Part of the five-volume —
. I B ‘ Microsoft® Win32°® Developer’s Reference Library M’cms0ﬂ ®

The essential reference to Win32"
technologies and APIs

David Iseminger
Series Editor

i iSGI"ingel'com

Common
Controls

IC t
‘Windows
Common Controls
msdn library

Microsoft

The essential reference to Win32°
technologies and APIs

David Iseminger
Series Editor

ic t | ’
‘Windows

Common Controls
msdn library

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-
Microsoft Win32 Developer’s Reference Library / David Iseminger.
p. cm.
ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) 1. Title.
QA76.76.063 174 1999
005.26'8--dc21 99-045609
CIp

Printed and bound in the United States of America.

123456789 WCWC 432109

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

ActiveX, BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, Visual Basic, Visual C++, Visual
FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Windows, and Windows
NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective
owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002309

Acknowledgements

Acknowledgements are often tricky things; generally, the day after books are
printed you think of someone who absolutely should have been recognized,
whom you now have rudely omitted. You’d think authors would keep an
ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about
the series idea, and for keeping up with the myriad of issues that cropped up,
and for managing the business details associated with publishing this series.
Thanks also to Steve Guty at Microsoft Press for seeing certain publishing
issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft
Press, and orchestrated things in the way only project editors can endure.
John Pierce was also instrumental in seeing the publishing process through
completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman—thanks for the excellent work; I'm a firm believer
that artwork and packaging are integral to the success of a project. Marketing
acknowledgements go out to Jocelyn Paul, for her coordination efforts with
MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the
editor at Microsoft Press, and thereby routing this series to the right place.
Throughout the process, Julie Solon provided lots of Win32 feedback and
helped gather feedback from others, all of which was quite helpful in compiling
the right collection of technologies...thanks to Julie for the help on that. Guy
Smith pointed me to the information | needed for Volumes 4 and 5, and was
always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh
Vaidyanathan for their help and openness, respectively, with letting me
provide the common coding errors found in Chapter 5 of each of these
volumes. Thanks on my behalf, and on behalf of anyone who finds that
information useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my
functional “circled i” logo into a 3D piece of art, as well as for his work on the
Iseminger.com site. You can see more of his artwork through links found at
www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things
great agents do best.

Contents

Chapter 1: Introduction 1
How the Win32 Library Is Structured...........cccevereviennenenienieneenieneenenennenns 2
How the Win32 Library Is Designedccccccoeeenniiennnineneneneeneeneeenneaens 3

Chapter 2: What'’s in This Volume? 5

Chapter 3: Using Microsoft Reference Resources 7

The Microsoft Developer Network (MSDIN)cccoeviireriiieneeneeneeeeenee e 8
Comparing MSDN and MSDN Online........cccccocevininniniiniininiciccnnncnneenn 8
MSDN SUDSCIIPLIONS ...cueeuverneeiieriereenieeriesseesteseesrestseeseeesseeseessseesseessesssessans 9

MSDN Library SubSCIPHON........coveirieiiiirenciiiiecentceeteteeee e 11
MSDN Professional SubsCription...........cceccereeerienineeerenenenneeeneeeenennens 11
MSDN Universal SUDSCIPLONcocuevireriinieeeieiereeeereseeee st eneeeeeenn 11
Purchasing an MSDN SubsCriptioncccceeeerevineeinienieseeeeeeeeeeeneeneene 12
USINZ MSDN ...ttt ettt e et n e esae e ssennens 13
Navigating MSDNcooiiiiininiteteieeneneeeteeeee st st see e s eneeseese s 13
QUICK TIPS vvvvvoveve oo ese s ssss s sa s ses s sneessassassnes 17
USINg MSDN ONLNE....c.ccviriiieiinrinreniniieteneiienteeseneeet st seesresseesaesseessenses 17
Navigating MSDN OnliNecccccciveeererreeiiinineeiricretitneeeseessesseneeenens 19
MSDN Onling FEaturescceverueerierierirenereeeetnietererenseseesenenseseesensens 20
MSDN Online Registered USEIS........ccoverieeriereiierenrenseineeneeineeseenresnes 22

The Windows Programming Reference Series..........ccocevvererienieninreenersenenenne 23

Chapter 4: Finding the Developer Resources You Need 27

DEVEIOPET SUPPOTL ..ottt ettt ettt este et st esveesba e st e e teesbeensesnne 27

OnNliNe RESOUICEScueeuieveniiriienirreeeietciesteit ettt eeesae e e ee e nenes 29

Learning Productsccocerierirniennienieciistcceeseeeie et sveesree st s esveenesaee 30

CONLBIENCESouvivviiuieieeieie ettt sttt st be ettt eb e st sae b emeessesabesenneenes 32

Other RESOUICTESc.vivveirieiieiriiriieieitetesieee sttt ettt eesee st ebeemeenbesneeseenes 33

Chapter 5: Getting the Most Out of Win32 Technologies: Part 4 35

BUffer OVEIIOWSccccoviiiriririirecicicie ettt 35

Simple Buffer OVerflowcoceeveeerievenienienineneeeieseneee e e 36
Size Overflow or Underflowcccoeiviviiiesienenneneneeneeeenee e 37
Abuse of enumMerated LYPeS.......ccceeveerereeirerenrierneeeteise e eeeeenens 38
Using internal lengths for comparisons to external input..........cccovueeueeneee. 38
MiSCEllanEOouSs EITOTSc.cevuerieieiieieniniteiesteitnctete ettt s sresreene 39

Dangers Of tyPeCaStingcccceveeveererenriritiieenrenrenenteeet e seesreereeeesreereenees 39

vi Contents

OPErator PreCeACNCEovvireereirnieriireenieeiereereseereeeereseesaesseeseeseessessesmeessenee 40
Conditional termination CONfUSIONccceveveeerrerircenenrisinencreeeneeeeeeene 41
Misuse of OPTIONAL parameters.........cocuereeeverveererseeeseerseesressunesresseesnes 41
Return value confusion and inCoNSisSteNCIesccevveeverieiccieneneiiiisnennens 42

Don’t rely on volatile OBJECSccceevrirenieniiniininiiinecsneeee s 43
Avoid spinlock order problemsccoceveevuirrrenienineeneneneneneseseenene 44
Determining membership in Administrators groupeceeceeveeveervereenens 45
SOIUtION SUMMATIYooveieniriiiereeeteeereteeb ettt s snes 47
Part 2 Introduction 49
Getting Information About List-View, Toolbar, and Tree-View Controls 49
General Introduction to the Common COntrols..........ccecveereiereneeniiereiereneenieennes 49
Using Common CONLIOLSc..eeeeeveeriererieeierineneeieteseetessesseeeeseessessesseseensens 49
DLL VEISIONS ..ceeviteneeiiriiieerieneineeeesentestsseeesessesteneseesseesseesesseneeseesessensens 50
Common Control SEYIESccecvereririiiivniiieieiiiirtceereresrese e 51
Common Control MESSAZES.ceeerrrerrrerreeirersieneeneenreeseesreessesseessessresees 51
Common Control Notification MesSagesc...cocuerreerreenernreeneensvenseeeseenens 51
Common Control Updates in Internet EXplOrer........ccccooeverveevivierenneninneenens 52
Shell and Common Controls VErsions.........ccceceveviererinininnveniniiniiniencneneens 52
DLL Version Numbers ettt 53
Using DlIGetVersion to Determine the Version Numberc.cccceverieennenne 54
USING DIIGEIVEISION ...c..eueeevereiireeieieieteie ettt ntseesre st s saesnesneane 54
Project VEISIONSccueiruieueieiriieieteteienee ettt sae st 56
Chapter 6: Using Common Controls 57
Creating a Customizable TOOIDAT...........ccceeeeviiirereriiriineesere et 57
‘The Customization Dialog BOX .c.vcviriiieieniiniiiiiineninicrcnceceecre s 57
Implementing the Customization Dialog BOXccocceveveiecnenennicnccene 58
Dragging and Dropping TOOISccceeereriinreneninreeninicnrenenieeereseseseeeens 59
Saving and Restoring the Toolbar State............cccccovecirinineciininieiiniceeens 59
Creating In-Place TOOILIPScoveeireerierereneenieieeetetenteseesrestessestestesseseeneensensens 60
Positioning an In-Place TOOIPcocuereerviererrieniineiceneerereeeeceee s 61
Using TTM_ADJUSTRECT to Position a TOOItip........ccceeerereneeeenuennenne 62
Creating an Internet Explorer-Style Toolbar.........cccceoeverenienieenenienicreneeieeenens 63
The Rebar Controlccccverireerienineieetesiereeeeieree et sreeeesee b sreee e seessens 64
Implementing the Rebar Controlcocovueevieneninicninvcniicneneiccrecnene 65

The TOOIDALSecvereiriirrieienerereee ettt ettt s e et seeste b sbesresmeens 67
Drop-Down BUttOnscccceeeruirrerniinierereenieneeieereesreesteereeereeeseesaees 67
LiSt-Style BUIONSc..evvirierieriiriiiieiereeniierestesteseseetessasseeseessesensessesesnans 69

CREVIONSviiiiieeeteeee ettt ee e e e e ettt e e e s st bt e e s e esssbbbareeeesseeessteseseesessssnneess 69

Contents vii

HOt-TTACKING ...veoveenieietinieneniincseste ettt ettt st aes s 69
Creating an Internet Explorer-Style Menu Barcccecvvvvveniniennnenennenienneen. 70
Making a Toolbar into a Menu Bar..........cccccooovviiiiiiiiiiiiiiiceeceeceee e 71
Handling Navigation with Menu Hot-Tracking Disabled.............cccecvvcverinnnnne 72
MOUSE NAVIZALION.ccviirirniriieiiriiiieeietineeeeeeeere et e sttt sbe s enreneens 72
Keyboard Navigation........ccccivuvivirieneenienininieeeinescsresresiesseseeseesieeneenee 72
Mixed NaVIGAtIONccoueeieiiiirieiieeniieete et eereesteesreeseeessaseesrresseeeesasessavenas 73
Handling Navigation with Menu Hot-Tracking Enabled..........c.cccceeceevverrnnnne 73
Message Processing for Menu Hot-Trackingcccceeevervenieneneneenrennn. 74
Mouse Navigation........ccocevvverriereeniernieniestesteseeseriessiessreestasssesssasssessesnees 75
Keyboard Navigation..........cccvieveeiieiiieenieenieeciesneesieesreessseessseeerseesssveeses 76
Localization Support for the Common Controlscc.cocoevueerererereneneneneeene 76
Specifying a Language for the Common Controls..........c.ceeeerererererirenieerenennne 76
Specifying a Language for Controls in a Dialog BOXcccccceveviereniinienennenne 77
Chapter 7: Common API 79
Common Control Window ClasSesccceverrrerreriirieneeieenieeniessieseeseeseesssesans 79
Common CONtrol SEYIEScc.veeiiriervieriiiriieiinieeriesteseesre et eteesre e eseessreesaessseensees 80
Common API REferencecocceveeviiiecienieneninieteienie sttt sttt eeas 81
Common API FUNCHONScoouerieririiriinienienitenieesttestesresresseesseeeeesesseeseens 81
Common AP MeESSaZES.......coerurimiirieriinienieeieienieniessesteeessesseetensensessessensensens 86
CommOn AP MACIOScccuerieriiiriirienieniteniesieesre e sseetesreesseeaeseessesnseessenas 92
Common API NOtIfICAtIONScc.eeererreeiereenierieniineetereereeeesiessesreseesaesiessesnnean 95
Common APT SHUCIUIESc..eevvtriirieriierienieeitentesees et st see st esaeseesanas 104
Chapter 8: Customizing a Control’s APpPearanceuusmssmssessessesssssssssssssses 111
ADOUL CUSLOM DIAW.......cviiiiiiiriiiriite ettt ettt 111
About Custom Draw Notification Messages..........ccceeeeueereererrenerrereneeeeennes 111
Paint Cycles, Drawing Stages, and Notification Messages.........c..cceeveereenenne. 112
Taking Advantage of Custom Draw Services.........cccveveereenererreeneeneneeneens 113
Responding to the Prepaint Notification...........ccceevervieneninnnnenenenenne 113
Requesting Item-Specific NotifiCations.........cccceeeeviereeniensienieeceeneeneenne 113
Drawing the Item Manually.........ccceceevueriinenininrienneneenieneneetere e 114
Changing Fonts and Colorsc.cceceeieveenenieneninienencnnienenieseseesressennes 114
Custom Draw with List-View and Tree-View Controls.........ccccoceeverenerveennennen. 114
Custom Draw with List-View COntrolsc.cocceeeerierreneenereneneneenenenee 114
USING CUSOM DIAW ...c..eeviriiiiiiieeeieieteie ettt sbe st bt sbe s esae s s 115
Custom Draw REfEreNCEcoeerueriruirieininienieiriesiecesceeiesre et eee e 117
Custom Draw Notification MeSSagescccceeverrerueieeecmienereneeisinseneeneenes 117

CUStOM DIaW STIUCIULES ...vvvviieeiierieeeeeeeeieeeeeeeseerereeeseeraeeeeeeesesssrreesesssssnas 119

viii Contents

Chapter 9: Animation Controls 129
Animation Control OVEIVIEWc.ceereerierereruerteinieniesiesesienteeeseetesseneesasseseesens 129
About Animation CONtIOIS.........ccceeivirieieiiieseteeeeeeeteste et sesse s 129
Animation Control CIEAtioNc.cevveeeerereererrireerteiererieneeeereseeseeneseeeeiens 129
About Animation Control MESSagesccceueerereeirririenvenerenreneereerennnnens 130
Default Message ProCessingccvecveeverereeernienerenienseensesesessseseensesnns 130

Using Animation CONtrolscc.coereriererieiieieiereene et 131
Creating an Animation CONtrolcoceevereeirenierieneneenenesienreesnersereenaens 131
Controlling the AVI CLIPccceecirerierircieiiieieniestesesestesseeesessessessesnens 132
Animation Control SEYIES........coeeeveeererirerieererieenenterteesteste et ssesessens 133
Animation Control REfErencecceeererereruieninnieiiniceieceitee et 133
Animation Control MESSAZES........ccerureruererrerienererierteresseseensesessesiessensssessesens 133
Animation Control MACIOSceervevireererresrenieirienieieesiestessessesseassesseseeses 136
Animation Control NOtifiCationsccccoevererrenenererineneeneenesesceeeeens 142
Chapter 10: ComboBoxEx Controls .143
About CombOBOXEX CONLLOIScocveeiiviirieniiireerieeitieieeeeseeeree et eseessaeseessnenns 143
CombOoBOXEX CoNtrol SLYIES.......ccecveiuieeieniieiiiiireeieeieseeseesiesseeseesseesaensens 143
CombOBOXEX CONIOL TEEIMS........vcuveieeiieeitereeeeeeeeesees et eestes e seeenessessenneas 144
CallbACK TEIMSvveevieiiieeireeetreeeteesieeeereeeareeeteerereeeaeeesreesavesersesersesensesoneesas 144
ComboBoxEx Control Image ListS........cccceeveevererrirnerieneneeieneseseereneeeenns 144
About ComboBoxEx Control Notification Messages.........cc.ecceververurreneeennan 145
ComboBoxEx Control Message Forwardingcccceervevvevenenenrveinnne 145
Using ComboBOXEX CONMIOLS......c..c.cuimeiiiniiciniininiiiciniiaes 146
Creatiﬂg 2 CombOBOXEX CONLIOL......ccceovieeeiiieienienenieeeeieiesesit e seesaeneens 146
Preparing ComboBoxEx Items and Images...........ccocevveevereerennienieeeenereennnne, 147
Supporting Callback ItEMS........c.ccerieriiereriinieieeeiesienieseeaereseseeseesessesens 149
Processing ComboBOXEX NOtfiCations........cocueeerevrenieeriernierseeneesierireseneens 150
ComboBoxEx Control Extended Styles........ccccevvvievieniienieniineeniieceesiencieseeenienns 150
ComboBoxEx Control Reference...........coevereeerieicniineneneeienieseeeee e 151
ComboBOXEX CONtrol MESSAZESccvrveeuverrerenienrerriereeniessesaensessensanassesennes 151
ComboBoxEx Controi Notification MesSages........coceverveeverrenenienruereereensens 160
ComboBOXEX CONtrol StIUCLUIESccveueeerieierinienteeniinienieeeesieeereseeeerens 164
Chapter 11: Creating Wizards 169
INEEOAUCHION ..ottt ettt ettt st et et e st et e st te b e sbessae st e bessassnensesanseens 169
How to Implement @ WizZardccceoererieneneniineeieenieneneneeieieseeessseneesseseens 171
Creating the Dialog Box Templates.........cccccueerereeerinieneneeienienieenenieesieneas 171
Exterior Page Dialog Box Templatesccccceeevereeenenenenenenieceenennens 172

Interior Page Dialog Box Templatescccoeeveveeeeeniereeneneneencnereeneneas 173

Contents ix

Defining the Wizard Pagescccocvivriniecininiiiiiiiccncccinn 174
Defining the Wizard Property Sheet..........cccevvivieiinniiniciicneneeneeneene 174
The Dialog BoxX Procedure...........cvevueeieeienienieinieneeneienieeseenee e 176
Handling WM_INITDIALOG and WM_DESTROYcccccecvnvvvrvnnnnnne 176
Handling WM_NOTIFYccoceimiiiniinineneiniteeeeeeeieereseeseeesieeesaenens 176
Backward Compatible Wizards..........ccccevevieiniriiineniiininenecieneseeiene e 178
A Sample Wizard AppliCationcccvcervereririneniienieseneereeeneeeeeesre s seesnenne 179
Designing the Templates..........ccceveviiniieiniiiiniiineec e 182
Creating the Wizard Pages............ccccoveeiviiiiniiiiiniiiiinncnicince 182
Creating the Property Sheetocoveiviiriinieneinieieneseeeeeeeeee e 183
Creating @ Title FONtcociviiiriiiiiiiiiieeiceeeccest e 184
The Dialog BoX Procedurescocevverernieniieniieniienieienieeeeeieeseeeseenennnen 185
The Welcome Page........c.ccveeiieeieriinieniinienienie ettt s saaeene 185

The Interior Pages........cocovvvevierriinienniciieneicieiecceceeeees s 186

The Completion Pagecooeeriiiviiriieieniieienteneesitesieerere et esseesrenas 189
Chapter 12: Date and Time Picker Controls . 191
About Date and Time Picker COntrolscocevceevveierencneeceenenienenenieenesinnens 191
Date and Time Picker User Interface.........ccoceevievienineseninenneenencnieeeenn 191
Date and Time Picker Control Styles and Formats..........ccccccoeeveeeciniinnene. 192
Preset FOrmatscooverieieiiniiniciciiccecnt e 192
Custom FOrmats........cccovererineniiienieiiecienieseesiee e 192
Callback FIeldscoceenieniereniinirieieieeeesie sttt 194

Date and Time Picker Control Notification Messages.......c...ccceceeevueernneennee. 194
Using Date and Time Picker COntrols..........ccevvevveeriirrueenesienieeneeesieesieeseenseenens 195
Creating a Date and Time Picker Control.............cecceeveevieriernieneeneeneennennne. 195
Processing Date and Time Picker Notifications...........cccceeveereenieeneerseeneenne. 196
Processing the DTN_DATETIMECHANGE Notification............cccccccceuene. 197
Supporting Callback Fields in a DTP controlccccccoveveriencriniinienennenne. 198
The DoFormatQuery Application-Defined Function...........cccccovevvevencnne 198

The DoFormat Application-Defined Functioncc.ccceveeveevievienennenne. 199

The GetDayNum Application-Defined Functioncccccccoeieiinnnenn. 199

The IsLeapYr Application-Defined Function...........cccceevevveeverceenennncnne 200

The DoWMKeydown Application-Defined Functionc..ccccceuvruennenee. 201

Date and Time Picker Control Styles..........cccoveeevrerinincneininencneniiincnieeenes 201
Date and Time Picker Reference...........cooeeveriiciiiiiiiiiniiiniiceceeceeseceeeeen 203
Date and Time Picker Control MeSSagescevuervevrireerrenierveeirenreneseenreneene 203
Date and Time Picker Control Macrosc.cceceeevvveriniinieniiienienenninenenns 211
Date and Time Picker Control Notification Messages...........coceevevrevrevvencnne. 219

Date and Time Picker Control Structuresooooevvvieeiiieeeeeeeeeeeeeeeeeeeeeeennnns 226

X

Contents

Chapter 13: Drag List Boxes 231
USIng Drag List BOXESccevuiririeiinieeeeiinienieeeeeestesresie et estestesiestessesvesaeeeenas 231
Drag List BOX MESSAZEScecuvuriiieniiniinreeieieneenreereeteeeseesresiesressesseeseeneens 231
Drag List Box Notification MesSages.........cceevereruerrecerenienreniensensensessessennes 231
Drag List BOX REfErence.........cc.ecuvciieerieniinininieiinienesiestetesresiesteseessessnesseseens 232
Drag List BOX FUNCHONSc.cc.ccverveiriinieinieineieeneneteesceeeseeeesesaeeenens 232
Drag List BoX NOtifiCationS.......ceceevetireerienenenrienienenenieniesienseneessesieseensens 234
Drag List BOX SITUCIUIESc.ccveeveuirueiniiiieeeieiieeieene et eesneenenens 237
Chapter 14: Flat Scroll Bars . 239
Flat SCrOIl BArs......cccceevuiivieriinierenieetentesieetesreesee sttt st esae st sbaesseebasanes 239
Using Flat SCTOLl BArS.........cceevvirieeienieiiieieteieesiestesiesreeaeesseesseseesaeessnensees 239
Before You Begin.....cccoccvuiirieiririeniceriesierencneee et 239
Adding Flat Scroll Bars to @ WindoW..........ccccceveervierneineiniennenieeneenennees 239
Enhancing Flat SCroll Barscccocveeevienenienienieneneeeneeteeeeesie e 240
Removing Flat SCroll Barsccoceeviveineiniinienieeienieeeeneeeseeseeseesnenne 241

Flat Scroll Bar Referenceccvevueeieniineneninieieneneeeseeteseeseeseeseesie e sseenes 241
Flat Scroll Bar FUNCLONScoccevvirieniieiinieeieeeeseeneesee et 241
Chapter 15: Header Controls 257
Using Header COntrolS........cccoceveiiriiieiiiiinieninininienienistseeresessesesscsneeseones 257
Header Control Size and POSItIONcoceviverrieriienienienieneenensseneeseesessaens 257
JEEIMNIS. ...ttt st b et nae s 258
Owner-Drawn Header COontrolsc.cooevvereeeiienienieniesiecenieecceeeeeeenn 258
Header Control Notification MeSSagescevuevverrerverreenienrenienenenenesneeneenns 259
Default Header Control Message Processing..........ccccovcevenevincninneniieennenn 259
Creating a Header COntrolcocevvevieeriinieeriienieniienienieneeneesiesseesseesseensens 260
Adding an Item to a Header Control............cceccevveviimerneenienenienenenenineeenee 262
Header Control Updates in Internet EXpPIOTer..........cocvevieeerneenennienerneeneenienne 262
Header Control SEYIESccceeeviivervirieneriirieneeteeenteercsreeee et sre st e eesnie 263
Header Control REference...........cccuevieiriririrrereneeeeteiesieseeeeeseeseeaeseessenees 264
Header Control MESSAZEScccueevrveriieenieeniieenrernresinessressinessinessseessseessneanss 204
Header Control MACIOS.......c.covrererieriireenienieeteniesieeseseentesiessessesressesseesensenes 279
Header Control Notification MeSSaZESceverreerrerrenirriereerenieneeseenesessennes 297
Header Control StrUCKUTIES........c.cvevvieereeiertineeeeeeiesreeeeeeeeresseneessessessennes 307
Chapter 16: Hot-Key Controls 317
Using HOt-Key CONLIOLScc.eevvirieriiriiiriieierieeeenre st seesiee et sne e eae e 317
Hot-Key Control Creation...........cc.eecveereeereerreenrienieerieneerieeneesesseeseeseessesees 317
Hot-Key Control MESSAZES.....cc.everuirurrereinirinieteriisseeitesesseniensessessessessenses 319

Contents Xi

Hot-Key Control NOtifiCations.........coceeeeerierenenineniseenieeienieneeeenieeneenenns 319
Retrieving and Setting a HOt-Keycccevviviininenininiiiiie e 319
Default Hot-Key Message Processingcoceecevevierineeiiesenieenuenennuesenneenns 320
Hot-Key Control Referencec...ecvevvevevieniieerininieiinenese et 321
Hot-Key Control MESSAZESceevererririerierenienereneerensensessessessesssessessenssenns 321
Chapter 17: IP Address Controls 325
About IP Address CONtIOLScccueeverierienierienieneeneneenesreessresresieesseesseesaeens 325
Using IP Address COntrols.........c..coceeruereeenrenierirrenerinienieeeresesresiessesaeseessessenees 326
Initializing an IP Address COntrolcccoccevevueereeieiiereneeneeeneeeeeereseeneenes 326
Creating an IP Address COntrolcoccueveeverieineeineenierceninenenenieneeeeeeenes 326
Is an IP Address Control an Edit Control?..........ccceceevverieevevenseenseeeseeecneeenenne 326
IP Address Control Reference..........ccoeeeveeereriinienienieneeneeieneeeeieseesee e 326
IP Address Control MESSAZESccveereerveerrenuenieriesiiesensesenseesseesssesssessessees 326
IP Address Control Notifications...........ceceeveviererenerineenieneneesreneenieseenennes 330
IP Address Control MaCTOS........coceevuerrueruenuenreesieneesnteseteseesteesessseeaaennas 331
IP Address Control STIUCHUIES........ccueeererrecruereererreeeerenseeesteresessessesseseneenes 335
Chapter 18: Month-Calendar Controls 337
About Month-Calendar CONtrOlS.........ccceevieierierierierienienreneeerseseerseneeseessesasenns 337
The Month-Calendar Control User Interface...........cccvevveevenereenienenseeneennenne 338
Dy SEAtes ..c.ooveiiiiiiiiiiiciice ettt 339
Month-Calendar Control Stylescccecceeverererirerienierereceeerieseeeeeee e 340
LOCALIZAION «...veuveveeeniecrenieieeetete ettt aeae ettt et s sb e bt aeens 340
Month-Calendar Control Notification MeSSagescceeueevverrerveruerverinenuens 340
Times in the Month-Calendar Control...........cc.cecevevverrieirrieeneneneneeneennnens 341
Using Month-Calendar CONtrolscoceeueererieenernienieeineeenenieneseeesenaenees 341
Creating a Month-Calendar CONtrolccevvevenienirenenieneneenieseessesiensenns 342
Processing the MCN_GETDAYSTATE Notification Message 343
Preparing the MONTHDAYSTATE AITAYc.cocevveviienenienieeeeieniesnesienaenne 344
Month-Calendar Control StY1Esccceeeeeierenennerieienenereenteeee st 344
Month-Calendar Day NUMDELSccceecerririrrierienienenenireeeeestesteseeeessesieseeens 345
Month-Calendar Control Reference...........coceeveeeeieniecieniniseeseneseesieseeceeseenenn 345
Month-Calendar Control MESSAZESccceeverrreriereriesreessreenreeseeseesseesenenns 345
Month-Calendar Control MAaCIOScccuevververererienireeresieseessesessseseseneens 365
Month-Calendar Control Notificationscccceeerverirererrenenieneereeneenenennenss 385
Month-Calendar Control StrUCLULES.........c.cevvevverierieriiieneeieneeeesieneesessensenns 388

Xii

Contents

Chapter 19: Pager Controls 393
ADOUL PaZer CONLIOLSc.eeuereuiiirieirieteteiteteste ettt ettt sae s 393
USING Pager CONLIOLScceeervirieeieieeeeententenencereenteseesieesesbeeeestebessensessesssensenes 394
Initializing the Pager Control............coeevirirenierrienenieeeneneereesnessesseseesseesenes 394
Creating the Pager COntrol...........cccceciveiriirennninenieninceeesesieseeseseeseeesesnens 394
Processing Pager Control Notificationsc.cccceveveeveerereniinenieneneneseenennenees 394
Pager Control SYIES......ccccevueieirieriiireriereserce ettt 395
Pager Control REfErencecceviiriieininsienieenitricteientesesre et ssenenens 396
Pager Control MESSAZES......cc.verriirreeriierieeiienienierteeeeseesteseesssesseessessseessannnes 396
Pager Control MACIOSc.cccurieeuiiuinieiiinieereteenteteeeree st seereese e srennes 405
Pager Control NOtfiCAtionsccocevereeierienenienenieneenieseresesesesiaessesaenees 414
Pager Control SIUCLULESc..cceruerueerierierienieneenieneniesreseestesresieeeeeesaesbesanenes 416
Chapter 20: Progress Bar Controls 419
USING Progress BArSc.cceveviieieiiiienieniieteiesieiesve ettt e sse st ssessssnsessassans 419
Range and Current POSItionccceevveeerienieneninninienenieneeeseseee e 419
Default Progress Bar Message Processing.........ccecceverenieniinenenneeresneeseninnnes 420
Progress Bar EXamPpIe.........ooeevviriiriiiniieniinteiieneeieerestesie e esveeeesssesnesanes 420
Progress Bar Control Updates in Internet EXplorer...........ccovevveevvienienieecennnnenne. 422
Progress Bar Control StYIEscecevvierviirieneenieieiniensiessienessiessesseeseeseesenenes 422
Progress Bar Control Reference...........coovveveevieeciiesiinriinienecieceeccee e ese e 423
Progress Bar Control MESSAZESc.ceveveererreieieuireenieireenenreseeseseeseenseessenses 423
Progress Bar Control StruCtures..........ceevevvevrirerneeriereneneneneneeseeeeeeseeeens 429
Chapter 21: Property Sheets.......ummmmmmmmsmmssssssssssmsss 431
ADbOUL PIOPETtY SHEELS.......coveieieriiniiirerienieneneetetreiestesesse s seestesaessesses e snasnens 431
Property Sheet Dialog BOXESccevverieeiirieniinieniieneesieneeseesiessvessessensaens 432
PAGES ...ttt et be s nee 433
Property Sheet Creationc..cccoveiveeeeineiniircnnierennecerieeeseeresesieeseenenees 434
Adding and Removing Pages.........ccccuveverviirieniiisiieniesieeieneeseenseesseeeessaeennes 434
Property Sheet Title and Page Labelsccccccevereririnenncncniiiiniincencnnees 435
Page ACHVALION....c.c.eeviireieieeieeitertterie ettt eeeeresstesteseeste e e estesseesnsessaasns 435
HEIP BULION.....c..cveiiiiiiieiiieiceiet ettt ettt et sees 435
Removing the Caption Bar Help Button...........ccccecevvrererienicnenenennnnee. 436

OK, Cancel, and Apply Now Buttons.........ccceceevveruerinenenenennienienienieneennens 437
Property Sheet EXENSIONSc.cceeeeeriererinreniinnieneneneseneeseeseseessesseeseessenes 438
USING Property SHEELScccevivueririririententineeenieeteses et e et saessessesieensesaens 438
Creating a Property Sheetccoevveciineniininiinnienienicesenee et sae s 439
Processing Notification MESSAZEScccueveeveerieriirierieniereenieieniesreseeseesuensenne 440

Property Sheet Updates in Internet EXplOTer..........cccoccveviineiveneneinenieneeennes 440

Contents Xiii

Property Sheet Reference.........cooceeviviiviniiieiinienesenesiresesee et 441
Property Sheet FUNCHONSc..cc.vvvveriiiiiiiiiiierienieseeieeree e 441
Property Sheet MESSAZESccevveeeereerenrinieeeeeeiereiee et sre e sieeseeseee e neenee 447
Property Sheet Macros ..ottt 467
Property Sheet Notificationscceveveriviecriinicciienieiseeeeeceeeeeenee 489
Property Sheet SrUCIUIES..........c.ecvireeririeirineeiiieieeeere e 499

Chapter 22: Rebar CONEIOIScouerrrersesmssesesmaressssessssssessassessssssessasssssessasssssssasessnns 511

About Rebar CONtIrols........cceovirereriiriereniineeietenenesesnie sttt esbe s seesaesveas 511
Rebar Bands and Child WIindowWscc.ceeevereenienieniienenentenieneeneenieeneeene 511
The Rebar Control User Interface..........cccveveeveeevieninieenenienneneeneenieneenane 512
The Rebar Control Image Listccceveerieienieniieninienteneeseeeseeeseesseesseesnns 512
Rebar Control Message FOrwardingcoceeceeveevenenennienneenieeesenneeneennes 512
Custom DIaw SUPPOTIL.......ceeverrieeiiererrienieeeientrnteneneseeseessessseesseeseesseesses 512

Using Rebar CONtrOlS........cocoverieienineninieienienenene ettt seeae e s siessesaees 512
Creating a Rebar CONtrolccccovueviinieniiniinenienreseeeneeeeeee s 512

Rebar Control SEYLESccevueverererieierienenenteteteie e sttt st etesbesaeenees 515

Rebar Control Reference............eecvevvieieniieiinieninienieneieteeceteeeesre e 516
Rebar Control MESSAZEScc.veruuerrierierieenrienieetenteseseseessesssessseesessnsessessnes 516
Rebar Control NOtifiCations...........ecevierreeierereniieiereieseceeseesee e et sveseeneene 541
Rebar Control SIUCTULES.........coviruererererierieienieteneesesiteseesreseessesaseseensenne 550

Chapter 23: Status Bars 561

USING Statts BArScc.ccevieviiriirieieniinierenteteresiesi st etete st et esbes e svessaens 561
TYPES ANA SEYIES ..cveveeeriiieiiciieiieeieere ettt st sttt e ee b enaes 562
Size and HEIGht......coveriririieiiiiiieeetetetese sttt et et sre v s sra e 562
Multiple-Part Status Bars........cccveeeeriinierveniieneinenrenenenieeneesee e ssieesvesnees 562
Status-Bar Text OPerations..........cccevereereerienerenenennesensesesseesreseessessenns 563
Owner-Drawn Status Barsccoccovevievievenieninenenineicieetecseceeseenenes 563
Simple-Mode Status Barscccccceeveevieineneiieniiiniencnese e 564
Default Status-Bar Message Processing.........cocccvveevevnerrenerneenennenenenecrecenes 564
Status-Bar EXAMPIE ...c..cocveeiiiniiriiinieniieiienentceieseesesseesve e se e see s s snees 565

Status-Bar Updates in Internet EXpIOTercccveverenieiineninrenenenenienieeeeeenens 567

Status-Bar SEYLESccceriiriiriiirteie ettt 567

Status-Bar REfErenCe.ccccvveririeiinieineiietenerenereetsee et 568
Status-Bar FUNCHONScceovririieieinenieeeeteeeect et 568
Status-Bar MESSAZES ..c..ccveririeiiriirieriiniieienenie sttt st sre b seens 571

Status-Bar NOtIfICAtIONSecivuviiiiiiieciiiiecciieeeerreeseeeearee e e eenreeeeesaeeeesanes 584

xiv Contents

Chapter 24: Tab Controls 589
ADbDOUL Tab CONLIOLS......eoeeieieieiereeieeetese ettt st sr et ee e 589
About Tab Control StYLEScccuecvereeriirrreeriieieiereererietestesreseeseessessessesseeaes 589
Tabs and Tab AUITDULES...........cocererirreeeerienereeieteee et 590
DiSPIAY ATCAooueriieiiiiieieriiieeieee ettt ettt et e s be b sae s ae e nee 591
Tab SEIECHONoveviiieiieieeecerec et 591
Tab Control IMage LiStsccceceruivieririeneciiiniiiirciieiennie e 591
Tab Size and POSItioN........ccccciviriiiiniiiiniiniiiirirci e 592
OWNET-DIrawn Tabs........ccccoiriireriiiiniienieiteeeiesreene e e ere e ne 592
Tab Control TOOILIPS......cccevveriiiiiiiiiiiiniti e 592
Default Tab Control Message Processing.......cccoeveeveiiiiiciiininnnnneniinnnnnnee 593
USING Tab CONLIOLSoouveeuieiieiiiieeieree ettt ettt see st saeeene 594
Creating a Tab Control..........ccocveeierirrieeniinieneireecteeceeereeee e 594
Creating a Tabbed Dialog BOXccceevieririiieniinsieeiniieieneeneeseeseeenieereenees 599
Tab Control Updates in Internet EXpIOTer.........ccoeeviriiciinniineniiiniiniineniiiiens 603
Tab CONLIOL SEYIES.....ccoerrieriirriinieiniieee et ste st eseeste st e e s b s bt e beeeesneesreenaes 603
Tab Control Extended StyIes.........cccvverrerieernerniriieneenieneeneesessieesessseseeseesaes 606
Tab Control Tem StALeS.......c.cevverrrirrierrieniiriieneeeeeseeee e e ste s sreseesreeseeenne 606
Tab Control REfErencecocuevveeeierernieniirienieeee sttt esee et 607
Tab Control MESSAZES.......ccccvriiriiiiiiiiiiiniiiiiiiecteesiesre s 607
Tab CoNtrol MACTOSecevverreriireiieietinienentetet et sressesre s sreenas 625
Tab Control Notification MESSAZEScccuerverreeerrierierrenireereenieereeaessensees 645
Tab CoOntrol SIIUCLULESc..ccoueervierrieriirierierte ettt siee st enes 650
Chapter 25: Tooltip Controls 655
About Tooltip CONLIOLSccuevermiririiiiiiiinic s 655
TOOItIP Creation.........cccvevirivririiiiiciircnect ettt 655
ACHVALION. ...ttt ettt ettt st s st e st e st e e sete e eneesenreesseesaneesnneens 656
TYPES OF TOOIS ..c.veeviiiiiiieiciiccrectetctc e 656
TOOIIP TEXE 1evuverureerieiiirrieieeteeteneesteniessreesseebeseesstesseenseesesnreesseseseensesnnesnes 656
Relaying Mouse Messages to the Tooltip Control........c.ccecveviinincnennennnn 657
TOOIP Hit-TESHINGveeeiviiiiiieiiiete ettt st sb e s 658
MiSCellaneous MESSAZEScc.eevereerrerrirriereenienrierierisessesseeeessessessensensessessenne 658
Default Tooltip Control Message Processingcc.coceevereereerererneeneeruennenne 659
Using Tooltip Controls..........ccevvvvevueeiiiniininininiiiiiiiicnieeseienesesenssnenes 659
Creating a TOOItIP CONLIOL.......ccocoiirieiiiieiieeeieeee e 659
Using a Tooltip Control with a Dialog BOX.......cccceeveeverienieneennenicnecnnenane. 661
Tooltip Control Updates in Internet EXpIOTerccccevevvineveninneneneniieenens 664

Tracking TOOIIPScecveeereiereentenieeritenreetterte ettt et e e s et e e e s saessee v 664

Contents XV

Creating Tracking TOOItIPS......c.cecvevviveiiiiiiieiiininiiceccccne e 665
Supporting Tracking TOOIPS.......cccuevereririeiiineriiineeircreseeeeeesie e 667
Multilineg TOOLEIPSeouvenvierieiieieeieeieeteeeeere ettt 668
Creating Multiling TOOItIPSccceervieriierieerieeieeieereetese et 668
Balloon TOOIPS.....c.ccueereeeiirieieiineiet et 669
Balloon Tooltips for Status-Bar Iconsccceeveiineecienieeneeneeniieniene 670
TOOIIP SEYLES ..ottt 671
Tooltip Control REfEIeNCe..........cocvevuierienieriiiiiieeieeiecieee et 672
TOoOItiP CONLIOL MESSAZESvvvevverrereerrieierierteniesiesteniisessesseessessessesseesensessenns 672
Tooltip Control Notification MeSSages.......cceeveereeririerrennrerrienreeereenseeeeeennes 693
Tooltip Control SruCtUrEsccecviviiiiniiiiiiicie e 697
Chapter 26: Trackbar CONErOIScuummmmmmmmemmsmsmssssssssssssmsssssssssssssssssssssnssssssassssnns 703
About Trackbar Controls.........cccceceveeiriiniininininiiiic s 703
Trackbar MESSAZES.cevueruierierierieniteeientereeenreste et eseeereesreesbes st eeneesnnennes 703
Trackbar Notification MESSAZESccveevereereireerrierrierierieeeeeseenreeseeeseessnennes 705
Default Trackbar Message Processing.......ccocceeerveeenieeenenneeneenenneenennenenne 706
Using Trackbar CONtrolscccoueiieririeiiininieiniinieieicneesssresscsneseneeaenes 707
Creating @ Trackbar........cc.cceeirerierieiienenentnecieesereseeeere e 707
Processing Trackbar Notification MeSSagescoeeeeeirrrerreneeeerveneneeneenne 708
Trackbar Control Updates in Internet EXplOrer...........cocovvieviiiiniinininniinicnnnnne, 709
Trackbar COntrol SEYIEScccevuerieriererinieiereneneeeeteresbesreseesresresseenresaeesneneas 710
Custom Draw ValUescccooueiiieiiiiiniiniiniiiiienncncie et 711
Trackbar Control REfErence..........cecvvvevvererieieienieninieesieneseeieniesieceeresaeenen 711
Trackbar Control MESSAZESceevuerrrienieiiieenieriieniienireeereesreesseesssneennne 711
Trackbar Control Notificationscocceveeeeievienienenienienieninieieneneerenennens 734
Chapter 27: Up-Down Controls: 737
AbOUt UP-DOWN CONLIOLSvveveriieiieniienieenrieieeieeteetesieseeseesseesseesseessaesseesseens 737
About Up-Down Control Styles.........coceevierernerneinenenienienieneeeeeseeseesnnen 738
Position and ACCEIErationccceevevueeririeieiienieninieieecnteeerenne s esesaeneen 739
Default Up-Down Controls Message Processing..........cccoccevvereeeenieneeneennenn 739
Up-Down Control Updates in Internet EXpIOrercccocecevvevviviiinicniieciicncnnes 740
Up-Down Control StYIES......cc.ceveveririeieniiriniiierenicneneteeeseeeesnesne e saeenees 740
Up-Down Control REfEIENCEceerureiirieririieiieieiencnieieeesreseesresre et saeeneas 741
Up-Down Control FUNCHONS.......cccueeierrieriiriienieneeieenee e eve e esneenne 741
Up-Down Control MESSAZESceverureererriereenrerrieniereneeseeseesseeseeseessvessns 743
Up-Down Control Notification MeSSages.........cccuevvrvirirerirsieriiinnienieinniens 752
UpP-Down Control StIUCIUTEScccerviererrerreenienienirtesreeseeesseeeseesseesseesseennes 753
Appendix A 757

Appendix B 763

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer’s Reference Library, your comprehensive
reference guide to the Win32 development environment. This library, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming—uwithout sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you—the time-pressed and information-overloaded applications
developer—to find the information you need quickly, efficiently, and intuitively.

In addition to its focus on Win32 reference material, the Win32 Library contains hard-
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN Subscription. Don’t have
an MSDN subscription, or don’t know why you should? I've included information about
that too, including the differences among the three levels of MSDN subscriptions, what
each level offers, and why you’d want a subscription when MSDN Online is available
over the Internet.

Microsoft is fairly well known for its programming, so doesn’t it make sense to share
some of that knowledge? | thought it made sense, so that’'s why this—the Windows
Programming Reference Series—is the source where you'll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don’t get lost in all the information provided in the Win32 Library,
each volume’s appendixes provide an all-encompassing programming directory to help
you easily find the particular programming element you’re looking for. This directory
suite, which covers all the functions, structures, enumerations, and other programming
elements found in Win32, gets you quickly to the volume and page you need, and also
provides an overview of Microsoft technologies that would otherwise take you hours of
time, reams of paper, and potfuls of coffee to compile yourself.

2

Volume 4 Microsoft Windows Common Controls

How the Win32 Library Is Structured

The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided include:

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphical Device Interface)
Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library—and therefore, dividing Win32—into these functional
categories enables a software developer who’s focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,000-page Win32 tome),
and without having to shuffle among multiple, less-focused books.

Within each Win32 Library volume there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer friendly
manner and to enable developers to easily gather the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview
Part 2: Reference
Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and to the Windows Programming
Reference Series (what you’re reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN and MSDN Online, including a collection of insider
tips and tricks. Just as each volume’s Reference section (Part 2) contains different
reference material, each volume’s Part 1 contains different tips and tricks. To ensure that
you don’t miss out on some of them, make sure you take a look at Part 1 in each Win32
Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions as well as instructional and explanatory
material for each programming area.

Chapter 1 Introduction 3

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to quickly
find the information you need.

How the Win32 Library Is Designed

The Win32 Library, and all libraries in the Windows Programming Reference Series, is
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look-and-feel that is consistent with their electronic counterparts. In
other words, the way that a given function reference appears on the pages of this book
has been designed specifically to emulate the way that MSDN and MSDN Online
present their function reference pages.

The reason for maintaining such integration is simple: make it easy for you—the
developer of Windows applications—to use the tools and get the ongoing information
you need create quality programs. By providing a “common interface” among reference
resources, your familiarity with the Win32 Library reference material can be immediately
applied to MSDN or MSDN Online, and vice versa. In a word, it means consistency.

You'll find this philosophy of consistency and simplicity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in-
hand with MSDN and MSDN Online resources. Such consistency lets you leverage your
familiarity with electronic reference material, and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and—in the absence of keyboards
and e-mail and upright chairs—get your programming reading and research done. Of
course, each of the Win32 Library books fits nicely right next to your mouse pad as well,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work rather than figuring out how to use your tools. The structure and
design of the Win32 Library provides you with a comprehensive, pre-sharpened toolset
to build compelling Windows applications.

CHAPTER 2

What’s in This Volume?

Volume 4 of the Microsoft Win32 Developer’s Reference Library focuses on common
controls that Windows applications developers use throughout the course of the
development process. This volume—Volume 4: Common Controls—provides the
reference material necessary for developers to take advantage of the wealth of ready-
made common controls found in Windows.

When programming with these common controls, programmers must be prepared to
deal with versioning issues that are associated with common control programming.
Almost all of the common controls are contained within three .dll files (Comcti32.dll,
Shell32.dll, and Shiwapi.dll), and all of these .dIl files have versioning issues that must
be kept in check throughout the development process. The Windows shell shares the
versioning requirements of common controls, so when you're programming with either
common controls (explained in this volume of the Win32 Library) or the Windows shell
(explained in Volume 5), you must deal with the versioning requirements.

What are the versioning requirements, you ask? The introduction to Part 2 of this volume
(and Volume 5 of the Win32 Library) discusses these caveats in detail and arms you with
all the information you need to keep the associated requirements straight. You should
read this explanatory introduction to Part 2 before jumping into the programmatic use of
any of the common controls detailed in this volume of the Win32 Library.

Once you've read the introduction to Part 2 and understand the versioning issues you'll
need to address during development, you can jump into the common controls reference
material found in Part 2. The list of common controls is long, and often the controls aren’t
necessarily grouped into sensible collections. Rather than forcing them into groups, I'm
providing the somewhat long list here. Fortunately, the names of many of the common
controls are reasonably self-explanatory. For more information about any of these given
controls, jump to the table of contents and find the control’s chapter in Part 2 of this book
(hint: the chapters in Part 2 are in the same order as this list), and take a look at the
introductory/explanatory information provided in the chapter associated with the common
control you're interested in.

Volume 4 Microsoft Windows Common Controls

Win32 common controls include:

Using Common Controls
Common API

Customizing a Control’'s Appearance
Animation Controls
ComboBoxEx Controls
Creating Wizards

Date and Time Picker Controls
Drag List Boxes

Flat Scroll Bars

Header Controls

Hot Key Controls

Image Lists

IP Address Controls
Month Calendar Controls
Pager Controls
Progress Bar Controls
Property Sheets
Rebar Controls

Status Bars

Tab Controls

Tooltip Controls
Trackbar Controls
Up-Down Controls

Part 2 of this volume goes into detail about each of these common controls individually;
in fact, each item in this list corresponds to an individual chapter in Part 2 of this volume
of the Win32 Library. But remember, you should read the introduction to Part 2 (found at
the beginning of Part 2, which is a great place for introductions) to learn about the
versioning issues you'll have to deal with when programming with these common
controls.

CHAPTER 3

Using Microsoft Reference
Resources

These days it isn’t the availability of information that’s the problem, it’s the availability of
information. You read that right...but I'll clarify.

Not long ago, getting the information you needed was a challenge because there wasn’t
enough of it. To find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn’t at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

Today, information surrounds us and sometimes stifles us. We’re overloaded with too
much information, and if we don’t take measures to filter out what we don’t need to meet
our goals, soon we become inundated and unable to discern what’s “junk information”
and what’s information that we need to stay current, and therefore competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft's own reference material as well—not because there is
information that isn’t needed, but rather because there is so much information that
finding what you need can be as challenging as figuring out what to do with it once you
have it. Developers need a way to cut through the information that isn’t pertinent to them
and to get what they’re looking for. One way to ensure you can get to the information
you need is to know the tools you use; carpenters know how to use nail guns, and it
makes them more efficient. Bankers know how to use ten-keys, and it makes them more
adept. If you're a developer of Windows applications, two tools you should know are
MSDN and MSDN Online. The third tool for developers—reference books from the
Windows Programming Reference Series—can help you get the most out of the first two.

Books in the Windows Programming Reference Series, such as those found in the
Microsoft Win32 Developer’s Reference Library, provide reference material that focuses
on a given area of Windows programming. MSDN and MSDN Online, in comparison,
contain all of the reference material that all Microsoft programming technologies have
amassed over the past few years, and create one large repository of information.
Regardless of how well such information is organized, there’s a lot of it, and if you don’t
know your way around, finding what you need (even though it’s in there, somewhere)
can be frustrating and time-consuming and just an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,
other Microsoft reference resources are investigated, and by the end of the chapter,

8 Volume 4 Microsoft Windows Common Controls

you’ll know where to go for the Microsoft reference information you need (and how to
quickly and efficiently get there).

The Microsoft Developer Network (MSDN)

MSDN stands for Microsoft Developer Network, and its intent is to provide developers
with a network of information to enable the development of Windows applications. Many
people have either worked with MSDN or have heard of it, and quite a few have one of
the three available subscription levels to MSDN, but there are many, many more who
don’t have subscriptions and could use some concise direction on what MSDN can do
for a developer or development group. If you fall into any of these categories, this
section is for you.

There is some clarification to be done with MSDN and its offerings; if you’ve heard of
MSDN, or have had experience with MSDN Online, you may have asked yourself one of
these questions during the process of getting up to speed with either resource:

e Why do | need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

¢ What are the differences among the three levels of MSDN subscriptions?
¢ What happened to Site Builder Network...or, What is this Web Library?

¢ |s there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren’t getting as much out of
MSDN as you could. Or, maybe you’re wondering whether you're paying too much for
too little, or not enough to get the resources you need. Regardless, you want to be in the
know, not in the dark. By the end of this chapter, you will know the answers to all these
questions and more, along with some effective tips and hints on how to make the most
effective use of MSDN and MSDN Online.

Comparing MSDN and MSDN Online

Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which has the features you need. Confounding this differentiation is the fact
that both have some content in common, yet each offers content unavailable with the
other. But can their differences be boiled down? Yes, if broad strokes and some
generalities are used:

e MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or in some cases, on DVD).

e MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Chapter 3 Using Microsoft Reference Resources 9

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its customers with the best presentation of material possible. These strengths
and medium considerations enable MSDN and MSDN Online to provide developers with
different feature sets, each of which has its advantages.

MSDN is perhaps less immediate than MSDN Online because it gets to its subscribers in
the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on your
hard drive), and isn’t subject to Internet speeds or failures. Also, MSDN has a software
download feature that enables subscribers to automatically update their local MSDN
content, over the Internet, as soon as it becomes available, without having to wait for the
update CD to come in the mail. The interface with which MSDN displays its material—which
looks a whole lot like a specialized browser window—is also linked to the Internet as a
browser-like window. To further coordinate MSDN with the immediacy of the Internet, MSDN
Online has a section of the site dedicated to MSDN subscribers that enables subscription
material to be updated (on their local machines) as soon as it’s available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and are tailored (not surprisingly) to the issues and challenges faced by
developers of Windows applications or Windows-based web sites. MSDN Online also
has a customizable interface (much like MSN.com) that enables visitors to tailor the
information that's presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-to-date
reference material and extensive online developer community content, doesn’t come
with Microsoft product software, and doesn’t reside on your local machine.

Since it's easy to become confused about the differences and similarities between
MSDN and MSDN Online, it makes sense to figure out a way to quickly identify how and
where they depart. Figure 3-1 puts the differences—and similarities—between MSDN
and MSDN Online into a quickly identifiable format.

One feature that you will notice is shared between MSDN and MSDN Online is the
interface—they are very similar. That’s almost certainly a result of attempting to ensure
that developers’ user experience with MSDN is easily associated with the experience on
MSDN Online, and vice versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So it isn’t an “either/or” question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you will probably continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions

If you’re wondering whether you might benefit from a subscription to MSDN, but you
aren’t quite sure what the differences between its subscription levels are, you aren’t
alone. This section aims to provide a quick guide to the differences in subscription levels,
and what each subscription level costs.

10

Volume 4 Microsoft Windows Common Controls

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level’s
features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription, plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription, plus even more features.

Microsoft Software:
Operating Systems -
BackOffice Products
Developer Tools ’
‘Beta Releases . .
Complete SDKs and DDKs
Ali Content'on CD

Real-Time Updates '
Priority Support Incidents
MSDN Online Exclusives
MSDN Magazine)

CRRANS

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

Chapter 3 Using Microsoft Reference Resources 11

MSDN Library Subscription

The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn’t come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers may
find necessary in their development effort. With the Library subscription, you get the
following:

* The Microsoft reference library, including SDK and DDK documentation, updated
quarterly

¢ |ots of sample code, which you can cut-and-paste into your projects, royalty free

¢ The complete Microsoft Knowledge Base—the collection of bugs and workarounds

e Technology specifications for Microsoft technologies

¢ The complete set of product documentation, such as Visual Studio, Office, and others

Complete (and in some cases, partial) electronic copies of selected books and
magazines

e Conference and seminar papers—if you weren’t there, you can use MSDN’s notes

In addition to these items, you also get:

® Archives of MSDN Online columns

® Periodic e-mails from Microsoft chock full of development-related information
¢ A subscription to MSDN News, a bi-monthly newspaper from the MSDN folks
® Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription

The Professional subscription is a superset of the Library subscription. In addition to the
features outlined in the previous section, MSDN Professional subscribers get the
following:

e Complete set of Windows operating systems, including release versions of Windows
95, Windows 98, and Windows NT 4 Server and Workstation

¢ Windows SDKs and DDKs in their entirety

¢ International versions of Windows operating systems (as chosen)

® Priority technical support for two incidents in a development and test environment

MSDN Universal Subscription

The Universal subscription is the all-encompassing version of the MSDN subscription. In
addition to everything provided in the Professional subscription, Universal subscribers
get the following:

12

Volume 4 Microsoft Windows Common Controls

¢ The latest version of Visual Studio, Enterprise Edition

¢ The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

e Additional development tools, such as Office Developer, Front Page, and Project

¢ Priority technical support for two additional incidents in a development and test
" environment (for a total of four incidents)

Purchasing an MSDN Subscription

Of course, all of the features that you get with MSDN subscriptions aren’t free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality and features, so too does each
escalate in price. Please note that prices are subject to change.

The MSDN Library Subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional Subscription is a bit more expensive than the Library, with a
retail price of $699. If you're an existing customer renewing your subscription, you again
get a break in the box, this time in the amount of a $200 rebate. You also get that break
if you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal Subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999, and if you're
upgrading from the Library subscription level there’s an in-the-box rebate for $200.

As is often the case, there are academic and volume discounts available from various
resellers, including Microsoft, so those who are in school or in the corporate environment
can use their status (as learner or learned) to get a better deal—and in most cases, the
deal is much better. Also, if your organization is using lots of Microsoft products, whether
MSDN is a part of that group or not, whomever’s in charge of purchasing should look into
Microsoft Open License program. The Open License program gives purchasing breaks
for customers that buy lots of products. Check out www.microsoft.com/licensing for more
details. Who knows, if your organization qualifies, you could end up getting an engraved
pen from your purchasing department, or if you're really lucky maybe even a plaque of
some sort for saving your company thousands of dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, | know), or from your favorite online software site. Note that not all
software resellers carry MSDN subscriptions; you might have to hunt around to find one.
Of course, if you have a local software reseller that you frequent, you can check out
whether they carry MSDN subscriptions, too.

Chapter 3 Using Microsoft Reference Resources 13

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For
those of you doing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN

MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software such as
Windows platform versions and BackOffice applications. There’s no need to tell you how
to use Microsoft product software, but there’s a lot to be said for providing some quick
but useful guidance on getting the most out of the interface to present and navigate
through the seemingly endless supply of reference material provided with any MSDN
subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar; it's
the navigational front-end to MSDN reference material.

The interface is familiar and straightforward enough, but if you don’t have a grasp on its
features and navigation tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective navigation, however, you can
increase its effectiveness dramatically.

Navigating MSDN

One of the primary features of MSDN—and to many, its primary drawback—is the sheer
volume of information it contains: over 1.1GB and growing. The creators of MSDN likely
realized this, though, and have taken steps to assuage the problem. Most of those steps
relate to enabling developers to selectively navigate through MSDN’s content.

Basic navigation through MSDN is simple, and a lot like navigating through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics; expand a book by clicking the + box to its left, and its contents are
displayed with its nested books or reference pages, as shown in Figure 3-3. If you don’t
see the left pane in your MSDN viewer, go to the View menu and select Navigation Tabs
and they’ll appear.

The four tabs in the left pane of MSDN—increasingly referred to as property sheets
these days—are the primary means of navigating through MSDN content. These four
tabs, in coordination with the Active Subset drop-down box above the four tabs, are the
tools you use to search through MSDN content. When used to their full extent, these
coordinated navigation tools greatly improve your MSDN experience.

14

Volume 4 Microsoft Windows Common Controls

2] 8 Yisual Studio 6.0 Documentation
) Office Developer Documentation
i) 0 ‘indows CE Documentation

& @ Platform SDK

® 8 SDK Documentation

® DDK Documentation

5 @ Windows Resource Kits

w Q Tools and Technologies

5 @ Knowledge Base

& @ Technical Atticles

j£3] Q Backgrounders

i) g Specifications

® Books

@ Partial Books

@ Periodicals

@ Conference Papers

MSDN Library

' April 1999 release

Welcome to the April 1999
release of the MSDN Ubrary, To
begin your exploration of what's

{ new in this release, click any of

the links on the right.

The MSDN Library is the
essential reference for
developers, with more than a
gigabyte of technical
programming information,
including sample code,

Dr. GUI's Espressg Stand
Dr. GUI introduces the April
1999 release of the MSDN
Library,

What's New on the Library
Click here for a
comprehensive hotlinked list
of new content in this release.

MSDN Features

Check out these packages of
articles about our latest
technologies,

MSDN Onling

Find out what's new for MSDN
©Online rnembers and read
selected columns from our
Web site.

& Q Samples documentation, technical

1 articles, the Microsoft
Developer Knowledge Base, and
anything else you might need
to develop solutions that
implement Microsoft
technology.

T s iransiie e il] m

Figure 3-2: The MSDN interface.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information you're interested in working with from the drop-down box, and the
information in each of the four navigation tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab, and in the index presented in the Index tab,
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, thereby enabling you to better find the
information you’re really looking for. In the Index tab, results that might match your
inquiry but aren’tin the subset you have chosen are grayed out (but still selectable). In
the Search tab, they simply aren’t displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection

MSDN, Books and Periodicals
MSDN, Content on Disk 2 only
MSDN, Content on Disk 3 only
MSDN, Knowledge Base
MSDN, Office Development

MSDN, Technical Articles and Backgrounders
Platform SDK, BackOffice

Platform SDK, Base Services

Platform SDK, Component Services

Platform SDK, Data Access Services

Platform SDK, Graphics and Multimedia
Services

Chapter 3 Using Microsoft Reference Resources 15

Platform SDK, Management Services

Platform SDK, Messaging and
Collaboration Services

Platform SDK, Networking
ServicesPlatform SDK, Security
Platform SDK, Tools and Languages

Platform SDK, User Interface
Services

Platform SDK, Web Services
Platform SDK, What's New?
Platform SDK, Win32 API

Repository 2.0 Documentation

Visual Basic Documentation

Visual C++ Documentation

Visual C++, Platform SDK and WinCE Docs
Visual C++, Platform SDK, and Enterprise Docs
Visual FoxPro Documentation

Visual InterDev Documentation

Visual J++ Documentation

Visual SourceSafe Documentation

Visual Studio Product Documentation

2] Q ‘Welcome to the MSDN Library
i Q Visual Studio 6.0 Documentation
3 @ Office Developer Documentation
@ Windows CE Documentation
= ([Platform SDK.
@ what's New?
@ BackDffice
= [{) Base Services
Q Microsoft Clustering Service
£ Q Debugging and Errar Handling
& @ DLLs, Processes, and Thieads
& @ Files and1/0
& ({3 Memory
= ([Memory Management
= m About Memory Management
g Virtual Address Space
Virtual Memory Functions
[éj Heap Functions
B tion Furictions|
@ v rge Memary (VLM)
{£] Global and Local Functiors

iy i il e e

Access Yalidation Functions

The Win32 API pravides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses, The following
access validation functions are available.

Function’ | BeseAption o s
IsBadCodePlr Determines whether the calling

process has read access to the
memory at the specified address.

IsBadReadPir Determines whether the calling
process has read access to the
memory at a specified range of
addresses.

Determines whether the calling
process has read access to the
memory pointed ta by a null-
terminated string pointer. The
function validates access for a

IsBadSiringPlr

specified number of characters or
until it encounters the string's
terminating null character.

IsBadWritePtr | Determines whether the calling
process has write access to the
memory at a specified range of
addresses,

{£] Standard C Library Functions
Q Using the Virtual Memory Functions
) e Memory Management Reference
@ File Mapping

L T T N S AT L,
’ R T 2 i,

The IsBadHugeReadPir and IsBadHugeWritePly functions
are also available for compatibility with 16-bit versions of
indn istinaui rronry allnnatin

Figure 3-3: Basic navigation through MSDN.

16

Volume 4 Microsoft Windows Common Controls

As you can see, this filtering option essentially mirrors the structure of information
delivery used by MSDN. But what if you are interested in viewing the information in a
handful of these subsets? For example, what if you want to search on a certain keyword
through the Platform SDK’s Security, Networking Services, and Management Services
subsets, as well as a little section that’s nested way into the Base Services subset?
Simple—you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subsets
menu item. You're presented with the window shown in Figure 3-4.

D efine Subset

& BackOffice : - il

] Base Services LU Platform SDK

N Clustering Service: Platform ST 1 Base Services

"@ Debugging and Error Handling ; Lm Memory: Platform SDK

A\ DLLs, Processes, and Thre Management Services

(A Files and 1/0: Platiorm SDK._ @ Networking Services
Hardware: Platform SDE 3 Q Security

-(Q Indexing Service: Platform SD
—@ International Features: Platforr
-\ Interprocess Communication: f
-\ Performance Monitoring: Platfc
4] Removable Storage Manager:
‘@ Terminal Services: Platform SO
@ Comporent Services w

1 My Wery Own Subseq

Figure 3-4: The Define Subsets window.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As
dialog box. Note that defined subsets (including any you create) are arranged in
alphabetical order.

Chapter 3 Using Microsoft Reference Resources 17

You can also delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the nearby Delete button.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets, and filters the information available in the four navigation tabs just like the pre-
defined subsets do.

Quick Tips
Now that you know how to navigate MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but regardless, it can be bothersome
to have a reference page displayed in the right pane (perhaps jumped to from a search),
without the Contents tab in the left pane being synchronized in terms of the reference
page’s location in the information tree. Even if you know the general technology in which
your reference page resides, it's nice to find out where it is in the content structure. This
is easy to fix: simply click the Locate button on the Navigation toolbar, and all will be
synchronized.

Use the Back button just like a browser. The Back button in the Navigation toolbar
functions just like a browser’s Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, rather than going
through the process of doing another search.

Define your own subsets, and use them. Like | said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get our work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, |
think). Underscores come before letters in alphabetical order, so if you use an
underscore on all of your defined subsets, you get them placed at the front of the Active
Subset listing of available subsets. Also, by using an underscore, you can immediately
see which subsets you’ve defined, and which ones come with MSDN—it saves a few
seconds at most, but those seconds can add up.

Using MSDN Online

MSDN Online shares a lot of similarities with MSDN, and that probably isn’t by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right...and it should be; it's a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

18

Volume 4 Microsoft Windows Common Controls

If you've used Microsoft’s home page before (www.msn.com or home.microsoft.com),
you're familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news, local weather,
stock quotes, and other collections of information or news that suit your tastes or
interests. You can even insert a few Web links, and have them readily accessible when
you visit the site. The MSDN Online home page can be customized in a similar way, but
its collection of headlines, information, and news sources are all about development.
The information you choose specifies the information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page; you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of
the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

As you can see from Figure 3-5, there are lots of technologies to choose from. If you're
interested in Web development, you can choose the Option button near the top of the
Technologies section for Web Development, and a pre-defined subset of Web-centric
technologies is selected. For more Win32-centric technologies, you can go through and
choose the appropriate technologies. If you want to choose all the technologies in a
given technology group, check the Include All box in the technology’s shaded title area.

You can also choose which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories include:

Developer News Voices

Libraries Search

Member Community Events & Training
Support Personal Links

Once you've defined your profile—that is, customized the MSDN Online content you want
to see—MSDN Online shows you the most recent information pertinent to your profile
when you go to MSDN Online’s home page, with the categories you’ve chosen included in
the order you specify. Note that clearing a given category—such as Libraries—clears that
category from the body of your MSDN Online home page (and excludes headlines for that
category), but does not remove that category from the MSDN Online site navigation bar. In
other words, if you clear the category it won’t be part of your customized MSDN Online
page’s headlines, but it’ll still be available as a site feature.

Finally, if you want your profile to be available to you regardless of which computer you're
using, you can direct MSDN Online to create a roaming profile. Creating a roaming profile
for MSDN Online results in your profile being stored on MSDN Online’s server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you’re using. The option of creating a roaming profile is
available when you customize your MSDN Online home page (and can be done any time
thereafter). The creation of a roaming profile, however, requires that you become a

Chapter 3 Using Microsoft Reference Resources 19

registered member of MSDN Online. More information about becoming a registered MSDN
Online user is provided in the section titted MSDN Online Registered Users.

Select or clearthe
check boxes above to
turn the categories on
or off. To change the
order in which the
categories appear on
the home page, click a
category name, and
then click the up or

Customize the information that appears on your MSDN Online home page. Select your preferences
from the sections below, then return here and choose Save. (Yes, we know it's a lot of choices.
There's a lot of information on this site.) You can update your choices at any time by visiting this
Customize page.

_

You can customize the headlines you see on the MSDN Online home page by selecting from the list of
technologies below, or you can choose a template we've preselected just for Web developers. Either
way, your selections will custorize what you see under Developer News, Libraries, and Support.

€ web Development @ None {clears all)

we'll soon offer more preselected technology templates for other developer specialties; write us and
let us know what you'd prefer.

If you select Allow Duplicate Headlines below, your home page will show multiple instances of some
headlines, each tagged for a different technology:
™ Allow Duplicate Headlines

down arrow 3 to the

5 Compsier

Figure 3-5: The MSDN Online configuration page.

Navigating MSDN Online

Once you're done customizing the MSDN Online home page to get the headlines you're
most interested in seeing, navigating through MSDN Online is really easy. A banner that
sits just below the MSDN Online logo functions as a navigation bar with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

The list of available menu categories—which group the available sites and features
within MSDN Online—include:

Home Voices
Libraries Community
Downloads Site Guide

Search MSDN

The Navigation bar is available regardless of where you are in MSDN Online, so the
capability to navigate the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online’s feature offerings.

20

Volume 4 Microsoft Windows Common Controls

online resource for developers. Here's some infarmation to guide you through the site:

s a chronological list all the |atest information posted to the MSDN Online site.
Site Map can give you the view from above.
s for navigating the site.

e, See About MSDN to learn about the MSDN subscription program, the MSDN ISV program,
sh newsletter, and more.

ou decode the latest term or acronym that has you stumped.
ell us how we can make the site easier to use and what kinds of information you'd like to see

Photo Credits: PhotoDisc

| Did pou find this material useful? Gripes? Complirnents? Suggestions for other articles? Write us?

i © 1999 Microsoft Corporation. All rights reserved, Terms of use.

Figure 3-6: The MSDN Online Navigation bar with its drop-down menus.

MSDN Online Features

Each of MSDN Online’s seven feature categories contains various sites that comprise
the features available to developers visiting MSDN Oniline.

Home is already familiar; clicking on Home in the navigation bar takes you to the MSDN
Online home page that you've (perhaps) customized, showing you all the latest
headlines for technologies that you’ve indicated you're interested in reading about.

Voices is a collection of columns and articles that comprise MSDN Online’s magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

There are a bunch of different “voices” in the Voices site, each of which adds its own
particular twist on the issues that face developers. Both application and Web developers
can get their fill of magazine-like articles from the sizable list of different articles available
(and frequently refreshed) in the Voices site.

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can navigate in traditional MSDN fashion, and

Chapter 3 Using Microsoft Reference Resources 21

gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to navigate the Web Workshop in a slightly different way, starting with a
bulleted list of start points, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.com/workshop.

Naw fmm MSDN Dnline
© columnists and feature wiiters

The Newspapel .
Scripting Clinkg
Extrarne XKML » =
DHTML Dude »" 5 é
More or Hass by Charlie
. Heinemann
Stone's Way & .
Servin' It Up =
Code Carner s
Geek Speak » Incorporating Digital Media Acquisition into Site Design
Office Talk » Nadja Vol Ochs details how to implement digital rights management on Web sites.
Deep C+t =
Ask Jane o by Nadja
Dr. QUL » Vol Ochs
QEh

Parsing and Sharing
XML is all about sharing. Columnist Charlie Heinernann talks about the Microsoft XML
parser, and how XML can make your data available,

DESIGN DISCUSSION

DEEP C++

Handling Exceptions in © and C++, Part 3
In his third installment on exception handling, columnist Robert Schmidt addresses
Voices Archive the syntax and semantics of Standard C++ exception handling.

by Robert

S : o

Figure 3-7: The Voices home page.

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/community. Figure 3-9 provides a look at
the Community home page.

The Downloads site is where developers can find all sorts of items that can be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated over the Internet
to the latest and greatest releases, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Flgure 3-10.

22 Volume 4 Microsoft Windows Common Controls

DN Online }Veb \l;'ulkshou - hiéro§n1fl Intermet kx[nlo!ér e

http://msdn.microsoft.com/workshop/default.asp
- SE

ESSENTIALS «
Companeant Dayeloprent « ESSENTIALS Welcome
Gantent & Compenant Delivery « Thic section contains core © The MSDN Online Web
Data Access & Databases ¢ nformation and references, Workshop praovides the latest
Design » including information on information about Internet
DHTML, HTML & €85 « authoring for different technalogies, including
Languages & Development Tools » browsers and platforms, end- _ reference material and in-
Messaging & Callaboration » to-end examples of working : depth articles on all aspects
N Web sites, slides from of Web site design and
Networking, Protocols »
& Data Formats conferences, specs, and development. Choose the
Reusing Browsar Technology * comprehensive links to categories on the left to
references and standards. - navigate via content listings.

Security % Cryptography » .
Y vpragraphy Use the index to look up

Server Technolagies » keywords, and the search

Strearning & Interactive Media » page for specific queries,
Web Content Management » Check our what's New page
XML (Extensible Markup Language) » for updates,

The MSDN Online team

© 1999 Microsoft Corporation. All rights reserved. Terms of use,

Figure 3-8: The Web Workshop home page, with its bulleted list of navigation start
points.

The Site Guide is just what its name suggests; a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn.microsoft.com/siteguide.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either library (Library or Web
Workshop), in addition to other search capabilities. The Search MSDN home page can
be linked to directly at msdn.microsoft.com/search. The Search MSDN home page is
shown in Figure 3-11.

MSDN Online Registered Users

You may have noticed that some features of MSDN Online—such as the capability to
create a roaming profile of the entry ticket to some community features—require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won’t cost you anything more than a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an Online Special Interest Group
(OSIG) requires registration. That feature alone is incentive enough to register; rather

Chapter 3 Using Microsoft Reference Resources

23

than attempting to call your developer buddy for an answer to a question (only to find out
that she’s on vacation for two days, and your deadline is in a few hours), you can go to
MSDN Online’s Community site and ferret through your OSIG to find the answer in a
handful of clicks. Who knows; maybe your developer buddy will begin calling you with

questions—you don’t have to tell her where you're getting all your answers.

£ 2 MSDN Online Cominu

soft Intemnet Explorer

msdn onlme

' ni!ger Gommumty)

embers

Microsoft Certified Profi

Access the information you need, when you need it, with :infine Special-lnterest

ith their MSDN Onllne

Welcome to the MSDN Online Member Community
doin e ndated June 4, 1999 Commerce
Your Mernbership o] . ' . . Embedded
©s1Gs « With an MSDN Online membership, developers can easily access technical Development
Member Gazatts « INfOrmation, tools, and a community of developers ready to help solve the
. toughest challenges. Juin nioyw and take advantage of member benefits. Exchange/Outlook
Case Studies o
Lownloads « . . !nternetA
Online Special-Interest Groups Information
Mermbers Helping » Sarver

MSDHN Subscription

Offers « Groups (OSIGs), Web-based access to relevant newsgroups, sorted by product,]
Training « Make it easy for you to get information you need to do your job. Take advantage Office Develaper ':ﬁ) i
MSDN Stores o of special offers, find useful links, and stay up to date with the latest product and &
technology news. SQL Server £
Visual Basic R
bers Helping Members e ¢
. . . Visual C++
Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the visual FoxPro
developer community, Get answer§ quickly I?y searching.the MHM database for Visual InterDev
people who can answer your technical questions, Or, register as a volunteer and
help other developers when they need it. Sign up now! visual T4+
R Visual Studio ;|
MSDN Online Certified Membership
. Windows 2000 :g

e

S

Figure 3-9: The Community home page.

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox—if you want to. You can also get all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You can also
sign up to get newsletters based on your membership in various OSIGs—again, only if
you want to. It's easy for me to suggest that you become a registered user for MSDN
Online—I'm a registered user, and it’s a great resource.

The Windows Programming Reference Series

The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling developers to get their work done as
efficiently as possible. In addition to providing reference material for Microsoft

technologies, each Library in the Windows Programming Reference Series also includes
material that helps developers get the most out of its technologies, and provides insights
that might otherwise be difficult to find.

24 Volume 4 Microsoft Windows Common Controls

Tesls » \Welcome to the MSDN Online Downloads Area
Sarnples «
Images « Tools
Sounds :
subscriber o Want to try out some great new products? Check out our tools area, where MSDN Online members and
Downloads quests can download over 40 trial, beta and full versions of the latest developer products.

Samples
In this section, you will find a great variety of samples which demonstrate ways to use the latest and

greatest Microsoft techriologies to make your applications the best they can be. all samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology.
Entries prefixed with & are for users registered with Visual Studio only -- to get access to these,
register your product today.

Visit the Visual Studio Solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design.

Images
Download Web-ready images for free from our Images Downloads area. Currently, we have a great
collection created by Little Men's Studio, Inc. Little Men's Studio provides original clip art collections, i
icons, and free quotes on affordable custom graphics. Our image categories include rules, clip art, i
buttons, bullets, photographs, and more. We will be updating this collection with more images so be
sure to check back frequently.

Figure 3-10: The Downloads home page.

The Windows Programming Reference Series is currently planned to include the
following libraries:

Win32 Developer's Programming Reference Library

Active Directory Services Library

Networking Services Library
In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
Windows Programming Reference Series Libraries that cover the following material:

Web Technologies Library

Web Reference Library

COM/DCOM 2.0 Library

Chapter 3 Using Microsoft Reference Resources 25

.microsoft. com/us/dev/

msdn online

1. Enter your search word(s) or phrase, or select a saved phrase from the drop-down list: search Tips:
Quick

{Enter phrase [saved search phrases :¥] Advanced

2. Select your search criteria:

I_e_xact phrase w‘}

3. Specify your search scope:

¥ b :
& All sections of MSDN Library
{" Selected sections of MSDN Library

¥ visual Studio Documentation ¥ Other SDK Documnentation
¥ visual Basic Documentation ¥ DDK Documentation

¥ visual C++ Documentation ¥ windows Resource Kits

{¥ Visual Fox Pro Documentation W Specifications

¥ Vvisual InterDev Documentation ¥ Technical Articles

¥ visual 1++ Documentation ¥ Backgrounders

{¥ visual SourceSafe Documnentation ¥ Books and Partial Books

¥ Tools & Technologies {including Win CE) ¥ Periodicals ﬂ

Figure 3-11: The Search home page.

What else might you find in the future? Topics such as a Security, Languages and MFC,
BackOffice, and other pertinent topics that developers using Microsoft products need in
order to get the most out of their development efforts, are prime subjects for future
libraries in the Windows Programming Reference Series. If you have feedback you want
to provide on such libraries, or on the Windows Programming Reference Series in
general, you can send mail to the following address: winprs @ microsoft.com.

If you’re sending mail about a particular Library, make sure you put the name of the
library in the subject line. For example, an e-mail about the Win32 Library would have a
subject line that reads “Win32 Library.” There aren’t any guarantees that you'll get a
reply, but I'll read all of the mail and do what | can to ensure your comments, concerns,
or (especially) compliments get to the right place.

27

CHAPTER 4

Finding the Developer
Resources You Need

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a /ot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft’s resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn’t go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support

Microsoft’s support sites cover a wide variety of support issues and approaches,
including all of Microsoft’s products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.com/support/customer/develop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft’s support services.

28 Volume 4 Microsoft Windows Common Controls

Developers
1 Need Help Now?

B Microsoft offers a wide variety of support for Developers, The Microsaoft
Developer Network (MSDN) is packed with news, resources and technical

4 Goto a Support site

created especially for d lopers' unique needs, Take advantage of
newsgroups and chat rooms, search the online support archive or sign up for
our regular e-mail news watch,

i & Business Solutions Microsoft offers developers with Premier Support for Developer, Pay-per-

¥ Partners & Resellers Incident Support, Priority Annual Support and special consulting services, If
Developers you need more than occasional developer support, one of these options is
Home User sure to be right for you.
Education

Do you need help now?
Go to the Microsoft Developer Network (MSDN) Support ServiceDesk.
Support Options

Premier Support for Developers 2]
Priority Annual Support 4
Pay-Per-Incident =]

Consult Line

For additional information, read the Premier Support for
Developers data sheet. (pre_dev.doc, 64K)

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

® Premier Support for Enterprises

e Premier Support for Developers

¢ Premier Support for Microsoft Certified Solution Providers

¢ Premier Support for OEMs

If you’re a developer, you might fall into any of these categories. To find out
more information about Microsoft’s Premier Support, get in contact with them at
1-800-936-2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages
of Priority Annual Support offered by Microsoft:

e Priority Comprehensive Support

e Priority Developer Support

e Priority Desktop Support

Chapter 4 Finding the Developer Resources You Need 29

As a developer, the best support option for you is the Priority Developer Support. To
get more information about Priority Developer Support, you can reach Microsoft at
1-800-936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there’s
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can’t be broken down into sub-issues or sub-problems (that
is, it can’t be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft’s support Web
site, but if you’re on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support.microsoft.com/support/webresponse.asp.

Online Resources

Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online’s Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online’s Community site, go to msdn.microsoft.com/community.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft’s corporate site. You can search the Knowledge
Base online at support.microsoft.com/support/search.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.com/support/news.

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer’s Reference Library, and they are the following:

microsoft.public.win32.programmer.*

microsoft.public.ve.”

microsoft.public.vb.*

microsoft.public.platformsdk.*

microsoft.public.cert.”

microsoft.public.certification. *

30 Volume 4 Microsoft Windows Common Controls

Of course, Microsoft isn’t the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups—too many to
list—that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you’ll need to contact your ISP to find out the name of the
mail server, and then use a newsreader application to visit, read, or post to the Usenet
groups.

Learning Products

Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and

" its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topics.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as

Visual C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a
particular product (such as SQL Server or Commerce Server) is to go through and read
the preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do—there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don’t have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually
didn’t know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are “tracks”
that candidates generally choose and that point their certification in a given direction,

Chapter 4 Finding the Developer Resources You Need 31

such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

¢ Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0
(70-016)

¢ Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

¢ Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

¢ Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

¢ Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:
¢ Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

* Any Desktop or Distributed exam not used as a core requirement

¢ Designing and Implementing Data Warehouses with Microsoft SQL Server 7.0 and
Microsoft Decision Support Services 1.0

¢ Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

¢ Implementing OLE in Microsoft Foundation Class Library 4.0 Applications
¢ |mplementing a Database Design on Microsoft SQL Server 6.5

e Designing and Implementing Databases with Microsoft SQL Server 7.0

¢ Designing and Implementing Web Sites with Microsoft FrontPage 98

¢ Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

* Microsoft Access for Windows 95 and the Microsoft Access Developer’s Toolkit

¢ Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications

32 Volume 4 Microsoft Windows Common Controls

e Designing and Implementing Database Applications with Microsoft Access 2000

¢ Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

¢ Designing and Implementing Web Solutions with Microsoft Visual InterDev 6.0

¢ Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
¢ Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

e Developing Applications with Microsoft Visual Basic 5.0

¢ Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
¢ Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn’t that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you—regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams—and don’t be fooled by believing that if the book is bigger it must be better,
because that certainly isn’t always the case—and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.com/train_cert/dev.

Conferences

As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year—occurring throughout the country and around the
world—on various topics. There are probably more conferences available than any
human being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one—the Professional Developers Conference (PDC).

Chapter 4 Finding the Developer Resources You Need 33

Regardless of which conference you're looking for, Microsoft has provided a central site
for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events.microsoft.com.

Other Resources

There are other resources available for developers of Windows applications, some of
which might be mainstays for one developer and unheard of for another. The listing of
developer resources in this chapter has been geared toward getting you more than
started with finding the developer resources you need: it's geared toward getting you
100 percent of the way, but there are always exceptions.

Perhaps you're just getting started, and you want to get more hands-on instruction than
MSDN Online or MCSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with others, let
me know about it by sending me e-mail at the following address, and—who
knows?—maybe someone else will benefit from your knowledge:

winprs @ microsoft.com
If you're sending e-mail about a particularly useful resource, type “Resources” in the

subject line. There aren’t any guarantees that you'll get a reply, but I'll read all of the e-
mail and do what | can to ensure your resource idea gets considered.

35

CHAPTER 5

Getting the Most Out of Win32
Technologies: Part 4

This chapter is the fourth of the five-part collection of common programming errors,
included in the Microsoft Win32 Developer’s Reference Library to help you avoid these
simple programming pitfalls. This collection of common programming errors is distributed
in each Win32 Library volume’s Chapter 5 in the following fashion:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validations

Volume 3: RPC Errors and Kernel-Mode Specifiers
Volume 4: Buffer Overflows and Miscellaneous Errors
Volume 5: Memory Abuse and Miscalculations

As you'll notice, not all of these pitfalls are necessarily confined to Win32 programming
(some are networking services based, for example). However, since these common
coding errors must be avoided in any Windows application, they’re provided here in their
entirety to round out the benefits of owning the Win32 Library.

This of course is Volume 4, and the errors and examples found in this chapter provide
insights that can help you avoid problems with buffer overflows and an assortment of
miscellaneous errors in your programming projects. So without further ado, here

they are!

Buffer Overflows

Buffer overflows can cause all sorts of problems and can be the result of simple errors
on the part of the developer or the result of a directed attack. Avoiding buffer overflow
problems isn’t difficult, but failing to do so can result in dire consequences. Follow the
rules listed below, and their subsequent explanations, to avoid such problems.

¢ Always check the actual buffer size when accessing a buffer, rather than some known
maximum.

¢ Be aware of arithmetic overflow, and ensure that checks don’t go wrong because of
them.

e Verify that arithmetic performed on enumerated types results in values within the
enumeration.

e Test buffers sizes against expectations; don’t assume they have been tested already.

36

Volume 4 Microsoft Windows Common Controls

You can also take the following additional precautions to avoid buffer overflows:

e When using an offset address, ensure that the location is not beyond either end of the
buffer.

¢ On complex size calculations, ensure that the total size is greater than the fixed
header.

e Beware of strings without NULL termination. If there is a size, use it!

e Check minimum and maximum values of enums after calculation.

¢ When comparing external and internal data, compare sizes first, and then use the
minimum for comparisons.

Simple Buffer Overflow

The best solution to simple buffer flow is to check the bounds of a buffer before
referencing it. However, there are a couple of cases that require extra attention.

One case that requires extra care is writing data to stack buffers; going beyond the
bounds of a stack buffer can allow the return address to be set to an arbitrary value,
resulting in execution of arbitrary code. Another case that requires extra care is non-
terminated strings; in many cases—such as kernel mode and network structures—
strings are sent with a size, but no NULL terminator. In these cases, do not rely on a
NULL terminator, but rather use the size.

The general rule is that it's important to always check buffer accesses by their actual
upper and lower bounds, and not to do so by a known minimum or maximum.

:Example

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 37

Remarks

In this example we passed the captured buffer to the internal function with neither an
indication of how large the string actually is nor a zero terminating it.

Size Overflow or Underflow

In many instances, especially in network code, buffers are passed that have a fixed
header and a variable tail. These types of buffers often lead to complex size calculations
that require careful validation. The most common way these buffers break is when a
large (effectively negative) size is provided in the variable-length section, such that the
sum of header plus tail is less than the buffer size. Validation succeeds, resulting in a
huge section of memory from the tail being copied into a too-small buffer. Another
common attack is to send a partial packet that is shorter than the header section. Slight
rearrangements of comparisons will often correct the problem.

i

“

Example

v

(continued)

38

Volume 4 Microsoft Windows Common Controls

(continued)

Remarks

The problem with the above code sample is that the addition in the second if statement
may overflow. That overflow would cause the test to succeed even though the buffer isn’t
big enough to contain that much data. It's easy to rearrange the above if statement to
get it working correctly:

Remarks

We can do the first subtraction without underflow occurring because of the presence of
the first if test in the earlier code.

Abuse of enumerated types

Enumerated types have a limited range of values, which means that some operations
(most notably addition and subtraction) might yield values that will cause invalid memory
references. Enumerated types should be checked for minimum and maximum after
performing any arithmetic operation.

Example
}typezdef‘ enum { KTTY

Remarks
Consider InformationClass == FirstEntry, Which evaluates to zero.

Using internal lengths for comparisons to external input

Some application components maintain internal length values for structures used by the
component. This is fine so long as the data is internal to the application component;
however, a problem arises when application-internal lengths are used with external input
data. If lengths need not be identical, use the minimum of the internal and external

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 39

lengths. If lengths should be identical, a mismatch between the two sizes should cause
the parameter to be rejected.

Example
P

Remarks

If the RtiCopyMemory() function call in this code example doesn’t crash the system for
writing too much data, the 1/0 system code to copy this data back into user mode might.
OutputLength just might have been zero.

Miscellaneous Errors

This section functions as a catch-all for problems that are general enough to occur in any
application code, but unusual enough not to fit into a simple category. The following list
enumerates miscellaneous issues that developers should be wary of when developing
applications:

e Be careful when casting input data to another type.

e Double-check precedence order in complex expressions.

e Ensure that all parts of the compound conditional are equivalent (each result should
execute the same code) or are special-cased where appropriate.

e Check all pointer parameters for NULL (especially optional parameters).
e Don’t hard-code strings in code (for example, “Administrators”).

e Beware of multiple checks of volatile data.

¢ Always acquire locks in a consistent order.

e Beware of (and preferably eliminate or reduce) inconsistencies with common
interfaces (for example, GetLastError and functions returning handles).

Dangers of typecasting

Casting an input value to another type without sufficient checks can lead to a number of
problems. One common faulty assumption (that pointers are 4 bytes long) could lead to
significant problems if an application is ported to a 64-bit operating system. Casting input

40

Volume 4 Microsoft Windows Common Controls

data to floating-point types can have even more significant repercussions, because
many bit combinations are not valid floating-point values. Finally, casting to different
types can give very different behavior if the sign bit is set depending on whether the
types are signed; unsigned values are zero-extended, while signed values are sign-
extended.

In general, the best approach to typecasting in your applications is to make as few
assumptions as possible. Casts from pointers to longs might chop the value, making it
look good even though it's bad. Any float passed from user mode should be assumed
to contain all possible bit patterns, not just properly formed floating-point values.

Example

N?STATUS BufferChec& :
'QBUFFER InputBaffEf.
GSHORT I I’fputB ufferi Length

1f (InputBufferLepgth > (USH@RT)
InputBuffer->Dat8Lengt BRe
, ~//
1
f /A/,‘
SIE
A
',AﬁdressLength

i *(U§BDRT *},*((PCHAR)“I@
I
Remarks
In this example, DataOffset and DataLength are ULONG values whose sum has been
cast to a USHORT for comparison to the USHORT value InputBufferLength. Because
the values are truncated, it’s possible to succeed on this conditional and still dereference

far beyond the scope of the indicated buffer when AddressLength is retrieved, because
the variables in question are not recast.

Operator precedence

Many common problems occur because of a misunderstanding of the precedence
rules—most commonly & and | versus == and !=. Equality has higher precedence, but
code is often written if (a & ¢2 == ¢2), which is really if (a & (c1 == ¢2)). To avoid this
problem, fully parenthesize the intended order of operations, or look it up to verify that
precedence is correct.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 4

Example
if (Value & CONSTANT == CONSTANT) {
. ERROR_INVALID_PARAMETER;

Remarks

Thus if (Value & !0). There’s a PERL script called TYPO that can find these easily.
A smart compiler will optimize both statements away; a smarter one will generate
warnings.

Conditional termination confusion

Conditional termination confusion occurs when a compound condition is used and
subsequent code assumes that one particular clause was satisfied. This particular
programming error is frequently discovered in while and for loops with compound
termination clauses.

Example

Remarks

The loop in this example seems to be attempting to check that the buffer is properly
NULL-terminated without overflowing the end of the buffer; however, the statement
immediately following assumes that the terminator was found, and thus the second
condition fulfilled the while loop termination. If the first clause fulfilled the termination
condition, the strlen call would read past the specified length in the buffer.

Misuse of OPTIONAL parameters

OPTIONAL parameters can be NULL. However, some functions dereference
OPTIONAL parameters without verifying that they are non-NULL, or check for NULL in
some paths without checking others. Avoiding this common programming error is simple:
Check all OPTIONAL parameters for NULL before using them.

she

(StringDstA OPTIONAL, @ .~

((\continued)

42 Volume 4 Microsoft Windows Common Controls

(continued)

Remarks
Consider the case where StringDstA != NULL and StringDstB == NULL.

Return value confusion and inconsistencies

The Win32 API includes several features that are expected to be general to all system
API functions, but in reality, they are not. The two most commonly misused features are
INVALID_HANDLE_VALUE and GetLastError. GetLastError can be called after most
Win32 API functions, but there are some functions (registry API functions, for example)
that don’t call SetLastError. Similarly, the Nt* API functions don’t call SetLastError.
INVALID_HANDLE_VALUE is returned only from Win32 file-system API functions
(CreateFile, FindFirstFile, and so on). Passing INVALID_HANDLE_VALUE to the
GetKernelObjectSecurity() function will return the security on the current process
because INVALID_HANDLE_VALUE == GetCurrentProcess().

To avoid these common programming errors, carefully check the appropriate error return
code. Some Win32 handle functions return NULL to indicate an error, while others use
INVALID_HANDLE_VALUE. GetLastError() inconsistencies are problems that should
be fixed, but be sure to use return codes for error checking, not just GetLastError().

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 43

Example

HANDLE
OpenFile(

Remarks

The call to the NtOpenFile() function does not call the SetLastError() function, so the
call to GetLastError() returns the result from the last call that did call SetLastError(). If
the last call that called SetLastError() succeeded, a false positive response may result.

Don’t rely on volatile objects

Any multithreaded environment can run into synchronization problems if global data is
checked multiple times expecting the same result. If a kernel or network server makes
decisions based on multiple checks of a volatile object, special care must be taken to
ensure that different values for the object will not break the algorithm. The best way to
avoid this problem is to avoid doing the same queries more than once. If multiple queries
are required, make sure that differing results don’t cause a problem. For example, if
access to a file is determined to be possible, don’t assume that further accesses to the
same file by name will also succeed.

Example

NTSTA?US
ReaéﬂrmteF%TeByName(

(continued)

44

Volume 4 Microsoft Windows Common Controls

(continued)

SR e o

Results

The privileges on the file in this example might have changed in the time between
the read open and the write open. Because this is a privileged component and no
impersonation was performed, this code may end up writing data to a file that has
since been marked read-only to the user in question.

Avoid spinlock order problems

Spinlocks (or any other locking/mutex mechanisms) acquired in the wrong order create
timing windows that can deadlock computers. Many components are particularly
susceptible to this in their IRP cancel routines, where spinlocks may be acquired without
dropping the implicitly acquired CancelSpinlock. To avoid this situation, always acquire
spinlocks in a consistent order, even when one is implicitly acquired.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 45

VOID . : R
LockingFunction2(PCONNECTION Connection)

Remarks

If LockingFunction1() and LockingFunction2() were to acquire the session and
connection locks respectively at nearly the same time, both threads would deadlock
waiting for the other to release the lock that they next attempt to acquire.

Determining membership in Administrators group

Many applications check whether a user is an administrator before allowing an
operation, but determining group membership is often performed incorrectly. The most
common method for determining membership in the Administrators group is to build the
appropriate SID and look in the user’s token for that SID. With “restricted” tokens,
however, this is no longer sufficient. Another common method was to look up that SID by
specifying the name “Administrators”; that approach is not localizable, and therefore not
the best approach. The best approach is to use CheckTokenMembership() to check a
user's membership in any group.

Example

(continued)

46 Volume 4 Microsoft Windows Common Controls

(continued)

Chapter 5 Getting the Most Out of Win32 Technologies: Part 4 47

&AdminSid)) {
if (!CheckTokenMembership(Token,
: AdminSid, T
o e " &IsMember)) . { .. o ..o
S - lsMember = FALSE; -« . T e fe
Y . S ;
GlobalFree(AdminSid);
Yo e e T

Solution Summary

It's nice to have a concise version of the solutions to these common programming
problems, so this section summarizes how to avoid the issues discussed in this chapter.

Buffer Overflows

1. Simple buffer overflow: Always check actual buffer size when accessing a buffer,
rather than some known maximum.

2. Size overflow or underflow: When using an offset address, ensure that the location
is not beyond either end of the buffer.

3. Abuse of enumerated types: On complex size calculations, ensure that total size is
greater than the fixed header.

4. Using internal lengths for comparisons to external input: Beware of strings without
NULL termination. If there is a size, use it!

Miscellaneous Errors
1. Dangers of typecasting: Be careful when casting input data to another type.
2. Operator precedence: Double-check precedence order in complex expressions.

3. Conditional termination confusion: Ensure that all clauses of a compound conditional
are equivalent (each result should execute the same code), or are special-cased
where appropriate.

4. Misuse of OPTIONAL parameters: Check all pointer parameters for NULL (especially
optional parameters).

5. Return value confusion and inconsistencies: Don’t hard-code strings in code (for
example, “Administrators”).

6. Don’t rely on volatile objects: Beware of multiple checks of volatile data.

. Avoid spinlock order problems: Always acquire locks in a consistent order.

8. Determining membership in Administrators group: Beware of (and preferably eliminate
or reduce) inconsistencies with common interfaces (for example, GetLastError and
functions returning handles).

~

49

PART 2

Introduction

The common controls are an important part of the user interface in virtually all Microsoft
products, as well as in many applications produced by third-party developers. However,
there are a lot of controls, and finding the information you need to perform certain
common or important tasks is not always easy. This chapter is designed to make you
aware of versioning considerations you must take into account during the development
process, as well as to highlight several important tasks that are of importance to
developers. The individual sections are task-oriented and designed to provide you with
enough information about the procedure, so that you will be able to implement controls
in your application with a minimum of fuss.

Getting Information About List-View, Toolbar, and
Tree-View Controls

In order to adhere to the mission of the Windows Programming Reference Series—
which is to provide concise, compact, and portable reference books—three common
controls were omitted from this printed volume: List-View, Toolbar, and Tree-View
Controls. Together, these three controls are approximately as long as the book you are
holding currently, so in order to provide you with the most comprehensive and useful
collection, these three controls have been provided in a more compact form—that is,
they have been provided on the companion CD.

The companion CD found in the Base Services volume contains all the information about
these three controls (along with all the other controls that did get into this volume, and
loads of other reference information). If you have not done so, you should fire up the
installation CD and get the electronic reference companion CD installed on your computer.

General Introduction to the Common Controls

The common controls are a set of windows that are implemented by the common control
library, which is a dynamic-link library (DLL) included with the Microsoft Windows
operating system. Like other control windows, a common control is a child window that
an application uses in conjunction with another window to perform 1/O tasks.

Using Common Controls

Most common controls belong to a window class defined in the common control DLL.
The window class and the corresponding window procedure define the properties,
appearance, and behavior of the control. To ensure that the common control DLL is

50 Volume4 Microsoft Windows Common Controls

loaded, include the InitCommonControlsEx function in your application. You create
a common control by specifying either the name of the window class when calling the
CreateWindowEXx function or the appropriate class name in a dialog-box template.

DLL Versions

All 32-bit versions of Windows include a common controls DLL, known as Comctl32.dll.
However, this DLL has been updated several times since it was first introduced. Each
successive version supports the features and application programming interface (API)
of earlier versions. However, each new version also contains a number of new features
and a correspondingly larger API. Applications must be aware of which version of
Comctl32.dll is installed on a system, and use only the features and API that the DLL
supports.

Because new versions of the common controls were distributed with Internet Explorer,
the version of Commctl32.dll that is present is commonly different from the version that
was shipped with the operating system. It might be several versions more recent,
actually. Thus, it is not enough for your application to know which operating system it is
running on—it must determine directly which version of Comctl32.dlil is present. For a
detailed discussion of common controls versions and how to determine which version of
Comctl32.dll is installed, see Shell and Common Controls Versions.

Structure sizes for different common control versions

Ongoing enhancements to common controls have resulted in the need to extend many
of the structures. This, in turn, results in the size of the structures changing between
different versions of Commctrl.h. Because most of the common control structures take a
structure size as one of the parameters, this can result in a message or function failing if
the size is not recognized. To remedy this, structure-size constants have been defined to
aid in targeting different versions of Comctl32.dll. The following list defines the new
structure-size constants:

Control Constant
HDITEM_V1_SIZE The size of the HDITEM structure in version 4.00.
LVCOLUMN_V1_SIZE The size of the LVCOLUMN structure in
version 4.00.
LVHITTESTINFO_V1_SIZE The size of the LVHITTESTINFO structure in
version 4.00.

LVITEM_V1_SIZE The size of the LVITEM structure in version 4.00.
NMLVCUSTOMDRAW_V3_SIZE The size of the NMLVCUSTOMDRAW structure in
version 4.70.

NMTTDISPINFO_V1_SIZE The size of the NMTTDISPINFO structure in
version 4.00.

NMTVCUSTOMDRAW_V3_SIZE The size of the NMTVCUSTOMDRAW structure in
version 4.70.

Part 2 Introduction 51

Control Constant

PROPSHEETHEADER_V1_SIZE The size of the PROPSHEETHEADER structure in
version 4.00.

PROPSHEETPAGE_V1_SIZE The size of the PROPSHEETPAGE structure in
version 4.00.

REBARBANDINFO_V3_SIZE The size of the REBARBANDINFO structure in
version 4.70.

TTTOOLINFO_V1_SIZE The size of the TOOLINFO structure in
version 4.00.

TVINSERTSTRUCT_V1_SIZE The size of the TVINSERTSTRUCT structure in
version 4.00.

Common Control Styles

Each type of common control has a set of control styles that you can use to vary the
appearance and behavior of the control. The common control library also includes a
set of control styles that apply to two or more types of common controls. The common
control styles are described in the Common Control Styles section.

Common Control Messages

Because common controls are windows, an application can manipulate them by using
messages, such as WM_GETFONT or WM_SETTEXT. In addition, the window class of
each common control supports a set of control-specific messages that an application can
use to manipulate the control. An application can use any of the message sending or
posting functions to pass messages to the control. In addition, some common controls
have a set of macros that an application can use instead of the sending or posting
functions. The macros are typically easier to use than the functions.

When a change is made to the system color settings, Windows sends a
WM_SYSCOLORCHANGE message to all top-level windows. Your top-level window
must forward the WM_SYSCOLORCHANGE message to its common controls;
otherwise, the controls will not be notified of the color change. This ensures that the
colors used by your common controls are consistent with those used by other user
interface objects. For example, a toolbar control uses the 3D Objects color to draw its
buttons. If the user changes the 3D Objects color but the WM_SYSCOLORCHANGE
message is not forwarded to the toolbar, the toolbar buttons will remain in their original
color (or even change to a combination of old and new colors) while the color of other
buttons in the system changes.

Common Control Notification Messages

Common controls are child windows that send notification messages to the parent
window when events, such as input from the user, occur in the control. The application
relies on these notification messages to determine what action the user wants it to take.
Except for trackbars, which use the WM_HSCROLL and WM_VSCROLL messages to
notify its parent of changes, common controls send notification messages as

52

Volume 4 Microsoft Windows Common Controls

WM_NOTIFY messages. The IParam parameter of WM_NOTIFY is either the address of
an NMHDR structure or the address of a larger structure that includes NMHDR as its first
member. The structure contains the notification code and identifies the common control
that sent the notification message. The meaning of the remaining structure members, if
any, varies depending on the notification code.

Common controls notifications support both ANSI and UNICODE formats. The system
determines which format to use by sending your window a WM_NOTIFYFORMAT
message. To specify a format, return NFR_ANSI for ANSI notifications, and
NFR_UNICODE for Unicode notifications. If you do not handle this message, the system
calls IsWindowUnicode to determine the format. Since Windows 95 and Windows 98
always return FALSE to this function call, they use ANSI notifications by default.

Note Not all controls will send WM_NOTIFY messages. In particular, the standard
Windows controls (edit controls, combo boxes, list boxes, buttons, scroll bars, and static
controls) do not send WM_NOTIFY messages. Consult the documentation for the control
to determine if it will send any WM_NOTIFY messages and, if it does, which notification
codes it will send.

Each type of common control has a corresponding set of notification codes. The
common control library also provides notification codes that can be sent by more
than one type of common control. See the documentation for the control of interest
to determine which notification codes it will send and what format they take.

Common Control Updates in Internet Explorer

Common controls in Internet Explorer support the following new features.

Common Control Initialization
The common controls are now initialized with the InitCommonControlsEx function.
This function allows you to specify which controls should be initialized for your
application instead of initializing all of the controls. The InitCommonControls
function is still supported, but new applications should use InitCommonControlsEx.
New Common Control Styles
There are four new common control styles defined. These are CCS_LEFT,
CCS_RIGHT, CCS_VERT, and CCS_NOMOVEX. For more information, see
Common Control Styles.

Shell and Common Controls Versions

This section describes how to determine which version of the Shell or Common Controls
DLLs your application is running on and how to target your application for a specific
version.

Part2 Introduction 53

DLL Version Numbers

All but a handful of the programming elements discussed in the shell and common
controls documentation are contained in three DLLs: Comctl32.dll, Shell32.dll, and
Shiwapi.dll. Because of ongoing enhancements, different versions of these DLLs
implement different features. Throughout this document, programming elements are
marked with a version number. This version number indicates that the programming
element was first implemented in that version and will also be found in all subsequent
versions of the DLL. If no version number is specified, the programming element is
implemented in all versions. The following table outlines the different DLL versions, and
how they were distributed.

Version DLL Distribution platform

4.00 All Microsoft Windows 95/Windows NT 4.0.

4.70 All Microsoft Internet Explorer 3.x.

4.71 All Microsoft Internet Explorer 4.0 (see note 2).

4.72 All Microsoft Internet Explorer 4.01 and Windows 98
(see note 2).

5.00 Shiwapi.dll Microsoft Internet Explorer 5 (see note 3).

5.00 Shell32.dll Microsoft Windows 2000. (see note 3).

5.80 Comctl32.dll Microsoft Internet Explorer 5 (see note 3).

5.81 Comctl32.dll Microsoft Windows 2000(see note 3).

Note 1: The 4.00 versions of Shell32.dll and Comctl32.dll are found on the original
versions of Windows 95 and Windows NT 4. New versions of Commctl.dll were shipped
with all Internet Explorer releases. Shiwapi.dll first shipped with Internet Explorer 4.0, so
its first version number is 4.71. The shell was not updated with the Internet Explorer 3.0
release, so Shell32.dll does not have a version 4.70. While Shell32.dll versions 4.71 and
4.72 were shipped with the corresponding Internet Explorer releases, they were not
necessarily installed (see Note 2). For subsequent releases, the version numbers for the
three DLLs are not identical. In general, you should assume that all three DLLs might
have different version numbers, and test each one separately.

Note 2: All systems with Internet Explorer 4.0 or 4.01 will have the associated version of
Comctl32.dll and Shiwapi.dil (4.71 or 4.72, respectively). However, for systems prior to
Windows 98, Internet Explorer 4.0 and 4.01 can be installed with or without the
integrated shell. If they are installed with the integrated shell, the associated version of
Shell32.dll will be installed. If they are installed without the integrated shell, Shell32.dll is
not updated. In other words, the presence of version 4.71 or 4.72 of ComctI32.dll or
Shilwapi.dll on a system does not guarantee that Shell32.dIl has the same version
number. All Windows 98 systems have version 4.72 of Shell32.dll.

54 Volume4 Microsoft Windows Common Controls

Note 3: Version 5.80 of Comctl32.dll and version 5.0 of Shiwapi.dll are distributed with
Internet Explorer 5. They will be found on all systems on which Internet Explorer 5 is
installed, except Windows 2000. Internet Explorer 5 does not update the shell, so
version 5.0 of Shell32.dll will not be found on Windows NT, Windows 95, or Windows 98
systems. Version 5.0 of Shell32.dll will be distributed with Windows 2000, along with
version 5.0 of Shlwapi.dll, and version 5.81 of Comcti32.dll.

Using DilGetVersion to Determine the Version Number

Starting with version 4.71, the Shell and Common Controls DLLs, among others, began
exporting DIIGetVersion. This function can be called by an application to determine
which DLL version is present on the system. It returns a structure that contains version
information.

Note DLLs do not necessarily export DIIGetVersion. Always test for it before
attempting to use it.

For systems earlier than Windows 2000, DIlIGetVersion returns a DLLVERSIONINFO
structure that contains the major and minor version numbers, the build number, and a
platform ID. For Windows 2000 and later systems, DliGetVersion may instead return a
DLLVERSIONINFO2 structure. This structure contains the QFE number that identifies
the service pack and provides a more robust way to compare version numbers than
DLLVERSIONINFO. Since the first member of DLLVERSIONINFO2 is a
DLLVERSIONINFO structure, the new structure is backward-compatible.

Using DIIGetVersion

The following sample function loads a specified DLL and attempts to call its
DliGetVersion function. If successful, it uses a macro to pack the major and minor
version numbers from the DLLVERSIONINFO structure into a DWORD that is returned
to the calling application. If the DLL does not export DIIGetVersion, the function returns
zero. With Windows 2000 and later systems, you can modify the function to handle the
possibility that DIIGetVersion returns a DLLVERSIONINFO2 structure. If so, use the
information contained in the ullVersion member to compare versions, build numbers,
and service pack releases. The MAKEDLLVERULL macro is designed to simpilify the
task of comparing these values to those contained in ullVersion.

Part2 Introduction 55

’ if(hinstDH) ,
" DLLGETVERSIONPROC ;)D]‘]G,etvle'rsiérj’;

The following code fragment illustrates how you can use GetDIIVersion to test if
Comctl32.dll is version 4.71 or later.

56 Volume4 Microsoft Windows Common Controls

Project Versions

To ensure that your application is compatible with different targeted versions of
comctl32.dll and shell32.dll, a version macro was added to the header files. This macro
is used to define, exclude, or redefine certain definitions for different versions of the DLL.
The macro name is _WIN32_IE and you, the developer, are responsible for defining the
macro as a hexadecimal number. This version number defines the target version of the
application that is using the DLL. The following are the currently available version
numbers and the effect each has on your application.

Version Description

0x0200 The application will be compatible with Comctl32.dIl and sheli32.dlil
version 4.00 and later. The application will not be able to implement
features that were added after version 4.00 of Comctl32.dll.

0x0300 The application will be compatible with Comcti32.dll and shell32.dlI
version 4.70 and later. The application will not be able to implement
features that were added after version 4.70 of Comctl32.dlIl.

0x0400 The application will be compatible with Comctl32.dIl and shell32.dll
version 4.71 and later. The application will not be able to implement
features that were added after version 4.71 of Comcti32.dll.

0x0401 The application will be compatible with ComctI32.dIl and sheli32.dll
version 4.72 and later. The application will not be able to implement
features that were added after version 4.72 of Comctl32.dll.

0x0500 The application will be compatible with Comcti32.dll version 5.80 and
later, and shell32.dll and Shiwapi.dll version 5.0 and later. The
application will not be able to implement features that were added after
version 5.80 of Comctl32.dll or version 5.0 of Shell32.dIl and Shiwapi.dll.

0x0501 The application will be compatible with Comcti32.dll version 5.81 and
later and shell32.dll and Shiwapi.dll version 5.0 and later. The application
will not be able to implement features that were added after version 5.81
of Comctl32.dll or version 5.0 of Shell32.dll and Shiwapi.dll.

If you do not define this macro in your project, it will automatically be defined as 0x0500.
To define a different value, you can add the following to the compiler directives in your
make file (substitute the desired version number for 0x0400):

5

0 AMINZ TESGxegeR.

Another method is to add a line similar to the following in your source code before
including the shell and common control header files (substitute the desired version
number for 0x0400). For example:

fHdefine _WIN3Z.IE 0x040
#include: <commetrlohde

57

CHAPTER 6

Using Common Controls

Creating a Customizable Toolbar

Most Microsoft Windows applications use toolbar controls to provide their users with
convenient access to various tools. However, static toolbars have some shortcomings,
such as too little space to effectively display all the available tools.

The solution to this problem is to make your application’s toolbars customizable. Users
can then move, add, and delete tools to select only the ones they need and organize
them in whatever way they find convenient.

To enable customization, include the CCS_ADJUSTABLE common controls style flag
when you create the toolbar control. There are two basic approaches to customization:

¢ The customization dialog box. This system-provided dialog box is the simplest
approach. It gives users a graphic user interface that allows them to add, delete,
or move icons.

e Dragging and dropping tools. Implementing drag-and-drop allows users to move tools
to another location on the toolbar or delete them by dragging them off the toolbar. It
provides users a quick and easy way to organize their toolbar, but does not allow
them to add tools.

You can implement either or both, depending on the needs of the application.

Neither of these two approaches to customization provides a built-in mechanism, such
as a Cancel or Undo button, to return the toolbar to its former state. You must explicitly
use the toolbar control API to store the toolbar’s precustomization state. If necessary,
you can later use this stored information to restore the toolbar to its original state.

This document discusses how to enable toolbar customization with the customization
dialog box and with drag-and-drop. It also briefly discusses saving and restoring a
toolbar’s state.

The Customization Dialog Box

The customization dialog box is provided by the toolbar control to give users a simple
way to add, move, or delete tools. Users can launch it by double-clicking the toolbar.
Applications can launch the customization dialog box by sending the toolbar control a
TB_CUSTOMIZE message. Figure 6-1 shows an example of the toolbar customization
dialog box.

58

Volume 4 Microsoft Windows Common Controls

[select
E é Brush
ftiﬁ.ll Brush

Figure 6-1: The toolbar customization dialog box.

The tools in the right-hand list box are those currently on the toolbar. Initially, this list will
contain the tools that you specify when you create the toolbar. The left-hand list box
contains the tools that are available to add to the toolbar. Your application is responsible
for populating that list and keeping track of what tools are currently on the toolbar.

Implementing the Customization Dialog Box

The toolbar control notifies your application that it is launching a customization dialog
box by sending its parent window a TBN_BEGINADJUST notification. It then sends
a TBN_INITCUSTOMIZE notification. If you don’t want the toolbar to display a Help
button, handle this notification and return TBNRF_HIDEHELP.

The toolbar control then collects the information it needs to initialize the dialog box
by sending three series of notifications in the following order:

1. A TBN_QUERYINSERT notification for each button on the toolbar to determine where
buttons can be inserted. Return FALSE to prevent a button from being inserted to the
left of the button specified in the notification. If you return FALSE to all
TBN_QUERYINSERT notifications, the dialog box will not be displayed.

2. A TBN_QUERYDELETE notification for each tool currently on the toolbar. Return
TRUE if a tool can be deleted, or FALSE if not. If all your tools can be deleted, you
do not need to handle this notification.

3. A series of TBN_GETBUTTONINFO notifications to populate the list of available
tools. To add a tool to the list, fill in the NMTOOLBAR structure that is passed with
the notification and return TRUE. When you have no more tools to add, return FALSE.

The dialog box is then displayed, and users can begin to customize the toolbar.

Once the dialog box is displayed, your application can receive a variety of notifications,
depending on the users’ actions:

Chapter 6 Using Common Controls 59

e TBN_QUERYINSERT. Each time the user changes the location of a tool on the
toolbar, or adds a tool. Return FALSE to prevent the tool from being inserted at that
location.

e TBN_DELETINGBUTTON. The user is about to remove a tool from the toolbar.
e TBN_CUSTHELP. The user has clicked the Help button.

e TBN_TOOLBARCHANGE. The user has added, moved, or deleted a tool.

e TBN_RESET. The user has clicked the Reset button.

After the dialog box is destroyed, your application will receive a TBN_ENDADJUST
notification.

Dragging and Dropping Tools

Users also can rearrange the buttons on a toolbar by pressing the SHIFT key and
dragging the button to another location. The drag-and-drop process is handled
automatically by the toolbar control. It displays a ghost image of the button as it is
dragged, and rearranges the toolbar after it is dropped. Users cannot add buttons in
this way, but they can delete a button by dropping it off the toolbar.

Although the toolbar control normally does this operation automatically, it also sends
your application two notifications: TBN_QUERYDELETE and TBN_QUERYINSERT.
To control the drag-and-drop process, handle these notifications as follows:

e The TBN_QUERYDELETE notification is sent as soon as the user attempts to move
the button, before the ghost button is displayed. Return FALSE to prevent the button
from being moved. If you return TRUE, users will be able to either move the tool or
delete it by dropping it off the toolbar. Once you have allowed users to move a tool,
you cannot prevent them from deleting it. However, if users delete a tool, the toolbar
control will send your application a TBN_DELETINGBUTTON notification.

e The TBN_QUERYINSERT notification is sent when the user attempts to drop the
button on the toolbar. To prevent the button being moved from being dropped to the
left of the button specified in the notification, return FALSE. This notification is not
sent if the user drops the tool off the toolbar.

If the user attempts to drag a button without also pressing the SHIFT key, the toolbar
control will not handle the drag-and-drop operation. However, it will send your application
a TBN_BEGINDRAG notification to indicate the start of a drag operation, and a
TBN_ENDDRAG notification to indicate the end. If you want to enable this form of drag-
and-drop, your application must handle these notifications, provide the necessary user
interface, and modify the toolbar to reflect any changes.

Saving and Restoring the Toolbar State

After a toolbar has been customized, you might want to return it to its former state.
However, when the user customizes the toolbar, the toolbar control does not

60 Volume 4 Microsoft Windows Common Controls

automatically keep a record of its precustomization state. Your application must save the
toolbar state explicitly in order to restore it later. Briefly:

¢ To save a toolbar state, send the toolbar control a TB_SAVERESTORE message
with /Param set to TRUE. By default, the toolbar control will save the information
automatically. With common controls version 5.80 and later, you can gain more

control over the save operation by implementing a handler for the TBN_SAVE
notification.

¢ To restore a toolbar state, send the toolbar control a TB_SAVERESTORE message
with /Param set to FALSE. By default, the toolbar control will send your application a
series of TBN_GETBUTTONINFO notifications to request information on each button
as it is restored. With common controls version 5.0 and later, you can gain more

control over the restore operation by implementing a handler for the TBN_RESTORE
notification.

For a detailed discussion of this process, see Saving and Restoring Toolbars.

Creating In-Place Tooltips

Text strings are often used for purposes such as labeling small objects. Unfortunately, if
they are long enough to display useful information, they might extend beyond the
bounds of the object’s display area and get clipped. A common example is file names, as
seen in Microsoft Windows Explorer, which is shown in Figure 6-2.

| Name

; (B8 My Pictures
MyDocs. txt
2] MyDocs2.tat
18] MyDocs3 st

: MyDocsd.myp

Figure 6-2: An example of clipped file names.

Chapter 6 Using Common Controls 61

When the label is clipped, its usefulness can be severely limited. However, with the
example in the Figure 6-2, users can see the full file name by hovering over it with the
cursor. When they do so, an in-place tooltip with the full name is displayed on top of the
clipped file name, as shown in Figure 6-3.

@8 My Pictures :
AIZ] MyDocs1.tst 5
41E] MyDocs2.tat
l@] MyDocs3.str

7

Figure 6-3: An in-place tooltip displays the full file name.

The difference between ordinary and in-place tooltips is positioning. By default, when the
cursor hovers over a region that has a tooltip associated with it, the tooltip is displayed
adjacent to the region. However, tooltips are windows, and they can be positioned
anywhere you choose by calling SetWindowPosition. Creating an in-place tooltip is
simply a matter of positioning the tooltip window so that it overlays the text string.

Positioning an In-Place Tooltip
You need to keep track of three rectangles when positioning an in-place tooltip:

e The rectangle that surrounds the complete label text.

* The rectangle that surrounds the tooltip text. The tooltip text is identical to the
complete label text, and normally is the same size and font. The two text rectangles
will thus usually be the same size.

¢ The tooltip’s window rectangle. This rectangle is somewhat larger than the tooltip text
rectangle that it encloses.

The three rectangles are shown schematically in Figure 6-4. The hidden portion of the
label text is indicated by a gray background.

62 Volume 4 Microsoft Windows Common Controls

Label Text

< Rectangle

A long label string that wil

Tooltip Text

Rectangle
| — ¥]

I A long label string that will usually get clipped

k Tooltip Window

Rectangle

Figure 6-4: Three rectangles involved in positioning an in-place tooltip.

To create an in-place tooltip, you must position the tooltip text rectangle so that it
overlays the label text rectangle. The procedure for aligning the two rectangles is
relatively straightforward:

1. Define the label text rectangle.

2. Position the tooltip window so that the tooltip text rectangle overlays the label text
rectangle.

In practice, it is usually sufficient to align the upper-left corner of the two text rectangles.
Attempting to resize the tooltip text rectangle to exactly match the label text rectangle
could cause problems with the tooltip display.

The problem with this simple scheme is that you cannot position the tooltip text rectangle
directly. Instead, you must position the tooltip window rectangle just far enough above and
to the left of the label text rectangle so that the corners of the two text rectangles coincide.
In other words, you need to know the offset between the tooltip window rectangle and its
enclosed text rectangle. In general, there is no simple way to determine this offset.

Using TTM_ADJUSTRECT to Position a Tooltip

Common controls version 5.0 simplifies the use of in-place tooltips by the addition of a
new message, TTM_ADJUSTRECT. Send this message with the coordinates of the
label text rectangle that you want the tooltip to overlay, and it will return the coordinates
of an appropriately positioned tooltip window rectangle.

Chapter 6 Using Common Controls 63

The following code fragment illustrates how to use TTM_ADJUSTRECT in a
TTN_SHOW handler to display an in-place tooltip. Your application indicates that the
label text is truncated by setting the private fMyStringlsTruncated variable to TRUE. The
handler calls an application-defined function, GetMyltemRect, to get the label text
rectangle. This rectangle is passed to the tooltip control with TTM_ADJUSTRECT, which
returns the corresponding window rectangle. SetWindowPosition then is called to
position the tooltip over the label.

This example does not change the size of the tooltip, just its position. The two text
rectangles will be aligned at their upper-left corners, but not necessarily with the
same dimensions. In practice, the difference is usually small, and this approach is
recommended for most purposes. While you can, in principle, use SetWindowPos
to resize as well as reposition the tooltip, doing so might have unpredictable
consequences.

Creating an Internet Explorer-Style Toolbar

One of the key user-interface features of Microsoft Internet Explorer is the toolbar. It not
only gives users access to a wide array of features, it also allows users to customize its
layout to suit their personal preferences. Figure 6-5 shows the Internet Explorer toolbar,
and highlights some of the key features.

This toolbar essentially consists of a rebar control with four bands: three toolbars and

a menu bar. Because it is implemented with the common controls API, developers can
create toolbars with any or all of its features. This document discusses the essential
features of the Internet Explorer toolbar and how to implement them in your application.

64 Volume 4 Microsoft Windows Common Controls

‘\._,‘

Button

Kiisss ; ' g
Bar : ropdown

Whe's Serving the In
As Internet service pr
cable network opearat.

See page customized for:
E 'AH “'1

Product Families
Business Customers

(€ P meotieonsarion s | @ e T

deploying services fo

lntgmathMm businesses, they ofte‘g;i,
, i

enhanced and expan ¥}

Figure 6-5: Internet Explorer toolbar.

The Rebar Control

The underlying structure of the Internet Explorer toolbar is provided by a rebar control.
This control provides a way for users to customize the arrangement of a collection of
tools. Each rebar contains one or more bands, which are typically long, narrow
rectangles that contain a child window, commonly a toolbar control.

The rebar control displays its bands in a rectangular area, typically at the top of the
window. This rectangle is subdivided into one or more strips that are the height of a
band. Each band can be on a separate strip, or multiple bands can be placed on the
same strip.

A rebar control provides users with two ways to arrange their tools:

e Each band usually has a gripper at its left-hand edge. Grippers are used when two or
more bands on a single strip exceed the width of the window. By dragging the gripper
to the left or right, users can control how much space is allocated to each band.

e Users can move the bands within the rebar’s display rectangle by dragging and
dropping. The rebar control then changes the display to accommodate the new
arrangement of bands. If all the bands are removed from a strip, the height of the
rebar will be reduced, enlarging the viewing area.

® An application can add or remove bands as needed. Typically, applications allow
users to select which bands they want to have displayed through the View menu
or a context menu.

Chapter 6 Using Common Controls 65

if the combined width of the bands on a strip exceeds the width of the window, the rebar
control will adjust their widths as needed. Some of the tools might be covered by the
adjacent band.

Version 5.80 of the common controls provides a way to make tools that have been
covered by another band accessible to the user. If you set the RBBS_USECHEVRON
flag in the fStyle member of the band’s REBARBANDINFO structure, a chevron will be
displayed for toolbars that have been covered. When a user clicks the chevron, a menu
is displayed that allows him or her to use the hidden tools. Figure 6-6, taken from
Internet Explorer 5.0, shows the menu that is displayed when part of the standard
toolbar is covered by the address bar.

c Hmtary ﬂ Add' ss'}’l@] Jms htl
Mu:wsoft é} Maa i

l"‘““*'ﬁa” I

Custom;ze

save vou tirm
1 . " 1 '

Figure 6-6: Portion of a menu that is displayed when the address bar covers the
standard toolbar.

Since each band contains a control, you can provide additional flexibility through the
control’s API. For example, you can implement toolbar customization to allow the user
to add, move, or delete buttons on a toolbar.

Implementing the Rebar Control

Most of the features of the Internet Explorer toolbar are actually implemented in the
individual bands. The implementation of the rebar control itself is relatively
straightforward:

1. Create the rebar control with CreateWindowEx. Set dwExStyle to
WS_EX_TOOLWINDOW and /[pClassName to REBARCLASSNAME. Internet
Explorer uses the following window styles:

e CCS_NODIVIDER

e CCS_NOPARENTALIGN
e RBS_BANDBORDERS
e RBS_DBLCLKTOGGLE
¢ RBS_REGISTERDROP
e RBS_VARHEIGHT

66

Volume 4 Microsoft Windows Common Controls

e WS_BORDER
e WS_CHILD
e WS_CLIPCHILDREN
e WS_CLIPSIBLINGS
e WS_VISIBLE
Set the other parameters as appropriate for your application.

2. Create a control with CreateWindowEX or a specialized control creation function
such as CreateToolbarEx.

3. Initialize a band for the control by filling in the members of REBARBANDINFO.
Include the RBBS_USECHEVRON style with the fStyle member to enable chevrons.

4. Add the band to the rebar control with an RB_INSERTBAND message.
. Repeat steps 2—4 for the remaining bands.

6. Implement handlers for the rebar notifications. In particular, you will need to handle
RBN_CHEVRONPUSHED to display a dropdown menu when a chevron is clicked.
For further information, see Handling Chevrons.

(4]

The grippers are included by default. To omit the gripper for a band, set the
RBBS_NOGRIPPER flag in the fStyle member of the band’'s REBARBANDINFO
structure. For further information on implementing rebar controls, see Rebar Controls.

Handling Chevrons

When a user clicks a chevron, the rebar control sends your application an
RBN_CHEVRONPUSHED notification. The NMREBARCHEVRON structure that is
passed with the notification contains the band'’s identifier and a RECT structure with the
rectangle occupied by the chevron. Your handler must determine which buttons are
hidden and display the associated commands on a pop-up menu.

The following procedure outlines how to handle an RBN_CHEVRONPUSHED
notification:

1. Get the current bounding rectangle for the selected band by sending the rebar control
an RB_GETRECT message.

2. Get the total number of buttons by sending the band'’s toolbar control a
TB_BUTTONCOUNT message.

3. Starting from the leftmost button, get the button’s bounding rectangle by sending
the toolbar control a TB_GETITEMRECT message.

4. Pass the band and button rectangles to IntersectRect. This function will return a
RECT structure that corresponds to the visible portion of the button.

5. Pass the button rectangle and the rectangle for the visible portion of the button to
EqualRect.

6. If EqualRect returns TRUE, the entire button is visible. Repeat steps 3-5 for the next
button on the toolbar. If EqualRect returns FALSE, the button is at least partially
hidden and all remaining buttons will be hidden completely. Continue to the next step.

Chapter 6 Using Common Controls 67

7. Create a pop-up menu with items for each of the hidden buttons.

8. Display the pop-up menu with TrackPopupMenu. Use the chevron rectangle passed
with the RBN_CHEVRONPUSHED notification to position the menu. The menu
should be immediately below the chevron, with the left edges aligned.

9. Handle the menu commands.

The Toolbars

Most of the complexity of the Internet Explorer toolbar lies in the implementation of
controls that make up the rebar bands. Internet Explorer commonly displays four bands:
® The menu bar

The standard toolbar

¢ The links toolbar

The address toolbar

All of these bands, including the menu bar, actually hold toolbar controls. This section
discusses the implementation of the standard and links toolbars. The menu bar is
somewhat more complicated and is discussed separately in Creating an Internet
Explorer-Style Menu Batr.

The basic procedures for implementing toolbar controls are discussed in Toolbar
Controls. This section focuses on some of the newer toolbar features that are used by
Internet Explorer to increase the usability of the control.

Drop-Down Buttons

Drop-down buttons support multiple commands. When the user clicks a drop-down
button, the button displays a pop-up menu instead of launching a command. The user
launches a command by selecting it from the menu. Figure 6-7 shows a drop-down
button and menu from the Internet Explorer standard toolbar.

| 3 MSDN Unllne chmsuﬂ Inlemel Euplmer Dally Build 5 l]l] 2516. 12l]l]
| File Edit. View Favoites Tools! Help: : [

|Gk - Q) (] @senen F

lﬁddsm& {E-j http: //msdn. microsoft. com/defaultbeta. asp

All Products

Figure 6-7: A drop-down button and menu from the standard toolbar in
Internet Explorer.

68

Volume 4 Microsoft Windows Common Controls

Drop-down functionality can be added to any button style by adding a style flag to the
fStyle member of the button’s TBBUTTON structure. There are three styles of drop-
down button, all of which are used by Internet Explorer:

e Plain drop-down buttons have the BTNS_DROPDOWN style. They look like normal
buttons, but they display a menu when clicked instead of launching a command.

¢ Simple drop-down arrow buttons have the BTNS_WHOLEDROPDOWN style. They
have an arrow displayed next to the button image or text. Other than the difference in
appearance, they are identical to plain drop-down buttons. The Mail button used as
the example in the preceding illustration is a drop-down arrow button.

e Drop-down arrow buttons that add the TBSTYLE_EX_DRAWDDARROWS extended
style to BTNS_DROPDOWN have an arrow that is separated from the text or image.
This button style combines the functionality of drop-down and standard buttons. If the
user clicks the arrow, a menu is displayed and the user can choose from several
commands. If the user clicks the adjacent button, it launches a default command.
Figure 6-8 shows the Internet Explorer Back button, which uses a separated arrow.

J MSDHN Online - Microsoft Internet Explorer - [

Figure 6-8: The Back button in Internet Explorer.

When the user clicks a drop-down button with either the plain or simple arrow styles, the
toolbar control sends your application a TBN_DROPDOWN notification. When your
application receives this message, it is responsible for creating and displaying the menu,
and for handling the selected command. For further discussion, see Toolbar Controls.

When the user clicks a separated arrow, the toolbar control sends your application a
TBN_DROPDOWN notification. Your application should handle it the same way as it
handles the other two types of drop-down buttons. If the user clicks the main button, your
application receives a WM_COMMAND message with the button’s command ID, just as
if it were a standard button. Applications typically respond by launching the top
command in the drop-down menu, but you are free to respond in any suitable way.

Chapter 6 Using Common Controls 69

List-Style Buttons

With standard buttons, if you add text, it is displayed below the bitmap. The following
illustration shows the Internet Explorer Search and Favorites buttons with standard
button text.

Internet Explorer 5 uses the TBSTYLE_LIST style. The text is to the right of the bitmap,
reducing the height of the button and enlarging the viewing region. The following
illustration shows the Internet Explorer 5 Search and Favorites buttons with the
TBSTYLE_LIST style.

Chevrons

When the user rearranges the bands in the rebar control, part of a toolbar might be
covered up. If the band was created with the RBBS_USECHEVRON style, the rebar
control will display a chevron at the right edge of the toolbar. The user clicks the chevron
to display a menu with the hidden tools. For a discussion on how to implement chevrons,
see Handling Chevrons.

Hot-Tracking

When hot-tracking is enabled, a button becomes hot when the cursor is over it. The hot
button is normally distinguished from the other buttons on the toolbar by a distinctive
image. By default, a hot button appears to be raised above the rest of the toolbar. When
a new button becomes hot, your application receives a TBN_HOTITEMCHANGE
notification. The following illustration shows the Internet Explorer 5.0 Search and
Favorites buttons, with a hot Search button. In addition to having a raised appearance,
the button’s gray bitmap has been replaced with a colored one.

70

Volume 4 Microsoft Windows Common Controls

To enable hot-tracking, create a toolbar control with either the TBSTYLE_FLAT or
TBSTYLE_LIST style. These are referred to as flat toolbars because the individual
buttons are not ordinarily highlighted in any way. The bitmaps are simply displayed next
to each other. They take on a button-like appearance only when they are hot. These two
styles are also transparent, which means the background of the icons will be the color of
the underlying client window.

To have a different bitmap displayed when the button is hot, create a second image list
containing hot images for all the buttons on the toolbar. The size and order of these
images should be the same as in the default image list. Send the toolbar control a
TB_SETIMAGELIST to set the hot image list.

Creating an Internet Explorer-Style Menu Bar

At a glance, the Microsoft Internet Explorer 5.0 menu bar looks much like a standard
menu. However, it looks quite different in use. Figure 6-9 shows the Internet Explorer
menu bar with the Tools menu selected.

#soft | U.5. & Inf

1 See page custormized for: Countdown to Inte |
l,ﬁ,ll —J a The browser that w

) , F Web has enioqed’ "_

4[, = enl

Enntam tm::ls commands. . FRE G ” : o, : Sl

Figure 6-9: Tools menu is selected on the Internet Explorer menu bar.

The menu bar is actually a toolbar control that looks and functions very much like a
standard menu. Instead of top-level menu items, a menu bar has a series of text-only

Chapter 6 Using Common Controls T

buttons that display a drop-down menu when clicked. However, as a specialized type
of toolbar, a menu bar has some capabilities that standard menus lack. As a toolbar
control:

e |t can be customized using standard toolbar techniques, allowing the user to move,
delete, or add items.

¢ |t can have hot-tracking, so that users will know when they are over a top-level item
without having to click it first.

A menu bar can be incorporated into a rebar control, giving it the following features:

e |t can have a gripper, which allows the user to move or resize the band.

e |t can share a strip in the rebar control with other bands, such as the standard toolbar
in the preceding illustration.

¢ |t can display a chevron when it is covered by an adjacent band, giving the user
access to the hidden items.

e |t can have an application-defined background bitmap.

This document discusses how to implement a menu bar. Since a menu bar is a
specialized implementation of a toolbar control, the focus will be on topics that are
specific to menu bars. For a discussion of how to incorporate a toolbar into a rebar
control, see Creating an Internet Explorer-Style Toolbar and Rebar Controls.

Making a Toolbar into a Menu Bar
To make a toolbar into a menu bar:

e Create a flat toolbar by including TBSTYLE_FLAT with the other window style flags.
The TBSTYLE_FLAT style also enables hot-tracking. With this style, the menu bar
looks much like a standard menu until the user activates a button. Then, the button
appears to stand out from the toolbar and depress when it is clicked, just like a
standard button. Because hot-tracking is enabled, all that is needed to activate a
button is for the cursor to hover over it. If the cursor moves to another button, it will
be activated and the old button deactivated.

e Create list-style buttons by including TBSTYLE_LIST with the other window style
flags. This style creates a thinner button that looks more like a standard top-level
menu item.

¢ Make the buttons text-only by setting the iBitmap member of the button’s
TBBUTTON structure to I_IMAGENONE and the iString member to the button text.

e Give each button the BTNS_DROPDOWN style. When the button is clicked, the
toolbar control sends your application a TBN_DROPDOWN notification to prompt it
to display the button’s menu.

¢ Incorporate the menu bar into a rebar band. Enable both grippers and chevrons,
as discussed in Creating an Internet Explorer-Style Toolbar.

72

Volume 4 Microsoft Windows Common Controls

¢ Implement a TBN_DROPDOWN handler to display the button’s drop-down menu
when it is clicked. The drop-down menu is a type of pop-up menu. It is created with
TrackPopupMenu, with its upper-left corner aligned with the lower-left corner of the
button.

¢ Implement keyboard navigation, so that the menu bar is fully accessible without
a mouse.

¢ Implement menu hot-tracking. With standard menus, once a top level menu item’s
menu has been displayed, moving the cursor over another top-level item
automatically displays its menu and collapses the menu of the previous item. The
toolbar control will hot-track the cursor and change the button image, but it does
automatically display the new menu. Your application must do so explicitly.

Most of these items are straightforward to implement and are discussed elsewhere. See
Creating an Internet Explorer-Style Toolbar, Toolbar Controls, or Rebar Controls for a
general discussion of how to use toolbars and rebar controls. See Menus for a
discussion of how to handle pop-up menus. The final two items, keyboard navigation
and menu hot-tracking, are discussed in the remainder of this document.

Handling Navigation with Menu Hot-Tracking Disabled

Users can choose to navigate the menu bar with the mouse, the keyboard, or a mixture
of both. To implement menu bar navigation, your application needs to handle toolbar
notifications and monitor the mouse and keyboard. This task can be broken into two
distinct parts: with and without menu hot-tracking. This section discusses how to handle
navigation when no menus are displayed and menu hot-tracking is not enabled.

Mouse Navigation

If menu hot-tracking is disabled, you can treat a menu bar as a normal toolbar. If the
user is navigating with a mouse, all your application needs to do is handle the
TBN_DROPDOWN notification. When this notification is received, display the
appropriate drop-down menu, and enable menu hot-tracking. From then on, you are
in the menu hot-tracking regime, discussed in Implementing Menu Hot-Tracking.

As discussed in Mixed Navigation, you also need to handle the
TBN_HOTITEMCHANGE notification to keep track of the active button. This notification
is irrelevant if the user is only navigating with the mouse, but it is necessary when mouse
and keyboard navigation are mixed.

Keyboard Navigation

As noted in the previous section, the user can do a number of navigation operations with
the keyboard when menu hot-tracking is disabled. Toolbar controls support keyboard
navigation only if they have focus. They also do not handle all the key presses that are
needed for menu bars. The simplest solution to handling keyboard navigation is to
process the relevant key press events explicitly.

Chapter 6 Using Common Controls 73

If menu hot-tracking is disabled, your application needs to handle these key press
events in the following way:

e The F10 key. Activate the first button with TB_SETHOTITEM.

e The LEFT ARROW and RIGHT ARROW keys. Activate the adjacent button with
TB_SETHOTITEM. If the user attempts to navigate off either end of the menu bar,
activate the first button at the opposite end.

e The ESCAPE key. Deactivate the active button with TB_SETHOTITEM. The menu
bar should be returned to the state it had prior to activating the first button.

¢ An ALT-Key accelerator key. Use the TB_MAPACCELERATOR message to
determine which button the Key character corresponds to. Display the button’s drop-
down menu and enable menu hot-tracking.

¢ The DOWN ARROW key. If a button is active but no menu has been displayed,
display the button’s menu and enable menu hot-tracking.

e The ENTER key. Deactivate the active button with TB_SETHOTITEM. The menu bar
should be returned to the state it had prior to activating the first button.

Mixed Navigation

The keyboard navigation handlers outlined in the preceding section basically do two
tasks: keep track of the active button and display the appropriate menu when a button

is selected. These handlers are sufficient as long as the user navigates only with the
keyboard. However, users often mix keyboard and mouse navigation. For example, they
might activate the first button with the F10 key, use the mouse to activate a different
button, and then open its menu with the DOWN ARROW key. If you are only monitoring
key presses to keep track of the active key, you will display the wrong menu. You must
also handle the TBN_HOTITEMCHANGE notification to accurately keep track of the
active button.

Handling Navigation with Menu Hot-Tracking Enabled

Once menu hot-tracking is enabled, your application must change the way it responds
to user navigation. To replicate the behavior of standard menus, you must implement the
following features explicitly.

With mouse navigation:

¢ [f the user moves the cursor over another button, that menu immediately appears and
the previous menu disappears.

e Menu hot-tracking stays active until the user selects a command or clicks a point that
is not part of the menu region. Either action deactivates menu hot-tracking until
another button is clicked.

¢ If the cursor moves off the menu, the current drop-down menu remains until the
cursor moves back onto, or the user clicks a point outside, the area covered by the
menu. If the cursor returns to a different button than the one currently being displayed,
the old menu is collapsed and the new menu is displayed.

74 Volume 4 Microsoft Windows Common Controls

With keyboard navigation:

¢ The RIGHT ARROW key. If the item has a submenu, display the submenu. If the item
does not have a submenu, collapse the menu and any submenus, activate the next
button with TB_SETHOTITEM, and display the menu for the adjacent button. If the last
button is active when this message is received, display the menu for the first button.

e The LEFT ARROW key. If the item is a submenu, collapse it and shift focus to its
parent menu. If the item is not a submenu, collapse the menu, activate the next button
with TB_SETHOTITEM, and display the menu for that button.

e Pressing the LEFT ARROW key moves the focus to the left.
¢ |f the highlighted menu item is on the primary menu, that menu is collapsed, and

the menu for the adjacent button is displayed. If the active button was at the left
end of the toolbar, the menu for the last button is displayed.

¢ |f the highlighted menu item is on a submenu, the submenu is collapsed, shifting
the focus back to its parent.

* Pressing the RIGHT ARROW key moves the focus to the right.

¢ |f the highlighted menu item does not have a submenu, the menu for the adjacent
button is displayed. If the active button was at the right end of the toolbar, the menu
for the last button is displayed.

¢ [f the highlighted menu item has a submenu, the submenu is displayed.
e The ESCAPE key backs the display up one step.
e |f a submenu is displayed, it is collapsed and focus shifts to the parent menu.
e [f a button’s menu is displayed, it is collapsed and menu hot-tracking is disabled.
The item’s button remains active.
¢ |f no menus are displayed but a button is active, the button is deactivated and
menu hot-tracking is disabled.
e The UP ARROW and DOWN ARROW keys are used only to navigate within a
particular menu.

¢ The ENTER key launches the command associated with a menu item. If the menu
item has a submenu, the ENTER key displays it.

As with the menu hot-tracking disabled case, your application needs to handle mouse,
keyboard, and mixed navigation. However, the fact that a menu is displayed means that
messaging will have to be handied somewhat differently.

Message Processing for Menu Hot-Tracking

Menu hot-tracking requires that a menu be displayed at all times, apart from the brief
interval required to switch to a new menu. However, the drop-down menu that is displayed -
by TrackPopupMenu is modal. Your application will continue to receive some messages
directly, including WM_COMMAND, TBN_HOTITEMCHANGE, and normal menu-related
messages such as WM_MENUSELECT. However, it will not receive low-level keyboard or
mouse messages directly. To handle messages such as WM_MOUSEMOVE, you must

set a message hook to intercept messages directed to the menu.

Chapter 6 Using Common Controls 75

When a drop-down menu is displayed, set the message hook by calling
SetWindowsHookEXx with the idHook parameter set to WH_MSGFILTER. All messages
intended for the menu will be passed to your hook procedure. For example, the following
code fragment sets a message hook that will trap messages going to a drop-down menu.
MsgHook is the name of the hook procedure, and hhookMsg is the handle to the
procedure.

hhiookMsg = SethindowsHoOKEX(WH_MSGFILTER, MsgHook HINST_THISDLL, @); = =
Menu messages are identified by setting the hook procedure’s nCode parameter to
MSGF_MENU. The IParam parameter will point to a MSG structure with the message.
The details of which messages need to be handled, and how, are discussed in the
remainder of this document.

Your application should pass all messages on to the next message hook by calling
CallNextHookEXx. Doing so ensures, for instance, that the toolbar control receives the
mouse messages it needs to hot-track its buttons.

When a new button is activated, your application must collapse the old drop-down menu
with a WM_CANCELMODE message, and display a new menu. It must also collapse
the drop-down menu when focus is taken from the menu bar with keyboard navigation or
by clicking outside the menu area. Whenever you collapse a menu, you should free its
message hook with UnhookWindowsHookEXx. If you need to display another drop-
down menu, create a new message hook. When a command is launched, the menu will
be collapsed automatically but you must explicitly free the message hook.

The following code fragment frees the message hook that was set in the previous
example:

UnhookiindowsHookEx(hhookMsg); -
Mouse Navigation

When a normal toolbar control hot-tracks buttons, it highlights the active button and
sends the application a TBN_HOTITEMCHANGE notification each time a new button is
activated. Your application is responsible for displaying the appropriate drop-down
menu. It must:

¢ Handle the TBN_HOTITEMCHANGE notification to keep track of the active button.
When the active button changes, collapse the old menu and create a new one.

¢ Handle the TBN_DROPDOWN notification that is sent when a button is clicked. It
should then collapse the menu and disable menu hot-tracking. The button remains
active.

¢ Handle the WM_LBUTTONDOWN, WM_RBUTTONDOWN, and WM_MOUSEMOVE
messages in your message hook procedure, to keep track of the mouse position. If
the mouse is clicked outside the menu area, collapse the current drop-down menu,
deactivate menu hot-tracking, and return the menu bar to its preactivation state.

¢ When a menu command is launched, disable menu hot-tracking. The menu will be
collapsed automatically but you must free the message hook explicitly.

76 Volume 4 Microsoft Windows Common Controls

You also must handle menu-related messaging, such as the WM_INITMENUPOPUP
message that is sent when a menu item needs to display a submenu. For a discussion of
how to handle such messages, see Menus.

Keyboard Navigation

Your application must process keyboard messages in the message hook procedure and
act on those that affect menu hot-tracking. The following key presses need to be
handled:

e The ESCAPE key. The ESCAPE key backs the display up one level. If a submenu is
being displayed, it must be collapsed. If a button’s primary menu is displayed,
collapse it and disable menu hot-tracking. The button remains active.

¢ The RIGHT ARROW key. If the item has a submenu, display it. If the item does not
have a submenu, collapse the menu and any submenus, activate the next button with
TB_SETHOTITEM, and display its menu. If the last button was active when this
notification was received, display the menu for the first button.

e The LEFT ARROW key. If the item is in a submenu, collapse it and shift focus to its
parent menu. If the item is not a submenu, collapse the menu, activate the adjacent
button with TB_SETHOTITEM, and display its menu. If the first button was active
when this notification was received, display the menu for the last button.

e The UP ARROW and DOWN ARROW keys. These keys are used to navigate within
a menu but do not directly affect menu hot-tracking.

® An ALT-Key accelerator key. Use the TB_MAPACCELERATOR message to determine
which button the Key character corresponds to. If it corresponds to a different button
than the currently active one, collapse the current drop-down menu, activate the new
button with TB_SETHOTITEM, and display the menu for the adjacent button. If the Key
character corresponds to the currently displayed button, collapse the drop-down menu
and disable menu hot-tracking. The button should remain active.

Localization Support for the Common Controls

The common controls have built-in support for national languages. These features
simplify the implementation of localized applications.

Specifying a Language for the Common Controls

If you want to specify a language for the common controls that is different than the
system language, call InitMUILanguage. The language specified by this function applies
only to the process from which it is called.

To determine the language currently being used by the common controls, call
GetMUILanguage. It returns the value that was set by a previous call to
InitMUILanguage. This function returns the language that is specified for the process it
is called from. If InitMUILanguage has not been called, or was called from another
process, GetMUILanguage will return a default value.

Chapter 6 Using Common Controls 77

Specifying a Language for Controls in a Dialog Box

Unlike common controls, predefined controls such as buttons or edit boxes do not use
the current system language by default. The native font control is an invisible control that
works in the background to allow a dialog box’s predefined controls to display the current
system language.

To use the native font control:

1. Initialize the native font control by calling InitCommonControlsEx. Set the dwiCC
member of the INITCOMMONCONTROLSEX structure pointed to by Ip/nitCtrls to
ICC_NATIVEFNTCTL_CLASS.

2. Add the control to the resource script for the dialog box. Set one or more of the
following style flags to specify which controls will be affected:

Flag Applies to

NFS_ALL All controls.

NFS_BUTTON Button controls.

NFS_EDIT Edit controls.

NFS_LISTCOMBO List, ComboBox, ListView, and ComboBoxEx controls.
" NFS_STATIC Static controls

NFS_USEFONTASSOC The control will use the font association feature instead
of switching to the native font. This flag is only valid for
the Far East platform. All other platforms will ignore it.

The following example illustrates how to add a native font control to a resource script. It
will cause the dialog box’s edit, list, and combo-box controls to display text using the
current system language:

CONTROL.

79

CHAPTER 7

Common API

Common Control Window Classes

The following window class names are provided by the common control library:

ANIMATE_CLASS

DATETIMEPICK_CLASS

HOTKEY_CLASS

MONTHCAL_CLASS

PROGRESS_CLASS
REBARCLASSNAME
STATUSCLASSNAME
TOOLBARCLASSNAME

TOOLTIPS_CLASS

TRACKBAR_CLASS

UPDOWN_CLASS

WC_COMBOBOXEX

Creates animation controls. These controls silently
display an audio video interleaved (AVI) clip.

Creates date and time picker controls. These controls
provide a simple and intuitive interface to exchange date
and time information with a user.

Creates hot-key controls. These controls make it easy
for the user to define hot keys.

Creates month calendar controls. These controls
provide a simple and intuitive way for a user to select a
date from a familiar interface.

Creates progress bars. These controls indicate the
progress of a lengthy operation.

Creates rebar controls. These controls act as a
container for child windows.

Creates status windows. These controls display status
information in a horizontal window.

Creates toolbars. These controls contain buttons that
carry out menu commands.

Creates tooltip controls. These controls display a small
pop-up window containing a line of text that describes
the purpose of a tool in an application.

Creates trackbars. These controls let the user select
from a range of values by moving a slider.

Creates up-down controls. These controls combine a

pair of arrows with an edit control. Clicking the arrows
increments or decrements the value in the edit control.

Creates ComboBoxEx controls. These controls provide
an extension of the combo box control that provides
native support for item images.

(continued)

80 Volume 4 Microsoft Windows Common Controls

(continued)
WC_HEADER

WC_IPADDRESS

WC_LISTVIEW

WC_PAGESCROLLER

WC_TABCONTROL

WC_TREEVIEW

Creates header controls. These controls display
headings at the top of columns of information and let the
user sort the information by clicking the headings.

Creates IP-address controls. These controls are similar
to an edit control, but they allow you to enter a numeric
address in Internet protocol (IP) format.

Creates list-view controls. These controls display a
collection of items, each consisting of an icon and a
label, and provide several ways to arrange the items.

Creates pager controls. These controls are used to
contain and scroll another window.

Creates tab controls. These controls define multiple
pages for the same area of a window or dialog box.
Each page consists of a set of information or a group of
controls that an application displays when the user
selects the corresponding tab.

Creates tree-view controls. These controls display a
hierarchical list of items. Each item consists of a label
and an optional bitmap.

Common Control Styles

Following are the common control styles. Except where noted, these styles apply
to header controls, toolbar controls, and status windows:

CCS_ADJUSTABLE

CCS_BOTTOM

CCS_LEFT

CCS_NODIVIDER

Enables a toolbar’s built-in customization features, which
allow the user to drag a button to a new position or to
remove a button by dragging it off the toolbar. In addition,
the user can double-click the toolbar to display the
Customize Toolbar dialog box, which allows the user to
add, delete, and rearrange toolbar buttons.

Causes the control to position itself at the bottom of the
parent window’s client area and sets the width to be the
same as the parent window’s width. Status windows have
this style by default.

Version 4.70. Causes the control to be displayed vertically
on the left side of the parent window.

Prevents a two-pixel highlight from being drawn at the top
of the control.

Chapter 7 Common API 81

CCS_NOMOVEX Version 4.70. Causes the control to resize and move itself
vertically, but not horizontally, in response to a WM_SIZE
message. If CCS_NORESIZE is used, this style does not
apply.

CCS_NOMOVEY Causes the control to resize and move itself horizontally,
but not vertically, in response to a WM_SIZE message. If
CCS_NORESIZE is used, this style does not apply. Header
windows have this style by default.

CCS_NOPARENTALIGN Prevents the control from automatically moving to the top
or bottom of the parent window. Instead, the control keeps
its position within the parent window despite changes to the
size of the parent. If CCS_TOP or CCS_BOTTOM is also
used, the height is adjusted to the default, but the position
and width remain unchanged.

CCS_NORESIZE Prevents the control from using the default width and
height when setting its initial size or a new size. Instead,
the control uses the width and height specified in the
request for creation or sizing.

CCS_RIGHT Version 4.70. Causes the control to be displayed vertically
on the right side of the parent window.
CCS_TOP Causes the control to position itself at the top of the parent

window’s client area and sets the width to be the same as
the parent window’s width. Toolbars have this style by
default.

CCS_VERT Version 4.70. Causes the control to be displayed vertically.

Common API Reference

Common API Functions

GetEffectiveClientRect

Calculates the dimensions of a rectangle in the client area.

82

Volume 4 Microsoft Windows Common Controls

Parameters

hWnd
Handle to the window that has the client area to check.

lpre
Address of a RECT structure that receives the dimensions of the rectangle.

Ipinfo
Address of an array of integers that identify controls in the client area. Each control
requires a pair of consecutive elements. The first element of the pair must be nonzero
and the second element of the pair must be the control identifier. The last element
pair in the array must be zero to identify the end of the array.

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in commctrl.h.

Import Library: comcti32.lib.

GetMUILanguage

Returns the language currently in use by the common controls for a particular process
TANGTD GetMuTLangiiagel 'VOTR

Parameters
None

Return Values

Returns the LANGID of the language an application has specified for the common
controls by calling InitMUILanguage. GetMUILanguage returns the value for the
process that it is cailed from. If InitMUILanguage has not been called or was not called
from the same process, GetMUILanguage returns the language-neutral LANGID,
MAKELANGID(LANG_NEUTRAL, SUBLANG_NEUTRAL).

Remarks
See National Language Support for further discussion of localization.

Chapter 7 Common API 83

I Requirements
Version 5.80 or later of Comct!32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 5.0 or later installed).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0
or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

Import Library: comctl32.lib.

InitCommonControls

Registers and initializes the common control window classes. This function is obsolete.
New applications should use the InitCommonControlsEx function.

void InitCommonControls(VOID); - -

Return Values
No return value.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in commctrl.h.

Import Library: comcti32.lib.

InitCommonControlsEx

Registers specific common control classes from the common control dynamic-link
library (DLL).

BOOL InitCommonControlsEx(S
LPINITCOMMONCONTROLSEX lpz'thtr?s S
Yili : RN

Parameters

IpInitCtrls
Address of an INITCOMMONCONTROLSEX structure that contains information
specifying which control classes will be registered.

84 Volume 4 Microsoft Windows Common Controls

Return Values
Returns TRUE if successful, or FALSE otherwise.

Remarks

Note The effect of each call to InitCommonControlsEx is cumulative. For example,
if IntCommonControlsEx is called with the ICC_UPDOWN_CLASS flag, then is later
called with the ICC_HOTKEY_CLASS flag, the result is that both the up-down and hot
key common control classes are registered and available to the application.

s-

{5

G e T
later of Comctl32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 3.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0
or later).

Windows CE: Requires version 2.0 or later.

Header: Declared in commctrl.h.

Import Library: comctl32.lib.

ersmn 4,70 and

InitMUILanguage

Enables an application to specify a language to be used with the common controls that
is different than the system language.

Parameters

uiLang
The LANGID value of the language to be used by the common controls.

Return Values
None.

Remarks

This function allows an application to override the system language setting, and specify
a different language for the common controls. The selected language only applies to the
process that InitMUILanguage is called from. See National Language Support for
further discussion of localization.

Chapter 7 Common API 85

Vérsidn 5.80 and later of Comcti32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4 with

Internet Explorer 5.0 or later installed).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0
or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

Import Library: comctI32.lib.

GetMUILanguage

ShowHideMenuCil

Sets or removes the specified menu item’s check mark attribute and shows or hides the
corresponding control. The function adds a check mark to the specified menu item if it
does not have one and then displays the corresponding control. If the menu item already

has a check mark, the function removes the check mark and hides the corresponding
control.

Parameters

hWnd
Handle to the window that contains the menu and controls.

uFlags
Identifier of the menu item to receive or lose a check mark.

Ipinfo
Address of an array that contains pairs of values. The second value in the first pair
must be the handle to the application’s main menu. Each subsequent pair consists of
a menu item identifier and a control window identifier. The function searches the array

for a value that matches uFlags and, if the value is found, checks or unchecks the
menu item and shows or hides the corresponding control.

Return Values
Returns nonzero if successful, or zero otherwise.

86

Volume 4 Microsoft Windows Common Controls

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in commctrl.h.

Import Library: comctl32.lib.

Common APl Messages

CCM_GETUNICODEFORMAT

The CCM_GETUNICODEFORMAT message retrieves the Unicode character format flag
for the control.

Parameters
This message has no parameters.

Return Values

Returns the Unicode format flag for the control. If this value is nonzero, the control is
using Unicode characters. If this value is zero, the control is using ANSI characters.

Example

The following function can be used with a Microsoft Windows 95 or Microsoft Windows
98 system to test whether or not a property sheet control supports Unicode. For more
information about testing controls for Unicode support, see Remarks.

BN utongsl Saindcold

. return FA

Chapter 7 Common API 87

Remarks

The Unicode format flag is used by Microsoft Windows NT systems with version 4.71 of
Comctl32.dll or later. This message, thus, is supported by Windows 2000 and later, and
by Windows NT 4.0 with Microsoft internet Explorer 4.0 or later. It is useful only on
Windows 95 or Windows 98 systems with version 5.80 or later of Comcti32.dll. This
means that they must have Internet Explorer version 5.0 or later installed. Windows 95
and Windows 98 systems with earlier versions of Internet Explorer ignore the Unicode
format flag, and its value has no bearing on whether a control supports Unicode. With
these systems, you will need to test instead something that requires Unicode support.

2 X8
%9
:

B 9

Version 4.71 ahd later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).

Windows CE: Unsupported.

Header: Declared in commcttl.h.

8

CCM_SETUNICODEFORMAT

CCM_GETVERSION

Returns the version number for a control set by the most recent CCM_SETVERSION
message.

COM_GETVERSION 70 1
< 1Param =03 .

Parameters
None

Return Values

Returns the version number set by the most recent CCM_SETVERSION message. If no
such message has been sent, it returns zero.

Remarks

This message does not return the DLL version. See Shell Versions for a discussion of
how to use DIlGetVersion to get the current DLL version.

88 Volume 4 Microsoft Windows Common Controls

Note The version number is set on a control by control basis, and may not be the same
for all controls.

Version 5.80 and later of Combilszidll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
5.0 or later installed).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

CCM_SETUNICODEFORMAT

THE CCM_SETUNICODEFORMAT message sets the Unicode character format flag for
the control. This message allows you to change the character set used by the control at
run time instead of having to re-create the control.

CCH. SETUNICODEFORMAT
- owWParam = (WPA

Parameters

fUnicode
Value that determines the character set that is used by the control. If this value is
TRUE, the control will use Unicode characters. If this value is FALSE, the control
will use ANSI characters.

Return Values
Returns the previous Unicode format flag for the control.

Remarks

The Unicode format flag is used by Microsoft Windows NT systems with version 4.71 of
Comctl32.dll or later. This message is thus supported by Windows 2000 and later, and
by Windows NT 4.0 with Microsoft Internet Explorer 4.0 or later. It is only useful on
Microsoft Windows 95 or Microsoft Windows 98 systems with version 5.80 or later of
Comctl32.dIl. This means that they must have Internet Explorer 5.0 or later installed.
Windows 95 and Windows 98 systems with earlier versions of Internet Explorer ignore
the Unicode format flag, and its value has no bearing on whether or not a control
supports Unicode. For a discussion about how to test whether a control supports
Unicode, see CCM_GETUNICODEFORMAT.

Chapter 7 Common API 89

Versidn 4.71 and later of Comcti32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in commctri.h.

-t

CCM_GETUNICODEFORMAT

CCM_SETVERSION

This message is used to inform the control that you are expecting a behavior associated
with a particular version.

COMSETVERSTON
s wParam.= (int):
‘IPa ram 5;”0;_}& ek

Parameters

iVersion
The version number.

Return Values

Returns the version specified in the previous CCM_SETVERSION message. If iVersion
is set to a value greater than the current DLL version, it returns —1.

Remarks

In a few cases, a control may behave differently, depending on the version. This
primarily applies to bugs that were fixed in later versions. The CCM_SETVERSION
allows you to inform the control which behavior is expected. You can determine which
version you have specified by sending a CCM_GETVERSION message. For an example
of how to use this message, see Custom Draw.

Note This message only sets the version number for the control to which it is sent.

Version 5.80 and later of Comctl32.dlIl.

90 Volume 4 Microsoft Windows Common Controls

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 5.0 or later installed).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 5.0 or
later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

WM_NOTIFY

The WM_NOTIFY message is sent by a common control to its parent window when an
event has occurred or the control requires some information.

Parameters

idCtrl
Identifier of the common control sending the message. This identifier is not
guaranteed to be unique. An application should use the hwndFrom or idFrom
member of the NMHDR structure (passed as the /Param parameter) to identify
the control.

pnmh
Pointer to an NMHDR structure that contains the notification code and additional
information. For some notification messages, this parameter points to a larger
structure that has the NMHDR structure as its first member.

Return Values
The return value is ignored except for notification messages that specify otherwise.

Remarks

If the message handler is in a dialog box procedure, you must use the SetWindowLong
function with DWL_MSGRESULT to set a return value.

The standard Windows controls (edit controls, combo boxes, list boxes, buttons, scroll
bars, and static controls) do not send WM_NOTIFY messages. To determine if a
common control will send a WM_NOTIFY message and, if it will, which notification codes
it will send, see the documentation for the control.

For Windows 2000 and later systems, the WM_NOTIFY message can not be sent
between processes.

Chapter 7 Common API

91

B Requirements

Windows NT/2000: Requires Windows NT 3.51 or later.

Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h.

WM_NOTIFYFORMAT

Used to determine if a window accepts ANSI or Unicode structures in the WM_NOTIFY
notification message. WM_NOTIFYFORMAT messages are sent from a common control
to its parent window and from the parent window to the common control.

WlL.NOTIFYFORMAT L
hwndFrom = (HﬂND) wParam
- Command = 1?aram. ' &

Parameters
hwndFrom

Handle to the window that is sending the WM_NOTIFYFORMAT message. If

Command is NF_QUERY, this parameter is the handle to a control. If Command is
NF_REQUERY, this parameter is the handle to the parent window of a control.

Command

Command value that specifies the nature of the WM_NOTIFYFORMAT message.

This will be one of the following values:

NF_QUERY The message is a query to determine whether ANSI or Unicode
structures should be used in WM_NOTIFY messages. This
command is sent from a control to its parent window during the
creation of a control and in response to an NF_REQUERY

command.

NF_REQUERY The message is a request for a control to send an NF_QUERY

form of this message to its parent window. This command is sent
from the parent window. The parent window is asking the control

to requery it about the type of structures to use in WM_NOTIFY

messages.

Return Values
Returns one of the following:

NFR_ANSI ANSI structures should be used in WM_NOTIFY messages sent

by the control.

NFR_UNICODE Unicode structures should be used in WM_NOTIFY messages

sent by the control.
0 An error occurred.

92

Volume 4 Microsoft Windows Common Controls

If Command is NF_REQUERY, the return value is the result of the requery operation.

Remarks

When a common control is created, the control sends a WM_NOTIFYFORMAT message
to its parent window to determine the type of structures to use in WM_NOTIFY
messages. If the parent window does not handle this message, the DefWindowProc
function responds according to the type of the parent window. That is, if the parent
window is a Unicode window, DefWindowProc returns NFR_UNICODE, and if the
parent window is an ANSI window, DefWindowProc returns NFR_ANSI. If the parent
window is a dialog box and does not handle this message, the DefDIgProc function
similarly responds according to the type of the dialog box (Unicode or ANSI).

A parent window can change the type of structures a common control uses in
WM_NOTIFY messages by setting /Param to NF_REQUERY and sending a
WM_NOTIFYFORMAT message to the control. This causes the control to send an
NF_QUERY form of the WM_NOTIFYFORMAT message to the parent window.

All common controls will send WM_NOTIFYFORMAT messages. However, the standard
Windows controls (edit controls, combo boxes, list boxes, buttons, scroll bars, and static
controls) do not.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in winuser.h.

Common API Macros

FORWARD_WM_NOTIFY

Parameters

hwnd
Handle to the window that receives the WM_NOTIFY message.

Chapter 7 Common API 93

idFrom
Identifier of the control sending the message.
pnmhdr

Address of an NMHDR structure that contains the notification code and additional
information. For some notification messages, this parameter points to a larger
structure that has the NMHDR structure as its first member.

fn

Function that sends or posts the WM_NOTIFY message. This parameter can be
either the SendMessage or PostMessage function.

Return Values
Returns a value whose meaning depends on the fn parameter.

Remarks
Th

efined as follows:

AR SR

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in commctrl.h.

HANDLE_WM_NOTIFY

Calls a function that processes the WM_NOTIFY message.

Parameters
hwnd

Handle to the window that received WM_NOTIFY.
wParam

First parameter of WM_NOTIFY.

94

Volume 4 Microsoft Windows Common Controls

IParam
Second parameter of WM_NOTIFY.

fn
Function that is to process WM_NOTIFY.

Return Values
Returns a value whose meaning depends on the fn parameter.

Remarks
The HANDLE_WM_NOTIFY macro is defined as follows:

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in commctrl.h.

INDEXTOSTATEIMAGEMASK

Prepares the index of a state image so that a tree-view control or list-view control can
use the index to retrieve the state |mage for an item.

UINT' mnsxromrz:mamsx(

Parameters
i
Index of a state image.

Remarks
The INDEXTOSTATEIMAGEMASK macro is defined as follows:

#define INQEXTOS‘EA?EIMAGERASK(U Gy << 12)

Version 4.00 and later of Comcti32.dll.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Chapter 7 Common API 95

Windows CE: Requires version 1.0 or later.
Header: Declared in commctrl.h.

Common API Notifications

NM_CHAR

The NM_CHAR notification message is sent by a control when a character key is
processed. This notification message is sent in the form of a WM_NOTIFY message.

Parameters

Ipnmc
Pointer to an NMCHAR structure that contains additional information about the
character that caused the notification message.

Return Values

The return value is ignored by most controls. For more information, see the
documentation for the individual controls.

.

ersion 4.71 and later of Comcf132.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

2
NM_CHAR (toolbar)

NM_CLICK

Notifies a control’s parent window that the user has clicked the left mouse button within
the control. NM_CLICK is sent in the form of a WM_NOTIFY message.

96

Volume 4 Microsoft Windows Common Controls

Parameters

Ipnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.

Header: Declared in winuser.h.

NM_DBLCLK

Notifies a control’s parent window that the user has double-clicked the left mouse button
within the control. NM_DBLCLK is sent in the form of a WM_NOTIFY message.

MM_DBLCLK
Lo Tpnmt

Parameters

Ipnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in winuser.h.

NM_HOVER

Sent by a control when the mouse hovers over an item. This notification message is sent
in the form of a WM_NOTIFY message.

Chapter 7 Common API 97

NM_HOVER ,
Tpnmh = (LPNMHDR) 1Param;

Parameters

Ipnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
Unless otherwise specified, return zero to allow the control to process the hover
normally, or nonzero to prevent the hover from being processed.

Version 4.70 and later of Comctl32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
3.0 and later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0

or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

NM_KEYDOWN

Sent by a control when the control has the keyboard focus and the user presses a key.
This notification message is sent in the form of a WM_NOTIFY message.

NM_KEYDOWN |

" lpnmk = (LPNMKEY) 1Params
Parameters

Ipnmk
Address of an NMKEY structure that contains additional information about the key
that caused the notification message.

Return Values
Return nonzero to prevent the control from processing the key, or zero otherwise.

Version 4.71 and later of Comcti32.dll.
Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 4.0 or later).

98 Volume 4 Microsoft Windows Common Controls

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Requires version 2.0 or later.
Header: Declared in commcirl.h.

NM_KILLFOCUS

Notifies a control’s parent window that the control has lost the input focus.
NM_KILLFOCUS is sent in the form of a WM_NOTIFY message.

TR

v S

fitaa ek

Parameters
Ipnmh .

Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in winuser.h.

NM_NCHITTEST

Sent by a control when the control receives a WM_NCHITTEST message. This
notification message is sent in the form of a WM_NOTIFY message.

Parameters
Ipnmmouse

Address of a NMMOUSE structure that contains information about the notification.
The pt member contains the mouse coordinates of the hit test message.

Chapter 7 Common API 99

Return Values

Unless otherwise specified, return zero to allow the control to perform default processing
of the hit test message, or return one of the HT* values documented under
WM_NCHITTEST to override the default hit test processing.

Version 4.71 and later of Comcti32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).

Windows CE: Requires version 2.0 or later.

Header: Declared in commctrl.h.

NM_OUTOFMEMORY

Notifies a control’s parent window that the control could not complete an operation
because there was not enough memory available. NM_OUTOFMEMORY is sent in
the form of a WM_NOTIFY message.

_ NMUOUTOFMEMORY = ¢

" lpnmh = C(LPNMHDR) 1Param;

Parameters

Ipnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

n s
| Sl b4 R AT A A .

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Unsupported.
Header: Declared in commctrl.h.

NM_RCLICK

Notifies a control's parent window that the user has clicked the right mouse button within
the control. NM_RCLICK is sent in the form of a WM_NOTIFY message.

100 Volume 4 Microsoft Windows Common Controls

Parameters

lpnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in commctrl.h.

NM_RDBLCLK

Notifies a control’s parent window that the user has double-clicked the right mouse
button within the control. NM_RDBLCLK is sent in the form of a WM_NOTIFY message.

o et o

Parameters

Ipnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

1

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in commctrl.h.

Chapter7 Common API 101

NM_RELEASEDCAPTURE

Notifies a control’'s parent window that the control is releasing mouse capture. This
notification is sent in the form of a WM_NOTIFY message.

NM_RELEASEDCAPTURE - . . .= - ..
““1pnmh: = (LPNMHDR) -1Param; -
Parameters

Ipnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
Unless otherwise specified, the control ignores the return value from this notification.

Pt Y N T o
Version 4.71 and later of Comctl32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

NM_RETURN

Notifies a control’s parent window that the control has the input focus and that the user
has pressed the ENTER key. NM_RETURN is sent in the form of a WM_NOTIFY
message.

Parameters

Ipnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

102 Volume 4 Microsoft Windows Common Controls

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in commctrl.h.

NM_SETCURSOR

Notifies a control’s parent window that the control is setting the cursor in response to
a WM_SETCURSOR message. This notification is sent in the form of a WM_NOTIFY
message.

Parameters

lonmm
Address of an NMMOUSE structure that contains additional information about this
notification message.

Return Values

Unless otherwise specified, return nonzero to allow the control to set the cursor or zero
to prevent the control from setting the cursor.

Version 4.71 and later of Comcti32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

NM_SETFOCUS

Notifies a control’s parent window that the control has received the input focus.
NM_SETFOCUS is sent in the form of a WM_NOTIFY message

NM_SETFOCUS : SRR
Tpnmh: = (meﬁm) waramv*f

Chapter 7 Common API 103

Parameters

lpnmh
Address of an NMHDR structure that contains additional information about this
notification message.

Return Values
The return value is ignored by the control.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.

Header: Declared in commcitrl.h.

NM_TOOLTIPSCREATED

Notifies a control’s parent window that the control has created a tooltip control.
This notification is sent in the form of a WM_NOTIFY message.

Syntax
ﬂ B B iy

Parameters

Ipnmittc
Address of an NMTOOLTIPSCREATED structure that contains additional information
about this notification message.

Return Value
Unless otherwise specified, the control ignores the return value from this notification.

S

Version 4.71 and later of Comcti32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

104 Volume 4 Microsoft Windows Common Controls

Common API Structures

COLORSCHEME

Contains information for the drawing of buttons in a toolbar or rebar.

e v

4‘typedef struct tagCOLO CHEM'

- COLORREF. c]rB‘an‘i’ng
i:OtORREF ,certNShadq
i comascasma. #LPCOLORSCHEME

Members

dwSize
Size of this structure, in bytes.

cirBtnHighlight
COLORREF value that represents the highlight color of the buttons.
Use CLR_DEFAULT for the default highlight color.

cirBtnShadow

COLORREF value that represents the shadow color of the buttons.
Use CLR_DEFAULT for the default shadow color.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in commcitrl.h.

INITCOMMONCONTROLSEX

Carries information used to load common control classes from the dynamic-link library
(DLL). This structure is used with the InitCommonControlsEx function.

‘typedef struct: taglNITcomoucou” OLSE
DWORﬁ deize‘
~“DWORD: dwICCs S

} INITCOMMONCONTROLSEX *LPINTTCOMMON

e TN

Chapter 7 Common API 105

Members

dwSize
Size of the structure, in bytes.

dwiCC

Set of bit flags that indicate which common control classes will be loaded from the
DLL. This value can be a combination of the following:

ICC_ANIMATE_CLASS
ICC_BAR_CLASSES

ICC_COOL_CLASSES
ICC_DATE_CLASSES
ICC_HOTKEY_CLASS
ICC_INTERNET_CLASSES
ICC_LISTVIEW_CLASSES
ICC_PAGESCROLLER_CLASS
ICC_PROGRESS_CLASS
ICC_TAB_CLASSES
ICC_TREEVIEW_CLASSES
ICC_UPDOWN_CLASS
ICC_USEREX_CLASSES
ICC_WIN95_CLASSES

Load animate control class.

Load toolbar, status-bar, trackbar, and tooltip
control classes.

Load rebar control class.

Load date and time picker control class.
Load hot-key control class.

Load IP address class.

Load list-view and header control classes.
Load pager control class.

Load progress bar control class.

Load tab and tooltip control classes.

Load tree-view and tooltip control classes.
Load up-down control class.

Load ComboBoxEXx class.

Load animate control, header, hot-key, list-view,
progress bar, status-bar, tab, tooltip, toolbar,
trackbar, tree-view, and up-down control classes.

Version 4.71 and later of Comcti32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Requires version 2.0 or later.

Header: Declared in commcitrl.h.

NMCHAR

Contains information used with character notification messages.

106

Volume 4 Microsoft Windows Common Controls

Members
hdr
NMHDR structure that contains additional information about this notification.

ch
Character that is being processed.

dwlitemPrev ,
32-bit value that is determined by the control that is sending the notification.

dwitemNext
32-bit value that is determined by the control that is sending the notification.

Verion 4.71 and Iatér of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

NMHDR

Contains information about a notification message.

Members
hwndFrom

Window handle to the control sending a message.
idFrom

Identifier of the control sending a message.

Chapter 7 Common API 107

code
Notification code. This member can be either a control-specific notification code or
one of the common notification codes.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.

Header: Declared in winuser.h.

NMKEY

Contains information used with key notification messages.

£ struct taghWKEY. (

typede
©MHHOR b

Members
hdr

NMHDR structure that contains additional information about this notification.
nVKey

Virtual key code of the key that caused the event.

uFlags
Flags associated with the key. These are the same flags that are passed in the high
word of the IParam parameter of the WM_KEYDOWN message.

Version 4.71 and later of Comcti32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0
or later).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

NMMOUSE

Contains information used with mouse notification messages.

108 Volume 4 Microsoft Windows Common Controls

Members

hdr
NMHDR structure that contains additional information about this notification.
dwlitemSpec
Control-specific item identifier.
dwlitemData
Control-specific item data.
pt
POINT structure that contains the screen coordinates of the mouse when the click
occurred.

dwHitinfo
Carries information about where on the item or control the cursor is pointing.

Version 4.71 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).

Windows CE: Requires version 2.0 or later.

Header: Declared in commocitrl.h.

NMOBJECTNOTIFY

Contains information used with the TBN_GETOBJECT, TCN_GETOBJECT, and
PSN_GETOBJECT notification messages.

i & 5

Chapter 7 Common API 109

Members

hdr
NMHDR structure that contains additional information about this notification.

iltem
Control-specific item identifier. This value will comply to item identification standards
for the control sending the notification. However, this member is not used with the
PSN_GETOBJECT notification message.

piid
Interface identifier of the requested object.

pObject
Address of an object provided by the window processing the notification message.
The application processing the notification message sets this member.

hResult
COM success or failure flags. The application processing the notification message
sets this member.

Version 4.71 and later of Comcti32.dl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 4.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 4.0 or
later).

Windows CE: Unsupported.

Header: Declared in commcttl.h.

NMTOOLTIPSCREATED

JNMTOOLTIPSCREATED, # L
Parameters
Members
hdr
NMHDR structure that contains additional information about this notification.
hwndToolTips

Window handle to the tooltip control created.

110

Volume 4 Microsoft Windows Common Controls

Version 5.80 and later of Comctl32.dll.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with
Internet Explorer 5.0 or later installed).

Windows CE: Unsupported.

Header: Declared in commctrl.h.

mn

CHAPTER 8

Customizing a Control’s
Appearance

Custom draw is not a common control; it is a service that many common controls
provide. Custom draw services allow an application greater flexibility in customizing a
control’s appearance. Your application can harness custom draw notifications to easily
change the font used to display items or manually draw an item without having to do a
full-blown owner draw.

About Custom Draw

This section contains general information about custom draw functionality and provides
a conceptual overview of how an application can support custom draw.

Currently, the following controls support custom draw functionality:

e Header controls
e List-view controls
* Rebar controls

* Toolbar controls
e Tooltip controls

e Trackbar controls
® Tree-view controls

Note Custom draw is implemented in version 4.70 and later of Comcti32.dll.

About Custom Draw Notification Messages

All common controls that support custom draw send NM_CUSTOMDRAW notification
messages at specific points during drawing operations. These notifications describe
drawing operations that apply to the entire control as well as drawing operations specific
to items within the control. Like many notification messages, NM_CUSTOMDRAW
notifications are sent as WM_NOTIFY messages.

The IParam parameter of a custom draw notification message will be the address of
an NMCUSTOMDRAW structure or a control-specific structure that contains an
NMCUSTOMDRAW structure as its first member. The following table illustrates the
relationship between the controls and the structures they use:

112

Volume 4 Microsoft Windows Common Controls

Structure Used by

NMCUSTOMDRAW Rebar, trackbar, and header controls
NMLVCUSTOMDRAW List-view controls
NMTBCUSTOMDRAW Toolbar controls
NMTTCUSTOMDRAW Tooltip controls
NMTVCUSTOMDRAW Tree-view controls

Paint Cycles, Drawing Stages, and Notification Messages

Like all Microsoft Windows applications, common controls periodically paint and erase
themselves based on messages received from the system or other applications. The
process of a control painting or erasing itself is called a paint cycle. Controls that support
custom draw send NM_CUSTOMDRAW notification messages periodically through each
paint cycle. This notification message is accompanied by an NMCUSTOMDRAW structure
or another structure that contains an NMCUSTOMDRAW structure as its first member.

One piece of information that the NMCUSTOMDRAW structure contains is the current
stage of the paint cycle. This is referred to as the draw stage and is represented by the
value in the structure’s dwDrawStage member. A control informs its parent about four
basic draw stages. These basic, or global, draw stages are represented in the structure
by the following flag values (defined in Commctrl.h):

Global draw stage values Description
CDDS_POSTERASE After the erase cycle is complete
CDDS_POSTPAINT After the paint cycle is complete
CDDS_PREERASE Before the erase cycle begins
CDDS_PREPAINT Before the paint cycle begins

Each of the preceding values can be combined with the CDDS_ITEM flag to specify
draw stages specific to items. For convenience, Commctrl.h contains the following item-
specific values:

Item-specific draw stage values Description
CDDS_ITEMPOSTERASE After an item has been erased.
CDDS_ITEMPOSTPAINT After an item has been drawn.
CDDS_ITEMPREERASE Before an item is erased.
CDDS_ITEMPREPAINT Before an item is drawn.
CDDS_SUBITEM Version 4.71. Flag combined with

CDDS_ITEMPREPAINT or
CDDS_ITEMPOSTPAINT if a subitem is being
drawn. This will only be set if
CDRF_NOTIFYITEMDRAW is returned from
CDDS_PREPAINT.

Chapter 8 Customizing a Control’'s Appearance 113

Your application must process the NM_CUSTOMDRAW notification message and then
return a specific value that informs the control what it must do. See the following sections
for more information about these return values.

Taking Advantage of Custom Draw Services

The key to harnessing custom draw functionality is in responding to the
NM_CUSTOMDRAW notification messages that a control sends. The return values your
application sends in response to these notifications determine the control’s behavior for
that paint cycle.

This section contains information about how your application can use
NM_CUSTOMDRAW notification return values to determine the control’s behavior.

Responding to the Prepaint Notification

At the beginning of each paint cycle, the control sends the NM_CUSTOMDRAW
notification message, specifying the CDDS_PREPAINT value in the dwDrawStage
member of the accompanying NMCUSTOMDRAW structure. The value that your
application returns to this first notification dictates how and when the control sends
subsequent custom draw notifications for the rest of that paint cycle. Your application
can return a combination of the following flags in response to the first notification:

Return value Effect

CDRF_DODEFAULT The control will draw itself. It will not send additional
NM_CUSTOMDRAW notifications for this paint cycle.
This flag cannot be used with any other flag.

CDRF_NOTIFYITEMDRAW The control will notify the parent of any item-specific
drawing operations. It will send NM_CUSTOMDRAW
notification messages before and after it draws items.

CDRF_NOTIFYPOSTPAINT The control will send an NM_CUSTOMDRAW
notification when the painting cycle for the entire
control is complete.

CDRF_SKIPDEFAULT The control will not perform any painting at all.

Requesting ltem-Specific Notifications

If your application returns CDRF_NOTIFYITEMDRAW to the initial prepaint custom draw
notification, the control will send notifications for each item it draws during that paint
cycle. These item-specific notifications will have the CDDS_ITEMPREPAINT value in the
dwDrawStage member of the accompanying NMCUSTOMDRAW structure. You can
request that the control send another notification when it is finished drawing the item by
returning CDRF_NOTIFYPOSTPAINT to these item-specific notifications. Otherwise,
return CDRF_DODEFAULT and the control will not notify the parent window until it starts
to draw the next item.

114

Volume 4 Microsoft Windows Common Controls

Drawing the ltem Manually

If your application draws the entire item, return CDRF_SKIPDEFAULT. This allows the
control to skip items that it does not need to draw, thereby decreasing system overhead.
Keep in mind that returning this value means the control will not draw any portion of the
item.

Changing Fonts and Colors

Your application can use custom draw to change an item’s font. Simply, select the HFONT
you want into the device context specified by the hdec member of the NMCUSTOMDRAW
structure associated with the custom draw notification. Since the font you select might have
different metrics than the default font, make sure you include the CDRF_NEWFONT bit in
the return value for the notification message. For more information on using this
functionality, see the sample code in Using Custom Draw. The font that your application
specifies is used to display that item when it is not selected. Custom draw does not allow
you to change the font attributes for selected items.

To change text colors for all controls that support custom draw, except for the list view
and tree view, set the desired text and background colors in the device context supplied
in the custom draw notification structure with the SetTextColor and SetBkColor
functions. To modify the text colors in the list view or tree view, you need to place the
desired color values in the clrText and clrTextBk members of the
NMLVCUSTOMDRAW or NMTVCUSTOMDRAW structure.

Custom Draw with List-View and Tree-View Controls

Most common controls can be handled in essentially the same way. However, the list-
view and tree-view controls have some features that require a somewhat different
approach to custom draw.

For Version 5.0 of the common controls, these two controls might display clipped text

if you change the font by returning CDRF_NEWFONT. This behavior is necessary for
backward compatibility with earlier versions of the common controls. If you want to
change the font of a list-view or tree-view control, you will get better results if you send a
CCM_SETVERSION message with the wParam value set to 5 before adding any items
to the control.

Custom Draw with List-View Controls

Because list-view controls have subitems and multiple display modes, you will need
to handle the NM_CUSTOMDRAW notification somewhat differently than for the other
common controls.

For report mode:

Chapter 8 Customizing a Control’s Appearance 115

1. The first NM_CUSTOMDRAW noatification will have the dwDrawStage member of
the associated NMCUSTOMDRAW structure set to CDDS_PREPAINT. Return
CDRF_NOTIFYITEMDRAW.

2. You will then receive an NM_CUSTOMDRAW notification with dwDrawStage set to
CDDS_ITEMPREPAINT. If you specify new fonts or colors and return
CDRF_NEWFONT, all subitems of the item will be changed. If you instead want to
handie each subitem separately, return CDRF_NOTIFYSUBITEMDRAW.

3. If you returned CDRF_NOTIFYITEMDRAW in the previous step, you will then receive
an NM_CUSTOMDRAW notification for each subitem with dwDrawStage set to
CDDS_SUBITEM | CDDS_PREPAINT. To change the font or color for that subitem,
specify a new font or color and return CDRF_NEWFONT.

For the large icon, small icon, and list modes:

1. The first NM_CUSTOMDRAW notification will have the dwDrawStage member of the
associated NMCUSTOMDRAW structure set to CDDS_PREPAINT. Return
CDRF_NOTIFYITEMDRAW.

2. You will then receive an NM_CUSTOMDRAW notification with dwDrawStage set to
CDDS_ITEMPREPAINT. You can change the fonts or colors of an item by specifying
new fonts and colors and returning CDRF_NEWFONT. Because these modes do not
have subitems, you will not receive any additional NM_CUSTOMDRAW notifications.

An example of a list view NM_CUSTOMDRAW notification handler is given in the next
section.

Using Custom Draw

The following code fragment is a portion of a WM_NOTIFY handler that illustrates how to
handle custom draw notifications sent to a list view control:

(continued)

116 Volume 4 Microsoft Windows Common Controls

(continued)

The first NM_CUSTOMDRAMW notification has the dwDrawStage member of the
NMCUSTOMDRAMW structure set to CDDS_PREPAINT. The handler returns
CDRF_NOTIFYITEMDRAW to indicate that it wishes to modify one or more items
individually. The control then sends an NM_CUSTOMDRAW notification with

Chapter 8 Customizing a Control’s Appearance 117

dwDrawStage set to CDDS_PREPAINT for each item. The handler returns
CDRF_NOTIFYITEMDRAW to indicate that it wishes to modify the item.

If CDRF_NOTIFYITEMDRAW was returned in the previous step, the next
NM_CUSTOMDRAW notification has dwDrawStage set to CDDS_ITEMPREPAINT.
The handler gets the current color and font values. At this point, you can specify new
values for small icon, large icon, and list modes. If the control is in report mode, you can
also specify new values that will apply to all subitems of the item. If you have changed
anything, return CDRF_NEWFONT. If the control is in report mode and you want to
handle the subitems individually, return CDRF_NOTIFYSUBITEMREDRAW.

The final notification is only sent if the control is in report mode and you returned
CDRF_NOTIFYSUBITEMREDRAW in the previous step. The procedure for changing
fonts and colors is the same as that step, but it only applies to a single subitem. Return
CDRF_NEWFONT to notify the control if the color or font was changed.

Custom Draw Reference

Custom Draw Notification Messages

NM_CUSTOMDRAW

Sent by some common controls to notify their parent windows about drawing operations.
This notification is sent in the form of a WM_NOTIFY message.

e v

Parameters

IpNMCustomDraw
Address of a custom draw-related structure that contains information about the
drawing operation. The following table lists the controls and their associated
structures:

118 Volume 4 Microsoft Windows Common Controls

Control Structure

List-view NMLVCUSTOMDRAW

Toolbar NMTBCUSTOMDRAW

Tooltip NMTTCUSTOMDRAW

Tree-view NMTVCUSTOMDRAW

All other supported controls NMCUSTOMDRAW
Return Values

The value your application can return depends on the current drawing stage. The
dwDrawStage member of the associated NMCUSTOMDRAW structure holds a value
that specifies the drawing stage. You must return one of the following values.

When dwDrawStage equals CDDS_PREPAINT:

Return value Description

CDRF_DODEFAULT The control will draw itself. It will not send any
additional NM_CUSTOMDRAW messages for this
paint cycle.

CDRF_NOTIFYITEMDRAW The control will notify the parent of any item-related
drawing operations. It will send NM_CUSTOMDRAW
notification messages before and after drawing items.

CDRF_NOTIFYPOSTERASE The control will notify the parent after erasing an item.
CDRF_NOTIFYPOSTPAINT The control will notify the parent after painting an item.
When dwDrawStage equals CDDS_ITEMPREPAINT:

Return value Description

CDRF_NEWFONT Your application specified a new font for the item;
the control will use the new font. For more
information on changing fonts, see Changing
Fonts and Colors.

CDRF_NOTIFYSUBITEMDRAW Version 4.71. Your application will receive an
NM_CUSTOMDRAW message with dwDrawStage
set to CDDS_ITEMPREPAINT | CDDS_SUBITEM
before each list view subitem is drawn. You then
can specify font and color for each subitem
separately or return CDORF_DODEFAULT for
default processing.

CDRF_SKIPDEFAULT Your application drew the item manually. The
control will not draw the item.

Chapter 8 Customizing a Control’s Appearance 119

Remarks

Currently, the following controls support custom draw functionality: header, list-view,
rebar, toolbar, tooltip, trackbar, and tree-view.

Version 4.70 and later of Comctl32.dlIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with

Internet Explorer 3.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0
or later).

Windows CE: Requires version 2.0 or later.

Header: Declared in commctrl.h.

Using Custom Draw

Custom Draw Structures

NMCUSTOMDRAW

Contains information specific to an NM_CUSTOMDRAW notification message.

} NMCUSTOM

Members
hdr

NMHDR structure that contains information about this notification message.
dwDrawStage

Current drawing stage. This value is one of the following:

Global values Description

CDDS_POSTERASE After the erasing cycle is complete

(continued)

120

Volume 4 Microsoft Windows Common Controls

(continued)

Global values

Description

CDDS_POSTPAINT
CDDS_PREERASE
CDDS_PREPAINT

Item-specific values

After the painting cycle is complete
Before the erasing cycle begins
Before the painting cycle begins

Description

CDDS_ITEM

CDDS_ITEMPOSTERASE
CDDS_ITEMPOSTPAINT
CDDS_ITEMPREERASE
CDDS_ITEMPREPAINT
CDDS_SUBITEM

hdc

Indicates that the dwitemSpec, ultemState, and
litemIParam members are valid.

After an item has been erased.
After an item has been drawn.
Before an item is erased.
Before an item is drawn.

Version 4.71. Flag combined with
CDDS_ITEMPREPAINT or CDDS_ITEMPOSTPAINT
if a subitem is being drawn. This will be set only if
CDRF_NOTIFYITEMDRAW is returned from
CDDS_PREPAINT.

Handle to the control’'s device context. Use this HDC to perform any GDI functions.

RECT structure that describes the bounding rectangle of the area being drawn. This
member is initialized only by the CDDS_ITEMPREPAINT notification.

Version 5.80. This member is initialized also by the CDDS_PREPAINT notification.

dwlitemSpec
Item number. What is contained in this member will depend on the type of control that
is sending the notification. See the NM_CUSTOMDRAW notification reference for the
specific control to determine what, if anything, is contained in this member.

ultemState
Current item state. This value is a combination of the following:

Value Description

CDIS_CHECKED The item is checked.

CDIS_DEFAULT The item is in its default state.
CDIS_DISABLED The item is disabled.

CDIS_FOCUS The item is in focus.

CDIS_GRAYED The item appears dimmed. ‘
CDIS_HOT The item is currently under the pointer (“hot”).

CDIS_INDETERMINATE The item is in an indeterminate state.

Chapter 8 Customizing a Control’s Appearance 121

Value Description
CDIS_MARKED The item is marked. The meaning of this is up to the
implementation.
CDIS_SELECTED The item is selected.
litemiParam

Application-defined item data.

Version 4.70 and later 6f Comcti32.dIl.

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer
3.0 or later).

Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or
later).

Windows CE: Requires version 2.0 or later.

Header: Declared in commctrl.h.

123

CHAPTER 9

Animation Controls

Animation Control Overview

An animation control is a window that displays an AVI clip. An AVI clip is a series of
bitmap frames like a movie. Animation controls can only display AVI clips that do not
contain audio.

About Animation Controls

One common use for an animation control is to indicate system activity during a lengthy
operation. This is possible because the operation thread continues executing while the
AVI clip is displayed. For example, the Find dialog box of Microsoft Windows Explorer
displays a moving magnifying glass as the system searches for a file.

An animation control can display an AVI clip originating from either an uncompressed
AVl file or from an AVI file that was compressed using run-length (BI_RLE8) encoding.
You can add the AVI clip to your application as an AVI resource, or the clip can
accompany your application as a separate AVl file.

Note The AVI file, or resource, must not have a sound channel. The capabilities of the
animation control are very limited and are subject to change. If you need a control to
provide multimedia playback and recording capabilities for your application, you can use
the MCIWnd control. For more information about the MCIWnd control, see the
multimedia documentation in the Platform SDK.

Animation Control Creation

An animation control belongs to the ANIMATE_CLASS window class. You create an
animation control by using the CreateWindow function or the Animate_Create macro.
The macro positions the animation control in the upper-left corner of the parent window
and, if the ACS_CENTER style is not specified, sets the width and height of the control
based on the dimensions of a frame in the AVI clip. If ACS_CENTER is specified,
Animate_Create sets the width and height of the control to zero. You can use the
SetWindowPos function to set the position and size of the control.

If you create an animation control within a dialog box or from a dialog box resource, the
control is automatically destroyed when the user closes the dialog box. If you create an
animation control within a window, you must explicitly destroy the control.

124

Volume 4 Microsoft Windows Common Controls

About Animation Control Messages

An application sends messages to an animation control to open, play, stop, and close
the corresponding AVI clip. Each message has one or more macros that you can use
instead of sending the message explicitly.

After creating an animation control, an application sends the ACM_OPEN message to
open an AVI clip and load it into memory. The message specifies either the path of an
AVI file or the name of an AVI resource. The system loads the AVI resource from the
module that created the animation control.

If the animation control has the ACS_AUTOPLAY style, the control begins playing the
AVI clip immediately after the AVI file or AVI resource is opened. Otherwise, an
application can use the ACM_PLAY message to start the AVI clip. An application can
stop the clip at any time by sending the ACM_STOP message. The last frame played
remains displayed when the control finishes playing the AVI clip or when ACM_STOP
is sent.

An animation control can send two notification messages, ACN_START and
ACN_STOP, to its parent window. Most applications do not handle either notification.

To close the AVI file or AVI resource and remove it from memory, an application can use
the Animate_Close macro, which sends ACM_OPEN with the file name or resource
name set to NULL.

Default Message Processing

This section describes the window messages handled by the window procedure for the
ANIMATE_CLASS window class.

Message Processing performed

WM_CLOSE Frees the AVI file or AVI resource associated with the
animation control.

WM_DESTROY Frees the AVI file or AVI resource, frees an internal data

structure, and then calls the DefWindowProc function.

WM_ERASEBKGND Erases the window background using the current background
color for static controls.

WM_NCCREATE Allocates and initializes an internal data structure and then
calls DefWindowProc.

WM_NCHITTEST Returns the HTTRANSPARENT hit-test value.

WM_PAINT Draws an AVI frame in the animation control.

WM_SIZE Checks if the control has the ACS_CENTER style. If the

control does not, it calls DefWindowProc. Otherwise, it
centers the animat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>