be created as well.
SHCreateDirectoryEx also verifies that the files will be visible. If not:

• If hwnd is set to a valid window handle, a message box is displayed warning users
that they might not be able to access the files. If users choose not to proceed, the
function returns ERROR_CANCELLED.

• If hwnd is set to NULL, no user interface is displayed and the function returns
ERROR_CANCELLED.

438 Volume 5 Microsoft Windows Shell

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: shell32.1ib.

SHCreateProcessAsUser
Creates a new user-mode process and its primary thread to run a specified executable
(.exe) file.

Parameters
pscpi

[in] Pointer to an SHCREATEPROCESSINFOW structure with information on how to
create the process.

Return Values
Returns TRUE if successful, or FALSE if not. To get extended error information, call
GetLastError.

Remarks
This function is similar to ShellExecuteEx with runas as the verb. However,
SHCreateProcessAsUser creates a process that runs in the security context of the user
represented by the hUserToken member of the structure pOinted to by pscpi. The
structure's IpProcesslnformation member can be used to return a
PROCESS_INFORMATION structure with information on the new process.

The runas verb must be supported by the executable file's file class. The .exe file class
supports runas. Use the AssocQueryString function to check whether or not runas is
supported by other file classes. The following code fragment illustrates the syntax:

,i::~i(~~~~~!e,~~';~J~t~~l~e~~~~~rM~f~,~,;··;~~;f:~~:~~·; ~","'j:;,;,:;,;; ":;", "
For a discussion of how to use the shell to launch applications, see Launching
Applications.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

CreateProcess, CreateProcessAsUser

Shell_Notifylcon

Parameters
dwMessage

Chapter 8 Shell Functions 439

[in] A parameter that specifies the action to be taken. It can have one of the following
values:

NIM_ADD
Add an icon to the status area. The hWnd and ulD fields of the
NOTIFYICONDATA structure pointed to by pnidwill be used to identify the icon in
future calls to ShelLNotifylcon.

NIM_DELETE
Delete an icon from the status area. Use the hWnd and ulD fields of the
NOTIFYICONDATA structure pOinted to by pnidto identify the icon to be deleted.

NIM_MODIFY
Modify an icon in the status area. Use the hWnd and ulD fields of the
NOTIFYICONDATA structure pOinted to by pnidto identify the icon to be modified.

NIM_SETFOCUS
Version 5.0. Return focus to the taskbar notification area. Taskbar icons should
use this message when they have completed their UI operation. For example, if the
taskbar icon displays a context menu, but the user presses Escape to cancel it,
NIM_SETFOCUS should be used to return focus to the taskbar notification area.

NIM_SETVERSION
Version 5.0. Instructs the taskbar to behave according to the version number
specified in the uVersion member of the structure pointed to by pnid. This
message allows you to specify whether you want the version 5.0 behavior found on
Windows 2000 system, or the behavior found with earlier shell versions. See the
Remarks for details.

440 Volume 5 Microsoft Windows Shell

pnid
[in] Pointer to a NOTIFYICONDATA structure. The content of the structure depends
on the value of dwMessage.

Return Values
Returns TRUE if successful, or FALSE otherwise. If dwMessage is set to
NIM_SETVERSION, the function will true if the version was successfully changed, or
FALSE if the requested version is not supported.

Remarks
Version 5.0 of the shell, found on Windows 2000, handles Shell_Notifylcon mouse and
keyboard events differently than earlier shell versions, found on Windows NT 4.0,
Windows 95, and Windows 98. The differences are:

• If a user requests a notify icon's context menu with the keyboard, the version 5.0 shell
sends the associated application a WM_CONTEXTMENU message. Earlier versions
send WM_RBUTTONDOWN and WM_RBUTTONUP messages.

• If a user selects a notify icon with the keyboard and activates it with the space bar or
ENTER key, the version 5.0 shell sends the associated application a
NIN_KEYSELECT notification. Earlier versions send WM_RBUTTONDOWN and
WM_RBUTTONUP messages.

• If a user selects a notify icon with the mouse and activates it with the ENTER key, the
version 5.0 shell sends the associated application a NIN_SELECT notification. Earlier
versions send WM_RBUTTONDOWN and WM_RBUTTONUP messages.

You can select which way the shell should behave by calling ShelLNotifylcon with
dwMessage set to NIM_SETVERSION. Set the uVersion member of the
NOTIFYICONDATA structure to indicate whether you want version 5.0 or pre-version
5.0 behavior.

Note The messages discussed above are not conventional Windows messages. They
are sent as the IParam value of the application-defined message that is specified when
the icon is added with NIM_ADD.

, "',': .'

- :-+.. :--- ... - .

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

ShellAbout
Displays a SheilA bout dialog box.

Parameters
hWnd

Chapter 8 Shell Functions 441

Window handle to a parent window. This parameter can be NULL.

5zApp
Displays text in the title bar of the shellAbout dialog box and on the first line of the
dialog box after the text "Microsoft". If the text contains a separator (#) dividing it into
two parts, the function displays the first part in the title bar and the second part on the
first line after the text "Microsoft".

5z0therStuff
Displays text in the dialog box after the version and copyright information.

hleon
Icon that the function displays in the dialog box. If this parameter is NULL, the function
displays the Microsoft Windows or Windows NT icon.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks
Note that the sheliAbout function dialog box uses text and a default icon that are
specific to either Windows or Windows NT.

An example of a sheliAbout dialog box can be seen by selecting the About Program
Manager command in Program Manager.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

442 Volume 5 Microsoft Windows Shell

Shell Execute
Performs an operation on a specified file.

Parameters
hwnd

Handle to a parent window. This window receives any message boxes that an
application produces. For example, an application can report an error by producing a
message box.

IpVerb
A string, referred to as a verb, that specifies the action to be performed. The set of
available verbs depends on the particular file or folder. It includes the commands
listed in the context menu and the registry. See Extending Context Menus for further
discussion of context menus. The following verbs are usually valid:

Verb

edit

explore

open

print

properties

Description

Opens an editor. If IpFile is not a document file, the function will fail.

The function explores the folder specified by IpFile.

The function opens the file specified by the IpFile parameter. The file
can be an executable file or a document file. It also can be a folder.

The function prints the document file specified by IpFile. If IpFile is
not a document file, the function will fail.

Displays the file or folder's properties.

If you set this paramater to NULL:

• For systems prior to Windows 2000, the "open" verb is used if available. If not, the
default verb is used.

• For Windows 2000 and later systems, "open" is used if available. If not, the default
verb is used. If neither verb is available, the system uses the first verb listed in the
registry.

IpFile
Address of a null-terminated string that specifies the file to open or print or the folder
to open or explore. The function can open an executable file or a document file. The
function can print a document file.

Chapter 8 Shell Functions 443

IpParameters
If the IpFile parameter specifies an executable file, IpParameters is an address to a
null-terminated string that specifies the parameters to be passed to the
application.The format of this string is determined by the verb that is to be invoked. If
IpFile specifies a document file, IpParameters should be NULL.

IpDirectory
Address of a null-terminated string that specifies the default directory.

nShowCmd
Flags that specify how an application is to be displayed when it is opened. If IpFile
specifies a document file, the flag is passed to the associated application. It is up to
the application to decide how to handle it.

SW_HIDE

SW_MAXIMIZE

SW_MINIMIZE

SW_SHOWDEFAUL T

SW_SHOWMAXIMIZED

SW_SHOWMINIMIZED

SW_SHOWMINNOACTIVE

SW_SHOWNA

SW _SHOWNOACTIVATE

SW_SHOWNORMAL

Hides the window and activates another window.

Maximizes the specified window.

Minimizes the specified window and activates the next
top-level window in the z-order.

Activates and displays the window. If the window is
minimized or maximized, Windows restores it to its
original size and position. An application should specify
this flag when restoring a minimized window.

Activates the window and displays it in its current size
and position.

Sets the show state based on the SW _ flag specified in
the STARTUPINFO structure passed to the
CreateProcess function by the program that started
the application. An application should call
ShowWindow with this flag to set the initial show state
of its main window.

Activates the window and displays it as a maximized
window.

Activates the window and displays it as a minimized
window.

Displays the window as a minimized window. The
active window remains active.

Displays the window in its current state. The active
window remains active.

Displays a window in its most recent size and position.
The active window remains active.

Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its
original size and position. An application should specify
this flag when displaying the window for the first time.

444 Volume 5 Microsoft Windows Shell

Return Values
Returns a value greater than 32 if successful, or an error value that is less than or equal
to 32 otherwise. The following table lists the error values. The return value is cast as an
HINSTANCE for backward compatibility with 16-bit Microsoft Windows applications. It is
not a true HINSTANCE, however. The only thing that can be done with the returned

HINSTANCE is to cast it to an integer and compare it with the value 32 or one of the
error codes below:

o

ERROR_FILE_NOT _FOUND

ERROR_PATH_NOT_FOUND

SE_ERR_ACCESSDENIED

SE_ERR_ASSOCI NCOMPLETE

SE_ERR_DDEBUSY

SE_ERR_DDEFAIL

SE_ERR_DDETIMEOUT

SE_ERR_DLLNOTFOUND

SE_ERR_FNF

SE_ERR_NOASSOC

SE_ERR_PNF

SE_ERR_SHARE

Remarks

The operating system is out of memory or
resources.

The .exe file is invalid (non-Win32 .exe or error in
.exe image).

The specified file was not found.

The specified path was not found.

The operating system denied access to the
specified file.

The file name association is incomplete or invalid.

The DDE transaction could not be completed
because other DDE transactions were being
processed.

The DDE transaction failed.

The DDE transaction could not be completed
because the request timed out.

The specified dynamic-link library was not found.

The specified file was not found.

There is no application associated with the given file
name extension. This error will also be returned if
you attempt to print a file that is not printable.

There was not enough memory to complete the
operation.

The specified path was not found.

A sharing violation occurred.

This method allows you to execute any commands in a folder's context menu or stored
in the registry.

To open a folder, use either of the following calls:

or

Chapter 8 Shell Functions 445

To explore a folder, use:

ShellExec;ute(handl e ,"explore", path .. to_fo 1 dar , NULL,

NULL, $W~SHOWNORMAL):

To launch the shell's Find utility for a directory, use:

Shell Execute (handl e, "find", pdh.,..to_fo7.der. NUL~ ~ NULL, 0);

If IpOperation is NULL, the function opens the file specified by IpFile. If IpOperation is
"open" or "explore", the function will attempt to open or explore the folder.

With multiple monitors, if you specify the window handle and set IpOperation to
"Properties", any windows created by Shell Execute might not appear in the correct
position.

To obtain information about the application that is launched as a result of calling
Shell Execute, use ShellExecuteEx.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapi.h.
Import Library: sheIl32.lib.

IShell ExecuteHook

ShellExecuteEx
Performs an action on a file.

BOOl..:5h,nixe~uteE:XC' .•. ».\ .
. ... tPS~£f.L£X~CUj!lNfQ·,:PlJ£x;~IJ1io.

, ~ ; ","'. ':.', • '. . } .,.' '. 'f ~ ",'" ,', • .' ,,'

Ji:: .. ::,,',

Parameters
IpExeclnfo

Address of a SHELLEXECUTEINFO structure that contains and receives information
about the application being executed.

446 Volume 5 Microsoft Windows Shell

Return Values
Returns TRUE if successful, or FALSE otherwise. Call GetLastError for error
information.

Remarks
With multiple monitors, if you specify an hwnd and set the IpVerb member of IpExeclnfo
to "Properties" , any windows created by ShellExecuteEx may not appear in the correct
position.

If the function succeeds, it sets the hlnstApp member of the SHELLEXECUTEINFO
structure to a value greater than 32. If the function fails, hlnstApp is set to the
SE_ERR_XXX error value that best indicates the cause of the failure. Although
hlnstApp is declared as an HINSTANCE for compatibility with 16-bit Microsoft Windows
applications, it is not a true HINSTANCE. It can be cast only to an integer and compared
to either 32 or the SE_ERR_XXX error codes.

Note The SE_ERR_XXX error values are provided for compatibility with Shell Execute.
To retrieve more accurate error information, use GetLastError. It may return one of the
following values:

ERROR_ACCESS_DEN I ED

ERROR_CANCELLED

ERROR_DDE_FAIL

ERROR_DLL_NOT _FOUND

ERROR_FILE_NOT _FOUND

ERROR_NO_ASSOCIATION

ERROR_PATH_NOT_FOUND

ERROR_SHARING_ VIOLATION

Version 4.00 and later of Shell32.dll.

Access to the specified file is denied.

The function prompted the user for additional
information, but the user canceled the request.

The DDE transaction failed.

One of the library files necessary to run the
application cannot be found.

The specified file was not found.

There is no application associated with the
given file-name extension.

There is not enough memory to perform the
specified action.

The specified path was not found.

A sharing violation occurred.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in shellapi.h.
Import Library: sheIl32.lib.

Chapter 8 Shell Functions 447

;U~~.$Q·····
IShellExecuteHook

SHEmptyRecycleBin
Empties the Recycle Bin on the specified drive.

Parameters
hwnd

Handle to the parent window of any dialog boxes that might be displayed during the
operation. This parameter can be NULL.

pszRootPath
Address of a NULL-terminated string that contains the path of the root drive on which
the Recycle Bin is located. This parameter can contain the address of a string
formatted with the drive, folder, and subfolder names (c:\windows\system ...). It also
can contain an empty string or NULL. If this value is an empty string or NULL, all
Recycle Bins on all drives will be emptied.

dwFlags
One or more of the following values:

SHERB_NOCONFIRMATION No dialog box confirming the deletion of the
objects will be displayed.

SHERB_NOPROGRESSUI

SHERB_NOSOUND

Return Values

No dialog box indicating the progress will be
displayed.

No sound will be played when the operation is
complete.

Returns S_OK if successful, or an OLE-defined error value otherwise.

Version 4.71 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).

448 Volume 5 Microsoft Windows Shell

Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

SHQueryRecycleBin

SHFileOperation
Copies, moves, renames, or deletes a file-system object.

Parameters
IpFileOp

[in] Address of an SHFILEOPSTRUCT structure that contains information this function
needs to carry out the specified operation.

Return Values
Returns zero if successful, or nonzero otherwise.

Remarks
You should use fully qualified path names with this function. Using it with relative path
names is not thread-safe.

With two exceptions, you cannot use SHFileOperation to move special folders from a
local drive to a remote computer by specifying a network path. The exceptions are the
MyDocs and MyPics folders (CSIDL_PERSONAL and CSIDL_MYPICTURES,
respectively) .

When used to delete a file, SHFileOperation will attempt to place the deleted file in the
Recycle Bin. If you want to delete a file and guarantee that it will not be placed in the
Recycle Bin, use OeleteFile.

If a copy callback handler is exposed and registered, SHFileOperation will call it unless
you set a flag such as FOF _NOCONFIRMATION in the fFlags member of the structure
pOinted to by IpFileOp. See ICopyHook::CopyCallback for details on implementing
copy callback handlers.

File deletion is recursive unless you set the FOF _NORECURSION flag in IpFileOp.

With Microsoft Windows NT versions 5.0 and later, it is possible to connect an HTML file
with a folder containing related files, such as GIF images or style sheets. If file
connection is enabled, when you move or copy the HTML file, all of the files in the folder

Chapter 8 Shell Functions 449

will be moved or copied, too. Conversely, if you move the folder with the related files, the
HTML file also is moved.

The HTML file must have a .htm or .html extension. You create the connection to the
related files by placing them in a subfolder of the folder containing the HTML file. The
folder must have the name of the HTML file followed by" files". For example, if the HTML
file is MyFile.htm, the folder should be named "MyFile files". Any files you place in the
"MyFile files" subfolder will be connected to MyFile.htm.

File connection is enabled by default. It can be disabled by adding a REG_DWORD
value, NoFileFolderConnection, to the
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer registry key. Setting
NoFileFolderConnection to 1 disables file connection. If the value is set to zero or is
missing, file connection is enabled.

To move only specified files from a group of connected files, set the
FOF _NO_CONNECTED_ELEMENTS flag in the fFlags member of the structure pOinted
to by /pFileOp.

Note that the use of a folder with a name like "MyFile files" to define a connection might
not be valid for localized versions of Windows NT. The term "files" might need be
replaced by the equivalent word in the local language.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

SHFreeNameMappings
Frees a file-name mapping object that was retrieved by the SHFileOperation function.

Parameters
hNameMappings

Handle to the file-name mapping object to be freed.

Version 4.00 and later of Shell32.dll.

450 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: shell32.lib.

SHGetDataFromlDList
Retrieves extended property data from a relative identifier list.

Parameters
pst

Address of the parent ISheliFolder interface. This must be the immediate parent of
the ITEMIDLIST referenced by the pidl parameter.

pidl
Address of a simple ITEMIDLIST structure that identifies the object relative to the
folder specified in psf.

nFormat

pv

Format in which the data is being requested. This must be one of the following
formats:

Format

SHGDFIL_DESCRIPTIONID

SHGDFIL_FINDDATA

SHGDFIL_NETRESOURCE

Description

Version 4.71. Format used for network
resources. The pv parameter is the address of an
SHDESCRIPTIONID structure.

Format used for file-system objects. The pv
parameter is the address of a
WIN32_FIND_DATA structure.

Format used for network resources. The pv
parameter is the address of a NETRESOURCE
structure.

Address of a buffer that receives the requested data. The format of this buffer is
determined by nFormat.

Chapter 8 Shell Functions 451

If nFormat is SHGDFIL_NETRESOURCE, there are two possible cases. If the buffer
is large enough, the net resource's string information (fields for the network name,
local name, provider, and comments) will be placed into the buffer. If the buffer is not
large enough, only the net resource structure will be placed into the buffer and the
string information pointers will be NULL.

cb
Size of the buffer at pv, in bytes.

Return Values
Returns NOERROR if successful, or E_INVALIDARG otherwise.

Remarks
E_INVALIDARG is returned if the psf, pidl, pv, or cb parameter does not match the
nFormat parameter, or if nFormat is not one of the specific SHGDFIL_ values shown
above.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95198: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHGetDesktopFolder
Retrieves the ISheliFolder interface for the desktop folder, which is the root of the shell's
namespace.

Parameters
ppshf

Address that receives an ISheliFolder interface pOinter for the desktop folder. The
calling application is responsible for eventually freeing the interface by calling its
Release method.

Return Values
Returns NOERROR if successful, or an OLE-defined error result otherwise.

452 Volume 5 Microsoft Windows Shell

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHGetDiskFreeSpace
Retrieves disk-space information for a disk volume.

Parameters
pszVolume

A NULL-terminated string that specifies the volume for which size information will be
retrieved. This can be a drive letter, UNC name, or the path of a folder. You cannot
use NULL to represent the current drive.

pqwFreeCaller
Address of a ULARGE_INTEGER value that receives the number of bytes available
to the caller on the volume. If the operating system implements per-user quotas, this
value can be less than the total number of free bytes on the volume.

pqwTot
Address of a ULARGE_INTEGER value that receives the total size of the volume, in
bytes.

pqwFree
Address of a ULARGE_INTEGER value that receives the number of bytes of free
space on the volume.

Return Values
Returns nonzero if successful, or zero otherwise.

Remarks
SHGetDiskFreeSpace is nearly identical to the GetDiskFreeSpaceEx API.
SHGetDiskFreeSpace will load the proper module, obtain the address of
GetDiskFreeSpaceEx, and then call it. This approach prevents the caller from having to

Chapter 8 Shell Functions 453

perform these operations themselves. See the operating system restrictions in the
GetDiskFreeSpaceEx reference for more information.

This function is implemented in shell versions 4.71 and later. In order to maintain
backward compatibility with previous shell versions, this function should not be used
explicitly. Instead, the LoadLibrary and GetProcAddress functions should be used to
obtain the function address.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

GetDiskFreeSpace

SHGetFilelnfo
Retrieves information about an object in the file system, such as a file, folder, directory,
or drive root.

Parameters
pszPath

[in] Address of a buffer that contains the path and file name. Both absolute and
relative paths are valid.

If the uFlags parameter includes the SHGFLPIDL flag, this parameter must be the
address of an ITEMIDLIST (PIDL) structure that contains the list of item identifiers
that uniquely identifies the file within the shell's namespace. The PIDL must be a fully
qualified PIDL. Relative PIDLs are not allowed.

454 Volume 5 Microsoft Windows Shell

If the uFlags parameter includes the SHGFLUSEFILEATTRIBUTES flag, this
parameter does not have to be a valid file name. The function will proceed as if the file
exists with the specified name and with the file attributes passed in the
dwFileAttributes parameter. This allows you to obtain information about a file type by
passing just the extension for pszPath and passing FILE_ATTRIBUTE_NORMAL in
dwFileAttributes.

This string can use either short (the 8.3 form) or long file names.

dwFileAttributes
[in] Combination of one or more file attribute flags (FILE_ATTRIBUTE_ values). If
uFlags does not include the SHGFLUSEFILEATTRIBUTES flag, this parameter is
ignored.

psfi
[out] Address of a SHFILEINFO structure to receive the file information.

cbFilelnfo
[in] Size, in bytes, of the SHFILEINFO structure pOinted to by the psfi parameter.

uFlags
[in] Flags that specify the file information to retrieve. This parameter can be a
combination of the following values:

SHGFLA TTR_SPECIFIED
Modifies SHGFLATTRIBUTES. Indicates that the dwAttributes member of the
SHFILEINFO structure at psfi contains the specific attributes that are desired.
These attributes will be passed to ISheIiFolder::GetAttributesOf. If this flag is not
specified, OxFFFFFFFF will be passed to GetAttributesOf, requesting all
attributes. This flag cannot be specified with the SHGFUCON flag.

SHGFLA TTRIBUTES
Retrieve the item attributes. The attributes are copied to the dwAttributes member
of the structure specified in the psfi parameter. These are the same attributes that
are obtained from ISheIiFolder::GetAttributesOf.

SHGFLDISPLAYNAME
Retrieve the display name for the file. The name is copied to the szOisplayName
member of the structure specified in psfi. The returned display name uses the long
file name, if there is one, instead of the 8.3 form of the file name.

SHGFI_EXETYPE
Retrieve the type of the executable file if pszPath identifies an executable file. The
information is packed into the return value. This flag cannot be specified with any
other flags.

SHGFUCON
Retrieve the handle to the icon that represents the file and the index of the icon
within the system image list. The handle is copied to the hlcon member of the
structure specified by psfi, and the index is copied to the ilcon member. The return
value is the handle to the system image list.

Chapter 8 Shell Functions 455

SHGFUCONLOCATION
Retrieve the name of the file that contains the icon representing the file. The name
is copied to the szDisplayName member of the structure specified in psfi.

SHGFLLARGEICON
Modify SHGFUCON, causing the function to retrieve the file's large icon. The
SHGFUCON flag also must be set.

SHGFLLlNKOVERLAY
Modify SHGFUCON, causing the function to add the link overlay to the file's icon.
The SHGFUCON flag also must be set.

SHGFI_OPENICON
Modify SHGFUCON, causing the function to retrieve the file's open icon. A
container object displays an open icon to indicate that the container is open. The
SHGFUCON flag also must be set.

SHGFLPIDL
Indicate that pszPath is the address of an ITEMIDLIST structure rather than a path
name.

SHGFI_SELECTED
Modify SHGFUCON, causing the function to blend the file's icon with the system
highlight color. The SHGFUCON flag must also be set.

SHGFLSHELLICONSIZE
Modify SHGFUCON, causing the function to retrieve a shell-sized icon. If this flag
is not specified, the function sizes the icon according to the system metric values.
The SHGFUCON flag must also be set.

SHGFLSMALLICON
Modify SHGFUCON, causing the function to retrieve the file's small icon. The
SHGFUCON flag also must be set.

SHGFI_SYSICONINDEX
Retrieve the index of a system image list icon. If successful, the index is copied to
the ilcon member of psfi. The return value is a handle to the system image list.
Only those images whose indexes are successfully copied to ilcon are valid.
Attempting to access other images in the system image list will result in undefined
behavior.

SHGFI_ TYPENAME
Retrieve the string that describes the file's type. The string is copied to the
szTypeName member of the structure specified in psfi.

SHGFI_USEFILEATTRIBUTES
Indicates that the function should not attempt to access the file specified by
pszPath. Instead, it should act as if the file specified by pszPath exists with the file
attributes passed in dwFileAttributes. This flag cannot be combined with the
SHGFLATTRIBUTES, SHGFI_EXETYPE, or SHGFLPIDL flags.

456 Volume 5 Microsoft Windows Shell

Return Values
Returns a value whose meaning depends on the uFlags parameter. If uFlags contains
the SHGFI_EXETYPE flag, the return value specifies the type of the executable file. It
will be one of the following values:

Value Executable file type

o Nonexecutable file or an error condition

LOWORD = MZ and HIWORD = 0 MS-DOS .exe, .com, or .bat file

LOWORD = NE or PE and HIWORD = Windows application
3.0, 3.5, or 4.0

LOWORD = PE and HIWORD = 0 Win32 console application

If uFlags contains SHGFI_SYSICONINDEX, the return value is a handle to an image list
that contains the large icon images. If SHGFI_SMALLICON is included with

SHGFLSYSICONINDEX, the return value is the handle to an image list that contains the
small icon images.

If uFlags does not contain SHGFI_EXETYPE or SHGFLSYSICONINDEX, the return
value is nonzero if successful, or zero otherwise.

Remarks
If SHGetFilelnfo returns an icon handle in the hlcon member of the SHFILEINFO
structure pointed to by psfi, you are responsible for freeing it with Destroylcon when you
no longer need it.

Note Once you have a handle to a system image list, you can use the Image List API
to manipulate it like any other image list. Because system image lists are created on a
per-process basis, you should treat them as read-only objects. Writing to a system
image list might overwrite or delete one of the system images, making it unavailable or
incorrect for the remainder of the process.

You must initialize COM with Colnitialize or OLElnitialize prior to calling
SHGetFilelnfo.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in shellapi.h.
Import Library: sheIl32.lib.

Chapter 8 Shell Functions 457

SHGetFolderLocation
Retrieves the path of a folder as an ITEMIDLIST structure.

HRESULT SHGetFolderlocat1on(
ItWNO hwndQlVner.

Parameters
hwndOwner

[in] Handle to the owner window. This parameter is typically set to NULL. If it is not
NULL, and a dial-up connection needs to be made to access the folder, a UI prompt
will appear in this window.

nFolder
[in] A CSIDL value that identifies the folder to be located. The folders associated with
the CSIDLs will not necessarily exist on a particular system.

hToken
[in] Token that can be used to represent a particular user. It is usually set to NULL,
but it may be needed when there are multiple users for those folders that are treated
as belonging to a single user. The caller is responsible for correct impersonation when
hToken is non-NULL. It must have appropriate security privileges for the particular
user, and the user's registry hive must be mounted currently.

dwReserved
Reserved. Must be set to zero.

ppidl
[out] Address of a pointer to an item identifier list structure specifying the folder's
location relative to the root of the namespace (the desktop). The ppidl parameter will
be set to NULL on failure. The calling application is responsible for freeing this pOinter
with the shell's IMalioe interface (see SHGetMalloe).

Return Values

E_I NVALI DARG

S_OK

The CSIDL in nFolderis valid, but the folder does not
exist.

The CSIDL in nFolder is not valid.

Success.

A standard OLE-defined error result also can be returned.

458 Volume 5 Microsoft Windows Shell

Remarks

The SHGetFolderLocation, SHGetFolderPath, SHGetSpecialFolderLocation, and
SHGetSpecialFolderPath functions
are the preferred ways to obtain handles to folders. Functions such as
ExpandEnvironmentStrings that use the environment variable names directly, in the
form % VariableName%, might not be reliable.

This function is a superset of SHGetSpecialFolderLocation, included with earlier
versions of the shell. It is implemented also in a redistributable DLL, SHFolder.dll, that
simulates many of the new shell folders on older platforms such as Windows 95 and
Windows NT 4.0. This DLL always calls the current platform's version of this function. If
that fails, it will try to simulate the appropriate behavior. Only some CSIDLs are
supported, including:

CSI DL_APPDAT A c:\ .. \User\Application Data

CSIDL_LOCAL_APPDATA \ .. \User\Local Application Data (nonroaming)

CSIDL_MYPICTURES My Documents\My Pictures

CSIDL_PERSONAL My Documents

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000. Available as a redistributable for
Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHGetFolderPath
Takes the CSIDL of a folder and returns the path name.

Parameters
hwndOwner

Chapter 8 Shell Functions 459

Handle to an owner window. This parameter is set typically to NULL. If it is not NULL,
and a dial-up connection needs to be made to access the folder, a UI prompt will
appear in this window.

nFolder
A CSIDL value that identifies the folder whose path is to be retrieved. Only real folders
are valid. If a virtual folder is specified, this function will fail. You can force creation of
a folder with SHGetFolderPath by combining the folder's CSIDL with
CSIDL_FLAG_CREATE.

hToken
An access token that can be used to represent a particular user. For systems earlier
than Windows 2000, it should be set to NULL. For later systems, hToken is usually
set to NULL. However, you might need to assign a value to hToken for those folders

that can have multiple users but are treated as belonging to a single user. The most
commonly used folder of this type is My Documents.

The caller is responsible for correct impersonation when hToken is non-NULL. It must
have appropriate security privileges for the particular user, including TOKEN_QUERY
and TOKEN_IMPERSONATE, and the user's registry hive must be mounted
currently. See Access Contro/for further discussion of access control issues.

dwFlags
Flags to specify which path is to be returned. It is used for cases where the folder
associated with a CSIDL might be moved or renamed by the user.

Flag Description

SHGFP _TYPE_CURRENT Return the folder's current path.

SHGFP _ TYPE_DEFAULT Return the folder's default path.

pszPath
Buffer of length [MAX_PATH] to receive the path. If an error occurs or S_FALSE is
returned, this string will be empty.

Return Values
Value

E_INVALIDARG

S_OK

Description

The CSIDL in nFolderis valid, but the folder does
not exist.

The CSIDL in nFolderis not valid.

Success.

A standard OLE-defined error result also can be returned.

460 Volume 5 Microsoft Windows Shell

Example
The following code fragment uses SHGetFolderPath to find or create a folder and then
creates a file in it:

Remarks
This function is a superset of SHGetSpecialFolderPath, included with earlier versions of
the shell.. It is implemented in a redistributable DLL, SHFolder.dll, that also simulates
many of the new shell folders on older platforms such as Windows 95, Windows 98, and

Windows NT 4.0. This DLL always calls the current platform's version of this function. If
that fails, it will try to simulate the appropriate behavior. Only some CSIDLs are
supported, including:

• CSIDL_APPDATA

• CSIDL_COMMON_APPDATA

• CSIDL_COOKIES

• CSIDL_HISTORY

• CSIDL_INTERNET _CACHE

• CSIDL_LOCAL_APPDATA

• CSIDL_MYPICTURES

• CSIDL_PERSONAL

• CSIDL_SYSTEM

• CSIDL_WINDOWS

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: ShFolder.Lib.

Chapter 8 Shell Functions 461

SHGetlconOverlayl ndex
Returns the index of the overlay icon in the system image list.

intSHGetlc,~nQv:erl'8;Yln~(.
. . LPCT;STR. '.PS.?,i9{:Jt:lpa tH.

1'nt ·,·t:r.conl/1(J~x< , , i: " ,~~ " , -, , , '
J:~"'<;':':~:'-: ,~, '>';:,;-/"

Parameters
pszlconPath

[in] Fully qualified path of the file that contains the icon.

ilconlndex
[in] Icon's index in the file pointed to by pszlconPath. To request a standard overlay
icon, set pszlconPath to NULL, and ilconlndexto one of the following:

IDO_SHGIOI_LlNK The overlay icon that indicates a linked folder or file.

IDO_SHGIOI_SHARE

IDO_SHGIOLSLOWFILE

Return Values

The overlay icon that indicates a shared folder.

The overlay icon that indicates a slow file.

Returns the index of the overlay icon in the system image list if successful, or-1
otherwise.

Remarks
Icon overlays are part of the system image list. They have two identifiers. One is a one­
based overlay index that identifies the overlay relative to other overlays in the image list.
The other is an image index that identifies the actual image. These two indexes are
equivalent to the values that you assign to the iOveriayand ilmage parameters,
respectively, when you add an icon overlay to a private image list with
ImageLisCSetOverlaylmage. ShGetlconOverlaylndex returns the overlay index. To
convert an overlay index to its equivalent image index, call INDEXTOOVERLA YMASK.

Note Once the image has been loaded into the system image list during initialization, it
cannot be changed. The file name and index specified by pszlconPath and ilconlndex
are used only to identify the icon overlay. ShGetlconOverlaylndex cannot be used to
modify the system image list.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.

462 Volume 5 Microsoft Windows Shell

Header: Declared in shlobj.h.
Import Library: sheI132.lib.

IShelllconOverlay, IShelllconOverlayldentifier

SHGetlnstanceExplorer
Allows components that run in a Web browser (Iexplore.exe) or a nondefault Windows
Explorer (Explorer.exe) process to hold a reference to the process. The components can
use the reference to prevent the process from closing prematurely.

Parameters
ppunk

[out] Address of an Explorer.exe or lexplore.exe IUnknown interface pOinter. If the
function succeeds, SHGetlnstanceExplorer increments the host's reference count
before it returns. Components should not call ppunk->AddRef. Components should
call ppunk->Release to release the reference when the host process is no longer
needed. If SHGetlnstanceExplorer fails, ppunk is set to NULL.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Remarks
There are a number of components, such as shell extension handlers, that are
implemented as DLLs and run in the process space of Windows Explorer (Explorer.exe)
or Internet Explorer (Iexplore.exe). Normally, when the user closes the host process, the
component is shut down immediately as well. Such an abrupt termination can create
problems for some components. For example, if a component is using a background
thread to download data or run user-interface functions, it might need additional time to
shut itself down safely.

The SHGetlnstanceExplorer function allows components that run in an lexplorer.exe or
a nondefault Explorer.exe process to hold a reference on
the host process. SHGetlnstanceExplorer increments the host's reference count and
returns a pointer to its IUnknown interface. By holding that reference, a component can
prevent the host process from clOSing prematurely. Once the component has completed
all necessary processing, it should call ppunk->Release to release the host's reference
and allow the process to die.

Chapter 8 Shell Functions 463

Note If SHGetlnstaneeExplorer is successful, the component must release the host's
reference when it is no longer needed. Otherwise, all resources associated with the
process will remain in memory. The IUnknown interface pointed to by ppunk can be
used only to release this reference. Components cannot use ppunk->Querylnterfaee to
request other interface pOinters.

SHGetlnstaneeExplorer succeeds only if it is called from within an Explorer.exe or
lexplorer.exe process. It is used typically by components that run in the context of the
Web browser (Iexplore.exe). However, it is useful also when Explorer.exe has been
configured to run all folders in a second process. SHGetlnstaneeExplorer fails if the
component is running in the default Explorer.exe process. There is no need to hold a
reference to this process, as it is shut down only when the user logs out.

In general, components can be loaded by either the default Explorer.exe process or a
secondary Explorer.exe or lexplore.exe process. The component must be able thus to
handle either the success or failure of SHGetlnstaneeExplorer.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: shell32.lib.

SHGetMalioc
Retrieves a pOinter to the shell's IMa"oe interface.

HREs~n,sH~e~M·l1oe(:r .•... '
. "'4~MA,[;'-OC:.:*ppM!i 11 qt',

Parameters
ppMal/oc

.,:

.~ .. . ,,",;

Address of a pOinter that receives the shell's IMa"oe interface pointer.

Return Values
Returns NOERROR if successful, or E_FAIL otherwise.

464 Volume 5 Microsoft Windows Shell

Remarks
This interface must be used to free memory that was allocated by the shell or to allocate
memory that will be freed by the shell. Applications also can use this interface to allocate
and free their own memory.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import library: sheIl32.lib.

SHGetNewLinklnfo
Creates the proper name for a new shortcut. This function does not actually create a
shortcut.

Parameters
pszLinkTo

[in] Specifies the path and file name of the target of the shortcut. If uFlags does not
contain the SHGNLLPIDL value, this parameter is the address of a NULL-terminated
string that contains the target. If uFlags contains the SHGNLI_PIDL value, this
parameter is a PIDl that represents the target.

pszDir
[in] Address of a NULL-terminated string that contains the path of the folder that the
shortcut would be created in.

pszName
[out] Address of a string that receives the NULL-terminated path and file name for the
shortcut. This buffer is assumed to be at least MAX_PATH characters in size.

pfMustCopy
[out] Address of a BOOl value that receives a flag that indicates if the shortcut would
be copied. When a shortcut to another shortcut is created, the shell simply copies the
target shortcut and modifies that copied shortcut appropriately. This value receives a
nonzero value if the target specified in pszLinkTo specifies a shortcut that will cause

Chapter 8 Shell Functions 465

the target shortcut to be copied. This value receives zero if the target does not specify
a shortcut that would be copied.

uFlags
[in] Specifies the options for the function. This can be zero or a combination of the
following values:

Value

SHGNLLNOUNIQUE

SHGNLLPREFIXNAME

Return Values

Description

The function will not create a unique name within the
destination folder. If this flag is not included, the
function create the shortcut name and then determine
if the name is unique in the destination folder. If a file
with the same name exists within the destination
folder, the shortcut name will be modified. This
process is repeated until a unique name is found.

pszLinkTo is a PIDL that represents the target. If this
flag is not included, pszLinkTo is the address of a
string that contains the path and file names of the
target.

The created name will be preceded by the string
"Shortcut to ".

Returns nonzero if successful, or zero otherwise.

Remarks
SHGetNewLinklnfo will determine the executable type of the target. If pszLinkTo
specifies a DOS application, the ".PIF" extension will be used, otherwise the ".LNK"
extension will be used for the shortcut.

SHGetNewLinklnfo will determine also if the destination file system supports long file
names. If the destination file system supports long file names, then a long file name will
be used for the shortcut name. If the destination file system does not support long file
names, then the shortcut name will be returned in an 8.3 format.

This function is implemented in shell versions 4.71 and later. In order to maintain
backward compatibility with previous shell versions, this function should not be used
explicitly. Instead, the LoadLibrary and GetProcAddress functions should be used to
obtain the function address.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

466 Volume 5 Microsoft Windows Shell

Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

SHGetPathFromlDList
Converts an item identifier list to a file-system path.

Parameters
pidl

Address of an item identifier list that specifies a file or directory location relative to the
root of the namespace (the desktop).

pszPath
Address of a buffer to receive the file-system path. This buffer must be at least
MAX_PATH characters in size.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks
If the location specified by the pidl parameter is not part of the file system, this function
will fail.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHGetSettings
Retrieves the current shell-option settings.

Parameters
Ips's

Chapter 8 Shell Functions 467

Address of a SHELLFLAGSTATE structure that receives the shell-option settings.

dwMask
Set of flags that determine which members of Ips's are being requested. This can be
one or more of the following values:

SSF _DESKTOPHTML

SSF_DONTPRETTYPATH

SSF _DOUBLECLICKINWEBVIEW

SSF _HIDEICONS

SSF_MAPNETDRVBUTTON

SSF _NOCONFIRMRECYCLE

SSF _SHOWALLOBJECTS

SSF _SHOWATTRIBCOL

SSF _SHOWCOMPCOLOR

SSF _SHOWEXTENSIONS

SSF _SHOWINFOTIP

SSF _SHOWSYSFILES

SSF _WIN95CLASSIC

Version 4.71 and later of Shell32.dll.

The fDesktopHTML member is being
requested.

The fDontPrettyPath member is being
requested.

The fDoubleClicklnWebView member is
being requested.

The fHidelcons member is being requested.

The fMapNetDrvBtn member is being
requested.

The fNoConfirmRecycle member is being
requested.

The fShowAIiObjects member is being
requested.

The fShowAttribCol member is being
requested.

The fShowCompColor member is being
requested.

The fShowExtensions member is being
requested.

The fShowlnfoTip member is being
requested.

The fShowSysFiles member is being
requested.

The fWin95Classic member is being
requested.

, ,

468 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shellapLh.
Import Library: sheIl32.lib.

SHGetSpecialFolderLocation
Retrieves a pointer to the ITEMIDLIST structure of a special folder.

Parameters
hwndOwner

Handle to the owner window the client should specify if it displays a dialog box or
message box.

nFolder
A CSIDL value that identifies the folder of interest.

ppidl
A pOinter to the folder's item identifier list (PIDL) specifying the folder's location
relative to the root of the namespace (the desktop). The calling application is
responsible for freeing this pointer with the shell's IMalioe interface (see
SHGetMalloe) .

Return Values
Returns NOERROR if successful, or an OLE-defined error result otherwise.

Remarks
With Windows 2000, this function is superseded by ShGetFolderLoeation.

: ~.. :

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHGetSpecialFolderPath

SHGetSpecialFolderPath

Chapter 8 Shell Functions 469

Retrieves the path of a special folder, identified by its CSIDL.

Parameters
hwndOwner

Handle to the owner window the client should specify if it displays a dialog box or
message box.

IpszPath
Address of a character buffer that receives the drive and path of the specified folder.
This buffer must be at least MA)CPATH characters in size.

nFolder
A CSIDL that identifies the folder of interest. If a virtual folder is specified, this function
will fail.

fCreate
Indicates if the folder should be created if it does not already exist. If this value is
nonzero, the folder will be created. If this value is zero, the folder will not be created.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks
The Internet Explorer 4.0 Desktop Update must be installed for this function to be
available.

With Windows 2000, this function is superseded by ShGetFolderPath. You can use this
function on earlier systems by including the redistributable DLL, ShFolder.dll.

470 Volume 5 Microsoft Windows Shell

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: sheIl32.lib.

SHlnvokePrinterCommand

Parameters
hwnd

Handle of the window that will be used as the parent of any windows or dialog boxes
that are created during the operation.

uAction
A value that determines the type of printer operation that will be performed. This can
be one of the following values:

PRINTACTION_DOCUMENTDEFAULTS Windows NT only. The default
document properties for the printer
specified by the name in IpBuf1 will be

PRINT ACTION_NETINST ALL

displayed. IpBuf2 is ignored.

The network printer specified by the
name in IpBuf1 will be installed. IpBuf2
is ignored.

PRINT ACTION_NETINSTALLLlNK

PRINTACTION_OPEN

PRINTACTION_OPENNETPRN

PRINTACTION_PROPERTIES

PRINT ACTION_SERVERPROPERTIES

PRINTACTION_ TESTPAGE

IpBuf1

Chapter 8 Shell Functions 471

A shortcut to the network printer
specified by the name in IpBuf1 will be
created. IpBuf2 specifies the drive and
path of the folder in which the shortcut
will be created. The network printer
must have been installed already on the
local machine.

The printer specified by the name in
IpBuf1 will be opened. IpBuf2 is ignored.

The network printer specified by the
name in IpBuf1 will be opened. IpBuf2 is
ignored.

The properties for the printer specified
by the name in IpBuf1 will be displayed.
IpBuf2 can be either NULL or specify.

Windows NT only. The properties for
the server of the printer specified by the
name in IpBuf1 will be displayed. IpBuf2
is ignored.

A test page will be printed on the printer
specified by the name in IpBuf1. IpBuf2
is ignored.

Address of a string that contains additional information for the printer command. The
information contained in this parameter depends upon the value of uAction.

IpBuf2
Address of a string that contains additional information for the printer command. The
information contained in this parameter depends upon the value of uAction.

fModal
A value that determines whether SHlnvokePrinterCommand should return after
initializing the command or wait until the command is completed. If this value is
nonzero, SHlnvokePrinterCommand will not return until the command is completed.
If this value is zero, SHlnvokePrinterCommand will return as soon as the command
is initialized.

Return Values
Returns nonzero if successful, or zero otherwise.

Remarks
When a printer name is specified by IpBuf1, the name can either be the name of a local
printer or the server and share name of a network printer. When specifying a network

472 Volume 5 Microsoft Windows Shell

printer name, the name must be specified in the format of ''\\<server>\<shared printer
name>".

This function is implemented in shell versions 4.71 and later. In order to maintain
backward compatibility with previous shell versions, this function should not be used
explicitly. Instead, the LoadLibrary and GetProcAddress functions should be used to
obtain the function address.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shellapi.h.
Import Library: sheIl32.lib.

SHLoadlnProc
Creates an instance of the specified object class from within the context of the shell's
process.

Parameters
fe/sid

CLSID of the object class to be created.

Return Values
Returns NOERROR if successful, or an OLE-defined error result otherwise.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: shell32.1ib.

Chapter 8 Shell Functions 473

SHQueryRecycleBin
Retrieves the size of the Recycle Bin, and the number of items in it, on the specified
drive.

HRES\.lLT SHQueryRecycleB1n(
LPCTSTR pszRootPath;
~PSHGUEIWRlh NFOPSHllUfH'YR8I:rlfo·

Parameters
pszRootPath

Address of a NULL-terminated string to contain the path of the root drive on which the
Recycle Bin is located. This parameter can contain the address of a string formatted
with the drive, folder, and subfolder names (c:\windows\system ...). It also can
contain an empty string or NULL. If this value is an empty string or NULL, information
is retrieved for all Recycle Bins on all drives.

pSHQueryRBlnfo
Address of a SHQUERYRBINFO structure that receives the Recycle Bin information.
The cbSize member of the structure must be set to the size of the structure before
calling this API.

Return Values
Returns S_OK if successful, or an OLE-defined error value otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shellapi.h.
Import Library: sheIl32.lib.

SHEmptyRecycleBin

SoftwareUpdateMessageBox
Displays a standard message box that can be used to notify a user that an application
has been updated.

474 Volume 5 Microsoft Windows Shell

Parameters
hWnd

Handle to the parent window.

szDistUnit
String value containing the identifier for the code distribution unit. For ActiveX
controls, szDistUnit is typically a globally unique identifier (GUID).

dwFlags
Reserved. Must be set to zero.

psdi
Address of a SOFTDISTINFO structure in which to store the update information. The
cbSize member must be initialized to the sizeof(SOFTDISTINFO}.

Return Values
Returns one of the following values:

IDABORT An error occurred.

IDIGNORE There is no pending software update.

IDNO The user clicked the Don't Update button on the dialog box.

IDYES The user clicked the Update Now or About Update button. The
application should move to the HTML page referred to by the szHREF
member of the structure pointed to by psdi.

Remarks
The preferable way to handle updates is to author a Channel Definition Format with an
Open Software Description (OSD) vocabulary inside and make the shortcut OSD-aware.
Refer to the Channel Definition Format documentation for details (Site Builder Network).

The SoftwareMessageBox function is intended to be used in the case where shell
shortcut hooks do not work. One example is an application that was not installed on the
start menu. If that application needs to do it's own software update check it should use
this function.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Chapter 8 Shell Functions 475

Windows 95/98: Requires Windows 98 (or Windows 95 with
Internet Explorer 4.0 or later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

TranslateURL
Applies common translations to a given URL string, creating a new URL string.

Parameters
pcszURL

Address of the URL string to be translated.

dwlnFlags
Bit flags that specify how the URL string is to be translated. This value can be a
combination of the following:

TRANSLATEURL_FL_GUESS_PROTOCOL
If the protocol scheme is not specified in the pcszURL parameter to TranslateURL,
the system automatically chooses a scheme and adds it to the U RL.

TRANSLATEURL_FL_USE_DEFAULT_PROTOCOL
If the protocol scheme is not specified in the pcszURL parameter to TranslateURL,
the system adds the default protocol to the URL.

ppszTranslatedURL
Pointer variable that receives the pOinter to the newly created, translated URL string,
if any. The *ppszTranslatedURL parameter is valid only if the function returns S_OK.

Return Value
Returns S_OK upon success, or S_FALSE if the URL did not require translation. If an
error occurs, the function returns one of the following values:

E_FLAGS
The flag combination passed in dwlnFlags is invalid.

E_OUTOFMEMORY
There was insufficient memory to complete the operation.

E_POINTER
One of the input pointers is invalid.

476 Volume 5 Microsoft Windows Shell

Remarks
This function does not validate the input URL string. A successful return value does not
indicate that the URL strings are valid URLs.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

URLAssociationDialog
Invokes the unregistered URL protocol dialog box. This dialog box allows the user to
select an application to associate with a previously unknown protocol.

Parameters
hwndParent

Handle to the parent window.

dwlnFlags
Bit flags that specify the behavior of the function. This value can be a combination of
the following:

URLASSOCDLG_FL_REGISTER_ASSOC
Register the selected application as the handler for the protocol specified in
pcszURL. The application is registered only if this flag is set and the user indicates
that a persistent association is desired.

URLASSOCDLG_FL_USE_DEFAULT_NAME
Use the default file name (that is, "Internet Shortcut").

pcszFile
Address of a constant zero-terminated string that contains the file name to associate
with the URL's protocol.

Chapter 8 Shell Functions 477

pcszURL
Address of a constant zero-terminated string that contains the URL with an unknown
protocol.

pszAppBuf
Address of a buffer that receives the path of the application specified by the user.

ucAppBufLen
The size of pszAppBuf, in characters.

Return Value
Returns S_OK if the application is registered with the URL protocol, or S_FALSE if
nothing is registered. For example, the function returns S_FALSE when the user elects
to perform a one-time execution via the selected application.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in intshcut.h.

WinHelp
Starts Microsoft Windows Help (Winhelp.exe) and passes additional data indicating the
nature of the Help requested by the application.

Parameters
hWndMain

Handle of the window requesting Help. The WinHelp function uses this handle to
keep track of which applications have requested Help. If the uCommand parameter
specifies HELP _CONTEXTMENU or HELP _WM_HELP, hWndMain identifies the
control requesting Help.

IpszHelp
Address of a null-terminated string containing the path, if necessary, and the name of
the Help file that WinHelp is to display.

478 Volume 5 Microsoft Windows Shell

The file name may be followed by an angle bracket (» and the name of a secondary
window if the topic is to be displayed in a secondary window instead of in the primary
window. You must define the name of the secondary window in the [WINDOWS]
section of the Help project (.hpj) file.

uCommand
Type of Help requested. For a list of possible values and how they affect the value to
place in the dwData parameter, see the Remarks section.

dwData
Additional data. The value used depends on the value of the uCommand parameter.
For a list of possible dwData values, see the Remarks section.

Return Values
Returns nonzero if successful, or zero otherwise.

To get extended error information, call GetLastError.

Remarks
Before closing the window that requested Help, the application must call WinHelp with
the uCommandparameter set to HELP_QUIT. Until all applications have done this,
Windows Help will not terminate. Note that calling Windows Help with the HELP_QUIT
command is not necessary if you used the HELP _CONTEXTPOPUP command to start
Windows Help.

The following table shows the possible values for the uCommand parameter and the
corresponding formats of the dwData parameter:

uCommand

HELP _COMMAND

HELP _CONTENTS

Action

Executes a Help macro or macro
string.

Displays the topic specified by the
Contents option in the [OPTIONS]
section of the .hpj file. This
command is for backward
compatibility. New applications
should provide a .cnt file and use
the HELP_FINDER command.

dwData

Address of a string that specifies
the name of the Help macro(s) to
run. If the string specifies multiple
macro names, the names must
be separated by semicolons. You
must use the short form of the
macro name for some macros,
because Windows Help does not
support the long name.

Ignored, set to O.

uCommand

HELP _CONTEXT

HELP_CONTEXTMENU

HELP_CONTEXTPOPUP

HELP _FINDER

HELP _FORCEFILE

HELP _HELPONHELP

HELP_INDEX

HELP_KEY

Action

Displays the topic identified by
the specified context identifier
defined in the [MAP] section of
the .hpj file.

Displays the Help menu for the
selected window, then displays
the topic for the selected
control in a pop-up window.

Displays the topic identified by
the specified context identifier
defined in the [MAP] section of
the .hpj file in a pop-up
window.

Displays the Help Topics
dialog box.

Ensures that Windows Help is
displaying the correct Help file.
If the incorrect Help file is
being displayed, Windows Help
opens the correct one;
otherwise, there is no action.

Displays Help on how to use
Windows Help, if the
WINHLP32.HLP file is
available.

Displays the topic specified by
the Contents option in the
[OPTIONS] section of the .hpj
file. This command is for
backward compatibility. New
applications should use the
HELP_FINDER command.

Displays the topic in the
keyword table that matches the
specified keyword, if there is
an exact match. If there is
more than one match, displays
the Index with the topics listed
in the Topics Found list box.

Chapter B Shell Functions 479

dwData

Unsigned long integer containing
the context identifier for the topic.

Address of an array of double­
word pairs. The first double word
in each pair is a control identifier,
and the second is a context
number for a topiC. The array
must be terminated by a pair of
zeros{O,O}.

Unsigned long integer containing
the context identifier for a topic.

Ignored, set to O.

Ignored, set to O.

Ignored, set to O.

Ignored, set to O.

Address of a keyword string.
Multiple keywords must be
separated by semicolons.

(continued)

480 Volume 5 Microsoft Windows Shell

(continued)

uCommand

HELP _MULTI KEY

HELP _PARTIALKEY

HELP_QUIT

HELP_SETCONTENTS

Action

Displays the topic specified by a
keyword in an alternative keyword
table.

Displays the topic in
the keyword table that matches
the specified keyword, if there is
an exact match. If there is more
than one match, displays the
Topics Found dialog box. To
display the index without passing
a keyword, you should use a
pOinter to an empty string.

Informs Windows Help that it is no
longer needed. If no other
applications have asked for Help,
Windows closes Windows Help.

Specifies the Contents topic.
Windows Help displays this topic
when the user clicks the Contents
button if the Help file does not
have an associated .cnt file.

HELP _SETPOPUP _POS Sets the position of the
subsequent pop-up window.

HELP _SETWINPOS

HELP _TCARD

Displays the Help window, if it is
minimized or in memory, and sets
its size and position as specified.

Indicates that a command is for a
training card instance of Windows
Help. Combine this command
with other commands using the
bitwise OR operator.

dwData

Address of a MUL TIKEYHELP
structure that specifies a table
footnote character and a
keyword.

Address of a keyword string.
Multiple keywords must be
separated by semicolons.

Ignored, set to O.

Unsigned long integer containing
the context identifier for the
Contents topic.

Address of a POINTS structure.
The pop-up window is positioned
as if the mouse cursor were at
the specified point when the pop­
up window was invoked.

Address of a HELPWININFO
structure that specifies the size
and position of either a primary
or secondary Help window.

Depends on the command with
which this command is
combined.

uCommand Action

Displays the topic for the control
identified by the hWndMain
parameter in a pop-up window.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.
Import Library: user32.lib.

HELPWININFO, MUL TIKEYHELP

Shell Callback Functions

BrowseCallbackProc

Chapter 8 Shell Functions 481

dwData

Address of an array of double­
word pairs. The first double word
in each pair is a control identifier,
and the second is a context
identifier for a topic. The array
must be terminated by a pair of
zeros {O,O}.

Specifies an application-defined callback function used with the SHBrowseForFolder
function. The browse dialog box calls this function to notify it about events.

H~HDhwnti.
utHT'..u~Sf!}.<.",.",
l.PARAM' JF'a·r~.m.
LFtARAM)pOl1,ta

Parameters
hwnd

Window handle to the browse dialog box. BrowseCalibackProc can use this handle
to send the following messages to the dialog box:

BFFM_ENABLEOK
Enables or disables the browse dialog box's OK button. To enable the OK button,
set the message's IParam to a nonzero value. To disable the OK button, set
message's IParam to zero.

482 Volume 5 Microsoft Windows Shell

BFFM_SETSELECTION
Selects the specified folder. To use a PIDL to specify the folder, set the message's
IParam to the PIDL, and set wParam to FALSE. To specify the folder's path, set the
message's IParam value to point to a NULL-terminated string with the path, and set
wParam to TRUE.

BFFM_SETSTATUSTEXT
Sets the status text. Set the message's IParam value to point to a NULL-terminated
string with the desired text.

uMsg
Value identifying the event. This can be one of the following values:

BFFM_INITIALIZED
Indicates the browse dialog box has finished initializing. The IParam value is zero.

BFFM_SELCHANGED
Indicates the selection has changed. The IParam parameter points to the item
identifier list for the newly selected item.

BFFM_VALIDATEFAILED
Version 4.71. Indicates the user typed an invalid name into the edit box of the
browse dialog. The IParam parameter is the address of a character buffer that
contains the invalid name. An application can use this message to inform the user
that the name entered was not valid. Return zero to allow the dialog to be
dismissed, or nonzero to keep the dialog displayed.

IParam
Value dependent upon the message contained in the uMsg parameter.

IpData
Application-defined value that was specified in the IParam member of the
BROWSEINFO structure.

Return Values
Returns zero.

Version 4.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Import Library: user-defined.

SHBrowseForFolder

Chapter 8 Shell Functions 483

FMExtensionProc
Application-defined callback function called by File Manager to communicate with a File
Manager extension.

Parameters
hwnd

Window handle to File Manager. An extension should use this handle to specify the
parent window for any dialog box or message box it must display; it also should use
this handle to send query messages to File Manager.

wMsg
One of the following File Manager messages:

1 through 99 User selected an item from the extension-supplied
menu. The value is the identifier of the selected
menu item.

FMEVENT _HELPMENUITEM

FMEVENT _HELPSTRING

FMEVENT _INITMENU

FMEVENT _LOAD

FMEVENT_SELCHANGE

FMEVENT_TOOLBARLOAD

FMEVENT _UNLOAD

FMEVENT_USER_REFRESH

IParam
Message-specific value.

User pressed F1 while selecting an extension
menu or tool bar command item. File Manager
wants the extension to call Win Help appropriately
for the command item.

User selected an extension menu or toolbar
command item. File Manager wants the extension
to supply a Help string.

User selected the extension's menu. The
extension should initialize items in the menu.

File Manager is loading the extension DLL and
prompts the DLL for information about the menu
that the DLL supplies.

Selection in the File Manager directory window or
Search Results window has changed.

File Manager is creating the toolbar and prompts
the extension DLL for information about any
buttons the DLL adds to the toolbar.

File Manager is unloading the extension DLL.

User selected the Refresh command from the
. Window menu. The extension should update
items in the menu, if necessary.

484 Volume 5 Microsoft Windows Shell

Return Values
Returns a value dependent upon the wMsg parameter message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.
Import Library: user-defined.

UndeleteFile
Application-defined callback function called by File Manager when the user chooses the
Undelete command from the File menu.

"D,(riRD~dBhrt"~Fll:~'c"
'"" v ~;,'ltwnl\#w&'<f~riiJi'"?""
" ";t,;~~,~';~t##iiif:~'j':

Parameters
hwndOwner

Window handle to File Manager. An undelete dynamic-link library (DLL) should use
this handle to specify the owner window for any dialog box or message box the DLL
might display.

/pszDir
Address of a null-terminated string that contains the name of the initial directory.

Return Values
Returns one of the following values:

-1

IDCANCEL

IDOK

An error occurred.

No file was undeleted.

A file was undeleted. File Manager repaints its window.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.
Import Library: user-defined.

CHAPTER 9

Shell Structures

Shell Structures

APPBARDATA
Contains information about a system appbar message. This structure is used with the
SHAppBarMessage function.

Members
cbSize

Contains the size of the structure, in bytes.

hWnd
Contains the handle to the appbar window.

uCalibackMessage

485

Application-defined message identifier. The application uses the specified identifier for
notification messages that it sends to the appbar identified by the hWnd member.
This member is used when sending the ABM_NEW message.

uEdge
Value that specifies an edge of the screen. This member can be one of the following
values:

ABE_BOTTOM

ABE_LEFT

ABE_RIGHT

ABE_TOP

Bottom edge.

Left edge.

Right edge.

Top edge.

This member is used when sending the ABM_GETAUTOHIDEBAR,
ABM_QUERYPOS, ABM_SETAUTOHIDEBAR, and ABM_SETPOS messages.

486 Volume 5 Microsoft Windows Shell

rc
RECT structure to contain the bounding rectangle, in screen coordinates, of an
appbar or the Windows taskbar. This member is used when sending the
ABM_GETTASKBARPOS, ABM_QUERYPOS, and ABM_SETPOS messages.

IParam
Message-dependent value. This member is used with the ABM_SETAUTOHIDEBAR
message.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapi.h.

BROWSEINFO
Contains parameters for the SHBrowseForFolder function and receives information
about the folder selected by the user.

Members
hwndOwner

Handle to the owner window for the dialog box.

pidlRoot
Pointer to an ITEMIDLIST structure (PIDL) specifying the location of the root folder
from which to start browsing. Only the specified folder and any subfolders that are
beneath it in the namespace hierarchy will appear in the dialog box. This member can
be NULL; in that case, the namespace root (the desktop folder) is used.

pszDisplayName
Address of a buffer to receive the display name of the folder selected by the user. The
size of this buffer is assumed to be MAX_PATH bytes.

Chapter 9 Shell Structures 487

IpszTitle
Address of a null-terminated string that is displayed above the tree view control in the
dialog box. This string can be used to specify instructions to the user.

ulFlags
Flags specifying the options for the dialog box. This member can include zero or a
combination of the following values:

BIF _BROWSEFORCOMPUTER Only return computers. If the user selects
anything other than a computer, the OK button
appears dimmed.

BIF _BROWSEFORPRINTER

BIF _BROWSEINCLUDEFILES

BIF _BROWSEINCLUDEURLS

BIF _DONTGOBELOWDOMAIN

BIF _EDITBOX

BIF _NEWDIALOGSTYLE

Only return printers. If the user selects anything
other than a printer, the OK button appears
dimmed.

Version 4.71. The browse dialog box will
display files as well as folders.

Version 5.0. The browse dialog box can display
URLs. The BIF _USENEWUI and
BIF _BROWSEINCLUDEFILES flags also must
be set. If these three flags are not set, the
browser dialog box will reject URLs. Even when
these flags are set, the browse dialog box will
only display URLs if the folder that contains the
selected item supports them. When the folder's
ISheIiFolder::GetAttributesOf method is called
to request the selected item's attributes, the
folder must set the SFGAO_FOLDER attribute
flag. Otherwise, the browse dialog box will not
display the URL.

Do not include network folders below the
domain level in the dialog box's tree-view
control.

Version 4.71. Includes an edit control in the
browse dialog box that allows the user to type
the name of an item.

Version 5.0. Use the new user-interface.
Setting this flag provides the user with a larger
dialog box that can be resized. It has several
new capabilities including: drag-and-drop
capability within the dialog box, reordering,
context menus, new folders, delete, and other
context menu commands. To use this flag, you
must call Olelnitialize or Colnitialize before
calling SHBrowseForFolder.

(continued)

488 Volume 5 Microsoft Windows Shell

(continued)

BIF _RETURNFSANCESTORS

BIF _RETURNONL YFSDIRS

BIF _SHAREABLE

BIF _STATUSTEXT

Ipfn

Only return file-system ancestors. An ancestor is
a subfolder that is beneath the root folder in the
namespace hierarchy. If the user selects an
ancestor of the root folder that is not part of the
file system, the OK button appears dimmed.

Only return file-system directories. If the user
selects folders that are not part of the file
system, the OK button appears dimmed.

Version 5.0. The browse dialog box can display
shareable resources on remote systems. It is
intended for applications that want to expose
remote shares on a local system. The
BIF _USENEWUI flag must also be set.

Include a status area in the dialog box. The
callback function can set the status text by
sending messages to the dialog box.

Version 5.0. Use the new user interface
including an edit box. This flag is equivalent to
BIF _EDITBOX I BIF _NEWDIALOGSTYLE. To
use BIF _USENEWUI, you must call Olelnitialize
or Colnitialize before calling
SHBrowseForFolder.

Version 4.71. If the user types an invalid name
into the edit box, the browse dialog will call the
application's BrowseCalibackProc with the
BFFM_VALIDATEFAILED message. This flag is
ignored if BIF _EDITBOX is not specified.

Address of an application-defined function that the dialog box calls when an event
occurs. For more information, see the BrowseCalibackProc function. This member
can be NULL.

IParam
Application-defined value that the dialog box passes to the callback function, if one is
specified.

ilmage
Variable to receive the image associated with the selected folder. The image is
specified as an index to the system image list.

Version 4.00 and later of Shell32.dll.

CIDA

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

Chapter 9 Shell Structures 489

This structure is used with the CFSTR_SHELLlDLIST clipboard format to transfer the
PIDLs of one or more shell namespace objects.

,~~r,~t~¥~,!i~,~!;.i'7lfk '
.. lJ:l'Nt,aof'f'$etDJ;':'
l' j~t{)A>'~LPIOA;'· '

Members
cidl

Number PIDLs that are being transferred, not counting the parent folder.

aoffset
An array of offsets, relative to the beginning of this structure. The array contains
cidl+ 1 elements. The first element of aoffset contains an offset to the fully qualified
PIDL of a parent folder. If this PIDL is empty, the parent folder is the desktop. Each of
the remaining elements of the array contains an offset to one of the PIDLs to be
transferred. All of these PIDLs are relative to the PIDL of the parent folder.

Remarks
To use this structure to get a particular PIDL, add the PIDLs aoffset value to the address
of the structure. The following two macros can be used to retrive PIDLs from the
structure. The first retrieves the PIDL of the parent folder. The second retrieves a PIDL,
specified by its zero-based index:

fd~finE\;'flIO~GetPTDLFQldehptdah'(LPCIJEMIDI.ISlJ ".

~!~~~~:~m~:~*!:ii;1:~f~;::ClrEM1DLIfi) ,
The value that is returned by these macros is a pointer to the PIDL's ITEMIDLIST
structure. Since these structures vary in length, you must determine the end of the
structure by parsing it. See The Shell Namespace for further discussion of PIDLs and the
ITEMIDLIST structure

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.

490 Volume 5 Microsoft Windows Shell

Windows CE: Unsupported.
Header: Declared in shlobj.h.

CMINVOKECOMMANDINFO
Contains information needed by IContextMenu::lnvokeCommand to invoke a context
menu command.

Members
cbSize

Contains the size of this structure, in bytes.

fMask
Zero, or one or more of the following flags:

CMIC_MASK_ASYNCOK Wait for the DDE conversation to terminate before

CMIC_MASK_HOTKEY

CMIC_MASK_ICON

returning.

The system is prevented from displaying user­
interface elements (for example, error messages)
while carrying out a command.

The dwHotKey member is valid.

The hlcon member is valid.

CMIC_MASK_NO_CONSOLE If a context menu handler needs to create a new
process, it normally will create a new console.
Setting the CMIC_MASK_NO_CONSOLE flag
suppresses the creation of a new console.

hwnd
Handle to the window that is the owner of the context menu. An extension also can
use this handle as the owner of any message boxes or dialog boxes it displays.

Chapter 9 Shell Structures 491

IpVerb
32-bit value that contains zero in the high-order word and a menu-identifier offset of
the command to carry out in the low-order word. The shell specifies this value (using
the MAKEINTRESOURCE macro) when the user chooses a menu command.

If the high-order word is not zero, this member is the address of a null-terminated
string specifying the language-independent name of the command to carry out. This

member is typically a string when a command is being activated by an application.
The system provides predefined constant values for the following command strings:

Value String

CMDSTR_NEWFOLDER

CMDSTR_ VIEWDETAILS

CMDSTR_ VIEWLIST

IpParameters

"NewFolder"

"ViewDetails"

"ViewLisf'

An optional string containing parameters that are passed to the command. The format
of this string is determined by the command that is to be invoked. This member is
always NULL for menu items inserted by a shell extension.

IpDirectory
Optional working directory name. This member is always NULL for menu items
inserted by a shell extension.

nShow
Set of SW_ values to pass to the ShowWindow function if the command displays a
window or starts an application.

dw Hot Key
Optional hot key to assign to any application activated by the command. If the fMask
parameter does not specify CMIC_MASK_HOTKEY, this member is ignored.

hlcon
Icon to use for any application activated by the command. If the fMask member does
not specify CMIC_MASK_ICON, this member is ignored.

Remarks
Although the IContextMenu::lnvokeCommand declaration specifies a
CMINVOKECOMMANDINFO structure for the pici parameter, it can also accept a
CMINVOKECOMMANDINFOEX structure. If you are implementing this method, you
must inspect cbSize to determine which structure has been passed.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

492 Volume 5 Microsoft Windows Shell

Windows CE: Unsupported.
Header: Declared in shlobj.h.

CMINVOKECOMMANDINFOEX
Contains extended information about a context menu command. This structure is an
extended version of CMINVOKECOMMANDINFO that allows the use of Unicode values.

Members
cbSize

Contains the size of this structure, in bytes.

fMask
Zero, or one or more of the following flags:

CMIC_MASK_HOTKEY The dwHotKey member is valid.

CMIC_MASK_ICON The hlcon member is valid.

CMIC_MASK_FLAG_NO_UI The system is prevented from displaying user­
interface elements (for example, error messages)
while carrying out a command.

CMIC_MASK_NO_CONSOLE If a context menu handler needs to create a new
process, it normally will create a new console.
Setting the CMIC_MASK_NO_CONSOLE flag
suppresses the creation of a new console.

hwnd

Chapter 9 Shell Structures 493

Indicates that the context menu handler should use
IpVerbW, IpParametersW, IpDirectoryW, and
IpTitleW members instead of their ANSI
equivalents. Because some context menu handlers
might not support Unicode, you also should pass
valid ANSI strings in the IpVerb, I pParameters ,
IpDirectory, and IpTitle members.

Handle to the window that is the owner of the context menu. An extension also can
use this handle as the owner of any message boxes or dialog boxes it displays.

IpVerb
32-bit value that contains zero in the high-order word and a menu-identifier offset of
the command to carry out in the low-order word. The shell specifies this value (using
the MAKEINTRESOURCE macro) when the user chooses a menu command.

If the high-order word is not zero, this member is the address of a null-terminated
string specifying the language-independent name of the command to carry out. This
member is typically a string when a command is being activated by an application.
The system provides predefined constant values for the following command strings:

Value String

CMDSTR_NEWFOLDER

CMDSTR_ VIEWDETAILS

CMDSTR_ VIEWLIST

IpParameters

"NewFolder"

"ViewDetails"

"ViewLisf'

Optional parameters. This member is always NULL for menu items inserted by a shell
extension.

IpDirectory
Optional working directory name. This member is always NULL for menu items
inserted by a shell extension.

nShow
Set of SW _ values to pass to the ShowWindow function if the command displays a
window or starts an application.

dwHotKey
Optional hot key to assign to any application activated by the command. If the fMask
parameter does not specify CMIC_MASK_HOTKEY, this member is ignored.

hlcon
Icon to use for any application activated by the command. If the fMask member does
not specify CMIC_MASK_ICON, this member is ignored.

IpTitle
ASCII title.

IpVerbW
Unicode verb, for those commands that can use it.

494 Volume 5 Microsoft Windows Shell

IpParametersW
Unicode parameters, for those commands that can use it.

IpDirectoryW
Unicode directory, for those commands that can use it.

IpTitleW
Unicode title.

ptlnvoke
Point where the command is invoked. This member is not valid prior to
Internet Explorer 4.0.

Remarks
Although the IContextMenu::lnvokeCommand declaration specifies a
CMINVOKECOMMANDINFO structure for the pici parameter, it can also accept a
CMINVOKECOMMANDINFOEX structure. If you are implementing this method, you
must inspect cbSize to determine which structure has been passed.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

COMPONENT
Used by Microsoft Windows 2000 to hold information about a component. This structure
replaces the IE4COMPONENT structure.

DWORD dwCurltemState;
COMPSTATEINFO csiOriginal:
COMPSTATEINFO csiRestored:

}

COMPONENT,*LPCOMPONENT:

Members
dwSize

Size of the structure.

dwlD
Reserved. Set to zero.

iComponentType

Chapter 9 Shell Structures 495

Component type. It can take one of the following values:

Value Description

COMP _ TYPE_HTMLDOC

COMP _TYPE_PICTURE

COMP _TYPE_WEBSITE

fChecked

Active X Control. This value is valid only for
IActiveDesktop: :AddDesktopltem.
HTML document.

Picture.

Web site.

Value that is set to TRUE if the component is enabled, or FALSE if it is not.

fDirty
Value that is set to TRUE if the component has been modified and not yet saved to
disk. It will be set to FALSE if the component has not been modified, or if it has been
modified and saved to disk.

fNoScroll
Value that is set to TRUE if the component is scrollable, or FALSE if not.

cpPos
COMPPOS structure containing position and size information.

wszFriendlyName
Component's friendly name.

wszSource
Component's URL.

wszSubscribed
Subscribed URL.

dwCurltemState
Current state of the component. It can take one of the following values:

Value Description

IS_FULLSCREEN

IS_NORMAL

IS_SPLIT

Full screen

Normal screen

Split screen

496 Volume 5 Microsoft Windows Shell

csiOriginal
COM PST ATEINFO structure with the state of the component when it first was added.

csiRestored
COMPSTATEINFO structure with the restored state of the component.

Version 5.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

COMPONENTSOPT
Contains the desktop-item options.

Members
dwSize

Unsigned long integer value that contains the size of the structure.

fEnableComponents
Boolean value that determines if desktop items are enabled.

fActiveDesktop
Boolean value that determines if the Active Desktop is enabled.

Version 4.71 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

Chapter 9 Shell Structures 497

COMPPOS
This structure holds information about a component's position and size.

typede:f struct _tagCOMPPOS
{

L

DWORD
. int

lnt,
PWORD
DW(JRD

dwS1ze;
iLeft:
Hop:

dw.Width;
dWl'1eight;

... i tirt1 i I ndeiq ...
BOOl . fCan Re ~ 1 ze:L

. SOOL fCartRes .. i zeX :
BOOL' 'fCanResr:Z:eY:

, int i PreferredTupPer:cent:

.COMPPOS. *LPl;:OMP POS:

Members
dwSize

The size of the structure.

iLeft
The left edge of the top-left corner in screen coordinates.

iTop
The top of the top-left corner in screen coordinates.

dwWidth
The width, in pixels.

dwHeight
The height, in pixels.

izlndex
The z-order of the component.

fCanResize
Set to TRUE if the component is resizable, FALSE if not.

fCanResizeX
Set to TRUE if the component is resizable in the x-direction, FALSE if not.

fCanResizeY
Set to TRUE if the component is resizable in the y-direction, FALSE if not.

iPreferredLeftPercent
The left edge of the upper-left corner as a percentage of screen width.

iPreferredTopPercent
The top of the upper-left corner as a percentage of screen width.

498 Volume 5 Microsoft Windows Shell

Version 4.71 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

COMPSTATEINFO
Used by Microsoft Windows 2000 to hold information about a component's state.

Members
dwSize

Size of the structure.

iLeft
Left edge of the top-left corner in screen coordinates.

iTop
Top of the top-left corner in screen coordinates.

dwWidth
Width, in pixels.

dwHeight
Height, in pixels.

dwltemState
State of the component.

IS_FULLSCREEN Full screen

IS_NORMAL Normal screen

IS_SPLIT Split screen

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

CPLINFO

Chapter 9 Shell Structures 499

Contains resource information and an application-defined value for a dialog box
supported by a Control Panel application. The CPIAppiet function of the Control Panel
application returns this information to the Control Panel in response to a CPL_INQUIRE
message.

Members
idlcon

Resource identifier of the icon that represents the dialog box.

idName
Resource identifier of the string containing the short name for the dialog box. This
name is intended to be displayed below the icon.

idlnfo
Resource identifier of the string containing the description for the dialog box that is
intended to be displayed when the application icon is selected.

IData
Data defined by the application. When the Control Panel sends the CPL_DBLCLK
and CPL_STOP messages, it passes this value back to your application.

Remarks
If the icon or display strings of the dialog box can change based on the state of the
computer, you can specify the CPL_DYNAMIC_RES value for the idlcon, idName, or
idlnfo members, instead of specifying a valid resource identifier. This causes the Control
Panel to send the CPL_NEWINQUIRE message each time it needs the icon and display
strings. Using this technique is significantly slower, however, because the Control Panel
will need to load your application each time it sends the CPL_NEWINQUIRE message.

500 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Requires version 1.0 or later.
Header: Declared in cpl.h.

DATABLOCK_HEADER
Serves as the header for some of the extra data structures used by ISheliLinkDataList.

Members
cbSize

Size of the extra data block.

dwSignature
Signature that identifies the type of data block that follows the header.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

DESKBANDINFO
Contains and receives information for a band object. This structure is used with the
IDeskBand::GetBandlnfo method.

typedef struct {
. DW~ !Ul.,·tiwMa.s;k (.

Members
dwMask

Chapter 9 Shell Structures 501

Set of flags that determine which members of this structure are being requested. This
will be a combination of the following values:

DBIM_ACTUAL ptActual is being requested.

DBIM_BKCOLOR crBkgnd is being requested.

DBIM_INTEGRAL

DBIM_MAXSIZE

DBIM_MINSIZE

DBIM_MODEFLAGS

DBIM_TITLE

ptMinSize

ptlntegral is being requested.

ptMaxSize is being requested.

ptMinSize is being requested.

dwModeFlags is being requested.

wszTitle is being requested.

POINTL structure that receives the minimum size of the band object. The minimum
width is placed in the x member, and the minimum height is placed in the y member.

ptMaxSize
POINTL structure that receives the maximum size of the band object. The maximum
height is placed in the y member, and the x member is ignored. If there is no limit for
the maximum height, (LONG)-1 should be used.

ptlntegral
POINTL structure that receives the sizing step value of the band object. The vertical
step value is placed in the y member, and the x member is ignored. The step value
determines in what increments the band will be resized. This member is ignored if
dwModeFlags does not contain DBIMF _VARIABLEHEIGHT.

ptActual
POINTL structure that receives the ideal size of the band object. The ideal width is
placed in the x member, and the ideal height is placed in the y member. The band
container will attempt to use these values, but the band is not guaranteed to be this
size.

wszTitle
WCHAR buffer that receives the title of the band.

502 Volume 5 Microsoft Windows Shell

dwModeFlags
A value that receives a set of flags that define the mode of operation for the band
object. This must be one or a combination of the following values:

DBIMF _BKCOLOR The band will be displayed with the background
color specified in crBkgnd.

DBIMF _DEBOSSED

DBIMF _ VARIABLEHEIGHT

crBkgnd

The band object is displayed with a sunken
appearance.

The band is normal in all respects. The other mode
flags modify this flag.

The height of the band object can be changed. The
ptlntegral member defines the step value by which
the band object can be resized.

A value that receives the background color of the band. This member is ignored if
dwModeFlags does not contain the DBIMF _BKCOLOR flag.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

DLLVERSIONINFO
Receives DLL-specific version information. It is used with the DIIGetVersion function.

Members
cbSize

Size of the structure, in bytes. This member must be filled in before calling the
function.

Chapter 9 Shell Structures 503

dwMajorVersion
Major version of the DLL. If the DLL's version is 4.0.950, this value will be 4.

dwMinorVersion
Minor version of the DLL. If the DLL's version is 4.0.950, this value will be O.

dwBuildNumber
Build number of the DLL. If the DLL's version is 4.0.950, this value will be 950.

dwPlatformlD
Identifies the platform for which the DLL was built. This can be one of the following
values:

Version 4.71 and later of Shell32.dll.

The DLL was built specifically for
Windows NT.

The DLL was built for all Windows platforms.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.

DLLVERSIONINF02
Receives DLL-specific version information. It is used with the DIIGetVersion function.

Members
info1

DLLVERSIONINFO structure. This member is included to provide backward
compatibility with applications that are not expecting a DLLVERSIONINF02 structure.

dwFlags
Reserved for future use.

504 Volume 5 Microsoft Windows Shell

ullVersion
Value that contains the version information. It is divided into four 16-bit fields
containing the major and minor version numbers, the build number, and the QFE
version, in that order. Use the MAKEDLLVERULL macro to construct this value.

Remarks
Your application must set the cbSize member of the structure pOinted to by info1 to
sizeof(DLLGETVERSIONINF02} before calling DIIGetVersion. Otherwise, no value will
be assigned to the dwFlags or ullVersion member of the DLLGETVERSIONINF02
structure.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlwapLh.

DROPFILES
Defines the CF _HDROP and CF _PRINTERS clipboard formats. In the CF _HDROP
case, the data that follows is a double null-terminated list of file names. For
CF _PRINTERS, the data that follows are the printer friendly names.

Members
pFiles

Offset of the file list from the beginning of this structure, in bytes.

pt
Drop point. The coordinates depend on fNC.

fNC
Nonclient area flag. If this member is TRUE, pt specifies the screen coordinates of a
pOint in a window's nonclient area. If it is FALSE, pt specifies the client coordinates of
a point in the client area.

fWide
Value that indicates whether the file contains ANSI or Unicode characters. If it is zero,
it contains ANSI characters. Otherwise, it contains Unicode characters.

Chapter 9 Shell Structures 505

D;"ff~guirements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

EXP DARWIN LINK - -
Holds an extra data block used by ISheliLinkDataList. It holds the link's Windows
Installer ID.

ty"pedef 'syu:ct{ "" "" ""
DATASLoCK.J1EAD£Rdbh; ,.
CHAR. s~at\/li nIOtMAx;"';PA1MJ. •
W.CHAR<szwOarwinID[MAx;.;PATtH:

} EXP':'QAR\.fHLUNK, 'i'LPEXP.:..OARWlN...lJNK: '.

Members
dbh

DATABLOCK_HEADER structure with the EXP _DARWIN LINK structure's size and
signature. There are two available signatures.

EXP _DARWIN_ID_SIG Contains a Windows Installer ID.

EXP _LOG03_ID_SIG Not currently supported.

szDarwinlD
ANSI string with the the link's ID.

szwDarwinlD
Unicode string with the link's ID.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

506 Volume 5 Microsoft Windows Shell

Holds an extra data block used by ISheliLinkDataList. It holds special folder
information.

Members
cbSize

Size of the EXP _SPECIAL_FOLDER structure.

dwSignature
Structure's signature. It should be set to EXP _SPECIAL_FOLDER_SIG.

idSpecialFolder
ID of the special folder into which the link points.

cbOffset
Offset into the saved PIDL.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

Holds an extra data block used by ISheliLinkDataList. It holds expandable environment
strings for the icon or target.

Members
cbSize

Size of the EXP _SZ_LINK structure.

dwSignature

Chapter 9 Shell Structures 507

Structure's signature. It can have one of the following values:

EXP _SZ_ICON_SIG Contains the link's icon path.

EXP _SZ_LlNK_SIG Contains the link's target path.

szTarget
NULL-terminated ANSI string with the path of the target or icon.

swzTarget
NULL-terminated Unicode string with the path of the target or icon.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

Contains information about a button that a File Manager extension dynamic-link library is
adding to the tool bar of File Manager.

Members
idCommand

Command identifier for the button.

idsHelp
Identifier of the Help string for the button.

fsStyle
Style of the button.

508 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMEVENT_TOOLBARLOAD,FMS_TOOLBARLOAD

EXTRASEARCH
Used by an IEnumExtraSearch enumerator object to return information on the search
objects supported by a Shell Folder object.

Members
guidSearch

Search object's globally unique identifier (GUID).

wszFriendlyName
A Unicode string containing the search object's friendly name. It will be used to
identify the search engine on the Search Assistant menu.

wszUrl
The URL that will be displayed in the search pane.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

FILEDESCRIPTOR
Describes the properties of a file that is being copied by means of the clipboard during
an OLE drag-and-drop operation.

Chapter 9 Shell Structures 509

typedef struct _FlLEllESCRIPTOR.{
DWORD dwFlags:
ClSID

Members
dwFlags

Array of flags that indicate which of the other structure members contain valid data.
This member can be a combination of the following values:

Flag Description

FD_ACCESSTIME The ftLastAccessTime member is valid.

FD_ATTRIBUTES The dwFileAttributes member is valid.

FD_CLSID

FD_CREATETIME

FD_FILESIZE

FD_LlNKUI

FD_SIZEPOINT

FD_WRITESTIME

clsid
File class identifier.

sizel

The clsid member is valid.

The ftCreationTime member is valid.

The nFileSizeHigh and nFileSizeLow members are valid.

Treat the operation as "Link."

The sizel and pointl members are valid.

The ftLastWriteTime member is valid.

Width and height of the file icon.

pointl
Screen coordinates of the file object.

dwFileAttributes
File attribute flags. This will be a combination of the FILE_ATTRIBUTE_ values
described in GetFileAttributes.

ftCreationTime
FILETIME structure that contains the time of file creation.

ftLastAccessTime
FILETIME structure that contains the time that the file was last accessed.

510 Volume 5 Microsoft Windows Shell

ftLastWriteTime
FILETIME structure that contains the time of the last write operation.

nFileSizeHigh
High-order DWORD of the file size, in bytes.

nFileSizeLow
Low-order DWORD of the file size, in bytes.

cFileName
NUll-terminated string that contains the name of the file.

Remarks
If the CFSTR_FILECONTENTS format that corresponds to this structure contains the file
as a global memory object, nFileSizeHigh and nFileSizeLow specify the size of the
associated memory block. If they are set, they can also be used if a user interface needs
to be displayed. For instance, if a file is about to be overwritten, you normally would use
information from this structure to display a dialog box containing the size, data, and
name of the file.

To create a zero-length file, set the FD_FILESIZE flag in the dwFlags member, and set
nFileSizeHigh and nFileSizeLow to zero. The CFSTR_FILECONTENTS format should
represent the file as either a stream or global memory object (TYMED_ISTREAM or
TYMED_HGLOBAL).

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

FILEGROUPDESCRIPTOR
Defines the CF _FILEGROUPDESCRIPTOR clipboard format.

Members
cltems

Number of elements in fgd.

fgd
Array of FILEDESCRIPTOR structures that contain the file information.

Chapter 9 Shell Structures 511

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

FMS_GETDRIVEINFO
Contains information about the drive selected in the active File Manager window (the
directory window or the Search Results window).

Members
dwTotalSpace

Total amount of storage space, in bytes, on the disk associated with the drive.

dwFreeSpace
Amount of free storage space, in bytes, on the disk associated with the drive.

szPath
Null-terminated path of the current directory.

szVolume
Null-terminated volume label of the disk associated with the drive.

szShare
Null-terminated name of the network resource (if the drive is being accessed through
a network).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc, FM_GETDRIVEINFO

512 Volume 5 Microsoft Windows Shell

FMS_GETFILESEL
Contains information about a selected file in the active File Manager window (the
directory window or the Search Results window).

Members
ftTime

Time and date the file was created.

dwSize
Size, in bytes, of the file.

bAttr
Attributes of the file.

szName
Null-terminated full path and file name of the selected file.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

FMS_HELPSTRING
Contains information that File Manager uses to add a help string for a menu or toolbar
command item.

Members
idCommand

Identifier of the command item.

hMenu
Identifer of the menu bar.

szHelp
Null-terminated string that receives the help text.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc, FMEVENT _HELPMENUITEM

Chapter 9 Shell Structures 513

Contains information that File Manager uses to add a custom menu provided by a File
Manager extension DLL. The structure also provides a delta value that the extension
DLL can use to manipulate the custom menu after File Manager has loaded the menu.

t,¥,pM.ef str,uct. ...;FMS~LOAiJ £; ..
'. 'iJWORO.dwS1u; ,:,f'"

·TI:AAIC··siH.e~·oNam~(frENU..:TtXT~LENJ
HMEi'(U hMenu:
UIMTwMenulJe1ta;'

}·FMS":'LOAD; .• ' . .

Members
dwSize

Length, in bytes, of the structure.

szMenuName
Null-terminated name for a menu item that appears on the menu bar in File Manager.

hMenu
Identifer of the pop-up menu added to the menu bar in File Manager.

wMenuDelta
Menu-item delta value. To avoid conflicts with its own menu items, File Manager
renumbers the menu item identifiers in the pop-up menu identified by the hMenu
member by adding this delta value to each identifier. An extension DLL that must
modify a menu item must identify the item by adding the delta value to the menu
item's identifier. The value of this member can vary from session to session.

514 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

FMS_ TOOLBARLOAD
Contains information about custom buttons to be added to the File Manager toolbar. The
buttons are provided by a File Manager extension DLL.

Members
dwSize

Size, in bytes, of the structure. File Manager sets the size before calling the
extension, and checks the size after the extension procedure returns.

IpButtons
Address of an array of EXT_BUTTON structures.

cButtons
Number of EXT_BUTTON structures in the array pointed to by the IpButtons
member. This number equals the number of buttons and separators to add to the
toolbar.

cBitmaps
Number of buttons represented by the given bitmap.

idBitmap
Identifier of a bitmap resource in the executable file for the extension DLL. The bitmap
resource contains images for the number of buttons specified by cBitmaps. File
Manager loads the bitmap resource and then uses it to display the buttons.

hBitmap
Handle to a bitmap that File Manager will use to obtain and display button images if
idBitmap is O.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMEVENT_TOOLBARLOAD

FOLDERSETTINGS
Contains folder view information.

Members
ViewMode

Chapter 9 Shell Structures 515

Folder view mode. This can be one of the FOLDERVIEWMODE values.

fFlags
Set of flags that indicate the options for the folder. This can be zero or a combination
of the FOLDERFLAGS values.

Remarks
These settings assume a particular user interface, which the shell's folder view has. A
shell extension can use these settings if they apply to the view implemented by the
extension.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ISheIiView::CreateViewWindow, ISheIIView::GetCurrentlnfo

516 Volume 5 Microsoft Windows Shell

FVSHOWINFO
Contains information that the file viewer uses to display a file.

Members
ebSize

Size of the structure, in bytes.

hwndOwner
Window handle to the owner of the window in which the file will be displayed.

iShow
Show command for the window. This parameter is one of the SW_ values detailed in
ShowWindow.

dwFlags
Flags that determine what the file viewer displays. This member can be one or more
of the following values:

FVSIF _CAN VI EWIT The file viewer can display the file.

FVSIF _NEWFAILED

FVSIF _NEWFILE

reet

The file viewer specified a new file to display, but no
viewer could display the file. The file viewer should either
continue to display the previous file or terminate.

A drag-and-drop operation has dropped a file on the file
viewer window. The file viewer passes the name of the file
to the shell by copying the name to the strNewFile
member. The shell attempts to load a file viewer that can
display the new file.

A pinned window exists. A file viewer should either use
the pinned window to display the file or set a new pinned
window and display the file in it.

The reet member contains valid data.

RECT structure that specifies the size and position of the file viewer's window. This
member is valid only if the dwFlags member includes the FVSIF _RECT value.

Chapter 9 Shell Structures 517

punkRel
Address of an interlace that has its Release method called by a new file viewer to
release the previous file viewer. This member is used when a drag-and-drop
operation drops a file on the file viewer's window.

strNewFile
Address of a string that specifies the name of a new file to display. A file viewer sets
this member when a drag-and-drop operation drops a file on the file viewer's window.

Version 4.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

HELPINFO
Contains information about an item for which context-sensitive Help has been requested.

Members
cbSize

Structure size, in bytes.

iContextType
Type of context for which Help is requested. This member can be one of the following
values:

HELPINFO_MENUITEM

HELPINFO_WINDOW

iCtrlld

Help requested for a menu item

Help requested for a control or window

Identifier of the window or control if iContextType is HELPINFO_WINDOW, or
identifier of the menu item if iContextType is HELPINFO_MENUITEM.

hltemHandle
Identifier of the child window or control if iContextType is HELPINFO_WINDOW, or
identifier of the associated menu if iContextType is HELPINFO_MENUITEM.

518 Volume 5 Microsoft Windows Shell

dwContextld
Help context identifier of the window or control.

MousePos
POINT structure that contains the screen coordinates of the mouse cursor. This is
useful for providing Help based on the position of the mouse cursor.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

HELPWININFO
Contains the size and position of either a primary or a secondary Help window. An
application can set this information by calling the Win Help function with the
HELP _SETWINPOS value.

Syntax

Members
wStructSize

Structure size, in bytes.

x
X-coordinate of the upper-left corner of the window, in screen coordinates.

y
V-coordinate of the upper-left corner of the window, in screen coordinates.

dx
Window width, in pixels.

dy
Window height, in pixels.

wMax
How to show the window. This member must be one of the following values:

Chapter 9 Shell Structures 519

SW_HIDE Hides the window and passes activation to another
window.

SW_MINIMIZE Minimizes the specified window and activates the top­
level window in the z-order.

SW_RESTORE Same as SW_SHOWNORMAL.

SW_SHOW Activates a window and displays it in its current size
and position.

SW_SHOWMAXIMIZED Activates the window and displays it as a maximized
window.

SW_SHOWMINIMIZED Activates the window and displays it as an icon.

SW_SHOWMINNOACTIVE Displays the window as an icon. The window that
currently is active remains active.

SW_SHOWNA Displays the window in its current state. The window
that currently is active remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent size and
position. The window that currently is active remains
active.

SW_SHOWNORMAL Activates and displays the window. Whether the
window is minimized or maximized, Windows restores
it to its original size and position.

rgchMember
Name of the window.

Remarks
Windows Help divides the display into 1024 units in both the x and y directions. To
create a secondary window that fills the upper-left quadrant of the display, for example,
an application would specify zero for the x and y members, and 512 for the dx and dy
members.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

IE4COMPONENT
Used by Microsoft Internet Explorer 4.0 and 4.01 to hold information about a component.
With Microsoft Windows 2000, it is replaced by the COMPONENT structure.

520 Volume 5 Microsoft Windows Shell

Members
dwSize

Size of the structure.

dwlD
Reserved. Set to zero.

iComponentType
Component type. It can be set to one of these values:

COMP _TYPE_CONTROL Control

COMP _ TYPE_HTMLDOC

COMP _TYPE_PICTURE

COMP _TYPE_WEBSITE

fChecked

HTML document

Picture

Web site

Value that is set to TRUE if the component is enabled, or FALSE if not.

fDirty
Value that is set to TRUE if the component has been modified and not yet saved to
disk. It will be set to FALSE if the component has not been modified, or if it has been
modified and saved to disk.

fNoScroll
Value that is set to TRUE if the component is scrollable, or FALSE if it is not.

cpPos
COMPPOS structure containing position and size information.

wszFriendlyName
Component's friendly name.

wszSource
Component's URL.

wszSubscribed
URL to which a user has been subscribed.

Chapter 9 Shell Structures 521

IIf:tequirements
Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ITEMIDLIST
Contains a list of item identifiers.

typedefstru.ct =frEMlDLI ST{
>SH~TEMlamldd:>•.•....

}. HEMIOLIST, * LPlTEMI o {;I Sl;
typedEWc>onst ITEMIOLISl.*LPCITEMloLISl;

Members
mkid

List of item identifiers.

Remarks
A pOinter to this structure, called a PIDL, is used to identify objects in the shell
namespace. See The Shell Namespace for a discussion of PIDLs.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1 .0 or later.
Header: Declared in shlobj.h.

MUL TIKEYHELP
Specifies a keyword to search for and the keyword table to be searched by Windows
Help.

type clef .s;truct: tagMUtTl K.e¥HELft.

q~DRD. IIlkSfize;

lCHARmkKeylist; .•........
TCHA~· szKeyphraserl]r ..

} MULTJKEYHELP;

522 Volume 5 Microsoft Windows Shell

Members
mkSize

Structure size, in bytes.

mkKeylist
Single character that identifies the keyword table to search.

szKeyphrase
Null-terminated text string that specifies the keyword to locate in the keyword table.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

WinHelp

NEWCPLINFO
Contains resource information and an application-defined value for a dialog box
supported by a Control Panel application.

Members
dwSize

Length of the structure, in bytes.

dwFlags
This member is ignored.

dwHelpContext
This member is ignored.

Chapter 9 Shell Structures 523

IData
Data defined by the application. When the Control Panel sends the CPL_DBLCLK
and CPL_STOP messages, it passes this value back to your application.

hlcon
Identifier of the icon that represents the dialog box. This icon is intended to be
displayed by the application that controls the Control Panel application.

szName
Null-terminated string that contains the dialog-box name. The name is intended to be
displayed below the icon.

szlnfo
Null-terminated string containing the dialog-box description. The description is
intended to be displayed when the icon for the dialog box is selected.

szHelpFile
This member is ignored.

Remarks
The CPIAppiet function of the Control Panel application returns this information to the
Control Panel in response to a CPL_NEWINQUIRE message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in cpl.h.

CPLINFO

NOTIFYICONDATA
Contains information that the system needs to process taskbar status-area messages.

(continued)

524 Volume 5 Microsoft Windows Shell

(continued)

'. >OWORDdwS'tateMaSCK,11,Vetston
, ~ ,~.'~) >;t, !<:~ 0 ~ <"; ,,'~~-> :;,!;,,~.;, .::~.' ,"'"I; ':<. '~>:~j:.o >~~,< '

. ,:;rCHAR:.Jzln.fo{2$6J II/Yei'$j~,~,
.lini on.'(: ': >'.'
"<U~tj;;j~~l;:~K~~"~;~~:~!~~~";:I:J ,

·.J,[lUHMl".J)NlOtH4AME·;~. ,." " •.
·}C.tlAR $i:InfoTttle(64.J~ Ll~er;iton 5;0

.: QWORDavllhfoFlags; lifers 1 0J1.5.0:·
} NOrI FYicormATA .*P~OHFYIC6NDA1A;

Members
cbSize

Size of this structure, in bytes.

hWnd
Handle to the window that will receive notification messages associated with an icon
in the taskbar status area. The shell uses hWnd and ulD to identify which icon is to
be operated on when ShelLNotifylcon is invoked.

ulD
Application-defined identifier of the taskbar icon. The shell uses hWnd and ulD to
identify which icon is to be operated on when Shell_Notifylcon is invoked. You can
have multiple icons associated with a single hWnd by assigning each a diffent ulD.

uFlags
Array of flags that indicate which of the other members contain valid data. This
member can be a combination of the following:

Flag Description

NIF_ICON

NIF_INFO

NIF _MESSAGE

NIF_STATE

NIF_TIP

uCalibackMessage

The hlcon member is valid.

Use a balloon-style tooltip instead of a standard tooltip. The
szlnfo, uTimeout, szlnfoTitle, and dwlnfoFlags members
are valid.

The uCalibackMessage member is valid.

The dwState and dwStateMask members are valid.

The szTip member is valid.

Application-defined message identifier. The system uses this identifier to send
notifications to the window identified in hWnd. These notifications are sent when a
mouse or event occurs in the bounding rectangle of the icon, or the icon is selected or
activated with the keyboard. The wParam parameter of the message contains the
identifier of the taskbar icon in which the event occurred. The IParam parameter holds
the mouse or keyboard message associated with the event. For example, when the
mouse cursor moves over a taskbar icon, IParam is set to WM_MOUSEMOVE. See
the Taskbarguide chapter for further discussion.

Chapter 9 Shell Structures 525

hlcon
Handle to the icon to be added, modified, or deleted.

szTip
Pointer to a NULL-terminated string with the text for a standard tooltip. It can have a
maximum of 64 characters, including the terminating NULL.

Version 5.0 and later. szTip can have a maximum of 128 characters, including the
terminating NULL.

dwState
Version 5.0. State of the icon. There are two flags that can be set independently:

Flag Description

NIS_HIDDEN The icon is hidden.

NIS_SHAREDICON The icon is shared.

dwStateMask
Version 5.0. A value that specifies which bits of the state member will be retrieved or
modified. For example, setting this member to NIS_HIDDEN will cause only the item's
hidden state to be retrieved.

szlnfo
Version 5.0. Pointer to a NULL-terminated string with the text for a balloon-style
tooltip. It can have a maximum of 255 characters. To remove the tooltip, set the
NIF _INFO flag in uFlags, and set szlnfo to an empty string.

uTimeout
The timeout value, in milliseconds, for a balloon-style tooltip. The system enforces
minimum and maximum timeout values. uTimeout values that are too large are set to
the maximum value and values that are too small default to the minimum value. The
system minimum and maximum timeout values are set currently at 10 seconds and 30
seconds, respectively. These values can change in future versions of Windows. See
the remarks for further discussion of uTimeout. Union with uVersion.

uVersion
Version 5.0. Used to specify whether the shell notify icon interface should use
Windows 95 or Windows 2000 behavior. This member is only used when using
Shell_Notifylcon to send an NIM_ VERSION message. Union with uTimeout.

Value Description

o Use the Windows 95 behavior.

NOTIFYICON_ VERSION Use the Windows 2000 behavior.

szlnfoTitle
Version 5.0. Pointer to a NULL-terminated string containing a title for a balloon
tooltip. This title will be in boldface, and placed above the text. It can have a maximum
of 63 characters.

526 Volume 5 Microsoft Windows Shell

dwlnfoFlags
Version 5.0. Flags that can be set to add an icon to a balloon tooltip; it will be placed
to the left of the title. If the szTitlelnfo member is zero-length, the icon will not be
shown.

Flag

NIIF_ERROR

NIIF_INFO

NIIF _WARNING

Remarks

Description

An error icon

An information icon

A warning icon

If you set the NIF _INFO flag in the uFlags member, the standard tooltip, will be replaced
by a balloon tooltip. For more discussion of balloon tooltips, see Too/tip Controls.

No more than one balloon tooltip at at time will be displayed for the taskbar. If an
application attempts to display a tooltip when one is already being displayed, it will not
appear until the existing balloon tooltip has been visible for at least the system minum
timeout value. For example, a balloon tooltip with uTimeout set to 30 seconds has been
visible for seven seconds when another application attempt to display a balloon tooltip. If
the system minimum timeout is ten seconds, the first tooltip will be displayed for an
additional three seconds before being replaced by the second tooltip.

Note that several members of this structure are only supported for Shell32.dll versions
5.0 and later. To enable these members, include the following in your header:

However, you must initialize the structure with its size. If you use the size of the currently
defined structure, the application may not run with the earlier versions of SheIl32.dll,
which expect a smaller structure. You can run your application on pre-S.O versions of
Shell32.dll by defining the appropriate version number. However, this might cause
problems if your application also needs to run on systems with more recent versions.

Your application can remain compatible with all Shell32.dll versions while still using the
current header files by setting the size of the NOTIFYICONDATA structure
appropriately. Before initializing the structure, use the DIIGetVersion function to
determine which Shell32.dll version is installed on the system. If it is version 5.0 or
greater, initialize the cbSize member with:

;~td;. cP$i~i~fs~+~&t("~f~fY~~qk:6A,r~};yr}
Setting cbSize to this value will enable all the version 5.0 enhancements. For earlier
versions, the size of the pre-S.O structure is given by the NOTIFYICONDATA_V1_SIZE
constant. Initialize the cbSize member with:

.ri'; ~ •• tbstt~iN!lTlFY I CQNDA,T~:dL~t# 'i: .:' , " > . ' . ; - ~ : , . ;'~ ; i

Using this value for cbSize will allow your application to use NOTIFYICONDATA with
earlier Shell32.dll versions, although without the version 5.0 enhancements.

Chapter 9 Shell Structures 527

_$M~inilp'ents
Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in shellapLh.

NRESARRAY
Defines the CF _NETRESOURCE clipboard format.

~~~~~~=m1'~J~;~'I;,~g,;,; 
1 :NRESAMAy/.t'P.JtltESA!nt~y:' ',',;,'::' 

Members 
cltems 

Number of elements in the nr array. 

nr 
Array of NETRESOURCE structures that contain information about network 
resources. The string members (LPSTR types) in the structure contain offsets instead 
of addresses. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

Holds an extra data block used by ISheliLinkDataList. It holds console properties. 

(continued) 



528 Volume 5 Microsoft Windows Shell 

(continued) 

Members 
dbh 

DATABLOCK_HEADER structure with the NT_CONSOLE_PROPS structure's size 
and signature. The signature for an NT _CONSOLE_PROPS structure is 
NT _CONSOLE_PROPS_SIG. 

wFiliAttribute 
Fill attribute for the console. 

wPopupFillAttribute 
Fill attribute for console pop-up windows. 

dwScreenBufferSize 
COORD structure with the console's screen-buffer size. 

dwWindowSize 
COORD structure with the console's window size. 

dwWindowOrigin 
COORD structure with the console's window origin. 

nFont 
Font. 

nlnputBufferSize 
Input-buffer size. 

dwFontSize 
COORD structure with the font size. 

uFontFamily 
Font family. 

uFontWeight 
Font weight. 



Chapter 9 Shell Structures 529 

FaceName 
Character array that contains the font's face name. 

uCursorSize 
Cursor size. 

bFullScreen 
Boolean value that is set to TRUE if the console is in full-screen mode, or FALSE 
otherwise. 

bQuickEdit 
Boolean value that is set to TRUE if the console is in quick-edit mode, or FALSE 
otherwise. 

blnsertMode 
Boolean value that is set to TRUE if the console is in insert mode, or FALSE 
otherwise. 

bAutoPosition 
Boolean value that is set to TRUE if the console is in auto-position mode, or FALSE 
otherwise. 

uHistoryBufferSize 
Size of the history buffer. 

uNumberOfHistoryBuffers 
Number of history buffers. 

bHistoryNoDup 
Boolean value that is set to TRUE if old duplicate history lists should be discarded, or 
FALSE otherwise. 

ColorTable 
Array of COLORREF values with the console's color settings. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

Holds an extra data block used by IShellLinkDataList. It holds the console's code page. 



530 Volume 5 Microsoft Windows Shell 

Members 
dbh 

DATABlOCK_HEADER structure with the NT_FE_CONSOlE_PROPS structure's 
size and signature. The signature for an NT _FE_CONSOLE_PROPS structure is 
NT _FE_CONSOLE_PROPS_SIG. 

uCodePage 
Console's code page. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 {or Windows NT 4.0 with 
Internet Explorer 4.0 or later}. 
Windows 95/98: Requires Windows 98 {or Windows 95 with Internet Explorer 4.0 or 
later}. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

Specifies a folder shortcut's target folder and its attributes. This structure is used by 
IPersistFileSystemFolder::GetFolderTargetlnfo and 
IPersistFileSystemFolder:: InitializeEx. 

Members 
pidlTargetFolder 

Fully qualified PIDl of the target folder. Set pidlTargetFolder to NULL if not 
specified. 



Chapter 9 Shell Structures 531 

szTargetParsingName 
NULL-terminated Unicode string with the target folder's parsing name. Set 
szTargetParsingName to an empty string if not specified. 

szNetworkProvider 
NULL-terminated Unicode string that specifies the type of network provider that will be 
used when binding to the target folder. The format is the same as that used by the 
WNet API. Set szNetworkProvider to an empty string if not specified. 

dwAttributes 
DWORD value that contains SFGAO_XXX file attribute flags. For a complete list of 
available flags, see ISheIiFolder::ParseDisplayName. Set dwAttributes to -1 if not 
specified. 

csidl 
Target folder's CSIDL value, if it has one. Set csldl to -1 if the target folder does not 
have a CSIDL. In addition to the CSIDL value, you can also set the following two 
flags: 

CSIDL_FLAG_CREATE 

Remarks 

Indicates that the target folder should be 
created if it does not exist already. 

Indicates that the target folder should 
change if the user changes the target 
folder's underlying CSIDL value. 

Any or all of the pidlTargetFolder, szTargetParsingName, and csidl members can be 
used to specify the target folder's location. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IPersistFolder3 

SHCOLUMNDATA 
Contains information that identifies a particular file. It is used by 
IColumnProvider::GetltemData when requesting data for a particular file. 



532 Volume 5 Microsoft Windows Shell 

Members 
dwFlags 

Flags used to specify the nature of the request. 

Flag Description 

SHCDF _UPDATEITEM The file specified by wszFile is a new file or it has 
changed since the last call to 
IColumnProvider::GetltemData. Any cached data 
should be flushed and recalculated. Column handlers that 
do not cache data or that display data that is stored 
separately from the file can ignore this flag. 

dwFileAttributes 
File attribute flags. It will be one or more of the following values: 

Flag Description 

FILE_ATTRIBUTE_COMPRESSED 

FILE_A TTRIBUTE_DIRECTORY 

FILE_A TTRIBUTE_ENCRYPTED 

The file or directory is an archive file or 
directory. Applications use this attribute to 
mark files for backup or removal. 

The file or directory is compressed. For a 
file, this means that all data in the file is 
compressed. For a directory, this means 
that compression is the default for newly 
created files and subdirectories. 

The handle identifies a directory. 

The file or directory is encrypted. For a file, 
this means that all data streams in the file 
are encrypted. For a directory, this means 
that encryption is the default for newly 
created files and subdirectories. 

The file or directory is hidden. It is not 
included in an ordinary directory listing. 

The file or directory has no other attributes 
set. This attribute is valid only if used 
alone. 



Flag 

FILE_ATTRIBUTE_OFFLINE 

FILE_ATTRIBUTE_REPARSE_POINT 

FILE_ATTRIBUTE_SPARSE_FILE 

FILE_ATTRIBUTE_SYSTEM 

FILE_ATTRIBUTE_ TEMPORARY 

dwReserved 
Reserved for future use. Set to NULL. 

pwszExt 

Chapter 9 Shell Structures 533 

Description 

The data of the file is not immediately 
available. This attribute indicates that the 
file data has been physically moved to 
offline storage. This attribute is used by 
Remote Storage, the hierarchical storage 
management software in Microsoft 
Windows 2000. Applications should not 
change arbitrarily this attribute. 

The file or directory is read-only. 
Applications can read the file but cannot 
write to it or delete it. In the case of a 
directory, applications cannot delete it. 

The file has an associated reparse point. 

The file is a sparse file. 

The file or directory is part of, or is used 
exclusively by, the operating system. 

The file is being used for temporary 
storage. File systems attempt to keep all of 
the data in memory for quicker access 
instead of flushing the data back to mass 
storage. A temporary file should be 
deleted by the application as soon as it is 
no longer needed. 

Pointer to a NULL-terminated Unicode string with a file-name extension. 

wszFile 
NULL-terminated Unicode string containing a fully qualified file path. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

GetFileAttributes 



534 Volume 5 Microsoft Windows Shell 

SHCOLUMNID 
Specifies the FMTID/PID identifier of a column that will be displayed by the Windows 
Explorer details view. 

Members 
fmtid 

String form of a property set format identifier or FMTID (a GUID). The shell supports 
the storage, shell details, and summary information property sets. Other property sets 
can be supported by particular folders. 

FMTID Description 

{B725F130-47EF-1 01 A-A5F1-
02608C9EE8AC} 

{28636AA6-953D-11 D2-85D6-
00C04FD918DO} 

{9B174B33-40FF-11 D2-A27E-
00C04FC30871 } 

{98 17 4B34-40FF-11 D2-A27E-
00C04FC30871 } 

{9B 17 4B35-40FF-11 D2-A27E-
00C04FC30871 } 

{49691C90-7E17-101A-A91C-
08002B2ECDA9} 

{F29F85EO-4FF9-1068-AB91-
08002B27B3D9} 

pid 
Column's property identifier (PID). 

Storage property set. Defined in Ntquery.h. 

Shell details property set. Defined in Shlguid.h. 

Displaced property set. Defined in Shlguid.h. 

Miscellaneous property set. Defined in Shlguid.h. 

Volume property set. Defined in Shlguid.h. 

Query property set. Defined in Shlguid.h. 

Summary information property set. Defined in 
Ntquery.h. 

The storage property set supports the five PIDs, defined in Ntquery.h. 

PID Value Description Type 

PI D_STG_ATTRI BUTES 13 

PID_STG_NAME 10 

PID_STG_SIZE 12 

PID_STG_STORAGETYPE 4 

PID_STG_WRITETIME 14 

The object's attributes 

The object's display name 

The object's size 

The object's type 

The object's modified 
attribute 

VT_BSTR 

VT_BSTR 

VT_BSTR 

VT_BSTR 

VT_BSTR 



Chapter 9 Shell Structures 535 

The shell details property set supports three PIDs, defined in Shlguid.h. 

PID Value Description Type 

PID_DESCRIPTIONID 2 An SHDESCRIPTIONID VT_ARRAY I 
VT_UI1 

PID_FINDDATA a A WIN32_FIND_DATA VT_ARRAY I 
VT_UI1 

PID_NETRESOURCE A NETRESOURCE VT_ARRAY I 
VT_UI1 

The displaced property set supports files that have been deleted and moved to the 
Recycle Bin. There are two PIDs, defined in Shlguid.h. 

PID Value Description 

PID_DISPLACED_DATE 

PI D _DISPLACED_FROM 

3 
2 

Date that the file was deleted 

Location from which the file was deleted 

The miscellaneous property set is used to support synchronization of briefcases or 
offline files. It has three PIDs, defined in Shlguid.h. 

PID Value Description 

The number of times the file has been 
accessed 

Ownership of the file (for the NTFS file 
system) 

The synchronization status 

The query property set is used to support file searches. It has one PID, defined in 
Shlguid.h. 

PID Value Description 

2 The rank of the file 

The volume property set provides volume information. It has one PID, defined in 
Shlguid.h. 

PID Value Description 

2 The amount of free space 

The summary information property set is a standard OLE property set that supports 
the following PIDs: 



536 Volume 5 Microsoft Windows Shell 

PIO Property name Type 

2 Title VT_LPSTR 

3 Subject VT_LPSTR 

4 Author VT_LPSTR 

5 Keywords VT_LPSTR 

6 Comments VT_LPSTR 

7 Template VT_LPSTR 

8 Last Saved By VT_LPSTR 

9 Revision Number VT_LPSTR 

10 Total Editing Time VT _FILETIME 

11 Last Printed VT _FILETIME 

12 Create Time/Date VT _FILETIME 

13 Last Saved Time/Date VT _FILETIME 

14 Number of Pages VT_14 

15 Number of Words VT_14 

16 Number of Characters VT_14 

17 Thumbnail VT_CF 

18 Name of Creating VT_LPSTR 
Application 

19 Security VT_14 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IShellFolder2: :GetOetaiisEx 

SHCOLUMNINFO 
Contains information about the properties of a column. It is used by 
IColumnProvider::GetColumnlnfo. 



Chapter 9 Shell Structures 537 

DWORD fmt: 
UfNT cCbars; 
DW()RD' ,- 9sFla~$l "".", " ,.:!, 

WCHAR 'wsZTi t~ eIMAX...:.COt.UMN_NAMLLEN J; 
~', ,~' wCJiAR' ;:strrQ·$~'r1.1),t;1~n·t~A.x~CQ.'~,tfflft~~~$C~~'EN-] i, .,' 

}SHCQI.UMN(ttFO ••• LPSHCOLuMNl NFd,; . "",,"" ~ .. 
typedef:Corist:. SHCO{iJ~NfNF6* ; (PCSHCOLOMHIKF'd{ 

Members 
scid 

[out] SHCOLUMNID structure that uniquely identifies the column. 

vt 
[out] Native VARIANT type of the column's data. 

fmt 
[out] List-view format. This member normally is set to LVCFMT_LEFT. 

cChars 
[out] Default width of the column, in characters. 

csFlags 
[out] Flags indicating the default column state. It can be a combination of the following 
flags: 

Flag Description 

SHCOLSTATE_EXTENDED Provided by a handler, not the folder object. 

SHCOLSTATE_HIDDEN Not displayed in the user interface. 

SHCOLSTATE_ONBYDEFAUL T Will be shown by default in Microsoft Windows 
Explorer Details view, even if the user has not 
selected the column. If this flag is set, the 
column will be displayed for all folders. There is 
no way to force a column to be displayed on a 
per-folder basis. 

SHCOLSTATE_SECONDARYUI Not displayed in the context menu, but listed in 
the More dialog box. 

SHCOLSTATE_SLOW Will be slow to compute. Windows Explorer 
should get the data asynchronously and do the 
computation on a background thread. 

SHCOLSTATE_ TYPE_DATE A date. 

SHCOLSTATE_ TYPE_INT An integer. 

SHCOLSTATE_ TYPE_STR A string. 

wszTitle 
[out] Unicode string with the column's title. It must contain no more than 
MAX_COLUMN_NAME_LEN characters, including the terminating NULL. 



538 Volume 5 Microsoft Windows Shell 

wszDescription 
[out] Unicode string with the column's description. It must contain no more than 
MAX_COLUMN_DESC_LEN characters, including the terminating NULL. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IColumnProvlder::GetColumnlnfo 

SHCOLUMNINIT 
Passes initialization information to IColumnProvider::lnitialize. 

Members 
dwFlags 

Initialization flags. Reserved for future use. Set to NULL 

dwReserved 
Reserved for future use. Set to NULL. 

wszFolder 
Pointer to a NULL-terminated Unicode string with a fully qualified folder path. The 
string will be empty if multiple folders are specified. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 9 Shell Structures 539 

SHCREATEPROCESSINFOW 
Contains the information needed by SHCreateProcessAsUser to create a process. 

Members 
cbSize 

[in] Size, in bytes, of this structure. 

fMask 
[in] Array of flags that indicates the content and validity of the other structure 
members. This can be a combination of the following values: 

Flag Description 

SEE_MASK_CLASSKEY Use the file's class registry key. 

SEE_MASK_CLASSNAME 

SEE_MASK_CONNECTNETDRV 

SEE_MASK_DOENVSUBST 

SEE_MASK_FLAG_DDEWAIT 

Use the file's class name. 

Validate the share and connect to a drive 
letter. The pwszFile member is a Universal 
Naming Convention (UNC) path of a file on a 
network. 

Expand any environment variables. 

Wait for the DDE conversation to terminate 
before returning. 

Do not display an error message box if an 
error occurs. 

Use this flag when specifying a monitor on 
multimonitor systems. 

(continued) 



540 Volume 5 Microsoft Windows Shell 

(continued) 

Flag 

hwnd 
[in] Parent window handle. 

pwszFile 

Description 

The application will close the process. If the 
IpProcesslnformation member is a valid 
PROCESS_INFORMATION pOinter, and 
SEE_MASK_NOCLOSEPROCESS is set, the 
process will remain open when 
SHCreateProcessAsUser returns. The 
hProcess and hThread members of the 
PROCESS_INFORMATION structure will hold 
the process and thread handles, respectively. 
This flag typically is set to allow an application 
to find out when a process created with 
SHCreateProcessAsUser terminates. In 
some cases, such as when execution is 
satisfied through a DDE conversation, no 
handle will be returned. The calling application 
is responsible for closing the handle when it is 
no longer needed. If this flag is not set, the 
process will be closed before 
SHCreateProcessAsUser returns, even if 
IpProcesslnformation is a valid pointer. 

Create a console for the new process instead 
of having it inherit the parent's console. It is 
equivalent to using a 
CREATE_NEW_CONSOLE flag with 
CreateProcess. 

Indicates a Unicode application. 

[in] Pointer to a NULL-terminated Unicode string that specifies the executable file on 
which SHCreateProcessAsUser will perform the action specified by the runas verb. 
The runas verb must be supported by the file's class. 

Note If the path is not included with the file name, the current directory is assumed. 

pwszParameters 
[in] Pointer to a NULL-terminated Unicode string containing the application 
parameters. The parameters must be separated by spaces. To include double 
quotation marks, you must enclose each mark in a pair of quotation marks, as in the 
following example: 



Chapter 9 Shell Structures 541 

se1.lpParameters = "An example: \"\"\"quotedtext\"\"\""; 

In this case, the application receives three parameters: An, example:, and "quoted 
text". 

pwszCurrentDirectory 
[in] NULL-terminated Unicode string that contains the current directory. 

hUserToken 
[in] Access token that can be used to represent a particular user. It is needed when 
there are multiple users for those folders that are treated as belonging to a single 
user. The caller must have appropriate security privileges for the particular user, 
including TOKEN_QUERY and TOKEN_IMPERSONATE, and the user's registry hive 
currently must be mounted. For further discussion of access control issues, see 
Access Control. 

IpProcessAttributes 
[in] Pointer to a SECURITY_ATTRIBUTES structure with the security descriptor for 
the new process. It also specifies whether a child process can be inherited. If this 
parameter is set to NULL, the process will have a default security descriptor and the 
handle cannot be inherited. 

IpThreadAttributes 
[in] Pointer to a SECURITY_ATTRIBUTES structure with the security descriptor for 
the new thread. It also specifies whether a child process can be inherited. If this 
parameter is set to NULL, the process will have a default security descriptor and the 
handle cannot be inherited. 

blnheritHandles 
[in] Indicator as to whether the new process inherits handles from the calling process. 
If set to TRUE, each inheritable open handle in the calling process is inherited by the 
new process. Inherited handles have the same value and access privileges as the 
original handles. 

dwCreationFlags 
[in] Flags that control the creation of the process and the priority class. For a list of the 
available flags, see CreateProcessAsUser. 

IpStartuplnfo 
[in] Pointer to a STARTUPINFO structure that specifies how the main window for the 
new process should appear. 

IpProcesslnformation 
[out] Pointer to a PROCESS_INFORMATION structure that receives information 
about the new process. Set this member to a valid structure pointer, and set the 
SEE_MASK_NOCLOSEPROCESS flag in the fMask member, and the process will 
remain open when the function returns. The structure's hProcess and hThread 
members then will hold the process and thread handles, respectively. Set this 
member to NULL, and the process will be closed before the function returns. 



542 Volume 5 Microsoft Windows Shell 

Quicklnfo 
Version 5.00 and later of shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 
Import Library: sheIl32.lib. 

SHELLEXECUTEINFO 

SHDESCRIPTIONID 
Receives item data in response to a call to SHGetDataFromlDList. 

Members 
dwDescriptionld 

Receives a value that determines what type the item is. This can be one of the 
following values: 

SHDID_COMPUTER_CDROM The item is a CD-ROM drive. 

SHDID_COMPUTER_DRIVE35 The item is a 3.5-inch floppy drive. 

SHDID_COMPUTER_DRIVE525 The item is a 5.25-inch floppy drive. 

SHDID_COMPUTER_FIXED The item is a fixed disk drive. 

SHDID_COMPUTER_NETDRIVE The item is a drive that is mapped to a 
network share. 

SHDID_COMPUTER_OTHER The item is an unidentified system device. 

SHDID_COMPUTER_RAMDISK The item is a RAM disk. 

SHDID_COMPUTER_REMOVABLE The item is a removable disk drive. 

SHDID_FS_DIRECTORY The item is a folder. 

SHDID_FS_FILE The item is a file. 

SHDID_FS_OTHER The item is an unidentified item in the file 
system. 

SHDID_NET _DOMAIN 

SHDID_NET _OTHER 

The item is a network domain. 

The item is an unidentified network 
resource. 



SHDID_NET _RESTOFNET 

SHDID_NET _SERVER 

SHDID_NET _SHARE 

SHDID_ROOT _REG ITEM 

clsid 

Chapter 9 Shell Structures 543 

Not currently used. 

The item is a network server. 

The item is a network share. 

The item is a registered item on the 
desktop. 

Receives the CLSID of the object to which the item belongs. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

SHDRAGIMAGE 
Contains the information needed to create a drag image. 

Members 
sizeDraglmage 

SIZE structure with the length and width of the drag image. 

ptOffset 
POINT structure that specifies the location of the cursor within the drag image. The 
structure should contain the offset from the upper-left corner of the drag image to the 
location of the cursor. 

hbmpDraglmage 
Drag image's bitmap handle. 

crColorKey 
Color used by the control to fill the background of the drag image. 

Remarks 
Use the following procedure to create the drag image: 



544 Volume 5 Microsoft Windows Shell 

1. Create a bitmap of the size specified by sizeDraglmage with an HOC that is 
compatible with the screen. 

2. Draw the bitmap. 

3. Select the bitmap out of the HOC with which it was created. 

4. Destroy the HOC. 

5. Assign the bitmap handle to hbmpDraglmage. 

Note Turn off antialiasing when drawing text. Otherwise, artifacts could occur at the 
edges, between the text color and the color key. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

IDragSourceHelper::lnitializeFromBitmap, 
IDragSourceHelper::lnitializeFromWindow 

SHELLEXECUTEINFO 
Contains information used by ShellExecuteEx. 



union { 
HANDLE hlcon; 
HANDLEhMonitori 

HANUh'E<hRI'()cess; .. 

Chapter 9 Shell Structures 545 

} SHELLEXECUTEINFO, *LPSHELLEXEC.UTEINFO; 

Members 
cbSize 

Size of the structure, in bytes. 

fMask 
Array of flags that indicate the content and validity of the other structure members. 
This can be a combination of the following values: 

Flag Description 

SEE_MASK_ICON 

SEE_MASK_IDLIST 

Use the class key given by the hkeyClass 
member. 

Use the class name given by the IpClass 
member. 

Validate the share and connect to a drive 
letter. The IpFile member is a Universal 
Naming Convention (UNC) path of a file on a 
network. 

Expand any environment variables specified 
in the string given by the IpDirectory or 
IpFile member. 

Wait for the DDE conversation to terminate 
before returning (if the ShellExecuteEx 
function causes a DDE conversation to start). 

Do not display an error message box if an 
error occurs. 

Use this flag when specifying a monitor on 
multimonitor systems. The monitor is 
specified in the hMonitor member. 

Use the hot key given by the dwHotKey 
member. 

Use the icon given by the hlcon member. 

Use the item identifier list given by the 
IplDList member. The IplDList member must 
point to an ITEMIDLIST structure. 

(continued) 



546 Volume 5 Microsoft Windows Shell 

(continued) 

Flag Description 

SEE_MASK_INVOKEIDLIST Use the IContextMenu interface of the 
selected item's context menu handler. Use 
either IpFile to identify the item by its file­
system path, or IplDUst to identify the item by 
its PIDL. This flag allows applications to use 
ShellExecuteEx to invoke verbs from context 
menu extensions, instead of the static verbs 
listed in the registry. 

SEE_MASK_NOCLOSEPROCESS The hProcess member receives the process 
handle. This handle is typically used to allow 
an application to find out when a process 
created with ShellExecuteEx terminates. In 
some cases, such as when execution is 
satisfied through a DOE conversation, no 
handle will be returned. The calling 
application is responsible for closing the 

hwnd 

handle when it is no longer needed. 

Create a console for the new process instead 
of having it inherit the parent's console. It is 
equivalent to using a 
CREATE_NEW_CONSOLE flag with 
CreateProcess. 

Use this flag to indicate a Unicode 
application. 

Window handle to any message boxes that the system may produce while executing 
this function. 

IpVerb 
A string, referred to as a verb, that specifies the action to be performed. The set of 
available verbs depends on the particular file or folder. It includes the commands 
listed in the context menu and the registry. See Extending Context Menus for further 
discussion of context menus. The following verbs are usually valid: 

Verb Description 

edit 

explore 

open 

print 

properties 

Opens an editor. If /pFile is not a document file, the function will fail. 

The function explores the folder specified by /pFi/e. 
The function opens the file specified by the /pFile parameter. The file 
can be an executable file or a document file. It also can be a folder. 

The function prints the document file specified by /pFile. If /pFile is 
not a document file, the function will fail. 

Displays the file or folder's properties. 



Chapter 9 Shell Structures 547 

If you set this paramater to NULL: 

• For systems prior to Windows 2000, the "open" verb is used if available. If not, the 
default verb is used. 

• For Windows 2000 and later systems, "open" is used if available. If not, the default 
verb is used. If neither verb is available, the system uses the first verb listed in the 
registry. 

IpFile 
Address of a null-terminated string that specifies the name of the file on which 
SheilExecuteEx will perform the action specified by the IpVerb parameter. The 
system registry verbs that are supported by the SheilExecuteEx function include 
"open" for executable files and document files and "print" for document files for which 
a print handler has been registered. Other applications may have added shell verbs 
through the system registry, such as "play" for AVI and WAV files. 

Note If the path is not included with the name, the current directory is assumed. 

IpParameters 
Address of a null-terminated string containing the application parameters. The 
parameters must be separated by spaces. To include double quotation marks, you 
must enclose each mark in a pair of quotation marks, as in the following example: 

In this case, the application receives three parameters: An, example:, and "quoted 
text". 

If the IpFile member specifies a document file, this member should be NULL. 

IpDirectory 
Address of a null-terminated string that specifies the name of the working directory. If 
this member is not specified, the current directory is used as the working directory. 

nShow 
Flags that specify how an application is to be shown when it is opened. It can be one 
of the SW_ values listed for the Shell Execute function. If IpFile specifies a document 
file, the flag is simply passed to the associated application. It is up to the application to 
decide how to handle it. 

hlnstApp 
If the function succeeds, it sets this member to a value greater than 32. If the function 
fails, it is set to an SE_ERR_XXX error value that indicates the cause of the failure. 
Although hlnstApp is declared as an HINSTANCE for compatibility with 16-bit 
Microsoft Windows applications, it is not a true HINSTANCE. It only can be cast to an 
integer, and compared to either 32 or the SE_ERR_XXX error codes: 



548 Volume 5 Microsoft Windows Shell 

Error value 

SE_ERR_ACCESSDEN lED 

SE_ERR_ASSOCINCOMPLETE 

SE_ERR_DDEBUSY 

SE_ERR_DDEFAIL 

SE_ERR_DDETIMEOUT 

SE_ERR_DLLNOTFOUND 

SE_ERR_FNF 

SE_ERR_NOASSOC 

SE_ERR_OOM 

SE_ERR_PNF 

SE_ERR_SHARE 

IplDList 

Description 

Access denied. 

File association information not complete. 

DDE operation is busy. 

DDE operation failed. 

DDE operation timed out. 

Dynamic-link library not found. 

File not found. 

File association not available. 

Out of memory. 

Path not found. 

Cannot share an open file. 

Address of an ITEMIDLIST structure to contain an item-identifier list uniquely 
identifying the file to execute. This member is ignored if the fMask member is not set 
to SEE_MASK_IDLIST. 

IpClass 
Address of a null-terminated string specifying the name of a file class or a globally 
unique identifier (GUID). This member is ignored if fMask is not set to 
SEE_MASK_CLASSNAME. 

hkeyClass 
Handle to the registry key for the file class. This member is ignored if fMask is not set 
to SEE_MASK_CLASSKEY. 

dwHotKey 
Hot key to associate with the application. The low-order word is the virtual key code, 
and the high-order word is a modifier flag (HOTKEYF _). For a list of modifier flags, 
see the description of the WM_SETHOTKEY message. This member is ignored if 
fMask is not set to SEE_MASK_HOTKEY. 

hlcon 
Handle to the icon for the file class. This member is ignored if fMask is not set to 
SEE_MASK_ICON. 

hProcess 
Handle to the newly started application. This member is set on return and is always 
NULL unless fMask is set to SEE_MASK_NOCLOSEPROCESS. Even if fMask is set 
to SEE_MASK_NOCLOSEPROCESS, hProcess will be NULL if no process was 
launched. For example, if a document to be launched is a URL and an instance of 
Microsoft Internet Explorer already is running, it will display the document. No new 
process is launched, and hProcess will be NULL. 



Chapter 9 Shell Structures 549 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in shellapi.h. 

SHELLFLAGSTATE 
Contains a set of flags that indicate the current shell settings. This structure is used with 
the SHGetSettings function. 

Members 
fShow AIiObjects 

Nonzero if the Show All Files option is enabled, or zero otherwise. 

fShowExtensions 
Nonzero if the Hide File Extensions for Known File Types option is disabled, or 
zero otherwise. 

fNoConfirmRecycle 
Nonzero if the Display Delete Confirmation dialog box in the Recycle Bin is enabled, 
or zero otherwise. 

fShowSysFiles 
Nonzero if the Do Not Show Hidden Files option is selected, or zero otherwise. 

fShowCompColor 
Nonzero if the Display Compressed Files and Folders with Alternate Color option 
is enabled, or zero otherwise. 



550 Volume 5 Microsoft Windows Shell 

fDoubleClicklnWebView 
Nonzero if the Double-Click to Open an Item option is enabled, or zero otherwise. 

fDesktopHTML 
Nonzero if the Active Desktop, View as Web Page option is enabled, or zero 
otherwise. 

fWin95Classic 
Nonzero if the Classic Style option is enabled, or zero otherwise. 

fDontPrettyPath 
Nonzero if the Allow All Uppercase Names option is enabled, or zero otherwise. 

fShowAttribCol 
Nonzero if the Show File Attributes in Detail View option is enabled, or zero 
otherwise. 

fMapNetDrvBtn 
Nonzero if the Show Map Network Drive Button in Toolbar option is enabled, or 
zero otherwise. 

fShowlnfoTip 
Nonzero if the Show Info Tips for Items in Folders & Desktop option is enabled, or 
zero otherwise. 

fHidelcons 
Not used. 

fRestFlags 
Not used. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

SHFILEINFO 
Contains information about a file object. 

tYfJEHfef,stf'U€t ~Sl1fiLElNFri'{ .... 
i:'lHGON hlcon,':> ..... , 

11)'1: freon:., .' 
DWPRD{!wAttrtJ:)utes; 



TCHAR szDisplayName[MAX_PATH]; 
TCHAR szTypeName[80]; 

} SHFILEINFO; 

Members 
hleon 

Chapter 9 Shell Structures 551 

Handle to the icon that represents the file. You are responsible for destroying this 
handle with Destroyleon when you no longer need it. 

ileon 
Index of the icon image within the system image list. 

dwAttributes 
Array of values that indicates the attributes of the file object. For information about 
these values, see the ISheIiFolder::GetAttributesOf method. 

szDisplayName 
String that contains the name of the file as it appears in the Windows shell, or the path 
and file name of the file that contains the icon representing the file. 

szTypeName 
String that describes the type of file. 

Remarks 
This structure is used with the SHGetFilelnfo function. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in shellapi.h. 

SHFILEOPSTRUCT 
Contains information that the SHFileOperation function uses to perform file operations. 



552 Volume 5 Microsoft Windows Shell 

Members 
hwnd 

Window handle to the dialog box to display information about the status of the file 
operation. 

wFunc 
Value that indicates which operation to perform. This member can be one of the 
following values: 

FO_COPY 
Copy the files specified in the pFrom member to the location specified in the pTo 
member. 

FO_DELETE 
Delete the files specified in pFrom. 

Fa_MOVE 
Move the files specified in pFrom to the location specified in pTo. 

FO_RENAME 
Rename the file specified in pFrom. You cannot use this flag to rename multiple 
files with a single function call. Use Fa_MOVE, instead. 

pFrom 
Address of a buffer to specify one or more source file names. Multiple names must be 
null-separated. The list of names must be double nUll-terminated. This member can 
specify a wild-card path. 

pTo 
Address of a buffer to contain the name of the destination file or directory. This 
parameter must be set to NULL if it is not used. The name string must meet the 
following specifications: 

• Wildcard characters are not supported. 

• Copy and Move operations can specify destination directories that do not exist and 
the system will attempt to create them. The system normally displays a dialog box 
to ask the user if they want to create the new directory. To suppress this dialog box 
and have the directories created silently, set the FOF _NOCONFIRMDIR flag in 
fFiles. 

• For Copy and Move operations, the buffer can contain multiple destination file 
names if the fFlags member specifies FOF _MULTIDESTFILES. 

• Multiple names must be null-separated. The list of names must be double null­
terminated. 

• Use fully qualified path names with long file names. If you use a relative path 
name, long file names will be truncated to the 8.3 format. For example, if you set 
pFrom = "New Text Documenttxt" and pTo = "temp\O", the file will appear in the 
temp subdirectory as NewTextD.txt. 

fFlags 
Flags that control the file operation. This member can take a combination of the 
following flags: 



Chapter 9 Shell Structures 553 

Flag Description 

FOF _ALLOWUNDO Preserve Undo information, if possible. If 
pFrom does not contain fully qualified path 
and file names, this flag is ignored. 

FOF _FILESONL Y Perform the operation on files only if a 
wildcard file name (*.*) is specified. 

FOF _MUL TIDESTFILES The pTo member specifies multiple 
destination files (one for each source file), 
instead of one directory where all source 
files are to be deposited. 

FOF _NOCONFIRMATION Respond with "Yes to All" for any dialog 
box that is displayed. 

FOF _NOCONFIRMMKDIR Do not confirm the creation of a new 
directory if the operation requires one to 
be created. 

FOF _NO_CONNECTED_ELEMENTS Version 5.0. Do not move connected files 
as a group. Only move the specified files. 

FOF _NOCOPYSECURITYATTRIBS Version 4.71. Do not copy the security 
attributes of the file. 

FOF _NOERRORUI Do not display a user interface if an error 
occurs. 

FOF _NORECURSION 

FOF _RENAMEONCOLLISION 

FOF_SILENT 

FOF _SIMPLEPROGRESS 

FOF _WANTMAPPINGHANDLE 

FOF _WANTNUKEWARNING 

Only operate in the local directory. Do not 
operate recursively into subdirectories. 

Give the file being operated on a new 
name in a move, copy, or rename 
operation if a file with the target name 
already exists. 

Do not display a progress dialog box. 

Display a progress dialog box but do not 
show the file names. 

If FOF _RENAMEONCOLLISION is 
specified and any files were renamed, 
assign a name mapping object containing 
their old and new names to the 
hNameMappings member. 

Version 5.0. Send a warning if a file is 
being destroyed during a delete operation 
instead of recycled. This flag partially 
overrides FOF _NOCONFIRMATION. 



554 Volume 5 Microsoft Windows Shell 

fAnyOperationsAborted 
Value that receives TRUE if the user cancelled any file operations before they were 
completed, or FALSE otherwise. 

hNameMappings 
A handle to a name mapping object containing the old and new names of the 
renamed files. This member is used only if the fFlags member includes the 
FOF _WANTMAPPINGHANDLE flag. Treat hNameMappings as a pOinter to a 
structure whose first member is an INT value, followed by an array of 
SHNAMEMAPPING structures. The INT value will be set to the number of structures 
in the array. Each SHNAMEMAPPING structure will contain the old and new path 
name for one of the renamed files. 

Note The handle must be freed with SHFreeNameMappings. 

IpszProgressTitle 
Address of a string to use as the title of a progress dialog box. This member is used 
only if fFlags includes the FOF _SIMPLEPROGRESS flag. 

Remarks 
If the pFrom or pTo members are unqualified names, the current directories are taken 
from the global current drive and directory settings, as managed by the 
GetCurrentDirectory and SetCurrentDirectory functions. 

If pFrom is set to a filename, deleting the file with FO_DELETE will not move it to the 
Recycle Bin, even if the FOF _ALLOWUNDO flag is set. You must use a full pathname. 

Version 4.00 and later of SheIl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shellapi.h. 

SHITEMID 
Defines an item identifier. 



Members 
cb 

Size of identifier, in bytes, including cb itself. 

ablD 
Variable-length item identifier. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

SHNAMEMAPPING 

Chapter 9 Shell Structures 555 

Contains the old and new path names for each file that was moved, copied, or renamed 
by the SHFileOperation function. 

Members 
pszOldPath 

Address of a character buffer that contains the old path name. 

pszNewPath 
Address of a character buffer that contains the new path name. 

cchOldPath 
Number of characters in pszOldPath. 

cchNewPath 
Number of characters in pszNewPath. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shellapLh. 



556 Volume 5 Microsoft Windows Shell 

SHFILEOPSTRUCT 

SHQUERYRBINFO 
Contains the size and item count information retrieved by the SHQueryRecycleBin 
function. 

Members 
cbSize 

Size of the structure, in bytes. This member must be filled in prior to calling the 
function. 

i64Size 
Total size of all the objects in the specified Recycle Bin, in bytes. 

i64Numitems 
Total number of items in the specified Recycle Bin. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shellapi.h. 

STRRET 
Contains strings returned from the ISheliFolder interface methods. 



char cStr[MAX_PATHJ: 
}PUMM¥UNlONNAME; . 

} S:T~RET.*t.f\STRRET,.; 

Members 
uType 

Chapter 9 Shell Structures 557 

Value that specifies the desired format of the string. This can be one of the following 
values: 

STRRET_CSTR 

STRRET _OFFSET 

pOleStr 

The string is returned in the cStr member. 

The uOffset member value indicates the number of bytes 
from the beginning of the item identifier list where the string 
is located. 

The string is at the address pointed to, in the pOleStr 
member. 

Address of the OLE string. This memory must be allocated with the shell's allocator 
(see SHGetMalloc). It is the calling application's responsibility to free this memory 
when it is no longer needed. The shell's allocator must be used to free the memory. 

pStr 
This member is not used. 

uOffset 
Offset into item identifier list. 

cStr 
Buffer to receive the display name. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

ISheIIFolder::GetDisplayNameOf 

SV2CVW2_PARAMS 
Holds the parameters for the ISheIiView2::CreateViewWindow2 method. 



558 Volume 5 Microsoft Windows Shell 

Members 
ebSize 

Size of the structure. 

psvPrev 
Pointer to the IShellView interface of the previous view. A Shell View can use this 
parameter to communicate with a previous view with the same implementation. It also 
can be used to optimize browsing between like views. This parameter can be NULL. 

pfs 
FOLDERSETTINGS structure with information needed to create the view. 

psbOwner 
Pointer to the current instance of the IShellBrowser interface of the parent shell 
browser. CreateViewWindow2 should call this interface's AddRef method and store 
the interface pointer. It can be used for communication with the Windows Explorer 
window. 

preView 
RECT structure that defines the view's display region. 

pvid 
View mode's globally unique identifier (GUID). 

hwndView 
Window handle for the new Shell View. 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



Chapter 9 Shell Structures 559 

URLINVOKECOMMANDINFO 
Contains information for use with the IUniformResourceLocator::lnvokeCommand 
method. 

typed~fift r:\l~t' '{ , . '. ..... . ..~. ' 

·.}'lf~i'~t~~lJ~I~,~~"",. 
Members 
dwcbSize 

Size of this structure, in bytes. 

dwFlags 
Flag value that specifies how the IUniformResourceLocator::lnvokeCommand 
method will execute. This value can be a combination of the following: 

IURL_INVOKECOMMAND_FL_ALLOW_UI 
Interaction with the user is allowed and the hwndParent member of this structure 
is valid. If this is not set, interaction with the user is not allowed, and the 
hwndParent member is ignored. 

IURL_INVOKECOMMAND_FL_USE_DEFAUL T _VERB 
Default verb for the Internet Shortcut's protocol is to be used, and the pcszVerb 
member is ignored. If this bit is not set, the verb is specified by pcszVerb. 

hwndParent 
Handle to the parent window. If dwFlags is set to 
IURL_INVOKECOMMAND_FL_USE_DEFAUL T _VERB, this member is ignored. 

pcszVerb 
Address of a zero-terminated string that contains the verb to be invoked by 
IUniformResourceLocator::lnvokeCommand. If dwFlags is set to 
IURL_INVOKECOMMAND_FL_USE_DEFAUL T _VERB, this member is ignored. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in intshcut.h. 



560 Volume 5 Microsoft Windows Shell 

WALLPAPEROPT 
Contains the wallpaper options. 

Members 
dwSize 

Unsigned long integer value that contains the size of the WALLPAPEROPT structure. 

dwStyle 
Unsigned long integer value that contains the wallpaper style. It can be one of the 
following values: 

• WPSTYLE_CENTER 

• WPSTYLE_ TILE 

• WPSTYLE_STRETCH 

• WPSTYLE_MAX 

Version 4.71 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 



561 

C HAP T E R 1 0 

Shell Enumerations and Macros 

Shell Enumerations 

ASSOCDATA 
Used by IQueryAssociations::GetData to define the type of data that is to be returned. 

Members 
ASSOCDATA_MSIDESCRIPTOR 

Component descriptor to pass to the Microsoft Installation API. 

ASSOCDATA_NOACTIVATEHANDLER 
Attempts to activate a window are restricted. There is no data associated with this 
value. 

ASSOCDATA_QUERYCLASSSTORE 
If this value is present, applications should check the Microsoft Windows 2000 class 
store. 

ASSOCF 
Used to provide information to the IQueryAssociations interface methods. 

(continued) 



562 Volume 5 Microsoft Windows Shell 

(continued) 

Members 
ASSOCF _INIT _BYEXENAME 

Used when the pwszAssoc parameter of IQueryAssociations::lnit is set to an 
executable file name. If this flag is not set in this case, the root key will be set to the 
ProglD associated with the .exe key instead of the executable file's ProglD. 

ASSOCF_OPEN_BYEXENAME 
This value is identical to ASSOCF _INIT _BYEXENAME. 

ASSOCF _INIT _DEFAUL TTOSTAR 
If an IQueryAssociations method does not find the requested value under the root 
key, it will attempt to retrieve the comparable value from the * subkey. 

ASSOCF _INIT _DEFAUL TTOFOLDER 
If an IQuerylnterface method does not find the requested value under the root key, it 
will attempt to retrieve the comparable value from the Folder subkey. 

ASSOCF _NOUSERSETTINGS 
Only search HKEY _CLASSES_ROOT. Ignore HKEY _CURRENT_USER. 

ASSOCF_NOTRUNCATE 
Don't truncate the return string. Return an error value and the required size for the 
complete string. 

ASSOCF _VERIFY 
Verify that data is accurate. This setting allows IQueryAssociations methods to read 
data from the user's hard drive. For example, they can check the friendly name in the 
registry against the one stored in the .exe file. Setting this flag normally reduces the 
efficiency of the method. 

ASSOCF_REMAPRUNDLL 
IQueryAssociations methods normally return information about the first .exe or .dll in 
a command string. If a command uses Rundll.exe, setting this flag tells the method to 
ignore Rundll.exe and return information about its target. 

ASSOCF _NOFIXUPS 
Do not fix errors in the registry, such as the friendly name of a function not matching 
the one found in the .exe file. 

ASSOCF _IGNOREBASECLASS 
Ignore the BaseClass value. 



Chapter 10 Shell Enumerations and Macros 563 

AssocQueryKey, AssocQueryString, AssocQueryStringByKey 

ASSOCKEY 
Used to specify the type of key to be returned by IQueryAssociations::GetKey. 

Members 
ASSOCKEY_SHELLEXECCLASS 

Key that is passed to SheIlExec(hkeyClass). 

ASSOCKEY _APP 
Application key for the file class. 

ASSOCKEY _CLASS 
ProglD or class key. 

ASSOCKEY_BASECLASS 
BaseClass value. 

ASSOCSTR 
Used by IQueryAssociations::GetString to define the type of string that is 
to be returned. 



564 Volume 5 Microsoft Windows Shell 

Members 
ASSOCSTR_COMMAND 

Command string associated with a shell verb. 

ASSOCSTR_EXECUTABLE 
Executable from a shell verb command string. If the command uses Rundll.exe, set 
the ASSOCF _REMAPRUNDLL flag in the flags parameter of 
IQueryAssociations::GetString to get the target executable. 

ASSOCSTR_FRIENDLYDOCNAME 
Friendly name of a document type. 

ASSOCSTR_FRIENDL YAPPNAME 
Friendly name of an executable. 

ASSOCSTR_NOOPEN 
Ignore the information associated with the open subkey. 

ASSOCSTR_SHELLNEWVALUE 
Look under the SheliNew subkey. 

ASSOCSTR_DDECOMMAND 
Template for DDE commands. 

ASSOCSTR_DDEIFEXEC 
DDECOMMAND to use to just create a process. 

ASSOCSTR_DDEAPPLICATION 
Application name in a DDE broadcast. 

ASSOCSTR_DDETOPIC 
Topic name in a DDE broadcast. 

FOLDERFLAGS 
Set of flags used to specify folder view options. They are independent of each other, and 
can be used in any combination. 



Chapter 10 Shell Enumerations and Macros 565 

FWLNOICONS. , 
, FWF .;.SHOWSekN\JIAy$' " 

, .,' FWF';;SrNJit:~' ~1t:1{~~~~tft:1tf\<;t,f;':'~::::':t~;'~;~ 
}'~bL'ri~;RFtAGS'> ", 

,', ' ,.' .. ,' -~\..,. 

Members 
FWF _AUTOARRANGE 

Automatically arrange the elements in the view. This implies LVS_AUTOARRANGE if 
the list view control is used to implement the view. 

FWF _ABBREVIATEDNAMES 
Names should be abbreviated. This flag is not currently supported. 

FWF _SNAPTOGRID 
Items should be arranged on a grid. This flag is not currently supported. 

FWF _OWNERDATA 
This flag is not currently supported. 

FWF _BESTFITWINDOW 
Enable the best-fit window mode. Let the view size the window so that its contents fit 
inside the view window in the best possible manner. 

FWF _DESKTOP 
Make the folder behave like the desktop. This value applies only to the desktop view 
and is not used for typical shell folders. 

FWF _SINGLESEL 
Do not allow more than a single item to be selected. This is used in the common 
dialogs. 

FWF _NOSUBFOLDERS 
Do not show subfolders. 

FWF _TRANSPARENT 
Draw transparently. This is used only for the desktop. 

FWF _NOCLIENTEDGE 
Do not add the WS_EX_CLlENTEDGE value to the view. This is used only for the 
desktop. 

FWF _NOSCROLL 
Do not add scroll bars. This is used only for the desktop. 

FWF _ALIGN LEFT 
The view should be left-aligned. This implies LVS_ALlGNLEFT if the list view control 
is used to implement the view. 

FWF _NOICONS 
The view should not display icons. 

FWF _SHOWSELALWAYS 
Always show the selection. 

FWF _SINGLECLICKACTIVATE 
This flag is not currently supported. 



566 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

FOLDERVIEWMODE 
Set of constants used to specify the folder view type. 

Members 
FVM_ICON 

The view should display large icons. 

FVM_SMALLICON 
The view should display small icons. 

FVM_LlST 
Object names are displayed in a list view. 

FVM_DETAILS 
Object names and other selected information, such as the size or date last updated, 
are shown. 

, ,"'. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

The values of this enumeration are used with the IUniformResourceLocator::SetURL 
to specify the protocol scheme. 



Chapter 10 Shell Enumerations and Macros 567 

1:,vp:edefenum fur..1_s.et.u.t"l,..flagS{ , . 
... , ···lURLSETURk:.FLGdESLf>RO;nk(j~ •• ·· 
'.:'"l~i..,.SETU,Rt.iFt2USE.-DEF AUlT.iPR{):'FOO{) b,: " 

}-.~'". IiiRkS,£TtJ.RL·FLAQ$i:,.: ;.;;~:.:)..:::: " ',< . ' 

Members 
IURL_SETURL_FL_GUESS_PROTOCOL 

If the protocol scheme is not specified in the pcszURL parameter to 
IUniformResourceLocator::SetURL, the system automatically chooses a scheme 
and adds it to the URL. 

IURL_SETURL_FL_USE_DEFAULT_PROTOCOL 
If the protocol scheme is not specified in the pcszURL parameter to 
IUniformResourceLocator::SetURL, the system adds the default protocol to the 
URL. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in intshcut.h. 

IURL_SETURL_INVOKECOMMAND_FLAGS 
The following enumerated values are used in the dwFlags member of the 
URLINVOKECOMMANDINFO structure. 

Members 
IURL_INVOKECOMMAND_FL_ALLOW _UI 

If this bit is set, interaction with the user is allowed and the hwndParent member of 
the URLINVOKECOMMANDINFO structure is valid. If this bit is clear, interaction with 
the user is not allowed and the hwndParent member is ignored. 

IURL_INVOKECOMMAND_FL_USE_DEFAUL T _VERB 
If this bit is set, the default verb for the Internet Shortcut's protocol is to be used and 
the pcszVerb member of the URLINVOKECOMMANDINFO structure is ignored. If 
this bit is clear, the verb is specified by pcszVerb. 



568 Volume 5 Microsoft Windows Shell 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in intshcut.h. 

SHCONTF 
Determines the type of items included in an enumeration. These values are used with 
the ISheIiFolder::EnumObjects method. 

Members 
SHCONTF _FOLDERS 

Include items that are folders in the enumeration. 

SHCONTF_NONFOLDERS 
Include items that are not folders in the enumeration. 

SHCONTF _INCLUDEHIDDEN 
Include hidden items in the enumeration. 

SHCONTF _INIT _ON_FIRST _NEXT 
ISheIiFolder::EnumObjects can return without validating the enumeration object. 
Validation can be postponed until the first call to IEnumIDList::Next. This flag is 
intended to be used when a user-interface may be displayed prior to the first 
IEnumIDList::Next call. For a user-interface to be presented, hwndOwnermust be 
set to a valid window handle. 

SHCONTF _NETPRINTERSRCH 
The caller is looking for printer objects. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

SHGNO 

Chapter 10 Shell Enumerations and Macros 569 

Defines the values used with the ISheIiFolder::GetDisplayNameOf and 
ISheliFolder: :SetNameOf methods. 

Members 
This enumeration consists of two groups of values. The first specifies the name's type 
and has two possible values: 

Value 

SHGDN_INFOLDER 

Description 

Full name. The name is relative to the desktop and 
not to a specific folder. This name will be used for 
generic display. 

Relative name. The name is relative to the folder that 
is processing it. 

The second group consists of modifiers to the first group that specify name retrieval 
options. It has the following values: 

Value Description 

SHGDN_FOREDITING The name will be used for in-place editing when the 
user renames the item. 

SHGDN_FORADDRESSBAR The name will be displayed in an address bar 
combo box. 

SHGDN_FORPARSING The name will be used for parsing. That is, it can be 
passed to ParseDisplayName to recover the objects 
PIDL. The form this name takes depends on the 
particular object. 



570 Volume 5 Microsoft Windows Shell 

Remarks 

Note while the parsing name returned by file system objects is the object's fully­
qualified path, virtual folders may use something quite different. For example, some 
virtual folders use a GUID as the parsing name and will return a string of the form 
"::{GUIDY'. To check whether or not the object is part of the file system, call 
ISheIiFolder::GetAttrlbutesOf and see if the SFGAO_FILESYSTEM flag is set. 

The numeric value of SHGDN_NORMAL is zero, so you cannot test for the presence of 
this bit. Consider SHGDN_NORMAL a default setting that will be used if no other flag in 
that group is set. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shlobj.h. 

The following enumerated values are used with the TranslateURL function to determine 
how it will execute. 

Members 
TRANSLATEURL_FL_GUESS_PROTOCOL 

If the protocol scheme is not specified in the pcszURL parameter to TranslateURL, 
the system automatically chooses a scheme and adds it to the URL. 

TRANSLATEURL_FL_USE_DEFAULT_PROTOCOL 
If the protocol scheme is not specified in the pcszURL parameter to TranslateURL, 
the system adds the default protocol to the URL. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Unsupported. 
Header: Declared in intshcut.h. 

Chapter 10 Shell Enumerations and Macros 571 

URLASSOCIATIONDIALOG_IN_FLAGS 
The following enumerated values are used with URLAssociationDialog to determine 
how it executes. 

Members 
URLASSOCDLG_FL_USE_DEFAULT_NAME 

Use the default file name (that is, "Internet Shortcut"). 

URLASSOCDLG_FL_REGISTER_ASSOC 
Register the selected application as the handler for the protocol specified in the 
pcszURL parameter of URLAssociationDialog. The application is registered only if 
this flag is set and the user indicates that a persistent association is desired. 

Version 4.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in intshcut.h. 

Shell Macros 

MAKEDLLVERULL 
Used to pack DLL version information into a ULONGLONG value. 



572 Volume 5 Microsoft Windows Shell 

Parameters 
wMajorVersion 

The major version number. 

wMinorVersion 
The minor version number. 

wBuild 
The build number. 

wQFE 
The QFE number that identifies the service pack. 

Return Values 
Returns the version information packed into a ULONGLONG value 

Remarks 
This macro is used in conjunction with DIIGetVersion to pack version information into a 
form that can easily be compared to the uliVersion member of a DLLVERSIONINF02 
structure. It is defined as: 

For most purposes, you only need to assign values to the major and minor version 
numbers. The remaining two parameters can be set to zero. The following code 
fragment illustrates how to use MAKEDLLVERULL to determine whether a DLL is 
version 4.71 or later. The Versionlnfo structure is the DLLVERSIONINF02 structure 
returned by DIIGetVersion. 

Version 5.00 and later of Shell32.dll. 

Windows NT/2000: Requires Windows 2000 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 



Chapter 10 Shell Enumerations and Macros 573 

SOANGLETENTHS 
Sets the angle in tenths of a degree. 

_S,OANGLET~NtHS'Angl¢~nj'eJlth.sOfAi)~\Jru) 

Parameters 
Angleln TenthsOfADegree 

New angle, in tenths of a degree. 

"', ",'" 

Windows NT/2000: Not supported by version 5.0 or later. 
Windows: Supported by Windows 95. Not supported by Windows 98. 
Windows CE: Unsupported. 

SOPALETTEINDEX 
Creates a palette-index color value. 

,S~PA~EtT~.~·~~E*<.~h~~>::·l;;~ 
Parameters 
Index 

Valid palette entry index. When this color value is used, the system uses the color 
from the given palette entry. 

Windows NT/2000: Not supported by version 5.0 or later. 
Windows: Supported by Windows 95. Not supported by Windows 98. 
Windows CE: Unsupported. 

SOPALETTERGB 
Creates a palette-relative RGB color value. When this color value is specified, the 
system uses the palette entry that has the color that most closely matches this value. 

~@J\CE!t1~~G~iM8::jr~~~;':Jjl:~~):~;;::'" 

Parameters 
Red 

Red color intensity in the range 0 to 255. 

Green 
Green color intensity in the range 0 to 255. 

Blue 
Blue color intensity in the range 0 to 255. 



574 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Not supported by version 5.0 or later. 
Windows: Supported by Windows 95. Not supported by Windows 98. 
Windows CE: Unsupported. 

SORGB 
Creates an RGB color value. 

Parameters 
Red 

Red color intensity in the range 0 to 255. 

Green 
Green color intensity in the range 0 to 255. 

Blue 
Blue color intensity in the range 0 to 255. 

Windows NT/2000: Not supported by version 5.0 or later. 
Windows: Supported by Windows 95. Not supported by Windows 98. 
Windows CE: Unsupported. 

SOSETRATIO 
Sets the ratio. 

Parameters 
Numerator 

Numerator of the ratio factor. This value must be in the range 0 to 65,535. 

Denominator 
Denominator of the ratio factor. This value must be in the range 0 to 65,535. 

Windows NT/2000: Not supported by version 5.0 or later. 
Windows: Supported by Windows 95. Not supported by Windows 98. 
Windows CE: Unsupported. 



575 

CHAPTER 11 

Shell Lightweight Utility APls 

String Functions 

ChrCmpl 
Performs a comparison between two characters. The comparison is not case sensitive. 

B()Ol.tb'Y;f:mp,IJ 
,. fCH~l:GJr~ ! 

'iJ'clI~~;M' f: ,j~~C 
Parameters 
c1 

First character to be compared. 

c2 
Second character to be compared. 

Return Values 
Returns zero if the two characters are the same, or nonzero otherwise. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 



576 Volume 5 Microsoft Windows Shell 

IntlStrEqN 
Performs a case-sensitive comparison of a specified number of characters from the 
beginning of two localized strings. 

Parameters 
pszStr1 

[in] Pointer to a NULL-terminated string. 

pszStr2 
[in] Pointer to a NULL-terminated string. 

nChar 
[in] Number of characters to be compared, starting from the beginning of the strings. 

Return Values 
Returns TRUE if the first nCharcharacters are identical, or FALSE otherwise. 

Remarks 
This function gets the thread locale and uses CompareString to do a case-sensitive 
comparison of the first nChar characters. It is equivalent to: 

I it Tsi~~~Qrt,er (:,';j'RtJt;~,,:~t~j;l-l; ;~'~~fre\;$tlO:iij,rl' 

Version 5.00 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

IntlStrEqWorker 



Chapter 11 Shell Lightweight Utility APls 577 

IntlStrEqNI 
Performs a case-insensitive comparison of a specified number of characters from the 
beginning of two localized strings. 

BOOl IntlStrEqNI ( 
LPC!STR pszSi:rJ • 
. LPCrsTlt pszStf!'2, 

;.itii;' nChar . 

Parameters 
pszStr1 

[in] Pointer to a NULL-terminated string. 

pszStr2 
[in] Pointer to a NULL-terminated string. 

nChar 
[in] Number of characters to be compared, starting from the beginning of the strings. 

Return Values 
Returns TRUE if the first nCharcharacters are identical, or FALSE otherwise. 

Remarks 
This function gets the thread locale and uses CompareString to do a case-insensitive 
comparison of the first nChar characters. It is equivalent to: 

IJ"ltlStrtqworker( ;FAtSf,pszstfl. psZSttt. nCharl 

Version 5.00 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

IntiStrEqWorker 



578 Volume 5 Microsoft Windows Shell 

IntlStrEqWorker 
Compares a specified number of characters from the beginning of two localized strings. 

Parameters 
fCaseSens 

[in] Value that is set to TRUE for a case-sensitive comparison, or to FALSE for a 
case-insensitive comparison. 

pszStr1 
[in] Pointer to a NULL-terminated string. 

pszStr2 
[in] Pointer to a NULL-terminated string. 

nChar 
[in] Number of characters to be compared, starting from the beginning of the strings. 

Return Values 
Returns TRUE if the first nCharcharacters are identical, or FALSE otherwise. 

Remarks 
This function gets the thread locale and uses CompareString to determine whether the 
first nChar characters are identical. 

Version 5.00 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 



Chapter 11 Shell Lightweight Utility APls 579 

M LLoadLibrary 
Maps an executable module, specified by its file name and registry subkey, into the 
address space of the calling function. It supports multilanguage applications by 
determining the LCID and loading the appropriate DLL or EXE. 

Parameters 
IpszLibFileName 

Null-terminated string with the file name of the EXE or DLL to be loaded. It should not 
include any path information. MLLoadLibrary will extract that from the registry. 

hFile 
Reserved. NULL must be passed. 

dwFlags 
Action to be taken when loading the module. This can be one of the following: 

DONT _RESOLVE_DLL_REFERENCE If the executable module is a DLL, the system 
does not call DIlMain for process and thread 
initialization and termination. 

LOAD_LlBRARY_AS_DATAFILE The system maps the file into the calling 
process's virtual address space as if it were a 
data file. 

IpComponent 
Name of the component's subkey. The function assumes that the component is 
located under 
H KEY _LOCAL_MACH IN E\ \Software\ \Microsoft\ \ Windows\\CurrentVersion\\App 
Paths. 

bCrossCodePage 
Reserved. Null must be passed. 

Return Values 
Returns a handle to the module if successful, or NULL otherwise. 

Version 5.00 and later of ShlwapLdl1. 



580 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 

SHStrDup 
Makes a copy of a string in newly allocated memory. 

Parameters 
psz$ource 

[in] Pointer to the string to be copied. 

ppwszTarget 
[out] Pointer to an allocated Unicode string containing the result. SHStrDup allocates 
memory for this string with CoTaskMemAllocate. You should free the string with 
CoTaskMemFree when it is no longer needed. 

Return Values 
Returns S_OK if successful, or an OLE error value otherwise. 

Remarks 
This function will take either Unicode or ANSI strings as input, but the copied string is 
always Unicode. 

This function uses CoTaskMemAlloc to allocate memory for the copied string. You must 
free this memory with CoTaskMemFree when it is no longer needed. 

Version 5.00 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 



StrOup 

StrCat 
Appends one string to another. 

Parameters 
psz1 

Chapter 11 Shell Lightweight Utility APls 581 

[in/out] Address of a null-terminated string to be appended to. It must be large enough 
to hold both strings. 

psz2 
[in] Address of the string to be appended to psz1. 

Return Values 
Returns a pOinter to psz1, which holds the combined strings. 

Version 4.71 and later of shlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrCatBuff 
Copies and appends characters from one string to the end of another. 



582 Volume 5 Microsoft Wiridows Shell 

Parameters 
pszDestination 

[in/out] Pointer to a nUll-terminated string. When the function returns, the characters 
from pszSource will be appended to it. 

pszSource 
Pointer to the string to be appended to pszDestination. 

cchDestBuffSize 
Size of the buffer pOinted to by pszDestination. This value must be greater than the 
length of the combined string, or it will be truncated to fit. 

Return Values 
Returns a pOinter to the destination string. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrChr 
Searches a string for the first occurrence of a character that matches the specified 
character. The comparison is case sensitive. 

Parameters 
IpStart 

Address of the string to be searched. 

wMatch 
Character to be used for comparison. 

Return Values 
Returns the address of the first occurrence of the character in the string if successful, or 
NULL otherwise. 



Chapter 11 Shell Lightweight Utility APls 583 

Remarks 
The comparison assumes IpStart points to the start of a null-terminated string. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrChrl 
Searches a string for the first occurrence of a character that matches the specified 
character. The comparison is not case sensitive. 

Parameters 
IpStart 

Address of the string to be searched. 

wMatch 
Character to be used for comparison. 

Return Values 
Returns the address of the first occurrence of the character in the string if successful, or 
NULL otherwise. 

Remarks 
The comparison assumes IpStart pOints to the start of a null-terminated string. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



584 Volume 5 Microsoft Windows Shell 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 

Header: Declared in shlwapi.h. 
Import Library: shlwapUib. 

StrCmp 
Compares two strings to determine if they are the same. The comparison is case­
sensitive. 

Parameters 
IpStr1 

[in] Pointer to the first string to be compared. 

IpStr2 
[in] Pointer to the second string to be compared. 

Return Values 
Returns zero if the strings are identical. Returns a positive value if the string pointed to 
by IpStr1 is greater than that pointed to by IpStr2. Returns a negative value if the string 
pOinted to by IpStr1 is less than that pointed to by IpStr2. 

Remarks 
This function returns the difference in value of the first unequal characters it encounters, 
or zero if they are all equal. For example, if IpStr1="abczb" and IpStr2 = "abcdefg", 
StrCmp determines that "abczb" is greater than "abcdefg" and returns z - d. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 



Chapter 11 Shell Lightweight Utility APls 585 

StrCmpl 
Compares two strings to determine if they are the same. The comparison is not case­
sensitive. 

tntstrCmpl< 
lflCISTR 7pStrJ. 
~~ISrRrp:Str2 . 

f: ... 

Parameters 
IpStr1 

[in] Address of the first string to be compared. 

IpStr2 
[in] Address of the second string to be compared. 

Return Values 
Returns zero if the strings are identical. Returns a positive value if the string pOinted to 
by IpStr1 is greater than that pOinted to by IpStr2. Returns a negative value if the string 
pOinted to by IpStr1 is less than that pOinted to by IpStr2. 

Remarks 
This function returns the difference in value of the first unequal characters it encounters, 
or zero if they are all equal. For example, if IpStr1="Abczb" and IpStr2 = "abCdefg", 
StrCmpl determines that "Abczb" is greater than "abCdefg" and returns z - d. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

StrCmpN 
Compares a specified number of characters from the beginning of two strings to 
determine if they are the same. The comparison is case-sensitive. 



586 Volume 5 Microsoft Windows Shell 

Parameters 
IpStr1 

[in] Pointer to the first string to be compared. 

IpStr2 
[in] Pointer to the second string to be compared. 

nChar 
[in] Number of characters from the beginning of each string to be compared. 

Return Values 
Returns zero if the strings are identical. Returns a positive value if the first nChar 
characters of the string pointed to by IpStr1are greater than those from the string pOinted 
to by IpStr2. It returns a negative value if the first nCharcharacters of the string pointed 
to by IpStr1 are less than those from the string pOinted to by IpStr2. 

Remarks 
The StrNCmp macro differs from this function in name only. 

This function compares the first nChar characters of the two strings. It returns zero if 
they are all equal or the difference in value of the first unequal characters it encounters. 
For example, if IpStr1="Abczb", IpStr2 = "abCdefg", and nChar= 4, StrCmpN 
determines that "abCdefg" is greater than "Abczb" and returns A-a. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrCmpNI 
Compares a specified number of characters from the beginning of two strings to 
determine if they are the same. The comparison is not case-sensitive. 



Parameters 
IpStr1 

Chapter 11 Shell Lightweight Utility APls 587 

[in] Pointer to the first string to be compared. 

IpStr2 
[in] Pointer to the second string to be compared. 

nChsr 
[in] Number of characters from the beginning of each string to be compared. 

Return Values 
Returns zero if the strings are identical. Returns a positive value if the first nChsr 
characters of the string pOinted to by IpStr1are greater than those from the string pointed 
to by IpStr2. It returns a negative value if the first nChsr characters of the string pOinted 
to by IpStr1 are less than those from the string pointed to by IpStr2. 

Remarks 
The StrNCmpl macro differs from this function in name only. 

This function compares the first nChsrcharacters of the two strings. It returns zero if 
they are all equal or the difference in value of the first unequal characters it encounters. 
For example, if IpStr1="Abczb", IpStr2 = "abCdefg", and nChsr= 4, StrCmpNI 
determines that "Abczb" is greater than "abCdefg" and returns z - d. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

StrCpy 
Copies one string to another. 



588 Volume 5 Microsoft Windows Shell 

Parameters 
psz1 

[out] Address of the destination string. 

psz2 
[in] Address of the source string. 

Return Values 
Returns a pOinter to psz1. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

StrCpyN 
Copies a specified number of characters from the beginning of one string to another. 
The StrNCpy macro differs from this function in name only. 

Parameters 
psz1 

[out] Pointer to a NULL-terminated string to hold the copied characters. 

psz2 
[in] Pointer to the source string. 



Chapter 11 Shell Lightweight Utility APls 589 

cchMax 
[in] Number of characters to be copied, including the terminating NULL character. 

Return Values 
Returns a pointer to psz1. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

StrCSpn 
Searches a string for the first occurrence of any of a group of characters. The search 
method is case-sensitive, and the NULL terminator is included within the search pattern 
match. 

Parameters 
IpStr 

[in] Pointer to the null-terminated string to be searched. 

IpSet 
[in] Pointer to a null-terminated string containing the characters to search for. 

Return Values 
Returns the index of the first occurrence in IpStr of any character from IpSet, or the 
length of IpStr if no match is found. 

Remarks 
The return value of this function is equal to the length of the initial substring in IpStrthat 
does not include any characters from IpSet. 



590 Volume 5 Microsoft Windows Shell 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrCSpnl 
Searches a string for the first occurrence of any of a group of characters. The search 
method is not case-sensitive, and the NULL terminator is included within the search 
pattern match. 

Parameters 
IpStr 

[in] Pointer to the null-terminated string to be searched. 

IpSet 
[in] Pointer to a null-terminated string containing the characters to search for. 

Return Values 
Returns the index of the first occurrence in IpStr of any character from IpSet, or the 
length of IpStr if no match is found. 

Remarks 
The return value of this function is equal to the length of the initial substring in IpStrthat 
does not include any characters from IpSet. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 



Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

StrOup 
Duplicates a string. 

Parameters 
Ipsz 

Chapter 11 Shell Lightweight Utility APls 591 

Address of a constant null-terminated character string. 

Return Values 
Returns the address of the string that was copied, or NULL if the string cannot be 
copied. 

Remarks 

Note This function uses LocalAlloc to allocate storage space for the copy of the string. 
The calling application must free this memory by calling the LocalFree function on the 
pOinter returned by the call to StrDup. 

StrOup will allocate storage the size of the original string. If storage allocation is 
successful, the original string is copied to the duplicate string. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 



592 Volume 5 Microsoft Windows Shell 

StrFormatByteSize 
Converts a numeric value into a string that represents the number expressed as a size 
value in bytes, kilobytes, megabytes, or gigabytes, depending on the size. 

Parameters 
dwlqdw 

[in] Numeric value to be converted. 

pszBuf I pwszBuf 
[out] Pointer to the converted string. 

cchBuf 
[in] Size of pszBuf, in characters. 

Return Values 
Returns the address of the converted string, or NULL if the conversion fails. 

Remarks 
The first parameter of this function has a different type for the ANSI and Unicode 
versions. If your numeric value is a DWORD, you can use StrFormatByteSize with text 
macros for both cases. The compiler will cast the numerical value to a LONGLONG for 
the Unicode case. If your numerical value is a LONGLONG, you should use 
StrFormatByteSizeWexplicitly. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 



Chapter 11 Shell Lightweight Utility APls 593 

StrFormatByteSize64A 
Converts a numeric value into a string that represents the number expressed as a size 
value in bytes, kilobytes, megabytes, or gigabytes, depending on the size. 

LPSTR StrFo.rmatByte$tze64A( 
LONGLONGqdw. 

,.LPstR .fJ~~8yf, 
·UlNT •. ufJhifS.ize 

.)j 

Parameters 
qdw 

[in] Numeric value to be converted. 

pszBuf 
[out] Pointer a buffer to hold the converted number. 

uiBufSize 
[in] Size of pszBuf, in characters. 

Return Values 
Returns the address of the converted string, or NULL if the conversion fails. 

Remarks 
The following table illustrates how this function converts a numeric value into a text 
string. 

Numeric value Text string 

532 532 bytes 

1340 1.30KB 

23506 22.9KB 

2400016 2.29MB 

2400000000 2.23GB 

Version 5.00 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 



594 Volume 5 Microsoft Windows Shell 

StrFormatByteSize 

StrFormatKBSize 
Converts a numeric value into a string that represents the number expressed as a size 
value in kilobytes. 

Parameters 
qdw 

[in] Numeric value to be converted. 

pszBuf 
[out] Pointer to a buffer to hold the converted number. 

uiBufSize 
[in] Size of pszBuf, in characters. 

Return Values 
Returns a pointer to the converted string, or NULL if the conversion fails. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrFormatByteSize 



Chapter 11 Shell Lightweight Utility APls 595 

StrFromTimelnterval 
Converts a time interval, specified in milliseconds, to a string. 

Parameters 
pszOut 

[out] Pointer to a character buffer that receives the converted string. 

cchMax 
[in] Size of pszOut, in characters. If cchMax is set to zero, StrFromTimelnterval will 
return the minimum size of the character buffer needed to hold the converted string. In 
this case, pszOut will not contain the converted string. 

dwTimeMS 
[in] Time interval, in milliseconds. 

digits 
[in] Maximum number of digits to be represented in pszOut. Some examples are: 

dwTimeMS digits pszOut 

34000 3 34 sec 

34000 2 34 sec 

34000 1 30 sec 

74000 3 1 min 14 sec 

74000 2 1 min 10 sec 

74000 1 1 min 

Return Values 
Returns the number of characters in pszOut, excluding the NULL terminator. 

Remarks 
The time value returned in pzsOut will always be in the form hh hours mm minutes 
ss seconds. Times that exceed twenty four hours are not converted to days or months. 
Fractions of seconds are ignored. 

Version 4.71 and later of ShlwapLdl1. 



596 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

StrlslntlEqual 
Compares a specified number of characters from the beginning of two strings to 
determine if they are equal. 

;~IlL.S:'trldtitltqUlilL .. 

::;~ii~~~;i~~t;~i~l~r~\;;;:~· .. . 
,~tp~iSl'R;l.pSt)' '1',',92.,::: ., .... . 
1~~f'~oh.~J·.· .... '. : .. 

j; 

Parameters 
fCaseSens 

Determines the case sensitivity of the comparison. If this value is nonzero, the 
comparison is case-sensitive. If this value is zero, the comparison is not case­
sensitive. 

IpString1 
Pointer to the first string to be compared. 

IpString2 
Pointer to the second string to be compared. 

nChar 
Number of characters from the beginning of each string to be compared. 

Return Values 
Returns TRUE if the first nCharcharacters from the two strings are equal, or FALSE 
otherwise. 

Remarks 
You can set case sensitivity with the StrlntlEqN and StrlntlEqNI macros. StrlntlEqN 
performs a case-sensitive comparison, and StrlntlEqNI performs a case-insensitive 
comparison. 

The syntax of the two macros is: 



Chapter 11 Shell Lightweight Utility APls 597 

IJdefine StrIntlEqN(sl. 52. nChar) StrIslntlEqualerRI:IE,sl;slb,IiCha,l') 
Iidefine StrlntlEqN!(sl. s2, nChar) StrIsIntlEqual(FALSE; 51;$2, ,IiChar.)· 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

StrNCat 
Appends a specified number of characters from the beginning of one string to the end of 
another. The StrCatN macro is identical to this function. 

lPrS1rR~StriNCat(, 
'~ilPTslcR ,;ps,t~roht·. 

\~~~~"~V' 
)~, ' .... 
Parameters 
pszFront 

[in/out] Address of a NULL-terminated string to which the characters from psz8ackwill 
be appended. It must be large enough to hold the combined strings. 

psz8ack 
[in] Address of the string to be appended. 

cchMax 
[in] Number of characters to be appended to pszFrontfrom the beginning of psz8ack. 

Return Values 
Returns a pointer to pszFront, which holds the combined string. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



598 Volume 5 Microsoft Windows Shell 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrPBrk 
Searches a string for the first occurrence of a character contained in a specified buffer. 
This search does not include the null terminator. 

Parameters 
psz 

Address of the string to be searched. 

pszSet 
Address of a null-terminated character buffer that contains the characters for which to 
search. 

Return Values 
Returns the address in psz of the first occurrence of a character contained in the buffer 
at pszSet, or NULL if no match is found. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrRChr 
Searches a string for the last occurrence of a specified character. The comparison is 
case-sensitive. 



LPTSTR StrRChr( 
LPCTSTR pszStart. 
LptT;SfitpsZ'End •. 
TCflAR: ·wMatcff· .. ... 

Parameters 
IpStart 

Chapter 11 Shell Lightweight Utility APls 599 

[in] Pointer to the null-terminated string to be searched. 

IpEnd 
[in] Pointer into the source string that defines the range of the search. Set IpEndto 
point to a character in the string and the search will stop with the preceding character. 
Set IpEndto NULL to search the entire string. 

wMatch 
[in] Character to search for. 

Return Values 
Returns a pOinter to the last occurrence of the character in the string, if successful, or 
NULL if not. 

Remarks 
The comparison assumes that IpEnd pOints to the end of the string. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapUib. 

StrRChrl 
Searches a string for the last occurrence of a specified character. The comparison is not 
case-sensitive. 



600 Volume 5 Microsoft Windows Shell 

Parameters 
pszStart 

[in] Pointer to the NULL-terminated string to be searched. 

pszEnd 
[in] Pointer into the source string that defines the range of the search. Set IpEndto 
point to a character in the string and the search will stop with the preceding character. 
Set IpEndto NULL to search the entire string. 

wMatch 
[in] Character to search for. 

Return Values 
Returns a pointer to the last occurrence of the character in the string if successful, or 
NULL if not. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrRetToBuf 
Takes a STRRET structure returned by ISheIiFolder::GetDisplayNameOf, converts it to 
a string, and places the result in a buffer. 

Parameters 
pstr 

[in] Pointer to the STRRET structure. When the function returns, this pointer will no 
longer be valid. 

pidl 
[in] Pointer to the item's ITEMIDLIST structure. 



Chapter 11 Shell Lightweight Utility APls 601 

pszBuf 
[out] Buffer to hold the display name. It will be returned as a null-terminated string. If 
cchBufis too small, the name will be truncated to fit. 

cchBuf 
[in] Size of pszBuf, in characters. If cchBuf is too small, the string will be truncated 
to fit. 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Remarks 
If the uType member of the structure pointed to by pstr is set to STRRET _ WSTR, the 
pOleStr member of that structure will be freed on return. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapUib. 

StrRetToStr 

StrRetToStr 
Takes a STRRET structure returned by ISheIiFolder::GetDisplayNameOf and returns a 
pointer to an allocated string containing the display name. 

Parameters 
pstr 

[in] Pointer to the STRRET structure. When the function returns, this painter will no 
longer be valid. 



602 Volume 5 Microsoft Windows Shell 

pidl 
[in] Pointer to the item's ITEMIDLIST structure. 

ppszName 
[out] Pointer to an allocated string containing the result. StrRetToStr allocates 
memory for this string with CoTaskMemAliocate. You should free the string with 
CoTaskMemFree when it is no longer needed. 

Return Values 
Returns S_OK if successful, or an OLE error code otherwise. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

StrRetToBuf 

StrRStrl 
Searches for the last occurrence of a specified substring within a string. The comparison 
is not case sensitive. 

Parameters 
psz$ource 

[in] Pointer to a NULL-terminated source string. 

pszLast 
[in] Pointer into the source string that defines the range of the search. Set pszLastto 
point to a character in the source string and the search will stop with the preceding 
character. Set pszLastto NULL to search the entire source string. 



Chapter 11 Shell Lightweight Utility APls 603 

pszSrch 
[in] Pointer to the substring to search for. 

Return Values 
Returns the address of the last occurrence of the substring if successful, or NULL 
otherwise. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

StrSpn 
Obtains the length of a substring within a string that consists entirely of characters 
contained in a specified buffer. 

Parameters 
psz 

Address of the string that is to be searched. 

pszSet 
Address of a null-terminated character buffer that contains the set of characters for 
which to search. 

Return Values 
Returns the length, in characters, of the matching string or zero if no match is found. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



604 Volume 5 Microsoft Windows Shell 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrStr 
Finds the first occurrence of a substring within a string. The comparison is case 
sensitive. 

Parameters 
IpFirst 

Address of the string being searched. 

IpSrch 
Substring to search for. 

Return Values 
Returns the address of the first occurrence of the matching substring if successful, or 
NULL otherwise. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrStrl 
Finds the first occurrence of a substring within a string. The comparison is not case 
sensitive. 



LPTST~ StrStrI(, 
lPCTSTR7pFtrt,t •. ,,' , 

" tP:~1S1'Jt'7p~ir-~1't ,. 
) . . , 
Parameters 
IpFirst 

Address of the string being searched. 

IpSrch 
Substring to search for. 

Return Values 

Chapter 11 Shell Lightweight Utility APls 605 

Returns the address of the first occurrence of the matching substring if successful, or 
NULL otherwise. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

Strlolnt 
Converts a decimal string to an integer. The StrToLong macro differs from this function 
in name only. 

Parameters 
IpSrc 

Address of the null-terminated string to be converted. 



606 Volume 5 Microsoft Windows Shell 

Return Values 
Returns the INT value of a string. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 

Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrTolntEx 
Converts a decimal or hexadecimal string to an integer. 

Parameters 
pszString 

Address of a nUll-terminated string to be converted. 

dwFlags 
Specifies if pszString contains a decimal or hexadecimal value. This can be one of the 
following values: 

STIF _DEFAULT pszString contains a decimal value. 

pszString contains a hexadecimal value. 

piRet 
Address of an integer variable that receives the converted string. 

Return Values 
Returns TRUE if the string is converted, or FALSE otherwise. 



Chapter 11 Shell Lightweight Utility APls 607 

B!{ilf~nts . 
Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

StrTrim 
Removes (trims) specified leading and trailing characters from a string. 

~~~~;r.l~~~;:;i 
Parameters
pszSource

:", ...

[in/out] Pointer to the string to be trimmed. On return, pszSource will hold the trimmed
string.

pszTrimChars
[in] Pointer to a null-terminated string containing the characters that will be trimmed
from psz.

Return Values
Returns TRUE if any characters were removed, or FALSE otherwise.

Version 4.71 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98.(or Windows 95 with Internet Explorer 4.0 or
later}.
Windows CE: Unsupported.

_ Header: Declared in shlwapLh.
Import Library: shlwapUib.

608 Volume 5 Microsoft Windows Shell

wnsprintf
Takes a variable-length argument list and returns the values of the arguments as a
printf-style formatted string.

Parameters
IpOut

[out] Buffer to hold the output string.

cchLimitln
[in] Maximum number of characters allowed in IpOut.

pszFmt
[in] printf-style format string.

Return Values
Returns the number of characters written to the buffer, excluding any terminating NULL
characters. A negative value is returned if an error occurs.

Remarks
This is a Windows version of sprintf. It does not support floating point or pointer types. It
supports only the left alignment flag.

The Unicode version of wsprintf 0 is not implemented for Windows 95. Use the Unicode
version of this function (wnsprintfW) instead of wsprintfW.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

Chapter 11 Shell Lightweight Utility APls 609

wvnsprintf
Takes list of arguments and returns the values of the arguments as a printf-style
formatted string.

Parameters
IpOut

[out] Buffer to hold the output string.

cchLimitln
[in] Maximum number of characters allowed in IpOut.

pszFmt
[in] printf-style format string.

arglist
[in] Pointer to a list of parameters.

Return Values
Returns the number of characters written to the buffer, excluding any terminating NULL
characters. A negative value is returned if an error occurs.

Remarks
This is a Windows version of vsprintfO. It does not support floating point or pOinter
types. It supports only the left alignment flag.

Version 5.00 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

610 Volume 5 Microsoft Windows Shell

Path Functions

PathAddBackslash
Adds a backslash to the end of a string to create the correct syntax for a path. If the
source path already has a trailing backslash, no backslash will be added.

Parameters
IpszPath

[in/out] Pointer to a buffer with a string that represents a path. The size of this buffer
should be set to MAX_PATH to ensure that it is large enough to hold the returned
string.

Return Values
Returns the address of the NULL that terminates the string.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

PathAdd Extension
Adds a file extension to a path string.

Parameters
pszPath

Chapter 11 Shell Lightweight Utility APls 611

[in/out] Pointer to a buffer with the NULL-terminated string to which the file extension
will be appended. The size of this buffer should be set to MAX_PATH to ensure that it
is large enough to hold the returned string.

pszExtension
[in] Pointer to the string that contains the file extension.

Return Values
Returns TRUE if an extension was added, or FALSE otherwise.

Remarks
If there is already a file extension present, no extension will be added. If the pszPath
points to a NULL string, the result will be the file extension only. If pszExtension points to
a NULL string, an ".exe" extension will be added.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

PathAppend
Appends one path to the end of another.

Parameters
pszPath

[in/out] Pointer to a buffer with the NULL-terminated string to which the file name will
be appended. The size of this buffer should be set to MAX_PATH to ensure that it is
large enough to hold the returned string.

pszMore
[in] Address of the string that represents the file name.

612 Volume 5 Microsoft Windows Shell

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks
This function automatically inserts a backslash between the two strings, if one is not
already present. If pszPath is set to "c:", no backslash will be inserted to allow drive­
relative paths to be used.

Version 4.71 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

Path Build Root
Creates a root path from a given drive number.

Parameters
szRoot

Address of the string that receives the constructed root path. This buffer must be at
least four characters in size.

iDrive
Integer value that indicates the desired drive number. It should be between 0 and 25.

Return Values
Returns the address of the constructed root path, or NULL otherwise.

Version 4.71 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Chapter 11 Shell Lightweight Utility APls 613

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathCanonicalize
Canonicalizes a path.

Parameters
IpszDst

Address of a string that receives the canonicalized path. The size of this buffer should
be set to MAX_PATH to ensure that it is large enough to hold the returned string.

IpszSrc
Address of the path to be canonicalized.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks
This function allows the user to specify what to remove from a path by inserting special
character sequences into the path. The "." sequence indicates to remove the path part
from the current position to the previous path part. The "." sequence indicates to skip
over the next path part to the following path part. The root part of the path cannot be
removed.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

614 Volume 5 Microsoft Windows Shell

PathCombine
Concatenates two strings that represent properly formed paths into one path, as well as
any relative path pieces.

Parameters
JpszOest

[out] Pointer to a buffer with the NULL-terminated string to hold the combined path
string. The size of this buffer should be set to MAX_PATH to ensure that it is large
enough to hold the returned string.

JpszOir
[in]Address of the string that represents the directory path.

JpszFile
[in]Address of the string that represents the file path.

Return Values
Returns a pointer to a string with the concatenated path if successful, or NULL
otherwise.

Remarks
The directory path should be in the form of A:,B:, .. , Z:. The file path should be in a
correct form that represents the file part of the path. The file path must not be null, and if
it ends with a backslash, the backslash will be maintained.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

Chapter 11 Shell Lightweight Utility APls 615

PathCommonPrefix
Compares two paths to determine if they share a common prefix. A prefix is one of these
types: "C:\\", ".", ".", ".\\".

1nt PathCommonPref1x(
LPCTSTR pszPl7eJ,
L·PCtSTR pSIPlle2 ••.
LPTSTRpszPath

Parameters
pszFile1

[in] Address of the first path name.

pszFile2
[in] Address of the second path name.

pszPath
[out] Address of a buffer that receives the common prefix. If there is no common
prefix, it will be set to NULL.

Return Values
Returns the number of characters copied to the output buffer (not including the NULL
terminator) if successful, or zero otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathCompactPath
Truncates a file path to fit within a given pixel width by replacing path components with
ellipses.

SOOt;' pathc.~a(lt:patb(·1
HDChDC;><

'.; ,;'::.' '_, '_'!:c _ '->>,)
LPJsn ... lpsz/, .. ath.
OINldX ..

); .

616 Volume 5 Microsoft Windows Shell

Parameters
hOC

Handle to the device context used for font metrics.

IpszPath
Address of the string to be modified.

dx
Width, in pixels, that the string will be forced to fit within.

Return Values
Returns TRUE if the path was successfully compacted to the specified width. Returns
FALSE on failure, or if the base portion of the path would not fit the specified width.

Remarks
This function uses the font currently selected in hOC to calculate the width of the text.
This function will not compact the path beyond the base file name preceded by ellipses.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathCompactPathEx
Truncates a path to fit within a certain number of characters by replacing path
components with ellipses.

Parameters
pszOut

[out] Address of the string that has been altered.

Chapter 11 Shell Lightweight Utility APls 617

pszSrc
[in] Address of the string to be altered.

cchMax
[in] Maximum number of characters to be contained in the new string, including the
terminating NULL character. For example, if cchMax = 8, the resulting string can
contain a maximum of 7 characters plus the NULL terminator.

dwFlags
Reserved.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks
The 'I' separator will be used instead of '\' if the original string used it. If pszSource points
to a file name that is too long, rather than a path, the file name will be truncated to
cchMax characters, including the ellipsis and the terminating NULL character. For
example, if the input file name is "My Filename" and cchMax is 10,
PathCompactPathEx will return "My Fil..".

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

PathCreateFromUrl
Takes a file URL and converts it to a DOS path.

;HREStilTiipatItCriat~tr'olll~l' 1 r
·.lPCTSTRps~lJq7.i

LP'rSl'Rps,tPatJJ;.
LP~l\IORDPcchhth.'·· .

. ·llWo;~OiJiw&es.Jrvffd
""-~W, ~~, '~~k-_~~',~ , i;'C

): .

618 Volume 5 Microsoft Windows Shell

Parameters
pszUrl

Pointer to the string with the URL.

pszPath
Value used to return the DOS path. The size of this buffer should be set to
MAX_PATH to ensure that it is large enough to hold the returned string.

pcchPath
Length of pszPath.

dwReserved
Reserved. Set this parameter to NULL.

Return Values
Returns S_OK if successful, or a standard OLE error value otherwise.

Version 5.00 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

PathFileExists
Determines if a file exists.

Parameters
pszPath

Address of the file to verify.

Return Values
Returns TRUE if the file exists, or FALSE otherwise.

Chapter 11 Shell Lightweight Utility APls 619

Remarks
This function tests the validity of the file and path. It works only on the local file system or
on a remote drive that has been mounted to a drive letter. It will return FALSE for remote
file paths that begin with the UNC names \\server or \\servet\share. It will also return
FALSE if a mounted remote drive is out of service.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathFindExtension
Searches a path for an extension.

Parameters
pPath

Address of the path that contains the extension for which to search.

Return Values
Returns the address of the "." preceding the extension within pPath if an extension is
found, or the address of the trailing NULL character otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

620 Volume 5 Microsoft Windows Shell

PathFindFileName
Searches a path for a file name.

Parameters
pPath

Address of the file name for which to search.

Return Values
Returns a pOinter to the address of the string if successful, or a pointer to the beginning
of the path otherwise.

Version 4.71 and later of ShlwapLdll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathFindNextComponent
Parses a path for the next path component.

.,
•. : .. tP).".;,:.,r., •. :~.' ... '·.~~~:V::'.!~!i~!!,~~Oin~t~~,::'::··.';·,i;'):llr;l'l"·.~' ',I:ji)J.::;!";;!'t~7;;.';.

,. .', '." :"'., '.:.>;,,; ", . ,.,",". :"';:"'0'" :;:-·;':/l ·.::;~~,,:.~~.0·' .. ···;·~···"<';-.:t,,;,~·:-:1··

Parameters
pszPath

[in] Pointer to a NULL-terminated string with the path. Paths are delimited by
backslashes or by the NULL at the end of the path.

Return Values
Returns a pOinter to a NULL-terminated string with the next path component if
successful, or NULL otherwise.

Chapter 11 Shell Lightweight Utility APls 621

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

PathFindOnPath
Searches for a file.

Parameters
pszFile

File name for which to search. If the search is successful, this parameter is used to
return the fully qualified path name.

ppszOtherDirs
Optional null-terminated array of directories to be searched first.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks
PathFindOnPath searches for the file specified by pszFile. If no directories are specified
in ppszOtherDirs, it attempts to find the file by searching standard directories such as
System32 and the directories specified in the PATH environment variable. To expedite
the process or enable PathFindOnPath to search a wider range of directories, use the
ppszOtherDirs parameter to specify one or more directories to be searched first. If more
than one file has the name specified by pszFile, PathFindOnPath returns the first
instance it finds.

Version 4.71 and later of Shlwapi.dll.

622 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

Path Fi ndSuffixArray
Determines if a given file name has one of a list of suffixes.

Parameters
pszPath

[in] File name to be tested. A full path can also be used.

apszSuffix
[in] Array of suffixes to be tested for.

iArraySize
[in] Number of elements in apszSuffix.

Return Values
Returns a pointer to a string with the matching suffix if successful, or NULL if pszPath
does not end with one of the specified suffixes.

Remarks
This function does a case-sensitive comparison. The suffix must match exactly.

Version 5.00 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

Chapter 11 Shell Lightweight Utility APls 623

PathGetArgs
Finds the command line arguments within a given path.

LPTSrR,:, P,lt;b$~a~ . ," ,

....• LP~T~rR;~~Z'~~~p;> ••
):' '.. ' .. "

Parameters
pszPath

Address of the path to be searched.

Return Values
Returns the address of the beginning of the command line arguments if successful, or
NULL otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

PathGetCharType
Determines the type of character with respect to a path.

Parameters
ch

Character for which to determine the type.

Return Values
Returns one or more of the following values that define the type of character:

624 Volume 5 Microsoft Windows Shell

GCT _INVALID

GCT _LFNCHAR

GCT _SEPARATOR

GCT _SHORTCHAR

GCT_WILD

The character is not valid in a path.

The character is valid in a long file name.

The character is a path separator.

The character is valid in a short (8.3) file name.

The character is a wildcard character.

Version 4.71 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathGetDriveNumber
Searches a path for a drive letter within the range of 'A' to 'z' and returns the
corresponding drive number.

Parameters
Ipsz

Address of a string that contains the path to be searched.

Return Values
Returns 0 through 25 (corresponding to 'A' through 'Z') if the path has a drive letter, or
-1 otherwise.

Version 4.71 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.

Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathlsContentType

Chapter 11 Shell Lightweight Utility APls 625

Determines if a file's registered content type matches the specified content type. This
function obtains the content type for the specified file type and compares that string with
the pszContentType. The comparison is not case sensitive.

Parameters
pszPath

Address of a character buffer that contains the file whose content type will be
compared.

pszContentType
Address of a character buffer that contains the content type string to which the file's
registered content type will be compared.

Return Values
Returns nonzero if the file's registered content type matches pszContentType, or zero
otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathlsDirectory
Verifies that a path is a valid directory.

626 Volume 5 Microsoft Windows Shell

Parameters
pszPath

Address of the path to verify.

Return Values
Returns TRUE if the path is a valid directory, or FALSE otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathlsDirectoryEmpty
Determines whether or not a specified path is an empty directory.

Parameters
pszPath

[in] NULL-terminated string with the path to be tested.

Return Values
Returns TRUE if pszPath is an empty directory. Returns FALSE if pszPath is not a
directory, or if it contains at least one file other than "." or ".".

Remarks
"C:\" is considered a directory.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).

Chapter 11 Shell Lightweight Utility APls 627

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

PathlsDirectory

PathlsFileSpec
Searches a path for any path delimiting characters (for example, ":' or '\'). If there are no
path delimiting characters present, the path is considered to be a File Spec path .

. ·~~~~t~~I~j!!:~~~~{' ... ~.
:':~;,:~. :. ':~~',:l" .::, .. :. :\'" '.- '.;::.:~'.'.:.

Parameters
IpszPath

Address of the path to be searched.

Return Values
Returns TRUE if there are no path delimiting characters within the path, or FALSE if
there are path delimiting characters.

Version 4.71 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathisHTMLFile
Determines if a file is an HTML file. The determination is made based on the content
type that is registered for the file's extension.

628 Volume 5 Microsoft Windows Shell

Parameters
pszFile

Address of a character buffer that contains the path and name of the file.

Return Values
Returns nonzero if the file is an HTML file, or zero otherwise.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapLlib.

PathlsLFN FileSpec
Determines whether or not a file name is in long format.

Parameters
pszName

[in] NULL-terminated string with the file name to be tested.

Return Values
Returns TRUE if pszName exceeds the number of characters allowed by the 8.3 format,
or FALSE otherwise.

Version 5.00 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).

Chapter 11 Shell Lightweight Utility APls 629

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

PathlsFileSpec

PathlsNetworkPath
Determines whether a path string represents a network resource.

Parameters
pszPath

[in] NULL-terminated string that contains the path.

Return Values
Returns TRUE if the string represents a network resource, or FALSE otherwise.

Remarks
PathlsNetwork interprets two types of paths as network paths:

• Paths that begin with two backslash (\) characters are interpreted as UNC paths.

• Paths that begin with a letter followed by a colon (:) are interpreted as a mounted
network drive.

The path is not checked to see if it refers to an actual network server.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

630 Volume 5 Microsoft Windows Shell

PathlsPrefix
Searches a path to determine if it contains a valid prefix of the type passed by pszPrefix.
A prefix is one of these types: "C:\\", ".", ".", ".\\".

Parameters
pszPrefix

Address of the prefix for which to search.

pszPath
Address of the path to be searched.

Return Values
Returns TRUE if the compared path is the full prefix for the path, or FALSE otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

Path Is Relative

Parameters
IpszPath

Address of the path to search.

Return Values
Returns TRUE if the path is relative, or FALSE if it is absolute.

Chapter 11 Shell Lightweight Utility APls 631

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathlsRoot
Parses a path to determine if it is a directory root.

Parameters
pPath

Address of the path to be validated.

Return Values
Returns TRUE if the specified path is a root, or FALSE otherwise.

Remarks
Returns TRUE for paths such as "\", "X:\,', ''\\server\sharfi', or ''\\server\'', or for paths that
begin with those strings. Paths such as ".\path2" will return FALSE .

. , :.,

,.i ~ ,

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

632 Volume 5 Microsoft Windows Shell

PathlsSameRoot
Compares two paths to determine if they have a common root component.

Parameters
pszPath1

Address of the first path to be compared.

pszPath2
Address of the second path to be compared.

Return Values
Returns TRUE if both strings have the same root component, or FALSE otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathlsSystemFolder
Determines if an existing folder contains the attributes that make it a system folder.
Alternately indicates if certain attributes qualify a folder to be a system folder.

Parameters
pszPath

[in] Address of a character buffer that contains the name of an existing folder. The
attributes for this folder will be retrieved and compared with those that define a system
folder. If this folder contains the attributes to make it a system folder, the function

Chapter 11 Shell Lightweight Utility APls 633

returns nonzero. If this value is NULL, this function determines if the attributes passed
in dwAttrb qualify it to be a system folder.

dwAttrb
[in] Contains the file attributes to be compared. If pszPath is not NULL, this value is
ignored. If pszPath is NULL, the attributes passed in this value are compared with
those that qualify a folder as a system folder. If the attributes are sufficient to make
this a system folder, this function returns nonzero. These attributes are the attributes
that are returned from GetFileAttributes.

Return Values
Returns nonzero if the pszPath or dwAttrb represent a system folder, or zero otherwise.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

PathisUNC
Determines if the string is a valid UNC (universal naming convention) for a server and
share path.

~~~!~r~.i:{1.?~If~f»-· 
Parameters 
pszPath 

Address of the path to validate. 

Return Values 
Returns TRUE if the string is a valid UNC path, or FALSE otherwise. 

Version 4.71 and later of ShlwapLdl1. 



634 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathlsUNCServer 
Determines if a string is a valid UNC (universal naming convention) for a server path 
only. 

Parameters 
pszPath 

Address of the path to validate. 

Return Values 
Returns TRUE if the string is a valid UNC path for a server only (no share name), or 
FALSE otherwise. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathlsU NCServerShare 
Determines if a string is a valid universal naming convention (UNC) share path, 
\\servet\share. 



Parameters 
pszPath 

Chapter 11 Shell Lightweight Utility APls 635 

Pointer to a string with the path to be validated. 

Return Values 
Returns TRUE if the string is in the form \\servet\share, or FALSE otherwise. 

Version 4.71 and later of ShlwapLdli. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

PathisURL 
Tests a given string to determine if it conforms to a valid URL format. 

Parameters 
pszPath 

[in] Address of the URL path to validate. 

Return Values 
. Returns TRUE if pszPath has a valid URL format, or FALSE otherwise. 

Remarks 
This function does not verify that the path points to an existing site-only that it has a 
valid URL format. 

Version 4.71 and later of ShlwapLdli. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



636 Volume 5 Microsoft Windows Shell 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapLlib. 

Path MakePretty 
Converts a path to all lowercase characters to give the path a consistent appearance. 

Parameters 
IpPath 

Address of the path to be converted. 

Return Values 
Returns TRUE if the path has been converted, or FALSE otherwise. 

Remarks 
This function only operates on paths that are entirely uppercase. For example: 
C:\WINDOWS will be converted to c:\windows, but c:\Windows will not be changed. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapLlib. 

PathMakeSystemFolder 
Gives an existing folder the proper attributes to become a system folder. 



Parameters 
pszPath 

Chapter 11 Shell Lightweight Utility APls 637 

Address of a character buffer that contains the name of an existing folder that will be 
made into a system folder. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

PathMatchSpec 
Searches a string using a DOS wild card match type. 

Parameters 
pszFileParam 

Pointer to the string to be searched. 

pszSpec 
Pointer to a NULL-terminated string with the file type for which to search. For 
example, to test whether or not pszFileParam is a DOC file, pszSpec should be set to 
U*.doc". 

Return Values 
Returns TRUE if the string matches, or FALSE otherwise. 

Version 4.71 and later of ShlwapLdl1. 



638 Volume 5 Microsoft Windows Shell 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapUib. 

PathParselconLocation 
Parses a file location string containing a file location and icon index, and returns 
separate values. 

Parameters 
pszlconFile 

[in/out] Pointer to a file location string. It should be in the form "pathname,iconindex'. 
When the function returns, pszlconFile will point to the file's pathname. 

Return Values 
Returns the valid icon index value. 

Remarks 
This function is useful for taking a Defaultlcon value retrieved from the registry by 
SHGetValue, and separating the icon index from the path name. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapUib. 



Chapter 11 Shell Lightweight Utility APls 639 

PathQuoteSpaces 
Searches a path for spaces. If spaces are found, the entire path is enclosed in quotation 
marks. 

vo1dPathOuoteSp_ces( 
,-LP1ST~,' :.YP~z'. ','~' .", 

Parameters 
/psz 

[in/out] Pointer to a buffer with a string containing the path to search. The size of this 
butter should be set to MAX_PATH to ensure that it is large enough to hold the 
returned string. 

Return Values 
No return value. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathRelativePathTo 
Creates a relative path from one file or folder to another. 

. ,:.~; 
, • < ~~:,,:, >.,~::~,;,,,.~~':'M;:'" .. 



640 Volume 5 Microsoft Windows Shell 

Parameters 
pszPath 

Pointer to a string that receives the relative path. This buffer is assumed to be at least 
MAX_PATH characters in size. 

pszFrom 
Pointer to a string that contains the path that defines the start of the relative path. 

dwAttrFrom 
File attributes of pszFrom. If this value contains FILE_ATTRIBUTE_DIRECTORY, 
pszFrom is assumed to be directory; otherwise, pszFrom is assumed to be a file. 

pszTo 
Pointer to a string that contains the path that defines the endpoint of the relative path. 

dwAttrTo 
File attributes of pszTo. If this value contains FILE_ATTRIBUTE_DIRECTORY, pszTo 
is assumed to be directory; otherwise, pszTo is assumed to be a file. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
This function takes a pair of paths and generates a relative path from one to the other. 
The paths do not have to be fully-qualified, but they must have a common prefix or the 
function will fail and return FALSE. 

For example, let the starting point, pszFrom, be "c:\FolderA\FolderB\FolderC" and the 
ending pOint, pszTo, be "c:\FolderA\FolderD\FolderE". PathRelativePathTo will return 
the relative path from pszFrom to pszTo as: ".\.\FolderD\FolderE". You will get the same 
result if you set pszFrom to ',\FolderA \FolderB\FolderC" and pszTo to 
',\FolderA\FolderD\FolderE". On the other hand, "c:\FolderA\FolderB" and 
"a:\FolderA\FolderD do not share a common prefix, and the function will fail. Note that ''\\:' 
is not considered a prefix and is ignored. If you set pszFrom to ',\\FolderA\FolderB", and 
pszTo to ',\\FolderC\FolderD", the function will fail. 

Version 4.71 and later of ShlwapLdli. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 



PathRemoveArgs 
Removes any arguments from a given path. 

v.Qi d PathRemoveArgs ( 
~PTST~ .•.. pszpath 

): 

Parameters 
pszPath 

Chapter 11 Shell Lightweight Utility APls 641 

Address of the path from which to remove arguments. 

Return Values 
No return value. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

PathRemoveBackslash 
Removes the trailing backslash from a given path. 

Parameters 
IpszPath 

Address of the string from which to remove the backslash. 

Return Values 
Returns the address of the NULL that replaced the backslash, or the address of the last 
character if it's not a backslash. 



642 Volume 5 Microsoft Windows Shell 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

PathRemoveBlanks 
Removes all leading and trailing spaces from a string. 

Parameters 
IpszString 

Address of the string from which to strip all leading and trailing spaces. 

Return Values 
No return value. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

PathRemoveExtension 
Removes the file extension from a path, if there is one. 



Parameters 
pszPath 

Chapter 11 Shell Lightweight Utility APls 643 

Address of the path from which to remove the extension. 

Return Values 
No return value. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapLlib. 

PathRemoveFileSpec 
Removes the trailing file name and backslash from a path, if it has them. 

Parameters 
pszPath 

Address of the path from which to remove the file name. 

Return Values 
Returns nonzero if something was removed, or zero otherwise. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 



644 Volume 5 Microsoft Windows Shell 

PathRenameExtension 
Replaces the extension of a file name with a new extension. If the file name does not 
contain an extension, the extension will be attached to the end of the string. 

Parameters 
pszPath 

Address of the path for which to replace the extension. This buffer must be at least 
MAX_PATH characters in size. 

pszExt 
Address of a character buffer that contains a '.' followed by the new extension. 

Return Values 
Returns nonzero if successful, or zero if the new path and extension would exceed 
MAX_PATH characters. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

PathSearchAndQual ify 
Determines if a given path is correctly formatted and fully qualified. 



Parameters 
pcszPath 

Address of the path to search. 

pszFullyQualifiedPath 

Chapter 11 Shell Lightweight Utility APls 645 

Address of the path to be referenced. The size of this buffer should be set to 
MAX_PATH to ensure that it is large enough to hold the returned string. 

cchFullyQualifiedPath 
Width of the path, in characters, to be qualified. 

Return Values 
Returns TRUE if the path is qualified, or FALSE otherwise. 

Version 4.71 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

PathSetDlgltem Path 
Sets the text of a child control in a window or dialog box, using PathCompactPath to 
make sure the path fits in the control. 

Parameters 
hDlg 

Handle to the dialog box or window. 

id 
Identifier of the control. 

pszPath 
Address of a string that contains the path to set in the control. 



646 Volume 5 Microsoft Windows Shell 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathSkipRoot 
Parses a path, ignoring the drive letter or UNC server/share path parts. 

Parameters 
pszPath 

Address of the path to parse. 

Return Values 
Returns the address of the beginning of the subpath that follows the root (drive letter or 
UNC server/share). 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 



Chapter 11 Shell Lightweight Utility APls 647 

PathStripPath 
Removes the path portion of a fully qualified path and file. 

vo1d.PathStr1pPll~h( 

LPTSTR pszpath . 
): 

Parameters 
pszPath 

~. .', 

Address of a string that contains the path and file name that will have the path portion 
removed. 

Return Values 
No return value. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathStripToRoot 
Removes all parts of the path except for the root information. 

SPOt ,Pattis~r:1~1(lROcrtC . '; .. 
':LPTstR :'siR:o,~t;l;":;:!!, . 

:)i' . ", 

Parameters 
szRoot 

• •• '. • ; A ,,'.,.' l ~ '. ~ , 

Address of the path to be converted. 

Return Values 
Returns TRUE if a valid drive letter was found in the path, or FALSE otherwise. 



648 Volume 5 Microsoft Windows Shell 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathUndecorate 
Removes the decoration from a path string. 

Parameters 
pszPath 

[in] NULL-terminated string that contains the path. When the function returns, pszPath 
points to the undecorated string. 

Example 
The following table illustrates how strings are modified by PathUndecorate: 

Initial string 

C:\Path\File[5].txt 

C:\Path\File[12] 

C:\Path\File.txt 

C:\Path\[3]. txt 

Return Values 
None. 

Remarks 

Undecorated string 

C:\Path\File.txt 

C:\Path\File 

C:\Path\File.txt 

C:\Path\[3]. txt 

A decoration consists of a pair of square brackets with one or more digits in between, 
inserted immediately after the base name and before the file name extension. 

Version 5.00 and later of ShlwapLdl1. 



Chapter 11 Shell Lightweight Utility APls 649 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathUnExpandEnvStrings 
Takes a fully qualified path, and replaces several folder names with their associated 
environment string. 

>~}!~¥:;U:~!l~~~,~r~tr~:r~,('("'.;"·.· 
';,LPTSlR'iPSZ8Uft' :i,;:, 
~.jtU:1':i c~8uf ",," '~,~1 
).;'.'> :::" Y:' : .... :;. 

Parameters 
pszPath 

[in] Path to be unexpanded. 

pszBuf 
[out] Buffer to receive the unexpanded string. The size of this buffer should be set to 
MAX_PATH to ensure that it is large enough to hold the returned string. 

cchBuf 
[in] Number of characters in the buffer. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The following folders' paths will be replaced by their equivalent environment string: 

Folder Environment string 

The current user's profile folder 

The All Users profile folder 

The Program Files folder 

The system root folder 

The system drive letter 

%USERPROFILE% 

%ALLUSERSPROFILE% 

%ProgramFiles% 

%SystemRoot% 

%SystemDrive% 



650 Volume 5 Microsoft Windows Shell 

Note %USERPROFILE% is relative to the user making the call. This function does not 
work if the user is being impersonated from a service. For further discussion of access 
control issues, see Access Control. 

The environment variables listed in the above table might not all be set on any particular 
system. If an environment variable is not set, it will not be unexpanded. In particular, 
none of these variables are set for the default environment of Windows 95 or Windows 
98. The %ProgramFiles% variable is new for Windows 2000, and will typically not be set 
on Windows NT 4.0 systems. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 

Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

DoEnvironmentSubst 

PathUnmakeSystemFolder 
Removes the attributes from a folder that make it a system folder. This folder must 
actually exist in the file system. 

Parameters 
pszPath 

Address of a character buffer that contains the name of an existing folder that will 
have the system folder attributes removed. 

Return Values 
Returns nonzero if successful, or zero otherwise. 



Chapter 11 Shell Lightweight Utility APls 651 

Version 4.71 and later of ShlwapLdli. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

PathUnquoteSpaces 
Removes quotes from the beginning and end of a path. 

Parameters 
/psz 

Address of the path from which to remove the quotes. 

Return Values 
No return value. 

Version 4.71 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

UrlApplyScheme 
Takes a URL string, determines a scheme for it, and returns a string with an appropriate 
prefix. 



652 Volume 5 Microsoft Windows Shell 

Parameters 
pszln 

URL string. 

pszOut 
URL specified by pszln, converted to the standard prefix:IIURCstring format. 

pcchOut 
Length of pszOut. 

dwFlags 
Flags that specify how to determine the scheme. The following flags can be 
combined. 

URL_APPLY_DEFAULT 
Apply the default scheme if UrlApplyScheme can't determine one. The default 
prefix is stored in the registry but is typically "http". 

URL_APPL Y _GUESSSCHEME 
Attempt to determine the scheme by examining pszln. 

URL_APPL Y _GUESSFILE 
Attempt to determine a file URL from pszln. 

URL_APPL Y _FORCEAPPL Y 
Force UrlApplyScheme to determine a scheme for pszln. 

Return Values 
S_OK 

A scheme was determined; pszOut contains the URL string with the scheme's prefix. 

S_FALSE 
There were no errors, but no prefix was prepended. 

Errors 
A standard OLE error value is returned. 

Remarks 
Almost any combination of two or more characters followed by a colon will be parsed as 
a scheme. Valid characters include some common punctuation marks, such as ".". If 
your input string fits this description, UrlApplyScheme may treat it as valid and not 
apply a prefix. To ensure that an appropriate prefix is prepended, set the 
URL_APPL Y _FORCEAPPL Y flag. You should also set the URL_APPL Y _DEFAULT flag, 
since that is what will normally be applied. 



Chapter 11 Shell Lightweight Utility APls 653 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

U rlCanon ical ize 
Takes a URL string and converts it into canonical form. 

Parameters 
pszUrl 

[in] Pointer to a URL string. If it does not refer to a file, it must include a valid scheme 
such as ''http://''. 

pszCanonicalized 
[out] A pointer to a NULL-terminated string used to return the converted URL. 

pcchCanonicalized 
[out] The number of characters in pszCanonicalized. 

dwFlags 
[in] Flags that specify how the URL will be converted to canonical form. The following 
flags can be combined: 

Flag Description 

URL_DONT _SIMPLIFY Do not convert "." and " .. ". 

URL_DONT _ESCAPE_EXTRA_INFO Don't convert the '#' or '?' character, or any 
characters following them in the string. 

URL_ESCAPE_SPACES_ONL Y Replace only spaces with escape 
sequences. This flag cannot be combined 
with URL_ESCAPE_UNSAFE. 

URL_ESCAPE_UNSAFE Replace unsafe values with their escape 
sequences. 



654 Volume 5 Microsoft Windows Shell 

Return Values 
Returns S_OK if successful, or a standard OLE error value otherwise. 

Remarks 
This function will do such tasks as replacing unsafe characters with their escape 
sequences and collapsing sequences like ".\ .. ". 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

UrlCombine 
Takes a relative URL and its base and returns a URL in canonical form. 

Parameters 
psz8ase 

[in] Pointer to a string with the base URL. 

pszRe/ative 
[in] Pointer to a string with the relative URL. 

pszCombined 
[out] Value used to return the combined URL. 

pcchCombined 
[out] Length of pszCombined. 

dwF/ags 
[in] Flags that specify how the URL will be converted to canonical form. The following 
flags can be combined: 



URL_DONT _SIMPLIFY 

URL_ESCAPE_SPACES_ONLY 

Return Values 

Chapter 11 Shell Lightweight Utility APls 655 

Replace unsafe values with their escape 
sequences. 

Do not convert "." and " .. ". 

Replace only spaces with escape 
sequences. 

Returns S_OK if successful, or a standard OLE error value otherwise. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

UrlCanonicalize 

UrlCompare 
Compares two URL strings. 

Parameters 
pszURL1 

[in] NULL-terminated string with the first URL. 

pszURL2 
[in] NULL-terminated string with the second URL. 

flgnoreSlash 
[in] Value that is set to TRUE to have UrlCompare ignore a trailing 'I' character on 
both URLs. 



656 Volume 5 Microsoft Windows Shell 

Return Values 
Returns zero if the two strings are equal, apart from a trailing '\' character if f1gnoreSlash 
is set to TRUE. Returns a negative integer if the string pointed to by pszURL 1 is less 
than the string pOinted to by pszURL2. Otherwise, it returns a positive integer. 

Remarks 
The comparison is case sensitive. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapUib. 

StrCmp 

UrlCreateFrom Path 
Takes a DOS path and converts it to a canonicalized URL. 

Parameters 
pszPath 

Pointer to the string with the DOS path. 

pszUrl 
Value used to return the URL. 

pcchPath 
Length of pszUrl. 

dwReserved 
Reserved. Set this parameter to NULL. 



Chapter 11 Shell Lightweight Utility APls 657 

Return Values 
Returns S_FALSE if pszPath is already in URL format. In this case, pszPath will simply 
be copied to pszUrl. Otherwise, it returns S_OK if successful or a standard OLE error 
value if not. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

UrlEscape 
Converts unsafe characters, such as spaces, into their corresponding escape 
sequences. 
"'t'~ - -r!{'>,,'" .," ',". :-.'><"1 .,..) ~' '·'::,,:'~'Tr"-;:--.'"": ~ 

,[t~~J~;\"t;,i};r . 
'\ ... ,.: •.. ," .•.. , .. ,..',.' .. :. :.;.: 
'I . '. ~~ ;,~ ~'. i 

Parameters 
pszURL 

[in] Pointer to a NULL-terminated string with the URL. 

pszEscaped 
[out] Pointer to a NULL-terminated string containing the string pointed to by pszURL, 
with unsafe characters converted to their escape sequences. 

pcchEscaped 
[in/out] Number of characters in the buffer pointed to by pszEscaped. On entry, the 
value pcchEscaped points to is set to the size of the buffer. When the function returns, 
the value pcchEscaped pOints to is set to the number of characters written to that 
buffer, not counting the terminating NULL character. If an E_POINTER error code is 
returned, the buffer was too small, and the value pcchEscaped pOints to is set to the 
required number of characters in the buffer. If any other errors are returned, the value 
that pcchEscaped pOints to is undefined. 



658 Volume 5 Microsoft Windows Shell 

dwFlags 
[in] Flags that control which characters are escaped. It can be a combination of the 
following flags. 

Flag Description 

URL_DONT _ESCAPE_EXTRA_INFO Don't convert the # or ? character, or any 
characters following them in the string. 

URL_ESCAPE_SPACES_ONLY Only escape space characters. This flag 
cannot be combined with 
URL_ESCAPE_PERCENT or 
URL_ESCAPE_SEGMENT _ONLY. 

URL_ESCAPE_PERCENT Escape the % character. By default, this 
character is not escaped. 

URL_ESCAPE_SEGMENT _ONLY Escape the sections following the server 
component, but not the extra information 
sections following a # or ? character. 

Return Values 
Returns an OLE success code if successful. The value pointed to by pcchEscapedwili 
be set to the number of characters written to the output buffer, excluding the terminating 
NULL. If the buffer was too small, E_POINTER is returned, and the value pointed to by 
pcchEscapedwili be set to the required buffer size. Otherwise, an OLE error value is 
returned. 

Version 5.00 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

UrlEscapeSpaces 
A macro that converts space characters into their corresponding escape sequence. 



Parameters 
pszURL 

Chapter 11 Shell Lightweight Utility APls 659 

[in] Pointer to a URL string. If it does not refer to a file, it must include a valid scheme 
such as ''http://'. 

pszEscaped 
[out] Pointer to a NULL-terminated string containing the string pointed to by pszURL, 
with space characters converted to their escape sequence. 

pcchEscaped 
[out] Number of characters in pszEscaped. 

Return Values 
Returns S_OK if successful, or a standard OLE error value otherwise. 

Remarks 
UrlEscapeSpaces is equivalent to: 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapi.lib. 

UrlCanonicalize 

UrlGetLocation 
Retrieves the location from a URL. 



660 Volume 5 Microsoft Windows Shell 

Parameters 
pszURL 

[in] NULL-terminated string that contains the location. 

Return Values 
Returns a pOinter to a NULL-terminated string with the location, or NULL otherwise. 

Remarks 
The location is the segment of the URL starting with a ? or # character. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapUib. 

UrlGetPart 
Takes a URL string and returns a specified part. 

Parameters 
pszln 

[in] NULL-terminated string that contains the URL. 

pszOut 
[out] NULL-terminated string with the specified part. 

pcchOut 
[in/out] Pointer to a value with the number of characters in the pszOut buffer. When 
the function returns, its value will be the number of characters actually written to the 
buffer. 



Chapter 11 Shell Lightweight Utility APls 661 

dwPart 
[in] Flags that specify which part of the URL to retrieve. It can have one of the 
following values: 

Flag Description 

URL_PART_HOSTNAME 

URL_PART _PASSWORD 

URL_PART _PORT 

URL_PART _SCHEME 

URL_PART_USERNAME 

dwFlags 

The host name 

The password 

The port number 

The URL scheme 

The username 

[in] Flag that can be set to keep the URL scheme, in addition to the part that is 
specified by dwPart. 

Flag Description 

Keep the URL scheme. 

Return Values 
Returns an OLE success code if successful. The value pointed to by pcchEscaped will 
be set to the number of characters written to the output buffer, excluding the terminating 
NULL. If the buffer was too small, E_POINTER is returned, and the value pointed to by 
pcchEscaped will be set to the required buffer size. Otherwise, an OLE error value is 
returned. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapLlib. 

UrlHash 
Hashes a URL string. 

(continued) 



662 Volume 5 Microsoft Windows Shell 

Urlls 

(continued) 

Parameters 
pszURL 

[in] Pointer to a NULL-terminated string with the URL. 

pbHash 
[out] Buffer to receive the hashed array. 

cbHash 
[in] Number of elements in pbHash. It should be no larger than 256. 

Return Values 
Returns S_OK if successful, or a standard OLE error value otherwise. 

Remarks 
For example, to hash a URL into a single byte, set cbHash = sizeof(BYTE) and pbHash 
= (LPBYTE)&bHashedValue, where bHashedValue is a one-byte buffer. To hash a URL 
into a DWORD, set cbHash = sizeof(DWORD) and pbHash = 
(LPBYTE)&dwHashedValue, where dwHashedValue is a DWORD buffer. 

Version 5.00 and later of Shlwapi.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapi.h. 
Import Library: shlwapi.lib. 

HashData 

Tests whether or not a URL is a specified type. 

~qllLtJt~~"SJ .. >.,""\' . 
. L.PCJ$n psrzLJrJ; 



URLIS Ur71s 
) : 

Parameters 
pszUrI 

Pointer to a string containing the URL. 

Urlls 

Chapter 11 Shell Lightweight Utility APls 663 

Type of URL to be tested for. Urlls can take one of the following values: 

URLlS_URL 
A valid URL 

URLlS_OPAQUE 
An opaque URL 

URLlS_NOHISTORY 
A "No History" URL 

URLlS_FILEURL 
A file URL 

URLlS_APPLIABLE 
Attempt to determine a valid scheme for the URL. 

Return Values 
For the first four URL types, Urlls returns TRUE if the URL is the specified type, or 
FALSE if not. With the URLlS_APPLIABLE type, Urlls will attempt to determine the URL 
scheme. If it is able to determine a scheme, it will return TRUE, or FALSE if not. 

Version 5.00 and later of ShlwapLdl1. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in shlwapLh. 
Import Library: shlwapUib. 

UrlisFileUrl 
Tests a URL to determine if it is a file URL. 

~~~~ft; 


664 Volume 5 Microsoft Windows Shell

Parameters
pszUrl

Pointer to a NULL-terminated string containing the URL.

Return Values
Returns a non-zero value if the URL is a file URL, or zero otherwise.

Remarks
A file URL has the form "File://xxx". UrlisFileUrl is actually one of the following macros,
depending on whether ANSI or Unicode is selected.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

Urlls

U rlisNoH istory
Returns whether or not a URL is a No History URL.

Parameters
pszURL

[in] NULL-terminated string with the URL.

Return Values
Returns a non-zero value if the URL is a No History URL, or zero otherwise.

Chapter 11 Shell Lightweight Utility APls 665

Remarks
A No History URL is a URL that browsers typically do not include in their navigation
history, This function is equivalent to:

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4,0 with
Internet Explorer 5,0 or later),
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5,0 or
later).
Windows CE: Unsupported,
Header: Declared in shlwapLh,
Import Library: shlwapi.lib,

Urlls

UrlisOpaque

Parameters
pszURL

[in] NULL-terminated string with the URL.

Return Values
Returns a non-zero value if the URL is opaque, or zero otherwise.

Remarks
An opaque URL is one that is nonhierarchical and cannot be parsed, For example,
mailto:xyz@somecompany.com is an opaque URL. This function is equivalent to:

ur~~~Mti$~lm~i'~~~I$,.;.OpAo~,E't,;/:Y·· i\,')Ai:<i';, "" ,

Version 5.00 and later of ShlwapLdl1.

666 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

Urlls

UrlUnEscape

".:

Converts escape sequences back into ordinary characters.

Parameters
pszURL

[in/out] Pointer to a NULL-terminated string with the URL. If dwFlags is set to
URL_UNESCAPE_INPLACE, the converted string is returned through this parameter.

pszUnEscaped
[out] Pointer to a NULL-terminated string containing the unescaped version of
pszURL. If URL_UNESCAPE_INPLACE is set in dwFlags, this parameter is ignored.

pcchUnEscaped
[in/out] Number of characters in the buffer pointed to by pszEscaped. On entry, the
value pcchEscaped points to is set to the size of the buffer. When the function returns,
the value pcchEscaped points to is set to the number of characters written to that
buffer, not counting the terminating NULL character. If an E_POINTER error code is
returned, the buffer was too small, and the value pcchEscaped pOints to is set to the
required number of characters in the buffer. If any other errors are returned, the value
that pcchEscaped pOints to is undefined.

dwFlags
[in] Flags that control which characters are unescaped. It can be a combination of the
following flags.

Flag

Return Values

Chapter 11 Shell Lightweight Utility APls 667

Description

Don't convert the # or? character, or
any characters following them in the
string.

Use pszURL to return the converted
string instead of pszUnEscaped.

Returns an OLE success code if successful. If the URL_UNESCAPE_INPLACE flag is
not set, the value pointed to by pcchUnEscapedwili be set to the number of characters
in the output buffer pointed to by pszEscaped. Returns E_POINTER if the
URL_UNESCAPE_INPLACE flag is not set and the output buffer is too small. The
pcchUnEscaped parameter will be set to the required buffer size. Otherwise, returns an
OLE error value.

Version 5.00 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

UrlUnEscapelnPlace
A macro that converts escape sequences back into ordinary characters and overwrites
the original string.

Parameters
pszURL

[in/out] Pointer to a NULL-terminated string that contains the URL. The converted
string is returned through this parameter.

668 Volume 5 Microsoft Windows Shell

dwFlags
[in] Flags that control which characters are unescaped.

URL_DONT _UNESCAPE_EXTRA_INFO Don't convert the # or? character, or
any characters following them in the
string.

Return Values
Returns S_OK if successful, or a standard OLE error value otherwise.

Remarks
UrlUnEscapelnPlace is equivalent to:

"ddofi,~:$~~.{ieip.$~uri~··;NU~I,:; ·NU~(;:,.~~lll~s'·¥I··'·#R~w.b¢.1\~~;,.;,!.rt&LACpJ~ .. ·•

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

UrlUnEscape

Registry Data Types
The following data types can be used to specify the type of a registry value:

REG_BINARY
Binary data in any form.

REG_DWORD
32-bit number.

REG_QWORD
64-bit number.

REG_DWORD_LlTTLE_ENDIAN
32-bit number in little-endian format. This is equivalent to REG_DWORD.

In little-endian format, a multibyte value is stored in memory from the lowest byte (the
"little end") to the highest byte. For example, the value Ox12345678 is stored as (Ox78
Ox56 Ox34 Ox12) in little-endian format.

Chapter 11 Shell Lightweight Utility APls 669

Windows NT and Windows 95 are designed to run on little-endian computer
architectures. A user may connect to computers that have big-end ian architectures,
such as some UNIX systems.

REG_QWORD_LlTTLE_ENDIAN
A 64-bit number in little-end ian format. This is equivalent to REG_QWORD.

REG_DWORD_BIG_ENDIAN
32-bit number in big-end ian format.

In big-endian format, a multibyte value is stored in memory from the highest byte (the
"big end") to the lowest byte. For example, the value Ox12345678 is stored as (Ox12
Ox34 Ox56 Ox78) in big-endian format.

REG_EXPAND_SZ
Null-terminated string that contains unexpanded references to environment variables
(for example, "%PATH%"). It will be a UNICODE or ANSI string, depending on
whether you use the UNICODE or ANSI functions.

REG_LINK
Unicode symbolic link.

REG_MUL TLSZ
Array of nUll-terminated strings that are terminated by two null characters.

REG_NONE
No defined value type.

REG_RESOURCE_LlST
Device-driver resource list.

REG_SZ
NUll-terminated string. It will be a Unicode or ANSI string, depending on whether you
use the Unicode or ANSI functions.

REGSAM
Data type used for specifying the security access attributes in the registry. A REGSAM
value can be one or more of the following values:

KEY _ALL_ACCESS
Combination of KEY _QUERY _VALUE, KEY _ENUMERATE_SUB_KEYS,
KEY_NOTIFY, KEY_CREATE_SUB_KEY, KEY_CREATE_LlNK, and
KEY_SET _VALUE access.

KEY_CREATE_LINK
Permission to create a symbolic link.

KEY_CREATE_SUB_KEY
Permission to create subkeys.

KEY_ENUMERATE_SUB_KEYS
Permission to enumerate subkeys.

670 Volume 5 Microsoft Windows Shell

KEY_EXECUTE
Permission for read access.

KEY_NOTIFY
Permission for change notification.

KEY_QUERY_VALUE
Permission to query subkey data.

KEY_READ
Combination of KEY_QUERY_VALUE, KEY_ENUMERATE_SUB_KEYS, and
KEY_NOTIFY access.

KEY_SET _VALUE
Permission to set subkey data.

KEY_WRITE
Combination of KEY_SET and KEY _CREATE_SUB_KEYaccess.

Registry Functions

AssocCreate
Returns a pOinter to an IQueryAssociations interface.

Parameters
clsid

[in] CLSID of the object that exposes the interface. This parameter must be set to
CLSI D _ QueryAssociations.

riid
[in] REFIID of the interface. This parameter must be set to IID_IQueryAssociations.

pqa
[out] Pointer to the interface.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Chapter 11 Shell Lightweight Utility APls 671

B#~q~""'l9,nts
Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

AssocQueryKey
Searches for and retrieves a file association-related key from the registry.

Parameters
flags

, ... :,'
. . .
,'~,' -: .. .;.. "'~":;:"':'

[in] Flags that can be used to control the search. It can be any combination of
ASSOCF values, except that only one ASSOCF _INIT value can be included.

key
[in] ASSOCKEY value that specifies the type of key that is to be returned.

pszAssoc

~. . '.

[in] Pointer to a NULL-terminated string that is used to determine the root key. Four
types of strings can be used.

String type Description

File name extension

CLSID

ProglD

Executable name

pszExtra

A file name extension, such as .txt.

A CLSID GUID in the standard "{GUIDY' format.

An application's ProglD, such as Word.Document.8.

The name of an application's .exe file. The
ASSOCF _OPEN_BYEXENAME flag must be set in flags.

[in] Pointer to an optional NULL-terminated string with additional information about the
location of the string. It is normally set to a shell verb such as open. Set this
parameter to NULL if it is not used.

672 Volume 5 Microsoft Windows Shell

phkeyOut
[out] Pointer to the key's HKEY value.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks
This function is a wrapper for the IQueryAssociations interface. It is intended to simplify
the process of using the interface. For further discussion of how the file association
functions work, see IQueryAssociations.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

AssocQueryString
Searches for and retrieves a file association-related string from the registry.

Parameters
flags

[in] Flags that can be used to control the search. It can be any combination of
ASSOCF values, except that only one ASSOCF _INIT value can be included.

str
[in] ASSOCSTR value that specifies the type of string that is to be returned.

Chapter 11 Shell Lightweight Utility APls 673

pszAssoc
[in] Pointer to a NULL-terminated string that is used to determine the root key. Four
types of strings can be used.

String type Description

File name extension

CLSID

ProglD

Executable name

pszExtra

A file name extension, such as .txt.

A CLSID GUID in the standard "{GUIDI' format.

An application's ProglD, such as Word.Document.8.

The name of an application's .exe file. The
ASSOCF _OPEN_BYEXENAME flag must be set in flags.

[in] Optional NULL-terminated string with additional information about the location of
the string. It is normally set to a shell verb such as open. Set this parameter to NULL
if it is not used.

pszOut
[out] NULL-terminated string used to return the requested string.

pcchOut
[in/out] Pointer to a value that is set to the number of characters in the pszOut buffer.
When the function returns, it will be set to the number of characters actually placed in
the buffer. If the ASSOCF _NOTRUNCATE flag is set in flags and the buffer specified
in pcchOut is too small, the function returns E_POINTER and the value is set to the
required size of the buffer.

Return Values
Returns S_OK if successful, E_POINTER if the buffer is too small, or an OLE error value
otherwise.

Remarks
This function is a wrapper for the IQueryAssociations interface. It is intended to simplify
the process of using this interface. For further discussion of how the file association
functions work, see IQueryAssociations.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

674 Volume 5 Microsoft Windows Shell

AssocQueryStringByKey
Searches for and retrieves a file association-related string from the registry starting from
a specified key.

Parameters
flags

[in] Flags that can be used to control the search. It can be any combination of
ASSOCF values, except that only one ASSOCF _INIT value can be included.

sfr
[in] ASSOCSTR value that specifies the type of string that is to be returned.

hkAssoc
[in] HKEY value of the key that will be used as a root key. The search will look only
below this key.

pszExtra
[in] Pointer to an optional NULL-terminated string with additional information about the
location of the string. It is normally set to a shell verb such as open. Set this
parameter to NULL if it is not used.

pszOut
[out] Pointer to a NULL-terminated string used to return the requested string.

pcchOut
[in/out] Pointer to a value that is set to the number of characters in the pszOut buffer.
When the function returns, it will be set to the number of characters actually placed in
the buffer. If the ASSOCF _NOTRUNCATE flag is set in flags and the buffer specified
in pcchOut is too small, the function returns E_POINTER and the value is set to the
required size of the buffer.

Return Values
Returns S_OK if successful, E_POINTER if the buffer is too small, or an OLE error value
otherwise.

Remarks
This function is a wrapper for the IQueryAssociations interface. It is intended to simplify
the process of using this interface. For further discussion of how the file association
functions work, see IQueryAssociations.

Chapter 11 Shell Lightweight Utility APls 675

Version 5.00 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHCopyKey
Recursively copies the subkeys and values of the source subkey to the destination key.

Parameters
hkeySrc

Handle to the source key (for example, HKEY _CURRENT_USER).

szSrcSubKey
Subkey whose subkeys and values are to be copied.

hkeyDest
Destination key.

(Reserved
Reserved. Pass NULL.

Return Values
Returns ERROR_SUCCESS if successful, or one of the nonzero error codes defined in
Winerror.h otherwise. Use FormatMessage with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).

676 Volume 5 Microsoft Windows Shell

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapLlib.

SHDeleteEmptyKey
Deletes an empty key.

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CON FIG

• HKEY_CURRENT_USER

• HKEY _DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pszSubKey
Address of a null-terminated string specifying the name of the key to delete.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Remarks

Note SHDeleteEmptyKey will not delete a key if it contains any subkeys or values. Use
SHDeleteKey instead.

Version 4.71 and later of Shlwapi.dll.

Chapter 11 Shell Lightweight Utility APls 677

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

SHDeleteKey
Deletes a subkey and all its descendants. The function will remove the key and all of the
key's values from the registry.

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CONFIG

• HKEY_CURRENT_USER

• HKEY _DYN_DAT A (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pszSubKey
Address of a null-terminated string specifying the name of the key to delete.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

678 Volume 5 Microsoft Windows Shell

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHDeleteValue
Deletes a named value from the specified registry key.

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CONFIG

• HKEY_CURRENT_USER

• HKEY _DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY _USERS

pszSubKey
Address of a nUll-terminated string specifying the name of the subkey for which to
change the value.

pszValue
Address of the value to be deleted.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Chapter 11 Shell Lightweight Utility APls 679

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

SHEnumKeyEx
Enumerates the subkeys of the specified open registry key.

DW()RIlS.I1EnumK~YE:)(:<•.
·HKl;:+· hkey; . . .

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CONFIG

• HKEY_CURRENT_USER

• HKEY _DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

dwlndex
Index of the subkey to retrieve. This parameter should be zero for the first call and
incremented for subsequent calls.

pszName
Address of a character buffer that receives the enumerated key name.

pcchName
Address of a DWORD that, on entry, contains the size of the buffer at pszName. On
exit, this contains the number of characters that were copied to pszName.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a textual description of the error.

680 Volume 5 Microsoft Windows Shell

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHEnumValue
Enumerates the values of the specified open registry key.

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CONFIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

dwlndex
Index of the value to retrieve. This parameter should be zero for the first call and
incremented for subsequent calls.

pszValueName
Address of a character buffer that receives the enumerated value name. The size of
this buffer is specified in pcchVlaueName.

Chapter 11 Shell Lightweight Utility APls 681

pcch ValueName
Address of a DWORD that, on entry, contains the size of the buffer at pszValueName.
On exit, this contains the number of characters that were copied to pszValueName.

pdwType
Address of a DWORD that receives the data type of the value. These are the same
values as those described under the IpType parameter of RegEnumValue.

pvData
Address of a buffer that receives the data for the value entry. The size of this buffer is
specified in pcbData. This parameter can be NULL if the data is not required.

pcbData
Address of a DWORD that, on entry, contains the size of the buffer at pvData. On exit,
this contains the number of bytes that were copied to pvData.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a textual description of the error.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHGetValue
Retrieves a registry value.

DWORD •• SH6etV~lue(· •.•.
HKEY Ifk~Y ..
I.PCTSTlt pszSulJK~b
I.PCfstRp$zVa 111e.
lPOWORDpdwType •
. (;PVO 11) •• P ypa ta L~

. LPOWORO,pclJData
):

682 Volume 5 Microsoft Windows Shell

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CON FIG

• HKEY_CURRENT_USER

• HKEY _DYN_DAT A (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pszSubKey
Address of a null-terminated string that specifies the name of the subkey from which
to get the value.

pszValue
Address of the value.

pdwType
Type of value. For more information, see Registry Data Types.

pvData
Address of the destination data buffer.

pcbData
Size of the destination data buffer.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Remarks

Note If your application must set/get a series of values in the same key, it is better to
open the key once and set/get the values with the regular Win32 registry functions rather
than use this function repeatedly.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.

Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHQuerylnfoKey

Chapter 11 Shell Lightweight Utility APls 683

Retrieves information about a specified registry key.

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CON FIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pcSubKeys
Address of a DWORD that receives the number of subkeys under the specified key.

pcchAfaxSubKeyLen
Address of a DWORD that receives the number of characters in the name of the
subkey with the largest name.

pc Values
Address of a DWORD that receives the number of values under the specified key.

pcchAfaxValueNameLen
Address of a DWORD that receives the number of characters in the name of the value
with the largest name.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a textual description of the error.

684 Volume 5 Microsoft Windows Shell

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

SHQueryValueEx
Opens a registry key and queries it for a specific value.

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CON FIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY_PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pszValue
Address of the null-terminated string that contains the name of the value to be
queried.

pdwReserved
Reserved; must be null.

pdwType
Address of the variable that receives the key's value type. For more information, see
Registry Data Types.

Chapter 11 Shell Lightweight Utility APls 685

pvData
Address of the buffer that receives the value's data. This parameter can be NULL if
the data is not required.

pcbData
Address of the variable that specifies the size, in bytes, of the buffer pointed to by the
pvData parameter. When the function returns, this variable contains the size of the
data copied to pvData.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegCloseUSKey
Closes a handle to a user-specific registry key.

Parameters
hUSKey

Handle to a user-specific key that is currently open.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. Use FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM flag
to get a generic description of the error.

Version 4.71 and later of ShlwapLdl1.

686 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

SHRegCreateUSKey
Creates or opens a user-specific registry key.

Parameters
pszPath

[in] Address of NULL-terminated string that contains the registry path of the key to be
created or opened.

samDesired
[in] Desired security access. For more information on security access, see REGSAM.

hRelativeUSKey
[in] Key to be used as a base for relative paths. If pszPath is a relative path, the key it
specifies will be relative to hRelativeUSKey. If pszPath is an absolute path, set

hRelativeUSKeyto NULL. The key will then be created under HKLM or HKCU,
depending the value of dwFlags.

phNewUSKey
[out] Address of an HUSKEY that receive the handle to the new key.

dwFlags
[in] Base key under which the key should be opened. This can be one or more of the
following values:

SHREGSET _HKCU Create/open the key under
HKEY _CURRENT _USER. Only creates a
key if it is empty.

Create/open the key under
HKEY _CURRENT _USER, even if not
empty.

SHREGSET _HKLM

SHREGSET_DEFAULT

Return Values

Chapter 11 Shell Lightweight Utility APls 687

Create/open the key under
HKEY _LOCAL_MACHINE. Only creates a
key if it is empty.

Create/open the key under
HKEY _LOCAL_MACHINE, even if not
empty.

Create/open the key under both
HKEY _CURRENT _USER and
HKEY _LOCAL_MACHINE.

Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegDeleteEmptyUSKey

Parameters
hUSKey

Handle to the currently open user-specific key.

pszValue
Address of the null-terminated string that specifies the empty user-defined registry key
to be deleted.

688 Volume 5 Microsoft Windows Shell

delRegFlags
One of the SHREGDEL_FLAGS that specifies from which base key the key will be
deleted.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegDeleteUSValue

SHRegDeleteUSValue
Deletes a user-specific registry value.

Parameters
hUSKey

Handle to the currently open user-specific key.

pszValue
Address of the null-terminated string that names the value to remove.

delRegFlags
One of the SHREGDEL_FLAGS that specifies from which base key the value will be
deleted.

Chapter 11 Shell Lightweight Utility APls 689

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegDeleteEmptyUSKey

SHRegDuplicateHKey
Duplicates a registry key's HKEY handle.

Parameters
hkey

[in] HKEY handle to be duplicated.

Return Values
Returns a duplicate of the handle specified in hkey.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.

690 Volume 5 Microsoft Windows Shell

Header: Declared in shlwapi.h.
Import Library: shlwapLlib.

SHRegEnumUSKey
Enumerates the subkeys of a user-specific key.

Parameters
hUSKey

Handle to the currently open user-specific key.

dwlndex
Index of the subkey to retrieve. This parameter should be zero for the first call and
incremented for subsequent calls.

pszName
Address of a character buffer that receives the enumerated key name.

pcchName
Address of a DWORD that, on entry, contains the size of the buffer at pszName. On
exit, this contains the number of characters that were copied to pszName.

enumRegFlags
One of the SHREGENUM_FLAGS that specifies the base key in which the
enumeration should take place.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a textual description of the error.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.

Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegEnumUSValue

Chapter 11 Shell Lightweight Utility APls 691

Enumerates the values of the specified user-specific registry key.

Parameters
hUSKey

Handle to the currently open user-specific key.

dwlndex
Index of the value to retrieve. This parameter should be zero for the first call and
incremented for subsequent calls.

pszValueName
Address of a character buffer that receives the enumerated value name. The size of
this buffer is specified in pcchValueName.

pcchValueNameLen
Address of a DWORD that, on entry, contains the size of the buffer at pszValueName.
On exit, this contains the number of characters that were copied to pszValueName.

pdwType
Address of a DWORD that receives the data type of the value. These are the same
values as those described under the IpType parameter of RegEnumValue.

pvData
Address of a buffer that receives the data for the value entry. The size of this buffer is
specified in pcbData. This parameter can be NULL if the data is not required.

pcbData
Address of a DWORD that, on entry, contains the size of the buffer at pvData. On exit,
this contains the number of bytes that were copied to pvData.

enumRegFlags
One of the SHREGENUM_FLAGS that specifies the base key in which the
enumeration should take place.

692 Volume 5 Microsoft Windows Shell

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a textual description of the error.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegGetBoolUSValue
Gets a user-specific Boolean value from the registry.

Parameters
pszSubKey

[in] Pointer to a null-terminated string with the name of the subkey relative to HKLM
and HKCU. For example: "Software\MyCompany\MyProduct".

pszValue
[in] Pointer to a null-terminated string that specifies the name of the value.

flgnoreHKCU
[in] Variable that specifies which key to look under. When set to TRUE,
SHRegGetUSValue ignores HKCU and returns a value from HKLM.

fDefault
[in] Value that will be returned if there is no registry value.

Return Values
Returns either the value from the registry, or fDefault if none is found.

Chapter 11 Shell Lightweight Utility APls 693

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegGetPath
Gets a file path from the registry, expanding environment variables as needed.

Parameters
hkey

[in] Handle to a key that is currently open, or a registry root key.

pszSubkey
[in] Pointer to a NULL-terminated string that contains the name of the subkey.

pszValue
[in] Pointer to a NULL-terminated string that contains the name of the value that holds
the unexpanded path string.

pszPath
[out] Buffer to hold the expanded path. The size of this buffer should be set to
MAX_PATH to ensure that it is large enough to hold the returned string.

dwFlags
Reserved for future use.

Return Values
Returns ERROR_SUCCESS if successful, or a Windows error code otherwise.

694 Volume 5 Microsoft Windows Shell

Remarks
The data type of the specified registry value must be either REG_EXPAND_SZ or
REG_SZ. If it has the REG_EXPAND_SZ type, any environment variables in the registry
string will be expanded with ExpandEnvironmentStrings. If it has the REG_SZ data
type, environment variables will not be expanded and the string pointed to by pszPath
will be identical to the string in the registry.

For Windows 2000, the following environment strings will be replaced by their equivalent
path.

Environment string

%USERPROFILE%

%ALLUSERSPROFILE%

%ProgramFiles%

%SystemRoot%

%SystemDrive%

Folder

The current user's profile folder

The All Users profile folder

The Program Files folder

The system root folder

The system drive letter

Note %USERPROFILE% is relative to the user making the call. This function does not
work if the user is being impersonated from a service.

The environment variables listed in the above table might not all be set on any particular
system. If an environment variable is not set, it will not be unexpanded. In particular,
none of these variables are set for the default environment of Windows 95 or Windows
98. The %ProgramFiles% variable is new for Windows 2000, and will typically not be set
on Windows NT 4.0 systems.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

SHRegGetUSValue
Retrieves a user-specific registry value.

:L()N$;SHb1JG~tUSva lu~t (
···:'LP'C1'SiRP$~sut)Kei.:'

lPCTSTR pszVa lue •
.. lPDWORD pdwType.
lPVOID·pvOata.. . .
. LPDWOQ; pebfJ8:ta,' ,.,'

" ,&00t· f1~or~~CLti·' ',' ~
L,vo;l~JW~~~tP~tPat~.. ;.' ',' ,
I)WQRQ dwJJet\'ii7·t/)atAS1Ze· .

>::}' . ';_':~'c;x/'. ,"'.

Parameters
pszSubKey

Chapter 11 Shell Lightweight Utility APls 695

[in] Pointer to a null-terminated string with the name of the subkey relative to HKLM
and HKCU. For example: "Software\MyCompany\MyProduct".

pszValue
[in] Pointer to a null-terminated string with the name of the value.

pdwType
[out] Pointer to a variable that receives the key's value type. For more information,
see Registry Data Types.

pvData
[out] Pointer to a buffer that will receive the value's data.

pcbData
[in/out] Pointer to a variable that specifies the size, in bytes, of the buffer pOinted to by
pvData. When SHRegGetUSValue returns, pcbData contains the size of the data
copied to pvData.

flgnoreHKCU
[in] Variable that specifies which key to look under. When set to TRUE,
SHRegGetUSValue ignores HKCU and returns a value from HKLM.

pvDefaultData
[out] Pointer to a buffer that will receive the value's default data.

dwDefaultDataSize
[in] Length, in bytes, of buffer pOinted to by pvDefaultData.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Remarks
This function opens the key each time it is used. If your code involves getting a series of
values from the same key, it is more efficient to open the key once with
SHRegOpenUSKey and then use SHRegQueryUSValue to retrieve the data.

696 Volume 5 Microsoft Windows Shell

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegOpenUSKey
Opens a user-specific registry key.

Parameters
pszPath

[in] Pointer to a null-terminated string with the name of the subkey.

samDesired
[in] Desired security access. For more information on security access, see REGSAM.

hRelativeUSKey
[in] Key to be used as a base for relative paths. If pszPath is a relative path, the key it
specifies will be relative to hRelativeUSKey. If pszPath is an absolute path, set
hRelativeUSKeyto NULL.

phNewUSKey
[out] Pointer to the handle of the opened key.

flgnoreHKCU
[in] Variable that specifies which key to look under. When set to TRUE,
SHRegGetUSValue ignores HKCU and returns a value from HKLM.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Chapter 11 Shell Lightweight Utility APls 697

_~,rrts
Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

SHRegQuerylnfoUSKey
Retrieves information about a specified user-specific registry key.

Parameters
hUSKey

Handle to the user-specific key that is currently open.

pcSubKeys
Address of a DWORD that receives the number of subkeys under the specified key.

pcchA4axSubKeyLen
Address of a DWORD that receives the number of characters in the largest subkey
name.

pc Values
Address of a DWORD that receives the number of values under the specified key.

pcchA4axValueNameLen
Address of a DWORD that receives the number of characters in the largest value
name.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a textual description of the error.

698 Volume 5 Microsoft Windows Shell

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegQueryUSValue
Retrieves the type and data for a specified name associated with an open USKEY.

Parameters
hUSKey

[in] Handle to the currently open USKEY, or one of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CONFIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY_PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pszValue
[out] Address of the null-terminated string that contains the name of the value to be
queried.

pdwType
[out] Address of the variable that receives the key's value type. For more information,
see Registry Data Types.

Chapter 11 Shell Lightweight Utility APls 699

pvData
[out] Address of the buffer that receives the value's data. This parameter can be
NULL if the data is not required.

pcbData
[in/out] Address of the variable that specifies the size, in bytes, of the buffer pointed to
by the pvData parameter. When the function returns, this variable contains the size of
the data copied to pvData.

flgnoreHKCU
[in] Variable that specifies which key to look under. When set to TRUE,
SHRegQueryUSValue ignores HKCU and returns a value from HKLM.

pvDefaultData
[out] Address of the default data.

dwDefaultDataSize
[in] Length, in bytes, of the default data.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
fORMAT _MESSAGE_fROM_SYSTEM flag to get a generic description of the error.

Remarks
If you only need to read a single value, SHRegGetUSValue will both open the key and
return the value. To use SHRegQueryUSValue, you must first open the key with
SHRegOpenUSKey. However, once the key is opened, you can use
SHRegQueryUSValue as many times as necessary. If you need to get more than one
value from the same key, using multiple calls to SHRegQueryUSValue is usually more
efficient than SHRegGetUSValue, as the key is only opened once.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

700 Volume 5 Microsoft Windows Shell

SHRegSetPath
Takes a file path, replaces folder names with environment strings, and places the
resulting string in the registry.

Parameters
hkey

[in] Handle to a key that is currently open, or a registry root key.

pszSubkey
[in] Pointer to a NULL-terminated string containing the name of an existing subkey. If
the subkey does not exist, SHRegSetPath will fail.

pszValue
[in] Pointer to a NULL-terminated string with the name of the value to hold the path
string.

pszPath
[in] Pointer to a NULL-terminated string with a fully qualified file path.

dwFlags
Reserved for future use.

Return Values
Returns ERROR_SUCCESS if successful, or a Windows error code otherwise.

Remarks
For Windows 2000, RegSetPath uses PathUnExpandEnvStrings to convert folder
names to their corresponding environment string. If any environment variables were
substituted, the registry value will be set with the REG_EXPAND_SZ data type.
Otherwise, it will be set with the REG_SZ data type.

The following folders' paths will be replaced by their equivalent environment string.

Folder

The current user's profile folder

The All Users profile folder

The Program Files folder

The system root folder

The system drive letter

Environment string

%USERPROFILE%

%ALLUSERSPROFILE%

%ProgramFiles%

%SystemRoot%

%SystemDrive%

Chapter 11 Shell Lightweight Utility APls 701

Note %USERPROFILE% is relative to the user making the call. This function does not
work if the user is being impersonated from a service.

The environment variables listed in the above table might not all be set on any particular
system. If an environment variable is not set, it will not be unexpanded. In particular,
none of these variables are set for the default environment of Windows 95 or Windows
98. The %ProgramFiles% variable is new for Windows 2000, and will typically not be set
on Windows NT 4.0 systems.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegSetUSValue
Sets a user-specific registry value.

X~~;;,'::,::·
'I<··';/·~;,.~· .

Parameters
pszSubKey

[in] Pointer to a null-terminated string with the name of the subkey.

pszValue
[in] Pointer to a null-terminated string that specifies the name of the value.

dwType
[in] Type of data to be stored. This parameter must be the REG_SZ type. For more
information, see Registry Data Types.

702 Volume 5 Microsoft Windows Shell

pvData
[in] Address of a null-terminated string that contains the value to be set for the
specified key.

cbData
[in] Length, in bytes, of the string pOinted to by the pvData parameter, not including
the terminating null character.

dwFlags
[in] Flags indicating where the data should be written.

SHREGSET _HKCU Write to HKCU if empty.

SHREGSET_FORCE_HKCU

SHREGSET _HKLM

SHREGSET_FORCE_HKLM

Return Values

Write to HKCU.

Write to HKLM if empty.

Write to HKLM.

Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT_MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Remarks
This function opens the key each time it is used. If your code involves setting a series of
values in the same key, it is more efficient to open the key once with
SHRegOpenUSKey and then use SHRegWriteUSValue to write the data.

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHRegWriteUSValue
Writes a user-specific registry value.

l(.lNG· $.me~w~'teUSV~luet·

·~t~~:~iu~;ij·

) :

LPVOID pvData.
DWORD cbData.
DWORD dwF7 a.gs

Chapter 11 Shell Lightweight Utility APls 703

Parameters
hUSKey

[in] Handle to the currently open USKEY, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CONFIG

• HKEY_CURRENT_USER

• HKEY _DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pszValue
[in] Address of the null-terminated string that specifies the name of the value.

dwType
[in] Type of data to be stored. This parameter must be the REG_SZ type. For more
information, see Registry Data Types.

pvData
[in] Address of a null-terminated string that contains the value to be set for the
specified key.

cbData
[in] Length, in bytes, of the string pointed to by the pvData parameter, not including
the terminating null character.

dwFlags
[in] Flags indicating where the data should be written.

SHREGSET _HKCU Write to HKCU if empty.

SHREGSET _FORCE_HKCU Write to HKCU.

SHREGSET _HKLM

SHREGSET_FORCE_HKLM

Return Values

Write to HKLM if empty.

Write to HKLM.

Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of ShlwapLdl1.

704 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

SHSetValue
Sets the value of a registry key.

Parameters
hkey

Handle to the currently open key, or any of the following predefined values:

• HKEY_CLASSES_ROOT

• HKEY _CURRENT _CON FIG

• HKEY_CURRENT_USER

• HKEY _DYN_DATA (Windows 95 only)

• HKEY _LOCAL_MACHINE

• HKEY _PERFORMANCE_DATA (Windows NT only)

• HKEY_USERS

pszSubKey
Address of a nUll-terminated string that specifies the name of the subkey with which a
value is associated. This can be NULL or a pointer to an empty string. In this case,
the value will be added to the key identified by the hKey parameter.

pszValue
Address of a nUll-terminated string that specifies the value.

dwType
Type of data to be stored. This parameter must be the REG_SZ type. For more
information, see Registry Data Types.

pvData
Address of a nUll-terminated string that contains the value to set for the specified key.

Chapter 11 Shell Lightweight Utility APls 705

cbData
Length, in bytes, of the string pointed to by the pvData parameter, not including the
terminating null character.

Return Values
Returns ERROR_SUCCESS if successful, or a nonzero error code defined in Winerror.h
otherwise. You can use the FormatMessage function with the
FORMAT _MESSAGE_FROM_SYSTEM flag to get a generic description of the error.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

SHREGDEL_FLAGS
Provides a set of values that indicate from which base key an item will be deleted.

Members
SHREGDEL_DEFAUL T

Deletes from HKEY _CURRENT _USER, or, if the specified item is not found under
HKEY _CURRENT _USER, deletes from HKEY _LOCAL_MACHINE.

SHREGDEL_HKCU
Enumerates from HKEY _CURRENT _USER only.

SHREGDEL_HKlM
Enumerates under HKEY _LOCAL_MACHINE only.

SHREGDEL_BOTH
Deletes from both HKEY _CURRENT _USER and HKEY _LOCAL_MACHINE.

706 Volume 5 Microsoft Windows Shell

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlwapi.h.

SHREGENUM_FLAGS
Provides a set of values that indicate the base key that will be used for an enumeration.

Members
SHREGENUM_DEFAULT

Enumerates under HKEY _CURRENT _USER, or, if the specified item is not found in
HKEY _CURRENT _USER, enumerates under HKEY _LOCAL_MACHINE.

SHREGENUM_HKCU
Enumerates under HKEY _CURRENT _USER only.

SHREGENUM_HKLM
Enumerates under HKEY _LOCAL_MACHINE only.

SHREGENUM_BOTH
Not used.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlwapi.h.

Chapter 11 Shell Lightweight Utility APls 707

Color Palette Functions

ColorAdjustLuma
Changes the luminance of a red-green-blue (RGB) value. Hue and saturation are not
affected.

Parameters
clrRG8

n
Initial RGB value.

Luminance in units of 0.1 percent of the total range. For example, a value of n = 50
corresponds to 5 percent of the maximum luminance.

fScale
If fScale is set to TRUE, n specifies how much to increment or decrement the current
luminance. If fScale is set to FALSE, n specifies the absolute luminance.

Return Values
Returns the modified RGB value.

Remarks
If fScale is set to TRUE, n can range from -1000 to + 1000.

If fScale is set to FALSE, n can range from 0 to 1000. Available luminance values range
from 0 to a maximum. If the requested value is negative or exceeds the maximum, the
luminance will be set to either zero or the maximum value, respectively.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

708 Volume 5 Microsoft Windows Shell

ColorHLSToRGB
Converts colors from hue-luminance-saturation (HLS) to red-green-blue (RGB) format.

Parameters
wHue

HLS hue value.

wLuminance
HLS luminance value.

wSaturation
HLS saturation value.

Return Values
Returns the RGB value.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

ColorRGBToHLS
Converts colors from red-green-blue (RGB) to hue-luminance-saturation (HLS) format.

Parameters
c1rRGB

[in] RGB color.

pwHue
[out] HLS hue value.

pwLuminance
[out] HLS luminance value.

pwSaturation
[out] HLS saturation value.

Return Values
No return value.

Version 5.00 and later of Shlwapi.dll.

Chapter 11 Shell Lightweight Utility APls 709

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapi.lib.

SHCreateShel1 Palette
Creates a halftone palette for the specified device context.

Parameters
hdc

Device context.

Return Values
Returns the palette if successful, or zero otherwise.

Remarks
This function behaves the same as CreateHalftonePalette, but it is designed to
accommodate the differences between Windows 95, Windows NT 4.0, and
Windows 2000. The palette that is returned depends on the device context in the
following way:

• If hdc is set to NULL, a full palette is returned.

• If the device context is palettized, a full palette is returned.

• If the device context is not palettized, a default palette (VGA colors) is returned.

710 Volume 5 Microsoft Windows Shell

Version 4.71 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapi.lib.

Miscellaneous

Dilinstall
Handles installation and setup for a DLL.

$tDPiPIDllInstanf, ..

. !,t~~~I0~~~'~,···.··
Parameters
blnstall

Value that is set to TRUE if the DLL is being installed, or FALSE if it is being
uninstalled.

pszCmdLine
String passed in by regsvr32 that indicates which setup procedure to use.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks
This function may be implemented and exported by name by a DLL for use during
application installation or setup. It is invoked by regsvr32 to allow the DLL to perform
tasks such adding information to the registry.

Dlllnstall is used only for application installation and setup. It should not be called by an
application. It is similar in purpose to DIiRegisterServer or DIiUnregisterServer. Unlike
these functions, Dlllnstall takes an input string which can be used to specify a variety of
different actions. This allows a DLL to be installed in more than one way, based on any
criteria that is appropriate.

Chapter 11 Shell Lightweight Utility APls 711

To use Dlllnstall with regsvr32, add a "Ii" flag followed by a colon (:) and a string. The
string will be passed to the Dlllnstall as the pszCmdLine parameter. If you omit the
colon and string, pszCmdLine will be set to NULL. The following example would be used
to install a DLL:

regsvr32 li:fflnstall_l" d71name.dll.

Dlllnstall is invoked with blnstall set to TRUE and pszCmdLine set to "lnstall_1". To
uninstall a DLL, use:

re9svr32lul 1:"lnsi;atl_1"dtl ham~j:ln.'

With both of the above examples, DIiRegisterServer or DIiUnregisterServer will also
be called. To call Dlllnstall only, add a "In" flag:

regsvr~4~·jn.fj:···[nstijl,1:"1';d}.ina~eiiJ7'7.c

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in shlwapi.h.

HashData
Hashes an array of data.

HRESULTftashtlata.(
c"VaY"f:f?JYb/J~ tia.'·

. ,.' • DWQR/iJ.::cMa til •
. '. IPIrlTE:PbN~tsch •
. oWORD c:bHa$h

JY
Parameters
pbData

[in] Pointer to the data array.

cbData
[in] Number of elements in pbData.

pbHash
[out] Value used to return the hashed array.

cbHash
[in] Number of elements in pbHash. It should be no larger than 256.

712 Volume 5 Microsoft Windows Shell

Return Values
Returns S_OK if successful, or a standard OLE error value otherwise.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHAutoComplete
Instructs system edit controls to use AutoComplete to help complete URLs or file system
paths.

Parameters
hwndEdit

[in] Window handle of a system edit control. Typically, this parameter is the handle of
an edit control or the edit control embedded in a comboboxex control.

dwFlags
[in] Flags to control the operation of SHAutoComplete. The first four are used to
override the Internet Explorer registry settings. The user can change these settings
manually by launching the Internet Options property sheet from the Tools menu and

clicking the Advanced tab. The last five can be used to specify which files or URLs will
be available for autoappend or autosuggest operations.

Flag Description

Ignore the registry default and force the
autoappend feature off.

Ignore the registry value and force the
autoappend feature on. The completed
string will be displayed in the edit box
with the added characters highlighted.

Chapter 11 Shell Lightweight Utility APls 713

Flag Description

SHACF _AUTOSUGGEST_FORCE_OFF Ignore the registry default and force the
autosuggest feature off.

SHACF _AUTOSUGGEST _FORCE_ON Ignore the registry value and force the
autosuggest feature on. A selection of
possible completed strings will be
displayed as a dropdown list, below the
edit box.

SHACF _DEFAULT SHACF _FILESYSTEM I
SHACF _URLALL.

SHACF _FILESYSTEM Include the file system as well as virtual
folders such as Desktop or Control
Panel.

SHACF _FILESYS_ONL Y Include only the file system. Do not
include virtual folders such as Desktop
or Control Panel.

SHACF _URLALL SHACF _URLHISTORY I
SHACF _URLMRU.

SHACF _URLHISTORY Include the URLs in the user's History
list.

SHACF _URLMRU Include the URLs in the user's Recently
Used list.

Return Values
Returns S_OK if successful, or a standard OLE error value otherwise.

Remarks
SHAutoComplete will work on any system edit control, including the edit and controls
that contain edit controls such as comboboxex controls. To get a handle to the edit
control that is embedded in a comboboxex control send it a
CBEM_GETEDITCONTROL.

An application must have invoked either Colnitialize or Olelnitialize prior to calling this
function. CoUninitialize or OleUninitialize cannot be called until the edit box has
finished processing the WM_DESTROY message for hwndEdit.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).

714 Volume 5 Microsoft Windows Shell

Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

SHCreateStreamOnFile
Takes a file name, opens the file, and returns an IStream interface that can be used to
read from and write to the file.

Parameters
pszFile

[in] Pointer to a NULL-terminated string with the file name.

grfMode
[in] STGM value that is used to specify access modes and how the object that
exposes the IStream interface is created and deleted.

ppstm
[out] Pointer to an IStream interface for the file.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHCreateThread
Creates a thread.

Chapter 11 Shell Lightweight Utility APls 715

8001. • SH.Cr'eateThre:act(
.• LPTfllttAD~$TAI\1'~ROUTlN.Ejpfh.Th.re/j:d1'r~¢ •. ·

0.~~~:ii;~ii~'~'J1't
Parameters
pfn ThreadProc

Pointer to an application-defined function of the LPTHREAD_START_ROUTINE type.
If a new thread was successfully created, this function will be called in the context of
that thread. SHCreateThread does not wait for this function to complete before
returning to its caller. The return value of this function will be the exit code of the
thread.

pOata
Pointer to an application-defined data structure containing initialization data. It is
passed to the function pointed to by pfnThreadProc and, optionally, pfnCallback.

dwFlags
Flags that control the behavior of the function. This parameter can be a combination
of the following flags.

Flag

CTF_COINIT

Description

Initialize COM for the created thread before calling either
the optional function pointed to by pfnCallback or the
function pointed to by pfnThreadProc. This flag is useful
when COM needs to be initialized for a thread. COM will
automatically be uninitialized as well.

CTF _INSIST If the attempt to create the thread with CreateThread fails,
setting this flag will cause the function pointed to by
pfnThreadProc to be called synchronously from the calling
thread. This flag cannot be used if pfnCallback has a non­
NULL value.

CTF _PROCESS_REF Hold a reference to the Windows Explorer process for the
duration of the call to the function pOinted to by
pfnThreadProc. This flag is useful for shell extension
handlers, which might need to keep the Windows Explorer
process from closing prematurely. Examples of where this
action would be useful include tasks such as doing work on
a background thread or copying files. For further
information, see SHGetlnstanceExplorer.

CTF _THREAD_REF Hold a reference to the creating thread for the duration of
the call to the function pointed to by pfnThreadProc. This
reference must have been set with SHSetThreadRef.

716 Volume 5 Microsoft Windows Shell

pfnCallback
Pointer to an optional application-defined function of the
LPTHREAD_START_ROUTINE type. This function is called in the context of the
created thread before the function pointed to by pfnThreadProc is called. It will also
receive pData as its argument. SHCreateThread will wait for the function pointed to
by pfnCallback to return before returning to its caller. The return value of the function
pointed to by pfnCallback is ignored.

Return Values
Returns TRUE if the thread is successfully created, or FALSE otherwise.

Remarks
The function pOinted to by pfnThreadProc and pfnCallback must take the form:

The function name is arbitrary. The pData parameter points to an application-defined
data structure with initialization information.

Version 5.00 and later of ShlwapLdlf.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

CreateThread, CreateProcess

SHGetTh read Ref
Retrieves the per-thread object reference set by SHSetThreadRef.

Parameters
ppunk

Chapter 11 Shell Lightweight Utility APls 717

Address of a pOinter to an IUnknown interface. If successful, this parameter will hold
the object's IUnknown pointer on return. Your application is responsible for freeing
the pOinter when it is finished.

Return Values
Returns S_OK if the object reference exists, or E_NOINTERFACE otherwise.

Version 5.00 and later of ShlwapLdll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHCreateThread

SHOpenRegStream
Opens a registry value and supplies an IStream interface that can be used to read from
or write to the value.

Parameters
hkey

Handle to the key that is currently open.

pszSubkey
Address of a null-terminated string that specifies the name of the subkey.

pszValue
Address of the value to be accessed.

718 Volume 5 Microsoft Windows Shell

grfMode
Type of access for the stream. This can be one of the following values:

STGM_READ Open the stream for reading.

STGM_WRITE

STGM_READWRITE

Return Values

Open the stream for writing.

Open the stream for reading and writing.

Returns the address of an IStream interface if successful, or NULL otherwise.

Remarks
The calling application is responsible for calling this interface's Release method when
the IStream object is no longer needed.

Version 4.71 and later of Shlwapi.dll.

Windows NT/2000: Requires Windows 2000 (or Windo~s NT 4.0 with
Internet Explorer 4.0 or later). l

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapi.h.
Import Library: shlwapUib.

SHOpenRegStream2
Opens a registry value and returns an IStream interface that can be used to read from or
write to the value. It supersedes SHOpenRegStream.

Parameters
hkey

[in] Handle to a key that is currently open, or a registry root key.

pszSubkey
[in] Pointer to a NULL-terminated string that contains the name of the subkey.

Chapter 11 Shell Lightweight Utility APls 719

pszValue
[in] Pointer to a NULL-terminated string with the name of the value that holds the
unexpanded path string.

grfMode
[in] Type of access for the stream. It can have one of the following values.

Value

STGM_READ

STGM_WRITE

STGM_READWRITE

Return Values

Description

Open the stream for reading.

Open the stream for writing.

Open the stream for reading and writing.

Returns the address of an IStream interface if successful, or NULL otherwise.

Remarks
The calling application is responsible for calling this interface's Release method when
the IStream object is no longer needed.

Version 5.00 and later of ShlwapLdli.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapLlib.

SHSetThreadRef
Stores a per-thread reference to a COM object.

,fiR~,SU,1..t'f:~~~#!lI~~~~~~";~i:'1Jt~:~fi~~'?,,,'~~t,.,;::·;
, IUl1kDown*punk' ,-;j , ,', :,,' <,i ':';'/",:,~' ::.,'

:')'.! ~:.,' ,",' " " ,:~ ,", "~:: .. ',:. ",:: ,.:,.>; :.:"~" :-:.~.'
, .": ", ' ~ "'.' .

Parameters
punk

Pointer to the IUnknown interface of the object to which you want to store a
reference.

720 Volume 5 Microsoft Windows Shell

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks
Use SHGetThreadRef to retrieve the IUnknown pOinter.

Version 5.00 and later of ShlwapLdl1.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in shlwapLh.
Import Library: shlwapUib.

SHCreateThread

721

CHAPTER 12

Shell Messages and Notifications

Shell Messages and Notifications

Notifies the system that an appbar has been activated. An appbar should call this
message in response to the WM_ACTIVATE message.

;S'IfAiiPB~M~S$1! ~aiAHrtlcr;EVATE.; T(ti~); c.:/,',';;'

Parameters
pabd

: .~". .

Address of an APPBARDATA structure that identifies the appbar to activate. You
must specify the cbSize and hWnd members when sending this message; all other
members are ignored.

Return Values
Always returns TRUE.

Remarks
This message is ignored if the hWnd member of the structure pOinted to by pabd identifies
an autohide appbar. The system automatically sets the z-order for autohide appbars.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABM_ GETAUTOHIDEBAR
Retrieves the handle to the autohide appbar associated with an edge of the screen.

i~~9~~Jilde=. f~WN#~~fS~APP6~rri~iisa9~(ABt(;;~EfMio~fD'E~AR';, pa:bll): : :

722 Volume 5 Microsoft Windows Shell

Parameters
pabd

Address of an APPBARDATA structure that specifies the screen edge. You must
specify the cbSize, hWnd, and uEdge members when sending this message; all
other members are ignored.

Return Values
Returns the handle to the autohide appbar. The return value is NULL if an error occurs
or if no autohide appbar is associated with the given edge.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

Retrieves the autohide and always-on-top states of the Windows taskbar.

Parameters
pabd

Address of an APPBARDATA structure. You must specify the cbSize and hWnd
members when sending this message; all other members are ignored.

Return Values
Returns zero if the taskbar is not in the autohide or always-on-top state. Otherwise, the
return value is one or both of the following:

ABS_ALWAYSONTOP

ABS_AUTOHIDE

The taskbar is in the always-on-top state.

The taskbar is in the autohide state.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

Chapter 12 Shell Messages and Notifications 723

ABM_GETTASKBARPOS
Retrieves the bounding rectangle of the Windows taskbar.

·,fR~J) l~,.· !ii:: .. (~OQlJ:,~!1~~PIJ~r~~$:~~!J~~p:ir~$.IG~A~~Q~:';J)~~4:~t.;i;·,;'i',~i,;;,~~,Ls-I;.';:!)+::~':·:~>j.f;;.'

Parameters
pabd

Address of an APPBARDATA structure whose rc member receives the bounding
rectangle, in screen coordinates, of the taskbar. You must specify the cbSize and
hWnd when sending this message; all other members are ignored.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABM NEW
Registers a new appbar and specifies the message identifier that the system should use
to send it notification messages. An appbar should send this message before sending
any other appbar messages.

Parameters
pabd

Address of an APPBARDATA structure that contains the new appbar's window
handle and message identifier. You must specify the cbSize, hWnd, and
uCalibackMessage members when sending this message; all other members are
ignored.

Return Values
Returns TRUE if successful, or FALSE if an error occurs or if the appbar is already
registered.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.

724 Volume 5 Microsoft Windows Shell

Windows CE: Unsupported.
Header: Declared in shellapi.h.

ABM_QUERYPOS
Requests a size and screen position for an appbar. When the request is made, the
message proposes a screen edge and a bounding rectangle for the appbar. The system
adjusts the bounding rectangle so that the appbar does not interfere with the Windows
taskbar or any other appbars.

Parameters
pabd

~.

Address of an APPBARDATA structure. The uEdge member specifies a screen
edge, and the rc member contains the proposed bounding rectangle. When the
SHAppBarMessage function returns, rc contains the approved bounding rectangle.
You must specify the cbSize, hWnd, uEdge, and rc members when sending this
message; all other members are ignored.

Return Values
Always returns TRUE.

Remarks
An appbar should send this message before sending the ABM_SETPOS message.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapi.h.

Unregisters an appbar by removing it from the system's internal list. The system no
longer sends notification messages to the appbar or prevents other applications from
using the screen area occupied by the appbar.

. ":',

Parameters
pabd

Chapter 12 Shell Messages and Notifications 725

Address of an APPBARDAT A structure that contains the handle to the appbar to
unregister. You must specify the cbSize and hWnd members when sending this
message; all other members are ignored.

Return Values
Always returns TRUE.

Remarks
This message causes the system to send the ABN_POSCHANGED notification
message to all appbars.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABM_SETAUTOHIDEBAR
Registers or unregisters an autohide appbar for an edge of the screen.

·.f,ij:~~~~~:~~f~:BijOt:1($~:8~·tfij*~j;:~t~~2~~;r..ifo~fij~8~~~~~~~~~;+';:[i1';!;;;;:: D;i1i?~~Ii.~;{{$~m~1~t~

Parameters
pabd

Address of an APPBARDATA structure. The uEdge member specifies the screen
edge. The IParam parameter is set to TRUE to register the appbar or FALSE to
unregister it. You must specify the cbSize, hWnd, uEdge, and IParam members
when sending this message; all other members are ignored.

Return Values
Returns TRUE if successful, or FALSE if an error occurs or if an autohide appbar is
already registered for the given edge.

Remarks
The system allows only one autohide appbar for each edge of the screen. This is
determined when the member uEdge of the APPBARDATA structure is set.

726 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

Sets the size and screen position of an appbar. The message specifies a screen edge
and the bounding rectangle for the appbar. The system may adjust the bounding
rectangle so that the appbar does not interfere with the Windows taskbar or any other
appbars.

Parameters
pabd

Address of an APPBARDATA structure. The uEdge member specifies a screen
edge, and the rc member contains the bounding rectangle. When the
SHAppBarMessage function returns, rc contains the approved bounding rectangle.
You must specify the cbSize, hWnd, uEdge, and rc members when sending this
message; all other members are ignored.

Return Values
Always returns TRUE.

Remarks
This message causes the system to send the ABN_POSCHANGED notification
message to all appbars.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABM_WINDOWPOSCHANGED
Notifies the system when an appbar's position has changed. An appbar should call this
message in response to the WM_WINDOWPOSCHANGED message.

Parameters
pabd

Chapter 12 Shell Messages and Notifications 727

Address of an APPBARDATA structure that identifies the appbar to activate. You
must specify the cbSize and hWnd members when sending this message; all other
members are ignored.

Return Values
Always returns TRUE.

Remarks
This message is ignored if the hWnd member of the structure pointed to by pabd
identifies an autohide appbar.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABN_FULLSCREENAPP
Notifies an appbar when a full-screen application is opening or closing. This notification
is sent in the form of an application-defined message that is set by the ABM_NEW
message.

~~B~:~~l~~~t
Parameters
(Open

Flag specifying whether a full-screen application is opening or closing. This parameter
is TRUE if the application is opening or FALSE if it is closing.

Return Values
No return value.

Remarks
When a full-screen application is opening, an appbar must drop to the bottom of the z­
order. When it is closing, the appbar should restore its z-order position.

728 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABN_POSCHANGED
Notifies an appbar when an event has occurred that may affect the appbar's size and
position. Events include changes in the taskbar's size, position, and visibility state, as
well as the addition, removal, or resizing of another appbar on the same side of the
screen.

Return Values
No return value.

Remarks
An appbar should respond to this notification message by sending the
ABM_QUERYPOS and ABM_SETPOS messages. If its position has changed, the
appbar should call the MoveWindow function to move itself to the new position.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABN_STATECHANGE
Notifies an appbar that the taskbar's autohide or always-on-top state has changed-that
is, the user has selected or cleared the "Always on top" or "Auto hide" check box on the
taskbar's property sheet.

Return Values
No return value.

Chapter 12 Shell Messages and Notifications 729

Remarks
An appbar can use this notification message to set its state to conform to that of the
taskbar, if desired.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

ABN_ WINDOWARRANGE
Notifies an appbar that the user has selected the Cascade, Tile Horizontally, or Tile
Vertically command from the taskbar's context menu.

'kBNli*I*O'OWA~RA-NGE" '
; ;if$egrbJli!1~,~· .. €eOO~J\'lParalli:,'"

Parameters
fBeginning

Flag specifying whether the cascade or tile operation is beginning. This parameter is
TRUE if the operation is beginning and the windows have not yet been moved. It is
FALSE if the operation has completed.

Return Value
No return value.

Remarks
The system sends this notification message twice-first with IParam set to TRUE and
then with IParam set to FALSE. The first notification is sent before the windows are
cascaded or tiled, and the second is sent after the cascade or tile operation has
occurred.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shellapLh.

730 Volume 5 Microsoft Windows Shell

Sent to the CPIAppiet function of a Control Panel application when the user double­
clicks the icon of a dialog box supported by the application.

Parameters
uAppNum

Dialog box number. This number must be in the range zero through one less than the
value returned in response to the CPL_GETCOUNT message
(CPL_GETCOUNT -1).

IData
Value that the Control Panel application loaded into the IData member of the
CPLINFO or NEWCPLINFO structure for the dialog box. The application loads the
IData member in response to the CPL_INQUIRE or CPL_NEWINQUIRE message.

Return Values
If the CPIAppiet function processes this message successfully, the return value is zero;
otherwise, it is nonzero.

Remarks
In response to this message, a Control Panel application must display the corresponding
dialog box.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in cpl.h.

Sent once to the CPIAppiet function of a Control Panel application before the DLL
containing the Control Panel application is released.

Chapter 12 Shell Messages and Notifications 731

Return Values
If the CPIAppiet function processes this message successfully, it should return zero.

Remarks
This message is sent after the last CPL_STOP message is sent.

In response to this message, a Control Panel application must free any memory that it
has allocated and perform global-level cleanup.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in cpl,h.

FreeLibrary

CPL~GETCOUNT
Sent to the CPIAppiet function of a Control Panel application to retrieve the number of
dialog boxes supported by the application.

Return Values
The CPIAppiet function returns the number of dialog boxes that the Control Panel
application supports.

Remarks
This message is sent immediately after the CPL_INIT message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in cpl,h.

732 Volume 5 Microsoft Windows Shell

Sent to the CPIAppiet function of a Control Panel application to prompt it to perform
global initialization, especially memory allocation.

Return Values
If initialization succeeds, the CPIAppiet function should return nonzero. Otherwise, it
should return zero.

If CPIAppiet returns zero, the controlling application ends communication and releases
the DLL containing the Control Panel application.

Remarks
Because this is the only way a Control Panel application can signal an error condition,
the application should allocate memory in response to this message.

This message is sent immediately after the DLL containing the application is loaded.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in cpl.h.

FreeLibrary

Sent to the CPIAppiet function of a Control Panel application to request information
about a dialog box that the application supports.

Parameters
uAppNum

Dialog box number. This number must be in the range zero through one less
than the value returned in response to the CPL_GETCOUNT message
(CPL_GETCOUNT -1).

Chapter 12 Shell Messages and Notifications 733

/pcp/i
Address of a CPLINFO structure. The application must fill this structure with resource
identifiers for the icon, short name, description, and any user-defined value
associated with the dialog box.

Return Values
If the CPIAppiet function processes this message successfully, it should return zero.

Remarks
The Control Panel sends the CPL_INQUIRE message once for each dialog box
supported by your application. The Control Panel also sends a CPL_NEWINQUIRE
message for each dialog box. These messages are sent immediately after the
CPL_GETCOUNT message. However, the system does not guarantee the order in
which the CPL_INQUIRE and CPL_NEWINQUIRE messages are sent.

You can perform initialization for the dialog box when you receive CPL_INQUIRE. If you
must allocate memory, do so in response to the CPL_INIT message.

On Windows 95 and Windows NT version 4.0, the system caches the information
returned in the CPLINFO structure used by CPL_INQUIRE. This provides significantly
better performance because the system only needs to load your application the first time
the Control Panel starts up. On the other hand, the CPL_NEWINQUIRE message
returns information in a form that the system cannot cache. For this reason, most
CPIAppiet functions should process CPL_INQUIRE and ignore CPL_NEWINQUIRE.

The only applications that should use CPL_NEWINQUIRE are those that need to
change their icon or display strings based on the state of the computer. In this case, your
CPL_INQUIRE handler should specify the CPL_DYNAMIC_RES value for the idlcon,
idName, or idlnfo members of the CPLINFO structure, rather than specifying a valid
resource identifier. This causes the Control Panel to send the CPL_NEWINQUIRE
message each time it needs the icon and display strings, allowing you to specify
information based on the current state of the computer. Of course, this is significantly
slower than using cached information.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in cpl.h.

CPL_NEWINQUIRE
Sent to the CPIAppiet function of a Control Panel application to request information
about a dialog box that the application supports.

734 Volume 5 Microsoft Windows Shell

Parameters
uAppNum

Dialog box number. This number must be in the range zero through one less
than the value returned in response to the CPL_GETCOUNT message
(CPL_GETCOUNT -1).

Ipncpli
Address of a NEWCPLINFO structure. The Control Panel application should fill this
structure with information about the dialog box.

Return Values
If the CPIAppiet function processes this message successfully, it should return zero.

Remarks
For better performance, most applications should ignore CPL_NEWINQUIRE and
process the CPL_INQUIRE message instead.

The Control Panel sends the CPL_NEWINQUIRE message once for each dialog box
supported by your application. The Control Panel also sends a CPL_INQUIRE message
for each dialog box. These messages are sent immediately after the CPL_GETCOUNT
message. However, the system does not guarantee the order in which the
CPL_INQUIRE and CPL_NEWINQUIRE messages are sent.

You can perform initialization for the dialog box when you receive CPL_INQUIRE. If you
must allocate memory, do so in response to the CPL_INIT message.

The CPL_NEWINQUIRE message was introduced in Windows version 3.1 as a
replacement for CPL_INQUIRE. However, CPL_INQUIRE is the preferred message for
Windows 95 and Windows NT version 4.0. This is because CPL_NEWINQUIRE returns
information in a form that the system cannot cache. Consequently, applications that
process CPL_NEWINQUIRE must be loaded each time the Control Panel needs the
information, resulting in a significant reduction in performance.

The only applications that should use CPL_NEWINQUIRE are those that need to
change their icon or display strings based on the state of the computer. In this case, your
CPL_INQUIRE handler should specify the CPL_DYNAMIC_RES value for the idlcon,
idName, or idlnfo members of the CPLINFO structure, rather than specifying a valid
resource identifier. This causes the Control Panel to send the CPL_NEWINQUIRE
message each time it needs the icon and display strings, allowing you to specify
information based on the current state of the computer. Of course, this is significantly
slower than using cached information.

Chapter 12 Shell Messages and Notifications 735

8'Requlrements ,
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1 .0 or later.
Header: Declared in cpl.h.

CPL_STARTWPARMS
Sent to notify CPIAppiet that the user has chosen the icon associated with a given
dialog box. CPIAppiet should display the corresponding dialog box and carry out any
user-specified tasks.

,CP~~~~~~~ui~tt,lP.I~r~:,;". ,
" lp$i:Extra' = (~PCTSJRrlparam~t

.. '" ..

"i ...

Parameters
uAppNum

Dialog box number. This number must be in the range zero through one less than the
value returned in response to the CPL_GETCOUNT message
(CPL_GETCOUNT -1).

IpszExtra
String with additional directions for execution.

Return Values
Returns TRUE if the message was handled, or FALSE otherwise.

Remarks
CPL_STARTWPARMS is similar to CPL_DBLCLK but allows you to pass a string to
CPIAppiet instead of an integer. You can use this string as a flexible way to provide
detailed directions for execution.

Version 5.00 and later of SheIl32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in cpl.h.

736 Volume 5 Microsoft Windows Shell

Sent to the CPIAppiet function of a Control Panel application when the controlling
application of the Control Panel closes. The controlling application sends the message
once for each dialog box that the application supports.

Parameters
uAppNum

Dialog box number.

IData
Value that the Control Panel application loaded into the IData member of the
CPLINFO or NEWCPLINFO structure for the dialog box. The application loads the
IData member in response to the CPL_INQUIRE or CPL_NEWINQUIRE message.

Return Values
If the CPIAppiet function processes this message successfully, it should return zero.

Remarks
In response to this message, a Control Panel application must perform cleanup for the
given dialog box.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in cpl,h.

FM_GETDRIVEINFO
Sent by a File Manager extension to retrieve drive information from the active File
Manager window.

~1!r~~~}.,

Parameters
/pfmsgdi

Chapter 12 Shell Messages and Notifications 737

Address of an FMS_GETDRIVEINFO structure that receives drive information.

Return Values
Returns nonzero.

Remarks
If OxFFFFFFFF is returned in the dwTotalSpace or dwFreeSpace member of the
FMS_GETDRIVEINFO structure, the extension library must compute the value or
values.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

FM_GETFILESEL
Sent by a File Manager extension to retrieve information about a selected file from the
active File Manager window (either the directory window or the Search Results window).

Parameters
index

Zero-based index of the selected file to retrieve.

/pfmsgfs
Address of an FMS_GETFILESEL structure that receives information about the
selection.

Return Value
Returns the zero-based index of the selected file that was retrieved.

738 Volume 5 Microsoft Windows Shell

Remarks
An extension can use the FM_GETSELCOUNT message to get the count of selected
files.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc, FM_GETFILESELLFN, FM_GETSELCOUNTLFN

FM_GETFILESELLFN
Sent by a File Manager extension to retrieve information about a selected file from the
active File Manager window (either the directory window or the Search Results window).
The selected file can have a long file name.

Parameters
index

Zero-based index of the selected file to retrieve.

/pfmsgfs
Address of an FMS_GETFILESEL structure that receives information about the
selection.

Return Values
Returns the zero-based index of the selected file that was retrieved.

Remarks
Only extensions that support long file names (for example, network-aware extensions)
should use this message.

An extension can use the FM_GETSELCOUNTLFN message to get the count of
selected files.

Chapter 12 Shell Messages and Notifications 739

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc, FM_GETFILESEL, FM_GETSELCOUNT

FM_GETFOCUS
Sent by a File Manager extension to retrieve the type of File Manager window that has
the input focus.

Return Values
Returns the type of File Manager window that has the input focus. It can be one of the
following values:

FMFOCUS_DIR

FMFOCUS_ TREE

FMFOCUS_DRIVES

FMFOCUS_SEARCH

Directory portion of a directory window.

Tree portion of a directory window.

Drive bar of a directory window.

Search Results window.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FM_GETSELCOUNT
Sent by a File Manager extension to retrieve a count of the selected files in the active
File Manager window (either the directory window or the Search Results window).

Return Values
Returns the number of selected files.

740 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNTLFN

FM_GETSELCOUNTLFN
Sent by a File Manager extension to retrieve the number of selected files in the active
File Manager window (either the directory window or the Search Results window). The
count includes files that have long file names.

Return Values
Returns the number of selected files.

Remarks
Only extensions that support long file names (for example, network-aware extensions)
should use this message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNT

Sent by a File Manager extension to cause File Manager to repaint either its active
window or all of its windows.

Parameters
fRepaint

Chapter 12 Shell Messages and Notifications 741

Value that indicates whether File Manager repaints its active window or all of its
windows. If this parameter is TRUE, File Manager repaints all of its windows.
Otherwise, File Manager repaints only its active window.

Return Values
No return value.

Remarks
File system changes caused by an extension are automatically detected by File
Manager. An extension should use this message only in situations where drive
connections are made or canceled.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

FM_RELOAD _EXTENSIONS
Sent by a File Manager extension (or another application) to cause File Manager to
reload all extension DLLs listed in the [AddOns] section of the Winfile.ini file.

Return Values
No return value.

Remarks
Other applications can use the PostMessage function to send this message to File
Manager. To obtain the appropriate File Manager window handle, an application can
specify "WFS_Frame" as the IpszClassName parameter in a call to the FindWindow
function.

742 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

FMEVENT _HELPMENUITEM
Sent to a File Manager extension DLL procedure when the user presses F1 on a menu
or toolbar command item. The extension should call WinHelp, with that function's hwnd
parameter set to the value of the extension's hwnd parameter.

Parameters
ultem

Value that identifies the menu or tool bar command item for which Help is sought. The
extension procedure uses this value to determine how best to call WinHelp.

Return Values
An extension DLL procedure should return zero if it processes this message.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc, FMEVENT _HELPSTRING

FMEVENT _HELPSTRING
Sent to a File Manager extension DLL procedure when File Manager wants a Help string
for a menu or toolbar command item.

Parameters
/pfmshs

Chapter 12 Shell Messages and Notifications 743

Address of an FMS_HELPSTRING structure that communicates command item Help
string data.

The FMS_HELPSTRING structure identifies the command item for which a Help
string is wanted, along with a handle to its menu. An application then writes the
appropriate Help string to the FMS_HELPSTRING structure's szHelp member.

Return Values
An extension DLL procedure should return zero if it processes this message.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc, FMEVENT _HELPMENUITEM

FMEVENT _INITMENU
Sent to an extension DLL when the user selects the menu for the extension from the File
Manager menu bar. The extension can use this notification to initialize menu items.

Parameters
hmenu

Handle to the File Manager menu bar.

Return Values
An extension DLL should return zero if it processes this message.

Remarks
An extension DLL receives this message only when the user selects the top-level menu.
If the extension contains submenus, it must initialize them at the same time it initializes
the top-level menu.

744 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FM Extension Proc

Sent to an extension DLL when File Manager is loading the DLL.

Parameters
Ipfmsld

Address of an FMS_LOAD structure that specifies the menu item delta value.

Return Values
An extension DLL must return TRUE to continue loading the DLL. If the DLL returns
FALSE, File Manager calls the FreeLibrary function and ends any communication with
the extension DLL.

Remarks
An application should fill the dwSize, szMenuName, and hMenu members in the
FMS_LOAD structure. It should also save the value of the wMenuDelta member and
use it to identify menu items when modifying the menu.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FM Extension Proc

Chapter 12 Shell Messages and Notifications 745

FMEVENT_SELCHANGE
Sent to an extension DLL when the user selects a file name in the File Manager directory
window or Search Results window.

FMEVENT_SElCHANGE

Return Values
An extension DLL should return zero if it processes this message.

Remarks
Changes in the tree portion of the directory window do not produce this message.

Because the user can change the selection many times, the extension DLL must return
promptly after processing this message to avoid slowing the selection process for the
user.

. "kiltltefltS ~"j""'"
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FM Extension Proc

FMEVENT_TOOLBARLOAD
Sent to an extension DLL when File Manager is loading its toolbar. This message allows
an extension DLL to add a button to the File Manager toolbar.

, 'wU"'~ c

FMEV ENi300lBARlOAO
lpfmst~l ='(LPFMS..:...TOOLBARlOAO}l Param;

Parameters
Ipfmstbl

Address of an FMS_ TOOLBARLOAD structure. If the extension DLL adds a button to
the toolbar in File Manager, the DLL should fill the structure with information about the
button.

Return Values
An extension DLL must return TRUE to add the button to the tool bar. If the DLL returns
FALSE, File Manager does not add the button.

746 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

FMEVENT_UNLOAD
Sent to an extension DLL when File Manager is unloading the DLL.

Return Values
An extension DLL should return zero if it processes this message.

Remarks
The hwnd and hMenu values passed with the FMEVENT _LOAD and
FMEVENT _INITMENU messages may not be valid at the time this message is sent.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

Sent to an extension DLL when the user chooses the Refresh command from the View
menu in File Manager. The extension can use this notification to update its menu.

Return Values
An extension DLL should return zero if it processes this message.

Chapter 12 Shell Messages and Notifications 747

al~.!te,Ol~nts
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows CE: Unsupported.
Header: Declared in wfext.h.

FMExtensionProc

Sent by an application to the Windows Control Panel to request that a Control Panel
application be started.

Parameters
hwnd

Handle to the window that is sending the request. The WM_CPL_LAUNCHED
message is returned to this window.

IpszAppName
Address of a string containing the name of the Control Panel application to open.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in cpl.h.

Sent when a Control Panel application that was started by the WM_CPL_LAUNCH
message has closed. The WM_CPL_LAUNCHED message is sent to the window identified
by the wParam parameter of the WM_CPL_LAUNCH message that started the application.

748 Volume 5 Microsoft Windows Shell

Parameters
fAppStarted

Value that indicates whether the application was started. If the application was
started, this parameter is TRUE; otherwise, it is FALSE.

Return Values
The return value is ignored.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in cpl.h.

Sent when the user drops a file on the window of an application that has registered itself
as a recipient of dropped files.

nOM./p"

Parameters
hDrop

Handle to an internal structure describing the dropped files. Pass this handle
DragFinish, DragQueryFile, or DragQueryPoint to retrieve information about the
dropped files.

Return Values
An application should return zero if it processes this message.

Remarks
The HDROP handle is declared in Shellapi.h. You must include this header in your build
to use WM_DROPFILES. See Transferring Shell Data Using Drag-Drop or the Clipboard
for further discussion of how to use drag-drop to transfer shell data.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

Chapter 12 Shell Messages and Notifications 749

DragAcceptFiles

WM HELP
Indicates that the user pressed the F1 key. If a menu is active when F1 is pressed,
WM_HELP is sent to the window associated with the menu; otherwise, WM_HELP is
sent to the window that has the keyboard focus. If no window has the keyboard focus,
WM_HELP is sent to the currently active window.

Parameters
Iphi

Address of a HELPINFO structure that contains information about the menu item,
control, dialog box, or window for which Help is requested.

Return Values
Returns TRUE.

Remarks
The DefWindowProc function passes WM_HELP to the parent window of a child
window or to the owner of a top-level window.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h.

WM_TCARD
Sent to an application that has initiated a training card with Windows Help. The message
informs the application when the user clicks an authorable button. An application initiates
a training card by specifying the HELP _ TCARD command in a call to the WinHelp
function.

750 Volume 5 Microsoft Windows Shell

Parameters
idAction

Value that indicates the action the user has taken. This can be one of these values:

IDABORT The user clicked an authorable Abort button.

HELP _TCARD_DATA The user clicked' an authorable button. The
IParam parameter contains a long integer
specified by the Help author.

HELP _ TCARD_NEXT

HELP_TCARD_OTHER_CALLER

IDCANCEL

IDCLOSE

IDHELP

IDIGNORE

IDNO

IDOK

IDRETRY

IDYES

dwActionData

The user clicked an authorable Next button.

Another application has requested training
cards.

The user clicked an authorable Cancel button.

The user closed the training card.

The user clicked an authorable Windows Help
button.

The user clicked an authorable Ignore button.

The user clicked an authorable No button.

The user clicked an authorable OK button.

The user clicked an authorable Retry button.

The user clicked an authorable Yes button.

If idAction specifies HELP _TCARD_DATA, this parameter is a long integer specified
by the Help author. Otherwise, this parameter is zero.

Return Values
The return value is ignored; use zero.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

751

APPENDIX A

Index A: Elements Grouped by Technology

The indexes in Part 3 make finding information in the Win32 Library volumes as easy as
possible. Rather than cluttering the Table of Contents with information about individual
programmatic elements (and thereby making the TOC uselessly jumbled), I've created
these indexes and put them in the back of each volume. With these indexes, you'll be
able to locate the programmatic element you're interested in----and see where it fits within
the volumes and their technologies-quickly and easily.

Also, to keep you informed and up-to-date about Microsoft technologies, I've created a
live Web-based document that maps Microsoft technologies to the locations where you
can get more information about them. This link gets you to the live index of technologies:
www.iseminger.comlwinprs/technologies

As always, send me feedback if you can think of ways to improve this section. I can't
guarantee a reply, but I'll read it, and if others can benefit, I'll incorporate the idea into
future volumes.

Color Palette Functions 707
ColorAdjustLuma
ColorHLSToRGB
ColorRGBToHLS
SHCreateSheliPalette

Miscellaneous 71 0
Olllnstall
HashOata
SHAutoComplete
SHCreateStreamOnFile
SHCreateThread
SHGetThreadRef
SHOpenRegStream
SHOpenRegStream2
SHSetThreadRef

Path Functions 610
PathAddBackslash
PathAddExtension
PathAppend
PathBuildRoot
PathCanonicalize
PathCombine
PathCommonPrefix
PathCompactPath
PathCompactPathEx
PathCreateFromUrl
Path File Exists

PathFind Extension
PathFindFileName
PathFindNextComponent
PathFindOnPath
PathFindSuffixArray
PathGetArgs
PathGetCharType
PathGetDriveNumber
PathlsContentType
PathlsOirectory
PathlsOirectoryEmpty
PathlsFileSpec
PathisHTMLFile
PathlsLFNFileSpec
PathlsNetworkPath
PathlsPrefix
PathlsRelative
PathlsRoot
PathlsSameRoot
PathlsSystemFolder
PathisUNC
PathlsUNCServer
PathlsUNCServerShare
PathisURL
PathMakePretty
PathMakeSystemFolder
PathMatchSpec
PathParselconLocation

752 Volume 5 Microsoft Windows Shell

Path Functions (continued)
Path QuoteS paces
PathRelativePathTo
PathRemoveArgs
PathRemoveBackslash
PathRemoveBlanks
PathRemoveExtension
PathRemoveFileSpec
PathRenameExtension
PathSearchAndQualify
PathSetDlgltemPath
PathSkipRoot
PathStripPath
PathStrip ToRoot
PathUndecorate
PathUnExpandEnvStrings
PathUnmakeSystemFolder
PathUnquoteSpaces
UrlApplyScheme
UrlCanonicalize
UrlCombine
UrlCompare
UrlCreateFromPath
UrlEscape
UrlEscapeSpaces
UrlGetLocation
UrlGetPart
UrlHash
Urlls
UrlisFileUrl
UrlisNoHistory
UrlisOpaque
UrlUnEscape
UrlUnEscapelnPlace

Registry Data Types 668
REGSAM

Registry Functions 670
AssocCreate
AssocQueryKey
AssocQueryString
AssocQueryStringByKey
SHCopyKey
SHDeleteEmptyKey
SHDeleteKey
SHDeleteValue
SHEnumKeyEx
SHEnumValue
SHGetValue
SHQuerylnfoKey
SHQueryValueEx
SHRegCloseUSKey
SHRegCreateUSKey
SHRegDeleteEmptyUSKey
SHRegDeleteUSValue

SHRegDuplicateHKey
SHRegEnumUSKey
SHRegEnumUSValue
SHRegGetBoolUSValue
SHRegGetPath
SHRegGetUSValue
SHRegOpenUSKey
SHRegQuerylnfoUSKey
SHRegQueryUSValue
SHRegSetPath
SHRegSetUSValue
SHRegWriteUSValue
SHSetValue
SHREGDEL_FLAGS
SHREGENUM_FLAGS

Shell Callback Functions 481
BrowseCalibackProc
FMExtensionProc
UndeleteFile

Shell Enumerations 561
ASSOCDATA
ASSOCF
ASSOCKEY
ASSOCSTR
FOLDERFLAGS
FOLDERVIEWMODE
IURL_SETURL_FLAGS
IURL_SETURUNVOKECOMMAND_FLAGS
SHCONTF
SHGNO
TRANSLATEURUN_FLAGS
URLASSOCIATIONDIALOG_IN_FLAGS

Shell Functions 409
CPIAppiet
DefScreenSaverProc
DIIGetVersion
DLLGETVERSIONPROC
DoEnvironmentSubst
DragAcceptFiles
DragFinish
DragQueryFile
DragQueryPoint
FindEnvironmentString
FindExecutable
GetMenuContextHelpld
GetWindowContextHelpld
InetisOffline
M IMEAssociationDialog
RegisterDialogClasses
ScreenSaverConfigureDialog
ScreenSaverProc
SetMenuContextHelpld
SetWindowContextHelpld

Appendix A Index A: Elements Grouped by Technology 753

SHAddToRecentDocs
SHAppBarMessage
SHBindToParent
SHBrowseForFolder
SHChangeNotify
SHCreateDirectoryEx
SHCreateProcessAsUser
ShelLNotifylcon
SheliAbout
Shell Execute
ShellExecuteEx
SHEmptyRecycleBin
SHFileOperation
SHFreeNameMappings
SHGetDataFromlDList
SHGetDesktopFolder
SHGetDiskFreeSpace
SHGetFilelnfo
SHGetFolderLocation
SHGetFolderPath
SHGetlconOverlaylndex
SHGetlnstanceExplorer
SHGetMalioc
SHGetNewLinklnfo
SHGetPathFromlDList
SHGetSettings
SHGetSpecialFolderLocation
SHGetSpecialFolderPath
SHlnvokePrinterCommand
SHLoadlnProc
SHQueryRecycleBin
SoftwareUpdateMessageBox
TranslateURL
URLAssociationDialog
WinHelp

Shell Interfaces 139
IACList 139

IACList::Expand
IACList2 142

IACList2::GetOptions
IACList2: :SetOptions

IActiveDesktop Interface 144
IActiveDesktop: :AddDesktopltem Method
IActiveDesktop::AddDesktopltemWithUI Method
IActiveDesktop::AddUrl Method
IActiveDesktop: :ApplyChanges
IActiveDesktop: :GenerateDesktopltemHtml
IActiveDesktop::GetDesktopltem
IActiveDesktop::GetDesktopltemByl D
IActiveDesktop::GetDesktopltemBySource
IActiveDesktop::GetPattern
IActiveDesktop::GetDesktopltemCount
IActiveDesktop: :GetDesktopltemOptions
IActiveDesktop::GetWallpaper

IActiveDesktop: :GetWalipaperOptions
IActiveDesktop:: ModifyDesktopltem
IActiveDesktop:: RemoveDesktopltem
IActiveDesktop: :SetDesktopltemOptions
IActiveDesktop::SetPattern
IActiveDesktop::SetWallpaper
IActiveDesktop::SetWallpaperOptions

IAsyncOperation 160
IASyncOperation::EndOperation
IASyncOperation::GetAsyncMode
IASyncOperation::lnOperation
IASyncOperation::SetAsyncMode
IASyncOperation::StartOperation

IAutoComplete 165
IAutoComplete::Enable
IAutoComplete::lnit

IAutoComplete2 169
IAutoComplete2: :GetOptions
IAutoComplete2: :SetOptions

IColumnProvider 172
IColumnProvider::GetColumnlnfo
IColumnProvider::GetltemData
IColumnProvider::lnitialize

ICommDlgBrowser 176
ICommDlgBrowser::lncludeObject
ICommDlgBrowser::OnDefaultCommand
ICommDlgBrowser::OnStateChange

ICommDlgBrowser2 179
ICommDlgBrowser2::GetDefaultMenuText
ICommDlgBrowser2::GetViewFlags
ICommDlgBrowser2::Notify

IContextMenu 182
IContextMenu::GetCommandString
IContextMenu::lnvokeCommand
IContextMenu::QueryContextMenu

IContextMenu2 188
IContextMenu2::HandleMenuMsg

IContextMenu3 190
IContextMenu3::HandleMenuMsg2

ICopyHook 192
ICopyHook::CopyCaliback

ICurrentWorkingDirectory 194
ICurrentWorkingDirectory::GetDirectory
ICurrentWorkingDirectory: : SetDi rectory

IDeskBand 196
I DeskBand: :GetBandlnfo

IDockingWindow 198
IDockingWindow::CloseDW
I DockingWindow:: ResizeBorderDW
IDockingWindow::ShowDW

IDockingWindowFrame 201
I DockingWindowFrame: :AddToolbar
IDockingWindowFrame::FindToolbar
IDockingWindowFrame::RemoveToolbar

IDragSourceHelper 205

754 Volume 5 Microsoft Windows Shell

Shell Interfaces (continued)
IDropTargetHelper (continued)

IDragSourceHelper::lnitializeFromBitmap
IDragSourceHelper:: I nitializeFromWindow

IDropTargetHelper 208
IDropTargetHelper::DragEnter
I DropTargetHelper:: DragLeave
I DropTargetHelper:: DragOver
IDropTargetHelper::Drop
IDropTargetHelper::Show

IDockingWindowSite 213
IDockingWindowSite: :GetBorderDW
IDockingWindowSite:: RequestBorderSpaceDW
IDockingWindowSite: :SetBorderSpaceDW

IEmptyVolumeCache 216
I EmptyVolumeCache:: Deactivate
IEmptyVolumeCache::GetSpaceUsed
IEmptyVolumeCache::lnitialize
IEmptyVolumeCache::Purge
I EmptyVolumeCache::ShowProperties

IEmptyVolumeCache2 223
I EmptyVolumeCache2:: InitializeEx

IEmptyVolumeCacheCallBack 226
IEmptyVolumeCacheCallback::PurgeProgress
IEmptyVolumeCacheCallback: :ScanProgress

I EnumExtraSearch 229
IEnumExtraSearch::Clone
IEnumExtraSearch::Next
IEnumExtraSearch::Reset
IEnumExtraSearch::Skip

IEnumlDList 232
IEnumIDList::Clone
IEnumIDList::Next
IEnumIDList::Reset
IEnumIDList::Skip

IExtractlcon 236
I Extractlcon:: Extract
IExtractlcon::GetlconLocation

IExtractlmage 240
I Extractlmage:: Extract
I Extractlmage: :GetLocation

IExtractimage2 243
IExtractlmage2::GetDateStamp

I FileViewer 245
IFileViewer::PrintTo
IFileViewer::Show
I FileViewer::Showlnitialize

IFileViewerSite 248
I FileViewerSite: :GetPinnedWindow
I FileViewerSite: :SetPinnedWindow

IInputObject 249
IlnputObject::HasFocusIO
IlnputObject::TranslateAcceleratorIO
IlnputObject:: UIActivatelO

IInputObjectSite 252

IlnputObjectSite::OnFocusChangeIS
INewShortcutHook 253

INewShortcutHook::GetExtension
INewShortcutHook::GetFolder
INewShortcutHook::GetName
INewShortcutHook::GetReferent
INewShortcutHook::SetFolder
INewShortcutHook::SetReferent

INotifyReplica 258
I NotifyReplica:: YouAreAReplica

IObjMgr 260
IObjMgr::Append
IObjMgr::Remove

IPersistFolder 261
IPersistFolder::lnitialize

IPersistFolder2 263
IPersistFolder2::GetCurFolder

IPersistFolder3 264
I PersistFileSystemFolder::GetFolderTargetlnfo
I PersistFileSystemFolder:: InitializeEx

IProgressDialog 267
IProgressDialog::HasUserCancelled
IProgressDialog::SelAnimation
IProgressDialog::SetCanceIMsg
IProgressDialog::SetLine
IProgressDialog::SetProgress
IProgressDialog::SetProgress64
IProgressDialog::SetTitle
IProgressDialog::StartProgressDialog
I Progress Dialog: :StopProgressDialog
IProgressDialog::Timer

IQueryAssociations 277
IQueryAssociations::GetData
IQueryAssociations::GetEnum
IQueryAssociations::GetKey
IQueryAssociations::GetString
IQueryAssociations:: Init

IQuerylnfo 284
IQuerylnfo::GetlnfoFlags
IQuerylnfo::GetinfoTip

I ReconciiableObject 286
IReconciiableObject::

GetProgressFeedbackMaxEstimate
IReconcilableObject::Reconcile

IReconcilelnitiator 291
I Reconcilel nitiator::SelAbortCallback
I Reconcilelnitiator::SetProgressFeedback

I RemoteComputer 294
I RemoteComputer:: Initialize

IResolveShellLink 295
IResolveSheIlLink::ResolveSheIlLink

IRunnableTask 297
IRunnableTask::lsRunning
IRunnableTask::KiII
IRunnableTask::Resume

Appendix A Index A: Elements Grouped by Technology 755

IRunnableTask::Run
IRunnableTask::Suspend

ISheliBrowser 301
ISheIiBrowser:: BrowseObject
ISheIiBrowser:: EnableModelessSB
IShellBrowser: :GetControlWindow
IShellBrowser: :GetViewStateStream
ISheIIBrowser::lnsertMenusSB
ISheIIBrowser::OnViewWindowActive
ISheIIBrowser::QueryActiveSheIIView
ISheIiBrowser::RemoveMenusSB
ISheliBrowser: :SendControlMsg
ISheIiBrowser::SetMenuSB
ISheIiBrowser::SetStatusTextSB
ISheliBrowser: :SetToolbarltems
ISheliBrowser: :TranslateAcceleratorSB

ISheliChangeNotify 316
ISheIIChangeNotify::OnChange

ISheliDetails 319
ISheIiDetails::ColumnClick
ISheIIDetails::GetDetailsOf

IShellExecuteHook 322
ISheIlExecuteHook::Execute

IShellExtlnit 324
ISheIlExtlnit::lnitialize

ISheliFolder 326
ISheIiFolder::BindToObject
ISheIIFolder::BindToStorage
ISheIIFolder::CompareIDs
ISheIiFolder::CreateViewObject
ISheIiFolder::EnumObjects
ISheIiFolder::GetAttributesOf
ISheIiFolder::GetDisplayNameOf
ISheIiFolder::GetUIObjectOf
ISheIIFolder::ParseDisplayName
ISheIIFolder::SetNameOf

ISheliFolder2 343
ISheIIFolder2::EnumSearches
ISheIiFolder2::GetDefaultColumn
ISheIIFolder2::GetDefaultColumnState
ISheIiFolder2::GetDefaultSearchGUID
ISheIiFolder2::GetDetailsEx
ISheIiFolder2::GetDetailsOf
ISheIiFolder2::MapNameToSCID

IShellicon 350
IShelllcon::GetlconOf

IShelilconOverlay 352
IShelllconOverlay::GetOverlaylconlndex
IShelllconOverlay: :GetOverlaylndex

IShelilconOverlayldentifier 355
IShelllconOverlayldentifier::GetOverlaylnfo
IShelilconOveriayldentifier: :GetPriority
IShelilconOverlayldentifier: :lsMemberOf

ISheliLink 359
ISheIiLink::GetArguments

ISheIiLink::GetDescription
ISheIiLink::GetHotkey
ISheIiLink::GetlconLocation
ISheIiLink::GetIDList
ISheIiLink::GetPath
ISheIILink::GetShowCmd
ISheIILink::GetWorkingDirectory
ISheIiLink:: Resolve
ISheIiLink::SetArguments
ISheIiLink::SetDescription
ISheIiLink::SetHotkey
ISheIiLink::SetlconLocation
ISheIiLink::SetIDList
ISheIiLink::SetPath
ISheIILink::SetRelativePath
ISheIILink::SetShowCmd
ISheIILink::SetWorkingDirectory

ISheliLinkDataList 375
ISheliLinkDataList: :AddDataBlock
ISheliLinkDataList: :CopyDataBlock
ISheIiLinkDataList::GetFlags
ISheIiLinkDataList:: RemoveDataBlock
ISheIiLinkDataList::SetFlags

ISheliPropSheetExt 381
ISheIIPropSheetExt::AddPages
ISheIIPropSheetExt::ReplacePage

ISheliView 383
ISheIIView::AddPropertySheetPages
ISheIIView::CreateViewWindow
ISheIiView::DestroyViewWindow
ISheIiView:: EnableModeless
ISheIiView:: EnableModelessSV
ISheIiView::GetCurrentlnfo
ISheIIView::GetltemObject
ISheIiView:: Refresh
ISheIIView::SaveViewState
ISheIIView::Selectltem
ISheIIView::TranslateAccelerator
ISheIiView::UIActivate

ISheliView2 395
ISheIiView2::CreateViewWindow2
ISheIiView2::GetView
ISheIiView2::HandleRename
ISheIIView2::SelectAndPositionltem

ITaskbarList 399
ITaskbarList::ActivateTab
ITaskbarList: :AddTab
ITaskbarList::DeleteTab
ITaskbarList::Hrlnit
ITaskbarList::SetActiveAlt

IUniformResourceLocator 403
IUniformResourceLocator::GetURL
IUniformResourceLocator:: InvokeCommand
IUniformResourceLocator: :SetU RL

756 Volume 5 Microsoft Windows Shell

IURLSearchHook (continued)
IURLSearchHook::Translate

Shell Macros 571
MAKEDLLVERULL
SOANGLETENTHS
SOPALETTEINDEX
SOPALETTERGB
SORGB
SOSETRATIO

Shell Messages and Notifications 721
ABM_ACTIVATE
ABM_GETAUTOHIDEBAR
ABM_GETSTATE
ABM_GETTASKBARPOS
ABM_NEW
ABM_QUERYPOS
ABM_REMOVE
ABM_SETAUTOHIDEBAR
ABM_SETPOS
ABM_WINDOWPOSCHANGED
ABN_FULLSCREENAPP
ABN_POSCHANGED
ABN_STATECHANGE
ABN_WINDOWARRANGE
CPL_DBLCLK
CPL_EXIT
CPL_GETCOUNT
CPUNIT
CPUNQUIRE
CPL_NEWINQUIRE
CPL_STARTWPARMS
CPL_STOP
FM_GETDRIVEINFO
FM_GETFILESEL
FM_GETFILESELLFN
FM_GETFOCUS
FM_GETSELCOUNT
FM_GETSELCOUNTLFN
FM_REFRESH_WINDOWS
FM_RELOAD_EXTENSIONS
FMEVENT _HELPMENUITEM
FMEVENT _HELPSTRING
FMEVENT _INITMENU
FMEVENT _LOAD
FMEVENT_SELCHANGE
FMEVENT_TOOLBARLOAD
FMEVENT _UNLOAD
FMEVENT_USER_REFRESH
WM_CPL_LAUNCH
WM_CPL_LAUNCHED
WM_DROPFILES
WM_HELP
WM_TCARD

Shell Structures 485
APPBARDATA
BROWSEINFO
CIDA
CMINVOKECOMMANDINFO
CMINVOKECOMMANDINFOEX
COMPONENT
COMPONENTSOPT
COMPPOS
COMPSTATEINFO
CPLINFO
DATABLOCK_HEADER
DESKBANDINFO
DLLVERSIONINFO
DLLVERSIONINF02
DROPFILES
EXP _DARWIN_LINK
EXP _SPECIALJOLDER
EXP _SZ_LlNK
EXT_BUTTON
EXTRASEARCH
FILEDESCRIPTOR
FILEGROUPDESCRIPTOR
FMS_GETDRIVEINFO
FMS_GETFILESEL
FMS_HELPSTRING
FMS_LOAD
FMS_ TOOLBARLOAD
FOLDERSETTINGS
FVSHOWINFO
HELPINFO
HELPWININFO
IE4COMPONENT
ITEMIDLIST
MUL TIKEYHELP
NEWCPLINFO
NOTIFYICONDATA
NRESARRAY
NT_CONSOLE_PROPS
NT_FE_CONSOLE_PROPS
PERSIST JOLDER_ TARGET_INFO
SHCOLUMNDATA
SHCOLUMNID
SHCOLUMNINFO
SHCOLUMNINIT
SHCREATEPROCESSINFOW
SHDESCRIPTIONID
SHDRAGIMAGE
SHELLEXECUTEINFO
SHELLFLAGSTATE
SHFILEINFO

. SHFILEOPSTRUCT
SHITEMID
SHNAMEMAPPING
SHQUERYRBINFO

STRRET
SV2CVW2_PARAMS
URLINVOKECOMMANOINFO
WALLPAPEROPT

String Functions 575
ChrCmpl
IntlStrEqN
IntlStrEqNI
IntlStrEqWorker
MLLoadLibrary
SHStrOup
StrCat
StrCatBuff
StrChr
StrChrl
StrCmp
StrCmpl
StrCmpN
StrCmpNI
StrCpy
StrCpyN
StrCSpn

Appendix A Index A: Elements Grouped by Technology 757

StrCSpnl
StrOup
StrFormatByteSize
StrFormatByteSize64A
StrFormatKBSize
StrFromTimelnterval
StrlslntlEqual
StrNCat
StrPBrk
StrRChr
StrRChrl
StrRetToBuf
StrRetToStr
StrRStrl
StrSpn
StrStr
StrStrl
StrTolnt
StrTolntEx
StrTrim
wnsprintf
wvnsprintf

APPENDIX B

Index B: Volume 1, Elements
Listed Alphabetically

A CreateloCompletionPort 502
CreateJobObject .. 81

AbnormalTermination 750 CreateProcess ... 82
AddAtom .. 346 CreateProcessAsUser 92
AddUsersToEncryptedFile 655 CreateProcessWithLogonW 100
AliocateUserPhysicalPages 261 CreateRemoteThread 1 07
AreFileApisANSI .. 481 CreateThread ... 110
AssignProcessToJobObject 74 CWPRETSTRUCT 457
AttachThreadlnput ... 75 CWPSTRUCT .. 458

B D
Beep .. 767 DEBUGHOOKINFO 459
BindloCompletionCaliback 77 DebugProc ... 429
BY _HANDLE_FILE_INFORMATION 606 DecryptFile ... 658

DefineDosDevice ... 504

c DeleteAtom .. 347
DeleteFiber .. 112

CaIlMsgFilter .. 420
CaliNextHookEx .. 421

DeleteFile ... 506
DeleteVolumeMountPoint 659

CallWndProc ... 422 DisableThreadLibraryCalis 217

CallWndRetProc .. 424 DISKQUOTA_USER_INFORMATION 731

Cancello .. 482 DIiMain ... 219

CBT _CREATEWND 456 DuplicateHandle .. 406

CBT ACTIVATESTRUCT 456
CBTProc .. 425
ChangeClipboardChain 363 E
CHARSETINFO ... 810 EFS_CERTIFICATE_BLOB 732
CloseClipboard .. 364 EFS_HASH_BLOB 733
CloseHandle .. 404 EmptyClipboard ... 365
CommandLineToArgvW 78 EncryptFile ... 660
ConvertThreadToFiber 79 ENCRYPTION_CERTIFICATE 733
COPYDATASTRUCT 343 ENCRYPTION_CERTIFICATE_HASH 734
CopyFile .. 483 ENCRYPTION_CERTIFICATE_HASH_
CopyFileEx .. 485 LIST .. 735
CopyMemory ... 263 ENCRYPTION_CERTIFICATE_LlST 735
CopyProgressRoutine 486 EncryptionDisable .. 661
CountClipboardFormats 364 EnumClipboardFormats 366
CreateDirectory ... 488 EVENTMSG ... 460
CreateDirectoryEx 489 EXCEPTION_POINTERS 759
Create Fiber .. 80 EXCEPTION_RECORD 759
CreateFile .. 491 ExitProcess .. 113
CreateHardLink ... 656 ExitThread .. 115

759

760 Volume 1 Microsoft Windows Base Services

F GetDiskFreeSpace 523
GetDiskFreeSpaceEx 525

FatalAppExit .. 768 GetDriveType ... 526
FiberProc ... 116 GetEnvironmentStrings 122
FILE_NOTIFY _INFORMATION 609 GetEnvironmentVariable 123
FileEncryptionStatus 662 GetExceptionCode 751
FilelOCompletionRoutine 507 GetExceptionlnformation 753
Fill Memory ... 264 GetExitCodeProcess 124
FindAtom ... 348 GetExitCodeThread 125
FindClose .. 509 GetFiberData ... 207
FindCloseChangeNotification 510 GetFileAttributes .. 527
FINDEX_INFO_LEVELS 617 GetFileAttributesEx 530
FINDEX_SEARCH_OPS 618 GetFilelnformationByHandle 531
FindFirstChangeNotification 511 GetFileSize .. 532
FindFirstFile ... 513 GetFileSizeEx .. 533
FindFirstFileEx .. 514 GetFileType ... 534
FindFirstVolume .. 663 GetFuliPathName .. 535
FindFirstVolumeMountPoint 665 GetGuiResources .. 126
FindNextChangeNotification 517 GetHandlelnformation 413
FindNextFile .. 518 GetLastError .. 776
FindNextVolume .. 666
FindNextVolumeMountPoint 667

GetLogicalDrives ... 536
GetLogicalDriveStrings 537

FindVolumeClose .. 668 GetLongPathName 538
FindVolumeMountPointClose 669 GetModuleFileName 224
FlashWindow ... 769 GetModuleHandle .. 225
FlashWindowEx ... 770 GetMsgProc ... 433
FLASHWINFO ... 783 GetOpenClipboardWindow 371
FlushFileBuffers .. 519 GetPriorityClass ... 127
FONTSIGNATURE 810 GetPriorityClipboardFormat 372
ForegroundldleProc 432 GetProcAddress .. 226
FormatMessage .. 771 GetProcessAffinityMask 128
FreeEncryptionCertificateHashList. 670 GetProcessHeap ... 266
FreeEnvironmentStrings 117 GetProcessHeaps .. 267
FreeLibrary .. 222 GetProcessloCounters 130
FreeLibraryAndExitThread 223 GetProcessPriorityBoost. 130
FreeUserPhysicaIPages 265 GetProcessShutdownParameters 131

GetProcessTimes .. 132

G
GetProcessVersion 134
GetProcessWorkingSetSize 135

GET _FILEEX_INFO_LEVELS 619
GetAtomName ... 349
GetBinaryType .. 521
GetClipboardData .. 367
GetClipboardFormatName 368
GetClipboardOwner 369
GetClipboardSequenceNumber 370
GetClipboardViewer 371
GetCommandLine 117
GetCompressedFileSize 670
GetCurrentDirectory 522
GetCurrentFiber .. 207
GetCurrentProcess 118
GetCurrentProcessld 119

GetQueuedCompletionStatus 539
GetShortPathName 541
GetStartuplnfo .. 136
GetTempFileName 543
GetTempPath ... 545
GetTextCharset•......... 795
GetTextCharsetinfo 796
GetThreadPriority ... 137
GetThreadPriorityBoost 138
GetThreadTimes .. 139
GetVolumelnformation 672
GetVolumeNameForVolumeMountPoint 675
GetVolumePathName 676
GetWriteWatch ... 268

GetCurrentThread 120
GetCurrentThreadld 121

GlobalAddAtom .. 350
GlobalDeleteAtom .. 352

Appendix B Elements Listed Alphabetically 761

GlobaIFindAtom ... 353 GetQuotaUsedText 718
GlobalGetAtomName 354 GetSid ... 719
GlobaIMemoryStatus 269 GetSidLength 720

Invalidate ... 721

H
SetQuotaLimit 721
SetQuota Threshold 722

HeapAlioc .. 271
HeapCompact ... 273
HeapCreate ... 275
HeapDestroy .. 277
HeapFree ... 278
HeapLock .. 280
HeapReAlioc ... 281
HeapSize ... 284
HeapUnlock ... 286
HeapValidate ... 287
HeapWalk .. 289

IDiskQuotaUserBatch 723
Add .. 724
Remove ... 725
RemoveAII ... 726
FlushToDisk 726

IEnumDiskQuotaUsers 727
Clone ... 728
Next ... 729
Reset. .. 730
Skip ... 730

InitAtomTable .. 355
Int32x32To64 .. 546
Int64ShllMod32 ... 547
Int64ShraMod32 ... 548

IDiskQuotaControl .. 683
AddUserName .. 684

AddUserSid 686
CreateEnumUsers 688
CreateUserBatch 690
DeleteUser .. 691
FindUserName 692
FindUserSid 693
GetDefaultQuotaLimit 694
GetDefaultQuotaLimitText 695
GetDefaultQuotaThreshold 696
GetDefaultQuotaThresholdText 697
GetQuotaLogFlags 698

Int64ShrIMod32 ... 549
IO_COUNTERS .. 184
IsBadCodePtr .. 290
IsBadReadPtr .. 291
IsBadStringPtr ... 293
IsBadWritePtr .. 294
IsClipboardFormatAvaiiable 373
IsDBCSLeadByte .. 798
IsDBCSLeadByteEx 799
IsReparseTagHighLatency 736
IsReparseTagMicrosoft 737
IsReparseTagNameSurrogate 738
IsTextUnicode ... 800

GetQuotaState 699
GiveUserNameResolutionPriority 700 J
Initialize ... 701
InvalidateSidNameCache 702
SetDefaultQuotaLimit 703
SetDefaultQuotaThreshold 704
SetQuotaLogFlags 705
SetQuotaState 706
ShutdownNameResolution 707

JOBOBJECT _ASSOCIATE_COMPLETION
PORT ... ~85

JOBOBJECT _BASIC_ACCOUNTING
INFORMATION :-:-........ 188

JOBOBJECT _BASIC_AND_IO_ACCOUNTING
INFORMATION .. 190-

IDiskQuotaEvents ... 708
OnUserNameChanged 708

IDiskQuotaUser .. 709
GetAccountStatus 710

JOBOBJECT BASIC LIMIT
INFORMATION ~ -:-: 191

JOBOBJECT _BASIC_PROCESS ID
LIST .. ~ ... :-:-......... 195

GetlD .. 711 JOBOBJECT _BASIC_UL

GetName .. 712 RESTRICTIONS .. 196

GetQuotalnformation 713
GetQuotaLimit 714
GetQuotaLimitText 715
GetQuotaThreshold 716
GetQuotaThresholdText 716
GetQuotaUsed 717

JOBOBJECT END OF JOB TIME
INFORMATION .. ~ ~ ~ ~ 197

JOBOBJECT _EXTENDED LIMIT
INFORMATION ~ -:-: 199

JOBOBJECT _SECURITY LIMIT
INFORMATION :-:-......... ~ 200

762 Volume 1 Microsoft Windows Base Services

JournaIPlaybackProc 434
JournaIRecordProc 437

Q
QueryDosDevice ... 562

K
QuerylnformationJobObject 146
QueryRecoveryAgentsOnEncryptedFile 677

KBDLLHOOKSTRUCT 460 QueryUsersOnEncryptedFile 678

KeyboardProc ... 439 QueueUserWorkltem 148

L R
LARGE_INTEGER 610
LoadLibrary ... 228
LoadLibraryEx .. 230
LOCALESIGNATURE 811

RaiseException ... 754
ReadDirectoryChangesW 563
ReadFile .. 567
ReadFileEx ... 571

LockFile .. 550 ReadFileScatter .. 574

LockFileEx .. 551 RegisterClipboardFormat. 375

LowLevelKeyboardProc 441
LowLevelMouseProc 442

RemoveDirectory .. 576
RemoveUsersFromEncryptedFile 679
ReplaceFile ... 577
ResetWriteWatch .. 299

M ResumeThread ... 150

MAKEINTATOM ... 356
MapUserPhysicalPages 295 s
MapUserPhysicaIPagesScatter 297
MEMORY _BASIC_INFORMATION 328
MEMORYSTATUS 331

Search Path ... 580
SetClipboardData ... 376

MessageBeep .. 777
MessageProc ... 444
METAFILEPICT .. 378

SetClipboardViewer 377
SetCurrentDirectory 581
SetEndOfFile ... 582

MOUSEHOOKSTRUCT 462 SetEnvironmentVariable 151

MOUSEHOOKSTRUCTEX 463
MouseProc ... 446

SetErrorMode .. 778
SetFileApisToANSI 583

MoveFile ... 553 SetFileApisToOEM 585

MoveFileEx ... 554 SetFileAttributes ... 586

MoveFileWithProgress 557
MoveMemory .. 298
MSLLHOOKSTRUCT 464
MuIDiv ... 560

SetFilePointer ... 588
SetFilePointerEx ... 591
SetHandlelnformation414
SetlnformationJobObject 152

MultiByteToWideChar 802 SetLastError .. 780
SetLastErrorEx .. 781

o SetPriorityClass .. 153
SetProcessAffinityMask 155

OFSTRUCT .. 611
OpenClipboard ... 374
OpenJobObject .. 141
OpenProcess .. 142
OpenThread ... 144

SetProcessPriorityBoost 156
SetProcessShutdownParameters 157
SetProcessWorkingSetSize 159
SetThreadAffinityMask 161
SetThreadldealProcessor 162
SetThreadPriority .. 163
SetThreadPriorityBoost. 165

p SetUnhandledExceptionFilter 756
SetUserFileEncryptionKey 680

PostQueuedCompletionStatus 561 SetVolumeLabel ... 593
PROCESS_HEAP _ENTRY 333 SetVolumeMountPoint 681
PROCESS_INFORMATION 202 SetWindowsHookEx 447

Appendix B Elements Listed Alphabetically 763

SheliProc .. 451 VirtualFreeEx .. 313
Sleep .. 166 VirtualLock .. 316
SleepEx .. 167 Virtual Protect .. 318
STARTUPINFO .. 202 VirtualProtectEx .. 320
SuspendThread .. 169 Virtual Query .. 323
SwitchToFiber .. 170 VirtuaIQueryEx .. 325
SwitchToThread ... 171 VirtuaIUnlock ... 326
SysMsgProc ... 453

T
w
WaitForlnputidle ... 182

TerminateJobObject 172 WideCharToMultiByte 806
TerminateProcess .. 173 WIN32_FILE_ATIRIBUTE_DATA 612
TerminateThread .. 174 WIN32_FIND_DATA 614
TEXT .. 812 WM_ASKCBFORMATNAME 380
ThreadProc ... 176 WM_CANCELJOURNAL 465
TlsAlioc ... 176 WM_CHANGECBCHAIN 381
TlsFree ... 178 WM_CLEAR .. 382
TlsGetValue .. 179 WM_COPY ... 383
TlsSetValue .. 180 WM_COPYDATA .. 343
TranslateCharsetlnfo 805 WM_CUT .. 383

WM_DESTROYCLIPBOARD 384

u WM_DRAWCLIPBOARD 385
WM_HSCROLLCLIPBOARD 386

U Int32x32To64 ... 594 WM_PAINTCLIPBOARD 387

ULARGE_INTEGER 611
UnhandledExceptionFilter 757
UnhookWindowsHookEx 455
UnlockFile ... 595
UnlockFileEx ... 596
UserHandleGrantAccess 181

WM_PASTE .. 388
WM_QUEUESYNC 467
WM_RENDERALLFORMATS 389
WM_RENDERFORMAT 390
WM_SIZECLIPBOARD 391
WM_ VSCROLLCLIPBOARD 392
WriteFile .. 598
WriteFileEx .. 601 v WriteFileGather ... 604

VirtuaIAlloc .. 301
VirtualAllocEx ... 306 z
VirtualFree .. 311

ZeroMemory .. 327

APPENDIX B

Index B: Volume 2, Elements Listed
Alphabetically

A CB_GETLOCALE .. 101
CB_GETTOPINDEX 102

ACCEL. .. 452 CB_INITSTORAGE 103
ActivateKeyboardLayout 467 CB_INSERTSTRING 104
AppendMenu ... 246 CB_LlMITTEXT .. 105

CB_RESETCONTENT 106

B
CB_SELECTSTRING 106
CB_SETCURSEL .. 108

Blocklnput .. 469
BM_CLlCK ... 56
BM_GETCHECK ... 57
BM_GETIMAGE .. 58
BM_GETSTATE .. 59
BM_SETCHECK ... 60
BM_SETIMAGE .. 61
BM_SETSTATE .. 62
BM_SETSTYLE ... 63
BN_CLlCKED .. 64
BN_DBLCLK ... 65
BN_DOUBLECLICKED 66
BN_KILLFOCUS ... 66
BN_SETFOCUS .. 67
BroadcastSystemMessage 614

CB_SETDROPPEDWIDTH 108
CB_SETEDITSEL .. 109
CB_SETEXTENDEDUI.. 110
CB_SETHORIZONT ALEXTENT 111
CB_SETITEMDATA 112
CB_SETITEMHEIGHT 113
CB_SETLOCALE ... 114
CB_SETTOPINDEX 115
CB_SHOWDROPDOWN 116
CBN_CLOSEUP .. 117
CBN_DBLCLK ... 118
CBN_DROPDOWN 119
CBN_EDITCHANGE 120
CBN_EDITUPDATE 120
CBN_ERRSPACE 121
CBN_KILLFOCUS 122

c CBN_SELCHANGE 123
CBN_SELENDCANCEL 124

CaliWindowProc .. 682
CB_ADDSTRING .. 84
CB_DELETESTRING 85
CB_DIR ... 86
CB_FINDSTRING ... 88
CB_FINDSTRINGEXACT 89
CB_GETCOUNT ... 90
CB_GETCURSEL ... 91
CB_GETDROPPEDCONTROLRECT 92
CB_GETDROPPEDSTATE 93
CB_GETDROPPEDWIDTH 93
CB_GETEDITSEL ... 94
CB_GETEXTENDEDUI 95
CB_GETHORIZONTALEXTENT 96
CB_GETITEMDATA 97
CB_GETITEMHEIGHT 98
CB_GETLBTEXT .. 99
CB_GETLBTEXTLEN 100

CBN_SELENDOK .. 125
CBN_SETFOCUS .. 125
CharLower ... 323
CharLowerBuff ... 324
CharNext .. 325
CharNextExA ... 326
CharPrev .. 327
CharPrevExA ... 327
CharToOem ... 328
CharToOemBuff ... 329
CharUpper ... 330
CharUpperBuff ... 331
CheckDlgButton ... 53
CheckMenultem ... 249
CheckMenuRadioltem 250
CheckRadioButton ... 54
ClipCursor .. 200
COMBOBOXINFO ... 77

765

766 Volume 2 Microsoft Windows User Interface

COMPAREITEMSTRUCT 78
CompareString .. 332 E
CopyAcceleratorTable 446 EnableMenultem .. 256
CopyCursor ... 201 EnableScroliBar ... 134
Copylcon ... 218 EnableWindow ... 470
CreateAcceleratorTable 447 EndDialog .. 555
CreateCaret ... 192 EndMenu .. 258
CreateCursor ... 202 EnumProps .. 687
CreateDialog ... 537 EnumPropsEx ... 688
CreateDialoglndirect. 539 ExtractAssociatedlcon 229
CreateDialoglndirectParam 541 Extractlcon ... 231
CreateDialogParam 543 ExtractlconEx ... 232
Create Icon ... 219
CreatelconFromResource 221
CreatelconFromResourceEx 222 F
Createlconlndirect 224
CreateMDIWindow 653

FoldString ... 336

CreateMenu ... 251
CreatePopupMenu 252 G
CURSORINFO .. 216

GET _APPCOMMAND_LPARAM437
GET _DEVICE_LPARAM 438

D GET _KEYSTATE_LPARAM 439
GET KEYSTATE WPARAM 440

DefDlgProc .. 545
DefFrameProc ... 655
DefMDIChiidProc ... 657
DefWindowProc ... 684

GET =NCHITTEST_WPARAM 440
GET_WHEEL_DELTA_WPARAM 441
GET XBUTTON WPARAM 441
GetActiveWindo; .. 472

DeleteMenu ... 253
DestroyAcceleratorTable 448
DestroyCaret ... 193

GetAsyncKeyState 472
GetCapture .. 373
GetCaretBlinkTime 194

DestroyCursor ... 203 GetCaretPos .. 195
Destroylcon ... 225
DestroyMenu ... 254

GetClipCursor .. 204
GetComboBoxlnfo ... 76

DialogBox .. 546 GetCursor .. 205
DialogBoxlndirect .. 547 GetCursorlnfo .. 206
DialogBoxlndirectParam 550 GetCursorPos .. 207
DialogBoxParam ... 552
DialogProc ... 553
DispatchMessage .. 616
DlgDirListComboBox 73
DlgDirSelectComboBoxEx 75
DLGITEMTEMPLATE 582

GetDialogBaseUnits 556
GetDlgCtrl1 D ... 557
GetDlgltem ... 558
GetDlgltemlnt ... 559
GetDlgltemText .. 561
GetDoubleClickTime 373

DLGITEMTEMPLA TEEX 584 GetFocus ... 474
DLGTEMPLATE .. 586 Getlconlnfo .. 233
DLGTEMPLATEEX 589
DM_GETDEFID ... 595
DM_REPOSITION 596
DM SETDEFID ... 596
DragDetect .. 372
Drawlcon ... 225
DrawlconEx .. 227
DRAWITEMSTRUCT 80
DrawMenuBar ... 255

GetlnputState ... 617
GetKeyboardLayout 475
GetKeyboardLayoutList 476
GetKeyboardLayoutName 477
GetKeyboardState 478
GetKeyNameText .. 479
GetKeyState ... 480
GetLastlnputlnfo .. 482
GetMenu .. 258

Duplicatelcon ... 229 GetMenuBarlnfo .. 259

APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 767

GetMenuCheckMarkDimensions 260 KEYBDINPUT .. 511
GetMenuDefaultltem 261 KillTimer ... 674
GetMenulnfo .. 262
GetMenultemCount 263
GetMenultemlD ... 264 L
GetMenultemlnfo ... 264 LASTINPUTINFO ... 513
GetMenultemRect 266 LoadAccelerators ... 449
GetMenuState ... 267 LoadCursor .. 208
GetMenuString .. 269 LoadCursorFromFile 209
GetMessage .. 618 Loadlcon .. 235
GetMessageExtralnfo 620 LoadKeyboardLayout... 485
GetMessagePos .. 621 LoadMenu .. 278
GetMessageTime .. 622 LoadMenulndirect .. 279
GetMouseMovePointsEx 374 LoadString .. 353
GetNextDlgGroupltem 562 LookuplconldFromDirectory 236
GetNextDlgTabltem 563 LookuplconldFromDirectoryEx 238
GetProp ... 689 Istrcat ... 354
GetQueueStatus .. 622 Istrcmp ... 355
GetScrollBarlnfo .. 136 Istrcmpi ... 356
GetScrolllnfo .. 137 Istrcpy ... 358
GetScrollPos ... 139 Istrcpyn ... 359
GetScrollRange ... 140 Istrlen ... 360
GetStringTypeA ... 338
GetStringTypeEx ... 342
GetStringTypeW .. 346 M
GetSubMenu ... 270 MapDialogRect .. 566
GetSystemMenu .. 271 MapVi rtual Key .. 487

MapVirtualKeyEx ... 489

H MDICREATESTRUCT 659
MDINEXTMENU .. 297

HARDWAREINPUT 509 MEASUREITEMSTRUCT 82
HideCaret .. 195 MENUBARINFO .. 297
HiliteMenultem .. 272 MENUEX_TEMPLATE_HEADER 298

MENUEX_TEMPLATE_ITEM 299
MENUGETOBJECTINFO 301
MENUINFO .. 302

ICONINFO ... 239 MenultemFromPoint 280
ICONMETRICS ... 240 MENUITEMINFO ... 304
INPUT .. 510 MENUITEMTEMPLATE 309
InSendMessage .. 624 MENUITEMTEMPLATEHEADER 310
InSendMessageEx 625 MessageBox .. 567
InsertMenu ... 273 MessageBoxEx .. 572
InsertMenultem ... 276 MessageBoxlndirect 577
IsCharAlpha ... 350 ModifyMenu ... 281
IsCharAlphaNumeric 351 mouse_event ... 376
IsCharLower .. 352 MOUSEINPUT ... 514
IsCharUpper .. 352 MOUSEMOVEPOINT 385
IsDialogMessage ... 564 MSG ... 645
IsDlgButtonChecked 55 MSGBOXPARAMS 593
IsMenu ... 278
IsWindowEnabled .. 483 a
K OemKeyScan ... 491

OemToChar ... 361
keybd_event .. 483 OemToCharBuff ... 361

768 Volume 2 Microsoft Windows User Interface

p SetDoubleClickTime 381
SetFocus .. 496

PeekMessage .. 626 SetKeyboardState .. 497
PostMessage ... 628 SetMenu ... 285
PostQuitMessage .. 630 SetMenuDefaultitem 286
PostThreadMessage 631 SetMenulnfo ... 287
PropEnumProc .. 690 SetMenultemBitmaps 288
PropEnumProcEx .. 691 SetMenultemlnfo ... 290

SetMessageExtralnfo 642

Q SetProp .. 693
SetScrolllnfo ... 147

QueryPerformanceCounter 675 SetScroliPos .. 149
QueryPerformanceFrequency 676 SetScroliRange .. 151

SetSystemCursor ... 213

R SetTimer .. 677
ShowCaret ... 198

RegisterHotKey ... 492 ShowCursor ... 215
RegisterWindowMessage 632 ShowScroliBar ... 152
ReleaseCapture .. 379 STM_GETICON ... 173
RemoveMenu .. 284 STM_GETIMAGE .. 174
RemoveProp ... 692 STM_SETICON ... 175
ReplyMessage ... 633 STM_SETIMAGE ... 176

STN_CLlCKED .. 177

s STN_DBLCLK .. 177
STN_DISABLE .. 178

SBM_ENABLE_ARROWS 157 STN_ENABLE. ... 179
SBM_GETPOS .. 158 SwapMouseButton 382
SBM_GETRANGE 159
SBM_GETSCROLLINFO 159
SBM_SETPOS .. 161 T
SBM_SETRANGE 162 TimerProc .. 678
SBM_SETRANGEREDRAW 163 ToAscii ... 498
SBM_SETSCROLLlNFO 164 ToAsciiEx ... 499
SCROLLBARINFO 154 ToUnicode .. 501
Scroll DC .. 142 ToUnicodeEx ... 503
SCROLLINFO ... 155 TPMPARAMS .. 310
ScroIiWindow ... 143 TrackMouseEvent .. 383
ScroliWindowEx .. 145 TRACKMOUSEEVENT 385
SendAsyncProc ... 634 TrackPopupMenu .. 291
SendDlgltemMessage 579 TrackPopupMenuEx 294
Sendlnput .. 494 TranslateAccelerator 450
Send Message ... 636 TranslateMDISysAccel 658
SendMessageCaliback 637 TranslateMessage 642
SendMessageTimeout 639
SendNotifyMessage '" 640
SetActiveWindow .. 495 u
SetCapture .. 380 UnloadKeyboardLayout 505
SetCaretBlinkTime 196 UnregisterHotKey ... 506
SetCaretPos .. 197
SetCursor .. 211
SetCursorPos .. 212 v
SetDlgltemlnt. .. 580 VkKeyScan .. 507
SetDlgltemText.. .. 581 VkKeyScanEx .. 508

APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 769

w WM_MENUCHAR .. 456
WM_MENUCOMMAND 316

WaitMessage ... 644 WM_MENUDRAG 316
WindowProc .. 685 WM_MENUGETOBJECT 317
WM_ACTIVATE .. 517 WM_MENURBUTIONUP 318
WM_APP ... 646 WM_MENUSELECT 458
WM_APPCOMMAND 387 WM_MOUSEACTIVATE 399
WM_CAPTURECHANGED 390 WM_MOUSEHOVER 401
WM_CHANGEUISTATE 453 WM_MOUSELEAVE 402
WM_CHAR .. 518 WM_MOUSEMOVE 403
WM_COMMAND ... 311 WM_MOUSEWHEEL 404
WM_COMPAREITEM 126 WM_NCHITIEST .. 407
WM_CONTEXTMENU 312 WM_NCLBUTTONDBLCLK 409
WM_CTLCOLORBTN 68 WM_NCLBUTIONDOWN 410
WM_CTLCOLORDLG 597 WM_NCLBUTTONUP411
WM_CTLCOLORSCROLLBAR 165 WM_NCMBUTTONDBLCLK412
WM_CTLCOLORSTATIC 180 WM_NCMBUTTONDOWN 414
WM_DEADCHAR .. 520 WM_NCMBUTTONUP415
WM_DRAWITEM .. 127 WM_NCMOUSEHOVER 416
WM_ENTERIDLE .. 599 WM_NCMOUSELEAVE 417
WM_ENTERMENULOOP 314 WM_NCMOUSEMOVE 418
WM_ERASEBKGND 241 WM_NCRBUTTONDBLCLK 419
WM_EXITMENULOOP 315 WM_NCRBUTTONDOWN 420
WM_GETDLGCODE 600 WM_NCRBUTIONUP 421
WM_GETFONT ... 50 WM_NCXBUTTONDBLCLK 423
WM_GETHOTKEY 522 WM_NCXBUTIONDOWN 424
WM_HOTKEY ... 523 WM_NCXBUTTONUP 426
WM_HSCROLL ... 166 WM_NEXTDLGCTL 602
WM_ICONERASEBKGND 242 WM_NEXTMENU .. 319
WM_INITDIALOG .. 601 WM_PAINTICON ... 243
WM_INITMENU ... 455 WM_QUERYUISTATE 459
WM_INITMENUPOPUP 456 WM_RBUTTONDBLCLK 427
WM_KEYDOWN ... 524 WM_RBUTTONDOWN 429
WM_KEYUP .. 526 WM_RBUTTONUP 430
WM_KILLFOCUS .. 527 WM_SETCURSOR 217
WM_LBUTIONDBLCLK 391 WM_SETFOCUS ... 528
WM_LBUTIONDOWN 392 WM_SETFONT .. 51
WM_LBUTTONUP 394 WM_SETHOTKEY .' 529
WM_MBUTIONDBLCLK 395 WM_SYSCHAR ... 460
WM_MBUTTONDOWN 397 WM_SYSCOMMAND 462
WM_MBUTTONUP 398 WM_SYSDEADCHAR 530
WM_MDIACTIVATE 661 WM_SYSKEYDOWN 532
WM_MDICASCADE 662 WM_SYSKEYUP ... 534
WM_MDICREATE 663 WM_TIMER ... 679
WM_MDIDESTROY 665 WM_UNINITMENUPOPUP 320
WM_MDIGETACTIVE 666 WM_UPDATEUISTATE 464
WM_MDIICONARRANGE 667 WM_USER ... 647
WM_MDIMAXIMIZE 667 WM_ VSCROLL. ... 168
WM_MDINEXT .. 668 WM_XBUTIONDBLCLK 431
WM_MDIREFRESHMENU 669 WM_XBUTTONDOWN 433
WM_MDIRESTORE 670 WM_XBUTIONUP 435
WM_MDISETMENU 671 wsprintf ... 362
WM_MDITILE .. 672 wvsprintf ... 366
WM_MEASUREITEM 128

APPENDIX 8

Index B: Volume 3, Elements
Listed Alphabetically

A CreateDIBitmap ... 76
CreateDIBPatternBrushPt. 159

AbortPath ... 586 CreateDIBSection .. 78
AlphaBlend .. 66 CreateEnhMetaFile 399
AngleArc .. 371 CreateHalftonePalette 203
AnimatePalette .. 202 CreateHatchBrush 160
Arc ... 373 CreateIC ... 306
ArcTo ... 375 Create Palette ... 204

CreatePatternBrush 162

B
CreatePen .. 605
CreatePenlndirect .. 607

BeginPaint ... 512 CreateSolidBrush ... 163

BeginPath .. 587
BitBlt .. 69
BITMAP ... 116 D
BITMAPCOREHEADER 118 DeleteDC ... 307
BITMAPCOREINFO 119 DeleteEnhMetaFile 401
BITMAPFILEHEADER 121 DeleteObject .. 308
BITMAPINFO .. 122 DIBSECTION ... 145
BITMAPINFOHEADER 123 DISPLAY_DEVICE 344
BITMAPV4HEADER. 128 DPtoLP ... 254
BITMAPV5HEADER 133 DrawAnimatedRects 513
BLENDFUNCTION 140 DrawCaption .. 514

DrawEdge .. 516

c DrawEscape ... 309
DrawFocusRect ... 518

CancelDC .. 295 DrawFrameControl 519

ChangeDisplaySettings 296
ChangeDisplaySettingsEx 299

DrawState .. 522
DrawStateProc ... 525

Chord ... 354
ClientToScreen .. 252
CloseEnhMetaFile 397 E
Close Figure ... 589 Ellipse .. 356
COLORADJUSTMENT 142 EMR ... 421
COLORREF ... 223 EMRALPHABLEND 423
CombineTransform 253 EMRANGLEARC ... 425
CopyEnhMetaFile .. 398 EMRARC ... 426
CopyRect ... 619 EMRARCTO .. 426
CreateBitmap .. 71 EMRCHORD .. 426
CreateBitmaplndirect.. 73 EMRPIE ... 426
CreateBrushlndirect 157 EMRBITBL T ... 427
CreateCompatibleBitmap 74 EMRCREATEBRUSHINDIRECT 431
CreateCompatibleDC 303 EMRCREATECOLORSPACE 432
CreateDC ... 304 EMRCREATEDIBPATTERNBRUSHPT 434

771

772 Volume 3 Microsoft Windows GOI

EMRCREATEMONOBRUSH 435 EMRSCALEWINDOWEXTEX 468
EMRCREATEPALETTE 436 EMRSELECTOBJECT 469
EMRCREATEPEN 437 EMRDELETEOBJECT 469
EMRELLIPSE EMRSELECTPALETTE 470
EMRRECTANGLE 437 EMRSETARCDIRECTION 471
EMREOF ... 438 EMRSETBKCOLOR 471
EMREXCLUDECLIPRECT 439 EMRSETTEXTCOLOR 471
EMRINTERSECTCLIPRECT 439 EMRSETCOLORADJUSTMENT 472
EMREXTCREATEFONTINDIRECTW 439 EMRSETCOLORSPACE 469
EMREXTCREATEPEN 440 EMRSELECTCOLORSPACE 469
EMREXTFLOODFILL 441 EMRDELETECOLORSPACE 469
EMREXTSELECTCLlPRGN 442 EMRSETDIBITSTODEVICE 472
EMREXTTEXTOUTA 443 EMRSETICMPROFILE 474
EMREXTTEXTOUTW 443 EMRSETMAPPERFLAGS 475
EMRFILLPATH EMRSETMITERLIMIT 476
EMRSTROKEANDFILLPATH 444 EMRSETPALETTEENTRIES 476
EMRSTROKEPATH 444 EMRSETPIXELV ... 477
EMRFILLRGN ... 444 EMRSETVIEWPORTEXTEX 478
EMRFORMAT ... 445 EMRSETWINDOWEXTEX 478
EMRFRAMERGN .. 446 EMRSETVIEWPORTORGEX 479
EMRGDICOMMENT 447 EMRSETWINDOWORGEX 479
EMRGLSBOUNDEDRECORD 448 EMRSETBRUSHORGEX 479
EMRGLSRECORD 449 EMRSETWORLDTRANSFORM 479
EMRGRADIENTFILL. 450 EMRSTRETCHBLT 480
EMRINVERTRGN 451 EMRSTRETCHDIBITS 482
EMRPAINTRGN .. 451 EMRTEXT .. 484
EMRLlNETO ... 452 EMRTRANSPARENTBLT 485
EMRMOVETOEX .. 452 EndPaint .. 526
EMRMASKBL T.. .. 452 EndPath ... 590
EMRMODIFYWORLDTRANSFORM 455 Enhanced Metafile Records with No
EMROFFSETCLlPRGN 455 Parameters ... 487
EMRPIXELFORMAT 456 Enhanced Metafile Records with One
EMRPLGBL T ... 457 Parameter .. 487
EMRPOL YDRAW .. 459 EnhMetaFileProc ... 402
EMRPOLYDRAW16 460 ENHMETAHEADER 488
EMRPOLYLlNE ... 461 ENHMETARECORD 491
EMRPOLYBEZIER 461 EnumDisplayDevices 31 0
EMRPOLYGON ... 461 EnumDisplaySettings 311
EMRPOL YBEZIERTO 461 EnumDisplaySettingsEx 313
EMRPOL YLiNETO 461 EnumEnhMetaFile 403
EMRPOLYLlNE16 462 EnumObjects ... 316
EMRPOLYBEZIER16 462 EnumObjectsProc .. 317
EMRPOLYGON16 462 EqualRect .. 619
EMRPOL YBEZI ERT016 462 ExciudeClipRect .. 177
EMRPOLYLINET016 462 ExcludeUpdateRgn 526
EMRPOLYPOLYLINE 463 ExtCreatePen ... 608
EMRPOL YPOL YGON 463 ExtFloodFili .. 80
EMRPOL YPOL YLlNE16 464 EXTLOGPEN ... 611
EMRPOL YPOL YGON16 464 ExtSelectClipRgn ... 178
EMRPOL YTEXTOUTA 464
EMRPOL YTEXTOUTW 464
EMRRESIZEPALETTE 466 F
EMRRESTOREDC 466 FiliPath ... 591
EMRROUNDRECT 467 FiIiRect ... 357
EMRSCALEVIEWPORTEXTEX 468 FlattenPath ... 592

Appendix B Index B: Volume 3, Elements listed Alphabetically 773

FrameRect ... 358 GetViewportOrgEx 259
GetWindowDC ... 537

G
GetWindowExtEx ... 260
GetWindowOrgEx .. 261

GdiComment .. '" 404 GetWindowRgn .. 539

GdiFlush .. 527 GetWinMetaFileBits413

GdiGetBatchLimit .. 529
GdiSetBatchLimit... 530
GetArcDirection ... 376

GetWorldTransform 262
GRADIENT _RECT 146
GRADIENT_TRIANGLE 147

GetBitmapDimensionEx 82
GetBkColor .. 531

GradientFill. .. 88
GrayString .. 540

GetBkMode .. 531
GetBoundsRect ... 532
GetBrushOrgEx ... 164 H
GetBValue ... 226 HAND LET ABLE ... 491
GetClipBox .. 180 HTULColorAdjustment 211
GetClipRgn .. 181
GetColorAdjustment 205
GetCurrentObject .. 318
GetCurrentPositionEx 255 InflateRect. ... 620
GetDC .. 319
GetDCBrushColor 320

IntersectClipRect... 184
IntersectRect .. 621

GetDCEx ... 321 InvalidateRect .. 542
GetDCOrgEx '" 323
GetDCPenColor .. 324

InvalidateRgn ... 543
InvertRect.. ... 359

GetDeviceCaps ... 325
GetDIBColorTable ... 83

IsRectEmpty ... 622

GetDIBits ... 84
GetEnhMetaFile .. 407 L
GetEnhMetaFileBits 408
GetEnhMetaFileHeader 411
GetEnhMetaFilePaletteEntries 412
GetGraphicsMode 256
GetGValue ... 226
GetMapMode ... 257
GetMetaRgn .. 182
GetMiterLimit ... 593
GetNearestColor ... 206
GetNearestPalettelndex 207
GetObject .. 331

LineDDA ... 377
LineDDAProc ... 378
LineTo .. 379
LoadBitmap .. 90
LockWindowUpdate 544
LOG BRUSH ... 169
LOGBRUSH32 ... 172
LOG PALETTE ... 224
LOGPEN .. 615
LPtoDP ... 263

GetObjectType .. 333
GetPaletteEntries .. 208
GetPath ... 594

M
GetPixel ... 87 MAKEPOINTS ... 631
GetRandomRgn .. 183 MAKEROP4 ... 152
GetROP2 ... 533 MapWindowPoints 264
GetRValue ... 227 MaskBlt .. 92
GetStockObject ... 334 ModifyWorldTransform 265
GetStretchBltMode .. 88 MoveToEx .. 381
GetSysColorBrush 165
GetSystemPaletteEntries 209
GetSystemPaletteUse 210 o
GetUpdateRect. ... 535
GetUpdateRgn .. 536

OffsetClipRgn ... 185
OffsetRect .. 623

GetViewportExtEx 258

774 Volume 3 Microsoft Windows GOI

OffsetViewportOrgEx 267 ScaleWindowExtEx 270
OffsetWindowOrgEx 268 ScreenToClient .. 271
OutputProc .. 546 SelectClipPath ... 188

SelectClipRgn .. 189

p SelectObject. .. 340
Select Palette .. 215

PaintDesktop ... 547
PAINTSTRUCT ... 561

SetArcDirection .. 389
SetBitmapDimensionEx 97

PALETIEENTRY .. 224 SetBkColor ... 550

PALETTEINDEX ... 228 SetBkMode .. 551

PALETIERGB ... 229 SetBoundsRect .. 552

PatBlt ... 166 SetBrushOrgEx .. 168

PathToRegion ... 596
Pie ... 360

SetColorAdjustment 216
SetDCBrushColor .. 342

PlayEnhMetaFile ... 415
PlayEnhMetaFileRecord 417
PlgBlt ... 95
POINT .. 629

SetDCPenColor ... 343
SetD I BColorTable .. 98
SetDIBits .. 100
SetDIBitsToDevice 102

POINTL. ... 492 SetEnhMetaFileBits 418

POINTS ... 629 SetGraphicsMode .. 272

POINTSTOPOINT 631 SetMapMode .. 274

POINTIOPOINTS 632 SetMetaRgn ... 191

PolyBezier ... 382
PolyBezierTo ... 383
PolyDraw ... 384
Polygon .. 362
Polyline .. 386
PolylineTo .. 387
Poly Polygon ... 363
PolyPolyline ... 388
PtinRect ... 624

SetMiterLimit .. 597
SetPaletteEntries ... 217
SetPixel .. 105
SetPixelV ... 106
SetRect .. 625
SetRectEmpty .. 626
SetROP2 .. 554
SetStretchBltMode 1 07
SetSystemPaletteUse 219

PtVisible ... 186 SetViewportExtEx .. 276
SetViewportOrgEx 278
SetWindowExtEx ... 279

R SetWindowOrgEx ... 280

RealizePalette ... 213
RECT ... 630
Rectangle .. 364
RECTL ... 493
RectVisible .. 187
RedrawWindow ... 547
ReleaseDC .. 336
ResetDC .. 337
ResizePalette .. 214

SetWindowRgn .. 556
SetWinMetaFileBits 419
SetWorldTransform 282
SIZE ... 150
Stretch Bit ... 109
StretchDIBits .. 111
StrokeAndFiliPath .. 598
Stroke Path ... 599
SubtractRect .. 626

RestoreDC ... 338
RGB ... 230 T
RGBQUAD .. 148
RGBTRIPLE .. 149 TransparentBlt ... 114

RoundRect. .. 365 TRIVERTEX ... 151

s u
Save DC ... 339 UnionRect .. 628

ScaleViewportExtEx 269 UnrealizeObject ... 221

Appendix B Index B: Volume 3, Elements Listed Alphabetically 775

UpdateColors .. 222 WM_DISPLA YCHANGE 562
UpdateWindow .. 557 WM_NCPAINT ... 563

WM_PAINT .. 564

v WM_PALETIECHANGED 231
WM_PALETIEISCHANGING 232

ValidateRect .. 558 WM_PRINT .. 566

ValidateRgn ... 559
VIDEOPARAMETERS 345

WM_PRINTCLIENT 567
WM_QUERYNEWPALETIE 233
WM_SETREDRAW 568

w WM_SYNCPAINT .. 569
WM_SYSCOLORCHANGE 234

Widen Path ... 600
WindowFromDC .. 560 x
WM_DEVMODECHANGE 350

XFORM .. 284

APPENDIX B

Index B: Volume 4, Elements
Listed Alphabetically

A CreateStatusWindow 562
CreateUpDownControl. 735

ACM_OPEN .. 127
ACM_PLA Y ... 128
ACM_STOP ... 129 D
ACN_START ... 136
ACN_STOP ... 136
AddPropSheetPageProc 435
Animate_Close .. 130
Animate_Create .. 130
Animate_Open .. 131
Animate_OpenEx .. 132
Animate_Play .. 133
Animate_Seek ... 134
Animate_Stop .. 135

DateTime_GetMonthCal 205
DateTime_GetMonthCalColor 205
DateTime_ GetMonthCal Font. 207
DateTime_ GetRange 207
DateTime_ GetSystemtime 208
DateTime_SetFormat 209
DateTime_SetMonthCaIColor 21 0
DateTime_SetMonthCalFont 211
DateTime_SetRange 211
DateTime_SetSystemtime 212
DestroyPropertySheetPage 436

c DL_BEGINDRAG ... 228
DL_CANCELDRAG 229

CBEM_DELETEITEM 145 DL_DRAGGING ... 230
CBEM_GETCOMBOCONTROL 146 DL_DROPPED ... 230
CBEM_GETEDITCONTROL 146 DRAGLISTINFO .. 231
CBEM_GETEXTENDEDSTYLE 147 Drawlnsert .. 226
CBEM_GETIMAGELIST 147 DrawStatusText ... 563
CBEM_GETITEM .. 148 DTM_GETMCCOLOR 197
CBEM_GETUNICODEFORMAT.. 149 DTM_GETMCFONT 198
CBEM_HASEDITCHANGED 149 DTM_GETMONTHCAL 198
CBEM_INSERTITEM 150 DTM_GETRANGE 199
CBEM_SETEXTENDEDSTYLE 151 DTM_GETSYSTEMTIME 200
CBEM_SETIMAGELlST 151 DTM_SETFORMAT 200
CBEM_SETITEM .. 152 DTM_SETMCCOLOR 201
CBEM_SETUNICODEFORMAT 153 DTM_SETMCFONT 202
CBEN_BEGINEDIT 154 DTM_SETRANGE 203
CBEN_DELETEITEM 154 DTM_SETSYSTEMTIME 204
CBEN_DRAGBEGIN 155 DTN_CLOSEUP .. 213
CBEN_ENDEDIT ... 155 DTN_DATETIMECHANGE 214
CBEN_GETDISPINFO 156 DTN_DROPDOWN 215
CBEN_INSERTITEM 157 DTN_FORMAT .. 216
CCM_GETUNICODEFORMAT 86 DTN_FORMATQUERY 216
CCM_GETVERSION 87 DTN_USERSTRING 217
CCM_SETUNICODEFORMAT 88 DTN_WMKEYDOWN 218
CCM_SETVERSION 89
COLORSCHEME .. 104
COMBOBOXEXITEM 158 E
CreatePropertySheetPage 435 ExtensionPropSheetPageProc 437

777

778 Volume 4 Microsoft Windows Common Controls

F HDN_FIL TERBTNCLlCK 294
HDN_FILTERCHANGE 295

FIRST _IPADDRESS 325 HDN_GETDISPINFO 295
FlatSB_EnableScroIlBar 236 HDN_ITEMCHANGED 296
FlatSB_GetScrolllnfo 237 HDN_ITEMCHANGING 297
FlatSB_GetScroIiPos 238 HDN_ITEMCLlCK .. 297
FlatSB_GetScroliProp 239 HDN_ITEMDBLCLlCK 298
FlatSB_GetScroliRange 241 HDN_ TRACK ... 298
FlatSB_SetScrollinfo 242 HDTEXTFILTER Structure 306
FlatSB_SetScroliPos 243 HeadecClearFilter 274
FlatSB_SetScroIiProp 244 Header_CreateDraglmage 275
FlatSB_SetScroIiRange 247 Header _Delete Item 275
FlatSB_ShowScroliBar 248 Header_EditFilter ... 276
FORWARD_WM_NOTIFY 92 HeadecGetBitmapMargin 277
FOURTH_IPADDRESS 326 Header _ Getl mage List.. 278

HeadecGetltem .. 278

G Header_GetltemCount. 279
HeadecGetltemRect 280

GetEffectiveClientRect 81 Header_GetOrderArray 281

GetMUILanguage .. 82 Header_GetUnicodeFormat. 282
HeadeUnsertltem 282

H
Header_Layout .. 283
HeadecOrderTolndex 284

HANDLE_WM_NOTIFY 93
HDHITIESTINFO .. 301
HDITEM ... 303
HDLA YOUT ... 306
HDM_CLEARFILTER 258
HDM_CREATEDRAGIMAGE 259
HDM_DELETEITEM 259
HDM_EDITFIL TER. 260
HDM_GETBITMAPMARGIN 261
HDM_GETIMAGELlST 261

Header_SetBitmapMargin 285
Header_SetFilterChangeTimeout 286
Header _SetHotDivider 286
Header_SetlmageList 287
Header _Setltem ... 288
HeadecSetOrderArray 289
HeadecSetUnicodeFormat 290
HKM_GETHOTKEY 315
HKM_SETHOTKEY 316
HKM_SETRULES .. 317

HDM_GETITEM .. 262
HDM_GETITEMCOUNT 262
HDM_GETITEMRECT 263
HDM_GETORDERARRAY 264
HDM_GETUNICODEFORMAT 265
HDM_HITIEST ... 265
HDM_INSERTITEM 266
HDM_LA YOUT .. 266
HDM_ORDERTOINDEX 267
HDM_SETBITMAPMARGIN 268
HDM_SETFIL TERCHANGETIMEOUT 268
HDM_SETHOTDIVIDER 269
HDM_SETIMAGELIST 270
HDM_SETITEM ... 271
HDM_SETORDERARRA Y 271
HDM_SETUNICODEFORMAT 272

INDEXTOSTATEIMAGEMASK 94
InitCommonControls 83
InitCommonControlsEx 83
INITCOMMONCONTROLSEX 104
InitializeFlatSB ... 235
InitMUILanguage ... 84
IPM_CLEARADDRESS 320
IPM_GETADDRESS 321
IPM_ISBLANK ... 322
IPM_SETADDRESS 322
IPM_SETFOCUS ... 323
IPM_SETRANGE ... 323
IPN_FIELDCHANGED 324

HDN_BEGINDRAG 291
HDN_BEGINTRACK 292
HDN_DIVIDERDBLCLICK 292 L
HDN_ENDDRAG ... 293 LBltemFromPt .. 227
HDN_ENDTRACK 293

APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 779

M MonthCal SetUnicodeFormat 378
MONTHDAYSTATE 385

MakeDragList .. 228
MAKEIPADDRESS 326
MAKEIPRANGE .. 327 N
MCHITTESTINFO 382 NM CHAR ... 95
MCM GETCOLOR 339
MCM - GETCURSEL. 340
MCM - GETFIRSTDAYOFWEEK 341
MCM - GETMAXSELCOUNT 342
MCM - GETMAXTODA YWIDTH 342
MCM - GETMINREQRECT 343
MCM - GETMONTHDEL TA. 344
MCM - GETMONTHRANGE 345
MCM - GETRANGE 346
MCM - GETSELRANGE 347
MCM - GETTODAY 347
MCM - GETUNICODEFORMAT 348
MCM - HITTEST ... 349
MCM - SETCOLOR 351
MCM - SETCURSEL 352
MCM - SETDA YST ATE 353
MCM - SETFIRSTDAYOFWEEK 354
MCM - SETMAXSELCOUNT 354
MCM - SETMONTHDEL TA 355
MCM - SETRANGE 356
MCM - SETSELRANGE 357
MCM - SETTODA Y 358
MCM - SETUNICODEFORMAT 358
MCN -GETDAYSTATE 379
MCN - SELCHANGE 380
MCN - SELECT .. 380
MenuHelp .. 564
MonthCaLGetColor 359
MonthCaLGetCurSel 360
MonthCaLGetFirstDayOfWeek 361
MonthCaLGetMaxSelCount 362
MonthCaLGetMaxTodayWidth 363

NM-CLlCK ... 95
NM=CLlCK (status bar) 578
NM_CLlCK (tab) .. 639
NM CUSTOMDRAW 117
NM=CUSTOMDRAW (header) 299
NM_CUSTOMDRAW (rebar) 535
NM_CUSTOMDRAW (Tooltip) 687
NM_CUSTOMDRAW (trackbar) 728
NM DBLCLK ... 96
NM=DBLCLK (status bar) 579
NM HOVER ... 96
NM - KEYDOWN ... 97
NM - KILLFOCUS ... 98
NM=KILLFOCUS (date time) 219
NM NCHITTEST ... 98
NM=NCHITTEST (rebar) 536
NM OUTOFMEMORY 99
NM - RCLICK .. 99
NM=RCLICK (header) 300
NM_RCLICK (status bar) 579
NM_RCLICK (tab) .. 639
NM RDBLCLK ... 100
NM=RDBLCLK (status bar) 580
NM RELEASEDCAPTURE l0l
NM - RELEASEDCAPTURE (header) 301
NM - RELEASEDCAPTURE (monthcal) 381
NM - RELEASEDCAPTURE (pager) 408
NM - RELEASEDCAPTURE (rebar) 537
NM - RELEASEDCAPTURE (tab) 640
NM - RELEASEDCAPTURE (trackbar) 729
NM - RELEASEDCAPTURE (up-down) 746
NM -RETURN .. 101

MonthCaLGetMinReqRect 363 NM - SETCURSOR 102
MonthCaLGetMonthDelta 364
MonthCaLGetMonthRange 365

NM=SETCURSOR (ComboBoxEx) 157
NM SETFOCUS .. 102

MonthCaLGetRange 366
MonthCaLGetSelRange 367

NM=SETFOCUS (date time) 219
NM TOOLTIPSCREATED 103

MonthCal_GetToday 368 NMCBEDRAGBEGIN 161
MonthCaLGetUnicodeFormat 368 NMCBEENDEDIT .. 160
MonthCaLHitTest. 369 NMCHAR ... 105
MonthCal_SetColor 370 NMCOMBOBOXEX 161
MonthCal_SetCurSel.. 371 NMCUSTOMDRAW 119
MonthCal_SetDayState 372 NMDATETIMECHANGE 220
MonthCal_SetFirstDayOfWeek 373 NMDATETIMEFORMAT 221
MonthCal_SetMaxSeICount 374
MonthCal_SetMonthDelta 375

NMDATETIMEFORMATQUERY 222
NMDATETIMESTRING 223

MonthCal_SetRange 376 NMDATETIMEWMKEYDOWN 224
MonthCaLSetSeIRange 377 NMDAYSTATE .. 384
MonthCal_SetToday 377 NMHDDISPINFO ... 307

780 Volume 4 Microsoft Windows Common Controls

NMHDFIL TERBTNCLICK Structure 308 PGM_SETBORDER 396
NMHDR ... 106 PGM_SETBUTTONSIZE 396
NMHEADER .. 309 PGM_SETCHILD ... 397
NMIPADDRESS .. 329 PGM_SETPOS .. 398
NMKEY .. 107 PGN_CALCSIZE ... 409
NMMOUSE .. 107 PGN_SCROLL ... 409
NMOBJECTNOTIFY 108 PropertySheet .. 438
NMPGCALCSIZE .. 410 PropSheeCAddPage 461
NMPGSCROLL ... 411 PropSheeCApply ... 461
NMRBAUTOSIZE .. 544 PropSheeCCancelToClose 462
NMREBAR ... 545 PropSheeCChanged 463
NMREBARCHEVRON 546 PropSheeCGetCurrentPageHwnd 464
NMREBARCHILDSIZE 547 PropSheeCGetTabControl 465
NMSELCHANGE ... 384 PropSheeCHwndTolndex 465
NMTCKEYDOWN 644 PropSheeUdTolndex 466
NMTOOLTIPSCREATED 109 PropSheeUndexToHwnd 467
NMTTCUSTOMDRAW 691 PropSheeUndexTold 467
NMTTDISPINFO ... 691 PropSheeUndexToPage 468
NMUPDOWN .. 747 PropSheeUnsertPage 469

PropSheeUsDialogMessage 470

p PropSheeCPageTolndex 471
PropSheeCPressButton 472

Pager_ForwardMouse 399
Pager_GetBkColor 399
Pager_GetBorder .. 400
Pager_GetButtonSize 401
Pager_GetButtonState 401
Pager_GetDropTarget. 402
Pager_GetPos ... 403
Pager_RecalcSize 403
PagecSetBkColor 404
Pager_SetBorder. .. 405
Pager_SetButtonSize 406
Pager_SetChiid ... 406
PagecSetPos ... 407
PBM_DELTAPOS 417
PBM_GETPOS .. 417
PBM_GETRANGE 418
PBM_SETBARCOLOR 419
PBM_SETBKCOLOR 419
PBM_SETPOS .. 420
PBM_SETRANGE 421
PBM_SETRANGE32 421
PBM_SETSTEP .. 422
PBM_STEPIT .. 423
PBRANGE ... 423

PropSheeCQuerySiblings 473
PropSheeCRebootSystem 474
PropSheeCRemovePage 474
PropSheeCRestartWindows 475
PropSheeCSetCurSel 476
PropSheeC SetCu rSel Byl D 477
PropSheeC SetFinish Text 477
PropSheeCSetHeaderSubTitie 478
PropSheeCSetHeaderTitle 479
PropSheeCSetTitle 480
PropSheeCSetWizButtons 481
PropSheeCUnChanged 482
PROPSHEETHEADER 493
PROPSHEETPAGE 499
PropSheetPageProc 439
PropSheetProc .. 440
PSHNOTIFY .. 503
PSM_ADDPAGE ... 441
PSM_APPL Y .. 442
PSM_CANCEL TOCLOSE 442
PSM_CHANGED ... 443
PSM_GETCURRENTPAGEHWND 444
PSM_GETT ABCONTROL 445
PSM_HWNDTOINDEX 445

PGM_FORWARDMOUSE 390
PGM_GETBKCOLOR 391
PGM_GETBORDER 391
PGM_GETBUTTONSIZE 392
PGM_GETBUTTONSTATE 392
PGM_GETDROPTARGET 393
PGM_GETPOS ... 394
PGM_RECALCSIZE 395
PGM_SETBKCOLOR 395

PSM_IDTOINDEX 446
PSM_INDEXTOHWND 446
PSM_INDEXTOID 447
PSM_INDEXTOPAGE 447
PSM_INSERTPAGE 448
PSM_ISDIALOGMESSAGE 449
PSM_PAGETOINDEX 450
PSM_PRESSBUTTON 451
PSM_QUERYSIBLlNGS 451

APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 781

PSM_REBOOTSYSTEM 452 RB_SETCOLORSCHEME. 529
PSM_REMOVEPAGE 453 RB_SETPALETTE 529
PSM_RESTARTWINDOWS 453 RB_SETPARENT .. 530
PSM_SETCURSEL 454 RB_SETTEXTCOLOR 531
PSM_SETCURSELID 455 RB_SETTOOL TI PS 532
PSM_SETFINISHTEXT 456 RB_SETUNICODEFORMAT 532
PSM_SETHEADERSUBTITLE 456 RB_SHOWBAND ... 533
PSM_SETHEADERTITLE 457 RB_SIZETORECT 534
PSM_SETTITLE .. 458 RBHITTESTINFO .. 548
PSM_SETWIZBUTTONS 459 RBN_AUTOSIZE ... 537
PSM_UNCHANGED 460 RBN_BEGINDRAG 538
PSN_APPL Y .. 483 RBN_CHEVRONPUSHED 539
PSN_GETOBJECT 484 RBN_CHILDSIZE .. 539
PSN_HELP .. 484 RBN_DELETEDBAND 540
PSN_KILLACTIVE 485 RBN_DELETINGBAND 541
PSN_QUERYCANCEL. 486 RBN_ENDDRAG ... 541
PSN_QUERYINITIALFOCUS 487 RBN_GETOBJECT 542
PSN_RESET ... 488 RBN_HEIGHTCHANGE 543
PSN_SETACTIVE 489 RBN_LA YOUTCHANGED 543
PSN_ TRANSLA TEACCELERATOR 489 REBARBANDINFO 548
PSN_WIZBACK ... 490 REBARINFO .. 552
PSN_WIZFINISH ... 491
PSN_WIZNEXT ... 492 S
R SB_GETBORDERS 565

SB_GETICON .. 566
RB_BEGINDRAG .. 510 SB_GETPARTS ... 566
RB_DELETEBAND 511 SB_GETRECT ... 567
RB_DRAGMOVE .. 511 SB_GETTEXT .. 567
RB_ENDDRAG ... 512 SB_GETTEXTLENGTH 569
RB_GETBANDBORDERS 512 SB_GETTIPTEXT .. 570
RB_GETBANDCOUNT 513 SB_GETUNICODEFORMAT 570
RB_GETBANDINFO 514 SB_ISSIMPLE .. 571
RB_GETBARHEIGHT 515 SB_SETBKCOLOR 572
RB_GETBARINFO 515 SB_SETICON .. 572
RB_GETBKCOLOR 516 SB_SETMINHEIGHT 573
RB_GETCOLORSCHEME 516 SB_SETPARTS ... 574
RB_GETDROPTARGET 517 SB_SETTEXT .. 574
RB_GETPALETTE 518 SB_SETTIPTEXT .. 575
RB_GETRECT .. 518 SB_SETUNICODEFORMAT 576
RB_GETROWCOUNT 519 SB_SIMPLE ... 577
RB_GETROWHEIGHT 519 SBN_SIMPLEMODECHANGE 580
RB_GETTEXTCOLOR 520 SECOND_IPADDRESS 328
RB_GETTOOL TIPS 520 ShowHideMenuCtl ... 85
RB_GETUNICODEFORMAT 521
RB_HITTEST .. 522
RB_IDTOINDEX .. 522 T
RB_INSERTBAND 523
RB_MAXIMIZEBAND 524
RB_MINIMIZEBAND 524
RB_MOVEBAND ... 525
RB_PUSHCHEVRON 526
RB_SETBANDINFO 527
RB_SETBARINFO 527
RB_SETBKCOLOR 528

TabCtrLAdjustRect. 619
TabCtrLDeleteAllitems 620
TabCtrLDeleteltem 620
TabCtrl_DeselectAII 621
TabCtrL GetCurFocus 622
TabCtrLGetCurSel 622
TabCtrl_ GetExtendedStyle 623

782 Volume 4 Microsoft Windows Common Controls

TabCtrLGetlmageList 623 TCHITTESTINFO .. 644
TabCtrLGetltem .. 624 TCITEM .. 645
TabCtrLGetltemCount 625 TCITEMHEADER .. 647
TabCtrLGetltemRect 625 TCM_ADJUSTRECT 601
TabCtrLGetRowCount 626 TCM_DELETEALLITEMS 601
TabCtrLGetToolTips 627 TCM_DELETEITEM 602
TabCtrLGetUnicodeFormat 627 TCM_DESELECTALL 602
TabCtrLHighlightltem 628 TCM_GETCURFOCUS 603
TabCtrLHitTest ... 629 TCM_GETCURSEL 604
TabCtrUnsertltem 629 TCM_GETEXTENDEDSTYLE 604
TabCtrl_Removelmage 630 TCM_GETIMAGELIST 605
TabCtrLSetCurFocus 631 TCM_GETITEM ... 605
TabCtrLSetCurSel 632 TCM_GETITEMCOUNT 606
TabCtrLSetExtendedStyle 632 TCM_GETITEMRECT 606
TabCtrLSetlmageList. 633 TCM_GETROWCOUNT 607
TabCtrLSetltem .. 634 TCM_GETTOOL TIPS 607
TabCtrLSetltemExtra 634 TCM_GETUNICODEFORMAT 608
TabCtrl_SetltemSize 635 TCM_HIGHLIGHTITEM 609
TabCtrLSetMinTabWidth 636 TCM_HITTEST .. 609
TabCtrLSetPadding 637 TCM_INSERTITEM 61 0
TabCtrLSetToolTips 637 TCM_REMOVEIMAGE 611
TabCtrLSetUnicodeFormat 638 TCM_SETCURFOCUS 611
TBM_CLEARSEL .. 705 TCM_SETCURSEL 612
TBM_CLEARTICS 706 TCM_SETEXTENDEDSTYLE 613
TBM_GETBUDDY 706 TCM_SETIMAGELlST 614
TBM_GETCHANNELRECT 707 TCM_SETITEM ... 614
TBM_GETLINESIZE 708 TCM_SETITEMEXTRA 615
TBM_GETNUMTICS 708 TCM_SETITEMSIZE 616
TBM_GETPAGESIZE 709 TCM_SETMINTABWIDTH 616
TBM_GETPOS .. 710 TCM_SETPADDING 617
TBM_GETPTICS ... 710 TCM_SETTOOLTIPS 617
TBM_GETRANGEMAX 711 TCM_SETUNICODEFORMAT 618
TBM_GETRANGEMIN 711 TCN_FOCUSCHANGE 640
TBM_GETSELEND 712 TCN_GETOBJECT 641
TBM_GETSELSTART 713 TCN_KEYDOWN ... 642
TBM_GETTHUMBLENGTH 713 TCN_SELCHANGE 642
TBM_GETTHUMBRECT 714 TCN_SELCHANGING 643
TBM_GETTIC .. 715 THIRD_IPADDRESS 329
TBM_GETTICPOS 715 TOOLlNFO ... 693
TBM_GETTOOLTIPS 716 TTHITTESTINFO ... 695
TBM_GETUNICODEFORMAT 716 TTM_ACTIVATE .. 666
TBM_SETBUDDY 717 TTM_ADDTOOL .. 666
TBM_SETLINESIZE 718 TTM_ADJUSTRECT 667
TBM_SETPAGESIZE 719 TTM_DEL TOOL ... 668
TBM_SETPOS .. 719 TTM_ENUMTOOLS 669
TBM_SETRANGE 720 TTM_GETBUBBLESIZE 669
TBM_SETRANGEMAX 721 TTM_GETCURRENTTOOL. 670
TBM_SETRANGEMIN 722 TTM_GETDELA YTIME 671
TBM_SETSEL ... 722 TTM_GETMARGIN 671
TBM_SETSELEND 723 TTM_GETMAXTIPWIDTH 672
TBM_SETSELST ART 724 TTM_GETTEXT ... 673
TBM_SETTHUMBLENGTH 725 TTM_GETTIPBKCOLOR 674
TBM_SETTIC .. 725 TTM_GETTOOLCOUNT 674
TBM_SETTIPSIDE 726 TTM_GETTOOLlNFO 675
TBM_SETTOOL TIPS 727 TTM_HITTEST .. 675

APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 783

TTM_NEWTOOLRECT 676 UDM_GETBUDDY 738
TTM_POP .. 677 UDM_GETPOS .. 738
TTM_RELA YEVENT 677 UDM_GETRANGE 739
TTM_SETDELAYTIME 678 UDM_GETRANGE32 740
TTM_SETMARGIN 679 UDM_GETUNICODEFORMAT 740
TTM_SETMAXTIPWIDTH 680 UDM_SET ACCEL. 741
TTM_SETTIPBKCOLOR 681 UDM_SETBASE .. 742
TTM_SETTIPTEXTCOLOR 681 UDM_SETBUDDY 742
TTM_SETTITLE .. 682 UDM_SETPOS .. 743
TTM_SETTOOLlNFO 683 UDM_SETRANGE 743
TTM_ TRACKACTIVATE 683 UDM_SETRANGE32 744
TTM_ TRACKPOSITION 684 UDM_SETUNICODEFORMAT 745
TTM_UPDATE .. 685 UDN_DELTAPOS .. 746
TTM_UPDATETIPTEXT 686 UninitializeFlatSB ... 249
TTM_WINDOWFROMPOINT 686
TTN_GETDISPINFO 688
TTN_POP .. 689 w
TTN_SHOW .. 690 WM_NOTIFY ... 90

WM_NOTIFYFORMAT 91

u
UDACCEL ... 748
UDM_GETACCEL 737
UDM_GETBASE ... 738

APPENDIX B

Index B: Volume 5, Elements
Listed Alphabetically

A CPL_STOP .. 736
CPIApplet ... 409

ABM_ACTIVATE ... 721
ABM_GETAUTOHIDEBAR 721
ABM_GETSTATE .. 722 D
ABM_GETTASKBARPOS 723 DefScreenSaverProc 410
ABM_NEW .. 723
ABM_QUERYPOS 724

DIIGetVersion ... 411
DLLGETVERSIONPROC 412

ABM_REMOVE ... 724 Dllinstall ... 710
ABM_SETAUTOHIDEBAR 725 DoEnvironmentSubst 413
ABM_SETPOS .. 726
ABM_WINDOWPOSCHANGED 726
ABN_FULLSCREENAPP 727
ABN_POSCHANGED 728
ABN_STATECHANGE 728

DragAcceptFiles ... 414
DragFinish .. 415
DragQueryFile .. 416
DragQueryPoint ... 417

ABN_WINDOWARRANGE 729
AssocCreate .. 670 F
ASSOCDATA .. 561
ASSOCF .. 561
ASSOCKEY ... 563
AssocQueryKey ... 671
AssocQueryString 672
AssocQueryStringByKey 674
ASSOCSTR ... 563

FindEnvironmentString 418
FindExecutable .. 419
FM_GETDRIVEINFO 736
FM_GETFILESEL .. 737
FM_GETFILESELLFN 738
FM_GETFOCUS .. 739
FM_GETSELCOUNT 739
FM_GETSELCOUNTLFN 740

B FM_REFRESH_WINDOWS 740

BrowseCallbackProc 481
FM_RELOAD_EXTENSIONS 741
FMEVENT _HELPMENUITEM 742
FMEVENT _HELPSTRING 742

c FMEVENT _INITMENU 743
FMEVENT _LOAD .. 744

ChrCmpl .. 575 FMEVENT _SELCHANGE 745
ColorAdjustLuma ... 707 FMEVENT _ TOOLBARLOAD 745
ColorHLSToRGB ... 708 FMEVENT _UNLOAD 746
ColorRGBToHLS ... 708 FMEVENT _USER_REFRESH 746
CPL_DBLCLK ... 730 FMExtensionProc .. 483
CPL_EXIT .. 730 FOLDERFLAGS ... 564
CPL_GETCOUNT 731 FOLDERVIEWMODE 566
CPL_INIT ... 732
CPL_INQUIRE .. 732
CPL_NEWINQUIRE 733 G
CPL_STARTWPARMS 735 GetMenuContextHelpld 420

GetWindowContextHelpld 420

785

786 Volume 5 Microsoft Windows Shell

H IContextMenu
GetCommandString 183

HashData ... 711 InvokeCommand 185
QueryContextMenu 186

IContextMenu2
HandleMenuMsg 189

IACList IContextMenu3

Expand .. 141
IACList2

GetOptions 143
SetOptions 143

IActiveDesktop
Add Desktop Item Method 145
AddDesktopltemWithUI Method 146
AddUrl Method 148
ApplyChanges 149
GenerateDesktopltemHtml 150
GetDesktopltem 150
GetDesktopltemByID 151
GetDesktopltemBySource 152
GetPattern 153

HandieMenuMsg2 191
ICopyHook

CopyCaliback 193
ICurrentWorkingDirectory

GetDirectory 195
SetDirectory 196

I DeskBand
GetBandlnfo 197

IDockingWindow .
CloseDW .. 199
ResizeBorderDW 199
ShowDW .. 201

IDockingWindowFrame
AddToolbar 202

Get Desktop Item Count 153
Get Desktop Item Options 154
GetWalipaper 154
GetWalipaperOptions 155
ModifyDesktopltem 156
RemoveDesktopltem 157
SetDesktopltemOptions 157
SetPattern .. 158

FindToolbar 203
RemoveToolbar 204

IDockingWindowSite
GetBorderDW 214
RequestBorderSpaceDW 215
SetBorderSpaceDW 215

I DragSourceHelper
InitializeFromBitmap 206

SetWalipaper 159
SetWalipaperOptions 159

IASyncOperation
EndOperation 161
GetAsyncMode 162
InOperation 163
SetAsyncMode 163
StartOperation 164

IAutoComplete
Enable ... 167

Initialize From Window 207
IDropTargetHelper

DragEnter ... 209
DragLeave 210
DragOver ... 210
Drop ... 211
Show .. 212

IEmptyVolumeCache
Deactivate .. 217
GetSpaceUsed 218

Init .. 168 Initialize .. 219

IAutoComplete2
GetOptions 170
SetOptions 171

IColumnProvider

Purge ... 221
ShowProperties 222

IEmptyVolumeCache2
InitializeEx .. 224

GetColumnlnfo 174 IEmptyVolumeCacheCallback

GetltemData 175
Initialize .. 176

Purge Progress 227
Scan Progress 228

ICommDlgBrowser
IncludeObject 177
OnDefaultCommand 178

IEnumExtraSearch
Clone .. 229
Next .. 230

OnStateChange 178
ICommDIgBrowser2

GetDefaultMenuText 180
GetViewFlags 181
Notify ... 182

Reset .. 231
Skip .. 231

IEnumlDList
Clone .. 233
Next .. 233

APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 787

Reset ... 23 5
Skip .. 235

I Extractlcon
Extract ... 237
GeticonLocation 238

I Extractlmage
Extract ... 241
Get Location 241

I Extractlmage2
GetDateStamp 244

I FileViewer
PrintTo ... 245
Show .. 24 6
Showlnitialize 247

IFileViewerSite
GetPinnedWindow 248
SetPinnedWindow 249

IInputObject
HasFocusIO 250
TranslateAcceleratorlO 251
UIActivatelO 251

IlnputObjectSite
OnFocusChangelS 253

InetisOffline ... 421
INewShortcutHook

GetExtension 254
GetFolder ... 255
GetName ... 256
GetReferent ; 256
SetFolder ... 257
SetReferent 258

INotifyReplica
YouAreAReplica 259

IntiStrEqN .. 576
IntIStrEqNI ... 577
IntlStrEqWorker ... 578
IObjMgr

Append .. 260
Remove ... 261

IPersistFileSystemFolder
GetFolderTargetinfo 265
InitializeEx 266

I PersistFolder
Initialize .. 262

IPersistFolder2
GetCurFolder 263

IProgressDialog
HasUserCancelied 269
SetAnimation 269
SetCancelMsg 270
SetLine .. 271
SetProgress 272
SetProgress64 273
SetTitle .. 274
StartProgressDialog 274

StopProgressDialog 276
Timer .. 276

IQueryAssociations
GetData .. 279
GetEnum .. 280
GetKey ... 280
GetString .. 281
Init .. 282

IQuerylnfo
GetlnfoFlags 284
GetinfoTip .. 285

I ReconciiableObject
GetProgressFeedbackMax

Estimate .. 286
Reconcile ... 287

IReconcilelnitiator
SetAbortCaliback 292
SetProgressFeedback 293

I RemoteComputer
Initialize .. 294

IResolveSheliLink
ResolveSheliLink 296

I RunnableTask
IsRunning ... 298
Kill .. 299
Resume .. 299
Run ... 300
Suspend ... 300

ISheliBrowser
BrowseObject. 302
EnableModelessSB 304
GetControlWindow 304
GetviewStateStream 306
InsertMenusSB 307
OnViewWindowActive 308
QueryActiveSheIiView 309
RemoveMenusSB 31 0
SendControlMsg 311
SetMenuSB 312
SetStatusTextSB 313
SetToolbarltems 314
TranslateAcceleratorSB 315

ISheliChangeNotify
OnChange .. 316

ISheliDetaiis
ColumnClick 319
GetDetaiisOf 320

IShellExecuteHook
Execute .. 323

IShellExtlnit
Initialize .. 324

ISheliFolder
BindToObject 327
BindToStorage 328
CompareIDs 329

788 Volume 5 Microsoft Windows Shell

CreateViewObject 331 DestroyViewWindow 387
EnumObjects 332 EnableModeless 387
GetAttributesOf 333 EnableModelessSV 388
GetDisplayNameOf 335 GetCurrentlnfo 388
GetUIObjectOf 337 GetltemObject 389
ParseDisplayName 338 Refresh .. 390
SetNameOf 342 SaveViewState 391

ISheliFolder2 Selectltem .. 392
EnumSearches 344 TranslateAccelerator 393
GetDefaultColumn 345 U IActivate ... 394
GetDefaultColumnState 346 ISheliView2
GetDefaultSearchGUID 347 CreateViewWindow2 396
GetDetailsEx 347 GetView .. 397
GetDetaiisOf 348 HandleRename 397
MapNameToSCID 349 SelectAndPosition Item 398

IShellicon ITaskbarList
GetlconOf .. 351 ActivateTab 400

IShelliconOverlay AddTab .. 400
GetOverlaylconlndex 353 DeleteTab .. 401
GetOverlaylndex 354 Hrlnit .. 402

IShelllconOverlayldentifier SetActiveAIt.. 402
GetOverlaylnfo 356 IUniformResourceLocator
GetPriority .. 357 GetURL .. 403
IsMemberOf 358 InvokeCommand 405

ISheliLink SetURL .. 406
GetArguments 360 IURL_SETURL_FLAGS 566
GetDescription 361 IURL_SETURUNVOKECOMMAND_
GetHotkey .. 361 FLAGS .. 567
GeticonLocation 362 IURLSearchHook
GetiDList. ... 363 Translate .. 407
GetPath ... 364
GetShowCmd 365
GetWorkingDirectory 366 M
Resolve .. 366
SetArguments 368
Set Description 369
SetHotkey .. 370

MAKEDLL VERULL 571
MIMEAssociationDialog 421
MLLoadLibrary ... 579

SeticonLocation 371
SetiDList .. 371 p
SetPath .. 372
SetRelativePath 373
SetShowCmd 374
SetWorkingDirectory 375

ISheliLinkDataList
AddDataBlock 376
CopyDataBlock 377
Get Flags .. 378
RemoveDataBlock 379
SetFlags .. 379

ISheliPropSheetExt
AddPages .. 381
ReplacePage 382

ISheliView
AddPropertySheetPages 384
CreateViewWindow 385

PathAddBackslash 61 0
PathAddExtension 61 0
PathAppend ... 611
Path Build Root .. 612
PathCanonicalize ... 613
PathCombine ... 614
PathCommonPrefix 615
PathCompactPath .. 615
PathCompactPathEx 616
PathCreateFromUrl 617
Path FileExists .. 618
PathFind Extension 619
PathFind FileName 620
Path FindNextComponent 620
PathFindOnPath .. 621

APPENDIX B Index B: Volume 5, Elements Listed Alphabetlca"y 789

PathFindSuffixArray 622 SHAppBarMessage 429
PathGetArgs .. 623 SHAutoComplete ... 712
PathGetCharType 623 SHBindToParent .. 430
PathGetDriveNumber 624 SHBrowseForFolder 431
PathlsContentType 625 SHChangeNotify .. 432
PathlsDirectory .. 625 SHCONTF .. 568
PathlsDirectoryEmpty 626 SHCopyKey ... 675
PathlsFileSpec .. 627 SHCreateDirectoryEx 437
PathlsHTMLFile ... 627 SHCreateProcessAsUser 438
PathlsLFNFileSpec 628 SHCreateShell Palette 709
PathlsNetworkPath 629 SHCreateStreamOnFile 714
PathlsPrefix ... 630 SHCreateThread .. 714
PathlsRelative ... 630 SHDeleteEmptyKey 676
PathlsRoot ... 631 SHDeleteKey ... 677
PathlsSameRoot ... 632 SHDeleteValue .. 678
PathlsSystemFolder 632 Shell_Notifylcon ... 439
PathlsUNC ... 633 SheIiAbout. ... 441
PathlsUNCServer .. 634 Shell Execute .. 442
PathlsUNCServerShare 634 SheIlExecuteEx .. 445
PathisURL ... 635 SHEmptyRecycleBin 447
Path Make Pretty ... 636 SHEnumKeyEx .. 679
PathMakeSystemFolder 636 SHEnumValue ... 680
PathMatchSpec ... 637 SHFileOperation .. 448
PathParselconLocation 638 SHFreeNameMappings 449
PathQuoteSpaces 639 SHGetDataFromlDList 450
PathRelativePathTo 639 SHGetDesktopFolder 451
PathRemoveArgs .. 641 SHGetDiskFreeSpace 452
PathRemoveBackslash 641 SHGetFilelnfo .. 453
PathRemoveBlanks 642 SHGetFolderLocation 457
Path RemoveExtension 642 SHGetFolderPath .. 458
PathRemoveFileSpec 643 SHGeticonOveriaylndex 461
PathRenameExtension 644 SHGetinstanceExplorer 462
PathSearchAndQualify 644 SHGetMalioc .. 463
PathSetDlgltemPath 645 SHGetNewLinklnfo 464
PathSkipRoot .. 646 SHGetPath From I DList 466
PathStripPath .. 647 SHGetSettings ... 466
PathStripToRoot .. 647 SHGetSpecialFolderLocation 468
PathUndecorate .. 648 SHGetSpeciaIFolderPath 469
PathUnExpandEnvStrings 649 SHGetThreadRef ... 716
PathUnmakeSystemFolder 650 SHGetValue ... 681
PathUnquoteSpaces 651 SHGNO .. 569

SHlnvokePrinterCommand 470

R SHLoadlnProc .. 472
SHOpenRegStream 717

RegisterDialogClasses 423
REGSAM ... 669

SHOpenRegStream2 718
SHQuerylnfoKey .. 683
SHQueryRecycleBin 473

s SHQueryValueEx ... 684
SHRegCloseUSKey 685

ScreenSaverConfigureDialog 424
ScreenSaverProc .. 425
SetMenuContextHelpld 426
SetWindowContextHelpld 427
SHAddToRecentDocs 428

SHRegCreateUSKey 686
SHREGDEL_FLAGS 705
SHRegDeleteEmptyUSKey 687
SHRegDeleteUSValue 688
SHRegDuplicateHKey 689
SHREGENUM_FLAGS 706

790 Volume 5 Microsoft Windows Shell

SHRegEnumUSKey 690 StrRStrl .. 602
SHRegEnumUSValue 691 StrSpn .. 603
SHRegGetBoolUSValue 692 StrStr .. 604
SHRegGetPath .. 693 StrStrl ... 604
SHRegGetUSValue 694 StrTolnt .. 605
SHRegOpenUSKey 696 StrTolntEx .. 606
SHRegQuerylnfoUSKey 697 StrTrim ... 607
SHRegQueryUSValue 698
SHRegSetPath .. 700
SHRegSetUSValue 701 T
SHRegWriteUSValue 702 TranslateURL ... 475
SHSetThreadRef ... 719
SHSetValue ... 704
SHStrDup .. 580

TRANSLATEURUN_FLAGS 570

U
SOANGLETENTHS 573 UndeleteFile ... 484
SoftwareUpdateMessageBox 473
SOPALETTEINDEX 573
SOPALETTERGB 573
SORGB .. 574

UrlApplyScheme .. 651
URLAssociationDialog 476
URLASSOCIATIONDIALOG_IN_FLAGS 571
UrICanonicalize .. 653

SOSETRATIO ... 574 UrlCombine .. 654
StrCat .. 581
StrCatBuff .. 581

UrICompare .. 655
UrlCreateFromPath 656

StrChr .. 582
StrChrl ... 583
StrCmp .. 584

UrlEscape .. 657
UrlEscapeSpaces .. 658
UrlGetLocation ... 659

StrCmpl ... 585 UrlGetPart .. 660
StrCmpN .. 585 UrlHash .. 661
StrCmpNI ... 586 Urlls .. 662
StrCpy .. 587 UrlisFileUrl ... 663
StrCpyN ... 588
StrCSpn ' 589
StrCSpnl .. 590
StrDup ... 591
StrFormatByteSize 592

UrlisNoHistory .. 664
U rlisOpaque ... 665
UrIUnEscape .. 666
UrIUnEscapelnPlace 667

StrFormatByteSize64A 593
StrFormatKBSize ... 594 w
StrFromTimelnterval 595
StrlslntiEqual ... 596
StrNCat .. 597
StrPBrk .. 598
StrRChr .. 598
StrRChrl ... 599
StrRetToBuf ... 600
StrRetToStr .. 601

WinHelp ... 477
WM CPL LAUNCH 747
WM - CPL-LAUNCHED 747
WM - DROPFILES .. 748
WM - HELP ... 749
WM - TCARD .. 749
wnsprintf ... 608
wvnsprintf ... 609

/

Part No. 097-0002310

W.ndows
Shell

This essential Windows 2000 and Windows 98/
Windows 95 reference volume is part of the five-volume
Microsoft Win32i1!l Developer's Reference Library. In its
printed form, this materia(is portable, easy to use, and
easy to browse-a highly condensed, completely indexed,
intelligently organized complement to the information
available on line and through the Microsoft Developer
Network (MSDN). Each volume includes an overview of
the five-volume library, two appendixes of programming
elements, and tips on how and where to find other
Microsoft developer reference resources you may need.

Microsoft Windows Shell

This volume provides complete reference materials about
Windows shell programming, including the new Shell
Programmer's Guide, completely revamped for Windows
2000. Included in this volume are shell basics and
intermediate techniques, the extensive set of Windows
Shell interfaces available to Win32 programmers, as well
as functions, macros, lightweight utility APls, messages
and notifications, structures, and enumerations.

Microsoft

