- Part of the five-volume -4
ml’ Q ~ Microsoft® Win32° Developer’s Reference Library M’cms0ﬂ i

The essential reference to Win32®
technologies and APIs

David Iseminger
Series Editor

v jseminger con

BASED ON

msdnlibrary

Microsoft

The essential reference to Win32°
technologies and APIs

David Iseminger
Series Editor

‘Windows

Shell

BASED ON

msdn library

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-
Microsoft Win32 Developer’s Reference Library / David Iseminger.
p. cm.
ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) 1. Title.
QA76.76.063 174 1999
005.26'8--dc21 99-045609
CIp

Printed and bound in the United States of America.

123456789 WCWC 432109

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

ActiveX, BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, Visual Basic, Visual C++, Visual
FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows
NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective
owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No

association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002310

Acknowledgements

Acknowledgements are often tricky things; generally, the day after books are
printed you think of someone who absolutely should have been recognized,
whom you now have rudely omitted. You’d think authors would keep an
ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about
the series idea, and for keeping up with the myriad of issues that cropped up,
and for managing the business details associated with publishing this series.
Thanks also to Steve Guty at Microsoft Press for seeing certain publishing
issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft
Press, and orchestrated things in the way only project editors can endure.
John Pierce was also instrumental in seeing the publishing process through
completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman—thanks for the excellent work; I'm a firm believer
that artwork and packaging are integral to the success of a project. Marketing
acknowledgements go out to Jocelyn Paul, for her coordination efforts with
MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the
editor at Microsoft Press, and thereby routing this series to the right place.
Throughout the process, Julie Solon provided lots of Win32 feedback and
helped gather feedback from others, all of which was quite helpful in compiling
the right collection of technologies...thanks to Julie for the help on that. Guy
Smith pointed me to the information | needed for Volumes 4 and 5, and was
always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh
Vaidyanathan for their help and openness, respectively, with letting me
provide the common coding errors found in Chapter 5 of each of these
volumes. Thanks on my behalf, and on behalf of anyone who finds that
information useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my
functional “circled i” logo into a 3D piece of art, as well as for his work on the
Iseminger.com site. You can see more of his artwork through links found at
www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things
great agents do best.

Contents

Chapter 1: Introduction 1
How the Win32 Library Is Structured...........cocceevueeiienvnienienieeneenieneenieevesnnens 2
How the Win32 Library Is Designedcccoceeeeiiincinccnininiciniieneeneenenn 3

Chapter 2: What's In This Volume? 5

Chapter 3: Using Microsoft Reference Resources . 7

The Microsoft Developer Network (MSDN)cccoeeervieinenennieneneneeieeeeeneenes 8
Comparing MSDN and MSDN Online.........cccceeveeveerruenuensiessiensienseeneenieenseenneens 8
MSDN SUDSCIIPHONSvveevieiieniienrenrenienieenieesieeseesesstsssesseessesseesseeseessaessasns 10

MSDN Library SubSCIIPHON.ccveeruerveuieeenreerierererieeeenresrereesreseeensennes 11
MSDN Professional SUDSCIIPHON........cc.evveeuieriereriientenieseseeeeseesaesieseeenes 11
MSDN Universal SUbSCIIPLONcccceeieermieriiniieneeerrcseieeeeneeeeaenes 11
Purchasing an MSDN SubsCription...........ccceevevireienenenicnniiniinienenennenn 12
USING MSDN ..ttt ettt ettt esressre st st e s st e st e satesenessaassaensasnns 13
Navigating MSDNccccriiiiniiiieirerereiscsrereseee ettt eeneaes 14
QUICK TIPS eveeuvenieeieniieneeiteetestesteetesetesteesabesseesseereessasssessseessesssesssessnesssens 16
UsSing MSDN ONINE........ccceecierienieieniinieniieeeenreeseeestesiesseestesssesssesssassessseenne 17
Navigating MSDN Onlinecccoeeueiiineenienieeninenieeneneneseenseneeennennes 19
MSDN Online FEaturescocevvevuerierrereenrenienernienesreseeniesnessessessesseenne 20
MSDN Online Registered USEIS.......c.eeereeierierernieniereneeieneesresesseneenns 25

The Windows Programming Reference Series.........ccccoceeveruenervenencnececncnenncnnes 26

Chapter 4: Finding the Developer Resources You Need 27

DEVEIOPET SUPPOTL ...oviiiiiiiiiiiiiiiiiiiicietitcrccresc sttt esbe s b e sae s 27

OnliNe RESOUICESeeuviiiriieniiiiiieiieieiesieseeree ettt sre et et ene st e s 29

Learning PrOQUCLESccuevereririeiieieieetctesteseeere ettt se et sb b s ssees 30

CONTEIENCES ...ttt ettt bt ser et se e e sae et enesaesessennes 32

Other RESOUICEScoueieuiiiiiiieeeieiiese ettt ettt sresr et snee e 33

Chapter 5: Getting the Most out of Win32 Library Technologies: Part 5............... 35

MEMOTY ADUSE.......eieiiiiriieiiieiiteeeieesteesteeteesseeessasessssessseessasssssessssessssessssasssasannes 35

Allocation failuresccceeeeevenienenenienensiesenenenene et 36
UninitialiZed MEMOTYcocvevverierieniinienenreeieiesesesessesiesseseeseeseesressesseenee 36
AVOIAING 1€AKSuvivieiieiiiieieeeietetet ettt sr e 37
Don’t USE fre€d IESOUICESccverveverereriiniirienieseseiteseesresseseeseeseessessesaeenee 38

RESOUICE QLLACKS ...uvvvvviiiiiiiiiiieeee ettt e e e earare e e e e essersraeeeescesssnnnseees 39

vi

Contents

MISCAICUIALIONSovinrniriieiireiititeteereteee ettt sr ettt 39
DIiVISION DY ZETO ..cuveeeviiiieiiiiiiieieett ettt e e et eabe et neeaneen 40
Signed versus unsigned variablescocevverenienierieniienieninenienienesee e 40
Floating-point variables..........cocueoiviiiiiriiniinininiietiiieeeeeniesreiesie e 41

SOIULION SUMMATYeviuiriieeteintenteirteeeere et see et eb st eses b et et ebese e b sbe e sbesbens 42

Part 2 Introduction 43

Commonly Asked Shell QUESLIONScceevuirrierieeiiriiirreree et 43

Shell and Common Controls VErsionsiccceeceeererienerenienieriniesenieesiesesensens 45

DLL Version NUIMIDETSc..cotreririreeeerienientestesteeetenresreseeseessestesiesieseesnenns 45
Using DllGetVersion to Determine the Version Numbercccceevervevennene. 46

USING DIGEtVEISIONc.veeiniiieiieiieiieieteie sttt sae e 46
PrOJECt VETSIONS ...cuviviiieiienieiietinieetinieeieetetetestesre st et et et s st ebesbe st essensessanes 48

Chapter 6: Shell Programmer’s Guide 49

Programming the Shell............cccooeiiiriiniiince ettt 49
Integrating an Application with the Shell...........cccceverveninnnnnninenenene. 49

The Shell NameESPACE.......cccerirereririeriiieiesienteseeterestesrasseessessessessessessensenns 50
INETOQUCHION ..ottt ettt ettt sttt st 50
Identifying Namespace ODJECES........ccvevveriererirreereenienieeeeeeniesreniensesresennes 51

Getting @ FOIAer’s IDcoueieiririeirieeeeeieeresteseee ettt e 54
The SHBrowseForFolder Dialog BOXcccccoeveeeenienienenenienienieienienienen 54
Special Folders and CSIDLS.........ccccieriieieneneeneenierienieseessessesessessessessassens 54
An Example of How to Use CSIDLs and SHBrowseForFolder................. 56

Getting Information About the Contents of a Folderc.ccceevvevieviecreniennenne. 57
Using the IShellFolder Interface..........cc.coevereereeneenieneneeieeniinesienesessennes 57
Enumerating the Contents of a Folder.............occcvvninivinnncnnccncnnne 58
Determining Display Names and Other Properties.........cccoceeveverenerenenns 58
Getting a Pointer to a Subfolder’s IShellFolder Interfaceccccoun.e.e. 59
Determining an Object’s Parent Folderc.ccoveevevienenvininnieninienenenenns 59

Navigating the NameSPACEccceeververerrierienienierieneeteriesesseerensessessesaessessnens 61
An Example of Namespace Navigation.........cccceveeeerienierrceniesienenenenenenne 61

Launching ApPLCAtIONScceerueeererieierenietrerietet et ereeseesesreseese et seenee 63
Using ShellExecute and ShellEXeCUtEEXccccoveevenenencnncneninenieceenen 63
An Example of How to Use ShellEXeCUteEXccccovververvienienenienennnenns 64

Managing the File SYSIEIM ...c..cocuvviririerieniinienienieeeeeieste st sresre st s saeseeens 66
Per-User File Management............cccceveeeuereerierinneeeeneesiesseeniesienessesesenenns 66
The My Documents and My Pictures FOldersccccoevennincvnenncnnene. 67
ConNECtEd FIIESccuoueriiieiriiieieicictrctet ettt 68

Contents vii

An Example of Managing Files with SHFileOperation..............c.ccecceueeee. 70
Adding Files to the Shell’s List of Recent Documents.........c..cccceeuerueneennee. 72
Managing PriNLEISceeiueeierieriiereeienietesieestee et s e et e e 72
Printer Managementc.coceeeerierieenieneenenieeeeteneeseesee e enesaressnesneens 72
Printing Files with ShellEXECUteEXc.cccevieniiiiiiniiniiiiiieneeieceeeens 72
Transferring Shell Objects with Drag-Drop and the Clipboardcccccecueuenee 73
How Drag-Drop Works with Shell Objectsc..cccoueveneereniniccieiiinenieennens 73
Clipboard Data Transfers........cccceeeriierirrieneenieeiecienienreeeesereseeesreesveseenas 74
Drag-Drop Data Transfersc.ccecueeereereeeeiieniinnenieeenenieresneneeseeeeennes 75
The Shell Data ObJECt.....c..ceeeevreereriiiirieeieteeie ettt esee s 76
How Data Objects WOTK.........cocervereenierienenieeiiitceteneeere e ereeseeseeennens 77
How a Source Creates a Data Object.........c.ceceviiieneeneiniiniiiniiinecnieneenns 79
How a Target Handles a Data ObjJectc.cceeveeeerieeieeriennieeneenenieeseeneens 84
Using the Drag-Drop Helper ODJect.........cocueveeeeeiieneenieenienreneenieneeneeens 88
Shell Clipboard FOIMALSc.cceeveuiriiirenieenieinenieiiecieeeees et scenesens 89
Formats for Transferring File System ObJectscocevvvereerveerieeniienseennnen. 90
Formats for Transferring Virtual Objectsccoeveveeviiiiiiininicincnnenn. 94
Formats for Communication Between Source and Target............cceeeuneee. 94
Handling Shell Data Transfer SCenarioscocceeveerieiereeneensieneeneeneeneenes 97
General GUIAEIINEScc.coeviriiiiiieiiiiiiiii s 98
Copying File Names from the Clipboard to an Application............cc..c...... 99
Copying the Contents of a Dropped File into an Application 100
Handling Optimized Move Operations.............couvevereerveniiincnenienncnnens 102
Handling Delete-on-Paste Operationsco.ceeereereerneereeneeserseeenennnes 104
Transfering Data to and from Virtual Foldersccccccceiinininiiinnnnns 105
Dropping Files on the Recycle Bin........ccccocevieeiiiiiienncnniniiiicnene. 106
Creating and Importing Scrap Files.........ccoccevirveiiiniiniinncniencceceeee. 107
Dragging and Dropping Shell Objects Asynchronously...........ccccecuevueuene 109
Extending the Shellocooiiiiiiiiinieneeeee ettt 110
Creating a File ASSOCIAtIONcevveeiereieriirieteeieeieeieteseesteeseeeesseesreeneens 110
Defining a File Classc.ccoeeieeriiinerinieieenecieeeseeeeeeseesienseeeenens 111
Defining Attributes for a File Class.......c..ccccevvvivvineniiiiiniinienicniennee, 112
Excluding an Application from the Open With Dialog Box..................... 113
CuStOMIZING ICOMS ..uuvenriiniiiiiiiceieete ettt e 114
Assigning a Custom Icon to a File Classccccceeveeernieenervcnnennennieneennee. 114
Assigning a Custom Icon and Label to a Drive Letter...........cccoevevuennnen. 116
Extending ConteXt MENUS.........cecueverierentinrenenrenieieienreereeresieeeessese e sneenas 116
Context Menus for File System Objects..........coccovecivenininiiinicniniinnns 116

viii Contents

Extending the Context Menu for a File Class........c.ccecceeveververvieneennennne. 119
Extending the New Submenuc.cccccoviniiivnniininiiiicncicnne 122
Customizing Folders with DesKtop.ini........cccoceveniiiiiinniiiiniiiiiicicnenee 124
Using Desktop.ini FIlesccccooiviiiiiiiiiniiniiiiiiicicicccieins 124
Creating a Desktop.ini File........cccooeeererieiienieienineceeeeeeceecicenenne 125
Creating an AutoPlay-Enabled CD-ROM Applicationccecvecveverecininnnne 128
Creating an AutoPlay-Enabled Application............ccccccevviiiiniiiniiniccnnennnan. 129
Creating an Autorun.inf File..........cccceoeevirienienienieineecnee e 129

Tips for Writing AutoPlay Startup Applications..........ccccceceeeeeveerenneenne. 130
Autorun.inf Commands...........coueeeriererereeirrieneneneeee et sneenees 131
Enabling and Disabling AUtoPlay.........ccccceeeeviriennenneneneneneeeenceneennens 135
Suppressing AutoPlay Programmaticallycccecoviininiiiniineencniinnen. 135

Using the Registry to Disable AutoPlay..........coccoveeeeveenenenenenencnennnne 137
AutoPlay for Other Types of Storage Media.........cccceeeevereeirerseennienneenne. 138
Chapter 7: Shell Interfaces......ummmms—————— 139
Shell Interface OVEIVIEWcoceevueriereerienienieeeeneeeere et sre s 139
Shell INtEIfaCes.....c..couereieieiiiiiiieieieteeerec ettt 139
TACLISE .ottt ettt ettt sae sttt et et sbesn s sae s 139
TACLISE2 .ottt ettt st sae bbbt e e e e s e sbesne s 142
TActiveDesktop INterfacecccceeeeeverneeieneneninececccccccereee e 144
TASYNCOPEIAtIONouveeiiiiiiiiiiicitc s 160
TAULOCOMPIELE.cvveiieeieieeieiteeeeteeee ettt ettt 165
TAUtOCOMPIELED.........eeeeereeiteiieienteneeere et ettt ettestesaeesbeessesstesseestesnnesanenae 169
TCOIUMNPIOVIAET ...cuviiniieniiiiiiieieeitcie ettt ssa e 172
TCOMMDIZBIOWSETccuteteeiienririeniierieereertesre et seteetesneesreeresseesneesbeennesanene 176
JIComMMDIZBIOWSEI2......cooiieiiiiiiiieieeeiitetecne ettt ssb e san s 179
TCONIEXEMENU ...ttt 182
TCONIEXIMENUL ...ttt ettt sr bbbt ae s sae s 188
ICoNtEXtMENUSoviiiiiiiiiiictct s 190
TCOPYHOOK.....ceoieeiteiierteeiteteeteettet ettt sttt e saneeseesneennens 192
ICurrentWorkingDIr€CtOrYceveeierieereeerieeieeieete et seeereseesaeesveeeeennens 194
IDESKBANAoooviiiiiiieiieieeeeceteetetee ettt ettt 196
IDOCKINGWINAOW.....coviriiriiiiiriiiiieieiicectcict ettt 198
IDockingWindoOWFramecccociiiiiiiiiiniiiiiiicicecece e 201
IDragSoUrCEHEIPETcoevveiiieiieieceeete ettt 205
IDrOPTargetHEIPETrc.eevverveeiieieniinerectcreste ettt 208
IDocKingWiIndOWSILEccveveeueirieriiirieieieit ettt 213
IEMpty VOIUMECACKE.c...eeiiiiiiiiieiieieeieeieeteeet ettt ene e 216

IEmptyVolumeCache?2.........ccueovevierereneneiiiieienienieereienessesreseeeseseessessenes 223

Contents ix

IEmptyVolumeCacheCallBackccccevvrinininenenienienienreeienieseeinere e 226
IENUMEXLIAS@AIChco.eoveiriiriiieieeiieiereicetceec ettt s s 229
TENUMIDLISE ...c..eoiiiiieiieeitieieit ettt ettt sttt ettt eessesiaens 232
TEXITACHICOMN «.evventiiiietenierteeeteteste sttt ettt ettt sbestas st e saaesasss e baesnensenses 236
TEXTraCtIMage.cccveeveeniieiieienieeiteet ettt ettt ettt e e et s e es s beeaseen 240
IEXtractImage?2......c.coceeeeveenienmininiicicie sttt et ae s sn e 243
TFHIEVIEWET ...ttt ettt ettt bt sae st sb bbbt e bttt e st sanesesbesaes 245
TFIEVIBWEISILE ... ettt ettt ettt et sttt et st beaeens 248
TINPULODJECE ...ttt ettt ettt sttt st sttt be b s s e b 249
IINPULODBJECESILE ...ttt et e sae et 252
INeWShOTtCUtHOOK ...c..eovemiiieiiieieiirieieercteesete ettt 253
INOHEYREPLICA ...ttt s 258
TODJMET ..ottt ettt ettt et s e e aste e e e e easaesssesreensaensens 260
TPErSIStFOIACTc..cueviieiiiit ettt et 261
TPErSiStFOLACTZc..eeieeiieiiieieeiieeie ettt sttt e st e e e sae e saesveeanens 263
IPErSIStFOLACTS ...ttt ettt ettt st 264
IPrOgressDIalog.....c.coouiiverreeirierieietinieeeeteeeesteeestesrerestesbe st sbe st et esbeebenaenes 267
TQUETY ASSOCIALIONS.....c.uveureerereirieeneetenienieete ettt teee et sbesseesbesbessnesaesseesaene 277
IQuerylInfo ettt etttk sttt ekt bttt et b s e e s esenans e 284
IRecoNCIlabIEODIECL........coemiiiiriceeiiticteeneeteee ettt eveeens 286
TRECONCIIEINITIALOLeevinvirveeniriieienteeteeiteteeetetestet e s sbeertestesbesraesaaeseesaenas 291
TREMOtECOMPULETcoveeueeierrinieireeiteiesienie st sie ettt ieee e sresstebesbeenaesbesseenes 294
IReSOIVESHEIILANK.eeteerreieeniiieiiieniteieeit ettt ettt eeesae e e e 295
TRUNNADIETASKcoveeveeiiiiniiriiniiee ettt sttt sttt sesbessaesbesraenas 297
ISREIIBIOWSET ...cveeveereiuieienieniirieee ettt ettt et be st st s s b b susesaasaeereenee 301
IShellChangeNOLITYccccoveirereeiirireiecectc ettt 316
IShElIDELAILS.....c.coeerieeeiiniieiteitriet ettt ettt et e e sbe st e nta e sanese s e nsnenas 319
IShellIEXECULEHOOKc.eovviriieiriiiiiiiicitctetetetetet ettt 322
ISHEIIEXLINIL.....coveoviueieeeerientecet ettt ettt ettt sttt neen 324
ISHEIIFOLARTeeviieiiieceneeie ettt ettt s 326
IShellFolder2cccoceovvenuenuencnne. ettt ettt ettt ne e nen 343
ISREIIICOM..c..eeeineeiiiciteieece ettt ettt ettt e 350
ISBEIICONOVEIIAYvooeeeeeeeee e sese s 352
IShelllconOverlayldentifiercocoeeeerereeuenierencerieeseecieeeeee et 355
ISHEIILANK ..ottt ettt ettt ettt 359
IShellLinKDatalast......ccuevverreeereeienienriniereeeeieteseeeerensessesatentessesssensessensesees 375
IShElIPIOPSREELEXLc..ceeuiruiieiiectceeiteete ettt sttt 381
ISREIIVIEW ...ttt et ettt n 383

X

Contents

TTaSKDATLISEeeeeinriiiiiieiciieee ettt e evaeeeaees
TUniformReSourceLoCatoreveeeiievvreeeeeeiieiieieeeeesnnnees
TURLSEArchHOOKcouvveieiiiiieeiiieieeeeeiieeee e ceeeneneeeeesianees

Chapter 8: Shell Functions

Shell FUNCHONScoiiiiiiirieeeeeeeieeee et eeeaare e e e e s esaaneeeesennes
Shell Callback FUNCHONS........cuuviiiiiviiiiieeeeeieiieeeeeeeeeeneeeee e

Chapter 9: Shell Structures

SHEIL STIUCIULES ..eeeieiiiiieee e sane e e e aes

Chapter 10: Shell Enumerations and Macros.......

Shell ENUMETAtiONScccoviviviieieeiiiieeieveveevteeeeeeassesseeseeeeeeeeees
SREIL IMACTOS. ..uvviiiiiieeeieiee ettt e e e e aare e e e s e sesasseeessennes

Chapter 11: Shell Lightweight Utility APIs

String FUNCHONScoeiiiieieeieeieeeeee ettt
Path FUNCHONS.......coeiiieeciieeceeeee et
Registry Data TYPes......ccccoeviviiiiiiiiinincniiicnccccceeeeeeenn
Registry FUNCHONScovevveeieeienieiieeieeieeieseeneeent e
Color Palette FUNCHONSccoueeeieeieieeiiecieeeeiieeireeeieeeieeeeeeene
MIiSCEIIANEOUS.....ccuvreriieiieeieeeiieereeeteeerteesseeeserneesere e areesseassneenns

Chapter 12: Shell Messages and Notifications

Shell Messages and Notificationsccoceeeveevenencnencncenens

Appendix A

Appendix B

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer’s Reference Library, your comprehensive
reference guide to the Win32 development environment. This library, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming—without sacrificing focus. You’ll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you—the time-pressed and information-overioaded applications
developer—to find the information you need quickly, efficiently, and intuitively.

In addition to its focus on Win32 reference material, the Win32 Library contains hard-
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN Subscription. Don’t have
an MSDN subscription, or don’t know why you should? I've included information about
that too, including the differences among the three levels of MSDN subscriptions, what
each level offers, and why you’d want a subscription when MSDN Online is available
over the Internet.

Microsoft is fairly well known for its programming, so doesn’t it make sense to share
some of that knowledge? | thought it made sense, so that's why this—the Windows
Programming Reference Series—is the source where you’ll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don’t get lost in all the information provided in the Win32 Library,
each volume’s appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you’re looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

2

Volume 5 Microsoft Windows Shell

How the Win32 Library Is Structured

The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided include:

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphics Device Interface)
Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library—and therefore, dividing Win32—into these functional
categories enables a software developer who’s focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,000-page Win32 tome),
and without having to shuffle among multiple, less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer friendly
manner and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview
Part 2: Reference
Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you're reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN and MSDN Online, including a collection of insider
tips and tricks. Just as each volume’s Reference section (Part 2) contains different
reference material, each volume’s Part 1 contains different tips and tricks. To ensure that
you don’t miss out on some of them, make sure you take a look at Part 1 in each

Win32 Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions as well as instructional and explanatory
material for each programming area.

Chapter 1 Introduction 3

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

How the Win32 Library Is Designed

The Win32 Library, and all libraries in the Windows Programming Reference Series, is
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look-and-feel that is consistent with their electronic counterparts. In
other words, the way that a given function reference appears on the pages of this book
has been designed specifically to emulate the way that MSDN and MSDN Online
present their function reference pages.

The reason for maintaining such integration is simple: make it easy for you—the
developer of Windows applications—to use the tools and get the ongoing information
you need create quality programs. By providing a “common interface” among reference
resources, your familiarity with the Win32 Library reference material can be immediately
applied to MSDN or MSDN Online, and vice versa. In a word, it means consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in-
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and—in the absence of keyboards
and e-mail and upright chairs—get your programming reading and research done. Of
course, each of the Win32 Library books fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

CHAPTER 2

What’s In This Volume?

Volume 5 of the Microsoft Win32 Developer’s Reference Library is all about the Windows
shell. With the programmatic elements and programming techniques detailed in this
volume of the Win32 Library—Volume 5: The Windows shell—you can enhance or
change all sorts of different aspects of the Windows shell.

When programming to the Windows shell, you have to be prepared to deal with
versioning issues that are associated with Windows shell programming. Almost all of the
programmatic elements associated with the shell are contained within three .dll files
(Comctl32.dll, Shell32.dll, and Shiwapi.dll), and with each of these .dll files there are
versioning issues that must be kept in check throughout the development process.
Windows Common Controls share the versioning requirements of the Windows shell, so
when you’re programming to either the Windows shell (explained in this volume of the
Win32 Library) or with Common Controls (explained in Volume 4 of the Win32 Library),
you must deal with the versioning requirements.

What are the versioning requirements, you ask? The introduction to Part 2 of this volume
(and Volume 4 of the Win32 Library) discusses these caveats in detail, and arms you
with all the information you need to keep the associated requirements straight. You
should read this explanatory introduction to Part 2 before jumping into the programmatic
use of any of the Windows shell programmatic elements detailed in this volume of the
Win32 Library.

The first chapter—found at the beginning of Part 2—provides guidelines to programming
the Windows shell:

Chapter 6: Shell Programming Guide

After this guideline-centric chapter, you'll find reference chapters that provide you with
the programmatic reference information you need to develop Windows applications that
make use of the Windows shell:

Shell Interfaces

Shell Functions

Shell Structures

Shell Enumerations and Macros

Shell Lightweight Utility APIs

Shell Messages and Notifications

6 Volume 5 Microsoft Windows Shell

Programming to the Windows shell has some caveats and versioning requirements that
developers must keep in mind throughout the development process. These versioning
requirements, which are shared with common controls (see Volume 4 in the Win32
Library), are tied to the versions of three key .dll files. You're strongly urged to take a
thorough look at the introduction to Part 2 in this volume, which details the issues that
programmers must deal with when programming to the Windows shell.

CHAPTER 3

Using Microsoft Reference
Resources

These days it isn’t the availability of information that’s the problem, it’s the availability of
information. You read that right...but I'll clarify.

Not long ago, getting the information you needed was a challenge because there wasn’t
enough of it. To find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn’t at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

Today, information surrounds us and sometimes stifles us. We’re overloaded with too
much information, and if we don’t take measures to filter out what we don’t need to meet
our goals, soon we become inundated and unable to discern what’s “junk information”
and what's information that we need to stay current, and therefore competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft’'s own reference material as well—not because there is
information that isn't needed, but rather because there is so much information that
finding what you need can be as challenging as figuring out what to do with it once you
have it. Developers need a way to cut through the information that isn’t pertinent to them
and to get what they’re looking for. One way to ensure you can get to the information
you need is to know the tools you use; carpenters know how to use nail guns, and it
makes them more efficient. Bankers know how to use ten-keys, and it makes them more
adept. If you're a developer of Windows applications, two tools you should know are
MSDN and MSDN Online. The third tool for developers—reference books from the
Windows Programming Reference Series—can help you get the most out of the first two.

Books in the Windows Programming Reference Series, such as those found in the
Microsoft Win32 Developer’s Reference Library, provide reference material that focuses
on a given area of Windows programming. MSDN and MSDN Online, in comparison,
contain all of the reference material that all Microsoft programming technologies have
amassed over the past few years, and create one large repository of information.
Regardless of how well such information is organized, there’s a lot of it, and if you don’t
know your way around, finding what you need (even though it’s in there, somewhere)
can be frustrating and time-consuming and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,
other Microsoft reference resources are investigated, and by the end of the chapter,

8 Volume 5 Microsoft Windows Shell

ybu’ll know where to go for the Microsoft reference information you need (and how to
quickly and efficiently get there).

The Microsoft Developer Network (MSDN)

MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don’t have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you’ve heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

¢ Why do | need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

® What are the differences among the three ievels of MSDN subscriptions?
e What happened to Site Builder Network...or, What is this Web Library?

¢ |s there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren’t getting as much out of
MSDN as you could. Or, maybe you're wondering whether you’re paying too much for
too little, or not enough to get the resources you need. Regardless, you want to be in the
know, not in the dark.

By the end of this chapter, you will know the answers to all these questions and more,
along with some effective tips and hints on how to make the most effective use of MSDN
and MSDN Online.

Comparing MSDN and MSDN Online

Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their differences be boiled down? Yes, if broad strokes and some
generalities are used:

e MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or in some cases, on DVD).

Chapter 3 Using Microsoft Reference Resources 9

* MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its customers with the best presentation of material possible. These strengths
and medium considerations enable MSDN and MSDN Online to provide developers with
different feature sets, each of which has its advantages.

MSDN is perhaps less immediate than MSDN Online because it gets to its subscribers in
the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on
your hard drive), and isn’t subject to Internet speeds or failures. Also, MSDN has a
software download feature that enables subscribers to automatically update their local
MSDN content, over the Internet, as soon as it becomes available, without having to wait
for the update CD to come in the mail. The interface with which MSDN displays its
material—which looks a whole lot like a specialized browser window—is also linked to
the Internet as a browser-like window. To further coordinate MSDN with the immediacy
of the Internet, MSDN Online has a section of the site dedicated to MSDN subscribers
that enables subscription material to be updated (on their local machines) as soon as it's
available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based web sites. MSDN Online also
has a customizable interface (much like MSN.com) that enables visitors to tailor the
information that’s presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn’t come
with Microsoft product software, and doesn’t reside on your local machine.

Since it's easy to become confused about the differences and similarities between
MSDN and MSDN Online, it makes sense to figure out a way to quickly identify how and
where they depart. Figure 3-1 puts the differences—and similarities—between MSDN
and MSDN Online into a quickly identifiable format.

One feature that you will notice is shared between MSDN and MSDN Online is the
interface—they are very similar. That's almost certainly a result of attempting to ensure
that developers’ user experience with MSDN is easily associated with the experience on
MSDN Online, and vice versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So it isn’t an “either/or” question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

10 Volume 5 Microsoft Windows Shell

compmsnxs athQKs
¥ Ali'Contenton CD .
e
. Priol r en S o
MSDN wmﬂmgoExemsim CAETTEE
MSDDI Manazim L

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

MSDN Subscriptions

If you’re wondering whether you might benefit from a subscription to MSDN, but you
aren’t quite sure what the differences between its subscription levels are, you aren’t
alone. This section aims to provide a quick guide to the differences in subscription levels,
and what each subscription level costs.

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional

Chapter 3 Using Microsoft Reference Resources 11

subscription, you get everything provided in the Library subscription, plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription, plus even more features.

MSDN Library Subscription

The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn’t come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

¢ The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

e |ots of sample code, which you can cut-and-paste into your projects, royalty free

The complete Microsoft Knowledge Base—the collection of bugs and workarounds

Technology specifications for Microsoft technologies

The complete set of product documentation, such as Visual Studio, Office, and others

Complete (and in some cases, partial) electronic copies of selected books and
magazines

e Conference and seminar papers—if you weren’t there, you can use MSDN’s notes

In addition to these items, you also get:

Archives of MSDN Online columns

¢ Periodic e-mails from Microsoft chock full of development-related information
e A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks
® Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription

The Professional subscription is a superset of the Library subscription. In addition to the
features outlined in the previous section, MSDN Professional subscribers get the
following:

® Complete set of Windows operating systems, including release versions of Windows
95, Windows 98, and Windows NT 4 Server and Workstation.

¢ Windows SDKs and DDKs in their entirety

® [nternational versions of Windows operating systems (as chosen)

¢ Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription

The Universal subscription is the all-encompassing version of the MSDN subscription. In
addition to everything provided in the Professional subscription, Universal subscribers
get the following:

12

Volume 5 Microsoft Windows Shell

® The latest version of Visual Studio, Enterprise Edition

¢ The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

¢ Additional development tools, such as Office Developer, Front Page, and Project

® Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription

Of course, all of the features that you get with MSDN subscriptions aren’t free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality and features, so too does each
escalate in price. Please note that prices are subject to change.

The MSDN Library Subscription has a retail price of $199, but if you’re renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional Subscription is a bit more expensive than the Library, with a
retail price of $699. If you’re an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who’s upgrading to a Professional subscription.

The MSDN Universal Subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level there’s an in-the-box rebate for $200.

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal—and in most cases, the
deal is much better. Also, if your organization is using lots of Microsoft products, whether
MSDN is a part of that group or not, whomever’s in charge of purchasing should look into
Microsoft Open License program. The Open License program gives purchasing breaks
for customers that buy lots of products. Check out www.microsoft.com/licensing for more
details. Who knows, if your organization qualifies, you could end up getting an engraved
pen from your purchasing department, or if you're really lucky maybe even a plaque of
some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, | know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions, too.

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For

Chapter 3 Using Microsoft Reference Resources 13

those of you doing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN

MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There’s no need to tell you how
to use Microsoft product software, but there’s a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

MSDN Library - Apsil 1999

@ Welcome to the MSDN Library
3] g Visual Studio 6.0 Documentation

Dr. GUI's Esprasse Stand
Dr. GUI introduces the April

MSDN Library

& Office Developer Documentation

@ @ Windows CE Documentation
i @ Platform SDK

& g SDK Documentation

il DDK Documentation

5 € Windows Resource Kits

& @ Tools and Technolagies

&2 Q Knowledge Base

) Q Technical Atticles

& Q Backgrounders

€@ Specifications

April 1999 release 1999 release of the MSDN

Welcome to the April 1999
release of the MSDN Library. To
begin your exploration of what's
new in this release, click any of
the links on the right.

The MSDN Library is the
essential reference for

Library,

What's Mew on the Library
Click here for a
comprehensive hotlinked list
of new content in this release, 2"

MSDM Feastures

Check out these packages of
articles about our |atest
technologies,

& @ Books . §

@ Pattial Books ; dgvelnpers, with more than a m&wl

a Pesindical ﬂ gigabyte of technical Fmﬁ out what's new for MiDN

iodicals ¥ programming information, Online members and rea

& 0 Conference Papers H " selected columns from our
including sample code, web site,

& Q Samples

documentation, technical
articles, the Microsoft

| Developer Knowledge Base, and
anything else you might need

i{ to develop solutions that
implement Microsoft

& ; technology.

Figure 3-2: The MSDN interface.

The interface is familiar and straightforward enough, but if you don’t have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

14 Volume 5 Microsoft Windows Shell

Navigating MSDN

One of the primary features of MSDN—and to many, its primary drawback—is the sheer
volume of information it contains: over 1.1GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN’s content.

Basic navigation through MSDN is simple, and a lot like navigating through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics; expand a book by clicking the + box to its left, and its contents are
displayed with its nested books or reference pages, as shown in Figure 3-3. If you don’t
see the left pane in your MSDN viewer, go to the View menu and select Navigation Tabs
and they’ll appear.

Access Validation Functions

The Win32 API provides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses. The following
access validation functions are available.

5y ({2 MSDN Library - April 1933

! 1 @ Welcome to the MSDN Library
@ Visual Studio 6.0 Documentation
@ Office Developer Documentation
@ windows CE Documentation

Funetion .. | Desedption 7o nh
IsBadCodePir Determines whether the calling

8 Eg]gatf\?;:jgﬁew’? process has read access to the
S e memory at the specified address.
5 @ BackOffice
1 ({) Base Services IsBadReadPtr | Determines whether the calling
o 1 @ Microsoft Clustering Service process has read access to the

memory at a specified range of
addresses,

s & 8 Debugging and Errar Handling

I8 # DLLs, Processes, and Thieads

@ Files and 1/0

= (@ Memory

=] tﬁl Memory Management
= ({4 About Memory Management

£ Q Virtual Address Space
= @ Vitual Memory Functions

IsBadSiringPtr | Determines whether the calling
process has read access to the
memaory pointed to by a null-
terminated string pointer, The
function validates access for a
specified number of characters or
until it encounters the string's
terminating null character,

{£] Heap Functions
Bf] :ccess Validation Functions
& @ Very Laige Memory (VLM)
[£] Global and Local Functions
%] Standard C Library Functions
% €@ Using the Virtual Memory Functions
23] Q Memory Management Reference
i3] 2 File Mapping

IsBadWritePty | Determines whether the calling
process has write access to the
memory at a specified range of
addresses.

are also available for compatibility with 16-bit versions of
Windows that distipauishad hetwaen normal memnry Allncaﬁnnc_j;ﬂ
R L G S AL L wf

Figure 3-3: Basic navigation through MSDN.

The four tabs in the left pane of MSDN—increasingly referred to as property sheets
these days—are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you’re interested in working with from the drop-down box, and the
information in each of the four navigation tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means

Chapter 3 Using Microsoft Reference Resources 15

that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, thereby enabling you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren’tin the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren’t displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection

MSDN, Books and Periodicals
MSDN, Content on Disk 2 only
MSDN, Content on Disk 3 only
MSDN, Knowledge Base
MSDN, Office Development

MSDN, Technical Articles and
Backgrounders

Platform SDK, BackOffice

Platform SDK, Base Services
Platform SDK, Component Services
Platform SDK, Data Access Services

Platform SDK, Graphics and
Multimedia Services

Platform SDK, Management Services

Platform SDK, Messaging and
Collaboration Services

Platform SDK, Networking Services
Platform SDK, Security

Platform SDK, Tools and Languages
Platform SDK, User Interface Services
Platform SDK, Web Services

Platform SDK, What’s New?

Platform SDK, Win32 API

Repository 2.0 Documentation

Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK and WinCE Docs

Visual C++, Platform SDK, and Enterprise
Docs

Visual FoxPro Documentation

Visual InterDev Documentation
Visual J++ Documentation

Visual SourceSafe Documentation
Visual Studio Product Documentation

As you can see, this filtering option essentially mirrors the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK’s Security, Networking Services, and Management Services
subsets, as well as a little section that’s nested way into the Base Services subset?

Simple—you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subsets
menu item. You’re presented with the window shown in Figure 3-4.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

16 Volume 5 Microsoft Windows Shell

2. Add your selected information to the subset you’re creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As
dialog box. Note that defined subsets (including any you create) are arranged in
alphabetical order.

Del‘ e Subset :
s

KSR 4435,

—Q BackDﬂlce 3
- Base Services LA Platform SDK
Clustering Service: Platform 5[° ? Base Services
"(ﬂl Debugging and Error Handlin : L‘@ temary: Platform SDK
DLLs, Processes, and Threa Management Services
—(ﬂl Files and [/0: Platfarm SDK i Q Metwarking Services
Hardware: Flatiarm Security
—fﬂl Indexing Service: Platform 5D
—lﬂ Intemational Features: Platforr
Interprocess Communication: |
Performance Monitoring: Platfc
—l:Q] Removable Storage Manager:
Terminal Services: Platform SL
omponent Services

Figure 3-4: The Define Subsets window.

You can also delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets, and filters the information available in the four navigation tabs just like the pre-
defined subsets do.

Quick Tips

Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Chapter 3 Using Microsoft Reference Resources 17

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page’s location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure. This
is easy to fix: simply click the Locate button in the navigation toolbar, and all will be
synchronized.

Use the Back button just like a browser. The Back button in the Navigation toolbar
functions just like a browser’s Back button; if you need information on a reference page

you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like | said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get our work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, |
think). Underscores come before letters in alphabetical order, so if you use an
underscore on all of your defined subsets, you get them placed at the front of the Active
Subset listing of available subsets. Also, by using an underscore, you can immediately
see which subsets you’ve defined, and which ones come with MSDN—it saves a few
seconds at most, but those seconds can add up.

Using MSDN Online

MSDN Online shares a lot of similarities with MSDN, and that probably isn’'t by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right...and it should be; it’s a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

If you've used Microsoft's home page before (www.msn.com or home.microsoft.com),
you’re familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news, local weather,
stock quotes, and other collections of information or news that suit your tastes or
interests. You can even insert a few Web links, and have them readily accessible when
you visit the site. The MSDN Online home page can be customized in a similar way, but
its collection of headlines, information, and news sources are all about development.
The information you choose specifies the information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of

18

Volume 5 Microsoft Windows Shell

the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from. If you're
interested in Web development, you can choose the Option button near the top of the
Technologies section for Web Development, and a pre-defined subset of Web-centric
technologies is selected. For more Win32—centric technologies, you can go through and
choose the appropriate technologies. If you want to choose all the technologies in a
given technology group, check the Include All box in the technology’s shaded title area.

3l resources for developers

& customize |

Customize the information that appears on your MSDN Online home page. Select your preferences
from the sections below, then return here and choose Save. (Yes, we know it's a lot of choices.
There's a lot of information on this site.) You can update your choices at any time by visiting this
Customize page.

_

‘You can customize the headlines you see on the MSDN Online home page by selecting from the list of

technologies below, or you can choose a template we've preselected just for Web developers. Either
way, your selections will customize what you see under Developer News, Libraries, and Support.

check boxes above to ~ &

turn the categories on Web Development # None {(clears all) o)

or off, To change the we'll soon offer more preselected technology templates for other developer specialties; write us and

order in which the let us know what you'd prefer,

tegori .)) A
categories appear on If you select Allow Duplicate Headlines below, your home page will show multiple instances of some
the home page, click a

headlines, each tagged for a different technology:
category name, and
then click the up or i allow Duplicate Headlines

Select or clear the

down arrow gto the
right

—

Figure 3-5: The MSDN Online configuration page.

You can also choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:
Developer News
Categories
Libraries
Search

Chapter 3 Using Microsoft Reference Resources 19

Member Community
Events & Training
Support

Personal Links

Once you've defined your profile—that is, customized the MSDN Online content you want
to see—MSDN Online shows you the most recent information pertinent to your profile
when you go to MSDN Online’s home page, with the categories you've chosen included in
the order you specify. Note that clearing a given category—such as Libraries—clears that
category from the body of your MSDN Online home page (and excludes headlines for that
category), but does not remove that category from the MSDN Online site navigation bar. In
other words, if you clear the category it won’t be part of your customized MSDN Online
page’s headlines, but it'll still be available as a site feature.

Finally, if you want your profile to be available to you regardless of which computer you're
using, you can direct MSDN Online to create a roaming profile. Creating a roaming profile
for MSDN Online results in your profile being stored on MSDN Online’s server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you’re using. The option of creating a roaming profile is
available when you customize your MSDN Online home page (and can be done any time
thereafter). The creation of a roaming profile, however, requires that you become a
registered member of MSDN Online. More information about becoming a registered MSDN
Online user is provided in the section titted MSDN Online Registered Users.

Navigating MSDN Online

Once you’re done customizing the MSDN Online home page to get the headlines you’re
most interested in seeing, navigating through MSDN Oniline is really easy. A banner that
sits just below the MSDN Online logo functions as a navigation bar with drop-down
menus that can take you to the available areas on MSDN Online, as Figure 3-6
illustrates.

The list of available menu categories—which group the available sites and features
within MSDN Online—includes:

Home

Voices

Libraries

Community

Downloads

Site Guide

Search MSDN

20 Volume 5 Microsoft Windows Shell

The Navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online’s feature offerings.

-1 online resource for developers. Here's some information to guide you through the site:

s a chronological list all the latest information posted to the MSDN Cnline site.
Site Map can give you the view from above.
s for navigating the site,

e. See About MSDN to learn about the MSDN subscription program, the MSDN ISV program,
sh newsletter, and more.

ou decode the latest term or acronym that has you stumped.
§ ell us how we can make the site easier to use and what kinds of information you'd like to see

Photo Credits: PhotoDisc

4 pid you find this material useful? Gripes? Compliments ? Suggestions for other articles? Write us!

© 1999 Microsoft Corporation. All rights reserved, Terms of use,

Figure 3-6: The MSDN Online Navigation bar with its drop-down menus.

MSDN Online Features

Each of MSDN Online’s seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
headlines for technologies that you've indicated you're interested in reading about.

Voices is a collection of columns and articles that comprise MSDN Online’s magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

Chapter 3 Using Microsoft Reference Resources 21

sl Praducts | Suppert |

oM {DOWNLOADS., |+ SITE GUIDE. [SEAR

Mew from MEDN Goline
columnists and feature writers

Web Men Tl
! EXTREME XML
.

The Newspap
Scripting Cliri
Extreme ML ¢
DHTML Dude » .t
More or Hess & - by Charlie
NI Heinemann
Stone's Way » |
Servin' It Up ¢

Cade Carner »
Geek Spesk & Incorporating Digital Media Acquisition into Site Design
Office Talk s Madja Vol Ochs details how to implement digital rights management on Web sites.

Parsing and Sharing
XML is all about sharing. Columnist Charlie Heinemann talks about the Microsoft XML
parser, and how XML can make your data available.

DESIGN DISCUSSION

Ceep C++ #
Ask Jane by Nadja
Dr. GUL s Vol Ochs

Q8A =
DEEP C++

Handling Exceptions in C and C++, Part 3
In his third installment on exception handling, columnist Robert Schridt addresses
the syntax and semantics of Standard C++ exception handling.

o

by R‘obert
Schmidt

G voices archive

Figure 3-7: The Voices home page.

There are a bunch of different “voices” in the Voices site, each of which adds its own
particular twist on the issues that face developers. Both application and Web developers
can get their fill of magazine-like articles from the sizable list of different articles available
(and frequently refreshed) in the Voices site.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can navigate in traditional MSDN fashion, and
gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to navigate the Web Workshop in a slightly different way, starting with a
bulleted list of start points, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.com/workshop.

22

Volume 5 Microsoft Windows Shell

3 HDN O‘r.lli;ié Web kashbp - .h.ii‘msnf.l}.lme .I::x.plme.l“ s

&1 ht 'iinj;dn.mig:rosoft.porqlworksho p’defa‘ultaspﬁ o

ESSEMNTIALS «

Component Devalopment »
Content & Component Delivery »
Data Access & Databases o

Design »

OHTHML, HTML & CSE «

Languages & Development Tools «

Messaging & Collaboration

ESSENTIALS

This section contains core
information and references,
including information on
authoring for different
browsers and platforms, end-
to-end examples of working

welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies, including
reference material and in-
depth articles on all aspects

web sites, slides from
conferences, specs, and
cornprehensive links to
references and standards.

of web site design and
development. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords, and the search
page for specific queries.
Check our What's Mew page
for updates.

Metworking, Protocols «
2 Dats Forrmnats

Reusing Browser Technalogy

Sacurity 2 Cryptography »
i Server Technologies »
i Streaming & Interactive Media ¢
- Web Content Management »
RML (Extensible Markup Language) «

i,

The MSDM Online team

1999 Microsoft Corporation. All rights reserved, Terms of use.

Figure 3-8: The Web Workshop home page, with its bulleted list of navigation start
points.

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/community. Figure 3-9 provides a look at
the Community home page.

Chapter 3 Using Microsoft Reference Resources

23

The Site Guide is just what its name suggests; a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn.microsoft.com/siteguide.

aHSDN Online I:Dmmur‘li‘ly Hﬁlﬁé - Miclosofl Ir;lelnet ‘E‘xpio}er

Join *
Your Membership «
OSIGs »

Member Gazette o
Case Studies s
Downloads

Members Helping «
Mermbers

Offers «
Training »
MSDN Stores e

msd,

Welcome to the MSDN Online Member Community
Updated June 4, 1999

With an MSDN Online membership, developers can easily access technical
information, tools, and a community of developers ready to help solve the
toughest challenges. Jain now and take advantage of member benefits,

Online Special-Interest Groups

Access the information you need, when you need it, with Online Special-Interast
Groups (OSIGs), Web-based access to relevant newsgroups, sorted by product,
make it easy for you to get information you need to do your job. Take advantage
of special offers, find useful links, and stay up to date with the latest product and
technology news.

Members Helping Members

Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the
developer community, Get answers quickly by searching the MHM database for
people who can answer your technical questions. Or, register as a volunteer and
help other developers when they need it. Sign up now!

MSDN Online Certified Membership
icrosoft Certified

ofessionals can get speci

Figure 3-9: The Community home page.

0s516s

Commerce

.
Development
Exchange/Outook
Intemet
Information
Server
MSDN Subscription
Dffice Developer
SQL Server
Visual Basic
visual C++
Visual FoxPro
Visual InterDev
visual J++
Visual Studio

Windows 2000

24

Volume 5 Microsoft Windows Shell

The Downloads site is where developers can find all sorts of items that can be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-10.

. T“;"s * Welcome to the MSDN Online Downloads Area
amples »
Images * Tools
Sounds = .
subscriber * Want to try out some great new products? Check out our tools area, where MSDN Online members and

Downloads guests can download over 40 trial, beta and full versions of the latest developer products,

Samples
In this section, you will find a great variety of samples which dermonstrate ways to use the latest and

greatest Microsoft technalogies to make your applications the best they can be. All samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with & are for users registered with Visual Studio only -- to get access to these,
register your product today.

Visit the visual Studio Solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Images

Download Web-ready images for free from our Images Downloads area, Currently, we have a great
collection created by Little Men's Studio, Inc, Little Men's Studio provides original clip art collections,
icons, and free quotes on affordable custom graphics. Our image categories include rules, clip art,
buttons, bullets, photographs, and more. We will be updating this collection with more images so be
sure to check back frequently.

Figure 3-10: The Downloads home page.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), in addition to other search capabilities. The Search MSDN home page can
be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-11.

Chapter 3 Using Microsoft Reference Resources 25

MSDN Online Search - Microsoft Internet Explorer

27

B http://search. microsoft.com/us/dev/

m“n Onﬁne »«H w::>uw:t:
Search
v

1. Enter your search word{s) or phrase, or select a saved phrase from the drop-down list: Search Tips:

Quick -
Advanced

[Enterphrase ~ ~ [saved search phrases it}

2. Select your search criteria:

exact phrase

3. Specify your search scope:

#: all sections of MSDN Library
" selected sections of MSDN Library

¥ visual Studio Documentation ¥ Other SDK Documentation
W Visual Basic Documentation ¥ DDK Documentation

W Visual C++ Documnentation W windows Resource Kits

¥ Visual Fox Pro Documentation ¥ Specifications

¥ Visual InterDev Documentation W Technical Articles

¥ visual J++ Docurnentation W Backgrounders

¥ wisual SourceSafe Docurnentation {¥ Books and Partial Books

¥ Tools & Technologies (including Win CE) ¥ Periodicals

Figure 3-11: The Search home page.

MSDN Online Registered Users

You may have noticed that some features of MSDN Online—such as the capability to
create a roaming profile of the entry ticket to some community features—require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won’t cost you anything more than a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an Online Special Interest Group
(OSIG) requires registration. That feature alone is incentive enough to register; rather
than attempting to call your developer buddy for an answer to a question (only to find out
that she’s on vacation for two days, and your deadline is in a few hours), you can go to
MSDN Online’s Community site and ferret through your OSIG to find the answer in a
handful of clicks. Who knows; maybe your developer buddy will begin calling you with
questions—you don’t have to tell her where you’re getting all your answers.

26

Volume 5 Microsoft Windows Shell

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox—if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs—again, only if
you want to. It's easy for me to suggest that you become a registered user for MSDN
Online—I'm a registered user, and it’s a great resource.

The Windows Programming Reference Series

The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling developers to get their work done as
efficiently as possible. In addition to providing reference material for Microsoft
technologies, each Library in the Windows Programming Reference Series also includes
material that helps developers get the most out of its technologies, and provides insights
that might otherwise be difficult to find.

The Windows Programming Reference Series is currently planned to include the
following libraries:

Win32 Library
Active Directory Services Library
Networking Services Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
Windows Programming Reference Series Libraries that cover the following material:

Web Technologies Library
Web Reference Library
COM/DCOM 2.0 Library

What else might you find in the future? Topics such as a Security, Languages and MFC,
BackOffice, and other pertinent topics that developers using Microsoft products need in
order to get the most out of their development efforts, are prime subjects for future
libraries in the Windows Programming Reference Series. If you have feedback you want
to provide on such libraries, or on the Windows Programming Reference Series in
general, you can send mail to the following address: winprs @ microsoft.com.

If you’re sending mail about a particular Library, make sure you put the name of the
library in the subject line. For example, an e-mail about the Win32 Library would have a
subject line that reads “Win32 Library.” There aren’t any guarantees that you'll get a
reply, but I'll read all of the mail and do what | can to ensure your comments, concerns,
or (especially) compliments get to the right place.

27

CHAPTER 4

Finding the Developer Resources
You Need

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a lof more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft’s resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn’t go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support

Microsoft’s support sites cover a wide variety of support issues and approaches,
including all of Microsoft’s products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.com/support/customer/develop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft’s support services.

28

Volume 5 Microsoft Windows Shell

i Need Help Now?

Microsoft Product Sunﬁurt Serv Developers - Micrasoft Internet Explorer
o

http://vwaw, microsoft, com/supporllcus!omev/develop.hlm_ L

Developers

Microsoft offers a wide variety of support for Developers, The Microsoft
Developer Network MSDN is packed with news, resources and technical

4 Go to a Support site created especi for | ' unique needs, Take advantage of
newsgroups and chat rooms, search the online support archive or sign up for
our regular e-mail news watch, %
] Business Solutions Micrasoft offers developers with Premier Support for Developer, Pay-per-
{ i Partners & Resellers Incident Support, Priority Annual Support and special consulting services, If
Developers you need rmore than occasional developer suppott, one of these options is
Home User sure to be right for you,

Education
Do you need help now?

Go to the Microsoft Develo ork (MSD ort Servi
Support Options

Premier Support for Davelopers
Priotity Annual Support
Pay-Per-Incident Support
Consult Lineg

For additional information, read the Premier Support for
Developers data sheet. (pre_dev.doc, 64K)

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

¢ Premier Support for Enterprises

e Premier Support for Developers

e Premier Support for Microsoft Certified Solution Providers

¢ Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out
more information about Microsoft’s Premier Support, get in contact with them at
1-800-936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages of
Priority Annual Support offered by Microsoft:

e Priority Comprehensive Support

e Priority Developer Support

e Priority Desktop Support

Chapter 4 Finding the Developer Resources You Need 29

As a developer, the best support option for you is the Priority Developer Support. To
get more information about Priority Developer Support, you can reach Microsoft at
1-800-936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there’s
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can’t be broken down into sub-issues or sub-problems (that
is, it can’t be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft’s support Web
site, but if you’re on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support.microsoft.com/support/webresponse.asp.

Online Resources

Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online’s Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online’s Community site, go to msdn.microsoft.com/community.

Microsoft’s MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft’'s corporate site. You can search the Knowledge
Base online at support.microsoft.com/support/search.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.com/support/news.

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer’s Reference Library, and they are the following:

microsoft.public.win32.programmer.*

microsoft.public.ve.”

microsoft.public.vb.*

microsoft.public.platformsdk.*

microsoft.public.cert.”

microsoft.public.certification.*

30

Volume 5 Microsoft Windows Shell

Of course, Microsoft isn’'t the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups—too many to
list—that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products

Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well- structured interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as

Visual C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a
particular product (such as SQL Server or Commerce Server) is to go through and read
the preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do—there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don’t have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually
didn’t know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are “tracks”
that candidates generally choose and that point their certification in a given direction,

Chapter 4 Finding the Developer Resources You Need 31

such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

® Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0
(70-016)

¢ Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

¢ Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

¢ Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

¢ Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:

* Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

® Any Desktop or Distributed exam not used as a core requirement

¢ Designing and Implementing Data Warehouses with Microsoft SQL Server 7.0 and
Microsoft Decision Support Services 1.0

¢ Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

¢ |mplementing OLE in Microsoft Foundation Class Library 4.0 Applications
¢ |mplementing a Database Design on Microsoft SQL Server 6.5

¢ Designing and Implementing Databases with Microsoft SQL Server 7.0

* Designing and Implementing Web Sites with Microsoft FrontPage 98

¢ Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

* Microsoft Access for Windows 95 and the Microsoft Access Developer’s Toolkit

¢ Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications

32

Volume 5 Microsoft Windows Shell

¢ Designing and Implementing Database Applications with Microsoft Access 2000

¢ Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

¢ Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
¢ Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

¢ Developing Applications with Microsoft Visual Basic 5.0

¢ Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
¢ Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn’t that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you—regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams—and don’t be fooled by believing that if the book is bigger it must be better,
because that certainly isn’t always the case—and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.com/train_cert/dev.

Conferences

As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year—occurring throughout the country and around the
world—on various topics. There are probably more conferences available than any
human being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one—the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site

Chapter 4 Finding the Developer Resources You Need 33

for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events.microsoft.com.

Other Resources

There are other resources available for developers of Windows applications, some of
which might be mainstays for one developer and unheard of for another. The listing of
developer resources in this chapter has been geared toward getting you more than
started with finding the developer resources you need: it's geared toward getting you
100 percent of the'way, but there are always exceptions.

Perhaps you're just getting started, and you want to get more hands-on instruction than
MSDN Online or MCSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with

others, let me know about it by sending me e-mail at the following address, and—who
knows?—maybe someone else will benefit from your knowledge: winprs @ microsoft.com

If you're sending e-mail about a particularly useful resource, type “Resources” in the
subject line. There aren’t any guarantees that you’ll get a reply, but I'll read all of
the e-mail and do what | can to ensure your resource idea gets considered.

35

CHAPTER 5

Getting the Most out of Win32
Library Technologies: Part 5

This chapter is the last of the five-part collection of common programming errors,
included in the Microsoft Win32 Developer’s Reference Library to help you avoid these
simple programming pitfalls. This collection of common programming errors is distributed
in each Win32 Library volume’s Chapter 5 in the following fashion:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers

Volume 4: Buffer Overflows and Miscellaneous Errors

Volume 5: Memory Abuse and Miscalculations

As you’ll notice, not all of these pitfalls are necessarily confined to Win32 programming
(some are networking services based, for example). However, since these common
coding errors must be avoided in any Windows application, they’re provided here in their
entirety to round out the benefits of owning the Win32 Library.

This, of course, is Volume 5, and the errors and examples found in this chapter provide
insights that can help you avoid problems with memory abuse and miscalculations in
your programming projects. So, without further ado, here they are!

Memory Abuse

Memory abuse is an ailment that can plague any development project and can cause all

sorts of unpleasant problems. Most problems associated with memory abuse can be

avoided with a little care and understanding of the following basic rules:

¢ Always check for allocation failure.

e Always initialize data.

¢ Release (free/delete) any allocation once it's no longer needed.

o After memory is released, don’t access it again! (Suggestion: Set the pointer to NULL
upon freeing the memory.)

e Have quotas for how much a client can allocate (and ensure that client-specific data is
protected).

36

Volume 5 Microsoft Windows Shell

Allocation failures

The most basic occurrence of allocation failures is the general allocation failure class.
Throughout many programming projects, there are numerous cases where an allocation
is not checked for failure before it's written to or read from. Don't fall victim to this
common error; always check for allocation failure.

Example
k (

Remarks

The programmer who wrote this code is in trouble for two reasons. First, allocations
sometimes fail, and code should behave gracefully when they do. The second problem
is far subtler: On Windows NT and Windows 2000 it is possible to map a page at
address 0x0; get two of these in a row and you have a fairly serious collision. Worse still
is a kernel-mode caller that does this (as the example above implies), since the data can
no longer be trusted.

Uninitialized memory

Another common memory abuse error is reading or returning uninitialized memory.
While the problems associated with uninitialized memory are less obvious, the side
effects of reading or returning uninitialized memory can be difficult to track because they
can manifest themselves in seemingly random behavior. Non-static function variables
are not initialized by default. Use of uninitialized values can result in random behavior,
including exceptions and spurious failures. Good compilers might catch some of these
problems, but not all. Furthermore, if uninitialized memory is returned to an external
caller, it might contain sensitive application data. Somebody attacking your application or
your system could analyze and use this data, especially from a kernel-mode allocation.

Chapter 5 Getting the Most out of Win32 Library Technologies: Part 5 37

NTSTATUS

Remarks

If we get a yellow widget, what status is returned? We can’t get a yellow widget because
no code calls this function with a yellow widget. That might be true today, but not
tomorrow. Why allow a bug to appear in the future? This is a good argument for a
“default” in all switch statements to handle unexpected situations.

Avoiding leaks

Memory leaks are common occurrences in any code that makes allocations. As a
general rule, make sure that allocated buffers that are not returned are freed when they
are no longer needed. Specifically, be sure that all appropriate memory is released when
you have common cleanup code for a number of paths.

38 Volume 5 Microsoft Windows Shell

(continued)

In this code sample, it's obvious that p leaks. Because p is freed in the success path, it
should be freed in appropriate failure paths as well.

Don’t use freed resources

Once memory is freed, it shouldn’t be accessed again. This is an obvious rule, but this
common programming error occurs all the time. This avoidance of using freed resources
includes memory, resources, and objects controlled by reference counts. A common way
that freed resources are accessed is when an attempt is made to release them a second
time; a common way to prevent such problems is to set pointers to NULL upon release.

Chapter 5 Getting the Most out of Win32 Library Technologies: Part 5 39

BOOL
Func(VOID)
: OBJECT *p - NULL;
A ('Mumb1eFrotz(&p)) R EREEER b ey
; (pYs - ,// BUG: Already,freed

Remarks

This example is a case in which rearranging code from the start would have prevented
the bug. Func should perform the allocation because Func releases it.

Resource attacks

While the other cases in this section are simple coding mistakes, protecting an
application or service against a resource attack is a more complicated process. In
general, a user should not be allowed to cause an application or a service to become
inaccessible (a pretty obvious statement). To prevent denial-of-service attacks, it is
important to set limits or quotas for any given application or service resource.
Furthermore, to ensure data integrity and privacy, client-specific data should be private
to each given client, and if the data must be global, it should be protected.

Miscalculations

Any time a calculation is made, the chance for errors crops up. Some of these
calculation errors are obvious, some are a bit more involved. By being aware of the
problems to look for, you're armed with most of what you need to know to prevent the
errors. Specifically, be aware of the following:

¢ Be sure to check for zero for any division.

* Any signed value can be negative. Furthermore, be wary of the following:

e Watch for implicit signed values. The values int and enum are signed. The value
char is signed on Intel-based platforms (x86), but not on Alpha.

¢ Use unsigned values where signed values don’t make sense. Counts and lengths
shouldn’t be negative.

e For range checks, check both upper and lower bounds (or specify unsigned).

¢ Floating-point operations: All floating-point operations should be surrounded by try-
except protection.

40

Volume 5 Microsoft Windows Shell

Division by zero

Division by zero is one of the most common math-based exceptions. Whenever you're
doing any division, make sure to check the divisor, even if the caller is supposed to be a
trusted source. On algorithms that require division with either user-supplied variables or
derivatives of user-supplied variables, take care not to allow a division by zero.

Example

Remarks
Evaluate for x == 1.

Signed versus unsigned variables

A common blind spot when looking for programming errors is with negative numbers,
especially when the type is implicitly signed (such as int, enum, and char). In general,
check both upper and lower limits of the valid range. Furthermore, when negative values
don’t make sense (such as lengths and counts), use unsigned types. In most cases,
unsigned variables make more sense. However, even unsigned variables must be used
properly, as shown in the following example:

Example

Chapter 5 Getting the Most out of Win32 Library Technologies: Part 5 4

Remarks
Members of an enumerated type are signed. Passing 0x80000000 to this function will

probably cause an exception.

Vre

i3

Floating-point variables

The basis of a floating-point variable problem is the fact that not all bit patterns are valid
floating-point values. The IEEE floating-point definition specifies some special floating-
point values, among them signaling values; these values cause exceptions to be raised
when used. Although most cases will succeed, a malicious caller could cause an
exception. To avoid such a situation, surround all floating-point calculations with
exception handlers. A case to be particularly concerned with is using floating-point
variables in kernel mode on Alpha computers.

Example

Remarks

This example is simple enough, except that there are values defined as “signaling” in the
IEEE floating-point specification that cause exceptions to be raised whenever they are
encountered or created.

42 Volume 5 Microsoft Windows Shell

Solution Summary

It's nice to have a concise version of the solutions to these common programming
problems, so this section summarizes how to avoid the issues discussed in this chapter.

Memory Abuse

1. Allocation failures: Always check for allocation failure

2. Uninitialized memory: Always initialize data.

3. Avoiding leaks: Release (free/delete) any allocation after it's no longer needed.
4,

Don’t use freed resources: After memory is released, don’t access it again!
(Suggestion: Set the pointer to NULL upon freeing the memory.)

5. Resource attacks: Have quotas for how much a client can allocate (and ensure that
client-specific data is protected).

Miscalculations
1. Division by zero: Be sure to check for zero for any division.

2. Signed versus unsigned variables: Any signed value can be negative. Furthermore,
be wary of the following:

¢ Implicit signed values. The values int and enum are signed; char is signed on x86,
but not on Alpha.

e Use unsigned values where signed values don’t make sense. Counts and lengths
are not negative.

e For ranges, check both upper and lower bounds (or specify unsigned)

3. Floating-point variables: All floating-point operations should be surrounded by try-
except protection.

43

PART 2

Introduction

There are a handful of questions and versioning issues that, once addressed, can make
your Shell programming experience a little easier. This introduction provides answers to
questions that are commonly asked about the Windows Shell, and provides you with
easy to find Common Control and Shell version information.

Commonly Asked Shell Questions

This section provides answers to commonly asked questions about the Windows Shell.
For more information about any of these answers, read through the rest of this book’s
Part 2, and get the insights into Windows shell programming you need.

What is the shell namespace? What is a namespace object?

The shell namespace organizes the file system and other objects managed by the
shell into a single tree-structured hierarchy. Conceptually, it is essentially a larger and
more inclusive version of the file system. Name space objects include file system
folders and files, along with “virtual” objects, such as the Recycle Bin and Printers
folders.

Is there a dialog box that | can display to let the user choose a folder?
The SHBrowseForFolder function displays a dialog box that allows a user to select
a directory, and returns its PIDL.

What is a PIDL? Why not just use file system paths?
A PIDL is a way of identifying any namespace object. You can also use paths to

identify namespace objects, but only if they are part of the file system. With
namespace objects that are not part of the file system, you must use PIDLs.

How do | get the PIDL of a namespace object?

There are a variety of ways to get an object’'s PIDL. Some common approaches are:

e Use the desktop’s IShellFolder::ParseDisplayName method to convert a file
system path into an equivalent PIDL. This method will also convert the GUID that
identifies a virtual folder into a PIDL.

¢ Display a dialog box that allows the user to select a folder, and returns its PIDL.

¢ Use the folder's CSIDL to get its PIDL. Special folders, such as Program Files or
Printers are assigned a token called a CSIDL. You can use a special folder's
CSIDL to obtain its PIDL. If a special folder is in the file system, you can also use
its CSIDL to obtain its path.

¢ Navigate the namespace until you locate the object.

44

Volume 5 Microsoft Windows Shell

How do | use SHGetFolderPath on systems prior to Windows 2000?

It is available as a redistributable DLL, ShFolder.dll.
How do | convert a PIDL back into a file path?

With the shell API's SHGetPathFromIDList function.

What is the difference between relative and fully-qualified PIDLs?
It is much like the difference between a relative and fully-qualified file path. Like a
file path, a PIDL defines a path through the namespace, with one element for each
portion of the path. Fully-qualified PIDLS start from the root of the namespace, the
desktop. Relative PIDLS start from some other point in the namespace. Some shell

functions expect fully-qualified PIDLs, and others expect relative PIDLs, so it is
important to understand which is required.

How do I get a file’s icon. How do I get a file’s friendly name for a file?

The Shell API provides a function for this purpose: SHGetFilelnfo.
Is there a way to customize how objects are displayed in Windows Explorer?

There are two ways to customize Windows Explorer:
¢ Create a Desktop.ini file for a folder.
e Create a custom folder.htt file.

How can | use drag-drop or the clipboard to transfer namespace objects such as
files or folders?

There are a number of shell-specific clipboard formats that you can use to transfer
shell objects.
What is a file association? What is a file class? How do | create one? What are
they good for?

The terms file association and file class mean essentially the same thing. A file
association or file class consists of all the files that have the same filename extension.
File classes are created with the registry. Once a file class has been created, you can
customize the behavior of its files. For instance, you can replace the standard file icon
with a custom icon or add items to the context menu.

How can | get AutoPlay to launch my CD-ROM application?
By creating an AutoRun.inf file on the CD-ROM.
What exactly is the My Documents folder and how do | use it?

It provides a default location for the current user’'s document files. It automatically
maps to the location in the file system where the current user's document files are
stored. You use it much like a normal file system folder.

Part2 Introduction 45

Shell and Common Controls Versions

This section describes how to determine which version of the Shell or Common Controls
DLLs your application is running on and how to target your application for a specific
version.

DLL Version Numbers

All but a handful of the programming elements discussed in the shell and common
controls documentation are contained in three DLLs: Comcti32.dll, Shell32.dll, and
Shlwapi.dll. Because of ongoing enhancements, different versions of these DLLs
implement different features. Throughout this document, programming elements are
marked with a version number. This version number indicates that the programming
element was first implemented in that version and will also be found in all subsequent
versions of the DLL. If no version number is specified, the programming element is
implemented in all versions. The following table outlines the different DLL versions,
and how they were distributed:

Version DLL Distribution platform

4.00 All Microsoft Windows 95/Windows NT 4.0.

4.70 All Microsoft Internet Explorer 3.x.

4.71 All Microsoft Internet Explorer 4.0 (see Note 2).

4.72 All Microsoft Internet Explorer 4.01 and Windows 98
(see Note 2).

5.00 Shiwapi.dll Microsoft Internet Explorer 5 (see Note 3).

5.00 Shell32.dll Microsoft Windows 2000. (see Note 3).

5.80 Comcti32.dll Microsoft Internet Explorer 5 (see Note 3).

5.81 Comcti32.dll Microsoft Windows 2000(see Note 3).

Note The 4.00 versions of Shell32.dll and Comctl32.dll are found on the original
versions of Windows 95 and Windows NT 4. New versions of Commctl.dll were shipped
with all Internet Explorer releases. Shlwapi.dll first shipped with Internet Explorer 4.0, so
its first version number is 4.71. The shell was not updated with the Internet Explorer 3.0
release, so Shell32.dll does not have a version 4.70. While Shell32.dll versions 4.71 and
4.72 were shipped with the corresponding Internet Explorer releases, they were not
necessarily installed (see Note 2). For subsequent releases, the version numbers for the
three DLLs are not identical. In general, you should assume that all three DLLs may
have different version numbers, and test each one separately.

Note All systems with Internet Explorer 4.0 or 4.01 will have the associated version of
Comctl32.dll and Shiwapi.dll (4.71 or 4.72, respectively). However, for systems prior to
Windows 98, Internet Explorer 4.0 and 4.01 can be installed with or without the
integrated shell. If they are installed with the integrated shell, the associated version of
Shell32.dIl will be installed. If they are installed without the integrated shell, Shell32.dll is

46

Volume 5 Microsoft Windows Shell

not updated. In other words, the presence of version 4.71 or 4.72 of ComctI32.dll or
Shiwapi.dll on a system does not guarantee that Shell32.dIl has the same version
number. All Windows 98 systems have version 4.72 of Shell32.dll.

Note Version 5.80 of Comcti32.dll and version 5.0 of Shiwapi.dll are distributed with
Internet Explorer 5. They will be found on all systems on which Internet Explorer 5 is
installed, except Windows 2000. Internet Explorer 5 does not update the shell, so
version 5.0 of Shell32.dIl will not be found on Windows NT, Windows 95, or Windows 98
systems. Version 5.0 of Shell32.dll will be distributed with Windows 2000, along with
version 5.0 of Shiwapi.dll, and version 5.81 of Comcti32.dll.

Using DliGetVersion to Determine the Version Number

Starting with version 4.71, the Shell and Common Controls DLLs, among others, began
exporting DIIGetVersion. This function can be called by an application to determine
which DLL version is present on the system. It returns a structure that contains version
information.

Note DLLs do not necessarily export DIlGetVersion. Always test for it before
attempting to use it.

For systems earlier than Windows 2000, DIiGetVersion returns a DLLVERSIONINFO
structure that contains the major and minor version numbers, the build number, and a
platform ID. For Windows 2000 and later systems, DlIGetVersion may instead return a
DLLVERSIONINFO2 structure. This structure contains the QFE number that identifies
the service pack and provides a more robust way to compare version numbers than
DLLVERSIONINFO. Since the first member of DLLVERSIONINFOZ2 is a
DLLVERSIONINFO structure, the new structure is backward-compatible.

Using DliGetVersion

The following sample function loads a specified DLL and attempts to call its
DliGetVersion function. If successful, it uses a macro to pack the major and minor
version numbers from the DLLVERSIONINFO structure into a DWORD that is returned
to the calling application. If the DLL does not export DlIIGetVersion, the function returns
zero. With Window 2000 and later systems, you can modify the function to handle the
possibility that DlIGetVersion returns a DLLVERSIONINFO2 structure. If so, use the
information contained in the ullVersion member to compare versions, build numbers,
and service pack releases. The MAKEDLLVERULL macro is designed to simplify the
task of comparing these values to those contained in ullVersion.

#define PAL‘KVERSION(major ninor) MAKELona(nﬁnor ma;or; ''''' itk

DWORD Getm] Verswn (LPCT‘STR 1pSZDﬂ Name)'

Part2 Introduction 47

HINSTANCE hinstD171;
DWORD dwVersion = 0;

hinstd11 = LoadLibrary(1pszD1iNam

“ifChinstDIT)

The following code fragment illustrates how you can use GetDIIVersion to test if
Comctl32.dll is version 4.71 or later.

1£(GetD] VersTon (TEXT("Comct132.d11")) >= PACKVERSION(4,71))

48 Volume5 Microsoft Windows Shell

Project Versions

To ensure that your application is compatible with different targeted versions of
Comctl32.dll and Shell32.dll, a version macro was added to the header files. This macro
is used to define, exclude, or redefine certain definitions for different versions of the DLL.
The macro name is _WIN32_IE and you, the developer, are responsible for defining the
macro as a hexadecimal number. This version number defines the target version of the
application that is using the DLL. The following are the currently available version
numbers and the effect each has on your application.

Version Description

0x0200 The application will be compatible with Comctl32.dll and Shell32.dlI
version 4.00 and later. The application will not be able to implement
features that were added after version 4.00 of ComctI32.dlI.

0x0300 The application will be compatible with Comcti32.dIl and Shell32.dlII
version 4.70 and later. The application will not be able to implement
features that were added after version 4.70 of Comcti32.dll.

0x0400 The application will be compatible with Comctl32.dIl and Shell32.dlI
version 4.71 and later. The application will not be able to implement
features that were added after version 4.71 of ComctI32.dll.

0x0401 The application will be compatible with Comcti32.dll and Shell32.dII
version 4.72 and later. The application will not be able to implement
features that were added after version 4.72 of Comcti32.dll.

0x0500 The application will be compatible with Comctl32.dll version 5.80 and
later, and Shell32.dIl and Shiwapi.dll version 5.0 and later. The application
will not be able to implement features that were added after version 5.80
of Comctl32.dll or version 5.0 of Shell32.dIl and Shiwapi.dll.

0x0501 The application will be compatible with Comcti32.dll version 5.81 and later
and Shell32.dIl and Shlwapi.dil version 5.0 and later. The application will
not be able to implement features that were added after version 5.81 of
Comctl32.dll or version 5.0 of Shell32.dll and Shiwapi.dlIl.

If you do not define this macro in your project, it will automatically be defined as 0x0500.
To define a different value, you can add the following to the compiler directives in your
make file (substitute the desired version number for 0x0400):

/D _WIN32.1E=0x0400

Another method is to add a line similar to the following in your source code before
including the shell and common control header files (substitute the desired version
number for 0x0400). For example:

Hdefine _WIN32_IE 0x0400
f#incTude. <commctrl.h> .

49

CHAPTER 6

Shell Programmer’s Guide

The Microsoft Windows user interface (Ul) gives users access to a wide variety of
objects necessary for running applications and managing the operating system. The
most numerous and familiar of these objects are the folders and files that reside on
computer disk drives. There are also a number of virtual objects that allow the user to do
tasks, such as send files to remote printers or access the recycle bin.

The shell organizes these objects into a hierarchical structure called the namespace,
which provides users and applications with a consistent and efficient way to access and
manage objects. Users interact with the namespace through the shell’s graphical Ul or
through an application. Applications interact with the namespace through the shell’s
application programming interface (API). This chapter is an introduction to the shell API.

The shell API consists of a collection of functions, Component Object Model (COM)
interfaces, and COM objects that provide applications with a rich set of tools to access
and manage the namespace. It can used anywhere in an application with one important
exception. Like all COM-based services, the shell APl should not be used within a DLL’s
DIIMain entry point function. Doing so may cause unpredictable behavior.

To use the shell API effectively in an application, you first need to understand the
structure of the namespace and how namespace objects are identified.

Programming the Shell

The Shell API allows applications to perform a variety of tasks. Some of the more
common ones are discussed in the following sections:

Getting a Folder’s ID

Getting Information About the Contents of a Folder

Navigating the Namespace

Launching Applications

Managing the File System

Managing Printers

Transferring Shell Objects with Drag-Drop and the Clipboard

Integrating an Application with the Shell

By integrating your application with the shell, you can extend the shell’s functionality and
customize certain aspects of its behavior. In order of increasing complexity, you can
extend the shell by:

50

Volume 5 Microsoft Windows Shell

1. Putting information in the registry or in special files.
2. Implementing a shell extension handler.
3. Implementing a namespace extension.

The first approach, which is used by many applications, is discussed here:

e Creating a File Association

e Customizing Icons

e Extending Context Menus

e Customizing Folders with Desktop.ini

e Creating an AutoPlay-enabled CD-ROM Application

For a discussion of how to write extension handlers, see Creating Shell Extension
Handlers. For a discussion of how to write namespace extensions, see Namespace
Extensions.

Note To improve the readability of the sample code in Shell Basics, most of the normal
error-correction code has been removed. You should add error code, as appropriate, to
your own applications. To make registry samples more readable, key names are in a
bold font and values are in a normal font.

The Shell Namespace

The shell namespace organizes the file system and other objects managed by the shell
into a single tree-structured hierarchy. Conceptually, it is essentially a larger and more
inclusive version of the file system.

Introduction

One of the primary responsibilities of the shell is managing and providing access to the
wide variety of objects that make up the system. The most numerous and familiar of
these objects are the folders and files that reside on computer disk drives. However, the
shell manages a number of nonfile system, or virtual objects, as well. Some examples
include:

Network printers

Other networked computers
Control Panel applications
The Recycle Bin

Some virtual objects do not involve physical storage at all. The printer object, for
instance, contains a collection of links to networked printers. Other virtual objects, such
as the Recycle Bin, may contain data that is stored on a disk drive, but needs to be
handled differently than normal files. For example, a virtual object can be used to

Chapter 6 Shell Programmer’s Guide 51

represent data stored in a database. In terms of the namespace, the various items in the
database could appear in the Windows Explorer as separate objects, even though they
are all stored in a single disk file.

Virtual objects may even be located on remote computers. For instance, to facilitate
roaming, a user’s document files might be stored on a server. To give them access to
their files from multiple desktop PCs, the My Documents folder on the desktop PC they
are currently using will point to the server, not the desktop PC’s hard disk. Its path will
include either a mapped network drive, or a UNC path name.

Like the file system, the namespace includes two basic types of object: folders and files.
Folder objects are the nodes of the tree; they are containers for file objects and other
folders. File objects are the leaves of the tree; they are either normal disk files or virtual
objects, such as printer links. Folders that are not part of the file system are sometimes
referred to as virtual folders.

Like file system folders, the collection of virtual folders generally varies from system to
system. There are three classes of virtual folders:

e Standard virtual folders, such as the Recycle Bin, that are found on all systems.

e Optional virtual folders that have standard names and functionality, but may not be
present on all systems.

e Non-standard folders that are installed by the user.

Unlike file system folders, users cannot create new virtual folders themselves. They can
only install ones created by third-party developers. The number of virtual folders is thus
normally much fewer than the number of file system folders.

You can see a visual representation of how the namespace is structured in the Explorer
Bar of the Windows Explorer. For example, Figure 6-1 shows a relatively simple
namespace in Windows Explorer.

The ultimate root of the namespace hierarchy is the desktop. Immediately below the root
are several virtual folders such as My Computer and the Recycle Bin.

The file systems of the various disk drives can be seen to be subsets of the larger
namespace hierarchy. The roots of these file systems are subfolders of the My
Computer folder. My Computer also includes the roots of any mapped network drives.
Other nodes in the tree, such as My Documents, are virtual folders.

Identifying Namespace Objects

Before you can use a hamespace object, you must first have a way of identifying it. An
object in the file system could have a name such as MyFile.htm. Because there might be
other files with that name elsewhere in the system, uniquely identifying a file or folder
requires a fully-qualified path such as “C:\MyDocs\MyFile.htm”. This path is basically an
ordered list of all folders in a path from the file system root, C:\, ending with the file.

52

Volume 5 Microsoft Windows Shell

My Computer

= My Computer

=3 Yolumel [C:)
.y My Documents 18} Compact Disc (D)

1 =48] My Computer {5 Control Panel
@ 3% Floppy (&) ‘8E] Scheduled Tasks

-z Yolumel [C)
B Compact Disc (D]
& Control Panel
“-{H] Scheduled Tasks
-EH My Network Places
& Recycle Bin

1 8% Intemet Explorer

1 423 Common Setup Paths

Figure 6-1: A simple namespace in Windows Explorer.

In the context of the namespace, paths are still quite useful for identifying objects located
in the file system part of the namespace. However, they cannot be used for virtual
objects. Instead, the shell provides an alternative means of identification that can be
used with any namespace object.

Iltem IDs

Within a folder, each object has an item ID, which is the functional equivalent of a file or
folder name. The item ID is actually a SHITEMID structure:

The abIlD member is the object’s identifier. The length of ablD is not defined, and its
value is determined by the folder that contains the object. Because there is no standard
definition for how ablD values are assigned by folders, they are only meaningful to the
associated folder object. Applications should simply treat them as a token that identifies
an object in a particular folder. Because the length of abID varies, the cb member holds
the size of the SHITEMID structure, in bytes.

Because item IDs aren’t useful for display purposes, the folder that contains the object
normally assigns it a display name. This is the name that is used by Windows Explorer
when it displays the contents of a folder. For more information on how display names are
handled, see Getting Information From a Folder.

Chapter 6 Shell Programmer’s Guide 53

Item ID Lists

The item ID is rarely used by itself. Normally, it is part of an item ID list, which serves the
same purpose as a file system path. However, instead of the character string used for
paths, an item ID list is an ITEMIDLIST structure. This structure is an ordered sequence
of one or more item IDs, terminated by a two-byte NULL. Each item ID in the item ID list
corresponds to a namespace object. Their order defines a path in the namespace, much
like a file system path.

Figure 6-2 shows a schematic representation of the ITEMIDLIST structure that
corresponds to C:\MyDocs\MyFile.htm. The display name of each item ID is shown
above it. The varying widths of the ablD members are arbitrary; they illustrate the fact
that the size of this member can vary.

My Computer C:/ MyDocs MyFile.htm

! !

2-byte
ch : ablD cb : ablD ch : ahlD ch : ablD NULL

Figure 6-2: Schematic representation of the ITEMIDLIST structure.

PIDLs

For the shell APl, namespace objects are usually identified by a pointer to their
ITEMIDLIST structure, or PIDL. For convenience, the term PIDL will generally refer in
this documentation to the structure itself rather than the pointer to it.

The PIDL shown in the preceding illustration is referred to as a full, or absolute, PIDL. A
full PIDL starts from the desktop, and contains the item IDs of all intermediate folders in
the path. It ends with the object’s item ID followed by a terminating two-byte NULL. A full
PIDL is essentially similar to a fully qualified path and uniquely identifies the object in the
shell namespace.

Full PIDLs are actually used relatively infrequently. Many functions and methods expect
a relative PIDL. Relative PIDLs have fewer item IDs, so they cannot be traced all the
way back to the desktop. As with relative paths, the series of item IDs that make up the
structure define a path in the namespace between two objects. Although they do not
uniquely identify the object, they are generally smaller than a full PIDL and sufficient for
many purposes.

The most commonly used relative PIDLs are relative to the object’s parent folder; they
contain only the object’s item ID and a terminating NULL. Note that a PIDL can contain
only a single item ID and still be a fully-qualified PIDL. In particular, desktop objects are
children of the desktop, so their fully-qualified PIDLs contain only one item ID.

As discussed in Getting a Folder’s ID, the shell API provides a number of ways to get an
object’s PIDL. Once you have it, you commonly just use it to identify the object when you
call other shell API functions and methods. In this context, a PIDL’s internal contents are
opaque and irrelevant. For the purposes of this discussion, think of PIDLs as tokens that
represent particular namespace objects, and focus on how to use them for common
tasks.

54

Volume 5 Microsoft Windows Shell

Allocating PIDLs

Although PIDLs have some similarity to paths, using them requires a somewhat different
approach. The primary difference is in how to allocate and deallocate memory for them.

Like the string used for a path, memory must be allocated for a PIDL. If an application
creates a PIDL, it must allocate sufficient memory for the ITEMIDLIST structure. For
most of the cases discussed here, the shell creates the PIDL and handles memory
allocation. Regardless of what allocated the PIDL, the application is usually responsible
for deallocating the PIDL when it is no longer needed.

To allocate and deallocate PIDLs, you must use the IMalloc interface exposed by the
shell’s allocator. To get a pointer to this interface, call SHGetMalloc. Use the
IMalloc::Alloc method to allocate the PIDL, and the IMalloc::Free method to deallocate
it. For an example of how to use this interface to handle shell memory allocation, see
Getting a Folder’s ID.

Getting a Folder’s ID

Before you can make use of a namespace object, you need a way to identify it. This
means obtaining either its PIDL or, in the case of file system objects, its path. This
section discusses two of the simpler ways to obtain object IDs.

A more powerful approach that will work with any folder is to use the IShellFolder
interface. See Getting Information About the Contents of a Folder for more details.

The SHBrowseForFolder Dialog Box

To enable the user to navigate the namespace and select a folder, your application can
simply invoke SHBrowseForFolder. Calling this function launches a dialog box with a
user interface (Ul) that works somewhat like the Open or SaveAs common dialog boxes.

When the user selects a folder, SHBrowseForFolder returns its PIDL as well as its
display name. If it is a file system folder, the application can convert the PIDL to a path
by calling SHGetPathFromIDList. The application can also restrict the range of folders
that the user can select from by specifying a root folder. Only folders that are below that
root in the namespace will appear. Figure 6-3 shows the SHBrowseForFolder dialog
box, with the root folder set to Program Files.

A simple example of how to use SHBrowseForFolder is provided later.

Special Folders and CSIDLs

A number of commonly used folders are designated as special by the system. These
folders have a well-defined purpose, and most of them are present on all systems. Even

if they are not present initially, their names and locations are still defined, so they can be
added later. The collection of special folders includes all of the system’s standard virtual
folders, such as Printers, My Documents, and Network Neighborhood. It also includes a
number of standard file system folders, such as Program Files and System.

Chapter 6 Shell Programmer’s Guide 55

Browse for Folder Bm

Choose a folder or file

BT oo om Fies
{:_] Common Files
{27 HtmiHelp Workshop
{7 ICW-Internet Connection Wizard
D Internet Explorer
E-{Z7] Microsoft Chat
&1 Microsoft Office
{:} Microsoft Script Debugger

#-{2] Online Services
Lef7TY Puiblank Fynreec :}

Cancel]

Figure 6-3: The SHBrowseForFolder dialog box.

Even though the folders are a standard component of all systems, their names and
locations in the namespace can vary. For example, the System directory is
C:\Winnt\System32 on some systems and C:\Windows\System32 on others. In the past,
environment variables provided a way to determine the name and location of a special
folder on any particular system. The shell now provides a more robust and flexible way
to identify special folders, CSIDLs. You should generally use them instead of
environment variables.

CSIDLs provide a uniform way of identifying and locating special folders, regardless of
their name or location on a particular system. Unlike environment variables, CSIDLs can
be used with virtual folders as well as file system folders. Each special folder has a
unique CSIDL assigned to it. For example, the Program Files file system folder has a
CSIDL of CSIDL_PROGRAM_FILES, and the Network Neighborhood virtual folder has a
CSIDL of CSIDL_NETWORK.

A CSIDL is used in conjunction with one of several shell functions to retrieve a special
folder’'s PIDL, or a special file system folder’s path. If the folder doesn’t exist on a

system, your application can force it to be created by combining its CSIDL with
CSIDL_FLAG_CREATE. The CSIDL can be passed to the following functions:

e SHGetFolderLocation, which retrieves the PIDL of a special folder.
¢ SHGetFolderPath, which retrieves the path of a file system special folder.

56 Volume 5 Microsoft Windows Shell

Note these two functions were introduced with version 5.0 of the shell and supersede
the SHGetSpecialFolderLocation and SHGetSpecialFolderPath functions. To use
SHGetFolderPath with earlier versions of the shell, you can include the redistributable
DLL, Shfolder.dll.

An Example of How to Use CSIDLs and SHBrowseForFolder

The following sample function, PidIBrowse, illustrates how get a pointer to the shell
allocator’s IMalloc interface, use CSIDLs to retrieve a folder’s PIDL, and use
SHBrowseForFolder to have the user select a folder. It returns the PIDL and display
name of the selected folder.

Chapter 6 Shell Programmer’s Guide 57

The calling application passes in a window handle, which is needed by
SHBrowseForFolder. The nCSIDL parameter is an optional CSIDL that is used to
specify a root folder. Only folders below the root folder in the hierarchy will be displayed.
The illustration shown earlier was generated by calling this function with nCSIDL set to
CSIDL_PROGRAM_FILES. The calling application also passes in a string buffer,
pszDisplayName, to hold the display name of the selected folder when PidIBrowse
returns.

PidiBrowse first calls SHGetMalloc to get a pointer to the shell’s allocator. Although no
PIDLs are allocated by the function itself, the IMalloc interface will be needed later to
deallocate them. If the calling application specifies a root folder by passing in its CSIDL,
PidIBrowse calls SHGetFolderLocation to retrieve the folder’s PIDL. The function then
assigns appropriate values to a BROWSEINFO structure, and passes it to
SHBrowseForFolder.

After the user selects a folder, SHBrowseForFolder returns its PIDL. The folder’s
display name is returned in the pszDisplayName member of the BROWSEINFO
structure, and is passed back to the calling application through the pszDisplayName
parameter. Finally, PidIBrowse deallocates the root PIDL, releases the IMalloc interface,
and returns the selected folder’s PIDL to the calling application.

Getting Information About the Contents of a Folder

The Getting a Folder’s ID section discussed two approaches to getting a namespace
object’s PIDL. One obvious question is: Once you have a PIDL, what can you do with it?
A related question is: What if neither approach works, or is suitable for your application?
The answer to both questions requires taking a closer look at how the namespace is
implemented. The key is the IShellFolder interface.

Using the IShellFolder Interface -

Earlier in this documentation, namespace folders were referred to as objects. Although,
at that point, the term was used in a loose sense, it is actually true in a strict sense as
well. Every namespace folder is represented by a Component Object Model (COM)
object. Each folder object exposes a number of interfaces that can be used for a wide
variety of tasks. Some interfaces that are optional may not be exposed by all folders.
However, all folders must expose the fundamental interface, IShellFolder.

The first step in using a folder object is to get a pointer to its IShellFolder interface. In
addition to providing access to the object’s other interfaces through its Querylinterface
method, IShellFolder exposes a group of methods that handle a number of common
tasks, several of which are discussed in this section.

To get a pointer to a namespace object’s IShellFolder interface, you must first call
SHGetDesktopFolder. This function returns a pointer to the IShellFolder interface of
the namespace root, the desktop. Once you have the desktop’s IShellFolder interface,
there a variety of ways to proceed.

58 Volume 5 Microsoft Windows Shell

If you already have the PIDL of the folder you are interested in—for instance, by calling
SHGetFolderLocation—you can get its IShellFolder interface by calling the desktop’s
IShellFolder::BindToObject method. If you have the path of a file system object, you
must first obtain its PIDL by calling the desktop’s IShellFolder::ParseDisplayName
method and then call IShellFolder::BindToObject. If neither of these approaches is
applicable, you can use other IShellFolder methods to navigate the namespace. For
more information, see Navigating the Namespace.

Enumerating the Contents of a Folder

The first thing you usually want to do with a folder is to find out what it contains. You
must first call the folder’s IShellFolder::EnumObjects method. The folder will create a
standard OLE enumeration object and return its IEnumiIDList interface. This interface
exposes four standard methods—Clone, Next, Reset, and Skip—that can be used to
enumerate the contents of the folder.

The basic procedure for enumerating a folder’s contents is:
1. Call the folders IShellFolder::EnumObjects method to get a pointer to an
enumeration object’s IEnumlIDList interface.

2. Pass an unallocated PIDL to IEnumiDList::Next. Next takes care of allocating the
PIDL, but the application must deallocate it when it is no longer needed. When Next
returns, the PIDL will contain just the object’s item ID and the terminating NULLs. In
other words, it is not a full PIDL, but is instead relative to the folder.

3. Repeat step 2 until Next returns S_FALSE to indicate that all items have been
enumerated.

4. Call IEnumIDList::Release to release the enumeration object.

Note It is important to keep track of whether you are working with a full or relative PIDL.
Some functions and methods will accept either, but others will only take one or the other.

The remaining three IEnumIDList methods (Reset, Skip, and Clone) are useful if you
need to do repeated enumerations of the folder. They allow you to reset the
enumeration, skip one or more objects, and make a copy of the enumeration object to
preserve its state.

Determining Display Names and Other Properties

Once you have enumerated all the PIDLs that are contained by a folder, you can find out
what sort of objects they represent. The IShellFolder interface provides a number of
useful methods, two of which are discussed here. Other IShellFolder methods and other
shell folder interfaces are discussed later.

One of the most useful properties is the object’s display name. To get the display name
of an object, pass its PIDL to IShellFolder::GetDisplayNameOf. Although the object
can be located anywhere below the parent folder in the namespace, its PIDL must be
relative to the folder.

Chapter 6 Shell Programmer’s Guide 59

IShellFolder::GetDisplayNameOf returns the display name as part of a STRRET
structure. Because extracting the display name from a STRRET structure can be a little
tricky, the shell provides two functions that do the job for you, StrRetToStr and
StrRetToBuf. Both functions take a STRRET structure, and return the display name as
a normal string. They differ only in how the string is allocated.

In addition to its display name, an object can have a number of attributes, such as
whether it is a folder or whether it can be moved. You can retrieve an object’s attributes
by passing its PIDL to IShellFolder::GetAttributesOf. The complete list of attributes is
quite large, so you should see the reference for details. Note that the PIDL that you pass
to GetAttributesOf must be relative to the folder and can contain only one item ID. In
particular, it will accept the PIDLs returned by IEnumiIDList::Next. You can pass in an
array of PIDLs, and GetAttributesOf will return those attributes that all objects in the
array have in common.

If you have an object’s fully-qualified path or PIDL, SHGetFilelnfo provides a simple way
to get information about an object that is sufficient for many purposes. SHGetFileinfo
takes a fully-qualified path or PIDL, and returns a variety of information about the object
including:

® The object’s display hame

The object’s attributes

Handles to the object’s icons

A handle to the system image list

The path of the file containing the object’s icon

Getting a Pointer to a Subfolder’s IShellFolder Interface

You can determine whether your folder contains any subfolders by calling
IShellFolder::GetAttributesOf and checking to see if the SFGAO_FOLDER flag is set.
If an object is a folder, you can bind to it, which provides you with a pointer to its
IShellFolder interface.

To bind to a subfolder, call the parent folder’s IShellFolder::BindToObject method. This
method takes the subfolder's PIDL and returns a pointer to its IShellFolder interface.
Once you have this pointer, you can use the IShellFolder methods to enumerate the
subfolders contents, determine their properties, and so on.

Determining an Object’s Parent Folder

If you have an object’s PIDL, you may need a handle to one of the interfaces exposed by
its parent folder. For example, if you want to determine the display name associated with
a PIDL by using IShellFolder::GetDisplayNameOf, you must first get the IShellFolder
interface of the object’s parent. It is possible to do this with the techniques discussed in
the previous sections. However, a much simpler approach is to use the shell function,
SHBindToParent. This function takes the fully-qualified PIDL of an object and returns a
specified interface pointer on the parent folder. Optionally, it also returns the item’s PIDL
relative to the parent for use in methods such as IShellFolder::GetAttributesOf.

60

Volume 5 Microsoft Windows Shell

The following sample console application gets the PIDL of the System special folder and
returns its display name:

T ;LPMALLOC pMa‘HOC NLLLL o
~1SheT1Folder: *psfParent NULLE
U LRITEMIDLIST pidiSystem = NULL; .
" LPCITEMIDLIST pid1Re1at1ve RHLLm
- STRRET strDispNaiie; :
: ‘}TCHAR szDispI& N e{MAX PATH]

NULL &pTdTSystem). *;;”Q~‘

: SHBindToParent(pidiSystem} zrn’
,(void w) &psfPaf‘ent &p‘id]Re”rat:Wa)‘

Tf(SUCCEEDED(hP))

\ hr’~¢psfParant >Getnisp1ayuame0pr1d1aeaat?ve,‘
SHGDN NORMAL &str‘mspName), . S
» : StrRetToBuff&strmspName pid]System *
szmsp‘layﬂame, sizeof(szDisplayName)): . S,
: caut. << “SHGDN_NORMAL o W <<szm splayxame <" “\n

L psfParent-%RMease().
i pMalloc- >Free(p1d15¥5tem>
- pMaHoc >Re1ease()

Q?th"JQIZwY: i

The application first gets a pointer to the shell allocator’s Imalloc interface and uses
SHGetFolderLocation to get the System folder’s PIDL. It then calls SHBindToParent,
which returns a pointer to the parent folder’s IShellFolder interface, and the System
folder's PIDL relative to its parent. It then uses the parent folder’s
IShellFolder::GetDisplayNameOf method to get the display name of the System folder.

Chapter 6 Shell Programmer’s Guide 61

Because GetDisplayNameOf returns a STRRET structure, StrRetToBuf is used to
convert the display name into a normal string. After displaying the display name, the
interface pointers are released and the System PIDL freed. Note that you must not free
the relative PIDL returned by SHBindToParent.

Navigating the Namespace

You now have all the essential elements needed to navigate anywhere in the
namespace. The simplest way to start is to have your application call
SHGetDesktopFolder to get the desktop’s IShellFolder interface. Then, to navigate
downward through the namespace, your application can follow these steps:

1. Enumerate the folder’s contents.

2. Determine which objects are subfolders, and select one.

3. Bind to the subfolder to get its IShellFolder interface.

Repeat these steps as often as necessary to reach the target.

An Example of Namespace Navigation

The following piece of sample code is a simple console application that illustrates a
number of the procedures discussed in the preceding sections. The application performs
the following tasks:

1. Gets the Program Files folder’s IShellFolder interface (Using the IShellFolder
Interface).
2. Enumerates the contents of the folder (Enumerating the Contents of a Folder).

3. Determines all the display names and prints them (Determining Display Names and
Other Propetrties).

4. Looks for a subfolder (Determining Display Names and Other Properties).

5. Binds to the first subfolder it finds (Getting a Pointer to a Subfolder’s IShellFolder
Interface).

6. Prints the display names of the objects in the subfolder.

#include <shiobj.h>. ,f" i
#Mclude <3hIWap’i(h>

, NULL.K:,'

1 ,.pid]ltems NULL; e
. IshellFolder. *psfFIrstFo]der = NULL& R
- ‘1ShellFolder #psfDeskTop = NULL; . "

(bontinued)

62 Volume 5 Microsoft Windows Shell

(continued)

ISheT\Fo?der *psfProgFi]es = NULL
LPENUMIDLIST ppenum = NULL
ULONG ce]tFetched
HRESULT hr; =
© STRRET strDispName; - '
< TCHAR pszﬁisp1ayName[MAX PATHIs 0 s o
CULONG uAttrs *1,7 i e

EE

hr. SHGetMaTioc(&pMa1]oc)

hr = SHGetFoIderLocation(NULL CSIDL_ PROGRAM FILES Ety
NULL, NULL, &p1d1ProgF?1é$), o , P .

Cohr = SHGatDe§thpFo1der(&psfbéskrgP}:{1}ﬁﬁ~\1

hr- = psteskTop >81ndT00bject(pidlPregF1}es. ﬂULL
IID 1ShellFoTder, (LPVOID) &psfProgFi1es> ;
hr = psteskTop >Re1ease(),' Lo

Ches psfProgF11es >Enum0bjects(NULL SHCONTF FOLDERS ; S
SHCONTF,NQNFQLBERS &ppenumj,_" Hh

;‘ whiie({hr. = ppenum >Next(1 &pidIItems, &ceTtFetched)

I= S FALSE) &8 (ce]tFetched) = 1) | ; . D
Lt psfProgF11es >GetDwsp1ayNameOf(p1d1Items SHGBN INFOLDER &strDispName)

StrRetToBuf(&strDispName, pidlitems, pszD1sp3ayName MAX PATH),,‘ AR

© cout << pszDisplayName << ‘\n FRESS . o

,“if(!psfF1rstFo1der) ‘

{ : . : 5

o psfProgFiIes >GetAttributesO‘1i” -

(LPCITEMIDLIST #) &pldlltems, &uAttP),v :

if(uAttr & SFGAO FGLDER)

: {

: : hr = psfProgF11as >§1ndT00bject(91d31tems
NULL IID IShe]]Fo?der, (LPVOID *) &psfFarstFolder)

" cout <Mty

“ppenum->Retease(); -

Chapter 6 Shell Programmer’s Guide 63

hr = psfFirstFolder->EnumObjects(NULL,SHCONTF_FOLDERS |
SHCONTF_NONFOLDERS, &ppenum);

while((hr = ppenum->Next(1,&pid1Items, &celtFetched)
!= S_FALSE) &% (celtFetched) == 1)
{
psfFirstFolder- >GetD1splayName0f(p1d1Items
SHGDN_INFOLDER, &strDispName); ,
StrRetToBuf(&strD1spName p1d1Items, pszD1sp1ayName, MAX PATH)
i cout << pszDisp1ayName << “\n*

~ pgénum-)Release():‘ ,

" pMalloc->Frée(pidIProgFiles);
‘pMalloc->Free(pidlltems);
psfProgF11es >Release();

' pswarstFo1der >Re1ease(),,

return. 9;
)

Launching Applications

Once your application has located a file object, the next step is often to act on it in some
way. For instance, your application might want to launch another application that allows
the user to modify a data file. If the file of interest is an executable, your application
might want to simply launch it. This document discusses how to use ShellExecute or
ShellExecuteEx to perform these tasks.

Using ShellExecute and ShellExecuteEx

To use ShellExecute or ShellExecuteEx, your application must specify the file or folder
object that is to be acted on, and a verb that specifies the operation. For ShellExecute,
assign these values to the appropriate parameters. For ShellExecuteEX, fill in the
appropriate members of a SHELLEXECUTEINFO structure. There are also several
other members or parameters that can be used to fine-tune the behavior of the two
functions.

File and folder objects can be part of the file system or virtual objects, and they can be
identified by either paths or PIDLs. The available verbs are essentially the items that you
find on an object’s context menu. As for context menus, the exact list of verbs available
depends on the particular object. Commonly available verbs include:

Open Launches an application. If the file is not executable, it launches the
file’s associated application.

Edit Opens a file’s editor.

Print Prints a document file.

Display Displays an object’s properties.

64

Volume 5 Microsoft Windows Shell

“ySystemRoots) System3z\Notepad. exe™ "g1v

:#3n91ude <sh1wap1 hy

Each verb corresponds to the command that would be used to launch the application
from a console window. The open verb is a good example, as it is commonly supported.
For .exe files, open simply launches the application. However, it is more commonly used
to launch an application that operates on a patrticular file. For instance, by default, .txt
files are opened by NotePad. The open verb for .ixt file, thus, corresponds to something
like the following command:

When you use ShellExecute or ShellExecuteEx to open a .ixt file, NotePad.exe is
launched with the specified file as its argument. Some commands can have additional
arguments, such as flags, that can be added as needed to launch the application
properly. For further discussion of context menus and verbs, see Extending Context
Menus.

In general, trying to determine the list of available verbs for a particular file is somewhat
complicated. In many cases, you can simply set the JpVerb parameter to NULL, which
invokes the default command for the file class. This procedure is usually equivalent to
setting IpVerb to “open”, but some file classes may have a different default command.
For further information, see Extending Context Menus and the ShellExecuteEx reference
documentation.

Using ShellExecute to Launch the Find Dialog Box

When a user right-clicks a folder icon in windows Explorer, one of the menu items is
“Find.” If they select that item, the shell launches its Find utility. This utility displays a
dialog box that can be used to search files for a specified text string. An application can
programmatically launch the Find utility for a directory by calling ShellExecute, with
“find” as the [pVerb parameter, and the directory path as the I[pFile parameter. For
instance, the following line of code launches the Find utility for the c:\MyPrograms
directory.

Shel1Execute(hwnd,"find","c:\\MyPrograms® ,NULL, ‘NULL, @) 57

An Example of How to Use ShellExecuteEx
The following sample console appllcatlon illustrates the use of ShellExecuteEx.

#include <sh10ba >

main()
o
. LPMALLOC pMa]]oc,
© LPITEMIDLIST p
. LPITEMIDLIST p1d1ltems - NULL;
~ LPITEMIDLIST pidlFirstBmp = NULL:
- IshellFolder #psfWinFiles = NULL;
" IShel1Folder *psteskTop NULL¥
LPENUMIDLIST ppenum = NULL;’

311

II‘

Chapter 6 Shell Programmer’s Guide 65

STRRET strDispName;

TCHAR pszParseName[MAX_PATH];
ULONG celtFetcheds
SHELLEXECUTEINFO ShExecInfo.
HRESULT* hr; :

'f.«h_ SHGetMa11oc(&pMa11oc).

i/ fppénﬁm->Rele§$ef

K ‘QShExecInfo. 0542
*‘:ShExecInan,';

' ShExecInfo.hwnd- o
' j:ShExetInfo}1pVerb'“'NULL‘ o

;JpD1P§ctory, :NULL
NuLL

”;Shellaxecut=Ex(&3hﬁxec1nfo)» .

””'fShExecInfai1pF11e pszParseName
';Shﬁxeclnfoa1pParameters NULL; :é

;nshow:=‘$w;nAXIMIZE!'f*

; tHGON_FQRP#RSING; &5~
arseﬂame MAX PAIH}, :

* (continued)

66 Volume 5 Microsoft Windows Shell

(continued)

The application first gets the PIDL of the Windows directory, and enumerates its
contents until it finds the first .omp file. Unlike the earlier example,
IShellFolder::GetDisplayNameOf is used to get the file’s parsing name instead of its
display name. Because this is a file system folder, the parsing name is a fully qualified
path, which is what is needed for ShellExecuteEx.

Once the first .bmp file has been located, appropriate values are assigned to the
members of a SHELLEXECUTEINFO structure. The IpFile member is set to the parsing
name of the file, and the IpVerb member to NULL, to begin the default operation. In this
case, the default operation is “open.” The structure is then passed to ShellExecuteEx,
which launches MSPaint.exe to open the bitmap file. After the function returns, the
PIDLs are freed and the Windows folder’s IShellFolder interface is released.

Managing the File System

The shell provides a number of ways to manage file systems. The shell provides a
function, SHFileOperation, that allows an application to programmatically move, copy,
rename, and delete files. The shell also supports some additional file management
capabilities:

e HTML documents can be connected to related files, such as graphics files or style
sheets. When the document is moved or copied, the connected files are automatically
moved or copied as well.

® For systems that are available to more than one user, files can be managed on a per-
user basis. Users have easy access to their data files, but not to files belonging to
other users.

¢ |f document files are added or modified, they can be added to the shell’s list of recent
documents. When the user clicks the Documents command on the Start menu, a list
of links to the documents appears.

This document discusses how these new file management technologies work. It then
outlines how to use the shell to move, copy, rename, and delete files, and how to
manage objects in the recycle bin.

Per-User File Management

The Microsoft Windows 2000 shell allows files to be associated with a particular user, so
they remain hidden from other users. In terms of the file system, they are generally

Chapter 6 Shell Programmer’s Guide 67

stored under the users profile folder, typically C:\Documents and Settings\Username\ on
Windows 2000 systems. This feature allows many individuals to use the same machine,
while maintaining the privacy of their files from other users. Different users can have
different programs available. It also provides a straightforward way for administrators
and applications to store such things as initialization (.ini) or link (.Ink) files. Applications
can thus preserve a different state for each user, and easily recover that particular state
when needed. There is also a profile folder for storing information that is common to all
users.

Because it is inconvenient to determine which user is logged in and where their files are
located, the standard per-user folders are special folders, and are identified by a CSIDL.
For instance, the CSIDL for the per-user Program Files folder is CSIDL_PROGRAMS. If
your application calls SHGetFolderLocation or SHGetFolderPath with one of the per-
user CSIDLs, the function will return the PIDL or path appropriate to the currently logged
in user. If your application needs to get the path or PIDL of the profile folder, its CSIDL is
CSIDL_PROFILE.

The My Documents and My Pictures Folders

One of the standard icons found on the desktop is My Documents. When you use the
Windows Explorer to look at the namespace, the My Documents folder is immediately
below the desktop. The My Pictures folder is a subfolder of My Documents. The purpose
of these folders is to provide a default location for the current user's document and
picture files.

There are actually separate My Documents and My Pictures file system folders for each
user. For example, the location of a user's My Documents folder in the file system will be
something like this: C:\Documents and Settings\Username\My Documents. However,
there is no need for the user to access this file system folder. They simply use My
Documents, which is automatically mapped to the corresponding personal file system
folder. Note that if multiple people use the same computer, this part of the file system
can be locked by an administrator to prevent users from accessing files belonging to
others. There is no way for a user to gain access to anyone else’s files through My
Documents.

There is usually no need for an application to know which user is logged in or where in
the file system their My Documents folder is located. Instead, your application can get
the PIDL of the desktop icon by calling the desktop’s IShellFolder::ParseDisplayName
method. The parsing name used to identify My Documents folder is not the file path, but
rather “::{CLSID_MYDOCUMENTS}” where CLSID_XXX is the text form of the
corresponding GUID. For example, to get the PIDL of My Documents, your application
should use:

hr = psfDeskTop->ParseDisplayName(NULL, NULL, =~ oo
L"::{450d8fba-ad25:11d0-98a8-0800361b1103}", . "~
&chEaten, &pidiDocFiles, NULL): : u:

68

Volume 5 Microsoft Windows Shell

Once your application has the My Documents PIDL, it can handle the PIDL as it would
any other folder. The shell will automatically map changes in My Documents to the
appropriate file system folder.

If your application needs access to the actual file system folders, the CSIDLs is
CSIDL_PERSONAL for My Documents. Your application can pass the CSIDL to
SHGetFolderLocation to get the PIDL of the current user's My Documents folder. Call
SHGetFolderPath to get the path.

Connected Files

HTML documents often have a number of associated graphics files, a stylesheet file,
several JScript files, and so on. When you move or copy the primary HTML document,
you also usually want to move or copy its associated files to avoid breaking links.
Unfortunately, there has been no easy way until now to determine which files are related
to any given HTML document other than by analyzing their contents. To alleviate this
problem, Windows 2000 provides a simple way to connect a primary HTML document to
its group of associated files. If file connection is enabled, when the document is moved
or copied, all its connected files go with it.

To create a group of connected files, the primary document must have an .htm or .html
file name extension. Create a subfolder of the primary document’s parent folder. The
subfolder's name must be the name of the primary document, minus the extension,
followed by “files.” For instance, if the primary document is named MyDoc.htm, the
subfolder must be named “MyDoc files”. Any files that are placed in this subfolder will be
connected to the primary document. If the primary document is moved or copied, the
subfolder and its files will be moved or copied as well.

Note For some locales, you may need to replace “files” with its localized equivalent.

Whether or not file connection is enabled is controlled by a REG_DWORD value,
NoFileFolderConnection, of the
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer
registry key. By default, this value is not defined, and file connection is enabled. To
disable file connection, add this value to the key, if necessary, and set it to one. To
enable file connection again, set NoFileFolderConnection to zero.

Moving, Copying, Renaming, and Deleting Files

The namespace is not static, and applications commonly need to manage the file system
by performing one of the following operations:

e Copying an object to another folder.

¢ Moving an object to another folder.

¢ Deleting an object.

¢ Renaming an object.

Chapter 6 Shell Programmer’s Guide 69

The move, copy, rename, and delete operations are all be performed with
SHFileOperation. This function takes one or more source files, and produces
corresponding destination files. In the case of the delete operation, the system attempts
to put the deleted files in the Recycle Bin.

To use the function, you must fill in the members of a SHFILEOPSTRUCT structure, and
pass it to SHFileOperation. The key members of the structure are pFrom and pTo.

The pFrom member contains one or more source file names. These names can be
either fully qualified paths, or standard DOS wild cards such as “*.*”. Although this
member is declared as a null-terminated string, it is used as a buffer to hold multiple file
names. Each file name must be terminated by a single NULL character. An additional
NULL character must be appended to the end of the final name to indicate the end of
pFrom.

The pTo member contains the names of one or more fully qualified destination names.
They are packed into pTo in the same way as they are for pFrom. If pTo contains
multiple names, you must also set the FOF_MULTIDESTFILES flag in the fFlags
member. The usage of pTo depends on the operation as described here:

¢ For copy and move operations, if all the files are going to a single directory, pTo
contains the fully qualified directory name. If the files are going to different
destinations, pTo can also contain one fully qualified directory or file name for each
source file. If a directory doesn’t exist, the system will create it.

* For rename operations, pTo contains one fully qualified path for each source file in
pFrom.

® For delete operations, pTo is not used.

Notifying the Shell

You should notify the shell of the change after using SHFileOperation to move, copy,
rename, or delete files, or after any taking any other action that affects the namespace.
Actions that should be accompanied by natification include:

¢ Adding or deleting files or folders.

¢ Moving, copying, or renaming files or folders.

e Changing a file association.

¢ Changing file attributes.

e Adding or removing drives or storage media.

e Creating or disabling a shared folder.

e Changing the system image list.

An application notifies the shell by calling SHChangeNotify with the details of what has
changed. The shell can then update its image of the namespace to accurately reflect its
new state.

70

Volume 5 Microsoft Windows Shell

An Example of Managing Files with SHFileOperation

The following sample console application illustrates the use of SHFileOperation to copy
files from one directory to another. The source and destination directories, C:\My_Docs
and C:\My_Docs2, are hard-coded into the appllcatlon for S|mphcny

#1nc]ude <sh10bj h>.:
#1nc1ude <sh1wap1 h>

main() ; '; _,V_,..\ R e AT
f_vIShe11F01der *psteskTop NULL
- IShel1Folder #psfDocFiles = NULL;

“IMalloc *pMalloc = NULL; ' S
-~ LPITEMIDLIST pidIDocFiles = NyLL; =~ . .~ =
- LPITEMIDLIST _pidlItems = NULL; v
" IEnumIDList #ppenum = NULL; .
”fjsaFLLEoPSTRUCT sfo; e
STRRET strDispName; " 2
u:‘ZTCHAR szParse&ame{MAx PATH]
‘i:«TCHAR szSourceF11es[256].

AR gy e i
~.int iBufPos = 0 S e e
- _ULONG chEaten:: g‘\;\i“;-Wﬁi CAESE s

- TULONG ce1tFetched 8 RN
7;,HRESULT hr,_'

pzSourceFi]es[@] "nery e
SHGetMal}oc(&pMaT]oc). S s

o -hr Bl
f'_hr = SHGetDesktopFoTder(&psteskTop), ;
Cohr = PSfDeSkTop >ParseD1sp1ayName(NULL NULL

L"c \\My_Docs , kchEaten, &pidiDocFiles, NULL); = o ool f;“;%_
“hro= psfDeskTop->BindToObject(pidiDocFiles, NULL, .~ 0 o o
IIB IShe11Folder, (LPVOID #) &pstocF1les),
. hr = psteskTop >Release(); ‘

. pstocF11es >Enum0bjects{NULL SHCONTF FOLHERS y QERIOR S N
~SHCONTF NONFOLDERS &ppenum), - , Bl :
‘whiTe (hr = ppenum- >Next(1 &pidlltems &ceifFép¢heq3‘ L
S OK) && (ce1tFetched) mE 1) ’ ; SL ey

: pstoch]es >GetD1sp1ayName0f(p1dlltems SHGDN FORPARSING &strDispﬂame),
: StrRetToBuf(&strDispName pid]Items, szPaPseName MAX PATH)
‘for(i 0 1<—1str1en(szParseName))

{ : -

Chapter 6 Shell Programmer’s Guide !

szSourceFiles[1BufPos++] = szParseName[i]:
}
o
ppenim->Release();

szSourceFiTes[iBu%gbg]i;;;\0‘3‘ ;..,;,,

x sfo. hwndﬁ NULL;

;A\pMailoc >Free(p1d1DocFiies5- ';' s
o pMalioc: >Fpee(p1dlitems),
g psfﬁocF11es >Re1ease()

‘return 0; e A T R e ‘

The application first gets a pointer to the desktop’s IShellFolder interface. It then gets
the source directory’s PIDL by passing its fully qualified path to
IShellFolder::ParseDisplayName. Note that ParseDisplayName requires the
directory’s path to be a Unicode string. The application then binds to the source directory
and uses its IShellFolder interface to get an enumerator object’'s IEnumiDList interface.

As each file in the source directory is enumerated, IShellFolder::GetDisplayNameOf is
used to get its name. The SHGDN_FORPARSING flag is set, which causes
GetDisplayNameOf to return the file’s fully qualified path. The file paths, including the
terminating NULL characters, are concatenated into a single array, szSourceFiles. A
second NULL character is appended to the final path to terminate the array properly.

Once the enumeration is complete, the application assigns values to a
SHFILEOPSTRUCT structure. Note that the array assigned to pTo to specify the
destination must also be terminated by a double NULL. In this case, it is simply included
in the string that is assigned to pTo. Because this is a console application, the
FOF_SILENT, FOF_NOCONFIRMATION, and FOF_NOCONFIRMMKDIR flags are set
to suppress any dialog boxes that might appear. After SHFileOperation returns,
SHChangeNotify is called to notify the shell of the change. Then the application
performs the usual cleanup and returns.

72

Volume 5 Microsoft Windows Shell

Adding Files to the Shell’s List of Recent Documents

The shell maintains a list of recently added or modified documents for each user. The
user can display a list of links to these files by clicking Documents on the Start menu. As
with My Documents, each user has a file system directory to hold the actual links. To get
the PIDL of the current user’s Recent directory, your application can call
SHGetFolderLocation with CSIDL_RECENT, or call SHGetFolderPath to get its path.

Your application can enumerate the contents of the Recent folder using the techniques
discussed earlier in this document. However, an application should not modify the
contents of the folder as if it were a normal file system folder. If it does so, the shell’s list
of recent documents will not be updated properly, and the changes will not be reflected
in the Start menu. Instead, to add a document link to the a user’s Recent folder, your
application can call SHAddToRecentDocs. The shell will add a link to the appropriate
file system folder, as well as updating its list of recent documents and the Start menu.
You can also use this function to clear the folder.

Managing Printers

The shell Application Programming Interface (API) provides functions that you can use to
manage networked printers. If a file has the print verb associated with it, you can use
the ShellExecuteEx command to print it.

Printer Management

You can manage printers on a system with the SHIinvokePrinterCommand function.
This function allows you to:

e |nstall printers.

e Open printers.

Get printer properties.

Create printer links.

Print a test page.

Printing Files with ShellExecuteEx

If a file type has a print command associated with it, you can print the file by calling
ShellExecuteEx with print as the verb. This command is often the same as that used
for the open verb, with the addition of a flag to tell the application to print the file. For
example, the default print command for .txt files is:
#5YstemRoots\systems2\NOTEPADLEXE /p %1771 L

W

When you use ShellExecuteEx to print a .txt file, NotePad opens the file, prints it, and
then closes, returning control to the application. The following sample function takes a
fully qualified path, and uses ShellExecuteEx to print it, using the print command
associated with its file name extension.

Chapter 6 Shell Programmer’s Guide 73

fHinclude <shlobj.h>

HINSTANCE fPMntFﬂe(LPCT«STR -pszFileName) ...
{ %

SHELLEXECUTEINFO ShExecInfo -

Transferring Shell Objects with Drag-Drop
and the Clipboard

Many applications allow users to transfer data to another application by dragging and
dropping the data with the mouse, or by using the Clipboard. Among the many types of
data that can be transferred are shell objects such as files or folders. Shell data transfer
can take place between two applications, but users can also transfer shell data to or
from the desktop or Microsoft Windows Explorer.

Although files are the most commonly transferred shell object, shell data transfer can
involve any of the variety of objects found in the shell namespace. For instance, your
application might need to transfer a file to a virtual folder such as the Recycle Bin, or
accept an object from a third-party namespace extension. If you are implementing a
namespace extension, it must be able to behave properly as a drop source and target.

This document discusses how applications can implement drag-drop and Clipboard data
transfers with shell objects.

How Drag-Drop Works with Shell Objects

Applications often need to provide users with a way to transfer shell data. Some
examples are:

74

Volume 5 Microsoft Windows Shell

¢ Dragging a file from Windows Explorer or the desktop and dropping it on an
application.

* Copying a file to the Clipboard in Windows Explorer and pasting it into an application.
¢ Dragging a file from an application to the Recycle Bin.

For a detailed discussion of how to handle these and other scenarios, see Handling
Shell Data Transfer Scenarios. This document focuses on the general principles behind
shell data transfer.

Windows provides two standard ways for applications to transfer shell data:
e A user cuts or copies shell data, such as one or more files, to the Clipboard. The other
application retrieves the data from the Clipboard.

e A user drags an icon that represents the data from the source application and drops
the icon on a window owned by the target.

In both cases, the transferred data is contained in a data object. Data objects are COM
objects that expose the IDataObject interface. Schematically, there are three essential
steps that all shell data transfers must follow:

1. The source creates a data object that represents the data that is to be transferred.

2. The target receives a pointer to the data object’s IDataObject interface.
3. The target calls the IDataObject interface to extract the data from it.

The difference between Clipboard and drag-drop data transfers lies primarily in how the
IDataObject pointer gets from the source to the target.

Clipboard Data Transfers

The Clipboard is the simplest way to transfer shell data. The basic procedure is similar to
standard Clipboard data transfers. However, because you are transferring a pointer to a
data object, not the data itself, you must use the OLE clipboard API instead of the
standard clipboard API. The following procedure outlines how to use the OLE clipboard
API to transfer shell data with the Clipboard:

1. The data source creates a data object to contain the data.

2. The data source calls OleSetClipboard, which places a pointer to the data object’s
IDataObject interface on the Clipboard.

3. The target calls OleGetClipboard to retrieve the pointer to the data object's
IDataObiject interface.

4. The target extracts the data by calling the IDataObject::GetData method.

5. With some shell data transfers, the target might also need to call the data object’s
IDataObject::SetData method to provide feedback to the data object on the outcome
of the data transfer. See Handling Optimized Move Operations for an example of this
type of operation.

Chapter 6 Shell Programmer’s Guide 75

Drag-Drop Data Transfers

While somewhat more complex to implement, drag-drop data transfer has some
significant advantages over the Clipboard:

Drag-drop transfers can be done with a simple mouse movement, making operation
more flexible and intuitive to use than the Clipboard.

Drag-drop provides the user with a visual representation of the operation. The user
can follow the icon as it moves from source to target.

Drag-drop notifies the target when the data is available.

Drag-drop operations also use data objects to transfer data. However, the drop source
must provide functionality beyond that required for Clipboard transfers:

‘The drop source must also create an object that exposes an IDropSource interface.

The system uses IDropSource to communicate with the source while the operation is
in progress.

The drag-drop data object is responsible for tracking cursor movement and displaying
an icon to represent the data object.

Drop targets must also provide more functionality than is needed to handle Clipboard
transfers:

The drop target must expose an IDropTarget interface. When the cursor is over a
target window, the system uses IDropTarget to provide the target with information
such as the cursor position, and to notify it when the data is dropped.

The drop target must register itself with the system by calling RegisterDragDrop.
This function provides the system with the handle to a target window and a pointer to
the target application’s IDropTarget interface.

Note For drag-drop operations, your application must initialize COM with Olelnitialize,
not Colnitialize.

The following procedure outlines the essential steps that are typically used to transfer
shell data with drag-drop:

1.

2.

The target calls RegisterDragDrop to give the system a pointer to its IDropTarget
interface and register a window as a drop target.

When the user starts a drag-drop operation, the source creates a data object and
initiates a drag loop by calling DoDragDrop.

. When the cursor is over the target window, the system notifies the target by calling

one of the target’s IDropTarget methods. The system calls IDropTarget::DragEnter
when the cursor enters the target window, and IDropTarget::DragOver as the cursor
passes over the target window. Both methods provide the drop target with the current
cursor position and the state of keyboard modifier keys such as CTRL or ESCAPE.

76

Volume 5 Microsoft Windows Shell

When the cursor leaves the target window, the system notifies the target by calling
IDropTarget::DraglLeave. When any of these methods return, the system calls the
IDropSource interface to pass the return value to the source.

4. When the user releases the mouse button to drop the data, the system calls the
target’s IDropTarget::Drop method. Among the method’s parameters is a pointer to
the data object’s IDataObject interface.

5. The target calls the data object’s IDataObject::GetData method to extract the data.

6. With some shell data transfers, the target might also need to call the data object’s
IDataObject::SetData method to provide feedback to the source on the outcome of
the data transfer.

7. When the target is finished with the data object, it returns from IDropTarget::Drop.
The system returns the source’s DoDragDrop call to notify the source that the data
transfer is complete.

8. Depending on the particular data transfer scenario, the source might need to take
additional action based on the value returned by DoDragDrop and the values that are
passed to the data object by the target. For instance, when a file is moved, the source
must check these values to determine whether it must delete the original file.

9. The source releases the data object.

While the procedures outlined above provide a good general model for shell data
transfer, there are many different types of data that can be contained in a shell data
object. There are also a number of different data transfer scenarios that your application
might need to handle. Each data type and scenario requires a somewhat different
approach to three key steps in the procedure:

e How a source constructs a data object to contain the shell data.

¢ How a target extracts shell data from the data object.
e How the source completes the data transfer operation.

The Shell Data Object provides a general discussion of how a source constructs a shell
data object, and how that data object can be handled by the target. Handling Shell Data
Transfer Scenarios discusses in detail how to handle a number of common shell data
transfer scenarios.

The Shell Data Object

The data object is central to all shell data transfers. It is primarily a container to hold the
transferred data. However, the target can also communicate with the data object to
facilitate some specialized types of shell data transfer such as optimized moves. This
documentation provides a general discussion of how shell data objects work, how they
are constructed by a source, and how they are handled by a target. For a detailed
discussion of how to use data objects to transfer different types of shell data, see
Handling Shell Data Transfer Scenarios.

Chapter 6 Shell Programmer’s Guide 77

How Data Objects Work

Data objects are COM objects, created by the data source to transfer data to a target.
They typically carry more than one item of data. There are two primary reasons for this
practice:

e While almost any type of data can be transferred with a data object, the source
typically does not know what kind of data the target can accept. For instance, the data
might be a portion of a formatted text document. While the target might be able to
handle complex formatting information, it might also only be able to accept ANSI text.
For this reason, data objects often include the same data in several different formats.
The target can then extract the data in a format that it can handle.

e Data objects can also contain auxiliary data items that are not versions of source
data. This type of data item typically provides additional information about the data
transfer operation. For instance, the shell uses auxiliary data items to indicate whether
a file is to be copied or moved.

Clipboard Formats

Each item of data in a data object has an associated format, usually called a clipboard
format. There are a number of standard clipboard formats, declared in Winuser.h, that
correspond to commonly used types of data. Clipboard formats are integers, but they are
normally referred to by their equivalent name, which has the form CF_XXX. For instance,
the clipboard format for ANSI text is CF_TEXT.

Applications can extend the range of available clipboard formats by defining private
formats. To define a private format, an application calls RegisterClipBoardFormat with
a string that identifies the format. The unsigned integer that the function returns is a valid
format value that can be used just like a standard clipboard format. However, both
source and target must register the format in order to use it. With one exception—
CF_HDROP—the clipboard formats used to transfer shell data are defined as private
formats. They must be registered by the source and target before they can be used. For
a description of the available shell clipboard formats, see Shell Clipboard Formats.

Although there are some exceptions, data objects normally contain only one item of data
for each clipboard format they support. This one-to-one correlation between format and
data allows the format value to be used as an identifier for the associated data item. In
fact, when discussing the contents of a data object, a particular item of data is typically
called a “format” and is referred to by its format name. For example, phrases such as
“Extract the CF_TEXT format...” are typically used when discussing a data object’s ANSI
text data item.

When the target receives the pointer to the data object, it enumerates the available
formats to determine what types of data are available. It then requests one or more of
the available formats and extracts the data. The specific way that the target extracts
shell data from a data object varies with the format; this is discussed in detail in How a
Target Handles a Shell Data Object.

78

Volume 5 Microsoft Windows Shell

With simple clipboard data transfers, the data is placed in a global memory object. The
address of that object is placed on the clipboard, along with its format. The clipboard
format basically tells the target what kind of data it will find at the associated address.
While simple clipboard transfers are easy to implement:

¢ Data objects provide a much more flexible way to transfer data.

e Data objects are better suited for transferring large amounts of data.
¢ Data objects must be used to transfer data with a drag-drop operation.

For these reasons, all shell data transfers use data objects. With data objects, clipboard
formats are not used directly. Instead, data items are identified with a generalization of
the clipboard format, a FORMATETC structure.

The FORMATETC Structure

The FORMATETC structure is essentially an extended version of a clipboard format. As
used for shell data transfers, the FORMATETC structure has the following
characteristics:

e A data item is still identified by its clipboard format, in the cfFormat member.

¢ Data transfer is not limited to global memory objects. The tymed member is used to
indicate the data transfer mechanism contained in the associated STGMEDIUM
structure. It is set to one of the TYMED_XXX values.

e The shell uses the lindex member with its CFSTR_FILECONTENTS format to allow a
data object to contain more than one data item per format. See Using the

CFSTR_FILECONTENTS Format to Extract Data from a File for a discussion of how to
use this format.

¢ The dwAspect member is typically set to DVASPECT_CONTENT. However, there
are three values defined in Shlobj.h that can be used for shell data transfer.

DVASPECT_COPY Used with the CF_HDROP format to request a file
path with the names shortened to the 8.3 format.
DVASPECT_LINK Used to indicate that the format represents a

shortcut to the data.

DVASPECT_SHORTNAME Used to indicate that the format represents a copy
of the data.

¢ The ptd member is not used for shell data transfers and is normally set to NULL.

The STGMEDIUM structure

The STGMEDIUM structure provides access to the data being transferred. Three data
transfer mechanisms are supported for shell data:

¢ A global memory object.

¢ An IStream interface.

¢ An IStorage interface.

Chapter 6 Shell Programmer’s Guide 79

The tymed member of the STGMEDIUM structure is a TYMED_XXX value that identifies
the data transfer mechanism. The second member is a pointer that is used by the target
to extract the data. The pointer can be one of a variety of types, depending on the
tymed value. The three tymed values that are used for shell data transfers are
summarized in the following table, along with their corresponding STGMEDIUM member

name.

tymed value

Member
name

Description

TYMED_HGLOBAL

TYMED_ISTREAM

TYMED_ISTORAGE

hGlobal

pstm

pstg

A pointer to a global memory object. This pointer
type is typically used for transferring small
amounts of data. For instance, the shell uses
global memory objects to transfer short text strings
such as file names or URLs.

A pointer to an IStream interface. This pointer type
is preferred for most shell data transfers because it
requires relatively little memory compared to
TYMED_HGLOBAL. Also, the TYMED_ISTREAM
data transfer mechanism does not require the
source to store its data in any particular way.

A pointer to an IStorage interface. The target calls
the interface methods to extract the data. Like
TYMED_ISTREAM, this pointer type requires
relatively little memory. However, because
TYMED_ISTORAGE is less flexible than
TYMED_ISTREAM, it is not as commonly used.

How a Source Creates a Data Object

When a user initiates a shell data transfer, the source is responsible for creating a data
object and loading it with data. The following procedure summarizes the process:

1. Call RegisterClipBoardFormat to obtain a valid clipboard format value for each shell
format that will be included in the data object. Remember that CF_HDROP is already
a valid clipboard format and does not need to be registered.

2. For each format to be transferred, either put the associated data into a global memory
object or create an object that provides access to that data through an IStream or
IStorage interface. The IStream and IStorage interfaces are created using standard
COM techniques. For a discussion of how to handle global memory objects, see How
to Add a Global Memory Object to a Data Object.

3. Create FORMATETC and STGMEDIUM structures for each format.
4. Instantiate a data object.

80

Volume 5 Microsoft Windows Shell

5. Load the data into the data object by calling the IDataObject::SetData method for
each supported format and passing in the format's FORMATETC and STGMEDIUM
structures.

6. With clipboard data transfers, call OleSetClipboard to place a pointer to the data
object’s IDataObject interface on the clipboard. For drag-drop transfers, initiate a
drag loop by calling DoDragDrop. The IDataObject pointer will be passed to the drop
target when the data is dropped, ending the drag loop.

The data object is now ready to be transferred to the target. For clipboard data transfers,
the object is simply held until the target requests it by calling OleGetClipboard. For
drag-drop data transfers, the data object is responsible for creating an icon to represent
the data and moving it as the user moves the cursor. While the object is in the drag loop,
the source receives status information through its IDropSource interface. For further
discussion, see Implementing IDropSource.

The source receives no notification if the data object is retrieved from the clipboard by a
target. When an object is dropped on a target by a drag-drop operation, the
DoDragDrop function that was called to initiate the drag loop will return.

How to add a global memory object to a data object

Many of the shell data formats are in the form of a global memory object. Use the
following procedure to create a format containing a global memory object and load it into
the data object:

1. Create a FORMATETC structure. Set the cfFormat member to the appropriate
clipboard format value and the tymed member to TYMED_HGLOBAL.

2. Create an STGMEDIUM structure. Set the tymed member to TYMED_HGLOBAL.

3. Create a global memory object by calling GlobalAlloc to allocate a suitably sized
block of memory.

4. Assign the block of data to be transferred to the address returned by GlobalAlloc.

5. Assign the global memory object’s address to the hGlobal member of the
STGMEDIUM structure.

6. Load the format into the data object by calling IDataObject::SetData and passing in
the FORMATETC and STGMEDIUM structures created in the previous steps.

The following sample function creates a global memory object containing a DWORD
value and loads it into a data object. The pdfobj parameter is a pointer to the data
object’s IDataObject interface, cfis the clipboard format value, and dw is the data value.

STDAPT DataObj_SetDHORD(IDataObject *pdtobj, UINT cf, DWORD dw).

. 'FORMATETC ‘fmte ‘= {(CLIPFORMAT) cf, ‘NULL, DVASPEGT_CONTENT, -1,
7. TYMED_WGLOBALY: . o SR e
. STGMEDIUM ‘medium;

Chapter 6 Shell Programmer’s Guide 81

HRESULT hres = E_OUTOFMEMORY;

Implementing IDataObject
IDataObject is a data object’s primary interface. It must be implemented by all data
objects. It is used by both source and target for a variety of purposes, including:

¢ |oading data into the data object.

e Extracting data from the data object.

¢ Determining what types of data are in the data object.

¢ Providing feedback to the data object on outcome of the data transfer.

IDataObject supports a number of methods. This document discusses how to implement
the three most important methods for shell data objects, SetData, EnumFormatEtc, and
GetData. For a discussion of the other methods, see the IDataObject reference.

The SetData method

The primary function of the SetData method is to allow the source to load data into the
data object. For each format to be included, the source creates a FORMATETC
structure to identify the format and an STGMEDIUM structure to hold a pointer to the
data. The source then calls the object’s IDataObject::SetData method and passes in the
format’'s FORMATETC and STGMEDIUM structures. The method must store this
information so that it is available when the target calls GetData to extract data from the
object.

However, when transferring files, the shell often puts the information for each file to be
transferred into a separate CFSTR_FILECONTENTS format. To distinguish the different
files, the lindex member of each file’s FORMATETC structure is set to an index value
that identifies the particular file. Your SetData implementation must be capable of storing
multiple CFSTR_FILECONTENTS formats that differ only by their index members.

82

Volume 5 Microsoft Windows Shell

While the cursor is over the target window, the target can use the drag-drop helper
object to specify the drag image. The drag-drop helper object calls SetData to load
private formats into the data object that are used for cross-process support. To support
the drag-drop helper object, your SetData implementation must be able to accept and
store arbitrary private formats.

After the data has been dropped, some types of shell data transfer require the target to
call SetData to provide the data object with information about the outcome of the drop
operation. For example, when moving files with an optimized move operation, the target
normally deletes the original files, but it is not required to do so. The target informs the
data object whether or not it deleted the files by calling SetData with a
CFSTR_LOGICALPERFORMEDDROPEFFECT format. There are several other shell
clipboard formats that are also used by the target to pass information to the data object.
Your SetData implementation must be able to recognize these formats and respond
appropriately. For further discussion, see Handling Shell Data Transfer Scenarios.

The EnumFormatEtc method

When the target receives a data object, it commonly calls EnumFormatEtc to determine
what formats the object contains. The method creates an OLE enumeration object and
returns a pointer to the object’'s IEnumFORMATETC interface. The target then uses the
interface to enumerate the available formats.

An enumeration object for shell data is implemented in much the same way as for other
types of data transfer, with one notable exception. Because data objects typically contain
only one data item per format, they normally enumerate every format that is passed to

IDataObject::SetData. However, as discussed in the SetData method, shell data objects
can contain multiple CFSTR_FILECONTENTS formats.

Because the purpose of EnumFormatEtc is to allow the target to determine what types
of data are present, there is no need to enumerate more than one
CFSTR_FILECONTENTS format. If the target needs to know how many of these formats
the data object contains, the target can get that information from the accompanying
CFSTR_FILEDESCRIPTOR format. For further discussion of how to implement
EnumFormatEtc, see the method’s reference documentation.

The GetData method

The target calls GetData to extract a particular data format. The target specifies the
format by passing in the appropriate FORMATETC structure. GetData returns the
format’'s STGMEDIUM structure.

The target can set the tymed member of the FORMATETC structure to a specific
TYMED_XXX value to specify which data transfer mechanism it will use to extract the
data. However, the target can also make a more generic request and let the data object
decide. To ask the data object to select the data transfer mechanism, the target sets all
the TYMED_XXX values that it supports. GetData selects one of these data transfer

Chapter 6 Shell Programmer’s Guide 83

mechanisms and returns the appropriate STGMEDIUM structure. For instance, tymed is
commonly set to TYMED_HGLOBALITYMED_ISTREAMITYMED_ISTORAGE to
request any of the three shell data transfer mechanisms.

Note Because there can be multiple CFSTR_FILECONTENTS formats, the cfFormat
and tymed members of the FORMATETC structure are not sufficient to indicate which
STGMEDIUM structure GetData should return. For the CFSTR_FILECONTENTS
format, GetData must also examine the FORMATETC structure’s lindex member in
order to return the correct STGMEDIUM structure.

The CFSTR_INDRAGLOOP format is placed in data objects to allow targets to check
the status of the drag-drop loop while avoiding expensive rendering of the object’s data.
The format’s data is a DWORD value that is set to a nonzero value if the data object is
within a drag loop. The format’s data value is set to zero if the data has been dropped. If
a target requests this format and it has not been loaded by the source, GetData should
respond as if the source had loaded the format with a value of zero.

While the cursor is over the target window, the target can use the drag-drop helper
object to specify the drag image. The drag-drop helper object calls SetData to load
private formats into the data object that are used for cross-process support. It later calls
GetData to retrieve them. To support the drag-drop helper object, your GetData
implementation must be able to return arbitrary private formats when they are requested.

Implementing IDropSource

The source must create an object that exposes an IDropSource interface. This interface
allows the source to update the drag image that indicates the current position of the
cursor, and provide feedback to the system on how to terminate a drag-drop operation.
IDropSource has two methods: GiveFeedback and QueryContinueDrag.

The GiveFeedback method

While in the drag loop, a drop source is responsible for keeping track of the cursor
position and displaying an appropriate drag image. However, in some cases you might
want to change the appearance of the drag image when it is over the drop target’s
window.

When the cursor enters or leaves the target window and while it is moving over the
target window, the system periodically calls the target’s IDropTarget interface. The
target responds with a DROPEFFECT value that is forwarded to the source through the
IDropSource::GiveFeedback method. If appropriate, the source can modify the
appearance of the cursor based on the DROPEFFECT value. For further details, see the
IDropSource::GiveFeedback and DoDragDrop references.

The QueryContinueDrag method

This method is called if the mouse button or keyboard state changes while the data
object is in the drag loop. It notifies the source whether the ESCAPE key has been

84

Volume 5 Microsoft Windows Shell

pressed and provides the current state of the keyboard modifier keys, such as
CONTROL or SHIFT. The QueryContinueDrag method’s return value specifies one of
three actions:

e S_OK. Continue the drag operation.

e DRAGDROP_S_DROP. Drop the data. The system will then call the target's
IDropTarget::Drop method.

¢ DRAGDROP_S_CANCEL. Terminate the drag loop without dropping the data. This
value is normally returned if the ESCAPE key was pressed.

For further discussion, see the IDropSource::QueryContinueDrag and DoDragDrop
references.

How a Target Handles a Data Object

The target receives a data object when it either retrieves the data object from the
clipboard or has it dropped on the target window by the user. The target can then extract
data from the data object. If necessary, the target can also notify the data object of the
outcome of the operation. Prior to a shell data transfer, a drop target must prepare itself
for the operation:

1. The target must call RegisterClipBoardFormat to obtain a valid clipboard format
value for all shell formats, other than CF_HDROP, that might be included in the data
object. CF_HDRORP is already a valid clipboard format and does not need to be
registered.

2. To support a drag-drop operation, the target must implement an IDropTarget
interface and register a target window. To register a target window, the target calls

RegisterDragDrop and passes in the window’s handle and the IDropTarget interface
pointer.

For clipboard transfers, the target does not receive any notification that a data object has
been placed on the clipboard. Typically, an application is notified that an object is on the
clipboard by a user action, such as clicking the Paste button on the application’s toolbar.
The target then retrieves the data object’s IDataObject pointer from the clipboard by
calling OleGetClipboard. For drag-drop data transfers, the system uses the target’s
IDropTarget interface to provide the target with information about the progress of the
data transfer:

¢ The system calls IDropTarget::DragEnter when the cursor enters the target window.

® The system periodically calls IDropTarget::DragOver as the cursor passes over the
target window, to give the target the current cursor position.

¢ The system calls IDropTarget::DraglLeave when the cursor leaves the target
window.

* The system calls IDropTarget::Drop when the user drops the data object on the
target window.

Chapter 6 Shell Programmer’s Guide 85

For a discussion of how to implement these methods, see Implementing IDropTarget.

When the data is dropped, IDropTarget::Drop provides the target with a pointer to the
data object’s IDataObiject interface. The target then uses this interface to extract data
from the data object.

Extracting Shell Data from a Data Object

Once a data object has been dropped or retrieved from the clipboard, the target can
extract the data it needs. The first step in the extraction process is typically to enumerate
the formats contained by the data object:

¢ Call IDataObject::EnumFormatEtc. The data object creates a standard OLE
enumeration object and returns a pointer to its IEnumFORMATETC interface.

e Use the IEnumFORMATETC methods to enumerate the formats contained by the
data object. This operation usually retrieves one FORMATETC structure for each
format that the object contains. However, the enumeration object normally returns
only a single FORMATETC structure for the CFSTR_FILECONTENTS format,
regardless of how many such formats are contained by the data object.

e Select one or more formats to be extracted, and store their FORMATETC structures.

To retrieve a particular format, pass the associated FORMATETC structure to
IDataObject::GetData. This method returns an STGMEDIUM structure that provides
access to the data. To specify a particular data transfer mechanism, set the tymed value
of the FORMATETC structure to the corresponding TYMED_XXX value. To ask the data
object to select a data transfer mechanism, the target sets the TYMED_XXX values for
every data transfer mechanism that the target can handle. The data object selects one of
these data transfer mechanisms and returns the appropriate STGMEDIUM structure.

For most formats, the target can retrieve the data by passing the FORMATETC structure
that it received when it enumerated the available formats. One exception to this rule is
CFSTR_FILECONTENTS. Because a data object can contain multiple instances of this
format, the FORMATETC structure returned by the enumerator might not correspond to
the particular format you want to extract. In addition to specifying the cfFormat and
tymed members, you must also set the lindex member to the file’s index value. For
further discussion, see Using the CFSTR_FILECONTENTS Format to Extract Data from
a File.

The data extraction process depends on the type of pointer contained by the returned
STGMEDIUM structure. If the structure contains a pointer to an IStream or IStorage
interface, use the interface methods to extract the data. The process of extracting data
from a global memory object is discussed in the next section.

How to extract a global memory object from a data object

Many of the shell data formats are in the form of a global memory object. Use the
following procedure to extract a format containing a global memory object from a data
object and assign its data to a local variable:

86 Volume 5 Microsoft Windows Shell

1. Create a FORMATETC structure. Set the cfFormat member to the appropriate
clipboard format value and the tymed member to TYMED_HGLOBAL.

2. Create an empty STGMEDIUM structure.

3. Call IDataObject::GetData, and pass in pointers to the FORMATETC and
STGMEDIUM structures.

4. When IDataObject::GetData returns, the STGMEDIUM structure will contain a
pointer to the global memory object that contains the data.

5. Assign the data to a local variable by calling GlobalLock and passing in the hGlobal
member of the STGMEDIUM structure.

6. Call GlobalUnlock to release the lock on the global memory object.

7. Call ReleaseStgMedium to release the global memory object.

The following example shows how to extract a DWORD value stored as a global memory
object from a data object. The pdtobj parameter is a pointer to the data object’s
IDataObject interface, cf is the clipboard format that identifies desired data, and pdwOut
is used to return the data value.

STDAPI Data0bj_GetDWORD(IDataObject +pdtoby, UINT ¢f, DWORD #pdwOut) -~ =~

o epdwOut = epdw;
* - .GlobalUn¥ock(medium.hGlobal); " :

~ hres = E_UNEXPECTED;

i returh hres;

Chapter 6 Shell Programmer’s Guide 87

Implementing IDropTarget

The system uses the IDropTarget interface to communicate with the target while the
cursor is over the target window. The target’s responses are forwarded to the source
through its IDropSource interface. Depending on the response, the source can modify
the icon that represents the data. If the drop target needs to specify the data icon, it can
do so by creating a drag-drop helper object.

With conventional drag-drop operations, the target informs the data object of the
outcome of the operation by setting the pdwEffect parameter of IDropTarget::Drop to
the appropriate DROPEFFECT value. With shell data objects, the target might also need
to call IDataObject::SetData. For a discussion of how targets should respond for
different data transfer scenarios, see Handling Shell Data Transfer Scenarios.

The following sections briefly discuss how to implement the DragEnter, DragOver, and
Drop methods. For further details, see the reference documentation.

The DragEnter method

The system calls the IDropTarget::DragEnter method when the cursor enters the target
window. Its parameters provide the target with the location of the cursor, the state of
keyboard modifier keys such as the CTRL key, and a pointer to the data object’s
IDataObiject interface. The target is responsible for using that interface to determine
whether it can accept any of the formats contained by the data object. If it can, it
normally leaves the value of pdwEffect unchanged. If it cannot accept any data from the
data object, it sets the pdwEffect parameter to DROPEFFECT_NONE. The system
passes the value of this parameter to the data object’s IDropSource interface to allow it
to display the appropriate drag image.

Targets should not use the IDataObject::GetData method to render shell data before it
has been dropped. Fully rendering the object’s data for each such occurrence might
cause the drag cursor to stall. To avoid this problem, some shell objects contain a
CFSTR_INDRAGLOOP format. By extracting this format, targets can check the status of
the drag loop while avoiding expensive rendering of the object’s data. The format’s data
value is a DWORD that is set to a nonzero value if the data object is within a drag loop.
The format’s data value is set to zero if the data has been dropped.

If the target can accept data from the data object, it should examine grfKeyState to
determine whether any modifier keys have been pressed to modify the normal drop
behavior. For instance, the default operation is typically a move, but depressing the
CTRL key usually indicates a copy operation.

While the cursor is over the target window, the target can use the drag-drop helper
object to replace the data object’s drag image with its own. If so, DragEnter should call
IDropTargetHelper::DragEnter to pass the information contained in the DragEnter
parameters to the drag-drop helper object.

88

Volume 5 Microsoft Windows Shell

The DragOver method

As the cursor moves within the target window, the system periodically calls the
IDropTarget::DragOver method. Its parameters provide the target with the location of
the cursor and the state of keyboard modifier keys such as the CTRL key. DragOver has
much the same responsibilities as DragEnter, and the implementations are usually very
similar.

If the target is using the drag-drop helper object, DragOver should call
IDropTargetHelper::DragOver to forward the information contained in the DragOver
parameters to the drag-drop helper object.

The Drop method

The system calls the IDropTarget::Drop method to notify the target that the user has
dropped the data, typically by releasing the mouse button. Drop has the same
parameters as DragEnter. The target normally responds by extracting one or more
formats from the data object. When finished, the target should set the padwEffect
parameter to a DROPEFFECT value that indicates the outcome of the operation. For
some types of shell data transfer the target must also call IDataObject::SetData to pass
a format with additional information on the outcome of the operation to the data object.
For a detailed discussion, see Handling Shell Data Transfer Scenarios.

If the target is using the drag-drop helper object, Drop should call
IDropTargetHelper::Drop to forward the information contained in the DragOver
parameters to the drag-drop helper object.

Using the Drag-Drop Helper Object

The drag-drop helper object (CLSID_DragDropHelper) is exported by the shell to allow
targets to specify the drag image while it is over the target window. To use the drag-drop

helper object, create an in-process server object by calling CoCreatelnstance with a
CLSID of CLSID_DragDropHelper. The drag-drop helper object exposes two interfaces
that are used in the following way:

¢ The IDragSourceHelper interface allows the drop target to specify an icon to
represent the data object.

¢ The IDropTargetHelper interface allows the drop target to inform the drag-drop
helper object of the cursor location, and to show or hide the data icon.

Using the IDragSourceHelper Interface

The IDragSourceHelper interface is exposed by the drag-drop helper object to allow a

drop target to provide the image that will be displayed while the cursor is over the target
window. IDragSourceHelper provides two alternative ways to specify the bitmap to be

used as a drag image:

¢ Drop targets that have a window can register a DI_GETDRAGIMAGE window
message for it by initializing the drag-drop helper object with

Chapter 6 Shell Programmer’s Guide 89

IDragSourceHelper::InitializeFromWindow. When the target receives a
DI_GETDRAGIMAGE message, the handler puts the drag image bitmap information
in the SHDRAGIMAGE structure that is passed as the message’s /Param value.

* Windowless drop targets specify a bitmap when they initialize the drag-drop helper
object with IDragSourceHelper::InitializeFromBitmap.

Using the IDropTargetHelper Interface

This interface allows the drop target to notify the drag-drop helper object when the cursor
enters or leaves the target. While the cursor is over the target window,
IDropTargetHelper allows the target to give the drag-drop helper object the information
that the target receives through its IDropTarget interface.

Four of the IDropTargetHelper methods, IDropTargetHelper::DragEnter,
IDropTargetHelper::DraglLeave, IDropTargetHelper::DragOver, and
IDropTargetHelper::Drop, are associated with the IDropTarget method of the same
name. To use the drag-drop helper object, each of the IDropTarget methods should call
the corresponding IDropTargetHelper method to forward the information to the drag-
drop helper object. The fifth IDropTargetHelper method, IDropTargetHelper::Show,
notifies the drag-drop helper object to show or hide the drag image. This method is used
when dragging over a target window in a low color-depth video mode. It allows the target
to hide the drag image while it is painting the window.

Shell Clipboard Formats

The shell clipboard formats are used to identify the type of shell data being transferred.
Most shell clipboard formats identify a type of data, such as a list of file names or PIDLs.
However, some formats are used for communication between source and target. They
can expedite the data transfer process by supporting shell operations such as optimized
move and delete-on-paste. Shell data is always contained in a data object that uses a

FORMATETC structure as a more general way to characterize data. The structure’s
cfFormat member is set to the clipboard format for the particular item of data. The other
members provide additional information, such as the data transfer mechanism. The data
is contained in an accompanying STGMEDIUM structure.

Note Standard clipboard format identifiers have the form CF_XXX. A common example
is CF_TEXT, which is used for transferring ANSI text data. These identifiers have
predefined values and can be used directly with FORMATETC structures. With the
exception of CF_HDROP, shell format identifiers have the form CFSTR_XXX and are
not predefined. For simplicity, the CFSTR_XXX values are often referred to as formats.
However, unlike predefined formats, they must be registered by both source and target
before they can be used to transfer data. To register a shell format, include the Shlobj.h
header file and pass the CFSTR_XXX format identifier to RegisterClipBoardFormat.
This function returns a valid clipboard format value, which can then be used as the
cfFormat member of a FORMATETC structure.

90 Volume 5 Microsoft Windows Shell

The shell clipboard formats are organized here into three groups, based on how they are
used:

¢ Formats for Transferring File System Objects

¢ Formats for Transferring Virtual Objects

e Formats for Communication Between Source and Target

Formats for Transferring File System Objects
These formats are used to transfer one or more files or other shell objects.

e CF_HDROP

¢ CFSTR_FILECONTENTS

¢ CFSTR_FILEDESCRIPTOR

e CFSTR_FILENAME

¢ CFSTR_FILENAMEMAP

¢ CFSTR_MOUNTEDVOLUME
e CFSTR_SHELLIDLIST

¢ CFSTR_SHELLIDLISTOFFSET

CF_HDROP

This clipboard format is used when transferring the locations of a group of existing files.
Unlike the other shell formats, it is predefined, so there is no need to call
RegisterClipBoardFormat. The data consists of an STGMEDIUM structure that
contains a global memory object. The structure’s hGlobal member points to a
DROPFILES structure as its hGlobal member.

The pFiles member of the DROPFILES structure contains an offset to a double NULL-
terminated character array containing the file names. If you are extracting a CF_HDROP
format from a data object, you can use DragQueryFile to extract individual file names
from the global memory object. If you are creating a CF_HDROP format to place in a
data object, you will need to construct the file name array.

The file name array consists of a series of strings, each containing one file’s fully
qualified path, including the terminating NULL character. An additional NULL character is
appended to the final string to terminate the array. For example, if the files c:\temp1.ixt
and c:\temp2.txt are being transferred, the character array looks like this:

Note In this example, \0’ is used to represent the NULL character, not the literal
characters that should be included.

If the object was copied to the clipboard as part of a drag-drop operation, the pt member
of the DROPFILES structure contains the coordinates of the point where the object was
dropped. You can use DragQueryPoint to extract the cursor coordinates.

Chapter 6 Shell Programmer’s Guide 91

If this format is present in a data object, an OLE drag loop simulates WM_DROPFILES
functionality with non-OLE drop targets. This is important if your application is the source
of a drag-drop operation on a Microsoft Windows 3.1 system.

Note This format supports both ANSI and Unicode. However, only ANSI file paths can
be used with Windows 95 systems.

CFSTR_FILECONTENTS

This format identifier is used with the CFSTR_FILEDESCRIPTOR format to transfer data
as if it were a file, regardless of how it is actually stored. The data consists of an
STGMEDIUM structure that represents the contents of one file. The file is normally
represented as a stream object, which avoids having to place the contents of the file in
memory. In that case, the tymed member of the STGMEDIUM structure is set to
TYMED_ISTREAM, and the file is represented by an IStream interface. The file can also
be a storage or global memory object (TYMED_ISTORAGE or TYMED_HGLOBAL). The
associated CFSTR_FILEDESCRIPTOR format contains a FILEDESCRIPTOR structure
for each file that specifies the file’s name and attributes.

The target treats the data associated with a CFSTR_FILECONTENTS format as if it
were a file. When the target calls IDataObject::GetData to extract the data, it specifies a
particular file by setting the lindex member of the FORMATETC structure to the zero-
based index of the file’s FILEDESCRIPTOR structure in the accompanying
CFSTR_FILEDESCRIPTOR format. The target then uses the returned interface pointer
or global memory handle to extract the data.

CFSTR_FILEDESCRIPTOR

This format identifier is used with the CFSTR_FILECONTENTS format to transfer data
as a group of files. These two formats are the preferred way to transfer shell objects that
are not stored as file-system files. For example, these formats can be used to transfer a
group of e-mail messages as individual files, even though each e-mail is actually stored
as a block of data in a database. The data consists of an STGMEDIUM structure that
contains a global memory object. The structure’s hGlobal member points to a
FILEGROUPDESCRIPTOR structure that is followed by an array containing one
FILEDESCRIPTOR structure for each file in the group. For each FILEDESCRIPTOR
structure, there is a separate CFSTR_FILECONTENTS format that contains the
contents of the file. To identify a particular file’s CFSTR_FILECONTENTS format, set the
lindex value of the FORMATETC structure to the zero-based index of the file’s
FILEDESCRIPTOR structure.

The CFSTR_FILEDESCRIPTOR format is commonly used to transfer data as if it were a
group of files, regardless of how it is actually stored. From the target’s perspective, each
CFSTR_FILECONTENTS format represents a single file and is treated accordingly.
However, the source can store the data in any way it chooses. While a
CSFTR_FILECONTENTS format might correspond to a single file, it could also, for
example, represent data extracted by the source from a database or text document.

92

Volume 5 Microsoft Windows Shell

CFSTR_FILENAME

This format identifier is used to transfer a single file. The data consists of an
STGMEDIUM structure that contains a global memory object. The structure’s hGlobal
member points to a single null-terminated string containing the file’s fully qualified file
path. This format has been superseded by CF_HDROP, but it is supported for backward
compatibility with Windows 3.1 applications.

CFSTR_FILENAMEMAP

This format identifier is used when a group of files in CF_HDROP format is being
renamed as well as transferred. The data consists of an STGMEDIUM structure that
contains a global memory object. The structure’s hGlobal member points to a double
null-terminated character array. This array contains a new name for each file, in the
same order that the files are listed in the accompanying CF_HDROP format. The format
of the character array is the same as that used by CF_HDRORP to list the transferred
files.

CFSTR_MOUNTEDVOLUME

This format identifier is used to transfer a path on a mounted volume. It is similar to
CF_HDROP, but it contains only a single path and can handle the longer path strings
that might be needed to represent a path when the volume is mounted on a folder. The
data consists of an STGMEDIUM structure that contains a global memory object. The
structure’s hGlobal member points to a single null-terminated string containing the fully
qualified file path. The path string must end with a '\’ character, followed by the
terminating NULL.

Prior to Microsoft Windows 2000, volumes could be mounted only on drive letters. For
Windows 2000 and later systems with an NTFS formatted drive, you can also mount
volumes on empty folders. This feature allows a volume to be mounted without taking up
a drive letter. The mounted volume can use any currently supported format, including
FAT, FAT32, NTFS, and CDFS.

You can add pages to a Drive Properties property sheet by implementing a property
sheet handler. If the volume is mounted on a drive letter, the shell passes path
information to the handler with the CF_HDROP format. With Windows 2000 and later
systems, the CF_HDROP format is used when a volume is mounted on a drive letter,
just as with earlier systems. However, if a volume is mounted on a folder, the
CSFTR_MOUNTEDVOLUME format identifier is used instead of CF_HDROP.

If only drive letters will be used to mount volumes, only CF_HDROP will be used, and
existing property sheet handlers will work as they did with earlier systems. However, if
you want your handler to display a page for volumes that are mounted on folders as well
as drive letters, the handler must be able to understand both the
CSFTR_MOUNTEDVOLUME and CF_HDROP formats.

Chapter 6 Shell Programmer’s Guide 93

CFSTR_SHELLIDLIST

This format identifier is used when transferring the locations of one or more existing
namespace objects. It is used in much the same way as CF_HDROP, but it contains
PIDLs instead of file system paths. Using PIDLS allows the CFSTR_SHELLIDLIST
format to handle virtual objects as well as file system objects. The data is an
STGMEDIUM structure that contains a global memory object. The structure’s hGlobal
member points to a CIDA structure.

The aoffset member of the CIDA structure is an array containing offsets to the beginning
of the ITEMIDLIST structure for each PIDL that is being transferred. To extract a
particular PIDL, first determine its index. Then, add the aoffset value that corresponds to
that index to the address of the CIDA structure.

The first element of aoffset contains an offset to the fully qualified PIDL of a parent
folder. If this PIDL is empty, the parent folder is the desktop. Each of the remaining
elements of the array contains an offset to one of the PIDLs to be transferred. All of
these PIDLs are relative to the PIDL of the parent folder.

The following two macros can be used to retrieve PIDLs from a CIDA structure. The first
takes a pointer to the structure and retrieves the PIDL of the parent folder. The second
takes a pointer to the structure and retrieves one of the other PIDLs, identified by its
zero-based index.

Note The value that is returned by these macros is a pointer to the PIDL’s ITEMIDLIST
structure. Since these structures vary in length, you must determine the end of the
structure by walking through each of the ITEMIDLIST structure’s SHITEMID structures
until you reach the two-byte NULL that marks the end. For further discussion of PIDLs
and the ITEMIDLIST structure, see The Shell Namespace.

CFSTR_SHELLIDLISTOFFSET

This format identifier is used with formats such as CF_HDROP, CFSTR_SHELLIDLIST,
and CFSTR_FILECONTENTS to specify the position of a group of objects following a
transfer. The data consists of an STGMEDIUM structure that contains a global memory
object. The structure’s hGlobal member points to an array of POINT structures. The first
structure specifies the screen coordinates, in pixels, of the upper-left corner of the
rectangle that encloses the group. The remainder of the structures specify the locations
of the individual objects relative to the group’s position. They must be in the same order
as that used to list the objects in the associated format.

94 Volume 5 Microsoft Windows Shell

Formats for Transferring Virtual Objects

The CFSTR_SHELLIDLIST format can be used to transfer both file system and virtual
objects. However, there are also several specialized formats for transferring particular
types of virtual objects.

e CFSTR_NETRESOURCES

e CFSTR_PRINTERGROUP

e CFSTR_SHELLURL

CFSTR_NETRESOURCES

This format identifier is used when transferring network resources, such as a domain or
server. The data is an STGMEDIUM structure that contains a global memory object. The
structure’s hGlobal member points to a single NULL-terminated string that identifies the
network resource. The drop target can then use the data with any of the WNet API
functions, such as WNetAddConnection, to perform network operations on the object.

CFSTR_PRINTERGROUP

This format identifier is used when transferring the friendly names of printers. The data is
an STGMEDIUM structure that contains a global memory object. The structure’s
hGlobal member points to a string in the same format as that used with CF_HDROP.
However, the pFiles member of the DROPFILES structure contains one or more friendly
names of printers instead of file paths.

CFSTR_SHELLURL

This format identifier is used when transferring a single URL. The data is an
STGMEDIUM structure that contains a global memory object. The structure’s hGlobal
member points to a single NULL-terminated string that contains the URL. This format is
equivalent to the CF_TEXT clipboard format, but it is useful for internet-related
applications.

Formats for Communication Between Source and Target

Several format identifiers were introduced with Internet Explorer 4.0 to allow
communication between source and target. These formats accompany the actual data
and give applications a greater degree of control over move-copy-paste or drag-drop
operations involving shell objects.

e CFSTR_INDRAGLOOP

e CFSTR_LOGICALPERFORMEDDROPEFFECT

e CFSTR_PASTESUCCEEDED

e CFSTR_PERFORMEDDROPEFFECT

¢ CFSTR_PREFERREDDROPEFFECT

e CFSTR_TARGETCLSID

Chapter 6 Shell Programmer’s Guide 95

CFSTR_INDRAGLOOP

This format identifier is used by a data object to indicate whether it is in a drag-drop loop.
The data is an STGMEDIUM structure that contains a global memory object. The
structure’s hGlobal member points to a DWORD value. If the DWORD value is nonzero,
the data object is within a drag-drop loop. If the value is set to zero, the data object is not
within a drag-drop loop.

Some drop targets might call IDataObject::GetData and attempt to extract data while
the object is still within the drag-drop loop. Fully rendering the object for each such
occurrence might cause the drag cursor to stall. If the data object supports
CFSTR_INDRAGLOOP, the target can instead use that format to check the status of the
drag-drop loop and avoid expensive rendering of the object until it is actually dropped.
The expensive-to-render formats should still be included in the FORMATETC
enumerator and in calls to IDataObject::QueryGetData. If the data object does not set
CFSTR_INDRAGLOOP, it should act as if the value is set to zero.

CFSTR_LOGICALPERFORMEDDROPEFFECT

Version 5.0. This format identifier allows a drop source to call the data object’s
IDataObject::GetData method to determine the outcome of a shell data transfer. The
data is an STGMEDIUM structure that contains a global memory object. The structure’s
hGlobal member points to a DWORD containing a DROPEFFECT value.

The CFSTR_PERFORMEDDROPEFFECT format identifier was intended to allow the
target to indicate to the data object what operation actually took place. However, the
shell uses optimized moves for file system objects whenever possible. In that case, the
shell normally sets the CFSTR_PERFORMEDDROPEFFECT value to
DROPEFFECT_NONE, to indicate to the data object that the original data has been
deleted. Thus, the source cannot use the CFSTR_PERFORMEDDROPEFFECT value to
determine which operation has taken place. While most sources do not need this
information, there are some exceptions. For instance, even though optimized moves
eliminate the need for a source to delete any data, the source might still need to update
a related database to indicate that the files have been moved or copied.

If a source needs to know which operation took place, it can call the data object’s
IDataObject::GetData method and request the
CFSTR_LOGICALPERFORMEDDROPEFFECT format. This format essentially reflects
what happens from the user’s point of view after the operation is complete. If a new file is
created and the original file is deleted, the user sees a move operation and the format’s
data value is set to DROPEFFECT_MOVE. If the original file is still there, the user sees
a copy operation and the format’s data value is set to DROPEFFECT_COPY. If a link
was created, the format's data value will be DROPEFFECT_LINK.

CFSTR_PASTESUCCEEDED

This format identifier is used by the target to inform the data object, through its
IDataObject::SetData method, that a delete-on-paste operation succeeded. The data is
an STGMEDIUM structure that contains a global memory object. The structure’s

96

Volume 5 Microsoft Windows Shell

hGlobal member points to a DWORD containing a DROPEFFECT value. This format is
used to notify the data object that it should complete the cut operation and delete the
original data, if necessary. For more information, see Delete-on-Paste Operations.

CFSTR_PERFORMEDDROPEFFECT

This format identifier is used by the target to inform the data object through its
IDataObject::SetData method of the outcome of a data transfer. The data is an
STGMEDIUM structure that contains a global memory object. The structure’s hGlobal
member points to a DWORD set to the appropriate DROPEFFECT value, normally
DROPEFFECT_MOVE or DROPEFFECT_COPY.

This format is normally used when the outcome of an operation can be either move or
copy, such as in an optimized move or delete-on-paste operation. It provides a reliable
way for the target to tell the data object what actually happened. It was introduced
because the value of pdwEffect returned by DoDragDrop did not reliably indicate which
operation had taken place. The CFSTR_PERFORMEDDROPEFFECT format is the
reliable way to indicate that an unoptimized move has taken place.

CFSTR_PREFERREDDROPEFFECT

This format identifier is used by the source to specify whether its preferred method of
data transfer is move or copy. A drop target requests this format by calling the data
object’s IDataObject::GetData method. The data is an STGMEDIUM structure that
contains a global memory object. The structure’s hGlobal member points to a DWORD
value. This value is set to DROPEFFECT_MOVE if a move operation is preferred or
DROPEFFECT_COPY if a copy operation is preferred.

This feature is used when a source can support either a move or copy operation. It uses
the CFSTR_PREFERREDDROPEFFECT format to communicate its preference to the
target. Because the target is not obligated to honor the request, the target must call the
source’s IDataObject::SetData method with a CFSTR_PERFORMEDDROPEFFECT
format to tell the data object which operation was actually performed.

With a delete-on-paste operation, the CFSTR_PREFERREDDROPFORMAT format is
used to tell the target whether the source did a cut or copy. With a drag-drop operation,
you can use CFSTR_PREFERREDDROPFORMAT to specify the shell’s action. If this
format is not present, the shell performs a default action, based on context. For instance,
if a user drags a file from one volume and drops it on another volume, the shell’s default
action is to copy the file. By including a CFSTR_PREFERREDDROPFORMAT format in
the data object, you can override the default action and explicitly tell the shell to copy,
move, or link the file. If the user chooses to drag with the right button,
CFSTR_PREFERREDDROPFORMAT specifies the default command on the drag-drop
context menu. The user is still free to choose other commands on the menu.

Before Internet Explorer 4.0, an application indicated that it was transferring shortcut file
types by setting FD_LINKUI in the dwFlags member of the FILEDESCRIPTOR
structure. Targets then had to use a potentially time-consuming call to
IDataObject::GetData to find out if the FD_LINKUI flag was set. Now, the preferred way

Chapter 6 Shell Programmer’s Guide 97

to indicate that shortcuts are being transferred is to use the
CFSTR_PREFERREDDROPEFFECT format set to DROPEFFECT_LINK. However, for
backward compatibility with older systems, sources should still set the FD_LINKUI flag.

CFSTR_TARGETCLSID

This format identifier is used by a target to provide its CLSID to the source. The data is
an STGMEDIUM structure that contains a global memory object. The structure’s
hGlobal member points to the CLSID GUID of the drop target.

This format is used primarily to allow objects to be deleted by dragging them to the
Recycle Bin. When an object is dropped in the Recycle Bin, the source’s
IDataObject::SetData method is called with a CFSTR_TARGETCLSID format set to the
Recycle Bin's CLSID (CLSID_RecycleBin). The source can then delete the original
object.

Handling Shell Data Transfer Scenarios

The Shell Data Object document discussed the general approach that is used to transfer
shell data with drag-drop or the Clipboard. However, to implement shell data transfer in
your application, you must also understand how to apply these general principles and
techniques to the variety of ways that shell data can be transferred. This document
presents the following common shell data transfer scenarios and discusses how to
implement each one in your application.

General Guidelines

Copying File Names from the Clipboard to an Application

Copying the Contents of a Dropped File into an Application

Handling Optimized Move Operations

Handling Delete-on-Paste Operations

Transfering Data to and from Virtual Folders

Dropping Files on the Recycle Bin

Creating and Importing Scrap Files

Extracting Data Asynchronously

Note Although each of these scenarios discusses a specific data transfer operation,
many of them apply to a variety of related scenarios. For instance, the primary difference
between most Clipboard and drag-drop transfers is in how the data object gets to the
target. Once the target has a pointer to the data object’s IDataObject interface, the
procedures for extracting information are largely the same for both types of data transfer.
However, some of the scenarios are limited to a specific type of operation. Refer to the
individual scenario for details.

98

Volume 5 Microsoft Windows Shell

General Guidelines

Each of the following sections discusses a single, fairly specific data transfer scenario.
However, data transfers are often more complex and might involve aspects of several
scenarios. You typically do not know, in advance, which scenario you will actually need
to handle. Here are a few general guidelines to keep in mind.

For data sources:

The shell clipboard formats, with the exception of CF_HDROP, are not predefined.
Each format you want to use must be registered by calling
RegisterClipboardFormat.

Include as many formats as you can support. You generally don’t know where the
data object will be dropped. This practice improves the odds that the data object will
contain a format that the drop target can accept.

Existing files should be offered with the CF_HDROP format.

Offer file-like data with CFSTR_FILECONTENTS/ CFSTR_FILEDESCRIPTOR
formats. This approach allows the target to create a file from a data object without
needing to know anything about the underlying data storage. You should normally
present the data as an IStream interface. This data transfer mechanism is more
flexible than a global memory object and uses much less memory.

Use standard feedback cursors.
Support left and right drag.

Use the data object itself from an embedded object. This approach allows your
application to get any extra formats the data object has to offer and avoids creating an
extra layer of containment. For instance, an embedded object from server A is
dragged from server/container B and dropped on container C. C should create an
embedded object of server A, not an embedded object of server B containing an
embedded object of server A.

Remember that the shell might use optimized moves or delete-on-paste operations
when moving files. Your application should be able to recognize these operations and
respond appropriately.

For data targets:

[]

The shell clipboard formats, with the exception of CF_HDROP, are not predefined.
Each format you want to use must be registered by calling
RegisterClipboardFormat.

Implement and register an OLE drop target. Avoid using Microsoft Windows 3.1
targets or the WM_DROPFILES message, if possible.

The formats contained by a data object vary, depending on where the object comes
from. Since you generally don’t know in advance where a data object comes from,
don’t assume that a particular format will be present. Enumerate the formats, and then
select the best available format for your purposes.

Chapter 6 Shell Programmer’s Guide 99

e When a file is dragged from the desktop or Windows Explorer and dropped on an
application’s client area, the target application should first attempt to get a data format
that it can handle directly, such as CF_TEXT or CF_EMBEDDEDOBJECT. If none of
these are offered, the target should request CF_HDROP and call OleCreateFromFile
for each file. Scrap files will always offer CF_EMBEDDEDOBJECT and CF_HDROP
formats.

e Support right-drag. You can customize the drag context menu by creating a drag-drop
handler

o If your application will accept existing files, it must be able to handle the CF_HDROP
format.

¢ In general, applications that accept files should also handle the
CFSTR_FILECONTENTS/CFSTR_FILEDESCRIPTOR formats. While files from the
file system have the CF_HDROP format, files from providers such as namespace
extensions generally use CFSTR_FILECONTENTS/ CFSTR_FILEDESCRIPTOR.
Examples include Windows CE folders, FTP folders, Web folders, and CAB folders.
The source normally implements an IStream interface to present data from their
storage as a file.

¢ Remember that the shell might use optimized moves or delete-on-paste operations
when moving files. Your application should be able to recognize these operations and
respond appropriately.

Copying File Names from the Clipboard to an Application
Scenario: A user selects one or more files in Windows Explorer and copies them to the
Clipboard. Your application extracts the file names and pastes them into the document.

This scenario could be used, for instance, to allow a user to create an HTML link by
cutting and pasting the file to your application. Your application can then extract the file
name from the data object and process it to create an anchor tag.

When a user selects a file in Windows Explorer and copies it to the Clipboard, the shell
creates a data object. It then calls OleSetClipboard to place a pointer to the data
object’s IDataObject interface on the Clipboard.

When the user selects the Paste command from your application’s menu or toolbar:

1. Call OleGetClipboard to retrieve the data object’s IDataObject interface.
2. Call IDataObject::EnumFormatEtc to request an enumerator object.

3. Use the enumerator object's IEnumFORMATETC interface to enumerate the formats
contained by the data object.

Extracting the File Names from the Data Object

The next step is to extract one or more file names from the data object and paste them
into your application. Note that the procedure discussed in this section for extracting a
file name from a data object applies equally well to drag-drop transfers.

100

Volume 5 Microsoft Windows Shell

The simplest way to get file names from a data object is the CF_HDROP format:

1. Call IDataObject::GetData. Set the cfFormat member of the FORMATETC structure
to CF_HDROP and the tymed member to TYMED_HGLOBAL. The dwAspect
member is normally set to DVASPECT_CONTENT. However, if you need to have the
file’s path in short (8.3) format, set dwAspect to DVASPECT_SHORT.

2. When IDataObject::GetData returns, the hGlobal member of the STGMEDIUM
structure points to a global memory object that contains the data.

3. Create an HDROP variable and set it to the hGlobal member of the STGMEDIUM
structure. The HDROP variable now points to a DROPFILES structure followed by a
double NULL-terminated string containing the fully qualified file paths of the copied
files.

4. Determine how many file paths are in the list by calling DragQueryFile with the iFile
parameter set to OXFFFFFFFF. The function returns the number of file paths in the
list. The file path’s zero-based index in this list is used in the next step to identify a
particular path.

5. Extract the file paths from the global memory object by calling DragQueryFile once
for each file, with jFile set to the file’s index.

6. Process the file paths as needed and paste them into your application.

Copying the Contents of a Dropped File into an Application

Scenario: A user drags one or more files from Windows Explorer and drops them on
your application’s window. Your application extracts the content of the file and pastes it
into the application.

This scenario uses drag-drop to transfer the files from Windows Explorer to the
application. Prior to the operation, your application must:

1. Call RegisterClipboard to register any needed shell clipboard formats.

2. Call RegisterDragDrop to register a target window and your application’s
IDropTarget interface.

After the user initiates the operation by selecting one or more files and starting to drag
them:

1. Windows Explorer creates a data object and loads the supported formats into it.
2. Windows Explorer calls DoDragDrop to initiate the drag loop.

3. When the drag image reaches your target window, the system notifies you by calling
IDropTarget::DragEnter.

4. To determine what the data object contains, call the data object’s
IDataObject::EnumFormatEtc method. Use the enumerator object returned by the
method to enumerate the formats contained by the data object. If your application
does not want to accept any of these formats, return DROPEFFECT_NONE. For the
purposes of this scenario, your application should ignore any data objects that do not
contain formats used to transfer files, such as CF_HDROP.

Chapter 6 Shell Programmer’s Guide 101

5. When the user drops the data, the system calls IDropTarget::Drop.
6. Use the IDataObject interface to extract the contents of the files.

There are several different ways to extract the contents of a shell object from a data
object. In general, you should attempt them in the following order:

¢ If the file contains a CF_TEXT format, the data is ANSI text. You can use the
CF_TEXT format to extract the data, rather than opening the file itself.

¢ |f the file contains a linked or embedded OLE object, the data object contains a
CF_EMBEDDEDOBJECT format. Use standard OLE techniques to extract the data.
Scrap files always contain a CF_EMBEDDEDOBJECT format.

¢ If the shell object is from the file system, the data object contains a CF_HDROP
format with the names of the files. Extract the file name from CF_HDROP and call
OleCreateFromFile to create a new linked or embedded object. For a discussion of
how to retrieve a file name from a CF_HDROP format, see Copying File Names from
the Clipboard to an Application.

¢ |f the data object contains a CFSTR_FILEDESCRIPTOR format, you can extract a
file’s contents from the file’s CFSTR_FILECONTENTS format. For a discussion of this
procedure, see Using the CFSTR_FILECONTENTS Format to Extract Data from a
File.

® Prior to shell version 4.71, an application indicated that it was transferring a shortcut
file type by setting FD_LINKUI in the dwFlags member of the FILEDESCRIPTOR
structure. For later versions of the shell, the preferred way to indicate that shortcuts
are being transferred is to use the CFSTR_PREFERREDDROPEFFECT format set to
DROPEFFECT_LINK. This approach is much more efficient than extracting the
FILEDESCRIPTOR structure just to check a flag.

If the data extraction process will be lengthy, you might want to do the operation
asynchronously on a background thread. Your primary thread can then proceed without
unnecessary delays. For a discussion of how to handle asynchronous data extraction,
see Extracting Data Asynchronously.

Using the CFSTR_FILECONTENTS Format to Extract Data from a File

The CFSTR_FILECONTENTS format provides a very flexible and powerful way to
transfer the contents of a file. It is not even necessary for the data to be stored as a
single file. All that is required for this format is that the data object present the data to the
target as if it were a file. For instance, the actual data might be a section of a text
document or a block of data extracted from a database. The target can treat the data as
a file and doesn’t need to know anything about the underlying storage mechanism.

Namespace extensions normally use CFSTR_FILECONTENTS to transfer data because
it does not assume any particular storage mechanism. A namespace extension can use
whatever storage mechanism is convenient, and use this format to present its objects to
applications as if they were files.

102

Volume 5 Microsoft Windows Shell

The data transfer mechanism for CFSTR_FILECONTENTS is normally
TYMED_ISTREAM. Transferring an IStream interface pointer requires much less
memory than loading the data into a global memory object, and IStream is a more
flexible way to represent data than IStorage.

A CFSTR_FILECONTENTS format is always accompanied by a
CFSTR_FILEDESCRIPTOR format. You must examine the contents of this format first. If
more than one file is being transferred, the data object will actually contain multiple
CFSTR_FILECONTENTS formats, one for each file. The CFSTR_FILEDESCRIPTOR
format contains the name and attributes of each file, and provides an index value for
each file that is needed to extract a particular file's CFSTR_FILECONTENTS format.

To extract a CFSTR_FILECONTENTS format:

1. Extract the CFSTR_FILEDESCRIPTOR format. The hGlobal member of the returned
STGMEDIUM structure points to a global memory object containing a
FILEGROUPDESCRIPTOR structure followed by one or more FILEDESCRIPTOR
structures. Each FILEDESCRIPTOR structure contains a description of a file that is
contained by one of the accompanying CFSTR_FILECONTENTS formats.

2. Examine the FILEDESCRIPTOR structures to determine which one corresponds to
the file you want to extract. The zero-based index of that FILEDESCRIPTOR structure
is used to identify the file’s CFSTR_FILECONTENTS format.

3. Call IDataObject::GetData with the cfFormat member of the FORMATETC structure
set to the CFSTR_FILECONTENTS value and the lindex member set to the index
that you determined in the previous step. The tymed member is typically set to
TYMED_HGLOBAL | TYMED_ISTREAM | TYMED_ISTORAGE. The data object can
then choose its preferred data transfer mechanism.

4. The STGMEDIUM structure that IDataObject::GetData returns will contain a pointer
to the file’s data. Examine the tymed member of the structure to determine the data
transfer mechanism.

5. If tymed is set to TYMED_ISTREAM or TYMED_ISTORAGE, use the interface to
extract the data. If tymed is set to TYMED_HGLOBAL, the data is contained in a
global memory object. For a discussion of how to extract data from a global memory
object, see How to Extract a Global Memory Object from a Data Object.

Handling Optimized Move Operations

Scenario: A file is moved from the file system to a namespace extension using an
optimized move.

In a conventional move operation, the target makes a copy of the data and the source
deletes the original. This procedure can be inefficient because it requires two copies of
the data. With large objects such as databases, a conventional move operation might
not even be practical.

With an optimized move, the target uses its understanding of how the data is stored to
handle the entire move operation. There is never a second copy of the data, and there is
no need for the source to delete the original data. Shell data is well suited to optimized

Chapter 6 Shell Programmer’s Guide 103

moves because the target can handle the entire operation using the shell API. A typical
example is moving files. Once the target has the path of a file to be moved, it can use
SHFileOperation to move it. There is no need for the source to delete the original file.

Note The shell normally uses an optimized move to move files. To handle shell data
transfer properly, your application must be capable of detecting and handling an
optimized move.

Optimized moves are handled in the following way:

1. The source calls DoDragDrop with the dwEffect parameter set to
DROPEFFECT_MOVE to indicate that the source objects can be moved.

2. The target receives the DROPEFFECT_MOVE value through one of its IDropTarget
methods, indicating that a move is allowed.

3. The target either copies the object (unoptimized move) or moves the object (optimized
move).

4. The target then tells the source whether or not it needs to delete the original data.

An optimized move is the default operation, with the data deleted by the target. To
inform the source that an optimized move was performed:

¢ The target sets the *pdwEffect value it received through its IDropTarget::Drop
method to some value other than DROPEFFECT_MOVE. |t is typically set to either
DROPEFFECT_NONE or DROPEFFECT_COPY. The value will be returned to the
source by DoDragDrop.

¢ The target also calls the data object’s IDataObject::SetData method and passes it a
CFSTR_PERFORMEDDROPEFFECT format identifier set to DROPEFFECT_NONE.
This method call is necessary because some drop targets might not set the pdwEffect
parameter of DoDragDrop properly. The CFSTR_PERFORMEDDROPEFFECT
format is the reliable way to indicate that an optimized move has taken place.

If the target did an unoptimized move, the data must be deleted by the source. To inform
the source that an unoptimized move was performed:

¢ The target sets the pdwEffect value it received through its IDropTarget::Drop method
to DROPEFFECT_MOVE. The value will be returned to the source by DoDragDrop.

¢ The target also calls the data object’s IDataObject::SetData method and passes it a
CFSTR_PERFORMEDDROPEFFECT format identifier set to DROPEFFECT_MOVE.
This method call is necessary because some drop targets might not set the pdwEffect
parameter of DoDragDrop properly. The CFSTR_PERFORMEDDROPEFFECT
format is the reliable way to indicate that an unoptimized move has taken place.

* The source inspects the two values that can be returned by the target. If both are
set to DROPEFFECT_MOVE, it completes the unoptimized move by deleting the
original data. Otherwise, the target did an optimized move and the original data has
been deleted.

104 Volume 5 Microsoft Windows Shell

Handling Delete-on-Paste Operations

Scenario: One or more files are cut from a folder in Windows Explorer and pasted into a
namespace extension. Windows Explorer leaves the files highlighted until it receives
feedback on the outcome of the paste operation.

Traditionally, when a user cuts data it immediately disappears from view. This might not
be efficient, and it can lead to usability problems if the user becomes concerned about
what has happened to the data. An alternative approach is to use a delete-on-paste
operation.

With a delete-on-paste operation, the selected data is not immediately removed from
view. Instead, the source application marks it as selected, perhaps by changing the font
or background color. After the target application has pasted the data, it notifies the
source about the outcome of the operation. If the target performed an optimized move,
the source can simply update its display. If the target performed a normal move, the
source must also delete its copy of the data. If the paste fails, the source application
restores the selected data to its original appearance.

Note The shell normally uses delete-on-paste when a cut/paste operation is used to
move files. Delete-on-paste operations with shell objects normally use an optimized
move to move the files. To handle shell data transfer properly, your application must be
capable of detecting and handling delete-on-paste operations.

The essential requirement for delete-on-paste is that the target must report the outcome
of the operation to the source. However, standard clipboard techniques cannot be used
to implement delete-on-paste because they do not provide a way for the target to
communicate with the source. Instead, the target application uses the data object’s

IDataObject::SetData method to report the outcome to the data object. The data object
can then communicate with the source through a private interface.

The basic procedure for a delete-on-paste operation is as follows:

1. The source marks the screen display of the selected data.

2. The source creates a data object. It indicates a cut operation by adding the
CFSTR_PREFERREDDROPEFFECT format with a data value of
DROPEFFECT_MOVE.

3. The source places the data object on the Clipboard using OleSetClipboard.
. The target retrieves the data object from the Clipboard using OleGetClipboard.

5. The target extracts the CFSTR_PREFERREDDROPEFFECT data. If it is set to only
DROPEFFECT_MOVE, the target can either do an optimized move or simply copy
the data.

6. If the target does not do an optimized move, it calls the IDataObject::SetData method
with the CFSTR_PERFORMEDDROPEFFECT format set to DROPEFFECT_MOVE.

7. When the paste is complete, the target calls the IDataObject::SetData method with
the CFSTR_PASTESUCCEEDED format set to DROPEFFECT_MOVE.

N

Chapter 6 Shell Programmer’s Guide 105

8. When the source’s IDataObject::SetData method is called with the
CFSTR_PASTESUCCEEDED format set to DROPEFFECT_MOVE, it must check to
see if it also received the CFSTR_PERFORMEDDROPEFFECT format set to
DROPEFFECT_MOVE. If both formats are sent by the target, the source will have to
delete the data. If only the CFSTR_PASTESUCCEEDED format is received, the
source can simply remove the data from its display. If the transfer fails, the source
updates the display to its original appearance.

Transfering Data to and from Virtual Folders
Scenario: A user drags an object from or drops it on a virtual folder.

Virtual folders contain objects that are generally not part of the file system. Some virtual
folders, such as the Recycle Bin, can represent data that is stored on the hard drive but
not as ordinary file system objects. Some can represent stored data that is on a remote
system, such as a hand-held PC, or an FTP site. Others, such as the Printers folder,
contain objects that do not represent stored data at all. While some virtual folders are
part of the system, developers can also create and install custom virtual folders by
implementing a namespace extension.

Regardless of the type of data or how it is stored, the folder and file objects that are
contained by a virtual folder are presented by the shell as if they were normal files and
folders. It is the responsibility of the virtual folder to take whatever data it contains and
present it to the shell appropriately. This requirement means that virtual folders normally
support drag-drop and clipboard data transfers.

There are thus two groups of developers who need to be concerned with data transfer to
and from virtual folders:

e Developers whose applications need to accept data that is transferred from a virtual
folder.

¢ Developers whose namespace extensions need to properly support data transfer.

Accepting Data from a Virtual Folder

Virtual folders can represent virtually any type of data and can store that data in any way
they choose. Some virtual folders might actually contain normal file system files and
folders. Others might, for instance, pack all their objects into a single document or
database.

When a file system object is transferred to an application, the data object normally
contains a CF_HDROP format with the object’s fully qualified path. Your application can
extract this string, and use the normal file system functions to open the file and extract its
data. However, because virtual folders typically do not contain normal file system
objects, they generally do not use CF_HDROP.

Instead of CF_HDROP, data is normally transferred from virtual folders with the
CFSTR_FILEDESCRIPTOR/CFSTR_FILECONTENTS formats. The
CFSTR_FILECONTENTS format has two advantages over CF_HDROP:

106

Volume 5 Microsoft Windows Shell

e No particular method of data storage is assumed.

¢ The format is more flexible. It supports three data transfer mechanisms: a global
memory object, an IStream interface, or an IStorage interface.

Global memory objects are rarely used to transfer data to or from virtual objects because
the data must be copied into memory in its entirety. Transferring an interface pointer
requires almost no memory and is much more efficient. With very large files, an interface
pointer might be the only practical data transfer mechanism. Typically, data is
represented by an IStream pointer, because that interface is somewhat more flexible
than IStorage. The target extracts the pointer from the data object and uses the
interface methods to extract the data.

For further discussion of how to handle the CFSTR_FILEDESCRIPTOR/
CFSTR_FILECONTENTS formats, see Using the CFSTR_FILECONTENTS Format to
Extract Data from a File.

Transferring Data to and from a NameSpace Extension

When you implement a namespace extension, you will normally want to support drag-
drop capabilities. Follow the recommendations for drop sources and targets discussed in
General Guidelines. In particular, a namespace extension must:

® Be able to handle the CFSTR_FILEDESCRIPTOR/ CFSTR_FILECONTENTS
formats. These two formats are normally used to transfer objects to and from
namespace extensions.

¢ Be able to handle optimized moves. The shell expects that shell objects will be moved
with an optimized move.

® Be able to handle a delete-on-paste operation. The shell uses delete-on-paste when
objects are moved from the shell with a cut/paste operation.

¢ Be able to handle data transfer through an IStream or Istorage interface. Data
transfer to or from a virtual folder is normally handled by transferring one of these two
interface pointers, typically an IStream pointer. The target then calls the interface
methods to extract the data.

¢ As a drop source, the namespace extension must extract the data from storage
and pass it through this interface to the target.

¢ As a drop target, a namespace extension must accept data from a source through
this interface and store it properly.

For a more thorough discussion of how to implement a namespace extension, see
Namespace Extensions.

Dropping Files on the Recycle Bin

Scenario: The user drops a file on the Recycle Bin. Your application or namespace
extension deletes the original file.

Chapter 6 Shell Programmer’s Guide 107

The Recycle Bin is a virtual folder that is used as a repository for files that are no longer
needed. As long as the Recycle Bin has not been emptied, the user can later recover the
file and return it to the file system.

For the most part, transferring shell objects to the Recycle Bin works much like any other
folder. However, when a user drops a file on the Recycle Bin, the source needs to delete
the original, even if the feedback from the folder indicates a copy operation. Normally, a
drop source has no way of knowing which folder its data object has been dropped on.
However, for Windows 2000 and later systems, when a data object is dropped on the
Recycle Bin, the shell will call the data object’s IDataObject::SetData method with a
CFSTR_TARGETCLSID format set to the Recycle Bin’s CLSID (CLSID_RecycleBin). To
handle the Recycle Bin case properly, your data object should be able to recognize this
format and communicate the information to the source through a private interface.

Creating and Importing Scrap Files

Scenario: A user drags some data from an OLE application’s data file and drops it on
the desktop or Windows Explorer.

Windows allows users to drag an object from an OLE application’s data file and drop it
on the desktop or a file system folder. This operation creates a scrap file, which contains
the data or a link to the data. The file name is taken from the short name registered for
the CLSID of the object and the CF_TEXT data. For the shell to create a scrap file
containing data, the application’s IDataObject interface must support the
CF_EMBEDSOURCE clipboard format. To create a file containing a link, IDataObject
must support the CF_LINKSOURCE format.

There are also three optional features that an application can implement to support
scrap files:

e Round-trip support
e Cached data formats
¢ Delayed rendering

Round-trip support

A round trip involves transferring a data object to another container and then back to the
original document. For instance, a user could transfer a group of cells from a
spreadsheet to the desktop, creating a scrap file with the data. If the user then transfers
the scrap back to the spreadsheet, the data needs to be integrated into the document as
it was before the original transfer.

When the shell creates the scrap file, it represents the data as an embedding object.
When the scrap is transferred to another container, it is transferred as an embedding
object, even if it is being returned to the original document. Your application is
responsible for determining the data format contained in the scrap, and putting the data
back into its native format if necessary.

108

Volume 5 Microsoft Windows Shell

To establish the format of the embedded object, determine its CLSID by retrieving the
object’'s CF_OBJECTDESCRIPTOR format. If the CLSID indicates a data format that
belongs to the application, it should transfer the native data instead of calling
OleCreateFromData.

Cached data formats

When the shell creates a scrap file, it checks the registry for the list of available formats.
By default, there are two formats available: CF_EMBEDSOURCE and
CF_LINKSOURCE. However, there are a number of scenarios where applications might
need to have scrap files in different formats:

e To allow scraps to be transferred to non-OLE containers, which cannot accepted
embedded object formats.

e To allow suites of applications to communicate with a private format.
® To make round trips easier to handle.

Applications can add formats to the scrap by caching them in the registry. There are two
types of cached formats:

e Priority cache formats. For these formats, the data is copied in its entirety into the
scrap from the data object.

¢ Delay-rendered formats. For these formats, the data object is not copied to the scrap.
Instead, rendering is delayed until a target requests the data. Delay-rendering is
discussed in more detail in the next section.

To add a priority cache or delay-rendered format, create a DataFormat subkey under
the CLSID key of the application that is the source of the data. Under that subkey, create
a PriorityCacheFormats or DelayRenderFormats subkey. For each priority cache or
delay-rendered format, create a numbered subkey starting with zero. Set the value of
this key to either a string with the registered name of the format, or a #X value, where X
represents the format number of a standard clipboard format.

The following sample shows cached formats for two applications. The MyProg1
application has the rich-text format as a priority cache format, and a private format “My
Format” as a delay-rendered format. The MyProg2 application has the CF_BITMAP
format (“#8”) as a priority cache format.

Chapter 6 Shell Programmer’s Guide 109

Additional formats can be added by creating additional numbered subkeys.

Delayed Rendering

A delayed rendering format allows an application to create a scrap file but delay the
expense of rendering the data until it is requested by a target. The IDataObject interface
of a scrap will offer the delayed rendering formats to the target along with native and
cached data. If the target requests a delayed rendering format, the shell will run the
application and provide the data to the target from the active object.

Note Because delayed rendering is somewhat risky, it should be used with caution. It
will not work if the server is not available, or on applications that are not OLE-enabled.

Dragging and Dropping Shell Objects Asynchronously

Scenario: A user transfers a large block of data from source to target. To avoid blocking
both applications for a significant amount of time, the target extracts the data
asynchronously.

Normally, drag-drop is a synchronous operation. In brief:

1. The drop source calls DoDragDrop and blocks its primary thread until the function
returns. Blocking the primary thread normally blocks Ul processing.

2. After the target’s IDropTarget::Drop method is called, the target extracts the data
from the data object on its primary thread. This procedure normally blocks the target’s
Ul processing for the duration of the extraction process.

3. Once the data has been extracted, the target returns the IDropTarget::Drop call, the
system returns DoDragDrop, and both threads can proceed.

In short, synchronous data transfer can block the primary threads of both applications for
a significant amount of time. In particular, both threads must wait while the target
extracts the data. For small amounts of data, the time required to extract data is small
and synchronous data transfer works quite well. However, synchronously extracting
large amounts of data can cause lengthy delays and interfere with the Ul of both target
and source.

The IAsyncOperation interface is an optional interface that can be implemented by a
data object. It gives the drop target the ability to extract data from the data object
asynchronously on a background thread. Once data extraction is handed off to the
background thread, the primary threads of both applications are free to proceed.

How to use IASyncOperation

The essential purpose of IAsyncOperation is to allow the drop source and drop target to
negotiate whether data can be extracted asynchronously. The following procedure
outlines how the drop source uses the interface:

1. Create a data object that exposes IAsyncOperation.

110 Volume 5 Microsoft Windows Shell

2. Call IAsyncOperation::SetAsyncMode with fDoOpAsync set to VARIANT_TRUE to
indicate that an asynchronous operation is supported.

3. After DoDragDrop returns, call IAsyncOperation::InOperation.

¢ If IAsyncOperation::InOperation fails or returns VARIANT_FALSE, a normal
synchronous data transfer has taken place and the data extraction process is
finished. The source should do any cleanup that is required, and proceed.

¢ |f IAsyncOperation::InOperation returns VARIANT_TRUE, the data is being
extracted asynchronously. Cleanup operations should be handled by
IAsyncOperation::EndOperation.
4. Release the data object.

5. When the asynchronous data transfer is complete, the data object normally notifies
the source through a private interface.

The following procedure outlines how the drop target uses the IAsyncOperation interface
to extract data asynchronously:

1. When the system calls IDropTarget::Drop, call IDataObject::Querylnterface and
request an IAsyncOperation interface (IID_IAsyncOperation) from the data object.

2. Call IAsyncOperation::GetAsyncMode. If the method returns VARIANT_TRUE, the
data object supports asynchronous data extraction.

3. Create a separate thread to handle data extraction and call
IAsyncOperation::StartOperation.

4. Return the IDropTarget::Drop call, as you would for a normal data-transfer operation.
DoDragDrop will return and unblock the drop source. Do not call
IDataObject::SetData to indicate the outcome of an optimized move or delete-on-
paste operation. Wait until the operation is finished.

5. Extract the data on the background thread. The target’s primary thread is unblocked
and free to proceed.

6. If the data transfer was an optimized move or delete-on-paste operation, call
IDataObject::SetData to indicate the outcome.

7. Notify the data object that extraction is finished by calling
IAsyncOperation::EndOperation.

Extending the Shell

Creating a File Association

Files that contain a particular type of data commonly have the same file name extension.
It is appended to the file name, and typically consists of a dot, followed by three
alphanumeric characters. For example, ANSI text files commonly have a .ixt file name
extension.

Chapter 6 Shell Programmer’s Guide 11

Although it is customary, file name extensions are not restricted to three letters on
systems that support long file names. On Microsoft Windows 95 and later systems, you
can use any number of characters you like as long as the file name doesn’t exceed 255
characters.

Note You can use multiple dots in a file name, but only those characters following the
final dot will be recognized as a file name extension. Any other dots will be treated as
part of the file name. Although file names can contain spaces, do not use spaces in file
name extensions.

Defining a File Class

Files with a common file name extension can be defined as members of a file class.
Defining a file class allows you to extend the shell by customizing the behavior of all files
in the class. The Shell Basics section discusses those behaviors that can be customized
by adding registry entries, including:

® Specifying the application used to open the file when it is double-clicked.
® Adding commands to the context menu.
e Specifying a custom icon.

For a greater degree of control over the behavior of a file class, you can write one or
more shell extension handlers. For more information, see Creating Shell Extension
Handlers.

To define a file class, first create a registry key for the extension, including the dot, under
HKEY_CLASSES_ROOT. Set the key’s value to the ProgID for the associated
application. Next, create a second key under HKEY_CLASSES_ROOT for the
application’s ProglID. Set it to a REG_SZ value that describes the application. For
example, to create a file class with a .myp extension and an associated application,
MyProgram.exe with a ProgID of MyProgram.1, the registry entries would be:

HKEY_CLASSES_ROOT = =~ .0
& .,mygzMy?fhgrain,lﬁ

i

‘MyProgram.1=MyProgram Application = .
A user can act on a member of the file class in a variety of ways, such as double-clicking
or right-clicking the file in Windows Explorer. Once these two keys are in place, you can
add subkeys to them to customize the behavior of the file class and its associated
application. When a user acts on a member of the class, the shell’s response will include
the information contained in these keys.

Volume 5 Microsoft Windows Shell

Defining Attributes for a File Class

Assigning attributes to a file class allows you to control some aspects of its behavior. It
also allows you to limit the extent to which the user can modify various aspects of the
class, such as its icon or verbs, with the Folder Options property sheet. The attributes
are defined as binary flags. To assign attributes to a file class, combine the selected
attributes with a logical OR to form a single attribute value. Add an EditFlags
REG_BINARY value to the class’s ProgID key and set it to the attribute value. The
following table lists the file class attributes, and their numerical values.

Flag Value Description

FTA_Exclude 0x00000001 Exclude the file class

FTA_Show 0x00000002 Show file classes, such as folders, that
aren’t associated with a filename extension.

FTA_HasExtension 0x00000004 The file class has a filename extension.

FTA_NoEdit 0x00000008 The registry entries associated with this file
class cannot be edited. New entries cannot
be added and existing entries cannot be
modified or deleted.

FTA_NoRemove 0x00000010 The registry entries associated with this file
class cannot be deleted.

FTA_NoNewVerb 0x00000020 No new verbs can be added to the file class.

FTA_NoEditVerb 0x00000040 Canonical verbs such as open and print
cannot be modified or deleted.

FTA_NoRemoveVerb 0x00000080 Canonical verbs such as open and print
cannot be deleted.

FTA_NoEditDesc 0x00000100 The description of the file class cannot be
modified or deleted.

FTA_NokEditlcon 0x00000200 The icon assigned to the file class cannot
be modified or deleted.

FTA_NoEditDflt 0x00000400 The default verb cannot be modified.

FTA_NoEditVerbCmd 0x00000800 The commands associated with verbs
cannot be modified.

FTA_NoEditVerbExe 0x00001000 Verbs cannot be modified or deleted.

FTA_NoDDE 0x00002000 The DDE-related entries cannot be modified
or deleted.

FTA_NoEditMIME 0x00008000 The content-type and default-extension
entries cannot be modified or deleted.

FTA_OpenlsSafe 0x00010000 The file class’s open verb can be safely

invoked for downloaded files.

Chapter 6 Shell Programmer’s Guide 113

FTA_AlwaysUnsafe 0x00020000 Do not allow the “Never ask me” checkbox
to be enabled. The user can override this
attribute through the File Type dialog box.

FTA_AlwaysShowExt ~ 0x00040000 Always show the file class’s file name
extension, even if the user has selected the
“Hide Extensions” option.

FTA_NoRecentDocs 0x00100000 Don’t add members of this file class to the
Recent Documents folder.

The following example assigns the FTA_NoRemove and FTA_NoNewVerb attributes to
the .myp file class.

HKEY_CLASSES. ROOT

| E4itF1ags=00 9000 30

Excludmg an Application from the Open With Dlalog Box

The Open With dialog box, shown in Figure 6-4, is launched by default when the user
double-clicks a file that is not a member of a file class. It is also usually one of the items
that appears on the context menu that is displayed when the user right-clicks a file. The
purpose of this dialog box is to allow the user to specify which application they want to
use to open the file.

&P Microsoft Schedule+ For Windows 95 _ﬂ .
B myProgram

o ES}ilOutlook Express
e @Wlndows Fault detection utility

Figure 6-4: The Open With dialog box.

114

Volume 5 Microsoft Windows Shell

The applications that are listed on the Open With dialog are registered as subkeys of
HKEY_CLASSES_ROOT\Applications. However, many applications should not be
used to open files that are not members of their associated file class. The preferred way
to exclude an application from the Open With dialog box is to add a NoOpenWith
REG_SZ value name to the application’s subkey. For example, the following sample
registry entry excludes MyProgram.exe from the Open With dialog box.

An alternative way to exclude an application from the Open With dialog box is to append
the application’s file name to Windows Explorer’s kill list. This list is a REG_SZ value of
the HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Explorer\FileAssociation key named KillList. The kil list is
a string consisting of the file names of the applications, separated by semicolons (;). The
following example excludes MyProgram.exe from the Open With dialog box by
appending it to Windows Explorer’s kill list, along with rundll.exe and taskman.exe.

e

R ; e

Customizing Icons

Microsoft Windows supplies default icons for every item displayed on the desktop or in
the Windows Explorer. Mass storage devices, such as disk drives, are also assigned a
default icon. However, these icons often provide little insight to the user as to the
contents of the file or what program is associated with it. You can assign a custom icon
to a file system folder by creating a Desktop.ini file. This document discusses how use
the registry to associate custom icons with file classes and drive letters.

Assigning a Custom Icon to a File Class

By default, all files are displayed on the desktop or in Windows Explorer with a default
icon. For example, Figure 6-5 shows this icon used with MyDocs4.xyz.

All the files displayed in this screen shot contain ANSI text. The reason that the files with
the .txt extension do not display the default icon is that .ixt has been registered as a file
class and assigned a custom icon.

Chapter 6 Shell Programmer’s Guide 115

ocuments

-

7

MyDocs1.tet MyDocs2tst MyDocs3tst MyDocsd.xpz

Figure 6-5: Default file icon.

Assigning a custom icon to a file class is a simple matter. Create a subkey, under the
key for the application’s ProglD, and name it Defaulticon. Assign it a REG_SZ value
containing the fully qualified path for the file with the icon. Any file containing an icon is
acceptable, including .ico, .exe, and .dll files. If there is more than one icon in the file, the
path should be followed by a comma, and then the index of the icon.

Figure 6-6 shows a custom icon that has been assigned to the .myp file class, which was
also used in the example in Creating a File Class. The My Documents directory now
looks like this:

| & My Documents

F@ My Documents

MyDocsl.twt MpDocs2.tet MyDocsd.tet MyDocsd.myp

Figure 6-6: Custom file icon.

In this example, the icon is in the c:\MyDirMyProgram.exe file, with an index of two. The
registry entry that assigns the custom icon to all .myp files is:

116

Volume 5 Microsoft Windows Shell

Assigning a Custom Icon and Label to a Drive Letter

For shell versions 4.71 and later, you can use the registry to replace the standard drive
icon with a custom icon. With versions 5.0 and later, you can also add a custom label.
Custom drive icons and labels are normally used for removable mass storage devices,
such as tape drives, to allow users to easily distinguish them from their system’s hard
and floppy drives.

To replace the standard drive icon with a custom icon, add a subkey named for the drive
letter to HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Explorer\Drivelcons\. The drive letter should not be
followed by a colon (:). Add a Defaultlcon subkey to the drive letter subkey and set its
default value to a string containing the location of the icon. The first part of the string
contains the fully-qualified path of the icon’s file. If there is more than one icon in the file,
the path is followed by a comma, and then the zero-based index of the icon. To add a
custom label, add a DefaultLabel subkey to the drive letter subkey, and set its default
value to a string containing the label.

The following example specifies a custom icon and label for the E: drive. The icon is in
the C:\MyDir\MyDrive.exe file with a zero-based index of three.

If you change the registry programmatically, you must also call SHChangeNotify to notify
the shell to update its cache.

Extending Context Menus

Right clicking an object with Microsoft Windows 95 and later systems usually pops up a
context menu. This menu contains a list of commands that the user can select to perform
various actions on the object. This section is an introduction to context menus for file
system objects.

Context Menus for File System Objects

When a user right-clicks an object, such as a file, that is displayed in Windows Explorer
or on the desktop, a context menu appears with a list of commands. The user can then
perform an action on the file, such as opening or deleting it, by selecting the appropriate
command.

Chapter 6 Shell Programmer’s Guide 117

Because context menus are often used for file management, the shell provides a set of
default commands, such as Cut and Copy, that will appear on the context menu for any
file. Note that although Open With is a default command, it is not displayed for some
standard file classes, such as .wav. Figure 6-7, a sample of the My Documents directory
that was also used as an example in Customizing Icons, shows a default context menu
that was displayed by right-clicking MyDocs4.xyz.

The reason that MyDocs4.xyz shows a default context menu is that it is not a member of
a registered file class. On the other hand, .ixt is a registered file class. If you right-click
one of the .txt files, you will instead see a context menu with two additional commands in
its upper section: Open and Print. (See Figure 6-8.)

Once a file class is registered, you can extend its context with additional commands.
They are displayed above the default commands when any member of the class is right-
clicked. Although most of the commands added in this way are common ones, such as
Print or Open, you are free to add any command that a user might find helpful.

All that is required to extend the context menu for a file class is to create a registry entry
for each command. A more sophisticated approach is to implement a context menu
handler, which allows you extend the context menu for a file class on a file by file basis.
For more information, see Creating Context Menu Handlers.

%= My Documents

Adckg&g l*‘gﬁ My Documents

=5 E

MyDocs1.tet MyDocs2.tt MyDocs3.txt

Open With... -
B sendta o »
cCut iy
< Copy -
Credte Shattout
Dby
«Rename .

| . Emﬁerﬁéé T

T2k

Figure 6-7: Default context menu.

o

118

Volume 5 Microsoft Windows Shell

cBpen i
lel Lm0 MyDocs3

Openwith,

E ‘SendTo r

MyDoc Cut’
 Copy

. Er;éégtelShmtth_
Delete -
'}HW‘amﬁ‘ ; »

: Pmperhes i

ﬁdé’i My Computer T p

Figure 6-8: Context menu associated with a registered file class.

Verbs

Each command on the context menu is identified in the registry by its verb. These verbs
are the same as those used by ShellExecuteEx when launching applications
programmatically. For further information about the use of ShellExecuteEXx, see the
discussion in Launching Applications.

A verb is a simple text string that is used by the shell to identify the associated
command. Each verb corresponds to the command string that would be used to launch
the command in a console window or batch (.bat) file. For example, the open verb
normally launches a program to open a file. lts command string typically looks something
like this:

My ‘Program.exe "%1"

Note If any element of the command string contains or might contain spaces, it must be
enclosed in quotation marks. Otherwise, if the element contains a space, it will not parse
correctly. For instance, “My Program.exe” will launch the application properly. If you use
My Program.exe, the system will attempt to launch “My” with “Program.exe” as its first
command line argument. You should always use quotation marks with arguments such
as “%1” that are expanded to strings by the shell, because you cannot be certain that the
string will not contain a space.

Chapter 6 Shell Programmer’s Guide 119

Verbs can also have a display string associated with them, which is displayed on the
context menu instead of the verb string itself. For example, the display string for openas
is “Open With...”. Like normal menu strings, including an ampersand (&) in the display
string allows keyboard selection of the command.

Canonical Verbs

In general, applications are responsible for providing localized display strings for the
verbs they define. However, to provide a degree of language independence, the system
defines a standard set of commonly used verbs called canonical verbs. A canonical verb
can be used with any language and the system will automatically generate a properly
localized display string. For instance, the open verb’s display string will be set to “Open”
on an English system, and “Offnen” on a German system.

The canonical verbs include:
® open

* print

e explore

¢ find

* openas

e properties

The printto verb is also canonical, but never displayed. It allows the user to print a file
by dragging it to a printer object.

Extended Verbs

When the user right-clicks an object, the context menu contains all the normal verbs.
However, there may be commands that you wish to support, but not have displayed on
every context menu. For example, you may have commands that are not commonly
used, or intended for experienced users. For this reason, you can also define one or
more extended verbs. These verbs are also character strings, and are essentially similar
to normal verbs. They are distinguished from normal verbs by the way they are
registered. To have access to the commands associated with extended verbs, the user
must right-click an object while pressing the SHIFT key. They will then be displayed
along with the normal verbs.

Extending the Context Menu for a File Class

The simplest way to extend the context menu for a file class is with the registry. To do
this, add a shell subkey, below the key for the ProgID of the application associated with
the file class. Optionally, you can define a default verb for the file class by making it the
default value of the shell subkey.

The default verb is displayed first on the context menu. Its purpose is o provide the shell
with a verb it can use when ShellExecuteEXx is called, but no verb is specified. The shell
does not necessarily select the default verb when ShellExecuteEx is used in this

120

Volume 5 Microsoft Windows Shell

fashion. For shell versions 5.0 and later, found on Windows 2000 and later systems, the
shell uses the first available verb from the following list. If none are available, the
operation fails.

1. The open verb

2. The default verb

3. The first verb in the registry
4. The openwith verb

For shell versions prior to version 5.0, omit item three.

Below the shell subkey, create one subkey for each verb you wish to add. Each of these
subkeys will have a REG_SZ value set to the verb’s display string. You can omit the
display string for canonical verbs because the system will automatically display a
properly localized string. If you omit the display string for non-canonical verbs, the verb
string will be displayed. For each verb subkey, create a command subkey, with the
default value set to the command string.

Figure 6-9 shows a context menu for the .myp file class used in Creating a File
Association and Customizing Icons. It now has open, doit, print, and printto verbs on.
its context menu, with doit as the default verb. The context menu will look like this:

My Documents

j> &iidrm}@ My Du;;mentsm

] MyDocsl.tet MyDocs2itst MyDocs3.txt

Figure 6-9: Context menu for the .myp file class.

Chapter 6 Shell Programmer’s Guide 121

The registry entries used to extend the context menu shown in the preceding illustration
are:

Although the “Open With...” command is above the first separator, it is automatically
created by the system and doesn’t require a registry entry. The system will automatically
create display names for the canonical verbs, open and print. Because doit is not a
canonical verb, it is assigned a display name, “&Do It”, which can be selected by
pressing the ‘d’ key. The printto verb does not appear on the context menu, but
including it allows the user to print files by dropping them on a printer icon. In this
example, %1 represents the file name and %2 the printer name. You can ignore %3 and
%4 for Windows 95 and later systems. For Windows 3.1 systems, %3 represents the
driver name and %4 the port name. Unlike most similar arguments, the %3 and %4
arguments of printto should not be enclosed in quotation marks.

Defining Extended Verbs

You can also use the registry to define one or more extended verbs. The associated
commands will only be displayed when the user right-clicks an object while also pressing
the shift key. To define a verb as extended, simply add an “extended” REG_SZ value to
the verb’s subkey. The value should not have any data associated with it. The following
sample registry entry shows the example from the previous section, with doit defined as
an extended verb.

(continued)

122

Volume 5 Microsoft Windows Shell

(continued)

Associating Verbs with DDE Commands
Invoking a verb normally launches the application specified by the verb’s command

subkey. However, if your application supports DDE, you can instead have the shell
initiate a DDE conversation.

To specify that invoking a verb should initiate a DDE conversation, add a ddeexec
subkey to the verb’s key. Set the default value of ddeexec to the DDE command string.
The ddeexec key has three optional subkeys that provide some control over the DDE
process.

e application. Set the default value of this subkey to the application name to be used to
establish the DDE conversation. If there is no application subkey, the default value of
the verb’s command subkey is used as the application name.

¢ topic. Set the default value of this subkey to the topic name of the DDE conversation.
If there is no topic subkey, System is used as the topic name.

¢ ifexec. Set the default value of this subkey to the DDE command to be used if DDE
conversation cannot be initiated. When initiation fails, the application specified by the
default value of the verb’s command subkey is launched. If an ifexec key exists, its
default value will then be used as the DDE command. If there is no ifexec subkey, the
default value of the ddeexec key will used again as the DDE command.

The following example specifies that invoking the open verb for MyProgram.1 initiates a
DDE conversation with a DDE command of Open(“%1”), and an application name of
MyProgram.

HKEY_CLASSES_ROOT

Extending the New Submenu

When a user opens the File menu in Windows Explorer, the first command is New.
Selecting this command displays a submenu. By default, it contains two commands,
Folder and Shortcut, that allow users to create subfolders and shortcuts. This submenu
can be extended to include file creation commands for any file class.

Chapter 6 Shell Programmer’s Guide 123

To add a file-creation command to the New submenu, your application’s files must have
a file class associated with them. Include a ShellNew subkey, under the file extension
key. When the File menu’s New command is selected, the shell will add it to the New
submenu. The command’s display string will be the descriptive string that is assigned to
the program’s ProgID.

Assign one or more data values to the ShellNew subkey to specify the file creation
method. The available values follow:

Value Description

Command Executes an application. This is an REG_SZ value specifying the path of
the application to be executed. For example, you could set it to launch a
wizard.

Data Creates a file containing specified data. Data can be either a REG_SZ or
REG_BINARY value with the file’s data. Data is ignored if either NuliFile
or FileName are specified.

FileName Creates a file that is a copy of a specified file. FileName is a REG_SZ
value, set to the fully qualified path of the file to be copied.

NuliFile Creates an empty file. NullFile is not assigned a value. If NullFile is
specified, Data and FileName are ignored.

Figure 6-10 shows the New submenu for the .myp file class used as an example in
Creating a File Association and Customizing Icons. It now has a command, “MyProgram
Application”. When a user selects MyProgram Application from the New submenu, the
shell will create a file named “New MyProgram Application.myp” and pass it to
MyProgram.exe.

Figure 6-10: The New submenu for the .myp file class.

124

Volume 5 Microsoft Windows Shell

Customizing Folders with Desktop.ini

The registry entry is now:

2 i

%4

File system folders are commonly displayed with a standard icon and set of properties,
which specify, for instance, whether or not the folder is shared. You can customize the
appearance and behavior of an individual folder in two ways:

e Create a Desktop.ini file for the folder
o Create a Folder.htt template for the folder

Folders can be displayed in either Classic or Web style. For a detailed discussion of
these styles, see Web View. The Desktop.ini file, discussed here, applies to both styles.
It allows you to assign a custom icon to a folder and control its behavior in a limited way.

To customize the folder’s style beyond what is possible with the Desktop.ini file, you
must create a custom Folder.htt template for the folder. This file will affect only the
appearance of the folder when the Web style is selected. If this template is not present in
the folder, the shell uses a default template. For further discussion of .htt templates, see
The Web View Template.

Using Desktop.ini Files

Folders are normally displayed with the standard folder icon. The most common use of
the Desktop.ini file is to assign a custom icon to a folder. This icon will be displayed in
Classic style as well as Web style, and it will appear next to the folder’s name anywhere
the name appears. You can also use Desktop.ini to create an infotip that displays
information about the folder and controls some aspects of the folder’s behavior, such as
whether it can be shared.

Chapter 6 Shell Programmer’s Guide 125

Use the following procedure to customize a folder’s style with Desktop.ini:

¢ Use PathMakeSystemFolder to make the folder a system folder. You can also make
a folder a system folder from the command line by using attrib +s FolderName.

¢ Create a Desktop.ini file for the folder. You should mark it as hidden and read-only to
protect it from being modified.

Creating a Desktop.ini File

The Desktop.ini file is a text file that allows you to specify how a file system folder will be
viewed. There are three sections in the file. The first two, [ExtShellFolderViews] and
[{5984FFE0-28D4-11CF-AE66-08002B2E1262}] are necessary only if you want to use a
custom Folder.htt template. If you omit them, the system will use the default template. To
use a custom Folder.htt template, you must include these two sections into the
Desktop.ini file exactly as they are shown:

[ExtSheTIFeld%rV1ews]

Persigtﬁon1kermf1ié CEIFolder hEE

The third section, [.ShellClassinfo], allows you to customize the folder’s view by
assigning values to several entries:

Entry Value

ConfirmFileOp Set this entry to 0 to avoid a “You Are Deleting a System Folder”
warning when deleting or moving the folder.

NoSharing Set this entry to 1 to prevent the folder from being shared.

IconFile If you want to specify a custom icon for the folder, set this entry to
the icon’s file name. The .ico file extension is preferred, but it is also
possible to specify .omp files, or .exe and .dll files that contain icons.
If you use a relative path, the icon will be available to people who
view the folder over the network. You must also set the Iconindex

entry.
Iconindex Set this entry to specify the index for a custom icon. If the file
assigned to IconFile only contains a single icon, set iconindex to 0.
InfoTip Set this entry to an informational text string. It will be displayed as an

infotip when the cursor hovers over the folder. If the user clicks on
the folder in a Web view, the information text will be displayed in the
folder’s information block, below the standard information.

126

Volume 5 Microsoft Windows Shell

The following lllustratlons are of the Music folder with a custom Desktop.ini file. The
folder now:
® Has a custom icon.

* Does not display a “You Are Deleting a System Folder” warning if the folder is moved
or deleted.

e Cannot be shared.
¢ Displays informational text when the cursor hovers over the folder.

The folder options in Figures 6-11 through 6-13 have been set to show hidden files, so
that Desktop.ini is visible. A folder needs only its own Folder.htt template if it does not
use the default template. The Web style view of the folder looks like this:

desklop ini
Folder.ico

| Desktop
&5 My Documents
E My Computer
- 3% Floppy (&)
E] e Yolume1 (C:) :
' ®-{7 Documents and 56~ -
«{Z] M5D0S7
: L;] My Documents

RS x|, O
I l L:] Program Files ™}
4] - A e

Figure 6-11: Web view of the Music folder.

When the cursor hovers over the folder, the infotip is displayed.

Chapter 6 Shell Programmer’s Guide 127

v Fﬁiders @HIS':OW!%% X l B

:| @ 6o

L L — |

| Desktop
&y My Documents
] @ My Computer

=

MyDir

n My _Data

m]
Some sensible information

| - 3% Floppy (&)

] El 23 Yolumel (C:)
¢ @23 Documents and S¢

MSDOS?7

{22 My Documents

=8 (;fﬁ MyDir

u My Data

o) {_3 F'rogtam FI|'ES

(]

Select an item to view its
description.

See also:
My Documents

My Network Places
My Computer

Figure 6-12: Infotip displayed over the folder.

The Classic style of this folder is similar, with the custom icon replacing the folder icon
everywhere the folder name appears.

The following desktop.ini file was used to customize the Music folder, as seen in Figures
6-11 through 6-13. For instructional purposes, it includes the optional sections that are
needed if you want to use a custom Folder.htt template.

B C:\yr\yala)

Addfess r C M yD II'"\M y_D ata

{4 My Documents
g My Computer

My_Data

| DeSkmp :"]ﬂ IJ ElFolderico

G-y 3% Floppy &)
E] @ Volume1 [C:)

D Documents and Se— (

MSDOS?
7] My Documents
B3 MyDir
= m |ty Data
B-Z3 Program Files

Select an item to view its
description.

See also:
My Documents

My Network Places
My Computer

Figure 6-13: Custom icon in use throughout the dialog box.

128 Volume 5 Microsoft Windows Shell

Creatmg an AutoPIay Enabled CD-ROM Application

Microsoft AutoPlay is a feature of the Microsoft Windows operating system. It automates
the procedures for installing and configuring products designed for Windows-based
platforms that are distributed on CD-ROMs. When users insert an AutoPlay-enabled
compact disc into their CD-ROM drive, AutoPlay automatically runs an application on the
CD-ROM that installs, configures, or runs the selected product. If you want your CD-
ROM product to display the Microsoft Windows 95 logo, it must be enabled for AutoPlay.

AutoPlay can be used to install and run CD-ROM applications written for MS-DOS,
Windows 3.0 and Windows 3.1, and all 32-bit versions of Windows. Although AutoPlay is
most commonly used for Windows applications, it can also be used to install, configure,
or run MS-DOS-based applications in a Windows MS-DOS session. You can configure
each MS-DOS-based application with its own unique icon, Config.sys file, and
Autoexec.bat file. Windows creates the correct configuration files for the MS-DOS—based
application. The startup application then starts the MS-DOS-based application in a
window.

There are two essential requirements that a system must meet in order for AutoPlay to
work.

e The system must be running Windows 95, Windows NT 4.0, or later versions. MS-
DOS, Windows versions 3.1 and earlier, and Windows NT versions 3.51 and earlier
do not support AutoPlay. You can use AutoPlay-enabled CD-ROMs in such systems.
However, the AutoPlay features will be ignored, and the CD-ROMs will behave as
ordinary CD-ROMs.

e The CD-ROM drive must have 32-bit device drivers that detect when a user inserts a
compact disc and notify the system. Device drivers for MS-DOS or 16-bit versions of
Windows do not have this feature.

The following sections discuss how to implement an AutoPlay-enabled CD-ROM
application.

Chapter 6 Shell Programmer’s Guide 129

Creating an AutoPlay-Enabled Application

Creating an AutoPlay-enabled CD-ROM application is a straightforward procedure. You
simply include two essential files:

® An Autorun.inf file
¢ A startup application

When a user inserts a disc into a CD-ROM drive on a AutoPlay-compatible computer,
the system immediately checks to see if the disc has a personal computer file system. If
it does, the system searches for a file named Autorun.inf. This file specifies setup
application that will be run, along with a variety of optional settings. The startup
application typically installs, uninstalls, configures, and perhaps runs the application.

Creating an Autorun.inf File

Autorun.inf is a text file located in the root directory of the CD-ROM that contains your
application. Its primary function is to provide the system with the name and location of
the application’s startup program that will be run when the disc is inserted. The
Autorun.inf file can also contain optional information including:

¢ The name of a file that contains an icon that will represent your application’s CD-ROM
drive. This icon will be displayed by Microsoft Windows Explorer in place of the
standard drive icon.

¢ Additional commands for the context menu that is displayed when the user right-clicks
the CD-ROM icon. You can also specify the default command that is run when the
user double-clicks the icon.

Autorun.inf files are similar to .ini files. They consist of one or more sections, each
headed by a name enclosed in square brackets. Each section contains a series of
commands that will be run by the shell when the disc is inserted. There are two sections
that are currently defined for Autorun.inf files:

¢ The [autorun] section contains the default AutoPlay commands. All Autorun.inf files
must have an [autorun] section.

¢ An optional [autorun.alpha] section can be included for Microsoft Windows NT 4.0
and later systems running on RISC-based computers. When a disc is inserted in a
CD-ROM drive on a RISC-based system, the shell will run the commands in this
section instead of those in the [autorun] section.

Note The shell checks for an architecture-specific section first. If it does not find one, it
uses the information in the [autorun] section. After the shell finds a section, it ignores all
others, so each section must be self-contained.

130

Volume 5 Microsoft Windows Shell

Each section contains a series of commands that determine how the Autorun operation
takes place. There are five commands available:

Command Description

defaulticon Specifies the default icon for the application.

icon Specifies thg path and file name of an application-specific icon for the
CD-ROM drive.

open Specifies the path and file name of the startup application.

shell Defines the default command in the CD-ROM’s context menu.

shell\verb Adds commands to the CD-ROM'’s context menu.

The following is an example of a simple Autorun.inf file. It specifies Filename.exe as the
startup application. The second icon in Filename.exe will represent the CD-ROM drive
instead of the standard drive icon.

This Autorun.inf sample runs different startup applications depending on the type of
computer:

deon=Tcon

Tips for Writing AutoPlay Startup Applications
There are essentially no constraints on how to write an AutoPlay startup application. You
can implement it to do whatever you find necessary to install, uninstall, configure, or run

your application. However, the following tips provide some guidelines to implementing an
effective AutoPlay startup application.

O

¢ Users should receive feedback as soon as possible after they insert an AutoPlay
compact disc into the CD-ROM drive. Startup applications should thus be small
programs that load quickly. They should clearly identify the application and provide an
easy way to cancel the operation.

Chapter 6 Shell Programmer’s Guide 131

e Typically, the initial part of the startup application presents users with a user interface,
such as a dialog box, asking them how they would like to proceed. Check to see if the
program is already installed. If not, the next step will probably be the setup procedure.
The startup application can take advantage of the time the user spends reading the
dialog box by starting another thread to begin loading the setup code. By the time the
user clicks OK, your setup program will already be partly if not fully loaded. This
approach significantly reduces the user’s perception of the amount of time it takes to
load your application.

¢ |f the application has already been installed, the user probably inserted the disk to run
the application. As with the setup case, you can start another thread to begin loading
application code to shorten the waiting time for the user.

¢ Hard disk space may be a limited resource on many systems. Here are a few hints for
minimizing hard disk usage:
o Keep the number of files that must be on the hard disk to a minimum. They should
be restricted to files that are essential to running the program or that would take an
unacceptably large amount of time to read from the CD-ROM.

* In many cases, installing nonessential files on the hard disk is not necessary, but
may provide benefits such as increased performance. Give the user the option of
deciding how to make the tradeoff between the costs and benefits of hard disk
storage.

¢ Provide a way to uninstall any components that were placed on the hard disk. For
more information about uninstalling an application, see Installing Applications.

¢ If your application caches data, give the user some control over it. Include options
in the startup application such as setting a limit on the maximum amount of cached
data that will be stored on the hard disk, or having the application discard any
cached data when it terminates.

Autorun.inf Commands

This document is a reference for the commands that can be used in an Autorun.inf file.

icon

The icon command specifies an icon which represents the AutoPlay-enabled drive in the
Windows user interface.

fcon=iconfilenamel index] o i aino

Parameters

iconfilename
Name of an .ico, .bmp, .exe, or .dll file containing the icon information. If a file
contains more than one icon, you must also specify zero-based index of the icon.

132

Volume 5 Microsoft Windows Shell

Remarks

The icon represents the AutoPlay-enabled drive in the Microsoft Windows user interface.
For instance, in Windows Explorer, the drive will have this icon instead of the standard
drive icon. The icon’s file must be in the same directory as the file specified by the open
command.

The following example specifies the second icon in the MyProg.exe file.
YéansiyProg.exe;

label

The label command specifies a text label to represent the AutoPlay-enabled drive in the
Windows user interface.

Tabel=Label Te)

Parameters

LabelText
A text string containing the label. It may contain spaces.

Remarks

The label represents the AutoPlay-enabled drive in the Microsoft Windows user
interface. If an icon is also specified, the label will be displayed below it.

The following example specifies “My Drive Label” as the drive’s label.

Tabel=My Drive Label .

open

The open command specifies the path and file name of the application that AutoPlay
runs when a user inserts a disc in the drive.

‘open=[exepath\lexafile [paraml [paranZ

Parameters

exefile
Fully qualified path of an executable file that will be run when the compact disc is
inserted. If only a file name is specified, it must be in drive’s root directory. To locate
the file in a subdirectory, you must specify a path. You can also include one or more
command-line parameters to be passed to the startup application.

Chapter 6 Shell Programmer’s Guide 133

Remarks
See Tips for Writing AutoPlay Startup Applications for further discussion of startup
applications.

shellexecute

The shellexecute command specifies an application or data file that AutoPlay will use to
call ShellExecuteEx.

Parameters
filepath
A string containing the fully-qualified path of the directory that contains the data or
executable file. If no path is specified, the file must be in the drive’s root directory.
filename
A string containing the file’s name. If it is an executable file, it will be launched. If it is a
data file, it must be a member of a file class. ShellExecuteEx will launch the default
command associated with the file class.

paramx
Any additional parameters that should be passed to ShellExecuteEx.

Remarks

This command is similar to open, but it allows you to use file association information to
run the application.

shell

The shell command specifies a default command for the drive’s context menu.

i 0N

Parameters
verb
The verb that corresponds to the command. The verb and its associated command
must be defined in the Autorun.inf file with a shell/verb command.

Remarks

When a user right-clicks the drive icon, a context menu will appear. If an Autorun.inf file
is present, the default context menu command is taken from it. This command is also
executed when the user double-clicks the drive’s icon.

134 Volume 5 Microsoft Windows Shell

To specify the default context menu command, first define its verb, command string, and
menu text with shell/verb. Then use shell to make it the default context menu command.

Otherwise, the default menu item text will be “AutoPlay”, which will launch the application
specified by the open command.

shell\verb

The shell\verb command adds a custom command to the drive’s context menu.

Parameters

verb
The command’s verb. The shell\verb\command command associates the verb with
an executable file. Verbs must not contain embedded spaces. By default, verb is the
text that is displayed in the context menu.

Filename.exe
The path and file name of the application that performs the command.

MenuText
This parameter specifies the text that is displayed in the context menu. If it is omitted,
verb is displayed. MenuText can be mixed-case and may contain spaces. You can set
a shortcut key for the menu item by putting an ampersand (&) in front of the letter.

Remarks

When a user right-clicks the drive icon, a context menu will appear. Adding shell/verb
commands to the drive’s Autorun.inf file allows you to add commands to this context
menu.

There are two parts to this command, which must be on separate lines. The first part is
shell/verb/command, and is required. It associates a string, called a verb, with the
application to be launched when the command is run. The second part is the shell/verb
command, and is optional. It can be included to specify the text that is displayed in the
context menu.

To specify a default context menu command, define the verb with shell/verb, and make
it the default command with shell.

The following sample Autorun.inf fragment associates the readit verb with the command
string “Notepad abc\readme.txt”. The menu text is “Read Me”, and ‘M’ is defined as the
item’s shortcut key. When the user selects this command, the drive’s abc\readme.txt file
will be opened with Notepad

gy 3t N e f Rt

4she:1\read1tﬁaead aMe

Chapter 6 Shell Programmer’s Guide 135

Enabling and Disabling AutoPlay

There are many situations where AutoPlay may need to be temporarily or persistently
disabled. For example, AutoPlay might interfere with the operation of a running
application and need to be disabled for the duration. The system provides several ways
to disable AutoPlay.

Suppressing AutoPlay Programmatically

There are a variety of situations where AutoPlay may need to be suppressed
programmatically. Two examples are:

* Your application has a setup program that requires the user to insert another disc that
may contain an Autorun.inf file.

¢ During the operation of your application, the user may need to insert another disc that
may contain an Autorun.inf file.

In either case, you will normally not want to launch another application while the original
is in progress.

Users can manually suppress AutoPlay by holding down the SHIFT key when they insert
the CD-ROM. However, it is usually preferable to handle this operation programmatically
rather than depending on the user.

With systems that have shell version 4.70 and later, Microsoft Windows sends a
“QueryCancelAutoPlay” message to the foreground window. Your application can
respond to this message to suppress AutoPlay. This approach is used by system utilities
such as the Open common dialog box to disable AutoPlay. You will not get a
“QueryCancelAutoPlay” message with versions of Windows 95 that do not have the
Internet Explorer 4.0 integrated shell installed.

The following code fragments illustrate how to set up and handle this message. Your
application must be running in the foreground window. First, register
“QueryCancelAutoPlay” as a Windows message:

Your application’s window must be in the foreground to receive this message. The
message handler should return TRUE to cancel AutoPlay and FALSE to enable it. The
following code fragment illustrates how to use this message to disable AutoPlay.

136 Volume 5 Microsoft Windows Shell

If your application is using a dialog box and needs to respond to a
“QueryCancelAutoPlay” message, it cannot simply return TRUE or FALSE. Instead, call
SetWindowLong with nindex set to DWL_MSGRESULT. Set the dwNewLong parameter
to TRUE to cancel AutoPlay and FALSE to enable it. For example, the following sample
dialog procedure cancels AutoPlay when it receives a “QueryCancelAutoPlay” message.

(S Le ks

Chapter 6 Shell Programmer’s Guide 137

Using the Registry to Disable AutoPlay

There are two registry values that can be used to persistently disable AutoPlay:
NoDriveAutoRun and NoDriveTypeAutoRun. The first value disables AutoPlay for
specified drive letters and the second disables AutoPlay for a class of drives. If either of
these values is set to disable AutoPlay for a particular device, it will be disabled.

Note The NoDriveAutoRun and NoDriveTypeAutoRun values should only be modified
by system administrators to change the value for the entire system for testing or
administrative purposes. Applications should not modify these values, as there is no way
to reliably restore them to their original values.

The NoDriveAutoRun value disables AutoPlay for specified drive letters. Itis a
REG_DWORD data value, found under the
HKEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Policies\Explorer key. The first bit of the value corresponds
to A:, the second to B:, and so on. To disable AutoPlay for one or more drive letters, set
the corresponding bits. For example, to disable the A: and C: drives, set
NoDriveAutoRun to 0x00000005.

The NoDriveTypeAutoRun value disables AutoPlay for a class of drives. It is a
REG_DWORD or 4-byte REG_BINARY data value, found under the
HKEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Policies\Explorer key. By setting the bits of this value’s first
byte, different drives can be excluded from working with AutoPlay.

The following table gives the bits and bitmask constants, that can be set in the first byte
of NoDriveTypeAutoRun to disable AutoPlay for a particular drive type. For Microsoft
Windows NT and Windows 2000, you must restart Windows Explorer before the
changes take effect.

Bit number Bitmask constant Description

0x04 DRIVE_REMOVEABLE Disk can be removed from drive (such as
a floppy disk).

0x08 DRIVE_FIXED Disk cannot be removed from drive
(a hard disk).

0x10 DRIVE_REMOTE Network drive.

0x20 DRIVE_CDROM CD-ROM drive.

0x40 DRIVE_RAMDISK RAM disk.

138

Volume 5 Microsoft Windows Shell

AutoPlay for Other Types of Storage Media

AutoPlay is primarily intended for public distribution of applications on CD-ROM and
DVD-ROM. However, it is often useful to enable AutoPlay on other types of removable
storage media. This feature is typically used simplify the debugging of AutoRun.inf files.
AutoPlay only works on removable storage devices when the following criteria are met:

* The device must have AutoPlay-compatible drivers. To be AutoPlay-compatible, a
driver must notify the system that a disk has been inserted by sending a
WM_DEVICECHANGE message.

* The root directory of the inserted media must contain an Autorun.inf file.
® The device must not have AutoPlay disabled through the registry.
e The foreground application has not suppressed AutoPlay.

Note This feature should not be used to distribute applications on floppy disks.
Because implementing AutoPlay on a floppy disk provides an easy way to spread
computer viruses, users should be suspicious of any publicly distributed floppy disk that
contains an Autorun.inf file.

Normally, AutoPlay starts automatically, but it can also be started manually. If the device
meets the criteria listed above, the drive letter’'s context menu will include an AutoPlay
command. To run AutoPlay manually, either right-click the drive icon and select
AutoPlay from the context menu or double-click the drive icon. If the drivers are not
AutoPlay-compatible, the context menu will not have an AutoPlay item and AutoPlay
can not be started.

AutoPlay-compatible drivers are provided with some floppy disk drives, as well as some
other types of removable media such as Compact Flash cards. AutoPlay also works with
network drives that are mapped to a drive letter with Windows Explorer or mounted with
the Microsoft Management Console (MMC). As with mounted hardware, a mounted
network drive must have an Autorun.inf file in its root directory, and must not be disabled
through the registry.

Note Please see the companion DVD at the back of Volume 1: Base Services for
information about advanced shell topics.

139

CHAPTER 7

Shell Interfaces

Shell Interface Overview

As mentioned previously, a large number of standard interfaces are defined by the shell
and declared in shlobj.h. Most fall into one of three general categories:

¢ |Interfaces that are exposed by folders and available for use by applications.

¢ Interfaces that are exposed by folders but used only by the shell. These interfaces
generally are not used by applications, but must be implemented by namespace
extensions.

¢ Interfaces that are used by shell extensions, such as shell extension handlers or band
objects. These interfaces are covered in the discussion of the associated shell
extension.

This chapter provides comprehensive information for Shell Interfaces. The standard
structure of the sections in this chapter is that the name of the interfaces is presented as
a header (such as the first section, IACList), followed by the interface’s associated
methods (such as IACList::Expand). Some interfaces have only one interface, others
have many; regardless, the presentation of the interface overview, followed by its
methods, is consistent throughout the chapter. Hopefully, you'll find this presentation of
Shell Interfaces intuitive, and it'll help you get your Shell programming information
quickly and easily—because that is the intent behind this chapter’s structure.

If you have feedback about this structure, or suggestions on how to make it more
intuitive or more accessible, you can send me an e-mail message at
winprs @ microsoft.com. While | can’t guarantee I'll answer (nor can | provide technical or
usage support), you can be assured that I'll read it and consider your suggestions.

Shell Interfaces

IACList

The IACList interface is designed to improve the efficiency of autocompletion when the
candidate strings are organized in a hierarchy.

Autocompletion normally requires three components:

e The autocompletion client. This client is a window, such as a dialog box, that hosts
the edit control.

140

Volume 5 Microsoft Windows Shell

e The autocompletion object (CLSID_AutoComplete). This object is provided by the
system, and handles the user interface, parsing, and background thread
management.

e The autocompletion list object. This object is responsible for providing lists of
candidate strings to the autocompletion object.

A simple autocompletion list object needs to export only IEnumString in addition to
IUnknown. When the user starts to enter characters in the edit box, the autocompletion
object calls the list object’s IEnumString interface to enumerate the list of strings that
can be used to complete the partial string. The list object is responsible for maintaining a
namespace and deciding which of those strings are relevant.

The simplest approach a list object can take is to return every string in its namespace
every time the autocompletion object makes a request. For a discussion of how to
implement this type of list object, see IAutoComplete. However, this approach is
practical only if the namespace is relatively small. When large numbers of strings are
involved, the list object needs to restrict itself to a small subset of the namespace.

The IACList interface is exported by autocompletion list objects to help them choose a
sensible subset of strings from a hierarchically organized namespace. With a large
namespace, this procedure substantially increases the efficiency of autocompletion. The
basic procedure is:

1. The AutoComplete object calls the list object's IEnumString interface. The list object
returns the names of the top-level items in the hierarchy. For instance, if the
namespace consists of every file and folder on the C: drive, the list object returns the
fully qualified paths of the folders and files contained by the C:\ directory.

2. Users continue to type until they enter a delimiter. The '\ and /' characters are
recognized as delimiters by the autocompletion object.

3. The autocompletion object calls the list object’s IACList::Expand method and passes
it the current partial string.

4. The autocomplete object then calls the list object's IEnumString interface again to
request a new list of strings. If the partial string matches one of the top-level items in
the namespace, the list object returns the names of the items that fall immediately
under the selected item. For instance, if the user has entered “C:\Program Files\”, the
list object returns the names of the files and folders contained in that directory. If the
name passed to IACList::Expand does not match any top-level item, the list object
can stop returning strings until the autocomplete object calls IACList::Expand with a
string that is in the list object's namespace.

5. The process continues until the user selects a string, typically by pressing the
ENTER key.

When to Implement

This interface is implemented by autocompletion list objects that maintain a hierarchically
organized namespace. It is essential for acceptable performance if the namespace is
large.

Chapter 7 Shell Interfaces 141

When to Use
Applications normally do not use this interface.

Methods
IACList exposes the following method in addition to IlUnknown:

Expand Requests that the autocomplete object expand a string.

Version 5.00 and later of SheIIS2.dII.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IACList::Expand

Requests that the autocompletion client generate candidate strings associated with a
specified item in its namespace.

Parameters

pszExpand
[in] NULL-terminated string to be expanded by the autocomplete object.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Remarks

The autocomplete object calls this method when a delimiter is entered in the edit control.
If the string pointed to by pszExpand matches an item in the autocompletion client’s
namespace, the client generates strings for those items that fall immediately under
pszExpand in its namespace hierarchy. The client returns those strings next time the
autocompletion object calls the client’s IEnumString interface.

Assume, for example, that the client’s namespace consists of all the files and folders on
the C: drive, and pszExpand is set to “C:\Program Files\". The client should generate a
list of strings corresponding to the fully qualified paths of the files and subfolders of
“C:\Program Files\".

142

Volume 5 Microsoft Windows Shell

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shiobj.h.

JACList

IACList2

The IACList2 interface extends the IACList interface to allow clients of an autocomplete
object to retrieve and set option flags.

When to Implement

Autocompletion clients implement this interface to allow the autocomplete object to
retrieve and set options. The options are basically a request that the client generate a list
with the names of all the files and subfolders contained by one or more specified folders.
The autocomplete object then calls the client’s IEnumString interface to request the
strings.

When to Use

This interface normally is not used by applications.

Methods

IACList2 exposes the following methods in addition to IlUnknown:
GetOptions Retrieves the current autocomplete options.
SetOptions Sets the current autocomplete options.

.

o

Version 5.00 and later of Shellsé.dll. |

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shiobj.h.

Chapter 7 Shell Interfaces 143

IACList2::GetOptions

Retrieves the current autocomplete options.

Parameters

padwFlag
[out] Address of a value that will hold the current option flag when the method returns.
It can be a combination of the following values:

ACLO_CURRENTDIR Enumerate the current working directory.
ACLO_DESKTOP Enumerate the Desktop folder.
ACLO_FAVORITES Enumerate the Favorites folder.
ACLO_MYCOMPUTER Enumerate the My Computer folder.
ACLO_NONE Do not enumerate anything.

Return Values

Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

R o e

IACList2

IACList2::SetOptions

Sets the current autocomplete options.

144 Volume 5 Microsoft Windows Shell

Parameters
dwFlag

[in] New option flags. They are used to ask the client to include the names of the files
and subfolders of the specified folders the next time its IEnumString interface is
called. It can be one or more of the following flags:

ACLO_CURRENTDIR
ACLO_DESKTOP
ACLO_FAVORITES
ACLO_MYCOMPUTER
ACLO_NONE

Return Values

Enumerate the current working directory.
Enumerate the Desktop folder.
Enumerate the Favorites folder.
Enumerate the My Computer folder.

Do not enumerate anything.

Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IACList2

IActiveDesktop Interface

Allows a client program to manage the desktop items and wallpaper on a local computer.

Methods
AddDesktopltem
AddDesktopltemWithUI

AddUrl

ApplyChanges
GenerateDesktopltemHtml

GetDesktopltem
GetDesktopltemByID

Adds a desktop item.

Adds a desktop item to the Active Desktop using a user
interface.

Adds the desktop item associated with the specified
URL.

Applies changes to the Active Desktop.

Generates a generic HTML page containing the given
desktop item.

Retrieves the specified desktop item.

Retrieves the desktop item that matches the given
identification.

Chapter 7 Shell Interfaces 145

GetDesktopltemBySource Retrieves a desktop item using its source URL.

GetDesktopltemCount Retrieves a count of the desktop items.
GetDesktopltemOptions Retrieves the desktop item’s options.
GetPattern Retrieves the pattern being used currently.
GetWallpaper Retrieves the wallpaper being used currently.
GetWallpaperOptions Retrieves the wallpaper options.
ModifyDesktopltem Modifies the desktop item.
RemoveDesktopltem Removes the specified desktop item from the desktop.
SetDesktopltemOptions Sets the item’s options.

SetPattern Sets the ActiveDesktop pattern.
SetWallpaper Sets the wallpaper for the Active Desktop.
SetWallpaperOptions Sets the wallpaper options.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.
Header: Declared in shiobj.h.

IActiveDesktop::AddDesktopltem Method

Parameters

pcomp
Address of the COMPONENT structure associated with the item to be added.

dwReserved
Reserved. Must be set to zero.

Return Value
Returns one of the following values:

146 Volume 5 Microsoft Windows Shell

E_FAIL Failed to add the desktop item or an instance of the desktop item
already exists on the Active Desktop.

E_INVAILDARG One or more of the parameters were invalid.

S_OK Desktop item has been added successfully.

Remarks

The desktop item is added to the desktop, but it does not save it to the registry. The
client application must call IActiveDesktop::ApplyChanges separately to update the

registry.

Version 4.71 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shilobj.h.

%4,

Active Desktop Interface (overview), IActiveDesktop

IActiveDesktop::AddDesktopltemWithUl Method

Adds a desktop item to the Active Desktop after displaying user interfaces that confirm
the addition of the desktop item, verify security zone permissions, and ask if the user
wants to create a subscription.

LT AddDesktopTtemlithile

“LPCOMPONENT pcon
MO dvrlags

Parameters

hwnd
Handle of the parent window. If NULL, the desktop item will be added without
displaying any user interface.

pcomp
Address of the COMPONENT structure containing the details of the desktop item to
be added.

Chapter 7 Shell Interfaces 147

dwFlags
Unsigned long integer value that contains the flags that control how the desktop item
is added. Can be one of the following values:

Flag Description

DTI_ADDUI_DEFAULT Do default action. Identical to using zero.

DTI_ADDUI_DISPSUBWIZARD Activate the subscription wizard to allow the user
to subscribe to this desktop item.
DTI_ADDUI_POSITIONITEM Instructs the system to look at the COMPPOS
structure passed to the cpPos member of the
COMPONENT structure to make sure that the
values are within reasonable limits. This
value was added for Microsoft
Internet Explorer 5.0.

Return Value
Returns one of the following values:

E_FAIL Failed to add the desktop item or an instance of the desktop item
already exists on the Active Desktop.

E_INVAILDARG One or more of the parameters were invalid.

S_OK If the ADDURL_SILENT flag has been set, the desktop item either

has been added successfully or already exists on the Active
Desktop. Otherwise, the desktop item has been added
successfully.

Remarks

This method creates a second instance of the Active Desktop to add the desktop item,
so the desktop item will not appear in the current instance. The application must call the
IUnknown::Release method on this IActiveDesktop interface and use the
CoCreatelnstance function to get the Active Desktop object with the newly added
component.

Version 4.71 and later of Shell32.dIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

148 Volume 5 Microsoft Windows Shell

Active Desktop Inteﬁace 6verview, IActiveDesktop

|ActiveDesktop::AddUrl Method

Adds the desktop item associated with the specified URL.

L R :

Parameters

hwnd
Handle to the parent window for the user interface.

pszSource
Address of a string value that contains the URL of the desktop item.

pcomp
Address of the COMPONENT structure containing the details of the desktop item to
be added.

adwFlags
Unsigned long integer value that controls this method. Can be set to
ADDURL_SILENT to add a desktop item without displaying any user interfaces.

Return Value
Returns one of the following values:

E_FAIL Failed to add the desktop item or an instance of the desktop item
already exists on the Active Desktop.

E_INVAILDARG One or more of the parameters were invalid.

S_OK If the ADDURL_SILENT flag has been set, the desktop item either
has been added successfully or already exists on the Active
Desktop. Otherwise, the desktop item has been added
successfully.

Remarks

By default, this method will display some user interface and then add the desktop item to
the Active Desktop. Like IActiveDesktop::AddDesktopltem, the client application must
call IActiveDesktop::ApplyChanges to have the changes saved to the registry.

Chapter 7 Shell Interfaces 149

I Requirements
Version 4.71 and later of Sheli32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

Active Desktop Interface Overview, |ActiveDesktop

|ActiveDesktop::ApplyChanges

Applies changes to the Active Desktop and saves them in the registry.
HRESULT ApplyChanges(= .~ 00 = 7o o
" DWORD dwFlags =~ = .~

Parameters
dwFlags

Unsigned long integer value that contains the changes to be applied. Can be one of
the following values:

AD_APPLY_ALL
AD_APPLY_BUFFERED_REFRESH
AD_APPLY_DYNAMICREFRESH
AD_APPLY_FORCE
AD_APPLY_HTMLGEN
AD_APPLY_REFRESH
AD_APPLY_SAVE

Version 4.71 and later of Shell32.dIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

150 Volume 5 Microsoft Windows Shell

|ActiveDesktop::GenerateDesktopltemHtml|

Generates a generic HTML page containing the given desktop item.

Parameters
pwszFileName
String value containing the name to store the HTML file under.
pcomp
Address of the COMPONENT structure of the desktop item to insert in the HTML
page.
dwReserved
Reserved. Must be set to zero.

Version 4.71 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

|ActiveDesktop::GetDesktopltem

Retrieves the specified desktop item.

Parameters

nComponent
Unsigned long integer value that contains the desktop item’s index. The index values
start at zero. Use IActiveDesktop::GetDesktopltemCount to get a count on the total
number of desktop.items.

Chapter 7 Shell Interfaces 151

pcomp
Address of the COMPONENT structure of the retrieved desktop item.

dwReserved
Reserved. Must be set to zero.

Remarks

The index values will change as desktop items are added and removed from the Active
Desktop. Applications cannot assume that an index value always will be associated with
a particular desktop item.

Version 4.71 and later of SheI‘I32.IdI.I.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

|ActiveDesktop::GetDesktopltemBylID

Retrieves the desktop item that matches the given identification.

Parameters
awlD

Unsigned long integer value that contains the desktop item’s identification.
pcomp

Address of the COMPONENT structure of the retrieved desktop item.

dwReserved
Reserved. Must be set to zero.

Remarks

The desktop item’s identification is returned in the dwlD member of the COMPONENT
structure returned from the 1ActiveDesktop::GetDesktopltem method. This
identification is valid only until the IActiveDesktop::ApplyChanges method is called.

152 Volume 5 Microsoft Windows Shell

Applications that need to get the same desktop item consistently should enumerate the
desktop items using the IActiveDesktop::GetDesktopltem and
IActiveDesktop::GetDesktopltemCount methods.

Version 4.71 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

|ActiveDesktop::GetDesktopltemBySource

Retrieves a desktop item using its source URL.

Parameters

pszSource
String value containing the source URL of the desktop item.

pcomp
Address of the COMPONENT structure that will be used to store the details about the
desktop item. The size of the structure must be initialized in order for it to work
properly.

dwReserved
Reserved. Must be set to zero.

Version 4.71 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 153

|ActiveDesktop::GetPattern

Retrieves the pattern being used currently.

Parameters

pwszPattern
Address of a string value that contains a string of decimals whose bit pattern
represents a picture. Each decimal represents the on/off state of the 8 pixels in
that row.

cchPattern

Unsigned long integer value that contains the size of the string.
dwReserved

Reserved. Must be set to zero.

A

Version 4.71 and later of Shél‘|32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shiobj.h.

|ActiveDesktop::GetDesktopltemCount

Retrieves a count of the desktop items.

Parameters
IpiCount
Address of an integer value that contains the count.

dwReserved
Reserved. Must be set to zero.

154 Volume 5 Microsoft Windows Shell

Remarks

The IpiCount value can be used to enumerate all deskiop items. The index values start
at zero and go to JpiCount minus one.

S

i AT S AT A
Version 4.71 and later of Shell32.dIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shiobj.h.

|ActiveDesktop::GetDesktopltemOptions

Retrieves the desktop item’s options.

Parameters

pco
Address of the COMPONENTSOPT structure containing the options that are set
currently.

dwReserved
Reserved. Must be set to zero.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IActiveDesktop::GetWallpaper

Retrieves the wallpaper being used currently.

Chapter 7 Shell Interfaces 155

HRESULT GetMallpaper(.« =+ ..o o
~ LPWSTR pwszhiallpape:
- UINT cch

Parameters
pwszWallpaper

String value that contains the file name of the wallpaper.
cchWallpaper

Unsigned integer value that contains size of the string.

dwReserved
Reserved. Must be set to zero.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

|ActiveDesktop::GetWallpaperOptions

Retrieves the wallpaper options.

Parameters
pwpo

Address of a WALLPAPEROPT structure containing the options set currently.
dwReserved

Reserved. Must be set to zero.

o -

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

156 Volume 5 Microsoft Windows Shell

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

|ActiveDesktop::ModifyDesktopltem
Modifies the desktop item.
————

Parameters

pcomp
Address of the COMPONENT structure containing the modifications. The desktop
item associated with the wszSource member of the structure will be modified.

dwFlags
Unsigned long integer value containing the flags used for the modification. This can
be one of the following values:

e COMP_ELEM_ALL

e COMP_ELEM_CHECKED

e COMP_ELEM_CURITEMSTATE
e COMP_ELEM_FRIENDLYNAME
e COMP_ELEM_NOSCROLL

e COMP_ELEM_ORIGINAL_CSI
e COMP_ELEM_POS_LEFT

e COMP_ELEM_POS_TOP

e COMP_ELEM_POS_ZINDEX

¢ COMP_ELEM_RESTORED_CSI
¢ COMP_ELEM_SIZE_HEIGHT

e COMP_ELEM_SIZE_WIDTH

e COMP_ELEM_TYPE

Remarks

The client application must call IActiveDesktop::ApplyChanges separately to update
the registry. For example, to change the friendly name, first call this function with either
COMP_ELEM_FRIENDLYNAME or COMP_ELEM_ALL in the dwFlags member of
COMPONENT. Then call IActiveDesktop::ApplyChanges.

Chapter 7 Shell Interfaces 157

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

|ActiveDesktop::RemoveDesktopltem

Removes the specified desktop item from the desktop

Dot i A
Bty

HRESULT Removenesktapltem(
, LPCCONPONERT pcamp.
;BNORD dwizeserved

Parameters

pcomp
Address of the COMPONENT structure that specifies the item to be removed. The
desktop item associated with the wszSource member of the structure will be
removed.

dwReserved
Reserved. Must be set to zero.

Version 4.71 and later of S’héll32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

|ActiveDesktop::SetDesktopltemOptions

Sets the item’s options.

158 Volume 5 Microsoft Windows Shell

Parameters

pcomp

Address of the COMPONENTSOPT structure that contains the options to set.
dwReserved

Reserved. Must be set to zero.

ersion 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shiobj.h.

IActiveDesktop::SetPattern

Sets the Active Desktop pattern.

Parameters

pwszPattern ,
Address of a string value that contains a string of decimals whose bit pattern
represents a picture. Each decimal represents the on/off state of the 8 pixels in
that row.

dwReserved
Reserved. Must be set to zero.

»

Version 4.71 and later of Shell32.dIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Chapter 7 Shell Interfaces 159

Windows CE: Unsupported.
Header: Declared in shlobj.h.

|ActiveDesktop::SetWallpaper

Sets the wallpaper for the Active Desktop.

Parameters

pwszWallpaper
String value containing the file name of the wallpaper to be set.

dwReserved
Reserved. Must be set to zero.

Version 4.71 and later of Sheli32.d|l.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IActiveDesktop::SetWallpaperOptions
Sets the wallpaper options.

Parameters

pwpo

Address of the WALLPAPEROPT structure containing the options to be set.
dwReserved

Reserved. Must be set to zero.

160 Volume 5 Microsoft Windows Shell

Version 4.71 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IAsyncOperation
Allows interfaces that are normally synchronous to function asynchronously.

This interface is exported primarily by the data objects used with drag-drop and
Clipboard operations. Normally, such operations are synchronous. However, if data
rendering will be time-consuming, IASyncOperation can be used to allow data
extraction to take place on a background thread.

When to Implement

IAsyncOperation is an optional interface that is implemented by a data object. It allows
the drop target to negotiate with the drop source to extract data from the data object
asynchronously.

When to Use

Drop sources and targets use this interface when they wish to have a lengthy data
extraction processes handled by a background thread.

Methods

IAsyncOperation exposes the following methods in addition to IlUnknown:

EndOperation Notifies the data object that that asynchronous data extraction has
ended.

GetAsyncMode Called by a drop target to determine whether the data object
supports asynchronous data extraction.

InOperation Called by the drop source to determine whether the target is
extracting data asynchronously.

SetAsyncMode Called by a drop source to specify whether the data object supports
asynchronous data extraction.

StartOperation Called by a drop target to indicate that asynchronous data
extraction is starting.

Chapter 7 Shell Interfaces 161

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IASyncOperation::EndOperation

Notifies the data object that that asynchronous data extraction has ended.

Parameters

hResult
[in] An HRESULT value that indicates the outcome of the data extraction. Set to
S_OK, if successful, or an OLE error code otherwise.

pbcReserved
[in] Reserved. Set to NULL.

dwEffects
[in] A DROPEFFECT value that indicates the result of an optimized move. This
should be the same value that would be passed to the data object as
a CFSTR_PERFORMMEDDROPEFFECT format with a normal data extraction
operation.

Return Values
Returns S_OK if successful or an OLE error value otherwise.

Remarks

EndOperation retrieves the IAsyncOperation pointer stored by
IAsyncOperation::SetAsyncMode, and passes its parameter values to that interface’s
IAsyncOperation::EndOperation method. EndOperation then releases the
IAsyncOperation pointer.

EndOperation is also responsible for any clean-up operations that are needed. When
finished, EndOperation should notify the drop source through a private interface.

ersion 5.00 and later of Shel|32..dlli.

162 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IASyncOperat;oﬁ -

IASyncOperation::GetAsyncMode

Called by a drop target to determine whether the data object supports asynchronous
data extraction.

Parameters

pflsOpAsync
[out] A Boolean value that is set to VARIANT_TRUE to indicate that an asynchronous
operation is supported, VARIANT_FALSE otherwise.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

The purpose of this method is to give the drop target the value of the
IAsyncOperation::SetAsyncMode method’s fDoOpAsync parameter. This parameter
is set to VARIANT_FALSE, by default. If the data object supports asynchronous data
extraction, it must call IAsyncOperation::SetAsyncMode and set fDoOpAsync to
VARIANT_TRUE.

Version 5.00 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 163

IASyncOperation::InOperation

Called by the drop source to determine whether the target is extracting data
asynchronously.

HRESULT InOperation(S
- BOOL. #pfInAsyncOp = = - F
Parameters

pfinAsyncOp
[out] Set to VARIANT_TRUE if data extraction is being handled asynchronously, or
VARIANT_FALSE otherwise.

Return Values
Returns S_OK if successful or an OLE error value otherwise.

Remarks

This method is called by the drop source after DoDragDrop returns. pflnAsyncOp
should be set to VARIANT_TRUE only if the drop target has called
IAsyncOperation::StartOperation.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IyncO}:eratlon

IASyncOperation::SetAsyncMode
Called by a drop source to specify whether the data object supports asynchronous data
extraction.
HRESULT. SetAsyncMode(

164

Volume 5 Microsoft Windows Shell

Parameters

fDoOpAsync
[in] A Boolean value that is set to VARIANT_TRUE to indicate that an asynchronous
operation is supported, VARIANT_FALSE otherwise. It's default value is
VARIANT_FALSE.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

This method is called by the drop source to indicate that the data object supports
asynchronous data extraction. Store the fDoOpAsync for future use by
IAsyncOperation::GetAsyncMode. The drop target determines whether asynchronous
data extraction is supported by calling IAsyncOperation::GetAsyncMode to retrieve
the fDoOpAsync value.

If fDoOpAsync is set to VARIANT_TRUE, SetAsyncMode must call
IAsyncOperation::AddRef, and store the interface pointer for use by
IAsyncOperation::EndOperation.

R i Tl
Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

NPl

ISyncOperaﬁon

IASyncOperation::StartOperation

Called by a drop target to indicate that asynchronous data extraction is starting.

S B s o P)

Parameters

pbcReserved
[in]Reserved. Set this value to NULL.

Chapter 7 Shell Interfaces 165

Return Values
Returns S_OK if successful or an OLE error value otherwise.

Remarks

The drop target calls this method to notify the data object that asynchronous data
extraction is starting. The method should store this information, so that it can be returned
by I1AsyncOperation::InOperation. Once StartOperation has been called, the drop
target returns the IDropTarget::Drop call as it would for normal synchronous data
extraction.

Version 5.00 and later of Shell32.dIl

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IASyncOperation
IAutoComplete

The IAutoComplete interface is exposed by the autocomplete object
(CLSID_AutoComplete). It allows applications to initialize, enable, and disable the object.

Autocompletion expands strings that have been entered partially in an edit control into
complete strings. For example, when a user starts to enter a URL in the Address edit
control that is embedded in the Internet Explorer toolbar, autocompletion expands the
string into one or more complete URLSs that are consistent with the existing partial string.
A partial URL string such as “mic” might be expanded to “http://www.microsoft.com” or
“http://www.microsoft.com/windows”. Autocompletion is used typically with edit controls
or with controls that have an embedded edit control such as the comboboxex control.

Autocompletion has two modes for displaying the completed string. The modes are
independent, so you can enable either or both. To specify the mode, call
IAutoComplete2::SetOptions.

¢ In autoappend mode, autocompletion appends the remainder of the most likely
candidate string to the existing characters, highlighting the appended characters. The
edit control behaves as if the user had entered the entire string manually and then
highlighted the appended characters. If the user continues to enter characters, they
are added to the existing partial string. If the user adds a character that is identical to

166

Volume 5 Microsoft Windows Shell

the next highlighted character, the highlighting for that character will be turned off. The
remaining characters will still be highlighted. If the user adds a character that does not
match the next highlighted character, autocompletion will attempt to generate a new
candidate string based on the larger partial string. It will append the remainder of the
new candidate string to the current partial string, as before. If no candidate string can
be found, only the typed characters will appear and the edit box will behave as it
would without autocompletion. This process continues until the user accepts a string.

¢ In autosuggest mode, autocompletion displays a drop-down list, with one or more
suggested complete strings, beneath the edit control. The user can select one of the
suggested strings, usually by clicking it with the mouse, or continue typing. As typing
progresses, the drop-down list may be modified, based on the current partial string. If
you set the ACO_SEARCH flag in the dwFlag parameter of
IAutoComplete2::SetOptions, a “Search for “XXX™ item will be added to the bottom
of the drop-down list. It will be displayed even if there are no suggested strings. “XXX”
will be set to the current partial string and will be updated as the user continues to
type. If the user selects “Search for “XXX””, your application should launch a search
engine to assist them.

The simplest way to implement autocompletion is to call SHAutoComplete. When this
function is called for a system edit control, the control will autocomplete partially entered
file-system paths or URLs. To enable autocompletion for other types of strings, or to
have more control over how autocompletion works, you can use the underlying
autocomplete object directly.

When to Implement

This interface normally is not implemented by applications. It is exposed by the shell's
autocomplete object and used by applications.

When to Use

Use the IAutoComplete interface of the autocomplete object to initialize the object, and
to enable or disable autocompletion.

To implement autocompletion for an edit control using the autocomplete object:

1. Implement a string list COM object that exports an IEnumString interface. This string
list object is responsible for providing the list of strings that the autocomplete object
will use as candidates for completed strings.

2. Create an instance of the autocomplete object with CoCreatelnstance. Request a
pointer to its IAutoComplete interface.

3. Call IAutoComplete::Init. Set the hwndEdit parameter to the window handle of the
edit control. If the edit control is embedded in another control, you must get the handle
to the edit control itself. For example, to get a handle to the edit control embedded in
a comboboxex control, send a CBEM_GETEDITCONTROL message. Set the
punkACL parameter of IAutoComplete::Init to the IlUnknown pointer of the string list
object.

Chapter 7 Shell Interfaces 167

4. If you do not want to use the default options, get a pointer to the autocomplete
object’'s IAutoComplete2 interface. Call IAutoComplete2::SetOptions to set the
desired options.

5. The autocomplete object uses the IlUnknown pointer of the string list object, passed
as punkACL in step 4, to get a pointer to that object’'s IEnumString interface. The
autocomplete object then calls that interface to generate its list of candidate strings. It
selects strings from that list that are an acceptable match to the partial string in the
control. In autoappend mode, the characters needed to complete the string are
appended to the partial string and highlighted. In autosuggest mode, a drop-down box
with a list of one or more possible strings is displayed below the edit control.

6. If the user accepts an autocompleted string, the edit control behaves as if the string
had been entered manually.

Autocompletion is enabled by default. Applications only need to call
IAutoComplete::Enable to disable autocompletion, or to reenable it if it has been
disabled.

IAutoComplete exposes the following methods in addition to lUnknown:
Methods Description

Enable Enables or disables autocompletion.
Init Initializes the autocomplete object.

Version 5.00 and Iatér of Shell32.d||. ‘

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in Shidisp.h.

B3 Seedisc
1AutoComplete

T A e

) :

|AutoComplete::Enable

Enables or disables autocompletion.

168 Volume 5 Microsoft Windows Shell

Parameters

fEnable
[in] Value that is set to TRUE to enable autocompletion, or to FALSE to disable it.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

Autocompletion is enabled by default. Applications only need to call this method to
disable autocompletion, or to reenable it if it has been disabled.

I'SIn 5 ahd Iétef of SHeII32.dll.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in Shidisp.h.

IAutoComplete

|IAutoComplete::Init

Initializes the autocomplete object.

Parameters

hwndEdit
[in] Window handle for the system edit control that is to have autocompletion enabled.

punkACL
[in] Pointer to the IlUnknown interface of the string list object that is responsible for
generating candidates for the completed string. The object must expose an
IEnumString interface.

pwszRegKeyPath
[in] Optional NULL-terminated Unicode string that gives the registry path, including the
value name, where the format string is stored as a REG_SZ value. The autocomplete

Chapter 7 Shell Interfaces 169

object first looks for the path under HKEY_CURRENT_USER. If it fails, it then tries
HKEY_LOCAL_MACHINE. For a discussion of the format string, see the definition of
pwszQuickComplete.

pwszQuickComplete
[in] String that specifies the format to be used if the user enters some text and
presses CTRL-ENTER. The autocomplete object treats pwszQuickComplete as a
sprintf format string, and the text in the edit box as its associated argument, to
produce a new string. For example, set pwszQuickComplete to “http://www.%s.com/”.
When a user enters “MyURL” into the edit box and presses CTRL-ENTER, the text in
the edit box is updated to “http://www.MyURL.com/”.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

]

ersion 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in Shidisp.h.

IAutoCompIeté

IAutoComplete2

The IAutoComplete2 interface extends IAutoComplete. It allows clients of the
autocomplete object to retrieve and set a number of options that control how
autocompletion operates.

When to Implement

This interface normally is not implemented by applications. It is exposed by the shell’s
autocomplete object and used by applications.

When to Use

Use this interface when you need to retrieve or set autocomplete options. The list of
available options is given in the method references.

lAutoComplete2 exposes the following methods in addition to lUnknown:

Methods Description

GetOptions Retrieves the current autocomplete options.
SetOptions Sets the current autocomplete options.

170 Volume 5 Microsoft Windows Shell

Verswn5.00 and later 6f Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in Shidisp.h.

|IAutoComplete2::GetOptions

Retrieves the current autocomplete options.

Parameters
padwFlag

[out] Flags that indicate the options that are set currently. This can be a combination
of one or more of the following flags:

Flag Description

ACO_AUTOAPPEND Enable autoappend.

ACO_AUTOSUGGEST Enable the autosuggest drop-down list.

ACO_FILTERPREFIXES Do not match common prefixes, such as “www.”,
“http://”, and so on.

ACO_NONE No autocomplete.

ACO_RTLREADING Normal windows display text left-to-right (LTR).

Windows can be mirrored to display languages
such as Hebrew or Arabic that read right-to-left
(RTL). Normally, a control’s text is displayed in
the same direction as the text in its parent
window. If ACO_RTLREADING is set, the text
reads in the opposite direction from the text in
the parent window.

ACO_SEARCH Add a search item to the list of completed
strings. Selecting this item launches a search
engine.

ACF_UPDOWNKEYDROPSLIST Use the UP ARROW and DOWN ARROW keys
to display the autosuggest drop-down list.

ACO_USETAB Use the TAB key to select an item from the
drop-down list.

Chapter 7 Shell Interfaces in

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Version 5.00 and later of Shell32.dIl.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in Shidisp.h.

IAutoComplete2, IAutoCdmpIeteZ::SetOptions

|IAutoComplete2::SetOptions

Sets the current autocomplete options.

Parameters

dwFlag
[in] Flags that allow an application to specify autocomplete options. This can be a
combination of one or more of the following flags:

Flag Description

ACO_AUTOAPPEND Enable autoappend.

ACO_AUTOSUGGEST Enable the autosuggest drop-down list.

ACO_FILTERPREFIXES Do not match common prefixes, such as
“www.”, “http://”, and so on.

ACO_NONE No autocompletion.

ACO_RTLREADING Normal windows display text from left to right

(LTRY). Windows can be mirrored to display
languages such as Hebrew or Arabic that read
from right to left (RTL). Normally, a control’s
text is displayed in the same direction as the
text in its parent window. If
ACO_RTLREADING is set, the text is read in
the opposite direction from the text in the parent
window.

(continued)

172

Volume 5 Microsoft Windows Shell

(continued)
Flag Description
ACO_SEARCH Add a search item to the dropdown list of

completed strings. If this is item is selected, you
should launch a search engine to assist the
user.
ACF_UPDOWNKEYDROPSLIST Use the UP ARROW and DOWN ARROW keys
to display the autosuggest drop-down list.
ACO_USETAB Use the TAB key to select an item from the
drop-down list. This flag is disabled by default.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

The TAB key is disabled by default because it is used normally to move from control to
control, not within a control. If you set the ACO_USETAB flag in dwFlag, users can move
to a string in the drop-down list by pressing the TAB key. If the drop-down list is closed,
the TAB key allows the user to move from control to control, as usual. The user can
close the drop-down list by pressing the ESCAPE key.

Version 5.00 and Iater” 6f Shell32.dll.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in Shidisp.h.

lAutoComplete2

IColumnProvider

The Windows Explorer Details view normally displays several standard columns. Each
column lists information, such as the file size or type, for each file in the current folder.
There can also be a number of columns that the user can choose to display. When the
user right-clicks one of the column headers, a list of the available columns is displayed in
a dialog box. By creating a column provider object that exports the IColumnProvider
interface, you can add custom columns to that dialog box for display by Windows
Explorer. For example, a collection of files that contain music could use a column
provider to display columns listing the artist and piece contained by each file.

Chapter 7 Shell Interfaces 173

A column provider is a global object that is called every time Windows Explorer displays
the Details view. Windows Explorer queries all registered column providers for their
column characteristics. If the user has selected one of the column provider’s columns,
Windows Explorer queries the column provider for the associated data for each file in the
folder. It then displays all the selected columns.

Typically, column providers are used to display one or more custom columns for a
particular file class. When a column provider receives a request for data, it provides it if
the file is a member of its supported class. Otherwise, it ignores the request by returning
S_FALSE.

Columns are identified by an SHCOLUMNID structure that contains an FMTID/PID pair.
If possible, use existing FMTIDs and PIDs. If a folder contains files from more than one
file class, the data from different classes can be merged into the same column. For
instance, the Author PID from the summary information property set can be used for a
wide variety of purposes. If you use a custom SHCOLUMNID structure, the column will
display data only for those files that are members of the supported class. If the folder
contains other files, their entries will be blank.

When to Implement

Implement an object that exports this interface when you want to have one or more
custom columns displayed in the Windows Explorer Details view. Windows Explorer calls
the interface methods to request the information it needs to display the column. The
procedure used by Windows Explorer is:

1. Call IColumnProvider::Initialize to specify the folder to be displayed.

2. Call IColumnProvider::GetColumninfo to get the column’s characteristics.

3. If the column has been selected by the user, call IColumnProvider::GetltemData for
each file in the folder to get the data that belongs in the file’s column entry.

In addition to normal COM registration, the column provider object must also be
registered with Windows Explorer. To do so, add a subkey named with the string form of
the object’s GUID to the

HKEY_CLASSES_ROOT\Folder\shellex\ColumnHandlers key.

When to Use
This interface is called by Windows Explorer. It normally is not used by applications.

IColumnProvider exposes the following methods in addition to lUnknown:

Methods Description
GetColumninfo Requests information about a column.
GetitemData Requests column data for a specified file.

Initialize Initializes the interface.

174

Volume 5 Microsoft Windows Shell

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shiobj.h.

IColumnProvider::GetColumninfo

Requests information about a column.

Parameters
dwindex

[in] Column’s zero-based index. It is an arbitrary value that is used to enumerate
columns. '

psci
[out] Pointer to an SHCOLUMNINFO structure to hold the column information.

Return Values .
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

This method is called to assign an index to the column and to ask for details on what
kind of information the column will contain.

nd later of Shell32.dll.

ersion 5.00 a

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shiobj.h.

Chapter 7 Shell Interfaces 175

IColumnProvider::GetltemData

Requests column data for a specified file.

Parameters

pscid
[in] SHCOLUMNID structure that identifies the column.

pscd
[in] SHCOLUMNDATA structure that specifies the file.

pvarData
[out] Pointer to a VARIANT with the data for the file specified by pscd that belongs in
the column specified by pscid. Set this value if the file is a member of the class
supported by the column provider.

Return Values

Returns S_OK if file data is returned, S_FALSE if the file is not supported by the column
provider and no data is returned, or an OLE error value otherwise.

Remarks

This method is called to get the data for a file to be displayed in the specified column. It
should be thread-safe.

This method is called for every file that Windows Explorer displays, even though many of
them will not be supported by a particular column provider. To improve performance, first
check the pwszExt member of the structure pointed to by pscdto see if it has a file
name extension that is supported by the column provider. If not, avoid unnecessary
processing by immediately returning S_FALSE.

!

&

ersion 5.00 and later of Shel|32;dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

176

Volume 5 Microsoft Windows Shell

IColumnProvider::Initialize

Initializes an IColumnProvider interface.

i

Parameters

psci
[in] SHCOLUMNINIT structure with initialization information, including the folder
whose contents are to be displayed.

Return Value
Returns S_OK if successful, or an OLE error value otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ICommDIgBrowser

The ICommDIgBrowser interface is exposed by the common file dialog boxes to be
used when they host a shell browser. If supported, ICommDIgBrowser allows a shell
view to handle several cases that need to behave differently in a dialog box than in a
normal shell view. You obtain an ICommDIgBrowser interface pointer by calling
Queryinterface on the IShellBrowser object.

When to Implement
This interface is implemented only by the common file dialog boxes.

When to Use

Use ICommDIgBrowser when you need to provide special behavior while hosted inside
the common dialog boxes.

ICommDigBrowser methods Description

IncludeObject Allows the common dialog to filter objects that the
view displays.

OnDefaultCommand Called when a user double-clicks in the view or
presses the ENTER key.

OnStateChange Called after a change of state has occurred in a

common dialog box.

Chapter 7 Shell Interfaces 177

.-

Version 4.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

I
i

ICommDIgBrowser::IncludeObject

Allows the common dialog to filter objects that the view displays.

Parameters

ppshv
A pointer to the view’s IShellView interface.
pidl
Pointer to an item identifier list (PIDL) that is relative to the folder.

Return Values
The browser should return S_OK to include the object in the view, or S_FALSE to hide it.

Remarks

This method is called by the IEnumIDList implementation when hosted in the file dialog
boxes. The enumerator should call this method to let the common dialog box filter out
objects that should not be displayed. Typically, the file dialog boxes will get the display
text of the item, and filter by the extension.

Note to Callers Call before returning an object in the shell folder’s IDLIST enumerator.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shiobj.h.

178 Volume 5 Microsoft Windows Shell

ICommDIgBrowser

ICommDIgBrowser::OnDefaultCommand

Called when a user double-clicks in the view or presses the ENTER key.

Parameters

ppshv
A pointer to the view’s IShellView interface.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks

The browser should return S_OK if it has processed the action or S_FALSE to let the
view perform the default action.

Note to Callers This method allows the default command to be handled by the
common dialog box instead of the view.

Version 4.00 and later of Syheylklﬁ32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

ICommDIgBrowser

ICommDIgBrowser::0OnStateChange

Called after a state, identified by the uChange parameter, has changed in the
IShellView interface.

Chapter 7 Shell Interfaces 179

Parameters

ppshv
A pointer to the view’s IShellView interface.

uChange
Change in the selection state. This parameter can be one of the following values:
Value Description
CDBOSC_KILLFOCUS The view has lost the focus.
CDBOSC_RENAME An item has been renamed.
CDBOSC_SELCHANGE The selection has changed.
CDBOSC_SETFOCUS The focus has been set to the view.

Remarks

This method is used to let the common file dialog boxes track the state of the view and
change its user interface as needed.

Note to Callers When items in the view are selected, or when the view loses the focus,
it needs to call this method to notify the common dialog box that either the view state or
selection state is changing.

Version 4.00 and later of Shell32.dll
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

ICommDIgBrowser

ICommDIgBrowser2

The ICommDIgBrowser2 interface extends the capabilities of ICommbDIgBrowser. It is
used by the common file dialog boxes when they host a shell browser. A pointer to
ICommDIgBrowser2 can be obtained by calling Querylnterface on the IShellBrowser
object.

180 Volume 5 Microsoft Windows Shell

When to Implement
This interface is implemented only by common file dialog boxes.

When to Use
Use ICommDIgBrowser2 when your shell view is hosted inside a common dialog box.

ICommDIgBrowser2 implements all the ICommbDIgBrowser methods, as well as
IlUnknown. The following methods are specific to ICommDIgBrowser2:

Method Description

GetDefaultMenuText Called by the shell view to get the default context menu text.

GetViewFlags Called by the shell view to ask the common dialog box
hosting it if all files, including system and hidden files, should
be displayed.

Notify Called by a shell view to notify the common dialog box

hosting it that an event has occurred.

it

later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

o

Version 5.00 and

ICommDIgBrowser2::GetDefaultMenuText

Parameters

pshv
Pointer to the IShellView interface of the hosted view.

pszText
Buffer that is used by the shell browser to return the default context menu text.
cchMax

Size of the pszText buffer. It should be at least the maximum allowable path length
(MAX_PATH) in size.

Chapter 7 Shell Interfaces 181

Return Values
Returns S_OK if a new default context menu text was returned in pshv. If S_FALSE is
returned, use the normal default text. Otherwise, returns a standard COM error value.

Version 5.00 and later of Shell32.dlIl.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shiobj.h.

IomﬁiDIgBrowserZ |

ICommDIgBrowser2::GetViewFlags

Called by the shell view to ask the common dialog box hosting it if all files, including
system and hidden files, should be displayed.

HRESULT GetViewFlags(™ =~ = . o
. DWORD' ‘*pdwFlags = . .

Parameters

pdwFlags
Pointer to a flag value that indicates which files should be shown. If it is set to

CDB2GVF_SHOWALLFILES, all files, including hidden and system files, should be
shown. Otherwise, it is set to NULL.

Return Values
Returns S_OK if successful, or a standard COM error value otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ICommbDigBrowser2

182 Volume 5 Microsoft Windows Shell

ICommDIgBrowser2::Notify

Called by a shell view to notify the common dialog box hosting it that an event has
occurred. ‘

Sy {? 10 G o g

Parameters
pshv
Pointer to the IShellView interface of the hosted view.
dwNotifyType
Flag that can take one of two values:
CDB2N_CONTEXTMENU_DONE Indicates that the context menu is no longer
displayed.
CDB2N_CONTEXTMENU_START Indicates that the context menu is about to be
displayed.

Return Values
Returns S_OK if successful, or a standard COM error value otherwise.

’-

Version 5.00 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

e X S R A
i+ o
ICommDIgBrowser2

IContextMenu

The IContextMenu interface is called by the shell to either create or merge a context
menu associated with a shell object.

When to Implement

Implement IContextMenu in the following situations:

® Shell extension handlers implement this interface to add items dynamically to a shell
object’s context menu.

e Namespace extensions implement this interface to specify their object’s context
menus.

Chapter 7 Shell Interfaces 183

See Creating Context Menu Handlers for a detailed discussion of how to implement
IContextMenu.

When to Use

Applications use IContextMenu to get information about the items in an objects context
menu, and to invoke the associated commands. To get an object’s IContextMenu
interface, an application must call the object’s IShellFolder::GetUIObjectOf method.

Methods

GetCommandString Retrieves a command’s language-independent name or its
Help text. The language-independent name is also referred to
as a verb.

InvokeCommand Carries out the command associated with a context menu
item.

QueryContextMenu Adds commands to a context menu.

Remarks

Shell extension handlers that export this interface must also export IShellExtlnit. See
Creating Shell Extension Handlers for details.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IContextMenu::GetCommandString

Retrieves a context menu command’s language-independent name or its Help text.

v a TR Agre ot & i, 72 s

Parameters
idCmd
Menu command identifier offset.

184

Volume 5 Microsoft Windows Shell

UFlags
Flags specifying the information to return. It can have one of the following values:

GCS_HELPTEXTA Sets pszName to an ANSI string containing the help text for
the command.

GCS_HELPTEXTW Sets pszName to a Unicode string containing the help text for
the command.

GCS_VALIDATEA Returns S_OK if the menu item exists, S_FALSE otherwise.
GCS_VALIDATEW Returns S_OK if the menu item exists, S_FALSE otherwise.

GCS_VERBA Sets pszName to an ANSI string containing the language-
independent command name for the menu item.
GCS_VERBW Sets pszName to a Unicode string containing the language-

independent command name for the menu item.

pwReserved
Reserved. Applications must specify NULL when calling this method, and handlers
must ignore this parameter when called.
pszName
Address of the buffer to receive the null-terminated string being retrieved.
cchMax
Size of the buffer to receive the null-terminated string.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks

The language-independent command name, or verb is a name that can be passed to the
IContextMenu::InvokeCommand method to activate a command by an application.
The Help text is a description of the command that Windows Explorer displays in its
status bar. It should be reasonably short (under 40 characters).

Even though pszName is declared as an LPSTR, you must cast it to LPWSTR and
return a Unicode string if uFlags is set to either GCS_HELPTEXTW or GCS_VERBW.

Version 4.00 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shiobj.h.

IContextMenu

Chapter 7 Shell Interfaces 185

IContextMenu::InvokeCommand

Carries out the command associated with a context menu item.

Parameters

pici
Pointer to a CMINVOKECOMMANDINFO or CMINVOKECOMMANDINFOEX
structure containing information about the command. See the Remarks for further
details.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks

The IContextMenu interface is exported by several shell extension handlers and
namespace extensions to add commands to context menus. When the user selects one
of the commands that the handler or namespace extension added to a context menu,
the shell will call its InvokeCommand method. The command may be specified by its
menu identifier offset, defined when IContextMenu::QueryContextMenu was called, or
by its associated verb. An application can invoke this method directly by obtaining an a
pointer to an object’s IContextMenu interface. It also can invoke it indirectly by calling
ShellExecute or ShellExecuteEXx, and specifying a verb that is supported by the
namespace extension or handler.

Although the pici parameter is declared in shiobj.h as a CMINVOKECOMMANDINFO
structure, in practice it often points to a CMINVOKECOMMANDINFOEX structure. This
structure is an extended version of CMINVOKECOMMANDINFO, and has several
additional members that allow Unicode strings to be passed.

Note to Users You can pass either structure to IContextMenu::InvokeCommand.
Either will work for ANSI strings, but you must use a CMINVOKECOMMANDINFOEX
structure for Unicode strings.

Note to Implementers Check the cbSize member of picito determine which structure
was passed in. If it is a CMINVOKECOMMANDINFOEX structure, and the fMask
member has the CMIC_MASK_UNICODE flag set, you must cast pici to
CMINVOKECOMMANDINFOEX in order to use the Unicode information contained in the
last five members of the structure.

186 Volume 5 Microsoft Windows Shell

AEX %

Version 4.00 and Iéter of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IContextMenu

IContextMenu::QueryContextMenu

Adds commands to a context menu.

Parameters

hmenu
Handle to the menu. The handler should specify this handle when adding menu items.
indexMenu
Zero-based position at which to insert the first menu item.
idCmdFirst
Minimum value that the handler can specify for a menu item identifier.
idCmdlLast
Maximum value that the handler can specify for a menu item identifier.
uFlags
Optional flags specifying how the context menu can be changed. This parameter can
be set to any combination of the following values:
CMF_CANRENAME This flag is set if the calling application supports
renaming of items. A context menu extension or drag-
and-drop handler should ignore this flag. A
namespace extension should add a rename item to
the menu if applicable.
CMF_DEFAULTONLY This flag is set when the user is activating the default
action, typically by double-clicking. This flag provides

Chapter 7 Shell Interfaces 187

CMF_EXPLORE

CMF_EXTENDEDVERBS

CMF_INCLUDESTATIC

CMF_NODEFAULT

CMF_NORMAL

CMF_NOVERBS

CMF_VERBSONLY

a hint for the context menu extension to add nothing if
it does not modify the default item in the menu. A
context menu extension or drag-and-drop handler
should not add any menu items if this value is
specified. A namespace extension should add only the
default item (if any).

This flag is set when Windows Explorer’s tree window
is present.

This flag is set when the calling application wants
extended verbs. Normal verbs are displayed when the
user right-clicks an object. To display extended verbs,
the user must right-click while pressing the SHIFT key.

This flag is set when a static menu is being
constructed. Only the browser should use this flag. All
other context menu extensions should ignore this flag.

This flag is set if no item in the menu should be the
default item. A drag-and-drop handler should ignore
this flag. A namespace extension should not set any
of the menu items to the default.

Indicates normal operation. A context menu extension,
namespace extension, or drag-and-drop handler can
add all menu items.

This flag is set for items displayed in the “Send To:”
menu. Context menu handlers should ignore this
value.

This flag is set if the context menu is for a shortcut
object. Context menu handlers should ignore this
value.

The remaining bits of the low-order word are reserved by the system. The high-order
word may be used for context-specific communications. The CMF_RESERVED value
can be used to mask out the low-order word.

Return Values

If successful, returns an HRESULT value that has its severity value set to
SEVERITY_SUCCESS and its code value set to the largest command identifier that was
assigned, plus one. Otherwise, returns an OLE error code.

Remarks

This method should call either InsertMenu or InsertMenultem to insert its menu items
into the menu specified by hMenu. The indexMenu parameter holds the index that
should be used for the first menu item. The identifier of each menu item must fall within
the range defined by idCmdFirst and idCmdLast.

188 Volume 5 Microsoft Windows Shell
A common practice is to set the first command identifier to idCmdFirst (an offset of zero),
and increment the offset for each additional command by one. This practice ensures that
you do not exceed idCmdLast and preserves the range of identifiers that are available
for use by other handlers. You should store the offsets for future reference because they
may be used to identify the command in subsequent calls to
IContextMenu::GetCommandString and IContextMenu::InvokeCommand.
If the shell subsequently calls another context menu handler, it will use the code value of
the returned HRESULT to set idCmdFirst when it calls that handler’'s
QueryContextMenu method.

Lk
Version 4.00 and later of Shell32.dlIl.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in shlobj.h.
Y

IContextMenu

IContextMenu2

The IContextMenu2 interface is used to either create or merge a context menu
associated with a certain object when the menu involves owner-drawn menu items.

When to Implement

Implement IContextMenuz2 if your namespace extension or context menu handler needs
to process one or more of the following messages:

e WM_INITMENUPOPUP

e WM_DRAWITEM

e WM_MEASUREITEM

These messages are forwarded to IContextMenu2—through the HandleMenuMsg
method—only if a Querylinterface call for an IContextMenu2 interface pointer is
successful, indicating that the object supports this interface.

When to Use

Applications normally do not call this interface directly.

Chapter 7 Shell Interfaces 189

Methods

IContextMenu2 is derived from IContextMenu. The following method is specific to
IContextMenu2:

HandleMenuMsg Handles messages related to drawing owner-drawn menu

items.

Version 4.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IContextMenu2::HandleMenuMsg

Allows client objects of the IContextMenu interface to handle messages associated with
owner-drawn menu items.

Parameters

uMsg
Message to be processed. If it is WM_INITPOPUP, WM_DRAWITEM,
WM_MENUCHAR,or WM_MEASUREITEM, the client object being called may provide
owner-drawn menu items.

wParam
Additional message information. The value of this parameter depends on the value of
the uMsg parameter.

IParam
Additional message information. The value of this parameter depends on the value of
the uMsg parameter.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

190

Volume 5 Microsoft Windows Shell

Remarks

HandleMenuMsg is called when a client of IContextMenu determines that the
IContextMenu2 interface is supported and receives one of the messages specified in
the description of the uMsg parameter.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IContextMenu3

The IContextMenus3 interface is used to create or merge a context menu associated
with a certain object when the menu implementation needs to process the
WM_MENUCHAR message.

When to Implement
Implement IContextMenu3 if your context menu extension needs to process the
WM_MENUCHAR message.

These messages are forwarded to IContextMenu3—through the HandleMenuMsg2
method—only if a Querylinterface call for an IContextMenu3 interface pointer is
successful, indicating that the object supports this interface.

When to Use

You do not call this interface directly. IContextMenu3 is used by the operating system
only when it has confirmed that your application is aware of this interface.

IContextMenu3 is derived from IContextMenu2. The following method is specific to
IContextMenu3:

IContextMenu3 method Description

HandleMenuMsg2 Called when the window that owns the menu receives
a WM_MENUCHAR message.

Version 4.71 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Chapter 7 Shell Interfaces 191

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IContextMenu3::HandleMenuMsg2

Allows context menu handlers to process the WM_MENUCHAR message.

Parameters

uMsg
Message to be processed. At the present time, this method is called only
for WM_MENUCHAR.

wParam
Additional message information. The value of this parameter depends on the value of
the uMsg parameter.

IParam
Additional message information. The value of this parameter depends on the value of
the uMsg parameter.

plResult
Address of an LRESULT value that the owner of the menu will return from the
message.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks

HandleMenuMsg2 is called when a client of IContextMenu determines that the
IContextMenu3 interface is supported and receives one of the messages specified in
the description of the uMsg parameter.

ersion 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

192

Volume 5 Microsoft Windows Shell

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IContextMendz

ICopyHook

ICopyHook is a COM-based interface used to create a copy hook handler. A copy hook
handler is a shell extension that determines if a shell folder or printer object can be
moved, copied, renamed, or deleted. The shell calls the ICopyHook::CopyCallback
method prior to performing one of these operations.

The copy hook handler, which is an OLE in-process server (a DLL), does not perform the
task itself, but it does approve or disapprove the action. If the shell receives approval
from the copy hook handler, it performs the file system operation. Copy hook handlers
are not informed about the success of an operation, so they cannot monitor actions
taken on folder objects unless FindFirstChangeNotification is used.

A folder object can have multiple copy hook handlers. For example, even if the shell
already has a copy hook handler registered for a particular folder object, you can still
register one of your own. If two or more copy hook handlers are registered for an object,
the shell calls each of them before performing one of the specified file-system
operations.

The shell initializes ICopyHook directly, without using the IShellExtInit interface first.

CopyCallback returns an integer value that indicates whether or not the shell should
perform the operation. The shell will call each copy hook handler registered for a folder
object until all the handlers have been called or until one of them has returned a value
other than IDYES. The handler returns IDYES to specify that the operation should be
performed, or IDNO or IDCANCEL to specify that the operation should be discontinued.

When to Implement

Implement a copy hook handler when you want to be able to control when, or if, these
file system operations are performed on a given object. You might want to use a copy
hook handler on shared folders, for example.

When to Use

You do not call this shell extension directly. ICopyHook::CopyCallback is called by the
shell prior to moving, copying, deleting, or renaming a shell folder object.

Method Description

CopyCallback Determines whether a move, copy, delete, or rename operation on
a folder object should be allowed or disallowed.

Chapter 7 Shell Interfaces 193

Version 4.00 and later of Shell32.dl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shiobj.h.

ICopyHook::CopyCallback

Determines whether the shell will be allowed to move, copy, delete, or rename a folder
or printer object.

Parameters

hwnd
Handle to the window that the copy hook handler should use as the parent for any
user interface elements the handler may need to display. If FOF_SILENT is specified,
the method should ignore this parameter.

wFunc
Operation to perform. This parameter can be one of the values listed under the
wFunc member of the SHFILEOPSTRUCT structure.

wFlags
Flags that control the operation. This parameter can be one or more of the values
listed under the fFlags member of the SHFILEOPSTRUCT structure.

pszSrcFile
Address of a string that contains the name of the source folder.

dwSrcAttribs
Attributes of the source folder. This parameter can be a combination of any of the file
attribute flags (FILE_ATTRIBUTE_*) defined in the Windows header files.

pszDestFile
Address of a string that contains the name of the destination folder.

194

Volume 5 Microsoft Windows Shell

dwDestAttribs
Attributes of the destination folder. This parameter can be a combination of any of the
file attribute flags (FILE_ATTRIBUTE_*) defined in the Windows header files.

Return Values

Returns an integer value that indicates whether or not the shell should perform the
operation. It can be one of the following:

Value Description

IDCANCEL Prevents the current operation and cancels any pending operations.

IDNO Prevents the operation on this folder but continues with any other
operations that have been approved (for example, a batch copy
operation).

IDYES Allows the operation.

Remarks

The shell calls each copy hook handler registered for a folder or printer object until all the
handlers have been called, or until one of them returns IDNO or IDCANCEL.

Copy hook handlers for folders are registered under
HKEY_CLASSES_ROOT\Directory\Shellex\CopyHookHandlers\your_copyhook{copy
hook CLSID value}. Copy hook handlers for printers are registered under
HKEY_CLASSES_ROOT\Printers\Shellex\CopyHookHandlers\your_
copyhook\{copyhook CLSID value}.

When this method is called, the shell initializes the ICopyHook interface directly without
using an IShellExtlInit interface first.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

SHFileOperation

ICurrentWorkingDirectory

The ICurrentWorkingDirectory interface allows a client to retrieve or set an object’s
current working directory.

Chapter 7 Shell Interfaces 195

When to Implement
implement this interface if your object allows clients to retrieve or set the current working

directory.

When to Use

Use this interface to retrieve or set the working directory of the object that exports it.
Methods

ICurrentWorkingDirectory exposes the following methods in addition to IlUnknown:
GetDirectory Retrieves the current working directory.

SetDirectory Sets the current working directory.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ICurrentWorkingDirectory::GetDirectory

Retrieves the current working directory.

B

Parameters

pwzPath
[out] Address of a buffer. On return, it will hold a NULL-terminated Unicode string with
the current working directory’s fully qualified path.

cchSize
[in] Size of the buffer in Unicode characters, including the terminating NULL character.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.

196 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

ICurrentWorkingDirectory

ICurrentWorkingDirectory::SetDirectory

Sets the current working directory.

Parameters
pwzPath

[in] Address of a NULL-terminated Unicode string with the fully qualified path of the
new working directory.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

A

Version 5.00 and later of Shell32.dlIl.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

ICurrentWorkingDirectory

IDeskBand

IDeskBand is used to obtain information about a band object. See Band Objects for
more information about band objects.

When to Implement
Implement IDeskBand if you are implementing a band object.

Chapter 7 Shell Interfaces 197

When to Use

You do not call this interface directly. IDeskBand is used by the shell or the browser to
obtain display information for a band object.

IDeskBand is derived from IDockingWindow. The following method is specific to

IDeskBand:
IDeskBand method Description
GetBandinfo Retrieves the information for a band object.

o

Vsion 4.71 and later of Shell3é.‘dlrl.4 '

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDeskBand::GetBandinfo

Retrieves the information for a band object.

Parameters

dwBandID
Identifier of the band. The container assigns this identifier. The band object can keep
this value if it is required.

dwViewMode
View mode of the band object. This will be one of the following values:
DBIF_VIEWMODE_NORMAL The band object is being displayed in a
horizontal band.
DBIF_VIEWMODE_VERTICAL The band object is being displayed in a
vertical band.
DBIF_VIEWMODE_FLOATING The band object is being displayed in a

floating band.

DBIF_VIEWMODE_TRANSPARENT The band object is being displayed in a
transparent band.

198

Volume 5 Microsoft Windows Shell

pabi
Address of a DESKBANDINFO structure that receives the band information for the
object. The dwMask member of this structure indicates what information is being
requested.

Return Value
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dlII.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDockingWindow

The IDockingWindow interface is implemented by window objects that can be docked
within the border space of a Windows Explorer window.

When to Implement

You implement IDockingWindow when you want to display a window inside a browser
frame. This normally is used for user interface windows, such as toolbars.

When to Use

You normally do not use the IDockingWindow interface. The shell browser uses this
interface to support docked windows inside the browser frame.

IDockingWindow is derived from 10leWindow. The following are the methods specific
to IDockingWindow:

IDockingWindow method Description

CloseDW Notifies the docking window object that it is about to be
removed.

ResizeBorderDW Notifies the docking window object that the frame’s
border space has changed.

ShowDW Instructs the docking window object to show or hide
itself.

Version 4.71 and later of Shell32.dlI.

Chapter 7 Shell Interfaces 199

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shiobj.h.

IDockingWindow::CloseDW

Notifies the docking window object that it is about to be removed from the frame. The
docking window object should save any persistent information at this time.

D ,‘:%gk e oy

Parameters

dwReserved
Reserved. This parameter should always be zero.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shiobj.h.

IDockingWindow, IDockingWindowFrame, IDockingWindowSite

IDockingWindow::ResizeBorderDW

Notifies the docking window object that the frame’s border space has changed. In
response to this method, the IDockingWindow implementation must call
IDockingWindowsSite::SetBorderSpaceDW, even if no border space is required or a
change is not necessary.

200

Volume 5 Microsoft Windows Shell

Parameters

prcBorder
Address of a RECT structure that contains the frame’s available border space.

punkToolbarSite
Address of the site’s lUnknown interface. The docking window object should call the
Queryinterface method for this interface, requesting IID_IShellToolbarSite, and use
that interface to negotiate its border space. It is the docking window object’s
responsibility to release this interface when it is no longer needed.

fReserved
Reserved for future use. This parameter should always be zero.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks

The prcBorder parameter will contain the frame’s entire available border space. The
docking window object should negotiate its border space and then use this information to
position itself.

For example, if the docking window object requires 25 pixels at the top of the border
space, it should negotiate for this by allocating a BORDERWIDTHS structure, setting the
top member to 25, calling IDockingWindowsSite::RequestBorderSpaceDW, and then
calling IDockingWindowsSite::SetBorderSpaceDW. The docking window object can
then position its window at prcBorder->left and prcBorder->top. The width of the
docking window object’s window is determined from prcBorder->right - prcBorder-
>left, and its height is contained in the top member of the BORDERWIDTHS structure.

T

-

later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

Version 4.71 an

Chapter 7 Shell Interfaces 201

IDockingWindow, IDockingWindowFrame, IDockingWindowSite

IDockingWindow::ShowDW

Instructs the docking window object to show or hide itself.

Parameters

bShow
Boolean value indicating whether the docking window object should show or hide
itself. If this parameter is nonzero, the docking window object should show its window.
If it is zero, the docking window object should hide its window and return its border
space by calling IDockingWindowSite::SetBorderSpaceDW with all zeros.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

ersion 4.71 and later ofﬁ éhelléz.dll. |

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDockingWinéc;w, IDockinQWindowFrame, IDockingWindowsSite
IDockingWindowFrame

The IDockingWindowFrame interface is implemented by the browser to support adding
IDockingWindow objects to a frame.

When to Implement

You normally do not implement the IDockingWindowFrame interface. The shell
browser implements this interface to support docked windows inside the browser frame.

202

Volume 5 Microsoft Windows Shell

When to Use

You use IDockingWindowFrame to add, find, and remove docking window objects in a
browser frame.

IDockingWindowFrame is derived from 10leWindow. The following are the methods
specific to IDockingWindowFrame:

IDockingWindowFrame methods Description

AddToolbar Adds an IDockingWindow object to a frame.

FindToolbar Finds an IDockingWindow object in a frame.

RemoveToolbar Removes an IDockingWindow object from a
frame.

Version 4.71 and ImahlteAr of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDockingWindowFrame::AddToolbar

Adds the specified IDockingWindow object to the fr,

$y

ame.
DR

Parameters

punkSrc
Address of the IDockingWindow object to be added.

pwszltem
Address of a null-terminated UNICODE string. This is an application-defined string
used for identifying the docking window object.

dwAddFlags
Flags for the docking window object being added. This can be one or more of the
following values:
0 The docking window is a regular, visible docking window.

DWFAF_HIDDEN The docking window is added but is not shown. To show it at
a later time, call its IDockingWindow::ShowDW method.

Chapter 7 Shell Interfaces 203

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDockingWindowFrame, IDockingWindowSite

IDockingWindowFrame::FindToolbar

Finds the specified IDockingWindow object in the toolbar frame and returns an
interface pointer to it.

i £
Parameters
pwszltem
Address of a null-terminated UNICODE string. This is the same string that was
passed to the AddToolbar method.
riid
Identifier of the desired COM interface.
ppvObj
Address to receive the interface pointer. If an error occurs, a NULL pointer is placed in
this address.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

- |

Versibn 4.71 and Iafer of Sheilsz;dll. V

204

Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDockingWindowFrame, IDockingWindowSite

IDockingWindowFrame::RemoveToolbar

Removes the specified IDockingWindow from the toolbar frame.

Parameters

punkSrc
Address of the IDockingWindow object to be removed. The IDockingWindowFrame
implementation will call the IDockingWindow::CloseDW and Release methods.

dwRemoveFlags
Option flags for removing the docking window object. This parameter can be one or
more of the following values:

DWFRF_DELETECONFIGDATA In addition to deleting the toolbar, any
configuration data is removed as well.

DWFRF_NORMAL The default delete processing is performed.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 205

IDockingWindowSite

IDragSourceHelper

This interface is exposed by the shell to allow an application to specify the image that will
be displayed during a shell drag-and-drop operation.

When to Implement

This interface is exposed by the shell’s drag-image manager. It is not implemented by
applications.

When to Use

Use this interface when you want to specify the image that will be displayed during a
shell drag-and-drop operation. The IDragSourceHelper and IDropTargetHelper
interfaces are exposed by the drag-image manager object to allow the IDropTarget
interface to use custom drag images. To use either of these interfaces, you must create
an in-process server drag-image manager object by calling CoCreatelnstance with a
CLSID of CLSID_DragDropHelper. Get interface pointers using standard COM
procedures.

The IDragSourceHelper interface provides two alternative ways to specify the bitmap to
be used as a drag image:

¢ Controls that have a window can register a DI_GETDRAGIMAGE window message
for it and initialize the drag-image manager with
IDragSourceHelper::InitializeFromWindow. When the DI_GETDRAGIMAGE

message is received, the handler puts the drag image bitmap information in the
SHDRAGIMAGE structure that is passed as the message’s IParam value.

® Windowless controls can initialize the drag-image manager with
IDragSourceHelper::InitializeFromBitmap. This method allows an application
simply to specify the bitmap.

Note The drag-and-drop helper object calls IDataObject::SetData to load private
formats into the data object that are used for cross-process support. It later retrieves
these formats by calling IDataObject::GetData. To support the drag-drop helper object,
the data object’s SetData and GetData implementations must be able to accept and
return arbitrary private formats.

For further discussion of shell drag-and-drop operations, see Transferring Shell Data
Using Drag-and-Drop or the Clipboard.

206 Volume 5 Microsoft Windows Shell

Methods

IDragSourceHelper exposes the following methods in addition to IlUnknown:

InitializeFromBitmap Initializes the drag-image manager for a windowless control.

InitializeFromWindow Initializes the drag-image manager for a control with a
window.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IDragSourceHelper::InitializeFromBitmap

Initializes the drag-image manager for a windowless control.

HRESULT: ImuaHzaFromBHmap(
LPSHDRAGIMAGE pshdi, .~ G
;;,‘_;I(Damob:lec;,fpﬂataobJeQﬁ;,%, i

Parameters

pshdi

[in] SHDRAGIMAGE structure that contains information about the bitmap.
pDataObject

[in] Pointer to the data object’s IDataObject interface.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Vers:on 5 00 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

G iy

IDragSoufceHelper

Chapter 7 Shell Interfaces 207

IDragSourceHelper::InitializeFromWindow

Initializes the drag-image manager for a control with a window.

HRESULT In1t1a11ze’r'romw1ndow(
HUWND hwnd. :
“POINT *ppt:. .
IDataQbJeet *pDataObJect ¥
')D

Parameters

hwnd
[in] Handle to the window that will receive the DI_GETDRAGIMAGE message.

ppt
[in] Pointer to a POINT structure that specifies the location of the cursor within the
drag image. The structure should contain the offset from the upper-left corner of the
drag image to the location of the cursor.

pDataObject
[in] Pointer to the data object’s IDataObject interface.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

The DI_GETDRAGIMAGE message allows you to source a drag image from a custom
control. It is defined in Shlobj.h and must be registered with RegisterWindowMessage.
When the window specified by hwnd receives the DI_GETDRAGIMAGE message, the
IParam value will hold a pointer to an SHDRAGIMAGE structure. The handler should fill
the structure with the drag image bitmap information.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IDragSourceHéIper |

208 Volume 5 Microsoft Windows Shell

IDropTargetHelper

This interface allows drop targets to display a drag image while it is over the target
window.

When to Implement

This interface is exposed by the shell’s drag-image manager. It is not implemented by
applications.

When to Use

This interface is used by drop targets to have the drag-image manager display the drag
image while it is over the target window. The IDragSourceHelper and
IDropTargetHelper interfaces are exposed by the drag-image manager object to allow
the IDropTarget interface to use custom drag images. To use either of these interfaces,
you must create an in-process server drag-image manager object by calling
CoCreatelnstance with a CLSID of CLSID_DragDropHelper. Get interface pointers
using standard COM procedures.

Four of the IDropTargetHelper methods correspond to the four IDropTarget methods.
When you implement IDropTarget, each of its methods should call the corresponding
IDropTargetHelper method to pass the information to the drag-image manager. The fifth
IDropTargetHelper method notifies the drag-image manager to show or hide the drag
image. This method is used when dragging over a target window in a low color-depth
video mode. It allows the target to hide the drag image while it is painting the window.

Note The drag-and-drop helper object calls IDataObject::SetData to load private
formats into the data object that are used for cross-process support. It later retrieves
these formats by calling IDataObject::GetData. To support the drag-and-drop helper
object, the data object’'s SetData and GetData implementations must be able to accept
and return arbitrary private formats.

For further discussion of shell drag-drop operations, see Transferring Shell Data Using
Drag-Drop or the Clipboard.

Methods

IDropTargetHelper exposes the following methods in addition to IlUnknown:

DragEnter Notifies the drag-image manager that the drop target's
IDropTarget::DragEnter method has been called.

DragLeave Notifies the drag-image manager that the drop target’s
IDropTarget::DragLeave method has been called.

DragOver Notifies the drag-image manager that the drop target's
IDropTarget::DragOver method has been called.

Drop Notifies the drag-image manager that the drop target's
IDropTarget::Drop method has been called.

Show Notifies the drag-image manager to show or hide the drag image.

Chapter 7 Shell Interfaces 209

Version 5.00 and later of Shell32.dlI.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IDragSourceHelper

IDropTargetHelper::DragEnter

Notifies the drag-image manager that the drop target’s IDropTarget::DragEnter method
has been called.

Parameters

hwndTarget
[in] Target’s window handle.
pDataObject
[in] Pointer to the data object’s IDataObject interface.
ppt
[in] POINT structure pointer that was received in the IDropTarget::DragEnter
method’s ppt parameter.

dwkEffect
[in] Value pointed to by the IDropTarget::DragEnter method’s pdwEffect parameter.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

This method is called by a drop target when its IDropTarget::DragEnter method is
called. It notifies the drag-image manager that the drop target has been entered, and
provides it with the information needed to display the drag image.

210 Volume 5 Microsoft Windows Shell

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

|+
IDropTargetHelper

IDropTargetHelper::DragLeave

Notifies the drag-image manager that the drop target’s IDropTarget::DragLeave
method has been called.

Parameters
None.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

This method is called by a drop target when its IDropTarget::DraglLeave method is
called. It notifies the drag-image manager that the cursor has left the drop target.

Version 5.00 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

|+
IDropTargetHelper

IDropTargetHelper::DragOver

Notifies the drag-image manager that the drop target’s IDropTarget::DragOver method
has been called.

Chapter 7 Shell Interfaces 21

Parameters

ppt
[in] POINT structure pointer that was received in the IDropTarget::DragOver

method’s pt parameter.

dwEffect
[in] Value pointed to by the IDropTarget::DragOver method’s pdwEffect parameter.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

This method is called by a drop target when its IDropTarget::DragOver method is
called. It notifies the drag-image manager that the cursor position has changed, and
provides it with the information needed to display the drag image.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

%

IDropTargetHelper

IDropTargetHelper::Drop

Notifies the drag-image manager that the drop target's IDropTarget::Drop method has
been called.

Parameters

pDataObject
[in] Pointer to the data object’s IDataObject interface.

212 Volume 5 Microsoft Windows Shell

ppt
[in] POINT structure pointer that was received in the IDropTarget::Drop method’s pt
parameter.

dwEffect
[in] Value pointed to by the IDropTarget::Drop method’s pdwEffect parameter.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

This method is called by a drop target when its IDropTarget::Drop method is called. It
notifies the drag-image manager that the object has been dropped, and provides it with
the information needed to display the drag image.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shilobj.h.

IDropTargetHelper

IDropTargetHelper::Show
Notifies the drag-image manager to show or hide the drag image.

Parameters

fShow
[in] Boolean value that is set to TRUE to show the drag image, and FALSE to hide it.

Return Values
Returns S_OK if successful, or an OLE error value otherwise.

Remarks

This method is used when dragging over a target window in a low color-depth video
mode. It allows the target to have the drag-image manager hide the drag image while it
is painting the window. While you are painting a window that is currently being dragged

Chapter 7 Shell Interfaces 213

over, hide the drag image by calling Show with fShow set to FALSE. Once the window
has been painted, display the drag image again by calling Show with fShow set to
TRUE.

s

ersion 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

iDropTargetHeIper

IDockingWindowsSite

The IDockingWindowsSite interface is implemented by the browser to manage the
border space for one or more IDockingWindow objects. This interface is similar to the
I0lelnPlaceUlWindow interface.

When to Implement

You normally do not implement the IDockingWindowSite interface. The shell browser
implements this interface to support docked windows inside the browser frame.

When to Use
You use IDockingWindowsSite to negotiate the space for a docking window object in a
browser frame.

IDockingWindowsSite is derived from I0leWindow. The following are the methods
specific to IDockingWindowSite:

IDockingWindowSite methods Description

GetBorderDW Retrieves the allocated border space for a
particular IDockingWindow object.

RequestBorderSpaceDW Processes border space requests for an
IDockingWindow object.

SetBorderSpaceDW Allocates border space for an IDockingWindow
object.

et
o-

Ve|;s|on 4.7‘1”énd Iatei‘ of ‘Sﬂhelléz.dll.

214 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDockingWindowSite::GetBorderDW

Retrieves the border space allocated for the specified IDockingWindow object.

Parameters

punkSrc
Address of the IDockingWindow object for which the border space is being
requested.

prcBorder
Address of a RECT structure to receive the entire available border space for the
browser. The docking window object should use this information to determine where
to place itself. See the IDockingWindow::ResizeBorderDW method for more
information.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDokQWihbvs}lfréhié, ‘ID<‘)hck|ng(W'indowSite

Chapter 7 Shell Interfaces 215

IDockingWindowsSite::RequestBorderSpaceDW

Approves, modifies, or refuses a request for an IDockingWindow object’s border space.
The border space is not allocated until the SetBorderSpaceDW method is called.

Parameters

punkSrc
Address of the IDockingWindow object for which the border space is being
requested.

pbw
Address of a BORDERWIDTHS structure. Before calling this method, the structure
must be filled with the desired border space. After the method’s successful
completion, the structure will contain the approved border space. The
IDockingWindowSite object may change these values. If border space is critical, it is
the caller’s responsibility to determine if the returned border space is sufficient.

Return Values

Returns NOERROR if the border space request is approved or modified, or an OLE-
defined error code otherwise.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

IDockingWindowFrame

IDockingWindowSite::SetBorderSpaceDW

Allocates and reserves border space for an IDockingWindow object.

216 Volume 5 Microsoft Windows Shell

e

Parameters

punkSrc
Address of the IDockingWindow object for which the border space is being set.

pbw
Address of a BORDERWIDTHS structure that contains the IDockingWindow object’s
border space. The border space should have been approved by

IDockingWindowsSite through a successful call to the RequestBorderSpaceDW
method.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 4.71 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

B
IDockingWindowFrame

IEmptyVolumeCache

This interface is used by the disk-cleanup manager to communicate with a disk-cleanup
handler. Its methods allow the manager to request information from a handler, and notify
it of events such as the start of a scan or purge.

When to Implement

This interface must be implemented by disk-cleanup handlers running on Windows 98.
Handlers running on Windows 2000 also should expose IEmptyVolumeCache2.

Chapter 7 Shell Interfaces 217

Methods

Method Description

Deactivate Notifies the handler that the disk-cleanup manager is shutting
down.

GetSpaceUsed Asks for the amount of disk space that the handler can free.

Initialize Initializes the disk cleaner handler.

Purge Notifies the handler to clean up its unessential files.

ShowProperties Asks the handler to display its user interface (Ul).

Version 5.00 and Ivater ofv Shell32.d|i.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVqumeCacheCallBack |

IEmptyVolumeCache::Deactivate

This method is used to notify the handler that the disk-cleanup manager is shutting
down.

Parameters

dwFlags
[out] Flag that can be set to return information to the disk-cleanup manager. It can

have the following value:

EVCF_REMOVEFROMLIST
If this flag is set, the disk-cleanup manager will delete the handler’s registry subkey.

Return Values
S_OK This value should always be returned.

218

Volume 5 Microsoft Windows Shell

Remarks

If the EVCF_REMOVEFROMLIST flag is set, the handler will not be run again unless the
registry entries are reestablished. This flag typically is used for a handler that will run
only once.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.

Windows CE: Unsupported.
Header: Declared in emptyvc.h.

IEmptyVolumeCache::GetSpaceUsed

This method requests the amount of disk space that the disk-cleanup handler can free.

Parameters

pdwSpaceUsed
[out] Amount of disk space, in bytes, that the handler can free. This value will be
displayed in the disk-cleanup manager’s list, to the right of the handler’s check box.
To indicate that you do not know how much disk space can be freed, set this
parameter to —1, and “???MB” will be displayed. If you set the
EVCF_DONTSHOWIFZERO flag when Initialize was called, setting pdwSpaceUsed
to zero will notify the disk-cleanup manager to omit the handler from its list.

picb
[in] Pointer to the disk-cleanup manager’s IEmptyVolumeCacheCallback interface.
This pointer can be used to call that interface’s ScanProgress method to report on
the progress of the operation.

Return Values

E_ABORT The scan operation was ended prematurely.
This value usually is returned when a call to
IEmptyVolumeCache::ScanProgress returns E_ABORT. This return
value indicates that the user cancelled the operation by clicking the
disk-cleanup manager’s Cancel button.

S_FALSE An error occurred when the handler tried to calculate the amount of
disk space that could be freed.

S_OK Success.

Chapter 7 Shell Interfaces 219

Remarks

When this method is called by the disk-cleanup manager, the handler should start
scanning its files to determine which of them can be deleted, and how much disk space
will be freed. Handlers should call IEmptyVolumeCache::ScanProgress periodically to
keep the user informed of the progress of the scan, especially if it will take a long time.
Calling this method frequently also allows the handler to determine whether the user has
cancelled the operation. If ScanProgress returns E_ABORT, the user has cancelled the
scan. The handler should stop scanning immediately and return E_ABORT.

You should set the pdwSpaceUsed parameter to —1 only as a last resort. The handler is
of limited value to users if they do not know how much space will be freed.

Version 5.00 and later of Shell32.dll. \

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCache::Initialize

This method is used to initialize the disk-cleanup handler, based on the information
stored under the specified registry key.

Parameters

hkRegKey
[in] Handle to the registry key that holds the information about the handler object.

pewszVolume
[in] Pointer to a null-terminated Unicode string with the volume root—for example,
“C:\.

ppwszDisplayName
[out] Pointer to a null-terminated Unicode string with the name that will be displayed in
the disk-cleanup manager’s list of handiers. If no value is assigned, the registry value
will be used.

220 Volume 5 Microsoft Windows Shell

ppwszDescription
[out] Pointer to a null-terminated Unicode string that will be displayed when this object
is selected from the disk-cleanup manager’s list of available disk-cleanup handlers. If
no value is assigned, the registry value will be used.

pdwFlags
[in/out] Flags that are used to pass information to the handler, and back to the disk-
cleanup manager.

These flags can be passed in to the object:

EVCF_OUTOFDISKSPACE
If this flag is set, the user is out of disk space on the drive. When this flag is
received, the handler should be aggressive about freeing disk space, even if it
results in a performance loss. The handler, however, should not delete files that
would cause an application to fail, or the user to lose data.

EVCF_SETTINGSMODE
If the disk-cleanup manager is being run on a schedule, it will set this flag. You
must assign values to the ppwszDisplayName and ppwszDescription parameters. If
this flag is set, the disk-cleanup manager will not call GetSpaceUsed, Purge, or
ShowProperties. Because Purge will not be called, cleanup must be handled by
Initialize. The handler should ignore the pcwszVolume parameter and clean up
any unneeded files regardless of what drive they are on. Because there is no
opportunity for user feedback, only those files that are extremely safe to clean up
should be touched.

These flags can be passed by the handler back to the disk-cleanup manager:

EVCF_DONTSHOWIFZERO
Set this flag when there are no files to delete. When
IEmptyVolumeCache::GetSpaceUsed is called, set the pdwSpaceUsed
parameter to zero, and the disk-cleanup manager will omit the handler from its list.

EVCF_ENABLEBYDEFAULT
Set this flag to have the handler checked by default in the cleanup manager’s list. It
will run every time the Disk Cleanup utility runs, unless the user clears the
handler’s check box. Once the check box has been cleared, the handier will not be
run until the user selects it again.

EVCF_ENABLEBYDEFAULT_AUTO
Set this flag to have the handler run automatically during scheduled cleanup. This
flag should be set only when deletion of the files is low-risk. As with
EVCF_ENABLEBYDEFAULT, the user can choose not to run the handler by
clearing its check box in the disk-cleanup manager’s list.

EVCF_HASSETTINGS
Set this flag to indicate that the handler can display a user interface (Ul). An
example of a simple Ul is a list box that displays the deletable files and allows the
user to select which ones to delete. The disk-cleanup manager will then display a

Chapter 7 Shell Interfaces 221

button below the cleanup handler’s description. The user clicks this button to
request the Ul. The default button text is “Settings”, but the handler can specify a
different text by setting the AdvancedButtonText value in its registry key.

EVCF_REMOVEFROMLIST
Set this flag to remove the handler from the disk-cleanup manager’s list. All registry
information will be deleted, and the handler cannot be run again until the key and
its values are restored. This flag is used primarily for one-time cleanup operations.

Return Values

E_ABORT The cleanup operation was ended prematurely.
E_FAIL The cleanup operation failed.

S_FALSE There are no files to delete.

S_OK Success.

Remarks

This method is used by the Windows 98 disk-cleanup manager. Windows 2000 uses the
InitializeEx method exported by IEmptyVolumeCache2.

Use CoTaskMemAlloc to allocate memory for the strings returned through
ppwszDisplayName and ppwszDescription. The disk-cleanup manager will free the
memory when it is no longer needed.

Version 5.00 and later of Shell32.dl.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCache::Purge

This method notifies the handler to start deleting its unneeded files.

Parameters

dwSpaceToFree
[in] Amount of disk space that the handler should free. If this parameter is set to —1,
the handler should delete all its files.

222

Volume 5 Microsoft Windows Shell

picb
[in] Pointer to the disk-cleanup manager’s IEmptyVolumeCacheCallBack interface.
This pointer can be used to call the interface’s PurgeProgress method to report on
the progress of the operation.

Return Values

E_ABORT The operation was ended prematurely. This value usually is returned
when IEmptyVolumeCache::PurgeProgress returns E_ABORT. This
typically happens when the user cancels the operation by clicking the
disk-cleanup manager’s Cancel button.

S OK Success.

Remarks

For Windows 98, the dwSpaceToFree parameter is always set to the value specified by
the handler when IEmptyVolumeCache::GetSpaceUsed was called.

In general, handlers should be kept simple and delete all their files when this function is
called. If there are significant performance advantages to deleting only a portion of the
files, the handler should implement the ShowProperties method. When called, this
method displays a Ul that allows the user to select the files to be deleted.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCache::ShowProperties

This method is used to notify the handler to display its user interface (Ul).

IER LS Y

Parameters
hwnd
[in] Parent window to be used when displaying the Ul.

Return Values
S_OK The user changed one or more settings.

S_FALSE No settings were changed.

Chapter 7 Shell Interfaces 223

Remarks

A handler can display a Ul, which typically is used to allow the user to select which files
are to be cleaned up and how. To do so, the handler sets the EVCF_HASSETTINGS
flag in the pdwFlags parameter when Initialize is called. The disk-cleanup manager then
will display a Settings button. When that button is clicked, the disk-cleanup manager
calls ShowProperties to notify the handler to display its UI.

Version 5.00 and later of Shell3é.dll.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCache2

This interface extends IEmptyVolumeCache. It defines one additional method,
InitializeEXx, that provides better localization support than
IEmptyVolumeCache::Initialize

When to Implement

This interface should be exported by disk-cleanup handlers running on Windows NT 5.0.
Handlers running on Windows 98 must export IEmptyVolumeCache.

Methods

In addition to the methods exported by IEmptyVolumeCache, IEmptyVolumeCache2
exports:

Method Description

InitializeEx Initializes the disk-cleanup handler.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCacheCallBack

224 Volume 5 Microsoft Windows Shell

IEmptyVolumeCache2::InitializeEx

This method is used to initialize the disk-cleanup handler. It provides better support for
localization than IEmptyVolumeCache::Initialize.

R R SR

Parameters
hkRegKey
[in] Handle to the registry key that holds the information about the handler object.
pcwszVolume
[in] Pointer to a null-terminated Unicode string with the volume root—for example,
“‘C\.
pcwszKeyName
[in] Pointer to a null-terminated Unicode string with the name of the handler’s
registry key.
ppwszDisplayName
[out] Pointer to a null-terminated Unicode string with the name that will be displayed in
the disk-cleanup manager’s list of handlers. You must assign a value to this
parameter.
ppwszDescription
[out] Pointer to a null-terminated Unicode string that will be displayed when this object
is selected from the disk-cleanup manager’s list of available disk cleaners. You must
assign a value to this parameter.
ppwszBinText
[out] Pointer to a null-terminated Unicode string with the text that will be displayed on
the disk-cleanup manager’s Settings button. If the EVCF_HASSETTINGS flag is set,
you must assign a value to ppwszBtnText. Otherwise, you can set it to NULL.
pdwFlags
[infout] Flags that are used to pass information to the handler, and back to the disk-
cleanup manager.
These flags can be passed into the object:
EVCF_OUTOFDISKSPACE
If this flag is set, the user is out of disk space on the drive. When this flag is
received, the handler should be aggressive about freeing disk space, even if it

Chapter 7 Shell Interfaces 225

results in a performance loss. The handler, however, should not delete files that
would cause an application to fail or the user to lose data.

EVCF_SETTINGSMODE
If the disk-cleanup manager is being run on a schedule, it will set the
EVCF_SETTINGSMODE flag. You must assign values to the ppwszDisplayName
and ppwszDescription parameters. If this flag is set, the disk-cleanup manager will
not call GetSpaceUsed, Purge, or ShowProperties. Because Purge will not be
called, cleanup must be handled by InitializeEx. The handler should ignore the
pcwszVolume parameter and clean up any unneeded files regardless of what drive
they are on. Because there is no opportunity for user feedback, only those files that
are extremely safe to clean up should be touched.

These flags can be passed by the handler back to the disk-cleanup manager:

EVCF_DONTSHOWIFZERO
Set this flag when there are no files to delete. When
IEmptyVolumeCache2::GetSpaceUsed is called, set the pdwSpaceUsed
parameter to zero, and the disk cleanup

EVCF_ENABLEBYDEFAULT
Set this flag to have the handler checked by default in the disk-cleanup manager’s
list. The handler will be run every time the disk cleanup utility runs, unless the user
clears the handler’s check box. Once the check box has been cleared, the handler
will not be run until the user selects it again.

EVCF_ENABLEBYDEFAULT_AUTO
Set this flag to have the handler run automatically during scheduled cleanup. This
flag should be set only when deletion of the files is low-risk. As with

EVCF_ENABLEBYDEFAULT, the user can choose not to run the handler by
clearing its check box in the disk-cleanup manager’s list.

EVCF_HASSETTINGS
Set this flag to indicate that the handler can display a user interface (Ul). An
example of a simple Ul is a list box that displays the deletable files and allows the
user to select which ones to delete. The disk-cleanup manager then will display a
button below the cleanup handler’s description. The user clicks this button to
request the Ul. Use the ppwszBtnText parameter to specify the button’s text.

EVCF_REMOVEFROMLIST
Set this flag to remove the handler from the disk-cleanup manager’s list. All registry
information will be deleted, and the handler cannot be run again until the key and
its values are restored. This flag is used primarily for one-time cleanup operations.

Return Values

E_ABORT The cleanup operation was ended prematurely.
E_FAIL The cleanup operation failed.
S_FALSE There are no files to delete.

S_OK Success.

226

Volume 5 Microsoft Windows Shell

Remarks

The Windows NT 5.0 disk-cleanup manager first will call
IEmptyVolumeCache2::InitializeEx to initialize a disk-cleanup handler. It will call
IEmptyVolumeCache::Initialize only if the IEmptyVolumeCache2 interface is not
implemented. The Windows 98 disk-cleanup manager only supports
IEmptyVolumeCache::Initialize.

InitializeEx is intended to provide better localization support than Initialize. When
InitializeEx is called, the handler application must assign appropriately localized values
to the ppwszDisplayName and ppwszDescription parameters. If the Settings button is
enabled, you must also assign a value to the ppwszBitnText parameter. Unlike Initialize,
if you set these strings to NULL to notify the disk-cleanup manager to get the default
values from the registry, InitializeEx will fail.

Use CoTaskMemAlloc to allocate memory for the strings returned through
ppwszDisplayName, ppwszDescription, and ppwszBtnText. The disk-cleanup manager
will free the memory when it is no longer needed.

ersion 5.00 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCacheCallBack

This interface is used by a disk-cleanup handler to communicate with the disk-cleanup
manager.

When to Use

A disk-cleanup handler uses this interface to report to the disk-cleanup manager on the
progress either of deleting files or of scanning for deletable files. It also provides a way to
query the manager, to find out if the user has cancelled the operation. The handler
receives a pointer to this interface when the manager calls the
IEmptyVolumeCache::GetSpaceUsed or IEmptyVolumeCache::Purge methods.

Methods
Method Description

PurgeProgress Reports the progress of a purge of deletable files.
ScanProgress Reports the progress of a scan of the file system for deletable files.

ot g

Version 5.00 and Iatef of'Syhe)|I32.dII’.

Chapter 7 Shell Interfaces 227

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCacheCallback::PurgeProgress

This method is called periodically by a disk-cleanup handler to update the disk-cleanup
manager on the progress of a purge of deletable files.

Parameters

dwSpaceFreed
[in] Amount of disk space, in bytes, that has been freed at this point in the purge. The
disk-cleanup manager uses this value to update its progress bar.

dwSpaceToFree
[in] Amount of disk space, in bytes, that remains to be freed at this point in the purge.

dwFlags
[in] Flag that can be sent to the disk-cleanup manager. It can have the following value:
EVCCBF_LASTNOTIFICATION
This flag should be set if the handler will not call this method again. Typically, it is
set when the purge is near completion.

pwszReserved
[in] Reserved.

Return Values

E_ABORT This value is returned when the user clicks the Cancel button
on the disk-cleanup manager’s dialog box while a scan is in progress.
The handler should stop purging files and shut down.

S_OK The handler should continue purging deletable files.

Remarks

This method is called typically by the handler’'s IEmptyVolumeCache::Purge method
while the handler is purging deletable files. Handlers should call PurgeProgress
periodically to keep the user informed of progress, especially if the purge will take a long
time. Calling this method frequently also allows the handler to shut down promptly if a
user cancels a purge.

228 Volume 5 Microsoft Windows Shell

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.

Header: Declared in emptyvc.h.

IEmptyVolumeCacheCallback::ScanProgress

This method is called by a disk-cleanup handler to update the disk-cleanup manager on
the progress of a scan for deletable files.

Parameters

dwSpaceUsed
[in] Amount of disk space that, at this point in the scan, the handler can free.
adwFlags
[in] Flag that can be sent to the disk-cleanup manager. This flag can have the
following value:
EVCCBF_LASTNOTIFICATION
This flag should be set if the handler will not call this method again. It is set
typically when the scan is near completion.

pwszReserved
[in] Reserved.

Return Values

E_ABORT This value is returned when the user clicks the Cancel button on the
disk-cleanup manager’s dialog box while a scan is in progress. The
handler should stop scanning and shut down.

S_OK The handler should continue scanning for deletable files.

Remarks

This method is called typically by the handler's IEmptyVolumeCache::GetSpaceUsed
method while the handler is scanning for deletable files.

Chapter 7 Shell Interfaces 229

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.

Windows CE: Unsupported.
Header: Declared in emptyvc.h.

IEnumExtraSearch

The IEnumExtraSearch interface is a standard OLE enumerator that is used by a client
to determine the available search objects for a folder.

When to Implement

Implement IEnumExtraSearch if your namespace extension supports one or more
search objects.

When to Use

You do not call this interface directly. An IEnumExtraSearch interface is requested by a
client only after it has determined that the IShellFolder2 interface is exposed. Clients get
a pointer to this interface by calling IShellFolder2::EnumSearches.

IEnumExtraSearch implements lUnknown and the standard OLE enumeration
methods.

IEnumExtraSearch methods Description

Clone Used to save the enumeration state by creating a
duplicate of the current enumerator.

Next Used to request one or more items.

Reset Resets the enumerator to the first item.

Skip Skips one or more items.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IEnumExtraSearch::CIone

Used to request a duplicate of the enumerator object to preserve its current state.

230

Volume 5 Microsoft Windows Shell

Parameters

PpEnum
Pointer to the IEnumExtraSearch interface of a new enumerator object.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks

The new enumerator should be created with the same state as the current one. Use the
Skip method to advance the enumeration index to the appropriate value before
returning.

Ver3|n 5.00 and Iéter of Shell32;dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shiobj.h.

IEnumExtraSearch::Next

Used to request information on one or more search objects.

e P B A

Parameters

celt
[in] Number of search objects to be enumerated, starting from the current object. If
celtis too large, the method should stop and return the actual number of search
objects in pceltFetched.

rgelt
[out] Pointer to an array of pceltFetched EXTRASEARCH structures containing
information on the enumerated objects.

pceltFetched
[out] Number of objects actually enumerated. This may be less than celt.

Chapter 7 Shell Interfaces 231

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IEnumExtraSearch::Reset

Used to reset the enumeration index to zero.

fim e

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IEnumExtraSearch::Skip

Skip past a specified number of objects.
HRESULT CTone(

Parameters

celt
Number of objects to skip.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

232 Volume 5 Microsoft Windows Shell

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IEnumiIDList

The IEnumliDList interface provides a standard set of methods that can be used to
enumerate the item identifier lists (PIDLs) of the items in a shell folder. When a folder’s
IShellFolder::EnumObjects method is called, it creates an enumeration object and
passes a pointer to the object’s IEnumlIDList interface back to the caller.

When to Implement

All shell folder objects must be able to respond to a call to their
IShellFolder::EnumObjects method by creating an enumeration object that exports
IEnumiDList. The shell, in particular, uses these objects to enumerate the items in a
folder.

When to Use

Use this interface to enumerate the contents of a shell folder object. Call the folder’s
IShellFolder::EnumObjects method and use the returned IEnumiIDList pointer to
enumerate the PIDLs of the items in the folder.

IEnumiDList methods Description

Clone Creates a new item enumeration object identical to the
current one.

Next Retrieves the specified number of item identifiers.

Reset Returns to the beginning of the enumeration.

Skip Skips over the specified number of items.

ersmn 4.00 and Iaier of Shéll3é.d|l.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 233

[EnumlIDList::Clone

Creates a new item enumeration object with the same contents and state as the
current one.

_HRESU LT C'i one(

Parameters

ppenum
Address of a pointer to the new enumeration object. The calling application eventually
must free the new object by calling its Release member function.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks

This method makes it possible to record a particular point in the enumeration sequence
and then return to that point at a later time.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IEnumiDList

IEnumIDList::Next

Retrieves the specified number of item identifiers in the enumeration sequence and
advances the current posmon by the number of items retrieved.

HRESULT Next(

234 Volume 5 Microsoft Windows Shell

Parameters

celt
Number of elements in the array pointed to by the rgelt parameter.

rgelt
Address of an array of ITEMIDLIST pointers that receives the item identifiers. The
implementation must allocate these item identifiers using the shell’s allocator
(retrieved by the SHGetMalloc function). The calling application is responsible for
freeing the item identifiers using the shell’s allocator.

Note The ITEMIDLIST returned in the rgelt array are relative to the IShellFolder
being enumerated.

pceltFetched
Address of a value that receives a count of the item identifiers actually returned in
rgelt. The count can be smaller than the value specified in the celt parameter. This
parameter can be NULL only if celtis one.

Return Values

Returns NOERROR if successful, S_FALSE if there are no more items in the
enumeration sequence, or an OLE-defined error value otherwise.

Remarks

If this method returns a COM error code (as determined by the FAILED macro), then no
entries in the rgelt array are valid on exit. If this method returns a success code (such as
NOERROR or S_FALSE), then the ULONG pointed to by the pceltFetched parameter
determines how many entries in the rgelt array are valid on exit.

The distinction is important in the case where celt > 1. For example, if you pass celt=10
and there are only 3 elements left, *pceltFetched will be 3 and the method will return
S_FALSE meaning that you reached the end of the file. The three fetched elements will
indeed be stored into rgelt and are valid.

Version 4.00 and later of Shell32.dl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IEnumIDList

Chapter 7 Shell Interfaces 235

IEnumiDList::Reset

Returns to the beginning of the enumeration sequence.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

ersion 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

BE see
IEnumIDList

IEnumIDList::Skip

Skips over the specified number of elements in the enumeration sequence.

Y 3 v

Parameters

celt
Number of item identifiers to skip.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

ey
-

Version 4.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

236

Volume 5 Microsoft Windows Shell

IEnumIDList

IExtractlcon

This interface allows a client to retrieve the icon that is associated with one of the objects
in a folder.

There are two ways to get an object’s icon. The simplest way is to call SHGetFilelnfo.
However, this approach is inflexible and can be rather slow. A more flexible and efficient
way to get an item’s icon is to use IExtractlcon. The shell uses IExtractlcon to retrieve
icons when it displays the contents of a folder. To use IExtractlcon to get an object’s
icon:

1. Get a pointer to the IShellFolder interface of the folder that contains the object.

2. Call IShellFolder::GetUlObjectOf with the PIDL of the object and the interface ID of
IExtracticon (IID_|Extractlcon). The folder creates an object to handle the icon
extraction, and returns the object’s IExtractlcon interface pointer.

3. Call IExtractlcon::GetlconLocation to get the icon’s location.
4. Call IExtractlcon::Extract to get the icon’s handle.

It can be possible also to extract icons asynchronously on a background thread. This
approach is useful when extraction is time-consuming operation. See
IExtracticon::GetlconLocation for details.

When to Implement

Namespace extensions implement IExtractlcon to provide icons for their objects. A
client obtains an IExtractlcon interface pointer for an object in a folder by calling the
folder's IShellFolder::GetUlObjectOf method. The GetUIObjectOf implementation
must create an object to handle the icon extraction, and return a pointer to the object's
IExtractlcon interface.

Icon handlers also implement IExtractlcon. An icon handler is a type of shell extension
handler that allows you to assign icons dynamically to the members of a file class.

When to Use

Call this interface if your application needs a more flexible way to retrieve an object’s
icon than SHGetFilelnfo.

Methods
Extract Extracts an icon from the specified location.
GetlconLocation Retrieves the icon location for an object.

Chapter 7 Shell Interfaces 237

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shiobj.h.

|[Extracticon::Extract
Extracts an icon image from the specified location.
HRESULT Extract(AT St

i);l SR SRR

Parameters
pszFile
[in] Pointer to a null-terminated string specifying the icon location.
nlconindex
[in] The index of the icon in the file pointed to by pszFile.
phiconLarge
[out] Pointer to an HICON value that receives the handle to the large icon.

phiconSmall
[out] Pointer to an HICON value that receives the handle to the small icon.

nlconSize
[in] Desired size of the icon, in pixels. The low word contains the size of the large icon,
and the high word contains the size of the small icon. The size specified can be the
width or height. The width of an icon always equals its height.

Return Values

Returns NOERROR if the function extracted the icon, or S_FALSE if the calling
application should extract the icon.

Remarks

The icon location and index are the same values returned by the GetlconLocation
method. If this function returns S_FALSE, these values must specify an icon file name
and index that form legal parameters for a call to Extract. If Extract does not return

238 Volume 5 Microsoft Windows Shell

S_FALSE, no assumptions should be made about the meanings of the pszFile and
niconindex parameters.

Versiron\4.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IExtracticon

|[Extracticon::GetlconLocation

Retrieves the location and index of an icon.

HRESULT GetIconLocation(
¥ ~UINT uFIags. B
. LPSTR szlconfile, ARG
CUINTUCchMak,
< LPINT pilndex,:

UINT. #pwFlags L

'

Parameters

uFlags
[in] Flags. This parameter can be zero or one or more of the following values:
GIL_ASYNC A client sets this flag to discover whether or not the icon should

be extracted asynchronously. If the icon can be extracted
rapidly, this flag normally is ignored. If extraction will be time-
consuming, GetlconLocation should return E_PENDING. See
the Remarks for further discussion.

GIL_FORSHELL The icon is to be displayed in a shell folder.

GIL_OPENICON The icon should be in the open state if both open- and closed-
state images are available. If this flag is not specified, the icon
should be in the normal or closed state. This flag is used
typically for folder objects.

szlconFile
[out] Pointer to a buffer that receives the icon location. The icon location is a null-
terminated string that identifies the file that contains the icon.

Chapter 7 Shell Interfaces 239

cchMax

[in] Size of the buffer pointed to by sz/conFile.

pilndex

[out] Pointer to an INT that receives the index of the icon in the file pointed to by

szlconFile.
pwFlags

[out] Pointer to a UINT value that receives zero or a combination of the following

values:
GIL_DONTCACHE

GIL_NOTFILENAME

GIL_PERCLASS

GIL_PERINSTANCE

GIL_SIMULATEDOC

Return Values

The physical image bits for this icon should not be cached
by the caller. This distinction is important to consider
because a GIL_DONTCACHELOCATION flag may be
introduced in future versions of the shell.

The location is not a file name/index pair. Callers that
decide to extract the icon from the location must call this
object’s IExtractlcon::Extract method to obtain the
desired icon images.

All objects of this class have the same icon. This flag is
used internally by the shell. Typical implementations of
IExtractlcon do not require this flag because the flag
implies that an icon handler is not required to resolve the
icon on a per-object basis. The recommended method for
implementing per-class icons is to register a Defaulticon for
the class.

Each object of this class has its own icon. This flag is used
internally by the shell to handle cases like Setup.exe,
where objects with identical names can have different
icons. Typical implementations of IExtracticon do not
require this flag.

The caller should create a document icon using the
specified icon.

Returns S_OK if the function returned a valid location, or S_FALSE if the shell should
use a default icon. If the GIL_ASYNC flag is set in uFlags, the method can return
E_PENDING to indicate that icon extraction will be time consuming.

Remarks

When a client sets the GIL_ASYNC flag in uFlags and receives E_PENDING as a return
value, it typically creates a background thread to extract the icon. It calls
GetlconLocation from that thread, without the GIL_ASYNC flag, to retrieve the icon
location. It then calls IExtracticon::Extract to extract the icon. Returning E_PENDING
implies that the object is free threaded. In other words, it can be called concurrently by

multiple threads safely.

240

Volume 5 Microsoft Windows Shell

Version 4.00 and later of Shell32.dlI.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IExtracticon::Extract

IExtractimage

The IExtractimage interface is used to request a thumbnail image from a shell folder.
There are two steps to the process. First, use GetLocation to request the path
description of an image and specify how the image should be rendered. Then call
Extract to extract the image.

If the object is free-threaded it also must expose an IRunnableTask interface, so it can
be stopped and started as needed. This feature can be particularly useful when
extraction may be slow.

When to Implement

Implement IExtractimage if your namespace extension needs to provide thumbnail
images to be displayed in a shell view.

When to Use

Use IExtractlmage if you are implementing a view of namespace objects, and want to
display thumbnail images. You can use a shell folder’s IShellFolder::GetUIObjectOf
method to bind to its IExtractimage interface.

IExtractimage implements IlUnknown and the following methods:

IExtractimage methods Description

Extract Used to request the image itself.
GetLocation Used to request location of the file containing the image.

Version 5.00 and later of Shell32.dl.
Windows NT/2000: Requires Windows 2000.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 241

|[Extractimage::Extract

Used to request an |mage from an object, such as an item in a shell folder.

HRESULT Extract(. =

Parameters
phBmplmage
[out] Buffer to hold the bitmapped image.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks
You must call IExtractimage::GetLocation prior to calling Extract.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IExtractimage::GetLocation

Used to request the path description of an image and specify how the image should be
rendered.

ﬂRE"‘ 'LT eeuocmon(

Parameters

pszPathBuffer
[out] Buffer used to return the path description. This value to identifies the image so
you can avoid loading the same one more than once.

242

Volume 5 Microsoft Windows Shell

cchMax

[in] Size of pszPathBuffer in bytes.

pdwPriority

[out] Pointer used to return the priority of the item when the IEIFLAG_ASYNC flag is
set in pdwFlags. This parameter is used normally to indicate the amount of time
needed to extract the image. There are three standard priority levels:

Level Description
IEI_PRIORITY_MAX Maximum priority
IEI_PRIORITY_MIN Minimum priority

IEI_PRIORITY_NORMAL Normal priority

If you want more control over the order in which thumbnails are extracted, you can
define as many priority levels as you wish (up to 32 bits). As long as the integer
values assigned to the different levels increase from low to high priority, the actual
numbers you use are not important. They are used only to determine the order in
which the images will be extracted.

prgSize

[in] Pointer to a SIZE structure with the desired width and height of the image.

dwRecClirDepth

[in] Recommended color depth in units of bits per pixel.

pdwFlags

[in] Flags that specify how the image is to be handled. It can be a combination of the
following:

Flag Description

IEIFLAG_ASPECT Used to ask the object to use the supplied aspect ratio. If
this flag is set, a rectangle with the desired aspect ratio

will be passed in prgSize. This flag cannot be used with
IEIFLAG_SCREEN.

IEIFLAG_ASYNC Used to ask the object if it supports asynchronous (free-
threaded) extraction. If this flag is set, and GetLocation
returns E_PENDING, the priority of the item should be
returned in pdwPriority.

IEIFLAG_CACHE Returned by the object to indicate that it will not cache the
image. If this flag is returned, the shell will cache a copy of
the image.

IEIFLAG_GLEAM Used to ask the object if it has a gleam. If so, this flag
should be set when the method returns.

IEIFLAG_OFFLINE Used to tell the object to use only local content for

rendering.

Chapter 7 Shell Interfaces 243

IEIFLAG_ORIGSIZE Version 5.0. Used to tell the object to render the image to
the approximate size passed in prgSize, but crop it if
necessary.

IEIFLAG_SCREEN Used to tell the object to render as if for the screen. This
flag cannot be used with IEIFLAG_ASPECT.

Return Values
Value Description

E_PENDING If the IEIFLAG_ASYNC flag is set, this return value is used to indicate
to the shell that the object is free-threaded.

NOERROR Success.

It may also return an OLE-defined error code.

Remarks

If GetLocation is free-threaded, it can be placed in a background thread. The object
must also expose an IRunnableTask interface, so the caller can start and stop the
extraction process as needed.

You should return images that fit within the boundaries defined by prgSize. With
Windows 2000 and later systems, you can set IEIFLAG_ORIGSIZE to use objects that
do not have a standard aspect ratio, and they will be displayed properly. You do not
need to fill in the unused part of the rectangle. If you try to use a nonstandard aspect

ratio image with earlier versions of the shell, it will be stretched to fit the prgSize
rectangle. Depending on how much the aspect ratio differs from what is specified, the
image might be badly distorted.

aseey
s

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IExtractimage2

The IExtractimage2 interface extends the capabilities of IExtractimage.

When to Implement
Implement IExtractimage?2 to provide date stamps for your thumbnail images.

244 Volume 5 Microsoft Windows Shell

When to Use

You do not call this interface directly. IExtractimage2 is used by the operating system
only when it has confirmed that your application is aware of this interface.

IExtractimage2 implements all the IExtractimage methods as well as IUnknown. The
following method is specific to IExtractimage2:

IExtractimage2 methods Description

GetDateStamp Used to request the date the thumbnail was last modified.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

|[Extractimage2::GetDateStamp

Used to request the date the image was last modified. This method allows the shell to
determine whether or not cached images are out of date.

Parameters
pDateStamp
Pointer to a FILETIME structure used to return the last time the image was modified.

Return Values
Return NOERROR if successful, or an OLE-defined error code otherwise.

s

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 245

IFileViewer

The IFileViewer interface designates an interface that allows a registered file viewer to
be notified when it must show or print a file.

Note File viewers are not supported by Windows 2000 and later systems.

When to Implement

You implement this interface to provide a means for your registered file types to be
viewed and/or printed.

When to Use

You normally do not use this interface. The shell calls the interface when the user
chooses the Quick View command from a file’s context menu and the file is a type that
the file viewer recognizes.

IFileViewer methods Description

PrintTo Prints a file.
Show Displays a file.
Showlnitialize Prepares to display a file.

Version 4.00 and later of Shell32.dlI.

Windows NT/2000: Requires Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IFileViewer::PrintTo

Prints a file. The shell specifies the name of the file to print by calling the file viewer’s
IPersistFile::Load method.

Parameters

pszDriver
Address of a buffer that contains the name of the printer device driver that should print
the file. If this parameter is NULL, the file viewer determines which device driver
to use.

246 Volume 5 Microsoft Windows Shell

fSuppressUI ,
User interface suppression flag. If this parameter is TRUE, the file viewer should not
display any user interface, including error messages, during the print operation. If this
parameter is FALSE, the file viewer can show dialog boxes, as needed.

Return Values
Returns the NOERROR value if successful, or an OLE-defined error value otherwise.

.-

erslon 4.00 and later of Shell32.d||.

Windows NT/2000: Requires Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IFileViewer

IFileViewer::Show

Displays a file. The shell specifies the name of the file to display by calling the file
viewer’s IPersistFile::Load method.

Parameters
pvsi
~Address of an FVSHOWINFO structure to contain information that the file viewer uses
to display the file. A file viewer can return information to the shell by modifying the
members of the structure.

Return Values

Returns NOERROR if successful, or E_UNEXPECTED if the
IFileViewer::ShowInitialize method was not called before IFileViewer::Show.

.

ersib 4.00 and later of Shell32y.‘dll.

Chapter 7 Shell Interfaces 247

Windows NT/2000: Requires Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shiobj.h.

IFileViewer::Showlnitialize

Allows a file viewer to determine whether it can display a file and, if it can, to perform
initialization operations before showing the file.

g B

Parameters

Ipfsi
Address of an IFileViewerSite interface. A file viewer uses this interface to retrieve
the handle to the current pinned window or to specify a new pinned window.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks

The shell calls this method before the IFileViewer::Show method. The shell specifies
the name of the file to display by calling the file viewer’s IPersistFile::Load method.

Showilnitialize must perform all operations that are prone to failure so that if it succeeds,
IFileViewer::Show will not fail.

‘-

erslon 4.00 and later of ‘Sv,hxellb3>2.dll. i

Windows NT/2000: Requires Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IFileViewer

248 Volume 5 Microsoft Windows Shell

IFileViewerSite

The IFileViewerSite interface designates an interface that allows a file viewer to retrieve
the handle to the current pinned window or to set a new pinned window. The pinned
window is the window in which the current file viewer displays a file. When the user
selects a new file to view, the shell directs the file viewer to display the new file in the
pinned window rather than create a new window.

Note File viewers are not supported by Windows 2000 and later systems.

When to Implement

You normally do not implement this interface. The shell implements this interface to
provide a pinned window for the file viewer.

When to Use
You use this interface to obtain or set the window for a file viewer.
IFileViewerSite methods Description

GetPinnedWindow Retrieves the handle to the current pinned window.
SetPinnedWindow Sets a new pinned window.

Version 4.0 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IFileViewerSite::GetPinnedWindow

Retrieves the handle to the current pinned window, if one exists.

305 g g B o Bt

Parameters
phwnd

Address of the handle to the current pinned window, or NULL if no pinned window
exists.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Chapter 7 Shell Interfaces 249

] nents

Version 4.00 and later of Sheli32.dll.

Windows NT/2000: Requires Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IFileViewerSite

IFileViewerSite::SetPinnedWindow

Sets the pinned window. When the user selects a new file to view, the shell directs the
file viewer to display the new file in the pinned window instead of creating a new window.

Parameters
hwnd
Handle to the new pinned window, or NULL if there is to be no pinned window.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IFileViewerSite

linputObject

The linputObiject interface is used to change Ul activation and process accelerators for
a user input object contained in the shell.

250 Volume 5 Microsoft Windows Shell

When to Implement
Implement linputObject if you are implementing a shell object that takes user input.

When to Use

You do not call this interface directly. linputObject is used by the shell or the browser to
notify the object of Ul activation changes and to translate keyboard accelerators.

linputObject is derived from IlUnknown. The following methods are specific to
linputObject:

linputObject methods Description

HasFocuslO Determines if one of the object’'s windows has the keyboard
focus.

TranslateAcceleratorlO Passes keyboard accelerators to the object.

UlActivatelO Activates or deactivates the object.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

linputObject::HasFocuslO

Determines if one of the object’'s windows has the keyboard focus.

o

HRESULT HasFocusto(veidy: 00 e
Return Values

Returns S_OK if one of the object’s windows has the keyboard focus, or S_FALSE
otherwise.

ersion 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shiobj.h.

Chapter 7 Shell Interfaces 251

linputObject::TranslateAcceleratorlO

Allows the object to process keyboard accelerators.

Parameters

IpMsg
Address of an MSG structure that contains the keyboard message that is being
translated.

Return Values
Returns S_OK if the accelerator was translated, or S_FALSE otherwise.

“-

P

Version 4.71 and later of Sheli32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.
Header: Declared in shiobj.h.

linputObject::UlActivatelO

Ul activates or deactivates the object.

Parameters
fActivate
Indicates if the object is being activated or deactivated. If this value is nonzero, the
object is being activated. If this value is zero, the object is being deactivated.
IpMsg
Address of an MSG structure that contains the message that caused the activation
change. This value may be NULL.

252

Volume 5 Microsoft Windows Shell

Return Values

Returns S_OK if the activation change was successful, or an OLE-defined error code
otherwise.

Version 4.71 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shiobj.h.

lInputObjectSite

The linputObjectSite interface is used to communicate focus changes for a user input
object contained in the shell.

When to Implement

You normally do not implement this interface. linputObjectSite is implemented by the
shell or the browser to maintain the input focus properly.

When to Use
You use linputObjectSite if you are implementing a shell object that takes user input.

linputObjectSite is derived from IlUnknown. The following method is specific to
linputObjectSite:

linputObjectSite method Description

OnFocusChangelS Informs the browser that the focus has changed.

Version 4.71 and later of Shell32.dlI.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

Chapter 7 Shell Interfaces 253

linputObjectSite::OnFocusChangelS

Informs the browser that the focus has changed

HRESULT OnFocusCh&ngeIS(
Illnknown *punkObJ'

Parameters

punkObj
Address of the lUnknown interface of the object gaining or losing the focus.

fSetFocus
Indicates if the object has gained or lost the focus. If this value is nonzero, the object
has gained the focus. If this value is zero, the object has lost the focus.

Return Values
Returns S_OK if the method was successful, or an OLE-defined error code otherwise.

Remarks
The calling object should call this method whenever one of its wmdows gains or loses
the input focus.

Version 4.71 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in shlobj.h.

INewShortcutHook

The INewShortcutHook interface is used when creating a new Internet shortcut.

When to Implement

You normally do not implement INewShortcutHook. It is implemented by the shell for
Internet shortcuts.

254 Volume 5 Microsoft Windows Shell

When to Use

You use INewShortcutHook when creating a new Internet shortcut. The methods
provided by this interface are supplied as a convenience.

INewShortcutHook is derived from IlUnknown. The following methods are specific to
INewShortcutHook:

INewShortcutHook methods Description

GetExtension Retrieves the file extension for the shortcut object.

GetFolder Retrieves the folder name for the shortcut object.

GetName Retrieves the file name of the shortcut object, without
the extension.

GetReferent Retrieves the referent of the shortcut object.

SetFolder Sets the folder name for the shortcut object.

SetReferent Sets the referent of the shortcut object.

Version 4.00 and later of Shell32.dl.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

INewShortcutHook::GetExtension

Retrieves the file extension for the shortcut object.

Parameters

pszExtension
Address of a character buffer that receives the extension.

cchExtension
Size of the buffer at pszExtension, in characters.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Chapter 7 Shell Interfaces 255

Version 4.00 and later of Shell32.dl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

INewShortcutHook

INewShortcutHook::GetFolder

Retrieves the folder name for the shortcut object.

Parameters
pszFolder
Address of a character buffer that receives the folder name.

cchFolder
Size of the buffer at pszFolder, in characters.

Return Values

Returns S_OK if successful, S_FALSE if no folder has been assigned, or an OLE-
defined error code otherwise.

Version 4.00 and later of Shell32.dl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

INewShortcutHook

256 Volume 5 Microsoft Windows Shell

INewShortcutHook::GetName

Retrieves the file name of the shortcut object, without the extension.

AR

Parameters

pszName
Address of a character buffer that receives the name.

cchName
Size of the buffer at pszName, in characters.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

ersion 4.00 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

|+ e
o AR
INewShortcutHook

INewShortcutHook::GetReferent

Retrieves the referent of the shortcut object.

s34 Vo

Parameters

pszReferent
Address of a character buffer that receives the referent.

cchReferent
Size of the buffer at pszReferent, in characters.

Chapter 7 Shell Interfaces

257

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks
For Internet shortcut objects, this method is the same as
lUniformResourcelLocator::GetURL.

Version 4.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

iNewSI:iortcutHook

INewShortcutHook::SetFolder

Sets the folder name for the shortcut object.

L it B Rad o YTyt S e 0 e

Parameters

pszFolder
Address of a character buffer that contains the folder name.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

-

s

Version 4.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shilobj.h.

258

Volume 5 Microsoft Windows Shell

INewShortcutHook

‘INewShortcutHook::SetReferent

Sets the referent of the shortcut object.

Parameters

pszReferent
Address of a character buffer that contains the referent.

hWnd
Handle to the window that will be used as the parent if the object needs to display a
message box or dialog box.

Return Values
Returns NOERROR if successful, or an OLE-defined error code otherwise.

Remarks

For Internet shortcut objects, this method is the same as
IUniformResourceLocator::SetURL.

235 %

Version 4.00 and later of Shell32.dl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shiobj.h.

ewShortcutHook o

INotifyReplica

The INotifyReplica interface provides the object’s creator with the means to notify an
object that it might be subject to subsequent reconciliation. The briefcase reconciler is
responsible for implementing this interface.

Chapter 7 Shell Interfaces 259

INotifyReplica method Description

YouAreAReplica Notifies an object that it might be subject to reconciliation.

Version 4.00 and later of Shell32.dl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in reconcil.h.

INotifyReplica::YouAreAReplica

Notifies an object that it might be subject to subsequent reconciliation through the
IReconcilableObject::Reconcile method.

RN e e W

Parameters

ulcOtherReplicas
Number of other replicas of the object. This parameter must not be zero.

rgpmkOtherReplicas
Address of an array that contains the addresses of the monikers to use to access the
other replicas.

Return Values
Returns S_OK if successful, or E_UNEXPECTED otherwise.

Remarks

An object can be notified that it is a replica more than once. Briefcase reconcilers are not
required to implement this interface. Initiators are not required to call this interface if it is
implemented. However, an object’s implementation of IReconcilableObject::Reconcile
can falil if that object has not been notified through INotifyReplica::YouAreAReplica
previously that it may be subject to reconciliation.

The briefcase calls the INotifyReplica interface when objects are added to it.

Version 4.00 .and later of éhéll32.dli; *

260 Volume 5 Microsoft Windows Shell

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in reconcil.h.

IObjMgr
The 10bjMgr interface allows a client to append or remove an object from a collection of
objects managed by a server object.

When to Implement

This interface is implemented by objects that manage a collection of other objects. It is
exported to allow clients of the object to request that objects be added to or removed
from the collection.

When to Use

Use this interface to add or delete an object from the server object’s collection of
managed objects.

Methods

I10bjMgr exposes the following methods in addition to IlUnknown:

Append Appends an object to the server object’s collection of managed objects.

Remove Removes an object from the server object’s collection of managed
objects.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

I0bjMgr::Append
Appends an object to the collection of managed objects.

(v

Parameters

punk
[in] Address of the IlUnknown interface of the object to be added to the list.

Chapter 7 Shell Interfaces 261

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

|+ s
I0bjMgr, IObjMgr::Remove

|IObjMgr::Remove
Removes an object from the collection of managed objects.

e Rk

Parameters

punk
[in] Address of the IUnknown interface of the object to be removed from the list.

Return Values
Returns S_OK if successful, or an OLE error code otherwise.

Version 5.00 and later of Shell32.dll.

Windows NT/2000: Requires Windows 2000.
Windows CE: Unsupported.
Header: Declared in shlobj.h.

IObjMgr, 10bjMgr::Append

IPersistFolder

The IPersistFolder interface is used to initialize shell folder objects.

262 Volume 5 Microsoft Windows Shell

When to Implement

When implementing a shell namespace extension, specifically the IShellFolder
interface, you need to implement this interface so the folder object can be initialized.
Implementation of this interface is how the folder is told where it is in the shell
namespace.

When to Use

You do not use this interface directly. It is used by the file system implementation of the
IShellFolder::BindToObject interface when it is initializing a shell folder object.

IPersistFolder is derived from IPersist. The following method is specific
to IPersistFolder:

IPersistFolder method Description

Initialize Instructs a shell folder object to initialize itself based on the
information passed.

Version 4.00 and later of Shell32.dlIl.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in shlobj.h.

IPersistFolder::Initialize

Instructs a shell folder object to initialize itself based on the information passed.

R e 4 T 5 s Tt Rt T

Parameters

pidl
Address of the ITEMIDLIST (item identifier list) structure that specifies the absolute
location of the folder.

Return Values
Returns NOERROR if successful, or an OLE-defined error value otherwise.

Remarks

All objects that implement the IShellFolder interface for use in the shell’s namespace
must implement this method. When a folder’s location in the namespace is not a relevant

Chapter 7 Shell Interfaces 263

consideration, this method can return NOERROR. When the location is relevant to the
folder, you should store the fully qualified IDLIST passed in for future reference.

For example, if the folder implementation needs to construct a fully qualified PIDL to
elements that it contains, the PIDL passed to this method should be used to construct
the fully qualified PIDLs.

Version 4.00 and later of Shell32.dll.
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in shlobj.h.

IrsistFolder

IPersistFolder2

The IPersistFolder2 interface is used to obtain information from shell folder objects.

When implementing a shell namespace extension, specifically the IShellFolder
interface, you need to implement this interface so that the shell folder object’<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>