
Part of the five-volume
Microsoft" W1n32" Developer's Reference Ubrary

\WIndClMS

The essential reference to Win32®
technologies' and APls

David Iseminger
Series Editor

www-/seminger.com

t®

mmon
Controls

Indows®
Common Controls

The essential reference to Win32®
technologies and APls

David Iseminger
Series Editor

t®

Indows
Common Controls

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Microsoft Win32 Developer's Reference Library / David Iseminger.
p. cm.

ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) I. Title.

QA76.76.063 174 1999
005.26'8--dc21 99-045609

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 4 3 2 1 0 9

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

ActiveX, BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, Visual Basic, Visual C++, Visual
FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows
NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective
owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002309

Acknowledgements
Acknowledgements are often tricky things; generally, the day after books are
printed you think of someone who absolutely should have been recognized,
whom you now have rudely omitted. You'd think authors would keep an
ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about
the series idea, and for keeping up with the myriad of issues that cropped up,
and for managing the business details associated with publishing this series.
Thanks also to Steve Guty at Microsoft Press for seeing certain publishing
issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft
Press, and orchestrated things in the way only project editors can endure.
John Pierce was also instrumental in seeing the publishing process through
completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman-thanks for the excellent work; I'm a firm believer
that artwork and packaging are integral to the success of a project. Marketing
acknowledgements go out to Jocelyn Paul, for her coordination efforts with
MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the
editor at Microsoft Press, and thereby routing this series to the right place.
Throughout the process, Julie Solon provided lots of Win32 feedback and
helped gather feedback from others, all of which was quite helpful in compiling
the right collection of technologies ... thanks to Julie for the help on that. Guy
Smith pointed me to the information I needed for Volumes 4 and 5, and was
always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh
Vaidyanathan for their help and openness, respectively, with letting me
provide the common coding errors found in Chapter 5 of each of these
volumes. Thanks on my behalf, and on behalf of anyone who finds that
information useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my
functional "circled i" logo into a 3D piece of art, as well as for his work on the
Iseminger.com site. You can see more of his artwork through links found at
www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things
great agents do best.

v

Contents

Chapter 1: Introduction .. 1
How the Win32 Library Is Structured .. 2
How the Win32 Library Is Designed ... 3

Chapter 2: What's in This Volume? ... 5

Chapter 3: Using Microsoft Reference Resources .. 7
The Microsoft Developer Network (MSDN) .. 8

Comparing MSDN and MSDN Online .. 8

MSDN Subscriptions ... 9
MSDN Library Subscription ... 11
MSDN Professional Subscription ... 11
MSDN Universal Subscription ... 11
Purchasing an MSDN Subscription .. 12

Using MSDN ... 13

Navigating MSDN .. 13
Quick Tips .. 17

Using MSDN Online .. 17
Navigating MSDN Online .. 19
MSDN Online Features .. 20
MSDN Online Registered Users ... 22

The Windows Programming Reference Series .. 23

Chapter 4: Finding the Developer Resources You Need ... 27

Developer Support .. 27
Online Resources .. 29
Learning Products ... 30

Conferences ... 32
Other Resources .. 33

Chapter 5: Getting the Most Out of Win32 Technologies: Part 4 35
Buffer Overflows .. 35

Simple Buffer Overflow ... 36
Size Overflow or Underflow .. 37
Abuse of enumerated types ... 38
Using internal lengths for comparisons to external input 38

Miscellaneous Errors ... 39

Dangers of typecasting ... 39

vi Contents

Operator precedence ... 40
Conditional termination confusion ... 41
Misuse of OPTIONAL parameters ... 41
Return value confusion and inconsistencies .. , 42
Don't rely on volatile objects ... 43

Avoid spinlock order problems .. 44
Determining membership in Administrators group 45

Solution Summary ... 47

Part 2 Introduction ... 49
Getting Information About List-View, Toolbar, and Tree-View Controls 49
General Introduction to the Common Controls ... 49

Using Common Controls ... 49
DLL Versions ... 50

Common Control Styles ... 51
Common Control Messages .. 51
Common Control Notification Messages ... 51

Common Control Updates in Internet Explorer ... 52
Shell and Common Controls Versions .. 52

DLL Version Numbers .. 53
Using DllGetVersion to Determine the Version Number 54

Using DllGetVersion .. 54
Project Versions ... 56

Chapter 6: Using Common Controls .. 57
Creating a Customizable Toolbar .. 57

The Customization Dialog Box ... 57
Implementing the Customization Dialog Box .. 58

Dragging and Dropping Tools ... 59
Saving and Restoring the Toolbar State ... 59

Creating In-Place Tooltips .. 60

Positioning an In-Place Tooltip ... 61
Using TTM_ADJUSTRECT to Position a Tooltip 62

Creating an Internet Explorer-Style Toolbar ... 63
The Rebar Control ... 64

Implementing the Rebar Control .. 65
The Toolbars .. 67

Drop-Down Buttons ... 67

List-Style Buttons ... 69

Chevrons ... 69

Contents vii

Hot-Tracking .. 69
Creating an Internet Explorer-Style Menu Bar ... 70

Making a Toolbar into a Menu Bar .. 71
Handling Navigation with Menu Hot-Tracking Disabled 72

Mouse Navigation ... 72
Keyboard Navigation .. 72
Mixed Navigation ... 73

Handling Navigation with Menu Hot-Tracking Enabled 73
Message Processing for Menu Hot-Tracking ... 74

Mouse Navigation ... 75
Keyboard Navigation .. 76

Localization Support for the Common Controls ... 76

Specifying a Language for the Common Controls ... 76
Specifying a Language for Controls in a Dialog Box 77

Chapter 7: Common APi .. 79
Common Control Window Classes ... 79
Common Control Styles .. 80
Common API Reference ... 81

Common API Functions .. 81
Common API Messages ... 86

Common API Macros .. 92
Common API Notifications ... 95
Common API Structures .. 104

Chapter 8: Customizing a Control's Appearance .. 111
About Custom Draw .. 111

About Custom Draw Notification Messages .. 111

Paint Cycles, Drawing Stages, and Notification Messages 112
Taking Advantage of Custom Draw Services .. 113

Responding to the Prepaint Notification ... 113

Requesting Item-Specific Notifications .. 113
Drawing the Item Manually .. 114

Changing Fonts and Colors .. 114
Custom Draw with List-View and Tree-View Controls 114

Custom Draw with List-View Controls ... 114
Using Custom Draw .. 115
Custom Draw Reference ... 117

Custom Draw Notification Messages .. 117
Custom Draw Structures .. 119

viii Contents

Chapter 9: Animation Controls ... 129
Animation Control Overview .. 129

About Animation Controls ... 129
Animation Control Creation ... 129

About Animation Control Messages .. 130
Default Message Processing ... 130

Using Animation Controls ... 131
Creating an Animation Control .. 131

Controlling the A VI Clip .. 132
Animation Control Styles .. 133
Animation Control Reference ... 133

Animation Control Messages ... 133
Animation Control Macros .. 136
Animation Control Notifications ... 142

Chapter 10: ComboBoxEx Controls ... 143
About ComboBoxEx Controls .. 143

ComboBoxEx Control Styles ... 143
ComboBoxEx Control Items .. 144
Callback Items ... 144

ComboBoxEx Control Image Lists .. 144
About ComboBoxEx Control Notification Messages 145
ComboBoxEx Control Message Forwarding ... 145

Using Coll1boBoxEx Controls ... 146
Creating a ComboBoxEx ControL .. 146
Preparing ComboBoxEx Items and Images ... 147

Supporting Callback Items ... 149
Processing ComboBoxEx Notifications ... 150

ComboBoxEx Control Extended Styles .. 150
ComboBoxEx Control Reference .. 151

ComboBoxEx Control Messages ... 151
ComboBoxEx Control Notification Messages ... 160
ComboBoxEx Control Structures .. 164

Chapter 11: Creating Wizards ... 169
Introduction ... 169
How to Implement a Wizard ... 171

Creating the Dialog Box Templates ... 171
Exterior Page Dialog Box Templates ... 172
Interior Page Dialog Box Templates .. 173

Contents ix

Defining the Wizard Pages .. 174
Defining the Wizard Property Sheet .. 174

The Dialog Box Procedure ... 176
Handling WM_INITDIALOG and WM_DESTROY 176
Handling WM_NOTIFY .. 176

Backward Compatible Wizards ... 178
A Sample Wizard Application .. 179

Designing the Templates .. 182
Creating the Wizard Pages ... 182
Creating the Property Sheet ... 183

Creating a Title Font .. 184
The Dialog Box Procedures ... 185

The Welcome Page ... 185
The Interior Pages ... 186

The Completion Page .. 189

Chapter 12: Date and Time Picker Controls ... 191
About Date and Time Picker Controls .. 191

Date and Time Picker User Interface ... 191
Date and Time Picker Control Styles and Formats .. 192

Preset Formats .. 192
Custom Formats .. 192

Callback Fields ... 194
Date and Time Picker Control Notification Messages 194

Using Date and Time Picker Controls ... 195
Creating a Date and Time Picker Control.. .. 195

Processing Date and Time Picker Notifications ... 196
Processing the DTN_DATETIMECHANGE Notification 197

Supporting Callback Fields in a DTP control .. 198
The DoFormatQuery Application-Defined Function 198
The DoFormat Application-Defined Function ... 199
The GetDayNum Application-Defined Function 199
The IsLeapYr Application-Defined Function ... 200
The DoWMKeydown Application-Defined Function 201

Date and Time Picker Control Styles .. 201
Date and Time Picker Reference ... 203

Date and Time Picker Control Messages ... 203

Date and Time Picker Control Macros .. 211

Date and Time Picker Control Notification Messages 219
Date and Time Picker Control Structures .. 226

x Contents

Chapter 13: Drag List Boxes ... 231

Using Drag List Boxes .. 231

Drag List Box Messages .. 231
Drag List Box Notification Messages .. 231

Drag List Box Reference ... 232
Drag List Box Functions .. 232
Drag List Box Notifications ... 234
Drag List Box Structures ... 237

Chapter 14: Flat Scroll Bars .. 239

Flat Scroll Bars .. 239
Using Flat Scroll Bars .. 239

Before You Begin ... 239
Adding Flat Scroll Bars to a Window ... 239
Enhancing Flat Scroll Bars ... 240
Removing Flat Scroll Bars ... 241

Flat Scroll Bar Reference .. 241
Flat Scroll Bar Functions ... 241

Chapter 15: Header Controls .. 257

Using Header Controls .. 257

Header Control Size and Position .. 257
Items ... 258
Owner-Drawn Header Controls ... 258
Header Control Notification Messages .. 259
Default Header Control Message Processing ... 259

Creating a Header Control ... 260
Adding an Item to a Header Control .. 262

Header Control Updates in Internet Explorer.. .. 262
Header Control Styles ... 263

Header Control Reference." ,", ... 264
Header Control Messages , ,', , , .. , 264
Header Control Macros .. 279

Header Control Notification Messages .. 297
Header Control Structures .. 307

Chapter 16: Hot-Key Controls ... 317

Using Hot-Key Controls ... 317
Hot-Key Control Creation .. 317

Hot-Key Control Messages .. 319

Contents xi

Hot-Key Control Notifications ... 319

Retrieving and Setting a Hot-Key .. 319
Default Hot-Key Message Processing ... 320

Hot-Key Control Reference .. 321
Hot-Key Control Messages .. 321

Chapter 17: IP Address Controls ... 325

About IP Address Controls ... 325
Using IP Address Controls .. 326

Initializing an IP Address Control ... 326
Creating an IP Address Control ... 326
Is an IP Address Control an Edit Control? ... 326

IP Address Control Reference ... 326

IP Address Control Messages .. 326
IP Address Control Notifications ... 330
IP Address Control Macros .. 331
IP Address Control Structures .. 335

Chapter 18: Month·Calendar Controls .. 337

About Month-Calendar Controls ... 337
The Month-Calendar Control User Interface ... 338

Day States .. 339
Month-Calendar Control Styles ... 340
Localization ... 340
Month-Calendar Control Notification Messages ... 340
Times in the Month-Calendar Control ... 341

Using Month-Calendar Controls ... 341

Creating a Month-Calendar Control .. 342
Processing the MCN_GETDAYSTATE Notification Message 343
Preparing the MONTHDAYSTATE Array ... 344

Month-Calendar Control Styles .. 344
Month-Calendar Day Numbers ... 345
Month-Calendar Control Reference .. 345

Month-Calendar Control Messages ... 345

Month-Calendar Control Macros ... 365
. Month-Calendar Control Notifications .. 385

Month-Calendar Control Structures ... 388
Month-Calendar Control Data Types ... 391

xii Contents

Chapter 19: Pager Controls ... 393

About Pager Controls .. 393
Using Pager Controls .. 394

Initializing the Pager ControL .. 394
Creating the Pager Control. .. 394

Processing Pager Control Notifications ... 394
Pager Control Styles .. 395
Pager Control Reference ... 396

Pager Control Messages ... 396
Pager Control Macros .. 405
Pager Control Notifications ... 414
Pager Control Structures .. 416

Chapter 20: Progress Bar Controls .. 419

Using Progress Bars .. 419
Range and Current Position ... 419
Default Progress Bar Message Processing ... 420

Progress Bar Example .. 420
Progress Bar Control Updates in Internet Explorer. .. 422
Progress Bar Control Styles .. 422
Progress Bar Control Reference .. 423

Progress Bar Control Messages ... 423

Progress Bar Control Structures ... 429

Chapter 21: Property Sheets ... 431

About Property Sheets ... 431

Property Sheet Dialog Boxes ... 432
Pages .. 433
Property Sheet Creation ... 434
Adding and Removing Pages ... 434
Property Sheet Title and Page Labels .. 435

Page Activation .. 435
Help Button .. 435

Removing the Caption Bar Help Button ... 436
OK, Cancel, and Apply Now Buttons .. 437
Property Sheet Extensions ... 438

Using Property Sheets ... 438

Creating a Property Sheet .. 439
Processing Notification Messages ... 440

Property Sheet Updates in Internet Explorer ... 440

Contents xiii

Property Sheet Reference .. 441

Property Sheet Functions ... 441
Property Sheet Messages ... 447
Property Sheet Macros ... 467
Property Sheet Notifications .. 489
Property Sheet Structures ... 499

Chapter 22: Rebar Controls ... 511

About Rebar Controls .. 511
Rebar Bands and Child Windows .. 511
The Rebar Control User Interface .. 512

The Rebar Control Image List ... 512
Rebar Control Message Forwarding .. 512
Custom Draw Support .. 512

Using Rebar Controls .. 512
Creating a Rebar Control ... 512

Rebar Control Styles ... 515
Rebar Control Reference ... 516

Rebar Control Messages .. 516
Rebar Control Notifications ... 541
Rebar Control Structures .. 550

Chapter 23: Status Bars ... 561

Using Status Bars .. 561
Types and Styles .. 562
Size and Height .. 562

Multiple-Part Status Bars ... 562
Status-Bar Text Operations .. 563
Owner-Drawn Status Bars ... 563
Simple-Mode Status Bars .. 564
Default Status-Bar Message Processing ... 564

Status-Bar Example ... 565
Status-Bar Updates in Internet Explorer ... 567
Status-Bar Styles ... 567

Status-Bar Reference ... 568
Status-Bar Functions .. 568

Status-Bar Messages .. 571
Status-Bar Notifications ... 584

xiv Contents

Chapter 24: Tab Controls .. 589

About Tab Controls ... 589

About Tab Control Styles .. 589

Tabs and Tab Attributes ... 590

Display Area .. 591

Tab Selection ... 591

Tab Control Image Lists .. 591
Tab Size and Position ... 592

Owner-Drawn Tabs .. 592

Tab Control Tooltips .. 592

Default Tab Control Message Processing .. 593
Using Tab Controls ... 594

Creating a Tab ControL .. 594

Creating a Tabbed Dialog Box .. 599

Tab Control Updates in Internet Explorer ... 603

Tab Control Styles ... 603

Tab Control Extended Styles ... 606

Tab Control Item States ... 606

Tab Control Reference .. 607
Tab Control Messages .. 607

Tab Control Macros ... 625

Tab Control Notification Messages ... 645

Tab Control Structures ... 650

Chapter 25: Tooltip Controls ... 655

About Tooltip Controls ... 655

Tooltip Creation ... 655

Activation ... 656

Types of Tools ... 656

Tooltip Text ... 656

Relaying Mouse Messages to the Tooltip Control.. 657

Tooltip Hit-Testing .. 658

Miscellaneous Messages .. 658

Default Tooltip Control Message Processing .. 659

Using Tooltip Controls .. 659
Creating a Tooltip Control ... 659

Using a Tooltip Control with a Dialog Box ... 661

Tooltip Control Updates in Internet Explorer ... 664

Tracking Tooltips ... 664

Contents xv

Creating Tracking Tooltips ... 665
Supporting Tracking Tooltips ... 667

Multiline Tooltips .. 668
Creating Multiline Tooltips .. 668

Balloon Tooltips ... 669

Balloon Tooltips for Status-Bar Icons .. 670
Tooltip Styles .. 671
Tooltip Control Reference ... 672

Tooltip Control Messages .. 672
Tooltip Control Notification Messages .. 693
Tooltip Control Structures ... 697

Chapter 26: Trackbar Controls .. 703
About Trackbar Controls ... 703

Trackbar Messages ... 703
Trackbar Notification Messages .. 705
Default Trackbar Message Processing ... 706

Using Trackbar Controls ... 707
Creating a Trackbar .. 707
Processing Trackbar Notification Messages .. 708

Trackbar Control Updates in Internet Explorer ... 709
Trackbar Control Styles .. 710
Custom Draw Values .. 711
Trackbar Control Reference .. 711

Trackbar Control Messages ... 711
Trackbar Control Notifications .. 734

Chapter 27: Up-Down Controls: ... 737
About Up-Down Controls ... 737

About Up-Down Control Styles ... 738
Position and Acceleration .. 739
Default Up-Down Controls Message Processing ... 739

Up-Down Control Updates in Internet Explorer ... 740
Up-Down Control Styles ... 740
Up-Down Control Reference .. 741

Up-Down Control Functions .. 741
Up-Down Control Messages .. 743
Up-Down Control Notification Messages .. 752
Up-Down Control Structures ... 753

Appendix A .. 757

Appendix B .. 763

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer's Reference Library, your comprehensive
reference guide to the Win32 development environment. This library, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming--without sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you-the time-pressed and information-overloaded applications
developer-to find the information you need quickly, efficiently, and intuitively.

1

In addition to its focus on Win32 reference material, the Win32 Library contains hard­
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN Subscription. Don't have
an MSDN subscription, or don't know why you should? I've included information about
that too, including the differences among the three levels of MSDN subscriptions, what
each level offers, and why you'd want a subscription when MSDN Online is available
over the Internet.

Microsoft is fairly well known for its programming, so doesn't it make sense to share
some of that knowledge? I thought it made sense, so that's why this-the Windows
Programming Reference Series-is the source where you'll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don't get lost in all the information provided in the Win32 Library,
each volume's appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you're looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

2 Volume 4 Microsoft Windows Common Controls

How the Win32 Library Is Structured
The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided include:

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphical Device Interface)

Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library-and therefore, dividing Win32-into these functional
categories enables a software developer who's focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,OOO-page Win32 tome),
and without having to shuffle among multiple, less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer friendly
manner and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview

Part 2: Reference

Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you're reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN and MSDN Online, including a collection of insider
tips and tricks. Just as each volume's Reference section (Part 2) contains different
reference material, each volume's Part 1 contains different tips and tricks. To ensure that
you don't miss out on some of them, make sure you take a look at Part 1 in each Win32
Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions as well as instructional and explanatory
material for each programming area.

Chapter 1 Introduction 3

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

How the Win32 Library Is Designed
The Win32 Library, and all libraries in the Windows Programming Reference Series, is
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look-and-feel that is consistent with their electronic counterparts. In
other words, the way that a given function reference appears on the pages of this book
has been designed specifically to emulate the way that MSDN and MSDN Online
present their function reference pages.

The reason for maintaining such integration is simple: make it easy for you-the
developer of Windows applications-to use the tools and get the ongoing information
you need create quality programs. By providing a "common interface" among reference
resources, your familiarity with the Win32 Library reference material can be immediately
applied to MSDN or MSDN Online, and vice versa. In a word, it means consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in­
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and-in the absence of keyboards
and e-mail and upright chairs-get your programming reading and research done. Of
course, each of the Win32 Library books fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

CHAPTER 2

What's in This Volume?

Volume 4 of the Microsoft Win32 Developer's Reference Ubraryfocuses on common
controls that Windows applications developers use throughout the course of the
development process. This volume-Volume 4: Common Controls--provides the
reference material necessary for developers to take advantage of the wealth of ready­
made common controls found in Windows.

When programming with these common controls, programmers must be prepared to
deal with versioning issues that are associated with common control programming.
Almost all of the common controls are contained within three .dll files (ComctI32.dll,
SheIl32.dll, and ShlwapLdll), and all of these .dll files have versioning issues that must
be kept in check throughout the development process. The Windows shell shares the
versioning requirements of common controls, so when you're programming with either
common controls (explained in this volume of the Win32 Library) or the Windows shell
(explained in Volume 5), you must deal with the versioning requirements.

5

What are the versioning requirements, you ask? The introduction to Part 2 of this volume
(and Volume 5 of the Win32 Library) discusses these caveats in detail and arms you with
all the information you need to keep the associated requirements straight. You should
read this explanatory introduction to Part 2 before jumping into the programmatic use of
any of the common controls detailed in this volume of the Win32 Library.

Once you've read the introduction to Part 2 and understand the versioning issues you'll
need to address during development, you can jump into the common controls reference
material found in Part 2. The list of common controls is long, and often the controls aren't
necessarily grouped into sensible collections. Rather than forcing them into groups, I'm
providing the somewhat long list here. Fortunately, the names of many of the common
controls are reasonably self-explanatory. For more information about any of these given
controls, jump to the table of contents and find the control's chapter in Part 2 of this book
(hint: the chapters in Part 2 are in the same order as this list), and take a look at the
introductory/explanatory information provided in the chapter associated with the common
control you're interested in.

6 Volume 4 Microsoft Windows Common Controls

Win32 common controls include:

Using Common Controls

Common API

Customizing a Control's Appearance

Animation Controls

ComboBoxEx Controls

Creating Wizards

Date and Time Picker Controls

Drag List Boxes

Flat Scroll Bars

Header Controls

Hot Key Controls

Image Lists

I P Address Controls

Month Calendar Controls

Pager Controls

Progress Bar Controls

Property Sheets

Rebar Controls

Status Bars

Tab Controls

Tooltip Controls

Trackbar Controls

Up-Down Controls

Part 2 of this volume goes into detail about each of these common controls individually;
in fact, each item in this list corresponds to an individual chapter in Part 2 of this volume
of the Win32 Library. But remember, you should read the introduction to Part 2 (found at
the beginning of Part 2, which is a great place for introductions) to learn about the
versioning issues you'll have to deal with when programming with these common
controls.

CHAPTER 3

Using Microsoft Reference
Resources

These days it isn't the availability of information that's the problem, it's the availability of
information. You read that right. .. but I'll clarify.

Not long ago, getting the information you needed was a challenge because there wasn't
enough of it. To find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn't at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

7

Today, information surrounds us and sometimes stifles us. We're overloaded with too
much information, and if we don't take measures to filter out what we don't need to meet
our goals, soon we become inundated and unable to discern what's "junk information"
and what's information that we need to stay current, and therefore competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft's own reference material as well-not because there is
information that isn't needed, but rather because there is so much information that
finding what you need can be as challenging as figuring out what to do with it once you
have it. Developers need a way to cut through the information that isn't pertinent to them
and to get what they're looking for. One way to ensure you can get to the information
you need is to know the tools you use; carpenters know how to use nail guns, and it
makes them more efficient. Bankers know how to use ten-keys, and it makes them more
adept. If you're a developer of Windows applications, two tools you should know are
MSDN and MSDN Online. The third tool for developers-reference books from the
Windows Programming Reference Series-can help you get the most out of the first two.

Books in the Windows Programming Reference Series, such as those found in the
Microsoft Win32 Developer's Reference Library, provide reference material that focuses
on a given area of Windows programming. MSDN and MSDN Online, in comparison,
contain all of the reference material that all Microsoft programming technologies have
amassed over the past few years, and create one large repository of information.
Regardless of how well such information is organized, there's a lot of it, and if you don't
know your way around, finding what you need (even though it's in there, somewhere)
can be frustrating and time-consuming and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,
other Microsoft reference resources are investigated, and by the end of the chapter,

8 Volume 4 Microsoft Windows Common Controls

you'll know where to go for the Microsoft reference information you need (and how to
quickly and efficiently get there).

The Microsoft Developer Network (MSDN)
MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don't have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you've heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What are the differences among the three levels of MSDN subscriptions?

• What happened to Site Builder Network ... or, What is this Web Library?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? 'Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren't getting as much out of
MSDN as you COUld. Or, maybe you're wondering whether you're paying too much for
too little, or not enough to get the resources you need. Regardless, you want to be in the
know, not in the dark. By the end of this chapter, you will know the answers to all these
questions and more, along with some effective tips and hints on how to make the most
effective use of MSDN and MSDN Online.

Comparing MSDN and MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their differences be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or in some cases, on DVD).

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Chapter 3 Using Microsoft Reference Resources 9

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its customers with the best presentation of material possible. These strengths
and medium considerations enable MSDN and MSDN Online to provide developers with
different feature sets, each of which has its advantages.

MSDN is perhaps less immediate than MSDN Online because it gets to its subscribers in
the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on your
hard drive), and isn't subject to Internet speeds or failures. Also, MSDN has a software
download feature that enables subscribers to automatically update their local MSDN
content, over the Internet, as soon as it becomes available, without having to wait for the
update CD to come in the mail. The interface with which MSDN displays its material-which
looks a whole lot like a specialized browser window-is also linked to the Internet as a
browser-like window. To further coordinate MSDN with the immediacy of the Internet, MSDN
Online has a section of the site dedicated to MSDN subscribers that enables subscription
material to be updated (on their local machines) as soon as it's available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based web sites. MSDN Online also
has a customizable interface (much like MSN.com) that enables visitors to tailor the
information that's presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn't come
with Microsoft product software, and doesn't reside on your local machine.

Since it's easy to become confused about the differences and similarities between
MSDN and MSDN Online, it makes sense to figure out a way to quickly identify how and
where they depart. Figure 3-1 puts the differences-and similarities-between MSDN
and MSDN Online into a quickly identifiable format.

One feature that you will notice is shared between MSDN and MSDN Online is the
interface-they are very similar. That's almost certainly a result of attempting to ensure
that developers' user experience with MSDN is easily associated with the experience on
MSDN Online, and vice versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but you
aren't quite sure what the differences between its subscription levels are, you aren't
alone. This section aims to provide a quick guide to the differences in subscription levels,
and what each subscription level costs.

10 Volume 4 Microsoft Windows Common Controls

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription, plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription, plus even more features.

MSDN

Microsoft Software:
,(Operating Systems
v' BackOfflceProduOls
./ Developer TOOls
,(Beta Releases
,(Complete SDK. and DDK\>
,(. All Contenton CD

R_J.Time . Updates
Priority Support Incidents
MSDN Online Eixclusives
MSDN M8$lazlne

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

Chapter 3 Using Microsoft Reference Resources 11

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

• Lots of sample code, which you can cut-and-paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Visual Studio, Office, and others

• Complete (and in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you also get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft chock full of development-related information

• A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription
The Professional subscription is a superset of the Library subscription. In addition to the
features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of Windows
95, Windows 98, and Windows NT 4 Server and Workstation

• Windows SDKs and DDKs in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription
The Universal subscription is the all-encompassing version of the MSDN subscription. In
addition to everything provided in the Professional subscription, Universal subscribers
get the following:

12 Volume 4 Microsoft Windows Common Controls

• The latest version of Visual Studio, Enterprise Edition

• The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

• Additional development tools, such as Office Developer, Front Page, and Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all of the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality and features, so too does each
escalate in price. Please note that prices are subject to change.

The MSDN Library Subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional Subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal Subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level there's an in-the-box rebate for $200.

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal-and in most cases, the
deal is much better. Also, if your organization is using lots of Microsoft products, whether
MSDN is a part of that group or not, whomever's in charge of purchasing should look into
Microsoft Open License program. The Open License program gives purchasing breaks
for customers that buy lots of products. Check out www.microsoft.com//icensing for more
details. Who knows, if your organization qualifies, you could end up getting an engraved
pen from your purchasing department, or if you're really lucky maybe even a plaque of
some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions, too.

Chapter 3 Using Microsoft Reference Resources 13

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For
those of you doing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

Navigating MSDN
One of the primary features of MSDN-and to many, its primary drawback-is the sheer
volume of information it contains: over 1.1 GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN's content.

Basic navigation through MSDN is simple, and a lot like navigating through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics; expand a book by clicking the + box to its left, and its contents are
displayed with its nested books or reference pages, as shown in Figure 3-3. If you don't
see the left pane in your MSDN viewer, go to the View menu and select Navigation Tabs
and they'll appear.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

14 Volume 4 Microsoft Windows Common Controls

Windows Resource Kits
Tools and Technologies

Figure 3-2: The MSDN interface.

MSDN Library
April 1999 release

Welcome to the April 1999
release of the MSDN Library. To
begin your exploration of what IS

new in this release, click any of
the links on the right.

The MSDN Library is the
essential reference for
developers, with more than a
gigabyte of technical
programming information!
including sample code,
documentation! technical
articles! the Microsoft
Developer Knowledge Base, and
anything else you might need
to develop solutions that
implement Microsoft
technology.

Dr GUI's Espt'esso Stand
Dr, GUI introduces the April
1399 release of the MSDN
Library.

What's New on the Library
Click here for a
comprehensive hotlinked list
of new content in this release.

MSDN Features
Check out these packages of
articles about our latest
technologies.

MSDN Online
Find out what's nell' for MSDN
Online members and read
selected columns from our
Web site.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four navigation tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, thereby enabling you to better find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren't displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection MSDN, Technical Articles and Backgrounders

MSDN, Books and Periodicals Platform SDK, BackOffice

MSDN, Content on Disk 2 only Platform SDK, Base Services

MSDN, Content on Disk 3 only Platform SDK, Component Services

MSDN, Knowledge Base Platform SDK, Data Access Services

MSDN, Office Development Platform SDK, Graphics and Multimedia
Services

Platform SDK, Management Services

Platform SDK, Messaging and
Collaboration Services

Platform SDK, Networking
Services Platform SDK, Security

Platform SDK, Tools and Languages

Platform SDK, User Interface
Services

Platform SDK, Web Services

Platform SDK, What's New?

Platform SDK, Win32 API

Chapter 3 Using Microsoft Reference Resources 15

RepOSitory 2.0 Documentation

Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK and WinCE Docs

Visual C++, Platform SDK, and Enterprise Docs

Visual FoxPro Documentation

VisuallnterDev Documentation

Visual J++ Documentation

Visual SourceSafe Documentation

Visual Studio Product Documentation

Access Validation Functions

MSDN Library -April 1999
ffi • Welcome to the MSDN Library
l±i • Visual Studio 6.0 Documentation
i±l • Office Developer Documentation
i±l • Windows CE Documentation
El (,QJ Platform SDK

l±l .. Wha,', New?
!±J .. BackOffice
E ~ Base Ser ices

aJ 6: Microsoft Clustering Service
!±l • Debugging and Error Handling
!±J • DLLs, Processes, and Threads
l±l .. F~esand 110
El (,QJ Memory

8 ~ Memory Management

B fJ2l About Memory Management
f±l "" Virtual Address Space
ffl • Virtual Memory Functions

[§] Heap Functions

~, 'GS···
l±l • Very Large Memory IVLMJ

[§] Global and Local Functions
~ Standard C Libra!'y Functions

!±l .. Using the Virtual Memor,Y Functions
f.±:l .. Memor}' Management Reference

File Mapping

The Win32 API provides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses. The following
access validation functions are available,

Figure 3-3: Basic navigation through MSDN.

16 Volume 4 Microsoft Windows Common Controls

As you can see, this filtering option essentially mirrors the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK's Security, Networking Services, and Management Services
subsets, as well as a little section that's nested way into the Base Services subset?
Simple-you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subsets
menu item. You're presented with the window shown in Figure 3-4.

I nterprocess Communication: I
Performance Monitoring: Platte
Removable Storage Manager:
Terminal Services: Platform S [.

Figure 3-4: The Define Subsets window.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As
dialog box. Note that defined subsets (including any you create) are arranged in
alphabetical order.

Chapter 3 Using Microsoft Reference Resources 17

You can also delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets, and filters the information available in the four navigation tabs just like the pre­
defined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page's location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure. This
is easy to fix: simply click the Locate button on the Navigation tool bar, and all will be
synchronized.

Use the Back button just like a browser. The Back button in the Navigation toolbar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like I said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get our work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, I
think). Underscores come before letters in alphabetical order, so if you use an
underscore on all of your defined subsets, you get them placed at the front of the Active
Subset listing of available subsets. Also, by using an underscore, you can immediately
see which subsets you've defined, and which ones come with MSDN-it saves a few
seconds at most, but those seconds can add up.

USing MSDN Online
MSDN Online shares a lot of similarities with MSDN, and that probably isn't by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right...and it should be; it's a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

18 Volume 4 Microsoft Windows Common Controls

If you've used Microsoft's home page before (www.msn.comorhome.microsoft.com).
you're familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news, local weather,
stock quotes, and other collections of information or news that suit your tastes or
interests. You can even insert a few Web links, and have them readily accessible when
you visit the site. The MSDN Online home page can be customized in a similar way, but
its collection of headlines, information, and news sources are all about development.
The information you choose specifies the information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of
the page, or you can go there directly by pointing your browser to
msdn.microsoft.comlmsdn-onlinelstartlcustom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from. If you're
interested in Web development, you can choose the Option button near the top of the
Technologies section for Web Development, and a pre-defined subset of Web-centric
technologies is selected. For more Win32-centric technologies, you can go through and
choose the appropriate technologies. If you want to choose all the technologies in a
given technology group, check the Include All box in the technology's shaded title area.

You can also choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:

Developer News

Libraries

Member Community

Support

Voices

Search

Events & Training

Personal Links

Once you've defined your profile-that is, customized the MSDN Online content you want
to see-MSDN Online shows you the most recent information pertinent to your profile
when you go to MSDN Online's home page, with the categories you've chosen included in
the order you specify. Note that clearing a given category-such as Libraries--clears that
category from the body of your MSDN Online home page (and excludes headlines for that
category), but does not remove that category from the MSDN Online site navigation bar. In
other words, if you clear the category it won't be part of your customized MSDN Online
page's headlines, but it'll still be available as a site feature.

Finally, if you want your profile to be available to you regardless of which computer you're
using, you can direct MSDN Online to create a roaming profile. Creating a roaming profile
for MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of creating a roaming profile is
available when you customize your MSDN Online home page (and can be done any time
thereafter). The creation of a roaming profile, however, requires that you become a

Chapter 3 Using Microsoft Reference Resources 19

registered member of MSDN Online. More information about becoming a registered MSDN
Online user is provided in the section titled MSDN Online Registered Users.

~~~~~~~~~~~C::L~ls~t:o:rn~i:z:e~~~::::~::~:;:::::~R:o:a:m~in:g~~~Af~!:~~~;'S~)!~~:.~~);~:;~ 
~~~i~~~c 
~ ;R~1I~.~f}
~ :l\!II!ll@!r}f:,;'{j:,~,

~ .~$~!!Ir'!~~'fJ
~

~ 'imiWOrIII,\""?,,,',,J

Select or c!eoHthe
check bOl-les abOVE! to

turn the categories on
or off. To changE! the

order in which the
categories appear on
the home page, click.a

category name, and

then click the up or

down arrow c~ t(J the

right

Customize the information that appears on your MSDN Online home page. Select your preferences
from the sections below, then return here and choose Save. (Yes, we know it's a lot of choices.
There's a lot of information on this site.) You can update your choices at any time by visiting this
Customize page.

4,0@[II"m;;'
You can customize the headlines you see on the MSDN Online home page by selecting from the list of
technologies below) or you can choose a template we've preselected just for Web developers. Either
way) your selections will customize what you see under Developer News) Libraries) and Support.

C- Web Development @:. None (dears all)
We'll soon offer more preselected technology templates for other developer specialties; write iJS and
let us know what you'd prefer.

If you select Allow Duplicate Headlines below) your home page will show multiple instances of some
headlines) each tagged for a different technology:

r- Allow Duplicate Headlines

Figure 3-5: The MSDN Online configuration page.

Navigating MSDN Online
Once you're done customizing the MSDN Online home page to get the headlines you're
most interested in seeing, navigating through MSDN Online is really easy. A banner that
sits just below the MSDN Online logo functions as a navigation bar with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

The list of available menu categories-which group the available sites and features
within MSDN Online-include:

Home

Libraries

Downloads

Search MSDN

Voices

Community

Site Guide

The Navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

20 Volume 4 Microsoft Windows Common Controls

Photo Credits: PhotoDisc

online resource for developers. Here's some information to guide you through the site:

a chronological list all the latest information posted to the MSDN Online site,

Map can give you the view from above.

navigating the site.

See About MSDN to learn about the MSDN subscription program) the MSDN ISV program)
newsletter! and more,

decode the latest term or acronym that has you stumped.

us how we can make the site easier to use and what kinds of information you'd like to see

Did you find this materia/useful? Gripes? Compliments? Suggestions for other articles? Write us.l

© 1999 Microsoft Corporation, All rights reseflled, Terms of use,

Figure 3-6: The MSDN Online Navigation bar with its drop-down menus.

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
headlines for technologies that you've indicated you're interested in reading about.

Voices is a collection of columns and articles that comprise MSDN Online's magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

There are a bunch of different "voices" in the Voices site, each of which adds its own
particular twist on the issues that face developers. Both application and Web developers
can get their fill of magazine-like articles from the sizable list of different articles available
(and frequently refreshed) in the Voices site.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can navigate in traditional MSDN fashion, and

Chapter 3 Using Microsoft Reference Resources 21

gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.coml/ibrary. Choosing Web Workshop takes you to a site
that enables you to navigate the Web Workshop in a slightly different way, starting with a
bulleted list of start pOints, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.comlworkshop.

Stone's WaV .it

Servin' It Up ...

Code Corner"

Geek Sp9ak •

Office Talk >f<

Deep C++ ..

A;;:k Jane.

Dr. GUr ..

Q&A, ..

~ Voices Archive

Parsing and Sharing
XML is all about sharing, Columnist Charlie Heinemann talks about the Microsoft XML
parser) and how XML can make your data available.

Incorporating Digital Media Acquisition into Site Design
Nadja Vol Ochs details how to implement digital rights management on Web sites.

Handling Exceptions in C and C++, Part 3
In his third installment on exception handling! columnist Robert Schmidt addresses
the syntax and semantics of Standard c++ exception handling.

Figure 3-7: The Voices home page.

by Charlie
Heinemann

by Nadja
Volocns

by Robert
Schmidt

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.comlcommunity. Figure 3-9 provides a look at
the Community home page.

The Downloads site is where developers can find all sorts of items that can be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.comldown/oads. The Downloads home page is shown in Figure 3-10.

22 Volume 4 Microsoft Windows Common Controls

ESSENTIALS 4<

Compone.nt Development ..

Content & Cc.mpcnenl: Do;::oJi\lery '"'

Data Access & Databases '"

Design ...

DHTML., HTML & ess •
Languages & DeIJelopmenl: Tools ...

Messaging & Collaboration ...

Networking, Protocols oil>

& Data Formats

Reusing Browser Technology ...

Security & Cryptography.

Server Technologies ...

Streaming & Interacti'.'€! Media ..

Web Content Management >110

XML (ExtenSible Markup Language) >II'

ESSENTIALS

This section contains core
information and references)
including information on
authoring for different
browsers and platforms) end~
to~end examples of working
Web sites! slides from
conferences) specs) and
comprehensive links to
references and standards,

Welcome

The MSDN online Web
Workshop provides the latest
information about Internet
technologies, including
reference material and in­
depth articles on all aspects
of Web site design and
development, Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords, and the search
page for specific queries.
Check our What's New page

for updates.

The MS DN Online team

© 1999 Microsoft Corporation. All rights reserved. Terms of use.

Figure 3-8: The Web Workshop home page, with its bulleted list of navigation start
points.

The Site Guide is just what its name suggests; a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. comlsiteguide.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), in addition to other search capabilities. The Search MSDN home page can
be linked to directly at msdn.microsoft.comlsearch. The Search MSDN home page is
shown in Figure 3-11.

MSDN Online Registered Users
You may have noticed that some features of MSDN Online-such as the capability to
create a roaming profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more than a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an Online Special Interest Group
(OSIG) requires registration. That feature alone is incentive enough to register; rather

Chapter 3 Using Microsoft Reference Resources 23

than attempting to call your developer buddy for an answer to a question (only to find out
that she's on vacation for two days, and your deadline is in a few hours), you can go to
MSDN Online's Community site and ferret through your OSIG to find the answer in a
handful of clicks. Who knows; maybe your developer buddy will begin calling you with
questions-you don't have to tell her where you're getting all your answers.

Your Membership"

OSIGs ..

Member Gazette ..

Case Studies ..

Downloads II

Memb@t"s Helping ..
Members

Offers ..

Training ..

MSDN Stores.

Welcome to the MSDN Online Member Community
Updated June 4) 1999

With an MSDN Online membership! developers can easily access technical
information, tools! and a community of developers ready to help solve the
toughest challenges. and take advantage of member benefits.

Online Special-Interest Groups

Access the information you need) when you need it l with
(OSIGs). Web-based access to relevant newsgroupsJ sorted by product!

make it easy for you to get information you need to do your job. Take advantage
of special offers) find useful links) and stay up to date with the latest product and
technology news.

Members Helping Members

Members Helping Members (MHM) is a networking and support tool that helps
developers get connected) solve problems) and gain recognition Within the
developer community. Get answers quickly by searching the MHM database for
people who can answer your technical questions. Or) register as a volunteer and
help other developers when they need it. Sign up now!

MSDN Online Certified Membership

Microsoft Certified Professionals can special benefits with their MSDN Online

Figure 3-9: The Community home page.

Embedded
Development

Exc:hange/Ou1:laak

Internet
Inforf'nation

MSDN Subscription

Office Developer-

Visu.all++

windows 201);0

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox-if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs-again, only if
you want to. It's easy for me to suggest that you become a registered user for MSDN
Online-I'm a registered user, and it's a great resource.

The Windows Programming Reference Series
The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling developers to get their work done as
efficiently as possible. In addition to providing reference material for Microsoft
technologies, each Library in the Windows Programming Reference Series also includes
material that helps developers get the most out of its technologies, and provides inSights
that might otherwise be difficult to find.

24 Volume 4 Microsoft Windows Common Controls

Tools

samples

Images

Sounds

Sub::.criber •
Downloads

Welcome to the MSDN Online Downloads Area

Tools

Want to tryout some great new products? Check out our tools areal where MSDN Online members and
guests can download over 40 trial, beta and full versions of the latest developer products,

Samples

In this section, you will find a great variety of samples which demonstrate ways to use the latest and
greatest Microsoft technologies to make your applications the best they can be. All samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to fmd samples focused on a particular product or technology.
Entries prefixed with tA are for users registered with Visual Studio only -- to get access to these,
register your product today.

Visit the VislJal Studio Solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Images
Download Web-ready images for free from our Images Downloads area. Currently, we have a great
collection created by LIttle Men's Studio! Inc. Little Men's Studio provides original clip art collections,
icons, and free quotes on affordable custom graphics. Our image categories Include rules, clip art,
buttons, bullets, photographs, and more. We will be updating this collection with more images so be
sure to check back frequently.

Figure 3-10: The Downloads home page.

The Windows Programming Reference Series is currently planned to include the
following libraries:

Win32 Developer's Programming Reference Library

Active Directory Services Library

Networking Services Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
Windows Programming Reference Series Libraries that cover the following material:

Web Technologies Library

Web Reference Library

COM/DCOM 2.0 Library

Chapter 3 Using Microsoft Reference Resources 25

1. Enter your search word(s) Dr phrase, or select a saved phrase from the drop-down list:

I ~ntE!:r phrase:.

2. Select your search criteria:

lexactphrase .. §iJ

3. Specify your search scope:

(: All sections of MSDN Library

(" Selected sections of MSDN Library

R': Visual Studio Documentation

P: Visual Basic Documentation

P Visual c++ Documentation

P: Visual Fox Pro Documentation

P; Visual InterDev Documentation

1;7 Visual J++ Documentation

~ Visual SourceSafe Documentation

~ Tools B:. Technologies (including Win eE)

'. "'"",: ,".

Figure 3-11: The Search home page.

P: Other SDK Documentation

r;;: DOK Documentation

M Windows Resource Kits:

1;7 Specifications

P Technical Articles

F7 Backgrounders

P Books and Partial Books:

V: Periodicals

Search Tips:
Quick

Advanced

What else might you find in the future? Topics such as a Security, Languages and MFC,
BackOffice, and other pertinent topics that developers using Microsoft products need in
order to get the most out of their development efforts, are prime subjects for future
libraries in the Windows Programming Reference Series. If you have feedback you want
to provide on such libraries, or on the Windows Programming Reference Series in
general, you can send mail to the following address: winprs@microsoft.com.

If you're sending mail about a particular Library, make sure you put the name of the
library in the subject line. For example, an e-mail about the Win32 Library would have a
subject line that reads 'Win32 Library." There aren't any guarantees that you'll get a
reply, but I'll read all of the mail and do what I can to ensure your comments, concerns,
or (especially) compliments get to the right place.

CHAPTER 4

Finding the Developer
Resources You Need

27

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a lot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.comlsupport/customer/develop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft's support services.

28 Volume 4 Microsoft Windows Common Controls

Microsoft offers a wide varlet'll of support for Developers. The ~
Deyeloper N@t\:tQrk (M8DN) Is packl!!!d with news, niu:ourcas .;,nd technical

1"'-" ="""-""'-,.",.1 ~:~!~~~~~~a!~~ ~~~~~~a~J~:7rs~:;~~:r~'n~i~i:~~;peoe:s~rl~:: :~~~g~:gpe f~~
our regular e-mail naws ~ch.

EEl BU!line!!ll5 Solutions Microsoft offers developers with Premier Support for DelJeloper. Pall-per-
l±I Partnel"li Ie Rasellel"'S Incident Support, Priority Annual Support and special consulting services, If

Developers 'Iou need morlil than occasional deyeloper support.. one of thesa options Is
Harne User sure to be right for you.

Education

Do you need help now?

Go to thlli!! Microsoft: Developer Netwgrk (MSDN) Support SerylcePesk.

Support Options

Premier Suppol't for Developers
Priority Annual Support
Pay-Per~lnddent Support
Consult Line

For additional information, read the Premier Support for
Developers data sheet. (pre_dell.doc, 64K)

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out
more information about Microsoft's Premier Support, get in contact with them at
1-800-936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft:

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

Chapter 4 Finding the Developer Resources You Need 29

As a developer, the best support option for you is the Priority Developer Support. To
get more information about Priority Developer Support, you can reach Microsoft at
1-800-936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there's
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can't be broken down into sub-issues or sub-problems (that
is, it can't be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support.microsoft.comlsupportlwebresponse.asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, go to msdn.microsoft.comlcommunity.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.comlsupportlnews.

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer's Reference Library, and they are the following:

microsoft. public. win32.programmer. *

microsoft.public. vc. *

microsoft.public. Vb. *

microsoft.public.platformsdk. *

microsoft.public.cert. *

microsoft. public. certification. *

30 Volume 4 Microsoft Windows Common Controls

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products
Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topiC in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as
Visual C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a
particular product (such as Sal Server or Commerce Server) is to go through and read
the preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do-there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don't have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually
didn't know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are "tracks"
that candidates generally choose and that point their certification in a given direction,

Chapter 4 Finding the Developer Resources You Need 31

such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0
(70-016)

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft Sal Server 7.0 and
Microsoft Decision Support Services 1.0

• Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

• Implementing OLE in Microsoft Foundation Class Library 4.0 Applications

• Implementing a Database Design on Microsoft Sal Server 6.5

• Designing and Implementing Databases with Microsoft Sal Server 7.0

• Designing and Implementing Web Sites with Microsoft FrontPage 98

• Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

• Microsoft Access for Windows 95 and the Microsoft Access Developer's Toolkit

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications

32 Volume 4 Microsoft Windows Common Controls

• Designing and Implementing Database Applications with Microsoft Access 2000

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

• Designing and Implementing Web Solutions with Microsoft VisuallnterDev 6.0

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

• Developing Applications with Microsoft Visual Basic 5.0

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn't that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you-regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams-and don't be fooled by believing that if the book is bigger it must be better,
because that certainly isn't always the case-and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.comltrain_cert/dev.

Conferences
As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year-occurring throughout the country and around the
world-on various topics. There are probably more conferences available than any
human being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).

Chapter 4 Finding the Developer Resources You Need 33

Regardless of which conference you're looking for, Microsoft has provided a central site
for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events. microsoft. com.

Other Resources
There are other resources available for developers of Windows applications, some of
which might be mainstays for one developer and unheard of for another. The listing of
developer resources in this chapter has been geared toward getting you more than
started with finding the developer resources you need: it's geared toward getting you
100 percent of the way, but there are always exceptions.

Perhaps you're just getting started, and you want to get more hands-on instruction than
MSDN Online or MeSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with others, let
me know about it by sending me e-mail at the following address, and-who
knows?--maybe someone else will benefit from your knowledge:

winprs@microsoft.com

If you're sending e-mail about a particularly useful resource, type "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the e­
mail and do what I can to ensure your resource idea gets considered.

CHAPTER 5

Getting the Most Out of Win32
Technologies: Part 4

35

This chapter is the fourth of the five-part collection of common programming errors,
included in the Microsoft Win32 Developer's Reference Library to help you avoid these
simple programming pitfalls. This collection of common programming errors is distributed
in each Win32 Library volume's Chapter 5 in the following fashion:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers

Volume 4: Buffer Overflows and Miscellaneous Errors

Volume 5: Memory Abuse and Miscalculations

As you'll notice, not all of these pitfalls are necessarily confined to Win32 programming
(some are networking services based, for example). However, since these common
coding errors must be avoided in any Windows application, they're provided here in their
entirety to round out the benefits of owning the Win32 Library.

This of course is Volume 4, and the errors and examples found in this chapter provide
insights that can help you avoid problems with buffer overflows and an assortment of
miscellaneous errors in your programming projects. So without further ado, here
they are!

Buffer Overflows
Buffer overflows can cause all sorts of problems and can be the result of simple errors
on the part of the developer or the result of a directed attack. Avoiding buffer overflow
problems isn't difficult, but failing to do so can result in dire consequences. Follow the
rules listed below, and their subsequent explanations, to avoid such problems.

• Always check the actual buffer size when accessing abutter, rather than some known
maximum.

• Be aware of arithmetic overflow, and ensure that checks don't go wrong because of
them.

• Verify that arithmetic performed on enumerated types results in values within the
enumeration.

• Test buffers sizes against expectations; don't assume they have been tested already.

36 Volume 4 Microsoft Windows Common Controls

You can also take the following additional precautions to avoid buffer overflows:

• When using an offset address, ensure that the location is not beyond either end of the
buffer.

• On complex size calculations, ensure that the total size is greater than the fixed
header.

• Beware of strings without NULL termination. If there is a size, use it!

• Check minimum and maximum values of enums after calculation.

• When comparing external and internal data, compare sizes first, and then use the
minimum for comparisons.

Simple Buffer Overflow
The best solution to simple buffer flow is to check the bounds of a buffer before
referencing it. However, there are a couple of cases that require extra attention.

One case that requires extra care is writing data to stack buffers; going beyond the
bounds of a stack buffer can allow the return address to be set to an arbitrary value,
resulting in execution of arbitrary code. Another case that requires extra care is non­
terminated strings; in many cases-such as kernel mode and network structures­
strings are sent with a size, but no NULL terminator. In these cases, do not rely on a
NULL terminator, but rather use the size.

The general rule is that it's important to always check buffer accesses by their actual
upper and lower bounds, and not to do so by a known minimum or maximum.

Example

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 37

Remarks
In this example we passed the captured buffer to the internal function with neither an
indication of how large the string actually is nor a zero terminating it.

Size Overflow or Underflow
In many instances, especially in network code, buffers are passed that have a fixed
header and a variable tail. These types of buffers often lead to complex size calculations
that require careful validation. The most common way these buffers break is when a
large (effectively negative) size is provided in the variable-length section, such that the
sum of header plus tail is less than the buffer size. Validation succeeds, resulting in a
huge section of memory from the tail being copied into a too-small buffer. Another
common attack is to send a partial packet that is shorter than the header section. Slight
rearrangements of comparisons will often correct the problem.

Example

(continued)

38 Volume 4 Microsoft Windows Common Controls

(continued)

Remarks
The problem with the above code sample is that the addition in the second if statement
may overflow. That overflow would cause the test to succeed even though the buffer isn't
big enough to contain that much data. It's easy to rearrange the above if statement to
get it working correctly:

Remarks
We can do the first subtraction without underflow occurring because of the presence of
the first if test in the earlier code.

Abuse of enumerated types
Enumerated types have a limited range of values, which means that some operations
(most notably addition and subtraction) might yield values that will cause invalid memory
references. Enumerated types should be checked for minimum and maximum after
performing any arithmetic operation.

Remarks
Consider Informati onCl ass == Fi rstEntry, which evaluates to zero.

Using internal lengths for comparisons to external input
Some application components maintain internal length values for structures used by the
component. This is fine so long as the data is internal to the application component;
however, a problem arises when application-internal lengths are used with external input
data. If lengths need not be identical, use the minimum of the internal and external

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 39

lengths. If lengths should be identical, a mismatch between the two sizes should cause
the parameter to be rejected.

Example

Remarks
If the RtlCopyMemory() function call in this code example doesn't crash the system for
writing too much data, the I/O system code to copy this data back into user mode might.
OutputLength just might have been zero.

Miscellaneous Errors
This section functions as a catch-all for problems that are general enough to occur in any
application code, but unusual enough not to fit into a simple category. The following list
enumerates miscellaneous issues that developers should be wary of when developing
applications:

• Be careful when casting input data to another type.

• Double-check precedence order in complex expressions.

• Ensure that all parts of the compound conditional are equivalent (each result should
execute the same code) or are special-cased where appropriate.

• Check all pOinter parameters for NULL (especially optional parameters).

• Don't hard-code strings in code (for example, "Administrators").

• Beware of multiple checks of volatile data.

• Always acquire locks in a consistent order.

• Beware of (and preferably eliminate or reduce) inconsistencies with common
interfaces (for example, GetLastError and functions returning handles).

Dangers of typecasting
Casting an input value to another type without sufficient checks can lead to a number of
problems. One common faulty assumption (that pointers are 4 bytes long) could lead to
significant problems if an application is ported to a 64-bit operating system. Casting input

40 Volume 4 Microsoft Windows Common Controls

data to floating-point types can have even more significant repercussions, because
many bit combinations are not valid floating-point values. Finally, casting to different
types can give very different behavior if the sign bit is set depending on whether the
types are signed; unsigned values are zero-extended, while signed values are sign­
extended.

In general, the best approach to typecasting in your applications is to make as few
assumptions as possible. Casts from pointers to longs might chop the value, making it
look good even though it's bad. Any float passed from user mode should be assumed
to contain all possible bit patterns, not just properly formed floating-point values.

Example

Remarks
In this example, DataOffset and DataLength are ULONG values whose sum has been
cast to a USHORT for comparison to the USHORT value InputBufferLength. Because
the values are truncated, it's possible to succeed on this conditional and still dereference
far beyond the scope of the indicated buffer when AddressLength is retrieved, because
the variables in question are not recast.

Operator precedence
Many common problems occur because of a misunderstanding of the precedence
rules-most commonly & and I versus == and !=. Equality has higher precedence, but
code is often written if (a & c2 == c2), which is really if (a & (c1 == c2». To avoid this
problem, fully parenthesize the intended order of operations, or look it up to verify that
precedence is correct.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 41

Example
tf (Val~. & CONSTANT -. CONSTANT) {

.;~R(!'tVal == ERRO IlJ NVALI (LPARAMETER;
}

Remarks
Thus if (Value & !O). There's a PERL script called TYPO that can find these easily.
A smart compiler will optimize both statements away; a smarter one will generate
warnings.

Conditional termination confusion
Conditional termination confusion occurs when a compound condition is used and
subsequent code assumes that one particular clause was satisfied. This particular
programming error is frequently discovered in while and for loops with compound
termination clauses.

Example

Remarks
The loop in this example seems to be attempting to check that the buffer is properly
NULL-terminated without overflowing the end of the buffer; however, the statement
immediately following assumes that the terminator was found, and thus the second
condition fulfilled the while loop termination. If the first clause fulfilled the termination
condition, the strlen call would read past the specified length in the buffer.

Misuse of OPTIONAL parameters
OPTIONAL parameters can be NULL. However, some functions dereference
OPTIONAL parameters without verifying that they are non-NULL, or check for NULL in
some paths without checking others. Avoiding this common programming error is simple:
Check all OPTIONAL parameters for NULL before using them.

Example

(continued)

42 Volume 4 Microsoft Windows Common Controls

(continued)

Remarks
Consider the case where StringDstA != NUll and StringDstB == NULL.

Return value confusion and inconsistencies
The Win32 API includes several features that are expected to be general to all system
API functions, but in reality, they are not. The two most commonly misused features are
INVALID_HANDLE_VALUE and GetlastError. GetlastError can be called after most
Win32 API functions, but there are some functions (registry API functions, for example)
that don't call SetlastError. Similarly, the Nt* API functions don't call SetlastError.
INVALID_HANDLE_VALUE is returned only from Win32 file-system API functions
(CreateFile, FindFirstFile, and so on). Passing INVALID_HANDLE_VALUE to the
GetKernelObjectSecurityO function will return the security on the current process
because INVALID_HANDLE_VALUE == GetCurrentProcessO.

To avoid these common programming errors, carefully check the appropriate error return
code. Some Win32 handle functions return NUll to indicate an error, while others use
INVALID_HANDLE_VALUE. GetlastErrorO inconsistencies are problems that should
be fixed, but be sure to use return codes for error checking, not just GetlastErrorO.

Example
HANDLE

Remarks

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 43

The call to the NtOpenFile() function does not call the SetLastError() function, so the
call to GetLastError() returns the result from the last call that did call SetLastError(). If
the last call that called SetLastError() succeeded, a false positive response may result.

Don't rely on volatile objects
Any multithreaded environment can run into synchronization problems if global data is
checked multiple times expecting the same result. If a kernel or network server makes
decisions based on multiple checks of a volatile object, special care must be taken to
ensure that different values for the object will not break the algorithm. The best way to
avoid this problem is to avoid doing the same queries more than once. If multiple queries
are required, make sure that differing results don't cause a problem. For example, if
access to a file is determined to be possible, don't assume that further accesses to the
same file by name will also succeed.

Example

(continued)

44 Volume 4 Microsoft Windows Common Controls

(continued)

Results
The privileges on the file in this example might have changed in the time between
the read open and the write open. Because this is a privileged component and no
impersonation was performed, this code may end up writing data to a file that has
since been marked read-only to the user in question.

Avoid spin lock order problems
Spinlocks (or any other locking/mutex mechanisms) acquired in the wrong order create
timing windows that can deadlock computers. Many components are particularly
susceptible to this in their IRP cancel routines, where spinlocks may be acquired without
dropping the implicitly acquired CancelSpinlock. To avoid this situation, always acquire
spin locks in a consistent order, even when one is implicitly acquired.

Example

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 45

Remarks
If LockingFunction1 {) and LockingFunction2{) were to acquire the session and
connection locks respectively at nearly the same time, both threads would deadlock
waiting for the other to release the lock that they next attempt to acquire.

Determining membership in Administrators group
Many applications check whether a user is an administrator before allowing an
operation, but determining group membership is often performed incorrectly. The most
common method for determining membership in the Administrators group is to build the
appropriate SID and look in the user's token for that SID. With "restricted" tokens,
however, this is no longer sufficient. Another common method was to look up that SID by
specifying the name "Administrators"; that approach is not localizable, and therefore not
the best approach. The best approach is to use CheckTokenMembershipO to check a
user's membership in any group.

Example

(continued)

46 Volume 4 Microsoft Windows Common Controls

(continued)

To fix the problem in this code sample, convert the above code to the fOllowing:

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 47

&Admi nSi d» {
if (!CheckTokenMembership(Token.

ls.Me1l1ber= FALSE;
)
Gl. o~qlFre:e(Admi n$i d):

Solution Summary

AdminSid,
&IsMember)

It's nice to have a concise version of the solutions to these common programming
problems, so this section summarizes how to avoid the issues discussed in this chapter.

Buffer Overflows
1. Simple buffer overflow: Always check actual buffer size when accessing a buffer,

rather than some known maximum.

2. Size overflow or underflow: When using an offset address, ensure that the location
is not beyond either end of the buffer.

3. Abuse of enumerated types: On complex size calculations, ensure that total size is
greater than the fixed header.

4. Using internal lengths for comparisons to external input: Beware of strings without
NULL termination. If there is a size, use it!

Miscellaneous Errors
1. Dangers of typecasting: Be careful when casting input data to another type.

2. Operator precedence: Double-check precedence order in complex expressions.

3. Conditional termination confusion: Ensure that all clauses of a compound conditional
are equivalent (each result should execute the same code), or are special-cased
where appropriate.

4. Misuse of OPTIONAL parameters: Check all pOinter parameters for NULL (especially
optional parameters).

5. Return value confusion and inconsistencies: Don't hard-code strings in code (for
example, "Administrators").

6. Don't rely on volatile objects: Beware of multiple checks of volatile data.

7. Avoid spinlock order problems: Always acquire locks in a consistent order.

8. Determining membership in Administrators group: Beware of (and preferably eliminate
or reduce) inconsistencies with common interfaces (for example, GetLastError and
functions returning handles).

49

PAR T 2

Introduction

The common controls are an important part of the user interface in virtually all Microsoft
products, as well as in many applications produced by third-party developers. However,
there are a lot of controls, and finding the information you need to perform certain
common or important tasks is not always easy. This chapter is designed to make you
aware of versioning considerations you must take into account during the development
process, as well as to highlight several important tasks that are of importance to
developers. The individual sections are task-oriented and designed to provide you with
enough information about the procedure, so that you will be able to implement controls
in your application with a minimum of fuss.

Getting Information About List-View, Toolbar, and
Tree-View Controls

In order to adhere to the mission of the Windows Programming Reference Series­
which is to provide concise, compact, and portable reference books-three common
controls were omitted from this printed volume: List-View, Toolbar, and Tree-View
Controls. Together, these three controls are approximately as long as the book you are
holding currently, so in order to provide you with the most comprehensive and useful
collection, these three controls have been provided in a more compact form----that is,
they have been provided on the companion CD.

The companion CD found in the Base Services volume contains all the information about
these three controls (along with all the other controls that did get into this volume, and
loads of other reference information). If you have not done so, you should fire up the
installation CD and get the electronic ·reference companion CD installed on your computer.

General Introduction to the Common Controls
The common controls are a set of windows that are implemented by the common control
library, which is a dynamic-link library (DLL) included with the Microsoft Windows
operating system. Like other control windows, a common control is a child window that
an application uses in conjunction with another window to perform I/O tasks.

Using Common Controls
Most common controls belong to a window class defined in the common control DLL.
The window class and the corresponding window procedure define the properties,
appearance, and behavior of the control. To ensure that the common control DLL is

50 Volume 4 Microsoft Windows Common Controls

loaded, include the InitCommonControlsEx function in your application. You create
a common control by specifying either the name of the window class when calling the
CreateWindowEx function or the appropriate class name in a dialog-box template.

DLL Versions
All 32-bit versions of Windows include a common controls DLL, known as Comctl32.dll.
However, this DLL has been updated several times since it was first introduced. Each
successive version supports the features and application programming interface (API)
of earlier versions. However, each new version also contains a number of new features
and a correspondingly larger API. Applications must be aware of which version of
Comctl32.dll is installed on a system, and use only the features and API that the DLL
supports.

Because new versions of the common controls were distributed with Internet Explorer,
the version of Commctl32.dll that is present is commonly different from the version that
was shipped with the operating system. It might be several versions more recent,
actually. Thus, it is not enough for your application to know which operating system it is
running on----it must determine directly which version of Comctl32.dll is present. For a
detailed discussion of common controls versions and how to determine which version of
Comctl32.dll is installed, see Shell and Common Controls Versions.

Structure sizes for different common control versions
Ongoing enhancements to common controls have resulted in the need to extend many
of the structures. This, in turn, results in the size of the structures changing between
different versions of Commctrl.h. Because most of the common control structures take a
structure size as one of the parameters, this can result in a message or function failing if
the size is not recognized. To remedy this, structure-size constants have been defined to
aid in targeting different versions of Comctl32.dll. The following list defines the new
structure-size constants:

Control

HDITEM_V1_SIZE

LVCOLUMN_ V1_SIZE

LVITEM_ V1_SIZE

NMLVCUSTOMDRAW_ V3_SIZE

Constant

The size of the HDITEM structure in version 4.00.

The size of the LVCOLUMN structure in
version 4.00.

The size of the LVHITTESTINFO structure in
version 4.00.

The size of the LVITEM structure in version 4.00.

The size of the NMLVCUSTOMDRAW structure in
version 4.70.

The size of the NMTTDISPINFO structure in
version 4.00.

The size of the NMTVCUSTOMDRAW structure in
version 4.70.

Part 2 Introduction 51

Control Constant

PROPSHEETHEAOER_V1_SIZE The size of the PROPSHEETHEADER structure in
version 4.00.

PROPSHEETPAGE_ V1_SIZE The size of the PROPSHEETPAGE structure in
version 4.00.

REBARBANOINFO_ V3_SIZE The size of the REBARBANDINFO structure in
version 4.70.

TTTOOLlNFO_V1_SIZE The size of the TOOLINFO structure in
version 4.00.

TVINSERTSTRUCT_V1_SIZE The size of the TVINSERTSTRUCT structure in
version 4.00.

Common Control Styles
Each type of common control has a set of control styles that you can use to vary the
appearance and behavior of the control. The common control library also includes a
set of control styles that apply to two or more types of common controls. The common
control styles are described in the Common Control Styles section.

Common Control Messages
Because common controls are windows, an application can manipulate them by using
messages, such as WM_GETFONT or WM_SETTEXT. In addition, the window class of
each common control supports a set of control-specific messages that an application can
use to manipulate the control. An application can use any of the message sending or
posting functions to pass messages to the control. In addition, some common controls
have a set of macros that an application can use instead of the sending or posting
functions. The macros are typically easier to use than the functions.

When a change is made to the system color settings, Windows sends a
WM_SYSCOLORCHANGE message to all top-level windows. Your top-level window
must forward the WM_SYSCOLORCHANGE message to its common controls;
otherwise, the controls will not be notified of the color change. This ensures that the
colors used by your common controls are consistent with those used by other user
interface objects. For example, a toolbar control uses the 30 Objects color to draw its
buttons. If the user changes the 30 Objects color but the WM_SYSCOLORCHANGE
message is not forwarded to the tool bar, the toolbar buttons will remain in their original
color (or even change to a combination of old and new colors) while the color of other
buttons in the system changes.

Common Control Notification Messages
Common controls are child windows that send notification messages to the parent
window when events, such as input from the user, occur in the control. The application
relies on these notification messages to determine what action the user wants it to take.
Except for trackbars, which use the WM_HSCROLL and WM_ VSCROLL messages to
notify its parent of changes, common controls send notification messages as

52 Volume 4 Microsoft Windows Common Controls

WM_NOTIFY messages. The IParam parameter of WM_NOTIFY is either the address of
an NMHDR structure or the address of a larger structure that includes NMHDR as its first
member. The structure contains the notification code and identifies the common control
that sent the notification message. The meaning of the remaining structure members, if
any, varies depending on the notification code.

Common controls notifications support both ANSI and UNICODE formats. The system
determines which format to use by sending your window a WM_NOTIFYFORMAT
message. To specify a format, return NFR_ANSI for ANSI notifications, and
NFR_UNICODE for Unicode notifications. If you do not handle this message, the system
calls IsWindowUnicode to determine the format. Since Windows 95 and Windows 98
always return FALSE to this function call, they use ANSI notifications by default.

Note Not all controls will send WM_NOTIFY messages. In particular, the standard
Windows controls (edit controls, combo boxes, list boxes, buttons, scroll bars, and static
controls) do not send WM_NOTIFY messages. Consult the documentation for the control
to determine if it will send any WM_NOTIFY messages and, if it does, which notification
codes it will send.

Each type of common control has a corresponding set of notification codes. The
common control library also provides notification codes that can be sent by more
than one type of common control. See the documentation for the control of interest
to determine which notification codes it will send and what format they take.

Common Control Updates in Internet Explorer
Common controls in Internet Explorer support the following new features.

Common Control Initialization
The common controls are now initialized with the InitCommonControlsEx function.
This function allows you to specify which controls should be initialized for your
application instead of initializing all of the controls. The InitCommonControls
function is still supported, but new applications should use InitCommonControlsEx.

New Common Control Styles
There are four new common control styles defined. These are CCS_LEFT,
CCS_RIGHT, CCS_VERT, and CCS_NOMOVEX. For more information, see
Common Control Styles.

Shell and Common Controls Versions
This section describes how to determine which version of the Shell or Common Controls
DLLs your application is running on and how to target your application for a specific
version.

Part 2 Introduction 53

DLL Version Numbers
All but a handful of the programming elements discussed in the shell and common
controls documentation are contained in three DLLs: ComctI32.dll, SheIl32.dll, and
ShlwapLdll. Because of ongoing enhancements, different versions of these DLLs
implement different features. Throughout this document, programming elements are
marked with a version number. This version number indicates that the programming
element was first implemented in that version and will also be found in all subsequent
versions of the DLL. If no version number is specified, the programming element is
implemented in all versions. The following table outlines the different DLL versions, and
how they were distributed.

Version DLL Distribution platform

4.00 All Microsoft Windows 95/windows NT 4.0.

4.70 All Microsoft Internet Explorer 3.x.

4.71 All Microsoft Internet Explorer 4.0 (see note 2).

4.72 All
Microsoft Internet Explorer 4.01 and Windows 98
(see note 2).

5.00 ShlwapLdll Microsoft Internet Explorer 5 (see note 3).

5.00 Shell32.dll Microsoft Windows 2000. (see note 3).

5.80 Comctl32.dll Microsoft Internet Explorer 5 (see note 3).

5.81 Comctl32.dll Microsoft Windows 2000(see note 3).

Note 1: The 4.00 versions of Shell32.dll and Comctl32.dll are found on the original
versions of Windows 95 and Windows NT 4. New versions of Commctl.dll were shipped
with all Internet Explorer releases. ShlwapLdll first shipped with Internet Explorer 4.0, so
its first version number is 4.71. The shell was not updated with the Internet Explorer 3.0
release, so Shell32.dll does not have a version 4.70. While Shell32.dll versions 4.71 and
4.72 were shipped with the corresponding Internet Explorer releases, they were not
necessarily installed (see Note 2). For subsequent releases, the version numbers for the
three DLLs are not identical. In general, you should assume that all three DLLs might
have different version numbers, and test each one separately.

Note 2: All systems with Internet Explorer 4.0 or 4.01 will have the associated version of
Comctl32.dll and ShlwapLdll (4.71 or 4.72, respectively). However, for systems prior to
Windows 98, Internet Explorer 4.0 and 4.01 can be installed with or without the
integrated shell. If they are installed with the integrated shell, the associated version of
Shell32.dll will be installed. If they are installed without the integrated shell, Shell32.dll is
not updated. In other words, the presence of version 4.71 or 4.72 of Comctl32.dll or
ShlwapLdll on a system does not guarantee that Shell32.dll has the same version
number. All Windows 98 systems have version 4.72 of SheIl32.dll.

54 Volume 4 Microsoft Windows Common Controls

Note 3: Version 5.80 of Comctl32.dll and version 5.0 of ShlwapLdll are distributed with
Internet Explorer 5. They will be found on all systems on which Internet Explorer 5 is
installed, except Windows 2000. Internet Explorer 5 does not update the shell, so
version 5.0 of Shell32.dll will not be found on Windows NT, Windows 95, or Windows 98
systems. Version 5.0 of Shell32.dll will be distributed with Windows 2000, along with
version 5.0 of ShlwapLdll, and version 5.81 of Comctl32.dll.

Using DIIGetVersion to Determine the Version Number
Starting with version 4.71, the Shell and Common Controls DLLs, among others, began
exporting DIIGetVersion. This function can be called by an application to determine
which DLL version is present on the system. It returns a structure that contains version
information.

Note DLLs do not necessarily export DIIGetVersion. Always test for it before
attempting to use it.

For systems earlier than Windows 2000, DIIGetVersion returns a DLLVERSIONINFO
structure that contains the major and minor version numbers, the build number, and a
platform ID. For Windows 2000 and later systems, DIIGetVersion may instead return a
DLLVERSIONINF02 structure. This structure contains the QFE number that identifies
the service pack and provides a more robust way to compare version numbers than
DLLVERSIONINFO. Since the first member of DLLVERSIONINF02 is a
DLLVERSIONINFO structure, the new structure is backward-compatible.

Using DIIGetVersion
The following sample function loads a specified DLL and attempts to call its
DIIGetVersion function. If successful, it uses a macro to pack the major and minor
version numbers from the DLLVERSIONINFO structure into a DWORD that is returned
to the calling application. If the DLL does not export DIIGetVersion, the function returns
zero. With Windows 2000 and later systems, you can modify the function to handle the
possibility that DIIGetVersion returns a DLLVERSIONINF02 structure. If so, use the
information contained in the ullVersion member to compare versions, build numbers,
and service pack releases. The MAKEDLLVERULL macro is designed to simplify the
task of comparing these values to those contained in ullVersion.

i f(hi nstOll)
{

OLLGETVERSIONPROC pon GetVerSi on:

. . pOl T G~tyer$1(>n;7.(O LLG ETVE R$IONF>R.OCJ .
GetP.·ro~Adlires~ (ti;in·stl)ll;. ·"DllG.et\Iers 19. n" ~~; .

C'f,;' , " ',', ,; ,,",/,' i" '",',; " "

Part 2 Introduction 55

~ ;'

·/i\<~;ec~~"$;e·~lrre.;11LJ.$m,.y; ;~(j~;J·~l·~lJl~1t.iM~;· fUntit;j~ll~.y.9.lt< ••• ;
~mllstt~$.t .. fQr.:rt eipnp.1t4M .. o.~pend·ft!Q:~nth~;~articuiat'·

}!tk~:;:#~;~~t~,~~)i~f~~·l~~~~;t~m;,.~:" .. "". .
.; ')f'(pJil1Set1J~'~Si(~~J .

" " ,~' ~ :"~ <

The following code fragment illustrates how you can use GetDIlVersion to test if
Comctl32.dll is version 4.71 or later.

ff(GetDl1}fedronnExt{ry:comc:t132.~d11~·») >"",pACKV.E.RS1OtH4.n;)} '.
{ ..

, : "

~n&1 ter~ate'ii.P~ro~~hfo r:' ;:old~fblL; ~et~lorts
J ; ;.: . ·t;

56 Volume 4 Microsoft Windows Common Controls

Project Versions
To ensure that your application is compatible with different targeted versions of
comctl32.dll and sheIl32.dll, a version macro was added to the header files. This macro
is used to define, exclude, or redefine certain definitions for different versions of the DLL.
The macro name is _WIN32_IE and you, the developer, are responsible for defining the
macro as a hexadecimal number. This version number defines the target version of the
application that is using the DLL. The following are the currently available version
numbers and the effect each has on your application.

Version

Ox0200

Ox0300

Ox0400

Ox0401

Ox0500

Ox0501

Description

The application will be compatible with Comctl32.dll and shell32.dll
version 4.00 and later. The application will not be able to implement
features that were added after version 4.00 of Comctl32.dll.

The application will be compatible with Comctl32.dll and shell32.dll
version 4.70 and later. The application will not be able to implement
features that were added after version 4.70 of Comctl32.dll.

The application will be compatible with Comctl32.dll and shell32.dll
version 4.71 and later. The application will not be able to implement
features that were added after version 4.71 of Comctl32.dll.

The application will be compatible with Comctl32.dll and shell32.dll
version 4.72 and later. The application will not be able to implement
features that were added after version 4.72 of Comctl32.dll.

The application will be compatible with Comctl32.dll version 5.80 and
later, and shell32.dll and Shlwapi.dll version 5.0 and later. The
application will not be able to implement features that were added after
version 5.80 of Comctl32.dll or version 5.0 of Shell32.dll and Shlwapi.dll.

The application will be compatible with Comctl32.dll version 5.81 and
later and shell32.dll and Shlwapi.dll version 5.0 and later. The application
will not be able to implement features that were added after version 5.81
of Comctl32.dll or version 5.0 of Shell32.dll and Shlwapi.dll.

If you do not define this macro in your project, it will automatically be defined as Ox0500.
To define a different value, you can add the following to the compiler directives in your
make file (substitute the desired version number for Ox0400):

Another method is to add a line similar to the following in your source code before
including the shell and common control header files (substitute the desired version
number for Ox0400). For example:

#<l~t'fll;~o 00 ,,"iN lll,32:~f~f~~~0040~09 f
*i~cJu~e,~p~mmc.;tr10;lt>:< 00

CHAPTER 6

Using Common Controls

Creating a Customizable Toolbar
Most Microsoft Windows applications use toolbar controls to provide their users with
convenient access to various tools. However, static toolbars have some shortcomings,
such as too little space to effectively display all the available tools.

The solution to this problem is to make your application's toolbars customizable. Users
can then move, add, and delete tools to select only the ones they need and organize
them in whatever way they find convenient.

To enable customization, include the CCS_ADJUSTABLE common controls style flag
when you create the toolbar control. There are two basic approaches to customization:

• The customization dialog box. This system-provided dialog box is the simplest
approach. It gives users a graphic user interface that allows them to add, delete,
or move icons.

57

• Dragging and dropping tools. Implementing drag-and-drop allows users to move tools
to another location on the toolbar or delete them by dragging them off the tool bar. It
provides users a quick and easy way to organize their tool bar, but does not allow
them to add tools.

You can implement either or both, depending on the needs of the application.

Neither of these two approaches to customization provides a built-in mechanism, such
as a Cancel or Undo button, to return the toolbar to its former state. You must explicitly
use the toolbar control API to store the tool bar's precustomization state. If necessary,
you can later use this stored information to restore the toolbar to its original state.

This document discusses how to enable tool bar customization with the customization
dialog box and with drag-and-drop. It also briefly discusses saving and restoring a
toolbar's state.

The Customization Dialog Box
The customization dialog box is provided by the tool bar control to give users a simple
way to add, move, or delete tools. Users can launch it by double-clicking the tool bar.
Applications can launch the customization dialog box by sending the tool bar control a
TB_CUSTOMIZE message. Figure 6-1 shows an example of the toolbar customization
dialog box.

58 Volume 4 Microsoft Windows Common Controls

Figure 6-1: The toolbar customization dialog box.

The tools in the right-hand list box are those currently on the toolbar. Initially, this list will
contain the tools that you specify when you create the toolbar. The left-hand list box
contains the tools that are available to add to the toolbar. Your application is responsible
for populating that list and keeping track of what tools are currently on the toolbar.

Implementing the Customization Dialog Box
The toolbar control notifies your application that it is launching a customization dialog
box by sending its parent window a TBN_BEGINADJUST notification. It then sends
a TBN_INITCUSTOMIZE notification. If you don't want the toolbar to display a Help
button, handle this notification and return TBNRF _HIDEHELP.

The tool bar control then collects the information it needs to initialize the dialog box
by sending three series of notifications in the following order:

1. A TBN_QUERYINSERT notification for each button on the toolbar to determine where
buttons can be inserted. Return FALSE to prevent a button from being inserted to the
left of the button specified in the notification. If you return FALSE to all
TBN_QUERYINSERT notifications, the dialog box will not be displayed.

2. A TBN_QUERYDELETE notification for each tool currently on the tool bar. Return
TRUE if a tool can be deleted, or FALSE if not. If all your tools can be deleted, you
do not need to handle this notification.

3. A series of TBN_GETBUTTONINFO notifications to populate the list of available
tools. To add a tool to the list, fill in the NMTOOLBAR structure that is passed with
the notification and return TRUE. When you have no more tools to add, return FALSE.

The dialog box is then displayed, and users can begin to customize the tool bar.

Once the dialog box is displayed, your application can receive a variety of notifications,
depending on the users' actions:

Chapter 6 Using Common Controls 59

• TBN_QUERYINSERT. Each time the user changes the location of a tool on the
tool bar, or adds a tool. Return FALSE to prevent the tool from being inserted at that
location.

• TBN_DELETINGBUTTON. The user is about to remove a tool from the toolbar.

• TBN_CUSTHELP. The user has clicked the Help button.

• TBN_ TOOLBARCHANGE. The user has added, moved, or deleted a tool.

• TBN_RESET. The user has clicked the Reset button.

After the dialog box is destroyed, your application will receive a TBN_ENDADJUST
notification.

Dragging and Dropping Tools
Users also can rearrange the buttons on a toolbar by pressing the SHIFT key and
dragging the button to another location. The drag-and-drop process is handled
automatically by the tool bar control. It displays a ghost image of the button as it is
dragged, and rearranges the toolbar after it is dropped. Users cannot add buttons in
this way, but they can delete a button by dropping it off the toolbar.

Although the toolbar control normally does this operation automatically, it also sends
your application two notifications: TBN_QUERYDELETE and TBN_QUERYINSERT.
To control the drag-and-drop process, handle these notifications as follows:

• The TBN_QUERYDELETE notification is sent as soon as the user attempts to move
the button, before the ghost button is displayed. Return FALSE to prevent the button
from being moved. If you return TRUE, users will be able to either move the tool or
delete it by dropping it off the toolbar. Once you have allowed users to move a tool,
you cannot prevent them from deleting it. However, if users delete a tool, the toolbar
control will send your application a TBN_DELETINGBUTTON notification .

• The TBN_QUERYINSERT notification is sent when the user attempts to drop the
button on the toolbar. To prevent the button being moved from being dropped to the
left of the button specified in the notification, return FALSE. This notification is not
sent if the user drops the tool off the toolbar.

If the user attempts to drag a button without also pressing the SHIFT key, the toolbar
control will not handle the drag-and-drop operation. However, it will send your application
a TBN_BEGINDRAG notification to indicate the start of a drag operation, and a
TBN_ENDDRAG notification to indicate the end. If you want to enable this form of drag­
and-drop, your application must handle these notifications, provide the necessary user
interface, and modify the toolbar to reflect any changes.

Saving and Restoring the Toolbar State
After a toolbar has been customized, you might want to return it to its former state.
However, when the user customizes the tool bar, the toolbar control does not

60 Volume 4 Microsoft Windows Common Controls

automatically keep a record of its precustomization state. Your application must save the
tool bar state explicitly in order to restore it later. Briefly:

• To save a toolbar state, send the toolbar control a TB_SAVERESTORE message
with /Param set to TRUE. By default, the toolbar control will save the information
automatically. With common controls version 5.80 and later, you can gain more
control over the save operation by implementing a handler for the TBN_SAVE
notification.

• To restore a toolbar state, send the toolbar control a TB_SAVERESTORE message
with /Param set to FALSE. By default, the tool bar control will send your application a
series of TBN_GETBUTTONINFO notifications to request information on each button
as it is restored. With common controls version 5.0 and later, you can gain more
control over the restore operation by implementing a handler for the TBN_RESTORE
notification.

For a detailed discussion of this process, see Saving and Restoring Too/bars.

Creating In-Place Tooltips
Text strings are often used for purposes such as labeling small objects. Unfortunately, if
they are long enough to display useful information, they might extend beyond the
bounds of the object's display area and get clipped. A common example is file names, as
seen in Microsoft Windows Explorer, which is shown in Figure 6-2.

I.i8 My Pictures

@J MyD ocs 1. txt

@J MyD ocs2. txt

'-UIlIf'\.m'l,~1!1 MyDocs3.str

~ MyDocs4.myp

Figure 6-2: An example of clipped file names.

Chapter 6 Using Common Controls 61

When the label is clipped, its usefulness can be severely limited. However, with the
example in the Figure 6-2, users can see the full file name by hovering over it with the
cursor. When they do so, an in-place tooltip with the full name is displayed on top of the
clipped file name, as shown in Figure 6-3.

Figure 6-3: An in-place tooltip displays the full file name.

The difference between ordinary and in-place tooltips is positioning. By default, when the
cursor hovers over a region that has a tooltip associated with it, the tooltip is displayed
adjacent to the region. However, tooltips are windows, and they can be positioned
anywhere you choose by calling SetWindowPosition. Creating an in-place tooltip is
simply a matter of positioning the tooltip window so that it overlays the text string.

Positioning an In-Place Tooltip
You need to keep track of three rectangles when positioning an in-place tooltip:

• The rectangle that surrounds the complete label text.

• The rectangle that surrounds the tooltip text. The tooltip text is identical to the
complete label text, and normally is the same size and font. The two text rectangles
will thus usually be the same size.

• The tooltip's window rectangle. This rectangle is somewhat larger than the tooltip text
rectangle that it encloses.

The three rectangles are shown schematically in Figure 6-4. The hidden portion of the
label text is indicated by a gray background.

62 Volume 4 Microsoft Windows Common Controls

Label Text
Rectangle

A long label string that

Tooltip Text
Rectangle

------1
A long label string that will usually get clip ped I

-...----
"""- Tooltip Window

Rectangle

Figure 6-4: Three rectangles involved in positioning an in-place tooltip.

To create an in-place tooltip, you must position the tooltip text rectangle so that it
overlays the label text rectangle. The procedure for aligning the two rectangles is
relatively straightforward:

1. Define the label text rectangle.

2. Position the tooltip window so that the tooltip text rectangle overlays the label text
rectangle.

In practice, it is usually sufficient to align the upper-left corner of the two text rectangles.
Attempting to resize the tooltip text rectangle to exactly match the label text rectangle
could cause problems with the tooltip display.

The problem with this simple scheme is that you cannot position the tooltip text rectangle
directly. Instead, you must position the tooltip window rectangle just far enough above and
to the left of the label text rectangle so that the corners of the two text rectangles coincide.
In other words, you need to know the offset between the tooltip window rectangle and its
enclosed text rectangle. In general, there is no Simple way to determine this offset.

Using TTM_ADJUSTRECT to Position a Tooltip
Common controls version 5.0 simplifies the use of in-place tooltips by the addition of a
new message, TTM_ADJUSTRECT. Send this message with the coordinates of the
label text rectangle that you want the tooltip to overlay, and it will return the coordinates
of an appropriately positioned tooltip window rectangle.

Chapter 6 Using Common Controls 63

The following code fragment illustrates how to use TTM_ADJUSTRECT in a
TTN_SHOW handler to display an in-place tooltip. Your application indicates that the
label text is truncated by setting the private fMyStringlsTruncated variable to TRUE. The
handler calls an application-defined function, GetMyltemRect, to get the label text
rectangle. This rectangle is passed to the tooltip control with TTM_ADJUSTRECT, which
returns the corresponding window rectangle. SetWindowPosition then is called to
position the tooltip over the label.

This example does not change the size of the tooltip, just its position. The two text
rectangles will be aligned at their upper-left corners, but not necessarily with the
same dimensions. In practice, the difference is usually small, and this approach is
recommended for most purposes. While you can, in principle, use SetWindowPos
to resize as well as reposition the tooltip, doing so might have unpredictable
consequences.

Creating an Internet Explorer-Style Toolbar
One of the key user-interface features of Microsoft Internet Explorer is the tool bar. It not
only gives users access to a wide array of features, it also allows users to customize its
layout to suit their personal preferences. Figure 6-5 shows the Internet Explorer toolbar,
and highlights some of the key features.

This toolbar essentially consists of a rebar control with four bands: three toolbars and
a menu bar. Because it is implemented with the common controls API, developers can
create toolbars with any or all of its features. This document discusses the essential
features of the Internet Explorer toolbar and how to implement them in your application.

64 Volume 4 Microsoft Windows Common Controls

Figure 6-5: Internet Explorer toolbar.

The Rebar Control
The underlying structure of the Internet Explorer toolbar is provided by a rebar control.
This control provides a way for users to customize the arrangement of a collection of
tools. Each rebar contains one or more bands, which are typically long, narrow
rectangles that contain a child window, commonly a toolbar control.

The rebar control displays its bands in a rectangular area, typically at the top of the
window. This rectangle is subdivided into one or more strips that are the height of a
band. Each band can be on a separate strip, or multiple bands can be placed on the
same strip.

A rebar control provides users with two ways to arrange their tools:

• Each band usually has a gripper at its left-hand edge. Grippers are used when two or
more bands on a single strip exceed the width of the window. By dragging the gripper
to the left or right, users can control how much space is allocated to each band.

• Users can move the bands within the rebar's display rectangle by dragging and
dropping. The rebar control then changes the display to accommodate the new
arrangement of bands. If all the bands are removed from a strip, the height of the
rebar will be reduced, enlarging the viewing area.

• An application can add or remove bands as needed. Typically, applications allow
users to select which bands they want to have displayed through the View menu
or a context menu.

Chapter 6 Using Common Controls 65

If the combined width of the bands on a strip exceeds the width of the window, the rebar
control will adjust their widths as needed. Some of the tools might be covered by the
adjacent band.

Version 5.80 of the common controls provides a way to make tools that have been
covered by another band accessible to the user. If you set the RBBS_USECHEVRON
flag in the fStyle member of the band's REBARBANDINFO structure, a chevron will be
displayed for toolbars that have been covered. When a user clicks the chevron, a menu
is displayed that allows him or her to use the hidden tools. Figure 6-6, taken from
Internet Explorer 5.0, shows the menu that is displayed when part of the standard
tool bar is covered by the address bar.

2
save \Iou timfl~~===;.;Ji

I I

Figure 6-6: Portion of a menu that is displayed when the address bar covers the
standard tool bar.

Since each band contains a control, you can provide additional flexibility through the
control's API. For example, you can implement toolbar customization to allow the user
to add, move, or delete buttons on a toolbar.

Implementing the Rebar Control
Most of the features of the Internet Explorer tool bar are actually implemented in the
individual bands. The implementation of the rebar control itself is relatively
straightforward:

1. Create the rebar control with CreateWindowEx. Set dwExStyle to
WS_EX_ TOOLWINDOWand IpClassName to REBARCLASSNAME. Internet
Explorer uses the following window styles:

• CCS_NODIVIDER

• CCS_NOPARENTALIGN

• RBS_BANDBORDERS

• RBS_DBLCLKTOGGLE

• RBS_REGISTERDROP

• RBS_VARHEIGHT

66 Volume 4 Microsoft Windows Common Controls

• WS_BORDER

• WS_CHILD

• WS_CLIPCHILDREN

• WS_CLIPSIBLINGS

• WS_ VISIBLE

Set the other parameters as appropriate for your application.

2. Create a control with CreateWindowEx or a specialized control creation function
such as CreateToolbarEx.

3. Initialize a band for the control by filling in the members of REBARBANDINFO.
Include the RBBS_USECHEVRON style with the fStyle member to enable chevrons.

4. Add the band to the rebar control with an RB_INSERTBAND message.

5. Repeat steps 2-4 for the remaining bands.

6. Implement handlers for the rebar notifications. In particular, you will need to handle
RBN_CHEVRONPUSHED to display a dropdown menu when a chevron is clicked.
For further information, see Handling Chevrons.

The grippers are included by default. To omit the gripper for a band, set the
RBBS_NOGRIPPER flag in the fStyle member of the band's REBARBANDINFO
structure. For further information on implementing rebar controls, see Rebar Controls.

Handling Chevrons
When a user clicks a chevron, the rebar control sends your application an
RBN_CHEVRONPUSHED notification. The NMREBARCHEVRON structure that is
passed with the notification contains the band's identifier and a RECT structure with the
rectangle occupied by the chevron. Your handler must determine which buttons are
hidden and display the associated commands on a pop-up menu.

The following procedure outlines how to handle an RBN_CHEVRONPUSHED
notification:

1. Get the current bounding rectangle for the selected band by sending the rebar control
an RB_GETRECT message.

2. Get the total number of buttons by sending the band's toolbar control a
TB_BUTTONCOUNT message.

3. Starting from the leftmost button, get the button's bounding rectangle by sending
the toolbar control a TB_GETITEMRECT message.

4. Pass the band and button rectangles to IntersectRect. This function will return a
RECT structure that corresponds to the visible portion of the button.

5. Pass the button rectangle and the rectangle for the visible portion of the button to
EqualRect.

6. If EqualRect returns TRUE, the entire button is visible. Repeat steps 3-5 for the next
button on the toolbar. If EqualRect returns FALSE, the button is at least partially
hidden and all remaining buttons will be hidden completely. Continue to the next step.

Chapter 6 Using Common Controls 67

7. Create a pop-up menu with items for each of the hidden buttons.

8. Display the pop-up menu with TrackPopupMenu. Use the chevron rectangle passed
with the RBN_CHEVRONPUSHED notification to position the menu. The menu
should be immediately below the chevron, with the left edges aligned.

9. Handle the menu commands.

The Toolbars
Most of the complexity of the Internet Explorer toolbar lies in the implementation of
controls that make up the rebar bands. Internet Explorer commonly displays four bands:

• The menu bar

• The standard toolbar

• The links toolbar

• The address tool bar

All of these bands, including the menu bar, actually hold toolbar controls. This section
discusses the implementation of the standard and links toolbars. The menu bar is
somewhat more complicated and is discussed separately in Creating an Internet
Explorer-Style Menu Bar.

The basic procedures for implementing toolbar controls are discussed in Toolbar
Controls. This section focuses on some of the newer toolbar features that are used by
Internet Explorer to increase the usability of the control.

Drop-Down Buttons
Drop-down buttons support multiple commands. When the user clicks a drop-down
button, the button displays a pop-up menu instead of launching a command. The user
launches a command by selecting it from the menu. Figure 6-7 shows a drop-down
button and menu from the Internet Explorer standard toolbar.

Figure 6-7: A drop-down button and menu from the standard tool bar in
Internet Explorer.

68 Volume 4 Microsoft Windows Common Controls

Drop-down functionality can be added to any button style by adding a style flag to the
fStyle member of the button's TBBUTTON structure. There are three styles of drop­
down button, all of which are used by Internet Explorer:

• Plain drop-down buttons have the BTNS_DROPDOWN style. They look like normal
buttons, but they display a menu when clicked instead of launching a command.

• Simple drop-down arrow buttons have the BTNS_ WHOLEDROPDOWN style. They
have an arrow displayed next to the button image or text. Other than the difference in
appearance, they are identical to plain drop-down buttons. The Mail button used as
the example in the preceding illustration is a drop-down arrow button .

• Drop-down arrow buttons that add the TBSTYLE_EX_DRAWDDARROWS extended
style to BTNS_DROPDOWN have an arrow that is separated from the text or image.
This button style combines the functionality of drop-down and standard buttons. If the
user clicks the arrow, a menu is displayed and the user can choose from several
commands. If the user clicks the adjacent button, it launches a default command.
Figure 6-8 shows the Internet Explorer Back button, which uses a separated arrow.

Figure 6-8: The Back button in Internet Explorer.

When the user ciicks a drop-down button with either the plain or simple arrow styles, the
toolbar control sends your application a TBN_DROPDOWN notification. When your
application receives this message, it is responsible for creating and displaying the menu,
and for handling the selected command. For further discussion, see Too/bar Controls.

When the user clicks a separated arrow, the tool bar control sends your application a
TBN_DROPDOWN notification. Your application should handle it the same way as it
handles the other two types of drop-down buttons. If the user clicks the main button, your
application receives a WM_COMMAND message with the button's command ID, just as
if it were a standard button. Applications typically respond by launching the top
command in the drop-down menu, but you are free to respond in any suitable way.

Chapter 6 Using Common Controls 69

List-Style Buttons
With standard buttons, if you add text, it is displayed below the bitmap. The following
illustration shows the Internet Explorer Search and Favorites buttons with standard
button text.

Internet Explorer 5 uses the TBSTYLE_LlST style. The text is to the right of the bitmap,
reducing the height of the button and enlarging the viewing region. The following
illustration shows the Internet Explorer 5 Search and Favorites buttons with the
TBSTYLE_LlST style.

Chevrons
When the user rearranges the bands in the rebar control, part of a tool bar might be
covered up. If the band was created with the RBBS_USECHEVRON style, the rebar
control will display a chevron at the right edge of the toolbar. The user clicks the chevron
to display a menu with the hidden tools. For a discussion on how to implement chevrons,
see Handling Chevrons.

Hot-Tracking
When hot-tracking is enabled, a button becomes hot when the cursor is over it. The hot
button is normally distinguished from the other buttons on the toolbar by a distinctive
image. By default, a hot button appears to be raised above the rest of the toolbar. When
a new button becomes hot, your application receives a TBN_HOTITEMCHANGE
notification. The following illustration shows the Internet Explorer 5.0 Search and
Favorites buttons, with a hot Search button. In addition to having a raised appearance,
the button's gray bitmap has been replaced with a colored one.

70 Volume 4 Microsoft Windows Common Controls

--~------------

To enable hot-tracking, create a toolbar control with either the TBSTYLE_FLAT or
TBSTYLE_LIST style. These are referred to as flattoolbars because the individual
buttons are not ordinarily highlighted in any way. The bitmaps are simply displayed next
to each other. They take on a button-like appearance only when they are hot. These two
styles are also transparent, which means the background of the icons will be the color of
the underlying client window.

To have a different bitmap displayed when the button is hot, create a second image list
containing hot images for all the buttons on the tool bar. The size and order of these
images should be the same as in the default image list. Send the toolbar control a
TB_SETIMAGELIST to set the hot image list.

Creating an Internet Explorer-Style Menu Bar
At a glance, the Microsoft Internet Explorer 5.0 menu bar looks much like a standard
menu. However, it looks quite different in use. Figure 6-9 shows the Internet Explorer
menu bar with the Tools menu selected.

50ft I u.s. & In

Countdown to Inb
The browser that II,
Web has enioyed 'l"',

'., "

Figure 6-9: Tools menu is selected on the Internet Explorer menu bar.

The menu bar is actually a tool bar control that looks and functions very much like a
standard menu. Instead of top-level menu items, a menu bar has a series of text-only

Chapter 6 Using Common Controls 71

buttons that display a drop-down menu when clicked. However, as a specialized type
of toolbar, a menu bar has some capabilities that standard menus lack. As a toolbar
control:

• It can be customized using standard toolbar techniques, allowing the user to move,
delete, or add items.

• It can have hot-tracking, so that users will know when they are over a top-level item
without having to click it first.

A menu bar can be incorporated into a rebar control, giving it the following features:

• It can have a gripper, which allows the user to move or resize the band.

• It can share a strip in the rebar control with other bands, such as the standard toolbar
in the preceding illustration.

• It can display a chevron when it is covered by an adjacent band, giving the user
access to the hidden items.

• It can have an application-defined background bitmap.

This document discusses how to implement a menu bar. Since a menu bar is a
specialized implementation of a tool bar control, the focus will be on topics that are
specific to menu bars. For a discussion of how to incorporate a toolbar into a rebar
control, see Creating an Internet Explorer-Style Toolbar and Rebar Controls.

Making a Toolbar into a Menu Bar
To make a toolbar into a menu bar:

• Create a flat toolbar by including TBSTYLE_FLAT with the other window style flags.
The TBSTYLE_FLAT style also enables hot-tracking. With this style, the menu bar
looks much like a standard menu until the user activates a button. Then, the button
appears to stand out from the toolbar and depress when it is clicked, just like a
standard button. Because hot-tracking is enabled, all that is needed to activate a
button is for the cursor to hover over it. If the cursor moves to another button, it will
be activated and the old button deactivated.

• Create list-style buttons by including TBSTYLE_LlST with the other window style
flags. This style creates a thinner button that looks more like a standard top-level
menu item.

• Make the buttons text-only by setting the iBitmap member of the button's
TBBUTION structure to UMAGENONE and the iString member to the button text.

• Give each button the BTNS_DROPDOWN style. When the button is clicked, the
toolbar control sends your application a TBN_DROPDOWN notification to prompt it
to display the button's menu.

• Incorporate the menu bar into a rebar band. Enable both grippers and chevrons,
as discussed in Creating an Internet Explorer-Style Toolbar.

72 Volume 4 Microsoft Windows Common Controls

• Implement a TBN_DROPDOWN handler to display the button's drop-down menu
when it is clicked. The drop-down menu is a type of pop-up menu. It is created with
TrackPopupMenu, with its upper-left corner aligned with the lower-left corner of the
button .

• Implement keyboard navigation, so that the menu bar is fully accessible without
a mouse.

• Implement menu hot-tracking. With standard menus, once a top level menu item's
menu has been displayed, moving the cursor over another top-level item
automatically displays its menu and collapses the menu of the previous item. The
toolbar control will hot-track the cursor and change the button image, but it does
automatically display the new menu. Your application must do so explicitly.

Most of these items are straightforward to implement and are discussed elsewhere. See
Creating an Internet Explorer-Style Toolbar, Toolbar Controls, or Rebar Controls for a
general discussion of how to use tool bars and rebar controls. See Menus for a
discussion of how to handle pop-up menus. The final two items, keyboard navigation
and menu hot-tracking, are discussed in the remainder of this document.

Handling Navigation with Menu Hot-Tracking Disabled
Users can choose to navigate the menu bar with the mouse, the keyboard, or a mixture
of both. To implement menu bar navigation, your application needs to handle toolbar
notifications and monitor the mouse and keyboard. This task can be broken into two
distinct parts: with and without menu hot-tracking. This section discusses how to handle
navigation when no menus are displayed and menu hot-tracking is not enabled.

Mouse Navigation
If menu hot-tracking is disabled, you can treat a menu bar as a normal tool bar. If the
user is navigating with a mouse, all your application needs to do is handle the
TBN_DROPDOWN notification. When this notification is received, display the
appropriate drop-down menu, and enable menu hot-tracking. From then on, you are
in the menu hot-tracking regime, discussed in Implementing Menu Hot-Tracking.

As discussed in Mixed Navigation, you also need to handle the
TBN_HOTITEMCHANGE notification to keep track of the active button. This notification
is irrelevant if the user is only navigating with the mouse, but it is necessary when mouse
and keyboard navigation are mixed.

Keyboard Navigation
As noted in the previous section, the user can do a number of navigation operations with
the keyboard when menu hot-tracking is disabled. Toolbar controls support keyboard
navigation only if they have focus. They also do not handle all the key presses that are
needed for menu bars. The simplest solution to handling keyboard navigation is to
process the relevant key press events explicitly.

Chapter 6 Using Common Controls 73

If menu hot-tracking is disabled, your application needs to handle these key press
events in the following way:

• The F10 key. Activate the first button with TB_SETHOTITEM.

• The LEFT ARROW and RIGHT ARROW keys. Activate the adjacent button with
TB_SETHOTITEM. If the user attempts to navigate off either end of the menu bar,
activate the first button at the opposite end.

• The ESCAPE key. Deactivate the active button with TB_SETHOTITEM. The menu
bar should be returned to the state it had prior to activating the first button.

• An ALT-Keyaccelerator key. Use the TB_MAPACCELERATOR message to
determine which button the Key character corresponds to. Display the button's drop­
down menu and enable menu hot-tracking.

• The DOWN ARROW key. If a button is active but no menu has been displayed,
display the button's menu and enable menu hot-tracking.

• The ENTER key. Deactivate the active button with TB_SETHOTITEM. The menu bar
should be returned to the state it had prior to activating the first button.

Mixed Navigation
The keyboard navigation handlers outlined in the preceding section basically do two
tasks: keep track of the active button and display the appropriate menu when a button
is selected. These handlers are sufficient as long as the user navigates only with the
keyboard. However, users often mix keyboard and mouse navigation. For example, they
might activate the first button with the F10 key, use the mouse to activate a different
button, and then open its menu with the DOWN ARROW key. If you are only monitoring
key presses to keep track of the active key, you will display the wrong menu. You must
also handle the TBN_HOTITEMCHANGE notification to accurately keep track of the
active button.

Handling Navigation with Menu Hot-Tracking Enabled
Once menu hot-tracking is enabled, your application must change the way it responds
to user navigation. To replicate the behavior of standard menus, you must implement the
following features explicitly.

With mouse navigation:

• If the user moves the cursor over another button, that menu immediately appears and
the previous menu disappears.

• Menu hot-tracking stays active until the user selects a command or clicks a point that
is not part of the menu region. Either action deactivates menu hot-tracking until
another button is clicked.

• If the cursor moves off the menu, the current drop-down menu remains until the
cursor moves back onto, or the user clicks a point outside, the area covered by the
menu. If the cursor returns to a different button than the one currently being displayed,
the old menu is collapsed and the new menu is displayed.

74 Volume 4 Microsoft Windows Common Controls

With keyboard navigation:

• The RIGHT ARROW key. If the item has a submenu, display the submenu. If the item
does not have a submenu, collapse the menu and any submenus, activate the next
button with TB_SETHOTITEM, and display the menu for the adjacent button. If the last
button is active when this message is received, display the menu for the first button.

• The LEFT ARROW key. If the item is a submenu, collapse it and shift focus to its
parent menu. If the item is not a submenu, collapse the menu, activate the next button
with TB_SETHOTITEM, and display the menu for that button.

• Pressing the LEFT ARROW key moves the focus to the left.

• If the highlighted menu item is on the primary menu, that menu is collapsed, and
the menu for the adjacent button is displayed. If the active button was at the left
end of the toolbar, the menu for the last button is displayed.

• If the highlighted menu item is on a submenu, the submenu is collapsed, shifting
the focus back to its parent.

• Pressing the RIGHT ARROW key moves the focus to the right.

• If the highlighted menu item does not have a submenu, the menu for the adjacent
button is displayed. If the active button was at the right end of the tool bar, the menu
for the last button is displayed.

• If the highlighted menu item has a submenu, the submenu is displayed.

• The ESCAPE key backs the display up one step.

• If a submenu is displayed, it is collapsed and focus shifts to the parent menu.

• If a button's menu is displayed, it is collapsed and menu hot-tracking is disabled.
The item's button remains active.

• If no menus are displayed but a button is active, the button is deactivated and
menu hot-tracking is disabled.

• The UP ARROW and DOWN ARROW keys are used only to navigate within a
particular menu.

• The ENTER key launches the command associated with a menu item. If the menu
item has a submenu, the ENTER key displays it.

As with the menu hot-tracking disabled case, your application needs to handle mouse,
keyboard, and mixed navigation. However, the fact that a menu is displayed means that
messaging will have to be handled somewhat differentiy.

Message Processing for Menu Hot-Tracking
Menu hot-tracking requires that a menu be displayed at all times, apart from the brief
interval required to switch to a new menu. However, the drop-down menu that is displayed·
by TrackPopupMenu is modal. Your application will continue to receive some messages
directly, including WM_COMMANO, TBN_HOTITEMCHANGE, and normal menu-related
messages such as WM_MENUSELECT. However, it will not receive low-level keyboard or
mouse messages directly. To handle messages such as WM_MOUSEMOVE, you must
set a message hook to intercept messages directed to the menu.

Chapter 6 Using Common Controls 75

When a drop-down menu is displayed, set the message hook by calling
SetWindowsHookEx with the idHook parameter set to WH_MSGFIL TEA. All messages
intended for the menu will be passed to your hook procedure. For example, the following
code fragment sets a message hook that will trap messages going to a drop-down menu.
MsgHook is the name of the hook procedure, and hhookMsg is the handle to the
procedure.

hfrookM$gij#:;,$etWin(ldw~ftoo kExi~lft MS(fFII:. TER;.MsgHook .HINST _ TH I SDLL. 0):

Menu messages are identified by setting the hook procedure's nCode parameter to
MSGF _MENU. The IParam parameter will point to a MSG structure with the message.
The details of which messages need to be handled, and how, are discussed in the
remainder of this document.

Your application should pass all messages on to the next message hook by calling
CaliNextHookEx. DOing so ensures, for instance, that the tool bar control receives the
mouse messages it needs to hot-track its buttons.

When a new button is activated, your application must collapse the old drop-down menu
with a WM_CANCELMODE message, and display a new menu. It must also collapse
the drop-down menu when focus is taken from the menu bar with keyboard navigation or
by clicking outside the menu area. Whenever you collapse a menu, you should free its
message hook with UnhookWindowsHookEx. If you need to display another drop­
down menu, create a new message hook. When a command is launched, the menu will
be collapsed automatically but you must explicitly free the message hook.

The following code fragment frees the message hook that was set in the previous
example:

\tri~~~t1iiJd;~~H~t>j(;(~b:&ilkM!>g)

Mouse Navigation
When a normal tool bar control hot-tracks buttons, it highlights the active button and
sends the application a TBN_HOTITEMCHANGE notification each time a new button is
activated. Your application is responsible for displaying the appropriate drop-down
menu. It must:

• Handle the TBN_HOTITEMCHANGE notification to keep track of the active button.
When the active button changes, collapse the old menu and create a new one.

• Handle the TBN_DROPDOWN notification that is sent when a button is clicked. It
should then collapse the menu and disable menu hot-tracking. The button remains
active.

• Handle the WM_LBUTTONDOWN, WM_RBUTTONDOWN, and WM_MOUSEMOVE
messages in your message hook procedure, to keep track of the mouse position. If
the mouse is clicked outside the menu area, collapse the current drop-down menu,
deactivate menu hot-tracking, and return the menu bar to its preactivation state.

• When a menu command is launched, disable menu hot-tracking. The menu will be
collapsed automatically but you must free the message hook explicitly.

76 Volume 4 Microsoft Windows Common Controls

You also must handle menu-related messaging, such as the WM_INITMENUPOPUP
message that is sent when a menu item needs to display a submenu. For a discussion of
how to handle such messages, see Menus.

Keyboard Navigation
Your application must process keyboard messages in the message hook procedure and
act on those that affect menu hot-tracking. The following key presses need to be
handled:

• The ESCAPE key. The ESCAPE key backs the display up one level. If a submenu is
being displayed, it must be collapsed. If a button's primary menu is displayed,
collapse it and disable menu hot-tracking. The button remains active.

• The RIGHT ARROW key. If the item has a submenu, display it. If the item does not
have a submenu, collapse the menu and any submenus, activate the next button with
TB_SETHOTITEM, and display its menu. If the last button was active when this
notification was received, display the menu for the first button.

• The LEFT ARROW key. If the item is in a submenu, collapse it and shift focus to its
parent menu. If the item is not a submenu, collapse the menu, activate the adjacent
button with TB_SETHOTITEM, and display its menu. If the first button was active
when this notification was received, display the menu for the last button.

• The UP ARROW and DOWN ARROW keys. These keys are used to navigate within
a menu but do not directly affect menu hot-tracking.

• An AL T-Key accelerator key. Use the TB_MAPACCELERATOR message to determine
which button the Key character corresponds to. If it corresponds to a different button
than the currently active one, collapse the current drop-down menu, activate the new
button with TB_SETHOTITEM, and display the menu for the adjacent button. If the Key
character corresponds to the currently displayed button, collapse the drop-down menu
and disable menu hot-tracking. The button should remain active.

Localization Support for the Common Controls
The common controls have built-in support for national languages. These features
simplify the implementation of localized applications.

Specifying a Language for the Common Controls
If you want to specify a language for the common controls that is different than the
system language, calilnitMUILanguage. The language specified by this function applies
only to the process from which it is called.

To determine the language currently being used by the common controls, call
GetMUILanguage. It returns the value that was set by a previous call to
InitMUILanguage. This function returns the language that is specified for the process it
is called from. If InitMUILanguage has not been called, or was called from another
process, GetMUILanguage will return a default value.

Chapter 6 Using Common Controls 77

Specifying a Language for Controls in a Dialog Box
Unlike common controls, predefined controls such as buttons or edit boxes do not use
the current system language by default. The native font control is an invisible control that
works in the background to allow a dialog box's predefined controls to display the current
system language.

To use the native font control:

1. Initialize the native font control by calling InitCommonControlsEx. Set the dwlCC
member of the INITCOMMONCONTROLSEX structure pointed to by IplnitCtrls to
ICC_NATIVEFNTCTL_CLASS.

2. Add the control to the resource script for the dialog box. Set one or more of the
following style flags to specify which controls will be affected:

Flag Applies to

NFS_ALL

NFS_BUTTON

NFS_EDIT

NFS_LlSTCOMBO

NFS_STATIC

NFS_USEFONTASSOC

All controls.

Button controls.

Edit controls.

List, ComboBox, ListView, and ComboBoxEx controls.

Static controls

The control will use the font association feature instead
of switching to the native font. This flag is only valid for
the Far East platform. All other platforms will ignore it.

The following example illustrates how to add a native font control to a resource script. It
will cause the dialog box's edit, list, and combo-box controls to display text using the
current system language:

79

CHAPTER 7

Common API

Common Control Window Classes
The following window class names are provided by the common control library:

ANIMATE_CLASS

DATETIMEPICK_CLASS

MONTHCAL_CLASS

PROGRESS_CLASS

REBARCLASSNAME

ST ATUSCLASSNAME

TOOLBARCLASSNAME

TOOL TIPS_CLASS

TRACKBAR_CLASS

Creates animation controls. These controls silently
display an audio video interleaved (A VI) clip.

Creates date and time picker controls. These controls
provide a simple and intuitive interface to exchange date
and time information with a user.

Creates hot-key controls. These controls make it easy
for the user to define hot keys.

Creates month calendar controls. These controls
provide a simple and intuitive way for a user to select a
date from a familiar interface.

Creates progress bars. These controls indicate the
progress of a lengthy operation.

Creates rebar controls. These controls act as a
container for child windows.

Creates status windows. These controls display status
information in a horizontal window.

Creates toolbars. These controls contain buttons that
carry out menu commands.

Creates tooltip controls. These controls display a small
pop-up window containing a line of text that describes
the purpose of a tool in an application.

Creates trackbars. These controls let the user select
from a range of values by moving a slider.

Creates up-down controls. These controls combine a
pair of arrows with an edit control. Clicking the arrows
increments or decrements the value in the edit control.

Creates ComboBoxEx controls. These controls provide
an extension of the combo box control that provides
native support for item images.

(continued)

80 Volume 4 Microsoft Windows Common Controls

(continued)

WC_HEADER

WC_ TABCONTROL

Creates header controls. These controls display
headings at the top of columns of information and let the
user sort the information by clicking the headings.

Creates IP-address controls. These controls are similar
to an edit control, but they allow you to enter a numeric
address in Internet protocol (IP) format.

Creates list-view controls. These controls display a
collection of items, each consisting of an icon and a
label, and provide several ways to arrange the items.

Creates pager controls. These controls are used to
contain and scroll another window.

Creates tab controls. These controls define multiple
pages for the same area of a window or dialog box.
Each page consists of a set of information or a group of
controls that an application displays when the user
selects the corresponding tab.

Creates tree-view controls. These controls display a
hierarchical list of items. Each item consists of a label
and an optional bitmap.

Common Control Styles
Following are the common control styles. Except where noted, these styles apply
to header controls, tool bar controls, and status windows:

CCS_ADJUST ABLE

CCS_NODIVIDER

Enables a tool bar's built-in customization features, which
allow the user to drag a button to a new position or to
remove a button by dragging it off the tool bar. In addition,
the user can double-click the tool bar to display the
Customize Toolbar dialog box, which allows the user to
add, delete, and rearrange toolbar buttons.

Causes the control to position itself at the bottom of the
parent window's client area and sets the width to be the
same as the parent window's width. Status windows have
this style by default.

Version 4.70. Causes the control to be displayed vertically
on the left side of the parent window.

Prevents a two-pixel highlight from being drawn at the top
of the control.

Chapter 7 Common API 81

CCS_NOMOVEX Version 4.70. Causes the control to resize and move itself
vertically, but not horizontally, in response to a WM_SIZE
message. If CCS_NORESIZE is used, this style does not
apply.

CCS_NOMOVEY Causes the control to resize and move itself horizontally,
but not vertically, in response to a WM_SIZE message. If
CCS_NORESIZE is used, this style does not apply. Header
windows have this style by default.

CCS_NOPARENTALIGN Prevents the control from automatically moving to the top
or bottom of the parent window. Instead, the control keeps
its position within the parent window despite changes to the
size of the parent. If CCS_ TOP or CCS_BOTTOM is also
used, the height is adjusted to the default, but the position
and width remain unchanged.

CCS_NORESIZE Prevents the control from using the default width and
height when setting its initial size or a new size. Instead,
the control uses the width and height specified in the
request for creation or sizing.

CCS_RIGHT Version 4.70. Causes the control to be displayed vertically
on the right side of the parent window.

CCS_ TOP Causes the control to position itself at the top of the parent
window's client area and sets the width to be the same as
the parent window's width. Toolbars have this style by
default.

CCS_VERT Version 4.70. Causes the control to be displayed vertically.

Common API Reference

Common API Functions

GetEffectiveCI ientRect
Calculates the dimensions of a rectangle in the client area.

82 Volume 4 Microsoft Windows Common Controls

Parameters
hWnd

Handle to the window that has the client area to check.

Ipre
Address of a RECT structure that receives the dimensions of the rectangle.

Iplnto
Address of an array of integers that identify controls in the client area. Each control
requires a pair of consecutive elements. The first element of the pair must be nonzero
and the second element of the pair must be the control identifier. The last element
pair in the array must be zero to identify the end of the array.

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in commctrl.h.
Import Library: comctI32.lib.

GetMUILanguage
Returns the language currently in use by the common controls for a particular process.

Parameters
None

Return Values
Returns the LANGID of the language an application has specified for the common
controls by calling InitMUILanguage. GetMUILanguage returns the value for the
process that it is called from. If InitMUILanguage has not been called or was not called
from the same process, GetMUILanguage returns the language-neutral LANGID,
MAKELANGID(LANG_NEUTRAL, SUBLANG_NEUTRAL}.

Remarks
See National Language Support for further discussion of localization.

Chapter 7 Common API 83

U;:,Requirements
Version 5.80 or later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later installed).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0
or later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.
Import Library: comctI32.lib.

InitCommonControls
Registers and initializes the common control window classes. This function is obsolete.
New applications should use the InitCommonControlsEx function.

vOcidInitCOlIIIIlOnContrOc 1$ (VO H»:

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.
Import Library: comctI32.lib.

InitCommonControlsEx
Registers specific common control classes from the common control dynamic-link
library (DLL).

a~Lhl'l tC(lmnlt>nCtint(o fs Ex (; .. •
. LPINlTCOMMOHCONJROlSEX rplrritCtr7s .

):

Parameters
IplnitCtrls

Address of an INITCOMMONCONTROLSEX structure that contains information
specifying which control classes will be registered.

84 Volume 4 Microsoft Windows Common Controls

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks

Note The effect of each call to InitCommonControlsEx is cumulative. For example,
if InitCommonControlsEx is called with the ICC_UPDOWN_CLASS flag, then is later
called with the ICC_HOTKEY _CLASS flag, the result is that both the up-down and hot
key common control classes are registered and available to the application.

Version 4.70 and later of ComctI32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 3.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0
or later).
Windows CE: Requires version 2.0 or later.
Header: Declared in commctrl,h.
Import Library: comctI32.lib.

InitMUILanguage
Enables an application to specify a language to be used with the common controls that
is different than the system language.

Parameters
uiLang

The LANGID value of the language to be used by the common controls.

Return Values
None.

Remarks
This function allows an application to override the system language setting, and specify
a different language for the common controls. The selected language only applies to the
process that InitMUILanguage is called from. See National Language Support for
further discussion of localization.

Chapter 7 Common API 85

Version 5.80 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with
Internet Explorer 5.0 or later installed).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0
or later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.
Import Library: comctI32.lib.

GetMUILanguage

ShowHideMenuCtl
Sets or removes the specified menu item's check mark attribute and shows or hides the
corresponding control. The function adds a check mark to the specified menu item if it
does not have one and then displays the corresponding control. If the menu item already
has a check mark, the function removes the check mark and hides the corresponding
control.

Parameters
hWnd

Handle to the window that contains the menu and controls.

uFlags
Identifier of the menu item to receive or lose a check mark.

Iplnfo
Address of an array that contains pairs of values. The second value in the first pair
must be the handle to the application's main menu. Each subsequent pair consists of
a menu item identifier and a control window identifier. The function searches the array
for a value that matches uFlags and, if the value is found, checks or unchecks the
menu item and shows or hides the corresponding control.

Return Values
Returns nonzero if successful, or zero otherwise.

86 Volume 4 Microsoft Windows Common Controls

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in commctrl.h.
Import Library: comctl32.lib.

Common API Messages

CCM_GETUNICODEFORMAT
The CCM_GETUNICODEFORMAT message retrieves the Unicode character format flag
for the control.

Parameters
This message has no parameters.

Return Values
Returns the Unicode format flag for the control. If this value is nonzero, the control is
using Unicode characters. If this value is zero, the control is using ANSI characters.

Example
The following function can be used with a Microsoft Windows 95 or Microsoft Windows
98 system to test whether or not a property sheet control supports Unicode. For more
information about testing controls for Unicode support, see Remarks.

Chapter 7 Common API 87

Remarks
The Unicode format flag is used by Microsoft Windows NT systems with version 4.71 of
Comctl32.dll or later. This message, thus, is supported by Windows 2000 and later, and
by Windows NT 4.0 with Microsoft Internet Explorer 4.0 or later. It is useful only on
Windows 95 or Windows 98 systems with version 5.80 or later of ComctI32.dll. This
means that they must have Internet Explorer version 5.0 or later installed. Windows 95
and Windows 98 systems with earlier versions of Internet Explorer ignore the Unicode
format flag, and its value has no bearing on whether a control supports Unicode. With
these systems, you will need to test instead something that requires Unicode support.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

CCM_SETUNICODEFORMAT

CCM_GETVERSION
Returns the version number for a control set by the most recent CCM_SETVERSION
message .

. CCM....6ETVf:RS10N •
wparal1l·~~;

1 Paralll.'=. 0;

Parameters
None

Return Values
Returns the version number set by the most recent CCM_SETVERSION message. If no
such message has been sent, it returns zero.

Remarks
This message does not return the DLL version. See Shell Versions for a discussion of
how to use DIIGetVersion to get the current DLL version.

88 Volume 4 Microsoft Windows Common Controls

Note The version number is set on a control by control basis, and may not be the same
for all controls.

Version 5.80 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
5.0 or later installed).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

CCM_SETUNICODEFORMAT
THE CCM_SETUNICODEFORMAT message sets the Unicode character format flag for
the control. This message allows you to change the character set used by the control at
run time instead of having to re-create the control.

I'CM,;:SEifllWICaUEF6RMA'. 'X)' ";': \,f,,~~,,",,", _ _ '<_~_1 . -"; _ \7., ~ - .'", - -c' '_O;:;"~'~{!G

, ,'¥l:p~r~;(~ (~PARAMi< 13.Q'QLJfOniicitie;,
;;J;;.1 p~r!lIllJ~ ~;"'")).]

Parameters
fUnicode

Value that determines the character set that is used by the control. If this value is
TRUE, the control will use Unicode characters. If this value is FALSE, the control
will use ANSI characters.

Return Values
Returns the previous Unicode format flag for the control.

Remarks
The Unicode format flag is used by Microsoft Windows NT systems with version 4.71 of
Comctl32.dll or later. This message is thus supported by Windows 2000 and later, and
by Windows NT 4.0 with Microsoft Internet Explorer 4.0 or later. It is only useful on
Microsoft Windows 95 or Microsoft Windows 98 systems with version 5.80 or later of
Comctl32.dll. This means that they must have Internet Explorer 5.0 or later installed.
Windows 95 and Windows 98 systems with earlier versions of Internet Explorer ignore
the Unicode format flag, and its value has no bearing on whether or not a control
supports Unicode. For a discussion about how to test whether a control supports
Unicode, see CCM_GETUNICODEFORMAT.

Chapter 7 Common API 89

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

CCM_GETUNICODEFORMAT

CCM_SETVERSION
This message is used to inform the control that you are expecting a behavior associated
with a particular version.

Parameters
iVersion

The version number.

Return Values
Returns the version specified in the previous CCM_SETVERSION message. If iVersion
is set to a value greater than the current DLL version, it returns -1.

Remarks
In a few cases, a control may behave differently, depending on the version. This
primarily applies to bugs that were fixed in later versions. The CCM_SETVERSION
allows you to inform the control which behavior is expected. You can determine which
version you have specified by sending a CCM_GETVERSION message. For an example
of how to use this message, see Custom Draw.

Note This message only sets the version number for the control to which it is sent.

Version 5.80 and later of Comctl32.dll.

90 Volume 4 Microsoft Windows Common Controls

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later installed).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

The WM_NOTIFY message is sent by a common control to its parent window when an
event has occurred or the control requires some information.

Parameters
idCtrl

Identifier of the common control sending the message. This identifier is not
guaranteed to be unique. An application should use the hwndFrom or idFrom
member of the NMHDR structure (passed as the IParam parameter) to identify
the control.

pnmh
Pointer to an NMHDR structure that contains the notification code and additional
information. For some notification messages, this parameter pOints to a larger
structure that has the NMHDR structure as its first member.

Return Values
The return value is ignored except for notification messages that specify otherwise.

Remarks
If the message handler is in a dialog box procedure, you must use the SetWindowLong
function with DWL_MSGRESUL T to set a return value.

The standard Windows controls (edit controls, combo boxes, list boxes, buttons, scroll
bars, and static controls) do not send WM_NOTIFY messages. To determine if a
common control will send a WM_NOTIFY message and, if it will, which notification codes
it will send, see the documentation for the control.

For Windows 2000 and later systems, the WM_NOTIFY message can not be sent
between processes.

Chapter 7 Common API 91

'RRequ/rements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h.

WM_NOTIFYFORMAT
Used to determine if a window accepts ANSI or Unicode structures in the WM_NOTIFY
notification message. WM_NOTIFYFORMAT messages are sent from a common control
to its parent window and from the parent window to the common control.

wM~NorI~YFORMA'r .
h~ndfrom."'!{HWNIJ)
Commarld ··l'ilflarain'~

Parameters
hwndFrom

Handle to the window that is sending the WM_NOTIFYFORMAT message. If
Command is NF _QUERY, this parameter is the handle to a control. If Command is
NF _REQUERY, this parameter is the handle to the parent window of a control.

Command
Command value that specifies the nature of the WM_NOTIFYFORMAT message.
This will be one of the following values:

NF _QUERY The message is a query to determine whether ANSI or Unicode
structures should be used in WM_NOTIFY messages. This
command is sent from a control to its parent window during the
creation of a control and in response to an NF _REQUERY
command.

NF _REQUERY The message is a request for a control to send an NF _QUERY
form of this message to its parent window. This command is sent
from the parent window. The parent window is asking the control
to requery it about the type of structures to use in WM_NOTIFY
messages.

Return Values
Returns one of the following:

o

ANSI structures should be used in WM_NOTIFY messages sent
by the control.

Unicode structures should be used in WM_NOTIFY messages
sent by the control.

An error occurred.

92 Volume 4 Microsoft Windows Common Controls

If Command is NF _REQUERY, the return value is the result of the requery operation.

Remarks
When a common control is created, the control sends a WM_NOTIFYFORMAT message
to its parent window to determine the type of structures to use in WM_NOTIFY
messages. If the parent window does not handle this message, the DefWindowProc
function responds according to the type of the parent window. That is, if the parent
window is a Unicode window, DefWindowProc returns NFR_UNICODE, and if the
parent window is an ANSI window, DefWindowProc returns NFR_ANSI. If the parent
window is a dialog box and does not handle this message, the DefDlgProc function
similarly responds according to the type of the dialog box (Unicode or ANSI).

A parent window can change the type of structures a common control uses in
WM_NOTIFY messages by setting IParam to NF _REQUERY and sending a
WM_NOTIFYFORMAT message to the control. This causes the control to send an
NF _QUERY form of the WM_NOTIFYFORMAT message to the parent window.

All common controls will send WM_NOTIFYFORMAT messages. However, the standard
Windows controls (edit controls, combo boxes, list boxes, buttons, scroll bars, and static
controls) do not.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

Common API Macros

Sends or posts the WM_NOTIFY message.

Parameters
hwnd

Handle to the window that receives the WM_NOTIFY message.

Chapter 7 Common API 93

idFrom
Identifier of the control sending the message.

pnmhdr
Address of an NMHDR structure that contains the notification code and additional
information. For some notification messages, this parameter points to a larger
structure that has the NMHDR structure as its first member.

fn
Function that sends or posts the WM_NOTIFY message. This parameter can be
either the SendMessage or PostMessage function.

Return Values
Returns a value whose meaning depends on the fn parameter.

Remarks
The FORWARD_WM...:.NOTIFY macro is defined as follows:

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1 .0 or later.
Header: Declared in commctrl.h.

Calls a function that processes the WM_NOTIFY message.

Parameters
hwnd

Handle to the window that received WM_NOTIFY.

wParam
First parameter of WM_NOTIFY.

94 Volume 4 Microsoft Windows Common Controls

IParam
Second parameter of WM_NOTIFY.

In
Function that is to process WM_NOTIFY.

Return Values
Returns a value whose meaning depends on the In parameter.

Remarks
The HANDLE_ WM_NOTIFY macro is defined as follows:

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

INDEXTOSTATEIMAGEMASK
Prepares the index of a state image so that a tree-view control or list-view control can
use the index to retrieve the state image for an item.

Parameters

Index of a state image.

Remarks
The INDEXTOSTATEIMAGEMASK macro is defined as follows:

Version 4.00 and later of Comctl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

Common API Notifications

Chapter 7 Common API 95

The NM_CHAR notification message is sent by a control when a character key is
processed. This notification message is sent in the form of a WM_NOTIFY message.

Parameters
/pnmc

Pointer to an NMCHAR structure that contains additional information about the
character that caused the notification message.

Return Values
The return value is ignored by most controls. For more information, see the
documentation for the individual controls.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

NM_CHAR {tool bar)

NM_CLICK
Notifies a control's parent window that the user has clicked the left mouse button within
the control. NM_CLlCK is sent in the form of a WM_NOTIFY message.

96 Volume 4 Microsoft Windows Common Controls

Parameters
Ipnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in winuser.h.

Notifies a control's parent window that the user has double-clicked the left mouse button
within the control. NM_DBLCLK is sent in the form of a WM_NOTIFY message.

Parameters
Ipnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windo'Ns NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

Sent by a control when the mouse hovers over an item. This notification message is sent
in the form of a WM_NOTIFY message.

NtLHOVER
lpnmh = (LPNMHDR) lParam:

Parameters
/pnmh

Chapter 7 Common API 97

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
Unless otherwise specified, return zero to allow the control to process the hover
normally, or nonzero to prevent the hover from being processed.

Version 4.70 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
3.0 and later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0
or later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

Sent by a control when the control has the keyboard focus and the user presses a key.
This notification message is sent in the form of a WM_NOTIFY message.

Parameters
Ipnmk

Address of an NMKEY structure that contains additional information about the key
that caused the notification message.

Return Values
Return nonzero to prevent the control from processing the key, or zero otherwise.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

98 Volume 4 Microsoft Windows Common Controls

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Requires version 2.0 or later.
Header: Declared in commctrl.h.

Notifies a control's parent window that the control has lost the input focus.
NM_KILLFOCUS is sent in the form of a WM_NOTIFY message.

Parameters
/pnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h.

Sent by a control when the control receives a WM_NCHITTEST message. This
notification message is sent in the form of a WM_NOTIFY message.

Parameters
/pnmmouse

Address of a NMMOUSE structure that contains information about the notification.
The pt member contains the mouse coordinates of the hit test message.

Chapter 7 Common API 99

Return Values
Unless otherwise specified, return zero to allow the control to perform default processing
of the hit test message, or return one of the HT* values documented under
WM_NCHITTEST to override the default hit test processing.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Requires version 2.0 or later.
Header: Declared in commctrl.h.

NM_OUTOFMEMORY
Notifies a control's parent window that the control could not complete an operation
because there was not enough memory available. NM_OUTOFMEMORY is sent in
the form of a WM_NOTIFY message.

Parameters
/pnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in commctrl.h.

Notifies a control's parent window that the user has clicked the right mouse button within
the control. NM_RCLICK is sent in the form of a WM_NOTIFY message.

100 Volume 4 Microsoft Windows Common Controls

Parameters
Ipnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in commctrl.h.

Notifies a control's parent window that the user has double-clicked the right mouse
button within the control. NM_RDBLCLK is sent in the form of a WM_NOTIFY message.

Parameters
Ipnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in commctrl.h.

Chapter 7 Common API 101

NM_RELEASEDCAPTURE
Notifies a control's parent window that the control is releasing mouse capture. This
notification is sent in the form of a WM_NOTIFY message.

N~t::~j~~i~:ij~') .;fo';r~'~I",
Parameters
Ipnmh

- ", / ...

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
Unless otherwise specified, the control ignores the return value from this notification.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

Notifies a control's parent window that the control has the input focus and that the user
has pressed the ENTER key. NM_RETURN is sent in the form of a WM_NOTIFY
message.

~~~~~~~~{~J~:, 
Parameters 
Ipnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The return value is ignored by the control. 



102 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies a control's parent window that the control is setting the cursor in response to 
a WM_SETCURSOR message. This notification is sent in the form of a WM_NOTIFY 
message. 

,;~i' 
Parameters 
Ipnmm 

Address of an NMMOUSE structure that contains additional information about this 
notification message. 

Return Values 
Unless otherwise specified, return nonzero to allow the control to set the cursor or zero 
to prevent the control from setting the cursor. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies a control's parent window that the control has received the input focus. 
NM_SETFOCUS is sent in the form of a WM_NOTIFY message. 



Parameters 
/pnmh 

Chapter 7 Common API 103 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The return value is ignored by the control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_ TOOL TIPSCREATED 
Notifies a control's parent window that the control has created a tooltip control. 
This notification is sent in the form of a WM_NOTIFY message. 

Syntax 

Parameters 
/pnmttc 

Address of an NMTOOLTIPSCREATED structure that contains additional information 
about this notification message. 

Return Value 
Unless otherwise specified, the control ignores the return value from this notification. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl,h. 



104 Volume 4 Microsoft Windows Common Controls 

Common API Structures 

COLORSCHEME 
Contains information for the drawing of buttons in a tool bar or rebar. 

Members 
dwSize 

Size of this structure, in bytes. 

clrBtnHighlight 
COLORREF value that represents the highlight color of the buttons. 
Use CLR_DEFAUL T for the default highlight color. 

clrBtnShadow 
COLORREF value that represents the shadow color of the buttons. 
Use CLR_DEFAUL T for the default shadow color. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

INITCOMMONCONTROLSEX 
Carries information used to load common control classes from the dynamic-link library 
(DLL). This structure is used with the InitCommonControlsEx function . 

. ·t~F~~:~~;~~~Iz'!i~·l~;t~~M~~~~.~~~~~~·.'· 
} .i~ i~ci~~~:~ci~fRO:S'~;"~Qii~'t¥~~~~~~:#~(g~~ 



Members 
dwSize 

Size of the structure, in bytes. 

dwlCC 

Chapter 7 Common API 105 

Set of bit flags that indicate which common control classes will be loaded from the 
DLL. This value can be a combination of the following: 

ICC_ANIMATE_CLASS Load animate control class. 

ICC_COOL_CLASSES 

ICC_DATE_CLASSES 

ICC_HOTKEY _CLASS 

ICC_INTERNET _CLASSES 

ICC_LI STVI EW_CLASSES 

ICC_PAGESCROLLER_CLASS 

ICC_PROGRESS_CLASS 

ICC_ TAB_CLASSES 

ICC_ TREEVIEW_CLASSES 

ICC_UPDOWN_CLASS 

ICC_USEREX_CLASSES 

ICC_WIN95_CLASSES 

Version 4.71 and later of Comctl32.dll. 

Load toolbar, status-bar, trackbar, and tooltip 
control classes. 

Load rebar control class. 

Load date and time picker control class. 

Load hot-key control class. 

Load IP address class. 

Load list-view and header control classes. 

Load pager control class. 

Load progress bar control class. 

Load tab and tooltip control classes. 

Load tree-view and tooltip control classes. 

Load up-down control class. 

Load ComboBoxEx class. 

Load animate control, header, hot-key, list-view, 
progress bar, status-bar, tab, tooltip, toolbar, 
trackbar, tree-view, and up-down control classes. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMCHAR 
Contains information used with character notification messages. 



106 Volume 4 Microsoft Windows Common Controls 

Members 
hdr 

NMHDR structure that contains additional information about this notification. 

ch 
Character that is being processed. 

dwltemPrev 
32-bit value that is determined by the control that is sending the notification. 

dwltemNext 
32-bit value that is determined by the control that is sending the notification. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMHDR 
Contains information about a notification message. 

t~ped~T.\iYU.~~:tilgN~HD~iiG" '! 

/,tJ~t'lQ'i~!w)1df:.rQrtt; " 
. tUlNJ'l ci'Fr'om" : 
f\ .• il!Iir:cp~.e; .~ 

l:NMHQR{' , 

Members 
hwndFrom 

Window handle to the control sending a message. 

idFrom 
Identifier of the control sending a message. 



Chapter 7 Common API 107 

code 
Notification code. This member can be either a control-specific notification code or 
one of the common notification codes. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h. 

NMKEV 
Contains information used with key notification messages. 

Members 
hdr 

NMHDR structure that contains additional information about this notification. 

nVKey 
Virtual key code of the key that caused the event. 

uFlags 
Flags associated with the key. These are the same flags that are passed in the high 
word of the IParam parameter of the WM_KEYDOWN message. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMMOUSE 
Contains information used with mouse notification messages. 



108 Volume 4 Microsoft Windows Common Controls 

Members 
hdr 

NMHDR structure that contains additional information about this notification. 

dwltemSpec 
Control-specific item identifier. 

dwltemData 

pt 

Control-specific item data. 

POINT structure that contains the screen coordinates of the mouse when the click 
occurred. 

dwHitlnfo 
Carries information about where on the item or control the cursor is pointing. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMOBJECTNOTIFY 
Contains information used with the TBN_GETOBJECT, TCN_GETOBJECT, and 
PSN_GETOBJECT notification messages. 



Members 
hdr 

Chapter 7 Common API 109 

NMHDR structure that contains additional information about this notification. 

iltem 
Control-specific item identifier. This value will comply to item identification standards 
for the control sending the notification. However, this member is not used with the 
PSN_GETOBJECT notification message. 

piid 
Interface identifier of the requested object. 

pObject 
Address of an object provided by the window processing the notification message. 
The application processing the notification message sets this member. 

hResult 
COM success or failure flags. The application processing the notification message 
sets this member. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMTOOL TIPSCREATED 
Contains information used with NM_ TOOL TIPSCREATED notification messages. 

t,~~~~1:~:;~:~,~~"~~~HrO~,F;:;~~GREA~I~~;'f" 
:.,:HWNIJ 1)w;irdf~c1TH)S; 

'}':).~JQQ~tJ e~rt~~~t~pf'~, ->,' .... }J"",~.,"'. 

Parameters 

Members 
hdr 

NMHDR structure that contains additional information about this notification. 

hwndToolTips 
Window handle to the tooltip control created. 



110 Volume 4 Microsoft Windows Common Controls 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later installed). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



CHAPTER 8 

Customizing a Control's 
Appearance 

111 

Custom draw is not a common control; it is a service that many common controls 
provide. Custom draw services allow an application greater flexibility in customizing a 
control's appearance. Your application can harness custom draw notifications to easily 
change the font used to display items or manually draw an item without having to do a 
full-blown owner draw. 

About Custom Draw 
This section contains general information about custom draw functionality and provides 
a conceptual overview of how an application can support custom draw. 

Currently, the following controls support custom draw functionality: 

• Header controls 

• List-view controls 

• Rebar controls 

• Toolbar controls 

• Tooltip controls 

• Trackbar controls 

• Tree-view controls 

Note Custom draw is implemented in version 4.70 and later of Comctl32.dll. 

About Custom Draw Notification Messages 
All common controls that support custom draw send NM_CUSTOMDRAW notification 
messages at specific points during drawing operations. These notifications describe 
drawing operations that apply to the entire control as well as drawing operations specific 
to items within the control. Like many notification messages, NM_CUSTOMDRAW 
notifications are sent as WM_NOTIFY messages. 

The IParam parameter of a custom draw notification message will be the address of 
an NMCUSTOMDRAW structure or a control-specific structure that contains an 
NMCUSTOMDRAW structure as its first member. The following table illustrates the 
relationship between the controls and the structures they use: 



112 Volume 4 Microsoft Windows Common Controls 

Structure 

NMCUSTOMDRAW 

NMLVCUSTOMDRAW 
NMTBCUSTOMDRAW 

NMTTCUSTOMDRAW 

NMTVCUSTOMDRAW 

Used by 

Rebar, trackbar, and header controls 

List-view controls 
Toolbar controls 

Tooltip controls 

Tree-view controls 

Paint Cycles, Drawing Stages, and Notification Messages 
Like all Microsoft Windows applications, common controls periodically paint and erase 
themselves based on messages received from the system or other applications. The 
process of a control painting or erasing itself is called a paint cycle. Controls that support 
custom draw send NM_CUSTOMDRAW notification messages periodically through each 
paint cycle. This notification message is accompanied by an NMCUSTOMDRAW structure 
or another structure that contains an NMCUSTOMDRAW structure as its first member. 

One piece of information that the NMCUSTOMDRAW structure contains is the current 
stage of the paint cycle. This is referred to as the draw stage and is represented by the 
value in the structure's dwDrawStage member. A control informs its parent about four 
basic draw stages. These basic, or global, draw stages are represented in the structure 
by the following flag values (defined in Commctrl.h): 

Global draw stage values 

CDDS_POSTERASE 

CDDS_POSTPAINT 

CDDS_PREERASE 
CDDS_PREPAINT 

Description 

After the erase cycle is complete 

After the paint cycle is complete 

Before the erase cycle begins 

Before the paint cycle begins 

Each of the preceding values can be combined with the CDDS_ITEM flag to specify 
draw stages specific to items. For convenience, Commctrl.h contains the following item­
specific values: 

Item-specific draw stage values Description 

CDDS_ITEMPOSTERASE 

CDDS_ITEMPOSTPAINT 
CDDS_ITEMPREERASE 

CDDS_ITEMPREPAINT 

CDDS_SUBITEM 

After an item has been erased. 

After an item has been drawn. 

Before an item is erased. 

Before an item is drawn. 

Version 4.71. Flag combined with 
CDDS_ITEMPREPAINT or 
CDDS_ITEMPOSTPAINT if a subitem is being 
drawn. This will only be set if 
CDRF _NOTIFYITEMDRAW is returned from 
CDDS_PREPAINT. 



Chapter 8 Customizing a Control's Appearance 113 

Your application must process the NM_CUSTOMDRAW notification message and then 
return a specific value that informs the control what it must do. See the following sections 
for more information about these return values. 

Taking Advantage of Custom Draw Services 
The key to harnessing custom draw functionality is in responding to the 
NM_CUSTOMDRAW notification messages that a control sends. The return values your 
application sends in response to these notifications determine the control's behavior for 
that paint cycle. 

This section contains information about how your application can use 
NM_CUSTOMDRAW notification return values to determine the control's behavior. 

Responding to the Prepaint Notification 
At the beginning of each paint cycle, the control sends the NM_CUSTOMDRAW 
notification message, specifying the CDDS_PREPAINT value in the dwDrawStage 
member of the accompanying NMCUSTOMDRAW structure. The value that your 
application returns to this first notification dictates how and when the control sends 
subsequent custom draw notifications for the rest of that paint cycle. Your application 
can return a combination of the following flags in response to the first notification: 

Return value 

CDRF _DODEFAUL T 

CDRF _NOTIFYITEMDRAW 

CDRF _NOTIFYPOSTPAINT 

CDRF _SKIPDEFAUL T 

Effect 

The control will draw itself. It will not send additional 
NM_CUSTOMDRAW notifications for this paint cycle. 
This flag cannot be used with any other flag. 

The control will notify the parent of any item-specific 
drawing operations. It will send NM_CUSTOMDRAW 
notification messages before and after it draws items. 

The control will send an NM_CUSTOMDRAW 
notification when the painting cycle for the entire 
control is complete. 

The control will not perform any painting at all. 

Requesting Item-Specific Notifications 
If your application returns CDRF _NOTIFYITEMDRAW to the initial prepaint custom draw 
notification, the control will send notifications for each item it draws during that paint 
cycle. These item-specific notifications will have the CDDS_ITEMPREPAINT value in the 
dwDrawStage member of the accompanying NMCUSTOMDRAW structure. You can 
request that the control send another notification when it is finished drawing the item by 
returning CDRF _NOTIFYPOSTPAINT to these item-specific notifications. Otherwise, 
return CDRF _DODEFAUL T and the control will not notify the parent window until it starts 
to draw the next item. 



114 Volume 4 Microsoft Windows Common Controls 

Drawing the Item Manually 
If your application draws the entire item, return CDRF _SKIPDEFAUL T. This allows the 
control to skip items that it does not need to draw, thereby decreasing system overhead. 
Keep in mind that returning this value means the control will not draw any portion of the 
item. 

Changing Fonts and Colors 
Your application can use custom draw to change an item's font. Simply, select the HFONT 
you want into the device context specified by the hdc member of the NMCUSTOMDRAW 
structure associated with the custom draw notification. Since the font you select might have 
different metrics than the default font, make sure you include the CDRF _NEWFONT bit in 
the return value for the notification message. For more information on using this 
functionality, see the sample code in Using Custom Draw. The font that your application 
specifies is used to display that item when it is not selected. Custom draw does not allow 
you to change the font attributes for selected items. 

To change text colors for all controls that support custom draw, except for the list view 
and tree view, set the desired text and background colors in the device context supplied 
in the custom draw notification structure with the SetTextColor and SetBkColor 
functions. To modify the text colors in the list view or tree view, you need to place the 
desired color values in the clrText and clrTextBk members of the 
NMLVCUSTOMDRAW or NMTVCUSTOMDRAW structure. 

Custom Draw with List-View and Tree-View Controls 
Most common controls can be handled in essentially the same way. However, the list­
view and tree-view controls have some features that require a somewhat different 
approach to custom draw. 

For Version 5.0 of the common controls, these two controls might display clipped text 
if you change the font by returning CDRF _NEWFONT. This behavior is necessary for 
backward compatibility with earlier versions of the common controls. If you want to 
change the font of a list-view or tree-view control, you will get better results if you send a 
CCM_SETVERSION message with the wParam value set to 5 before adding any items 
to the control. 

Custom Draw with List-View Controls 
Because list-view controls have subitems and multiple display modes, you will need 
to handle the NM_CUSTOMDRAW notification somewhat differently than for the other 
common controls. 

For report mode: 



Chapter 8 Customizing a Control's Appearance 115 

1. The first NM_CUSTOMDRAW notification will have the dwDrawStage member of 
the associated NMCUSTOMDRAW structure set to CDDS_PREPAINT. Return 
CDRF _NOTIFYITEMDRAW. 

2. You will then receive an NM_CUSTOMDRAW notification with dwDrawStage set to 
CDDS_ITEMPREPAINT. If you specify new fonts or colors and return 
CDRF _NEWFONT, all subitems of the item will be changed. If you instead want to 
handle each sUbitem separately, return CDRF _NOTIFYSUBITEMDRAW. 

3. If you returned CDRF _NOTIFYITEMDRAW in the previous step, you will then receive 
an NM_CUSTOMDRAW notification for each subitem with dwDrawStage set to 
CDDS_SUBITEM I CDDS_PREPAINT. To change the font or color for that subitem, 
specify a new font or color and return CDRF _NEWFONT. 

For the large icon, small icon, and list modes: 

1. The first NM_CUSTOMDRAW notification will have the dwDrawStage member of the 
associated NMCUSTOMDRAW structure set to CDDS_PREPAINT. Return 
CDRF _NOTIFYITEMDRAW. 

2. You will then receive an NM_CUSTOMDRAW notification with dwDrawStage set to 
CDDS_ITEMPREPAINT. You can change the fonts or colors of an item by specifying 
new fonts and colors and returning CDRF _NEWFONT. Because these modes do not 
have subitems, you will not receive any additional NM_CUSTOMDRAW notifications. 

An example of a list view NM_CUSTOMDRAW notification handler is given in the next 
section. 

USing Custom Draw 
The following code fragment is a portion of a WM_NOTIFY handler that illustrates how to 
handle custom draw notifications sent to a list view control: 

(continued) 



116 Volume 4 Microsoft Windows Common Controls 

(continued) 

The first NM_CUSTOMDRAW notification has the dwDrawStage member of the 
NMCUSTOMDRAW structure set to CDDS_PREPAINT. The handler returns 
CDRF _NOTIFYITEMDRAW to indicate that it wishes to modify one or more items 
individually. The control then sends an NM_CUSTOMDRAW notification with 



Chapter 8 Customizing a Control's Appearance 117 

dwDrawStage set to CDDS_PREPAINT for each item. The handler returns 
CDRF _NOTIFYITEMDRAW to indicate that it wishes to modify the item. 

If CDRF _NOTIFYITEMDRAW was returned in the previous step, the next 
NM_CUSTOMDRAW notification has dwDrawStage set to CDDS_ITEMPREPAINT. 
The handler gets the current color and font values. At this point, you can specify new 
values for small icon, large icon, and list modes. If the control is in report mode, you can 
also specify new values that will apply to all sub items of the item. If you have changed 
anything, return CDRF _NEWFONT. If the control is in report mode and you want to 
handle the subitems individually, return CDRF _NOTIFYSUBITEMREDRAW. 

The final notification is only sent if the control is in report mode and you returned 
CDRF _NOTIFYSUBITEMREDRAW in the previous step. The procedure for changing 
fonts and colors is the same as that step, but it only applies to a single subitem. Return 
CDRF _NEWFONT to notify the control if the color or font was changed. 

Custom Draw Reference 

Custom Draw Notification Messages 

NM_CUSTOMDRAW 
Sent by some common controls to notify their parent windows about drawing operations. 
This notification is sent in the form of a WM_NOTIFY message. 

Parameters 
IpNMCustomDraw 

Address of a custom draw-related structure that contains information about the 
drawing operation. The following table lists the controls and their associated 
structures: 



118 Volume 4 Microsoft Windows Common Controls 

Control 

List-view 

Toolbar 

Tooltip 

Tree-view 

All other supported controls 

Return Values 

Structure 

NMLVCUSTOMDRAW 

NMTBCUSTOMDRAW 

NMTTCUSTOMDRAW 

NMTVCUSTOMDRAW 

NMCUSTOMDRAW 

The value your application can return depends on the current drawing stage. The 
dwDrawStage member of the associated NMCUSTOMDRAW structure holds a value 
that specifies the drawing stage. You must return one of the following values. 

When dwDrawStage equals CDDS_PREPAINT: 

Return value 

CDRF _DODEFAUL T 

CDRF _NOTI FYITEMDRAW 

CDRF _NOTIFYPOSTERASE 

CDRF _NOTIFYPOSTPAINT 

Description 

The control will draw itself. It will not send any 
additional NM_CUSTOMDRAW messages for this 
paint cycle. 

The control will notify the parent of any item-related 
drawing operations. It will send NM_CUSTOMDRAW 
notification messages before and after drawing items. 

The control will notify the parent after erasing an item. 

The control will notify the parent after painting an item. 

When dwDrawStage equals CDDS_ITEMPREPAINT: 

Return value 

CDRF _NOTIFYSUBITEMDRAW 

CDRF _SKIPDEFAUL T 

Description 

Your application specified a new font for the item; 
the control will use the new font. For more 
information on changing fonts, see Changing 
Fonts and Colors. 

Version 4.71. Your application will receive an 
NM_CUSTOMDRAW message with dwDrawStage 
set to CDDS_ITEMPREPAINT I CDDS_SUBITEM 
before each list view subitem is drawn. You then 
can specify font and color for each subitem 
separately or return CDRF _DODEFAUL T for 
default processing. 

Your application drew the item manually. The 
control will not draw the item. 



Chapter 8 Customizing a Control's Appearance 119 

Remarks 
Currently, the following controls support custom draw functionality: header, list-view, 
rebar, tool bar, tooltip, trackbar, and tree-view. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Using Custom Draw 

Custom Draw Structures 

NMCUSTOMDRAW 
Contains information specific to an NM_CUSTOMDRAW notification message. 

Members 
hdr 

NMHDR structure that contains information about this notification message. 

dwDrawStage 
Current drawing stage. This value is one of the following: 

Global values Description 

CDDS_POSTERASE After the erasing cycle is complete 

(continued) 



120 Volume 4 Microsoft Windows Common Controls 

(continued) 

Global values 

CDDS_POSTPAI NT 

CDDS_PREERASE 

CDDS_PREPAINT 

Item-specific values 

CDDS_ITEMPOSTERASE 

CDDS_ITEMPOSTPAINT 

CDDS_ITEM PREERASE 

CDDS_ITEMPREPAINT 

CDDS_SUBITEM 

Description 

After the painting cycle is complete 

Before the erasing cycle begins 

Before the painting cycle begins 

Description 

Indicates that the dwltemSpec, ultemState, and 
IItemlParam members are valid. 

After an item has been erased. 

After an item has been drawn. 

Before an item is erased. 

Before an item is drawn. 

Version 4.71. Flag combined with 
CDDS_ITEMPREPAINT or CDDS_ITEMPOSTPAINT 
if a subitem is being drawn. This will be set only if 
CDRF _NOTIFYITEMDRAW is returned from 
CDDS_PREPAINT. 

hdc 

rc 

Handle to the control's device context. Use this HDC to perform any GDI functions. 

RECT structure that describes the bounding rectangle of the area being drawn. This 
member is initialized only by the CDDS_ITEMPREPAINT notification. 

Version 5.80. This member is initialized also by the CDDS_PREPAINT notification. 

dwltemSpec 
Item number. What is contained in this member will depend on the type of control that 
is sending the notification. See the NM_CUSTOMDRAW notification reference for the 
specific control to determine what, if anything, is contained in this member. 

ultemState 
Current item state. This value is a combination of the following: 

Value Description 

CDIS_CHECKED 

CDIS_DEFAUL T 

CDIS_DISABLED 

CDIS_FOCUS 

CDIS_GRAYED 

CDIS_HOT 

The item is checked. 

The item is in its default state. 

The item is disabled. 

The item is in focus. 

The item appears dimmed. 

The item is currently under the pointer ("hot"). 

CDIS_INDETERMINATE The item is in an indeterminate state. 



Value 

CDIS_SELECTED 

Chapter 8 Customizing a Control's Appearance 121 

Description 

The item is marked. The meaning of this is up to the 
implementation. 

The item is selected. 

lItemlParam 
Application-defined item data. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 





CHAPTER 9 

Animation Controls 

Animation Control Overview 
An animation control is a window that displays an AVI clip. An AVI clip is a series of 
bitmap frames like a movie. Animation controls can only display AVI clips that do not 
contain audio. 

About Animation Controls 

123 

One common use for an animation control is to indicate system activity during a lengthy 
operation. This is possible because the operation thread continues executing while the 
AVI clip is displayed. For example, the Find dialog box of Microsoft Windows Explorer 
displays a moving magnifying glass as the system searches for a file. 

An animation control can display an AVI clip originating from either an uncompressed 
AVI file or from an AVI file that was compressed using run-length (BLRLE8) encoding. 
You can add the AVI clip to your application as an AVI resource, or the clip can 
accompany your application as a separate AVI file. 

Note The AVI file, or resource, must not have a sound channel. The capabilities of the 
animation control are very limited and are subject to change. If you need a control to 
provide multimedia playback and recording capabilities for your application, you can use 
the MCIWnd control. For more information about the MCIWnd control, see the 
multimedia documentation in the Platform SDK. 

Animation Control Creation 
An animation control belongs to the ANIMATE_CLASS window class. You create an 
animation control by using the CreateWindow function or the Animate_Create macro. 
The macro positions the animation control in the upper-left corner of the parent window 
and, if the ACS_CENTER style is not specified, sets the width and height of the control 
based on the dimensions of a frame in the AVI clip. If ACS_CENTER is specified, 
Animate_Create sets the width and height of the control to zero. You can use the 
SetWindowPos function to set the position and size of the control. 

If you create an animation control within a dialog box or from a dialog box resource, the 
control is automatically destroyed when the user closes the dialog box. If you create an 
animation control within a window, you must explicitly destroy the control. 



124 Volume 4 Microsoft Windows Common Controls 

About Animation Control Messages 
An application sends messages to an animation control to open, play, stop, and close 
the corresponding AVI clip. Each message has one or more macros that you can use 
instead of sending the message explicitly. 

After creating an animation control, an application sends the ACM_OPEN message to 
open an AVI clip and load it into memory. The message specifies either the path of an 
AVI file or the name of an AVI resource. The system loads the AVI resource from the 
module that created the animation control. 

If the animation control has the ACS_AUTOPLAY style, the control begins playing the 
AVI clip immediately after the AVI file or AVI resource is opened. Otherwise, an 
application can use the ACM_PLA Y message to start the AVI clip. An application can 
stop the clip at any time by sending the ACM_STOP message. The last frame played 
remains displayed when the control finishes playing the AVI clip or when ACM_STOP 
is sent. 

An animation control can send two notification messages, ACN_START and 
ACN_STOP, to its parent window. Most applications do not handle either notification. 

To close the AVI file or AVI resource and remove it from memory, an application can use 
the Animate_Close macro, which sends ACM_OPEN with the file name or resource 
name set to NULL. 

Default Message Processing 
This section describes the window messages handled by the window procedure for the 
ANIMATE_CLASS window class. 

Message Processing performed 

WM_CLOSE Frees the AVI file or AVI resource associated with the 
animation control. 

WM_DESTROY Frees the AVI file or AVI resource, frees an internal data 
structure, and then calls the DefWindowProc function. 

WM_ERASEBKGND Erases the window background using the current background 
color for static controls. 

WM_NCCREATE Allocates and initializes an internal data structure and then 
calls DefWindowProc . 

. WM_NCHITTEST Returns the HTTRANSPARENT hit-test value. 

WM_PAINT Draws an AVI frame in the animation control. 

WM_SIZE Checks if the control has the ACS_CENTER style. If the 
control does not, it calls DefWlndowProc. Otherwise, it 
centers the animation in the control, invalidates the control, and 
then calls DefWindowProc. 



Chapter 9 Animation Controls 125 

Using Animation Controls 
This section provides examples that demonstrate how to create an animation control and 
display an AVI clip in the control. 

Creating an Animation Control 
The following function creates an animation control in a dialog box. The animation 
control is positioned below the specified control, and the dimensions of the animation 
control are based on the dimensions of a frame in the AVI clip. 

(continued) 



126 Volume 4 Microsoft Windows Common Controls 

(continued) 

Controlling the AVI Clip 
The following function uses the animation control macros to control the display of the AVI 
clip in an animation control. 



Chapter 9 Animation Controls 127 

Animation Control Styles 
The following window styles are used with animation controls: 

ACS_AUTOPLAY Starts playing the animation as soon as the AVI clip is 
opened. 

ACS_CENTER Centers the animation in the animation control's window. 

ACS_ TIMER By default, the control creates a thread to play the AVI clip. If 
you set this flag, the control plays the clip without creating a 
thread; internally, the control uses a Win32 timer to 
synchronize playback. 

ACS_ TRANSPARENT Allows you to match an animation's background color to that 
of the underlying window, creating a "transparent" 
background. The control will send a 
WM_CTLCOLORSTATIC message to its parent. Use 
SetBkColor to set the background color for the device 
context to an appropriate value. The control interprets the 
upper-left pixel of the first frame as the animation's default 
background color. It will remap all pixels with that color to the 
value you supplied in response to WM_CTLCOLORSTATIC. 

Animation Control Reference 

Animation Control Messages 

ACM_OPEN 
Opens an AVI clip and displays its first frame in an animation control. You can send this 
message explicitly or use the Animate_Open or Animate_OpenEx macro. 

Parameters 
hinst 

Version 4.71. Instance handle to the module that the resource should be loaded from. 
Set this value to NULL to have the control use the HINSTANCE value used to create 



128 Volume 4 Microsoft Windows Common Controls 

the window. Note that if the window is created by a DLL, the default value for hinst is 
the HINSTANCE value of the DLL, not the application that calls the DLL. 

IpszName 
Address of a buffer that contains the path of the AVI file or the name of an AVI 
resource. Alternatively, this parameter can consist of the AVI resource identifier in the 
low-order word and zero in the high-order word. To create this value, use the 
MAKEINTRESOURCE macro. The control loads the AVI resource from the module 
specified by the instance handle passed to the CreateWindow function, the 
Animate_Create macro, or the dialog-box creation function that created the control. 
In Version 4.71 and later, the resource is loaded from the module specified by hinst. 
An AVI resource must have the "A VI" type. 

If this parameter is NULL, the system closes the AVI file that was opened previously 
for the specified animation control, if any. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
The AVI file or resource specified by IpszName must not contain audio. 

With Windows 95, the animation control only responds to the ANSI version of the 
message (ACM_OPENA) with an ANSI string for IpszName. The Unicode version, 
ACM_OPENW, will fail. 

You can only open silent AVI clips. ACM_OPEN and Animate_Open fail if IpszSource 
specifies an AVI clip that contains sound. 

You can use Animate_Close to close an AVI file or AVI resource that was opened 
previously for the specified animation control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Plays an AVI clip in an animation control. The control plays the clip in the background 
while the thread continues executing. You can send this message explicitly or by using 
the Animate_Play macro. 



Parameters 
cRepeat 

Chapter 9 Animation Controls 129 

Number of times to replay the AVI clip. A value of -1 means replay the clip 
indefinitely. 

wFrom 
Zero-based index of the frame where playing begins. The value must be less 
than 65,536. A value of zero means begin with the first frame in the AVI clip. 

wTo 
Zero-based index of the frame where playing ends. The value must be less 
than 65,536. A value of -1 means end with the last frame in the AVI clip. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
You can use Animate_Seek to direct the animation control to display a particular frame 
of the AVI clip. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Stops playing an AVI clip in an animation control. You can send this message either 
explicitly or by using the Animate_Stop macro. 

ACM':'STQP 
wParani='0; 
lParam>=0; 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



130 Volume 4 Microsoft Windows Common Controls 

Animation Control Macros 

Animate_Close 
Closes an AVI clip and displays its first frame in an animation control. You can use this 
macro or send the ACM_OPEN message explicitly. 

Parameters 
hwnd 

Handle to the animation control. 

Return Values 
Always returns FALSE. 

Remarks 
You can use Animate_Close to close an AVI file or AVI resource that was opened 
previously for the specified animation control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Animate_Open, MAKEINTRESOURCE 

Animate_Create 
Creates an animation control. Animate_Create calis the CreateWindow function to 
create the animation control. 



Parameters 
hwndP 

Handle to the parent window. 

id 
Child window identifier of the animation control. 

dwStyle 

Chapter 9 Animation Controls 131 

Window styles. For a list of the animation control style values, see Animation Control 
Styles. 

hlnstance 
Handle to the instance of the module that is creating the animation control. 

Return Values 
Returns the handle to the animation control. 

Remarks 
The Animate_Create macro sets the width and height of the animation control to zero 
if the ACS_CENTER style is specified. If the ACS_CENTER style is not specified, 
Animate_Create sets the width and height based on the dimensions of a frame in the 
AVI clip. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Animate_Open 
Opens an AVI clip and displays its first frame in an animation control. You can use this 
macro or send the ACM_OPEN message explicitly. 

Parameters 
hwnd 

Handle to the animation control. 

IpszName 
Address of a buffer that contains the path of the AVI file or the name of an AVI 
resource. Alternatively, this parameter can consist of the AVI resource identifier in 



132 Volume 4 Microsoft Windows Common Controls 

the low-order word and zero in the high-order word. To create this value, use the 
MAKEINTRESOURCE macro. The control loads an AVI resource from the module 
specified by the instance handle passed to the CreateWindow function, the 
Animate_Create macro, or the dialog-box creation function that created the control. 

The AVI file or resource specified by IpszName must not contain audio. 

If this parameter is NULL, the system closes the AVI file that was opened previously 
for the specified animation control, if any. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
You can only open silent AVI clips. ACM_OPEN and Animate_Open will fail if 
IpszSource specifies an AVI clip that contains sound. 

You can use Animate_Close to close an AVI file or AVI resource that was opened 
previously for the specified animation control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Animate_OpenEx 
Opens an AVI clip from a resource in a specified module and displays its first frame in an 
animation control. You can use this macro or send the ACM_OPEN message explicitly. 

Parameters 
hwnd 

Handle to the animation control. 

hinst 
Instance handle to the module from which the resource should be loaded. If this value 
is NULL, the resource is loaded from the module that created the animation control. 



Chapter 9 Animation Controls 133 

IpszName 
Address of a buffer that contains the path of the AVI file or the name of an AVI 
resource. Alternatively, this parameter can consist of the AVI resource identifier in 
the low-order word and zero in the high-order word. To create this value, use the 
MAKEINTRESOURCE macro. The control loads the AVI resource from the module 
specified by hinst. 

The AVI file or resource specified by IpszName must not contain audio. 

If this parameter is NULL, the system closes the AVI file that was opened previously 
for the specified animation control, if any. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
You can only open silent AVI clips. ACM_OPEN and Animate_Open will fail if 
IpszSource specifies an AVI clip that contains sound. 

You can use Animate_Close to close an AVI file or AVI resource that was previously 
opened for the specified animation control. 

Version 4.71 and later of ComctI32.dll. 
Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Plays an AVI clip in an animation control. The control plays the clip in the background 
while the thread continues executing. You can use this macro or send the ACM_PlAY 
message explicitly. 



134 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndAnim 

Handle to the animation control in which to play the AVI clip. 

wFrom 
Zero-based index of the frame where playing begins. The value must be less than 
65,536. A value of zero means begin with the first frame in the AVI Clip. 

wTo 
Zero-based index of the frame where playing ends. The value must be less than 
65,536. A value of -1 means end with the last frame in the AVI Clip. 

cRepeat 
Number of times to replay the AVI Clip. A value of -1 means replay the clip 
indefinitely. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
You can use Animate_Seek to direct the animation control to display a particular frame 
of the AVI clip. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Directs an animation control to display a particular frame of an AVI clip. The control 
displays the clip in the background while the thread continues executing. You can use 
this macro or send the ACM_PLAY message explicitly. 

B.,. ',00.'·'.,'11-t,-.··.N: 'AD' ",. ,.!, ~,an' '~d.:t,:.Se.4. '.f!1'."~.'"".~ .. : .. (.,,~,-,:!. :;','j',),;:/:',:L:Y;,,'" 
WI F/~, 71111 ........ " "'::',:":,... .~;./~.~~.~} 

»;.",:·c.// -.. :". 
<UI'IIT wFf!cim~'" . ',', .\. 

Parameters 
hwndAnim 

Handle to the animation control in which to display the AVI frame. 

wFrame 
Zero-based index of the frame to display. 



Chapter 9 Animation Controls 135 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Stops playing an AVI clip in an animation control. You can use this macro or send the 
ACM_STOP message explicitly. 

Parameters 
hwnd 

Handle to the animation control. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



136 Volume 4 Microsoft Windows Common Controls 

Animation Control Notifications 

Notifies an animation control's parent window that the associated AVI clip has started 
playing. This notification message is sent in the form of a WM_COMMAND message. 

Return Values 
The return value is ignored. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies an animation control's parent window that the associated AVI clip has stopped 
playing. This notification message is sent in the form of a WM_COMMAND message. 

Return Values 
The return value is ignored. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



137 

CHAPTER 10 

ComboBoxEx Controls 

A ComboBoxEx control is an extension of the combo box control that provides native 
support for item images. To make item images easily accessible, the control provides 
image list support. By using this control, you can provide the functionality of a combo box 
without having to manually draw item graphics. 

About ComboBoxEx Controls 
Effectively, a ComboBoxEx control creates a child combo box and performs owner draw 
tasks for you based on an assigned image list. Therefore, the 
CBS_OWNERDRAWFIXED style is implied, and you do not need to use it when creating 
the control. Because image lists are used to provide item graphics, the 
CBS_OWNERDRAWVARIABLE style cannot be used. 

A ComboBoxEx control must be initialized by calling the InitCommonControlsEx 
function, specifying ICC_USEREX_CLASSES in the accompanying 
INITCOMMONCONTROLSEX structure. 

You can create a ComboBoxEx control by using the CreateWindowEx function and 
specifying WC_COMBOBOXEX as the window class. The class is registered when the 
InitCommonControlsEx function is called as explained above. 

ComboBoxEx controls are created without a default image list. To use item images, you 
must create an image list for the ComboBoxEx control and assign it to the control using 
the CBEM_SETIMAGELIST message. If you do not assign an image list to the 
ComboBoxEx control, the control displays item text only. 

ComboBoxEx Control Styles 
ComboBoxEx controls only support the following ComboBox styles: 

• CBS_SIMPLE 

• CBS_DROPDOWN 

• CBS_DROPDOWNLIST 

• WS_CHILD 

There are also several extended styles that are used only by ComboBoxEx. 

Note The CBS_SIMPLE style may not work properly in some cases. 



138 Volume 4 Microsoft Windows Common Controls 

Because the ComboBoxEx control performs owner draw tasks for you based on an 
assigned image list, the CBS_OWNERDRAWFIXED style is implied; you need not use 
it when creating the control. Because image lists are used to provide item graphics, the 
CBS_OWNERDRAWVARIABLE style cannot be used. The ComboBoxEx control also 
supports extended styles that provide additional features. 

ComboBoxEx Control Items 
ComboBoxEx controls maintain item information using a COMBOBOXEXITEM structure. 
This structure includes members for item indexes, image indexes (normal, selection 
state, and overlay), indentation values, text strings, and item-specific values. 

The ComboBoxEx control provides easy access to and manipulation of items through 
messaging. To add or delete an item, send the CBEM_INSERTITEM or 
CBEM_DELETEITEM message. You can modify items currently in the control using the 
CBEM_SETITEM message. 

Callback Items 
ComboBoxEx controls support callback item attributes. You can specify an item as a 
callback item when you add it to the control using CBEM_INSERTITEM. When you 
assign values to an item's COMBOBOXEXITEM structure, you must specify the 
appropriate callback flag values. The following are COMBOBOXEXITEM structure 
members and their corresponding callback flag values: 

Member Callback value 

pszText 

ilmage 

iSelectedlmage 

iOverlay 

ilndent 

LPSTR_TEXTCALLBACK 

UMAGECALLBACK 

UMAGECALLBACK 

UMAGECALLBACK 

UNDENTCALLBACK 

The control will request information about callback items by sending 
CBEN_GETDISPINFO notification messages. This notification is sent in the form of a 
WM_NOTIFY message. When your application processes this message, it must provide 
the requested information for the control. If you set the mask member of the 
accompanying COMBOBOXEXITEM structure to CBEIF _DI_SETITEM, the control will 
store the item data and will not request it again. 

ComboBoxEx Control Image Lists 
If you want a ComboBoxEx control to display icons with items, you must provide an 
image list. ComboBoxEx controls support up to three images for an item-one for its 
selected state, one for its nonselected state, and one for an overlay image. Assign an 



Chapter 10 ComboBoxEx Controls 139 

existing image list to a ComboBoxEx control using the CBEM_SETIMAGELIST 
message. 

The COMBOBOXEXITEM structure contains members that represent the image indexes 
for each image list (selected, unselected, and overlay). For each item, set these 
members to display the desired images. It is not necessary to specify image indexes for 
each type of image. You can mix and match image types as you like, but always set the 
mask member of the COMBOBOXEXITEM structure to indicate which members are 
being used. The control ignores members that have not been flagged as valid. 

Note If you use the CBS_SIMPLE style, icons are not displayed. 

About ComboBoxEx Control Notification Messages 
A ComboBoxEx control sends notification messages to report changes within itself or to 
request callback item information. The parent of the control receives all WM_COMMAND 
messages from the combo box contained within the ComboBoxEx control. The 
ComboBoxEx control sends its own notifications using WM_NOTIFY messages. As a 
result, the control's owner must be prepared to process both forms of notification 
messages. 

Following are the ComboBoxEx-specific notification messages: 

Notification Description 

CBEN_BEGINEDIT Signals that the user has activated the drop-down list or 
clicked in the control's edit box. 

CBEN_DELETEITEM Reports that an item was deleted. 

CBEN_ENDEDIT Signals that the user has selected an item from the drop-down 
list or has concluded an edit operation within the edit box. 

CBEN_GETDISPINFO Requests information about an item's attributes. 

CBEN_INSERTITEM Signals that an item was inserted in the control. 

ComboBoxEx Control Message Forwarding 
The following are the standard combo-box messages that a ComboBoxEx control 
forwards to its child combo box. Some of these messages may be processed by 
the ComboBoxEx control either before or after the message has been forwarded: 

• CB_DELETESTRING 

• CB_FINDSTRINGEXACT 

• CB_GETCOUNT 

• CB_GETCURSEL 

• CB_GETDROPPEDCONTROLRECT 

• CB_GETDROPPEDSTATE 



140 Volume 4 Microsoft Windows Common Controls 

• CB_GETEXTENDEDUI 

• CB_GETITEMDATA 

• CB_GETITEMHEIGHT 

• CB_GETLBTEXT 

• CB_GETLBTEXTLEN 

• CB_LlMITTEXT 

• CB_RESETCONTENT 

• CB_SETCURSEL 

• CB_SETDROPPEDWIDTH 

• CB_SETEXTENDEDUI 

• CB_SETITEMDATA 

• CB_SETITEMHEIGHT 

• CB_SHOWDROPDOWN 

Following are the windows messages that a ComboBoxEx control forwards to its parent 
window: 

• WM_COMMAND (This includes all of the CBN_ notifications.) 

• WM_NOTIFY 

Using ComboBoxEx Controls 

Creating a ComboBoxEx Control 
To create a ComboBoxEx control, call the CreateWindowEx function, using 
WC_COMBOBOXEX as the window class. You first must register the window class by 
calling the InitCommonControlsEx function, while specifying the 
ICC_USEREX_CLASSES bit in the accompanying INITCOMMONCONTROLSEX 
structure. 

The following application-defined function creates a ComboBoxEx control with the 
CBS_DROPDOWN style in the main window: 



Chapter 10 ComboBoxEx Controls 141 

Preparing ComboBoxEx Items and Images 
To add an item to a ComboBoxEx control, first define a COMBOBOXEXITEM structure. 
Set the mask member of the structure to indicate which members you want the control 
to use. Set the specified members of the structure to the values you want, and then send 
the CBEM_INSERTITEM message to add the item to the control. 

The following application-defined function adds 15 items to an existing ComboBoxEx 
control. Note that the mask member of the COMBOBOXEXITEM structure includes flag 
values that tell the control to display images for each item: 

(continued) 



142 Volume 4 Microsoft Windows Common Controls 

(continued) 



Chapter 10 ComboBoxEx Controls 143 

II control and return TRUE. .. 
SendMessage( hwndCB, CBEM_SnIMAGELIST. 0,< LPARAM)g_himl ); 

Supporting Callback Items 
If your application is going to use callback items in a ComboBoxEx control, it must be 
prepared to handle the CBEN_GETDISPINFO notification message. A ComboBoxEx 
control sends this notification whenever it needs the owner to provide specific item 
information. For more information about callback items, see Cal/back Items. 

The following application-defined function processes CBEN_GETDISPINFO by providing 
attributes for a given item. Note that it sets the mask member of the incoming 
COMBOBOXEXITEM structure to CBEIF _DLSETITEM. Setting mask to this value 
makes the control retain the item information, so it will not need to request the 
information again: 



144 Volume 4 Microsoft Windows Common Controls 

Processing ComboBoxEx Notifications 
A ComboBoxEx control notifies its parent window of events by sending WM_NOTIFY 
messages. Because the control uses a child combo box, it forwards all WM_COMMAND 
notification messages it receives to the parent window to be processed. Therefore, your 
application must be prepared to process WM_NOTIFY messages from the ComboBoxEx 
and WM_COMMAND messages forwarded from the ComboBoxEx's child combo box 
control. 

The example in this section handles the WM_NOTIFY and WM_COMMAND messages 
from a ComboBoxEx control by calling a corresponding application-defined function to 
process them. 

ComboBoxEx Control Extended Styles 
ComboBoxEx controls support most standard combo-box control styles. Additionally, 
ComboBoxEx controls support the following extended styles, which you can set and 



Chapter 10 ComboBoxEx Controls 145 

retrieve by using CBEM_SETEXTENDEDSTYLE and CBEM_GETEXTENDEDSTYLE 
messages: 

CBES_EX_CASESENSITIVE 
String searches in the list will be case-sensitive. This includes searches as a result 
of text being typed in the edit box and the CB_FINDSTRINGEXACT message. 

CBES_EX_NOEDITIMAGE 
The edit box and the drop-down list will not display item images. 

CBES_EX_NOEDITIMAGEINDENT 
The edit box and the drop-down list will not display item images. 

CBES_EX_NOSIZELIMIT 
Allows the ComboBoxEx control to be sized vertically smaller than its contained 
combo-box control. If the ComboBoxEx is sized smaller than the combo box, the 
combo box will be clipped. 

CBES_EX_PATHWORDBREAKPROC 
Windows NT only. The edit box will use the slash (I), backslash (\), and period (.) 
characters as word delimiters. This makes keyboard shortcuts for word-by-word 
cursor movement (CTRL+ARROW) effective in path names and URLs. 

Note If you try to set an extended style for a ComboBoxEx control created with the 
CBS_SIMPLE style, it might not repaint properly. The CBS_SIMPLE style also does not 
work properly with the CBES_EX_PATHWORDBREAKPROC extended style. 

ComboBoxEx Control Reference 

ComboBoxEx Control Messages 

CBEM_DELETEITEM 
Removes an item from a ComboBoxEx control. 

Parameters 
ilndex 

Zero-based index of the item to be removed. 



146 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns an INT value that represents the number of items remaining in the control. If 
ilndex is invalid, the message returns CB_ERR. 

Remarks 
This message maps to the combo-box control message CB_DELETESTRING. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_GETCOMBOCONTROL 
Retrieves the handle to the child combo-box control. 

Return Values 
Returns the handle to the combo-box control within the ComboBoxEx control. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_ GETEDITCONTROL 
Retrieves the handle to the edit control portion of a ComboBoxEx control. A 
ComboBoxEx control uses an edit box when it is set to the CBS_DROPDOWN style. 



Chapter 10 ComboBoxEx Controls 147 

Return Values 
Returns the handle to the edit control within the ComboBoxEx control if it uses the 
CBS_DROPDOWN style. Otherwise, the message returns NULL. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_GETEXTENDEDSTVLE 
Retrieves the extended styles that are in use for a ComboBoxEx control. 

Return Values 
Returns a DWORD value that contains the ComboBoxEx control extended styles in use 
for the control. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_GETIMAGELIST 
Retrieves the handle to an image list assigned to a ComboBoxEx control. 

Return Values 
Returns the handle to the image list assigned to the control if successful, or NULL 
otherwise. 



148 Volume 4 Microsoft Windows Common Controls 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_GETITEM 
Retrieves item information for a given ComboBoxEx item. 

Parameters 
pCB/tern 

Address of a COMBOBOXEXITEM structure that will receive the item information. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
When the message is sent, the iltem and mask members of the structure must be set to 
indicate the index of the target item and the type of information to be retrieved. Other 
members are set as needed. For example, to get text, you must set the CBEIF _TEXT 
flag in mask, and assign a value to cchTextMax. Setting the iltem member to -1 will 
retrieve the item displayed in the edit control. 

If the CBEIF _TEXT flag is set in the mask member of the COMBOBOXEXITEM 
structure, the control may change the pszText member of the structure to point to the 
new text instead of filling the buffer with the requested text. Applications should not 
assume that the text always will be placed in the requested buffer. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 10 ComboBoxEx Controls 149 

CBEM_ GETUNICODEFORMAT 
Retrieves the UNICODE character format flag for the control. 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Remarks 
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_SETUNICODEFORMAT 

CBEM_HASEDITCHANGED 
Determines whether or not the user has changed the text of a ComboBoxEx edit control. 

Return Values 
Returns TRUE if the text in the control's edit box has been changed, or FALSE 
otherwise. 

Remarks 
A ComboBoxEx control uses an edit box control when it is set to the CBS_DROPDOWN 
style. You can get the edit box control's window handle by sending a 
CBEM_GETEDITCONTROL message. 



150 Volume 4 Microsoft Windows Common Controls 

When the user begins editing, you will receive a CBEN_BEGINEDIT notification. When 
editing is complete, or the focus changes, you will receive a CBEN_ENDEDIT 
notification. The CBEM_HASEDITCHANGED message is only useful for determining 
whether or not the text has been changed if it is sent before the CBEN_ENDEDIT 
notification. If is sent afterwards, it will return FALSE. For example, suppose the user 
starts to edit the text in the edit box but changes focus, generating a CBEN_ENDEDIT 
notification. If you then send a CBEM_HASEDITCHANGED message, it will return 
FALSE, even though the text has been changed. 

The CBS_SIMPLE style does not work correctly with CBEM_HASEDITCHANGED. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_INSERTITEM 
Inserts a new item in a ComboBoxEx control. 

Parameters 
/peGB/tem 

Address of a COMBOBOXEXITEM structure that contains information about the item 
to be inserted. When the message is sent, the iltem member must be set to indicate 
the zero-based index at which to insert the item. To insert an item at the end of the 
list, set the iltem member to -1 . 

Return Values 
Returns the index at which the new item was inserted if successful, or -1 otherwise. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 10 ComboBoxEx Controls 151 

CBEM_SETEXTENDEDSTYLE 
Sets extended styles within a ComboBoxEx control. 

{;~£Mi$£TEXTEM'EbStYt.E"> """ , 
e ,wPfr~lIl',~tWPAJtAhf,)(PWORD),dw~){t4.$Jq· " .. 

.. /' 'lpa'~~II!",:(I;~":!V.MH~~W&R'brM~)(St.Yie:' . 

Parameters 
dwExMask 

A DWORD value that indicates which styles in dwExStyle are to be affected. Only the 
extended styles in dwExMask will be changed. If this parameter is zero, then all of the 
styles in dwExStyle will be affected. 

dwExStyle 
A DWORD value that contains the ComboBoxEx control extended styles to set for 
the control. 

Return Values 
Returns a DWORD value that contains the extended styles previously used for the control. 

Remarks 
dwExMask allows you to modify one or more extended styles without having to retrieve 
the existing styles first. For example, if you pass CBES_EX_NOEDITIMAGE for 
dwExMask and 0 for dwExStyle, the CBES_EX_NOEDITIMAGE style will be cleared, 
but all other styles will remain the same. 

If you try to set an extended style for a ComboBoxEx control created with 
the CBS_SIMPLE style, it might not repaint properly. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_SETIMAGELIST 
Sets an image list for a ComboBoxEx control. 



152 Volume 4 Microsoft Windows Common Controls 

Parameters 
himl 

Handle to the image list to be set for the control. 

Return Values 
Returns the handle to the image list previously associated with the control, or returns 
NULL if no image list was previously set. 

Remarks· 
The height of images within your image list might change the size requirements of the 
ComboBoxEx control. It is recommended that you resize the control after sending this 
message to ensure that it is displayed properly. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sets the attributes for an item in a ComboBoxEx control. 

Parameters 
IpcCBltem 

Address of a COMBOBOXEXITEM structure that contains the item information to be 
set. When the message is sent, the mask member of the structure must be set to 
indicate which attributes are valid and the iltem member must specify the zero-based 
index of the item to be modified. Setting the iltem member to -1 will modify the item 
displayed in the edit control. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.00 and later of Comctl32.dll. 



Chapter 10 ComboBoxEx Controls 153 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_SETUNICODEFORMAT 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time, instead of having to re-create 
the control. 

Parameters 
fUnicode 

Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Remarks 
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEM_GETUNICODEFORMAT 



154 Volume 4 Microsoft Windows Common Controls 

ComboBoxEx Control Notification Messages 

CBEN_BEGINEDIT 
Sent when the user activates the drop-down list or clicks in the control's edit box. This 
notification is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmhdr 

Address of an NMHDR structure that contains information about the notification. 

Return Values 
The application processing this notification must return zero. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEN_DELETEITEM 
Sent when an item has been deleted. This notification is sent in the form of a 
WM_NOTIFY message. 

Parameters 
pCBEx 

Address of an NMCOMBOBOXEX structure that contains information about the 
notification and the deleted item. 

Return Values 
The application processing this notification must return zero. 



Chapter 10 ComboBoxEx Controls 155 

B~tf,ents 
Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEN_DRAGBEGIN 
Sent when the user begins dragging the image of the item displayed in the edit portion of 
the control. This notification is sent in the form of a WM_NOTIFY message . 

•. ~.aE~i:t~~E~·~(t'~.}#1Eti6:A~~'~~1~j,.·:i;~~,~~{'· •. ·.;. ~:~:. i"'" 

Parameters 
Ipnmdb 

Address of an NMCBEDRAGBEGIN structure that contains information about the 
notification. 

Return Values 
The return value is ignored. 

Remarks 
If the receiving application implements drag-and-drop functionality from the control, the 
application will begin the drag-and-drop operation in response to this notification. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sent when the user has concluded an operation within the edit box or has selected an 
item from the control's drop-down list. This notification is sent in the form of a 
WM_NOTIFY message. 

~stI~~:~!~~I~~'.,*i'{~:N~~~,~o.E~~·t;\';jjf~~'~~.;;.;',~(~~;lt;;i:T;'i'':'''·.···· 



156 Volume 4 Microsoft Windows Common Controls 

Parameters 
pnmEditlnfo 

Address of an NMCBEENDEDIT structure that contains information about how the 
user concluded the edit operation. 

Return Values 
To accept the notification and allow the control to display the selected item, return 
FALSE. To abort the edit selection, return TRUE. 

Version 4.00 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEN_GETDISPINFO 
Sent to retrieve display information about a callback item. This notification is sent in the 
form of a WM_NOTIFY message. 

Parameters 
pDisplnfo 

Address of an NMCOMBOBOXEX structure that contains information about the 
notification. 

Return Values 
The application processing this notification must return zero. 

Remarks 
The NMCOMBOBOXEX structure contains a COMBOBOXEXITEM structure. The mask 
member specifies the information being requested by the control. 

Fill the appropriate members of the structure to return the requested information to the 
control. If your message handler sets the mask member of the COMBOBOXEXITEM 
structure to CBEIF _DLSETITEM, the header control stores the information and will not 
request it again. 



Chapter 10 ComboBoxEx Controls 157 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

CBEN_INSERTITEM 
Sent when a new item has been inserted in the control. This notification is sent in the 
form of a WM_NOTIFY message. 

Parameters 
pNMlnfo 

Address of an NMCOMBOBOXEX structure containing information about the 
notification and the item that was inserted. 

Return Values 
The application processing this notification must return zero. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_SETCURSOR (ComboBoxEx) 
Notifies a ComboBoxEx control's parent window that the control is setting the cursor in 
response to a WM_SETCURSOR message. This notification is sent in the form of a 
WM_NOTIFY message. 



158 Volume 4 Microsoft Windows Common Controls 

Parameters 
Ipnmm 

Address of an NMMOUSE structure that contains additional information about this 
notification message. 

Return Values 
Return nonzero to allow the control to set the cursor, or zero to prevent the control from 
setting the cursor. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

ComboBoxEx Control Structures 

COMBOBOXEXITEM 
Contains information about an item in a ComboBoxEx control. 

Members 
mask 

Set of bit flags that specify attributes of this structure or of an operation that is using 
this structure. The flags specify members that are valid or must be filled in. This 
member can be a combination of the following values: 



Flag 

CBEIF _DLSETITEM 

CBEIF _IMAGE 

CBEIF _INDENT 

CBEIF _LPARAM 

CBEIF _OVERLAY 

CBEIF _SELECTEDIMAGE 

iltem 
Zero-based index of the item. 

pszText 

Chapter 10 ComboBoxEx Controls 159 

Description 

Set this flag when processing 
CBEN_GETDISPINFO and the ComboBoxEx 
control will retain the supplied information and not 
request it again. 

The ilmage member is valid or must be filled in. 

The ilndent member is valid or must be filled in. 

The IParam member is valid or must be filled in. 

The iOverlay member is valid or must be filled in. 

The iSelectedlmage member is valid or must be 
filled in. 

The pszText member is valid or must be filled in. 

Address of a character buffer that contains or receives the item's text. If text 
information is being retrieved, this member must be set to the address of a character 
buffer that will receive the text. The size of this buffer must also be indicated in 
cchTextMax. If this member is set to LPSTR_ TEXTCALLBACK, the control will 
request the information by using the CBEN_GETDISPINFO notification messages. 

cchTextMax 
Length of pszText, in characters. If text information is being set, this member is 
ignored. 

ilmage 
Zero-based index of an image within the image list. The specified image will be 
displayed for the item when it is not selected. If this member is set 
to UMAGECALLBACK, the control will request the information by using 
CBEN_GETDISPINFO notification messages. 

iSelectedlmage 
Zero-based index of an image within the image list. The specified image will be 
displayed for the item when it is selected. If this member is set to 
UMAGECALLBACK, the control will request the information by using 
CBEN_GETDISPINFO notification messages. 

iOverlay 
One-based index of an overlay image within the image list. If this member is set to 
UMAGECALLBACK, the control will request the information by using 
CBEN_GETDISPINFO notification messages. 

ilndent 
Number of indent spaces to display for the item. Each indentation equals 10 pixels. If 
this member is set to UNDENTCALLBACK, the control will request the information by 
using CBEN_GETDISPINFO notification messages. 



160 Volume 4 Microsoft Windows Common Controls 

IParam 
32-bit value specific to the item. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMCBEENDEDIT 
Contains information about the conclusion of an edit operation within a ComboBoxEx 
control. This structure is used with the CBEN_ENDEDIT notification message. 

Members 
hdr 

NMHDR structure that contains information about the notification message. 

fChanged 
Value indicating whether the contents of the control's edit box have changed. This 
value is nonzero if the contents have been modified, or zero otherwise. 

iNewSelection 
Zero-based index of the item that will be selected after completing the edit operation. 
This value can be CB_ERR if no item will be selected. 

szText 
Zero-terminated string that contains the text from within the control's edit box. 

iWhy 
Value that specifies the action that generated the CBEN_ENDEDIT notification 
message. This value can be one of the following: 

CBENF _DROPDOWN The user activated the drop-down list. 

CBENF _ESCAPE The user pressed ESC. 

CBENF _KILLFOCUS 

CBENF_RETURN 

The edit box lost the keyboard focus. 

The user completed the edit operation by pressing ENTER. 



Chapter 10 ComboBoxEx Controls 161 

8~~~~~"ts· 
Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMCBEDRAGBEGIN 
Contains information used with the CBEN_DRAGBEGIN notification message. 

Members 
hdr 

NMHDR structure that contains information about the notification message. 

iltemid 
Zero-based index of the item being dragged. This value always will be -1, indicating 
that the item being dragged is the item displayed in the edit portion of the control. 

szText 
Character buffer that contains the text of the item being dragged. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMCOMBOBOXEX 
Holds information specific to ComboBoxEx items for use with notification messages. 



162 Volume 4 Microsoft Windows Common Controls 

Members 
hdr 

NMHDR structure that contains information about the notification message. 

celtem 
COMBOBOXEXITEM structure that holds item information specific to the current 
notification. Upon receiving a notification message, the COMBOBOXEXITEM 
structure holds information required for the owner to respond. The members of this 
structure are often used as fields for the owner to return values in response to the 
notification. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



CHAPTER 11 

Creating Wizards 
Wizards are a type of property sheet that provide a simple and powerful way to guide 
users through complex procedures. 

For a general discussion of property sheets, see Property Sheets. For links to the 
Property Sheet API elements, see Property Sheet Reference. 

Introduction 

163 

Wizards are one of the keys to simplifying the user experience. They allow you to take a 
complex operation, such as configuration of an application, and break it into a series of 
simple steps. At each pOint in the process, you can provide an explanation of what is 
needed, and display controls that allow the user to make selections and enter text. 

In terms of implementation, a wizard is actually a type of property sheet. A property 
sheet is essentially a container for a collection of pages, where each page is a separate 
dialog box. Much of what you need to do to implement a wizard actually involves familiar 
dialog box programming techniques. 

A standard property sheet displays the pages as if they were stacked one on top of the 
other. Each page has a tab at the top, and users select a page by clicking its tab. They 
then interact with the page as they would with a regular dialog box. Figure 11-1 shows 
the Microsoft Windows 2000 Daterrime properties sheet in the Control Panel. 

Wizards present pages one at a time. Instead of tabs, there are Next and Back buttons 
located at the bottom of the wizard. Users click these buttons to navigate forward or 
backward through a sequence of pages. The order in which pages are displayed is 
controlled by the application and can be modified based on user input. Figure 11-2 
shows the welcome page of the Windows 2000 Hardware Wizard in the Control Panel. 

This chapter outlines the basic process of creating a Wizard9? style wizard. The next 
section is a general discussion of wizard implementation. The final section of the chapter 
is a detailed walkthrough of Wiz9?, a simple wizard application. 

Note The discussion in most of this document assumes that you are implementing a 
Wizard9? -style wizard for a system with version 5.80 or later of the Common Controls. 
You can use this style on Windows 2000 or later systems, or any Windows system with 
Internet Explorer 5 or later. However, you must use a Idefine to set the value of 
_WIN32_IE to Ox0500 or higher before including the common controls header file 
(commctrl.h). If you attempt to use the Wizard9? style with earlier versions of the 
common controls, your application may compile but it will not display properly. For a 
discussion about how to create a Wizard9?-compatible wizard on earlier systems, see 
the Backward Compatible Wizards section. 



164 Volume 4 Microsoft Windows Common Controls 

567 9 

12 13 14 15 iii 
19 20 21 22 23 

26 27 28 29 30 

Figure 11-1: DatelTime properties sheet. 

Welcome to the Hardware 
Wizard 
You use this wizard to add, remove, repair, upgrade and 
customize l'our hardware. 

Figure 11-2: Windows 2000 Hardware Wizard welcome page. 



Chapter 11 Creating Wizards 165 

How to Implement a Wizard 
Implementing a wizard is similar to implementing a regular property sheet. At the most 
basic level, it is simply a matter of setting the appropriate style flag. To implement the 
individual pages, use the same dialog box programming techniques that you use for 
property sheets. However, there are a number of wizard-specific property sheet features 
that are used by nearly all wizards. 

The primary focus of this chapter is on those aspects of property sheets that are specific 
to wizards. It provides a detailed discussion of how to create a wizard's property sheet 
and pages, and how to handle navigation from one page to the next. It also goes into a 
few of the related design issues. For a complete discussion of design issues, you should 
see the Wizard97 Specification, elsewhere in the Platform SDK. Familiarity with standard 
dialog box programming techniques is assumed. For detailed information, see the 
discussion of dialog boxes, elsewhere in the Platform SDK. For a more general 
discussion of property sheets, see the Property Sheets chapter. 

Once you have defined your task and designed a user interface for each page, the basic 
procedure for implementing a wizard is relatively straightforward: 

1. Create a dialog box template for each page. 

2. Define the pages by creating a PROPSHEETPAGE structure for each page. This 
structure defines the page, and contains pOinters to the dialog box template and any 
bitmaps or other resources. 

3. Pass the PROPSHEETPAGE structure created in the previous step to 
CreatePropertySheetPage to create the page's HPROPSHEETPAGE handle. 

4. Define the wizard by creating a PROPSHEETHEADER structure for it. 

5. Pass the PROPSHEETHEADER structure to PropertySheet to display the wizard. 

6. Implement dialog box procedures for each page to handle notification messages from 
the page's controls and the wizard's buttons and to process other Windows 
messaging. 

Creating the Dialog Box Templates 
This chapter discusses how to create a Wizard97-style wizard. This wizard style is used 
by a wide variety of Microsoft applications. To be compatible with the Wizard97 style, 
your templates need to adhere to the Wizard97 Specification. This document has 
guidelines for such things as the dimensions for the dialog boxes, bitmap dimensions 
and colors, and the placement of controls. 

There are two basic types of wizard page: exterior and interior. The exterior pages are 
the welcome and completion pages. The other pages in the wizard are interior. 



166 Volume 4 Microsoft Windows Common Controls 

Exterior Page Dialog Box Templates 
All wizards have two exterior pages: welcome and completion. They come at the 
beginning and end of the sequence, respectively. Their basic layout is identical. For 
example, Figure 11-3 shows a sample Wizard97 welcome page. 

Welcome to the Sample 
Wizard 

This wizard installs Windows NT 5.0 Workstation on your 
computer. 

Windows NT 5.0 Workstation is a powerful solution for all of 
your desktop computing needs. because it combines 
Windows ease-of-use with enhanced reliability and security. 

To continue with Setup. click Next. 

Figure 11-3: Sample welcome page. 

For exterior pages, the dialog box is 317x193 dialog units (dlus). It fills all of the wizard, 
except for the caption and the band at the bottom that contains the Back, Next, and 
Cancel buttons. The left side of the template, which is reserved for a watermark bitmap, 
should not contain any controls. The watermark is specified in the wizard's 
PROPSHEETHEADER structure and is added to the page automatically. 

When you create the watermark bitmap, keep in mind that the dialog box may increase 
in size if, for example, the user chooses a large system font. When the page grows, the 
area reserved for the watermark gets bigger proportionately. The watermark is not 
stretched to fill the larger area. It is left in its original size in the upper-left portion of the 
reserved area. The part of the larger reserved area that is not covered by the watermark 
is automatically filled with the color of the bitmap's upper-left pixel. 

You can place controls in the area to the right of the watermark as you would for a 
regular dialog box. The background color of this area is determined by the system, and 
requires no action on your part. You typically put two static controls in this area. The 



Chapter 11 Creating Wizards 167 

upper one holds the title and uses a large bold font (12 point Verdana Bold). The other 
one, which is for explanatory text, uses the standard dialog box font. 

The main difference between the two types of exterior page is the wizard buttons and 
the text in the static controls. Welcome pages normally have a Next and a Back button, 
with only the Next button enabled. Completion pages have the Back button enabled, and 
the Next button is replaced by a Finish button. The wizard buttons are handled in the 
dialog procedure, and don't affect the template. As far as the template is concerned, all 
you need to do is provide appropriate text in the static controls for each exterior page. 

Interior Page Dialog Box Templates 
Interior pages have a somewhat different appearance than exterior pages. Figure 11-4 
shows what a typical Wizard97 interior page looks like. 

Figure 11-4: Sample Wizard97 interior page. 

The header area at the top of the page is handled by the property sheet, so it is not 
included in the template. The contents of the header are specified in the page's 
PROPSHEETPAGE structure and the wizard's PROPSHEETHEADER structure. 
Because the interior pages' template needs to fit between the header and the buttons, 
it is 317x143 dlus, somewhat smaller than the template for exterior pages. None of the 
template area is reserved, but you should consult the Wizard97 Specification for 
guidelines on control placement. 



168 Volume 4 Microsoft Windows Common Controls 

Defining the Wizard Pages 
Once you have created the dialog box templates and related resources such as bitmaps 
and string tables, you can create the property sheet pages. The procedure is similar to 
that for standard property sheets. First, fill in the appropriate members of a 
PROPSHEETPAGE structure and then call the CreatePropertySheetPage function to 
create the page's HPROPSHEETPAGE handle. However, there are a few features of 
this structure that are specific to wizards in general, and the Wizard97 style in particular. 

There are a number of wizard-related flags that can be set in the dwFlags member of 
the PROPSHEETPAGE structure: 

Flag 

PSP _HIDEHEADER 

PSP _USEHEADERTITLE 

PSP _USEHEADERSUBTITLE 

Description 

Set this flag for exterior pages. Do not set it for 
interior pages 

Set this flag for interior pages to put a title in the 
header area. 

Set this flag for interior pages to put a subtitle in 
the header area. 

Defining the Wizard Property Sheet 
As with ordinary property sheets, you define the wizard's property sheet by filling in 
members of a PROPSHEETHEADER structure. This structure allows you to specify the 
pages that will make up the wizard and the default order in which they will be displayed, 
along with several related parameters. You then launch the wizard by calling the 
PropertySheet function. 

There are a number of wizard-related flags that can be set in the structure's dwFlags. 

Flag 

PSH_USEHBMHEADER 

PSH_USEHBMWATERMARK 

Description 

Set this flag instead of PSH_USEHEADER to use 
an HBITMAP handle to identify the bitmap that will 
be placed at the right side of an interior page's 
header area. Assign the handle to the hbmHeader 
member. 

Set this flag instead of PSH_WATERMARK to use 
an HBITMAP handle to identify the watermark 
bitmap. Assign the handle to the hbmWatermark 
member. 

Set this flag to use a resource ID to identify the 
header bitmap. Use MAKEINTRESOURCE to 
convert the resource ID into a string, and assign the 
string to the pszbmHeader member. 



Flag 

PSH_USEPLWATERMARK 

PSH_ WIZARD97 

PSH_WIZARDCONTEXTHELP 

PSH_WIZARDHASFINISH 

Chapter 11 Creating Wizards 169 

Description 

Set this flag to define your own palette for the 
watermark bitmap. Assign the palette's HPALETTE 
handle to the hplWatermark member. 

Set this flag to use a resource ID to identify the 
watermark bitmap. Use MAKEINTRESOURCE to 
convert the resource ID into a string, and assign the 
string to the pszbmWatermark member. 

Set this flag to specify a Wizard97 style wizard. 

Set this flag to display a context-sensitive help 
button on the wizards caption bar. 

Set this flag to display a Finish button on all pages. 
Typically, wizards only display Back, Next or Finish, 
and Cancel, and replace Next with Finish on the 
completion page. If this flag is set, every page will 
display all four buttons. 

The pszCaption member of the PROPSHEETHEADER structure is ignored. Instead, 
the wizard displays the caption that is specified in the current page's dialog box 
template. 

If you have created an array of HPROPSHEETPAGE handles for your pages, assign the 
array to the phpage member. If you have instead created an array of 
PROPSHEETPAGE structures, assign the array to the ppsp member and set the 
PSH~PROPSHEETPAGE flag in the dwFlags member. 

The following example assigns values to psh, a PROPSHEETHEADER structure and 
calls the PropertySheet function to launch the wizard. The Wizard97-style wizard has 
both watermark and header graphics, specified by their resource IDs. The ahpsp array 
contains all the HPROPSHEETPAGE handles and defines the default order in which 
they will be displayed. 



170 Volume 4 Microsoft Windows Common Controls 

The Dialog Box Procedure 
Once the wizard has been launched, each page will need a dialog box procedure to 
process Windows messaging, particularly notifications from its controls and the wizard. 
The dialog box procedure will receive the usual WM_XXX Windows messages. The 
three that virtually all wizards will need to handle are WM_INITDIALOG, 
WM_DESTROY, and WM_NOTIFY. 

Handling WMJNITDIALOG and WM_DESTROY 
When a page is about to be displayed for the first time, its dialog box procedure receives 
a WM_INITDIALOG message. Handling this message allows the wizard to do any 
needed initialization tasks. For example, the sample code discussed later handles this 
message to set the font for the welcome and completion page titles. 

The WM_INITDIALOG message's IParam value points to a copy of the page's 
PROPSHEETPAGE structure. The IParam member of this structure is ignored by the 
system. It typically points to an application-defined shared data structure that is used to 
store persistent data and pass data from one page to another. 

To preserve access to the shared data structure for later use, load it's pointer into the 
pages' user data by calling the GetWindowLong function with an index of 
GWL_USERDATA. You can then use SetWindowLong to retrieve the pointer when 
needed. The Wiz97 sample has a simple example of how to use a shared data 
structure. 

Note Do not attempt to modify any members of the PROPSHEETPAGE structure other 
than IParam. Doing so will have unpredictable consequences. 

When the property sheet is destroyed, you will receive a WM_DESTROY message. The 
wizard is automatically destroyed by the system, but handling this message allows you 
to do any needed cleanup. 

Handling WM_NOTIFY 
Notifications from the wizard come in the form of a WM_NOTIFY message. You will 
receive this message before the page is displayed and when any of the wizard's buttons 
are clicked. The IParam parameter of the message is a pOinter to a NMHDR header 
structure. The notification's ID is contained in the structure's code member. The four that 
most wizards will need to handle are: 

Code 

PSN_SET ACTIVE 

PSN_WIZBACK 

PSN_WIZNEXT 

PSN_WIZFINISH 

Description 

Sent before the page is displayed. 

Sent when the Back button is clicked. 

Sent when the Next button is clicked. 

Sent when the Finish button is clicked. 



Chapter 11 Creating Wizards 171 

Handling PSN_SETACTIVE 
The PSN_SET ACTIVE notification message is sent each time a page is about to be 
made visible. The first time a page is visited, PSN_SET ACTIVE follows the 
WM_INITDIALOG message. If the page is subsequently revisited, it will receive only a 
PSN_SETACTIVE notification. This notification is usually handled to initialize data for the 
page and enable the appropriate buttons. 

By default, the wizard displays Back, Next, and Cancel buttons, with all buttons enabled. 
To disable a button or display Finish instead of Next, you must send a 
PSM_SETWIZBUTTONS message. Once this message has been sent, the state of the 
buttons will be preserved until it is modified by another PSM_SETWIZBUTTONS 
message, even if a new page is selected. Typically, all PSN_SETACTIVE handlers send 
this message to ensure that each page has the correct button state. 

You can change the button state with this message at any time. For example, you may 
want the Next button to be initially disabled. Once a user has entered all the necessary 
information, you can send another PSM_SETWIZBUTTONS message to enable the 
Next button and let the user proceed to the next page. 

The following code fragment uses the PropSheet_SetWizButtons macro to enable the 
Back and Next buttons on an interior page before it is displayed: 

Handling PSN_WIZNEXT, PSNWIZBACK, and PSN_WIZFINISH 
When a Next or Back button is clicked, you will receive a PSN_WIZNEXT or 
PSN_WIZBACK notification message. By default, the wizard will automatically go to 
either the next or previous page in the order that is defined when the property sheet is 
created. A common reason to handle these notifications is to prevent the user from 
switching pages, or to override the default page order. 

To prevent the user from switching pages, handle the button notification, call the 
SetWindowLong function with the DWL_MSGRESULT value set to -1, and return 
TRUE. For example: 



172 Volume 4 Microsoft Windows Common Controls 

To override the standard order and go to a particular page, call SetWindowLong with 
the DWL_MSGRESULT value set to the page's dialog box resource ID, and return 
TRUE. For example: 

When the Finish or Cancel buttons are clicked, you will receive a PSN_WIZFINISH or 
PSN_RESET notification message, respectively. When either of these buttons is clicked, 
the wizard will be automatically destroyed by the system. However, you can handle 
these notifications if you need to perform cleanup tasks before the wizard is destroyed. 
To prevent the wizard from being destroyed when you receive a PSN_WIZFINISH 
notification, call SetWindowLong with the DWL_MSGRESUL T value set to TRUE, and 
return TRUE. For example: 

Backward Compatible Wizards 
The preceding section assumes that you are implementing a wizard for a system with 
version 5 or later of the Common Controls. You will find this version on systems with 
Windows 2000 or later or any Windows system with Internet Explorer 5 or later. 

If you are writing a wizard for systems with earlier versions of the Common Controls, 
many of the features discussed in the preceding section will not be available. A number 
of the members of the PROPSHEETHEADER and PROPSHEETPAGE structures that 
are used by the Wizard97 style are only supported by Common Controls version 5 and 
later. However, it is still possible to implement a backward compatible wizard with much 
the same look and feel as the Wizard97 style. To do so, you must explicitly implement 
the following: 



Chapter 11 Creating Wizards 173 

• Add the watermark graphic to the dialog box template for your welcome and 
completion pages. 

• Make all your templates same size. There is no separate system-defined header area 
for interior pages. 

• Create the interior page's header area explicitly on your templates. 

• Do not use a header graphic because it may conflict with the title or subtitle if the 
wizard changes size. 

For further discussion of backward-compatible wizards, see the Backward-Compatible 
Wizards Specification elsewhere in the Platform SDK. 

A Sample Wizard Application 
This section discusses Wiz97, a simple stand-alone wizard application that 
demonstrates the essentials of how to implement a Wizard97-style wizard. The focus is 
on how to create exterior and interior pages and navigate between them. There is only a 
limited discussion about how to design and implement individual dialog boxes. Although 
the sample dialog boxes have controls, only a few control notification messages are 
handled, largely to illustrate how to use certain features of wizards. For links to the 
source code, see the Wiz97 source files. 

The Wiz97 wizard has a welcome page, a completion page, and two interior pages. The 
welcome page has a simple watermark and two static controls to hold the title and 
explanatory text. 

The first interior page has a group box with three radio buttons and a check box. Note 
that the Next button is initially disabled. It is only enabled after one of the radio buttons 
or the check box is selected. If the check box is selected, clicking Next skips directly to 
the completion page instead of the second interior page. 

The second interior page has three edit boxes, provided for illustration purposes only. 
None of the boxes have handlers. 

The completion page is very similar to the welcome page. The text in the static controls 
is different, and the Next button is replaced by a Finish button. If the check box on the 
first interior page was selected, clicking Back will return to that page. If the check box 
was not selected at all, or was cleared, clicking Back will return to the second interior 
page. 

The remainder of this section describes the implementation of the Wiz97 application. 
The complete sample code can be found under the Common Controls Samples topic or 
by clicking Wiz97 sample code. To make the code as readable as possible, all of the 
source code other than the dialog box procedures is in the WinMain function. For the 
same reason, error checking has been omitted. You should use whatever error checking 
is appropriate for your wizard application. 



174 Volume 4 Microsoft Windows Common Controls 

Some explanatory text 

Figure 11-5: The Wiz97 welcome page. 

Fils! In!eliOl Page D a 
Title: Fils! In!eliOl Page 

Subtitle: Some explanatory text... 

Figure 11-6: The first Wiz97 interior page. 



Chapter 11 Creating Wizards 175 

Second Interior Page DEiI 

Title: Second Interior Page 
Subtitle: S orne explanatory text... 

Figure 11-7: The second Wiz97 interior page. 

Completing Wiz97 

S orne Explanatory Text 

Figure 11-8: The Wiz97 completion page. 

II 



176 Volume 4 Microsoft Windows Common Controls 

Note that this sample must be run on a system with version 5.80 of the Common 
Controls. Attempting to run it on earlier versions will have unpredictable results. For 
information (and sample code) about how to determine which version is present, see 
Shell and Common Control Versions. 

Designing the Templates 
The mechanics of creating a dialog box template is largely outside the scope of this 
document. For a general discussion of how to place your controls, specify bitmap colors 
and dimensions, and handle a number of other design issues, see the Wizard97 
Specification. Here are some specific points to keep in mind when planning your. 
template design: 

• The template doesn't include the band at the bottom of the wizard that holds the 
buttons. 

• For interior pages, the template also doesn't include the header area. Interior page 
templates are thus smaller than those for welcome and completion pages . 

• The template does not include the watermark bitmap. Just leave the area reserved for 
the watermark empty. The watermark bitmap is specified when you fill the 
PROPSHEETHEADER structure. 

• Remember that the color of the watermark's upper-left pixel will be used for a fill color 
if the dialog box is enlarged. 

Creating the Wizard Pages 
Creating the wizard pages primarily involves aSSigning values to the members of a 
PROPSHEETPAGE structure and calling CreatePropertySheetPage to create the 
page's HPROPSHEETPAGE handle. The following code defines the welcome page by 
assigning values to a PROPSHEETPAGE structure named psp. 

Setting the PSP _HIDEHEADER flag defines this page as exterior. The structure's 
IParam member points to an application-defined SHAREDWIZDATA structure. Because 
the Wiz97 wizard application assigns a pOinter to this structure to the IParam member of 
the PROPSHEETPAGE structure used to create all its pages, the SHAREDWIZDATA 
structure can be used to store shared data. The SHAREDWIZDAT A structure is used to 



Chapter 11 Creating Wizards 177 

store the HFONT handle used by the welcome and completion pages, and the state of 
the radio buttons and check box on the first interior page. It is declared as: 

typedef structSHARED.WIZDATA 
H·fOf{T·· .. I'fTi·t\l~.f.QJ1'It·~.·· .• ·.···.·:. 

The welcome page's box dialog procedure is assigned to IntroDlgProc. It is a generally a 
good practice for each page to have its own dialog box procedure. Even a page with 
only static controls may still need to handle the wizard button notification messages. 

When CreatePropertySheetPage is called, the HPROPSHEETPAGE handle is 
assigned to ahpsp [OJ. The ahpsp array, which is an array of HPROPSHEETPAGE 
handles, is used later to create the property sheet. The array also determines the default 
order that the pages will be displayed. 

The following example shows how to create the first interior page. 

The dwSize, hlnstance, and IParam members are the same for all pages, and are left 
unchanged. The PSP _HIDEHEADER flag is not set, so the page is interior. Setting the 
PSP _USEHEADERTITLE and PSP _USEHEADERSUBTITLE flags enables the system 
to place a title and subtitle in the header area. These titles are specified by assigning 
text strings, from a string table in this instance, to pszHeaderTitle and 
pszHeaderSubTitle. Assigning the HPROPSHEETPAGE handle to ahpsp[1] places the 
page second in the default display order. 

The code used to create the second interior and completion pages is very similar to the 
first interior and welcome pages, respectively. The only difference is that different titles, 
dialog box procedures, and so on, are assigned to the members of the 
PROPSHEETPAGE structure, and the page's HPROPSHEETPAGE handle is assigned 
to a different element of ahpsp array. 

Creating the Property Sheet 
Creating the property sheet is similar to creating the individual pages. Assign values to 
members of a PROPSHEETHEADER structure, and then pass the structure to 
PropertySheet to launch the wizard. The following code defines the Wiz97 property 
sheet by assigning values to a PROPSHEETHEADER structure named psh. 



178 Volume 4 Microsoft Windows Common Controls 

The PSH_WIZARD97 flag gives this property sheet the Wizard97 style. Setting 
PSH_WATERMARK and PSH_HEADER enables the system to add a watermark bitmap 
to the exterior pages, and a smaller bitmap to the header area of the interior pages. The 
watermark and header bitmaps, which are identified by their resource IDs, are assigned 
to the pszbmWatermark and pszbmHeader members, respectively. The handles to the 
individual pages are passed to the property sheet by aSSigning the ahpsp array to the 
phpage member. 

Creating a Title Font 
The Wizard97 Specification uses a 12 point Verdana Bold font for the titles of the 
welcome and completion pages. The Wiz97 application creates the font, and then 
assigns its HFONT handle to the hTitleFont member of the shared SHAREDWIZDATA 
structure. 

The welcome and completion page's dialog box procedures extract a pointer to this 
structure when initializing the page. They then use the hTitieFont member to set the font 
for the static control that contains the title. The font is destroyed when the wizard shuts 
down, so it is created and destroyed only once. The following example shows how to 
create the font. 



Chapter 11 Creating Wizards 179 

The Dialog Box Procedures 
Once the wizard is launched, most of the remainder of the application is handled by the 
dialog box procedures. Even with no active controls, pages still need to handle 
messages such as WM_INITDIALOG, and notifications from the Back, Next, Cancel, and 
Finish buttons. To simplify this task, each Wiz97 page has its own dialog box procedure. 

The Welcome Page 
The welcome page only has static controls, so its dialog box procedure is quite simple. 
The following example shows the code for the procedure: 

gQOl·'C),LlSACK.ii1t~&lll:gPrpci f F:" "', >,;, r; <:~' : ~ ~;>:':" "O:(~f';::;::"< '~",~"f, 

(continued) 



180 Volume 4 Microsoft Windows Common Controls 

(continued) 

The first time a page's dialog box procedure is called, it will receive a WM_INITDIALOG 
message. The message handler extracts the pointer to the shared SHAREDWIZDAT A 
structure from the IParam member of the page's PROPSHEETPAGE structure. It then 
uses SetWindowLong to assign the pointer to the page's user data. Each time the 
dialog box procedure is subsequently called, it uses GetWindowLong to extract the 
SHAREDWIZDATA pointer for later use. After storing the pOinter, the message handler 
uses the hTitieFont member of the SHAREDWIZDATA structure to set the font for the 
static control that contains the title. 

Following the WM_INITDIALOG message and each time a page is subsequently 
selected, its dialog box procedure receives a PSN_SETACTIVE notification message. 
This notification is sent before the page is displayed and is used for initialization. The 
welcome page's PSN_SET ACTIVE notification handler uses the 
PropSheeCSetWizButtons macro to send a PSM_SETWIZBUTTONS message to 
enable the Next button. Because the wizard automatically takes care of displaying the 
next page, the Next button notification message is not handled. Although not shown 
here, the sample code has token button handlers as placeholders. 

The Interior Pages 
The first interior page is initially displayed with the Next button disabled. It is only 
enabled after a radio button or the check box is selected. If a user selects the check box, 
clicking Next takes the user directly to the completion page. The following example 
shows the dialog box procedure for the interior page: 



Chapter 11 Creating Wizards 181 

(continued) 



182 Volume 4 Microsoft Windows Common Controls 

(continued) 

The WM_INITDIALOG handler simply extracts the pointer to the shared 
SHAREDWIZDATA structure and assigns it to the page's user data. Initially, the 
PSN_SETACTIVE handler enables just the Back button. The Next button is only enabled 
after the user selects a radio button or the check box. If the check box has been 
selected, the PSN_WIZNEXT handler uses SetWindowLong to jump directly to the final 
page. 

The IsBoxChecked member of the shared SHAREDWIZDATA structure is used to store 
the state of the check box. The value of the IsButtonClicked member indicates whether 
one of the radio buttons has been selected. Storing these state parameters in the 
SHAREDWIZDAT A structure serves two purposes. One is to make this state information 



Chapter 11 Creating Wizards 183 

persistent, so that it is available if the page is revisited. The other is to make the state 
information available to other pages. 

The second interior page does not implement any of the three edit boxes, so its dialog 
box procedure is minimal. As with the other dialog box procedures, its WM_INITDIALOG 
message handler assigns the pointer to the shared SHAREDWIZDATA structure to its 
user data. Its PSN_ACTIVE notification handler enables the Next and Back buttons. For 
more information, see the Wiz97 source code. 

The Completion Page 
The dialog box procedure for the completion page is similar to that for the welcome 
page. The following example shows the procedure code: 

(continued) 



184 Volume 4 Microsoft Windows Common Controls 

(continued) 

As with the welcome page, the WM_INITDIALOG handler extracts the shared 
SHAREDWIZDATA structure and stores the pointer in the page's user data. It then uses 
the hTitieFont member to set the font for the static control holding the title. The 
PSN_SET ACTIVE handler enables the Back and Finish buttons. 

The PSN_WIZBACK handler checks the IsBoxChecked member of the shared 
SHAREDWIZDAT A structure to see if the check box on the second interior page is 
selected. If it is, the handler takes the user back to the first interior page, instead of the 
second interior page. As long as that check box is selected, the user will never see the 
second interior page. 

Because there is no need for any cleanup, there is no PSN_WIZFINISH handler. The 
wizard is automatically destroyed when the Finish button is clicked. After the wizard is 
destroyed, control is returned to the WinMain function, which destroys the title font by 
using the DeleteObject function and then returns. 



185 

CHAPTER 12 

Date and Time Picker Controls 

A date and time picker (OTP) control provides a simple and intuitive interface through 
which to exchange date and time information with a user. For example, with a DTP control 
you can ask the user to enter a date and then retrieve his or her selection with ease. 

About Date and Time Picker Controls 
Date and time picker controls are implemented in version 4.70 and later of Comctl32.dll. 
To create a DTP control call CreateWindowEx and specify DATETIMEPICK_CLASS as 
the window class. The class is registered when the date and time picker class is loaded 
from the common control dynamic-link library (DLL). Register this class by calling the 
InitCommonControlsEx function, while specifying the ICC_DATE_CLASSES bit flag in 
the accompanying INITCOMMONCONTROLSEX structure. 

Note Windows does not support dates prior to 1601. See FILETIME for details. 
The DTP control is based on the Gregorian calendar, which was introduced in 1753. It will 
not calculate dates that are consistent with the Julian calendar that was in use prior to 1753. 

Date and Time Picker User Interface 
The client area of a date and time picker control displays date and time information and 
acts as the interface through which users modify the information. The control's display 
consists of fields that are defined by the control's format string. Additionally, the control 
will display a check box when the DTS_SHOWNONE style is in use. 

Each field in the control displays a portion of the date and time information that the 
control stores internally. The user can click a field to set keyboard focus and then 
provide keyboard input to change the information represented by that field. The DTP 
control automatically updates internal information based on the user's input. The control 
recognizes the following as valid input. 

Input Category Description 

Arrow Keys The control accepts arrow keys to navigate the fields in the control 
and change values. The user can press the LEFT ARROW or 
RIGHT ARROW key to move through the control. If the user 
attempts to move past the last field in a given direction, the 
keyboard focus ''wraps around" to the field on the opposite side of 
the control. The UP ARROW and DOWN ARROW keys change 
values in the current field incrementally. 

(continued) 



186 Volume 4 Microsoft Windows Common Controls 

(continued) 

Input Category 

End and Home 

Function Keys 

Numbers 

Plus and Minus 

Description 

The control accepts the VK_END and VK_HOME virtual keys to 
change the value within the current field to its upper and lower 
limits, respectively. 

The F2 key activates edit mode. The F4 key causes the control to 
display a drop-down month calendar control (pressing 
ALT +DOWN ARROW does this, too). 

The control accepts numeric input in two-character segments. If 
the value entered by the user is invalid (like setting the month to 
14), the control rejects it and resets the display to the previous 
value. 

The control accepts the VK_ADD and VK_SUBTRACT virtual keys 
from the numeric keypad to increment and decrement the value in 
the current field. 

DTP controls that do not use the DTS_UPDOWN style display an arrow button. If the 
user clicks this button, a month calendar control drops down. The user can select a 
specific date by clicking an area of the calendar. 

Date and Time Picker Control Styles and Formats 
Date and time picker controls have several styles that determine a control's appearance 
and behavior. Specify the style when creating the control with the dwStyle parameter of 
CreateWindowEx. To retrieve or change the window style after you have created the 
control, use GetWindowLong and SetWindowLong. 

Preset Formats 
There are three preset formats available for displaying the date and one for displaying 
time. Set these formats by choosing one of the following window styles: 

DTS_LONGDATEFORMAT 
The display will look like: "Friday, April 19, 1996". 

DTS_SHORTDATEFORMAT 
The display will look like: "4/19/96". 

DTS_SHORTDATECENTURYFORMAT 
Version 5.80. The display will look like: "4/19/1996". 

DTS_ TIMEFORMAT 
The display will look like: "5:31 :42 PM". 

Custom Formats 
A DTP control relies on a format string to determine how it will display fields of 
information. If the preset formats are not sufficient, you can create a custom format 



Chapter 12 Date and Time Picker Controls 187 

by defining your own format string. Custom formats provide greater flexibility for an 
application. They allow you to specify the order in which the control will display fields 
of information. You can include body text as well as callback fields for requesting 
information from the user. Once the string is created, you assign it to the DTP control 
with a DTM_SETFORMAT message. 

Format Strings 
A DTP format string consists of a series of elements that represent a particular piece 
of information and define its display format. The elements will be displayed in the order 
they appear in the format string. 

Date and time format elements will be replaced by the actual date and time. They are 
defined by the following groups of characters: 

Element 

"d" 

"dd" 

"ddd" 

"dddd" 

"h" 

"hh" 

"H" 

"HH" 

"m" 

"mm" 

"M" 

"MM" 

"MMM" 

"MMMM" 

"t" 

"tt" 

"yy" 

"yyyy" 

Description 

The one- or two-digit day. 

The two-digit day. Single-digit day values are preceded by a zero. 

The three-character weekday abbreviation. 

The full weekday name. 

The one- or two-digit hour in 12-hour format. 

The two-digit hour in 12-hour format. Single-digit values are preceded by 
a zero. 

The one- or two-digit hour in 24-hour format. 

The two-digit hour in 24-hour format. Single-digit values are preceded by 
a zero. 

The one- or two-digit minute. 

The two-digit minute. Single-digit values are preceded by a zero. 

The one- or two-digit month number. 

The two-digit month number. Single-digit values are preceded by a zero. 

The three-character month abbreviation. 

The full month name. 

The one-letter AM/PM abbreviation (that is, AM is displayed as "A"). 

The two-letter AM/PM abbreviation (that is, AM is displayed as "AM"). 

The last two digits of the year (that is, 1996 would be displayed as 96). 

The full year (that is, 1996 would be displayed as "1996"). 

To make the information more readable, you can add body text to the format string by 
enclosing it in single quotation marks. Spaces and punctuation marks do not need to be 
enclosed within quotation marks. 



188 Volume 4 Microsoft Windows Common Controls 

Note Nonformat characters that are not delimited by single quotation marks will result 
in unpredictable display by the DTP control. 

For example, to display the current date with the format "'Today is: 04:22:31 Tuesday 
Mar 23, 1996", the format string is "'Today is: 'hh':'m':'s dddd MMM dd', 'yyyy". To 
include a single quotation mark in your body text, use two consecutive single quotation 
marks. For example, "'Don't forget' MMM dd',' yyyy" produces output that looks like: 
Don't forget Mar 23, 1996. It is not necessary to use quotation marks with the comma, 
so "'Don't forget' MMM dd, yyyy" is also valid, and produces the same output. 

Callback Fields 
In addition to the standard format characters and body text, you also can define certain 
parts of the display as callback fields. These fields can be used to query the user for 
information. To declare a callback field, include one or more "X" characters (ASCII Code 
88) anywhere in the format string. You can create callback fields that have a unique 
identity by repeating the "X" character. Thus, the format string "XX dddd MMM dd', 'yyy 
XXX" contains two unique callback fields, "XX" and "XXX". Like other DTP control fields, 
callback fields are displayed in left-to-right order based on their location in the format 
string. 

When the DTP control parses the format string and encounters a callback field, it sends 
DTN_FORMAT and DTN_FORMATQUERY notification messages. The format string 
element corresponding to the callback field is included with the notifications to allow the 
receiving application to determine which callback field is being queried. The owner of 
the control must respond to these notifications to ensure that the custom information is 
properly displayed. 

Date and Time Picker Control Notification Messages 
A date and time picker control sends notification messages when it receives user input 
or processes and reacts to callback fields. The parent of the control receives these 
notification messages in the form of WM_NOTIFY messages. 

The following notification messages are used with DTP controls: 

Notification 

DTN_DATETIMECHANGE 
DTN_DROPDOWN 

Description 

Indicates that the drop-down month calendar is about to 
be removed. 
Signals a change within the DTP control. 

Indicates that the drop-down month calendar is about to 
be displayed. 
Requests text to display in a portion of the format string 
described as a callback field. 



Notification 

DTN_FORMATQUERY 

DTN_USERSTRING 

Chapter 12 Date and Time Picker Controls 189 

Description 

Requests information about the maximum allowable 
size of the text to be displayed in a callback field. 

Signals the end of a user's edit operation within the 
control. This notification is sent only by DTP controls 
that use the DTS_APPCANPARSE style. 

Signals that the user has pressed a key in a callback 
field of the DTP control. 

Using Date and Time Picker Controls 
This section provides information and sample code for implementing a date and time 
picker control. 

Creating a Date and Time Picker Control 
To create a date and time picker control, use the CreateWindowEx function, specifying 
DATETIMEPICK_CLASS as the window class. You first must register the window class 
by calling the InitCommonControlsEx function, while specifying the 
ICC_DATE_CLASSES bit in the accompanying INITCOMMONCONTROLSEX structure. 

The following example creates a DTP control in an existing mode less dialog box. It uses 
the DTS_SHOWNONE style to allow the user to simulate deactivation of the date within 
the control. 

(continued) 



190 Volume 4 Microsoft Windows Common Controls 

(continued) 

Processing Date and Time Picker Notifications 
The following example processes the DTN_DATETIMECHANGE, DTN_FORMAT, 
DTN_FORMATQUERY, and DTN_WMKEYDOWN notifications by calling the 
DoDateTimeChange, DoFormatQuery, Do Format, and DoWMKeydown application­
defined functions, respectively. 

Other topics in this chapter provide additional information on these notifications. See 
Supporting Cal/back Fields in a DTP Control and Processing the 
DTN_DATETIMECHANGE Notification Message for additional information. 



Chapter 12 Date and Time Picker Controls 191 

lpNMFormat =( LPKMOAiETIMEFORMAT)1 Pilram; . 

Processing the DTN_DATETIMECHANGE Notification 
A date and time picker control sends the DTN_DATETIMECHANGE message whenever 
a change occurs. This message will be generated if the user changes one of the fields in 
the control or changes the state of the control's check box (DTS_SHOWNONE only). 

The following example is an application-defined function designed to update a static 
control within a dialog box. The text within the static control is changed to reflect the 
current state of the DTP control: 



192 Volume 4 Microsoft Windows Common Controls 

Supporting Callback Fields in a DTP control 
If you plan to use callback fields with the date and time picker controls in your 
application, you must be prepared to handle DTN_FORMATQUERY, DTN_FORMAT, 
and DTN_WMKEYDOWN notification messages. For additional information about 
callback fields, see Callback Fie/ds. 

This section contains information about how your application can process these 
notification messages. There are several examples of source code for application­
defined functions. The following list shows notification messages with sample functions 
that process them: 

Notification message 

DTN_FORMAT 

DTN_FORMATQUERY 

DTN_WMKEYDOWN 

Sample function 

DoFormat 

DoFormatQuery 

DoWMKeydown 

The DoFormatQuery Application-Defined Function 
A date and time picker control sends a DTN_FORMATQUERY notification message to 
request information about the maximum possible size of a callback field within the 
control. Handling this message ensures that all fields are displayed properly. The 
following DoFormatQuery application-defined function processes the 
DTN_FORMATQUERY notification message by calculating the width of the widest 
possible string for a given callback field: 



} 

Chapter 12 Date and Time Picker Controls 193 

hOrigFont = SelectObject(hdc, hFont): 

II Check to see if thi sis the oa 11 bac~ ,segment> 
II desired. If so, use the 1 ongest.tex.t segmentctd. 
/1 determtne the. ItHlJi\1mUmwidth.ofthe j.;.<l:l t.'·I;I.ltl>lI; ,.T'd'\#rlJ;" 

II and th.en pJ ace the tnto 
II NMDATETIMEP.ORMAtQUERy 

. ' Res~t"the fMt ; n;t'hEf<I~~i1t~ i'r\r'T,""~'T 
Ij.thec<intext .• , i'" >' 

SelectOb;Ject( i1.dc.hOr1:g:Font); 
'Re1 E.H1se'OCChwnd[)P. Mc}; 

The DoFormat Application-Defined Function 
A date and time picker control sends the DTN_FORMAT notification to request text that 
will be displayed in a callback field of the control. By handling this notification message, 
you allow the DTP control to display information that it does not natively support. 

The following DoFormat application-defined function processes DTN_FORMAT 
notification messages by providing a text string for a callback field. Do Format calls the 
GetDayNum application-defined function to request the day number to be used in the 
callback string. 

/1 [)(iFormat processesDTN;"'FORMATtnprbvide ihet~xt' 
1/ can baCk fiel di ria ,Dt~co.~tro 1. tn ·tfifs.e'x.ampl a; 
'11 cal1tlac'k '1'1 ald .conta ii\s a·varJe:'f6~tne.(fifybf~e~jr\. 
J I TbJl flmc1;lot) calJ§' theap.pltcatioil·defin~dfufictjQ:n· 
II' GetDayNum,'{bel ow) to retrieve thecor~~6ti:val~u~" ' 

< > " < ' " , ~ 0 , ', ' ' ,.;. ~'. , 

/I 

J 

The GetDayNum Application-Defined Function 
The application-defined sample function DoFormat calls the following GetDayNum 
application-defined function to request the day number based on the current date. 
GetDayNum returns an INT value that represents the current day of the year, from 0 to 
366. This function calls another application-defined function, IsLeapYr, during 
processing. 



194 Volume 4 Microsoft Windows Common Controls 

The IsLeapYr Application-Defined Function 
The application-defined sample function GetDayNum calls the IsLeapYr function to 
determine whether the current year is a leap year. IsLeapYr returns a BOOl value that 
is TRUE if it is a leap year and FALSE otherwise. 



Chapter 12 Date and Time Picker Controls 195 

1/ then check to See if the quotient of the year 
/I divided by 100 is also evenly divisible by 4. 
II If; ti s. thenthis i sa leap yea.r. 
i fU (iYear%4)&& I (tYear%Hl0»{ 

tQuo.tJen~,"'<iX:ellr /10.0:. 
ffU(fQllotient%4» fLeapYr '" TRUE;. 

The DoWMKeydown Application-Defined Function 
Date and time picker controls send the DTN_ WMKEYDOWN message to report that the 
user has typed input in a callback field. Handling this message allows you to emulate the 
same keyboard responses supported for standard DTP fields or provide custom 
responses. The following DoWMKeydown application-defined function provides an 
example of how DTN_WMKEYDOWN notifications can be handled: 

Date and Time Picker Control Styles 
The window styles listed here are specific to date and time picker controls. The 
DTS_XXXFORMAT styles that define the display format cannot be combined. If none of 



196 Volume 4 Microsoft Windows Common Controls 

the format styles are suitable, use a DTM_SETFORMAT message to define a custom 
format. 

DTS_APPCANPARSE Allows the owner to parse user input and 
take necessary action. It enables users to 
edit within the client area of the control when 
they press the F2 key. The control sends 
DTN_USERSTRING notification messages 
when users are finished. 

DTS_LONGDATEFORMAT Displays the date in long format. The default 
format string for this style is defined by 
LOCALE_SLONGDATEFORMAT, which 
produces output like "Friday, April 19, 1996". 

DTS_RIGHTALIGN The drop-down month calendar will be right­
aligned with the control instead of left­
aligned, which is the default. 

DTS_SHORTDATEFORMAT Displays the date in short format. The default 
format string for this style is defined by 
LOCALE_SSHORTDATE, which produces 
output like "4/19/96". 

DTS_SHORTDATECENTURYFORMAT Version 5.80. Similar to the 
DTS_SHORTDATEFORMAT style, except 
the year is a four-digit field. The default 
format string for this style is based on 
LOCALE_SSHORTDATE. The output looks 
like: "4/19/1996". 

DTS_TIMEFORMAT Displays the time. The default format string 
for this style is defined by 
LOCALE_STIMEFORMAT, which produces 
output like "5:31 :42 PM". 

DTS_SHOWNONE It is possible to have no date currently 
selected in the control. With this style, the 
control displays a check box that users can 
check once they have entered or selected a 
date. Until this check box is checked, the 
application will not be able to retrieve the 
date from the control because, in essence, 
the control has no date. This state can be 
set with the DTM_SETSYSTEMTIME 
message or queried with the 
DTM_GETSYSTEMTIME message. 

Places an up-down control to the right of the 
DTP control to modify date-time values. This 
style can be used in place of the drop-down 
month calendar, which is the default style. 



Chapter 12 Date and Time Picker Controls 197 

Date and Time Picker Reference 

Date and Time Picker Control Messages 

DTM_GETMCCOLOR 
Retrieves the color for a given portion of the month calendar within a date and time 
picker control. You can send this message explicitly or use the 
DateTime_GetMonthCalColor macro. 

Parameters 
iColor 

INT value specifying which month calendar color to retrieve. This value can be one of 
the following: 

MCSC_BACKGROUND Retrieve the background color displayed between 
months. 

MCSC_MONTHBK 

MCSC_TEXT 

MCSC_ TITLEBK 

MCSC_ TITLETEXT 

MCSC_ TRAILINGTEXT 

Return Values 

Retrieve the background color displayed within the month. 

Retrieve the color used to display text within a month. 

Retrieve the background color displayed in the calendar's 
title. 

Retrieve the color used to display text within the 
calendar's title. 

Retrieve the color used to display header day and trailing 
day text. Header and trailing days are the days from the 
previous and following months that appear on the current 
month calendar. 

Returns a COLORREF value that represents the color setting for the specified portion of 
the month calendar control if successful. The message returns -1 if unsuccessful. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 



198 Volume 4 Microsoft Windows Common Controls 

Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTM_GETMCFONT 
Retrieves the font that the date and time picker control's child month calendar control is 
currently using. You can send this message explicitly or use the 
DateTime_GetMonthCalFont macro. 

Return Values 
Returns an HFONT value that is the handle to the current font. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTM_GETMONTHCAL 
Retrieves the handle to a date and time picker's child month calendar control. You can 
send this message explicitly or use the DateTime_GetMonthCal macro. 

DTM"'G E~MONTH'CI(l. 
• ';" wPatam ,'7',.0. 

lParam= 0: 

Return Values 
Returns the handle to a DTP control's child month calendar control if successful, or 
NULL otherwise. 

Remarks 
DTP controls create a child month calendar control when the user clicks the drop-down 
arrow. When the month calendar is no longer needed, it is destroyed. So your 
application must not rely on a static handle to the DTP control's child month calendar. 



Chapter 12 Date and Time Picker Controls 199 

i_j~~ifements 
Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTM_GETRANGE 
Retrieves the current minimum and maximum allowable system times for a date and 
time picker control. You can send this message explicitly or use the 
DateTime_GetRange macro. 

Parameters 
/pSys TimeArray 

Address of a two-element array of SYSTEMTIME structures. 

Return Values 
Returns a DWORD value that is a combination of GDTR_MIN or GDTR_MAX. The first 
element of the SYSTEMTIME array contains the minimum allowable time if GDTR_MIN 
is set. The second element of the SYSTEMTIME array contains the maximum allowable 
time if GDTR_MAX is set. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



200 Volume 4 Microsoft Windows Common Controls 

DTM_GETSVSTEMTIME 
Retrieves the currently selected time from a date and time picker control and places it 
in a specified SYSTEMTIME structure. You can send this message explicitly or use the 
DateTime_GetSystemtime macro. 

Parameters 
/pSysTime 

Pointer to a SYSTEMTIME structure. If DTM_GETSYSTEMTIME returns 
GDT_VALlD, this structure will contain the system time. Otherwise, it will not contain 
valid information. This parameter must be a valid pointer; it cannot be NULL. 

Return Values 
Returns GDT _VALID if the time information was successfully placed in /pSysTime. 
Returns GDT _NONE if the control was set to the DTS_SHOWNONE style and the 
control check box was not selected. Returns GDT _ERROR if an error occurs. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTM_SETFORMAT 
Sets the display of a date and time picker control based on a given format string. You 
can send this message explicitly or use the DateTime_SetFormat macro. 

Parameters 
/pszFormat 

Address of a zero-terminated format string that defines the desired display. Setting 
this parameter to NULL will reset the control to the default format string for the current 
style. 



Chapter 12 Date and Time Picker Controls 201 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
It is acceptable to include extra characters within the format string to produce a more rich 
display. However, any nonformat characters must be enclosed within single quotation 
marks. For example, the format string "'Today is: 'hh':'m':'s ddddMMMdd', 'yyy" would 
produce output like ''Today is: 04:22:31 Tuesday Mar 23,1996". 

Note A DTP control tracks locale changes when it is using the default format string. If 
you set a custom format string, it will not be updated in response to locale changes. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTM_SETMCCOLOR 
Sets the color for a given portion of the month calendar within a date and time picker 
control. You can send this message explicitly or use the DateTime_SetMonthCalColor 
macro. 

DtM:j~~~CQLtlR>'::S:->;+ -' <; .:. 

· .. >wli~r<t~;';{W~~RAtH{tlnl1tol{tt; 
.•.••. >\Pa:ra>~ ,..' tLRARAJ"~{:CPtPRRE>F'" .. 

Parameters 
iColor 

INT value specifying which month calendar color to set. This value can be one of the 
following: 

MCSC_BACKGROUND Set the background color displayed between months. 

MCSC_MONTHBK 

MCSC_TEXT 

MCSC_ TITLEBK 

Set the background color displayed within the month. 

Set the color used to display text within a month. 

Set the background color displayed in the calendar's title. 

(continued) 



202 Volume 4 Microsoft Windows Common Controls 

(continued) 

MCSC_ TITLETEXT 

MCSC_ TRAILINGTEXT 

clr 

Set the color used to display text within the calendar's 
title. 

Set the color used to display header day and trailing day 
text. Header and trailing days are the days from the 
previous and following months that appear on the current 
month calendar. 

COLORREF value representing the color that will be set for the specified area of the 
month calendar. 

Return Values 
Returns a COLORREF value that represents the previous color setting for the specified 
portion of the month calendar control if successful. Otherwise, the message returns -1. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTM_SETMCFONT 
Sets the font to be used by the date and time picker control's child month calendar 
control. You can send this message explicitly or use the DateTime_SetMonthCalFont 
macro. 

'OTMSHMeF=ONT' 
wparam.i (WPARAMHttFotH)hfont;; 

···.lptaram·~ .([PA-RAM) M~.KE(ONGr(~e9faw! 

Parameters 
hFont 

Handle to the font that will be set. 

{Redraw 
Specifies whether the control should be redrawn immediately upon setting the font. 
Setting this parameter to TRUE causes the control to redraw itself. 



Chapter 12 Date and Time Picker Controls 203 

Return Values 
The return value for this message is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Sets the minimum and maximum allowable system times for a date and time picker 
control. You can send this message explicitly or use the DateTime_SetRange macro. 

Parameters 
flags 

Value specifying which range values are valid. This parameter can be a combination 
of the following values: 

GDTR_MAX The second element in the SYSTEMTIME structure array is valid 
and will be used to set the maximum allowable system time. 

GDTR_MIN The first element in the SYSTEMTIME structure array is valid and 
will be used to set the minimum allowable system time. 

/pSys TimeArray 
Address of a two-element array of SYSTEMTIME structures. The first element of the 
SYSTEMTIME array contains the minimum allowable time. The second element of the 
SYSTEMTIME array contains the maximum allowable time. It is not necessary to fill 
an array element that is not specified in the flags parameter. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 



204 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTM_SETSYSTEMTIME 
Sets the time in a date and time picker control. You can send this message explicitly or 
use the DateTime_SetSystemtime macro. 

Parameters 
flag 

Value specifying the action that should be performed. This value must be set to one of 
the following: 

GDT _NONE Set the DTP control to "no date" and clear its check box. When this 

/pSysTime 

flag is specified, /pSysTime is ignored. This flag applies only to DTP 
controls that are set to the DTS_SHOWNONE style. 

Set the DTP control according to the data within the structure that 
/pSysTime points to. 

Address of a SYSTEMTIME structure containing the system time used to set the DTP 
control. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



Chapter 12 Date and Time Picker Controls 205 

Date and Time Picker Control Macros 

DateTime_ GetMonthCal 
Retrieves the handle to a date and time picker's child month calendar control. You can 
use this macro or send the DTM_GETMONTHCAL message explicitly. 

HWNO OateTim,Uie:tMonthCal (. 
. HWN[)hwndOP) ;. . 

Parameters 
hwndDP 

Handle to a DTP control. 

Return Values 
Returns the handle to a DTP control's child month calendar control. 

Remarks 
DTP controls create a child month calendar control when the user clicks the drop-down 
arrow. When the month calendar is no longer needed, it is destroyed. So your 
application must not rely on a static handle to the DTP's child month calendar. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DateTime_ GetMonthCalColor 
Retrieves the color for a given portion of the month calendar within a date and time 
picker control. You can use this macro or send the DTM_GETMCCOLOR message 
explicitly. 



206 Volume 4 Microsoft Windows Common Controls 

COLi.H{&,EFOateT;ime":'Get;MQnt;ht~li~lQr:~\< 
,,;; J;tw'KO hwtnllJP .•. ' 'J t l' 

··;1n:t'i:C~.1'~~)~·;:. ; ·\;'{;;:;·;:;f;· 

Parameters 
hwndDP 

Handle to a DTP control. 

ie%r 
INT value specifying which month calendar color to retrieve. This value can be one of 
the following: 

MCSC_BACKGROUND 

MCSC_TEXT 

MCSC_ TITLEBK 

MCSC_ TITLETEXT 

MCSC_ TRAILINGTEXT 

Return Values 

Retrieve the background color displayed between 
months. 

Retrieve the background color displayed within the 
month. 

Retrieve the color used to display text within a month. 

Retrieve the background color displayed in the calendar's 
title. 

Retrieve the color used to display text within the 
calendar's title. 

Retrieve the color used to display header day and trailing 
day text. Header and trailing days are the days from the 
previous and following months that appear on the current 
month calendar. 

Returns a COLORREF value that represents the color setting for the specified portion of 
the month calendar control if successful. Otherwise, the macro returns -1. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and iater). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



Chapter 12 Date and Time Picker Controls 207 

DateTime_GetMonthCalFont 
Retrieves the font that the date and time picker control's child month calendar control is 
currently using. You can use this macro or send the DTM_GETMCFONT message 
explicitly. 

HFONT'DateHme..;Getl-fOnthCalfontC 
HWifDhwndDPri'·· ... ... "'" 

Parameters 
hwndDP 

Handle to a DTP control. 

Return Values 
Returns an HFONT value that is the handle to the current font. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DateTime_GetRange 
Retrieves the current minimum and maximum allowable system times for a date and 
time picker control. You can use this macro, or send the DTM_GETRANGE message 
explicitly. 

Parameters 
hwndDT 

Address of a DTP control. 

/pSys TimeArray 
Address of a two-element array of SYSTEMTIME structures. 



208 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns a DWORD value that is a combination of GDTR_MIN or GDTR_MAX. The first 
element of the SYSTEMTIME array contains the minimum allowable time. The second 
element of the SYSTEMTIME array contains the maximum allowable time. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DateTime_ GetSystemtime 
Retrieves the currently selected time from a date and time picker control and places it 
in a specified SYSTEMTIME structure. You can use this macro, or send the 
DTM_GETSYSTEMTIME message explicitly. 

Parameters 
hwndDP 

Handle to a DTP control. 

/pSysTime 
Pointer to a SYSTEMTIME structure. If DTM_GETSYSTEMTIME returns 
GDT _VALID, this structure will contain the system time. Otherwise, it will not contain 
valid information. This parameter must be a valid pointer; it cannot be NULL. 

Return Values 
Returns GDT _VALID if the time information was successfully placed in /pSysTime. 
Returns GDT _NONE if the control was set to the DTS_SHOWNONE style and the 
control check box was not selected. Returns GDT _ERROR if an error occurs. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 



Chapter 12 Date and Time Picker Controls 209 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Date Ti me _ SetFormat 
Sets the display of a date and time picker control based on a given format string. 
You can use this macro or send the DTM_SETFORMAT message explicitly. 

Parameters 
hwndDT 

Handle to a DTP control. 

IpszFormat 
Address of a zero-terminated format string that defines the desired display. Setting 

L 

this parameter to NULL will reset the control to the default format string for the current 
style. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
It is acceptable to include extra characters within the format string to produce a more rich 
display. However, any nonformat characters must be enclosed within single quotation 
marks. For example, the format string "'Today is: 'hh':'m':'s ddddMMMdd', 'yyy" would 
produce output like "Today is: 04:22:31 Tuesday Mar 23, 1996". 

Note A DTP control tracks locale changes when it is using the default format string. If 
you set a custom format string, it will not be updated in response to locale changes. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later) 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



210 Volume 4 Microsoft Windows Common Controls 

Date Time _ SetMonthCalColor 
Sets the color for a given portion of the month calendar within a date and time picker 
control. You can use this macro or send the DTM_SETMCCOLOR message explicitly. 

Parameters 
hwndDP 

Handle to a DTP control. 

iC%r 
INT value specifying which month calendar color to set. This value can be one of the 
following: 

cfr 

Value 

MCSC_BACKGROUND 

MCSC_MONTHBK 

MCSC_TEXT 

MCSC_ TITLEBK 

MCSC_ TITLETEXT 

MCSC_ TRAILINGTEXT 

Meaning 

Set the background color displayed between months. 

Set the background color displayed within the month. 

Set the color used to display text within a month. 

Set the background color displayed in the calendar's title. 

Set the color used to display text within the calendar's title. 

Set the color used to display header day and trailing day 
text. Header and trailing days are the days from the 
previous and following months that appear on the current 
month calendar. 

COLORREF value that represents the color that will be set for the specified area of 
the month calendar. 

Return Values 
Returns a COLORREF value that represents the previous color setting for the specified 
portion of the month calendar control if successful. Otherwise, this message returns -1. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 



Chapter 12 Date and Time Picker Controls 211 

Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DateTime_SetMonthCalFont 
Sets the font to be used by the date and time picker control's child month calendar 
control. You can use this macro or explicitly send the DTM_SETMCFONT message. 

Parameters 
hwndDP 

Handle to a DTP control. 

hFont 
Handle to the font that will be set. 

fRedraw 
Specifies whether the control should be redrawn immediately upon setting the font. 
Setting this parameter to TRUE causes the control to redraw itself. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DateTime_SetRange 
Sets the minimum and maximum allowable system times for a date and time picker 
control. You can use this macro or send the DTM_SETRANGE message explicitly. 

:a:OOf/.!)ateIi~~-'SetRang~f' 
·:HW~~:~~d!)];~\.··· . 

. PWQ:IUt . flags;j . 
'lPSYST£MTrillE l:'o:;vS:fimeArrav 



212 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndDT 

Handle to a DTP control. 

flags 
Value that specifies which range values are valid. This value can be a combination of 
the following: 

GDTR_MAX 

/pSys TimeArray 

The second element in the SVSTEMTIME structure array is valid 
and will be used to set the maximum allowable system time. 

The first element in the SVSTEMTIME structure array is valid and 
will be used to set the minimum allowable system time. 

Address of a two-element array of SVSTEMTIME structures. The first element of the 
SVSTEMTIME array contains the minimum allowable time. The second element of the 
SVSTEMTIME array contains the maximum allowable time. It is not necessary to fill 
an array element that is not specified in the flags parameter. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DateTime_SetSystemtime 
Sets a date and time picker control to a given date and time. You can use this macro 
or send the DTM_SETSVSTEMTIME message explicitly. 

Parameters 
hwndDT 

Handle to a DTP control. 



Chapter 12 Date and Time Picker Controls 213 

flag 
Value that specifies the action that should be performed. This should be set to one of 
the following values: 

GDT _NONE Set the DTP control to "no date" and clear its check box. When this 

IpSysTime 

flag is specified, IpSysTime is ignored. This flag applies only to 
DTP controls that are set to the DTS_SHOWNONE style. 

Set the DTP control according to the data within the SYSTEMTIME 
structure pointed to by IpSysTime. 

Address of a SYSTEMTIME structure that contains the system time information by 
which to set the DTP control. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Date and Time Picker Control Notification Messages 

DTN_CLOSEUP 
Sent by a date and time picker control when the user closes the drop-down month 
calendar. The month calendar is closed when the user chooses a date from the month 
calendar or clicks the drop-down arrow while the calendar is open. 

Parameters 
IpNmhdr 

Address of an NMHDR structure that contains information about the notification 
message. 



214 Volume 4 Microsoft Windows Common Controls 

Return Values 
The return value for this notification is not used. 

Remarks 
DTP controls do not maintain a static child month calendar control. The DTP control 
destroys the child month calendar control prior to sending this notification. So your 
application must not rely on a static window handle for the control's child month 
calendar. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

DTN_DROPDOWN,DTM_GETMONTHCAL 

DTN_DATETIMECHANGE 
Sent by a date and time picker control whenever a change occurs. This notification 
message is sent in the form of a WM_NOTIFY message. 

Parameters 
IpChange 

Address of an NMDATETIMECHANGE structure containing information about the 
change that took place in the control. 

Return Values 
The owner of the control must return zero. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 



Chapter 12 Date and Time Picker Controls 215 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Sent by a date and time picker control when the user activates the drop-down month 
calendar. 

D:r:Ni6r1C}i>IJO~tf,ili; c ••.• c •••• 1 

1 pNnlh~r ;"·(LPNMHn:R}lPltraJll:. 

Parameters 
/pNmhdr 

Address of an NMHDR structure that contains information about the notification 
message. 

Return Values 
The return value for this notification is not used. 

Remarks 
One task that your notification handler may need to perform is to customize the 
dropdown month-calendar control. For instance, if you do not want "Go To Today", you 
need to set the control's MCS_NOTODAY style. To get a handle to the month-calendar 
control, send the DTP control a DTM_GETMONTHCAL message. You can then use this 
handle and SetWindowLong to set the desired month-calendar style. 

DTP controls do not maintain a static child month calendar control. The DTP control 
creates a new month calendar control before sending this notification message. 
Additionally, the DTP control destroys the child control when it is not active (visible). 
So your application must not rely on a static window handle for the control's child month 
calendar. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



216 Volume 4 Microsoft Windows Common Controls 

DTN_CLOSEUP,DTM_GETMONTHCAL 

Sent by a date and time picker control to request text to be displayed in a callback field. 
This notification message is sent in the form of a WM_NOTIFY message. 

Parameters 
IpNMFormat 

Address of an NMDATETIMEFORMAT structure containing information regarding this 
instance of the notification message. The structure contains the substring that defines 
the callback field and receives the formatted string that the control will display. 

Return Values 
The owner of the control must return zero. 

Remarks 
Handling this message allows the owner of the control to provide a custom string that 
the control will display. (For additional information about callback fields, see Callback 
Fields.) 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or latei. 
Header: Declared in commctr!.h. 

DTN_FORMATQUERV 
Sent by a date and time picker control to retrieve the maximum allowable size of the 
string that will be displayed in a callback field. This notification message is sent in the 
form of a WM_NOTIFY message. 



Chapter 12 Date and Time Picker Controls 217 

DTN_FORMATQUERY 
lpDTFormatQuery = (LPNMDATETIMEFORMATQUERY) lParam; 

Parameters 
IpDTFormatQuery 

Address of an NMDATETIMEFORMATOUERY structure containing information about 
the callback field. The structure contains a substring that defines a callback field and 
receives the maximum allowable size of the string that will be displayed in the 
callback field. 

Return Values 
The owner of the control must calculate the maximum possible width of the text that will 
be displayed in the callback field, set the szMax member of the 
NMDATETIMEFORMATOUERY structure, and return zero. 

Remarks 
Handling this message prepares the control to adjust for the maximum size of the string 
that will be displayed in a particular callback field. This enables the control to properly 
display output at all times, reducing flicker within the control's display. (For additional 
information about callback fields, see Callback Fields.) 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTN_USERSTRING 
Sent by a date and time picker control when a user finishes editing a string in the control. 
This notification message is only sent by DTP controls that are set to the 
DTS_APPCANPARSE style. This message is sent in the form of a WM_NOTIFY 
message. 



218 Volume 4 Microsoft Windows Common Controls 

Parameters 
IpDTstring 

Address of an NMDATETIMESTRING structure that contains information about the 
instance of the notification message. 

Return Values 
The owner of the control must return zero. 

Remarks 
Handling this message allows the owner to provide custom responses to strings entered 
into the control by the user. The owner must be prepared to parse the input string and 
take action if necessary. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

DTN_ WMKEYDOWN 
Sent by a date and time picker control when the user types in a callback field. This 
message is sent in the form of a WM_NOTIFY message. 

Parameters 
IpDTKeystroke 

Address of an NMDATETIMEWMKEYDOWN structure containing information about 
this instance of the notification. The structure includes information about the key that 
the user typed, the substring that defines the callback field, and the current system 
date and time. 

Return Values 
The owner of the control must return zero. 



Chapter 12 Date and Time Picker Controls 219 

Remarks 
Handling this message allows the owner of the control to provide specific responses to 
keystrokes within the callback fields of the control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NM_KILLFOCUS (date time) 
Notifies a date and time picker control's parent window that the control has lost the input 
focus. NM_KILLFOCUS is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The return value is ignored. 

Windows NT/2000: Requires Windows NT 3.51 or later 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_SETFOCUS (date time) 
Notifies a date and time picker control's parent window that the control has received the 
input focus. NM_SETFOCUS is sent in the form of a WM_NOTIFY message. 



220 Volume 4 Microsoft Windows Common Controls 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The return value is ignored. 

Windows NT/2000: Requires Windows NT 3.51 or later 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Date and Time Picker Control Structures 

NMDATETIMECHANGE 
Contains information about a change that has taken place in a date and time picker 
control. This structure is used with the DTN_DATETIMECHANGE notification message. 

Members 
nmhdr 

NMHDR structure that contains information about the notification message. 

dwFlags 
Value that indicates if the control was set to "no date" status (for DTS_SHOWNONE 
only). This flag also specifies whether the contents of the st member are valid and 
contain current time information. This value can be one of the following: 

GDT _NONE The control is set to "no date" status. The "no date" status applies 
only to controls that are set to the DTS_SHOWNONE style. 

The control is not set to the "no date" status. The st member 
contains the current date and time. 



st 

Chapter 12 Date and Time Picker Controls 221 

SYSTEMTIME structure that contains information about the current system date and 
time. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMDATETIMEFORMAT 
Contains information about a portion of the format string that defines a callback field 
within a date and time picker control. It carries the substring that defines the callback 
field and contains a buffer to receive the string that will be displayed in the callback field. 
This structure is used with the DTN_FORMAT notification message. 

Members 
nmhdr 

NMHDR structure that contains information about the notification message. 

pszFormat 

st 

Address of the substring that defines a DTP control callback field. The substring 
comprises one or more "X" characters followed by a NULL character. (For more 
information about callback fields, see Callback Fields.) 

SYSTEMTIME structure that contains the date and time to be formatted. 

pszDispJay 
Address of a null-terminated string that contains the display text of the control. By 
default, this is the address of the szDisplay member of this structure. 

It is acceptable to have pszDisplay point to an existing string. In this case, you don't 
need to assign a value to szDisplay. However, the string that pszDisplay pOints to 



222 Volume 4 Microsoft Windows Common Controls 

must remain valid until another DTN_FORMAT notification is sent, or until the control 
is destroyed. 

szDisplay 
64-character buffer that is to receive the zero-terminated string that the DTP control 
will display. It is not necessary to fill the entire buffer. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMDATETIMEFORMATQUERY 
Contains information about a date and time picker control callback field. It contains 
a substring (taken from the control's format string) that defines a callback field. The 
structure receives the maximum allowable size of the text that will be displayed in the 
callback field. This structure is used with the DTN_FORMATQUERY notification 
message. 

Members 
nmhdr 

NMHDR structure that contains information about this notification message. 

pszFormat 
Address of a substring that defines a DTP control callback field. The substring is one 
or more "X" characters followed by a NULL. (For additional information about callback 
fields, see Cal/back Fields.} 

szMax 
SIZE structure that must be filled with the maximum size of the text that will be 
displayed in the callback field. 

Version 4.70 and later of Comctl32.dll. 



Chapter 12 Date and Time Picker Controls 223 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMDATETIMESTRING 
Contains information specific to an edit operation that has taken place in a date and time 
picker control. This message is used with the DTN_USERSTRING notification message. 

i)!"~f"!$tf'\Kct' ta~I!IMDATEfI!'IESTRrNG{ 
! 'pt(',' ·!·nlllh~". 

':'; ." . s#f'fi;>ijps:zij§~f'$tJ.'ing;. 

i~[;:~~~~~~f~~!~~~la9s:~;,',r .'. .,' ..... . 
i:>.f!~ttl~j:.:r.E,s;:rR.r~tl. '. l:'AW·"{I','N1>1IlATETlMESTR 1 HG ::. 

Members 
nmhdr 

NMHDR structure that contains information about this notification message. 

pszUserString 

st 

Address of the zero-terminated string that the user entered. 

SYSTEMTIME structure that must be filled in by the owner when handling the 
DTN_USERSTRING notification message. 

dwFlags 
Return field. Set this member to GDT _VAll D to indicate that the st member is valid or 
to GDT _NONE to set the control to "no date" status (DTS_SHOWNONE style only). 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



224 Volume 4 Microsoft Windows Common Controls 

NMDATETIMEWMKEVDOWN 
Carries information used to describe and handle a DTN_WMKEYDOWN notification 
message. 

Members 
nmhdr 

NMHDR structure that contains information about the notification message. 

nVirtKey 
Virtual key code that represents the key that the user pressed. 

pszFormat 

st 

Zero-terminated substring, taken from the format string, that defines the callback field. 
The substring is one or more "X" characters, followed by a NULL. 

SYSTEMTIME structure containing the current date and time from the DTP control. 
The owner of the control must modify the time information based on the user's 
keystroke. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



CHAPTER 13 

Drag List Boxes 

A drag list box is a special type of list box that enables the user to drag items from 
one position to another. An application can use a drag list box to display strings in a 
particular sequence and allow the user to change the sequence by dragging the items 
into position. 

Using Drag List Boxes 
Drag list boxes have the same window styles and process the same messages as 
standard list boxes. To create a drag list box, first create a standard list box and then 
call the MakeDragList function. To convert a list box in a dialog box to a drag list box, 
you can call MakeDragList when the WM_INITDIALOG message is processed. 

Drag List Box Messages 
A drag list box notifies the parent window of drag events by sending it a drag list 
message. The parent window must process the drag list message. 

The drag list box registers this message when the MakeDragList function is called. 
To get the message identifier (numeric value) of the drag list message, call the 
RegisterWindowMessage function and specify the DRAGLlSTMSGSTRING value. 

The wParam parameter of the drag list message is the control identifier for the drag 

225 

list box. The IParam parameter is the address of a DRAGLISTINFO structure, which 
contains the notification code for the drag event and other information. The return value 
of the message depends on the notification. 

Drag List Box Notification Messages 
The drag list notification message, which is identified by the uNotification member 
of the DRAGLISTINFO structure included with the drag list message, can be 
DL_BEGINDRAG, DL_DRAGGING, DL_CANCELDRAG, or DL_DROPPED. 

The DL_BEGINDRAG notification message is sent when the cursor is on a list item and 
the user clicks the left mouse button. The parent window can return TRUE to begin the 
drag operation or FALSE to disallow dragging. In this way, the parent window can 
enable dragging for some list items and disable it for others. You can determine which 
list item is at the specified location by using the LBltemFromPt function. 

If dragging is in effect, the DL_DRAGGING notification message is sent whenever the 
mouse is moved, or at regular intervals if the mouse is not being moved. The parent 
window should first determine the list item under the cursor by using LBltemFromPt and 



226 Volume 4 Microsoft Windows Common Controls 

then draw the insert icon by using the Drawlnsert function. By specifying TRUE for the 
bAutoScrol/ parameter of LBltemFromPt, you can cause the list box to scroll by one line 
if the cursor is above or below its client area. The value you return for this notification 
specifies the type of mouse cursor that the drag list box should set. 

The DL_CANCELDRAG notification message is sent if the user cancels a drag 
operation by clicking the right mouse button or pressing the ESC key. The 
DL_DROPPED notification message is sent if the user completes a drag operation by 
releasing the left mouse button, even if the cursor is not over a list item. The drag list box 
releases the mouse capture before sending either notification. The return value of these 
two notifications is ignored. 

Drag List Box Reference 

Drag List Box Functions 

Drawlnsert 
Draws the insert icon in the parent window of the specified drag list box. 

Parameters 
handParent 

Handle to the parent window of the drag list box. 

hLB 
Handle to the drag list box. 

nltem 
Identifier of the icon item to be drawn. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

LBltemFromPt 

Chapter 13 Drag List Boxes 227 

Retrieves the index of the item at the specified point in a list box. 

Parameters 
hLB 

Handle to the list box to check. 

pt 
POINT structure that contains the screen coordinates to check. 

bAutoScroll 
Scroll flag. If this parameter is TRUE and the point is directly above or below the 
list box, the function scrolls the list box by one line and returns -1 . Otherwise, the 
function does not scroll the list box. 

Return Values 
Returns the item identifier if the point is over a list item, or -1 otherwise. 

Remarks 
The LBltemFromPt function only scrolls the list box if a minimum amount of time has 
passed since it last did so. Timing prevents the list box from scrolling too quickly if the 
function is called repeatedly in rapid succession-for example, when DL_DRAGGING 
notification messages or WM_MOUSEMOVE messages are processed. 

If the specified point is outside the client area of the list box and bAutoScroll is TRUE, 
the function scrolls the list box instead of returning an item identifier. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctl32.lib. 



228 Volume 4 Microsoft Windows Common Controls 

MakeDragList 
Changes the specified single-selection list box to a drag list box. 

Parameters 
hLB 

Handle to the single-selection list box. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

Drag List Box Notifications 

Notifies the drag list box's parent window that the user has clicked the left mouse button 
on an item. A drag list box sends DL_BEGINDRAG in the form of a drag list message. 

Parameters 
idCtl 

Control identifier of the drag list box. 

pDraglnfo 
Address of a DRAGLISTINFO structure that contains the DL_BEGINDRAG 
notification code, the handle to the drag list box, and the cursor position. 

Return Values 
Return TRUE to begin the drag operation, or FALSE to prevent the drag operation. 



Chapter 13 Drag List Boxes 229 

Remarks 
When processing this notification message, a window procedure typically determines the 
list item at the specified cursor position by using the LBltemFromPt function. It then 
returns TRUE or FALSE, depending on whether the item should be dragged. Before 
returning TRUE, the window procedure should save the index of the list item so the 
application knows which item to move or copy when the drag operation is completed. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

DL_ CANCELDRAG 
Signals that the user has canceled a drag operation by clicking the right mouse button or 
pressing the ESC key. A drag list box sends DL_CANCELDRAG to its parent window in 
the form of a drag list message. 

Parameters 
idCtl 

Control identifier of the drag list box. 

pDraglnfo 
Address of a DRAGLISTINFO structure that contains the DL_CANCELDRAG 
notification code, the handle to the drag list box, and the cursor position. 

Return Values 
No return value. 

Remarks 
By processing the DL_CANCELDRAG notification message, an application can reset its 
internal state to indicate that dragging is not in effect. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



230 Volume 4 Microsoft Windows Common Controls 

Signals that the user has moved the mouse while dragging an item. DL_DRAGGING is 
also sent periodically during dragging even if the mouse is not moved. A drag list box 
sends this notification to its parent window in the form of a drag list message. 

Parameters 
idetl 

Control identifier of the drag list box. 

pDraglnfo 
Address of a DRAGLISTINFO structure that contains the DL_DRAGGING notification 
code, the handle to the drag list box, and the cursor position. 

Return Values 
The return value determines the type of mouse cursor that the drag list should set; it can 
be the DL_STOPCURSOR, DL_COPYCURSOR, or DL_MOVECURSOR value. If any 
other value is returned, the cursor does not change. 

Remarks 
A window procedure typically processes the DL_DRAGGING notification message by 
determining the item under the cursor and then drawing an insert icon. To get the item 
under the cursor, use the LBltemFromPt function, specifying TRUE for the bAutoScrol/ 
parameter. This option causes the drag list box to scroll periodically if the cursor is above 
or below its client area. To draw the insert icon, use the Drawlnsert function. 

Windows NT/2000: Requires Windows NT 3.51 or later 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Signals that the user has completed a drag operation by releasing the left mouse button. 
A drag list box sends DL_DROPPED to its parent window in the form of a drag list 
message. 



DLBEGINDRAG 
1dCtl = (WPARAM)(1nt) wParam: 
pOraglrifo == (LPARAM)(LPORAGLlSTINJO) lParam: 

Parameters 
idCtl 

Control identifier of the drag list box. 

pDraglnfo 

Chapter 13 Drag List Boxes 231 

Address of a DRAGLISTINFO structure that contains the DL_DROPPED notification 
code, the handle to the drag list box, and the cursor position. 

Return Values 
No return value. 

Remarks 
This notification is normally processed by inserting the item being dragged into the list in 
front of the item under the cursor. To retrieve the index of the item at the cursor position, 
use the LBltemFromPt function. Note that the DL_DROPPED notification message is 
sent even if the cursor is not on a list item. In that case, LBltemFromPt returns -1. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Drag List Box Structures 

DRAGLISTINFO 
Contains information about a drag event. The pOinter to DRAGLISTINFO is passed as 
the IParam parameter of the drag list message. 



232 Volume 4 Microsoft Windows Common Controls 

Members 
uNotification 

Notification code that specifies the type of drag event. This member can be one of the 
following values: 

DL_BEGINDRAG 

DL_CANCELDRAG 

DL_DRAGGING 

DL_DROPPED 

hWnd 

The user has clicked the left mouse button on a list item. 

The user has canceled the drag operation by clicking the right 
mouse button or pressing the ESC key. 
The user has moved the mouse while dragging an item. 

The user has released the left mouse button, completing a 
drag operation. 

Handle to the drag list box. 

ptCursor 
POINT structure that contains the current x- and y-coordinates of the mouse cursor. 

Windows NT/2000: Requires Windows NT 3.51 or later 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



CHAPTER 14 

Flat Scroll Bars 

Flat Scroll Bars 
Microsoft Internet Explorer Version 4.0 introduces a new visual technology called flat 
scroll bars. Functionally, flat scroll bars behave just like normal scroll bars. The only 
difference is they are not displayed three-dimensionally. 

The following illustration shows a window that contains flat scroll bars. 

Note Flat scroll bar APls are implemented in version 4.71 and later of Comctl32.dll. 

Using Flat Scroll Bars 
This section describes how to implement flat scroll bars in your application. 

Before You Begin 

233 

To use the flat scroll bar APls, you must include Commctrl.h in your source files and link 
with ComctI32.lib. 

Adding Flat Scroll Bars to a Window 
To add flat scroll bars to a window, calilnitializeFlatSB, passing the handle to the 
window. Instead of using the standard scroll bar APls to manipulate your scroll bars, you 
must use the FlatSB_xxxx versions. There are flat scroll bar APls for setting and 
retrieving the scroll information, range, and position. If flat scroll bars haven't been 
initialized for your window, the flat scroll bar APls will defer to the corresponding 



234 Volume 4 Microsoft Windows Common Controls 

standard APls, if any exist. This allows you to turn flat scroll bars on and off without 
having to write conditional code. 

Because an application may have set custom metrics for its flat scroll bars, they are not 
automatically updated when system metrics change. When the system scroll bar metrics 
change, a WM_SETTINGCHANGE message is broadcast, with its wParam set to 
SPLSETNONCLIENTMETRICS. To update flat scroll bars to the new system metrics, 
applications must handle this message, and change the flat scroll bar's metric­
dependent properties explicitly. 

To update your scroll bar properties, use FlatSB_SetScroIiProp. The following code 
fragment changes a flat scroll bar's metric dependent properties to the current system values. 

Enhancing Flat Scroll Bars 
FlatSB_SetScroliProp allows you to modify the flat scroll bars to customize the look of 
your window. You can set the width of a vertical scroll bar and the height of a horizontal 
scroll bar. You can also set the width (horizontal scroll bar) and the height (vertical scroll 
bar) of the scroll bar's direction arrows. 

FlatSB_SetScroliProp also allows you to customize how the flat scroll bars are displayed. 
By changing the WSB_PROP _ VSTYLE and WSB_PROP _HSTYLE properties, you can 
set the type of scroll bar that you wish to use. Three styles are available: 

A standard flat scroll bar is displayed. When the mouse 
moves over a direction button or the thumb, that portion of 
the scroll bar will be displayed in 3-D. 

A standard flat scroll bar is displayed. When the mouse 
moves over a direction button or the thumb, that portion of 
the scroll bar will be displayed in inverted colors. 

A normal, nonflat scroll bar is displayed. No special visual 
effects will be applied. 



Chapter 14 Flat Scroll Bars 235 

Removing Flat Scroll Bars 
If you wish to remove flat scroll bars from your window, call the UninitializeFlatSB API, 
passing the handle to the window. This API only removes flat scroll bars from your 
window at run time. You do not need to call this API when your window is destroyed. 

Flat Scroll Bar Reference 

Flat Scroll Bar Functions 

InitializeFlatSB 
Initializes flat scroll bars for a particular window. 

!')';~;',:,.,)." .. 

Parameters 
hwnd 

Handle to the window that will receive flat scroll bars. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
This API must be called before any other flat scroll bar APls are called. The window will 
receive flat scroll bars by default. The scroll bar style can be changed with the 
FlatSB_SetScroliProp API. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). " 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 



236 Volume 4 Microsoft Windows Common Controls 

FiatS B _EnableScroll Bar 
Enables or disables one or both flat scroll bar direction buttons. If flat scroll bars are not 
initialized for the window, this function calls the standard EnableScrollBar API. 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

wSBflags 
Parameter that specifies the scroll bar type. It can be one of the following values: 

SB_BOTH Enables or disables the direction buttons on the horizontal and vertical 
scroll bars. 

SB_HORZ Enables or disables the direction buttons on the horizontal scroll bar. 

SB_ VERT Enables or disables the direction buttons on the vertical scroll bar. 

wArrows 
Parameter that specifies whether the scroll bar arrows are enabled or disabled and 
indicates which arrows are enabled or disabled. It can be one of the following values: 

ESB_DISABLE_BOTH Disables both direction buttons on the specified scroll bar. 

ESB_DISABLE_UP 

ESB_ENABLE_BOTH 

Return Values 

Disables the down direction button on the vertical 
scroll bar. 

Disables the left direction button on the horizontal 
scroll bar. 
Disables the left direction button on the horizontal scroll 
bar or the up direction button on the vertical scroll bar. 

Disables the right direction button on the horizontal 
scroll bar. 

Disables the right direction button on the horizontal scroll 
bar or the down direction button on the vertical scroll bar. 

Disables the up direction button on the vertical scroll bar. 

Enables both direction buttons on the specified scroll bar. 

Returns nonzero if the scroll bar changes, or zero otherwise. 



Chapter 14 Flat Scroll Bars 237 

'DRequirements 
Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

FlatSB_ GetScrolII nfo 
Retrieves the information for a flat scroll bar. If flat scroll bars are not initialized for the 
window, this function calls the standard GetScrolllnfo API. 

BOOl.FlatSB ..... GetSer:~ll Info( 
liW,ltD hwM. . 
int 'fnBa;. . ..... 
LP:S~R9ll.ltl.FOlp$i . 

); . 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

fnBar 
Parameter that specifies the scroll bar type. It can be one of the following values: 
S8_HaRZ Retrieves the information for the horizontal scroll bar. 
S8_VERT Retrieves the information for the vertical scroll bar. 

Ipsi 
Address of a SCROLLINFO structure that will receive the information for the specified 
scroll bar. The cbSize and fMask members of the structure must be filled out prior to 
calling FlatSB_GetScrolllnfo. The fMask member specifies which properties should 
be retrieved and can be any combination of the following values: 
SIF _PAGE Retrieves the page information for the flat scroll bar. This will be 

placed in the nPage member of the SCROLLINFO structure. 
SIF _pas Retrieves the position information for the flat scroll bar. This will be 

placed in the nPos member of the SCROLLINFO structure. 
SIF _RANGE Retrieves the range information for the flat scroll bar. This will be 

placed in the nMin and nMax members of the SCROLLINFO 
structure. 

SIF _ALL A combination of SIF _PAGE, SIF _pas, and SIF _RANGE. 



238 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

FlatSB _ GetScrol1 Pos 
Retrieves the thumb position in a flat scroll bar. If flat scroll bars are not initialized for the 
window, this function calls the standard GetScrollPos API. 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

code 
Parameter that specifies the scroll bar type. It can be one of the following values: 
SB_HORZ Retrieves the thumb position of the horizontal scroll bar. 

Retrieves the thumb position of the vertical scroll bar. 

Return Values 
Returns the current thumb position of the specified flat scroll bar. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 



Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

FlatSB _ GetScrol1 Prop 

Chapter 14 Flat Scroll Bars 239 

Retrieves the properties for a flat scroll bar. This function can also be used to determine 
if InitialileFlatSB has been called for this window. 

~.OOL .~.n at$~_G.:tt$er.ollP.rop( . 
.. HWMq "hJind," .• 

lfINt1:ndex ~ 
.. ~CPXNtj· (iV/iT iJ~ . 
); . 
Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

index 
Parameter that determines what pValue represents and which property is being 
retrieved. It can be one of the following values: 

WSB_PROP _CXHSCROLL pValue is an address of an INT value that receives 
the width, in pixels, of the direction buttons in a 
horizontal scroll bar. 

WSB_PROP _CXHTHUMB pValue is an address of an INT value that receives 
the width, in pixels, of the thumb in a horizontal scroll 
bar. 

WSB_PROP _CXVSCROLL pValue is an address of an INT value that receives 
the width, in pixels, of a vertical scroll bar. 

WSB_PROP _CYHSCROLL pValue is an address of an INT value that receives 
the height, in pixels, of a horizontal scroll bar. 

WSB_PROP _CYVSCROLL pValue is an address of an INT value that receives 
the height, in pixels, of the direction buttons in a 
vertical scroll bar. 

WSB_PROP _CYVTHUMB pValue is an address of an INT value that reCeives 
the height, in pixels, of the thumb in a vertical 
scroll bar. 

WSB_PROP _HBKGCOLOR pValue is an address of a COLORREF value that 
receives the background color in a horizontal 
scroll bar. 

(continued) 



240 Volume 4 Microsoft Windows Common Controls 

(continued) 

WSB_PROP _HSTYLE pValue is an address of an INT value that receives 
one of the following visual effects for the horizontal 
scroll bar. 
FSB_ENCARTA_MODE 

A standard flat scroll bar is displayed, When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar is displayed in 3-D, 

FSB_FLAT _MODE 

A standard flat scroll bar is displayed, When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar is displayed in inverted 
colors, 

FSB_REGULAR_MODE 

A normal, nonflat scroll bar is displayed, No special 
visual effects are applied, 

WSB_PROP _PALETTE pValue is an address of an HPALETTE value that 
receives the palette that a scroll bar uses when 
drawing, 

WSB_PROP _VBKGCOLOR pValue is an address of a COLORREF value that 
receives the background color in a vertical scroll bar. 

WSB_PROP _VSTYLE pValue is an address of an INT value that receives 
one of the following visual effects for the vertical scroll 
bar. 

pValue 

FSB_ENCART A_MODE 

A standard flat scroll bar is displayed, When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar is displayed in 3-D, 
FSB_FLAT _MODE 

A standard flat scroll bar is displayed, When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar is displayed in inverted 
colors, 

FSB_REGULAR_MODE 

A normal, nonflat scroll bar is displayed, No special 
visual effects are applied, 

pValue is an address of an INT value that receives 
the WS_HSCROLL and WS_ VSCROLL style bits 
contained by the current window, 

Address that receives the requested data, This parameter depends on the flag passed 
in index, 



Chapter 14 Flat Scroll Bars 241 

Return Values 
Returns nonzero if successful, or zero otherwise. If index is WSB_PROP _HSTYLE, the 
return is nonzero if InitializeFlatSB has been called for this window, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

FlatSB _ GetScrol1 Range 
Retrieves the scroll range for a flat scroll bar. If flat scroll bars are not initialized for the 
window, this function calls the standard GetScroliRange API. 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

code 
Parameter that specifies the scroll bar type. It can be one of the following values: 

S8_HORZ Retrieves the scroll range of the horizontal scroll bar. 

Retrieves the scroll range of the vertical scroll bar. 

IpMinPos 
Address of an INT value that receives the minimum scroll range value. 

IpMaxPos 
Address of an INT value that receives the maximum scroll range value. 

Return Values 
Returns nonzero if successful, or zero otherwise. 



242 Volume 4 Microsoft Windows Common Controls 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

FlatSB_SetScrollinfo 
Sets the information for a flat scroll bar. If flat scroll bars are not initialized for the 
window, this function calls the standard SetScrollinfo API. 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

fnBar 
Parameter that specifies the scroll bar type. It can be one of the following values: 

SB_HORZ Sets the information for the horizontal scroll bar. 

Sets the information for the vertical scroll bar. 

/psi 
Address of a SCROLLINFO structure that contains the new information for the 
specified scroll bar. The cbSize and fMask members of the structure must be filled in 
prior to calling FlatSB_SetScrolllnfo. The fMask member specifies which members 
of the structure contain valid information and can be any combination of the following 
values: 

SIF _DISABLENOSCROLL Disables the scroll bar if the new information would 
cause the scroll bar to be removed. 

SIF _ALL A combination of SIF _PAGE, SIF _POS, and 
SIF_RANGE. 



SIF_RANGE 

fRedraw 

Chapter 14 Flat Scroll Bars 243 

Sets the page information for the flat scroll bar. The 
nPage member of the SCROLLINFO structure must 
contain the new page value. 

Sets the position information for the flat scroll bar. The 
nPos member of the SCROLLINFO structure must 
contain the new position value. 

Sets the range information for the flat scroll bar. The 
nMin and nMax members of the SCROLLINFO 
structure must contain the new range values. 

Parameter that specifies whether the scroll bar should be redrawn immediately to 
reflect the change. If this parameter is TRUE, the scroll bar is redrawn; if it is FALSE, 
the scroll bar is not redrawn. 

Return Values 
Returns the current scroll position. If the call to FlatSB_SetScrollinfo changes the scroll 
position, then the previous position is returned. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

FlatSB_SetScroliPos 
Sets the current position of the thumb in a flat scroll bar. If flat scroll bars are not 
initialized for the window, this function calls the standard SetScroliPos API. 



244 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

code 
Parameter that specifies the scroll bar type. It can be one of the following values: 

SB_HORZ Sets the thumb position of the horizontal scroll bar. 

SB_VERT Sets the thumb position of the vertical scroll bar. 

nPos 
Parameter that specifies the new thumb position. 

(Redraw 
Parameter that specifies whether the scroll bar should be redrawn immediately to 
reflect the change. If this parameter is TRUE, the scroll bar is redrawn; if it is FALSE, 
the scroll bar is not redrawn. 

Return Values 
Returns the previous position of the thumb in the specified flat scroll bar. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

FlatSB _ SetScrol1 Prop 
Sets the properties for a flat scroll bar. 



Parameters 
hwnd 

Chapter 14 Flat Scroll Bars 245 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

index 
Parameter that determines what newValue represents and which property is being 
set. This parameter can be one of the following values: 

WSB_PROP _CXHSCROLL newValue is an INT value that represents the width, 
in pixels, of the direction buttons in a horizontal 
scroll bar. 

WSB_PROP _CXHTHUMB newValue is an INT value that represents the width, 
in pixels, of the thumb in a horizontal scroll bar. 

WSB_PROP _CXVSCROLL newValue is an INT value that represents the width, 
in pixels, of the vertical scroll bar. 

WSB_PROP _CYHSCROLL newValue is an INT value that represents the height, 
in pixels, of the horizontal scroll bar. 

WSB_PROP _CYVSCROLL newValue is an INT value that represents the height, 
in pixels, of the direction buttons in a vertical scroll 
bar. 

WSB_PROP _CYVTHUMB newValue is an INT value that represents the height, 
in pixels, of the thumb in a vertical scroll bar. 

WSB_PROP _HBKGCOLOR newValue is a COLORREF value that represents 
the background color in a horizontal scroll bar. 

WSB_PROP _HSTYLE newValue is one of the following values that 
changes the visual effects for the horizontal scroll 
bar. 

FSB_ENCART A_MODE 

A standard flat scroll bar is displayed. When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar will be displayed in 3-D. 

FSB_FLAT _MODE 

A standard flat scroll bar is displayed. When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar will be displayed in 
inverted colors. 

FSB_REGULAR_MODE 

A normal, nonflat scroll bar is displayed. No special 
visual effects will be applied. 

(continued) 



246 Volume 4 Microsoft Windows Common Controls 

(continued) 

WSB_PROP_PALETTE 

newValue 

newValue is an HPALETTE value that represents 
the new palette that the scroll bar should use when 
drawing. 

newValue is a COLORREF value that represents 
the background color in a vertical scroll bar. 

newValue is one of the following values that 
changes the visual effects for the vertical scroll bar: 

FSB_ENCART A_MODE 

A standard flat scroll bar is displayed. When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar will be displayed in 3-D. 

FSB_FLAT _MODE 

A standard flat scroll bar is displayed. When the 
mouse moves over a direction button or the thumb, 
that portion of the scroll bar will be displayed in 
inverted colors. 

FSB_REGULAR_MODE 

A normal, nonflat scroll bar is displayed. No special 
visual effects will be applied. 

New value to set. This parameter depends on the flag passed in index. 

fRedraw 
Parameter that specifies whether the scroll bar should be redrawn immediately to 
reflect the change. If this parameter is TRUE, the scroll bar is redrawn; if it is FALSE, 
the scroll bar is not redrawn. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 



Chapter 14 Flat Scroll Bars 247 

FlatSB _ SetScrol1 Range 
Sets the scroll range of a flat scroll bar. If flat scroll bars are not initialized for the 
window, this function calls the standard SetScrollRange API. 

1pt, ff!l~~~~.;"~~·~~.~·~~i~~'~~~";~;~\~~; 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

code 
Parameter that specifies the scroll bar type. It can be one of the following values: 

SB_HORZ Sets the scroll range of the horizontal scroll bar. 

SB_ VERT Sets the scroll range of the vertical scroll bar. 

nMinPos 
Parameter that specifies the new minimum scroll range value. 

nMaxPos 
Parameter that specifies the new maximum scroll range value. 

fRedraw 
Parameter that specifies whether the scroll bar should be redrawn immediately to 
reflect the change. If this parameter is TRUE, the scroll bar is redrawn; if it is FALSE, 
the scroll bar is not redrawn. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 



248 Volume 4 Microsoft Windows Common Controls 

FlatSB_ShowScroliBar 
Shows or hides a flat scroll bar. If flat scroll bars are not initialized for the window, this 
function calls the standard ShowScroliBar API. 

Parameters 
hwnd 

Handle to the window that contains the flat scroll bar. This window handle must have 
been passed previously in a call to InitializeFlatSB. 

code 
Parameter that specifies the scroll bar type. It can be one of the following values: 

SB_BOTH Shows or hides the horizontal and vertical scroll bars. 

SB_HORZ Shows or hides the horizontal scroll bar. 

Shows or hides the vertical scroll bar. 

fShow 
Parameter that specifies whether the scroll bar should be shown or hidden. If this 
parameter is nonzero, the scroll bar will be shown; if it is zero, the scroll bar will be 
hidden. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 



Chapter 14 Flat Scroll Bars 249 

UninitializeFlatSB 
Uninitializes flat scroll bars for a particular window. The specified window will revert to 
having standard scroll bars. 

HRe:SU~T,Un1 n1t1iJl1ze.Fl atSIH 
HWNO·hWr{d 

f: 

Parameters 
hwnd 

Handle to the window with the flat scroll bars that will be uninitialized. 

Return Values 
Returns one of the following values: 

One of the window's scroll bars is currently in use. The operation cannot 
be completed at this time. 

The window doesn't have flat scroll bars initialized. 

The operation was successful. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctl32.lib. 





251 

CHAPTER 15 

Header Controls 

A header control is a window that is usually positioned above columns of text or 
numbers. It contains a title for each column, and it can be divided into parts. The user 
can drag the dividers that separate the parts to set the width of each column. The 
following illustration shows a header control that has labeled columns that give detailed 
information about files in a directory . 

., Inc32 I!I~ m 

" 

Commctrl.h 
o Commdlg.h o Compddk.h 
DCompman.h 
o Compobj.h 
DDde.h o DdemLh 

17.8KB 
1 8. 5KB H File 
24.2KB H File 
584 b... H File 
4.91 KB H File 

Using Header Controls 

Sunday, June 26, 1994 8: 00 AM 
Monday, May 09, 1994 8:00AM 
Monday, May 09, 1994 8:00 AM 
Monday, May 09, 1994 8:00AM 
Friday, March 1 t 1994 8:00 AM 
Monday, May 09, 1994 8:00 AM 
Monday, May 09, 1994 8: 00 AM 

You can create a header control by using the CreateWindowEx function, specifying the 
We_HEADER window class and the appropriate header styles. This window class is 
registered when the common control dynamic link library (DLL) is loaded. To ensure that 
this DLL is loaded, use the InitCommonControlsEx function. After you create a header 
control, you can divide it into parts, set the text in each part, and control the appearance 
of the window by using header window messages. 

Header Control Size and Position 
Typically, you must set the size and position of a header control to fit within the 
boundaries of a particular rectangle, such as the client area of a window. By using the 
HOM_LAYOUT message, you can retrieve the appropriate size and position values from 
the header control. 

When sending HOM_LAYOUT, you specify the address of an HOlAYOUT structure that 
contains the coordinates of the rectangle that the header control is to occupy and 
provides a pointer to a WINOOWPOS structure. The control fills the WINOOWPOS 



252 Volume 4 Microsoft Windows Common Controls 

Items 

structure with size and position values appropriate for positioning the control along the 
top of the specified rectangle. The height value is the sum of the heights of the control's 
horizontal borders and the average height of characters in the font currently selected into 
the control's device context. 

If you want to use HOM_LAYOUT to set the initial size and position of a header control, 
set the initial visibility state of the control so that it is hidden. After sending 
HOM_LAYOUT to retrieve the size and position values, you can use the 
SetWindowPos function to set the new size, position, and visibility state. 

A header control typically has several header items that define the columns of the 
control. You add an item to a header control by sending the HOM_INSERTITEM 
message to the control. The message includes the address of an HOITEM structure. 
This structure defines the properties of the header item, which can include a string, a 
bitmapped image, an initial size, and an application-defined 32-bit value. 

The fmt member of an item's HOITEM structure can include either the HDF _STRING or 
HDF _BITMAP flag to indicate whether the control displays the item's string or bitmap. If 
you want to display both a string and a bitmap, create an owner-drawn item by setting 
the fmt member to include the HDF _OWNERDRAW flag. The HOITEM structure also 
specifies formatting flags that tell the control whether to center, left-align, or right-align 
the string or bitmap in the item's rectangle. 

HOM_INSERTITEM returns the index of the newly added item. You can use the index in 
other messages to set properties or retrieve information about the item. You can delete 
an item by using the HOM_OELETEITEM message, specifying the index of the item to 
delete. 

You can use the HOM_SETITEM message to set the properties of an existing header 
item and the HOM_GETITEM message to retrieve the current properties of an item. To 
retrieve a count of the items in a header control, use the HOM_GETITEMCOUNT 
message. 

Owner-Drawn Header Controls 
You can define individuai items of a header control to be owner-drawn items. Using this 
technique gives you more control than you would otherwise have over the appearance of 
a header item. 

You can use the HOM_INSERTITEM message to insert a new owner-drawn item into a 
header control or the HOM_SETITEM message to change an existing item to an owner­
drawn item. Both messages include the address of an HOITEM structure, which should 
have the fmt member set to the HDF _OWNERDRAW value. 

When a header control must draw an owner-drawn item, it sends the WM_ORAWITEM 
message to the parent window. The wParam parameter of the message is the child 
window identifier of the header control, and the IParam parameter is an address of a 



Chapter 15 Header Controls 253 

DRAWITEMSTRUCT structure. The parent window uses the information in the structure 
to draw the item. For an owner-drawn item in a header control, the DRAWITEMSTRUCT 
structure contains the following information. 

Member Description 

CtlType 

CtllD 
itemlD 

itemAction 
itemState 

hwndltem 

hDC 
rcltem 

item Data 

ODT _HEADER owner-drawn control type. 

Child-window identifier of the header control. 

Index of the item to be drawn. 

ODA_DRAWENTIRE drawing-action flag. 

ODS_SELECTED drawing-action flag if the cursor is on the item and the 
mouse button is down. Otherwise, this member is zero. 

Handle to the header control. 

Handle to the device context of the header control. 

Coordinates of the header item to be drawn. The coordinates are 
relative to the upper-left corner of the header control. 

Application-defined 32-bit value associated with the item. 

Header Control Notification Messages 
A header control sends notification messages to its parent window when the user clicks 
or double-clicks an item, when the user drags an item divider, and when the attributes of 
an item change. The parent window receives the notifications in the form of 
WM_NOTIFY messages. The following notifications are used with header controls. 

Notification 

HDN_BEGINTRACK 

HDN_DIVIDERDBLCLICK 

HDN_ENDTRACK 

HDN_ITEMCHANGED 

HDN_ITEMCHANGING 

HDN_ITEMCLICK 

HDN_ITEMDBLCLICK 

HDN_TRACK 

Description 

Signals the start of divider dragging. 

Indicates that the user double-clicked a divider. 

Signals the end of divider dragging. 

Indicates a change in the attributes of an item. 

Indicates that the attributes of an item are about to 
change. 

Indicates that the user clicked an item. 

Indicates that the user double-clicked an item. 

Indicates that the user dragged a divider. 

Default Header Control Message Processing 
This section describes the window messages handled by the window procedure for the 
WC_HEADER window class. 



254 Volume 4 Microsoft Windows Common Controls 

Message 

WM_CREATE 

WM_DESTROY 

WM_ERASEBKGND 

WM_GETDLGCODE 

WM_GETFONT 

WM_LBUTIONDBLCLK 

WM_LBUTIONDOWN 

WM_LBUTIONUP 

WM_NCCREATE 

WM_NCDESTROY 

Creating a Header Control 

Processing performed 

Initializes the header control. 

Uninitializes the header control. 

Fills the background of the header control using the 
control's current background color. 

Returns a combination of the DLGC_WANTIAB and 
DLGC_WANTARROWS values. 

Returns the handle to the current font, which is used by 
the header control to draw its text. 

Captures mouse input. If the mouse cursor is on a divider, 
the control sends the HDN_BEGINTRACK notification 
message and begins dragging the divider. If the cursor is 
on an item, the item is displayed in the pressed state. 

Same as the WM_LBUTIONDBLCLK message. 

Releases the mouse capture. If the control was tracking 
mouse movement, it sends the HDN_ENDTRACK 
notification message and redraws the header control. 
Otherwise, the control sends the HDN_ITEMCLICK 
notification message and redraws the header item that 
was clicked. 

If a divider is being dragged, the control sends the 
HDN_ TRACK notification message and displays the item 
at the new position. If the left mouse button is down and 
the cursor is on an item, the item is displayed in the 
pressed state. 

Allocates and initializes an internal data structure. 

Frees the resources allocated by the header control after 
the header control is uninitialized. 

Paints the invalid region of the header control. If the 
wParam parameter is non-NULL, the control assumes that 
the value is an HDC and paints using that device context. 

Sets the cursor shape, depending on whether the cursor is 
on a divider or in a header item. 

Selects a new font handle into the device context for the 
header control. 

The following example demonstrates how to create a header control and position it along 
the top of the parent window's client area. The control is initially hidden. The 
HDM_LAYOUT message is used to calculate the size and position of the control within 
the parent window. The control is then repositioned and made visible. 



Chapter 15 Header Controls 255 

.1"E!llteHellder· creates a header control that is 
the top 



256 Volume 4 Microsoft Windows Common Controls 

Adding an Item to a Header Control 
The following example demonstrates how to use the HDM_INSERTITEM message and 
the HDITEM structure to add an item to a header control. The new item consists of a 
string that is left-justified within the item rectangle. 

Header Control Updates in Internet Explorer 
Header controls in Microsoft Internet Explorer support the following new features. 

Image Lists 
New messages fOi this feature include HDM_GETIMAGELIST and 
HDM_SETIMAGELIST. The header control structure HDITEM has been updated to 
support image lists. Image lists can be used with current bitmap support. 

Callback Items 
Currently, callback support includes header item text and images. Setting a header 
item's text to the LPSTR_ TEXTCALLBACK value or its image to the 
UMAGECALLBACK value will cause the control to send an HDN_GETDISPINFO 
message to request callback information as needed. HDN_GETDISPINFO is 
supported by the new NMHDDISPINFO structure. 



Chapter 15 Header Controls 257 

Custom Item Ordering 
The new messages that support this feature are: HDM_GETORDERARRAY, 
HDM_SETORDERARRAY, and HDM_ORDERTOINDEX. 

Drag-and-Drop Manipulation 
Drag-and-drop reordering of header items is now available. Implement drag-and-drop 
support by including the HDS_DRAGDROP style when creating the control. By 
default, the header control automatically handles drag-and-drop overhead and graphic 
effects. However, the owner of the control can manually support drag-and-drop 
manipulation by handling the HDN_BEGINDRAG and HDN_ENDDRAG notification 
messages. While handling these notifications, the owner might need to send 
HDM_CREATEDRAGIMAGE and HDM_SETHOTDIVIDER messages. 

Hot Tracking 
When this feature is enabled, the item that is under the pointer will be highlighted. You 
can check whether or not hot tracking is enabled by calling SystemParameterslnfo. 
To enable hot tracking in a header control, create it with the HDS_HOTTRACK style. 

Text, Bitmaps, and Images 
Items can simultaneously display item text, a bitmap, and an image. 

Header Control Styles 
Header controls have a number of styles, described below, that determine the control's 
appearance and behavior. You set the initial styles when you create the header control. 
To retrieve and change the styles after creating the control, use the GetWindowLong 
and SetWindowLong functions. 

HDS_BUTTONS 
Each item in the control looks and behaves like a push button. This style is useful if an 
application carries out a task when the user clicks an item in the header control. For 
example, an application could sort information in the columns differently depending on 
which item the user clicks. 

HDS_DRAGDROP 
Version 4.70. Allows drag-and-drop reordering of header items. 

HDS_FIL TERBAR 
Version 5.80. Include a filter bar as part of the standard header control. This bar 
allows users to conveniently apply a filter to the display. Calls to HDM_LAYOUT will 
yield a new size for the control and cause the list view to update. 

HDS_FULLDRAG 
Version 4.70. Causes the header control to display column contents even while the 
user resizes a column. 

HDS_HIDDEN 
Indicates a header control that is intended to be hidden. This style does not hide the 
control. Instead, when you send the HDM_LA YOUT message to a header control with 
the HDS_HIDDEN style, the control returns zero in the cy member of the 
WINDOWPOS structure. You would then hide the control by setting its height to zero. 



258 Volume 4 Microsoft Windows Common Controls 

This can be useful when you want to use the control as an information container 
instead of a visual control. 

HDS_HORZ 
Creates a header control with a horizontal orientation. 

HDS_HOTTRACK 
Version 4.70. Enables hot tracking. 

Header Control Reference 

Header Control Messages 

HDM_CLEARFILTER 
Clears the filter for a given header control. You can send this message explicitly or use 
the HeadecClearFilter macro. 

Parameters 
hwnd 

Handle to the header control. 

Column value indicating which filter to clear. 

Return Values 
Returns the index of the filter control being cleared. 

Remarks 
If the column value is specified as -1, all the filters will be cleared, and the 
HDN_FIL TERCHANGE notification will be sent only once. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 15 Header Controls 259 

'~~l$9i; 
Headec Clear All Fi Iters 

HOM_CREATEORAGIMAGE 
Creates a semi-transparent version of an item's image for use as a dragging image. 
You can send this message explicitly or use the HeadecCreateDraglmage macro. 

~;OMj;~EdiflfV.Glt-ij.G~:..·; . 

;i~.:~t~;.b;~'~~~~c·(.t11ti?. 

Parameters 
ilndex 

Zero-based index of the item within the header control. The image assigned to this 
item is the basis for the transparent image. 

Return Values 
Returns a handle to an image list that contains the new image as its only element. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HOM OELETEITEM 
Deletes an item from a header control. You can send this message explicitly or use 
the HeadecDeleteltem macro. 

MO~t.J1ELETEI;r:EM ... 

Parameters 
index 

Index of the item to delete. 



260 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HOM EOITFIL TER 
Starts editing the specified filter. 

Parameters 

Value specifying the column to edit. 

fDiscardChanges 
Flag that specifies how to handle the user's editing changes. Use this flag to specify 
what to do if the user is in the process of editing the filter when the message is sent. 

TRUE Discard the changes made by the user. 

FALSE Accept the changes made by the user. 

Return Values 
Returns the index of the filter being edited. 

Version 5.80 and latar of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDM_CLEARFIL TER 



Chapter 15 Header Controls 261 

HDM_GETBITMAPMARGIN 
Retrieves the width of the bitmap margin for a header control. You can send this 
message explicitly or use the Header_GetBitmapMargin macro. 

Hp~;GETa[tMAP:l1p,R~l~. . 

.. ········~·t~;~t~~."~'~~;:'·.l 
.. ~r .. q' ' .... 

Return Values 
Returns the width of the bitmap margin in pixels. If the bitmap margin was not previously 
specified, the default value of 3*GetSystemMetrics(CX_EDGE} is returned. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDM_SETBITMAPMARGIN 

HDM_GETIMAGELIST 
Retrieves the handle to the image list that has been set for an existing header control. 
You can send this message explicitly or use the Header_GetlmageList macro. 

Return Values 
Returns a handle to the image list set for the header control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 



262 Volume 4 Microsoft Windows Common Controls 

Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HDM_GETITEM 
Retrieves information about an item in a header control. You can send this message 
explicitly or use the HeadecGetltem macro. 

Parameters 
index 

Index of the item for which information is to be retrieved. 

phdi 
Address of an HDITEM structure. When the message is sent, the mask member 
indicates the type of information being requested. When the message returns, the 
other members receive the requested information. If the mask member specifies zero, 
the message returns TRUE but copies no information to the structure. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
If the HDI_ TEXT flag is set in the mask member of the HDITEM structure, the control 
may change the pszText member of the structure to point to the new text instead of 
filling the buffer with the requested text. Applications should not assume that the text will 
always be placed in the requested buffer. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDM_GETITEMCOUNT 
Retrieves a count of the items in a header control. You can send this message explicitly 
or use the HeadecGetltemCount macro. 



HDM_GETITEMCOUNT 
wParam .. 0; 
1 Param :;: 0: 

Return Values 

Chapter 15 Header Controls 263 

Returns the number of items if successful, or -1 otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDM_GETITEMRECT 
Retrieves the bounding rectangle for a given item in a header control. You can send this 
message explicitly or use the HeadecGetltemRect macro. 

HDM;'GtrI:'f'EM~gf f ,~ '. .' ....... ' .' 

;:·.~P:ar4ni ;:~{WPAitA.MJ(iniJ N1Hiex:< 
.. ;:·;:~i~~it~:~~kp1-~~·)~J ~I.t~ol&e·tt :; 

Parameters 
ilndex 

Zero-based index of the header control item for which to retrieve the bounding 
rectangle. 

IpltemRect 
Address of a RECT structure that receives the bounding rectangle information. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



264 Volume 4 Microsoft Windows Common Controls 

HDM_GETORDERARRAY 
Retrieves the current left-to-right order of items in a header control. You can send this 
message explicitly or use the Header_GetOrderArray macro. 

Parameters 
iSize 

Number of integer elements that IpiArray can hold. This value must be equal to the 
number of items in the control (see HDM_GETITEMCOUNT). 

IpiArray 
Address of an array of integers that receive the index values for items in the header. 
The number of elements in this array is specified in iSize and must be equal to or 
greater than the number of items in the control. For example, the following code 
fragment will reserve enough memory to hold the index values: 

Return Values 
Returns nonzero if successful, and the buffer at IpiArray receives the item number for 
each item in the header control in the order in which they appear from left to right. 
Otherwise, the message returns zero. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



Chapter 15 Header Controls 265 

HDM_ GETUNICODEFORMAT 
Retrieves the UNICODE character format flag for the control. You can send this 
message explicitly or use the HeadecGetUnicodeFormat macro. 

:~il~~r~o:~~;'; ...... . 
Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Remarks 
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h . 

. " '". ~.' , . 
.'.:: .. 
,. < 

HDM_SETUNICODEFORMAT 

Tests a point to determine which header item, if any, is at the specified point. 

Parameters 
phdhti 

Address of an HDHITTESTINFO structure that contains the position to test and 
receives information about the results of the test. 

Return Values 
Returns the index of the item at the specified position, if any, or -1 otherwise. 



266 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDM_INSERTITEM 
Inserts a new item into a header control. You can send this message explicitly or use the 
Header_lnsertltem macro. 

1:ij!~"iIJ!IJr 
Parameters 
index 

Index of the item after which the new item is to be inserted. The new item is inserted 
at the end of the header control if index is greater than or equal to the number of 
items in the control. If index is zero, the new item is inserted at the beginning of the 
header control. 

phdi 
Address of an HDITEM structure that contains information about the new item. 

Return Values 
Returns the index of the new item if successful, or -1 otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Retrieves the correct size and position of a header control within the parent window. 
You can send this message explicitly or use the Header_Layout macro. 

:~~i~t .... , ·""'i",",.7. 



Parameters 
p/ayout 

Chapter 15 Header Controls 267 

Address of an HDLAVOUT structure. The pre member specifies the coordinates of 
a rectangle, and the pwpos member receives the size and position for the header 
control within the rectangle. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDM_ORDERTOINDEX 
Retrieves an index value for an item based on its order in the header control. You can 
send this message explicitly or use the Header_OrderTolndex macro. 

Parameters 
iOrder 

Order in which the item appears within the header control, from left to right. For 
example, the index value of the item in the far left column would be O. The value 
for the next item to the right would be 1, and so on. 

Return Values 
Returns INT that indicates the item index. If iOrder is invalid (negative or too large), 
the return equals iOrder. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



268 Volume 4 Microsoft Windows Common Controls 

HDM_SETBITMAPMARGIN 
Sets the width of the margin, specified in pixels, of a bitmap in an existing header 
control. You can send this message explicitly or use the Header_SetBitmapMargin 
macro. 

Parameters 
iWidth 

Width, specified in pixels, of the margin that surrounds a bitmap within an existing 
header control. 

Return Values 
Returns the width of the bitmap margin, in pixels. If the bitmap margin was not previously 
specified, the default value of 3*GetSystemMetrics(CX_EDGE) is returned. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl,h. 

HDM_GETBITMAPMARGIN 

HDM_SETFIL TERCHANGETIMEOUT 
Sets the timeout interval between the time a change takes place in the filter attributes 
and the posting of an HDN_FIL TERCHANGED notification. You can send this message 
explicitly or use the Header_SetFilterChangeTimeout macro. 

Parameters 

Timeout value, in milliseconds. 



Chapter 15 Header Controls 269 

Return Values 
Returns the index of the filter control being modified. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDN_FIL TERCHANGE 

HDM_SETHOTDIVIDER 
Changes the color of a divider between header items to indicate the destination of an 
external drag-and-drop operation. You can send this message explicitly or use the 
HeadecSetHotDivider macro. 

Parameters 
flag 

Value specifying the type of value represented by dwlnpufValue. This value can be 
one of the following: 

TRUE Indicates that dwlnputValue holds the client coordinates of the pOinter. 

FALSE Indicates that dwlnpufValue holds a divider index value. 

dwlnpufValue 
Value held in dwlnpufValue is interpreted depending on the value of flag. 

If flag is TRUE, dwlnpufValue represents the x- and y-coordinates of the pOinter. The 
x-coordinate is in the low word, and the y-coordinate is in the high word. When the 
header control receives the message, it highlights the appropriate divider based on 
the dwlnpufValue coordinates. 

If flag is FALSE, dwlnpufValue represents the integer index of the divider to be 
highlighted. 



270 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns a value equal to the index of the divider that the control highlighted. 

Remarks 
This message creates an effect that a header control automatically produces when it has 
the HDS_DRAGDROP style. The HDM_SETHOTDIVIDER message is intended to be 
used when the owner of the control handles drag-and-drop operations manually. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HDM_SETIMAGELIST 
Assigns an image list to an existing header control. You can send this message explicitly 
or use the HeadecSetlmageList macro. 

Parameters 
himl 

Handle to an image list. 

Return Values 
Returns the handle to the image list previously associated with the control. Returns 
NULL upon failure or if no image list was set previously. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 



Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HOM SETITEM 

Chapter 15 Header Controls 271 

Sets the attributes of the specified item in a header control. You can send this message 
explicitly or use the Header_Setltem macro. 

Parameters 
ilndex 

Current index of the item whose attributes are to be changed. 

phd/tern 
Address of an HDITEM structure that contains item information. When this message 
is sent, the mask member of the structure must be set to indicate which attributes are 
being set. 

Return Values 
Returns nonzero upon success, or zero otherwise. 

Remarks 
The HDITEM structure that supports this message supports item order and image list 
information. By using these members, you can control the order in which items are 
displayed and specify images to appear with items. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HOM_SETOROERARRAY 
Sets the left-to-right order of header items. You can send this message explicitly or use 
the HeadecSetOrderArray macro. 



272 Volume 4 Microsoft Windows Common Controls 

Parameters 
iSize 

Size of the buffer at IpiArray, in elements. This value must equal the value returned by 
HDM_GETITEMCOUNT. 

IpiArray 
Address of an array that specifies the order in which items should be displayed, from 
left to right. For example, if the contents of the array are {2,0, 1}, the control displays 
item 2, item 0, and item 1, from left to right. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HDM_SETUNICODEFORMAT 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time rather than having to re-create 
the control. You can send this message explicitly or use the 
Header_SetUnicodeFormat macro. 

Parameters 
fUnicode 

Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 



Chapter 15 Header Controls 273 

Remarks 
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDM_GETUNICODEFORMAT 

Header Control Macros 

HDM_SETUNICODEFORMAT 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time rather than having to re-create 
the control. You can send this message explicitly or use the 
Header _SetUnicodeFormat macro. 

Parameters 
(Unicode 

Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Remarks 
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message. 

Version 4.00 and later of Comctl32.dll. 



274 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDM_GETUNICODEFORMAT 

Header _ ClearFilter 
Clears the filter for a given header control. You can use this macro or send the 
HDM_CLEARFIL TER message explicitly. 

Parameters 
hwnd 

Handle to the header control. 

Value specifying the column of the filter to be cleared. Specifying -1 will clear all of 
the filters. 

Remarks 
If the column value is specified as -1, all the filters will be cleared and the 
HDN_FIL TERCHANGE notification will be sent only once. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HeadecClearAIiFilters 



Chapter 15 Header Controls 275 

Header _ CreateDraglmage 
Creates a transparent version of an item image within an existing header control. You 
can use this macro or send the HDM_CREATEDRAGIMAGE message explicitly. 

HIMAGElIST H.eader _CreateDr.aglmage( . 
IIWK[)hwndHlJ. . .. '. . 
fn't'11hfie:x ' . 

,)i', 

Parameters 
hwndHD 

Handle to a header control. 

ilndex 
Zero-based index of the item within the header control. The image assigned to this 
item is used as the basis for the transparent image. 

Return Values 
Returns a handle to an image list that contains the new image as its only element. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Header _Deleteltem 
Deletes an item from a header control. You can use this macro or send 
the HDM_DELETEITEM message explicitly. 

nOOL ijeaderJl~:r~'telter.t 
·':hlmdItD.· ..,.'. 

Parameters 
hwndHD 

Handle to the header control. 

index 
Index of the item to delete. 



276 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The HeadecDeleteltem macro is defined as follows: 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Header _EditFilter 
Starts editing the specified filter control. 

Parameters 
hwnd 

Handle to the header control. 

Value specifying the column to edit. 

fDiscardChanges 
Flag that specifies how to handle the user's editing changes. Use this flag to specify 
what to do if the user is in the process of editing the filter when the message is sent. 

TRUE 
Discard the changes made by the user. 

FALSE 
Accept the changes made by the user. 

Return Values 
Returns the index of the filter control being edited. 



Chapter 15 Header Controls 277 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDM_EDITFIL TER 

Header _ GetBitmapMargin 
Retrieves the width of the margin (in pixels) of a bitmap in an existing header control. 
You can use this macro or send the HDM_GETBITMAPMARGIN message explicitly. 

Parameters 
hwnd 

Handle to a header control. 

Return Values 
Returns the width of the bitmap margin in pixels. If the bitmap margin was not previously 
specified, the default value of 3*GetSystemMetrics(CX_EDGE} is returned. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Header _ SetBitmapMargin 



278 Volume 4 Microsoft Windows Common Controls 

Header _ GetlmageList 
Retrieves the handle to the image list that has been set for an existing header control. 
You can use this macro or send the HDM_GETIMAGELIST message explicitly. 

Ml~AG(I"XS:l'~.d~r:"$~t~ma~~f;tl8;Wii1'~'ii_Qb 

Parameters 
hwndHD 

Handle to a header control. 

Return Values 
Returns the handle to the image list that is set for the header control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Header _ Getltem 
Retrieves information about an item in a header control. You can use this macro or send 
the HDM_GETITEM message explicitly. 

8OQt.;lI~a4~ri.:Si~tftem{" . 
··.IlWND.h~~iI.;' < 

'I.~~"1n<tex~ , '. 

I"PKf,HfEM phdf 
);L.;'· . 

Parameters 
hwndHD 

Handle to the header control. 

index 
Index of the item for which information is to be retrieved. 

phdi 
Address of an HDiTEM structure. When the message is sent, the mask member 
indicates the type of information being requested. When the message returns, the 



Chapter 15 Header Controls 279 

other members receive the requested information. If the mask member specifies zero, 
the message returns TRUE but copies no information to the structure. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
If the HDI_ TEXT flag is set in the mask member of the HDITEM structure, the control 
may change the pszText member of the structure to point to the new text instead of 
filling the buffer with the requested text. Applications should not assume that the text will 
always be placed in the requested buffer. 

The HeadecGetltem macro is defined as follows: 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Header _ GetltemCount 
Retrieves a count of the items in a header control. You can use this macro or send the 
HDM_GETITEMCOUNT message explicitly. 

Parameters 
hwndHD 

Handle to the header control. 

Return Values 
Returns the number of items if successful, or -1 otherwise. 

Remarks 
The HeadecGetltemCount macro is defined as follows: 



280 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Header _ GetltemRect 
Retrieves the bounding rectangle for a given item in a header control. You can use this 
macro or send the HDM_GETITEMRECT message explicitly. 

Parameters 
hwndHD 

Handle to a header control. 

i1ndex 
Zero-based index of the header control item for which to retrieve the bounding 
rectangle. 

IpltemRect 
Address of a RECT structure that receives the bounding rectangle information. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



Chapter 15 Header Controls 281 

Header _ GetOrder Array 
Retrieves the current left-to-right order of items in a header control. You can use this 
macro or send the HDM_GETORDERARRAY message explicitly. 

Parameters 
hwndHD 

Handle to a header control. 

iSize 
Number of integer elements that IpiArray can hold. This value must be equal to 
or greater than the number of items in the control (see HDM_GETITEMCOUNT). 

IpiArray 
Address of an array of integers that receive the index values for items in the header. 
The number of elements in this array is specified in iSize and must be equal to or 
greater than the number of items in the control. For example, the following code 
fragment will reserve enough memory to hold the index values: 

Return Values 
Returns nonzero if successful, and the buffer at IpiArray receives the item number 
of each item in the header control in the order in which they appear from left to right. 
Returns zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



282 Volume 4 Microsoft Windows Common Controls 

Header _ GetU n icodeFormat 
Retrieves the UNICODE character format flag for the control. You can use this macro or 
send the HDM_GETUNICODEFORMAT message explicitly. 

Parameters 
hwnd 

Handle to the control. 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Header _SetUnicodeFormat 

Header _Insertltem 
Inserts a new item into a header control. You can use this macro or send 
the HOM_'NSERT'TEM message explicitly. 

Parameters 
hwndHD 

Handle to the header control. 



Chapter 15 Header Controls 283 

index 
Index of the item after which the new item is to be inserted. The new item is inserted 
at the end of the header control if index is greater than or equal to the number of 
items in the control. If index is zero, the new item is inserted at the beginning of the 
header control. 

phdi 
Address of an HOITEM structure that contains information about the new item. 

Return Values 
Returns the index of the new item if successful, or -1 otherwise. 

Remarks 
The Header_lnsertltem macro is defined as follows: 

4defjne··Heci3det2I!ls.~rtlt~m.Cbw~dtlD"1~d~';:1?hl1f) .. C\"" .......... . 

(tnt) Seni:lMe:ss1:I1JeYChwndflP) ~.·.,IH~M"':'lNSERnrEM.· 
..tt:fiARAM) «:l~$t~?H~i.:r~k)fpl\~~)) .• i· ........ '.J 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Header_Layout 
Retrieves the correct size and position of a header control within the parent window. You 
can use this macro or send the HOM_LAYOUT message explicitly. 

Parameters 
hwndHD 

Handle to the header control. 

playout 
Address of an HOLA YOUT structure. The pre member specifies the coordinates of a 
rectangle, and the pwpos member receives the size and position for the header 
control within the rectangle. 



284 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The Header_Layout macro is defined as follows: 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Header _ OrderTolndex 
Retrieves an index value for an item based on its order in the header control. You 
can use this macro or send the HDM_ORDERTOINDEX message explicitly. 

Parameters 
hwndHD 

Handle to a header control. 

iOrder 
Order that the item appears within the header control, from left to right. The index 
value of the item in the far left column would be 0, the next item to the right would 
be 1, and so on. 

Return Values 
Returns an INT that specifies the index of the item. If iOrder is invalid (negative or too 
large), the return equals iOrder. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 



Chapter 15 Header Controls 285 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Header _SetBitmapMargin 
Sets the width of the margin for a bitmap in an existing header control. You can use this 
macro or send the HDM_SETBITMAPMARGIN message explicitly. 

Parameters 
hwnd 

Handle to a header control. 

iWidth 
Width, specified in pixels, of the margin that surrounds a bitmap within an existing 
header control. 

Return Values 
Returns width of the bitmap margin in pixels. If the bitmap margin was not previously 
specified, the default value of 3*GetSystemMetrics(CX_EDGE} is returned. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Header _ GetBitmapMargin 



286 Volume 4 Microsoft Windows Common Controls 

Header _ SetFilterChangeTimeout 
Sets the timeout interval between the time a change takes place in the filter attributes 
and the posting of an HDN_FILTERCHANGED notification. You can use this macro or 
send the HDM_SETFIL TERCHANGETIMEOUT message explicitly. 

Parameters 
hwnd 

Handle to the header control. 

Timeout value, in milliseconds. 

Return Values 
Returns the index of the filter control being modified. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDN_FIL TERCHANGE, HDM_SETFIL TERCHANGETIMEOUT 

Header _ SetHotDivider 
Changes the color of a divider between header items to indicate the destination of 
an external drag-and-drop operation. You can use this macro or send the 
HDM_SETHOTDIVIDER message explicitly. 



Parameters 
hwndHD 

Handle to a header control. 

flag 

Chapter 15 Header Controls 287 

Value specifying how dwlnpufValue is to be interpreted. The value in this field can 
be one of the following: 

TRUE Indicates that dwlnpufValue holds client coordinates of the pointer. 

FALSE Indicates that dwlnpufValue holds a divider index value. 

dwlnpufValue 
Value held here is interpreted depending on the value of flag. 

If flag is TRUE, dwlnputValue represents the x- and y- client coordinates of the 
pOinter. The x-coordinate is in the low word, and the y-coordinate is in the high word. 
Upon receiving the message, the header control highlights the appropriate divider 
based on the dwlnpufValue coordinates. 

If flag is FALSE, dwlnpufValue represents the integer index of the divider that will be 
highlighted. 

Return Values 
Returns the index of the divider that the control highlighted. 

Remarks 
A header control set to the HDS_DRAGDROP style produces this effect automatically. 
This message is intended to be used when the owner of the control hanqles drag-and­
drop operations manually. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Header _SetlmageList 
Assigns an image list to an existing header control. You can use this macro or send the 
HDM_SETIMAGELIST message explicitly. 



288 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndHD 

Handle to a header control. 

himl 
Handle to an image list. 

Return Values 
Returns the handle to the image list previously assigned to the header control, or NULL if 
there is no previous image list. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Header _ Setltem 
Sets the attributes of the specified item in a header control. You can use this macro or 
send the HDM_SETITEM message explicitly. 

~<~ 

Parameters 
hwndHD 

Handle to a header control. 

ilndex 
Current index of the item whose attributes are to be changed. 



Chapter 15 Header Controls 289 

phdltem 
Address of an HDITEM structure that contains item information. When this message 
is sent, the mask member of the structure must be set to indicate which attributes are 
being set. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
The HDITEM structure that supports this macro supports item order and image list 
information. By using these members, you can control the order in which items are 
displayed and specify images to appear with items. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Header _ SetOrder Array 
Sets the left-to-right order of header items. You can use this macro or send the 
HDM_SETORDERARRAY message explicitly. 

Parameters 
hwndHD 

Handle to a header control. 

iSize 
Size of the buffer at JpiArray, in elements. This value must equal the value returned by 
HDM_GETITEMCOUNT. 

JpiArray 
Address of an array that specifies the order in which items should be displayed, from 
left to right. For example, if the contents of the array are {2,0, 1}, the control displays 
item 2, item 0, and item 1, from left to right. 



290 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Header_SetUnicodeFormat 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time rather than having to re-create 
the control. You can use this macro or send the HDM_SETUNICODEFORMAT message 
explicitly. 

Parameters 
hwnd 

Handle to the control. 

fUnicode 
Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 15 Header Controls 291 

~D~$'~"Afsq> 
Header _ GetUnicodeFormat 

Header Control Notification Messages 

HDN_BEGINDRAG 
Sent by a header control when a drag operation has begun on one of its items. 
This notification message is sent only by header controls that are set to the 
HDS_DRAGDROP style. This notification is sent in the form of a WM_NOTIFY 
message. 

Parameters 
pNMHeader 

Address of an NMHEADER structure containing information about the header item 
that is being dragged. 

Return Values 
To allow the header control to automatically manage drag-and-drop operations, return 
FALSE. If the owner of the control is manually performing drag-and-drop reordering, 
return TRUE. 

Remarks 
A header control defaults to automatically managing drag-and-drop reordering. 
Returning TRUE to indicate external (manual) drag-and-drop management allows the 
owner of the control to provide custom services as part of the drag-and-drop process. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



292 Volume 4 Microsoft Windows Common Controls 

HDN_BEGINTRACK 
Notifies a header control's parent window that the user has begun dragging a divider in 
the control (that is, the user has pressed the left mouse button while the mouse cursor is 
on a divider in the header control). This notification message is sent in the form of a 
WM_NOTIFY message. 

Parameters 
phdn 

Address of an NMHEADER structure that contains information about the header 
control and the item whose divider is to be dragged. 

Return Values 
Returns FALSE to allow tracking of the divider, or TRUE to prevent tracking. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDN_DIVIDERDBLCLICK 
Notifies a header control's parent window that the user double-clicked the divider area of 
the control. This notification message is sent in the form of a WM_NOTIFY message. 

Parameters 
phdn 

Address of an NMHEADER structure that contains information about the header 
control and the item whose divider was double-clicked. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Chapter 15 Header Controls 293 

Sent by a header control when a drag operation has ended on one of its items. This 
notification is sent as a WM_NOTIFY message. Only header controls that are set to the 
HDS_DRAGDROP style send this notification. 

Parameters 
pNMHeader 

Address of an NMHEADER structure containing information about the header item 
that was being dragged. 

Return Values 
To allow the control to automatically place and reorder the item, return FALSE. To 
prevent the item from being placed, return TRUE. 

Remarks 
If the owner is performing external (manual) drag-and-drop management, it must return 
FALSE. The owner then must reorder header items manually by sending 
HDM_SETITEM or HDM_SETORDERARRA Y. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HDN_ENDTRACK 
Notifies a header control's parent window that the user has finished dragging a divider. 
This notification message sent in the form of a WM_NOTIFY message. 



294 Volume 4 Microsoft Windows Common Controls 

Parameters 
phdn 

Address of an NMHEADER structure that contains information about the header 
control and the item whose divider was dragged. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDN_FIL TERBTNCLICK 
Notifies the header control's parent window when the filter button is clicked or 
in response to an HDM_SETITEM message. 

Parameters 
phdr 

Address of an NMHDFIL TERBTNCLICK structure that contains information about the 
header control and the header filter button. 

Return Values 
If you return TRUE, an HDN_FILTERCHANGED notification will be sent to the header 
control's parent window. This notification gives the parent window an opportunity to 
synchronize its user interface elements. Return FALSE if you don't want the notification 
sent. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 15 Header Controls 295 

NMHDFIL TERBTNCLICK 

HDN_FIL TERCHANGE 
Notifies the header control's parent window that the attributes of a header control filter 
are being changed or edited. 

~~4}~~E'~1~~;~~~~~):jJ~,~:~~~F;:: ',',' , , 
Parameters 
phdr 

Address of an NMHEADER structure that contains information about the header 
control and the header item, including the attributes that are about to change. 

Return Values 
No return value. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HDM_SETFIL TERCHANGETIMEOUT 

HDN_ GETDISPINFO 
Sent to the owner of a header control when the control needs information about 
a callback header item. This notification is sent as a WM_NOTIFY message. 



296 Volume 4 Microsoft Windows Common Controls 

Parameters 
pDisplnfo 

Address of an NMHDDISPINFO structure. On input, the fields of the structure specify 
what information is required and the item of interest. 

Remarks 
Fill the appropriate members of the structure to return the requested information to the 
header control. If your message handler sets the mask member of the NMHDDISPINFO 
structure to HDLDLSETITEM, the header control stores the information and will not 
request it again. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 
or later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HDN_ITEMCHANGED 
Notifies a header control's parent window that the attributes of a header item have 
changed. This notification message is sent in the form of a WM_NOTIFY message. 

Parameters 
phdr 

Address of an NMHEADER structure that contains information about the header 
control, including the attributes that have changed. 

Return Values 
No return value. 

, :: ~ " 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



Chapter 15 Header Controls 297 

HDN_ITEMCHANGING 
Notifies a header control's parent window that the attributes of a header item are about 
to change. This notification message is sent in the form of a WM_NOTIFY message. 

HUN.:.1TE<MCHANGING' ",." ,. " .. 
':;Ph(/I'~~(I:ipt4kltE~£rER} 'lP~tarn';, 

Parameters 
phdr 

Address of an NMHEADER structure that contains information about the header 
control and the header item, including the attributes that are about to change. 

Return Values 
Returns FALSE to allow the changes, or TRUE to prevent them. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDN_ITEMCLICK 
Notifies a header control's parent window that the user clicked the control. 
This notification message is sent in the form of a WM_NOTIFY message. 

'~~~~~!~:~:i.·{""( i'~ "1 )~!~~b:t~j~>.1 
Parameters 
phdr 

Address of an NMHEADER structure that identifies the header control and specifies 
the index of the header item that was clicked and the mouse button used to click the 
item. The pltem member is set to NULL. 

Return Values 
No return value. 

Remarks 
A header control sends this notification message after the user releases the left mouse 
button. 



298 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

HDN_ITEMDBLCLICK 
Notifies a header control's parent window that the user double-clicked the control. This 
notification message is sent in the form of a WM_NOTIFY message. Only header 
controls that are set to the HDS_BUnONS style send this notification. 

Parameters 
pnmhdr 

Address of an NMHEADER structure that contains information about this notification. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Notifies a header control's parent window that the user is dragging a divider in the 
header control. This notification message is sent in the form of a WM_NOTIFY message. 

Parameters 
phdr 

Address of an NMHEADER structure that contains information about the header 
control and the item whose divider is being dragged. 



Chapter 15 Header Controls 299 

Return Values 
Returns FALSE to continue tracking the divider, or TRUE to end tracking. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

NM_CUSTOMDRAW {header} 
Sent by a header control to notify its parent window about drawing operations. This 
notification is sent in the form of a WM_NOTIFY message. 

}IM.:.O.lSTOMDRAW 
lp:NMiu~.tcilil[jra1tL.;:it:(lPNMCUSTOMIlRAW)lparam; " 

Parameters 
IpNMCustomDraw 

Address of an NMCUSTOMDRAW structure that contains information about the 
drawing operation. The dwltemSpec member of this structure contains the index 
of the item being drawn and the IItemlParam member of this structure contains the 
item's IParam. 

Return Values 
The value your application can return depends on the current drawing stage. The 
dwDrawStage member of the associated NMCUSTOMDRA W structure holds a value 
that specifies the drawing stage. You must return one of the following values. 

When dwDrawStage equals CDDS_PREPAINT: 

CDRF _DODEFAUL T 
The control will draw itself. It will not send any additional NM_CUSTOMDRAW 
messages for this paint cycle. 

CDRF _NOTIFYITEMDRAW 
The control will notify the parent of any item-related drawing operations. It will send 
NM_CUSTOMDRAW notification messages before and after drawing items. 

CDRF _NOTIFYITEMERASE 
The control will notify the parent when an item will be erased. It will send 
NM_CUSTOMDRAW notification messages before and after eraSing items. 

CDRF _NOTIFYPOSTERASE 
The control will notify the parent after erasing an item. 



300 Volume 4 Microsoft Windows Common Controls 

CDRF _NOTIFYPOSTPAINT 
The control will notify the parent after painting an item. 

CDRF _NOTIFYSUBITEMDRAW 
Version 4.71. The control will notify the parent when a list view sub-item is being 
drawn. 

When dwDrawStage equals CDDS_ITEMPREPAINT: 

CDRF _NEWFONT 
Your application specified a new font for the item; the control will use the new font. 
For more information on changing fonts, see Changing Fonts and Colors. 

CDRF _SKIPDEFAUL T 
Your application drew the item manually. The control will not draw the item. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.02 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Using Custom Draw 

NM_RCLICK (header) 
Notifies a tree view control's parent window that the user has clicked the right mouse 
button within the control. This notification is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
Return nonzero to not allow the default processing, or zero to allow the default 
processing. 



Chapter 15 Header Controls 301 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_RELEASEDCAPTURE{heade~ 

Notifies a header control's parent window that the control is releasing mouse capture. 
This notification is sent in the form of a WM_NOTIFY message. 

NM:...llEI;'ASEDC~P:fURt.;' " 
,'1 prl~ti' ~' H,PN MflbR:J 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The control ignores the return value from this notification. 

Version 4.71 and later of Comctl32.dll 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 
or later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Header Control Structures 

HDHITTESTINFO 
Contains information about a hit test. This structure is used with the HDM_HITTEST 
message. This structure supersedes the HD_HITTESTINFO structure. 



302 Volume 4 Microsoft Windows Common Controls 

Members 
pt 

POINT structure that contains the point to be hit test, in client coordinates. 

flags 
Variable that receives information about the results of a hit test. This member can 
be one or more of the following values: 

HHT _ABOVE The point is above the header control's bounding 
rectangle. 

HHT _ONDIVIDER 

HHT _ONDIVOPEN 

HHT _ONFIL TER 

HHT_ONFILTERBUTTON 

HHT_TOLEFT 

The point is below the header control's bounding 
rectangle. 

The point is inside the header control's bounding 
rectangle but is not over a header item. 

The point is on the divider between two header 
items. 

The point is on the divider of an item that has a 
width of zero. Dragging the divider reveals the item 
instead of resizing the item to the left of the divider. 

The point is inside the header control's bounding 
rectangle. 

Version 5.80 The point is over the filter area. 

Version 5.80 The pOint is on the filter button. 

The point is to the left of the header control's 
bounding rectangle. 

The point is to the right of the header control's 
bounding rectangle. 

Two of these values can be combined, such as when the position is above and to the 
left of the client area. 

iltem 
If the hit test is successful, contains the index of the item at the hit test point. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



Chapter 15 Header Controls 303 

HDITEM 
Contains information about an item in a header control. This structure supersedes the 
HD_ITEM structure. 

Members 
mask 

Flags indicating which other structure members contain valid data or must be filled in. 
This member can be a combination of the following values: 

Flag Description 

HOI_BITMAP 

HOLFORMAT 

HOLFILTER 

HOLHEIGHT 

HOUMAGE 

HOLLPARAM 

HOLOROER 

HOI_TEXT 

HOI_WIOTH 

The hbm member is valid. 

The fmt member is valid. 

Version 5.80. The type and pvFilter members are valid. This is 
used to filter out the values specified in the type member. 

The cxy member is valid and specifies the item's height. 

Version 4.70. The i1mage member is valid and specifies the 
image to be displayed with the item. 

The IParam member is valid. 

Version 4.70. The iOrder member is valid and specifies the 
item's order value. 

The pszText and cchTextMax members are valid. 

The cxy member is valid and specifies the item's width. 



304 Volume 4 Microsoft Windows Common Controls 

cxy 
Width or height of the item. 

pszText 
Address of an item string. If the text is being retrieved from the control, this member 
must be initialized to point to a character buffer. If this member is set to 
LPSTR_ TEXTCALLBACK, the control will request text information for this item by 
sending an HDN_GETDISPINFO notification message. 

hbm 
Handle to the item bitmap. 

cchTextMax 
Length of the item string, in characters. If the text is being retrieved from the control, 
this member must contain the number of characters at the address specified by 
pszText. 

fmt 
Flags that specify the item's format. 

Set one of the following flags to specify text justification: 

Flag Description 

HDF_CENTER 

HDF_LEFT 

HDF_RIGHT 

The item's contents are centered. 

The item's contents are left-aligned. 

The item's contents are right-aligned. 

Set one of the following flags to control the display: 

Flag Description 

HDF_BITMAP 

HDF _BITMAP _ON_RIGHT 

HDF _OWNERDRAW 

HDF_STRING 

The item displays a bitmap. 

Version 4.70. The bitmap appears to the right of text. 
This does not affect an image from an image list 
assigned to the header item. 

The header control's owner draws the item. 

The item displays a string. 

The preceding value can be combined with: 

Flag Description 

HDF_IMAGE 

HDF _JUSTIFYMASK 

Version 4.70. Display an image from an image list. 
Specify the image list by sending an 
HDM_SETIMAGELIST message. Specify the index of 
the image in the ilmage member of this structure. 

Isolate the bits corresponding to the three justification 
flags listed in the preceding table. 



Flag 

HDF _RTLREADING 

IParam 
Application-defined item data. 

ilmage 

Chapter 15 Header Controls 305 

Description 

Normal windows display text left-to-right (L TR). 
Windows can be mirrored to display languages such 
as Hebrew or Arabic that read right-to-Ieft (RTL). 
Normally, header text is read in same direction as the 
text in its parent window. If HDF _RTLREADING is set, 
header text will read in the opposite direction from the 
text in the parent window. 

Version 4.70. Zero-based index of an image within the image list. The specified image 
will be displayed in the header item in addition to any image specified in the hbm 
field. If ilmage is set to UMAGECALLBACK, the control requests text information for 
this item by using an HDN_GETDISPINFO notification message. 

iOrder 
Version 4.70. Order in which the item appears within the header control, from left to 
right. That is, the value for the far left item is O. The value for the next item to the right 
is 1, and so on. 

The header control can display text, an image, and a bitmap for an item all at the 
same time. The alignment flags determine the order in which they appear. With 
HDF _LEFT or HDF _CENTER, the order is image, text, and then bitmap. With 
HDF _RIGHT the order is bitmap, image, and then text. 

type 
Version 5.80. Type of filter specified by pvFilter. The possible types include: 

Flag Description 

HDFT _ISTRING 

HDFT _ISNUMBER 

HDFT_HASNOVALUE 

pvFilter 

String data. 

Numerical data. 

Ignore pvFilter. 

Version 5.80. Address of an application-defined data item. The data filter type is 
determined by setting the flag value of the type member. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



306 Volume 4 Microsoft Windows Common Controls 

HDLAYOUT 
Contains information used to set the size and position of a header control. HOLAYOUT 
is used with the HOM_LAYOUT message. This structure supersedes the HO_LAYOUT 
structure. 

Members 
pre 

Address of a RECT structure that contains the coordinates of a rectangle that the 
header control will occupy. 

pwpos 
Address of a WINOOWPOS structure that receives information about the appropriate 
size and position of the header control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

HDTEXTFIL TER Structure 
Contains information about header control text filters. 

Members 
pszText 

[in] Address of the buffer containing the filter. 

cehTextMax 
[in] Value specifying the maximum size, in characters, for an edit control buffer. 

Version 5.80 and later of Comctl32.dll. 



Chapter 15 Header Controls 307 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMHDDISPINFO 
Contains information used in handling HDN_GETDISPINFO notification messages . 

. ·tYIYEl$}efi.:Strutt ··.t:a9rJ~HJ),~I2:~t~tO·;'{. 
·'~~MtlDR""l1d~'r>,;: . !~ ..•...•. 
i~f:' •.•.... .1nein~· 
tn ttl' . 'Ill 11$'1< ~...{ 

~:'LP1st~ 'P,s~T~~i!;. 
trit." . ,{cI1Tex'I;l4ax; 

·'tnt' 0nnla~e; 
... ' L:PAAAM. :lp:~t'~m; 

il<~~aDI·3P.itiF\l;,,;FAR.,* .. tfPNMHtiDLS~i~~;···;i .' 

Members 
hdr 

NMHDR structure containing information about this notification message. 

iltem 
Zero-based index of the item in the header control. 

mask 
Set of bit flags specifying which members of the structure must be filled in by the 
owner of the header control. This value can be a combination of the following values: 

HDI_ TEXT The pszText field must be filled in. 

HDUMAGE Version 4.70. The ilmage field must be filled in. 

HDI_LPARAM The IParam field must be filled in. 

HDI_DI_SETITEM Version 4.70. A return value. Indicates that the header control 
should store the item information and not ask for it again. 

pszText 
Address of a null-terminated string containing the text that will be displayed for the 
header item. 

cchTextMax 
Size of the buffer that pszText points to. 

ilmage 
Zero-based index of an image within the image list. The specified image will be 
displayed with the header item, but it does not take the place of the item's bitmap. If 



308 Volume 4 Microsoft Windows Common Controls 

ilmage is set to UMAGECALLBACK, the control requests image information for this 
item by using an HDN_GETDISPINFO notification message. 

IParam 
32-bit value to associate with the item. 

Version 4.70 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrLh. 

NMHDFIL TERBTNCLICK Structure 
Specifies or receives the attributes of a filter button click. 

Members 
hdr 

Handle of an NMHDR structure that contains additional information. 

iltem 
Zero-based index of the control to which this structure refers. 

rc 
Address of a RECT structure that contains the client rectangle for the filter button. 

Version 5.80 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 



Chapter 15 Header Controls 309 

HDN_FIL TERBTNCLICK 

NMHEADER 
Contains information about header control notification messages. This structure 
supersedes the HD_NOTIFY structure. 

Members 
hdr 

NMHDR structure that contains information about the notification message. 

iltem 
Zero-based index of the header item that is the focus of the notification message. 

iButton 
Value specifying the index of the mouse button used to generate the notification 
message. This member can be one of the following values: 

o Left button 

1 Right button 

2 Middle button 

pitem 
Optional pointer to an HDITEM structure containing information about the item 
specified by iltem. The mask member of the HDITEM structure indicates which of its 
members are valid. 

Remarks 
While most header control notifications pass a pointer to an NMHEADER structure, only 
some of them use the pltem member to pass an HDITEM structure. Those that do use 
pltem may not provide complete information about the item. To obtain more information 
about an item, use HDM_GETITEM. 



310 Volume 4 Microsoft Windows Common Controls 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



311 

CHAPTER 16 

Hot-Key Controls 

A hot-key control is a window that enables the user to enter a combination of keystrokes 
to be used as a hot-key. A hot key is a key combination that the user can press to 
perform an action quickly. For example, a user can create a hot key that activates a 
given window and brings it to the top of the z-order. The hot-key control displays the 
user's choices and ensures that the user selects a valid key combination. 

Using Hot-Key Controls 
When the user enters a key combination to be used as a hot key, the names of the keys 
appear in the hot-key control. A key combination can consist of a modifier key (such as 
CTRL, ALT, or SHIFT) and an accompanying key (such as a character key, an arrow 
key, a function key, and so on). 

After the user has chosen a key combination, the application retrieves the key 
combination from the hot-key control and uses it to set up a hot key in the system. The 
information retrieved from the hot-key control includes a flag indicating the modifier key 
and the virtual key code of the accompanying key. 

The application can use the information provided by a hot-key control to set up a global 
hot key or a thread-specific hot key. A global hot key is associated with a particular 
window; it allows the user to activate the window from any part of the system. An 
application sets a global hot key by using the WM_SETHOTKEY message. Whenever 
the user presses a global hot key, the window specified in WM_SETHOTKEY receives a 
WM_SYSCOMMAND message that specifies the SC_HOTKEY value. This message 
activates the window that receives it. The hot key remains valid until the application that 
called WM_SETHOTKEY exits. 

A thread-specific hot key generates a WM_HOTKEY message that is posted to the 
beginning of a particular thread so that it is removed by the next iteration of the message 
loop. An application sets a thread-specific hot key by using the RegisterHotKey 
function. 

Hot-Key Control Creation 
You create a hot-key control by using the CreateWindowEx function, specifying the 
HOTKEY _CLASS window class. When the function returns a handle to the hot-key 
control, an application typically sets some rules about invalid hot-key combinations and 
can provide a default key combination. If an application does not set any rules, the user 
can choose any key or key combination as a hot key. Most applications, however, do not 
allow the user to use a common key (for example, the letter A) as a hot key. 



312 Volume 4 Microsoft Windows Common Controls 

The following function creates a hot-key control, uses the HKM_SETRULES and 
HKM_SETHOTKEY messages to initialize it, and returns a handle to the control. This 
hot-key control does not allow the user to choose a hot key that is a single unmodified 
key, nor does it permit the user to choose only SHIFT and a key. (These rules effectively 
prevent the user from choosing a hot key that might be entered accidentally while typing 
text.) 



Chapter 16 Hot-Key Controls 313 

} 

II Set CTRL + ALT + A as the default hot-key for this window. 
II 0x41 is the virtual key code for 'A'. 
SendMessage(hwndHot, HKM_SETHOTKEV, 

MAKEWORD(ex41, HOTKE:VF_CONTROL I HOTKEYLALT), ell 

r.eturn hwndHot; 

Hot-Key Control Messages 
After creating a hot-key control, an application interacts with it by using three messages: 
HKM_SETRULES, HKM_SETHOTKEY, and HKM_GETHOTKEY. 

An application can send the HKM_SETRULES message to specify a set of CTRL, ALT, 
and SHIFT key combinations that are considered invalid hot keys. If the application 
specifies an invalid key combination, it should specify also a default modifier combination 
to use when the user selects the invalid combination. When the user enters the invalid 
combination, the system performs a logical OR operation on the invalid combination and 
the default combination. The result is considered a valid combination; it is converted to 
a string and displayed in the control. 

The HKM_SETHOTKEY message allows an application to set the hot-key combination 
for a hot-key control. This message also is used typically when the hot-key control is 
created. 

Applications use the HKM_GETHOTKEY message to retrieve the virtual key code and 
modifier flags of the hot key chosen by the user. 

Hot-Key Control Notifications 
The hot-key control does not send any notification messages via the WM_NOTIFY 
message. It will send, however, the EN_CHANGE notification via the WM_COMMAND 
message when the user changes the contents of the control. 

Retrieving and Setting a Hot-Key 
After the user has chosen a hot key, an application should retrieve it from the hot-key 
control by using the HKM_GETHOTKEY message. This message retrieves a 16-bit 
value that contains the virtual key code and modifier keys describing the hot key. 

The following function retrieves a key combination from a hot-key control and then uses 
the WM_SETHOTKEY message to set a global hot key. Note that you cannot set a 
global hot key for a window that has the WS_CHILD window style: 

/I ProcessHotk~v - retrl ev.esthe~Ch~£key fromll1':eliri't~key ). 
controlaild setsit.I\.S thtf\ho~k€Yfri~ bhe'" '. 

II appl fcat1()f! 'S"l)'ta}n\w1ndow:. . .' . 
I/. Retu~nsTRUE.if sutcessf~l.· or fAlSE otherwfs~ ... '. 

(continued) 



314 Volume 4 Microsoft Windows Common Controls 

(continued) 

Default Hot-Key Message ProCessing 
This section describes the window messages handled by the window procedure for the 
predefined HOTKEY _CLASS window class used with hot-key controls. 



Message 

WM_CHAR 

WM_CREATE 

WM_ERASEBKGND 

WM_GETDLGCODE 

WM_GETFONT 

WM_KEYDOWN 

WM_KEYUP 

WM_KILLFOCUS 

WM_LBUTTONDOWN 

WM_NCCREATE 

WM_PAINT 

WM_SETFOCUS 

WM_SETFONT 

WM_SYSCHAR 

WM_SYSKEYDOWN 

Chapter 16 Hot-Key Controls 315 

Processing performed 

Retrieves the virtual key code. 

Initializes the hot-key control, clears any hot-key rules, and 
uses the system font. 

Hides the caret, calls the DefWindowProc function, and 
shows the caret again. 

Returns a combination of the DLGC_WANTCHARS and 
DLGC_WANTARROWS values. 

Retrieves the font. 

Calls the DefWindowProc function if the key is ENTER, TAB, 
SPACE BAR, DEL, ESC, or BACKSPACE. If the key is 
SHIFT, CTRL, or AL T, it checks whether the combination is 
valid and, if it is, sets the hot key using the combination. All 
other keys are set as hot keys without their validity being 
checked first. 

Retrieves the virtual key code. 

Destroys the caret. 

Sets the focus to the window. 

Sets the WS_EX_CLlENTEDGE window style. 

Paints the hot-key control. 

Creates and shows the caret. 

Sets the font. 

Retrieves the virtual key code. 

Calls the DefWindowProc function if the key is ENTER, TAB, 
SPACE BAR, DEL, ESC, or BACKSPACE. If the key is 
SHIFT, CTRL, or AL T, it checks whether the combination is 
valid and, if it is, sets the hot key using the combination. All 
other keys are set as hot keys without their validity being 
checked first. 

Retrieves the virtual key code. 

Hot-Key Control Reference 

Hot-Key Control Messages 

HKM_GETHOTKEV 
Retrieves the virtual key code and modifier flags of a hot key from a hot-key control. 



316 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns the virtual key code and modifier flags. The virtual key code is in the low-order 
byte, and the modifier flags are in the high-order byte. The modifier flags can be a 
combination of the following values: 

HOTKEYF _AL T 

HOTKEYF _CONTROL 

HOTKEYF_EXT 

HOTKEYF _SHIFT 

Remarks 

ALT key 

CTRL key 

Extended key 

SHIFT key 

The 16-bit value returned by this message can be used as the wParam parameter in the 
WM_SETHOTKEY message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95198: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

HKM_SETHOTKEY 
Sets the hot key combination for a hot-key control. 

Parameters 
bVKHofKey 

Virtual key code of the hot key. 

bfMods 
Modifier flags indicating the keys that, when used in combination with bVKHofKey, 
define a hot-key combination. For a list of modifier flag values, see the description of 
the HKM_GETHOTKEV message. 

Return Values 
No return value. 



Chapter 16 Hot-Key Controls 317 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Defines the invalid combinations and the default modifier combination for a hot-key 
control. 

Parameters 
fwComblnv 

Array of flags that specify invalid key combinations. This parameter can be a 
combination of the following values: 

HKCOMB_A AL T 

HKCOMB_C CTRL 

HKCOMB_CA 

HKCOMB_NONE 

HKCOMB_S 

HKCOMB_SA 

HKCOMB_SC 

HKCOMB_SCA 

fwModlnv 

CTRL+ALT 

Unmodified keys 

SHIFT 

SHIFT+ALT 

SHIFT+CTRL 

SHIFT +CTRL+AL T 

Array of flags that specify the key combination to use when the user enters an invalid 
combination. For a list of modifier flag values, see the description of the 
HKM_GETHOTKEY message. 

Return Values 
No return value. 



318 Volume 4 Microsoft Windows Common Controls 

Remarks 
When a user enters an invalid key combination, as defined by flags specified in 
fwComblnv, the system uses the bitwise-OR operator to combine the keys entered by 
the user with the flags specified in fwModlnv. The resulting key combination is converted 
into a string and then displayed in the hot-key control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



CHAPTER 17 

IP Address Controls 

An IP address control allows the user to enter an IP address in an easily understood 
format. This control also allows the application to obtain the address in numeric form 
rather than in text form. 

About IP Address Controls 

319 

Microsoft Internet Explorer version 4.0 introduces the IP address control, a new control 
similar to an edit control that allows the user to enter a numeric address in Internet 
protocol (IP) format. This format consists of four three-digit fields. Each field is treated 
individually; the field numbers are zero-based and proceed from left to right, as shown in 
this illustration. 

Fi elcl 0 
Fie Icl1 

The control allows only numeric text to be entered in each of the fields. Once three digits 
have been entered in a given field, keyboard focus is moved automatically to the next 
field. If filling the entire field is not required by the application, the user can enter fewer 
than three digits. For example, if the field should only contain 21, typing 21 and pressing 
the RIGHT ARROW key will take the user to the next field. 

The default range for each field is 0 to 255, but the application can set the range to any 
values between those limits with the IPM_SETRANGE message. 

Note The IP address control is implemented in version 4.71 and later of Comctl32.dll. 



320 Volume 4 Microsoft Windows Common Controls 

Using IP Address Controls 
This section describes how to implement an IP address control in your application. 

Initializing an IP Address Control 
To use an IP address control, call InitCommonControlsEx with the 
'CC_'NTERNET _CLASSES flag set in the dwlCC member of the 
INITCOMMONCONTROLSEX structure. 

Creating an IP Address Control 
Use the CreateWindow or the CreateWindowEx API to create an IP address control. 
The class name for the control is WC_'PADDRESS, which is defined in Commctrl.h. No 
IP address control-specific styles exist; however, because this is a child control, use the 
WS_CHILD style as a minimum. 

Is an IP Address Control an Edit Control? 
An IP address control is not an edit control and it will not respond to EM_ messages. It 
will send, however, the owner window the following edit control notifications through the 
WM_COMMAND message. Note that the IP address control also will send private IPN_ 
notifications through the WM_NOTIFY message: 

Notification Reason for notification 

EN_CHANGE Sent when any field in the IP address control changes. Like the 
EN_CHANGE notification from a standard edit control, this 
notification is received after the screen has been updated. 

EN_KILLFOCUS Sent when the IP address control loses the keyboard focus. 

EN_SETFOCUS Sent when the IP address control gains the keyboard focus. 

IP Address Control Reference 

IP Address Control Messages 

IPM_CLEARADDRESS 
Clears the contents of the IP address control. 



Chapter 17 IP Address Controls 321 

Return Values 
The return value is not used. 

;1I~£.i~is<. 
Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

IPM_GETADDRESS 
Retrieves the address values for all four fields in the IP address control. 

Parameters 
pdwAddr 

Address of a DWORD value that receives the address. The field 3 value will be 
contained in bits 0 through 7. The field 2 value will be contained in bits 8 through 15. 
The field 1 value will be contained in bits 16 through 23. The field 0 value will be 
contained in bits 24 through 31. The FIRST_IPADDRESS, SECOND_IPADDRESS, 
THIRD_IPADDRESS, and FOURTH_IPADDRESS macros also can be used to 
extract the address information. Zero will be returned as the address for any blank 
fields. 

Return Values 
Returns the number of nonblank fields. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



322 Volume 4 Microsoft Windows Common Controls 

Determines if all fields in the IP address control are blank. 

Return Values 
Returns nonzero if all fields are blank, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

IPM_SETADDRESS 
Sets the address values for all four fields in the IP address control. 

Parameters 
dwAddr 

DWORD value that contains the new address. The field 3 value is contained in bits 0 
through 7. The field 2 value is contained in bits 8 through 15. The field 1 value is 
contained in bits 16 through 23. The field 0 value is contained in bits 24 through 31. 
The MAKEIPADDRESS macro also can be used to creaie the address information. 

Return Values 
The return value is not used. 

Remarks 
This message does not generate an IPN_FIELDCHANGED notification. 



Chapter 17 IP Address Controls 323 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sets the keyboard focus to the specified field in the IP address control. All of the text in 
that field will be selected. 

IPM::..sETFotOS 
. . •..• ~ wP a r &m .. ~(W.pARwf4 rl1fi,~.l;d+; 
, .... ~'lparalli ~'0'~\' .' . . ... 

Parameters 
nFie/d 

Zero-based field index to which the focus should be set. If this value is greater than 
the number of fields, focus is set to the first blank field. If all fields are non blank, focus 
is set to the first field. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sets the valid range for the specified field in the IP address control. 



324 Volume 4 Microsoft Windows Common Controls 

Parameters 
nFie/d 

Zero-based field index to which the range will be applied. 

wRange 
WORD value that contains the lower limit of the range in the low-order byte and 
the upper limit in the high-order byte. Both of these values are inclusive. The 
MAKEIPRANGE macro also can be used to create the range. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
If the user enters a value in the field that is outside of this range, the control will send the 
IPN_FIELDCHANGED notification with the entered value. If the value is still outside of 
the range after sending the notification, the control will attempt to change the entered 
value to the closest range limit. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

IP Address Control Notifications 

IPN_FIELDCHANGED 
Sent when the user changes a field in the control or moves from one field to another. 
This notification message is sent in the form of a WM_NOTIFY message. 



Parameters 
Ipnmipa 

Chapter 17 IP Address Controls 325 

Address of an NMIPADDRESS structure that contains information about the changed 
address. The iValue member of this structure will contain the entered value, even if it 
is out of the range of the field. You can modify this member to any value that is within 
the range for the field in response to this notification. 

Return Values 
The return value is ignored. 

Remarks 
This notification is not sent in response to a IPM_SETADDRESS message. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

IP Address Control Macros 

FIRST _IPADDRESS 
Extracts the field 0 value from a packed I P address retrieved with the 
IPM_GETADDRESS message. 

Parameters 
IParam 

Packed IP address value. 

Return Values 
Returns a BYTE value that contains the field 0 value. 



326 Volume 4 Microsoft Windows Common Controls 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

FOURTH_IPADDRESS 
Extracts the field 3 value from a packed IP address retrieved with the 
IPM_GETADDRESS message. 

Parameters 
IParam 

Packed IP address value. 

Return Values 
Returns a BYTE value that contains the field 3 value. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MAKEIPADDRESS 
Packs four byte values into a single LPARAM suitable for use with the 
IPM_SETADDRESS message. 



LPARAM MAKEIPADDRESS( 
BYTE bB. 
BYTEbl, 
BYTE bZ. 
BYTEb3 

): 

Parameters 
bO 

Field 0 address. 

b1 
Field 1 address. 

b2 
Field 2 address. 

b3 
Field 3 address. 

Return Values 

Chapter 17 IP Address Controls 327 

Returns an LPARAM value that contains the address. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MAKEIPRANGE 
Packs two byte values into a single LPARAM suitable for use with the IPM_SETRANGE 
message. 

Parameters 
low 

Lower limit of the range. 



328 Volume 4 Microsoft Windows Common Controls 

high 
Upper limit of the range. 

Return Values 
Returns an LPARAM value that contains the range. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

SECOND_IPADDRESS 
Extracts the field 1 value from a packed IP address retrieved with the 
IPM_GETADDRESS message. 

Parameters 
IParam 

Packed IP address value. 

Return Values 
Returns a BYTE value that contains the field 1 value. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 17 IP Address Controls 329 

THIRD_IPADDRESS 
Extracts the field 2 value from a packed IP address retrieved with the 
IPM_GETADDRESS message. 

:~~.~~it:(;'{'§8:jt' .; ...... . 
Parameters 
IParam 

Packed IP address value. 

Return Values 

,,' .-:':' 

Returns a BYTE value that contains the field 2 value. 

Version 4.71 and later of Comctl32.dll. 

".,; 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

IP Address Control Structures 

NMIPADDRESS 
Contains information for the IPN_FIELDCHANGED notification message. 

Members 
hdr 

NMHDR structure that contains additional information about the notification message. 



330 Volume 4 Microsoft Windows Common Controls 

iField 
Zero-based number of the field that was changed. 

iValue 
New value of the field specified in the iField member. While processing the 
IPN_FIELDCHANGED notification, this member can be set to any value that is within 
the range of the field and the control will place this new value in the field. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



CHAPTER 18 

Month-Calendar Controls 

A month-calendar control implements a calendar-like user interface. This provides the 
user with a very intuitive and recognizable method of entering or selecting a date. The 
control also provides the application with the means to obtain and set the date 
information in the control using existing data types. 

About Month-Calendar Controls 

331 

The month-calendar control is implemented in version 4.70 and later of Comctl32.dll. It 
provides a simple and intuitive way for a user to select a date from a familiar interface. 
The following illustration shows a month-calendar control in a dialog box. 

Sun Mon Tue Wed Thu 
28 29 30 31 1 
4 5 6 7 8 

11 12 13 14 15 
18 19 20 21 22 
25 • 27 28 29 
1 3 4 5 6 

8/26/96 

An application creates a month-calendar control by calling the CreateWindowEx 
function, and specifying MONTHCAL_CLASS as the window class. The class is 
registered when the month-calendar class is loaded from the common controls dynamic­
link library (DLL). Register this class by calling the InitCommonControlsEx function, 
specifying the ICC_DATE_CLASSES bit flag in the accompanying 
INITCOMMONCONTROLSEX structure. 



332 Volume 4 Microsoft Windows Common Controls 

Note Windows does not support dates prior to 1601. See FILETIME for details. 

The month-calendar control is based on the Gregorian calendar, which was introduced in 
1753. It will not calculate dates that are consistent with the Julian calendar that was in 
use prior to 1753. 

The Month-Calendar Control User Interface 
The month-calendar control user interface allows the user to select a date from the 
displayed days or change the control's display in various ways. 

• Scrolling the control's display 

By default, when a user clicks the arrow buttons in the top left or top right of the month­
calendar control, it updates its display to show the previous or next month. If the month­
calendar control is displaying more than one month at a time, the display changes by the 
number of months currently in view. That is, if the month-calendar displays January, 
February, and March, and the user clicks the top-right arrow button, the control updates 
its display to show April, May, and June. The user also can perform the same action by 
clicking the partial months displayed before the first month and after the last month. 

The following keyboard commands also can be used to change the current month: 

PAGE UP (VK_NEXT) 
Move to the next month. 

PAGE DOWN (VK_PRIOR) 
Move to previous month. 

HOME (VK_HOME) 
Move to the first day of the current month. 

END (VK_END) 
Move to last day of the current month. 

CTRL+HOME 
Move to the first visible month. 

CTRL+END 
Move to last visible month. 

An application can change the number of months by which the control updates its 
display by using the MCM_SETMONTHDEL TA message or the corresponding macro, 
MonthCal_SetMonthDelta. However, the PAGE UP and PAGE DOWN keys, change 
the selected month by one, regardless of the number of months displayed or the value 
set by MCM_SETMONTHDEL T A. 

• Selecting a nonadjacent month 

When a user clicks the name of a displayed month, a pop-up menu appears that lists all 
months within the year. The user can select a month on the list. If the user's selection is 
not visible, the month-calendar control scrolls its display to show the chosen month. 



Chapter 18 Month-Calendar Controls 333 

• Selecting a different year 

If the user clicks the year displayed next to a month name, an up-down control appears 
in place of the year. The user can change the year with this control. The month-calendar 
control updates its display for the selected year when the up-down control loses focus. 
The related keyboard commands are: 

CTRL + VK_NEXT 
Move to the next year. 

CTRL + VK_PRIOR 
Move to previous year. 

• Selecting the current day 

If a month-calendar control is not using the MCS_NOTODA V style, the user can return 
to the current day by clicking the "today" text at the bottom of the control. If the current 
day is not visible, the control updates its display to show it. Related keyboard commands 
are: 

VK_LEFT 
Move to previous day. 

VK_RIGHT 
Move to next day. 

VK_UP 
Move to previous week. 

VK_DOWN 
Move to next week. 

Day States 
Month-calendar controls that use the MCS_DAYSTATE style support day states. The 
control uses day state information to determine how it draws specific days within the 
control. Day-state information is expressed as a 32-bit data type, MONTHDAYSTATE. 
Each bit in a MONTHDAYSTATE bit field (1 through 31) represents the state of a day in 
a month. If a bit is on, the corresponding day will be displayed in bold; otherwise, it will 
be displayed with no emphasis. 

An application can set daystate information-explicitly by sending the 
MCM_SETDAYSTATE message or by using the corresponding macro, 
MonthCal_SetDayState. Additionally, month-calendar controls that use the 
MCS_DAYSTATE style send MCN_GETDAYSTATE notification messages to request 
day-state information. For more information on supporting day states, see Processing 
the MCN_ GETDAYSTATE Notification Message and Preparing the MONTHDA YSTATE 
Array. 



334 Volume 4 Microsoft Windows Common Controls 

Month-Calendar Control Styles 
Month-calendar controls have several styles that determine their appearance and 
behavior. When you create the control using CreateWindowEx, include the desired 
styles in the dwStyle parameter. 

After creating the control, you can change all of the styles except for MCS_DAYSTATE 
and MCS_MUL TISELECT. To change these styles, you will need to destroy the existing 
control and create a new one that has the desired styles. To retrieve or change any 
other window styles, use the GetWindowLong and SetWindowLong functions. 

Month-calendar controls that use the MCS_MUL TISELECT style allow the user to select 
a range of days. By default, the control allows the user to select seven contiguous days. 
Your application can change the control's default behavior by using the 
MCM_SETMAXSELCOUNT message or the accompanying macro, 
MonthCal_SetMaxSeICount. 

When a month-calendar control uses the MCS_WEEKNUMBERS style, it displays week 
numbers at the left side of each month. If the MCS_NOTODAY style is applied, the 
control no longer circles the current day. 

The MCS_DAYSTATE style is helpful when you want the control to highlight specific 
dates by displaying them in bold. For more information, see Day States. 

Localization 
The month-calendar control gets its format and all strings from 
LOCALE_USER_DEFAUL T. For Windows 2000 and later systems, it gets the month-title 
format from LOCALE_SYEARMONTH. Even with the same DLL version, the 
appearance of the control may vary slightly depending on which system your application 
is running on. For example, with Windows NT 4.0, the month title will look like: 
"September 1998". On Windows 2000, it will look like: "September, 1998". 

Month-Calendar Control Notification Messages 
A month-calendar control sends notification messages when it receives user input or 
must request day-state information (MCS_DAYSTATE style only). The control's parent 
receives these notifications as WM_NOTIFY messages. 

The following notification messages are used with month-calendar controls: 

Notification Description 

MCN_GETDAYSTATE Requests information about which days should be displayed 
in bold. For more information, see Preparing the 
MONTHDAYSTATE Array. 



Notification 

MCN_SELCHANGE 

Chapter 18 Month-Calendar Controls 335 

Description 

Notifies the parent that the selected date or range of dates 
has changed. The control sends this notification when the 
user explicitly changes the selection within the current month 
or when the selection is changed implicitly in response to 
next/previous month exploration. 

Notifies the parent that the user has explicitly selected a 
date. 

Times in the Month-Calendar Control 
Because the month-calendar control cannot be used to select a time, the time related 
fields of the SYSTEMTIME structure need to be handled differently. When the control is 
created, it will insert the current time into its "today" date and time. 

When a time is set programmatically later, the control either will copy the time fields as 
they are or validate them first and then, if invalid, store the current default times. 
Following is a list of the messages that set a date and a description of how the time 
fields are treated by the message: 

Notification Description 

MCM_SETCURSEL The control will copy the time fields as they are, without 
validation or modification. 

MCM_SETRANGE The time fields of the structures passed in will be validated. 
If they are valid, the time fields will be copied without 
modification. If they are invalid, the control will copy the time 
fields from the "today" date and time. 

MCM_SETSELRANGE The time fields of the structures passed in will be validated. 
If they are valid, the time fields Will be copied without 
modification. If they are invalid, the control will retain the 
time fields from the current selection ranges. 

MCM_SETTODAY The control will copy the time fields as they are, without 
validation or modification. 

When a date is retrieved from the control, the time fields will be copied from the stored 
times without modification. Handling of the time fields by the control is provided as a 
convenience to the programmer. The control does not examine or modify the time fields 
as a result of any operation other than those listed above. 

Using Month-Calendar Controls 
This section provides information and sample code for implementing month-calendar 
controls. 



336 Volume 4 Microsoft Windows Common Controls 

Creating a Month-Calendar Control 
To create a month-calendar control, use the CreateWindowEx function, specifying 
MONTHCAL_CLASS as the window class. You first must register the window class by 
calling the InitCommonControlsEx function, specifying the ICC_DATE_CLASSES bit in 
the accompanying INITCOMMONCONTROLSEX structure. 

The following example demonstrates how to create a month-calendar control in an 
existing modeless dialog box. Note that the size values passed to CreateWindowEx are 
all zeros. Because the minimum required size depends on the font the control uses, the 
DoNotify example function uses the MonthCal_GetMinReqRect macro to request size 
information and then resizes the control by calling SetWindowPos. If you subsequently 
change the font with WM_SETFONT, the dimensions of the control will not change. You 
must call MonthCaLGetMinReqRect again and resize the control to fit the new font: 



Chapter 18 Month-Calendar Controls 337 

9_hinst. 
NULl) ; 

IIGetthesizereQuiredto$hol'( ~I\entire ,month. 
,Montf,\Cal;.;.G:etMin;R:e~R:ec,tti'twn,~,~r01J',.' , 

Processing the MCN_ GETDA YSTATE Notification Message 
Month-calendar controls send the MCN_GETDAYSTATE notification message to 
request information about how the days within the visible months should be displayed. 
The following application-defined function, DoNotify, processes MCN_GETDAYSTATE 
by filling an array of MONTHDAYSTATE values to highlight the 15th day of each month. 

DoNotify extracts the number of MONTHDAYSTATE values needed from the cDayState 
member of the NMDAYSTATE structure that IParam points to. It then loops to set the 
15th bit in each element of the array, using the application-defined BOLDDA Y macro. 

[5001. ~I r41\~il llolfo,t~fyiHWNO: inwnd!~unH>lnsg.WPARA:tfwl>af'!l!ll. tttARAAl Pa ralil) 
t~" 0 • "',,' •• ,.',',. :;,:: ••••• ' •• ;/< .. ",,'0. 

·#b~f'·t~e. 'SOl:PU~Y(~S~;'jD~j7:;ii(l1 OaY£l2 i &0& 'fb:af~32}\:;:" . 
"",0.' ..• ~ ~i>f~(~x;~0a~~~~1<~(~P~.YrJ)!j •. 

~"",,:-, ~,-~"~",,,,,t~~.';;f"" ~,'~"f-~~-.-.p.r~:':'// ~ 
~"v~,. "', '. : ",~/:,~ ; ~ 

~efine;:l'i>n'~si{iMMOA¥S:TAtt: "'.11 "'''''''''UI ::- " , "'.>,, , '~< .. : .' ;,' ,~' ,:; "i"'" ""? ':; 

f:d.efi:rle:MAX'.:.Jiro*Tl'IS:'l~/i ' 
, f'. ~ ,'~,' , ;, '., ~, ',' , '( , " 

,0'"", ':'~'/"~"~";~':' : ;{4.:':j:,,",~.":',,~, .. '" ", 
">...;Mtr~;rHI)AY:SJA1E'in(d$'[IfA)l;:~o:tHtlSJf< 
·\~Nf:l,~·;jA~;;I:;>l\o.,i :.: .:::;.:' " 

.Le~MH~R.nd;r ;';::jtP~~O~) 'l;~ar~~i: 
~> y ~/ ~\,~:3:.\: ';'~'F . ~!':~~~~,~,: ,"~'o :;,<;, "Y/:i<~:',o ~'>~ :~:r~~~::.;, ,. 

(continued) 



338 Volume 4 Microsoft Windows Common Controls 

(continued) 

Preparing the MONTHDAYSTATE Array 
Both the MCM_SETDAYSTATE message and MCN_GETDAYSTATE notification 
message require an array of MONTHDA YST ATE values to determine how dates will be 
displayed. Each month that the control displays must have a corresponding element 
within the array. 

To support these messages, your application must properly prepare the array. The 
following is a simple macro that sets a bit in a MONTHDAYSTATE value for a given day 
within that month: 

Using this macro, an application could simply loop through an array of important dates, 
setting bits within the corresponding array elements. This approach is not the most 
efficient, of course, but works well for many purposes. As long as your application sets 
MONTHDAYSTATE bits appropriately, it does not matter how those bits were set. 

Month-Calendar Control Styles 
The following are the styies used with month-calendar controis: 

MCS_DA YSTATE 
Version 4.70. The month-calendar will send MCN_GETDAYSTATE notifications to 
request information about which days should be displayed in bold. For more 
information about supporting this style, see Processing the MCN_GETDAYSTATE 
Notification Message. 

MCS_MUL TISELECT 
Version 4.70. The month-calendar will allow the user to select a range of dates within 
the control. By default, the maximum range is one week. You can change the 



Chapter 18 Month-Calendar Controls 339 

maximum range that can be selected by using the MCM_SETMAXSELCOUNT 
message. 

MCS_NOTODAY 
Version 4.70. The month-calendar control will not display the "today" date at the 
bottom of the control. 

MCS_NOTODAYCIRCLE 
Version 4.70. The month-calendar control will not circle the "today" date. 

MCS_WEEKNUMBERS 
Version 4.70. The month-calendar control will display week numbers (1-52) to the left 
of each row of days. Week 1 is defined as the first week that contains at least four 
days. 

Month-Calendar Day Numbers 
The following list contains the numeric representations of the days of the week that are 
used by the month-calendar control: 

Value Day of Week 

0 Monday 

1 Tuesday 

2 Wednesday 

3 Thursday 

4 Friday 

5 Saturday 

6 Sunday 

Month-Calendar Control Reference 

Month-Calendar Control Messages 

MCM_GETCOLOR 
Retrieves the color for a given portion of a month-calendar control. You can send this 
message explicitly or by using the MonthCal_GetColor macro. 



340 Volume 4 Microsoft Windows Common Controls 

Parameters 
iC%r 

INT value specifying which month-calendar color to retrieve. This value can be one of 
the following: 

MCSC_BACKGROUND Retrieve the background color displayed between 
months. 

MCSC_TEXT 

MCSC_ TITLEBK 

MCSC_ TITLETEXT 

MCSC_ TRAILINGTEXT 

Return Values 

Retrieve the background color displayed within the 
month. 

Retrieve the color used to display text within a month. 

Retrieve the background color displayed in the calendar's 
title. 

Retrieve the color used to display text within the 
calendar's title. 

Retrieve the color used to display header day and trailing 
day text. Header and trailing days are the days from the 
previous and following months that appear on the current 
month-calendar. 

Returns a COLORREF value that represents the color setting for the specified portion of 
the month-calendar control, if successful. Otherwise, this message returns -1. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_ GETCURSEL 
Retrieves the currently selected date. You can send this message explicitly or by using 
the MonthCaLGetCurSel macro. 



Parameters 
/pSysTime 

Chapter 18 Month·Calendar Controls 341 

Address of a SYSTEMTIME structure that will receive the currently selected date 
information. This parameter must be a valid address and cannot be NULL. 

Return Values 
Returns nonzero if successful, or zero otherwise. This message always will fail when 
applied to month-calendar controls set to the MCS_MUL TISELECT style. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 

MCM_ GETFIRSTDA YOFWEEK 
Retrieves the first day of the week for a month-calendar control. You can send this 
message explicitly or by using the MonthCaLGetFirstDayOfWeek macro. 

Return Values 
Returns a DWORD value that contains two values. The high word is a BOOl value that 
is nonzero if the first day of the week is set to something other than 
lOCAlE_IFIRSTDAYOFWEEK, or zero otherwise. The low word is an INT value that 
represents the first day of the week. This will be one of the day numbers. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 



342 Volume 4 Microsoft Windows Common Controls 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_GETMAXSELCOUNT 
Retrieves the maximum date range that can be selected in a month-calendar control. 
You can send this message explicitly or by using the MonthCal_GetMaxSelCount 
macro. 

Return Values 
Returns an INT value that represents the total number of days that can be selected for 
the control. 

Remarks 
You can change the maximum date range that can be selected by using the 
MCM_SETMAXSELCOUNT message. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_GETMAXTODAYWIDTH 
Retrieves the maximum width of the "today" string in a month-calendar control. This 
includes the label text and the date text. You can send this message explicitly or by 
using the MonthCal_GetMaxTodayWidth macro. 

m~, 



Chapter 18 Month·Calendar Controls 343 

Return Values 
Returns the width of the "today" string, in pixels. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_GETMINREQRECT 
Retrieves the minimum size required to display a full month in a month-calendar control. 
You can send this message explicitly or by using the MonthCaLGetMinReqRect 
macro. 

Parameters 
IpRectinfo 

Address of a RECT structure that will receive bounding rectangle information. This 
parameter must be a valid address and cannot be NULL. 

Return Values 
Returns nonzero and IpRectinfo receives the applicable bounding information if 
successful. Otherwise, the message returns zero. 

Remarks 
The minimum required window size for a month-calendar control depends on the 
currently selected font, control styles, system metrics, and regional settings. When an 
application changes anything that affects the minimum window size, or processes a 
WM_SETTINGCHANGE message, it should send MCM_GETMINREQRECT to 
determine the new minimum size. 



344 Volume 4 Microsoft Windows Common Controls 

Note The rectangle returned by MCM_GETMINREQRECT does not include the width 
of the "Today" string, if it is present. If the MCS_NOTODAV style is not set, your 
application should also retrieve the rectangle that defines the "Today" string width by 
sending a MCM_GETMAXTODAVWIDTH message. Use the larger of the two rectangles 
to ensure that the "Today" string is not clipped. 

The top and left members of the structure pOinted to by IpReetlnfo will always be zero. 
The right and bottom members represent the minimum ex and ey required for the 
control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_GETMONTHDELTA 
Retrieves the scroll rate for a month-calendar control. The scroll rate is the number of 
months that the control moves its display when the user clicks a scroll button. You can 
send this message explicitly or by using the MonthCal_GetMonthDelta macro. 

Return Values 
If the month delta was previously set using the MCM_SETMONTHDELTA message, 
returns an INT value that represents the month-calendar's current scroll rate. If the 
month delta was not previously set using the MCM_SETMONTHDEL TA message, or the 
month delta was reset to the default, returns an INT value that represents the current 
number of months visible. 

'.":' 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 



Chapter 18 Month-Calendar Controls 345 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_GETMONTHRANGE 
Retrieves date information (using SYSTEMTIME structures) that represents the high and 
low limits of a month-calendar control's display. You can send this message explicitly or 
by using the MonthCaLGetMonthRange macro. 

MCM:::.uETM(}NtHRANtlE',., ...•.....•..... ' ...•. 
'wpa ram = (WPARAM)( OWOM)awFla g;, .. ,.. .., " .. ,. 
TPal'arri;i; . (LPARAM) ([PSY.STEMTIME) lprgSysTlmMr~ay; 

Parameters 
dwFlag 

Value specifying the scope of the range limits to be retrieved. This value must be one 
of the following: 

GMR_DAYSTATE Include preceding and trailing months of visible range that are 
only partially displayed. 

GMR_ VISIBLE Include only those months that are entirely displayed. 

IprgSys TimeArray 
Address of a two-element array of SYSTEMTIME structures that will receive the lower 
and upper limits of the scope specified by dwFlag. The lower and upper limits are 
placed in IprgSysTimeArray[O] and IprgSysTimeArray[1], respectively. This parameter 
must be a valid address and cannot be NULL. 

Return Values 
Returns an INT value that represents the range, in months, spanned by the two limits 
returned at fprgSysTimeArray. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



346 Volume 4 Microsoft Windows Common Controls 

Times in the Month-Calendar Control 

MCM_GETRANGE 
Retrieves the minimum and maximum allowable dates set for a month-calendar control. 
You can send this message explicitly or by using the MonthCal_GetRange macro. 

Parameters 
IprgSysTimeArray 

Address of a two-element array of SYSTEMTIME structures that will receive the date 
limit information. The minimum limit is set in IprgSysTimeArray[O], and 
IprgSysTimeArray[1] receives the maximum limit. If either element is set to all zeros, 
then no corresponding limit is set for the month-calendar control. This parameter must 
be a valid address and cannot be NULL. 

Return Values 
Returns a DWORD that can be zero (no limits are set) or a combination of the following 
values that specify limit information: 

GDTR_MAX A maximum limit is set for the control; IprgSysTimeArray[O] is valid and 
contains the applicable date information. 

GDTR_MIN A minimum limit is set for the control; IprgSysTimeArray[1] is valid and 
contains the applicable date information. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 



Chapter 18 Month-Calendar Controls 347 

MCM_GETSELRANGE 
Retrieves date information that represents the upper and lower limits of the date range 
currently selected by the user. You can send this message explicitly or by using the 
MonthCaLGetSelRange macro. 

MCM .... G [TS E LRAHGt;; 

~pa:rai11:F@;;'i'<'/ .'. q, ii ,:. >:, •. " :. > 
'. \lParam ii£ttJ>ARAWfd(;ll~SY'$'t!£MT·tM.EJ· fpr9S~isT)flli$'A r ray:~ ..•....•. 

Parameters 
IprgSys TimeArray 

Address of a two-element array of SYSTEMTIME structures that will receive the lower 
and upper limits of the user's selection. The lower and upper limits are placed in 
IprgSysTimeArray[O] and IprgSysTimeArray[1], respectively. This parameter must be 
a valid address and cannot be NULL. 

Return Values 
Returns nonzero if successful, or zero otherwise. MCM_GETSELRANGE will fail if 
applied to a month-calendar control that does not use the MCS_MUL TISELECT style. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 

MCM_ GETTODA Y 
Retrieves the date information for the date specified as ''today'' for a month-calendar 
control. You can send this message explicitly or by using the MonthCal_GetToday 
macro. 



348 Volume 4 Microsoft Windows Common Controls 

Parameters 
IpToday 

Address of a SVSTEMTIME structure that will receive the date information. This 
parameter must be a valid address and cannot be NULL. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 

MCM_GETUNICODEFORMAT 
Retrieves the UNICODE character format flag for the control. You can send this 
message explicitly or use the MonthCal_GetUnicodeFormat macro. 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Remarks 
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 



Chapter 18 Month-Calendar Controls 349 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MCM_SETUNICODEFORMAT 

Determines which portion of a month-calendar control is at a given point on the screen. 
You can send this message explicitly or by using the MonthCal_HitTest macro. 

Parameters 
pMCHitTest 

Address of an MCHITTESTINFO structure. Upon sending the message, the cbSize 
member must be set to the size of the MCHITTESTINFO structure, and pt must be 
set to the point you want to hit-test. 

Return Values 
Sets values in members of the MCHITTESTINFO structure at pMCHitTest and returns a 
DWORD value that contains one or more of the following: 

MCHT _CALENDAR The given point was within the calendar. 

MCHT _CALENDARBK The given point was in the calendar's background. 

MCHT _CALENDARDATE The given point was on a particular date within the 
calendar. The SYSTEMTIME structure at 
IpMCHitTest->st is set to the date at the given 
point. 

MCHT_CALENDARDATENEXT The given point was over a date from the next 
month (partially displayed at the end of the 
currently displayed month). If the user clicks here, 
the month-calendar will scroll its display to the next 
month or set of months. 

MCHT __ CALENDARDATEPREV The given point was over a date from the previous 
month (partially displayed at the end of the 
currently displayed month). If the user clicks here, 
the month-calendar will scroll its display to the 
previous month or set of months. 

(continued) 



350 Volume 4 Microsoft Windows Common Controls 

(continued) 

MCHT_CALENDARDAY 

MCHT _CALENDARWEEKNUM 

MCHT_TITLE 

MCHT _ TITLEBK 

MCHT _ TITLEBTNNEXT 

MCHT _ TITLEBTNPREV 

MCHT _ TITLE MONTH 

MCHT _ TITLEYEAR 

MCHT _ TODAYLINK 

The given point was over a day abbreviation ("Fri", 
for example). The SYSTEMTIME structure at 
IpMCHitTest->st is set to the corresponding date in 
the top row. 

The given paint was over a week number 
(MCS_WEEKNUMBERS style only). The 
SYSTEMTIME structure at IpMCHitTest->st is set 
to the corresponding date in the leftmost column. 

The given point is in an area that will cause the 
month-calendar to scroll its display to the next 
month or set of months. This flag is used to modify 
other hit-test flags. 

The given point was not on the month-calendar 
control, or it was in an inactive portion of the 
control. 

The given paint is in an area that will cause the 
month-calendar to scroll its display to the previous 
month or set of months. This flag is used to modify 
other hit-test flags. 

The given point was over a month's title. 

The given point was over the background of a 
month's title. 

The given point was over the button at the top right 
corner of the control. If the user clicks here, the 
month-calendar will scroll its display to the next 
month or set of months. 

The given point was over the button at the top left 
corner of the control. If the user clicks here, the 
month-calendar will scroll its display to the 
previous month or set of months. 

The given point was in a month's title bar, over a 
month name. 

The given paint was in a month's title bar, over the 
year value. 

The given point was on the "today" link at the 
bottom of the month-calendar control. 

The uHit member of the MCHITTESTINFO structure at pMCHitTest will equal the return 
value. 



Chapter 18 Month-Calendar Controls 351 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Sets the color for a given portion of a month-calendar control. You can send this 
message explicitly or by using the MonthCal_SetColor macro. 

Parameters 
iColor 

elr 

INT value specifying which month-calendar color to set. This value can be one of the 
following: 

MCSC_BACKGROUND Set the background color displayed between months. 

MCSC_MONTHBK Set the background color displayed within the month. 

MCSC_ TEXT Set the color used to display text within a month. 

MCSC_ TITLEBK Set the background color displayed in the calendar's title. 

MCSC_ TITLETEXT Set the color used to display text within the calendar's title. 

MCSC_ TRAILINGTEXT Set the color used to display header day and trailing day 
text. Header and trailing days are the days from the 
previous and following months that appear on the current 
month-calendar. 

COLORREF value that represents the color that will be set for the specified area of 
the month-calendar. 

Return Values 
Returns a COLORREF value that represents the previous color setting for the specified 
portion of the month-calendar control if successful. Otherwise, the return is -1. 



352 Volume 4 Microsoft Windows Common Controls 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_SETCURSEL 
Sets the currently selected date for a month-calendar control. If the specified date is not 
in view, the control updates the display to bring it into view. You can send this message 
explicitly or by using the MonthCaLSetCurSel macro. 

Parameters 
IpSysTime 

Address of a SYSTEMTIME structure that contains the date to be set as the current 
selection. 

Return Values 
Returns nonzero if successful, or zero otherwise. This message will fail if applied to a 
month-calendar control that uses the MCS_MUL TISELECT style. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 



Chapter 18 Month-Calendar Controls 353 

MCM_SETDAVSTATE 
Sets the day states for all months that are currently visible within a month-calendar 
control. You can send this message explicitly or by using the MonthCal_SetDayState 
macro. 

Parameters 
iMonths 

Value indicating how many elements are in the array that IpDayStateArray points to. 

IpDayStateArray 
Address of an array of MONTHDAYSTATE values that define how the month­
calendar control will draw each day in its display. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
The array at IpDayStateArray must contain as many elements as the value returned by 
the following macro: 

Mon thGal ~ GetMbnthRa rtg~tb~Mc,'/:£iMRin);'¥5iA;ti;f ~ ,WJ;Jl.t:j[:f":~,:~C~t;;, ';;2;\;::;,.!;,~~'zL\; 

Keep in mind that the array at IpDayStateArraymust contain MONTHDAYSTATE values 
that correspond with all months currently in the control's display, in chronological order. 
This includes the two months only partially displayed before the first month and after the 
last month. For more information about preparing your array, see Preparing the 
MONTHDAYSTATE Array. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



354 Volume 4 Microsoft Windows Common Controls 

MCM_SETFIRSTDAYOFWEEK 
Sets the first day of the week for a month-calendar control. You can send this message 
explicitly or by using the MonthCal_SetFirstDayOfWeek macro. 

Parameters 
iOay 

INT value representing which day is to be set as the first day of the week. This value 
must be one of the day numbers. 

Return Values 
Returns a DWORD value that contains two values. The high word is a BOOl value that 
is nonzero if the previous first day of the week did not equal 
lOCAlE_IFIRSTDAYOFWEEK, or zero otherwise. The low word is an INT value that 
represents the previous first day of the week. 

Remarks 
If the first day of the week is set to anything other than the default 
(lOCAlE_IFIRSTDAYOFWEEK), the control will not automatically update first-day-of­
the-week changes based on locale changes. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_SETMAXSELCOUNT 
Sets the maximum number of days that can be selected in a month-calendar control. 
You can send this message explicitly or by using the MonthCal_SetMaxSelCount 
macro. 



Parameters 
iMax 

Chapter 18 Month-Calendar Controls 355 

INT value that will be set to represent the maximum number of days that can be 
selected. 

Return Values 
Returns nonzero if successful, or zero otherwise. This message will fail if applied to a 
month-calendar control that does not use the MCS_MUL TISELECT style. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCM_SETMONTHDELTA 
Sets the scroll rate for a month-calendar control. The scroll rate is the number of months 
that the control moves its display when the user clicks a scroll button. You can send this 
message explicitly or by using the MonthCa,-SetMonthDelta macro. 

;~~a'iii[\\.~ 
Parameters 
iDe/ta 

Value representing the number of months to be set as the control's scroll rate. If this 
value is zero, the month delta is reset to the default, which is the number of months 
displayed in the control. 

Return Values 
Returns an INT value that represents the previous scroll rate. If the scroll rate was not 
previously set, the return value is zero. 

Remarks 
The PAGE UP and PAGE DOWN keys, VK_PRIOR and VK_NEXT, change the selected 
month by one, regardless of the number of months displayed or the value set by 
MCM_SETMONTHDEL TA. 



356 Volume 4 Microsoft Windows Common Controls 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Sets the minimum and maximum allowable dates for a month-calendar control. You can 
send this message explicitly or by using the MonthCaLSetRange macro. 

Parameters 
fWhichLimit 

Flag values that specify which date limits are being set. This value must be one or 
both of the following: 

GDTR_MAX The maximum allowable date is being set. The SYSTEMTIME 
structure at IprgSysTimeArray[1] must contain date information. 

/prgSys TimeArray 

The minimum allowable date is being set. The SVSTEMTIME 
structure at IprgSysTimeArray[O] must contain date information. 

Address of a two-element array of SYSTEMTIME structures that contain the date 
limits. The maximum limit must be in IpSysTimeArray[1] if GDTR_MAX is specified, 
and IpSysTimeArray[O] must contain the minimum limit if GDTR_MIN is specified. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 



Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 

MCM_SETSELRANGE 

Chapter 18 Month·Calendar Controls 357 

Sets the selection for a month-calendar control to a given date range. You can send this 
message explicitly or by using the MonthCal_SetSelRange macro. 

Parameters 
IprgSys TimeArray 

Address of a two-element array of SYSTEMTIME structures that contain date 
information representing the selection limits. The first selected date must be specified 
in IpSysTimeArray[O], and the last selected date must be specified in 
IpSysTimeArray[1 ]. 

Return Values 
Returns nonzero if successful, or zero otherwise. This message will fail if applied to a 
month-calendar control that does not use the MCS_MUL TISELECT style. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 



358 Volume 4 Microsoft Windows Common Controls 

Sets the "today" selection for a month-calendar control. You can send this message 
explicitly or by using the MonthCal_SetToday macro. 

Parameters 
IpSysTime 

Address of a SYSTEMTIME structure that contains the date to be set as the "today" 
selection for the control. If this parameter is set to NULL, the control returns to the 
default setting. 

Return Values 
The return value for this message is not used. 

Remarks 
If the "today" selection is set to any date other than the default, the following conditions 
apply: 

• The control will not automatically update the "today" selection when the time passes 
midnight for the current day. 

• The control will not automatically update its display based on locale changes. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Times in the Month-Calendar Control 

MCM_SETUNICODEFORMAT 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time instead of having to re-create 



Chapter 18 Month·Calendar Controls 359 

the control. You can send this message explicitly or use the 
MonthCaLSetUnicodeFormat macro. 

MCM..;;.SETUNICOOEFORMAT" 
,wp.ar&m!=;«·WPARAMJ(i:OOl)fUnJcod-e;· .. 

lParanL" 0; ... 

Parameters 
(Unicode 

Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Remarks 
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MCM_GETUNICODEFORMAT 

Month-Calendar Control Macros 

MonthCal_ GetColor 
Retrieves the color for a given portion of a month-calendar control. You can use this 
macro or send the MCM_GETCOLOR message explicitly. 



360 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndMC 

Handle to a month-calendar control. 

iC%r 
INT value specifying which month-calendar color to retrieve. This value can be one of 
the following: 

MCSC_BACKGROUND Retrieve the background color displayed between 
months. 

MCSC_MONTHBK Retrieve the background color displayed within the 
month. 

MCSC_ TEXT Retrieve the color used to display text within a month. 
MCSC_ TITLEBK Retrieve the background color displayed in the calendar's 

title. 
MCSC_ TITLETEXT Retrieve the color used to display text within the 

calendar's title. 
MCSC_ TRAILINGTEXT Retrieve the color used to display header day and trailing 

day text. Header and trailing days are, respectively, the 
days from the previous and following months that appear 
on the current month-calendar. 

Return Values 
Returns a COLORREF value that represents the color setting for the specified portion of 
the month-calendar control if successful. Otherwise, the return is -1. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetCurSel 
Retrieves the currently selected date. You can use this macro or send the 
MCM_GETCURSEL message explicitly. 

"111~~~~h~ff: 



Parameters 
hwndMC 

Handle to a month-calendar control. 

IpSysTime 

Chapter 18 Month-Calendar Controls 361 

Address of a SVSTEMTIME structure that will receive the currently selected date 
information. This parameter must be a valid address and cannot be NULL. 

Return Values 
Returns nonzero if successful, or zero otherwise. This macro will always fail when 
applied to month-calendar controls that are set to the MCS_MUL TISELECT style. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetFirstDayOfWeek 
Retrieves the first day of the week for a month-calendar control. You can use this macro 
or send the MCM_GETFIRSTDAVOFWEEK message explicitly. 

,~, ""'",,',',,:' 

Parameters 
hwndMC 

Handle to a month-calendar control. 

Return Values 
Returns a DWORD value that contains two values. The high word is a BOOl value that 
is nonzero if the first day of the week is set to something other than 
lOCAlE_IFIRSTDAYOFWEEK, or zero otherwise. The low word is an INT value that 
represents the first day of the week. This will be one of the day numbers. 

Version 4.70 and later of ComctI32.dll. 



362 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetMaxSelCount 
Retrieves the maximum date range that can be selected in a month-calendar control. 
You can use this macro or send the MCM_GETMAXSELCOUNT message explicitly. 

;!I~1i_~:~ 
Parameters 
hwndMC 

Handle to a month-calendar control. 

Return Values 
Returns an INT value that represents the total number of days that can be selected for 
the control. 

Remarks 
You can change the maximum date range that can be selected by using the 
MCM_SETMAXSELCOUNT message. 

,.:., , 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 18 Month-Calendar Controls 363 

MonthCal_ GetMaxTodayWidth 
Retrieves the maximum width of the "today" string in a month-calendar control. This 
includes the label text and the date text. You can use this macro or send the 
MCM_GETMAXTODAVWIDTH message explicitly. 

D~~t~~hC~i~~~a~1'~~i(1~~b( ". 
,;:':W·Ilf);ih.w"dMC'~;; ,. . .,,: .... . .. . 

:};'t 't :;'l/~/:"::"-:,,: ... ~' (. :.'J~; .~:': :;.: .-, ",''',' ."'"':',''' ~. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

Return Values 

'. ~ ; 

Returns the width of the "today" string, in pixels. 

Version 4.70 and later of Comctl32.dll. 

~: ,: '.' 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetM i n Req Reet 
Retrieves the minimum size required to display a full month in a month-calendar control. 
Size information is presented in the form of a RECT structure. You can use this macro or 
send the MCM_GETMINREQRECT message explicitly. 

[I' 
Parameters 
hwndMC 

Handle to a month-calendar control. 

IpRectlnfo 

; ,":~ 

Address of a RECT structure that will receive bounding rectangle information. This 
parameter must be a valid address and cannot be NULL. 



364 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns nonzero and IpReetlnfo receives the applicable bounding information if 
successful. Otherwise, the return is zero. 

Remarks 
The minimum required window size for a month-calendar control depends on the 
currently selected font, control styles, system metrics, and regional settings. When an 
application changes anything that affects the minimum window size, or processes a 
WM_SETTINGCHANGE message, it should call MonthCal_GetMinReqRect to 
determine the new minimum size. 

Note The rectangle returned by MonthCal_GetMinReqRect does not include the width 
of the "Today" string, if it is present. If the MCS_NOTODAY style is not set, your 
application should also retrieve the rectangle that defines the ''Today'' string width by 
calling the MonthCal_GetMaxTodayWidth macro. Use the larger of the two rectangles 
to ensure that the "Today" string is not clipped. 

The top and left members of IpReet/nfo will always be zero. The right and bottom 
members represent the minimum ex and ey required for the control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetMonth Delta 
Retrieves the scroll rate for a month-calendar control. The scroll rate is the number of 
months that the control moves its display when the user clicks a scroll button. You can 
use this macro or send the MCM_GETMONTHDEL TA message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 



Chapter 18 Month-Calendar Controls 365 

Return Values 
If the month delta previously was set using the MonthCal_SetMonthDelta macro, 
returns an INT value that represents the month-calendar's current scroll rate. If the 
month delta previously was not set using the MonthCaLSetMonthDelta macro, or the 
month delta was reset to the default, returns an INT value that represents the current 
number of months visible. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetMonthRange 
Retrieves date information (using SYSTEMTIME structures) that represents the high and 
low limits of a month-calendar control's display. You can use this macro or send the 
MCM_GETMONTHRANGE message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

dwFlag 
Value specifying the scope of the range limits to be retrieved. This value must be one 
of the following: 

GMR_DAYSTATE Include preceding and trailing months of visible range that are 
only partially displayed. 

Include only those months that are entirely displayed. 

IprgSysTimeArray 
Address of a two-element array of SYSTEMTIME structures that will receive the lower 
and upper limits of the scope specified by dwFlag. The lower and upper limits are 
placed in IprgSysTimeArray[O] and IprgSysTimeArray[1], respectively. The time 



366 Volume 4 Microsoft Windows Common Controls 

members of these structures will not be modified. This parameter must be a valid 
address and cannot be NULL. 

Return Values 
Returns an INT value that represents the range, in months, spanned by the two limits 
returned at /prgSysTimeArray. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetRange 
Retrieves the minimum and maximum allowable dates set for a month-calendar control. 
You can use this macro or send the MCM_GETRANGE message explicitly. 

··;M' <"'j,;l;.i1/W .. 
,; . l)'j)1~1dt'1 

Parameters 
hwndMC 

Handle to a month-calendar control. 

/prgSys TimeArray 
Address of a two-element array of SYSTEMTIME structures that will receive the date 
limit information. The minimum limit is set in IprgSysTimeArray[O], and 
IprgSysTimeArray[1] receives the maximum limit. If either element is set to all zeros, 
then no corresponding limit is set for the month-calendar control. The time members 
of these structures will not be modified. This parameter must be a valid address and 
cannot be NULL. 

Return Values 
Returns a DWORD value that can be zero (no limits are set) or a combination of the 
following values that specify limit information: 



Chapter 18 Month-Calendar Controls 367 

There is a maximum limit set for the control; IprgSysTimeArray[O] is 
valid and contains the applicable date information. 

There is a minimum limit set for the control; IprgSysTimeArray[1] is 
valid and contains the applicable date information. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_GetSelRange 
Retrieves date information that represents the upper and lower limits of the date range 
currently selected by the user. You can use this macro or send the 
MCM_GETSELRANGE message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

JprgSys TimeArray 
Address of a two-element array of SYSTEMTIME structures that will receive the lower 
and upper limits of the user's selection. The lower and upper limits are placed in 
IprgSysTimeArray[O] and IprgSysTimeArray[1], respectively. The time members of 
these structures will not be modified. This parameter must be a valid address and 
cannot be NULL. 

Return Values 
Returns nonzero if successful, or zero otherwise. MonthCal_GetSelRange will fail if 
applied to a month-calendar control that does not use the MCS_MUL TISELECT style. 

Version 4.70 and later of Comctl32.dll. 



368 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetToday 
Retrieves the date information for the date specified as ''today'' for a month-calendar 
control. You can use this macro or send the MCM_GETTODAY message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

/pToday 
Address of a SYSTEMTIME structure that will receive the date information. The time 
members of this structure will not be modified. This parameter must be a valid 
address and cannot be NULL. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ GetUnicodeFormat 
Retrieves the UNICODE character format flag for the control. You can use this macro or 
send the MCM_GETUNICODEFORMAT message explicitly. 



Parameters 
hwnd 

Handle to the control. 

Return Values 

Chapter 18 Month-Calendar Controls 369 

Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Version 4.70 and later of Comctl32.dlll 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetUnicodeFormat 

MonthCal_HitTest 
Determines which portion of a month-calendar control is at a given point on the screen. 
You can use this macro or send the MCM_HITTEST message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

pMCHitTest 
Address of an MCHITTESTINFO structure. Upon calling the macro, the cbSize 
member must be set to the size of the MCHITTESTINFO structure, and pt must be 
set to the point you want to hit-test. 



370 Volume 4 Microsoft Windows Common Controls 

Return Values 
Sets values in members of the MCHITTESTINFO structure at pMCHitTest and returns a 
DWORD value that contains a set of hit-test result flags. See the return value description 
of MCM_HITTEST for a list of the hit-test result flags. 

The uHit member of the MCHITTESTINFO structure at pMCHitTestwili equal the return 
value. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetColor 
Sets the color for a given portion of a month-calendar control. You can use this macro or 
send the MCM_SETCOLOR message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

iColor 
INT value specifying which month-calendar color to set. This value can be one of the 
following: 

MCSC_BACKGROUND Retrieve the background color displayed between 
months. 

MCSC_MONTHBK 

MCSC_TEXT 

MCSC_ TITLEBK 

Retrieve the background color displayed within the 
month. 

Retrieve the color used to display text within a month. 

Retrieve the background color displayed in the calendar's 
title. 



Chapter 18 Month-Calendar Controls 371 

MCSC_ TITLETEXT Retrieve the color used to display text within the 
calendar's title. 

elr 

MCSC_ TRAILINGTEXT Retrieve the color used to display header day and trailing 
day text. Header and trailing days are the days from the 
previous and following months that appear on the current 
month-calendar. 

COLORREF value that represents the color that will be set for the specified area of 
the month-calendar. 

Return Values 
Returns a COLOR REF value that represents the previous color setting for the specified 
portion of the month-calendar control, if successful. Otherwise, the return is -1. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetCurSel 
Sets the currently selected date for a month-calendar control. If the specified date is not 
in view, the control updates the display to bring it into view. You can use this macro or 
send the MCM_SETCURSEL message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

IpSysTime 
Address of a SYSTEMTIME structure that contains the date to be set as the current 
selection. The time members of this structure are ignored. 



372 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns nonzero if successful, or zero otherwise. This macro will fail if applied to a 
month-calendar control that uses the MCS_MUL TISELECT style. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_ Set DayState 
Sets the day states for all months that are currently visible within a month-calendar 
control. You can use this macro or send the MCM_SETDAYSTATE message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

iMonths 
INT value indicating how many elements are in the array that IpDayStateArray pOints 
to. 

IpDayStateArray 
Address of an array of MONTHDAYSTATE values that define how the month­
calendar control will draw each day in its display. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
The array at IpDayStateArray must contain as many elements as the value returned by 
the following macro: 

~~l~j!t~i •• ~ft~\Ii~~~£~il~.~i~.~j.j~'irJ;Cl[;i;t';j';k~··.,:;'1. 



Chapter 18 Month-Calendar Controls 373 

The preceding macro returns the total number of months that are in complete or partial 
view within the month-calendar's display. 

Keep in mind that the array at IpDayStateArray must contain MONTHDAVSTATE values 
that correspond with all months currently in the control's display, in chronological order. 
This includes the two months only partially displayed before the first month and after the 
last month. For more information about preparing your array, see Preparing the 
MONTHDAYSTATE Array. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetFirstDayOfWeek 
Sets the first day of the week for a month-calendar control. You can use this macro or 
send the MCM_SETFIRSTDAVOFWEEK message explicitly. 

<DwoRb:MOi!~~Ctl.J!r'F~;~\$t~iVp~,~~(' 
.4!WItP M~r1MC,:: ::.>;:~:::E:!1:·'i;:;r:2 
' .. :I~t tDay' .•........ :.' .. 
).; I:: . '.: : 

Parameters 
hwndMC 

Handle to a month-calendar control. 

iDay 
INT value representing which day is to be set as the first day of the week. This value 
must be one of the day numbers. 

Return Values 
Returns a DWORD value that contains two values. The high word is a BOOl value that 
is nonzero if the previous first day of the week did not equal 
lOCAlE_IFIRSTDAYOFWEEK, or zero otherwise. The low word is an INT value that 
represents the previous first day of the week. 



374 Volume 4 Microsoft Windows Common Controls 

Remarks 
If the first day of the week is set to anything other than the default 
(LOCALE_IFIRSTDAYOFWEEK), the control will not update automatically first-day-of­
the-week changes based on locale changes. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetMaxSelCount 
Sets the maximum number of days that can be selected in a month-calendar control. 
You can use this macro or send the MCM_SETMAXSELCOUNT message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

iMax 
INT value that will be set to represent the maximum number of days that can be 
selected. 

Return Values 
Returns nonzero if successful, or zero otherwise. This macro will fail if applied to a 
month-calendar control that does not use the MCS_MUL TISELECT style. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or WindowsNT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 



Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetMonthDelta 

Chapter 18 Month·Calendar Controls 375 

Sets the scroll rate for a month-calendar control. The scroll rate is the number of months 
that the control moves its display when the user clicks a scroll button. You can use this 
macro or send the MCM_SETMONTHDELTA message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

iDelta 
Value representing the number of months to be set as the control's scroll rate. If this 
value is zero, the month delta is reset to the default, which is the number of months 
displayed in the control. 

Return Values 
Returns an INT value that represents the previous scroll rate. If the scroll rate was not 
previously set, the return value is zero. 

Remarks 
The PAGE UP and PAGE DOWN keys, VK_PRIOR and VK_NEXT, change the selected 
month by one, regardless of the number of months displayed or the value set by 
MCM_SETMONTHDEL T A. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



376 Volume 4 Microsoft Windows Common Controls 

MonthCal_SetRange 
Sets the minimum and maximum allowable dates for a month-calendar control. You can 
use this macro or send the MCM_SETRANGE message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

fWhichUmit 
Flag values that specify which date limits are being set. This value must be one or 
both of the following: 

GDTR_MAX The maximum allowable date is being set. The SYSTEMTIME 
structure at IprgSysTimeArray[1] must contain date information. 

GDTR_MIN The minimum allowable date is being set. The SYSTEMTIME 
structure at IprgSysTimeArray[O] must contain date information. 

/prgSys TimeArray 
Address of a two-element array of SYSTEMTIME structures that contain the date 
limits. The maximum limit must be in IpSysTimeArray[1] if GDTR_MAX is specified, 
and IpSysTimeArray[O] must contain the minimum limit if GDTR_MIN is specified. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 18 Month·Calendar Controls 377 

MonthCal_SetSelRange 
Sets the selection for a month·calendar control to a given date range. You can use this 
macro or send the MCM_SETSELRANGE message explicitly. 

Parameters 
hwndMC 

Handle to a month-calendar control. 

IprgSysTimeArray 
Address of a two-element array of SYSTEMTIME structures that contain date 
information representing the selection limits. The first selected date must be specified 
in IpSysTimeArray[O], and the last selected date must be specified in 
IpSysTimeArray[1]. The time members of these structures are ignored. 

Return Values 
Returns nonzero if successful, or zero otherwise. This macro will fail if applied to a 
month-calendar control that does not use the MCS_MUL TISELECT style. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetToday 
Sets the "today" selection for a month-calendar control. You can use this macro or send 
the MCM_SETTODAY message explicitly. 

£btr~~~i~ 
c"·"" "~ 



378 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndMC 

Handle to a month-calendar control. 

/pSysTime 
Address of a SYSTEMTIME structure that contains the date to be set as the "today" 
selection for the control. If this parameter is set to NULL, the control returns to the 
default setting. The time members of this structure are ignored. 

If the "today" selection is set to any date other than the default, the following 
conditions apply: 

• The control will not automatically update the "today" selection when the time 
passes midnight for the current day. 

• The control will not automatically update its display based on locale changes. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_SetUnicodeFormat 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time instead of having to re-create 
the control. You can use this macro or send the MCM_SETUNICODEFORMAT 
message explicitly. 

Parameters 
hwnd 

Handle to the control. 

fUnicode 
Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 



Chapter 18 Month·Calendar Controls 379 

Return Values 
Returns the previous UNICODE format flag for the control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

MonthCal_GetUnicodeFormat 

Month-Calendar Control Notifications 

MCN_GETDAYSTATE 
Sent by a month-calendar control to request information about how individual days 
should be displayed. This notification message is sent only by month-calendar controls 
that use the MCS_DAYSTATE style, and it is sent in the form of a WM_NOTIFY 
message. 

Parameters 
IpNMDayState 

Address of an NMDAYSTATE structure. The structure contains information about the 
time frame for which the control needs information, and it receives the address of an 
array that provides this data. 

Remarks 
Handling this notification message allows your application to customize its display by 
specifying that certain days be displayed in bold. For more information about processing 
this message, see Processing the MCN_GETDAYSTATE Notification Message. 

Version 4.70 and later of Comctl32.dll. 



380 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

MCN_SELCHANGE 
Sent by a month-calendar control when the currently selected date or range of dates 
changes. This notification message is sent in the form of a WM_NOTIFY message. 

Parameters 
IpNMSelChange 

Address of an NMSELCHANGE structure that contains information about the 
currently selected date range. 

Remarks 
For example, the control sends MCN_SELCHANGE when the user explicitly changes 
the selection within the current month, or when the selection is implicitly changed in 
response to nexVprevious month exploration. 

This notification message is similar to MCN_SELECT, but it is sent in response to any 
selection change. MCN_SELECT is sent only for an explicit date selection. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Sent by a month-calendar control when the user makes an explicit date selection within 
a month-calendar control. This notification is sent in the form of a WM_NOTIFY 
message. 



Chapter 18 Month·Calendar Controls 381 

MCN_SELECT 
lpNMSelChange = (LPNMSELCHANGE) lParam; 

Parameters 
IpNMSelChange 

Address of an NMSELCHANGE structure that contains information about the 
currently selected date range. 

Remarks 
This notification message is similar to MCN_SELCHANGE, but it is sent only in 
response to a user's explicit date selections. MCN_SELCHANGE applies to any 
selection change. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NM_RELEASEDCAPTURE (monthcal) 
Notifies a monthcal control's parent window that the control is releasing mouse capture. 
This notification is sent in the form of a WM_NOTIFY message. 

,~fW,' 
. , :,. ,: ~~i: 
.: ~. ~ ',.~ 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains addiijonal information about this 
notification message. 

Return Values 
The control ignores the return value from this notification. 

Version 4.71 and later of ComctI32.dll. 



382 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Month-Calendar Control Structures 

MCHITTESTINFO 
Carries information specific to hit-testing pOints for a month-calendar control. This 
structure is used with the MCM_HITTEST message and the corresponding 
MonthCal_HitTest macro. 

Members 
cbSize 

Size of this structure, in bytes. 

pt 
POINT structure that contains information about the point to be hit-tested. 

uHit 
Output member that receives a bit flag representing the result of the hit-test operation. 
This value will be one of the following: 

MCHT _CALENDARBK The given point was in the calendar's 
background. 

MCHT _CALENDARDATE The given point was on a particular date within 
the calendar. The SYSTEMTIME structure at 
IpMCHitTest->st is set to the date at the given 
point. 

MCHT_CALENDARDATENEXT The given point was over a date from the next 
month (partially displayed at the end of the 
currently displayed month). If the user clicks 
here, the month-calendar will scroll its display to 
the next month or set of months. 



st 

Chapter 18 Month-Calendar Controls 383 

MCHT _CALENDARDATEPREV The given point was over a date from the 
previous month (partially displayed at the end of 
the currently displayed month). If the user clicks 
here, the month-calendar will scroll its display to 
the previous month or set of months. 

MCHT _CALENDARDAY The given point was over a day abbreviation 
("Fri", for example). The SYSTEMTIME structure 
at IpMCHitTest->st is set to the corresponding 
date in the top row. 

MCHT _CALENDARWEEKNUM The given point was over a week number 
(MCS_WEEKNUMBERS style only). The 
SYSTEMTIME structure at IpMCHitTest->st is 
set to the corresponding date in the leftmost 
column. 

MCHT _NOWHERE The given point was not on the month-calendar 
control, or it was in an inactive portion of the 
control. 

MCHT _ TITLEBK The given point was over the background of a 
month's title. 

MCHT _ TITLEBTNNEXT The given point was over the button at the top­
right corner of the control. If the user clicks here, 
the month-calendar will scroll its display to the 
next month or set of months. 

MCHT _ TITLEBTNPREV The given point was over the button at the top­
left corner of the control. If the user clicks here, 
the month-calendar will scroll its display to the 
previous month or set of months. 

MCHT _ TITLE MONTH The given point was in a month's title bar, over a 
month name. 

MCHT _ TITLEYEAR The given point was in a month's title bar, over 
the year value. 

SYSTEMTIME structure that receives date and time information specific to the 
location that was hit-tested. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 



384 Volume 4 Microsoft Windows Common Controls 

Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMDAYSTATE 
Carries information required to process the MCN_GETDAYSTATE notification message. 
All members of this structure are for input, except prgDayState, which the receiving 
application must set when processing MCN_GETDAYSTATE. 

Members 
nmhdr 

NMHDR structure that contains information about this notification message. 

stStart 
SYSTEMTIME structure that contains the starting date. 

cDayState 
INT value specifying the total number of elements that must be in the array at 
prgDayState. 

prgDayState 
Address of an array of MONTHDAYSTATE values. The buffer at this address must be 
large enough to contain at least cDayState elements. The first element in the array 
corresponds to the date in stStart. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 {or Windows NT 4.0 with 
Internet Explorer 3.0 or later}. 
Windows 95/98: Requires Windows 98 {or Windows 95 with Internet Explorer 3.0 or 
later}. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMSELCHANGE 
Carries information required to process the MCN_SELCHANGE notification message. 



Chapter 18 Month-Calendar Controls 385 

typedef struct tagNMSELCHANGE{ 
NMHDR nmhdr: 
SYSTEMTIME st$elStart; 
SYSTEMTIME stSelEnd; 

} NMSELCHANGE. FAR * LPNMSELCHANGE; 

Members 
nmhdr 

NMHDR structure that contains information about this notification message. 

stSelStart 
SYSTEMTIME structure that contains the date for the first day in the user's selection 
range. 

stSelEnd 
SYSTEMTIME structure that contains the date for the last day in the user's selection 
range. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorers 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Month·Calendar Control Data Types 

MONTHDAYSTATE 
This is a new data type that is defined in Commctrl.h as follows: 

IiPMONTHDAYSTATE; 

The MONTHDAYSTATE type is a bit field, where each bit (1 through 31) represents the 
state of a day in a month. If a bit is on, the corresponding day will be displayed in bold; 
otherwise, it will be displayed with no emphasis. 

This data type is used with the MCM_SETDAYSTATE message and the corresponding 
macro, MonthCaLSetDayState. When MONTHDAYSTATE values are used in 
reference to months shorter than 31 days, only the needed bits will be accessed. 





387 

CHAPTER 19 

Pager Controls 

A pager control is a window container that is used with a window that does not have 
enough display area to show all of its content. The pager control allows the user to scroll 
to the area of the window that is not currently in view. 

About Pager Controls 
Microsoft Internet Explorer Version 4.0 (commctrl.dll version 4.71) introduces the pager 
control. This control is useful in situations where a window does not have enough area to 
display a child window. For example, if your application has a tool bar that is not wide 
enough to show all of its items, you can assign the toolbar to a pager control and users 
will be able to scroll to the left or right to access all of the items. You can also create 
pager controls that scroll vertically. 

A window assigned to the pager control is referred to as the contained window. 

The following illustration shows a toolbar contained inside of a pager control. The pager 
control is shaded to show which areas of the control are visible. 

Note The pager control is implemented in version 4.71 and later of ComctI32.dll. 



388 Volume 4 Microsoft Windows Common Controls 

Using Pager Controls 
This section describes how to implement the pager control in your application. 

Initializing the Pager Control 
To use the pager control, you must call1nitCommonControlsEx with the 
ICC_PAGESCROLLER_CLASS flag set in the dwlCC member of the 
INITCOMMONCONTROLSEX structure. 

Creating the Pager Control 
Use the CreateWindow or the CreateWindowEx API to create a pager control. The 
class name for the control is WC_PAGESCROLLER, which is defined in Commctrl.h. 
The PGS_HORZ style is used to create a horizontal pager, and the PGS_ VERT style is 
used to create a vertical pager. Because this is a child control, the WS_CHILD style 
should also be used. 

Once the pager control is created, you will most likely want to assign a contained window 
to it. If the contained window is a child window, you should make the child window a child 
of the pager control so that the size and position will be calculated correctly. You then 
assign the window to the pager control with the PGM_SETCHILD message. Be aware 
that this message does not actually change the parent window of the contained window; 
it simply assigns the contained window. If the contained window is one of the common 
controls, it must have the CCS_NORESIZE style to prevent the control from attempting 
to resize itself to the pager control's size. 

Processing Pager Control Notifications 
At a minimum, it is necessary to process the PGN_CALCSIZE notification. If you don't 
process this notification and enter a value for the width or height, the scroll arrows in the 
pager control will not be displayed. This is because the pager control uses the width or 
height supplied in the PGN_CALCSIZE notification to determine the "ideal" size of the 
contained window. 

The following example demonstrates how to process the PGN_CALCSIZE notification 
case. In this example, the contained window is a toolbar control that contains an 
unknown number of buttons at an unknown size. The example shows how to use the 
TB_GETMAXSIZE message to determine the size of all of the items in the toolbar. The 
example then places the width of all of the items into the iWidth member of the 
NMPGCALCSIZE structure passed to the notification. 



Chapter 19 Pager Controls 389 

{ 

case PGF_CALCWIDTH: 
{ 

SIZE size: 

Processing the PGN_SCROLL notification is optional. Process this notification if you 
need to know when a scroll action occurs, need to track the scroll position, or wish to 
change the scroll delta. To cancel the scroll, simply place zero in the iScroll member of 
the NMPGSCROLL structure passed to the notification. 

The following example shows how to modify the scroll delta: 

Pager Control Styles 
The fOllowing window styles are used when creating pager controls: 

PGS_AUTOSCROLL The pager control will scroll when the user hovers the mouse 
over one of the scroll buttons. 

(continued) 



390 Volume 4 Microsoft Windows Common Controls 

(continued) 

PGS_DRAGNDROP 

PGS_VERT 

The contained window can be a drag-and-drop target. The 
pager control will automatically scroll if an item is dragged from 
outside the pager over one of the scroll buttons. 

Creates a pager control that can be scrolled horizontally. This 
style and the PGS_ VERT style are mutually exclusive and 
cannot be combined. 

Creates a pager control that can be scrolled vertically. This is 
the default direction if no direction style is specified. This style 
and the PGS_HORZ style are mutually exclusive and cannot 
be combined. 

Pager Control Reference 

Pager Control Messages 

PGM_FORWARDMOUSE 
Enables or disables mouse forwarding for the pager control. When mouse forwarding is 
enabled, the pager control forwards WM_MOUSEMOVE messages to the contained 
wil)dow. You can send this message explicitly or use the Pager_ForwardMouse macro. 

Parameters 
bForward 

BOOl value that determines if mouse forwarding is enabled or disabled. If this value 
is nonzero, mouse forwarding is enabled. If this value is zero, mouse forwarding is 
disabled. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



Chapter 19 Pager Controls 391 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_GETBKCOLOR 
Retrieves the current background color for the pager control. You can send this message 
explicitly or use the Pager_GetBkColor macro. 

~·lG.'.!.·.r.~K£.~.~ .• ~~.: .. :,~;,::¥{~~i 
, rEJ I ""';J~I -r:. ~_'": "'" "".~.:-.~":,/.', 

Return Values 
Returns a COLORREF value that contains the current background color. 

Remarks 
By default, the pager control will use the system button face color as the background 
color. This is the same color that can be retrieved by calling GetSysColor with 
COLOR_BTNFACE. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_GETBORDER 
Retrieves the current border size for the pager control. You can send this message 
explicitly or use the PagecGetBorder macro. 

Return Values 
Returns an INT value that contains the current border size, in pixels. 



392 Volume 4 Microsoft Windows Common Controls 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_SETBORDER 

PGM_GETBUTTONSIZE 
Retrieves the current button size for the pager control. You can send this message 
explicitly or use the PagecGetButtonSize macro. 

P,'~~!!IW~8~J: 
Return Values 
Returns an INT value that contains the current button size, in pixels. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_SETBUTTONSIZE 

PGM_GETBUTTONSTATE 
Retrieves the state of the specified button in a pager control. You can send this message 
explicitly or use the PagecGetButtonState macro. 



PGM_GETBUTTONSTATE 
wParam = 0; 

Chapter 19 Pager Controls 393 

lParam = (LPARAM)(i.nt)iButton: 

Parameters 
iButton 

Indicates which button to retrieve the state for. This can be one of the following 
values: 

PGB_ TOPORLEFT Indicates the top button in a PGS_ VERT pager control 
or the left button in a PGS_HORZ pager control. 

PGB_BOTTOMORRIGHT Indicates the bottom button in a PGS_ VERT pager 
control or the right button in a PGS_HORZ pager 
control. 

Return Values 
Returns the state of the button specified in iButton. This will be one of the following 
values: 

PGF _INVISIBLE 

PGF_NORMAL 

PGF _GRAYED 

PGF_DEPRESSED 

PGF_HOT 

The button is not visible. 

The button is in normal state. 

The button is in grayed state. 

The button is in pressed state. 

The button is in hot state. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_GETDROPTARGET 
Retrieves a pager control's IDropTarget interface pointer. You can send this message 
explicitly or use the Pager_GetDropTarget macro. 



394 Volume 4 Microsoft Windows Common Controls 

Parameters 
ppDropTarget 

Address of an IDropTarget pointer that receives the interface pOinter. It is the caller's 
responsibility to call Release on this pointer when it is no longer needed. 

Return Values 
The return value for this message is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_GETPOS 
Retrieves the current scroll position of the pager control. You can send this message 
explicitly or use the Pager_GetPos macro. 

Return Values 
Returns an INT value that contains the current scroll position, in pixels. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 19 Pager Controls 395 

PGM_RECALCSIZE 
Forces the pager control to recalculate the size of the contained window. Sending this 
message will result in a PGN_CALCSIZE notification being sent. You can send this 
message explicitly or use the PagecRecalcSize macro. 

PGM_RECAlC$l~E 

wParaltl"",,9; . 
, lParam_i)l; 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_SETBKCOLOR 
Sets the current background color for the pager control. You can send this message 
explicitly or use the Pager_SetBkColor macro. 

Parameters 
clrBk 

COLORREF value that contains the new background color of the pager control. 

Return Values 
Returns a COLORREF value that contains the previous background color. 

Remarks 
By default, the pager control will use the system button face color as the background 
color. This is the same color that can be retrieved by calling GetSysColor with 
COLOR_BTNFACE. 



396 Volume 4 Microsoft Windows Common Controls 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_SETBORDER 
Sets the current border size for the pager control. You can send this message explicitly 
or use the PagecSetBorder macro. 

Parameters 
iBorder 

New size of the border, in pixels. This value should not be larger than the pager 
button or less than zero. If iBorder is too large, the border will be drawn the same 
size as the button. If iBorder is negative, the border size will be set to zero. 

Return Values 
Returns an INT value that contains the previous border size, in pixels. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_SETBUTTONSIZE 
Sets the current button size for the pager control. You can send this message explicitly 
or use the Pager_SetButtonSize macro. 



PGM_SETBUTTONSIZE 
wParam == 0: 
lParam = (LPARAMHint)1ButtonSrze: 

Parameters 
iButtonSize 

Chapter 19 Pager Controls 397 

INT value that contains the new button size, in pixels. 

Return Values 
Returns an INT value that contains the previous button size, in pixels. 

Remarks 
If the pager control has the PGS_HORZ style, the button size determines the width of 
the pager buttons. If the pager control has the PGS_ VERT style, the button size 
determines the height of the pager buttons. By default, the pager control sets its button 
size to three-fourths of the width of the scroll bar. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PGM_GETBUTTONSIZE 

Sets the contained window for the pager control. This message will not change the 
parent of the contained window; it only assigns a window handle to the pager control for 
scrolling. In most cases, the contained window will be a child window. If this is the case, 
the contained window should be a child of the pager control. You can send this message 
explicitly or use the PagecSetChiid macro. 



398 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndChild 

Handle to the window to be contained. 

Return Values 
The return value is not used. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sets the current scroll position for the pager control. You can send this message 
explicitly or use the Pager_SetPos macro. 

Parameters 
iPos 

INT value that contains the new scroll position, in pixels. 

Return Values 
The return value is not used. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 19 Pager Controls 399 

Pager Control Macros 

Pager _ForwardMouse 
Enables or disables mouse forwarding for the pager control. When mouse forwarding is 
enabled, the pager control forwards WM_MOUSEMOVE messages to the contained 
window. You can use this macro or send the PGM_FORWARDMOUSE message 
explicitly. 

,;..~o~~~u~e~. 

Parameters 
hwndPager 

Handle to the pager control. 

bForward 
BOOl value that determines if mouse forwarding is enabled or disabled. If this value 
is nonzero, mouse forwarding is enabled. If this value is zero, mouse forwarding is 
disabled. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _ GetBkColor 
Retrieves the current background color for the pager control. You can use this macro or 
send the PGM_GETBKCOLOR message explicitly. 



400 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndPager 

Handle to the pager control. 

Return Values 
Returns a COLORREF value that contains the current background color. 

Remarks 
By default, the pager control will use the system button face color as the background 
color. This is the same color that can be retrieved by calling GetSysColor with 
COLOR_BTNFACE. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _ GetBorder 
Retrieves the current border size for the pager control. You can use this macro or send 
the PGM_GETBORDER message explicitly . 

. int·P'ager_G~t13()t~fer( 
HWND J)wndl!ifger 

); 

Parameters 
hwndPager 

Handle to the pager control. 

Return Values 
Returns an INT value that contains the current border size, in pixels. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



Chapter 19 Pager Controls 401 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _ GetButtonSize 
Retrieves the current button size for the pager control. You can use this macro or send 
the PGM_GETBUTTONSIZE message explicitly. 

int Pager_GetButtonSjze( 
HWND hW[ldPager 

) ; 

Parameters 
hwndPager 

Handle to the pager control. 

Return Values 
Returns an INT value that contains the current button size, in pixels. 

;~7A!~~:?; 
Pager _ SetButtonSize 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _ GetButtonState 
Retrieves the state of the specified button in a pager control. You can use this macro or 
send the PGM_GETBUTTONSTATE message explicitly. 

DWORD Paget' .... GetButtonState( 
HWNDhwndPager; 
1nt jButto[l 



402 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndPager 

Handle to the pager control. 

iButton 
Indicates which button to retrieve the state for. See the description for iButton in 
PGM_GETBUTTONSTATE for a list of possible values. 

Return Values 
Returns the state of the button specified in iButton. See the return value description in 
PGM_GETBUTTONSTATE for a list of possible values. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _ GetDrop Target 
Retrieves a pager control's IDropTarget interface pOinter. You can use this macro or 
send the PGM_GETDROPTARGET message explicitly. 

Parameters 
hwndPager 

Handle to the pager control. 

ppDropTarget 
Address of an IDropTarget pointer that receives the interface pOinter. It is the caller's 
responsibility to call Release on this pointer when it is no longer needed. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



Chapter 19 Pager Controls 403 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _ GetPos 
Retrieves the current scroll position of the pager control. You can use this macro or send 
the PGM_GETPOS message explicitly. 

'COLORREF .. 'kger ..;;.Get~l)s(" '" '. 
ItW.NOhwnrJPqger' 

) . 
Parameters 
hwndPager 

Handle to the pager control. 

Return Values 
Returns an INT value that contains the current scroll position, in pixels. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _RecalcSize 
Forces the pager control to recalculate the size of the contained window. Using this 
macro will result in a PGN_CALCSIZE notification being sent. You can use this macro or 
send the PGM_RECALCSIZE message explicitly. 

COlORREF pager .... Reca'lcSUe( . 
. HWNDhWndP.rgeT " .' "< 



404 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndPager 

Handle to the pager control. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager_SetBkColor 
Sets the current background color for the pager control. You can use this macro or send 
the PGM_SETBKCOLOR message explicitly. 

Parameters 
hwndPager 

Handle to the pager control. 

clrBk 
COLORREF value that contains the new background color of the pager control. 

Return Values 
Returns a COLORREF value that contains the previous background color. 

Remarks 
By default, the pager control will use the system button face color as the background 
color. This is the same color that can be retrieved by calling GetSysColor with 
COLOR_BTNFACE. 



Chapter 19 Pager Controls 405 

D~,Requirements 
Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager _ SetBorder 
Sets the current border size for the pager control. You can use this macro or send the 
PGM_SETBORDER message explicitly. 

INT paqer.-SetBorder( 
. HWMDhwridPa§er, . 
1nti,iJiirder . 

k 

Parameters 
hwndPager 

, ~" 

Handle to the pager control. 

iBorder 
New size of the border, in pixels. This value should not be larger than the pager 
button or less than zero. If iBorder is too large, the border will be drawn the same size 
as the button. If iBorder is negative, the border size will be set to zero. 

Return Values 
Returns an INT value that contains the previous border size, in pixels. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



406 Volume 4 Microsoft Windows Common Controls 

Pager _SetButtonSize 
Sets the current button size for the pager control. You can use this macro or send the 
PGM_SETBUnONSIZE message explicitly. 

Parameters 
hwndPager 

Handle to the pager control. 

iButtonSize 
INT value that contains the new button size, in pixels. 

Return Values 
Returns an INT value that contains the previous button size, in pixels. 

Remarks 
If the pager control has the PGS_HORZ style, the button size determines the width of 
the pager buttons. If the pager control has the PGS_ VERT style, the button size 
determines the height of the pager buttons. By default, the pager control sets its button 
size to three-fourths of the width of the scroll bar. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pagec GetButtonSize 

Pager _SetChiid 
Sets the contained window for the pager control. This macro will not change the parent 
of the contained window; it only assigns a window handle to the pager control for 



Chapter 19 Pager Controls 407 

scrolling. In most cases, the contained window will be a child window. If this is the case, 
the contained window should be a child of the pager control. You can use this macro or 
send the PGM_SETCHILD message explicitly. 

COLORR.E FP ag~f'.;.,.SetChll de 

1; 

HWND hwndPager, 
HWNtJhwndCht7d'. 

Parameters 
hwndPager 

Handle to the pager control. 

hwndChild 
Handle to the window to be contained. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager_SetPos 
Sets the scroll position for the pager control. You can use this macro or send the 
PGM_SETPOS message explicitly. 

Parameters 
hwndPager 

Handle to the pager control. 

iPos 
INT value that contains the new scroll position, in pixels. 



408 Volume 4 Microsoft Windows Common Controls 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager Control Notifications 

NM_RELEASEDCAPTURE(page~ 
Notifies a pager control's parent window that the control has released the mouse 
capture. NM_RELEASEDCAPTURE is sent in the form of a WM_NOTIFY message. 

Parameters 
/pnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The return value is ignored by the pager control. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 19 Pager Controls 409 

PGN_CALCSIZE 
Notification sent by a pager control to obtain the scrollable dimensions of the contained 
window. These dimensions are used by the pager control to determine the scrollable 
size of the contained window. This notification is sent in the form of a WM_NOTIFY 
message. 

PGrtCCAl'PSli£:···· 
···111l·irllla~ •• ", 

Parameters 
Ipnmcs 

Address of an NMPGCALCSIZE structure that contains and receives information 
about the notification. The dwFlag member of this structure indicates which 
dimension is being calculated. Depending on the value of dwFlags, you should place 
the desired dimension in the iWidth or iHeight member of this structure. 

Return Values 
The return value is ignored. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notification sent by a pager control prior to the contained window being scrolled. This 
notification is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnms 

Address of an NMPGSCROLL structure that contains and receives information about 
the notification. The iDir member of this structure indicates the direction of the scroll. 
The iXpos and iYpos members contain the horizontal and vertical position of the 



410 Volume 4 Microsoft Windows Common Controls 

contained window prior to the scroll. The iScroll member contains the default scroll 
delta amount. You can modify this member to a different scroll amount if desired. 

Return Values 
The return value is ignored. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Pager Control Structures 

NMPGCALCSIZE 
Contains and receives information that the pager control uses to calculate the scrollable 
area of the contained window. It is used with the PGN_CALCSIZE notification. 

Members 
hdr 

NMHDR structure that contains information about the notification message. 

dwFlag 
Value that indicates which dimension is being requested. This will be one of the 
following values: 

PGF _CALCHEIGHT 

PGF _CALCWIDTH 

The height of the scrollable area is being requested. The 
height must be placed in the iHeight member before 
returning from the notification. 

The width of the scrollable area is being requested. The 
width must be placed in the iWidth member before returning 
from the notification. 



Chapter 19 Pager Controls 411 

iWidth 
Receives the desired width of the scrollable area, in pixels. 

iHeight 
Receives the desired height of the scrollable area, in pixels. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMPGSCROLL 
Contains and receives information that the pager control uses when scrolling the 
contained window. It is used with the PGN_SCROLL notification. 

Members 
hdr 

NMHDR structure that contains information about the notification message. 

fwKeys 
Modifier keys that are down when the scroll occurs. This can be one or more of the 
following values: 

o 
PGK_SHIFT 

PGK_CONTROL 

PGK_MENU 

rcParent 

None of the modifier keys are down. 

The SHIFT key is down. 

The CONTROL key is down. 

The ALT key is down. 

Contains the client rectangle of the pager control. 



412 Volume 4 Microsoft Windows Common Controls 

iDir 
Value that indicates in which direction the scroll is occurring. This will be one of the 
following values: 

PGF _SCROLLDOWN 

PGF _SCROLLLEFT 

PGF _SCROLLRIGHT 

iXpos 

The contained window is being scrolled down. 

The contained window is being scrolled to the left. 

The contained window is being scrolled to the right. 

The contained window is being scrolled up. 

Contains the horizontal scroll position of the contained window, in pixels, before the 
scroll action. 

iYpos 
Contains the vertical scroll position of the contained window, in pixels, before the 
scroll action. 

iScroll 
On entry, contains the default scroll delta in pixels. This member can be modified to 
contain a different scroll delta amount if desired. This value is always positive, 
regardless of the scroll direction. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



CHAPTER 20 

Progress Bar Controls 

A progress bar is a window that an application can use to indicate the progress of a 
lengthy operation. It consists of a rectangle that is gradually filled with the system 
highlight color as an operation progresses. The following illustration shows a progress 
bar positioned along the bottom of a window. 

Using Progress Bars 

413 

You create a progress bar by using the CreateWindowEx function, specifying the 
PROGRESS_CLASS window class. This window class is registered when the common 
control dynamic-link library (DLL) is loaded. To ensure that this DLL is loaded, use the 
InitCommonControls function first. 

Range and Current Position 
A progress bar's range represents the entire duration of the operation, and the current 
position represents the progress that the application has made toward completing the 
operation. The window procedure uses the range and the current position to determine 
the percentage of the progress bar to fill with the highlight color. Because the range and 
current position values are expressed as unsigned integers, the highest possible range 
or current position value is 65,535. 

The minimum value in the range can be from 0 to 65,535. Likewise, the maximum value 
can be from 0 to 65,535. If you do not set the range values, the system sets the 



414 Volume 4 Microsoft Windows Common Controls 

minimum value to 0 and the maximum value to 100. You can adjust the range to 
convenient integers by using the PBM_SETRANGE message. 

A progress bar provides several messages that you can use to set the current position. 
The PBM_SETPOS message sets the position to a given value. The PBM_DELTAPOS 
message advances the position by adding a specified value to the current position. 

The PBM_SETSTEP message allows you to specify a step increment for a progress bar. 
Subsequently, whenever you send the PBM_STEPIT message to the progress bar, the 
current position advances by the specified increment. By default, the step increment is 
set to 10. 

Default Progress Bar Message Processing 
This section describes the messages handled by the window procedure for the 
PROGRESS_CLASS class. 

Message 

WM_CREATE 

WM_DESTROY 

WM_ERASEBKGND 

WM_GETFONT 

Progress Bar Example 

Processing performed 

Allocates and initializes an initial structure. 

Frees all resources associated with the progress bar. 

Draws the background and borders of the progress bar. 

Returns the handle to the current font. The progress bar does 
not currently draw text, so sending this message has no effect 
on the control. 

Draws the progress bar. If the wParam parameter is non-NULL, 
the control assumes that the value is an HDC and paints using 
that device context. 

Saves the handle to the new font and returns the handle to the 
previous font. The progress bar does not currently draw text, so 
sending this message has no effect on the control. 

The following example shows how to use a progress bar to indicate the progress of a 
lengthy file-parsing operation. The example creates a progress bar and positions it along 
the bottom of the parent window's client area. The height of the progress bar is based on 
the height of the arrow bitmap used in a scroll bar. The range is based on the size of the 
file divided by 2048, which is the size of each "chunk" of data read from the file. The 
example also sets an increment and advances the current position of the progress bar 
by the increment after parsing each chunk. 



II 
Global variable 

9 .... hinst,~, 
. HLN'StANCE 

Chapter 20 Progress Bar Controls 415 

(continued) 



416 Volume 4 Microsoft Windows Common Controls 

(continued) 

Progress Bar Control Updates in Internet Explorer 
Progress bar controls in Microsoft Internet Explorer support the following new features: 

New Progress Bar Control Styles 
Progress bar controls can now display progress information vertically, using the 
PBS_VERTICAL style. Also, a smooth progress mode is supported using the 
PBS_SMOOTH style. Using the PBS_SMOOTH style causes the control to display a 
contiguous progress bar instead of a segmented bar. 

Extended Range Values 
Progress bar controls now support 32-bit range values. To set range values in excess 
of 65,535, use the PBM_SETRANGE32 message. To retrieve 32-bit range values, 
use the PBM_GETRANGE message. The progress bar high limit, low limit, and 
position parameters are signed integers. To make full use of the 32-bit range, set the 
range to -Ox7FFFFFFF to Ox7FFFFFFF and treat the position as a signed integer. 

Programmable Colors 
An application can now control the colors used in a progress bar control with the 
PBM_SETBARCOLOR and PBM_SETBKCOLOR messages. 

Progress Bar Control Styles 
Progress bar controls now support control styles. You can set progress bar styles in the 
same way as other common controls (CreateWindowEx, GetWindowLong, 
SetWindowLong). The following are the supported styles: 



Chapter 20 Progress Bar Controls 417 

PBS_SMOOTH Version 4.70. The progress bar displays progress status in a 
smooth scrolling bar instead of the default segmented bar. 

PBS_VERTICAL Version 4.70. The progress bar displays progress status vertically, 
from bottom to top. 

Progress Bar Control Reference 

Progress Bar Control Messages 

Advances the current position of a progress bar by a specified increment and redraws 
the bar to reflect the new position. 

pa;~co.~ L. '1" APOS' ; ; 
< . wpa,raru=.( w.fl:~&AM)Ji11n9ii:\~~ .. 

·rp.a~r.alll:'i;;·!},: . 

Parameters 
nlncrement 

Amount to advance the position. 

Return Values 
Returns the previous position. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

PBM_GETPOS 
Retrieves the current position of the progress bar. 

1rB~.,.~Et~o~ 



418 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns a UINT value that represents the current position of the progress bar. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

PBM_GETRANGE 
Retrieves information about the current high and low limits of a given progress bar 
control. 

Parameters 
fWhichLimit 

Flag value specifying which limit value is to be used as the message's return value. 
This parameter can be one of the following values: 

TRUE Return the low limit. 

FALSE Return the high limit. 

ppBRange 
Address of a PBRANGE structure that is to be filled with the high and low limits of the 
progress bar control. If this parameter is set to NULL, the control will return only the 
limit specified by fWhichLimit. 

Return Values 
Returns an INT that represents the limit value specified by fWhichLimit. If IParam is not 
NULL, IParam must point to a PBRANGE structure that is to be filled with both limit 
values. 

Version 4.70 and later of Comctl32.dll. 



Chapter 20 Progress Bar Controls 419 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

PBM_SETBARCOLOR 
Sets the color of the progress indicator bar in the progress bar control. 

PSM,....SETB:ARCOUjR 
wParam =; 13: 

. }Param;'; (LJlA,~AM~'tqG1L:O~l5tFJclf'B~b 

Parameters 
clrBar 

COLORREF value that specifies the new progress indicator bar color. Specify the 
CLR_DEFAUL T value to cause the progress bar to use its default progress indicator 
bar color. 

Return Values 
Returns the previous progress indicator bar color, or CLR_DEFAULT if the progress 
indicator bar color is the default color. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PBM_SETBKCOLOR 
Sets the background color in the progress bar. 

PSM,....Sn'l3KcqLQR. 

::'iPara,IlI:"'@'1:' ..... ;: ...... ....... . ... 
1 P~ra11l = (.i[PA~MHCOlORRE:F)clr".8R:~ 



420 Volume 4 Microsoft Windows Common Controls 

Parameters 
clrBk 

COLORREF value that specifies the new background color. Specify 
the CLR_DEFAUL T value to cause the progress bar to use its default background 
color. 

Return Values 
Returns the previous background color, or CLR_DEFAULT if the background color is the 
default color. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sets the current position for a progress bar and redraws the bar to reflect the new 
position. 

Parameters 
nNewPos 

Signed integer that becomes the new position. 

Return Values 
Returns the previous position. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



Chapter 20 Progress Bar Controls 421 

Sets the minimum and maximum values for a progress bar and redraws the bar to reflect 
the new range. 

PBI'1'::'SUR~ME, .,'·",:,:<~,~<'/i~,'" 
. ">, .:, ~ : "~~" } 

i::~:=;~,.:~KE4PA~M('~:ktii~~~:r~~;~~~);~~~r:::.!~~<'(;~ i}\;,'z':";;", ' 
Parameters 
nMinRange 

Minimum range value. By default, the minimum value is zero. 

nMaxRange 
Maximum range value. By default, the maximum value is 100. 

Return Values 
Returns the previous range values if successful, or zero otherwise. The low-order word 
specifies the previous minimum value, and the high-order word specifies the previous 
maximum value. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

PBM_SETRANGE32 
Sets the range of a progress bar control to a 32-bit value. 

Parameters 
iLowLim 

A signed integer that represents the low limit to be set for the progress bar control. 

iHighLim 
A signed integer that represents the high limit to be set for the progress bar control. 



422 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns a DWORD value that holds the previous 16-bit low limit in its low word and the 
previous 16-bit high limit in its high word. If the previous ranges were 32-bit values, the 
return value consists of the low words of both 32-bit limits. 

Remarks 
To retrieve the entire high and low 32-bit values, use the PBM_GETRANGE message. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Specifies the step increment for a progress bar. The step increment is the amount by 
which the progress bar increases its current position whenever it receives a 
PBM_STEPIT message. By default, the step increment is set to 10. 

Parameters 
nSteplnc 

New step increment. 

Return Values 
Returns the previous step increment. 

Version 4.00 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



Chapter 20 Progress Bar Controls 423 

Advances the current position for a progress bar by the step increment and redraws the 
bar to reflect the new position. An application sets the step increment by sending the 
PBM_SETSTEP message. 

PBM_STEPIT 
wParam=,0: 
rParam'i¢ 0'( 

Return Values 
Returns the previous position. 

Remarks 
When the position exceeds the maximum range value, this message resets the current 
position so that the progress indicator starts over again from the beginning. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Progress Bar Control Structures 

PBRANGE 
Contains information about the high and low limits of a progress bar control. This 
structure is used with the PBM_GETRANGE message . 

.typ~d:ef sti<qct.' {;," 
, '" fht noW::}:' 

int:fHi:9h:' .' , 
1 P6RA1i8~ ~.[ *f"~!3RAitGE(;':: ,', 

Members 
iLow 

Low limit for the progress bar control. This is a signed integer. 

iHigh 
High limit for the progress bar control. This is a signed integer. 



424 Volume 4 Microsoft Windows Common Controls 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



425 

CHAPTER 21 

Property Sheets 

A property sheet is a window that allows the user to view and edit the properties of an 
item. For example, a spreadsheet application can use a property sheet to allow the user 
to set the font and border properties of a cell or to view and set the properties of a 
device, such as a disk drive, printer, or mouse. 

About Property Sheets 
This document assumes that you have a thorough understanding of dialog box 
templates and dialog box procedures. If you don't, you should read the "Dialog Boxes" 
chapter in the Platform SDK before continuing with this overview chapter. 

To implement property sheets in your application, include the Prsht.h header file in your 
project. Prsht.h contains all of the identifiers used with property sheets. 

A property sheet contains one or more overlapping child windows called pages, each 
containing control windows for setting a group of related properties. For example, a page 
can contain the controls for setting the font properties of an item, including the type style, 
point size, color, and so on. Each page has a tab that the user can select to bring the 
page to the foreground of the property sheet. For example, the DatefTime Control Panel 
application displays the following property sheet: 

6 7 8 9 
13 14 15 II 

19 20 21 22 23 

26 27 28 



426 Volume 4 Microsoft Windows Common Controls 

There is also a special type of property sheet called a wizard. Wizards are designed to 
present pages one at a time in a sequence that is controlled by the application. Instead 
of selecting from a group of pages by clicking a tab, users navigate forward and 
backward through the sequence, one page at a time, by clicking Next or Back buttons 
located at the bottom of the wizard. For example, this is the welcome page from the 
Hardware control panel application's wizard: 

Welcome to the Hardware 
Wizard 
You use this wizard to add, remove, repair, upgrade and 
customize your hardware. 

See Creating Wizards for a complete discussion of wizards. 

Property Sheet Dialog Boxes 
A property sheet and the pages it contains are actually dialog boxes. The property sheet 
is a system-defined dialog box that manages the pages and provides a common 
container for them. The property sheet dialog box can be modal or modeless. It includes 
a frame, a title bar, and four buttons: OK, Cancel, Apply Now, and Help. (The Help 
button may be hidden as in the preceding illustration.) The dialog box procedures for the 
pages receive notification messages when the user clicks the buttons. 

Each page in a property sheet is an application-defined modeless dialog box that 
manages the control windows used to view and edit the properties of an item. You 
provide the dialog box template used to create each page as well as the dialog box 
procedure that manages the controls and sets the properties of the corresponding item. 

A property sheet sends notification messages to the dialog box procedure for a page 
when the page is gaining or losing the activation and when the user clicks the OK, 
Cancel, Apply Now, or Help button. The notifications are sent in the form of 
WM_NOTIFY messages. The IParam parameter is the address of an NMHDR structure 
that includes the window handle to the property sheet dialog box. 



Pages 

Chapter 21 Property Sheets 427 

Some notification messages require a page to return either TRUE or FALSE in response 
to the WM_NOTIFY message. To do this, the page must use the SetWindowLong 
function to set the DWL_MSGRESUL T value for the page dialog box to either TRUE or 
FALSE. 

A property sheet must contain at least one page, but it cannot contain more than the 
value of MAXPROPPAGES as defined in the Win32 header files. Each page has a zero­
based index that the property sheet assigns according to the order in which the page is 
added to the property sheet. The indexes are used in messages that you send to the 
property sheet. 

A property page can contain a nested dialog box. If it does, you must include the 
WS_EX_CONTROLPARENT style for the top-level dialog box and call 
the IsDialogMessage function with the handle to the parent dialog box. This ensures 
that the user can use mnemonics and the dialog box navigation keys to move the focus 
to controls in the nested dialog box. 

Each page has a corresponding icon and label. The property sheet creates a tab for 
each page and displays the icon and label in the tab. All property sheet pages are 
expected to use a non bold font. To ensure that the font is not bold, specify the 
DS_3DLOOK style in the dialog box template. 

The dialog box procedure for a page must not call the End Dialog function. Doing so will 
destroy the entire property sheet, not just the page. 

The minimum size for a property sheet page is 212 dialog units horizontally and 114 dialog 
units vertically. If a page dialog is smaller than this, the page will be enlarged until it meets 
the minimum size. The Prsht.h header file contains three sets of recommended sizes for 
property sheet pages. PROP _SM_CXDLG and PROP _SM_CYDLG define the recommendel 
dimensions for a small property sheet page. PROP _MED_CXDLG and PROP _MED_CYDLC 
define the recommended dimensions for a medium-sized property sheet page. 
PROP _LG_CXDLG and PROP _LG_CYDLG define the recommended dimensions for a largE 
property sheet page. Using these recommended sizes will help ensure visual consistency 
between your application and other Microsoft Windows applications. 

Use the following values to set the sizes of the elements in your property sheet pages: 

PROP _SM_CXDLG 

PROP _SM_CYDLG 

PROP_MED_CXDLG 

PROP _LG_CXDLG 

PROP _LG_CYDLG 

Width, in dialog units, of a small property sheet page. 

Height, in dialog units, of a small property sheet page. 

Width, in dialog units, of a medium-sized property sheet 
page. 

Height, in dialog units, of a medium-sized property sheet 
page. 

Width, in dialog units, of a large property sheet page. 

Height, in dialog units, of a large property sheet page. 



428 Volume 4 Microsoft Windows Common Controls 

Property Sheet Creation 
Before creating a property sheet, you must define one or more pages. This involves 
filling a PROPSHEETPAGE structure with information about the page-its icon, label, 
dialog box template, dialog box procedure, and so on-and then specifying the address 
of the structure in a call to the CreatePropertySheetPage function. The function returns 
a handle to the HPROPSHEETPAGE type that uniquely identifies the page. 

To create a property sheet, you specify the address of a PROPSHEETHEADER 
structure in a call to the PropertySheet function. The structure defines the icon and title 
for the property sheet and also includes the address of an array of HPROPSHEETPAGE 
handles. When PropertySheet creates the property sheet, it includes the pages 
identified in the array. The pages appear in the property sheet in the same order that 
they are contained in the array. 

Another way to create a property sheet is to specify an array of PROPSHEETPAGE 
structures instead of an array of HPROPSHEETPAGE handles. In this case, 
PropertySheet creates handles for the pages before adding them to the property sheet. 

When a page is created, its dialog box procedure receives a WM_INITDIALOG 
message. The message's IParam parameter is a pointer to a copy of the 
PROPSHEETPAGE structure that is defined when the page is created. In particular, 

. when a page is created, the structure's IParam member can be used to pass 
application-defined information to the dialog procedure. With the exception of the 
IParam member, this structure should be treated as read-only. Modifying anything other 
than IParam will have unpredictable consequences. 

When the system subsequently passes a copy of the page's PROPSHEETPAGE 
structure to your application, it uses the same pOinter. Any changes to the structure will 
be passed along. Because the IParam member is ignored by the system, it can safely be 
modified to send information to other parts of your application. You can, for instance, use 
IParam to pass information to the page's callback function. 

PropertySheet automatically sets the size and initial position of a property sheet. The 
position is based on the position of the owner window, and the size is based on the 
largest page specified in the array of pages when the property sheet was created. If you 
want the pages to match the width of the four buttons at the bottom of the property 
sheet, set the width of the widest page to 190 dialog units. 

Adding and Removing Pages 
After creating a property sheet, an application can add a page by using the 
PSM_ADDPAGE message. Note that the size of the property sheet cannot change after 
it has been created, so the new page must be no larger than the largest page currently 
in the property sheet. 

An application removes a page by using the PSM_REMOVEPAGE message. When you 
define a page, you can specify the address of a PropSheetPageProc callback function 
that the property sheet calls when it is creating or removing the page. Using 



Chapter 21 Property Sheets 429 

PropSheetPageProc gives you an opportunity to perform initialization and cleanup 
operations for individual pages. 

When a property sheet is destroyed, it automatically destroys all of the pages that have 
been added to it. The pages are destroyed in reverse order from that specified in the 
array used to create the pages. To destroy a page that was created by the 
CreatePropertySheetPage function but was not added to the property sheet, use the 
DestroyPropertySheetPage function. 

Property Sheet Title and Page Labels 
You specify the title of a property sheet in the PROPSHEETHEADER structure used to 
create the property sheet. If the dwFlags member includes the PSH_PROPTITLE value, 
the property sheet adds the "Properties for" prefix to the specified title string. You can 
change the title after a property sheet is created by using the PSM_SETTITLE message. 

By default, a property sheet uses the name string specified in the dialog box template as 
the label for a page. You can override the name string by including the PSP _USETITLE 
value in the dwFlags member of the PROPSHEETPAGE structure that defines the 
page. When PSP _USETITLE is specified, the pszTitle member must contain the 
address of the label string for the page. 

Page Activation 
A property sheet can have only one active page at a time. The page that has the 
activation is at the foreground of the overlapping stack of pages. The user activates a 
page by selecting its tab; an application activates a page by using the 
PSM_SETCURSEL message. 

The property sheet sends the PSN_KILLACTIVE notification message to the page that 
is about to lose the activation. In response, the page should validate any changes that 
the user has made to the page. If the page requires additional user input before losing 
the activation, it should use the SetWindowLong function to set the DWL_MSGRESUL T 
value of the page to TRUE. Also, the page should display a message box that describes 
the problem and provides the recommended action. The page should set 
DWL_MSGRESULT to FALSE when it is okay to lose the activation. 

Before the page that is gaining the activation is visible, the property sheet sends the 
PSN_SETACTIVE notification message to the page. The page should respond by 
initializing its control windows. 

Help Button 
Property sheets can display two help buttons, a property sheet help button that is 
displayed at the bottom the frame, next to the OK/Cancel/Apply buttons, and a standard 
caption bar button that provides context-sensitive help. 



430 Volume 4 Microsoft Windows Common Controls 

The property sheet help button is optional, and can be enabled on a page by page basis. 
To display the property sheet help button for one or more pages: 

• Set the PSH_HASHELP flag in the dwFlags member of the property sheet's 
PROPSHEETHEADER structure. 

• For each page that will display a help button, set the PSP _HASHELP flag in the 
dwFlags member of the page's PROPSHEETPAGE structure. 

When the user clicks the Help button, the active page receives a PSN_HELP notification 
message. The page should respond by displaying Help information, typically by calling 
the WinHelp function. 

Removing the Caption Bar Help Button 
The caption bar help button is displayed by default, so that context-sensitive help is 
always available for the OK/Cancel/Apply buttons. However, this button can be removed, 
if necessary. To remove a property sheet's caption bar help button: 

• For versions of the common controls prior to version 5.80, you must implement a 
property sheet callback function. 

• For version 5.80 and later of the common controls you can simply set the 
PSH_NOCONTEXTHELP flag in the dwFlags member of the property sheet's 
PROPSHEETHEADER structure. However, if you need backward compatibility with 
earlier common control versions, you must implement the callback function. 

To implement a property sheet callback function that removes the caption bar help 
button: 

• Set the PSH_USECALLBACK flag in the dwFlags member of the property sheet's 
PROPSHEETHEADER structure. 

• Set the pfnCaliBack member of the PROPSHEETHEADER structure to point to the 
callback function. 

• Implement the callback function. When this function receives the 
PSCB_PRECREATE message, it will also receive a pointer to the property sheet's 
dialog box template. Remove the DS_CONTEXTHELP style from this template. 

The following sample illustrates how to implement such a callback function: 



Chapter 21 Property Sheets 431 

« LPOLGTEMPLATE )lParam) ->styl e &= -DS_CONTEXTHELP; 

If the DLGTEMPLATEEX structure is not defined, include the following declaration: 

OK, Cancel, and Apply Now Buttons 
The OK and Apply Now buttons are similar; both direct a property sheet's pages to 
validate and apply the property changes that the user has made. The only difference is 
that clicking the OK button causes the property sheet to be destroyed after the changes 
are applied. 

When the user clicks the OK or Apply Now button, the property sheet sends the 
PSN_KILLACTIVE notification message to the active page, giving it an opportunity to 
validate the user's changes. If the page determines that the changes are valid, it should 
call the SetWindowLong function to set the DWL_MSGRESUL T value for the page to 
FALSE. In this case, the property sheet sends the PSN_APPL Y notification message to 
each page, directing them to apply the new properties to the corresponding item. If the 
page determines that the user's changes are not valid, it should set DWL_MSGRESUL T 
to TRUE and display a dialog box informing the user of the problem. The page remains 
active until it sets DWL_MSGRESULT to FALSE in response to a PSN_KILLACTIVE 
message. An application can use the PSM_APPL Y message to simulate the selection of 
the Apply Now button. 

The Apply Now button is initially disabled when a page becomes active, indicating that 
there are not yet any property changes to apply. When the page receives input through 
one of its controls indicating that the user has edited a property, the page should send 
the PSM_CHANGED message to the property sheet. The message causes the property 



432 Volume 4 Microsoft Windows Common Controls 

sheet to enable the Apply Now button. If the user subsequently clicks the Apply Now or 
Cancel button, the page should reinitialize its controls and then send the 
PSM_UNCHANGED message to again disable the Apply Now button. 

Sometimes the Apply Now button causes a page to make a change to a property sheet, 
and the change cannot be undone. When this happens, the page should send the 
PSM_CANCEL TOCLOSE message to the property sheet. The message causes the 
property sheet to change the text of the OK button to "Close," indicating that the applied 
changes cannot be canceled. 

Sometimes a page makes a change to the system configuration that requires Windows 
to be restarted or the system rebooted before the change can take effect. After making 
such a change, a page should send either the PSM_REST ARTWINDOWS or 
PSM_REBOOTSYSTEM message to the property sheet. These messages cause the 
PropertySheet function to return the ID_PSRESTARTWINDOWS or 
ID_PSREBOOTSYSTEM value after the property sheet is destroyed. 

The property sheet sends the PSN_RESET notification message to all pages when the 
user clicks the Cancel button, indicating that the property sheet is about to be destroyed. 
A page should use the notification to perform cleanup operations. 

Property Sheet Extensions 
A property sheet extension is a dynamic-link library (DLL) that adds one or more pages 
to a property sheet created by another module. The module that creates the property 
sheet includes an AddPropSheetPageProc callback function that the extension DLL 
calls to add a page. The function receives the handle to a page and an application­
defined 32-bit value. 

The extension DLL also contains a callback function called 
ExtensionPropSheetPageProc, which receives the address of 
AddPropSheetPageProc from the module that creates the property sheet. 
The extension DLL must export ExtensionPropSheetPageProc by name. 

The Windows header files include two prototypes for defining property sheet callback 
functions. To define AddPropSheetPageProc, use the following prototype: 

To define ExtensionPropSheetPageProc, use the following prototype: 

Using Property Sheets 
This section contains examples that demonstrate how to create a property sheet and 
process notification messages. 



Chapter 21 Property Sheets 433 

Creating a Property Sheet 
The example in this section creates a property sheet that contains two pages-one for 
setting the font properties of a cell in a spreadsheet and another for setting the border 
properties of the cell. The example defines the pages by filling a pair of 
PROPSHEETPAGE structures and specifying the address in the PROPSHEETHEADER 
structure that is passed to the PropertySheet function. The dialog box templates, icons, 
and labels for the pages are loaded from the resources contained in the application's 
executable file. The icon for the property sheet is also loaded from the application's 
resources. 

(continued) 



434 Volume 4 Microsoft Windows Common Controls 

(continued) 

Processing Notification Messages 
A property sheet sends WM_NOTIFY messages to retrieve information from the pages 
and to notify the pages of user actions. The IParam parameter of the message is the 
address of an NMHDR structure, which contains the handle to the property sheet dialog 
box, the handle to the page dialog box, and a notification code. The page must respond 
to some notification messages by setting the DWL_MSGRESUL T value of the page to 
either TRUE or FALSE. 

The following example is a code fragment from the dialog box procedure for a page. It 
shows how to process the PSN_HELP notification message. 

Property Sheet Updates in Internet Explorer 
Property sheets in Microsoft Internet Explorer support the following new features: 



Chapter 21 Property Sheets 435 

New Notification 
The PSN_GETOBJECT notification has been added to allow a page to be an OLE 
drop target. 

Updated Structures 
The PROPSHEETHEADER and PROPSHEETPAGE structures have been updated 
to support new features. See the references for these structures for more information. 

Property Sheet Reference 

Property Sheet Functions 

AddPropSheetPageProc 
Specifies an application-defined callback function that a property sheet extension uses 
to add a page to a property sheet. 

Parameters 
hpage 

Handle to a property sheet page. 

IParam 
Application-defined 32-bit value. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 
Import Library: user-defined. 

CreatePropertySheetPage 
Creates a new page for a property sheet. 



436 Volume 4 Microsoft Windows Common Controls 

Parameters 
Ippsp 

Address of a PROPSHEETPAGE structure that defines a page to be included in a 
property sheet. 

Return Values 
Returns the handle to the new property page if successful, or NULL otherwise. 

Remarks 
An application uses the PropertySheet function to create a property sheet that includes 
the new page, or it uses the PSM_ADDPAGE message to add the new page to an 
existing property sheet. 

Windows 95: The system can support a maximum of 16,364 window handles. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 
Import Library: comctI32.lib. 

DestroyPropertySheetPage 
Destroys a property sheet page. An application must call this function for pages that 
have not been passed to the PropertySheet function. 

Parameters 
hPSPage 

Handle to the property sheet page to delete. 

Return Values 
Returns nonzero if successful, or zero otherwise. 



Chapter 21 Property Sheets 437 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 
Import Library: comctI32.lib. 

ExtensionPropSheetPageProc 
Specifies an application-defined callback function that receives the address of the 
AddPropSheetPageProc function, which resides in the module that creates a property 
sheet. A property sheet extension must export the ExtensionPropSheetPageProc 
function by name. 

Parameters 
Ipv 

Address of an application-defined value that describes an item for which a property 
sheet page is to be created. This parameter can be NULL. 

IpfnAddPropSheetPageProc 
Address of the AddPropSheetPageProc function. The extension dynamic-link library 
(DLL) calls this function to add a page to the property sheet. 

IParam 
Application-defined 32-bit value. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
This function is supported for backward compatibility reasons. Property sheet extension 
handlers should instead use AddPropSheetPageProc. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



438 Volume 4 Microsoft Windows Common Controls 

Header: Declared in prsht.h. 
Import Library: user-defined. 

PropertySheet 
Creates a property sheet and adds the pages defined in the specified property sheet 
header structure. 

Parameters 
/ppsph 

Pointer to a PROPSHEETHEADER structure that defines the frame and pages of a 
property sheet. 

Return Values 
Returns a positive value if successful, or -1 otherwise for modal property sheets. 

Returns the property sheet's window handle for mode less property sheets. 

The following return values have a special meaning: 

ID_PSREBOOTSYSTEM A page sent the PSM_REBOOTSYSTEM message 
to the property sheet. The computer must be restarted 
for the user's changes to take effect. 

ID_PSRESTARTWINDOWS A page sent the PSM_RESTARTWINDOWS message 
to the property sheet. Windows must be restarted for 
the user's changes to take effect. 

To get extended error information, call GetLastError. 

Remarks 
By default, the PropertySheet function creates a modal dialog box. If the dwFlags 
member of the PROPSHEETHEADER structure specifies the PSH_MODELESS fiag, 
PropertySheet creates a mode less dialog box and returns immediately after it is 
created. In this case, the PropertySheet return value is the window handle to the 
mode less dialog box. 

For a modeless property sheet, your message loop should use 
PSM_ISDIALOGMESSAGE to pass messages to the property sheet dialog box. Your 
message loop should use PSM_GETCURRENTPAGEHWND to determine when to 
destroy the dialog box. When the user clicks the OK or Cancel button, 
PSM_GETCURRENTPAGEHWND returns NULL. You can then use the 
DestroyWindow function to destroy the dialog box. 



Chapter 21 Property Sheets 439 

Version 5.80. The PropertySheet return value carries different information for modal 
and mode less property sheets. In some cases, modeless property sheets may need the 
information they would have received from PropertySheet if they had been modal. In 
particular, they may need to know whether ID_PSREBOOTSYSTEM or 
ID_PSRESTARTWINDOWS would have been returned. A modeless property sheet can 
retrieve the value that a modal property sheet would have received from PropertySheet 
by waiting until PSM_GETCURRENTPAGEHWND returns NULL, and then sending a 
PSM_GETRESULT message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 
Import Library: comctI32.lib. 

PropSheetPageProc 
Specifies an application-defined callback function that a property sheet calls when a 
page is created and when it is about to be destroyed. An application can use this 
function to perform initialization and cleanup operations for the page. 

Parameters 
hwnd 

Reserved; must be NULL. 

uMsg 
[in] Action flag. This parameter can be one of the following values: 

PSPCB_ADDREF Version 5.80. A page is being created. The return value 
is not used. 

PSPCB_CREATE A dialog box for a page is being created. Return nonzero 
to allow it to be created, or zero to prevent it. 

PSPCB_RELEASE A page is being destroyed. The return value is ignored. 

ppsp 
[in/out] Address of a PROPSHEETPAGE structure that defines the page being 
created or destroyed. See the Remarks section for further discussion. 



440 Volume 4 Microsoft Windows Common Controls 

Return Values 
The return value depends on the value of the uMsg parameter. 

Remarks 
An application must specify the address of this callback function in the pfnCaliback 
member of a PROPSHEETPAGE structure before specifying the address of the 
structure in a call to the CreatePropertySheetPage function. 

With the exception of the IParam member, your application should not modify the 
PROPSHEETPAGE structure. DOing so will have unpredictable results. The IParam 
member contains application-defined data and can be modified as needed. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 
Import Library: user-defined. 

PropSheetProc 
An application-defined callback function that the system calls when the property sheet is 
being created and initialized. 

Parameters 
hwndDlg 

Handle to the property sheet dialog box. 

uMsg 
Message being received. This parameter is one of the following values: 

PSCB_INITIALIZED Indicates that the property sheet is being initialized. The 
IParam value is zero for this message. 

PSCB_PRECREATE Indicates that the property sheet is about to be created. 
The hwndDlg parameter is NULL, and the IParam 
parameter is the address of a dialog template in memory. 
This template is in the form of a DLGTEMPLATE structure 
followed by one or more DLGITEMTEMPLATE structures. 



Chapter 21 Property Sheets 441 

IParam 
Additional information about the message. The meaning of this value depends on the 
uMsg parameter. 

Return Values 
Returns zero. 

Remarks 
To enable a PropSheetProc callback function, use the PROPSHEETHEADER structure 
when you call the PropertySheet function to create the property sheet. Use the 
pfnCaliback member to specify an address of the callback function, and set the 
PSP _USECALLBACK flag in the dwFlags member. 

PropSheetProc is a placeholder for the application-defined function name. The 
PFNPROPSHEETCALLBACK type is the address of a PropSheetProc callback 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 
Import Library: user-defined. 

Property Sheet Messages 

Adds a new page to the end of an existing property sheet. You can send this message 
explicitly or by using the PropSheeCAddPage macro. 

FSMJ.~P'P~~E, 

'·'?'i(.;~~~t:;);:\:[~~~~&Ht~~Q~~K~~TiA·~~J .hR4~e:) .;' . 
Parameters 
hpage 

Handle to the page to add. The page must have been created by a previous call to the 
CreatePropertySheetPage function. 

Return Values 
Returns TRUE if successful, FALSE otherwise. 



442 Volume 4 Microsoft Windows Common Controls 

Remarks 
The new page should be no larger than the largest page currently in the property sheet 
because the property sheet is not resized to fit the new page. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

Simulates the selection of the Apply button, indicating that one or more pages have 
changed and the changes need to be validated and recorded . 

. Ps~ppl.r.~~>.· ... 
wPaufI1:::; 0; 

ilP.aram .;" ...• '0; 

Return Values 
Returns TRUE if all pages successfully applied the changes, or FALSE otherwise. 

Remarks 
The property sheet sends the PSN_KILLACTIVE notification message to the current 
page. If the current page returns FALSE, the property sheet sends the PSN_APPLY 
notification message to all pages. You can send the PSM_APPLY message explicitly or 
by using the PropSheeCApply macro. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_CANCELTOCLOSE 
Sent by an application when it has performed changes since the most recent 
PSN_APPLY notification that cannot be canceled. You can send this message explicitly 
or by using the PropSheeCCancelToClose macro. 

PS~LCANCE.L TOCLOSE . 
wpara~.=0; .. 
lParam :::;0; 



Return Values 
No return value. 

Remarks 

Chapter 21 Property Sheets 443 

PSM_CANCELTOCLOSE disables the Cancel button and changes the text of the OK 
button to "Close." 

Most property sheets wait to perform irreversible changes until a PSN_APPL Y 
notification is received. However, in some circumstances, a property sheet may make 
irreversible changes outside the standard PSN_APPL Y/PSN_RESET sequence. One 
example is a property sheet that contains an Edit button that is used to display a 
subdialog box for editing a property. When the user clicks OK to submit the change, the 
property sheet page has several options: 

• It can record the changes, but wait until it receives a PSN_APPL Y notification to apply 
them. This is the preferred approach. 

• It can apply the changes immediately after exiting the subdialog box, but remember 
the original settings. Those settings can be used to restore the original state if a 
PSN_RESET notification is received. 

• It can apply the changes immediately and not attempt to restore the original settings 
when it receives a PSN_RESET notification. This approach is not recommended, but 
may be necessary if the changes are too far-reaching for the other two options to be 
practical. 

For the third option, applications should send a PSM_CANCEL TOCLOSE message to 
the property sheet. It indicates to the user that the changes made with the subdialog box 
cannot be reversed by clicking the Cancel button. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_CHANGED 
Informs a property sheet that information in a page has changed. You can send this 
message explicitly or by using the PropSheeCChanged macro. 

'~'~'~C~~Ff):<',,:~~': ", ,~:?>:/:, ;~, ",' .\ 
il+l1ar{lm:iJWPMAJH~OllitfO~ 

, ,~': )'~a~~",~·.~~<'~,i:· ' > ': ",,' ~ ~>r"" 



444 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwndPage 

Handle to the page that has changed. 

Return Values 
No return value. 

Remarks 
The property sheet will enable the Apply button. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_GETCURRENTPAGEHWND 
Retrieves a handle to the window of the current page of a property sheet. You can send 
this message explicitly or by using the PropSheeCGetCurrentPageHwnd macro. 

1?~~GET:~Mt< 
. f'. '~~Jl;¥ijfu~:~ 
·?"J:p~ra~ ,"". 
Return Values 
Returns a handle to the window of the current property sheet page. 

Remarks 
Use the PSM_GETCURRENTPAGEHWND message with modeless property sheets to 
determine when to destroy the dialog box. When the user clicks the OK or Cancel 
button, PSM_GETCURRENTPAGEHWND returns NULL, and you can then use the 
DestroyWindow function to destroy the dialog box. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 445 

PropertySheet 

PSM_GETTABCONTROL 
Retrieves the handle to the tab control of a property sheet. You can send this message 
explicitly or by using the PropSheeCGetTabControl macro. 

Return Values 
Returns the handle to the tab control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_HWNDTOINDEX 
Takes the window handle of the property sheet page and returns its zero-based index. 
You can send this message explicitly or use the PropSheeCHwndTolndex macro. 

Parameters 
hPageDlg 

Handle to the page's window. 

Return Values 
Returns the zero-based index of the property sheet page specified by hPageDlg if 
successful. Otherwise, it returns -1. 

Version 5.80 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 



446 Volume 4 Microsoft Windows Common Controls 

Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSM_IDTOINDEX 
Takes the resource identifier (10) of a property sheet page and returns its zero-based 
index. You can send this message explicitly or use the PropSheeCldTolndex macro. 

Parameters 
iPagelD 

Resource 10 of the page. 

Return Values 
Returns the zero-based index of the property sheet page specified by iPagelD if 
successful. Otherwise, it returns -1. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSM_INDEXTOHWND 
Takes the index of a property sheet page and returns its window handle. You can send 
this message explicitly or use the PropSheeClndexToHwnd macro. 

Parameters 
iPagelndex 

Zero-based index of the page. 



Chapter 21 Property Sheets 447 

Return Values 
Returns the handle to the window of the property sheet page specified by iPagelndex if 
successful. Otherwise, it returns zero. 

Version 5.80 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSM_INDEXTOID 
Takes the index of a property sheet page and returns its resource identifier (10). You can 
send this message explicitly or use the PropSheeClndexTold macro. 

Parameters 
iPagelndex 

Zero-based index of the page. 

Return Values 
Returns the resource 10 of the property sheet page specified by iPagelndex if 
successful. Otherwise, it returns zero. 

Version 5.80 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSM_INDEXTOPAGE 
Takes the index of a property sheet page and returns its HPROPSHEETPAGE handle. 
You can send this message explicitly or use the PropSheeClndexToPage macro. 



448 Volume 4 Microsoft Windows Common Controls 

Parameters 
iPagelndex 

Zero-based index of the page. 

Return Values 
Returns the HPROPSHEETPAGE handle of the property sheet page specified by 
iPagelndex if successful. Otherwise, it returns zero. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSM_INSERTPAGE 
Inserts a new page into an existing property sheet. It can be inserted either at a specified 
index or after a specified page. You can send this message explicitly or by using the 
PropSheeLlnsertPage macro. 

Parameters 
wParam 

Location where the page is to be inserted. Set this parameter to NULL to make the 
new page the first page. To specify where the new page is to be inserted, you can 
either pass an index or an existing page's HPROPSHEETPAGE handle. 

index 
If the wParam parameter is less than MAXUSHORT, it specifies the zero-based 
index for the new page. For example, to make the inserted page the third one on 
the property sheet, set index to 2. To make it the first page, set index to O. If index 
has a value greater than the number of pages and less than MAXUSHORT, the 
page will be appended. 



Chapter 21 Property Sheets 449 

hpagelnsertAfter 
If you set the wParam parameter to an existing page's HPROPSHEETPAGE 
handle, the new page will be inserted after it. 

hpage 
Handle to the page to be inserted. It must first be created by a call to the 
CreatePropertySheetPage function. 

Return Values 
Returns a nonzero value if the page was successfully inserted. Otherwise, it returns 
zero. 

Remarks 
The pages after the insertion point are shifted to the right to accommodate the new 
page. 

The property sheet is not resized to fit the new page. Do not make the new page larger 
than the property sheet's largest page. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

PSM_ISDIALOGMESSAGE 
Passes a message to a property sheet dialog box and indicates whether the dialog box 
processed the message. You can send this message explicitly or by using the 
PropSheeClsDialogMessage macro. 

Parameters 
pMsg 

Address of an MSG structure that contains the message to be checked. 



450 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns TRUE if the message has been processed, or FALSE if the message has not 
been processed. 

Remarks 
Your message loop should use the PSM_ISDIALOGMESSAGE message with modeless 
property sheets to pass messages to the property sheet dialog box. 

If the return value indicates that the message was processed, it must not be passed to 
the TranslateMessage or DispatchMessage function. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropertySheet 

PSM_PAGETOINDEX 
Takes the HPROPSHEETPAGE handle of the property sheet page and returns its zero­
based index. You can send this message explicitly or use the PropSheeCPageTolndex 
macro. 

Parameters 
hPage 

HPROPSHEETPAGE handle to the property sheet page. 

Return Values 
Returns the zero-based index of the property sheet page specified by hPage if 
successful. Otherwise, it returns -1. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 



Chapter 21 Property Sheets 451 

Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

Simulates the selection of a property sheet button. You can send this message explicitly 
or by using the PropSheeCPressButton macro. 

Parameters 
iButton 

Index of the button to select. This parameter can be one of the following values: 

PSBTN_APPL YNOW Selects the Apply button. 

PSBTN_BACK 

PSBTN_CANCEL 

PSBTN_FINISH 

PSBTN_HELP 

PSBTN_NEXT 

PSBTN_OK 

Return Values 
No return value. 

Selects the Back button. 

Selects the Cancel button. 

Selects the Finish button. 

Selects the Help button. 

Selects the Next button. 

Selects the OK button. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_QUERYSIBLINGS 
Sent to a property sheet, which then forwards the message to each of its pages. You 
can send this message explicitly or by using the PropSheeCQuerySiblings macro. 



452 Volume 4 Microsoft Windows Common Controls 

Parameters 
param1 

First application-defined parameter. 

param2 
Second application-defined parameter. 

Return Values 
Returns the nonzero value from a page in the property sheet, or zero if no page returns 
a nonzero value. 

Remarks 
If a page returns a nonzero value, the property sheet does not send the message to 
subsequent pages. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_REBOOTSYSTEM 
Indicates the system needs to be restarted for the changes to take effect. You can send 
the PSM_REBOOTSYSTEM message explicitly or by using 
the PropSheet_RebootSystem macro. 

Return Values 
No return value. 

Remarks 
An application should send this message only in response to the PSN_APPL Y or 
PSN_KILLACTIVE notification message. 

This message causes the PropertySheet function to return the 
ID_PSREBOOTSYSTEM value, but only if the user clicks the OK button to close the 
property sheet. It is the application's responsibility to reboot the system, which can be 
done by using the ExitWindowsEx function. 



Chapter 21 Property Sheets 453 

This message supersedes all PSM_RESTARTWINDOWS messages that precede or 
follow it. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_REMOVEPAGE 
Removes a page from a property sheet. You can send this message explicitly or by 
using the PropSheeCRemovePage macro. 

Parameters 
index and hpage 

Zero-based index of the page and the handle to the page to remove, respectively. An 
application can specify the index or the handle, or both. If both are specified, hpage 
takes precedence. 

Return Values 
No return value. 

Remarks 
Sending PSM_REMOVEPAGE will destroy the property sheet page that is being 
removed. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_RESTARTWINDOWS 
Indicates that Windows needs to be restarted for the changes to take effect. 



454 Volume 4 Microsoft Windows Common Controls 

;psitJRt~ All'w;r.r.lUOWS.·:,; 

Return Values 
No return value. 

Remarks 

;);~;<,;, 

An application should send this message only in response to the PSN_APPL Y or 
PSN_KILLACTIVE notification message. You can send the PSM_RESTARTWINDOWS 
message explicitly or by using the PropSheeCRestartWindows macro. 

This message causes the PropertySheet function to return the 
ID_PSRESTARTWINDOWS value, but only if the user clicks the OK button to close the 
property sheet. It is the application's responsibility to restart Windows, which can be 
done by using the ExitWindowsEx function. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_SETCURSEL 
Activates the specified page in a property sheet. You can send this message explicitly or 
by using the PropSheeCSetCurSel macro. 

PSt(.SETCURSEL 
wpara.m=;(wpARAM} ('nt) fr1tl~X~;,; .. 

r·;lParalll.'; (LPARAMr {1fl'>R{lPS:ftEi;TPA~~l;tiRJge:;;'; 

Parameters 
index and hpage 

The zero-based index of the page and the handle to the page to activate, respectiveiy. 
An application can specify the index or the handle, or both. If both are specified, 
hpage takes precedence. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 



Chapter 21 Property Sheets 455 

Remarks 
The window that is losing the activation receives the PSN_KILLACTIVE notification 
message, and the window that is gaining the activation receives the PSN_SETACTIVE 
notification message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_SETCURSELID 
Activates the given page in a property sheet based on the resource identifier of the 
page. You can send this message explicitly or by using the PropSheeCSetCurSelBylD 
macro. 

psM:..sirGuRstL16 ,·r' 

;; ~:;:::~~~At~~t(rht Y' i <t;';. 

Parameters 
id 

Resource identifier of the page to activate. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The window that is losing the activation receives the PSN_KILLACTIVE notification 
message, and the window that is gaining the activation receives the PSN_SETACTIVE 
notification message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



456 Volume 4 Microsoft Windows Common Controls 

PSM_SETFINISHTEXT 
Sets the text of the Finish button in a wizard, shows and enables the button, and hides 
the Next and Back buttons. You can send this message explicitly or by using the 
PropSheeCSetFinishText macro. 

Parameters 
IpszText 

Address of the new text for the Finish button. 

Return Values 
No return value. 

Remarks 
This message causes the DM_SETDEFID message to be sent to the wizard dialog box. 
The wParam parameter specifies the identifier of the Finish button. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in prsht.h. 

PSM_SETHEADERSUBTITLE 
Sets the subtitle text for the header of a wizard's interior page. You can send this 
message explicitly or use the PropSheeCSetHeaderSubTitle macro. 

'PS~:J;ETHE,il;uEJ~$tJ~JrtTir;' ,,' '".i. ./~','. .'. <I .... ", 

.• · .... i~;!r:~~~·;'~t~~:l •• ,~i~is~i~·~:~t~~~~:~ijbi;G~;i,. 
Parameters 
iPagelndex 

Zero-based index of the wizard's page. 

pszHeaderSub Title 
New header subtitle. 



Return Values 
No return value. 

Remarks 

Chapter 21 Property Sheets 457 

If you specify the current page, it will immediately be repainted to display the new 
subtitle. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSM_HWNDTOINDEX, PSM_IDTOINDEX, PSM_PAGETOINDEX 

PSM_SETHEADERTITLE 
Sets the title text for the header of a wizard's interior page. You can send this message 
explicitly or use the PropSheeCSetHeaderTitle macro. 

Parameters 
iPagelndex 

Zero-based index of the wizard's page. 

pszHeaderTitie 
New header subtitle. 

Return Values 
No return value. 

Remarks 
If you specify the current page, it will immediately be repainted to display the new title. 



458 Volume 4 Microsoft Windows Common Controls 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSM_HWNDTOINDEX, PSM_IDTOINDEX, PSM_PAGETOINDEX 

Sets the title of a property sheet. You can send this message explicitly or by using the 
PropSheeCSetTitle macro. 

Parameters 
dwStyle 

Flag that indicates whether to include the prefix "Properties for" with the specified title 
string. If dwStyle is the PSH_PROPTITLE value, the prefix is included. Otherwise, the 
prefix is not used. 

IpszText 
Address of a buffer that contains the title string. If the high-order word of this 
parameter is NULL, the property sheet loads the string resource specified in the low­
order word. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 459 

PSM_SETWIZBUTTONS 
Enables or disables the Back, Next, and Finish buttons in a wizard. You can also use the 
PropSheeCSetWizButtons macro to post the message. 

PSM_S ETWI Z.BUnONS 
wParqrll '" .0: 

. lPararrl· ... ·· CLPARAM) (UWot<OYdwnilgs;< 

Parameters 
dwFlags 

Value that specifies which property sheet buttons are enabled. You can combine one 
or more of the following flags: 

PSWIZB_BACK Enables the Back button. If this flag is not set, .the 
Back button is displayed as disabled. 

PSWIZB_DISABLEDFINISH 

PSWIZB_FINISH 

PSWIZB_NEXT 

Return Values 
No return value. 

Remarks 

Displays a disabled Finish button. 

Displays an enabled Finish button. 

Enables the Next button. If this flag is not set, the 
Next button is displayed as disabled. 

If your notification handler uses Post Message to send a PSM_SETWIZBUTTONS 
message, do not do anything that will affect window focus until after the handler returns. 
For example, if you call MessageBox immediately after using PostMessage to send 
PSM_SETWIZBUTTONS, the message box will receive focus. Since posted messages 
are not delivered until they reach the head of the message queue, the 
PSM_SETWIZBUTTONS message will not be delivered until after the wizard has lost 
focus to the message box. As a result, the property sheet will not be able to properly set 
the focus for the buttons. 

If you send the PSM_SETWIZBUTTONS message during your handling of the 
PSN_SETACTIVE notification message, use the PostMessage function rather than the 
SendMessage function. Otherwise, the system will not update the buttons properly. If 
you use the PropSheeCSetWizButtons macro to send this message, it will be posted. 
At any other time, you can use Send Message to send PSM_SETWIZBUTTONS. 

Wizards display either three or four buttons below each page. This message is used to 
specify which buttons are enabled. Wizards normally display Back, Cancel, and either a 
Next or a Finish button. You typically enable only the Next button for the welcome page, 
Next and Back for interior pages, and Back and Finish for the completion page. The 
Cancel button is always enabled. Normally, setting PSWIZB_FINISH or 
PSWIZB_DISABLEDFINISH replaces the Next button with a Finish button. To display 



460 Volume 4 Microsoft Windows Common Controls 

Next and Finish buttons simultaneously, set the PSH_WIZARDHASFINISH FLAG in the 
dwFlags member of the wizard's PROPSHEETHEADER structure when you create the 
wizard. Every page will then display all four buttons. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

Informs a property sheet that information in a page has reverted to the previously saved 
state. You can send this message explicitly or by using the PropSheeCUnChanged 
macro. 

Parameters 
hwndPage 

Handle to the page that has reverted to the previously saved state. 

Return Values 
No return value. 

Remarks 
The property sheet disables the Apply button if no other pages have registered changes 
with the property sheet. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 461 

Property Sheet Macros 

PropSheet_AddPage 
Adds a new page to the end of an existing property sheet. You can use this macro or 
send the PSM_ADDPAGE message explicitly. 

8,'~~~~~~i*,~~.~Rf' .. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

hpage 
Handle to the page to add. The page must have been created by a previous call to the 
CreatePropertySheetPage function. 

Return Values 
Returns TRUE if successful, FALSE otherwise. 

Remarks 
The new page should be no larger than the largest page currently in the property sheet 
because the property sheet is not resized to fit the new page. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_Apply 
Simulates the selection of the Apply button, indicating that one or more pages have 
changed and the changes need to be validated and recorded. You can use this macro or 
send the PSM_APPL Y message explicitly. 



462 Volume 4 Microsoft Windows Common Controls 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

Return Values 
Returns TRUE if all pages successfully applied the changes, or FALSE otherwise. 

Remarks 
The property sheet sends the PSN_KILLACTIVE notification message to the current 
page. If the current page returns FALSE, the property sheet sends the PSN_APPL Y 
notification message to all pages. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_ CancelToClose 
Used when changes made since the most recent PSN_APPL Y notification cannot be 
canceled. You can also send a PSM_CANCEL TOCLOSE message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

Return Values 
No return value. 

Remarks 
PSM_CANCEL TOCLOSE disables the Cancel button and changes the text of the OK 
button to "Close." You can use this macro or send the PSM_CANCEL TOCLOSE 
message explicitly. 

Most property sheets wait to perform irreversible changes until a PSN_APPL Y 
notification is received. However, in some circumstances, a property sheet may make 
irreversible changes outside the standard PSN_APPL Y/PSN_RESET sequence. One 
example is a property sheet that contains an Edit button that is used to display a 



Chapter 21 Property Sheets 463 

subdialog box for editing a property. When the user clicks OK to submit the change, the 
property sheet page has several options: 

• It can record the changes but wait until it receives a PSN_APPL Y notification to apply 
them. This is the preferred approach. 

• It can apply the changes immediately after exiting the subdialog box, but remember 
the original settings. Those settings can be used to restore the original state if a 
PSN_RESET notification is received. 

• It can apply the changes immediately and not attempt to restore the original settings 
when it receives a PSN_RESET notification. This approach is not recommended, but 
may be necessary if the changes are too far-reaching for the other two options to be 
practical. 

For the third option, applications should send a PSM_CANCEL TOCLOSE message to 
the property sheet. It indicates to the user that the changes made with the subdialog box 
cannot be reversed by clicking the Cancel button. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_ Changed 
Informs a property sheet that information in a page has changed. You can use this 
macro or send the PSM_CHANGED message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

hwndPage 
Handle to the page that has changed. 

Return Values 
No return value. 



464 Volume 4 Microsoft Windows Common Controls 

Remarks 
The property sheet enables the Apply button. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_ GetCurrentPageHwnd 
Retrieves a handle to the window of the current page of a property sheet. You can use 
this macro or send the PSM_GETCURRENTPAGEHWND message explicitly. 

Parameters 
hDlg 

Handle to the property sheet. 

Return Values 
Returns a handle to the window of the current property sheet page. 

Remarks 
Use the PropSheeCGetCurrentPageHwnd macro with modeless property sheets to 
determine when to destroy the dialog box. When the user clicks the OK or Cancel 
button, PropSheeCGetCurrentPageHwnd returns NULL, and you can then use the 
DestroyWindow function to destroy the dialog box. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropertySheet 



Chapter 21 Property Sheets 465 

PropSheet_ GetTabControl 
Retrieves the handle to the tab control of a property sheet. You can use this macro or 
send the PSM_GETTABCONTROL message explicitly. 

HWND PropSheeLGettabC~ntrol(;:; 
.·HW~~ffProPShe~t01g· . 

'>: 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

Return Values 
Returns the handle to the tab control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_HwndTolndex 
Takes a window handle of the property sheet page and returns its zero-based index. 
You can use this macro or send the PSM_HWNDTOINDEX message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet's window. 

hPageDlg 
Handle to the page's window. 

Return Values 
Returns the zero-based index of the property sheet page specified by hPageDlg if 
successful. Otherwise, it returns -1. 



466 Volume 4 Microsoft Windows Common Controls 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheet_GetCurrentPageHwnd, GetParent 

PropSheet_ldTolndex 
Takes the resource identifier (ID) of a property sheet page and returns its zero-based 
index. You can use this macro or send the PSM_IDTOINDEX message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet window. 

iPagelD 
Resource ID of the page. 

Return Values 
Returns the zero-based index of the property sheet page specified by iPagelD if 
successful. Otherwise, it returns -1. 

Version 5.80 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 467 

PropSheeUndexTold 

PropSheet_lndexToHwnd 
Takes the index of a property sheet page and returns its window handle. You can use 
this macro or send the PSM_INDEXTOHWND message explicitly. 

~ND Prop$l1e&t;;;;Jndt~()HWmlt 'J, :"" 
, > '" _ ", • ;J., ~ , .0"- ~ '" < «, 

, 'HWltl) '~;f'r:QPS#t?etD:19. ,,', ",:,:,/;,; 

.'·~·"l,1;~:.,,!~~~~~~~~~'~ ,:,' .. '.; '.'~:.,'}~' ... ,""'" '.'::~. ,~. :;,;,,::"' .. ',~~~;!,~" 
Parameters 
hPropSheetDlg 

Handle to the property sheet page's window. 

iPagelndex 
Zero-based index of the page. 

Return Values 
Returns the handle to the property sheet page's window specified by iPagelndex if 
successful. Otherwise, it returns zero. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheeCHwndTolndex 

PropSheet_lndexTold 
Takes the index of a property sheet page and returns its resource identifier (ID). You can 
use this macro or send the PSM_INDEXTOID message explicitly. 



468 Volume 4 Microsoft Windows Common Controls 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

iPagelndex 
Zero-based index of the page. 

Return Values 
Returns the resource 10 of the property sheet page specified by iPagelndex if 
successful. Otherwise, it returns zero. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheet_lndexToPage 
Takes the index of a property sheet page and returns its HPROPSHEETPAGE handle. 
You can use this macro or send the PSM_INDEXTOPAGE message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet window. 

iPagelndex 
Zero-based ndex of the page. 



Chapter 21 Property Sheets 469 

Return Values 
Returns the HPROPSHEETPAGE handle of the property sheet page specified by 
iPagelndex if successful. Otherwise, it returns zero. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheeCPageTolndex 

PropSheet_lnsertPage 
Inserts a new page into an existing property sheet. It can be inserted either at a specified 
index or after a specified page. You can use this macro or send the PSM_INSERTPAGE 
message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

wParam 
Location where the page is to be inserted. Set wParam to NULL to make the new 
page the first page. To specify where the new page is to be inserted, you can either 
pass an index or an existing page's HPROPSHEETPAGE handle. 



470 Volume 4 Microsoft Windows Common Controls 

index 
If wParam is less than MAXUSHORT, it specifies the zero-based index for the new 
page. For example, to make the inserted page the third one on the property sheet, 
set index to 2. To make it the first page, set index to O. If index has a value greater 
than the number of pages and less than MAXUSHORT, the page will be appended. 

hpagelnsertAfter 
If you set wParam to an existing page's HPROPSHEETPAGE handle, the new 
page will be inserted after it. 

hpage 
Handle to the page to be inserted. It must first be created by a call to the 
CreatePropertySheetPage function. 

Return Values 
Returns a nonzero value if the page was successfully inserted. Otherwise, it returns 
zero. 

Remarks 
The pages after the insertion point are shifted to the right to accommodate the new 
page. 

The property sheet is not resized to fit the new page. Do not make the new page larger 
than the property sheet's largest page. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheet_lsDialogMessage 
Passes a message to a property sheet dialog box and indicates whether the dialog box 
processed the message. You can use this macro or send the 
PSM_ISDIALOGMESSAGE message explicitly. 



Parameters 
hDlg 

Handle to the property sheet. 

pMsg 

Chapter 21 Property Sheets 471 

Address of an MSG structure that contains the message to be checked. 

Return Values 
Returns TRUE if the macro has been processed, or FALSE if the macro has not been 
processed. 

Remarks 
Your message loop should use the PSM_ISDIALOGMESSAGE message with modeless 
property sheets to pass messages to the property sheet dialog box. 

If the return value indicates that the PSM_ISDIALOGMESSAGE message was 
processed, it must not be passed to the TranslateMessage or DispatchMessage 
function. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropertySheet 

PropSheet_PageTolndex 
Takes the HPROPSHEETPAGE handle of a property sheet page and returns its zero­
based index. You can use this macro or send the PSM_PAGETOINDEX message 
explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 



472 Volume 4 Microsoft Windows Common Controls 

hPage 
HPROPSHEETPAGE handle to the property sheet page. 

Return Values 
Returns the zero-based index of the property sheet page specified by hPage if 
successful. Otherwise, it returns -1. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

CreatePropertySheetPage, PropSheeClndexToPage 

PropSheet_PressButton 
Simulates the selection of a property sheet button. You can use this macro or send the 
PSM_PRESSBUTTON message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

iButton 
Index of the button to select. This parameter can be one of the following values: 

PSBTN_APPL YNOW Selects the Apply button. 

PSBTN_BACK Selects the Back button. 

PSBTN_CANCEL 

PSBTN_FINISH 

PSBTN_HELP 

PSBTN_NEXT 

PSBTN_OK 

Selects the Cancel button. 

Selects the Finish button. 

Selects the Help button. 

Selects the Next button. 

Selects the OK button. 



Return Values 
No return value. 

Chapter 21 Property Sheets 473 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_ QuerySiblings 
Causes a property sheet to send the PSM_QUERYSIBLINGS message to each of its 
pages. You can use this macro or send the PSM_QUERYSIBLINGS message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

param1 
First application-defined parameter. 

param2 
Second application-defined parameter. 

Return Values 
Returns the nonzero value from a page in the property sheet, or zero if no page returns 
a nonzero value. 

Remarks 
If a page returns a nonzero value, the property sheet does not send the message to 
subsequent pages. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



474 Volume 4 Microsoft Windows Common Controls 

PropSheet_RebootSystem 
Indicates the system needs to be restarted for the changes to take effect. You can use 
this macro or send the PSM_REBOOTSYSTEM message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

Return Values 
No return value. 

Remarks 
An application should send the PSM_REBOOTSYSTEM message only in response to 
the PSN_APPL Y or PSN_KILLACTIVE notification message. 

This macro causes the PropertySheet function to return the ID_PSREBOOTSYSTEM 
value, but only if the user clicks the OK button to close the property sheet. It is the 
application's responsibility to reboot the system, which can be done by using the 
ExitWindowsEx function. 

This macro supersedes all PropSheeCRebootSystem macros that precede or follow it. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSM_RESTARTWINDOWS 

PropSheet_RemovePage 
Removes a page from a property sheet. You can use this macro or send the 
PSM_REMOVEPAGE message explicitly. 



HPROPSHEETPAGE hpage 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

index and hpage 

Chapter 21 Property Sheets 475 

Zero-based index of the page and the handle to the page to remove, respectively. An 
application can specify the index or the handle, or both. If both are specified, hpage 
takes precedence. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_RestartWindows 
Sends a PSM_RESTARTWINDOWS message indicating that Windows needs to be 
restarted for changes to take effect. You can use this macro or send the 
PSM_RESTARTWINDOWS message explicitly . 

. VQID.P MrpSheei£.'Resta i't\iI"h;l~()W~{ 
.. ·'HWrt.!l, tU?:rOriSh:e,etD!JI ., . 
h·' 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

Return Values 
No return value. 

Remarks 
An application should send the PSM_RESTARTWINDOWS message only in response 
to the PSN_APPL Y or PSN_KILLACTIVE notification message. 

The PSM_RESTARTWINDOWS message causes the PropertySheet function to return 
the ID_PSRESTARTWINDOWS value, but only if the user clicks the OK button to close 



476 Volume 4 Microsoft Windows Common Controls 

the property sheet. It is the application's responsibility to restart Windows, which can be 
done by using the ExitWindowsEx function. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_ SetCu rSel 
Activates the specified page in a property sheet. You can use this macro or send the 
PSM_SETCURSEL message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

index and hpage 
Zero-based index of the page and the handle to the page to activate, respectively. An 
application can specify the index or the handle, or both. If both are specified, hpage 
takes precedence. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The window that is losing the activation receives the PSN_KILLACTIVE notification 
message, and the window that is gaining the activation receives the PSN_SETACTIVE 
notification message. 

Windows NTl2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 477 

PropSheet_ SetCu rSel BylD 
Activates the specified page in a property sheet based on the resource identifier of the 
page. You can use this macro or send the PSM_SETCURSELID message explicitly. 

SOOlP l'oPS~et:':SetCUf'S&l'B.vt n<~' ", 
"IiWKDHflr.hp,:Sh'e~t'Dril.; .. ,', , " ' 
';j,ht:,td';:~.; ,,);~;\', Ii 

»), < ~':~>:: ':~,~:>' ,"\',,~ ~~'~:,',;o 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

id 
Resource identifier of the page to activate. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The window that is losing the activation receives the PSN_KILLACTIVE notification 
message, and the window that is gaining the activation receives the PSN_SETACTIVE 
notification message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_SetFinishText 
Sets the text of the Finish button in a wizard, shows and enables the button, and hides 
the Next and Back buttons. You can use this macro or send the PSM_SETFINISHTEXT 
message explicitly. 



478 Volume 4 Microsoft Windows Common Controls 

Parameters 
hPropSheetDlg 

Window handle of the wizard. 

IpszText 
Address of the new text for the Finish button. 

Return Values 
No return value. 

Remarks 
This macro causes the DM_SETDEFID message to be sent to the property sheet dialog 
box. The wParam parameter specifies the identifier of the Finish button. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PropSheet_SetHeaderSubTitle 
Sets the subtitle text for the header of a wizard's interior page. You can use this macro 
or send the PSM_SETHEADERSUBTITLE message explicitly. 

I/O,lD'"·pr9P~h&t"!t..,s'eiT1ea4ersubTttT'i; .. j·d~~·, 
;ijwtflf:i!~j ?ii l'ctprg; .... :i:. '" .;' 

1'"t.:fPan.B1rta~xj ..; 
:UCSTRp.$?Head.e~SUbrlt Ie. 

Parameters 
hWizardDlg 

Handle to the wizard's window. 

iPagelndex 
Zero-based index of the page. 

pszHeaderSub Title 
New header subtitle. 

Return Values 
No return value. 



Chapter 21 Property Sheets 479 

Remarks 
If you specify the current page, it will immediately be repainted to display the new 
subtitle. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheeCHwndTolndex, PropSheeCldTolndex, PropSheeCPageTolndex 

PropSheet_SetHeaderTitle 
Sets the title text for the header of a wizard's interior page. You can use this macro or 
send the PSM_SETHEADERTITLE message explicitly. 

f~t,prop$h~£;:.SEitJlea:<te.f'li Ue ~ . 
·HWN~. hfJ1~a.;'d[ng; . 
hlf,>fP,ag~dnMx~· .. , .....•• , 
J,~€STR.ps.zH~del'Tftie' .. 

Jli 

Parameters 
hWizardDlg 

Handle to the wizard's window. 

iPagelndex 
Zero-based index of the page. 

pszHeaderTitle 
New header title. 

Return Values 
No return value. 

Remarks 
If you specify the current page, it will immediately be repainted to display the new title. 



480 Volume 4 Microsoft Windows Common Controls 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheet_ SetTitle 
Sets the title of a property sheet. You can use this macro or send the PSM_SETTITLE 
message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

dwStyle 
Flag that indicates whether to include the prefix "Properties for" with the specified title 
string. If dwStyle is the PSH_PROPTITLE value, the prefix is included. Otherwise, the 
prefix is not used. 

IpszText 
Address of a buffer that contains the title string. If the high-order word of this 
parameter is NULL, the property sheet loads the string resource specified in the low­
order word. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 481 

PropSheet_SetWizButtons 
Enables or disables the Back, Next, and Finish buttons in a wizard by posting a 
PSM_SETWIZBUTTONS message. You can use this macro or send the 
PSM_SETWIZBUTTONS message explicitly. 

VOlDPropSheeLSetW1zButtons( 
.HW~I.t .. hi'ropSnt?I;U)lfl. 
~wql\D .d:fd~7{tg s 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

dwFlags 
A value that specifies which wizard buttons are enabled. You can combine one or 
more of the following flags: 

PSWIZB_BACK Enable the Back button. If this flag is not set, the 
Back button is displayed as disabled. 

PSWIZB_DISABLEDFINISH 

PSWIZB_FINISH 

PSWIZB_NEXT 

Return Values 
No return value. 

Remarks 

Display a disabled Finish button. 

Display an enabled Finish button. 

Enable the Next button. If this flag is not set, the 
Next button is displayed as disabled. 

This macro uses Post Message to send the PSM_SETWIZBUTTONS message. If your 
notification handler calls PropSheeCSetWizButtons, do not do anything that will affect 
window focus until after the handler returns. For example, if you call MessageBox 
immediately after calling PropSheeCSetWizButtons, the message box will receive 
focus. Since messages sent with PostMessage are not delivered until they reach the 
head of the message queue, the PSM_SETWIZBUTTONS message will not be 
delivered until after the wizard has lost focus to the message box. As a result, the 
property sheet will not be able to properly set the focus for the buttons. 

Wizards display either three or four buttons below each page. This message is used to 
specify which buttons are enabled. Wizards normally display Back, Cancel, and either a 
Next or a Finish button. You typically enable only the Next button for the welcome page, 
Next and Back for interior pages, and Back and Finish for the completion page. The 
Cancel button is always enabled. Normally, setting PSWIZB_FINISH or 
PSWIZB_DISABLEDFINISH replaces the Next button with a Finish button. To display 
Next and Finish buttons simultaneously, set the PSH_WIZARDHASFINISH FLAG in the 



482 Volume 4 Microsoft Windows Common Controls 

dwFlags member of the wizard's PROPSHEETHEADER structure when you create 
the wizard. Every page will then display all four buttons. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PropSheet_UnChanged 
Informs a property sheet that information in a page has reverted to the previously saved 
state. You can use this macro or send the PSM_UNCHANGED message explicitly. 

Parameters 
hPropSheetDlg 

Handle to the property sheet. 

hwndPage 
Handle to the page that has reverted to the previously saved state. 

Return Values 
No return value. 

Remarks 
The property sheet disables the Apply Now button if no other pages have registered 
changes with the property sheet. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 483 

Property Sheet Notifications 

Indicates that the user clicked the OK, Close, or Apply button and wants all changes to 
take effect. This notification is sent in the form of a WM_NOTIFY message. 

PSILAPpLY 
lppsn '" (L.PPSH~OTI FY) .1 Pa ram; 

Parameters 
Ippsn 

Address of a PSHNOTIFY structure that contains information about the notification. 

Return Values 
Return PSNRET _INVALlD_NOCHANGEPAGE to prevent the changes from taking effect 
and to return the focus to the page. Return PSNRET _NOERROR to accept the changes 
and allow the property sheet to be destroyed. To set the return value, the dialog box 
procedure for the page must use the SetWindowLong function with the 
DWL_MSGRESUL T value, and the dialog box procedure must return TRUE. 

Remarks 
The IParam member of the PSHNOTIFY structure pointed to by Ippsn will be TRUE if 
the user clicked the OK button. It will also be TRUE if the PSM_CANCEL TOCLOSE 
message has been sent and the user clicked the Close button. It will be FALSE if the 
user clicked the Apply button. The PSHNOTIFY structure contains an NMHDR structure 
as its first member, hdr. The hwndFrom member of this NMHDR structure contains the 
handle to the property sheet. 

Do not call the EndDialog function when processing this notification. 

The property sheet is destroyed if the user clicks the OK button and the application 
returns the PSNRET _NOERROR value in response to this notification. 

To receive this notification, a page must set the DWL_MSGRESUL T value to FALSE in 
response to the PSN_KILLACTIVE notification message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



484 Volume 4 Microsoft Windows Common Controls 

PSN_GETOBJECT 
Sent by a property sheet to request a drop target object when the cursor passes over 
one of the tab control's buttons. 

Parameters 
Ipnmon 

Address of an NMOBJECTNOTIFY structure that, on entry, contains information 
about the notification. If this notification is processed, you must insert object 
information into this structure. 

Return Values 
The application processing this notification must return zero. 

Remarks 
To provide an object, an application must set values in some members of the 
NMOBJECTNOTIFY structure at Ipnmon. The pObject member must be set to a valid 
object pointer, and the hResult member must be set to a success flag. To comply with 
COM standards, always increment the object's reference count when providing an object 
pointer. 

If an application does not provide an object, it must set pObject to NULL and hResult to 
a failure flag. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies a page that the user has clicked the Help button. This notification message is 
sent in the form of a WM_NOTIFY message. 



Parameters 
Ippsn 

Chapter 21 Property Sheets 485 

Address of a PSHNOTIFY structure that contains information about the notification. 
This structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of this NMHDR structure contains the handle to the property sheet. 
ThelParam member of the PSHNOTIFY structure does not contain any information. 

Return Values 
No return value. 

Remarks 
An application should display Help information for the page. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSN_KILLACTIVE 
Notifies a page that it is about to lose activation either because another page is being 
activated or the user has clicked the OK button. This notification message is sent in the 
form of a WM_NOTIFY message. 

Parameters 
Ippsn 

Address of a PSHNOTIFY structure that contains information about the notification. 
This structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of this NMHDR structure contains the handle to the property sheet. The 
IParam member of the PSHNOTIFY structure does not contain any information. 

Return Values 
Returns TRUE to prevent the page from losing the activation, or FALSE to allow it. 

Remarks 
An application should validate the information the user has typed. 



486 Volume 4 Microsoft Windows Common Controls 

To set the return value, the dialog box procedure for the page must use the 
SetWindowLong function with the DWL_MSGRESUL T value, and the dialog box 
procedure must return TRUE. 

If the dialog box procedure sets DWL_MSGRESUL T to TRUE, it should display a 
message box to explain the problem to the user. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSN_QUERYCANCEL 
Indicates the user clicked the Cancel button. This notification message is sent in the 
form of a WM_NOTIFY message. 

PS~~QUERV'CA:tl{>tL ' ",,' 
. 1 PPSl't : ([Pp·SHNOTlfY) 

Parameters 
Ippsn 

Address of a PSHNOTIFY structure that contains information about the notification. 
This structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of this NMHDR structure contains the handle to the property sheet. The 
IParam member of the PSHNOTIFY structure does not contain any information. 

Return Values 
Returns TRUE to prevent the cancel operation, or FALSE to allow it. 

Remarks 
A property sheet page can use this notification message to ask the user to verify the 
cancel operation. 

To set the return value, the dialog box procedure for the page must use the 
SetWindowLong function with the DWL_MSGRESUL T value, and the dialog box 
procedure must return TRUE. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSN_ QUERVINITIALFOCUS 

Chapter 21 Property Sheets 487 

Sent by a property sheet to provide a property sheet page an opportunity to specify 
which dialog box control should receive the initial focus. This notification is sent in the 
form of a WM_NOTIFY message. 

Parameters 
Ippsn 

Pointer to a PSHNOTIFY structure. Cast the IParam member of this structure to an 
HWND type, to retrieve the handle of the control that will be given focus by default. 
The structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of this NMHDR structure contains the handle to the property sheet. 

Return Values 
To specify which control should receive focus, return the control's handle. Otherwise, 
return zero and focus will go to the default control. To set the return value, the dialog box 
procedure must call the SetWindowLong function with a DWL_MSGRESUL T value and 
return TRUE. 

Example 
This code fragment implements a simple handler for PSN_QUERYINITIALFOCUS. It 
requests that initial focus be given to the Location control (IDC_LOCATION). 

Remarks 
An application must not call the Set Focus function while handling this notification. 
Return the handle of the control that should receive focus, and the property sheet 
manager will handle the focus change. 

The PSN_QUERYINITIALFOCUS notification is not sent if the property sheet manager 
determines that no control on the page should receive focus. 

Version 5.80 and later of Comctl32.dll. 



488 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies a page that the property sheet is about to be destroyed. This notification 
message is sent in the form of a WM_NOTIFY message. 

Parameters 
Ippsn 

Address of a PSHNOTIFY structure that contains information about the notification. 

Return Values 
No return value. 

Remarks 
All changes made since the last PSN_APPL Y notification are canceled. The IParam 
member of the PSHNOTIFY structure pOinted to by Ippsn will be set to TRUE if the user 
clicked the "X" button in the upper-right corner of the property sheet. It will be FALSE if 
the user clicked the Cancel button. The PSHNOTIFY structure contains an NMHDR 
structure as its first member, hdr. The hwndFrom member of this NMHDR structure 
contains the handle to the property sheet. 

An application can use this notification message as an opportunity to perform cleanup 
operations. 

Do not call the EndDialog function when processing this notification. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 



Chapter 21 Property Sheets 489 

PSN_SETACTIVE 
Notifies a page that it is about to be activated. This notification message is sent in the 
form of a WM_NOTIFY message. 

PSN..,..SETACTIVE 
.lpp~nli:: (tpP$HNOTiFH lParftil: ... 

Parameters 
/ppsn 

Address of a PSHNOTIFY structure that contains information about the notification. 
This structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of this NMHDR structure contains the handle to the property sheet. The 
IParam member of the PSHNOTIFY structure does not contain any information. 

Return Values 
Returns zero to accept the activation, or -1 to activate the next or the previous page 
(depending on whether the user clicked the Next or Back button). To set the activation to 
a particular page, return the resource identifier of the page. 

Remarks 
The PSN_SETACTIVE notification message is sent before the page is visible. An 
application can use this notification to initialize data in the page. 

To set the return value, the dialog box procedure for the page must use the 
SetWindowLong function with the DWL_MSGRESUL T value, and the dialog box 
procedure must return TRUE. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

NMHDR 

PSN_TRANSLATEACCELERATOR 
Notifies a property sheet that a keyboard message has been received. It provides the 
page an opportunity to do private keyboard accelerator translation. This notification is 
sent in the form of a WM_NOTIFY message. 



490 Volume 4 Microsoft Windows Common Controls 

Parameters 
/ppsn 

A pointer to a PSHNOTIFY structure that contains information about the notification. 
This structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of the NMHDR structure contains the handle to the property sheet. The 
IParam member of the PSHNOTIFY structure is a pOinter to the message's MSG 
structure. It can be cast to an LPMSG type, to get access to the parameters of the 
message to be translated. 

Return Values 
Return PSNRET _MESSAGEHANDLED to indicate that no further processing is 
necessary. Return PSNRET _NOERROR to request normal processing. 

Remarks 
To set the return value, the dialog box procedure for the page must use the 
SetWindowLong function with the DWL_MSGRESUL T value. The dialog box procedure 
must return TRUE. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies a page that the user has clicked the Back button in a wizard. This notification 
message is sent in the form of a WM_NOTIFY message. 

Parameters 
/ppsn 

Address of a PSHNOTIFY structure that contains information about the notification. 
This structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of the NMHDR structure contains the handle to the property sheet. The 
IParam member of the PSHNOTIFY structure does not contain any information. 



Chapter 21 Property Sheets 491 

Return Values 
Return 0 to allow the wizard to go to the previous page. Return -1 to prevent the wizard 
from changing pages. To display a particular page, return its dialog resource identifier. 

Remarks 
To set the return value, the dialog box procedure for the page must call the 
SetWindowLong function with the DWL_MSGRESUL T value and return TRUE. For 
example: 

case .. P5Ni..Wl1iACi<;;,~,i . ' ................... . 

.• . ::",:!::~;?~~t~;ngv~~J:~.!;~·JjW~:~r~·~~·~9f~·?,Q·~·.i·.··')~I: .... 
'ea;se,P·iN~Wli~~XT::2;·;·: ,.>,;;< 

".: .. <, ," ... "::X\ 
.. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSN_ WIZFINISH 

. ,,' :: 

• ::: : .• '~:;' v',' 

Notifies a page that the user has clicked the Finish button in a wizard. This notification 
message is sent in the form of a WM_NOTIFY message. 

PSN,~WllEr~IStL.·L._ ... Jl;~;:i),: .<.,,;, : .. 
.• lpp$n:~fLPJ>$HNQTIFY)i.J Par!lm; .' 

Parameters 
/ppsn 

. .,; .. " 

;',; ". ","'.-.-;' 

Address of a PSHNOTIFY structure that contains information about the notification. 
The first member of this structure, hdr, is an NMHDR structure. The hwndFrom 
member of this NMHDR structure contains the handle to the property sheet. The 
IParam member of the PSHNOTIFY structure does not contain any information. 

Return Values 
• Return TRUE to prevent the wizard from finishing. 



492 Volume 4 Microsoft Windows Common Controls 

• Version 5.80. Return a window handle to prevent the wizard from finishing. The 
wizard will set the focus to that window. The window must be owned by the wizard 
page. 

• Return FALSE to allow the wizard to finish. 

Remarks 
To set the return value, the dialog box procedure for the page must use the 
SetWindowLong function with the DWL_MSGRESUL T value, and the dialog box 
procedure must return TRUE. 

Version 5.80. If your application returns TRUE to prevent a wizard from finishing, it has 
no control over which window on the page receives focus. Applications that need to stop 
a wizard from finishing should normally do so by returning the handle of the window on 
wizard page that is to receive focus. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

Notifies a page that the user has clicked the Next button in a wizard. This notification 
message is sent in the form of a WM_NOTIFY message. 

Parameters 
Ippsn 

Address of a PSHNOTIFY structure that contains information about the notification. 
This structure contains an NMHDR structure as its first member, hdr. The hwndFrom 
member of the NMHDR structure contains the handle to the property sheet. The 
IParam member of the PSHNOTIFY structure does not contain any information. 

Return Values 
Return 0 to allow the wizard to go to the next page. Return -1 to prevent the wizard from 
changing pages. To display a particular page, return its dialog resource identifier. 



Chapter 21 Property Sheets 493 

Remarks 
To set the return value, the dialog box procedure for the page must call the 
SetWindowLong function with the DWL_MSGRESUL T value and return TRUE. For 
example: 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in prsht.h. 

PSN_ WIZBACK 

Property Sheet Structures 

PROPSHEETHEADER 
Defines the frame and pages of a property sheet. 

(continued) 



494 Volume 4 Microsoft Windows Common Controls 

(continued) 

Members 
dwSize 

Size, in bytes, of this structure. The property sheet manager uses this member to 
determine which version of the PROPSHEETHEADER structure you are using. For 
more information, see the Remarks. 

dwFlags 
Flags that indicate which options to use when creating the property sheet page. This 
member can be a combination of the following values: 

PSH_DEFAUL T 
Uses the default meaning for all structure members. 

PSH_HASHELP 
Permits property sheet pages to display a Help button. You must also set the 
PSP _HASHELP flag in the page's PROPSHEETPAGE structure when the page is 
created. If any of the initial property sheet pages enable a Help button, 
PSH_HASHELP will be set automatically. If none of the initial pages enable a Help 
button, you must explicitly set PSH_HASHELP if you want to have Heip buttons on 
any pages that might be added later. 

PSH_HEADER 
Version 5.80. Indicates that a header bitmap will be used with a Wizard97 wizard. 
You must also set the PSH_WIZARD97 flag. The header bitmap is obtained from 
the pszbmHeader member, unless the PSH_USEHBMHEADER flag is also set. In 
that case, the header bitmap is obtained from the hbmHeader member. 

PSH_MODELESS 
Causes the PropertySheet function to create the property sheet as a modeless 
dialog box instead of as a modal dialog box. When this flag is set, PropertySheet 



Chapter 21 Property Sheets 495 

returns immediately after the dialog box is created, and the return value from 
PropertySheet is the window handle to the property sheet dialog box. 

PSH_NOAPPL YNOW 
Removes the Apply button. 

PSH_NOCONTEXTHELP 
Version 5.80. Removes the context-sensitive Help button ("?"), which is usually 
present on the caption bar of property sheets. This flag is not valid for wizards. See 
Property Sheets for a discussion of how to remove the caption bar help button for 
earlier versions of the common controls. 

PSH_PROPSHEETPAGE 
Uses the ppsp member and ignores the phpage member when creating the pages 
for the property sheet. 

PSH_PROPTITLE 
Displays the string "Properties for," followed by the string specified by the 
pszCaption member, in the title bar of the property sheet. 

PSH_RTLREADING 
Reverses the direction in which pszCaption is displayed. Normal windows display 
all text, including pszCaption, left-to-right (L TR). For languages such as Hebrew or 
Arabic, that read right-to-Ieft (RTL), a window can be mirrored and all text will be 
displayed RTL. If PSP _RTLREADING is set, pszCaption will instead read RTL in a 
normal parent window, and L TR in a mirrored parent window. 

PSH_STRETCHWATERMARK 
Stretches the watermark in Internet Explorer 4.0-compatible Wizard97-style 
wizards. 

Note This style flag is only included to provide backward compatibility for certain 
applications. Its use is not recommended and it is only supported by common controls 
versions 4.0 and 4.01. With common controls version 5.80 and later, this flag is 
ignored. 

PSH_USECALLBACK 
Calls the function specified by the pfnCaliback member when initializing the 
property sheet defined by this structure. 

PSH_USEHBMHEADER 
Version 5.80. Obtains the header bitmap from the hbmHeader member instead of 
the pszbmHeader member. You must also set PSH_WIZARD97 and 
PSH_HEADER. 

PSH_ USEHBMWATERMARK 
Version 5.80. Obtains the watermark bitmap from the hbmWatermark member 
instead of the pszbmWatermark member. You must also set PSH_WIZARD97 
and PSH_WATERMARK. 

PSH_USEHICON 
Uses hlcon as the small icon in the title bar of the property sheet dialog box. 



496 Volume 4 Microsoft Windows Common Controls 

PSH_USEHPLWATERMARK 
Version 5.80. Uses the HPALETTE structure pointed to by the hplWatermark 
member instead of the default palette to draw the watermark bitmap and/or header 
bitmap for a Wizard97 wizard. You must also set PSH_WIZARD97, and 
PSH_WATERMARK or PSH_HEADER. 

PSH_USEICONID 
Uses pszlcon as the name of the icon resource to load and use as the small icon 
in the title bar of the property sheet dialog box. 

PSH_USEPAGELANG 
Version 5.80. Specifies that the language for the property sheet will be taken from 
the first page's resource. 

PSH_USEPSTARTPAGE 
Uses the pStartPage member instead of the nStartPage member when displaying 
the initial page of the property sheet. 

PSH_ WATERMARK 
Version 5.80. Specifies that a watermark bitmap will be used with a Wizard97 
wizard. You must also set the PSH_WIZARD97 flag. The watermark bitmap is 
obtained from the pszbmWatermark member, unless 
PSH_USEHBMWATERMARK is set. In that case, the header bitmap is obtained 
from the hbmWatermark member. 

PSH_WIZARD 
Creates a wizard property sheet. 

PSH_WIZARD97 
Version 5.80. Creates a Wizard97-style property sheet that allows a header and/or 
watermark bitmap to be displayed in the background. 

PSH_ WIZARDCONTEXTHELP 
Adds a context-sensitive Help button ("?"), which is usually absent from the caption 
bar of a wizard. This flag is not valid for regular property sheets. 

PSH_ WIZARDHASFINISH 
Always displays the Finish button on the wizard. You must also set either 
PSH_WIZARD or PSH_WIZARD97. 

PSH_WIZARD_LlTE 
Version 5.80. Uses the Wizard-lite style. This style is similar in appearance to 
PSH_WIZARD97, but it is implemented much like PSH_WIZARD. There are few 
restrictions on how the pages are formatted. For instance, there are no enforced 
borders, and the PSH_WIZARD_LlTE style does not paint the watermark and 
header bitmaps for you the way Wizard97 does. 

hwndParent 
Handle to the property sheet's owner window. 

hlnstance 
Handle to the instance from which to load the icon or title string resource. If the 
pszlcon or pszCaption member identifies a resource to load, this member must be 
specified. 



Chapter 21 Property Sheets 497 

hlcon 
Handle to the icon to use as the small icon in the title bar of the property sheet dialog 
box. If the dwFlags member does not include PSH_USEHICON, this member is 
ignored. This member is declared as a union with pszlcon. 

pszlcon 
Icon resource to use as the small icon in the title bar of the property sheet dialog box. 
This member can specify either the identifier of the icon resource or the address of 
the string that specifies the name of the icon resource. If the dwFlags member does 
not include PSH_USEICONID, this member is ignored. This member is declared as a 
union with hlcon. 

pszCaption 
Title of the property sheet dialog box. This member can specify either the identifier of 
a string resource or the address of a string that specifies the title. If the dwFlags 
member includes PSH_PROPTITLE, the string "Properties for" is inserted at the 
beginning of the title. This field is ignored for wizards. 

nPages 
Number of elements in the phpage array. 

nStartPage 
Zero-based index of the initial page that appears when the property sheet dialog box 
is created. This member is declared as a union with pStartPage. 

pStartPage 
Name of the initial page that appears when the property sheet dialog box is created. 
This member can specify either the identifier of a string resource or the address of a 
string that specifies the name. This member is declared as a union with nStartPage. 

ppsp 
Address of an array of PROPSHEETPAGE structures that define the pages in the 
property sheet. If the dwFlags member does not include PSH_PROPSHEETPAGE, 
this member is ignored. Note that the PROPSHEETPAGE structure is variable in size. 
Applications that parse the array pOinted to by ppsp must take the size of each page 
into account. This member is declared as a union with phpage. 

phpage 
Address of an array of handles to the property sheet pages. Each handle must have 
been created by a previous call to the CreatePropertySheetPage function. If the 
dwFlags member includes PSH_PROPSHEETPAGE, ph page is ignored and should 
be set to NULL. When the PropertySheet function returns, any HPROPSHEETPAGE 
handles in the ph page array will have been destroyed. This member is declared as a 
union with ppsp. 

pfnCaliback 
Address of an application-defined callback function that is called when the property 
sheet is initialized. For more information about the callback function, see the 
description of the PropSheetProc function. If the dwFlags member does not include 
PSH_USECALLBACK, this member is ignored. 



498 Volume 4 Microsoft Windows Common Controls 

hbmWatermark 
Version 5.80. Handle to the watermark bitmap. If the dwFlags member does not 
include PSH_USEHBMWATERMARK, this member is ignored. 

pszbmWatermark 
Version 5.80. Bitmap resource to use as the watermark. This member can specify 
either the identifier of the bitmap resource or the address of the string that specifies 
the name of the bitmap resource. If the dwFlags member includes 
PSH_USEHBMWATERMARK, this member is ignored. 

hplWatermark 
Version 5.80. HPALETTE structure used for drawing the watermark bitmap and/or 
header bitmap. If the dwFlags member does not include 
PSH_USEHPLWATERMARK, this member is ignored. 

hbmHeader 
Version 5.80. Handle to the header bitmap. If the dwFlags member does not include 
PSH_USEHBMHEADER, this member is ignored. 

pszbmHeader 
Version 5.80. Bitmap resource to use as the header. This member can specify either 
the identifier of the bitmap resource or the address of the string that specifies the 
name of the bitmap resource. If the dwFlags member includes 
PSH_USEHBMHEADER, this member is ignored. 

Remarks 
If the user chooses a setting such as Large Fonts, which enlarges the dialog box, the 
watermark that is painted on the start and finish pages will be enlarged as well. The size 
and position of the original bitmap will remain the same. The additional area will be filled 
with the color of the pixel in the upper-left corner of the bitmap. 

Note that several members of this structure are only supported for Comctl32.dll versions 
4.71 and later. You can enable these members by including one of the following in your 
header: 

or 

However, you must initialize the structure with its size. If you use the size of the currently 
defined structure, the application may not run with the earlier versions of ComctI32.dll, 
which expect a smaller structure. This includes all systems with Microsoft Windows 95 or 
Microsoft Windows NT 4.0 that do not have Internet Explorer version 4.0 or later 
installed. You can run your application on pre-4.71 versions of Comctl32.dll by defining 
the appropriate version number. However, this may cause problems if your application 
also needs to run on systems with more recent versions. 

You can remain compatible with all Comctl32.dll versions by using the current header 
files and setting the size of the PROPSHEETHEADER structure appropriately. Before 



Chapter 21 Property Sheets 499 

you initialize the structure, use the OIlGetVersion function to determine which 
Comctl32.dll version is installed on the system. If it is version 4.71 or greater, use: 

psh.dwS1ze = sizeof(PROPsHEtrHEADEiU; 

to initialize the dwSize member. For earlier versions, the size of the pre-4.71 structure is 
given by the PROPSHEETHEADER_Vl_SIZE constant. Use: 

.. ~ ";::. " . " ~' '. 

The three wizard styles, PSH_WIZARD, PSH_WIZARD97, and PSH_WIZARD_LlTE, 
are mutually incompatible. Only one of these style flags should be set. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PROPSHEETPAGE 
This structure defines a page in a property sheet. 

typede,f .struct .::iROP~flEETP:AGE v, '.- " '; , . ""c""", ' ". ,", 
~ :' ", . 



500 Volume 4 Microsoft Windows Common Controls 

Members 
dwSize 

Size, in bytes, of this structure. The property sheet manager uses this member to 
determine which version of the PROPSHEETHEADER structure you are using. 

dwFlags 
Flags that indicate which options to use when creating the property sheet page. This 
member can be a combination of the following values: 

PSP _DEFAULT 
Uses the default meaning for all structure members. 

PSP _DLGINDIRECT 
Creates the page from the dialog box template in memory pOinted to by the 
pResource member. The PropertySheet function assumes that the template that 
is in memory is not write-protected. A read-only template will cause an exception in 
some versions of Microsoft Windows. 

PSP_HASHELP 
Enables the property sheet Help button when the page is active. 

PSP _HIDEHEADER 
Version 5.80. Causes the wizard property sheet to hide the header area when the 
page is selected. If a watermark has been provided, it will be painted on the left 
side of the page. This flag should be set for welcome and completion pages, and 
omitted for interior pages. 

PSP _PREMATURE 
Version 4.71. Causes the page to be created when the property sheet is created. If 
this flag is not specified, the page will not be created until it is selected the first 
time. 

PSP _RTLREADING 
Reverses the direction in which pszTitle is displayed. Normal windows display all 
text, including pszTitle, left-to-right (L TR). For languages such as Hebrew or 
Arabic, that read right-to-Ieft (RTL), a window can be mirrored and all text will be 
displayed RTL. If PSP _RTLREADING is set, pszTitle will instead read RTL in a 
normal parent window, and L TR in a mirrored parent window. 

PSP _USECALLBACK 
Calls the function specified by the pfnCaliback member when creating or 
destroying the property sheet page defined by this structure. 

PSP _USEHEADERSUBTITLE 
Version 5.80. Displays the string pointed to by the pszHeaderSubTitle member as 
the subtitle of the header area of a Wizard9? page. To use this flag, you must also 
set the PSH_ WIZARD9? flag in the dwFlags member of the associated 
PROPSHEETHEADER structure. The PSP _USEHEADERSUBTITLE flag is 
ignored if PSP _HIDEHEADER is set. 

PSP _USEHEADERTITLE 
Version 5.80. Displays the string pointed to by the pszHeaderTitle member as the 
title in the header of a Wizard9? interior page. You must also set the 



Chapter 21 Property Sheets 501 

PSH_ WIZARD97 flag in the dwFlags member of the associated 
PROPSHEETHEADER structure. The PSP _USEHEADERTITLE flag is ignored if 
PSP _HIDEHEADER is set. 

PSP _USEHICON 
Uses hlcon as the small icon on the tab for the page. 

PSP _USEICONID 
Uses pszlcon as the name of the icon resource to load and use as the small icon 
on the tab for the page. 

PSP_USEREFPARENT 
Maintains the reference count specified by the pcRefParent member for the 
lifetime of the property sheet page created from this structure. 

PSP _USETITLE 
Uses the pszTitle member as the title of the property sheet dialog box instead of 
the title stored in the dialog box template. 

hlnstance 
Handle to the instance from which to load an icon or string resource. If the pszlcon, 
pszTitle pszHeaderTitle, or pszHeaderSubTitle members identifies a resource to 
load, hlnstance must be specified. 

pszTemplate 
Dialog box template to use to create the page. This member can specify either the 
resource identifier of the template or the address of a string that specifies the name of 
the template. If the PSP _DLGINDIRECT flag in the dwFlags member is set, 
pszTemplate is ignored. This member is declared as a union with pResource. 

pResource 
Address of a dialog box template in memory. The PropertySheet function assumes 
that the template is not write-protected. A read-only template will cause an exception 
in some versions of Windows. To use this member, you must set the 
PSP _DLGINDIRECT flag in the dwFlags member. This member is declared as a 
union with pszTemplate. 

hlcon 
Handle to the icon to use as the icon in the tab of the page. If the dwFlags member 
does not include PSP _USEHICON, this member is ignored. This member is declared 
as a union with pszlcon. 

pszlcon 
Icon resource to use as the icon in the tab of the page. This member can specify 
either the identifier of the icon resource or the address of the string that specifies the 
name of the icon resource. To use this member, you must set the PSP _USEICONID 
flag in the dwFlags member. This member is declared as a union with hlcon. 

pszTitle 
Title of the property sheet dialog box. This title overrides the title specified in the 
dialog box template. This member can specify either the identifier of a string resource 
or the address of a string that specifies the title. To use this member, you must set the 
PSP _USETITLE flag in the dwFlags member. 



502 Volume 4 Microsoft Windows Common Controls 

pfnDlgProc 
Address of the dialog box procedure for the page. Because the pages are created as 
modeless dialog boxes, the dialog box procedure must not call the End Dialog 
function. 

IParam 
When the page is created, a copy of the page's PROPSHEETPAGE structure is 
passed to the dialog box procedure with a WM_INITDIALOG message. The IParam 
member is provided to allow you to pass application-specific information to the dialog 
box procedure. It has no effect on the page itself. For more information, see Property 
Sheet Creation. 

pfnCaliback 
Address of an application-defined callback function that is called when the page is 
created and when it is about to be destroyed. For more information about the callback 
function, see PropSheetPageProc. To use this member, you must set the 
PSP _USECALLBACK flag in the dwFlags member. 

pc Ref Parent 
Address of the reference count value. To use this member, you must set the 
PSP _USEREFPARENT flag in the dwFlags member. 

Note When a property sheet page is created, the value pointed to by pcRefParent is 
incremented. You create a property sheet page implicitly by setting the 
PSH_PROPSHEETPAGE flag in the dwFlags member of PROPSHEETHEADER 
and calling the PropertySheet function. You can do it explicitly by using the 
CreatePropertySheetPage function. When a property sheet page is destroyed, the 
value pointed to by the pcRefParent member is decremented. This takes place 
automatically when the property sheet is destroyed. You can explicitly destroy a 
property sheet page by using the DestroyPropertySheetPage function. 

pszHeaderTitle 
Version 5.80. Title of the header area. To use this member, you must: 

• Set the PSP _USEHEADERTITLE flag in the dwFlags member. 

• Set the PSH_ WIZARD97 flag in the dwFlags member of the page's 
PROPSHEETHEADER structure. 

• Make sure that the PSP _HIDEHEADER flag in the dwFlags member is not set. 

pszHeaderSubTitle 
Version 5.80. Subtitle of the header area. To use this member, you must: 

• Set the PSP _USEHEADERSUBTITLE flag in the dwFlags member . 

• Set the PSH_WIZARD97 flag in the dwFlags member of the page's 
PROPSHEETHEADER structure. 

• Make sure that the PSP _HIDEHEADER flag in the dwFlags member is not set. 



Chapter 21 Property Sheets 503 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 

PSHNOTIFY 
Contains information for the property sheet notification messages. 

Members 
hdr 

Address of an NMHDR structure that contains additional information about the 
notification. 

IParam 
Additional information about this notification. To determine what, if any, information is 
contained in this member, see the description of the particular notification message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in prsht.h. 





505 

CHAPTER 22 

Rebar Controls 

Rebar controls act as containers for child windows. An application assigns child 
windows, which are often other controls, to a rebar control band. Rebar controls contain 
one or more bands, and each band can have any combination of a gripper bar, a bitmap, 
a text label, and a child window. However, bands cannot contain more than one child 
window. 

About Rebar Controls 
A rebar control displays the child window over a specified background bitmap. As you 
dynamically reposition a rebar control band, the rebar control manages the size and 
position of the child window assigned to that band. 

The following illustration shows a rebar control that has two bands. One contains a 
combo box, and the other contains a transparent tool bar control. 

Note The rebar control is implemented in versions 4.70 and later of Comctl32.dll. 

Rebar Bands and Child Windows 
An application defines a rebar band's traits by using the RB_INSERTBAND and 
RB_SETBANDINFO messages. These messages accept the address of a 
REBARBANDINFO structure as the IParam parameter. The REBARBANDINFO 
structure members define the traits of a given band. To set a band's traits, set the 
cbSize member to indicate the size of the structure, in bytes. Then, set the fMask 
member to indicate which structure members your application is filling. 

To assign a child window to a band, include the RBBIM_CHILD flag in the fMask 
member of the REBARBANDINFO structure, and then set the hwndChiid member to 



506 Volume 4 Microsoft Windows Common Controls 

the child window's handle. Applications can set the minimum allowable width and height 
of a child window in the cxMinChiid and cyMinChiid members, respectively. 

When a rebar control is destroyed, it destroys any child windows assigned to the bands 
within it. To prevent the control from destroying child windows assigned to its bands, 
remove the bands by sending the RB_DELETEBAND message, and then reset the 
parent to another window with the Set Parent function before destroying the rebar 
control. 

The Rebar Control User Interface 
All rebar control bands can be resized, except those that use the RBBS_FIXEDSIZE 
style. To resize or change the order of bands within the control, click and drag a band's 
gripper bar. The rebar control automatically resizes and repositions child windows 
assigned to its bands. Additionally, you can toggle the size of a band by clicking on the 
band text, if there is any. 

The Rebar Control Image List 
If an application is using an image list with a rebar control, it must send 
the RB_SETBARINFO message before adding bands to the control. This message 
accepts the address of a REBARINFO structure as the IParam parameter. Before 
sending the message, prepare the REBARINFO structure by setting the cbSize member 
to the size of the structure, in bytes. Then, if the rebar control is going to display images 
on the bands, set the fMask member to the RBIM_IMAGELIST flag and assign an image 
list handle to the himl member. If the rebar will not use band images, set fMask to zero. 

Rebar Control Message Forwarding 
A rebar control forwards all WM_NOTIFY window messages to its parent window. 
Additionally, a rebar control forwards any messages sent to it from windows assigned to 
its bands, like WM_CHARTOITEM, WM_COMMAND, and others. 

Custom Draw Support 
Rebar controls support custom draw functionality. For more information, see About 
Custom Draw. 

Using Rebar Controls 
This section gives sample code that demonstrates how to implement a rebar control. 

Creating a Rebar Control 
An application creates a rebar control by calling the CreateWindowEx function, 
specifying REBARCLASSNAME as the window class. The application must first register 



Chapter 22 Rebar Controls 507 

the window class by calling the InitCommonControlsEx function, while specifying the 
ICC_COOL_CLASSES bit in the accompanying INITCOMMONCONTROLSEX structure. 

The following sample creates a rebar control with two bands-one that contains a combo 
box and another that contains a tool bar. The sample includes the RBS_VARHEIGHT 
style to allow the control to use variable band height. After creating the rebar control, 
Create Rebar creates the child windows with calls to two application-defined functions, 
CreateComboBox and CreateToolbar. Before adding each band, CreateRebar 
initializes the cbSize member of the REBARBANDINFO structure, as required by the 
RB_INSERTBAND message. Then it sets the value of the structure's fMask member to 
reflect which members contain valid data. Create Rebar sets the cyMinChiid member for 
each band to allow for the height of the control within it. The cxMinChiid member is zero 
to allow the user to completely hide the control within a given band: 

HiVttl)W ~JJAPl ):: rE!at~ReJiar( ItW«01)~ndn~nl!t) .' .. 
~ , .,', : > <' <' 0 g.'" ,;, t " ' '\, ~ , , " 

o ',f ' ~ ~ );. 

:~egA~tNFQ .,. :t'rbt.;:·( .' 
:~aAiai\r'uiINFO~b~ancf:~ ;. 
REd! 2i .' PC ..p.:,~ •.. / ,,: : .. ':. . .' .... • .', ".'" w,· . 
I:JwjvJ~\},·:; hwrl(te'B.:1hwndT:fl',';I)Wn~lh: 

,·i':rJ~~~:E~~;~~iri~~6*'tge~~:'~~.'j: •.•.. 
':,i:i·~~~;.j~i~:.,,~; §J~.eif~';~rr~UM~o~'t}~~ROLSEX) i , } 
.0" .~~~!\jW.ICC.':. ;;(;'le~COOldrL~SsEs:f!ct)~Afl.;CJASSES; 

.;:;I,yI~:;~~1,~2,~b:·~:3!·~~;~~·1.~:~i}f~·;~Y·f': .. ' ..... :, .' ' 
. . itJltlltl~Pt:,:;iLcr:;~:atE!W t'I:i:~~WE#~$J~~l}OO L,W.UIJ),OM~: . . . 

'" ..J' '.' '~~';:~~~;~tA?~N~~~:! ';" ••... '../. 
;\.j'sl~Hlj:olw~"'t'vT~'B,Lt:I WS,-CLfPS) B:t.lNGS I .. 

: WS..,.qllf'tfU~!lRENIRBS..;,VARHEIGIiTJCCLNODlVIDER, . 
~;~. \f,~ 0:';~ .' 

,'h~nd()wne'i'.: . 
" Nu~t3. 

!r_l'I'IM1\;'" 
i'NULLJ.~·; 

II' I~1Jja14i~';a"ni;s~Mth~<RES:ARINFl{str~ctur:e ..... 
f:~1~~!i$H;e\,,!s1~~~ft~tBA~i:r.j!'~.n:j tt:Requi.r:e.cf whe.n cllstngthi strlIc.L ,. . :.> ')~"" •. " .~~~~~ -- ~ ~c 

~l:r:Ma~k' ;=;' ;0~' './.<j,"~ •.. , i' 

.dH:~1tln.,*{N.rft1AGELUnHOH;" .' .. 
~;}h;fS~n~'M~!isai~~Jhwn.dRa{·· RLS;ET,BARINfO ,0 .•. CtPARAM)·&rbi)} 

':>#ttirr NU Lt; " >; ~ 
(continued) 



508 Volume 4 Microsoft Windows Common Controls 

(continued) 



Chapter 22 Rebar Controls 509 

Rebar Control Styles 
Rebar controls support a variety of control styles in addition to standard window styles. 

RBS_BANDBORDERS 

RBS_DBLCLKTOGGLE 

RBS_FIXEDORDER 

RBS_REGISTERDROP 

RBS_ TOOL TIPS 

RBS_ VARHEIGHT 

RBS_ VERTICALGRIPPER 

Version 4.71. The rebar control automatically will 
change the layout of the bands when the size or 
position of the control changes. An RBN_AUTOSIZE 
notification will be sent when this occurs. 

Version 4.70. The rebar control displays narrow lines 
to separate adjacent bands. 

Version 4.71. The rebar band will toggle its maximized 
or minimized state when the user double-clicks on the 
band. Without this style, the maximized or minimized 
state is toggled when the user single-clicks on the 
band. 

Version 4.70. The rebar control always displays bands 
in the same order. You can move bands to different 
rows, but the band order is static. 

Version 4.71. The rebar control generates 
RBN_GETOBJECT notification messages when an 
object is dragged over a band in the control. To receive 
the RBN_GETOBJECT notifications, initialize OLE 
with a call to Olelnitialize or Colnitialize. 

Version 4.70. Not yet supported. 

Version 4.70. The rebar control displays bands at the 
minimum required height, when possible. Without this 
style, the rebar control displays all bands at the same 
height, using the height of the tallest visible band to 
determine the height of other bands. 

Version 4.71. The size grip will be displayed vertically 
instead of horizontally in a vertical rebar control. This 
style is ignored for rebar controls that do not have the 
CCS_ VERT style. 



510 Volume 4 Microsoft Windows Common Controls 

Rebar Control Reference 

Rebar Control Messages 

RB_BEGINDRAG 
Puts the rebar control in drag-and-drop mode. This message does not cause 
a RBN_BEGINDRAG notification to be sent. 

Parameters 
uBand 

Zero-based index of the band that the drag-and-drop operation will affect. 

dwPos 
DWORD value that contains the starting mouse coordinates. The horizontal 
coordinate is contained in the LOWORD and the vertical coordinate is contained in 
the HIWORD. If you pass (DWORD}-1, the rebar control will use the position of the 
mouse the last time the control's thread called GetMessage or PeekMessage. 

Return Values 
The return value for this message is not used. 

Remarks 
The RB_BEGINDRAG, RB_DRAGMOVE, and RB_ENDDRAG messages allow you to 
implement an IDropTarget interface for a rebar control. You send the RB_BEGINDRAG 
message in response to IDropTarget::DragEnter, send the RB_DRAGMOVE message 
in response to IDropTarget::DragOver, and the RB_ENDDRAG message in response 
to IDropTarget::Drop and IDropTarget::DragLeave. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



RB DELETEBAND 
Deletes a band from a rebar control. 

RB...:.;OELETESAt{D, ....... . 

' .... wP!mim';' (WPARf\MJ(UINT)uBand:, 
, > ,,',,' " .. " " • ~" ~<. """,",,' '\ ' • ~" I. 

,1P,~r.am 0:; 0: . 

Parameters 
uBand 

Zero-based index of the band to be deleted. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Chapter 22 Rebar Controls 511 

... '. , 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Updates the drag position in the rebar control after a previous RB_BEGINDRAG 
message. 

Parameters 
dwPos 

DWORD value that contains the new mouse coordinates. The horizontal coordinate is 
contained in the LOWORD and the vertical coordinate is contained in the HIWORD. If 
you pass (DWORD}-1, the rebar control will use the position of the mouse the last 
time the control's thread called GetMessage or PeekMessage. 

Return Values 
The return value for this message is not used. 



512 Volume 4 Microsoft Windows Common Controls 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Terminates the rebar control's drag-and-drop operation. This message does not cause 
an RBN_ENDDRAG notification to be sent. 

Return Values 
The return value for this message is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

RB_GETBANDBORDERS 
Retrieves the borders of a band. The result of this message can be used to calculate the 
usable area in a band. 



RB-GETBANDBORDERS 
wParam = (WPARAM)(UINT) uBand; 
lPa.r'am = (~PARAMHLPRECT)lprc: 

Parameters 
uBand 

Chapter 22 Rebar Controls 513 

Zero-based index of the band for which the borders will be retrieved. 

{pre 
Address of a RECT structure that will receive the band borders. If the rebar control 
has the RBS_BANDBORDERS style, each member of this structure will receive the 
number of pixels, on the corresponding side of the band, that constitute the border. If 
the rebar control does not have the RBS_BANDBORDERS style, only the left 
member of this structure receives valid information. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETBANDCOUNT 
Retrieves the count of bands currently in the rebar control. 

Return Values 
Returns a UINT value that represents the number of bands assigned to the control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 



514 Volume 4 Microsoft Windows Common Controls 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETBANDINFO 
Retrieves information about a specified band in a rebar control. 

Parameters 
uBand 

Zero-based index of the band for which the information will be retrieved. 

/prbbi 
Address of a REBARBANDINFO structure that will receive the requested band 
information. Before sending this message, you must set the cbSize member of this 
structure to the size of the REBARBANDINFO structure and set the fMask parameter 
to the items you want to retrieve. Additionally, you must set the cch member of the 
REBARBANDINFO structure to the size of the IpText buffer when RBBIM_ TEXT is 
specified. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_SETBANDINFO 



RB_GETBARHEIGHT 
Retrieves the height of the rebar control. 

RB::..GETBMHEISHT, 
wP~ram =0; 

'" 1 Param" 0:. 

Return Values 

" "" . ~'". ", '. , 

Chapter 22 Rebar Controls 515 

Returns a UINT value that represents the height, in pixels, of the ·control. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETBARINFO 
Retrieves information about the rebar control and the image list it uses. 

Parameters 
Iprbi 

Address of a REBARINFO structure that will receive the rebar control information. 
You must set the cbSize member of this structure to sizeof(REBARINFO} before 
sending this message. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 



516 Volume 4 Microsoft Windows Common Controls 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETBKCOLOR 
Retrieves a rebar control's default background color. 

Return Values 
Returns a COLORREF value that represent the current default background color. 

"-" ' 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_SETBKCOLOR 

RB_GETCOLORSCHEME 
Retrieves the color scheme information from the rebar control. 

Parameters 
/pes 

Address of a COLORSCHEME structure that will receive the color scheme 
information. You must set the dwSize member of this structure to 
sizeof(COLORSCHEME) before sending this message. 



Chapter 22 Rebar Controls 517 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

RB_SETCOLORSCHEME 

RB_GETDROPTARGET 
Retrieves a rebar control's IDropTarget interface pointer. 

Parameters 
ppDrop Target 

Address of an IDropTarget pointer that receives the interface pOinter. It is the caller's 
responsibility to call Release on this pointer when it is no longer needed. 

Return Values 
The return value for this message is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



518 Volume 4 Microsoft Windows Common Controls 

RB_GETPALETTE 
Retrieves the rebar control's current palette. 

Return Values 
Returns an HPALETTE that specifies the rebar control's current palette. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

RB_GETRECT 
Retrieves the bounding rectangle for a given band in a rebar control. 

Parameters 
iBand 

Zero-based index of a band in the rebar control. 

/pre 
Address of a RECT structure that will receive the bounds of the rebar band. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 



Chapter 22 Rebar Controls 519 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETROWCOUNT 
Retrieves the number of rows of bands in a rebar control. 

&~:...GETROW{jQ0(~T: 
whram"", 0;,. 
1 Param =0: 

Return Values 
Returns a UINT value that represents the number of band rows in the control. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETROWHEIGHT 
Retrieves the height of a specified row in a rebar control. 

Parameters 
uRow 

Zero-based index of a band. The height of the row that contains the specified band 
will be retrieved. 

Return Values 
Returns a UINT value that represents the row height, in pixels. 



520 Volume 4 Microsoft Windows Common Controls 

Remarks 
To retrieve the number of rows in a rebar control, use the RB_GETROWCOUNT 
message. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETTEXTCOLOR 
Retrieves a rebar control's default text color. 

RB >S'El":(ElH·C.O Call. 
c '""f,,{ ':",' , "e _ ,', 

"\1Param '=,0" 
.. U?~~aJ!1~;'~:; 

Return Values 
Returns a COLORREF value that represent the current default text color. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_SETTEXTCOLOR 

RB_GETTOOLTIPS 
Retrieves the handle to any tooltip control associated with the rebar control. 



RB_GETTOOLTIPS 
wParam = 0: 
1 Param:"'0: 

Return Values 

Chapter 22 Rebar Controls 521 

Returns an HWND value that is the handle to the tooltip control associated with the rebar 
control, or zero if no tooltip control is associated with the rebar control. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

RB_ GETUNICODEFORMAT 
Retrieves the UNICODE character format flag for the control. 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Remarks 
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



522 Volume 4 Microsoft Windows Common Controls 

RB_SETUNICODEFORMAT 

Determines which portion of a rebar band is at a given point on the screen, if a rebar 
band exists at that pOint. 

Parameters 
Iprbht 

Address of an RBHITTESTINFO structure. Before sending the message, the pt 
member of this structure must be initialized to the point that will be hit tested, in client 
coordinates. 

Return Values 
Returns the zero-based index of the band at the given point, or -1 if no rebar band was 
at the point. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Converts a band identifier to a band index in a rebar control. 



Parameters 
uBandlD 

Chapter 22 Rebar Controls 523 

The application-defined identifier of the band in question. This is the value that was 
passed in the wiD member of the REBARBANDINFO structure when the band was 
inserted. 

Return Values 
Returns the zero-based band index if successful, or -1 otherwise. If duplicate band 
identifiers exist, the first one is returned. 

Version 4.71 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrLh. 

RB_INSERTBAND 
Inserts a new band in a rebar .controL 

Parameters 
ulndex 

Zero-based index of the location where the band will be inserted. If you set this 
parameter to -1, the control will add the new band at the last location. 

Iprbbi 
Address of a REBARBANDINFO structure that defines the band to be inserted. You 
must set the cbSize member of this structure to sizeof(REBARBANDINFO} before 
sending this message. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 



524 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB MAXIMIZEBAND 
Resizes a band in a rebar control to either its ideal or largest size. 

Parameters 
uBand 

Zero-based index of the band to be maximized. 

f/deal 
Indicates if the ideal width of the band should be used when the band is maximized. If 
this value is nonzero, the ideal width will be used. If this value is zero, the band will be 
made as large as possible. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_MINIMIZEBAND 
Resizes a band in a rebar control to its smallest size. 



Parameters 
uBand 

Zero-based index of the band to be minimized. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Chapter 22 Rebar Controls 525 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Moves a band from one index to another. 

Parameters 
iFrom 

Zero-based index of the band to be moved. 

iTo 
Zero-based index of the new band position. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Remarks 
This message most likely will change the index of other bands in the rebar control. If a 
band is moved from index 6 to index 0, all of the bands in between will have their index 
incremented by one. 

iTo must never be greater than the number of bands minus one. The number of bands 
can be obtained with the RB_GETBANDCOUNT message. 



526 Volume 4 Microsoft Windows Common Controls 

Version 4.71 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 

Sent to a rebar control to programmatically push a chevron. 

Parameters 
uBand 

Zero-based index of the band whose chevron is to be pushed. 

lApp Value 
An application-defined, 32-bit value. It will be passed back to the application as the 
IParamNM member of the NMREBARCHEVRON structure that is passed with the 
RBN_CHEVRONPUSHED notification. 

Return Values 
The return value for this notification is not used. 

Remarks 
When this message is sent, the rebar control will send the application an 
RBN_CHEVRONPUSHED notification, prompting it to display the chevron menu. 

Version 5.80 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 or Windows NT 4 with Internet Explorer 5 
or later. 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 



Chapter 22 Rebar Controls 527 

RB_SETBANDINFO 
Sets characteristics of an existing band in a rebar control. 

;,'~ntq;l'f(F(). 
~J;Wf>AMt<I)(UINT) u.8and: . 
;;.::n:.~A~AM).~tRr&BA1l.8ANtnNF6)lprDbi.: 

Parameters 
uBand 

Zero-based index of the band to receive the new settings. 

Iprbbi 
Address of a REBARBANDINFO structure that defines the band to be modified and 
the new settings. Before sending this message, you must set the cbSize member of 
this structure to the sizeof(REBARBANDINFO) structure. Additionally, you must set 
the cch member of the REBARBANDINFO structure to the size of the IpText buffer 
when RBBIM_ TEXT is specified. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_SETBARINFO 
Sets the characteristics of a rebar control. 

Parameters 
Iprbi 

Address of a REBARINFO structure that contains the information to be set. You must 
set the cbSize member of this structure to sizeof(REBARINFO) before sending this 
message. 



528 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.70 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrLh. 

RB_SETBKCOLOR 
Sets a rebar control's default background color. 

Parameters 
clrBk 

COLORREF value that represents the new default background color. 

Return Values 
Returns a COLORREF value that represents the previous default background color. 

Remarks 
The rebar control's default background color is used to draw the background in a rebar 
control and all bands that are added after this message has been sent. The default 
background color for a particular band can be overridden when a band is added or 
modified by setting the RBBIM_COLORS flag in fMask and setting clrBack in the 
REBARBANDINFO structure. 

Version 4.71 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 



Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETBKCOLOR 

RB_SETCOLORSCHEME 
Sets the color scheme information for the rebar control. 

Parameters 
/pcs 

Chapter 22 Rebar Controls 529 

Address of a COLORSCHEME structure that contains the color scheme information. 

Return Values 
The return value for this message is not used. 

Remarks 
The rebar control uses the color scheme information when drawing the three­
dimensional elements in the control and bands. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

RB_GETCOLORSCHEME 

RB_SETPALETTE 
Sets the rebar control's current palette. 



530 Volume 4 Microsoft Windows Common Controls 

Parameters 
hpal 

An HPALETTE that specifies the new palette that the rebar control will use. 

Return Values 
Returns an HPALETTE that specifies the rebar control's previous palette. 

Remarks 
It is the responsibility of the application sending this message to delete the HPALETTE 
passed in this message (see DeleteObject). The rebar control will not delete an 
HPALETTE set with this message. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sets a rebar control's parent window. 

Parameters 
hwndParent 

Handle to the parent window to be set. 



Chapter 22 Rebar Controls 531 

Return Values 
Returns the handle to the previous parent window, or NULL if there is no previous 
parent. 

Remarks 
The rebar control sends notification messages to the window you specify with this 
message. This message does not actually change the parent of the rebar control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_SETTEXTCOLOR 
Sets a rebar control's default text color. 

RIU;.ETTEXTCOLOR 

. w~aram= 0~,' .......... "c • '." .' .' .:' 
lPar.am:= (LPARAM)(C{)LORR~F)cl rTdt£,' 

Parameters 
clrText 

COLORREF value that represents the new default text color. 

Return Values 
Returns a COLORREF value that represents the previous default text color. 

Remarks 
The rebar control's default text color is used to draw the text in a rebar control and all 
bands that are added after this message has been sent. The default text color for a 
particular band can be overridden when a band is added or modified by setting the 
RBBIM_COLORS flag in fMask and setting clrBack in the REBARBANDINFO 
structure. 

Version 4.71 and later of Comctl32.dll. 



532 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_GETTEXTCOlOR 

RB_SETTOOL TIPS 
Associates a tooltip control with the rebar control. 

Parameters 
hwndToolTip 

Handle to the tooltip control to be set. 

Return Values 
The return value for this message is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

RB_SETUNICODEFORMAT 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time, instead of having to re-create 
the control. 



RB_SETUNICODE F{) RMA T 
. wParam= . (WPARAM)( BOOL)f!Jni code: 

Parameters 
(Unicode 

Chapter 22 Rebar Controls 533 

Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Remarks 
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message. 

".", : 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

RB_GETUNICODEFORMAT 

Shows or hides a given band in a rebar control. 

Parameters 
iBand 

Zero-based index of a band in the rebar control. 

(Show 
Boolean value that indicates if the band should be shown or hidden. If this value is 
nonzero, the band will be shown. Otherwise, the band will be hidden. 



534 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RB_SIZETORECT 
Attempts to find the best layout of the bands for the given rectangle. 

Parameters 
pre 

Address of a RECT structure that specifies the rectangle to which the rebar control 
should be sized. 

Return Values 
Returns nonzero if a layout change occurred, or zero otherwise. 

Remarks 
The rebar bands will be arranged and wrapped as necessary to fit the rectangle. 

Bands that have the RBBS_ VARIABLEHEIGHT style will be resized as evenly as 
possible to fit the rectangle. 

The height of a horizontal rebar or the width of a vertical rebar can change, depending 
on the new layout. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



Chapter 22 Rebar Controls 535 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl,h. 

Rebar Control Notifications 

NM_CUSTOMDRAW (rebar) 
Sent by the rebar control to notify its parent window about drawing operations. This 
notification is sent in the form of a WM_NOTIFY message. 

Parameters 
IpNMCustomDraw 

Address of an NMCUSTOMDRAW structure that contains information about the 
drawing operation. The dwltemSpec member of this structure contains the identifier 
of the band being drawn. The lItemlParam member of this structure contains the 
IParam of the band being drawn. 

Return Values 
The value your application can return depends on the current drawing stage. The 
dwDrawStage member of the associated NMCUSTOMDRA W structure holds a value 
that specifies the drawing stage. You must return one of the following values. 

When dwDrawStage equals CDDS_PREPAINT: 

CDRF _DODEFAUL T 
The control will draw itself. It will not send any additional NM_CUSTOMDRAW 
messages for this paint cycle. 

CDRF _NOTIFYITEMDRAW 
The control will notify the parent of any item-related drawing operations. It will send 
NM_CUSTOMDRAW notification messages before and after drawing items. 

CDRF _NOTIFYITEMERASE 
The control will notify the parent when an item will be erased. It will send 
NM_CUSTOMDRAW notification messages before and after erasing items. 

CDRF _NOTIFYPOSTERASE 
The control will notify the parent after erasing an item. 

CDRF _NOTIFYPOSTPAINT 
The control will notify the parent after painting an item. 



536 Volume 4 Microsoft Windows Common Controls 

CDRF _NOTIFYSUBITEMDRAW 
Version 4.71. The control will notify the parent when a list-view subitem is being 
drawn. 

When dwDrawStage equals CDDS_ITEMPREPAINT: 

CDRF _NEWFONT 
Your application specified a new font for the item; the control will use the new font. 
For more information on changing fonts, see Changing Fonts and Colors. 

CDRF _SKIPDEFAUL T 
Your application drew the item manually. The control will not draw the item. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Using Custom Draw 

NM_NCHITTEST (rebar) 
Sent by a rebar control when the control receives a WM_NCHITTEST message. This 
notification message is sent in the form of a WM_NOTIFY message. 

Parameters 
/pnmmouse 

Address of an NMMOUSE structure that contains information about the notification. 
The dwltemSpec member contains the band index over which the hit-test message 
occurred, and the pt member contains the mouse coordinates of the hit-test message. 

Return Values 
Return zero to allow the rebar to perform default processing of the hit-test message, or 
return one of the HT* values documented under WM_NCHITTEST to override the default 
hit-test processing. 



Chapter 22 Rebar Controls 537 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_RELEASEDCAPTURE(reba~ 
Notifies a rebar control's parent window that the control is releasing mouse capture. This 
notification is sent in the form of a WM_NOTIFY message. 

Parameters 
/pnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The control ignores the return value from this notification. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sent by a rebar control created with the RBS_AUTOSIZE style when the rebar 
automatically resizes itself. This notification message is sent in the form of a 
WM_NOTIFY message. 



538 Volume 4 Microsoft Windows Common Controls 

Parameters 
Ipnmas 

Address of an NMRBAUTOSIZE structure that contains information about the resize 
operation. 

Return Values 
The return value for this notification is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RBN_BEGINDRAG 
Sent by a rebar control when the user begins dragging a band. This notification message 
is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmrb 

Address of an NMREBAR structure that contains information about the notification. 

Return Values 
Return zero to allow the rebar to continue the drag operation, or nonzero to quit the drag 
operation. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



Chapter 22 Rebar Controls 539 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RBN_CHEVRONPUSHED 
Sent by a rebar control when a chevron is pushed. This notification message is sent in 
the form of a WM_NOTIFY message. 

ltItt:eHE\.l'B()s~dSu£Q :"':': ... : :!.: ': ... ,.' .... : (7-2.': ;.' :: .. ',';" '. 

~ :·.::'lpnift>",t(;8J~R'JiEYiQlilrJ:P(NfIlL· . ..': 

Parameters 
Ipnm 

Pointer to the the band's NMREBARCHEVRON structure. 

Return Values 
The return value for this notification is not used. 

Remarks 
When an application receives this notification, it is responsible for displaying a popup 
menu with items for each hidden tool. Use the rc member of the NMREBARCHEVRON 
structure to position the menu. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sent by a rebar control when a band's child window is resized. This notification message 
is sent in the form of a WM_NOTIFY message. 

~,~,:,~~:tt~!·~;~;!~;~~~~~t;~~f'ijtL~~fr·i~5S·~~r··~~;~f~;;:';'. ':. ,:'."': .,,' ..... ,'.,.' .... ; 
""; ,",: 

.,;. ":." ' 
. :~. 



540 Volume 4 Microsoft Windows Common Controls 

Parameters 
Jprbcs 

Address of an NMREBARCHILDSIZE structure that contains information about the 
notification. 

Return Values 
The return value for this notification is not used. 

Version 4.71 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 

RBN_DELETEDBAND 
Sent by a rebar control after a band has been deleted. This notification message is sent 
in the form of a WM_NOTIFY message. 

R<I3ILI),~,4ET€6BAND '" ".' ,.;,;,,1(2<' 
lpnriirb;"; (L~UMf(EI3AR)lP~rl!m~, ' , ,{ 

Parameters 
Jpnmrb 

Address of an NMREBAR structure that contains information about the notification. 

Return Values 
The return value for this notification is not used. 

Version 4.71 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 



Chapter 22 Rebar Controls 541 

RBN_DELETINGBAND 
Sent by a rebar control when a band is about to be deleted. This notification message is 
sent in the form of a WM_NOTIFY message. 

RIUI~EI$!I~~~(':0ry,>"; ""~,;~~>:?»:,.;" ;;"- >: ",-, 
, ,'pnmrff= <tl;PNtom~nRJHarA1'I\~<' ,-

Parameters 
Jpnmrb 

Address of an NMREBAR structure that contains information about the notification. 

Return Values 
The return value for this notification is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sent by a rebar control when the user stops dragging a band. This notification message 
is sent in the form of a WM_NOTIFY message. 

Parameters 
Jpnmrb 

Address of an NMREBAR structure that contains information about the notification. 

Return Values 
The return value for this notification is not used. 

Version 4.71 and later of Comctl32.dll. 



542 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RBN_GETOBJECT 
Sent by a rebar control created with the RBS_REGISTERDROP style when an object is 
dragged over a band in the control. This notification message is sent in the form of a 
WM_NOTIFY message. 

Parameters 
Ipnmon 

Address of an NMOBJECTNOTIFY structure that contains information about the band 
that the object is dragged over and also receives the data provided by the receiving 
application in response to this message. 

Return Values 
The return value for this notification must be zero. 

Remarks 
To receive the RBN_GETOBJECT notification, initialize OLE with a call to Olelnitialize 
or Colnitialize. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 22 Rebar Controls 543 

RBN_HEIGHTCHANGE 
Sent by a rebar control when its height has changed. This notification message is sent in 
the form of a WM_NOTIFY message. 

RaN_HEIGHTCHANGE 
lpnmhdr; tLPNMHDR) lParam: 

Parameters 
/pnmhdr 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The return value for this notification is not used. 

Remarks 
Rebar controls that use the CCS_ VERT style send this notification message when their 
width changes. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

RBN LAYOUTCHANGED 
Sent by a rebar control when the user changes the layout of the control's bands. This 
notification message is sent in the form of a WM_NOTIFY message. 

~R~(LAYOUTCHANG~D, ... 
") lPhml;4r'= <t(PNf'1HDRl 1 Pilram~. 

Parameters 
/pnmhdr 

Address of an NMHDR structure that contains additional information about this 
notification message. 



544 Volume 4 Microsoft Windows Common Controls 

Return Values 
The return value for this notification is not used. 

Version 4.71 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrLh. 

Rebar Control Structures 

NMRBAUTOSIZE 
Contains information used in handling the RBN_AUTOSIZE notification messages. 

Members 
hdr 

NMHDR structure that contains additional information about the notification message. 

fChanged 
Member that indicates if the size or layout of the rebar control has changed (nonzero 
if a change occurred, or zero otherwise). 

reTarget 
RECT structure that contains the rectangle to which the rebar control tried to size 
itself. 

reAetual 
RECT structure that contains the rectangle to which the rebar control actually sized 
itself. 

Version 4.71 and later of Comctl32.dlL 



Chapter 22 Rebar Controls 545 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl,h. 

NMREBAR 
Contains information used in handling various rebar notification messages. 

Members 
hdr 

NMHDR structure that contains additional information about the notification message. 

dwMask 
Set of flags that define which members of this structure contain valid information. This 
can be one or more of the following values: 

RBNM_ID The wiD member contains valid information. 

RBNM_LPARAM 

RBNM_STYLE 

uBand 

The IParam member contains valid information. 

The fStyle member contains valid information. 

Zero-based index of the band affected by the notification. This will be -1 if no band is 
affected. 

fStyle 
The style of the band. This is one or more of the RBBS_ styles detailed in the fStyle 
member of the REBARBANDINFO structure. This member is valid only if dwMask 
contains RBNM_STYLE. 

wiD 
Application-defined identifier of the band. This member is only valid if dwMask 
contains RBNM_ID. 

IParam 
Application-defined, 32-bit value associated with the band. This member is valid only 
if dwMask contains RBNM_LPARAM. 



546 Volume 4 Microsoft Windows Common Controls 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

NMREBARCHEVRON 
Contains information used in handling the RBN_CHEVRONPUSHED notification 
message. 

Members 
hdr 

NMHDR structure that contains additional information about the notification message. 

uBand 
Index of the band sending the notification. 

wiD 
Application-defined identifier for the band. 

IParam 
Application-defined, 32-bit value associated with the band. 

rc 
RECT structure that defines the area covered by the chevron. 

IParamNM 
Application-defined, 32-bit value. If the RBN_CHEVRONPUSHED notification was 
sent as a result of an RB_PUSHCHEVRON message, this member will contain the 
message's lApp Value value. Otherwise, it will be set to zero. 

' .. , ." 

Version 5.80 and later of Comctl32.dll. 



Chapter 22 Rebar Controls 547 

Windows NT/2000: Requires Windows 2000 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMREBARCHILDSIZE 
Contains information used in handling the RBN_CHILDSIZE notification message. 

Members 
hdr 

NMHDR structure that contains additional information about the notification message. 

uBand 
Zero-based index of the band affected by the notification. This will be -1 if no band is 
affected. 

wiD 
Application-defined identifier of the band. 

rcChiid 
RECT structure that contains the new size of the child window. This member can be 
changed during the notification to modify the child window's position and size. 

rcBand 
RECT structure that contains the new size of the band. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



548 Volume 4 Microsoft Windows Common Controls 

RBHITTESTINFO 
Contains information specific to a hit test operation. This structure is used with the 
RB_HITTEST message. 

Members 
pt 

POINT structure that describes the point to be hit-tested, in client coordinates. 

flags 
Member that receives a flag value indicating the rebar band's component located at 
the point described by pt. This member will be one of the following: 

RBHT _CAPTION The point was in the rebar band's caption. 

RBHT _CLIENT 

RBHT_GRABBER 

RBHT _NOWHERE 

iBand 

The point was in the rebar band's chevron (versions 5.80 
and greater). 

The point was in the rebar band's client area. 

The point was in the rebar band's gripper. 

The point was not in a rebar band. 

Member that receives the rebar band's index at the point described by pt. This value 
will be the zero-based index of the band, or -1 if no band was at the hit-tested point. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

REBARBANDINFO 
Contains information that defines a band in a rebar control. 



Members 
cbSize 

Chapter 22 Rebar Controls 549 

Size of this structure, in bytes. Your application must fill this member before sending 
any messages that use the address of this structure as a parameter. 

fMask 
Flags that indicate which members of this structure are valid or must be filled. This 
value can be a combination of the following: 

Flag Description 

RBBIM_BACKGROUND The hbmBack member is valid or must be filled. 

RBBIM_CHILD 

RBBIM_CHILDSIZE 

RBBIM_HEADERSIZE 

RBBIM_IDEALSIZE 

The hwndChiid member is valid or must be filled. 

The cxMinChild, cyMinChild, cyChild, cyMaxChild, 
and cylntegral members are valid or must be filled. 

The clrFore and clrBack members are valid or must 
be filled. 

Version 4.71. The cxHeader member is valid or must 
be filled. 

Version 4.71. The cxldeal member is valid or must 
be filled. 

The wiD member is valid or must be filled. 

(continued) 



550 Volume 4 Microsoft Windows Common Controls 

(continued) 

Flag 

RBBIM_IMAGE 

RBBIM_LPARAM 

RBBIM_SIZE 

RBBIM_STYLE 

RBBIM_TEXT 

fStyle 

Description 

The ilmage member is valid or must be filled. 

Version 4.71. The IParam member is valid or must 
be filled. 

The cx member is valid or must be filled. 

The fStyle member is valid or must be filled. 

The IpText member is valid or must be filled. 

Flags that specify the band style. This value can be a combination olthe following: 

Flag Description 

RBBS_BREAK The band is on a new line. 

RBBS_CHILDEDGE The band has an edge at the top and bottom of the 
child window. 

RBBS_FIXEDBMP The background bitmap does not move when the 
band is resized. 

RBBS_FIXEDSIZE The band cannot be sized. With this style, the sizing 
grip is not displayed on the band. 

RBBS_GRIPPERALWAYS Version 4.71. The band will always have a sizing 
grip, even if it is the only band in the rebar. 

RBBS_HIDDEN The band will not be visible. 

RBBS_NOGRIPPER Version 4.71. The band will never have a sizing grip, 
even if there is more than one band in the rebar. 

RBBS_USECHEVRON Version 5.80. Show a chevron button if the band is 
smaller than cxldeal. 

RBBS_ VARIABLEHEIGHT Version 4.71. The band can be resized by the rebar 
control; cylntegral and cyMaxChiid affect how the 
rebar will resize the band. 

clrFore and clrBack 
Band foreground and background colors. If hbmBack specifies a background bitmap, 
these members are ignored. By default, the band will use the background color of the 
rebar control set with the RB_SETBKCOLOR message. If a background color is 
specified here, then this background color will be used, instead. 

IpText 
Address of a buffer that contains the display text for the band. If band information is 
being requested from the control and RBBIM_ TEXT is specified in fMask, this 
member must be initialized to the address of the buffer that will receive the text. 



Chapter 22 Rebar Controls 551 

eeh 
Size of the buffer at IpText, in bytes. If information is not being requested from the 
control, this member is ignored. 

ilmage 
Zero-based index of any image that should be displayed in the band. The image list is 
set using the RB_SETBARINFO message. 

hwndChiid 
Handle to the child window contained in the band, if any. 

exMinChiid 
Minimum width of the child window, in pixels. The band cannot be sized smaller than 
this value. 

eyMinChiid 

ex 

Minimum height of the child window, in pixels. The band cannot be sized smaller than 
this value. 

Length of the band, in pixels. 

hbmBaek 
Handle to a bitmap that is used as the background for this band. 

wiD 
UINT value that the control uses to identify this band for custom draw notification 
messages. This value may be used for additional purposes in the future. 

eyChiid 
Version 4.71. Initial height of the band, in pixels. This member is ignored unless the 
RBBS_ VARIABLEHEIGHT style is specified. 

eyMaxChiid 
Version 4.71. Maximum height of the band, in pixels. This member is ignored unless 
the RBBS_ VARIABLEHEIGHT style is specified. 

eylntegral 
Version 4.71. Step value by which the band can grow or shrink, in pixels. If the band 
is resized, it will be resized in steps specified by this value. This member is ignored 
unless the RBBS_ VARIABLEHEIGHT style is specified. 

exldeal 
Version 4.71. Ideal width of the band, in pixels. If the band is maximized to the ideal 
width (see RB_MAXIMIZEBAND), the rebar control will attempt to make the band this 
width. 

IParam 
Version 4.71. 32-bit, application-defined value. 

ex Header 
Version 4.71. Size of the band's header, in pixels. The band header is the area 
between the edge of the band and the edge of the child window. This is the area 
where band text and images are displayed, if they are specified. If this value is 



552 Volume 4 Microsoft Windows Common Controls 

specified, it will override the normal header dimensions that the control calculates for 
the band. 

Remarks 
The exMinChild, eyMinChild, and ex members provide information on dimensions 
relative to the orientation of the control. That is, for a horizontal rebar control, 
exMinChiid and ex are horizontal measurements, and eyMinChiid is a vertical 
measurement. However, if the control uses the CCS_ VERT style, exMinChiid and ex 
are vertical measurements, and eyMinChiid is a horizontal measurement. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

REBARINFO 
Contains information that describes rebar control characteristics. 

Members 
ebSize 

Size of this structure, in bytes. Your application must fill this member before sending 
any messages that use the address of this structure as a parameter. 

fMask 
Flag values that describe characteristics of the rebar control. Currently, rebar controls 
support only one value: 

RBIM_IMAGELIST The himl member is valid or must be filled. 

himl 
Handle to an image list. The rebar control will use the specified image list to obtain 
images. 



Chapter 22 Rebar Controls 553 

""':;~I'lts' 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 





555 

CHAPTER 23 

Status Bars 

A status bar is a horizontal window at the bottom of a parent window in which an 
application can display various kinds of status information. The status bar can be divided 
into parts to display more than one type of information. The following illustration shows 
the status bar in the Microsoft Windows Paint application. The status bar is the bar at the 
bottom of the window that contains Help text and coordinate information. 

Using Status Bars 
You can create a status bar by using the CreateStatusWindow function or by using the 
CreateWindowEx function and specifying the STATUSCLASSNAME window class. To 
ensure that the common control dynamic-link library (DLL) is loaded, use the 
InitCommonControls function first. After you create the status bar, you can divide it into 
parts, set the text for each part, and control the appearance of the window by using 
status-bar messages. 



556 Volume 4 Microsoft Windows Common Controls 

Types and Styles 
The default position of a status bar is along the bottom of the parent window, but you 
can specify the CCS_ TOP style to have it appear at the top of the parent window's client 
area. 

You can specify the SBARS_SIZEGRIP style to include a sizing grip at the right end of 
the status bar. 

Note Combining the CCS_ TOP and SBARS_SIZEGRIP styles is not recommended, 
because the resulting sizing grip is not functional. 

Size and Height 
The window procedure for the status bar automatically sets the initial size and position of 
the window, ignoring the values specified in the CreateWindowEx function. The width is 
the same as that of the parent window's client area. The height is based on the metrics 
of the font that is currently selected into the status bar's device context and on the width 
of the window's borders. 

The window procedure automatically adjusts the size of the status bar whenever it 
receives a WM_SIZE message. Typically, when the size of the parent window changes, 
the parent sends a WM_SIZE message to the status bar. 

An application can set the minimum height of a status bar's drawing area by sending the 
window an SB_SETMINHEIGHT message, specifying the minimum height, in pixels. The 
drawing area does not include the window's borders. A minimum height is useful for 
drawing in an owner-drawn status bar. For more information, see Owner-Drawn Status 
Bars later in this chapter. 

You retrieve the widths of the borders of a status bar by sending the window an 
SB_GETBORDERS message. The message includes the address of a three-element 
array that receives the widths. 

Multiple-Part Status Bars 
A status bar can have many different parts, each displaying a different line of text. You 
divide a status bar into parts by sending the window an SB_SETPARTS message, 
specifying the number of parts to create and the address of an integer array. The array 
contains one element for each part, and each element specifies the client coordinate of 
the right edge of a part. 

A status bar can have a maximum of 256 parts, although applications typically use far 
fewer than that. You retrieve a count of the parts in a status bar, as well as the 
coordinate of the right edge of each part, by sending the window an SB_GETPARTS 
message. 



Chapter 23 Status Bars 557 

Status-Bar Text Operations 
You set the text of any part of a status bar by sending the SB_SETTEXT message, 
specifying the zero-based index of a part, an address of the string to draw in the part, 
and the technique for drawing the string. The drawing technique determines whether the 
text has a border and, if it does, the style of the border. It also determines whether the 
parent window is responsible for drawing the text. For more information, see the Owner­
Drawn Status Bars section below. 

Sy default, text is left-aligned within the specified part of a status bar. You can embed 
tab characters (\ t) in the text to center or right-align it. Text to the right of a single tab 
character is centered, and text to the right of a second tab character is right-aligned. 

To retrieve text from a status bar, use the SB_GETTEXTLENGTH and SB_GETTEXT 
messages. 

If your application uses a status bar that has only one part, you can use the 
WM_SETTEXT, WM_GETTEXT, and WM_GETTEXTLENGTH messages to perform 
text operations. These messages deal only with the part that has an index of zero, 
allowing you to treat the status bar much like a static text control. 

To display a line of status without creating a status bar, use the DrawStatusText 
function. The function uses the same techniques to draw the status as the window 
procedure for the status bar, but it does not automatically set the size and position of the 
status information. When calling the function, you must specify the size and position of 
the status information, as well as the device context of the window in which to draw it. 

Owner-Drawn Status Bars 
You can define individual parts of a status bar to be owner-drawn parts. Using this 
technique gives you more control than you would otherwise have over the appearance of 
the window part. For example, you can display a bitmap rather than text or draw text 
using a different font. 

To define a window part as owner-drawn, send the SB_SETTEXT message to the status 
bar, specifying the part and the SST _OWNERDRAW drawing technique. When 
SST _OWNERDRAW is specified, the IParam parameter is a 32-bit, application-defined 
value that the application can use when drawing the part. For example, you can specify 
a font handle, a bitmap handle, an address of a string, and so on. 

When a status bar needs to draw an owner-drawn part, it sends the WM_DRAWITEM 
message to the parent window. The wParam parameter of the message is the child 
window identifier of the status bar, and the IParam parameter is the address of a 
DRAWITEMSTRUCT structure. The parent window uses the information in the structure 
to draw the part. For an owner-drawn part of a status bar, DRAWITEMSTRUCT contains 
the following information: 



558 Volume 4 Microsoft Windows Common Controls 

Member 

CtlType 

CtllD 

itemlD 

itemAction 

itemState 

hwndltem 

hDC 

rcltem 

itemData 

Description 

Undefined; do not use. 

Child window identifier of the status bar. 

Zero-based index of the part to be drawn. 

Undefined; do not use. 

Undefined; do not use. 

Handle to the status bar. 

Handle to the device context of the status bar. 

Coordinates of the window part to be drawn. The coordinates are 
relative to the upper-left corner of the status bar. 

Application-defined 32-bit value specified in the IParam parameter 
of the SB_SETTEXT message. 

Simple-Mode Status Bars 
You put a status bar in "simple mode" by sending it an SB_SIMPLE message. A simple­
mode status bar displays only one part. When the text of the window is set, the window 
is invalidated, but it is not redrawn until the next WM_PAINT message. Waiting for the 
message reduces screen flicker by minimizing the number of times the window is 
redrawn. A simple-mode status bar is useful for displaying Help text for menu items while 
the user is scrolling through the menu. 

The string that a status bar displays while in simple mode is maintained separately from 
the strings that it displays while in nonsimple mode. This means you can put the window 
in simple mode, set its text, and switch back to nonsimple mode without the nonsimple­
mode text being changed. 

When setting the text of a simple-mode status bar, you can specify any drawing 
technique except SST _OWNERDRAW. A simple-mode status bar does not support 
owner drawing. 

Default Status-Bar Message Processing 
This section describes the messages handled by the window procedure for the 
predefined ST ATUSCLASSNAME class. 

Message 

WM_CREATE 

WM_DESTROY 

WM_GETFONT 

Default processing 

Initializes the status bar. 

Frees resources allocated for the status bar. 

Returns the handle to the current font with which the 
status bar draws its text. 



Message 

WM_GETTEXTLENGTH 

Status-Bar Example 

Chapter 23 Status Bars 559 

Default processing 

Copies the text from the first part of a status bar to a 
buffer. It returns a 32-bit value that specifies the length, in 
characters, of the text and the technique used to draw the 
text. 

Returns a 32-bit value that specifies the length, in 
characters, of the text in the first part of a status bar and 
the technique used to draw the text. 

Returns the HTBOTTOMRIGHT value if the mouse cursor 
is in the sizing grip, causing the system to display the 
sizing cursor. If the mouse cursor is not in the sizing grip, 
the status bar passes this message to the 
DefWindowProc function. 

Paints the invalid region of the status bar. If the wParam 
parameter is non-NULL, the control assumes that the 
value is an HOC and paints using that device context. 

Selects the font handle into the device context for the 
status bar. 

Copies the specified text into the first part of a status bar, 
using the default drawing operation (specified as zero). It 
returns TRUE if successful, or FALSE otherwise. 

Resizes the status bar based on the current width of the 
parent window's client area and the height of the current 
font of the status bar. 

The following example demonstrates how to create a status bar that has a sizing grip 
and divide the window into four equal parts based on the width of the parent window's 
client area: 

(continued) 



560 Volume 4 Microsoft Windows Common Controls 

(continued) 



Chapter 23 Status Bars 561 

Status-Bar Updates in Internet Explorer 
Status-bar controls in Microsoft Internet Explorer support the following new features: 

Icon Support 
Icons now can be displayed in a status bar. The SB_SETICON message is used to 
set the icon. 

Tooltip Support 
The status bar now supports tooltips. To enable tooltips, the SST_TOOL TIPS style 
must be set when the status bar is created. The SB_SETTIPTEXT and 
SB_GETTIPTEXT messages are used to set and get the tooltip text, respectively. The 
tooltip for a part will only be displayed if the part has an icon and no text or if all of the 
text cannot be displayed inside the part. Tooltips are not supported in simple mode. 

Enhanced Simple-Mode Support 
The SB_ISSIMPLE message has been added to determine if a status bar is in simple 
mode. The SBN_SIMPLEMODECHANGE notification has been added to inform the 
owner that the simple mode has changed. 

Background Color Support 
The SB_SETBKCOLOR message has been added to allow the background color of a 
status bar to be modified. 

Status-Bar Styles 
Status-bar controls support the following style, in addition to standard window styles: 

SBARS_SIZEGRIP 

SBARS_ TOOL TIPS 

SBT _TOOL TIPS 

The status-bar control will include a sizing grip at the right end 
of the status bar. A sizing grip is similar to a sizing border; it is 
a rectangular area that the user can click and drag to resize 
the parent window. 

Version 5.80. Identical to SST_TOOL TIPS. Use this flag for 
versions 5.00 and later. 

Version 4.71. Use this style to enable tooltips. 



562 Volume 4 Microsoft Windows Common Controls 

Status-Bar Reference 

Status-Bar Functions 

CreateStatusWindow 
Creates a status window, which is typically used to display the status of an application. 
The window generally appears at the bottom of the parent window, and it contains the 
specified text. 

Parameters 
style 

Window styles for the status window. This parameter must include the WS_CHILD 
style and should include the WS_ VISIBLE style. 

IpszTexl 
Address of a null-terminated string that specifies the status text for the first part. 

hwndParent 
Handle to the parent window. 

wID 
Control identifier for the status window. The window procedure uses this value to 
identify messages it sends to the parent window. 

Return Values 
Returns the handle for the status window if successful, or NULL otherwise. To get 
extended error information, call GetLastError. 

Remarks 
The CreateStatusWindow function calls the CreateWindow function to create the 
window. It passes the parameters to CreateWindow without modification and sets the 
position, width, and height parameters to default values. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Chapter 23 Status Bars 563 

Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

DrawStatusText 
The DrawStatusText function draws the specified text in the style of a status window 
with borders. 

v:014.~~ra~tta:t.usTex~( .. 

',Ii@f,·", 
);.: .'. .." 

Parameters 
hde 

.. '. . :"; ~ .: 

Handle to the display context for the window. 

Ipre 
Pointer to a RECT structure that contains the position, in client coordinates, of the 
rectangle in which the text is drawn. The function draws the borders just inside the 
edges of the specified rectangle. 

pszText 
Pointer to a null-terminated string that specifies the text to display. Tab characters in 
the string determine whether the string is left-aligned, right-aligned, or centered. 

uFlags 
Text drawing flags. This parameter can be a combination of these values: 

SST _NOSORDERS Prevents borders from being drawn around the specified 
text. 

SBT_POPOUT 

SST _RTLREADING 

Return Values 

Draws highlighted borders that make the text stand out. 

Indicates that the string pOinted to by pszTextwill be 
displayed in the opposite direction to the text in the 
parent window. 

This function does not return a value. 

Remarks 
Normal windows display text from left to right (L TR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read from right to left (RTL). Normally, the 
pszText string will be displayed in the same direction as the text in its parent window. If 



564 Volume 4 Microsoft Windows Common Controls 

SBT _RTLREADING is set, the pszText string will read in the opposite direction from the 
text in the parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

MenuHelp 
Processes WM_MENUSELECT and WM_COMMAND messages, and displays Help text 
about the current menu in the specified status window. 

Parameters 
uMsg 

Message being processed. This can be either WM_MENUSELECT 
or WM_COMMAND. 

wParam 
wParam of the message specified in uMsg. 

IParam 
IParam of the message specified in uMsg. 

hMainMenu 
Handle to the application's main menu. 

hlnst 
Handle to the module that contains the string resources. 

hwndStatus 
Handle to the status window. 

IpwlDs 
Address of an array that contains pairs of string resource identifiers and menu 
handles. The function searches the array for the handle to the selected menu and, if 
found, uses the corresponding resource identifier to load the appropriate Help string. 



Return Values 
This function does not return a value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctl32.lib. 

Status-Bar Messages 

SB_GETBORDERS 

Chapter 23 Status Bars 565 

Retrieves the current widths of the horizontal and vertical borders of a status window. 

Parameters 
aBorders 

Address of an integer array that has three elements. The first element receives the 
width of the horizontal border, the second receives the width of the vertical border, 
and the third receives the width of the border between rectangles. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The borders determine the spacing between the outside edge of the window and the 
rectangles within the window that contain text. The borders also determine the spacing 
between rectangles. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



566 Volume 4 Microsoft Windows Common Controls 

Retrieves the icon for a part in a status bar. 

Parameters 
iPart 

Zero-based index of the part that contains the icon to be retrieved. If this parameter is 
-1 , the status bar is assumed to be a Simple Mode status bar. 

Return Values 
Returns the handle to the icon if successful, or NULL otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Retrieves a count of the parts in a status window. The message also retrieves the 
coordinate of the right edge of the specified number of parts. 

Parameters 
nParts 

Number of parts for which to retrieve coordinates. If this parameter is greater than the 
number of parts in the window, the message retrieves coordinates for existing parts 
only. 

aRightCoord 
Address of an integer array that has the same number of elements as parts specified 
by nParts. Each element in the array receives the client coordinate of the right edge of 
the corresponding part. If an element is set to -1 , the position of the right edge for that 



Chapter 23 Status Bars 567 

part extends to the right edge of the window. To retrieve the current number of parts, 
set this parameter to zero. 

Return Values 
Returns the number of parts in the window if successful, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Retrieves the bounding rectangle of a part in a status window. 

Parameters 
iPart 

Zero-based index of the part whose bounding rectangle is to be retrieved. 

/pre 
Address of a RECT structure that receives the bounding rectangle. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

SB_GETTEXT 
The SB_GETTEXT message retrieves the text from the specified part of a status 
window. 



568 Volume 4 Microsoft Windows Common Controls 

Parameters 
iPart 

Zero-based index of the part from which to retrieve text. 

szText 
Pointer to the buffer that receives the text. This parameter is a nUll-terminated string. 

Return Values 
Returns a 32-bit value that consists of two 16-bit values. The low word specifies the 
length, in characters, of the text. The high word specifies the type of operation used to 
draw the text. The type can be one of the following values: 

o 

SBT _NOSORDERS 

SBT_POPOUT 

SBT _RTLREADING 

The text is drawn with a border to appear lower than the 
plane of the window. 

The text is drawn without borders. 

The text is drawn with a border to appear higher than the 
plane of the window. 

The text will be displayed in the opposite direction to the text 
in the parent window. 

If the text has the SST _OWNERDRAW drawing type, this message returns the 32-bit 
value associated with the text instead of the length and operation type. 

Remarks 
Normal windows display text from left to right (L TR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read from right to left (RTL). If 
SBT _RTLREADING is set, the szText string will read in the opposite direction from the 
text in the parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



Chapter 23 Status Bars 569 

SB_GETTEXTLENGTH 
The SB_GETTEXTLENGTH message retrieves the length, in characters, of the text from 
the specified part of a status window. 

Parameters 
iPart 

Zero-based index of the part from which to retrieve text. 

Return Values 
Returns a 32-bit value that consists of two 16-bit values. The low word specifies the 
length, in characters, of the text. The high word specifies the type of operation used to 
draw the text. The type can be one of the following values: 

o 

SBT _NOBORDERS 

SBT _OWNERDRAW 

SBT_POPOUT 

SBT _RTLREADING 

Remarks 

The text is drawn with a border to appear lower than the 
plane of the window. 

The text is drawn without borders. 

The text is drawn by the parent window. 

The text is drawn with a border to appear higher than the 
plane of the window. 

The text will be displayed in the opposite direction to the text 
in the parent window. 

Normal windows display text from left to right (L TR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read from right to left (RTL). If 
SBT _RTLREADING is set, the specified status window text will read in the opposite 
direction from the text in the parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



570 Volume 4 Microsoft Windows Common Controls 

SB_GETTIPTEXT 
Retrieves the tooltip text for a part in a status bar. The status bar must have been 
created with the SBT _TOOL TIPS style to enable tooltips. 

Parameters 
iPart 

Zero-based index of the part that will receive the tooltip text. 

nSize 
Size of the buffer at IpszTooltip, in characters. 

IpszTooltip 
Address of a character buffer that receives the tooltip text. 

Return Values 
The return value is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Status-Bar Updates in Internet Explorer 

SB_GETUNICODEFORMAT 

..:;, .,:; -:": 

Retrieves the UNICODE character format flag for the control. 



Chapter 23 Status Bars 571 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Remarks 
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message. 

Version 4.00 or later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

SB_SETUNICODEFORMAT 

Checks a status-bar control to determine if it is in simple mode. 

SJLI$SIMPLE< 

Return Values 
Returns nonzero if the status-bar control is in simple mode, or zero otherwise. 

Version 4.70 or later of Comctl32.dll 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



572 Volume 4 Microsoft Windows Common Controls 

Sets the background color in a status bar. 

Parameters 
clrBk 

COLORREF value that specifies the new background color. Specify the 
CLR_DEFAULT value to cause the status bar to use its default background color. 

Return Values 
Returns the previous background color, or CLR_DEFAUL T if the background color is the 
default color. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Sets the icon for a part in a status bar. 

Parameters 
iPart 

Zero-based index of the part that will receive the icon. If this parameter is -1, the 
status bar is assumed to be a simple status bar. 

hlcon 
Handle to the icon to be set. If this value is NULL, the icon is removed from the part. 

Return Values 
Returns nonzero if successful, or zero otherwise. 



Chapter 23 Status Bars 573 

Remarks 
The status bar will not destroy the icon. It is the calling application's responsibility to 
keep track of and destroy any icons. 

Version 4.71 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 

SB_SETMINHEIGHT 
Sets the minimum height of a status window's drawing area. 

~~ll 

Parameters 
minHeight 

Minimum height, in pixels, of the window. 

Return Values 
No return value. 

Remarks 
The minimum height is the sum of wParam and twice the width, in pixels, of the vertical 
border of the status window. An application must send the WM_SIZE message to the 
status window to redraw the window. The wParam and IParam parameters of the 
WM_SIZE message should be set to zero. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrLh. 



574 Volume 4 Microsoft Windows Common Controls 

Sets the number of parts in a status window and the coordinate of the right edge of each 
part. 

SILSETPARTS 
, c' ~ ,> ~ _', < 

wPa1'am = (WPARAM) nP{rrts; ....... . .. 
1 Par-anl: (LP,h,RAt4fW?tN.'i~. aWid'th.s;' 

Parameters 
nParts 

Number of parts to set (cannot be greater than 256). 

a Widths 
Pointer to an integer array. The number of elements is specified in nParts. Each 
element specifies the position, in client coordinates, of the right edge of the 
corresponding part. If an element is -1, the right edge of the corresponding part 
extends to the border of the window. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

:~~I$, 
Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

The SB_SETTEXT message sets the text in the specified part of a status window. 

SB::..SE.TTEXT 
wPa.ram ;;=(WPARAM) iPart r I1Type; 
lParam = CLPARAM} (lPSTR) szText; 

Parameters 
iPart 

Zero-based index of the part to set. If this parameter is set to SB_SIMPLEID, the 
status window is assumed to be a simple window with only one part. 

uType 
Type of drawing operation. This parameter can be one of the following values: 



o 

SBT _NOBORDERS 

SBT _OWNERDRAW 

SBT_POPOUT 

SBT _RTLREADING 

szText 

Chapter 23 Status Bars 575 

The text is drawn with a border to appear lower than 
the plane of the window. 

The text is drawn without borders. 

The text is drawn by the parent window. 

The text is drawn with a border to appear higher than 
the plane of the window. 

The text will be displayed in the opposite direction to 
the text in the parent window. 

Pointer to a null-terminated string that specifies the text to set. If uType is 
SBT_OWNERDRAW, this parameter represents 32 bits of data. The parent window 
must interpret the data and draw the text when it receives the WM_DRAWITEM 
message. The text for each part is limited to 127 characters. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
The message invalidates the portion of the window that has changed, causing it to 
display the new text when the window next receives the WM_PAINT message. 

Normal windows display text from left to right (LTR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read from right to left (RTL). If 
SBT _RTLREADING is set, the szText string will read in the opposite direction from the 
text in the parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

SB_SETTIPTEXT 
Sets the tooltip text for a part in a status bar. The status bar must have been created 
with the SBT _TOOL TIPS style to enable tooltips. 



576 Volume 4 Microsoft Windows Common Controls 

Parameters 
iPart 

Zero-based index of the part that will receive the tooltip text. 

IpszTooltip 
Address of a character buffer that contains the new tooltip text. 

Return Values 
The return value is not used. 

Remarks 
See Status-Bar Updates in Internet Explorer for further information. 

This tooltip text is displayed in two situations: 

• When the corresponding pane in the status bar contains only an icon. 

• When the corresponding pane in the status bar contains text that is truncated due to 
the size of the pane. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

SB_SETUNICODEFORMAT 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time, instead of having to re-create 
the control. 



Parameters 
fUnicode 

Chapter 23 Status Bars 577 

Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Remarks 
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message. 

Version 4.00 or later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

SB_GETUNICODEFORMAT 

Specifies whether a status window displays simple text or displays all window parts set 
by a previous SB_SETPARTS message. 

Parameters 
fSimple 

Display type flag. If this parameter is TRUE, the window displays simple text. If it is 
FALSE, it displays multiple parts. 

Return Values 
The return value is not used. 



578 Volume 4 Microsoft Windows Common Controls 

Remarks 
If the status window is being changed from nonsimple to simple, or vice versa, the 
window is immediately redrawn. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Status-Bar Notifications 

NM_CLICK (status bar) 
Notifies a status-bar control's parent window that the user has clicked the left mouse 
button within the control. NM_CLlCK is sent in the form of a WM_NOTIFY message. 

Parameters 
/pnm 

Address of an NMMOUSE structure that contains additional information about this 
notification message. The dwltemSpec member contains the index of the section that 
was clicked. 

Return Values 
Return TRUE to indicate that the mouse click was handled and suppress default 
processing by the system. Return FALSE to allow default processing of the click. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 23 Status Bars 579 

NM_DBLCLK (status bar) 
Notifies a status-bar control's parent window that the user has double-clicked the left 
mouse button within the control. NM_DBLCLK is sent in the form of a WM_NOTIFY 
message. 

NM .... DaLCLK 
1 porn-( L~NMMOUSE)lPar:ilm; 

Parameters 
/pnm 

Address of an NMMOUSE structure that contains additional information about this 
notification message. The dwltemSpec member contains the index of the section that 
was clicked. 

Return Values 
Return TRUE to indicate that the mouse click was handled and suppress default 
processing by the system. Return FALSE to allow default processing of the click. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_RCLICK (status bar) 
Notifies a status-bar control's parent window that the user has clicked the right mouse 
button within the control. This notification is sent in the form of a WM_NOTIFY message. 

Parameters 
/pnm 

Address of an NMMOUSE structure that contains additional information about this 
notification message. The dwltemSpec member contains the index of the section that 
was clicked. 

Return Value 
Return TRUE to indicate that the mouse click was handled and suppress default 
processing by the system. Return FALSE to allow default processing of the click. 



580 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_RDBLCLK (status bar) 
Notifies a status-bar control's parent window that the user has double-clicked the right 
mouse button within the control. NM_RDBLCLK is sent in the form of a WM_NOTIFY 
message. 

Parameters 
Ipnm 

Address of an NMMOUSE structure that contains additional information about this 
notification message. The dwltemSpec member contains the index of the section that 
was clicked. 

Return Values 
Return TRUE to indicate that the mouse click was handled and suppress default 
processing by the system. Return FALSE to allow default processing of the click. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

SBN_SIMPLEMODECHANGE 
Sent by a status-bar control when the simple mode changes due to a SB_SIMPLE 
message. This notification is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains information about the notification. 



Chapter 23 Status Bars 581 

Return Values 
The return value is ignored by the status bar. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 





583 

CHAPTER 24 

Tab Controls 

A tab control is analogous to the dividers in a notebook or the labels in a file cabinet. By 
using a tab control, an application can define multiple pages for the same area of a 
window or dialog box. Each page consists of a certain type of information or a group of 
controls that the application displays when the user selects the corresponding tab. 

About Tab Controls 
You can create a tab control by calling the CreateWindowEx function, specifying the 
WC_ TABCONTROL window class. This window class is registered when the common 
controls dynamic-link library (DLL) is loaded. To ensure that the DLL is loaded, use the 
InitCommonControls function. 

You send messages to a tab control to add tabs and otherwise affect the control's 
appearance and behavior. Each message has a corresponding macro that you can use 
instead of sending the message explicitly. You cannot disable an individual tab in a tab 
control. However, you can disable a tab control in a property sheet by disabling the 
corresponding page. 

About Tab Control Styles 
You can apply certain characteristics to tab controls by specifying tab control styles 
when the control is created. For example, you can specify the alignment and general 
appearance of the tabs in a tab control. 

You can cause the tabs to look like buttons by specifying the TCS_BUTTONS style. 
Tabs in this type of tab control should serve the same function as button controls; that is, 
clicking a tab should carry out a command instead of displaying a page. Because the 
display area in a button tab control is typically not used, no border is drawn around it. 

You can cause a tab to receive the input focus when clicked by specifying the 
TCS_FOCUSONBUTTONDOWN style. This style is typically used only with the 
TCS_BUTTONS style. You can specify that a tab does not receive input focus when 
clicked by using the TCS_FOCUSNEVER style. 

By default, a tab control displays only one row of tabs. If not all tabs can be shown at 
once, the tab control displays an up-down control so that the user can scroll additional 
tabs into view. You can cause a tab control to display multiple rows of tabs, if necessary, 
by specifying the TCS_MUL TILINE style. With this style, all tabs can be displayed at 
once. The tabs are left-aligned within each row unless you specify the 
TCS_RIGHT JUSTIFY style. In this case, the width of each tab is increased so that each 
row of tabs fills the entire width of the tab control. 



584 Volume 4 Microsoft Windows Common Controls 

A tab control automatically sizes each tab to fit its icon, if any, and its label. To give all 
tabs the same width, you can specify the TCS_FIXEDWIDTH style. The control sizes all 
the tabs to fit the widest label, or you can assign a specific width and height by using the 
TCM_SETITEMSIZE message. Within each tab, the control centers the icon and label, 
placing the icon to the left of the label. You can force the icon to the left, leaving the label 
centered, by specifying the TCS_FORCEICONLEFT style. You can left-align both the 
icon and label by using the TCS_FORCELABELLEFT style. You cannot use the 
TCS_FIXEDWIDTH style with the TCS_RIGHT JUSTIFY style. 

You can specify that the parent window draws the tabs in the control by using the 
TCS_OWNERDRAWFIXED style. For more information, see Owner-Drawn Tabs. 

You can specify that a tab control will create a tooltip control by using the 
TCS_ TOOL TIPS style. For more information about this, see Tab Control Too/tips. 

Tabs and Tab Attributes 
Each tab in a tab control consists of an icon, a label, and application-defined data. This 
information is specified by a TCITEM structure. You can add tabs to a tab control, get 
the number of tabs, retrieve and set the contents of a tab, and delete tabs. Tabs are 
identified by their zero-based index. 

To add tabs to a tab control, use the TCM_INSERTITEM message, specifying the 
position of the item and the address of a TCITEM structure. You can retrieve and set the 
contents of an existing tab by using the TCM_GETITEM and TCM_SETITEM messages. 
For each tab, you can specify an icon, a label, or both. You can also specify application­
defined data to associate with the tab. 

You can retrieve the current number of tabs by using the TCM_GETITEMCOUNT 
message, delete a tab by using the TCM_DELETEITEM message, and delete all tabs in 
a tab control by using the TCM_DELETEALLITEMS message. 

You can associate application-defined data with each tab. For example, you might save 
information about each page with its corresponding tab. By default, a tab control 
allocates four extra bytes per tab for application-defined data. You can change the 
number of extra bytes per tab by using the TCM_SETITEMEXTRA message. You can 
only use this message when the tab control is empty. 

The application-defined data is specified by the IParam member of the TCITEM 
structure. If you use more than 4 bytes of application-defined data, you need to define 
your own structure and use it instead of TCITEM. You can retrieve and set application­
defined data the same way you retrieve and set other information about a tab-by using 
the TCM_GETITEM and TCM_SETITEM messages. 

The first member of your structure must be a TCITEMHEADER structure, and the 
remaining members must specify application-defined data. TCITEMHEADER is identical 
to TCITEM, except it does not have the IParam member. The difference between the 
size of your structure and the size of TCITEMHEADER should equal the number of extra 
bytes per tab. 



Chapter 24 Tab Controls 585 

Display Area 
The display area of a tab control is the area in which an application displays the current 
page. Typically, an application creates a child window or dialog box, setting the window 
size and position to fit the display area. Given the window rectangle for a tab control, you 
can calculate the bounding rectangle of the display area by using the 
TCM_ADJUSTRECT message. 

Sometimes the display area must be a particular size-for example, the size of a 
modeless child dialog box. Given the bounding rectangle for the display area, you can 
use TCM_ADJUSTRECT to calculate the corresponding window rectangle for the tab 
control. 

Tab Selection 
When the user selects a tab, a tab control sends its parent window notification messages 
in the form of WM_NOTIFY messages. The TCN_SELCHANGING notification message 
is sent before the selection changes, and the TCN_SELCHANGE notification message 
is sent after the selection changes. 

You can process TCN_SELCHANGING to save the state of the outgoing page. You can 
return TRUE to prevent the selection from changing. For example, you might not want to 
switch away from a child dialog box in which a control has an invalid setting. 

You must process TCN_SELCHANGE to display the incoming page in the display area. 
This might simply entail changing the information displayed in a child window. More 
often, each page consists of a child window or dialog box. In this case, an application 
might process this notification by destroying or hiding the outgoing child window or 
dialog box and by creating or showing the incoming child window or dialog box. 

You can retrieve and set the current selection by using the TCM_GETCURSEL and 
TCM_SETCURSEL messages. 

Tab Control Image Lists 
Each tab can have an icon associated with it, which is specified by an index in the image 
list for the tab control. When a tab control is created, it has no image list associated with 
it. An application can create an image list by using the ImageLisCCreate function and 
then assign it to a tab control by using the TCM_SETIMAGELIST message. 

You can add images to a tab control's image list just as you would to any other image 
list. However, an application should remove images by using the TCM_REMOVEIMAGE 
message instead of the ImageLisCRemove function. This message ensures that each 
tab remains associated with the same image as before. 

Destroying a tab control does not destroy an image list that is associated with it. You 
must destroy the image list separately. This is useful if you want to assign the same 
image list to multiple tab controls. 



586 Volume 4 Microsoft Windows Common Controls 

To retrieve the handle to the image list currently associated with a tab control, you can 
use the TCM_GETIMAGELIST message. 

Tab Size and Position 
Each tab in a tab control has a size and position. You can set the size of tabs, retrieve 
the bounding rectangle of a tab, or determine which tab is at a specified position. 

For fixed-width and owner-drawn tab controls, you can set the exact width and height of 
tabs by using the TCM_SETITEMSIZE message. In other tab controls, each tab's size is 
calculated based on the icon and label for the tab. The tab control includes space for a 
border and an additional margin. You can set the thickness of the margin by using the 
TCM_SETPADDING message. 

You can determine the current bounding rectangle for a tab by using the 
TCM_GETITEMRECT message. You can determine which tab, if any, is at a specified 
location by using the TCM_HITTEST message. 

In a tab control with the TCS_MUL TILINE style, you can determine the current number 
of rows of tabs by using the TCM_GETROWCOUNT message. 

Owner-Drawn Tabs 
If a tab control has the TCS_OWNERDRAWFIXED style, the parent window must paint 
tabs by processing the WM_DRAWITEM message. The tab control sends this message 
whenever a tab needs to be painted. The IParam parameter specifies the address of a 
DRAWITEMSTRUCT structure, which contains the index of the tab, its bounding 
rectangle, and the device context (DC) in which to draw. 

By default, the item Data member of DRAWITEMSTRUCT contains the value of the 
IParam member of the TCITEM structure. However, if you change the amount of 
application-defined data per tab, item Data contains the address of the data instead. You 
can change the amount of application-defined data per tab by using the 
TCM_SETITEMEXTRA message. 

To specify the size of items in a tab control, the parent window must process the 
WM_MEASUREITEM message. Because all tabs in an owner-drawn tab control are the 
same size, this message is sent only once. There is no tab control style for owner-drawn 
tabs of varying size. You can also set the width and height of tabs by using the 
TCM_SETITEMSIZE message. 

Tab Control Tooltips 
You can use a tooltip control to provide a brief description of each tab in a tab control. A 
tab control that has the TCS_ TOOL TIPS style creates a tooltip control when it is created 
and destroys the tooltip control when it is destroyed. You can also create a tooltip control 
and assign it to a tab control. 



Chapter 24 Tab Controls 587 

If you use a tooltip control with a tab control, the parent window must process the 
TTN_NEEDTEXT notification message to provide a description of each tab on request. 

To use the same tooltip control with more than one tab control, create the tooltip control 
yourself and assign it to the tab control by using the TCM_SETTOOL TIPS message. 
You can get the handle to a tab control's current tooltip control by using the 
TCM_GETTOOL TIPS message. If you create your own tooltip control, you should not 
use the TCS_ TOOL TIPS style. For more information about tooltip controls, see Too/tip 
Controls. 

Default Tab Control Message Processing 
This section describes the message processing performed by a tab control. Messages 
specific to tab controls are discussed in other sections of this documentation. 

Message Processing performed 

WM_CAPTURECHANGED Does nothing if the tab control released the mouse 
capture itself. If another window captured the mouse and 
a button is held down, the command releases the button. 

WM_CREATE Allocates and initializes an internal data structure. The 
control creates a tooltip control if the TCS_ TOOL TIPS 
style is specified. 

WM_DESTROY Frees resources allocated during WM_CREATE 
processing. 

WM_GETDLGCODE Returns a combination of the DLGC_WANTARROWS 
and DLGC_WANTCHARS values. 

WM_GETFONT Returns the handle to the font used for labels. 

WM_KEYDOWN Processes direction keys and changes the selection, if 
appropriate. 

WM_KILLFOCUS Invalidates the tab that has the focus so it will be 
repainted to reflect an unfocused state. 

WM_LBUTTONDOWN Forwards the message to the tooltip control, if any, and 
changes the selection if the user is clicking a tab. If the 
user is clicking a button, the control redraws the button to 
give a sunken appearance and captures the mouse. 

If the user is clicking either a tab or button and the 
TCS_FOCUSONBUTTONDOWN style is specified, the 
control sets the focus to itself. 

Releases the mouse if a button was pressed. If the 
cursor is over the button and is being held down, the 
control changes the selection accordingly and redraws 
the button. 

(continued) 



588 Volume 4 Microsoft Windows Common Controls 

(continued) 

Message 

WM_RBUTTONDOWN 

WM_SETFONT 

WM_SETREDRAW 

Using Tab Controls 

Processing performed 

Forwards the message to the tooltip control, if any. If the 
TCS_BUTTONS style is specified and the mouse button 
is being held down after clicking, the control may also 
redraw the affected button to give it a raised or sunken 
appearance. 

Forwards notification messages sent by the tooltip 
control. 

Draws a border around the display area (unless the 
TCS_BUTTONS style is specified) and paints any tabs 
that intersect the invalid rectangle. 

For each tab, it draws the body of the tab (or sends a 
WM_DRA WITEM message to the parent window) and 
then draws a border around the tab. If the wParam 
parameter is non-NULL, the control assumes that the 
value is an HDC and paints using that device context. 

Sends an NM_RCLICK notification message to the 
parent window. 

Invalidates the tab that has the focus so that it will be 
repainted to reflect a focused state. 

Sets the font used for labels. 

Sets the state of an internal flag that determines whether 
the control is repainted when items are inserted and 
deleted, when the font is changed, and so on. 

Recalculates the positions of tabs and may invalidate 
part of the tab control to force repainting of some or all 
tabs. 

This section provides two examples that use tab controls. The first example 
demonstrates how to use a tab control to switch between multiple pages of text in an 
application's main window. The second example demonstrates how to use a tab control 
to switch between multiple pages of controls in a dialog box. 

Creating a Tab Control 
The example in this section demonstrates how to create a tab control and display it in 
the client area of the application's main window. The application displays a third window 
(a static control) in the display area of the tab control. The parent window positions and 
sizes the tab control and static control when it processes the WM_SIZE message. 



Chapter 24 Tab Controls 589 

There are seven tabs, one for each day of the week. When the user selects a tab, the 
application displays the name of the corresponding day in the static control. The 
following global variables are used in this example. 

The following function creates the tab control and adds a tab for each day of the week. 
The names of the days are defined as string resources, consecutively numbered starting 
with IDS_FIRSTDAY (defined in the application's header file). Both the parent window 
and the tab control must have the WS_CLlPSIBLINGS window style. The application's 
initialization function calls this function after creating the main window. 

(continued) 



590 Volume 4 Microsoft Windows Common Controls 

(continued) 

The following function creates the static control that occupies the tab control's display 
area. The application's initialization function calls this function after creating the main 
window and the tab control. 

Following are the relevant portions of the application's window procedure. The 
application processes the WM_SIZE message to position and size the tab control and 
the static control. To determine the appropriate position and size for the static control, 



Chapter 24 Tab Controls 591 

this example sends the tab control a TCM_ADJUSTRECT message (by using the 
TabCtrl_AdjustRect macro). 

When a tab is selected, the tab control sends a WM_NOTIFY message, specifying the 
TCN_SELCHANGE notification message. The application processes this notification 
message by setting the text of the static control. 

(continued) 



592 

(cOntinued) 



Chapter 24 Tab Controls 593 

Creating a Tabbed Dialog Box 
The example in this section demonstrates how to create a dialog box that uses tabs to 
provide multiple pages of controls. The main dialog box is a modal dialog box. Each 
page of controls is defined by a dialog box template that has the WS_CHILD style. When 
a tab is selected, a modeless dialog box is created for the incoming page and the dialog 
box for the outgoing page is destroyed. 

Note In many cases, you can implement multiple-page dialog boxes more easily by 
using property sheets. For more information about property sheets, see Property Sheets. 

The template for the main dialog box simply defines two button controls. When 
processing the WM_INITDIALOG message, the dialog box procedure creates a tab 
control and loads the dialog template resources for each of the child dialog boxes. 

The information is saved in an application-defined structure called DLGHDR. A pOinter to 
this structure is associated with the dialog box window by using the SetWindowLong 
function. The structure is defined in the application's header file, as follows: 

The following function processes the WM_INITDIALOG message for the main dialog 
box. The function allocates the DLGHDR structure, loads the dialog template resources 
for the child dialog boxes, and creates the tab control. 

The size of each child dialog box is specified by the DLGTEMPLATE structure. The 
function examines the size of each dialog box and uses the macro for the 
TCM_ADJUSTRECT message to calculate an appropriate size for the tab control. Then 
it sizes the dialog box and positions the two buttons accordingly. This example sends 
TCM_ADJUSTRECT by using the TabCtrl_AdjustRect macro. 

(continued) 



594 Volume 4 Microsoft Windows Common Controls 

(continUed) 



Chapter 24 Tab Controls 595 

} 

if (pHdr->apRes[i]->cy > rcTab.bottom) 
rcTab.bottom = pHdr->apRes[i]->cy; 

rcTab.right= rcTab.right * LOWORD(dwDlgBase) I 4: 
reTan.bottom "" reTab.b<it"tom * HtWORO(dwDlgBase) I 8;. 

(continued) 



596 Volume 4 Microsoft Windows Common Controls 

(continued) 

The following function processes the TCN_SELCHANGE notification message for the 
main dialog box. The function destroys the dialog box for the outgoing page, if any. Then 
it uses the CreateDialoglndirect function to create a modeless dialog box for the 
incoming page. 



Chapter 24 Tab Controls 597 

The following function processes the WM_INITDIALOG message for each of the child 
dialog boxes. You cannot specify the position of a dialog box created using the 
CreateDialoglndirect function. This function uses the SetWindowPos function to 
position the child dialog within the tab control's display area. 

Tab Control Updates in Internet Explorer 
Tab controls in Microsoft Internet Explorer support the following new features. 

Item States 
Tab control items now support an item state to support the TCM_DESELECTALL 
message. Additionally, the TCITEM structure supports item state values. See Tab 
Contralltem States for more information. 

Extended Styles 
Tab controls now support extended styles that allow the controls to have enhanced 
capabilities. See Tab Control Extended Styles for more information. 

Structures Renamed 
All structures used with tab controls have been renamed to conform to current naming 
conventions, while maintaining backward compatibility. For example, the TC_ITEM 
structure is now named TCITEM. 

Tab Control Styles 
Current tab control styles are supported, and the following styles have been added: 



598 Volume 4 Microsoft Windows Common Controls 

TCS_BOTTOM Version 4.70. Tabs appear at the bottom of the 
control. This value equals TCS_RIGHT. 

TCS_BUTTONS Tabs appear as buttons, and no border is drawn 
around the display area. 

TCS_FIXEDWIDTH All tabs are the same width. This style cannot be 
combined with the TCS_RIGHTJUSTIFY style. 

TCS_FLATBUTTONS Version 4.71. Selected tabs appear as being 
indented into the background while other tabs 
appear as being on the same plane as the 
background. This style only affects tab controls 
with the TCS_BUTTONS style. 

TCS_FOCUSNEVER The tab control does not receive the input focus 
when clicked. 

TCS_FOCUSONBUTTONDOWN The tab control receives the input focus when 
clicked. 

TCS_FORCEICONLEFT Icons are aligned with the left edge of each fixed­
width tab. This style can only be used with the 
TCS_FIXEDWIDTH style. 

TCS_FORCELABELLEFT Labels are aligned with the left edge of each fixed­
width tab; that is, the label is displayed 
immediately to the right of the icon instead of 
being centered. 

This style can only be used with the 
TCS_FIXEDWIDTH style, and it implies the 
TCS_FORCEICONLEFT style. 

TCS_HOTTRACK Version 4.70. Items under the pointer are 
automatically highlighted. You can check whether 
or not hot tracking is enabled by calling 
SystemParameterslnfo. 

TCS_MUL TILINE Multiple rows of tabs are displayed, if necessary, 
so all tabs are visible at once. 

TCS_MULTISELECT Version 4.70. Multiple tabs can be selected by 
holding down CTRL when clicking. This style must 
be used with the TCS_BUTTONS style. 

TCS_OWNERDRAWFIXED The parent window is responsible for drawing 
tabs. 

TCS_RAGGEDRIGHT Rows of tabs will not be stretched to fill the entire 
width of the control. This style is the default. 

TCS_RIGHT Version 4.70. Tabs appear vertically on the right 
side of controls that use the TCS_ VERTICAL 
style. This value equals TCS_BOTTOM. 



TCS_RIGHT JUSTIFY 

TCS_SCROLLOPPOSITE 

TCS_SINGLELINE 

Remarks 

Chapter 24 Tab Controls 599 

The width of each tab is increased, if necessary, 
so that each row of tabs fills the entire width of the 
tab control. 

This window style is ignored unless the 
TCS_MUL TILINE style is also specified. 

Version 4.70. Unneeded tabs scroll to the 
opposite side of the control when a tab is 
selected. 

Only one row of tabs is displayed. The user can 
scroll to see more tabs, if necessary. This style is 
the default. 

Tabs appear as tabs, and a border is drawn 
around the display area. This style is the default. 

The tab control has a tooltip control associated 
with it. 

Version 4.70. Tabs appear at the left side of the 
control, with tab text displayed vertically. This 
style is valid only when used with the 
TCS_MUL TILINE style. To make tabs appear on 
the right side of the control, also use the 
TCS_RIGHT style. 

The following styles can be modified after the control is created: 

• TCS_BOTTOM 

• TCS_BUTTONS 

• TCS_FIXEDWIDTH 

• TCS_FLATBUTTONS 

• TCS_FORCEICONLEFT 

• TCS_FORCELABELLEFT 

• TCS_MUL TILINE 

• TCS_OWNERDRAWFIXED 

• TCS_RAGGEDRIGHT 

• TCS_RIGHT 

• TCS_ VERTICAL 



600 Volume 4 Microsoft Windows Common Controls 

Tab Control Extended Styles 
The tab control now supports extended styles. These styles are manipulated using the 
TCM_GETEXTENDEDSTYLE and TCM_SETEXTENDEDSTYLE messages and should 
not be confused with extended window styles which are passed to CreateWindowEx. 

Value Description 

TCS_EX_FLATSEPARATORS Version 4.71. The tab control will draw separators 
between the tab items. This extended style only 
affects tab controls that have the TCS_BUTTONS 
and TCS_FLATBUTTONS styles. By default, 
creating the tab control with the 
TCS_FLATBUTTONS style sets this extended style. 
If you do not require separators, you should remove 
this extended style after creating the control. 

TCS_EX_REGISTERDROP Version 4.71. The tab control generates 
TCN_GETOBJECT notification messages to 
request a drop target object when an object is 
dragged over the tab items in the control. The 
application must call Colnitialize or Olelnitialize 
before setting this style. 

Tab Control Item States 
Tab control items now support an item state to support the TCM_DESELECTALL 
message. Additionally, the TCITEM structure supports item state values. 

Value Description 

TCIS_BUTTONPRESSED Version 4.70. The tab control item is selected. This state 
is only meaningful if the TCS_BUTTONS style flag has 
been set. 

TCIS_HIGHLIGHTED Version 4.71. The tab control item is highlighted, and the 
tab and text are drawn using the current highlight color. 
When using high-color, this will be a true interpolation, 
not a dithered color. 



Chapter 24 Tab Controls 601 

Tab Control Reference 

Tab Control Messages 

TCM_ADJUSTRECT 
Calculates a tab control's display area given a window rectangle, or calculates the 
window rectangle that would correspond to a specified display area. You can send this 
message explicitly or by using the TabCtrl_AdjustRect macro. 

Parameters 
(Larger 

Operation to perform. If this parameter is TRUE, pre specifies a display rectangle and 
receives the corresponding window rectangle. If this parameter is FALSE, pre 
specifies a window rectangle and receives the corresponding display area. 

pre 
Address of a RECT structure that specifies the given rectangle and receives the 
calculated rectangle. 

Return Values 
No return value. 

Remarks 
This message only applies to tab controls that are at the top. It does not apply to tab 
controls that are on the sides or bottom. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_DELETEALLITEMS 
Removes all items from a tab control. You can send this message explicitly or by using 
the TabCtrl_DeleteAllltems macro. 



602 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_DELETEITEM 
Removes an item from a tab control. You can send this message explicitly or by using 
the TabCtrLDeleteltem macro. 

Parameters 
iltem 

Index of the item to delete. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_DESELECTALL 
Resets items in a tab control, clearing any that were set to the 
TCIS_BUnONPRESSED state. You can send this message explicitly or by using the 
TabCtrl_DeselectAIl macro. 



TCM.-DESELECTALL 
wParam = (WPARAM) (DWORD) fExcludeFocus; 

. lParam = 0; 

Parameters 
fExcludeFocus 

Chapter 24 Tab Controls 603 

Flag that specifies the scope of the item deselection. If this parameter is set to 
FALSE, all tab items will be reset. If it is set to TRUE, then all tab items except for the 
one currently selected will be reset. 

Return Values 
The return value for this message is not used. 

Remarks 
This message is only meaningful if the TCS_BUTTONS style flag has been set. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETCURFOCUS 
Returns the index of the item that has the focus in a tab control. You can send this 
message explicitly or by using the TabCtrLGetCurFocus macro. 

-rClt:"GEttURf,O(:U~H .~ 
.';'<W:pa;ram;:~";':0/': ". . .. ' 

:;;'l:P,~ram::.~,,&::i';:: ii ' . 

Return Values 
Returns the index of the tab item that has the focus. 

Remarks 
The item that has the focus may be different than the selected item. 



604 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETCURSEL 
Determines the currently selected tab in a tab control. You can send this message 
explicitly or by using the TabCtrl_GetCurSel macro. 

Return Values 
Returns the index of the selected tab if successful, or -1 if no tab is selected. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETEXTENDEDSTYLE 
Retrieves the extended styles that are currently in use for the tab control. You can send 
this message explicitly or by using the TabCtrLGetExtendedStyle macro. 

Return Values 
Returns a DWORD value that represents the extended styles currently in use for the tab 
control. This value is a combination of tab control extended styles. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



Chapter 24 Tab Controls 605 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETIMAGELIST 
Retrieves the image list associated with a tab control. You can send this message 
explicitly or by using the TabCtrl_GetlmageList macro. 

Return Values 
Returns the handle to the image list if successful, or NULL otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Retrieves information about a tab in a tab control. You can send this message explicitly 
or by using the TabCtrl_Getltem macro. 

Parameters 
iltem 

Index of the tab. 

pitem 
Address of a TCITEM structure that specifies the information to retrieve and receives 
information about the tab. When the message is sent, the mask member specifies 
which attributes to return. 

If the mask member specifies the TCIF _TEXT value, the pszText member must 
contain the address of the buffer that receives the item text, and the cchTextMax 
member must specify the size of the buffer. 



606 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
If the TCIF _TEXT flag is set in the mask member of the TCITEM structure, the control 
may change the pszText member of the structure to point to the new text instead of 
filling the buffer with the requested text. The control may set the pszText member to 
NULL to indicate that no text is associated with the item. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETITEMCOUNT 
Retrieves the number of tabs in the tab control. You can send this message explicitly or 
by using the TabCtrl_GetltemCount macro. 

IC1U,ET IT EMCDUijT 
wParam=\:I; 
IParaln= ~: . 

Return Values 
Returns the number of items if successful, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETITEMRECT 
Retrieves the bounding rectangle for a tab in a tab control. You can send this message 
explicitly or by using the TabCtrLGetltemRect macro. 

TCIU3ETITEMRECT 
wPa r.am ;;" (WPARAM) {i nt)11.ti'tin; 
1 Param ==(LPARAM) (REeT FAR *} pre; 



Parameters 
i1tem 

Index of the tab. 

pre 

Chapter 24 Tab Controls 607 

Address of a RECT structure that receives the bounding rectangle of the tab, in 
viewport coordinates. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETROWCOUNT 
Retrieves the current number of rows of tabs in a tab control. You can send this 
message explicitly or by using the TabCtrl_GetRowCount macro. 

Return Values 
Returns the number of rows of tabs. 

Remarks 
Only tab controls that have the TCS_MUL TILINE style can have multiple rows of tabs. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_ GETTOOL TIPS 
Retrieves the handle to the tooltip control associated with a tab control. You can send 
this message explicitly or by using the TabCtrl_GetToolTips macro. 



608 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns the handle to the tooltip control if successful, or NULL otherwise. 

Remarks 
A tab control creates a tooltip control if it has the TCS_ TOOL TIPS style. You can also 
assign a tooltip control to a tab control by using the TCM_SETTOOL TIPS message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TCM_GETUNICODEFORMAT 
Retrieves the UNICODE character format flag for the control. You can send this 
message explicitly or use the TabCtrl_GetUnicodeFormat macro. 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Remarks 
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 24 Tab Controls 609 

'Cl~~A,lSco" 
TCM_SETUNICODEFORMAT 

TCM_HIGHLIGHTITEM 
Sets the highlight state of a tab item. You can send this message explicitly or by using 
the TabCtrl_Highlightltem macro. 

orCt<U:ilGHLtGHT:n~M., .. ' 
:wP II rai~ (~Jt~A~~/ 

'1 Param ';'U:PARA~) .MA1,t;.LUl'lti.tT Itt1l\l:l'\;'I·l 

Parameters 
idltem 

Zero-based index of a tab control item. 

(Highlight 
Value specifying the highlight state to be set. If this value is TRUE, the tab is 
highlighted; if FALSE, the tab is set to its default state. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

Determines which tab, if any, is at a specified screen position. You can send this 
message explicitly or by using the TabCtrl,-HitTest macro. 

fCH_HITIE$f· .. · .. ~ 
wparam;'; 
'1 Paraltl, = .. 



610 Volume 4 Microsoft Windows Common Controls 

Parameters 
pinto 

Address of a TCHITTESTINFO structure that specifies the screen position to test. 

Return Values 
Returns the index of the tab, or -1 if no tab is at the specified position. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_INSERTITEM 
Inserts a new tab in a tab control. You can send this message explicitly or by using the 
TabCtrUnsertltem macro. 

Parameters 
iltem 

Index of the new tab. 

pitem 
Address of a TCITEM structure that specifies the attributes of the tab. The dwState 
and dwStateMask members of this structure are ignored by this message. 

Return Values 
Returns the index of the new tab if successful, or -1 otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



Chapter 24 Tab Controls 611 

TCM_REMOVEIMAGE 
Removes an image from a tab control's image list. You can send this message explicitly 
or by using the TabCtrl_Removelmage macro. 

rCM ..... REMOVEIMAGE . 
wP~ram. '" (WPARAM) (int)Umage; 

Parameters 
ilmage 

Index of the image to remove. 

Return Values 
No return value. 

Remarks 
The tab control updates each tab's image index, so each tab remains associated with 
the same image as before. If a tab is using the image being removed, the tab will be set 
to have no image. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_SETCURFOCUS 
Sets the focus to a specified tab in a tab control. You can send this message explicitly or 
by using the TabCtrLSetCurFocus macro . 

. )'.' ·tllSa.r~m'",,(WP'ARAM ')t itntjjJtemf 
··.·.·ip~ram'" 0; . 

Parameters 
iltem 

Index of the tab that gets the focus. 

Return Values 
No return value. 



612 Volume 4 Microsoft Windows Common Controls 

Remarks 
If the tab control has the TCS_BUTTONS style (button mode), the tab with the focus 
may be different from the selected tab. For example, when a tab is selected, the user 
can press the arrow keys to set the focus to a different tab without changing the selected 
tab. In button mode, TCM_SETCURFOCUS sets the input focus to the button associated 
with the specified tab, but it does not change the selected tab. 

If the tab control does not have the TCS_BUTTONS style, changing the focus also 
changes the selected tab. In this case, the tab control sends the TCN_SELCHANGING 
and TCN_SELCHANGE notification messages to its parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_GETCURFOCUS 

TCM_SETCURSEL 
Selects a tab in a tab control. You can send this message explicitly or by using the 
TabCtrLSetCurSel macro. 

Parameters 
iltem 

Index of the tab to select. 

Return Values 
Returns the index of the previously selected tab if successful, or -1 otherwise. 

Remarks 
A tab control does not send a TCN SELCHANGING or TCN_SELCHANGE notification 
message when a tab is selected using this message. 



Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_SETEXTENDEDSTYLE 

Chapter 24 Tab Controls 613 

Sets the extended styles that the tab control will use. You can send this message 
explicitly or by using the TabCtrLSetExtendedStyle macro. 

Parameters 
dwExMask 

A DWORD value that indicates which styles in dwExStyle are to be affected. Only the 
extended styles in dwExMaskwili be changed. All other styles will be maintained as 
they are. If this parameter is zero, then all of the styles in dwExStyle will be affected. 

dwExStyle 
Value specifying the extended tab control styles. This value is a combination of tab 
control extended styles. 

Return Values 
Returns a DWORD value that contains the previous tab control extended styles. 

Remarks 
The dwExMask parameter allows you to modify one or more extended styles without 
having to retrieve the existing styles first. For example, if you pass 
TCS_EX_FLATSEPARATORS for dwExMaskand 0 for dwExStyle, the 
TCS_EX_FLATSEPARATORS style will be cleared, but all other styles will remain the 
same. 

For backward compatibility reasons, the TabCtrLSetExtendedStyle macro has not 
been updated to use dwExMask. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 



614 Volume 4 Microsoft Windows Common Controls 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TCM_SETIMAGELIST 
Assigns an image list to a tab control. You can send this message explicitly or by using 
the TabCtrl_SetlmageList macro. 

Parameters 
him! 

Handle to the image list to assign to the tab control. 

Return Values 
Returns the handle to the previous image list, or NULL if there is no previous image list. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Sets some or all of a tab's attributes. You can send this message explicitly or by using 
the TabCtrl_Setltem macro. 

Parameters 
iltem 

Index of the item. 

pitem 
Address of a TCITEM structure that contains the new item attributes. The mask 
member specifies which attributes to set. 



Chapter 24 Tab Controls 615 

If the mask member specifies the LVIF _TEXT value, the pszText member is the 
address of a null-terminated string and the cchTextMax member is ignored. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_SETITEMEXTRA 
Sets the number of bytes per tab reserved for application-defined data in a tab control. 
You can send this message explicitly or by using the TabCtrl_SetltemExtra macro. 

Parameters 
cb 

Number of extra bytes. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
By default, the number of extra bytes is four. An application that changes the number of 
extra bytes cannot use the TCITEM structure to retrieve and set the application-defined 
data for a tab. Instead, you must define a new structure that consists of the 
TCITEMHEADER structure followed by application-defined members. 

An application should only change the number of extra bytes when a tab control does 
not contain any tabs. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



616 Volume 4 Microsoft Windows Common Controls 

TCM_SETITEMSIZE 
Sets the width and height of tabs in a fixed-width or owner-drawn tab control. You can 
send this message explicitly or by using the TabCtrLSetltemSize macro. 

Parameters 
ex and ey 

New width and height, in pixels. 

Return Values 
Returns the old width and height. The width is in the low-order word of the return value, 
and the height is in the high-order word. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_SETMINTABWIDTH 
Sets the minimum width of items in a tab control. You can send this message explicitly or 
by using the TabCtrl_SetMinTabWidth macro. 

Parameters 
ex 

Minimum width to be set for a tab control item. If this parameter is set to -1, the 
control will use the default tab width. 

Return Values 
Returns an INT value that represents the previous minimum tab width. 

Version 4.70 and later of Comctl32.dll. 



Chapter 24 Tab Controls 617 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TCM_SETPADDING 
Sets the amount of space (padding) around each tab's icon and label in a tab control. 
You can send this message explicitly or by using the TabCtrl_SetPadding macro. 

Parameters 
ex and ey 

Amount of horizontal and vertical padding, in pixels. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCM_SETTOOL TIPS 
Assigns a tooltip control to a tab control. You can send this message explicitly or by 
using the TabCtrl_SetToolTips macro. 

Parameters 
hwndTT 

Handle to the tooltip control. 



618 Volume 4 Microsoft Windows Common Controls 

Return Values 
No return value. 

Remarks 
You can get the tooltip control associated with a tab control by using the 
TCM_GETTOOL TIPS message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TCM_SETUNICODEFORMAT 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time rather than having to re-create 
the control. You can send this message explicitly or use the 
TabCtrl_SetUnicodeFormat macro. 

Parameters 
fUnicode 

Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Remarks 
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TCM_GETUNICODEFORMAT 

Tab Control Macros 

TabCtrl_AdjustRect 

Chapter 24 Tab Controls 619 

Calculates a tab control's display area given a window rectangle, or calculates the 
window rectangle that would correspond to a specified display area. You can use this 
macro or send the TCM_ADJUSTRECT message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

'Larger 
Operation to perform. If this parameter is TRUE, pre specifies a display rectangle and 
receives the corresponding window rectangle. If this parameter is FALSE, pre 
specifies a window rectangle and receives the corresponding display area. 

pre 
Address of a RECT structure that specifies the given rectangle and receives the 
calculated rectangle. 

Return Values 
No return value. 

Remarks 
This message only applies to tab controls that are at the top. It does not apply to tab 
controls that are on the sides or bottom. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 



620 Volume 4 Microsoft Windows Common Controls 

Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_DeleteAllltems 
Removes all items from a tab control. You can use this macro or send the 
TCM_DELETEALLITEMS message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1 .0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_Deleteltem 
Removes an item from a tab control. You can use this macro or send the 
TCM_DELETEITEM message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

iltem 
Index of the item to delete. 



Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_DeselectAII 

Chapter 24 Tab Controls 621 

Resets items in a tab control, clearing any that were set to the 
TCIS_BUTTONPRESSED state. You can use this macro or send the 
TCM_DESELECTALL message explicitly. 

:~1~~;' ;1'" .' ~<ci~jf">:'i' 

Parameters 
hwndTab 

Handle to the tab control. 

fExcludeFocus 
Flag value that specifies the scope of the item deselection. If this parameter is set to 
FALSE, all tab items will be reset. If it is set to TRUE, all but the currently selected tab 
item will be reset. 

Return Values 
The return value is not used. 

Remarks 
This message is only meaningful if the TCS_BUTTONS style flag has been set. 

Version 4.70 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 



622 Volume 4 Microsoft Windows Common Controls 

Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetCurFocus 
Returns the index of the item that has the focus in a tab control. You can use this macro 
or send the TCM_GETCURFOCUS message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

Return Values 
Returns the index of the tab item that has the focus. 

Remarks 
The item that has the focus may be different than the selected item . 

.. . 
,"." . 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetCurSel 
Determines the currently selected tab in a tab control. You can use this macro or send 
the TCM_GETCURSEL message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 



Chapter 24 Tab Controls 623 

Return Values 
Returns the index of the selected tab if successful, or -1 if no tab is selected. 

;, '< 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetExtendedStyle 
Retrieves the extended styles that are currently in use for the tab control. You can use 
this macro or send the TCM_GETEXTENDEDSTYLE message explicitly. 

Parameters 
hwndTab 

Handle to the tab control. 

Return Values 
Returns a DWORD value that represents the extended styles currently in use for the tab 
control. This value is a combination of tab control extended styles. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetlmageList 
Retrieves the image list associated with a tab control. You can use this macro or send 
the TCM_GETIMAGELIST message explicitly. 



624 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns the handle to the image list if successful, or NULL otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ Getltem 
Retrieves information about a tab in a tab control. You can use this macro or send the 
TCM_GETITEM message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

iltem 
Index of the tab. 

pitem 
Address of a TCITEM structure that specifies the information to retrieve and receives 
information about the tab. When the message is sent, the mask member specifies 
which attributes to return. 

If the mask member specifies the TCIF _TEXT value, the pszText member must 
contain the address of the buffer that receives the item text, and the cchTextMax 
member must specify the size of the buffer. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 
If the TCIF _TEXT flag is set in the mask member of the TCITEM structure, the control 
may change the pszText member of the structure to point to the new text instead of 



Chapter 24 Tab Controls 625 

filling the buffer with the requested text. The control may set the pszText member to 
NULL to indicate that no text is associated with the item. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetltemCount 
Retrieves the number of tabs in the tab control. You can use this macro or send the 
TCM_GETITEMCOUNT message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

Return Values 
Returns the number of items if successful, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetltemRect 
Retrieves the bounding rectangle for a tab in a tab control. You can use this macro or 
send the TCM_GETITEMRECT message explicitly. 

11~lr~\1~k1;'~ 



626 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwnd 

Handle to the tab control. 

iltem 
Index of the tab. 

pre 
Address of a RECT structure that receives the bounding rectangle of the tab, in 
viewport coordinates. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetRowCount 
Retrieves the current number of rows of tabs in a tab control. You can use this macro or 
send the TCM_GETROWCOUNT message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

Return Values 
Returns the number of rows of tabs. 

Remarks 
Only tab controls that have the TCS_MUL TILINE style can have multiple rows of tabs. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ GetToolTips 

Chapter 24 Tab Controls 627 

Retrieves the handle to the tooltip control associated with a tab control. You can use this 
macro or send the TCM_GETTOOL TIPS message explicitly. 

tnt TabC'trl":",Getf()o'T1P~( . 
HWND.hwnd 

Parameters 
hwnd 

Handle to the tab control. 

Return Values 
Returns the handle to the tooltip control if successful, or NULL otherwise. 

Remarks 
A tab control creates a tooltip control if it has the TCS_TOOLTIPS style. You can also 
assign a tooltip control to a tab control by using the TCM_SETTOOL TIPS message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TabCtrl_ GetU nicodeFormat 
Retrieves the UNICODE character format flag for the control. You can use this macro or 
send the TCM_GETUNICODEFORMAT message explicitly. 

~'QtlLi.·nbitrl~Gettlni.COae.F(lrlJlat( 
.. HWMlD.hwna' 

Parameters 
hwnd 

Handle to the control. 



628 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TabCtrl_SetUnicodeFormat 

TabCtrl_Highlightltem 
Sets the highlight state of a tab item. You can use this macro or send the 
TCM_HIGHLIGHTITEM message explicitly. 

Parameters 
hwndTab 

Handle to the tab control. 

idltem 
Zero-based index of a tab control item. 

fHighlight 
Value specifying the highlight state to be set. If this value is nonzero, the tab is 
highlighted. If this value is zero, the tab is set to its default state. 

Return Values 
Returns nonzero if successful, or zero otherwise. 

Version 4.71 and later of Comctl32.dll. 



Chapter 24 Tab Controls 629 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TabCtrl_HitTest 
Determines which tab, if any, is at a specified screen position. You can use this macro or 
send the TCM_HITTEST message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

pinto 
Address of a TCHITTESTINFO structure that specifies the screen position to test. 

Return Values 
Returns the index of the tab, or -1 if no tab is at the specified position. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_1 nsertltem 
Inserts a new tab in a tab control. You can use this macro or send the 
TCM_INSERTITEM message explicitly. 



630 Volume 4 Microsoft Windows Common Controls 

Parameters 
hwnd 

Handle to the tab control. 

iltem 
Index of the new tab. 

pitem 
Address of a TCITEM structure that specifies the attributes of the tab. The dwState 
and dwStateMask members of this structure are ignored by this message. 

Return Values 
Returns the index of the new tab if successful, or -1 otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_Removelmage 
Removes an image from a tab control's image list. You can use this macro or send the 
TCM_REMOVEIMAGE message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

ilmage 
Index of the image to remove. 

Return Values 
No return value. 

Remarks 
The tab control updates each tab's image index, so each tab remains associated with 
the same image as before. If a tab is using the image being removed, the tab will be set 
to have no image. 



Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_SetCurFocus 

Chapter 24 Tab Controls 631 

Sets the foc\.ls to a specified tab in a tab control. You can use this macro or send the 
TCM_SETCURFOCUS message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

i1tem 
Zero-based index of the tab that gets the focus. 

Return Values 
No return value. 

Remarks 
If the tab control has the TCS_BUTTONS style (button mode), the tab with the focus 
may be different from the selected tab. For example, when a tab is selected, the user 
can press the arrow keys to set the focus to a different tab without changing the selected 
tab. In button mode, the TabCtrl_SetCurFocus macro sets the input focus to the button 
associated with the specified tab, but it does not change the selected tab. 

If the tab control does not have the TCS_BUTTONS style, changing the focus also 
changes the selected tab. In this case, the tab control sends the TCN_SELCHANGING 
and TCN_SELCHANGE notification messages to its parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



632 Volume 4 Microsoft Windows Common Controls 

TabCtrl_GetCurFocus, TCM_GETCURFOCUS 

TabCtrl_ SetCurSel 
Selects a tab in a tab control. You can use this macro or send the TCM_SETCURSEL 
message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

i1tem 
Index of the tab to select. 

Return Values 
Returns the index of the previously selected tab if successful, or -1 otherwise. 

Remarks 
A tab control does not send a TCN_SELCHANGING or TCN_SELCHANGE notification 
message when a tab is selected using the TCM_SETCURSEL message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ SetExtendedStyle 
Sets the extended styles that the tab control will use. You can use this macro or send the 
TCM_SETEXTENDEDSTYLE message explicitly. 



Parameters 
hwndTab 

Handle to the tab control. 

dwExStyle 

Chapter 24 Tab Controls 633 

Value that contains the new tab control extended styles. This value is a combination 
of tab control extended styles. 

Return Values 
Returns a DWORD value that contains the previous tab control extended styles. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_SetlmageList 
Assigns an image list to a tab control. You can use this macro or send the 
TCM_SETIMAGELIST message explicitly. 

BOOL~tiCtrLjetInla~eL 1st.( 
.. HWNDhii'nd~· . . . 

HIMAGEL.IST him?! :" ,. 

); 

Parameters 
hwnd 

Handle to the tab control. 

himl 
Handle to the image list to assign to the tab control. 

Return Values 
Returns the handle to the previous image list, or NULL if there is no previous image list. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 



634 Volume 4 Microsoft Windows Common Controls 

Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ Setltem 
Sets some or all of a tab's attributes. You can use this macro or send the 
TCM_SETITEM message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

iltem 
Index of the item. 

pitem 
Address of a TCITEM structure that contains the new item attributes. The mask 
member specifies which attributes to set. 

If the mask member specifies the LVIF _TEXT value, the pszText member is the 
address of a null-terminated string and the cchTextMax member is ignored. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ SetltemExtra 
Sets the number of bytes per tab reserved for application-defined data in a tab control. 
You can use this macro or send the TCM_SETITEMEXTRA message explicitly. 

B()Ql. )"ab~r.J::~@:tittnD~tra( . 
. ·HW!fQ.Il~n:4:;\ .. 

'1nt.bb·· . 

h 



Parameters 
hwnd 

Handle to the tab control. 

cb 
Number of extra bytes. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Remarks 

Chapter 24 Tab Controls 635 

By default, the number of extra bytes is four. An application that changes the number of 
extra bytes cannot use the TCITEM structure to retrieve and set the application-defined 
data for a tab. Instead, you must define a new structure that consists of the 
TCITEMHEADER structure followed by application-defined members. 

An application should only change the number of extra bytes when a tab control does 
not contain any tabs. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ SetltemSize 
Sets the width and height of tabs in a fixed-width or owner-drawn tab control. You can 
use this macro or send the TCM_SETITEMSIZE message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

cxand cy 
New width and height, in pixels. 



636 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns the old width and height. The width is in the low-order word of the return value, 
and the height is in the high-order word. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ SetMinTabWidth 
Sets the minimum width of items in a tab control. You can use this macro or send the 
TCM_SETMINTABWIDTH message explicitly. 

Parameters 
hwndTab 

ex 
Handle to the tab control. 

Minimum width to be set for a tab control item. If this parameter is set to -1 , the 
control will use the default tab width. 

Return Values 
Returns an INT value that represents the previous minimum tab width. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



Chapter 24 Tab Controls 637 

TabCtrl_SetPadding 
Sets the amount of space (padding) around each tab's icon and label in a tab control. 
You can use this macro or send the TCM_SETPADDING message explicitly. 

Parameters 
hwnd 

Handle to the tab control. 

ex and ey 
Amount of horizontal and vertical padding, in pixels. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TabCtrl_ SetToolTips 
Assigns a tooltip control to a tab control. You can use this macro or send the 
TCM_SETTOOL TIPS message explicitly. 

Parameters 
hwndTab 

Handle to the tab control. 

hwndTT 
Handle to the tooltip control. 



638 Volume 4 Microsoft Windows Common Controls 

Return Values 
No return value. 

Remarks 
You can get the tooltip control associated with a tab control by using the 
TCM_GETTOOL TIPS message. 

WindoWs NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TabCtrl_ SetUnicodeFormat 
Sets the UNICODE character format flag for the control. This message allows you to 
change the character set used by the control at run time rather than having to re-create 
the control. You can use this macro or send the TCM_SETUNICODEFORMAT message 
explicitly. 

Parameters 
hwnd 

Handle to the control. 

fUnicode 
Determines the character set that is used by the control. If this value is nonzero, the 
control will use UNICODE characters. If this value is zero, the control will use ANSI 
characters. 

Return Values 
Returns the previous UNICODE format flag for the control. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TabCtrl_GetUnicodeFormat 

Tab Control Notification Messages 

Chapter 24 Tab Controls 639 

Notifies a tab control's parent window that the user has clicked the left mouse button 
within the control. NM_CLlCK is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The return value is ignored by the tab control. 

';" .. , ", 

Windows NT/2000: Requires Windows Nt 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_RCLICK (tab) 
Notifies a tab control's parent window that the user has clicked the right mouse button 
within the control. NM_RCLICK is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 



640 Volume 4 Microsoft Windows Common Controls 

Return Values 
The return value is ignored by the tab control. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NM_RELEASEDCAPTURE (tab) 
Notifies a tab control's parent window that the control is releasing mouse capture. This 
notification is sent in the form of a WM_NOTIFY message. 

Parameters 
/pnmh 

Address of an NMHDR structure that contains additional information about this 
notification message. 

Return Values 
The control ignores the return value from this notification. 

Version 4.71 and later of ComctI32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TCN_FOCUSCHANGE 
Notifies a tab control's parent window that the button focus has changed. 

"t¢l0'~®!-!$¢~~~~}",;fF;{:1;;,~;::tf;;;j;;,:;:i; ~. .' 



Parameters 
None 

Return Values 
No return value. 

Version 5.80 and later of Comctl32.dll. 

Chapter 24 Tab Controls 641 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with Internet Explorer 5 
or later installed). 
Windows 95/98: Requires Windows 98 or Windows 95 with Internet Explorer 5 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 
Import Library: comctI32.lib. 

TCN_GETOBJECT 
Sent by a tab control when it has the TCS_EX_REGISTERDROP extended style and an 
object is dragged over a tab item in the control. This notification message is sent in the 
form of a WM_NOTIFY message. 

Parameters 
Ipnmon 

Address of an NMOBJECTNOTIFY structure that contains information about the tab 
item the object is dragged over and receives data the application returns in response 
to this message. 

Return Values 
The application processing this notification must return zero. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



642 Volume 4 Microsoft Windows Common Controls 

Notifies a tab control's parent window that a key has been pressed. This message is 
sent in the form of a WM_NOTIFY message. 

Parameters 
pnm 

Address of an NMTCKEYDOWN structure. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCN_SELCHANGE 
Notifies a tab control's parent window that the currently selected tab has changed. This 
message is sent in the form of a WM_NOTIFY message. 

Parameters 
Ipnmhdr 

Address of an NMHDR structure. The hwndFrom member is the handle to the tab 
control. The idFrom member is the child window identifier of the tab control. The 
code member is TCN_SELCHANGE. 

Return Values 
No return value. 

Remarks 
To determine the currently selected tab, use the TabCtrl_GetCurSel macro. 



Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCN_SELCHANGING 

TCN_SELCHANGING 

Chapter 24 Tab Controls 643 

Notifies a tab control's parent window that the currently selected tab is about to change. 
This message is sent in the form of a WM_NOTIFY message. 

'" t~~~~~~<~~)!ii~i~~)".',:;~i,: . ',",. ,~. < •• ", 

Parameters 
/pnmhdr 

Address of an NMHDR structure. The hwndFrom member is the handle to the tab 
control. The idFrom member is the child window identifier of the tab control. The 
code member is TCN_SELCHANGING. 

Return Values 
Returns TRUE to prevent the selection from changing, or FALSE to allow the selection to 
change. 

Remarks 
To determine the currently selected tab, use the TabCtrl_GetCurSel macro. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCN_SELCHANGE 



644 Volume 4 Microsoft Windows Common Controls 

Tab Control Structures 

NMTCKEYDOWN 
Contains information about a key press in a tab control. It is used with the 
TCN_KEYDOWN notification message. This structure supersedes the TC_KEYDOWN 
structure. 

Members 
hdr 

NMHDR structure that contains information about the notification message. 

wVKey 
Virtual key code. 

flags 
Value that is identical to the IParam parameter of the WM_KEYDOWN message. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TCHITTESTINFO 
Contains information about a hit test. This structure supersedes the TC_HITTESTINFO 
structure. 



Members 
pt 

Chapter 24 Tab Controls 645 

Position to hit test, in client coordinates. 

flags 
Variable that receives the results of a hit test. The tab control sets this member to one 
of the following values: 

TCHT _NOWHERE The position is not over a tab. 

TCHT _ONITEMICON 

TCHT _ONITEMLABEL 

The position is over a tab but not over its icon or its 
text. For owner-drawn tab controls, this value is 
specified if the position is anywhere over a tab. 

The position is over a tab's icon. 

The position is over a tab's text. 

TCHT_ONITEM is a bitwise-OR operation on 
TCHT _ON ITEM ICON and TCHT _ONITEMLABEL. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TCITEM 
Specifies or receives the attributes of a tab item. It is used with the TCM_INSERTITEM, 
TCM_GETITEM, and TCM_SETITEM messages. This structure supersedes the 
TC_ITEM structure. 

(continued) 



646 Volume 4 Microsoft Windows Common Controls 

(continued) 

Members 
mask 

Value that specifies which members to retrieve or set. This member can be a 
combination of the following values: 

TGIF_IMAGE The ilmage member is valid. 

TGIF_PARAM 

TGIF _RTLREADING 

TGIF_STATE 

TGIF_TEXT 

dwState 

The IParam member is valid. 

The string pOinted to by pszText will be displayed in the 
opposite direction to the text in the parent window. 

Version 4.70. The dwState member is valid. 

The pszText member is valid. 

Version 4.70. Specifies the item's current state if information is being retrieved. If item 
information is being set, this member contains the state value to be set for the item. 
For a list of valid tab control item states, see Tab Contro/ltem States. This member is 
ignored in the TCM_INSERTITEM message. 

dwStateMask 
Version 4.70. Specifies which bits of the dwState member contain valid information. 
This member is ignored in the TCM_INSERTITEM message. 

IpReserved1 
Version 4.00. Not used. 

IpReserved2 
Version 4.00. Not used. 

pszText 
Address of a nUll-terminated string that contains the tab text when item information is 
being set. If item information is being retrieved, this member specifies the address of 
the buffer that receives the tab text. 

cchTextMax 
Size of the buffer pointed to by the pszText member. If the structure is not receiving 
information, this member is ignored. 

ilmage 
Index in the tab control's image list, or -1 if there is no image for the tab. 

IParam 
Application-defined data associated with the tab control item. If more or less than 4 
bytes of application-defined data exist per tab, an application must define a structure 



Chapter 24 Tab Controls 647 

and use it instead of the TCITEM structure. The first member of the application­
defined structure must be a TCITEMHEADER structure. 

Remarks 
Normal windows display text left-to-right (LTR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read right-to-Ieft (RTL). Normally, pszText will 
be displayed in same direction as the text in its parent window. If TGIF _RTLREADING is 
set, pszText will read in the opposite direction from the text in the parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TCITEMHEADER 
Specifies or receives the attributes of a tab. It is used with the TCM_INSERTITEM, 
TCM_GETITEM, and TCM_SETITEM messages. This structure supersedes the 
TC_ITEMHEADER structure. 

Members 
mask 

Value that specifies which members to retrieve or set. This member can be a 
combination of the following values: 

TGIF_IMAGE The ilmage member is valid. 

TGIF _RTLREADING The string pointed to by pszText will be displayed in the 
opposite direction to the text in the parent window. 

TGIF_TEXT The pszText member is valid. 

IpReserved1 
Reserved member. Do not use. 

IpReserved2 
Reserved member. Do not use. 



648 Volume 4 Microsoft Windows Common Controls 

pszText 
Address of a null-terminated string that contains the tab text if item information is 
being set. If item information is being retrieved, this member specifies the address of 
the buffer that receives the tab text. 

cchTextMax 
Size of the buffer pointed to by the pszText member. If the structure is not receiving 
information, this member is ignored. 

ilmage 
Index into the tab control's image list, or -1 if there is no image for the tab. 

Remarks 
Normal windows display text left-to-right (LTR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read right-to-Ieft (RTL). Normally, pszText will 
be displayed in same direction as the text in its parent window. If TCIF _RTLREADING is 
set, pszText will read in the opposite direction from the text in the parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 



649 

CHAPTER 25 

Tooltip Controls 

A tooltip control is a small pop-up window that displays a single line of text that describes 
the purpose of a tool in an application. A tool is either a window, such as a child window 
or control, or an application-defined rectangular area within a window's client area. 

About Tooltip Controls 
A tooltip control is hidden most of the time, appearing only when the user puts the cursor 
on a tool and leaves it there for approximately one-half second. The tooltip control 
appears near the cursor and disappears when the user clicks a mouse button or moves 
the cursor off of the tool. A single tooltip control can support any number of tools. The 
following illustration shows a standard tooltip control associated with a button in a tool bar 
control. Tooltips also can have a multiline style, with multiple lines of text, or balloon 
style, with rounded corners and a stem, similar to a cartoon balloon. 

Tooltip Creation 
To create a tooltip control, call CreateWindowEx and specify the TOOL TIPS_CLASS 
window class. This class is registered when the common control dynamic-link library 
(DLL) is loaded. To ensure that this DLL is loaded, include the InitCommonControls 
function in your application. You must define explicitly a tooltip control as topmost. 
Otherwise, it might be covered by the parent window. The following code fragment 
shows how to create a tooltip control: 

(continued) 



650 Volume 4 Microsoft Windows Common Controls 

(continued) 

The window procedure for a tooltip control automatically sets the size, position, and 
visibility of the control. The height of the tooltip window is based on the height of the font 
currently selected into the device context for the tooltip control. The width varies based 
on the length of the string currently in the tooltip window. 

Activation 
A tooltip control itself can be either active or inactive. When it is active, the tooltip control 
appears when the cursor is on a tool. When it is inactive, the tooltip control does not 
appear, even if the cursor is on a tool. The TTM_ACTIVATE message activates and 
deactivates a tooltip control. 

Types of Tools 
A tooltip control can support any number of tools. To support a particular tool, you must 
register the tool with the tooltip control by sending the control the TTM_ADDTOOL 
message. The message includes the address of a TOOLINFO structure, which provides 
information the tooltip control needs to display text for the tool. The ebSize member is 
required and must specify the size of the structure. 

A tooltip control supports tools implemented as windows (such as child windows or 
control windows) and as rectangular areas within a window's client area. When you add 
a tool implemented as a rectangular area, the hwnd member of TOOLINFO must 
specify the handle to the window that contains the area, and the reet member must 
specify the client coordinates of the area's bounding rectangle. In addition, the uld 
member must specify the application-defined identifier for the tool. 

When you add a tool implemented as a window, the uld member of TOOLINFO must 
contain the window handle to the tool. Also, the uFlags member must specify the 
TTF _IDISHWND value, which tells the tooltip control to interpret the uld member as a 
window handle. 

Tooltip Text 
When you add a tool to a tooltip control, the IpszText member of the TOOLINFO 
structure must specify the address of the string to display for the tool. You can change 
the text any time after adding the tool by using the TTM_UPDATETIPTEXT message. 

If the high-order word of IpszText is zero, the low-order word must be the identifier of a 
string resource. When the tooltip control needs the text, the system loads the specified 
string resource from the application instance identified by the hinst member of 
TOOLINFO. 



Chapter 25 Tooltip Controls 651 

If you specify the LPSTR_ TEXTCALLBACK value in the IpszText member, the tooltip 
control notifies the window specified in the hwnd member of TOOLINFO whenever the 
tooltip control needs to display text for the tool. The tooltip control sends the 
TTN_NEEDTEXT notification message to the window. The message includes the 
address of a TOOL TIPTEXT structure, which contains the window handle as well as the 
application-defined identifier for the tool. The window examines the structure to 
determine the tool for which text is needed, and it fills the appropriate structure members 
with information that the tooltip control needs to display the string. 

Note The maximum length for tooltip text is 80 characters. For more information, see 
the NMTTDISPINFO structure. 

Many applications create tool bars containing tools that correspond to menu commands. 
For such tools, it is convenient for the tooltip control to display the same text as the 
corresponding menu item. The system automatically strips the ampersand (&) 
accelerator characters from all strings passed to a tooltip control, unless the control has 
the TTS_NOPREFIX style. 

To retrieve the text for a tool, use the TTM_GETTEXT message. 

Relaying Mouse Messages to the Tooltip Control 
Tooltips are normally displayed when the cursor hovers over an area, typically the 
rectangle defined by a tool such as a button control. However, Windows sends mouse­
related messages only to the window that contains the cursor, not the tooltip control 
itself. Mouse-related information must be relayed to the tooltip control in order for it to 
display the tooltip at the appropriate time and place. 

You can have messages relayed automatically if: 

• The tool is a control or is defined as a rectangle in the tool's TOOLINFO structure. 

• The window associated with the tool is in the same thread as the tooltip control. 

If these two conditions are met, set the TTF _SUBCLASS flag in the uFlags member of 
the tool's TOOLINFO structure when you add the tool to the tooltip control with 
TTM_ADDTOOL. The necessary mouse messages will then be automatically relayed to 
the tooltip control. 

Setting TTF _SUBCLASS to have mouse messages relayed to the control is sufficient for 
most purposes. However, it will not work in cases where there is no direct connection 
between the tooltip control and the tool's window. For example, if a tool is implemented 
as a rectangular area in an application-defined window, the window procedure receives 
the mouse messages. Setting TTF _SUBCLASS is sufficient to ensure that they are 
passed to the control. However, if a tool is implemented as a system-defined window, 
mouse messages are sent to that window and are not directly available to the 
application. In this case, you must either subclass the window or use a message hook to 
access the mouse messages. You must then explicitly relay mouse messages to the 



652 Volume 4 Microsoft Windows Common Controls 

tooltip control with TTM_RELAYEVENT. See Using a Tooltip Control with a Dialog 
Box for an example of how to use TTM_RELAYEVENT. 

When a tooltip control receives a WM_MOUSEMOVE message, it determines whether 
the cursor is in the bounding rectangle of a tool. If it is, the tooltip control sets a timer. At 
the end of the time-out interval, the tooltip control checks the position of the cursor to see 
if it has moved. If it has not, the tooltip control retrieves the text for the tool, and displays 
the tooltip. The tooltip control continues to show the window until it receives a relayed 
button-up or button-down message or until a WM_MOUSEMOVE message indicates 
that the cursor has moved outside the bounding rectangle of the tool. 

A tooltip control actually has three time-out durations associated with it. The initial 
duration is the length of time that the cursor must remain stationary within the bounding 
rectangle of a tool before the tooltip window is displayed. The reshow duration is the 
length of the delay before subsequent tooltip windows are displayed when the cursor 
moves from one tool to another. The pop-up duration is the length of time that the tooltip 
window remains displayed before it is hidden. That is, if the cursor remains stationary 
within the bounding rectangle after the tooltip window is displayed, the tooltip window is 
automatically hidden at the end of the pop-up duration. You can adjust all of the time-out 
durations by using the TTM_SETDELAYTIME message. 

If an application includes a tool implemented as a rectangular area and the size or 
position of the control changes, the application can use the TTM_NEWTOOLRECT 
message to report the change to the tooltip control. An application does not need to 
report size and position changes for a tool implemented as a window, because the 
tooltip control uses the tool's window handle to determine if the cursor is on the tool, not 
the tool's bounding rectangle. 

When a tooltip is about to be displayed, the tooltip control sends the owner window a 
TTN_SHOW notification message. The owner window receives a TTN_POP notification 
when a tooltip is about to be hidden. Each notification is sent in the context of a 
WM_NOTIFY message. 

Tooltip Hit-Testing 
The TTM_HITTEST message allows you to retrieve information that a tooltip control 
maintains about the tool occupying a particular point. The message includes a 
TTHITTESTINFO structure that contains a window handle, the coordinates of a point, 
and the address of a TOOLINFO structure. The tooltip control determines whether a tool 
occupies the point and, if it does, fills TOOLINFO with information about the tool. 

Miscellaneous Messages 
The TTM_GETCURRENTTOOL and TTM_GETTOOLINFO messages fill a TOOLINFO 
structure with information about a tool that has been registered with a tooltip control. The 
TTM_SETTOOLINFO message allows you to change the information that a tooltip 
control maintains for a particular tool. The TTM_DEL TOOL message deletes a tool from 
a tooltip control. 



Chapter 25 Tooltip Controls 653 

Default Tooltip Control Message Processing 
This section describes the messages handled by the window procedure for the 
TOOL TIPS_CLASS window class. 

Message Description 

Ensures that the tooltip control has the 
WS_EX_ TOOLWINDOW and WS_POPUP window 
styles. It also allocates memory and initializes 
internal variables. 

WM_DESTROY Frees resources allocated for the tooltip control. 

WM_GETFONT Returns the handle of the font that the tooltip control 
will use to draw text. 

WM_MOUSEMOVE Hides the tooltip window. 

WM_PAINT Draws the tooltip window. 

WM_SETFONT Sets the handle of the font that the tooltip control 
will use to draw text. 

WM_ TIMER Hides the tooltip window if the tool has changed 
position or if the cursor has moved outside the tool. 
Otherwise, it shows the tooltip window. 

WM_WININICHANGE Resets internal variables that are based on system 
metrics. 

Using Tooltip Controls 
This section provides examples that demonstrate how to create a tooltip control and use 
a tooltip control with a dialog box. 

Creating a Tooltip Control 
The following example demonstrates how to create a tooltip control and add several 
tools to it. The example creates a grid of rectangles in the client area of a window and 
then uses the TTM_ADDTOOL message to add each rectangle to the tooltip control. 
The TTF _SUBCLASS flag is set in the uFlags member of the TOOLINFO structure to 
have mouse messages automatically passed to the tooltip control: 

(continued) 



654 Volume 4 Microsoft Windows Common Controls 

(continued) 



Chapter 25 Tooltip Controls 655 

Using a Tooltip Control with a Dialog Box 
The following example includes a set of application-defined functions that implement a 
tooltip control for a dialog box. The DoCreateDialogTooltip function creates a tooltip 
control and uses the EnumChildWindows function to enumerate the controls in the 
dialog box. The enumeration procedure, EnumChildProc, registers each control with the 
tooltip control. The procedure specifies the dialog box as the parent window of each 
tooltip control and includes the LPSTR_ TEXTCALLBACK value for each tooltip control. 
As a result, the dialog box receives a WM_NOTIFY message that contains the 
TTN_NEEDTEXT notification message whenever the tooltip control needs the text for a 
control. The dialog box procedure calls the OnWMNotify function to process the 
TTN_NEEDTEXT notifications. OnWMNotify provides the appropriate string based on 
the identifier of the tooltip control. 

This example shows how to use TTM_RELA YEVENT to pass mouse messages 
explicitly to the tooltip control. To access the messages, the DoCreateDialogTooltip 
function installs a hook procedure of the WH_GETMESSAGE type. The hook procedure, 
GetMsgProc, monitors the message stream for mouse messages intended for one of the 
control windows and relays the messages to the tooltip control. 

(continued) 



656 Volume 4 Microsoft Windows Common Controls 

(continued) 



Chapter 25 Tooltip Controls 657 

(continued) 



658 Volume 4 Microsoft Windows Common Controls 

(continued) 

Tooltip Control Updates in Internet Explorer 
Tooltip controls in Microsoft Internet Explorer support two new features: tracking too/tips 
and mu/tiline too/tips. 

Tracking Tooltips 
Tooltip controls support tracking tooltips, which are tooltip windows that you can position 
dynamically on the screen. By rapidly updating the position, the tooltip window appears 



Chapter 25 Tooltip Controls 659 

to move smoothly, or "track." This functionality can be useful if you need tooltip text to 
follow the position of the pointer as it moves. 

To create a tracking tooltip, use the TTM_ADDTOOL message, including the 
TTF _TRACK flag in the uFlags member of the accompanying TOOLINFO structure. 

Your application must manually activate and deactivate a tracking tooltip using the 
TTM_TRACKACTIVATE message. While the tooltip is active, your application must 
supply the location at which the tooltip window will appear by using the 
TTM_ TRACKPOSITION message. Tracking tooltip controls do not support the 
TTF _SUBCLASS style, so all mouse events must be forwarded from the parent to the 
child using TTM_RELA YEVENT messages. 

The TTM_ TRACKPOSITION message causes the tooltip control to display the window 
using one of two placement styles: 

• By default, the tooltip is displayed next to the corresponding tool in a position the 
control chooses. The location chosen is relative to the coordinates you provide using 
this message. In this case, the tooltip window appears to move beside the 
corresponding tool. 

• If you include the TTF _ABSOLUTE value in the uFlags member of the TOOLINFO 
structure the tooltip will be displayed at the pixel location specified in the message. In 
this case, the control does not attempt to change the tooltip window's location from 
the coordinates you provide. 

For more information and implementation details, see Creating Tracking Tooltips and 
Supporting Tracking Tooltips. 

Creating Tracking Tooltips 
The following example demonstrates how to create a tooltip control and assign a tool to 
it. The example specifies the main window's entire client area as the tool, but you could 
specify distinct portions of the client area or specify a different window altogether. 

The example uses the TTM_ADDTOOL message to add the tool to the tooltip control. 
Tracking tooltips do not support the TTF _SUBCLASS flag, so the control's owner must 
manually forward pertinent messages (like WM_MOUSEMOVE) by using 
TTM_RELAYEVENT. 

Additionally, the uFlags member of the TOOLINFO structure used in the example 
includes the TTF _ABSOLUTE flag. This flag causes the tooltip control to display tooltip 
text at the exact coordinates the application provides when it sends the 
TTM_ TRACKPOSITION message. Without the TTF _ABSOLUTE flag, the tooltip control 
chooses a location to display the tooltip text based on the coordinates you provide. This 
causes tooltip text to appear next to the corresponding tool, but not necessarily at the 
exact coordinates the application provided. 

For additional information about using the TTM_ TRACKPOSITION message, see 
Supporting Tracking Too/tips. 



660 Volume 4 Microsoft Windows Common Controls 



Chapter 25 Tooltip Controls 661 

l"eturn(hwndTT) ; 
} 

Supporting Tracking Tooltips 
The following example is a simple window process function that supports tracking 
tooltips. It requests the current position of the cursor using the GetCursorPos function, 
and then adds 15 pixels to the x- and y-coordinates, so the tooltip appears slightly below 
and to the right of the pointer. 

Note that the example relies on the value of a global variable, g_blsVisible, to determine 
whether the application should send the TTM_ TRACKPOSITION message. For the 
purpose of this example, g_blsVisible is a Boolean variable that another function sets to 
TRUE upon sending the TTM_TRACKACTIVATE message to activate the tooltip. This 
way, if the tooltip is inactive, the additional overhead to calculate and send a message is 
not incurred: 

(continued) 



662 Volume 4 Microsoft Windows Common Controls 

(continued) 

Multiline Tooltips 
Multiline tooltip support allows text to be displayed on more than one line. This feature is 
useful if your message is too lengthy to be read easily as a single line of text. The 
following example shows a multiline tooltip that is displayed when the cursor hovers over 
the Internet Explorer icon on the desktop. 

My Computer 

My Documents 

Displays pages on the World Wide Web or your corporate 
intraneL or connects you to the Internet. 

My Network 
Places 

Recycle Bin 

Creating Multiline Tooltips 
Your application creates a multiline tooltip by responding to a TTN_GETDISPINFO 
notification message. To force the tooltip control to use multiple lines, send a 
TTM_SETMAXTIPWIDTH message, specifying the width of the display rectangle. Text 
that exceeds this width will wrap to the next line, instead of widening the display region. 
The rectangle height will be increased as needed to accommodate the additional lines. 
The tooltip control will wrap the lines automatically, or you can use a carriage return/line­
feed combination, ''\r\n'', to force line breaks at particular locations. 

Note that the text buffer specified by the szText member of the NMTTDISPINFO 
structure can accommodate only 80 characters. If you need to use a longer string, point 
the IpszText member of NMTTDISPINFO to a buffer containing the desired text. 



Chapter 25 Tooltip Controls 663 

The following code fragment is an example of a simple TIN_GETDISPINFO notification 
handler. It creates a multiline tooltip by setting the display rectangle to 300 pixels and 
setting the IpszText member of NMTTDISPINFO to point to a buffer with the desired 
text: 

Balloon Tooltips 
Balloon tooltips are similar to standard tooltips, but are displayed in a cartoon style 
"balloon" with a stem pointing to the tool. 

!!!FE 
liCOn\··tlter 

Displays page$ on the World Wide Web or your corporate 
intranet. or connects you to the Internet. 

Balloon tooltips can be either single-line or multiline, and they are created and handled 
in much the same way as standard tooltips. The default position of the stem and 
rectangle is shown in the illustration. If the tool is too close to the top of the screen, the 
tooltip appears below and to the right of the tool's rectangle. If the tool is too close to the 
right side of the screen, similar principles apply, but the tooltip appears to the left of the 
tool's rectangle. 

You can change the default positioning by setting the TIF _CENTERTIP flag in the 
uFlags member of the tooltip's TOOLINFO structure. In that case, the stem normally will 
point to the center of the lower edge of the tool's rectangle and the text rectangle will be 
displayed directly below the tool. The stem will attach to the text rectangle at the center 



664 Volume 4 Microsoft Windows Common Controls 

of the upper edge. If the tool is too close to the bottom of the screen, the text rectangle 
will be centered above the tool, and the stem will attach to the center of the lower edge. 

If you want to specify where the stem pOints, set the TTF _TRACK flag in the uFlags 
member of the tooltip's TOOLINFO structure. You then specify the coordinate by 
sending a TTM_ TRACKPOSITION message, with the x- and y-coordinates in the 
IParam value. If TTF _CENTERTIP is also set, the stem still points to the position 
specified by the TTM_ TRACKPOSITION message. 

The following code fragment illustrates how to implement a centered balloon tooltip: 

Balloon Tooltips for Status-Bar Icons 
An un-intrusive way to display an explanatory message for a status-bar icon is to 
implement a balloon tooltip with its stem pointing to the icon. The tooltip will disappear 
when clicked, but you can specify also a time-out value. The tooltip will look similar to the 
following illustration. 

To pop up a balloon tooltip, set the NIF _INFO flag in the NOTIFYICONDATA structure, 
and use the szlnfo and uTimeout members to specify the tooltip text and time-out 
duration. The following code fragment illustrates how to add a ballon tooltip to a status­
bar icon: 



Chapter 25 Tooltip Controls 665 

For a detailed discussion of the status bar, see the Taskbar documentation. 

Tooltip Styles 
Tooltip controls support a variety of control styles in addition to standard window styles. 
A tooltip control always has the WS_POPUP and WS_EX_ TOOLWINDOW window 
styles, regardless of whether you specify them when creating the control. 

The following control styles are used with tooltip controls: 

TIS_ALWAYSTIP 
Indicates that the tooltip control appears when the cursor is on a tool, even if the 
tooltip control's owner window is inactive. Without this style, the tooltip appears only 
when the tool's owner window is active. 

TIS_BALLOON 
Version 5.80. Indicates that the tooltip control has the appearance of a cartoon 
"balloon," with rounded corners and a stem pointing to the item. 

TIS_NOANIMATE 
Version 5.80. Disables sliding tooltip animation on Microsoft Windows 98 and 
Microsoft Windows 2000 systems. This style is ignored on earlier systems. 

TTS_NOFADE 
Version 5.80. Disables fading tooltip animation on Windows 2000 systems. This style 
is ignored on earlier Windows NT systems, and on Windows 95 and Windows 98. 



666 Volume 4 Microsoft Windows Common Controls 

TTS_NOPREFIX 
Prevents the system from stripping the ampersand (&) character from a string. 
Without this style, the system automatically strips ampersand characters. This allows 
an application to use the same string as both a menu item and as text in a tooltip 
control. 

Tooltip Control Reference 

Tooltip Control Messages 

Activates or deactivates a tooltip control. 

Parameters 
fActivate 

Activation flag. If this parameter is TRUE, the tooltip control is activated. If it is FALSE, 
the tooltip control is deactivated. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Registers a tool with a tooltip control. 

01fS!i1'f~lf~~~l'~1~i~~r· . 



Parameters 
Ipti 

Chapter 25 Tooltip Controls 667 

Address of a TOOLINFO structure containing information that the tooltip control 
needs to display text for the tool. The cbSize member of this structure must be filled 
in before sending this message. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_ADJUSTRECT 
Calculates a tooltip control's text-display rectangle from its window rectangle, or the 
tooltip window rectangle needed to display a specified text-display rectangle. 

~~lt1:11~~I{~f~~;~·l'· 
Parameters 
(Larger 

Value that specifies which operation to perform. If TRUE, pre is used to specify a text­
display rectangle, and it receives the corresponding window rectangle. If FALSE, pre 
is used to specify a window rectangle, and it receives the corresponding text-display 
rectangle. 

pre 
RECT structure to hold either a tooltip window rectangle or a text-display rectangle. 

Return Values 
Returns a nonzero value if the rectangle is successfully adjusted, and returns zero if an 
error occurs. 

Remarks 
This message is particularly useful when you want to use a tooltip control to display the 
full text of a string that normally gets truncated. It is commonly used with listview and 
treeview controls. You normally send this message in response to a TIN_SHOW 
notification message, so that you can position the tooltip control properly. 



668 Volume 4 Microsoft Windows Common Controls 

The tooltip's window rectangle is somewhat larger than the text-display rectangle that 
bounds the tooltip string. The window origin also is offset up and to the left from the 
origin of the text-display rectangle. To position the text-display rectangle, you must 
calculate the corresponding window rectangle, and use that rectangle to position the 
tooltip. TTM_ADJUSTRECT handles this calculation for you. 

If you set fLargerto TRUE, TTM_ADJUSTRECT takes the size and position of the 
desired tooltip text-display rectangle, and passes back the size and position of the tooltip 
window needed to display the text in the specified position. If you set fLargerto FALSE, 
you can specify a tooltip window rectangle, and TTM_ADJUSTRECT will return the size 
and position of its text rectangle. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5 or later installed). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in comctI32.h. 

Removes a tool from a tooltip control. 

Parameters 
/pt; 

Address of a TOOLINFO structure. The hwnd and uld members identify the tool to 
remove, and the cbSize member must specify the size of the structure. All other 
members are ignored. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 25 Tooltip Controls 669 

TTM_ENUMTOOLS 
Retrieves the information that a tooltip control maintains about the current tool-that is, 
the tool for which the tooltip is currently displaying text. 

~~J~~i~~;Iiijf;;i'~~i'~il;f4~;!j,gi:;;";\"M4~7 
Parameters 
iTool 

Zero-based index of the tool for which to retrieve information. 

/pti 
Address of a TOOLINFO structure that receives information about the tool. Before 
sending this message, the cbSize member must specify the size of the structure. 

Return Values 
Returns TRUE if any tools are enumerated, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_ GETBUBBLESIZE 
Returns the width and height of a tooltip control. 

Parameters 
pTtm 

Pointer to the tooltip's TOOLINFO structure. 

Return Values 
Returns the width of the tooltip in the low word and the height in the high word if 
successful. Otherwise, it returns FALSE. 



670 Volume 4 Microsoft Windows Common Controls 

Remarks 
If the TTF _TRACK and TTF _ABSOLUTE flags are set in the uFlags member of the 
tooltip's TOOLINFO structure, this message can be used to help position the tooltip 
accurately. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in comctI32.h. 

TTM_GETCURRENTTOOL 
Retrieves the information for the current tool in a tooltip control. 

Parameters 
Jpti 

Address of a TOOLINFO structure that receives information about the current tool. If 
this value is NULL, the return value indicates the existence of the current tool without 
actually retrieving the tool information. If this value is not NULL, the cbSize member 
of the TOOLINFO structure must be filled in before sending this message. 

Return Values 
Returns nonzero if successful, or zero otherwise. If Jpti is NULL, returns nonzero if a 
current tool exists, or zero otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 25 Tooltip Controls 671 

TTM_ GETDELA YTIME 
Retrieves the initial, pop-up, and reshow durations currently set for a tooltip control. 

Parameters 
dwDuration 

Flag that specifies which duration value will be retrieved. This parameter can have 
one of the following values: 

nDT _AUTO POP Retrieve the length of time the tooltip window remains visible 
if the pointer is stationary within a tool's bounding rectangle. 

Return Values 

Retrieve the length of time the pointer must remain 
stationary within a tool's bounding rectangle before the 
tooltip window appears. 

Retrieve the length of time it takes for subsequent tooltip 
windows to appear as the pOinter moves from one tool to 
another. 

Returns an INT value with the specified duration in milliseconds. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_SETDELA YTIME 

TTM_ GETMARGIN 
Retrieves the top, left, bottom, and right margins set for a tooltip window. A margin is the 
distance, in pixels, between the tooltip window border and the text contained within the 
tooltip window. 



672 Volume 4 Microsoft Windows Common Controls 

Parameters 
/pre 

Address of a RECT structure that will receive the margin information. 

The members of the RECT structure do not define a bounding rectangle. For the 
purpose of this message, the structure members are interpreted as follows: 

top Distance between top border and top of tooltip text, in pixels. 

left Distance between left border and left end of tooltip text, in pixels. 

bottom 

right 

Return Values 

Distance between bottom border and bottom of tooltip text, in pixels. 

Distance between right border and right end of tooltip text, in pixels. 

The return value for this message is not used. 

Remarks 
All four margins default to zero when you create the tooltip control. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_GETMAXTIPWIDTH 
Retrieves the maximum width for a tooltip window. 



Chapter 25 Tooltip Controls 673 

Return Values 
Returns an INT value that represents the maximum tooltip width, in pixels. If no 
maximum width was set previously, the message returns -1. 

Remarks 
The maximum tooltip width value does not indicate a tooltip window's actual width. 
Instead, if a tooltip string exceeds the maximum width, the control breaks the text into 
multiple lines, using spaces to determine line breaks. If the text cannot be segmented 
into multiple lines, it will be displayed on a single line. The length of this line can exceed 
the maximum tooltip width. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_SETMAXTIPWIDTH 

TTM_GETTEXT 
Retrieves the information a tooltip control maintains about a tool. 

TTtLGU1'ElU " , 
< ,,<~:; "~: '3:"- '" : ' . , 

wJ~.aram fue· . / . 
1P~ra~"',·XLpAM:M):n.P:TOou~,{pd)~ . 

Parameters 
/pti 

Address of a TOOLINFO structure. 

, /" 

The cbSize member of this structure must be filled in before sending this message. 
Set the hwnd and uld members to identify the tool for which to retrieve information. 
Set the IpszText member to point to a buffer that receives the text. There currently is 
no way to specify the size of the buffer or to determine the required buffer size. 

Return Values 
No return value. 



674 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_GETTIPBKCOLOR 
Retrieves the background color in a tooltip window. 

Return Values 
Returns a COLORREF value that represents the background color. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_SETTIPBKCOLOR 

TTM_GETTOOLCOUNT 
Retrieves a count of the tools maintained by a tooltip control. 

Return Values 
Returns a count of tools. 



Chapter 25 Tooltip Controls 675 

_&.i~i.'· 
Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_GETTOOLINFO 
Retrieves the information that a tooltip control maintains about a tool. 

Parameters 
/pti 

Address of a TOOLINFO structure. When sending the message, the hwnd and uld 
members identify a tool, and the cbSize member must specify the size of the 
structure. If the tooltip control includes the tool, the structure receives information 
about the tool. 

Return Values 
Returns TRUE if successful, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Tests a point to determine whether it is within the bounding rectangle of the specified 
tool and, if it is, retrieves information about the tool. 



676 Volume 4 Microsoft Windows Common Controls 

Parameters 
Iphti 

Address of a TTHITTESTINFO structure. When sending the message, the hwnd 
member must specify the handle to a tool and the pt member must specify the 
coordinates of a point. If the return value is TRUE, the ti member (a TOOLINFO 
structure) receives information about the tool that occupies the point. The cbSize 
member of the ti structure must be filled in before sending this message. 

Return Values 
Returns TRUE if the tool occupies the specified point, or FALSE otherwise. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_NEWTOOLRECT 
Sets a new bounding rectangle for a tool. 

Parameters 
Ipti 

Address of a TOOLINFO structure. The hwnd and uld members identify a tool, and 
the reet member specifies the new bounding rectangle. The ebSize member of this 
structure must be filled in before sending this message. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Removes a displayed tooltip window from view. 

TTM.,;POP 
wParal11 

.1 Para~ 

Return Values 
The return value for this message is not used. 

Version 4.70 and later of Comctl32.dll. 

Chapter 25 Tooltip Controls 677 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_RELAYEVENT 
Passes a mouse message to a tooltip control for processing. 

Parameters 
/pmsg 

Address of an MSG structure that contains the message to relay. 

Return Values 
No return value. 

Remarks 
A tooltip control processes only the following messages passed to it by the 
TTM_RELA YEVENT message: 

• WM_LBUTTONDOWN 

• WM_LBUTTONUP 

• WM_MBUTTONDOWN 

• WM_MBUTTONUP 



678 Volume 4 Microsoft Windows Common Controls 

• WM_MOUSEMOVE 

• WM_RBUTTONDOWN 

• WM_RBUTTONUP 

All other messages are ignored. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_SETDELAYTIME 
Sets the initial, pop-up, and reshow durations for a tooltip control. 

Parameters 
dwDuration 

Flag that specifies the duration value to set. This parameter can be one of the 
following values: 

TTDT _AUTOMATIC Set all three delay times to default proportions. The 
autopop time will be ten times the initial time and the 
reshow time will be one fifth the initial time. If this flag is 
set, use a positive value of iTime to specify the initial time, 
in milliseconds. Set iTime to a negative value to specify 
the default values of 500 ms, 5000 ms, and 100 ms for the 
initial, autopop, and reshow times, respectively. 

TTDT _AUTOPOP 

TTDT _INITIAL 

iTime 

Set the length of time a tooltip window remains visible if 
the pOinter is stationary within a tool's bounding rectangle. 

Set the length of time a pointer must remain stationary 
within a tool's bounding rectangle before the tooltip 
window appears. 

Set the length of time it takes for subsequent tooltip 
windows to appear as the pointer moves from one tool to 
another. 

Delay time, in milliseconds. 



Chapter 25 Tooltip Controls 679 

Return Values 
The return value for this message is not used. 

Windows NT/2000: Requires Windows NT 3.51 or later 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_GETDELAYTIME 

Sets the top, left, bottom, and right margins for a tooltip window. A margin is the 
distance, in pixels, between the tooltip window border and the text contained within the 
tooltip window. 

Parameters 
/pre 

Address of a RECT structure that contains the margin information to be set. 

The members of the RECT structure do not define a bounding rectangle. For the 
purpose of this message, the structure members are interpreted as follows: 

top Distance between top border and top of tooltip text, in pixels. 

left 

bottom 

right 

Return Values 

Distance between left border and left end of tooltip text, in pixels. 

Distance between bottom border and bottom of tooltip text, in pixels. 

Distance between right border and right end of tooltip text, in pixels. 

The return value for this message is not used. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 



680 Volume 4 Microsoft Windows Common Controls 

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 

TTM_GETMARGIN 

TTM_SETMAXTIPWIDTH 
Sets the maximum width for a tooltip window. 

Parameters 
iWidth 

Maximum tooltip window width to be set. 

Return Values 
Returns an INT value that represents the previous maximum tooltip width. 

Remarks 
The maximum tooltip width value does not indicate a tooltip window's actual width. 
Instead, if a tooltip string exceeds the maximum width, the control breaks the text into 
multiple lines, using spaces to determine line breaks. If the text cannot be segmented 
into multiple lines, it will be displayed on a single line. The length of this line can exceed 
the maximum tooltip width. 

Version 4.70 and later of Comctl32.dlL 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 

TTM_GETMAXTIPWIDTH 



TTM_SETTIPBKCOLOR 
Sets the background color in a tooltip window. 

TTM....:.SEtTIPBKCOLOR 
wPara.ffi =. (WPARAM)(,COLOBB;E) 
lP.aram. '" e; 

Parameters 
elr 

New background color. 

Return Values 
The return value for this message is not used. 

Version 4.70 and later of Comctl32.dll. 

Chapter 25 Tooltip Controls 681 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_GETTIPBKCOLOR 

TTM_SETTIPTEXTCOLOR 
Sets the text color in a tooltip window. 

Parameters 
elr 

New text color. 

Return Values 
The return value for this message is not used. 



682 Volume 4 Microsoft Windows Common Controls 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_ GETTIPTEXTCOLOR 

Adds a standard icon and title string to a tooltip. 

Parameters 
icon 

Set wParam to one of the following values to specify the icon to be displayed: 

o No icon 

1 

2 

3 

pszTitle 

Info icon 

Warning icon 

Error Icon 

A pOinter to the title string. You must assign a value to pszTitle. 

Return Values 
Returns TRUE if successful, FALSE if not. 

Version 5.80 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 5.0 or later installed). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or 
later). 



Windows CE: Unsupported. 
Header: Declared in comctI32.h. 

TTM_SETTOOLINFO 

Chapter 25 Tooltip Controls 683 

Sets the information that a tooltip control maintains for a tool. 

HM":SEnOOLINFQ ;" ,'." " ,.: 

, .. ·;:;;:::;:'~'~~A~~;·i(tPrQ'04r~~q}:·j:Pti:;· ~:<';:, ' . 
Parameters 
/pti 

Address of a TOOLINFO structure that specifies the information to set. The cbSize 
member of this structure must be filled in before sending this message. 

Return Values 
No return value. 

Remarks 
Some internal properties of a tool are established when the tool is created, and are not 
recomputed when a TTM_SETTOOLINFO message is sent. If you assign values to a 
TOOLINFO structure and pass it to the tooltip control with a TTM_SETTOOLINFO 
message, these properties can be lost. Instead, your application should first request the 
tool's current TOOLINFO structure by sending the tooltip control a TTM_GETTOOLINFO 
message. Then, modify the members of this structure as needed and pass it back to the 
tooltip control with TTM_SETTOOLINFO. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_ TRACKACTIVATE 
Activates or deactivates a tracking tooltip. 



684 Volume 4 Microsoft Windows Common Controls 

Parameters 
bActivate 

Value specifying whether tracking is being activated or deactivated. This value can be 
one of the following: 

FALSE Deactivate tracking. 

TRUE Activate tracking. 

/pti 
Address of a TOOLINFO structure that identifies the tool to which this message 
applies. The hwnd and uld members identify the tool, and the cbSize member 
specifies the size of the structure. All other members are ignored. 

Return Values 
The return value for this message is not used. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Tracking Too/tips, TTM_ TRACKPOSITION 

TTM_ TRACKPOSITION 
Sets the position of a tracking tooltip. 

Parameters 
xPos and yPos 

The x- and y-coordinates of the point at which the tracking tooltip will be displayed, in 
screen coordinates. 



Chapter 25 Tooltip Controls 685 

Return Values 
The return value for this message is not used. 

Remarks 
The tooltip control chooses where to display the tooltip window based on the coordinates 
you provide with this message. This causes the tooltip window to appear beside the tool 
to which it corresponds. To have tooltip windows displayed at specific coordinates, 
include the TTF _ABSOLUTE flag in the uFlags member of the TOOLINFO structure 
when adding the tool. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Tracking Too/tips, TTM_TRACKACTIVATE 

Forces the current tool to be redrawn. 

Return Values 
The return value for this message is not used. 

Version 4.71 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 4.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



686 Volume 4 Microsoft Windows Common Controls 

TTM_UPDATETIPTEXT 
Sets the tooltip text for a tool. 

Parameters 
/pti 

Address of a TOOLINFO structure. The hinst and IpszText members must specify 
the instance handle and the address of the text. The hwnd and uld members identify 
the tool to update. The cbSize member of this structure must be filled in before 
sending this message. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTM_ WINDOWFROMPOINT 
Allows a subclass procedure to cause a tooltip to display text for a window other than the 
one beneath the mouse cursor. 

Parameters 
/ppt 

Address of a POINT structure that defines the point to be checked. 

Return Values 
The return value is the handle to the window that contains the point, or NULL if no 
window exists at the specified point. 



Chapter 25 Tooltip Controls 687 

Remarks 
This message is intended to be processed by an application that subclasses a tooltip. It 
is not intended to be sent by an application. A tooltip sends this message to itself before 
displaying the text for a window. By changing the coordinates of the point specified by 
Ippt, the subclass procedure can cause the tooltip to display text for a window other than 
the one beneath the mouse cursor. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Tooltip Control Notification Messages 

NM_CUSTOMDRAW (Tooltip) 
Sent by a tooltip control to notify its parent windows about drawing operations. This 
notification message is sent in the form of a WM_NOTIFY message. 

Parameters 
IpNMCustomDraw 

Pointer to an NMTICUSTOMDRAW structure that contains information about the 
drawing operation. 

Return Values 
The value that your application can return depends on the current drawing stage. The 
dwDrawStage member of the associated NMCUSTOMDRAW structure holds a value 
that specifies the drawing stage. You must return one of the following values. 

When dwDrawStage equals CDDS_PREPAINT: 

CDRF _DODEFAUL T 
The control will draw itself. It will not send any additional NM_CUSTOMDRAW 
notification messages for this paint cycle. 

CDRF _NOTIFYITEMDRAW 
The control will notify the parent of any item-related drawing operations. It will send 
NM_CUSTOMDRAW notification messages before and after drawing items. 



688 Volume 4 Microsoft Windows Common Controls 

CDRF _NOTIFYITEMERASE 
The control will notify the parent when an item will be erased. It will send 
NM_CUSTOMDRAW notification messages before and after erasing items. 

CDRF _NOTIFYPOSTERASE 
The control will notify the parent after erasing an item. 

CDRF _NOTIFYPOSTPAINT 
The control will notify the parent after painting an item. 

CDRF _NOTIFYSUBITEMDRAW 
Version 4.71. The control will notify the parent when a list view subitem is being 
drawn. 

When dwDrawStage equals CDDS_ITEMPREPAINT: 

CDRF _NEWFONT 
Your application specified a new font for the item. The control will use the new font. 
For more information about changing fonts, see Changing Fonts and Colors. 

CDRF _SKIPDEFAUL T 
Your application drew the item manually. The control will not draw the item. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Using Custom Draw 

TTN_GETDISPINFO 
Sent by a tooltip control to retrieve information needed to display a tooltip window. This 
notification supersedes the TTN_NEEDTEXT notification. This notification is sent in the 
form of a WM_NOTIFY message. 



Parameters 
Ipnmtdi 

Chapter 25 Tooltip Controls 689 

Address of an NMTTDISPINFO structure that identifies the tool that needs text and 
receives the requested information. 

Return Values 
The return value for this notification is not used. 

Remarks 
Fill the structure's appropriate fields to return the requested information to the tooltip 
control. If your message handler sets the uFlags field of the NMTTDISPINFO structure 
to TTF _DI_SETITEM, the tooltip control stores the information and will not request it 
again. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies the owner window that a tooltip is about to be hidden. This notification message 
is sent in the form of a WM_NOTIFY message. 

Parameters 
idTT 

Identifier of the tooltip control. 

pnmh 
Address of an NMHDR structure. 

Return Values 
No return value. 



690 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

Notifies the owner window that a tooltip control is about to be displayed. This notification 
message is sent in the form of a WM_NOTIFY message. 

Parameters 
idTT 

Identifier of the tooltip control. 

pnmh 
Pointer to an NMHDR structure. 

Return Values 
Version 4.70. To display the tooltip in its default location, return zero. To customize the 
tooltip position, reposition the tooltip window with the SetWindowPos function and 
return TRUE. 

Note For versions earlier than 4.70, there is no return value. 

Remarks 
A tooltip's window rectangle is somewhat larger than its text-display rectangle, and its 
origin is offset up and to the left. If you need to accurately position the text-display 
rectangle of a tool tip, the TTM_ADJUSTRECT message converts a text-display 
rectangle into the corresponding tooltip window rectangle, and vice versa. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 



Chapter 25 Tooltip Controls 691 

Tooltip Control Structures 

NMTTCUSTOMDRAW 
Contains information specific to an NM_CUSTOMDRAW notification message sent by a 
tooltip control. 

typedef structtagNMHCUSIqMI;lRAW{ 
NMCUSTOMDRAW nmcd 

.. 'q!NT . . ...uO,t~wFlag$L.. ..........• 
}:NMtT¢USTOMDRAW; FAR·* LPNMTTCUS'rOMDRAW; 

Members 
nmcd 

NMCUSTOMDRAW structure that contains general custom draw information. 

uDrawFlags 
UINT value specifying how tooltip text will be formatted when it is displayed. An 
application may change this field to alter the way text is drawn. This value is passed 
to the DrawText function internally. All values for the uFormat parameter of DrawText 
are valid. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

NMTTDISPINFO 
Contains information used in handling the TTN_GETDISPINFO notification message. 
This structure supersedes the TOOL TIPTEXT structure. 

(continued) 



692 Volume 4 Microsoft Windows Common Controls 

(continued) 

Members 
hdr 

NMHDR structure that contains additional information about the notification message. 

IpszText 

Address of a null-terminated string that will be displayed as the tooltip text. If hinst 
specifies an instance handle, this member must be the identifier of a string resource. 

szText 
Buffer that receives the tooltip text. An application can copy the text to this buffer 
instead of specifying a string address or string resource. For tooltip text that exceeds 
80 characters, see the comments in the remarks section of this document. 

hinst 
Handle to the instance that contains a string resource to be used as the tooltip text. If 
IpszText is the address of the tooltip text string, this member must be NUll. 

uFlags 
Flags that indicates how to interpret the idFrom member of the included NMHDR 
structure. 

TTF _IDISHWND 
If this flag is set, idFrom is the tool's handle. Otherwise, it is the tool's identifier. 

TTF _RTlREADING 
Windows can be mirrored to display languages such as Hebrew or Arabic that read 
from right to left (RTl). Normally, tooltip text is read in the same direction as the 
text in its parent window. To have a tooltip read in the opposite direction from its 
parent window, add the TTF _RTlREADING flag to the uFlags member when 
processing the notification. 

TTF _Di_SETITEM 
Version 4.70. If you add this flag to uFlags while processing the notification, the 
tooltip control will retain the supplied information and not request it again. 

IParam 
Version 4.70. Application-defined data associated with the tool. 

Remarks 
You need to point the IpszText array to your own private buffer when the text used in 
the tooltip exceeds 80 characters in length. The system automatically strips the 



Chapter 25 Tooltip Controls 693 

ampersand (&) accelerator characters from all strings passed to a tooltip control, unless 
the control has the TTS_NOPREFIX style. 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TOOLINFO 
The TOOLINFO structure contains information about a tool in a tooltip control. 

Members 
cbSize 

Size of this structure, in bytes. This member must be specified. 

uFlags 
Flags that control the tooltip display. This member can be a combination of the 
following values: 

TTF _ABSOLUTE 
Version 4.70. Positions the tooltip window at the same coordinates provided by 
TTM_ TRACKPOSITION. This flag must be used with the TTF _TRACK flag. 

TTF _CENTERTIP 
Centers the tooltip window below the tool specified by the uld member. 

TTF _IDISHWND 
Indicates that the uld member is the window handle to the tool. If this flag is not 
set, uld is the tool's identifier. 



694 Volume 4 Microsoft Windows Common Controls 

TTF _RTLREADING 
Indicates that the tooltip text will be displayed in the opposite direction to the text in 
the parent window. 

TTF_SUBCLASS 
Indicates that the tooltip control should subclass the tool's window to intercept 
messages, such as WM_MOUSEMOVE. If this flag is not set, you must use the 
TTM_RELA YEVENT message to forward messages to the tooltip control. For a list 
of messages that a tooltip control processes, see TTM_RELAYEVENT. 

TTF_TRACK 
Version 4.70. Positions the tooltip window next to the tool to which it corresponds 
and moves the window according to coordinates supplied by the 
TTM_ TRACKPOSITION messages. You must activate this type of tool using the 
TTM_TRACKACTIVATE message. 

TTF _TRANSPARENT 
Version 4.70. Causes the tooltip control to forward mouse event messages to the 
parent window. This is limited to mouse events that occur within the bounds of the 
tooltip window. 

hwnd 
Handle to the window that contains the tool. If IpszText includes the 
LPSTR_ TEXTCALLBACK value, this member identifies the window that receives the 
TTN_GETDISPINFO notification messages. 

uld 
Application-defined identifier of the tool. If uFlags includes the TTF _IDISHWND flag, 
uld must specify the window handle to the tool. 

reet 
Tool's bounding rectangle coordinates. The coordinates are relative to the upper-left 
corner of the client area of the window identified by hwnd. If uFlags includes the 
TTF _IDISHWND flag, this member is ignored. 

hinst 
Handle to the instance that contains the string resource for the tool. If IpszText 
specifies the identifier of a string resource, this member is used. 

IpszText 
Pointer to the buffer that contains the text for the tool, or identifier of the string 
resource that contains the text. This member is used sometimes to return values. If 
you need to examine the returned value, IpszText must point to a valid buffer of 
sufficient size. Otherwise, it can be set to NULL. If IpszText is set to 
LPSTR_ TEXTCALLBACK, the control sends the TTN_NEEDTEXT notification 
message to the owner window to retrieve the text. 

IParam 
Version 4.70. A 32-bit, application-defined value that is associated with the tool. 



Chapter 25 Tooltip Controls 695 

Remarks 
Normal windows display text from left to right (LTR). Windows can be mirrored to display 
languages such as Hebrew or Arabic that read from right to left (RTL). Normally, tooltip text 
is displayed in the same direction as the text in its parent window. If TTF _RTLREADING is 
set, tooltip text will read in the opposite direction from the text in the parent window. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TTHITTESTINFO 
Contains information that a tooltip control uses to determine whether a point is in the 
bounding rectangle of the specified tool. If the point is in the rectangle, the structure 
receives information about the tool. 

Members 
hwnd 

pt 

ti 

Handle to the tool or window with the specified tool. 

Client coordinates of the point to test. 

TOOLINFO structure. If the point specified by pt is in the tool specified by hwnd, this 
structure receives information about the tool. The cbSize member of this structure 
must be filled in before sending this message. 

Remarks 
This structure is used with the TTM_HITTEST message. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 





CHAPTER 26 

Trackbar Controls 

A trackbar is a window that contains a slider and optional tick marks. When the user 
moves the slider, using either the mouse or the direction keys, the trackbar sends 
notification messages to indicate the change. 

About Trackbar Controls 

697 

Trackbars are useful when you want the user to select a discrete value or a set of 
consecutive values in a range. For example, you might use a trackbar to allow the user 
to set the repeat rate of the keyboard by moving the slider to a given tick mark. The 
following illustration shows a typical trackbar. 

The slider in a trackbar moves in increments that you specify when you create it. This 
range of values is referred to as "logical units." For example, if you specify that the 
trackbar should have logical units that range from zero to five, the slider can occupy only 
six positions: a position at the left side of the trackbar and one position for each 
increment in the range. Typically, each of these positions is identified by a tick mark. 

You create a trackbar by using the CreateWindowEx function, specifying the 
TRACKBAR_CLASS window class. After you have created a trackbar, you can use 
trackbar messages to set and retrieve many of its properties. Changes that you can 
make include setting the minimum and maximum positions for the slider, drawing tick 
marks, setting a selection range, and repositioning the slider. 

Trackbar Messages 
The logical units of a trackbar are the set of contiguous values that the trackbar can 
represent. They are usually defined by specifying the range of possible values with a 
TBM_SETRANGE message when the trackbar is first created. Applications can 
dynamically alter the range by using the TBM_SETRANGEMAX and 
TBM_SETRANGEMIN messages. An application that allows the range to be changed 
dynamically typically retrieves the final range settings when the user has finished 
working with the trackbar. To retrieve these settings, use the TBM_GETRANGEMAX 
and TBM_GETRANGEMIN messages. 

An application can send messages to the trackbar to retrieve information about the 
window and to change its characteristics. To retrieve the position of the slider (that is, the 



698 Volume 4 Microsoft Windows Common Controls 

value the user has chosen), use the TBM_GETPOS message. To set the position of the 
slider, use the TBM_SETPOS message. 

A trackbar automatically displays tick marks at its beginning and end, unless you specify 
the TBS_NOTICKS style. You can use the TBS_AUTOTICKS style to automatically 
display additional tick marks at regular intervals along the trackbar. By default, a 
TBS_AUTOTICKS trackbar displays a tick mark at each increment of the trackbar's 
range. To specify a different interval for the automatic tick marks, send the 
TBM_SETTICFREQ message to the trackbar. For example, you could use this message 
to display only 10 tick marks in a range of 1 through 100. 

To set the position of a single tick mark, send the TBM_SETTIC message. A trackbar 
maintains an array of DWORD values that stores the position of each tick mark. The 
array does not include the first and last tick marks that the trackbar creates 
automatically. You can specify an index in this array when you send the TBM_GETTIC 
message to get the position of the corresponding tick mark. Alternatively, you can send 
the TBM_GETPTICS message to get a pointer to the array. The number of elements in 
the array is equal to two less than the tick count returned by the TBM_GETNUMTICS 
message. This is because the count returned by TBM_GETNUMTICS includes the first 
and last tick marks that are not included in the array. To retrieve the physical position of 
a tick mark, in client coordinates of the trackbar's window, send the TBM_GETTICPOS 
message. The TBM_CLEARTICS message removes all but the first and last of a 
trackbar's tick marks. 

A trackbar's line size determines how far the slider moves in response to keyboard input 
from the arrow keys, such as the RIGHT ARROW or DOWN ARROW key. To retrieve or 
set the line size, send the TBM_GETLINESIZE and TBM_SETLINESIZE messages. 
The trackbar also sends the TB_LlNEUP and TB_LlNEDOWN notification messages to 
its parent window when the user presses the arrow keys. 

A trackbar's page size determines how far the slider moves in response to keyboard 
input, such as the PAGE UP or PAGE DOWN keys, or mouse input, such as clicks in the 
trackbar channel. To retrieve or set the page size, send the TBM_GETPAGESIZE and 
TBM_SETPAGESIZE messages. The trackbar also sends the TB_PAGEUP and 
TB_PAGEDOWN notification messages to its parent window when it receives keyboard 
or mouse input that scrolls the page. For more information, see Trackbar Notification 
Messages. 

An application can send messages to retrieve the dimensions of a trackbar. The 
TBM_GETTHUMBRECT message retrieves the bounding rectangle for the slider. The 
TBM_GETTHUMBLENGTH message retrieves the length of the slider. The 
TBM_GETCHANNELRECT message retrieves the bounding rectangle for the trackbar's 
channel, which is the area over which the slider moves. It contains the highlight when a 
range is selected. If a trackbar has the TBS_FIXEDLENGTH style, you can send the 
TBM_SETTHUMBLENGTH message to change the length of the slider. 

If you create a trackbar with the TBS_ENABLESELRANGE style, you can specify a 
"selection range", which restricts the user to a specified portion of the total range. The 
logical units do not change, but only a subset of them will be available for use. The 



Chapter 26 Trackbar Controls 699 

trackbar will highlight the available range and display triangular tick marks at the start 
and end. Typically, an application handles the trackbar's notification messages and sets 
the trackbar's selection range according to the user's input. 

You retrieve or set the selection range by sending messages to the trackbar. Use the 
TBM_SETSEL message to set the starting and ending positions of a selection. To set 
just the starting position or just the ending position of a selection, send a 
TBM_SETSELSTART or TBM_SETSELEND message. To retrieve the starting or 
ending positions of a selection range, send a TBM_GETSELSTART or 
TBM_GETSELEND messages. To clear a selection range and restore the trackbar to its 
original range, send the TBM_CLEARSEL message. 

Trackbar Notification Messages 
A trackbar notifies its parent window of user actions by sending the parent 
WM_HSCROLL or WM_ VSCROLL messages. A trackbar with the TBS_HORZ style 
sends WM_HSCROLL messages. A trackbar with the TBS_ VERT style sends 
WM_ VSCROLL messages. The low-order word of the wParam parameter of 
WM_HSCROLL or WM_ VSCROLL contains the notification code. For the 
TB_ THUMBPOSITION and TB_ THUMBTRACK notifications, the high-order word of the 
wParam parameter specifies the position of the slider. For all other notifications, the 
high-order word is zero; send the TBM_GETPOS message to determine the slider 
position. The IParam parameter is the handle of the trackbar. 

The system sends the TB_BOTTOM, TB_LINEDOWN, TB_LlNEUP, and TB_TOP 
notification messages only when the user interacts with a trackbar by using the 
keyboard. The TB_ THUMBPOSITION and TB_ THUMBTRACK notification messages 
are only sent when the user is using the mouse. The TB_ENDTRACK, 
TB_PAGEDOWN, and TB_PAGEUP notification messages are sent in both cases. The 
following table lists the trackbar notification messages and the events (virtual key codes 
or mouse events) that cause the notifications to be sent: 

Notification message 

TB_BOTTOM 

TB_ENDTRACK 

TB_LlNEDOWN 
TB_LlNEUP 

TB_PAGEDOWN 

TB_ THUMBPOSITION 

TB_ THUMBTRACK 

TB_TOP 

Reason sent 

VK_END 

WM_KEYUP (the user released a key that sent a 
relevant virtual key code) 
VK_RIGHT or VK_DOWN 

VK_LEFT or VK_UP 

VK_NEXT (the user clicked the channel below or to the 
right of the slider) 

VK_PRIOR (the user clicked the channel above or to the 
left of the slider) 
WM_LBUTTONUP following a TB_ THUMBTRACK 
notification message 

Slider movement (the user dragged the slider) 

VK_HOME 



700 Volume 4 Microsoft Windows Common Controls 

Default Trackbar Message Processing 
This section describes the window message processing performed by a trackbar. 

Message 

WM_CAPTURECHANGED 

WM_DESTROY 

WM_ENABLE 

WM_ERASEBKGND 

WM_GETDLGCODE 

WM_KEYDOWN 

WM_KILLFOCUS 

WM_LBUTTONDOWN 

Processing performed 

Kills the timer if one was set during 
WM_LBUTTONDOWN processing and sends the 
TB_ THUMBPOslTION notification message, if 
necessary. It always sends the TB_ENDTRACK 
notification message. 

Performs additional initialization, such as setting the line 
size, page size, and tick mark frequency to default 
values. 

Frees resources. 

Repaints the trackbar window. 

Erases the window background, using the current 
background color for the trackbar. 

Returns the DLGC_WANTARROWS value. 

Processes the direction keys and sends the TB_TOP, 
TB_BOTTOM, TB_PAGEUP, TB_PAGEDOWN, 
TB_LINEUP, and TB_LINEDOWN notification 
messages, as appropriate. 

Sends the TB_ENDTRACK notification message if the 
key was one of the direction keys. 

Repaints the trackbar window. 

Sets the focus and the mouse capture to the trackbar. 
When necessary, it sets a timer that determines how 
quickly the slider moves toward the mouse cursor when 
the user holds down the mouse button in the window. 

Releases the mouse capture and kills the timer if one 
was set during WM_LBUTTONDOWN processing. It 
sends the TB_ THUMB POSITION notification message, 
if necessary. It always sends the TB_ENDTRACK 
notification message. 

Moves the slider and sends the TB_ THUMBTRACK 
notification message when tracking the mouse (see 
WM_TIMER). 

Paints the trackbar. If the wParani parameter is non­
NULL, the control assumes that the value is an HDC 
and paints using that device context. 

Repaints the trackbar window. 



Message 

WM_WININICHANGE 

Chapter 26 Trackbar Controls 701 

Processing performed 

Sets the dimensions of the trackbar, removing the slider 
if there is not enough room to display it. 

Retrieves the mouse position and updates the position 
of the slider. (It is received only when the user is 
dragging the slider.) 

Initializes slider dimensions. 

Using Trackbar Controls 
This section provides examples that demonstrate how to create a trackbar and process 
trackbar notification messages. 

Creating a Trackbar 
The following example shows how to create a trackbar with the TBS_AUTOTICKS and 
TBS_ENABLESELRANGE styles. When the trackbar is created, both its range and its 
selection range are initialized. The page size is also set at this time. 

(continued) 



702 Volume 4 Microsoft Windows Common Controls 

(continued) 

Processing Trackbar Notification Messages 
The following example is a function that is called whenever a WM_HSCROLL message 
is received by the dialog box containing the trackbar. The trackbar has the 
TBS_ENABLESELRANGE style. The position of the slider is compared against the 
selection range, and the slider is moved to the starting or ending position of the selection 
range, when necessary. 

A dialog containing a trackbar with the TBS_ VERT style could use this function when it 
receives a WM_ VSCROLL message. 



Chapter 26 Trackbar Controls 703 

1/ mi.nimUIl1 value of trackbarselection 

CDRF _NEWFONT 
Your application specified a new font for the item. The control will use the new font. 
For more information about changing fonts, see Changing Fonts and Colors. 

CDRF _SKIPDEFAULT 
Your application drew the item manually. The control will not draw the item. 

Trackbar Control Updates in Internet Explorer 
Trackbar controls in Microsoft Internet Explorer support the following new features. 

Buddy Windows 
Trackbar controls now provide support for up to two buddy windows. Trackbar buddy 
windows are automatically positioned by the control to appear centered at the ends of 
the trackbar control. To assign an existing window to a trackbar, use the 
TBM_SETBUDDY message. To retrieve the handle to a given buddy window, send 
the TBM_GETBUDDY message. 

Tooltips 
Trackbar controls now support tooltips. A trackbar creates a default tooltip control 
when created with the TBS_ TOOL TIPS style. However, you can assign a new tooltip 
control to a trackbar by sending the TBM_SETTOOL TIPS message. To retrieve the 
handle to an assigned tooltip control, use the TBM_GETTOOLTIPS message. 



704 Volume 4 Microsoft Windows Common Controls 

Trackbar Control Styles 
This section contains information about the styles used with trackbar controls. 

TBS_AUTOTICKS 
The trackbar control will have a tick mark for each increment in its range of values. 

TBS_BOTH 
The trackbar control will display tick marks on both sides of the control. This will be 
both top and bottom when used with TBS_HORZ or both left and right if used with 
TBS_VERT. 

TBS_BOTTOM 
The trackbar control will display tick marks below the control. This style is only valid 
with TBS_HORZ. 

TBS_ENABLESELRANGE 
The trackbar control can display a selection range only. The tick marks at the starting 
and ending positions of a selection range are displayed as triangles (instead of 
vertical dashes), and the selection range is highlighted. 

TBS_FIXEDLENGTH 
The trackbar control allows the size of the slider to be changed with the 
TBM_SETTHUMBLENGTH message. 

TBS_HORZ 
The trackbar control will be oriented vertically. This is the default orientation. 

TBS_LEFT 
The trackbar control will display tick marks to the left of the control. This style is only 
valid with TBS_VERT. 

TBS_NOTHUMB 
The trackbar control does not display a slider. 

TBS_NOTICKS 
The trackbar control will not display any tick marks. 

TBS_REVERSED 
Version 5.80. This style bit is used for "reversed" trackbars, where a smaller number 
indicates "higher" and a larger number indicates "lower". It has no effect on the 
control, but is simply a label that can be checked to determine whether a trackbar is 
normal or reversed. 

TBS_RIGHT 
The trackbar control will display tick marks to the right of the control. This style is only 
valid with TBS_ VERT. 

TBS_ TOOL TIPS 
Version 4.70. The trackbar control will support tooltips. When a trackbar control is 
created using this style, it automatically creates a default tooltip control that displays 
the slider's current position. You can change where the tooltips are displayed by using 
the TBM_SETTIPSIDE message. 



Chapter 26 Trackbar Controls 705 

TBS_TOP 
The trackbar control will display tick marks above the control. This style is only valid 
with TBS_HORZ. 

TBS_VERT 
The trackbar control will be oriented vertically. This is the default orientation. 

Custom Draw Values 
Trackbar controls use the following values to identify a control's parts. One of these 
values is specified in the dwltemSpec member of the NMCUSTOMDRAW structure. 

TBCD_CHANNEL Identifies the channel that the trackbar control's thumb marker 

.TBCD_ THUMB 

TBCD_TICS 

slides along. This is the part of the control that the user moves . 

Identifies the trackbar control's thumb marker. 

Identifies the tick marks that are displayed along the trackbar 
control's edge. 

Trackbar Control Reference 

Trackbar Control Messages 

TBM_CLEARSEL 
Clears the current selection range in a trackbar. 

;i,~~~;;~:~~~~jWA 
," .J:Nr~,lil:';;:ii;\,j;;" 

Parameters 
fRedraw 

.,. .. . 

-.... . 

Redraw flag. If this parameter is TRUE, the trackbar is redrawn after the selection is 
cleared. 

Return Values 
No return value. 

Remarks 
A trackbar can have a selection range only if you specified the 
TBS_ENABLESELRANGE style when you created it. 



706 Volume 4 Microsoft Windows Common Controls 

:'." " .. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_SETSEL,TBM_SETSELEND,TBM_SETSELSTART 

TBM_ CLEARTICS 
Removes the current tick marks from a trackbar. This message does not remove the first 
and last tick marks, which are created automatically by the trackbar. 

Parameters 
fRedraw 

Redraw flag. If this parameter is TRUE, the trackbar is redrawn after the tick marks 
are cleared. If this parameter is FALSE, the message clears the tick marks but does 
not redraw the trackbar. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETBUDDV 
Retrieves the handle to a trackbar control buddy window at a given location. The 
specified location is relative to the control's orientation (horizontal or vertical). 



Chapter 26 Trackbar Controls 707 

Parameters 
(Location 

Value indicating which buddy window handle will be retrieved, by relative location. 
This value can be one of the following: 

TRUE Retrieves the handle to the buddy to the left of the trackbar. If the 
trackbar control uses the TBS_ VERT style, the message will retrieve 
the buddy above the trackbar. 

FALSE 

Return Values 

Retrieves the handle to the buddy to the right of the trackbar. If the 
trackbar control uses the TBS_ VERT style, the message will retrieve 
the buddy below the trackbar. 

Returns the handle to the buddy window at the location specified by (Location, or NULL 
if no buddy window exists at that location. 

Version 4.70 and later of Comctl32.dll 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETCHANNELRECT 
Retrieves the size and position of the bounding rectangle for a trackbar's channel. (The 
channel is the area over which the slider moves. It contains the highlight when a range is 
selected.) 

.. ::;.~l.f~~~~~M 

Parameters 
Iprc 

Address of a RECT structure. The message fills this structure with the channel's 
bounding rectangle, in client coordinates of the trackbar's window. 

Return Values 
No return value. 



708 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl,h. 

TBM_GETLINESIZE 
Retrieves the number of logical positions the trackbar's slider moves in response to 
keyboard input from the arrow keys, such as the RIGHT ARROW or DOWN ARROW 
keys. The logical positions are the integer increments in the trackbar's range of minimum 
to maximum slider positions. 

Return Values 
Returns a 32-bit value that specifies the line size for the trackbar. 

Remarks 
The default setting for the line size is 1. 

The trackbar also sends the TB_LINEUP and TB_LINEDOWN notification messages to 
its parent window when the user presses the arrow keys. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl,h. 

TBM_SETLINESIZE 

TBM_ GETNUMTICS 
Retrieves the number of tick marks in a trackbar. 



Chapter 26 Trackbar Controls 709 

Return Values 
Returns the number of tick marks. 

Remarks 
The TBM_GETNUMTICS message counts all of the tick marks, including the first and 
last tick marks created by the trackbar. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETPAGESIZE 
Retrieves the number of logical positions the trackbar's slider moves in response to 
keyboard input, such as the PAGE UP or PAGE DOWN keys, or mouse input, such as 
clicks in the trackbar's channel. The logical positions are the integer increments in the 
trackbar's range of minimum to maximum slider positions. 

Return Values 
Returns a 32-bit value that specifies the page size for the trackbar. 

Remarks 
The trackbar also sends the TB_PAGEUP and TB_PAGEDOWN notification messages 
to its parent window when it receives keyboard or mouse input that scrolls the page. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_SETPAGESIZE 



710 Volume 4 Microsoft Windows Common Controls 

TBM_GETPOS 
Retrieves the current logical position of the slider in a trackbar. The logical positions are 
the integer values in the trackbar's range of minimum to maximum slider positions. 

Return Values 
Returns a 32-bit value that specifies the current logical position of the trackbar's slider. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETPTICS 
Retrieves the address of an array that contains the positions of the tick marks for a 
trackbar. 

fllt.t.;G~rp:¥xts~ 

';;{';~~:~i=::c::t 
Return Values 
Returns the address of an array of DWORD values. The elements of the array specify 
the logical positions of the trackbar's tick marks, not including the first and last tick marks 
created by the trackbar. The logical positions can be any of the integer values in the 
trackbar's range of minimum to maximum slider positions. 

Remarks 
The number of elements in the array is two less than the tick count returned by the 
TBM_GETNUMTICS message. Note that the values in the array may include duplicate 
positions and may not be in sequential order. The returned pOinter is valid until you 
change the trackbar's tick marks. 



Chapter 26 Trackbar Controls 711 

_ijj,q~l[e~ents 
Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETRANGEMAX 
Retrieves the maximum position for the slider in a trackbar. 

.iBM;;;GEitMNG~~AX 
.wPal'}dtT!:·.", ·.0 ..... 

ll?aram."70t.: 

Return Values 
Returns a 32-bit value that specifies the maximum position in the trackbar's range of 
minimum to maximum slider positions. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETRANGEMIN, TBM_SETRANGE, TBM_SETRANGEMAX 

TBM_GETRANGEMIN 
Retrieves the minimum position for the slider in a trackbar. 

Return Values 
Returns a 32-bit value that specifies the minimum position in the trackbar's range of 
minimum to maximum slider positions. 



712 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETRANGEMAX,TBM_SETRANGE,TBM_SETRANGEMAX 

TBM_GETRANGEMIN 
Retrieves the minimum position for the slider in a trackbar. 

Return Values 
Returns a 32-bit value that specifies the minimum position in the trackbar's range of 
minimum to maximum slider positions. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl,h. 

TBM_GETRANGEMAX, TBM_SETRANGE, TBM_SETRANGEMAX 

TBM_GETSELEND 
Retrieves the ending position of the current selection range in a trackbar. 

Return Values 
Returns a 32-bit value that specifies the ending position of the current selection range. 



Chapter 26 Trackbar Controls 713 

Remarks 
A trackbar can have a selection range only if you specified the 
TBS_ENABLESELRANGE style when you created it. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETSELSTART,TBM_SETSEL,TBM_SETSELEND,TBM_SETSELSTART 

TBM_GETSELSTART 
Retrieves the starting position of the current selection range in a trackbar. 

Return Values 
Returns a 32-bit value that specifies the starting position of the current selection range. 

Remarks 
A trackbar can have a selection range only if you specified the 
TBS_ENABLESELRANGE style when you created it. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETSELEND,TBM_SETSEL,TBM_SETSELEND,TBM_SETSELSTART 

TBM_GETTHUMBLENGTH 
Retrieves the length of the slider in a trackbar. 



714 Volume 4 Microsoft Windows Common Controls 

Return Values 
Returns the length, in pixels, of the slider. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETTHUMBRECT,TBM_SETTHUMBLENGTH 

TBM_ GETTHUMBRECT 
Retrieves the size and position of the bounding rectangle for the slider in a trackbar. 

Parameters 
/pre 

Address of a RECT structure. The message fills this structure with the bounding 
rectangle of the trackbar's slider, in client coordinates of the trackbar's window. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 



Chapter 26 Trackbar Controls 715 

Retrieves the logical position of a tick mark in a trackbar. The logical position can be any 
of the integer values in the trackbar's range of minimum to maximum slider positions. 

TBM_GETTle 
. wparam= .. (WPARA~) «\'lORD)· iTicr,· 

···lPar:am .. 0~ ;.. . ... .; ....;;:~." 

Parameters 
iTie 

Zero-based index identifying a tick mark. Valid indexes are in the range from zero to 
two less than the tick count returned by the TBM_GETNUMTICS message. 

Return Values 
Returns the logical position of the specified tick mark, or -1 if iTie does not specify a valid 
index. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETTICPOS 
Retrieves the current physical position of a tick mark in a trackbar. 

Parameters 
iTie 

Zero-based index identifying a tick mark. Valid indexes are in the range from zero to 
two less than the tick count returned by the TBM_GETNUMTICS message. 

Return Values 
Returns the distance, in client coordinates, from the left or top of the trackbar's client 
area to the specified tick mark. The return value is the x-coordinate of the tick mark for a 
horizontal trackbar or the y-coordinate for a vertical trackbar. If iTie is not a valid index, 
the return value is -1 . 



716 Volume 4 Microsoft Windows Common Controls 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_ GETTOOL TIPS 
Retrieves the handle to the tooltip control assigned to the trackbar, if any. 

Return Values 
Returns the handle to the tooltip control assigned to the trackbar, or NULL if tooltips are 
not in use. If the trackbar control does not use the TBS_ TOOL TIPS style, the return 
value is NULL. 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TBM_ GETUNICODEFORMAT 
Retrieves the UNICODE character format flag for the control. 

Return Values 
Returns the UNICODE format flag for the control. If this value is nonzero, the control is 
using UNICODE characters. If this value is zero, the control is using ANSI characters. 

Remarks 
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message. 



Chapter 26 Trackbar Controls 717 

Version 4.00 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in commctrl.h. 

TBM_SETUNICODEFORMAT 

Assigns a window as the buddy window for a trackbar control. Trackbar buddy windows 
are automatically displayed in a location relative to the control's orientation (horizontal or 
vertical). 

Parameters 
fLocation 

Value specifying the location at which to display the buddy window. This value can be 
one of the following: 

TRUE The buddy will appear to the left of the trackbar if the trackbar control 
uses the TBS_HORZ style. If the trackbar uses the TBS_ VERT style, 
the buddy appears above the trackbar control. 

FALSE 

hwndBuddy 

The buddy will appear to the right of the trackbar if the trackbar control 
uses the TBS_HORZ style. If the trackbar uses the TBS_ VERT style, 
the buddy appears below the trackbar control. 

Handle to the window that will be set as the trackbar control's buddy. 

Return Values 
Returns the handle to the window that was previously assigned to the control at that 
location. 

Remarks 
Note Trackbar controls support up to two buddy windows. This can be useful when you 
must display text or images at each end of the control. 



718 Volume 4 Microsoft Windows Common Controls 

Version 4.70 and later of Comctl32.dll. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with 
Internet Explorer 3.0 and later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Requires version 2.0 or later. 
Header: Declared in commctrl.h. 

TBM_SETLINESIZE 
Sets the number of logical positions the trackbar's slider moves in response to keyboard 
input from the arrow keys, such as the RIGHT ARROW or DOWN ARROW keys. The 
logical positions are the integer increments in the trackbar's range of minimum to 
maximum slider positions. 

Parameters 
ILineSize 

New line size. 

Return Values 
Returns a 32-bit value that specifies the previous line size. 

Remarks 
The default setting for the line size is 1. 

The trackbar also sends the TB_L1NEUP and TB_L1NEDOWN notification messages to 
its parent window when the user presses the arrow keys. 

Windows NT/2000: Requires Windows NT 3.51 or later 
Windows 95/98: Requires Windows 95 or later 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETLINESIZE 



Chapter 26 Trackbar Controls 719 

TBM_SETPAGESIZE 
Sets the number of logical positions the trackbar's slider moves in response to keyboard 
input, such as the PAGE UP or PAGE DOWN keys, or mouse input, such as clicks in the 
trackbar's channel. The logical positions are the integer increments in the trackbar's 
range of minimum to maximum slider positions. 

Parameters 
IPageSize 

New page size. 

Return Values 
Returns a 32-bit value that specifies the previous page size. 

Remarks 
The trackbar also sends the TB_PAGEUP and TB_PAGEDOWN notification messages 
to its parent window when it receives keyboard or mouse input that scrolls the page. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

TBM_GETPAGESIZE 

TBM_SETPOS 
Sets the current logical position of the slider in a trackbar. 

Parameters 
(Position 

Redraw flag. If this parameter is TRUE, the message redraws the control with the 
slider at the position given by IPosition. If this parameter is FALSE, the message does 



720 Volume 4 Microsoft Windows Common Controls 

not redraw the slider at the new position. Note that the message sets the value of the 
slider position (as returned by the TBM_GETPOS message) regardless of the 
fPosition parameter. 

IPosition 
New logical position of the slider. Valid logical positions are the integer values in the 
trackbar's range of minimum to maximum slider positions. If this value is outside the 
control's maximum and minimum range, the position is set to the maximum or 
minimum value. 

Return Values 
No return value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

Sets the range of minimum and maximum logical positions for the slider in a trackbar. 

Parameters 
fRedraw 

Redraw flag. If this parameter is TRUE, the trackbar is redrawn after the range is set. 
If this parameter is FALSE, the message sets the range but does not redraw the 
trackbar. 

IMinimum 
Minimum position for the slider. 

IMaximum 
Maximum position for the slider. 

Return Values 
No return value. 

Remarks 
If the current slider position is outside the new range, the TBM_SETRANGE message 
sets the slider position to the new maximum or minimum value. 



Chapter 26 Trackbar Controls 721 

R"~,gt!.t"ffljJnts .. -. 
Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl,h. 

TBM_SETRANGEMAX, TBM_SETRANGEMIN 

TBM_SETRANGEMAX 
Sets the maximum logical position for the slider in a trackbar. 

Parameters 
fRedraw 

Redraw flag. If this parameter is TRUE, the trackbar is redrawn after the range is set. 
If this parameter is FALSE, the message sets the range but does not redraw the 
trackbar. 

IMaximum 
Maximum position for the slider. 

Return Values 
No return value. 

Remarks 
If the current slider position is greater than the new maximum, the 
TBM_SETRANGEMAX message sets the slider position to the new maximum value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl,h. 

TBM_SETRANGE, TBM_SETRANGEMIN 



722 Volume 4 Microsoft Windows Common Controls 

TBM_SETRANGEMIN 
Sets the minimum logical position for the slider in a trackbar. 

Parameters 
'Redraw 

Redraw flag. If this parameter is TRUE, the message redraws the trackbar after the 
range is set. If this parameter is FALSE, the message sets the range but does not 
redraw the trackbar. 

IMinimum 
Minimum position for the slider. 

Return Values 
No return value. 

Remarks 
If the current slider position is less than the new minimum, the TBM_SETRANGEMIN 
message sets the slider position to the new minimum value. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in commctrl.h. 

.' . 
...... -.- : :.~:--..:.-., 

Sets the starting and ending positions for the available selection range in a trackbar. 



Parameters 
fRedraw 

Chapter 26 Trackbar Controls 723 

Redraw flag. If this parameter is TRUE, the message redraws the trackbar after the 
selection range is set. If this parameter is FALSE, the message sets the selection 
range but does not redraw the trackbar. 

IMinimum 
Starting logical position for the selection range. 

IMaximum 
Ending logical position for the selection range. 

Return Values 
No return value. 

Remarks 
This message is ignored if the trackbar does not have the TBS_ENABLESELRANGE 
style. 

TBM_SETSEL allow you to restrict the pOinter to only a portion of the range available to 
the progress bar. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1 .0 or later. 
Header: Declared in commctrl,h. 

TBM_GETSELEND,TBM_GETSELSTART,TBM_SETSELEND,TBM_SETSELSTART 

TBM_SETSELEND 
Sets the ending logical position of the current selection range in a trackbar. This 
message is ignored if the trackbar does not have the TBS_ENABLESELRANGE style. 

~~~~~~i';~,;~:~~{::t?t~~f,;,.'r 'l{l'!lll'!"IUif.::" 


724 Volume 4 Microsoft Windows Common Controls

Parameters
'Redraw

Redraw flag. If this parameter is TRUE, the message redraws the trackbar after the
selection range is set. If this parameter is FALSE, the message sets the selection
range but does not redraw the trackbar.

lEnd
Ending logical position of the selection range.

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

TBM_GETSELEND,TBM_GETSELSTART,TBM_SETSEL,TBM_SETSELSTART

TBM_SETSELST ART
Sets the starting logical position of the current selection range in a trackbar. This
message is ignored if the trackbar does not have the TBS_ENABLESELRANGE style.

Parameters
'Redraw

Redraw flag. If this parameter is TRUE, the message redraws the trackbar after the
selection range is set. If this parameter is FALSE, the message sets the selection
range but does not redraw the trackbar.

IStart
Starting position of the selection range.

Return Values
No return value.

Chapter 26 Trackbar Controls 725

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

TBM_GETSELEND,TBM_GETSELSTART,TBM_SETSEL,TBM_SETSELEND

TBM_SETTHUMBLENGTH
Sets the length of the slider in a trackbar. This message is ignored if the trackbar does
not have the TBS_FIXEDLENGTH style.

Parameters
iLength

Length, in pixels, of the slider.

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

TBM_GETTHUMBLENGTH

Sets a tick mark in a trackbar at the specified logical position.

726 Volume 4 Microsoft Windows Common Controls

Parameters
IPosition

Position of the tick mark. This parameter can be any of the integer values in the
trackbar's range of minimum to maximum slider positions.

Return Values
Returns TRUE if the tick mark is set, or FALSE otherwise.

Remarks
A trackbar creates its own first and last tick marks. Do not use this message to set the
first and last tick marks.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

TBM_SETTIPSIDE
Positions a tooltip control used by a trackbar control. Trackbar controls that use the
TBS_ TOOL TIPS style display tooltips.

Parameters
fLocation

Value iepiesenting the location at which to display the tooltip control. This value can
be one of the following:

TBTS_ TOP The tooltip control will be positioned above the trackbar. This
flag is for use with horizontal trackbars.

TBTS_LEFT The tooltip control will be positioned to the left of the trackbar.
This flag is for use with vertical trackbars.

TBTS_BOTTOM The tooltip control will be positioned below the trackbar. This
flag is for use with horizontal trackbars.

TBTS_RIGHT The tooltip control will be positioned to the right of the
trackbar. This flag is for use with vertical trackbars.

Chapter 26 Trackbar Controls 727

Return Values
Returns a value that represents the tooltip control's previous location. The return value
equals one of the possible values for (Location.

Version 4.70 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 3.0 and later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

TBM_SETTOOL TIPS
Assigns a tooltip control to a trackbar control.

Parameters
hwndTT

Handle to an existing tooltip control.

Return Values
The return value for this message is not used.

Remarks
When a trackbar control is created with the TBS_ TOOL TIPS style, it creates a default
tooltip control that appears next to the slider, displaying the slider's current position.

Version 4.70 and later of Comctl32.dll

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 3.0 and later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

728 Volume 4 Microsoft Windows Common Controls

Trackbar Control Notifications

NM_CUSTOMDRAW (trackbar)
Sent by a trackbar control to notify its parent windows about drawing operations. This
notification is sent in the form of a WM_NOTIFY message.

Parameters
IpNMCustomDraw

Address of an NMCUSTOMDRAW structure that contains information about the
drawing operation. The dwltemSpec member of this structure will contain one of the
Custom Draw Values that indicates which part of the control is being drawn. Trackbar
controls insert the following values into the dwltemSpec member of this structure to
identify the portion of the control being drawn:

TBCD_CHANNEL Identifies the channel that the trackbar control's thumb
marker slides along.

Return Values

Identifies the trackbar control's thumb marker. This is the
portion of the control that the user moves.

Identifies the increment tick marks that appear along the
edge of the trackbar control.

The value your application can return depends on the current drawing stage. The
dwDrawStage member of the associated NMCUSTOMDRAW structure holds a value
that specifies the drawing stage. You must return one of the following values.

When dwDrawStage equals CDDS_PREPAINT:

CDRF _DODEFAUL T
The control will draw itself. It will not send any additional NM_CUSTOMDRAW
messages for this paint cycle.

CDRF _NOTIFYITEMDRAW
The control will notify the parent of any item-related drawing operations. It will send
NM_CUSTOMDRAW notification messages before and after drawing items.

CDRF _NOTIFYITEMERASE
The control will notify the parent when an item will be erased. It will send
NM_CUSTOMDRAW notification messages before and after erasing items.

CDRF _NOTIFYPOSTERASE
The control will notify the parent after erasing an item.

CDRF _NOTIFYPOSTPAINT
The control will notify the parent after painting an item.

Chapter 26 Trackbar Controls 729

CDRF _NOTIFYSUBITEMDRAW
Version 4.71. The control will notify the parent when a list view subitem is being
drawn.

When dwDrawStage equals CDDS_ITEMPREPAINT:

CDRF _NEWFONT
Your application specified a new font for the item; the control will use the new font.
For more information on changing fonts, see Changing Fonts and Colors.

CDRF _SKIPDEFAUL T
Your application drew the item manually. The control will not draw the item.

Version 4.70 and later of ComctI32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 3.0 and later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

Using Custom Draw

NM_RELEASEDCAPTURE (trackbar)
Notifies a trackbar control's parent window that the control is releasing mouse capture.
This notification is sent in the form of a WM_NOTIFY message.

Parameters
/pnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The control ignores the return value from this notification.

730 Volume 4 Microsoft Windows Common Controls

Version 4.71 and later of Comctl32.dll

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl,h.

CHAPTER 27

Up-Down Controls

An up-down control is a pair of arrow buttons that the user can click to increment or
decrement a value, such as a scroll position or a number displayed in a companion
control. The value associated with an up-down control is called its current position. An
up-down control is most often used with a companion control, which is called a buddy
window.

About Up-Down Controls

731

To the user, an up-down control and its buddy window often look like a single control.
You can specify that an up-down control automatically position itself next to its buddy
window and that it automatically set the caption of the buddy window to its current
position. For example, you can use an up-down control with an edit control to prompt the
user for numeric input. The following illustration shows an up-down control with an edit
control as its buddy window, a combination that is sometimes referred to as a spinner
control.

10
tfI···· .. ··.••··.·
., ...

An up-down control without a buddy window functions as a sort of simplified scroll bar.
For example, a tab control sometimes displays an up-down control to enable the user to
scroll additional tabs into view. The following illustration shows an up-down control in the
upper-right corner of a tab control.

You can create an up-down control and specify its buddy window in several ways. The
UPDOWN_CLASS value specifies an up-down control's window class. You can specify
this window class in a dialog box template or in a call to the CreateWindowEx function.
Another way is to use the CreateUpDownControl function to create an up-down control
and, at the same time, specify its buddy window, current position, and minimum and
maximum positions.

The UPDOWN_CLASS window class is registered when the common controls dynamic­
link library (DLL) is loaded. If you create an up-down control without using the

732 Volume 4 Microsoft Windows Common Controls

CreateUpDownControl function, you must ensure that the DLL is loaded. You can do
so by using the InitCommonControls function.

CreateUpDownControl enables you to specify a buddy window. If you create an up­
down control without using this function, you can assign a buddy window by specifying
the UDS_AUTOBUDDY window style or by using the UDM_SETBUDDY message. If
UDS_AUTOBUDDY is specified, the up-down control automatically selects the previous
window in the z-order as its buddy window. This window might be the previous control in
a dialog box template. You can use UDM_SETBUDDY to assign a specific buddy
window to an up-down control. To determine an up-down control's current buddy
window, use the UDM_GETBUDDY message. An up-down control and its buddy window
must have the same parent window.

An up-down control notifies its parent window when its current position changes by
sending it a UDN_DELTAPOS notification message and a WM_VSCROLL or
WM_HSCROLL message. A vertical up-down control (which does not have the
UDS_HORZ style) sends a WM_VSCROLL message. A horizontal up-down control
(which has the UDS_HORZ style) sends a WM_HSCROLL message.

About Up-Down Control Styles
Using window styles, you can manipulate characteristics of an up-down control, such as
how it positions itself relative to its buddy window, whether it sets the text of its buddy
window, and whether it processes the UP ARROW and DOWN ARROW keys.

An up-down control with the UDS_ALIGNLEFT or UDS_ALlGNRIGHT style aligns with
the left or right edge of its buddy window. The width of the buddy window is decreased to
accommodate the width of the up-down control.

An up-down control with the UDS_SETBUDDYINT style sets the caption of its buddy
window whenever the current position changes. The control inserts a thousands
separator between every three digits of a decimal string unless the
UDS_NOTHOUSANDS style is specified. If the buddy window is a list box, an up-down
control sets its current selection instead of its caption.

You can specify the UDS_ARROWKEYS style to provide a keyboard interface for an up­
down control. If this style is specified, the control processes the UP ARROW and DOWN
ARROW keys. The control also subclasses the buddy window so that it can process
these keys when the buddy window has the focus.

If you use an up-down control for horizontal scrolling, you can specify the UDS_HORZ
style. This style causes the up-down control's arrows to pOint left and right instead of up
and down.

By default, the current position does not change if the user attempts to increment it or
decrement it beyond the maximum or minimum value. You can change this behavior by
using the UDS_WRAP style, so the position "wraps" to the opposite extreme. For
example, incrementing past the upper limit wraps the position back to the lower limit.

Chapter 27 Up-Down Controls 733

Position and Acceleration
After an up-down control is created, you can change the control's current position,
minimum position, and maximum position by sending messages. You can also change
the radix base used to display the current position in the buddy window and the rate at
which the current position changes when the up or down arrow is clicked.

To retrieve the current position of an up-down control, use the UDM_GETPOS message.
For an up-down control with a buddy window, the current position is the number in the
buddy window's caption. Because the caption may have changed (for example, the user
may have edited the text of an edit control), the up-down control retrieves the current
caption and updates its current position accordingly.

The buddy window's caption may be either a decimal or hexadecimal string, depending
on the radix base (that is, either base 10 or 16) of the up-down control. You can set the
radix base by using the UDM_SETBASE message and retrieve the radix base by using
the UDM_GETBASE message.

The UDM_SETPOS message sets the current position of a buddy window. Note that
unlike a scroll bar, an up-down control automatically changes its current pOSition when
the up and down arrows are clicked. An application, therefore, does not need to set the
current position when processing the WM_ VSCROLL or WM_HSCROLL message.

You can change the minimum and maximum positions of an up-down control by using
the UDM_SETRANGE message. The maximum position may be less than the minimum,
and in that case clicking the up arrow button decreases the current position. To put it
another way, up means moving towards the maximum position. To retrieve the minimum
and maximum positions for an up-down control, use the UDM_GETRANGE message.

You can control the rate at which the position changes when the user holds down an
arrow button by setting the up-down control's acceleration. The acceleration is defined
by an array of UDACCEL structures. Each structure specifies a time interval and the
number of units by which to increment or decrement at the end of that interval. To set the
acceleration, use the UDM_SETACCEL message. To retrieve acceleration information,
use the UDM_GETACCEL message.

Default Up-Down Controls Message Processing
This section describes the standard Windows messages processed by an up-down
control.

Message

WM_DESTROY

WM_ENABLE

Processing performed

Allocates and initializes a private data structure and saves its
address as window data.

Frees data allocated during WM_CREATE processing.

Invalidates the window.

(continued)

734 Volume 4 Microsoft Windows Common Controls

(continued)

Message

WM_KEYUP

WM_LBUTTONDOWN

WM_TIMER

Processing performed

Changes the current position in the case of an UP ARROW
or DOWN ARROW key.

Completes the position change.

Captures the mouse. If the buddy window is an edit control
or list box, it sets the focus to the buddy window. If the
mouse is over the up or down button, it begins changing the
position and sets a timer.

Completes the position change and releases the mouse
capture if the up-down control has captured the mouse. If the
buddy window is an edit control, it selects all the text in the
edit control.

Paints the up-down control. If the wParam parameter is non­
NULL, the control assumes that the value is an HOC and
paints using that device context.

Changes the current position if the mouse is being held
down over a button and a sufficient interval has elapsed.

Up-Down Control Updates in Internet Explorer
Up-down controls in Microsoft Internet Explorer support the following new feature.

Full 32-bit Range
The up-down control now supports a full 32-bit range. The UDM_SETRANGE32 and
UDM_GETRANGE32 messages have been added to support this feature. The up­
down control uses signed integers for its range, so it is necessary to set the range
from -Ox7FFFFFFF to +Ox7FFFFFFF to utilize the full 32-bit range.

Up-Down Control Styles
The following styles are used when creating up-down controls:

UDS_ALlGNLEFT Positions the up-down control next to the left edge of the
buddy window. The buddy window is moved to the right,
and its width is decreased to accommodate the width of the
up-down control.

UDS_ALlGNRIGHT Positions the up-down control next to the right edge of the
buddy window. The width of the buddy window is decreased
to accommodate the width of the up-down control.

Chapter 27 Up-Down Controls 735

UDS_ARROWKEYS Causes the up-down control to increment and decrement
the position when the UP ARROW and DOWN ARROW
keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the z-order as
the up-down control's buddy window.

UDS_HORZ Causes the up-down control's arrows to point left and right
instead of up and down.

UDS_HOTTRACK The control will exhibit "hot tracking" behavior. That is, it will
highlight the up and down arrows on the control as the
pOinter passes over them. This style requires Windows 98
or Windows 2000. If the system is running Windows 95 or
Windows NT 4, the flag is ignored. To check whether or not
hot tracking is enabled, call SystemParameterslnfo.

UDS_NOTHOUSANDS Does not insert a thousands separator between every three
decimal digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the buddy
window (using the WM_SETTEXT message) when the
position changes. The text consists of the position formatted
as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or
decremented beyond the ending or beginning of the range.

Up-Down Control Reference

Up-Down Control Functions

CreateUpDownControl
Creates an up-down control.

(continued)

736 Volume 4 Microsoft Windows Common Controls

(continued)

Parameters
dwStyle

x

y

cx

cy

Window styles for the control. This parameter should include the WS_CHILD,
WS_BORDER, and WS_ VISIBLE styles, and it may include any of the window styles
specific to the up-down control.

Horizontal coordinate, in client coordinates, of the upper-left corner of the control.

Vertical coordinate, in client coordinates, of the upper-left corner of the control.

Width, in pixels, of the up-down control.

Height, in pixels, of the up-down control.

hParent
Handle to the parent window of the up-down control.

nlD
Identifier for the up-down control.

hlnst
Handle to the module instance of the application creating the up-down control.

hBuddy
Handle to the window associated with the up-down control. If this parameter is NULL,
the control has no buddy window.

nUpper
Upper limit (range) of the up-down control.

nLower
Lower limit (range) of the up-down control.

nPos
Position of the control.

Return Values
If the function succeeds, the return value is the window handle to the up-down control. If
the function fails, the return value is NULL.

Chapter 27 Up-Down Controls 737

:D"cR@qulrements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.
Import Library: comctl32.lib.

Up-Down Control Messages

Retrieves acceleration information for an up-down control.

UDtUiETACCEl

IirParam = (WPARAfH""cAcd~1s;" ". . c·

lParam"'~··(LPARAM); (LPUDACCE:~}·p.aAc'<;;l~; ·c

Parameters
cAccels

Number of elements in the array specified by paAccels.

paAccels
Address of an array of UDACCEL structures that receive acceleration information.

Return Values
The return value is the number of accelerator structures retrieved.

If the cAccels parameter is zero and the paAccels parameter is NULL, the return value is
the number of accelerators currently set for the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

738 Volume 4 Microsoft Windows Common Controls

UDM_GETBASE
Retrieves the current radix base (that is, either base 10 or 16) for an up-down control.

Return Values
The return value is the current base value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

UDM_GETBUDDV
Retrieves the handle to the current buddy window.

Return Values
The return value is the handle to the current buddy window.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

Retrieves the current position of an up-down control with 16-bit precision.

Chapter 27 Up-Down Controls 739

Return Values
If successful, the high order word will be set to zero, and the low-order word will be set to
the control's current position. If an error occurs, the high-order word will be set to a non­
zero value.

Remarks
When processing this message, the up-down control updates its current position based
on the caption of the buddy window. The up-down control returns an error if there is no
buddy window or if the caption specifies an invalid or out-of-range value.

If 32-bit values have been enabled for an up-down control with UDM_SETRANGE32,
this message returns only the lower 16 bits of the position. To retrieve the full 32-bit
position, use UDM_GETPOS32.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

UDM_GETRANGE, UDM_GETRANGE32, UDM_SETPOS, UDM_SETRANGE32

UDM_GETRANGE
Retrieves the minimum and maximum positions (range) for an up-down control.

UDIU.:iETRAHGE
wPal'am = (h
Hal'am = 0:

Return Values
The return value is a 32-bit value that contains the minimum and maximum positions.
The low-order word is the maximum position for the control, and the high-order word is
the minimum position.

Windows NT/2000: Requires Windows NT 3.51 or later
Windows 95/98: Requires Windows 95 or later
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

740 Volume 4 Microsoft Windows Common Controls

UDM_GETRANGE32
Retrieves the 32-bit range of an up-down control.

Parameters
pLow

Address of a signed integer that receives the lower limit of the up-down control range.
This parameter may be NULL.

pHigh
Address of a signed integer that receives the upper limit of the up-down control range.
This parameter may be NULL.

Return Values
The return value for this message is not used.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

UDM_GETUNICODEFORMAT
Retrieves the UNICODE character format flag for the control.

Return Values
Returns the UNICODE format flag for the control. If this value is nonzero, the control is
using UNICODE characters. If this value is zero, the control is using ANSI characters.

Remarks
See the remarks for CCM_GETUNICODEFORMAT for a discussion of this message.

Chapter 27 Up-Down Controls 741

.J~Mit$ments
Version 4.00 and later of Comctl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in commctrl.h.

UDM_SETUNICODEFORMAT

Sets the acceleration for an up-down control.

Parameters
nAccels

Number of UDACCEL structures specified byaAccels.

aAccels
Address of an array of UDACCEL structures that contain acceleration information.
Elements should be sorted in ascending order based on the nSec member.

Return Values
Returns TRUE if successful, or FALSE otherwise.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

742 Volume 4 Microsoft Windows Common Controls

Sets the radix base for an up-down control. The base value determines whether the
buddy window displays numbers in decimal or hexadecimal digits. Hexadecimal
numbers are always unsigned, and decimal numbers are signed.

Parameters
nBase

New base value for the control. This parameter can be 10 for decimal or 16 for
hexadecimal.

Return Values
The return value is the previous base value. If an invalid base is given, the return value
is zero.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

Sets the buddy window for an up-down control.

.U1)~_SUBUqDY .

; lParam ",0; .

Parameters
hwndBuddy

Handle to the new buddy window.

Return Values
The return value is the handle to the previous buddy window.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

Chapter 27 Up-Down Controls 743

Sets the current position for an up-down control with 16-bit precision.

Parameters
nPos

New position for the up-down control. If the parameter is outside the control's
specified range, nPos will be set to the nearest valid value.

Return Values
The return value is the previous position.

Remarks
This message only supports 16-bit positions. If 32-bit values have been enabled for an
up-down control with UDM_SETRANGE32, use UDM_SETPOS32.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

Sets the minimum and maximum positions (range) for an up-down control.

744 Volume 4 Microsoft Windows Common Controls

Parameters
nUpper and nLower

Maximum position and minimum position for the up-down control. Neither position can
be greater than the UD_MAXVAL value or less than the UD_MINVAL value. In
addition, the difference between the two positions cannot exceed UD_MAXVAL.

Return Values
No return value.

Remarks
The maximum position can be less than the minimum position. Clicking the up arrow
button moves the current position closer to the maximum position, and clicking the down
arrow button moves towards the minimum position.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

UDM_SETRANGE32
Sets the 32-bit range of an up-down control.

Parameters
iLow

Signed integer value that represents the new lower limit of the up-down control range.

iHigh
Signed integer value that represents the new upper limit of the up-down controi range.

Return Values
The return value for this message is not used.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

Chapter 27 Up-Down Controls 745

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

UDM_SETUNICODEFORMAT
Sets the UNICODE character format flag for the control. This message allows you to
change the character set used by the control at run time rather than having to re-create
the control.

Parameters
fUnicode

Determines the character set that is used by the control. If this value is nonzero, the
control will use UNICODE characters. If this value is zero, the control will use ANSI
characters.

Return Values
Returns the previous UNICODE format flag for the control.

Remarks
See the remarks for CCM_SETUNICODEFORMAT for a discussion of this message.

Version 4.00 and later of Comctl32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in commctrl.h.

UDM_GETUNICODEFORMAT

746 Volume 4 Microsoft Windows Common Controls

Up-Down Control Notification Messages

NM_RELEASEDCAPTURE (up-down)
Notifies an up-down control's parent window that the control is releasing mouse capture.
This notification is sent in the form of a WM_NOTIFY message.

Parameters
/pnmh

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The control ignores the return value from this notification.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

Sent by the operating system to the parent window of an up-down control when the
position of the control is about to change. This happens when the user requests a
change in the value by pressing the control's up or down arrow. The UDN_DELTAPOS
message is sent in the form of a WM_NOTIFY message.

Parameters
/pnmud

Address of an NMUPDOWN structure that contains information about the position
change.

Chapter 27 Up-Down Controls 747

The iPos member of this structure contains the current position of the control. The iDelta
member of the structure is a signed integer that contains the proposed change in
position. If the user has clicked the up button, this is a positive value. If the user has
clicked the down button, this is a negative value.

Return Values
Return nonzero to prevent the change in the control's position, or zero to allow the
change.

Remarks
The UDN_DELTAPOS notification is sent before the WM_VSCROLL or WM_HSCROLL
message, which actually changes the control's position. This lets you examine, allow,
mOdify, or disallow the change.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

Up-Down Control Structures

NMUPDOWN
Contains information specific to up-down control notification messages. It is identical to
and replaces the NM_UPDOWN structure.

typ~d~f' sfruct;;jN~~PDOWN:{ "

>;l~.~i~~~~iJi.l~' ",' '. i, '"

f:NMUPoow~~i ..,

.: , .).
, '. ,

, : ... ~ .

, ~ :. "

Members
hdr

NMHDR structure that contains additional information about the notification message.

iPos
Signed integer value that represents the up-down control's current position.

748 Volume 4 Microsoft Windows Common Controls

iDelta
Signed integer value that represents the proposed change in the up-down control's
position.

Version 4.70 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
3.0 and later).
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or
later).
Windows CE: Unsupported.
Header: Declared in commctrl.h.

UDACCEL
Contains acceleration information for an up-down control.

Members
nSec

Amount of elapsed time, in seconds, before the position change increment specified
by nlnc is used.

nlnc
Position change increment to use after the time specified by nSec elapses.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

749

APPENDIX A

Index A: Elements Grouped by Technology

The indexes in Part 3 make finding information in the Win32 Library volumes as easy as
possible. Rather than cluttering the Table of Contents with information about individual
programmatic elements (and thereby making the TOC uselessly jumbled), I've created
these indexes and put them in the back of each volume. With these indexes, you'll be
able to locate the programmatic element you're interested in-and see where it fits within
the volumes and their technologies--quickly and easily.

Also, to keep you informed and up-to-date about Microsoft technologies, I've created a
live Web-based document that maps Microsoft technologies to the locations where you
can get more information about them. This link gets you to the live index of technologies:
www.iseminger.comlwinprsltechn%gies

As always, send me feedback if you can think of ways to improve this section. I can't
guarantee a reply, but I'll read it, and if others can benefit, I'll incorporate the idea into
future volumes.

Animation Control Reference 127
Animation Control Messages 127

ACM_OPEN
ACM_PLAY
ACM_STOP

Animation Control Macros 130
Animate_Close
Animate_Create
Animate_Open
Animate_OpenEx
Animate_Play
Animate_Seek
Animate_Stop

Animation Control Notifications 136
ACN_START
ACN_STOP

ComboBoxEx Control Reference 145
ComboBoxEx Control Messages 145

CBEM_DELETEITEM
CBEM_GETCOMBOCONTROL
CBEM_GETEDITCONTROL
CBEM_GETEXTENDEDSTYLE
CBEM_GETIMAGELIST
CBEM_GETITEM
CBEM_GETUNICODEFORMAT
CBEM_HASEDITCHANGED
CBEM_INSERTITEM

CBEM_SETEXTENDEDSTYLE
CBEM"':SETIMAGELIST
CBEM_SETITEM
CBEM_SETUNICODEFORMAT

ComboBoxEx Control Notification
Messages 154

CBEN_BEGINEDIT
CBEN_DELETEITEM
CBEN_DRAGBEGIN
CBEN_ENDEDIT
CBEN_GETDISPINFO
CBEN_INSERTITEM
NM_SETCURSOR (ComboBoxEx)

ComboBoxEx Control Structures 158
COMBOBOXEXITEM
NMCBEENDEDIT
NMCBEDRAGBEGIN
NMCOMBOBOXEX

Common API Reference 81
Common API Functions 81

GetEffectiveClientRect
GetMUILanguage
InitCommonControls
InitCommonControlsEx
InitMUILanguage
ShowHideMenuCti

750 Volume 4 Microsoft Windows Common Controls

Common API Reference (continued)
Common API Messages (continued)

CCM_GETUNICODEFORMAT
CCM_GETVERSION
CCM_SETUNICODEFORMAT
CCM_SETVERSION
WM_NOTIFY
WM_NOTIFYFORMAT

Common API Macros 92
FORWARD_WM_NOTIFY
HAN DLE_WM_NOTI FY
INDEXTOSTATEIMAGEMASK

Common API Notifications 95
NM_CHAR
NM_CLlCK
NM_DBLCLK
NM_HOVER
NM_KEYDOWN
NM_KILLFOCUS
NM_NCHITTEST
NM_OUTOFMEMORY
NM_RCLICK
NM_RDBLCLK
NM_RELEASEDCAPTURE
NM_RETURN
NM_SETCURSOR
NM_SETFOCUS
NM_ TOOL TIPSCREATED

Common API Structures 104
COLORSCHEME
INITCOMMONCONTROLSEX
NMCHAR
NMHDR
NMKEY
NMMOUSE
NMOBJECTNOTIFY
NMTOOLTIPSCREATED

Custom Draw Reference 117
Custom Draw Notification Messages 117

NM_CUSTOMDRAW
Custom Draw Structures 119

NMCUSTOMDRAW

Date and Time Picker Reference 197
Date and Time Picker Control Messages 197

DTM_GETMCCOLOR
DTM_GETMCFONT
DTM_GETMONTHCAL
DTM_GETRANGE
DTM_GETSYSTEMTIME
DTM_SETFORMAT
DTM_SETMCCOLOR
DTM_SETMCFONT
DTM_SETRANGE
DTM_SETSYSTEMTIME

Date and Time Picker Control Macros 205
DateTime_GetMonthCal
Date Time_ GetMonthCalColor
DateTime_GetMonthCalFont
DateTime_GetRange
DateTime_ GetSystemtime
DateTime_SetFormat
DateTime_SetMonthCalColor
DateTime_SetMonthCalFont
DateTime_SetRange
DateTime_SetSystemtime

Date and Time Picker Control Notification
Messages 213

DTN_CLOSEUP
DTN_DATETIMECHANGE
DTN_DROPDOWN
DTN_FORMAT
DTN_FORMATQUERY
DTN_USERSTRING
DTN_WMKEYDOWN
NM_KILLFOCUS (date time)
NM_SETFOCUS (date time)

Date and Time Picker Control Structures 220
NMDATETIMECHANGE
NMDATETIMEFORMAT
NMDATETIMEFORMATQUERY
NMDATETIMESTRING
NMDATETIMEWMKEYDOWN

Drag List Box Reference 226
Drag List Box Functions 226

Drawlnsert
LBltemFromPt
MakeDragList

Drag List Box Notifications 228
DL_BEGINDRAG
DL_CANCELDRAG
DL_DRAGGING
DL_DROPPED

Drag List Box Structures 231
DRAGLISTINFO

Flat Scroll Bar Reference 235
Flat Scroll Bar Functions 235

InitializeFlatSB
FlatSB_EnableScroliBar
FlatSB_GetScrollinfo
FlatSB_GetScroliPos
FlatSB_GetScroliProp
FlatSB_ GetScroll Range
FlatSB_SetScrollinfo
FlatSB_SetScroliPos
FlatSB_SetScroliProp
FlatSB_SetScroliRange
FlatSB_ShowScroliBar
UninitializeFlatSB

Appendix A Index A: Elements Grouped by Technology 751

Header Control Reference 258
Header Control Messages 258

HDM_CLEARFIL TER
HDM_CREATEDRAGIMAGE
HDM_DELETEITEM
HDM_EDITFIL TER
HDM_GETBITMAPMARGIN
HDM_GETIMAGELIST
HDM_GETITEM
HDM_GETITEMCOUNT
HDM_GETITEMRECT
HDM_GETORDERARRAY
HDM_GETUNICODEFORMAT
HDM_HITTEST
HDM_INSERTITEM
HDM_LAYOUT
HDM_ORDERTOINDEX
HDM_SETBITMAPMARGIN
HDM_SETFIL TERCHANGETIMEOUT
HDM_SETHOTDIVIDER
HDM_SETIMAGELIST
HDM_SETITEM
HDM_SETORDERARRAY
HDM_SETUNICODEFORMAT

Header Control Macros 273
HDM_SETUNICODEFORMAT
HeadecClearFilter
Headec CreateDraglmage
HeadecDeleteltem
Header_EditFilter
Headec GetBitmapMargin
Header_GetlmageList
Header_Getltem
Header_GetltemCount
HeadecGetltemRect
Headec GetOrderArray
Header_GetUnicodeFormat
HeadeUnsertltem
Header_Layout
HeadecOrderTolndex
HeadecSetBitmapMargin
Header_SetFilterChangeTimeout
Header_SetHotDivider
Header_SetlmageList
HeadecSetltem
HeadecSetOrderArray
HeadecSetUnicodeFormat

Header Control Notification Messages 291
HDN_BEGINDRAG
HDN_BEGINTRACK
HDN_DIVIDERDBLCLICK
HDN_ENDDRAG
HDN_ENDTRACK
HDN_FIL TERBTNCLICK
HDN_FIL TERCHANGE

HDN_GETDISPINFO
HDN_ITEMCHANGED
HDN_ITEMCHANGING
HDN_ITEMCLlCK
HDN_ITEMDBLCLICK
HDN_TRACK
NM_CUSTOMDRAW (header)
NM_RCLICK (header)
NM_RELEASEDCAPTURE (header)

Header Control Structures 301
HDHITTESTINFO
HDITEM
HDLAYOUT
HDTEXTFIL TER Structure
NMHDDISPINFO
NMHDFIL TERBTNCLICK Structure
NMHEADER

Hot-Key Control Reference 315
Hot-Key Control Messages 315

HKM-,-GETHOTKEY
HKM_SETHOTKEY
HKM_SETRULES

IP Address Control Reference 320
IP Address Control Messages 320

IPM_CLEARADDRESS
IPM_GETADDRESS
IPM_ISBLANK
IPM_SETADDRESS
IPM_SETFOCUS
IPM_SETRANGE

IP Address Control Notifications 324
IPN_FIELDCHANGED

IP Address Control Macros 325
FIRST _IPADDRESS
FOURTH_IPADDRESS
MAKEIPADDRESS
MAKEIPRANGE
SECOND_IPADDRESS
THIRD_IPADDRESS

IP Address Control Structures 329
NMIPADDRESS

Month-Calendar Control Reference 339
Month-Calendar Control Messages 339

MCM_GETCOLOR
MCM_GETCURSEL
MCM_GETFIRSTDAYOFWEEK
MCM_GETMAXSELCOUNT
MCM_GETMAXTODA YWIDTH
MCM_GETMINREQRECT
MCM_GETMONTHDELTA
MCM_GETMONTHRANGE
MCM_GETRANGE
MCM_GETSELRANGE

752 Volume 4 Microsoft Windows Common Controls

Month-Calendar Control Reference (continued)
Month-Calendar Control Messages (continued)

MCM_GETTODAY ,
MCM_GETUNICODEFORMAT
MCM_HITTEST
MCM_SETCOLOR
MCM_SETCURSEL
MCM_SETDAYSTATE
MCM_SETFIRSTDAYOFWEEK
MCM_SETMAXSELCOUNT
MCM_SETMONTHDEL TA
MCM_SETRANGE
MCM_SETSELRANGE
MCM_SETTODAY
MCM_SETUNICODEFORMAT

Month-Calendar Control Macros 359
MonthCal_ GetColor
MonthCaLGetCurSel
MonthCaL GetFirstDayOfWeek
MonthCaL GetMaxSelCount
MonthCaL GetMaxTodayWidth
MonthCaLGetMinReqRect
MonthCaL GetMonthDelta
MonthCaL GetMonthRange
MonthCaL Get Range
MonthCaL GetSelRange
MonthCaL GetToday
MonthCaL GetUnicodeFormat
MonthCaLHitTest
MonthCaLSetColor
MonthCaLSetCurSel
MonthCaLSetDayState
MonthCaLSetFirstDayOfWeek
MonthCaLSetMaxSelCount
MonthCal_SetMonthDelta
MonthCaLSetRange
MonthCaLSetSelRange
MonthCaLSetToday
MonthCaLSetUnicodeFormat

Month-Calendar Control Notifications 379
MCN_GETDAYSTATE
MCN_SELCHANGE
MCN_SELECT
NM_RELEASEDCAPTURE (monthcal)

Month-Calendar Control Structures 382
MCHITTESTINFO
NMDAYSTATE
NMSELCHANGE

Month-Calendar Control Data Types 385
MONTHDAYSTATE

Pager Control Reference 390
Pager Control Messages 390

PGM_FORWARDMOUSE
PGM_GETBKCOLOR

PGM_GETBORDER
PGM_GETBUTTONSIZE
PGM_GETBUTTONSTATE
PGM_GETDROPTARGET
PGM_GETPOS
PGM_RECALCSIZE
PGM_SETBKCOLOR
PGM_SETBORDER
PGM_SETBUTTONSIZE
PGM_SETCHILD
PGM_SETPOS

Pager Control Macros 399
PagecForwardMouse
Pager _ GetBkColor
Pager_GetBorder
Pagec GetButtonSize
Pagec GetButtonState
Pager_GetDropTarget
PagecGetPos
PagecRecalcSize
PagecSetBkColor
Pager_SetBorder
Pager_SetButtonSize
PagecSetChiid
Pager_SetPos

Pager Control Notifications 408
NM_RELEASEDCAPTURE (pager)
PGN_CALCSIZE
PGN_SCROLL

Pager Control Structures 410
NMPGCALCSIZE
NMPGSCROLL

Progress Bar Control Reference 417
Progress Bar Control Messages 417

PBM_DEL TAPOS
PBM_GETPOS
PBM_GETRANGE
PBM_SETBARCOLOR
PBM_SETBKCOLOR
PBM_SETPOS
PBM_SETRANGE
PBM_SETRANGE32
PBM_SETSTEP
PBM_STEPIT

Progress Bar Control Structures 423
PBRANGE

Property Sheet Reference 435
Property Sheet Functions 435

AddPropSheetPageProc
CreatePropertySheetPage
DestroyPropertySheetPage
ExtensionPropSheetPageProc
PropertySheet
PropSheetPageProc

Appendix A Index A: Elements Grouped by Technology 753

PropSheetProc
Property Sheet Messages 441

PSM_ADDPAGE
PSM_APPLY
PSM_CANCELTOCLOSE
PSM_CHANGED
PSM_GETCURRENTPAGEHWND
PSM_GETTABCONTROL
PSM_HWNDTOINDEX
PSM_IDTOINDEX
PSM_INDEXTOHWND
PSM_INDEXTOID
PSM_INDEXTOPAGE
PSM_INSERTPAGE
PSM_ISDIALOGMESSAGE
PSM_PAGETOINDEX
PSM_PRESSBUTTON
PSM_QUERYSIBLINGS
PSM_REBOOTSYSTEM
PSM_REMOVEPAGE
PSM_RESTARTWINDOWS
PSM_SETCURSEL
PSM_SETCURSELID
PSM_SETFINISHTEXT
PSM_SETHEADERSUBTITLE
PSM_SETHEADERTITLE
PSM_SETTITLE
PSM_SETWIZBUTTONS
PSM_UNCHANGED

Property Sheet Macros 461
PropSheeCAddPage
PropSheeCApply
PropSheeC CancelToClose
PropSheeC Changed
PropSheeC GetCurrentPageHwnd
PropSheeC GetTabControl
PropSheeCHwndTolndex
PropSheeUdTolndex
PropSheeUndexToHwnd
PropSheeUndexTold
PropSheeUndexToPage
PropSheeUnsertPage
PropSheeClsDialogMessage
PropSheeCPage Tolndex
PropSheeCPressButton
PropSheeC QuerySiblings
PropSheeCRebootSystem
PropSheeCRemovePage
PropSheeCRestartWindows
PropSheeCSetCurSel
PropSheet_SetCurSelBylD
PropSheeCSetFinishText
PropSheeCSetHeaderSubTitle
PropSheeCSetHeaderTitle
PropSheeCSetTitle

PropSheeCSetWizButtons
PropSheeC UnChanged

Property Sheet Notifications 483
PSN_APPLY
PSN_GETOBJECT
PSN_HELP
PSN_KILLACTIVE
PSN_QUERYCANCEL
PSN_QUERYINITIALFOCUS
PSN_RESET
PSN_SETACTIVE
PSN_TRANSLATEACCELERATOR
PSN_ WIZBACK
PSN_ WIZFINISH
PSN_WIZNEXT

Property Sheet Structures 493
PROPSHEETHEADER
PROPSHEETPAGE
PSHNOTIFY

Rebar Control Reference 510
Rebar Control Messages 510

RB_BEGINDRAG
RB_DELETEBAND
RB_DRAGMOVE
RB_ENDDRAG
RB_GETBANDBORDERS
RB_GETBANDCOUNT
RB_GETBANDINFO
RB_GETBARHEIGHT
RB_GETBARINFO
RB_GETBKCOLOR
RB_GETCOLORSCHEME
RB_GETDROPTARGET
RB_GETPALETTE
RB_GETRECT
RB_GETROWCOUNT
RB_GETROWHEIGHT
RB_GETTEXTCOLOR
RB_GETTOOL TIPS
RB_GETUNICODEFORMAT
RB_HITTEST
RB_IDTOINDEX
RB_INSERTBAND
RB_MAXIMIZEBAND
RB_MINIMIZEBAND
RB_MOVEBAND
RB_PUSHCHEVRON
RB_SETBANDINFO
RB_SETBARINFO
RB_SETBKCOLOR
RB_SETCOLORSCHEME
RB_SETPALETTE
RB_SETPARENT
RB_SETTEXTCOLOR

754 Volume 4 Microsoft Windows Common Controls

Rebar Control Reference (continued)
Rebar Control Messages (continued)

RB_SETIOOL TIPS
RB_SETUNICODEFORMAT
RB_SHOWBAND
RB_SIZETORECT

Rebar Control Notifications 535
NM_CUSTOMDRAW (rebar)
NM_NCHITIEST (rebar)
NM_RELEASEDCAPTURE (rebar)
RBN_AUTOSIZE
RBN_BEGINDRAG
RBN_CHEVRONPUSHED
RBN_CHILDSIZE
RBN_DELETEDBAND
RBN_DELETINGBAND
RBN_ENDDRAG
RBN_GETOBJECT
RBN_HEIGHTCHANGE
RBN_LAYOUTCHANGED

Rebar Control Structures 544
NMRBAUTOSIZE
NMREBAR
NMREBARCHEVRON
NMREBARCHILDSIZE
RBHITIESTINFO
REBARBANDINFO
REBARINFO

Status-Bar Reference 562
Status-Bar Functions 562

CreateStatusWindow
DrawStatusText
MenuHelp

Status-Bar Messages 565
SB_GETBORDERS
SB_GETICON
SB_GETPARTS
SB_GETRECT
SB_GETIEXT
SB_GETIEXTLENGTH
SB_GETIIPTEXT
SB_GETUNICODEFORMAT
SB_ISSIMPLE
SB_SETBKCOLOR
SB_SETICON
SB_SETMINHEIGHT
SB_SETPARTS
SB_SETIEXT
SB_SETIIPTEXT
SB_SETUNICODEFORMAT
SB_SIMPLE

Status-Bar Notifications 578
NM_CLlCK (status bar)
NM_DBLCLK (status bar)

NM_RCLICK (status bar)
NM_RDBLCLK (status bar)
SBN_SIMPLEMODECHANGE

Tab Control Reference 601
Tab Control Messages 601

TCM_ADJUSTRECT
TCM_DELETEALLITEMS
TCM_DELETEITEM
TCM_DESELECTALL
TCM_GETCURFOCUS
TCM_GETCURSEL
TCM_GETEXTENDEDSTYLE
TCM_GETIMAGELIST
TCM_GETITEM
TCM_GETITEMCOUNT
TCM_GETITEMRECT
TCM_GETROWCOUNT
TCM_GETIOOL TIPS
TCM_GETUNICODEFORMAT
TCM_HIGHLIGHTITEM
TCM_HITIEST
TCM_INSERTITEM
TCM_REMOVEIMAGE
TCM_SETCURFOCUS
TCM_SETCURSEL
TCM_SETEXTENDEDSTYLE
TCM_SETIMAGELIST
TCM_SETITEM
TCM_SETITEMEXTRA
TCM_SETITEMSIZE
TCM_SETMINTABWIDTH
TCM_SETPADDING
TCM_SETIOOL TIPS
TCM_SETUNICODEFORMAT

Tab Control Macros 619
TabCtrLAdjustRect
TabCtrLDeleteAliltems
TabCtrLDeleteltem
TabCtrLDeselectAIl
TabCtrLGetCurFocus
TabCtrL GetCurSel
TabCtrL GetExtendedStyle
TabCtrLGetlmageList
TabCtrLGetltem
TabCtrL GetltemCount
TabCtrL GetltemRect
TabCtrLGetRowCount
TabCtrLGetToolTips
TabCtrLGetUnicodeFormat
TabCtrLHighlightltem
TabCtrLHitTest
TabCtrUnsertltem
TabCtrLRemovelmage
TabCtrLSetCurFocus

Appendix A Index A: Elements Grouped by Technology 755

TabCtrl_SetCurSel
TabCtrl_SetExtendedStyle
TabCtrl_SetlmageList
TabCtr,-Setitem
TabCtr,-SetitemExtra
TabCtr'-SetitemSize
TabCtrl_SetMinTabWidth
TabCtrl_SetPadding
TabCtrl_SetToolTips
TabCtrl_SetUnicodeFormat

Tab Control Notification Messages 639
NM_CLlCK (tab)
NM_RCLICK (tab)
NM_RELEASEDCAPTURE (tab)
TCN_FOCUSCHANGE
TCN_GETOBJECT
TCN_KEYDOWN
TCN_SELCHANGE
TCN_SELCHANGING

Tab Control Structures 644
NMTCKEYDOWN
TCHITTESTINFO
TCITEM
TCITEMHEADER

Tooltip Control Reference 666
Tooltip Control Messages 666

TTM_ACTIVATE
TTM_ADDTOOL
TTM_ADJUSTRECT
TTM_DEL TOOL
TTM_ENUMTOOLS
TTM_GETBUBBLESIZE
TTM_GETCURRENTTOOL
TTM_GETDELA YTIME
TTM_GETMARGIN
TTM_GETMAXTIPWIDTH
TTM_GETTEXT
TTM_GETTIPBKCOLOR
TTM_GETTOOLCOUNT
TTM_GETTOOLINFO
TTM_HITTEST
TTM_NEWTOOLRECT
TTM_POP
TTM_RELAYEVENT
TTM_SETDELAYTIME
TTM_SETMARGIN
TTM_SETMAXTIPWIDTH
TTM_SETTIPBKCOLOR
TTM_SETTIPTEXTCOLOR
TTM_SETTITLE
TTM_SETTOOLINFO
TTM_ TRACKACTIVATE
TTM3RACKPOSITION

TTM_UPDATE
TTM_UPDATETIPTEXT
TTM_WINDOWFROMPOINT

Tooltip Control Notification Messages 687
NM_CUSTOMDRAW (Tooltip)
TTN_GETDISPINFO
TTN_POP
TTN_SHOW

Tooltip Control Structures 691
NMTTCUSTOMDRAW
NMTTDISPINFO
TOOLINFO
TTHITTESTINFO

Trackbar Control Reference 705
Trackbar Control Messages 705

TBM_CLEARSEL
TBM_CLEARTICS
TBM_GETBUDDY
TBM_GETCHANNELRECT
TBM_GETLINESIZE
TBM_GETNUMTICS
TBM_GETPAGESIZE
TBM_GETPOS
TBM_GETPTICS
TBM_GETRANGEMAX
TBM_GETRANGEMIN
TBM_GETRANGEMIN
TBM_GETSELEND
TBM_GETSELSTART
TBM_GETTHUMBLENGTH
TBM_GETTHUMBRECT
TBM_GETTIC
TBM_GETTICPOS
TBM_GETTOOL TIPS
TBM_GETUNICODEFORMAT
TBM_SETBUDDY
TBM_SETLINESIZE
TBM_SETPAGESIZE
TBM_SETPOS
TBM_SETRANGE
TBM_SETRANGEMAX
TBM_SETRANGEMIN
TBM_SETSEL
TBM_SETSELEND
TBM_SETSELSTART
TBM_SETTHUMBLENGTH
TBM_SETTIC
TBM_SETTIPSIDE
TBM_SETTOOL TIPS

Trackbar Control Notifications 728
NM_CUSTOMDRAW (trackbar)
NM_RELEASEDCAPTURE (trackbar)

756 Volume 4 Microsoft Windows Common Controls

Up-Down Control Reference 735
Up-Down Control Functions 735

CreateUpDownControl
Up-Down Control Messages 737

UDM_GETACCEL
UDM_GETBASE
UDM_GETBUDDY
UDM_GETPOS
UDM_GETRANGE
UDM_GETRANGE32
UDM_GETUNICODEFORMAT
UDM_SETACCEL

UDM_SETBASE
UDM_SETBUDDY
UDM_SETPOS
UDM_SETRANGE
UDM_SETRANGE32
UDM_SETUNICODEFORMAT

Up-Down Control Notification Messages 746
NM_RELEASEDCAPTURE (up-down)
UDN_DEL TAPOS

Up-Down Control Structures 747
NMUPDOWN
UDACCEL

APPENDIX B

Index B: Volume 1, Elements
Listed Alphabetically

A CreateloCompletionPort 502
CreateJobObject .. 81

AbnormalTermination 750 Create Process ... 82
AddAtom .. 346 CreateProcessAsUser 92
AddUsersToEncryptedFile 655 CreateProcessWithLogonW 100
AliocateUserPhysicalPages 261 CreateRemoteThread 1 07
AreFileApisANSI .. 481 CreateThread ... 110
AssignProcessToJobObject 74 CWPRETSTRUCT 457
AttachThreadlnput ... 75 CWPSTRUCT .. 458

B D
Beep .. 767 DEBUGHOOKINFO 459
BindloCompletionCaliback 77 DebugProc ... 429
BY _HANDLE_FILE_INFORMATION 606 DecryptFile ... 658

DefineDosDevice ... 504

c DeleteAtom .. 347
DeleteFiber .. 112

CaIlMsgFilter .. 420
CaliNextHookEx .. 421

DeleteFile ... 506
DeleteVolumeMountPoint 659

CallWndProc ... 422 DisableThreadLibraryCalis 217

CaIlWndRetProc .. 424 DISKQUOTA_USER_INFORMATION 731

Cancello .. 482 DIiMain ... 219

CBT _CREATEWND 456 DuplicateHandle .. 406

CBTACTIVATESTRUCT 456
CBTProc .. 425
ChangeClipboardChain 363 E
CHARSETINFO ... 810 EFS_CERTIFICATE_BLOB 732
CloseClipboard .. 364 EFS_HASH_BLOB 733
CloseHandle .. 404 EmptyClipboard ... 365
CommandLineToArgvW 78 EncryptFile ... 660
ConvertThreadToFiber 79 ENCRYPTION_CERTIFICATE. 733
COPYDATASTRUCT 343 ENCRYPTION_CERTIFICATE_HASH 734
CopyFile .. 483 ENCRYPTION_CERTIFICATE_HASH_
CopyFileEx .. 485 LIST .. 735
CopyMemory ... 263 ENCRYPTION_CERTIFICATE_LlST 735
CopyProgressRoutine 486 EncryptionDisable .. 661
CountClipboardFormats 364 EnumClipboardFormats 366
CreateDirectory ... 488 EVENTMSG ... 460
CreateDirectoryEx 489 EXCEPTION_POINTERS 759
CreateFiber .. 80 EXCEPTION_RECORD 759
CreateFile .. 491 ExitProcess .. 113
CreateHardLink ... 656 ExitThread .. 115

757

758 Volume 1 Microsoft Windows Base Services

F GetDiskFreeSpace 523
GetDiskFreeSpaceEx 525

FatalAppExit .. 768 GetDriveType ... 526
FiberProc ... 116 GetEnvironmentStrings 122
FILE_NOTIFY _INFORMATION 609 GetEnvironmentVariable 123
FileEncryptionStatus 662 GetExceptionCode 751
FilelOCompletionRoutine 507 GetExceptionlnformation 753
Fill Memory ... 264 GetExitCodeProcess 124
FindAtom ... 348 GetExitCodeThread 125
FindClose .. 509 GetFiberData ... 207
FindCloseChangeNotification 510 GetFileAttributes .. 527
FINDEX_INFO_LEVELS 617 GetFileAttributesEx 530
FINDEX_SEARCH_OPS 618 GetFilelnformationByHandle 531
FindFirstChangeNotification 511 GetFileSize .. 532
FindFirstFile ... 513 GetFileSizeEx .. 533
FindFirstFileEx .. 514 GetFileType ... 534
FindFirstVolume .. 663 GetFuliPathName .. 535
FindFirstVolumeMountPoint 665 GetGuiResources ., 126
FindNextChangeNotification 517 GetHandlelnformation 413
FindNextFile .. 518 GetLastError .. 776
FindNextVolume .. 666 GetLogicalDrives ... 536
FindNextVolumeMountPoint 667 GetLogicalDriveStrings 537
FindVolumeClose .. 668 GetLongPathName 538
FindVolumeMountPointClose 669 GetModuleFileName 224
FlashWindow ... 769 GetModuleHandle .. 225
FlashWindowEx ... 770 GetMsgProc ... 433
FLASHWINFO ... 783 GetOpenClipboardWindow 371
FlushFileBuffers .. 519 GetPriorityClass ... 127
FONTSIGNATURE 810 GetPriorityClipboardFormat 372
ForegroundldleProc 432 GetProcAddress .. 226
FormatMessage .. 771 GetProcessAffinityMask 128
FreeEncryptionCertificateHashList. 670 GetProcessHeap ... 266
FreeEnvironmentStrings 117 GetProcessHeaps .. 267
FreeLibrary .. 222 GetProcessloCounters 130
FreeLibraryAndExitThread 223 GetProcessPriorityBoost... 130
FreeUserPhysicaIPages 265 GetProcessShutdownParameters 131

GetProcessTimes .. 132

G GetProcessVersion 134
GetProcessWorkingSetSize 135

GET _FILEEX_INFO_LEVELS 619
GetAtomName ... 349

GetQueuedCompletionStatus 539
GetShortPathName 541

GetBinaryType .. 521
GetClipboardData .. 367
GetClipboardFormatName 368
GetClipboardOwner 369
GetClipboardSequenceNumber 370
GetClipboardViewer 371
GetCommandLine 117

GetStartuplnfo .. 136
GetTempFileName 543
GetTempPath ... 545
GetTextCharset ... 795
GetTextCharsetinfo 796
GetThreadPriority ... 137
GetThreadPriorityBoost 138

GetCompressedFileSize 670
GetCurrentDirectory 522
GetCurrentFiber .. 207

GetThreadTimes .. 139
GetVolumelnformation 672
GetVolumeNameForVolumeMountPoint 675

GetCurrentProcess 118 GetVolumePathName 676

GetCurrentProcessld 119 GetWriteWatch ... 268

GetCurrentThread 120 GlobaIAddAtom .. 350

GetCurrentThreadld 121 GlobalDeleteAtom .. 352

Appendix B Elements Listed Alphabetically 759

GlobaIFindAtom ... 353 GetQuotaUsedText 718
GlobalGetAtomName 354 GetSid ... 719
GlobalMemoryStatus 269 GetSidLength 720

Invalidate ... 721

H
SetQuotaLimit 721
SetQuota Threshold 722

HeapAlloc .. 271
HeapCompact ... 273
HeapCreate ... 275
HeapDestroy .. 277
HeapFree ... 278
HeapLock .. 280
HeapReAlloc ... 281
HeapSize ... 284
HeapUnlock ... 286
HeapValidate ... 287
HeapWalk .. 289

IDiskQuotaUserBatch 723
Add .. 724
Remove ... 725
RemoveAII ... 726
FlushToDisk 726

IEnumDiskQuotaUsers 727
Clone ... 728
Next ... 729
Reset. .. 730
Skip ... 730

InitAtomTable .. 355
Int32x32To64 .. 546
Int64ShllMod32 ... 547
Int64ShraMod32 ... 548

IDiskQuotaControl .. 683
AddUserName .. 684

AddUserSid 686
CreateEnumUsers 688
CreateUserBatch 690
DeleteUser .. 691
FindUserName 692
FindUserSid 693
GetDefaultQuotaLimit 694
GetDefaultQuotaLimitText 695
GetDefaultQuotaThreshold 696
GetDefaultQuotaThresholdText 697
GetQuotaLogFlags 698

Int64ShrIMod32 ... 549
IO_COUNTERS .. 184
IsBadCodePtr .. 290
IsBadReadPtr .. 291
IsBadStringPtr ... 293
IsBadWritePtr .. 294
IsClipboardFormatAvaiiable 373
IsDBCSLeadByte .. 798
IsDBCSLeadByteEx 799
IsReparseTagHighLatency 736
IsReparseTagMicrosoft 737
IsReparseTagNameSurrogate 738
IsTextUnicode ... 800

GetQuotaState 699
GiveUserNameResolutionPriority 700 J
Initialize ... 701
InvalidateSidNameCache 702
SetDefaultQuotaLimit 703
SetDefaultQuotaThreshold 704
SetQuotaLogFlags 705
SetQuotaState 706
ShutdownNameResolution 707

IDiskQuotaEvents ... 708
OnUserNameChanged 708

I DiskQuotaUser .. 709
GetAccountStatus 710

JOBOBJECT _ASSOCIATE_COMPLETION
PORT ... ~85

JOBOBJECT _BASIC_ACCOUNTING
INFORMATION ~ 188

JOBOBJECT _BASIC_AND_IO_ACCOUNTING
INFORMATION .. 190-

JOBOBJECT _BASIC_LIMIT
INFORMATION ~ 191

JOBOBJECT _BASIC_PROCESS ID
LIST .. ~ ... ~ 195

GetiD .. 711
GetName ... 712

JOBOBJECT BASIC UI
RESTRICTiONS ~ ... ~ 196

GetQuotalnformation 713
GetQuotaLimit 714
GetQuotaLimitText 715
GetQuotaThreshold 716
GetQuotaThresholdText 716
GetQuotaUsed 717

JOBOBJECT _END OF JOB TIME
INFORMATION .. ~ ~ ~ ~ 197

JOBOBJECT _EXTENDED LIMIT
INFORMATION ~ ~ 199

JOBOBJECT SECURITY LIMIT
INFORMATION ~ ~ 200

760 Volume 1 Microsoft Windows Base Services

JournaIPlaybackProc 434
JournaIRecordProc 437 Q

QueryDosDevice ... 562

K
Queryl nformationJobObject. 146
QueryRecoveryAgentsOnEncryptedFile 677

KBDLLHOOKSTRUCT 460 QueryUsersOnEncryptedFile 678

KeyboardProc ... 439 QueueUserWorkltem 148

L R
LARGE_INTEGER 610
LoadLibrary ... 228
LoadLibraryEx .. 230
LOCALESIGNATURE 811

RaiseException ... 754
ReadDirectoryChangesW 563
ReadFile .. 567
ReadFileEx ... 571

LockFile .. 550 ReadFileScatter .. 574

LockFileEx .. 551 RegisterClipboardFormat. 375

LowLevelKeyboardProc 441
LowLeveIMouseProc 442

RemoveDirectory .. 576
RemoveUsersFromEncryptedFile 679
ReplaceFile ... 577
ResetWriteWatch .. 299

M ResumeThread ... 150

MAKEINTATOM ... 356
MapUserPhysicalPages 295 s
MapUserPhysical PagesScatter 297
MEMORY _BASIC_INFORMATION 328
MEMORYSTATUS 331

SearchPath ... 580
SetClipboardData ... 376

MessageBeep .. 777
MessageProc ... 444
METAFILEPICT .. 378

SetClipboardViewer 377
SetCurrentDirectory 581
SetEndOfFile ... 582

MOUSEHOOKSTRUCT 462 SetEnvironmentVariable 151

MOUSEHOOKSTRUCTEX 463 SetErrorMode .. 778

MouseProc ... 446 SetFileApisToANSI 583

MoveFile ... 553 SetFileApisToOEM 585

MoveFileEx ... 554 SetFileAttributes ... 586

MoveFileWithProgress 557
MoveMemory .. 298
MSLLHOOKSTRUCT 464

SetFilePointer ... 588
SetFilePointerEx ... 591
SetHandlelnformation414

MuIDiv ... 560 SetlnformationJobObject 152

MultiByteToWideChar 802 SetLastError .. 780
SetLastErrorEx .. 781

o SetPriorityClass .. 153
SetProcessAffinityMask 155

OFSTRUCT .. 611
OpenClipboard ... 374
OpenJobObject .. 141
OpenProcess .. 142
OpenThread ... 144

SetProcessPriorityBoost 156
SetProcessShutdownParameters 157
SetProcessWorkingSetSize 159
SetThreadAffinityMask 161
SetThreadldealProcessor 162
SetThreadPriority .. 163
SetThreadPriorityBoost.. 165

p SetUnhandledExceptionFilter 756
SetUserFileEncryptionKey 680

PostQueuedCompletionStatus 561 SetVolumeLabel ... 593
PROCESS_HEAP _ENTRy 333 SetVolumeMountPoint 681
PROCESS_INFORMATION 202 SetWindowsHookEx 447

Appendix B Elements Listed Alphabetically 761

SheliProc .. 451 VirtualFreeEx .. 313
Sleep .. 166 Virtual Lock .. 316
SleepEx .. 167 VirtualProtect .. 318
STARTUPINFO .. 202 VirtualProtectEx .. 320
SuspendThread .. 169 VirtualQuery .. 323
SwitchToFiber .. 170 VirtuaIQueryEx .. 325
SwitchToThread ... 171 VirtuaIUnlock ... 326
SysMsgProc ... 453

T
w
WaitForlnputldle ... 182

TerminateJobObject 172 WideCharToMultiByte 806
TerminateProcess .. 173 WIN32_FILE_ATTRIBUTE_DATA 612
TerminateThread .. 174 WIN32_FIND_DATA 614
TEXT .. 812 WM_ASKCBFORMATNAME 380
ThreadProc ... 176 WM_CANCELJOURNAL 465
TlsAlioc ... 176 WM_CHANGECBCHAIN 381
TlsFree ... 178 WM_CLEAR .. 382
TlsGetValue .. 179 WM_COPY ... 383
TlsSetValue .. 180 WM_COPYDATA .. 343
TranslateCharsetlnfo 805 WM_CUT .. 383

WM_DESTROYCLIPBOARD 384

u WM_DRAWCLIPBOARD 385
WM_HSCROLLCLIPBOARD 386

Ulnt32x32To64 ... 594 WM_PAINTCLIPBOARD 387

ULARGE_INTEGER. 611
UnhandledExceptionFilter 757
UnhookWindowsHookEx 455

WM_PASTE .. 388
WM_QUEUESYNC467
WM_RENDERALLFORMATS 389

UnlockFile ... 595 WM_RENDERFORMAT 390

UnlockFileEx ... 596 WM_SIZECLIPBOARD 391

UserHandleGrantAccess 181 WM_ VSCROLLCLI PBOARD 392
WriteFile .. 598

v WriteFileEx .. 601
WriteFileGather ... 604

VirtuaIAlloc .. 301
VirtualAllocEx ... 306 z
VirtualFree .. 311

ZeroMemory .. 327

APPENDIX 8

Index B: Volume 2, Elements Listed
Alphabetically

A CB_GETLOCALE .. 101
CB_GETTOPINDEX 102

ACCEL. .. 452 CB_INITSTORAGE 103
ActivateKeyboardLayout 467 CB_INSERTSTRING 1 04
AppendMenu ... 246 CB_LlMITTEXT .. 105

CB_RESETCONTENT 106

B CB_SELECTSTRING 106
CB_SETCURSEL .. 108

Blocklnput .. 469
BM_CLlCK ... 56
BM_GETCHECK ... 57
BM_GETIMAGE .. 58
BM_GETSTATE .. 59
BM_SETCHECK ... 60
BM_SETIMAGE .. 61
BM_SETSTATE .. 62
BM_SETSTYLE ... 63
BN_CLlCKED .. 64
BN_DBLCLK ... 65
BN_DOUBLECLICKED 66
BN_KILLFOCUS ... 66
BN_SETFOCUS .. 67
BroadcastSystemMessage 614

CB_SETDROPPEDWIDTH 108
CB_SETEDITSEL .. 109
CB_SETEXTENDEDUI. 110
CB_SETHORIZONTALEXTENT 111
CB_SETITEMDATA 112
CB_SETITEMHEIGHT 113
CB_SETLOCALE ... 114
CB_SETTOPINDEX 115
CB_SHOWDROPDOWN 116
CBN_CLOSEUP .. 117
CBN_DBLCLK ... 118
CBN_DROPDOWN 119
CBN_EDITCHANGE 120
CBN_EDITUPDATE 120
CBN_ERRSPACE 121
CBN_KILLFOCUS 122

c CBN_SELCHANGE 123
CBN_SELENDCANCEL 124

CaliWindowProc .. 682
CB_ADDSTRING .. 84
CB_DELETESTRING 85
CB_DIR ... 86
CB_FINDSTRING ... 88
CB_FINDSTRINGEXACT 89
CB_GETCOUNT ... 90
CB_GETCURSEL ... 91
CB_GETDROPPEDCONTROLRECT 92
CB_GETDROPPEDSTATE 93
CB_GETDROPPEDWIDTH 93
CB_GETEDITSEL ... 94
CB_GETEXTENDEDUI 95
CB_GETHORIZONTALEXTENT 96
CB_GETITEMDATA 97
CB_GETITEMHEIGHT 98
CB_GETLBTEXT .. 99
CB_GETLBTEXTLEN 100

CBN_SELENDOK .. 125
CBN_SETFOCUS .. 125
CharLower ... 323
CharLowerBuff ... 324
CharNext .. 325
CharNextExA ... 326
CharPrev .. 327
CharPrevExA ... 327
CharToOem ... 328
CharToOemBuff ... 329
CharUpper ... 330
CharUpperBuff ... 331
CheckDlgButton ... 53
CheckMenultem ... 249
CheckMenuRadioltem 250
CheckRadioButton ... 54
ClipCursor .. 200
COMBOBOXINFO ... 77

763

764 Volume 2 Microsoft Windows User Interface

COMPAREITEMSTRUCT 78
CompareString .. 332 E
CopyAcceleratorTable 446 EnableMenultem .. 256
CopyCursor ... 201 EnableScroliBar ... 134
Copylcon ... 218 EnableWindow ... 470
CreateAcceleratorTable 447 EndDialog .. 555
CreateCaret ... 192 EndMenu .. 258
CreateCursor ... 202 EnumProps .. 687
CreateDialog ... 537 EnumPropsEx .. 688
CreateDialoglndirect. 539 ExtractAssociatedlcon 229
CreateDialoglndirectParam 541 Extractlcon ... 231
CreateDialogParam 543 ExtractlconEx ... 232
Create Icon ... 219
Create Icon From Resource 221
CreatelconFromResourceEx 222 F
Createlconlndirect 224
CreateMDIWindow 653

FoldString ... 336

Create Menu ... 251
CreatePopupMenu 252 G
CURSORINFO .. 216

GET~PPCOMMAND_LPARAM 437
GET DEVICE LPARAM438

o
DefDlgProc .. 545
DefFrameProc ... 655
DefMDIChiidProc ... 657
DefWindowProc ... 684

GET - KEYSTATE LPARAM 439
GET=KEYSTATE=WPARAM 440
GET _NCHITTEST _WPARAM 440
GET_WHEEL_DELTA_WPARAM 441
GET _XBUTTON_WPARAM441
GetActiveWindow .. 472

DeleteMenu ... 253
DestroyAcceleratorTable 448
DestroyCaret ... 193

GetAsyncKeyState 472
GetCapture .. 373
GetCaretBlinkTime 194

DestroyCursor ... 203 GetCaretPos .. 195
Destroylcon ... 225
DestroyMenu ... 254

GetClipCursor .. 204
GetComboBoxlnfo ... 76

DialogBox .. 546 GetCursor .. 205
DialogBoxlndirect .. 547 GetCursorlnfo .. 206
DialogBoxlndirectParam 550 GetCursorPos .. 207
DialogBoxParam ... 552
DialogProc ... 553
DispatchMessage .. 616
DlgDirListComboBox 73
DlgDirSelectComboBoxEx 75
DLGITEMTEMPLATE 582

GetDialogBaseUnits 556
GetDlgCtrIID ... 557
GetDlgltem ... 558
GetDlgltemlnt ... 559
GetDlgltemText .. 561
GetDoubleClickTime 373

DLGITEMTEMPLATEEX 584 GetFocus ... 474
DLGTEMPLATE .. 586 Getlconlnfo .. 233
DLGTEMPLATEEX 589
DM_GETDEFID ... 595
OM_REPOSiTION 596
OM SETDEFID ... 596
DragDetect .. 372
Drawlcon ... 225
DrawlconEx ... 227
DRAWITEMSTRUCT 80
DrawMenuBar ... 255

GetlnputState ... 617
GetKeyboardLayout 475
GetKeyboardLayoutList 476
GetKeyboardLayoutName 477
GetKeyboardState 478
GetKeyNameText .. 479
GetKeyState ... 480
GetLastinputinfo .. 482
GetMenu .. 258

Duplicatelcon ... 229 GetMenuBarlnfo .. 259

APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 765

GetMenuCheckMarkDimensions 260 KEYBDINPUT .. 511
GetMenuDefaultitem 261 KiliTimer ... 674
GetMenulnfo .. 262
GetMenultemCount 263
GetMenultemlD ... 264 L
GetMenultemlnfo ... 264 LASTINPUTINFO ... 513
GetMenultemRect 266 LoadAccelerators ... 449
GetMenuState ... 267 LoadCursor .. 208
GetMenuString .. 269 LoadCursorFromFile 209
GetMessage .. 618 Loadlcon .. 235
GetMessageExtralnfo 620 LoadKeyboardLayout... 485
GetMessagePos .. 621 LoadMenu .. 278
GetMessageTime .. 622 LoadMenulndirect .. 279
GetMouseMovePointsEx 374 LoadString .. 353
GetNextDlgGroupltem 562 LookuplconldFromDirectory 236
GetNextDlgTabltem 563 LookuplconldFromDirectoryEx 238
GetProp ... 689 Istrcat ... 354
GetQueueStatus .. 622 Istrcmp ... 355
GetScroliBarlnfo .. 136 Istrcmpi ... 356
GetScrolllnfo .. 137 Istrcpy ... 358
GetScroliPos ... 139 Istrcpyn ... 359
GetScroliRange ... 140 Istrlen ... 360
GetStringTypeA ... 338
GetStringTypeEx ... 342
GetStringTypeW .. 346 M
GetSubMenu ... 270 MapDialogRect .. 566
GetSystemMenu .. 271 Map Vi rtuaIKey .. 487

MapVirtualKeyEx ... 489

H MDICREATESTRUCT 659
MDINEXTMENU .. 297

HARDWAREINPUT 509 MEASUREITEMSTRUCT 82
HideCaret .. 195 MENUBARINFO .. 297
HiliteMenultem .. 272 MENUEX_TEMPLATE_HEADER 298

MENUEX_TEMPLATE_ITEM 299
MENUGETOBJECTINFO 301
MENUINFO .. 302

ICONINFO ... 239 MenultemFromPoint 280
ICONMETRICS ... 240 MENUITEMINFO ... 304
INPUT .. 510 MENUITEMTEMPLA TE 309
InSendMessage .. 624 MENUITEMTEMPLATEHEADER 310
InSendMessageEx 625 MessageBox .. 567
InsertMenu ... 273 MessageBoxEx .. 572
InsertMenultem ... 276 MessageBoxlndirect 577
IsCharAlpha ... 350 ModifyMenu ... 281
IsCharAlphaNumeric 351 mouse_event ... 376
IsCharLower .. 352 MOUSEINPUT ... 514
IsCharUpper .. 352 MOUSEMOVEPOINT 385
IsDialogMessage ... 564 MSG ... 645
IsDlgButtonChecked 55 MSGBOXPARAMS 593
IsMenu ... 278
IsWindowEnabled .. 483 o
K OemKeyScan ... 491

OemToChar ... 361
keybd_event .. 483 OemToCharBuff ... 361

766 Volume 2 Microsoft Windows User Interface

p SetDoubleClickTime 381
SetFocus .. 496

PeekMessage .. 626 SetKeyboardState .. 497
PostMessage ... 628 SetMenu ... 285
PostQuitMessage .. 630 SetMenuDefaultitem 286
PostThreadMessage 631 SetMenulnfo ... 287
PropEnumProc .. 690 SetMenultemBitmaps 288
PropEnumProcEx .. 691 SetMenultemlnfo ... 290

SetMessageExtralnfo 642

Q SetProp .. 693
SetScrolllnfo ... 147

QueryPerformanceCounter 675 SetScroliPos .. 149
QueryPerformanceFrequency 676 SetScroliRange .. 151

SetSystemCursor ... 213

R SetTimer .. 677
ShowCaret ... 198

RegisterHotKey ... 492 ShowCursor ... 215
RegisterWindowMessage 632 ShowScrollBar ... 152
ReleaseCapture .. 379 STM_GETICON ... 173
RemoveMenu .. 284 STM_GETIMAGE .. 174
RemoveProp ... 692 STM_SETICON ... 175
ReplyMessage ... 633 STM_SETIMAGE ... 176

STN_CLlCKED .. 177

s STN_DBLCLK .. 177
STN_DISABLE .. 178

SBM_ENABLE_ARROWS 157 STN_ENABLE .. 179
SBM_GETPOS .. 158 SwapMouseButton 382
SBM_GETRANGE 159
SBM_GETSCROLLINFO 159
SBM_SETPOS .. 161 T
SBM_SETRANGE 162 TimerProc .. 678
SBM_SETRANGEREDRAW 163 ToAscii ... 498
SBM_SETSCROLLlNFO 164 ToAsciiEx ... 499
SCROLLBARINFO 154 ToUnicode .. 501
ScroliDC .. 142 ToUnicodeEx ... 503
SCROLLINFO ... 155 TPMPARAMS .. 310
ScroliWindow ... 143 TrackMouseEvent .. 383
ScroliWindowEx .. 145 TRACKMOUSEEVENT 385
SendAsyncProc ... 634 TrackPopupMenu .. 291
SendDlgltemMessage 579 TrackPopupMenuEx 294
Sendlnput .. 494 TranslateAccelerator 450
Send Message ... 636 TranslateMDISysAccel 658
SendiviessageCaliback 637 TiansiateMessage 642
SendMessageTimeout 639
SendNotifyMessage 640
SetActiveWindow .. 495 u
SetCapture .. 380 Unload Keyboard Layout 505
SetCaretBlinkTime 196 UnregisterHotKey ... 506
SetCaretPos .. 197
SetCursor .. 211
SetCursorPos .. 212 v
SetDlgltemlnt... .. 580 VkKeyScan .. 507
SetDlgltemText. ... 581 VkKeyScan Ex .. 508

APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 767

w WM_MENUCHAR .. 456
WM_MENUCOMMAND 316

WaitMessage ... 644 WM_MENUDRAG 316
WindowProc .. 685 WM_MENUGETOBJECT 317
WM_ACTIVATE .. 517 WM_MENURBUTTONUP 318
WM_APP ... 646 WM_MENUSELECT 458
WM_APPCOMMAND 387 WM_MOUSEACTIVATE 399
WM_CAPTURECHANGED 390 WM_MOUSEHOVER 401
WM_CHANGEUISTATE 453 WM_MOUSELEAVE 402
WM_CHAR .. 518 WM_MOUSEMOVE 403
WM_COMMAND ... 311 WM_MOUSEWHEEL 404
WM_COMPAREITEM 126 WM_NCHITTEST .. 407
WM_CONTEXTMENU 312 WM_NCLBUTTONDBLCLK 409
WM_CTLCOLORBTN 68 WM_NCLBUTTONDOWN 410
WM_CTLCOLORDLG 597 WM_NCLBUTTONUP411
WM_CTLCOLORSCROLLBAR 165 WM_NCMBUTTONDBLCLK 412
WM_CTLCOLORSTATIC 180 WM_NCMBUTTONDOWN 414
WM_DEADCHAR .. 520 WM_NCMBUTTONUP415
WM_DRAWITEM .. 127 WM_NCMOUSEHOVER 416
WM_ENTERIDLE .. 599 WM_NCMOUSELEAVE 417
WM_ENTERMENULOOP 314 WM_NCMOUSEMOVE418
WM_ERASEBKGND 241 WM_NCRBUTTONDBLCLK 419
WM_EXITMENULOOP 315 WM_NCRBUTTONDOWN 420
WM_GETDLGCODE 600 WM_NCRBUTTONUP 421
WM_GETFONT ... 50 WM_NCXBUTTONDBLCLK 423
WM_GETHOTKEY 522 WM_NCXBUTTONDOWN 424
WM_HOTKEY ... 523 WM_NCXBUTTONUP 426
WM_HSCROLL ... 166 WM_NEXTDLGCTL.. 602
WM_ICONERASEBKGND 242 WM_NEXTMENU .. 319
WM_INITDIALOG .. 601 WM_PAINTICON ... 243
WM_INITMENU ... 455 WM_QUERYUISTATE 459
WM_INITMENUPOPUP 456 WM_RBUTTONDBLCLK 427
WM_KEYDOWN ... 524 WM_RBUTTONDOWN 429
WM_KEYUP .. 526 WM_RBUTTONUP 430
WM_KILLFOCUS .. 527 WM_SETCURSOR 217
WM_LBUTTONDBLCLK 391 WM_SETFOCUS ... 528
WM_LBUTTONDOWN 392 WM_SETFONT .. 51
WM_LBUTTONUP 394 WM_SETHOTKEY 529
WM_MBUTTONDBLCLK 395 WM_SYSCHAR ... 460
WM_MBUTTONDOWN 397 WM_SYSCOMMAND 462
WM_MBUTTONUP 398 WM_SYSDEADCHAR 530
WM_MDIACTIVATE 661 WM_SYSKEYDOWN 532
WM_MDICASCADE 662 WM_SYSKEYUP ... 534
WM_MDICREATE 663 WM_TIMER ... 679
WM_MDIDESTROY 665 WM_UNINITMENUPOPUP 320
WM_MDIGETACTIVE 666 WM_UPDATEUISTATE 464
WM_MDIICONARRANGE. 667 WM_USER ... 647
WM_MDIMAXIMIZE 667 WM_ VSCROLL. ... 168
WM_MDINEXT .. 668 WM_XBUTTONDBLCLK 431
WM_MDIREFRESHMENU 669 WM_XBUTTONDOWN 433
WM_MDIRESTORE 670 WM_XBUTTONUP 435
WM_MDISETMENU 671 wsprintf ... 362
WM_MDITILE .. 672 wvsprintf ... 366
WM_MEASUREITEM 128

APPENDIX B

Index B: Volume 3, Elements
Listed Alphabetically

A CreateDIBitmap ... 76
CreateDIBPatternBrushPt. 159

AborlPath ... 586 CreateDIBSeetion .. 78
AlphaBlend .. 66 CreateEnhMetaFile 399
AngleAre .. 371 CreateHalftonePalette 203
AnimatePalette .. 202 CreateHatehBrush 160
Are ... 373 CreateIC ... 306
AreTo ... 375 Create Palette ... 204

CreatePatternBrush 162

B
Create Pen .. 605
CreatePenlndireet .. 607

BeginPaint ... 512 CreateSolidBrush ... 163

BeginPath .. 587
BitBlt .. 69
BITMAP ... 116 D
BITMAPCOREHEADER 118 DeleteDC ... 307
BITMAPCOREINFO 119 DeleteEnhMetaFile 401
BITMAPFILEHEADER 121 DeleteObjeet .. 308
BITMAPINFO .. 122 DIBSECTION ... 145
BITMAPINFOHEADER 123 DISPLAY_DEVICE 344
BITMAPV4HEADER 128 DPtoLP ... 254
BITMAPV5HEADER 133 DrawAnimatedReets 513
BLENDFUNCTION 140 DrawCaption .. 514

DrawEdge .. 516

c DrawEseape ... 309
DrawFoeusReet ... 518

CaneelDC .. 295 DrawFrameControl 519

ChangeDisplaySettings 296
ChangeDisplaySettingsEx 299

DrawState .. 522
DrawStateProe ... 525

Chord ... 354
ClientToSereen .. 252
CloseEnhMetaFile 397 E
CloseFigure ... 589 Ellipse .. 356
COLORADJUSTMENT 142 EMR ... 421
COLORREF ... 223 EMRALPHABLEND 423
CombineTransform 253 EMRANGLEARC ... 425
CopyEnhMetaFile .. 398 EMRARC ... 426
CopyReet ... 619 EMRARCTO .. 426
CreateBitmap .. 71 EMRCHORD .. 426
CreateBitmaplndireet. 73 EMRPIE ... 426
CreateBrushlndireet 157 EMRBITBL T ... 427
CreateCompatibleBitmap 74 EMRCREATEBRUSHINDIRECT 431
CreateCompatibleDC 303 EMRCREATECOLORSPACE 432
CreateDC ... 304 EMRCREATEDIBPATTERNBRUSHPT 434

769

770 Volume 3 Microsoft Windows GOI

EMRCREATEMONOBRUSH 435 EMRSCALEWINDOWEXTEX 468
EMRCREATEPALETTE 436 EMRSELECTOBJECT 469
EMRCREATEPEN 437 EMRDELETEOBJECT 469
EMRELLIPSE EMRSELECTPALETTE 470
EMRRECTANGLE 437 EMRSETARCDIRECTION 471
EMREOF ... 438 EMRSETBKCOLOR 471
EMREXCLUDECLIPRECT 439 EMRSETTEXTCOLOR 471
EMRINTERSECTCLIPRECT 439 EMRSETCOLORADJUSTMENT 472
EMREXTCREATEFONTINDIRECTW 439 EMRSETCOLORSPACE 469
EMREXTCREATEPEN 440 EMRSELECTCOLORSPACE 469
EMREXTFLOODFILL. 441 EMRDELETECOLORSPACE 469
EMREXTSELECTCLlPRGN 442 EMRSETDIBITSTODEVICE 472
EMREXTTEXTOUTA 443 EMRSETICMPROFILE 474
EMREXTTEXTOUTW 443 EMRSETMAPPERFLAGS 475
EMRFILLPATH EMRSETMITERLIMIT 476
EMRSTROKEANDFILLPATH 444 EMRSETPALETTEENTRIES476
EMRSTROKEPATH 444 EMRSETPIXELV ... 477
EMRFILLRGN ... 444 EMRSETVI EWPORTEXTEX 478
EMRFORMAT ... 445 EMRSETWINDOWEXTEX 478
EMRFRAMERGN .. 446 EMRSETVIEWPORTORGEX 479
EMRGDICOMMENT 447 EMRSETWINDOWORGEX 479
EMRGLSBOUNDEDRECORD 448 EMRSETBRUSHORGEX 479
EMRGLSRECORD 449 EMRSETWORLDTRANSFORM 479
EMRGRADIENTFILL. 450 EMRSTRETCHBLT 480
EMRINVERTRGN 451 EMRSTRETCHDIBITS 482
EMRPAINTRGN .. 451 EMRTEXT .. 484
EMRLlNETO ... 452 EMRTRANSPARENTBLT485
EMRMOVETOEX .. 452 EndPaint '" 526
EMRMASKBLT .. 452 EndPath ... 590
EMRMODIFYWORLDTRANSFORM 455 Enhanced Metafile Records with No
EMROFFSETCLlPRGN 455 Parameters ... 487
EMRPIXELFORMAT 456 Enhanced Metafile Records with One
EMRPLGBLT ... 457 Parameter .. 487
EMRPOL YDRAW .. 459 EnhMetaFileProc : 402
EMRPOLYDRAW16 460 ENHMETAHEADER 488
EMRPOLYLlNE ... 461 ENHMETARECORD 491
EMRPOLYBEZIER 461 EnumDisplayDevices 31 0
EMRPOLYGON ... 461 EnumDisplaySettings 311
EMRPOL YBEZIERTO 461 EnumDisplaySettingsEx 313
EMRPOLYLINETO 461 EnumEnhMetaFile 403
EMRPOLYLlNE16 462 EnumObjects ... 316
EMRPOLYBEZIER16 462 EnumObjectsProc .. 317
EMRPOLYGON16 462 Equa!Rect .. 619
EMRPOL YBEZIERT016 462 ExcludeClipRect .. 177
EMRPOLYLINET016 462 ExcludeUpdateRgn 526
EMRPOL YPOL YLiNE 463 ExtCreatePen ... 608
EMRPOL YPOL YGON 463 ExtFloodFill .. 80
EMRPOLYPOLYLlNE16 464 EXTLOGPEN ... 611
EMRPOLYPOLYGON16 464 ExtSelectClipRgn ... 178
EMRPOL YTEXTOUT A 464
EMRPOL YTEXTOUTW 464
EMRRESIZEPALETTE 466 F
EMRRESTOREDC 466 FillPath ... 591
EMRROUNDRECT 467 FillRect ... 357
EMRSCALEVIEWPORTEXTEX 468 Flatten Path ... 592

Appendix B Index B: Volume 3, Elements Listed Alphabetically 771

FrameRect. .. 358 GetViewportOrgEx 259
GetWindowDC ... 537

G
GetWindowExtEx ... 260
GetWindowOrgEx .. 261

GdiComment ... 404 GetWindowRgn .. 539

GdiFlush .. 527 GetWinMetaFileBits 413

GdiGetBatchLimit .. 529 GetWorldTransform 262

GdiSetBatchLimit. .. 530
GetArcDirection ... 376

GRADIENT_RECT 146
GRADIENT_TRIANGLE 147

GetBitmapDimensionEx 82
GetBkColor .. 531

GradientFiII ... 88
GrayString .. 540

GetBkMode .. 531
GetBoundsRect ... 532
GetBrushOrgEx ... 164 H
GetBValue ... 226 HANDLETABLE ... 491
GetClipBox .. 180 HTULColorAdjustment 211
GetClipRgn .. 181
GetColorAdjustment 205
GetCurrentObject .. 318
GetCurrentPositionEx ,. 255 InflateRect .. 620
GetDC .. 319
Get DC Brush Color 320

IntersectClipRect.. .. 184
IntersectRect .. 621

GetDCEx ... 321 InvalidateRect .. 542
GetDCOrgEx ... 323
GetDCPenColor .. 324

InvalidateRgn ... 543
InvertRect. .. 359

GetDeviceCaps ... 325
GetDIBColorTable ... 83

IsRectEmpty ... 622

GetDIBits ... 84
GetEnhMetaFile .. 407 L
GetEnhMetaFileBits 408
GetEnhMetaFileHeader 411
GetEnhMetaFilePaletteEntries 412
GetGraphicsMode 256
GetGValue ... 226
GetMapMode ... 257
GetMetaRgn .. 182
GetMiterLimit ... 593
GetNearestColor ... 206
GetNearestPalettelndex 207
GetObject .. 331

LineDDA ... 377
LineDDAProc ... 378
LineTo .. 379
LoadBitmap .. 90
LockWindowUpdate 544
LOG BRUSH ... 169
LOGBRUSH32 ... 172
LOGPALETIE ... 224
LOGPEN .. 615
LPtoDP ... 263

GetObjectType .. 333
GetPaletteEntries .. 208
GetPath ... 594

M
GetPixel ... 87 MAKEPOINTS ... 631
GetRandomRgn .. 183 MAKEROP4 ... 152
GetROP2 ... 533 MapWindowPoints 264
GetRValue ... 227 MaskBlt .. 92
GetStockObject ... 334 ModifyWorldTransform 265
GetStretchBltMode .. 88 MoveToEx .. 381
GetSysColorBrush 165
GetSystemPaletteEntries 209
GetSystemPaletteUse 210 o
GetUpdateRect .. 535
GetUpdateRgn .. 536

OffsetClipRgn ... 185
OffsetRect .. 623

GetViewportExtEx 258

n2 Volume 3 Microsoft Windows GOI

OffsetViewportOrgEx 267 ScaleWindowExtEx 270
OffsetWindowOrgEx 268 ScreenToClient .. 271
OutputProc .. 546 SelectClipPath ... 188

SelectClipRgn .. 189

p SelectObject.. ... 340
SelectPalette .. 215

PaintDesktop ... 547
PAINTSTRUCT ... 561

SetArcDirection .. 389
SetBitmapDimensionEx 97

PALETTE ENTRY .. 224 SetBkColor ... 550

PALETTEINDEX ... 228 SetBkMode : 551

PALETTERGB ... 229 SetBoundsRect .. 552

PatBlt ... 166 SetBrushOrgEx .. 168

PathToRegion ... 596
Pie ... 360
PlayEnhMetaFile ... 415
PlayEnhMetaFileRecord 417
PlgBlt ... 95
POINT .. 629
POINTL. ... 492

SetColorAdjustment 216
SetDCBrushColor .. 342
SetDCPenColor ... 343
SetDlBColorTable .. 98
SetDIBits .. 100
SetDIBitsToDevice 102
SetEnhMetaFileBits 418

POINTS ... 629 SetGraphicsMode .. 272

POINTSTOPOINT 631 SetMapMode .. 274

POINTTOPOINTS 632 SetMetaRgn ... 191

PolyBezier ... 382
PolyBezierTo ... 383
PolyDraw ... 384
Polygon .. 362
Polyline .. 386
PolylineTo .. 387
PolyPolygon ... 363
PolyPolyline ... 388
PtinRect ... 624

SetMiterLimit .. 597
SetPaletteEntries ... 217
SetPixel .. 1 05
SetPixelV ... 106
SetRect .. 625
SetRectEmpty .. 626
SetROP2 .. 554
SetStretchBltMode 107
SetSystemPaletteUse 219

PtVisible ... 186 SetViewportExtEx .. 276
SetViewportOrgEx 278
SetWindowExtEx ... 279

R SetWindowOrgEx ... 280

RealizePalette ... 213
RECT ... 630
Rectangle .. 364
RECTL ... 493
RectVisible .. 187
RedrawWindow ... 547
ReleaseDC .. 336
ResetDC .. 337
ResizePalette .. 214

SetWindowRgn .. 556
SetWinMetaFileBits 419
SetWorldTransform 282
SiZE ... 150
Stretch Bit ... 109
StretchDIBits .. 111
StrokeAndFiliPath .. 598
StrokePath ... 599
SubtractRect .. 626

RestoreDC ... 338
RGB ... 230 T
RGBQUAD .. 148
RGBTRIPLE .. 149 TransparentBlt ... 114

RoundRect.. ... 365 TRIVERTEX ... 151

s u
SaveDC ... 339 UnionRect .. 628

ScaleViewportExtEx 269 UnrealizeObject ... 221

Appendix B Index B: Volume 3, Elements Listed Alphabetically 773

UpdateColors .. 222 WM_DISPLA YCHANGE 562
UpdateWindow .. 557 WM_NCPAINT ... 563

WM_PAINT .. 564

v WM_PALETTECHANGED 231
WM_PALETTEISCHANGING 232

ValidateRect .. 558
ValidateRgn ... 559
VIDEOPARAMETERS 345

WM_PRINT .. 566
WM_PRINTCLIENT 567
WM_QUERYNEWPALETTE 233
WM_SETREDRAW 568

w WM_SYNCPAINT .. 569
WM_SYSCOLORCHANGE 234

Widen Path ... 600
WindowFromDC .. 560 x
WM_DEVMODECHANGE 350

XFORM .. 284

APPENDIX B

Index B: Volume 4, Elements
Listed Alphabetically

A CreateStatusWindow 562
CreateUpDownControl 735

ACM_OPEN .. 127
ACM_PLA Y ... 128
ACM_STOP ... 129 D
ACN_ST ART ... 136
ACN_STOP ... 136
AddPropSheetPageProc 435
Animate_Close .. 130
Animate_Create .. 130
Animate_Open .. 131
Animate_OpenEx .. 132
Animate_Play .. 133
Animate_Seek ... 134
Animate_Stop .. 135

DateTime_GetMonthCal 205
DateTime_GetMonthCalColor 205
DateTime_GetMonthCaIFont 207
DateTime_GetRange 207
DateTime_GetSystemtime 208
DateTime_SetFormat 209
DateTime_SetMonthCalColor 210
DateTime_SetMonthCalFont 211
DateTime_SetRange 211
DateTime_SetSystemtime 212
DestroyPropertySheetPage 436

c DL_BEGINDRAG ... 228
DL_CANCELDRAG 229

CBEM_DELETEITEM 145 DL_DRAGGING ... 230
CBEM_GETCOMBOCONTROL 146 DL_DROPPED ... 230
CBEM_GETEDITCONTROL.. 146 DRAGLISTINFO .. 231
CBEM_GETEXTENDEDSTYLE 147 Drawlnsert .. 226
CBEM_GETIMAGELIST 147 DrawStatusText ... 563
CBEM_GETITEM .. 148 DTM_GETMCCOLOR 197
CBEM_GETUNICODEFORMAT 149 DTM_GETMCFONT 198
CBEM_HASEDITCHANGED 149 DTM_GETMONTHCAL 198
CBEM_INSERTITEM 150 DTM_GETRANGE 199
CBEM_SETEXTENDEDSTYLE 151 DTM_GETSYSTEMTIME 200
CBEM_SETIMAGELlST 151 DTM_SETFORMAT 200
CBEM_SETITEM .. 152 DTM_SETMCCOLOR 201
CBEM_SETUNICODEFORMAT 153 DTM_SETMCFONT 202
CBEN_BEGINEDIT 154 DTM_SETRANGE 203
CBEN_DELETEITEM 154 DTM_SETSYSTEMTIME 204
CBEN_DRAGBEGIN 155 DTN_CLOSEUP .. 213
CBEN_ENDEDIT ... 155 DTN_DATETIMECHANGE 214
CBEN_GETDISPINFO 156 DTN_DROPDOWN 215
CBEN_INSERTITEM 157 DTN_FORMAT .. 216
CCM_GETUNICODEFORMAT 86 DTN_FORMATQUERY 216
CCM_GETVERSION 87 DTN_USERSTRING 217
CCM_SETUNICODEFORMAT ~ 88 DTN_WMKEYDOWN 218
CCM_SETVERSION 89
·COLORSCHEME .. 104
COMBOBOXEXITEM 158 E
CreatePropertySheetPage 435 ExtensionPropSheetPageProc 437

ns

ns Volume 4 Microsoft Windows Common Controls

F HDN_FIL TERBTNCLlCK 294
HDN_FILTERCHANGE 295

FIRST _IPADDRESS 325 HDN_GETDISPINFO 295
FlatSB_EnableScroliBar 236 HDN_ITEMCHANGED 296
FlatSB_GetScrolllnfo 237 HDN_ITEMCHANGING 297
FlatSB_GetScroIiPos 238 HDN_ITEMCLlCK .. 297
FlatSB_GetScroliProp 239 HDN_ITEMDBLCLlCK 298
FlatSB_GetScroliRange 241 HDN_ TRACK ... 298
FlatSB_SetScrolllnfo 242 HDTEXTFILTER Structure 306
FlatSB_SetScroliPos 243 Header_ClearFilter 274
FlatSB_SetScroIiProp 244 HeadecCreateDraglmage 275
FlatSB_SetScroIiRange 247 Header_Deleteltem 275
FlatSB_ShowScroliBar 248 Header_EditFilter ... 276
FORWARD_WM_NOTIFY 92 Header_GetBitmapMargin 277
FOURTH_IPADDRESS 326 Header _ GetlmageList. 278

Header_Getltem .. 278

G Header _ GetltemCount. 279
Header _ GetltemRect , 280

GetEffectiveClientRect 81 Header_GetOrderArray 281

GetMUILanguage .. 82 Headec GetUnicodeFormat. 282
HeadeUnsertltem 282

H
Header_Layout .. 283
Header_OrderTolndex 284

HANDLE_WM_NOTIFY 93
HDHITTESTINFO .. 301
HDITEM ... 303
HDLA YOUT ... 306
HDM_CLEARFIL TER. 258
HDM_CREATEDRAGIMAGE 259
HDM_DELETEITEM 259
HDM_EDITFIL TER. 260
HDM_GETBITMAPMARGIN 261
HDM_GETIMAGELlST 261

HeadecSetBitmapMargin 285
HeadecSetFilterChangeTimeout 286
HeadecSetHotDivider 286
HeadecSetimageList 287
Header_Setltem ... 288
Header_SetOrderArray 289
Header_SetUnicodeFormat 290
HKM_GETHOTKEY 315
HKM_SETHOTKEY 316
HKM_SETRULES .. 317

HDM_GETITEM .. 262
HDM_GETITEMCOUNT 262
HDM_GETITEMRECT 263
HDM_GETORDERARRAY 264
HDM_GETUNICODEFORMAT 265
HDM_HITTEST ... 265
HDM_INSERTITEM 266
HDM_LAYOUT .. 266
HDM_ORDERTOINDEX 267
HDM_SETBITMAPMARGIN 268
HDM_SETFIL TERCHANGETIMEOUT 268
HDM_SETHOTDIVIDER 269
HDM_SETIMAGELIST 270
HDM_SETITEM , ·271
HDM_SETORDERARRA Y 271
HDM_SETUNICODEFORMAT 272

INDEXTOSTATEIMAGEMASK 94
InitCommonControls 83
InitCommonControlsEx 83
INITCOMMONCONTROLSEX 104
InitializeFlatSB ... 235
InitMUILanguage ... 84
IPM_CLEARADDRESS 320
IPM_GETADDRESS 321
IPM_ISBLANK ... 322
IPM_SETADDRESS 322
IPM_SETFOCUS ... 323
IPM_SETRANGE ... 323
IPN_FIELDCHANGED 324

HDN_BEGINDRAG 291
HDN_BEGINTRACK 292
HDN_DIVIDERDBLCLICK 292 L
HDN_ENDDRAG ... 293 LBltemFromPt .. 227
HDN_ENDTRACK 293

APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 777

M MonthCal SetUnicodeFormat 378
MONTHDAYSTATE 385

MakeDragList .. 228
MAKEIPADDRESS 326
MAKEIPRANGE .. 327 N
MCHITTESTINFO 382
MCM GETCOLOR 339
MCM - GETCURSEL 340
MCM - GETFIRSTDAYOFWEEK 341
MCM - GETMAXSELCOUNT 342
MCM - GETMAXTODAYWIDTH 342
MCM - GETMINREQRECT 343
MCM - GETMONTHDELTA 344
MCM - GETMONTHRANGE 345
MCM - GETRANGE 346
MCM - GETSELRANGE 347
MCM - GETTODAY 347
MCM - GETUNICODEFORMAT 348
MCM - HITTEST ... 349
MCM - SETCOLOR 351
MCM - SETCURSEL 352
MCM - SETDAYSTATE 353
MCM - SETFIRSTDAYOFWEEK 354
MCM - SETMAXSELCOUNT 354
MCM - SETMONTHDELTA 355
MCM - SETRANGE 356
MCM - SETSELRANGE 357
MCM - SETTODA Y 358
MCM - SETUNICODEFORMAT 358
MCN -GETDAYSTATE 379
MCN-SELCHANGE 380
MCN - SELECT .. 380
MenuHelp .. 564
MonthCal GetColor 359
MonthCal-GetCurSel 360
MonthCal=GetFirstDayOfWeek 361
MonthCal GetMaxSelCount 362
MonthCal=GetMaxTodayWidth 363
MonthCaLGetMinReqRect 363

NM CHAR ... 95
NM - CLlCK ... 95
NM=CLlCK (status bar) 578
NM_CLlCK (tab) .. 639
NM CUSTOMDRAW 117
NM=CUSTOMDRAW (header) 299
NM_CUSTOMDRAW (rebar) 535
NM_CUSTOMDRAW (Tooltip) 687
NM_CUSTOMDRAW (trackbar) 728
NM DBLCLK ... 96
NM=DBLCLK (status bar) 579
NM HOVER ... 96
NM - KEYDOWN ... 97
NM - KILLFOCUS ... 98
NM=KILLFOCUS (date time) 219
NM NCHITTEST ... 98
NM=NCHITTEST (rebar) 536
NM OUTOFMEMORY 99
NM - RCLICK .. 99
NM=RCLICK (header) 300
NM_RCLICK (status bar) 579
NM_RCLICK (tab) .. 639
NM RDBLCLK ... 100
NM=RDBLCLK (status bar) 580
NM RELEASEDCAPTURE 101
NM - RELEASEDCAPTURE (header) 301
NM - RELEASEDCAPTURE (monthcal) 381
NM=RELEASEDCAPTURE (pager) 408
NM RELEASEDCAPTURE (rebar) 537
NM - RELEAsEDCAPTURE (tab) 640
NM - RELEASEDCAPTURE (trackbar) 729
NM - RELEASEDCAPTURE (up-down) 746
NM - RETURN .. 101
NM - SETCURSOR 102

MonthCal GetMonthDelta 364
MonthCaLGetMonthRange 365
MonthCaLGetRange 366
MonthCal_GetSelRange 367

NM=SETCURSOR (ComboBoxEx) 157
NM SETFOCUS .. 102
NM=SETFOCUS (date time) 219
NM TOOL TIPSCREATED 1 03

MonthCal_GetToday 368 NMCBEDRAGBEGIN 161
MonthCal GetUnicodeFormat 368
MonthCal-HitTest.. 369
MonthCal=SetColor 370

NMCBEENDEDIT .. 160
NMCHAR ... 105
NMCOMBOBOXEX 161

MonthCal SetCurSel.. 371
MonthCal=SetDayState 372

NMCUSTOMDRAW 119
NMDATETIMECHANGE 220

MonthCaLSetFirstDayOfWeek 373 NMDATETIMEFORMAT 221
MonthCal SetMaxSeICount.. 374
MonthCal-SetMonthDelta 375
MonthCal=SetRange 376

NMDATETIMEFORMATQUERY 222
NMDATETIMESTRING 223
NMDATETIMEWMKEYDOWN 224

MonthCaLSetSeIRange 377 NMDAYSTATE .. 384
MonthCaLSetToday 377 NMHDDISPINFO ... 307

778 Volume 4 Microsoft Windows Common Controls

NMHDFIL TERBTNCLICK Structure 308 PGM_SETBORDER 396
NMHDR ... 106 PGM_SETBUTTONSIZE 396
NMHEADER .. 309 PGM_SETCHILD ... 397
NMIPADDRESS .. 329 PGM_SETPOS .. 398
NMKEY .. 107 PGN_CALCSIZE ... 409
NMMOUSE .. 107 PGN_SCROLL. .. 409
NMOBJECTNOTIFY 108 PropertySheet .. 438
NMPGCALCSIZE .. 410 PropSheeCAddPage 461
NMPGSCROLL ... 411 PropSheeCApply ... 461
NMRBAUTOSIZE .. 544 PropSheeCCancelToClose 462
NMREBAR ... 545 PropSheeCChanged 463
NMREBARCHEVRON 546 PropSheeC GetCurrentPageHwnd 464
NMREBARCHILDSIZE 547 PropSheeCGetTabControl 465
NMSELCHANGE ... 384 PropSheeCHwndTolndex 465
NMTCKEYDOWN 644 PropSheeUdTolndex 466
NMTOOLTIPSCREATED 109 PropSheeUndexToHwnd 467
NMTTCUSTOMDRAW 691 PropSheeUndexTold 467
NMTTDISPINFO ... 691 PropSheeUndexToPage 468
NMUPDOWN .. 747 PropSheeUnsertPage 469

PropSheeUsDialogMessage 470

p PropSheeCPageTolndex 471
PropSheeCPressButton 472

Pager_ForwardMouse 399
PagecGetBkColor 399
Pager_GetBorder .. 400
Pager_GetButtonSize 401
Pager_GetButtonState 401
Pager_GetDropTarget. 402
Pager_GetPos ... 403
Pager_RecalcSize 403
Pager_SetBkColor 404
Pager_SetBorder ... 405
Pager_SetButtonSize 406
Pager_SetChild ... 406
Pager_SetPos ... 407
PBM_DELTAPOS 417
PBM_GETPOS .. 417
PBM_GETRANGE 418
PBM_SETBARCOLOR 419
PBM_SETBKCOLOR 419
PBM_SETPOS .. 420
PBM_SETRANGE 421
PBM_SETRANGE32 421
PBM_SETSTEP .. 422
PBM_STEPIT .. 423
PBRANGE ... 423

PropSheeCQuerySiblings 473
PropSheeCRebootSystem 474
PropSheeCRemovePage 474
PropSheeCRestartWindows 475
PropSheeCSetCurSel 476
PropSheeCSetCurSeIByID 477
PropSheet_SetFinishText 477
PropSheeCSetHeaderSubTitle 478
PropSheeCSetHeaderTitle 479
PropSheeCSetTitle 480
PropSheeC SetWizButtons 481
PropSheeCUnChanged 482
PROPSHEETHEADER 493
PROPSHEETPAGE 499
PropSheetPageProc 439
PropSheetProc .. 440
PSHNOTIFY .. 503
PSM_ADDPAGE ... 441
PSM_APPL Y .. 442
PSM_CANCEL TOCLOSE 442
PSM_CHANGED ... 443
PSM_GETCURRENTPAGEHWND 444
PSM_GETT ABCONTROL 445
PSM_HWNDTOINDEX 445

PGM_FORWARDMOUSE 390
PGM_GETBKCOLOR 391
PGM_GETBORDER 391
PGM_GETBUTTONSIZE 392
PGM_GETBUTTONSTATE 392
PGM_GETDROPTARGET 393
PGM_GETPOS ... 394
PGM_RECALCSIZE 395
PGM_SETBKCOLOR. 395

PSM_IDTOINDEX 446
PSM_INDEXTOHWND 446
PSM_INDEXTOID 447
PSM_INDEXTOPAGE 447
PSM_INSERTPAGE 448
PSM_ISDIALOGMESSAGE 449
PSM_PAGETOINDEX 450
PSM_PRESSBUTTON 451
PSM_ QUERYSIBLlNGS 451

APPENDIX 8 Index 8: Volume 4, Elements Listed Alphabetically n9

PSM_REBOOTSYSTEM 452 RB_SETCOLORSCHEME 529
PSM_REMOVEPAGE 453 RB_SETPALETTE 529
PSM_RESTARTWINDOWS 453 RB_SETPARENT .. 530
PSM_SETCURSEL 454 RB_SETTEXTCOLOR 531
PSM_SETCURSELID 455 RB_SETTOOL TIPS 532
PSM_SETFINISHTEXT 456 RB_SETUNICODEFORMAT 532
PSM_SETHEADERSUBTITLE 456 RB_SHOWBAND ... 533
PSM_SETHEADERTITLE 457 RB_SIZETORECT 534
PSM_SETTITLE .. 458 RBHITTESTINFO .. 548
PSM_SETWIZBUTTONS 459 RBN_AUTOSIZE ... 537
PSM_UNCHANGED 460 RBN_BEGINDRAG 538
PSN~PPL Y .. 483 RBN_CHEVRONPUSHED 539
PSN_GETOBJECT 484 RBN_CHILDSIZE .. 539
PSN_HELP .. 484 RBN_DELETEDBAND 540
PSN_KILLACTIVE 485 RBN_DELETINGBAND 541
PSN_QUERYCANCEL. 486 RBN_ENDDRAG ... 541
PSN_QUERYINITIALFOCUS 487 RBN_GETOBJECT 542
PSN_RESET ... 488 RBN_HEIGHTCHANGE 543
PSN_SETACTIVE 489 RBN_LA YOUTCHANGED 543
PSN_ TRANSLA TEACCELERATOR. 489 REBARBANDINFO 548
PSN_WIZBACK ... 490 REBARINFO .. 552
PSN_WIZFINISH ... 491
PSN_WIZNEXT ... 492 s
R SB_GETBORDERS 565

SB_GETICON .. 566
RB_BEGINDRAG .. 510 SB_GETPARTS ... 566
RB_DELETEBAND 511 SB_GETRECT ... 567
RB_DRAGMOVE .. 511 SB_GETTEXT .. 567
RB_ENDDRAG ... 512 SB_GETTEXTLENGTH 569
RB_GETBANDBORDERS 512 SB_GETTIPTEXT .. 570
RB_GETBANDCOUNT 513 SB_GETUNICODEFORMAT 570
RB_GETBANDINFO 514 SB_ISSIMPLE .. 571
RB_GETBARHEIGHT 515 SB_SETBKCOLOR 572
RB_GETBARINFO 515 SB_SETICON .. 572
RB_GETBKCOLOR 516 SB_SETMINHEIGHT 573
RB_GETCOLORSCHEME 516 SB_SETPARTS ... 574
RB_GETDROPTARGET 517 SB_SETTEXT .. 574
RB_GETPALETTE 518 SB_SETTIPTEXT .. 575
RB_GETRECT .. 518 SB_SETUNICODEFORMAT 576
RB_GETROWCOUNT 519 SB_SIMPLE ... 577
RB_GETROWHEIGHT 519 SBN_SIMPLEMODECHANGE 580
RB_GETTEXTCOLOR 520 SECOND_IPADDRESS 328
RB_GETTOOL TIPS 520 ShowHideMenuCti ... 85
RB_GETUNICODEFORMAT 521
RB_HITTEST .. 522
RB_IDTOINDEX .. 522 T
RB_INSERTBAND 523
RB_MAXIMIZEBAND 524
RB_MINIMIZEBAND 524
RB_MOVEBAND ... 525
RB_PUSHCHEVRON 526
RB_SETBANDINFO 527
RB_SETBARINFO 527
RB_SETBKCOLOR 528

TabCtrLAdjustRect. 619
TabCtrLDeleteAliltems 620
TabCtrLDeleteltem 620
TabCtrl_DeselectAlI 621
TabCtrLGetCurFocus 622
TabCtrLGetCurSel 622
TabCtrLGetExtendedStyle 623

780 Volume 4 Microsoft Windows Common Controls

TabCtrLGetimageList 623 TCHITIESTINFO .. 644
TabCtrLGetitem .. 624 TCITEM .. 645
TabCtrLGetltemCount 625 TCITEMHEADER .. 647
TabCtrLGetltemRect 625 TCM_ADJUSTRECT 601
TabCtrLGetRowCount 626 TCM_DELETEALLITEMS 601
TabCtrLGetToolTips 627 TCM_DELETEITEM 602
TabCtrLGetUnicodeFormat 627 TCM_DESELECTALL. 602
TabCtrLHighlightltem 628 TCM_GETCURFOCUS 603
TabCtrLHitTest ... 629 TCM_GETCURSEL 604
TabCtrUnsertltem 629 TCM_GETEXTENDEDSTYLE 604
TabCtrl_Removelmage 630 TCM_GETIMAGELIST 605
TabCtrl_SetCurFocus 631 TCM_GETITEM ... 605
TabCtrLSetCurSel 632 TCM_GETITEMCOUNT 606
TabCtrl_SetExtendedStyle 632 TCM_GETITEMRECT 606
TabCtrl_SetlmageList. 633 TCM_GETROWCOUNT 607
TabCtrLSetltem .. 634 TCM_GETIOOL TIPS 607
TabCtrLSetltemExtra 634 TCM_GETUNICODEFORMAT 608
TabCtrl_SetltemSize 635 TCM_HIGHLIGHTITEM 609
TabCtrLSetMinTabWidth 636 TCM_HITIEST .. 609
TabCtrLSetPadding 637 TCM_INSERTITEM 610
TabCtrLSetToolTips 637 TCM_REMOVEIMAGE 611
TabCtrLSetUnicodeFormat 638 TCM_SETCURFOCUS 611
TBM_CLEARSEL .. 705 TCM_SETCURSEL 612
TBM_CLEARTICS 706 TCM_SETEXTENDEDSTYLE 613
TBM_GETBUDDY 706 TCM_SETIMAGELIST 614
TBM_GETCHANNELRECT 707 TCM_SETITEM ... 614
TBM_GETLINESIZE 708 TCM_SETITEMEXTRA 615
TBM_GETNUMTICS 708 TCM_SETITEMSIZE 616
TBM_GETPAGESIZE 709 TCM_SETMINTABWIDTH 616
TBM_GETPOS .. 710 TCM_SETPADDING 617
TBM_GETPTICS ... 710 TCM_SETIOOLTIPS 617
TBM_GETRANGEMAX 711 TCM_SETUNICODEFORMAT 618
TBM_GETRANGEMIN 711 TCN_FOCUSCHANGE 640
TBM_GETSELEND 712 TCN_GETOBJECT 641
TBM_GETSELSTART 713 TCN_KEYDOWN ... 642
TBM_GETIHUMBLENGTH 713 TCN_SELCHANGE 642
TBM_GETIHUMBRECT 714 TCN_SELCHANGING 643
TBM_GETIIC .. 715 THIRD_IPADDRESS 329
TBM_GETIICPOS 715 TOOLlNFO ... 693
TBM_GETIOOLTIPS 716 TIHITIESTINFO ... 695
TBM_GETUNICODEFORMAT 716 TTM_ACTIVATE .. 666
TBM_SETBUDDY 717 TTM_ADDTOOL .. 666
TBM_SETLINESIZE 718 TIM_ADJUSTRECT 667
TBM_SETPAGESIZE 719 TTM_DEL TOOL. .. 668
TBM_SETPOS .. 719 TTM_ENUMTOOLS 669
TBM_SETRANGE 720 TTM_GETBUBBLESIZE 669
TBM_SETRANGEMAX 721 TTM_GETCURRENTTOOL. 670
TBM_SETRANGEMIN 722 TTM_GETDELA YTIME 671
TBM_SETSEL ... 722 TTM_GETMARGIN 671
TBM_SETSELEND 723 TTM_GETMAXTIPWIDTH 672
TBM_SETSELSTART 724 TTM_GETTEXT ... 673
TBM_SETIHUMBLENGTH 725 TTM_GETTIPBKCOLOR 674
TBM_SETIIC .. 725 TTM_GETTOOLCOUNT 674
TBM_SETIIPSIDE 726 TTM_GETTOOLINFO 675
TBM_SETIOOL TIPS 727 TTM_HITTEST .. 675

APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 781

TIM_NEWTOOLRECT 676 UDM_GETBUDDY 738
TIM_POP .. 677 UDM_GETPOS .. 738
TIM_RELA YEVENT 677 UDM_GETRANGE 739
TIM_SETDELAYTIME 678 UDM_GETRANGE32 740
TIM_SETMARGIN 679 UDM_GETUNICODEFORMAT 740
TIM_SETMAXTIPWIDTH 680 UDM_SETACCEL .. 741
TIM_SETIIPBKCOLOR 681 UDM_SETBASE .. 742
TIM_SETIIPTEXTCOLOR 681 UDM_SETBUDDY 742
TIM_SETIITLE .. 682 UDM_SETPOS .. 743
TIM_SETIOOLlNFO 683 UDM_SETRANGE 743
TIM_ TRACKACTIVATE 683 UDM_SETRANGE32 744
TIM3RACKPOSITION 684 UDM_SETUNICODEFORMAT 745
TIM_UPDATE .. 685 UDN_DELTAPOS .. 746
TIM_UPDATETIPTEXT 686 UninitializeFlatSB ... 249
TIM_WINDOWFROMPOINT 686
TIN_GETDISPINFO 688
TIN_POP .. 689 w
TTN_SHOW .. 690 WM_NOTIFY ... 90

WM_NOTIFYFORMAT 91

u
UDACCEL ... 748
UDM_GETACCEL 737
UDM_GETBASE ... 738

APPENDIX B

Index B: Volume 5, Elements
Listed Alphabetically

A CPL_STOP .. 736
CPIAppiet ... 409

ABM_ACTIVATE ... 721
ABM_GETAUTOHIDEBAR 721
ABM_GETSTATE .. 722 o
ABM_GETIASKBARPOS 723 DefScreenSaverProc 41 0
ABM_NEW .. 723 DIIGetVersion ... 411
ABM_QUERYPOS 724 DLLGETVERSIONPROC 412
ABM_REMOVE ... 724 Dilinstall ... 710
ABM_SETAUTOHIDEBAR 725 DoEnvironmentSubst... 413
ABM_SETPOS .. 726
ABM_WINDOWPOSCHANGED 726
ABN_FULLSCREENAPP 727
ABN_POSCHANGED 728
ABN_STATECHANGE 728

DragAcceptFiles ... 414
DragFinish•.. 415
DragQueryFile .. 416
DragQueryPoint ... 417

ABN_WINDOWARRANGE 729
AssocCreate .. 670 F
ASSOCDATA .. 561
ASSOCF .. 561
ASSOCKEY ... 563
AssocQueryKey ... 671
AssocQueryString 672
AssocQueryStringByKey 674
ASSOCSTR ... 563

FindEnvironmentString418
FindExecutable .. 419
FM_GETDRIVEINFO 736
FM_GETFILESEL .. 737
FM_GETFILESELLFN 738
FM_GETFOCUS .. 739
FM_GETSELCOUNT 739
FM_GETSELCOUNTLFN 740

B FM_REFRESH_WINDOWS 740

BrowseCalibackProc 481
FM_RELOAD_EXTENSIONS 741
FMEVENT _HELPMENUITEM 742
FMEVENT _HELPSTRING 742

c FMEVENT _INITMENU 743
FMEVENT_LOAD .. 744

ChrCmpl .. 575 FMEVENT _SELCHANGE 745
ColorAdjustLuma ... 707 FMEVENT _ TOOLBARLOAD 745
ColorHLSToRGB ... 708 FMEVENT _UNLOAD 746
ColorRGBToHLS ... 708 FMEVENT _USER_REFRESH 746
CPL_DBLCLK ... 730 FMExtensionProc .. 483
CPL_EXIT .. 730 FOLDERFLAGS ... 564
CPL_GETCOUNT 731 FOLDERVIEWMODE 566
CPUNIT ... 732
CPUNQUIRE .. 732
CPL_NEWINQUIRE 733 G
CPL_STARTWPARMS 735 GetMenuContextHelpld 420

GetWindowContextHelpld 420

783

784 Volume 5 Microsoft Windows Shell

H IContextMenu
GetCommandString 183

HashData ... 711 InvokeCommand 185
QueryContextMenu 186

IContextMenu2
HandleMenuMsg 189

lAC List IContextMenu3

Expand .. 141
IACList2

GetOptions 143
SetOptions 143

IActiveDesktop
AddDesktopltem Method 145
AddDesktopltemWithUI Method 146
AddUrl Method 148

HandleMenuMsg2 191
ICopyHook

CopyCaliback 193
ICurrentWorkingDirectory

GetDirectory 195
SetDirectory 196

IDeskBand
GetBandlnfo 197

ApplyChanges 149
GenerateDesktopltemHtml 150
GetDesktopltem 150
GetDesktopltemByID 151
GetDesktopltemBySource 152
GetPattern 153

IDockingWindow
CloseDW .. 199
ResizeBorderDW 199
ShowDW .. 201

I DockingWindowFrame
AddToolbar 202

GetDesktopltemCount.. 153
GetDesktopltemOptions 154
GetWalipaper 154
GetWalipaperOptions 155
ModifyDesktopltem 156
RemoveDesktopltem 157
SetDesktopltemOptions 157
SetPattern .. 158

FindToolbar 203
RemoveToolbar 204

IDockingWindowSite
GetBorderDW 214
RequestBorderSpaceDW 215
SetBorderSpaceDW 215

IDragSourceHelper
InitializeFromBitmap 206

SetWalipaper 159
SetWalipaperOptions 159

IASyncOperation
EndOperation 161
GetAsyncMode 162
InOperation 163
SetAsyncMode 163
StartOperation 164

IAutoComplete
Enable ... 167

InitializeFromWindow 207
I DropTargetHelper

DragEnter ... 209
DragLeave 210
DragOver ... 210
Drop ... 211
Show .. 212

IEmptyVolumeCache
Deactivate .. 217
GetSpaceUsed 218

Init .. 168 Initialize .. 219

IAutoComplete2
GetOptions 170
SetOptions 171

IColumnProvider

Purge ... 221
ShowProperties 222

IEmptyVolumeCache2
Initialize Ex .. 224

GetColumnlnfo 174 IEmptyVolumeCacheCallback

GetitemData 175 PurgeProgress 227

Initialize .. 176 Scan Progress 228

ICommDlgBrowser
IncludeObject 177
OnDefaultCommand 178

IEnumExtraSearch
Clone .. 229
Next.. .. 230

OnStateChange 178
ICommDIgBrowser2

GetDefaultMenuText 180

Reset. ... 231
Skip .. 231

IEnumlDList

GetViewFlags 181
Notify ... 182

Clone .. 233
Next .. 233

APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 785

Reset ... 235
Skip .. 235

I Extractlcon
Extract ... 237
GetlconLocation 238

I Extractlmage
Extract ... 241
GetLocation 241

I Extractlmage2
GetDateStamp 244

IFileViewer
PrintTo ... 245
Show .. 24 6
Showlnitialize 247

I FileViewerSite
GetPinnedWindow 248
SetPinnedWindow 249

IInputObject
HasFocusIO 250
TranslateAcceleratorlO 251
UIActivatelO 251

IlnputObjectSite
OnFocusChangelS 253

InetlsOffline ... 421
I NewShortcutHook

Get Extension 254
GetFolder ... 255
GetName ... 256
GetReferent 256
SetFolder ... 257
SetReferent 258

INotifyReplica
YouAreAReplica 259

IntlStrEqN .. 576
IntlStrEqNI ... 577
IntlStrEqWorker ... 578
IObjMgr

Append .. 260
Remove ... 261

IPersistFileSystemFolder
GetFolderTargetlnfo 265
InitializeEx 266

I PersistFolder
Initialize .. 262

I PersistFolder2
GetCurFolder 263

IProgressDialog
HasUserCancelied 269
SetAnimation 269
SetCancelMsg 270
SetLine .. 271
SetProgress 272
SetProgress64 273
SetTitle .. 274
StartProgressDialog 274

StopProgressDialog 276
Timer .. 276

IQueryAssociations
GetData .. 279
GetEnum .. 280
GetKey ... 280
GetString .. 281
Init .. 282

IQuerylnfo
GetlnfoFlags 284
GetinfoTip .. 285

I ReconciiableObject
GetProgressFeedbackMax

Estimate .. 286
Reconcile ... 287

IReconcilelnitiator
SetAbortCaliback 292
SetProgressFeedback 293

I RemoteComputer
Initialize .. 294

IResolveSheliLink
ResolveSheliLink 296

IRunnableTask
IsRunning ... 298
Kill .. 299
Resume .. 299
Run ... 300
Suspend ... 300

ISheliBrowser
BrowseObject. 302
EnableModelessSB 304
GetControlWindow 304
GetViewStateStream 306
InsertMenusSB 307
OnViewWindowActive 308
QueryActiveSheIiView 309
RemoveMenusSB 310
SendControlMsg 311
SetMenuSB 312
SetStatusTextSB 313
SetToolbarltems 314
TranslateAcceleratorSB 315

ISheliChangeNotify
OnChange .. 316

ISheliDetails
ColumnClick 319
GetDetaiisOf 320

IShellExecuteHook
Execute .. 323

IShellExtlnit
Initialize .. 324

ISheliFolder
BindToObject 327
BindToStorage 328
CompareIDs 329

786 Volume 5 Microsoft Windows Shell

CreateViewObject 331 DestroyViewWindow 387
EnumObjects 332 EnableModeless 387
GetAttributesOf 333 EnableModelessSV 388
GetDisplayNameOf 335 GetCurrentlnfo 388
GetUIObjectOf 337 GetltemObject 389
ParseDisplayName 338 Refresh .. 390
SetNameOf 342 SaveViewState 391

ISheliFolder2 Selectltem .. 392
EnumSearches 344 TranslateAccelerator 393
GetDefaultColumn 345 U IActivate ... 394
GetDefaultColumnState 346 ISheliView2
GetDefaultSearchGUID 347 CreateViewWindow2 396
GetDetaiisEx 347 GetView ... 397
GetDetaiisOf 348 HandleRename 397
MapNameToSCID 349 SelectAndPosition Item 398

IShelilcon ITaskbarList
GeticonOf .. 351 ActivateTab 400

IShelilconOverlay AddTab .. 400
GetOverlaylconlndex 353 DeleteTab .. 401
GetOverlaylndex 354 Hrlnit .. 402

IShelilconOverlayldentifier SetActiveAIt. 402
GetOverlaylnfo 356 IUniformResourceLocator
GetPriority .. 357 GetURL .. 403
IsMemberOf 358 InvokeCommand 405

ISheliLink SetURL .. 406
GetArguments 360 IURL_SETURL_FLAGS 566
GetDescription 361 IURL_SETURUNVOKECOMMAND_
GetHotkey .. 361 FLAGS .. 567
GeticonLocation 362 IURLSearchHook
GetiDList. ... 363 Translate .. 407
GetPath ... 364
GetShowCmd 365
GetWorkingDirectory 366 M
Resolve .. 366 MAKEDLLVERULL 571
SetArguments 368
Set Description 369
SetHotkey .. 370

MIMEAssociationDialog 421
MLLoadLibrary ... 579

SetlconLocation 371
SetIDList .. 371 p
SetPath .. 372
SetRelativePath 373
SetShowCmd 374
SetWorkingDirectory 375

ISheliLinkDataList
AddDataBlock 376
CopyDataBlock 377
Get Flags .. 378
RemoveDataBlock 379
Set Flags .. 379

ISheliPropSheetExt
AddPages .. 381
ReplacePage 382

ISheliView
AddPropertySheetPages 384
CreateViewWindow 385

PathAddBackslash 61 0
PathAddExtension 610
PathAppend ... 611
Path Build Root .. 612
PathCanonicalize ... 613
PathCombine ... 614
Path Common Prefix 615
PathCompactPath .. 615
PathCompactPathEx 616
PathCreateFromUrl 617
PathFileExists .. 618
PathFindExtension 619
PathFind FileName 620
PathFindNextComponent 620
PathFindOnPath .. 621

APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 787

PathFindSuffixArray 622 SHAppBarMessage 429
PathGetArgs .. 623 SHAutoComplete ... 712
PathGetCharType 623 SHBindToParent .. 430
PathGetDriveNumber 624 SHBrowseForFolder 431
PathlsContentType 625 SHChangeNotify .. 432
PathlsDirectory .. 625 SHCONTF .. 568
PathlsDirectoryEmpty 626 SHCopyKey ... 675
PathlsFileSpec .. 627 SHCreateDirectoryEx 437
PathlsHTMLFile ... 627 SHCreateProcessAsUser 438
PathlsLFNFileSpec 628 SHCreateSheIiPalette 709
PathlsNetworkPath 629 SHCreateStreamOnFile 714
PathlsPrefix ... 630 SHCreateThread .. 714
PathlsRelative ... 630 SHDeleteEmptyKey 676
PathlsRoot ... 631 SHDeleteKey ... 677
PathlsSameRoot ... 632 SHDeleteValue .. 678
PathlsSystemFolder 632 ShelLNotifylcon ... 439
PathlsUNC ... 633 SheIiAbout.. ~ 441
PathlsUNCServer .. 634 Shell Execute .. 442
PathlsUNCServerShare 634 SheIlExecuteEx .. 445
PathisURL ... 635 SHEmptyRecycieBin 447
Path MakePreUy ... 636 SHEnumKeyEx .. 679
PathMakeSystemFolder 636 SHEnumValue ... 680
Path Match Spec ... 637 SHFileOperation .. 448
PathParselconLocation 638 SHFreeNameMappings 449
PathQuoteSpaces 639 SHGetDataFromIDList 450
PathRelativePathTo 639 SHGetDesktopFolder 451
PathRemoveArgs .. 641 SHGetDiskFreeSpace 452
PathRemoveBackslash 641 SHGetFilelnfo .. 453
PathRemoveBlanks 642 SHGetFolderLocation 457
PathRemoveExtension 642 SHGetFolderPath .. 458
PathRemoveFileSpec 643 SHGeticonOverlaylndex 461
PathRenameExtension 644 SHGetinstanceExplorer 462
PathSearchAndQualify 644 SHGetMalloc .. 463
PathSetDlgltemPath 645 SHGetNewLinklnfo 464
PathSkipRoot .. 646 SHGetPathFromlDList 466
PathStripPath .. 647 SHGetSeUings ... 466
PathStripToRoot .. 647 SHGetSpecialFolderLocation 468
PathUndecorate .. 648 SHGetSpeciaIFolderPath 469
PathUnExpandEnvStrings 649 SHGetThreadRef ... 716
PathUnmakeSystemFolder 650 SHGetValue ... 681
PathUnquoteSpaces 651 SHGNO .. 569

SHlnvokePrinterCommand 470

R SHLoadlnProc .. 472
SHOpenRegStream 717

RegisterDialogClasses 423
REGSAM ... 669

SHOpenRegStream2 718
SHQuerylnfoKey .. 683
SHQueryRecycleBin 473

s SHQueryValueEx ... 684
SHRegCloseUSKey 685

ScreenSaverConfigureDialog 424
ScreenSaverProc .. 425
SetMenuContextHelpld 426
SetWindowContextHelpld 427
SHAddToRecentDocs 428

SHRegCreateUSKey 686
SHREGDEL_FLAGS 705
SHRegDeleteEmptyUSKey 687
SHRegDeleteUSValue 688
SHRegDuplicateHKey 689
SHREGENUM_FLAGS 706

788 Volume 5 Microsoft Windows Shell

SHRegEnumUSKey 690 StrRStrl .. 602
SHRegEnumUSValue 691 StrSpn .. 603
SHRegGetBoolUSValue 692 StrStr .. 604
SHRegGetPath .. 693 StrStrl ... 604
SHRegGetUSValue 694 StrTolnt .. 605
SHRegOpenUSKey 696 StrTolntEx .. 606
SHRegQuerylnfoUSKey 697 StrTrim ... 607
SHRegQueryUSValue 698
SHRegSetPath .. 700
SHRegSetUSValue 701 T
SHRegWriteUSValue 702
SHSetThreadRef ... 719
SHSetValue ... 704
SHStrDup .. 580

TranslateURL ... 475
TRANSLA TEURUN_FLAGS 570

U
SOANGLETENTHS 573
SoftwareUpdateMessageBox 473
SOPALETTEINDEX 573
SOPALETTERGB 573
SORGB .. 574
SOSETRATIO ... 574
StrCat .. 581
StrCatBuff .. 581
StrChr .. 582
StrChrl ... 583
StrCmp .. 584
StrCmpl ... 585
StrCmpN .. 585
StrCmpNI ... 586
StrCpy .. 587
StrCpyN ... 588
StrCSpn ... 589
StrCSpnl .. 590
StrDup ... 591
StrFormatByteSize 592

UndeleteFile ... 484
UrlApplyScheme .. 651
URLAssociationDialog 476
URLASSOCIATIONDIALOG_IN_FLAGS 571
U rICanonicalize .. 653
UrlCombine .. 654
UrICompare .. 655
UrlCreateFromPath 656
Uri Escape .. 657
UrlEscapeSpaces .. 658
UrlGetLocation ... 659
UriGetPart .. 660
UrlHash .. 661
Urlls .. 662
UrllsFileUrl ... 663
UrllsNoHistory .. 664
UrUsOpaque ... 665
UrIUnEscape .. 666
UrIUnEscapelnPlace 667

StrFormatByteSize64A 593
StrFormatKBSize ... 594 w
StrFromTimelnterval 595
StrlslntIEqual ... 596
StrNCat .. 597
StrPBrk .. 598
StrRChr .. 598
StrRChrl ... 599
StrRetToBuf ... 600
StrRetToStr .. 601

WinHelp ... 477
WM_CPL_LAUNCH 747
WM CPL LAUNCHED 747
WM=DRO-PFILES .. 748
WM_HELP ... 749
WM TCARD .. 749
wnsprintf ... 608
wvnsprintf ... 609

Learn how
CO +

can simplify your
development tasks

lf6ic1'osoft'Press

Understanding

COM+
U.s.A. $24.99
U.K. £22.99
Canada $37.99
ISBN 0-7356-0666-8

David S. Platt
Foreword by Greg Hope,
l$sd Architect. COM+

Wouldn't it be great to have an enterprise

application's infrastructure so that you could inherit

what you need and spend your time writing your

own business logic? COM+ is what you've been

waiting for-an advanced development environment

that provides prefabricated solutions to common

enterprise application problems. UNDERSTANDING

COM+ is a succinct, entertaining book that offers an

overview of COM+ and key COM+ features, explains

the role of COM+ in enterprise development, and

describes the services it can provide for your com­

ponents and clients. You'll learn how COM+ can

streamline application development to help you

get enterprise applications up and running and

out the door.

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

mspress.microsoft.com

Prices and availability dates are subject to change.

Here they are in one place-

practical,
detailed

explanations
of the Microsoft

networking APls!

• Network
t=J Programming
MiCW.idows .

, '~·i·· L , "
~~

U.S.A. $49.99

Anthony Jones and
Jim Ohlund

U.K. £46.99 [VAT. included]
Canada $74.99
ISBN 0-7356-0560-2

Microsoft Press@ products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Microsoft has developed many exciting

networking technologies, but until now no

single source has described how to use

them with older, and even some newer,

application programming interfaces

(APls). NETWORK PROGRAMMING FOR

MICROSO~ WINDOWS® is the only book

that provides definitive, hands-on cover­

age of how to use legacy networking APls,

such as NetBIOS, on 32-bit platforms, plus

recent networking APls such as Winsock 2

and Remote Access Service (RAS).

mspress.microsoft.com

Petzold
for the

MFC programmer!

u.s.A. $59.99

Jeff
Prosise
Tbepremier
reeouree fer
IIbleet-orienteli
programming on
32-1lit WIndows
platforms

U.K. £56.99 [V.A.T. included]
Canada $89.99
ISBN 1-57231-695-0

Microsoft Press'" products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft'" Sales Office, or visit
our Web site at mspress microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Expanding what's widely considered the

definitive exposition of Microsoft's powerful

C++ class library for the Windows API, PRO­

GRAMMING WINDOWS® WITH MFC, Second

Edition, fully updates the classic original with

all-new coverage of COM, OLE, and ActiveX~

Author Jeff Prosise deftly builds your compre­

hension of underlying concepts and essential

techniques for MFC programming with unpar­

alleled expertise-once again delivering the

consummate resource for rapid, object­

oriented development on 32-bit Windows

platforms.

mspress.mlcrosoft.com

Official
Guidelines

for User Interface
Developers and Designers

IfIcIfJsaItPress

Official Guidelines for User Interface
Developers and Designers

U.s.A. $49.99
U.K. £46.99 [V.A.T. included]
Canada $74.99
ISBN 0-7356-0566-1

Here are the revised, updated, official Microsoft
guidelines for creating well-designed, visually and function­
ally consistent user interfaces for applications that run on
the Microsoft Windows family of operating systems,
including Windows 98 and Windows 2000. A revision of
The Windows Interface Guidelines for Software Design,
the standard resource for designing Windows interfaces,
MICROSOFT WINDOWS USER EXPERIENCE is an essential
handbook for all programmers and designers who work
with the latest releases of Windows and Microsoft Internet
Explorer, regardless of experience level or development
tools used. It covers the basic principles of user-interface
design and methodologies, and it specifies how you can
apply data-centered concepts such as objects and proper­
ties to interface design. The book includes detailed
information on mouse, keyboard, and other input-device
interaction and on how to use the common interface
elements supplied by the system. It also includes informa­
tion about supporting international and disabled users.

Microsoft Press" products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft" Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

mspress.microsoft.com

Prices and availability dates are subject to change.

Part No. 097-0002309

Windows
Common Controls

This essential Windows 2000 and Windows 98/
Windows 95 reference volume is part of the five-volume
Microsoft Win32Q!) Developer's Reference Library. In its
printed form, this material is portable, easy to use, and
easy to browse-a highly condensed, completely indexed,
intelligently organized complement to the information
available on line and through the Microsoft Developer
Network (MSDN). Each volume includes an overview of
the five-volume library, two appendixes of programming
elements, and tips on how and where to find other
Microsoft developer reference resources you may need.

Microsoft Windows Common Controls

This volume provides complete reference materials about
using Windows common controls, including the common
controls API , creating wizards, customizing a control 's
appearance, drag list boxes, flat scroll bars, image lists,
and list views. It also provides information about controls
for animations, date and time picker, headers and hotkeys,
toolbars, tabs, tooltips, trackbars, up-down controls,
and more.

Aficl'OSoft

