Source code and ‘\“\.\
executable files @ A

- |
on (D-ROM —_—

N

¢ Now includes

detailed coverage of
OLE Automation
and ODBC

SECOND EDITION

VERSION 1.5

PROGRAMM

CROSOTEFT

Javin J.
KRUGLINSK

M

®

e S

5

KRUGLINSKI

SECOND EDITION
VERSION 1
Javin J.

PUBLISHED BY

Microsoft Press .

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1994 by David J. Kruglinski

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Kruglinski, David J.
Inside visual C++ / David J. Kruglinski. -- 2nd ed.
p. cm.
Includes index.
ISBN 1-55615-661-8 : $39.95 ($53.95 Can.)
1. C++ (Computer program language) 2. Microsoft Visual C++.
L Title.
QA76.73.C153K78 1994
005.265--dc20 94-19212
CIP

Printed and bound in the United States of America.
123456789 MLML 987654

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

TrueType is a registered trademark of Apple Computer, Inc. ToolBook is a registered trademark of
Asymetrix Corporation. Borland is a registered trademark of Borland International, Inc. CASE:W is a
trademark of Caseworks, Inc. TETRIS is a trademark of v/o Electronorgtechnica. Hewlett-Packard and
LaserJet are registered trademarks of Hewlett-Packard Company. Informix is a registered trademark
of Informix Software, Inc. Ingres is a trademark of Ingres Corporation. Intel is a registered trademark
and Pentium is a trademark of Intel Corporation. Lego is a registered trademark of Lego Systems,
Inc. FoxPro, Microsoft, Microsoft Access, Microsoft QuickBasic, and Visual Basic are registered
trademarks and Visual C++, Windows, and the Windows operating system logo are trademarks of
Microsoft Corporation. 3M is a registered trademark and Post-it is a trademark of Minnesota Mining
and Manufacturing Corporation. ORACLE is a registered trademark of Oracle Corporation.
PowerBuilder is a trademark of Powersoft Corporation. Smalltalk is a registered trademark of Xerox
Corporation. All other trademarks and service marks are the property of their respective owners.

Acquisitions Editor: Dean Holmes
Project Editor: Jack Litewka
Technical Editor: Jim Fuchs

CONTENTS SUMMARY

ACKNOWLEDGMENTS xXifi
INTRODUCTIONo e e XXV
PART I WINDOWS, VISUAL C++, AND APPLICATION
FRAMEWORK FUNDAMENTALS e 1
CHAPTER ONE
MICROSOFT WINDOWS AND VISUAL C++.t 3

CHAPTER TWO
THE MICROSOFT FOUNDATION CLASS LIBRARY
APPLICATION FRAMEWORK 15

PARTII THE MFC LIBRARY VIEWCLASS 27

CHAPTER THREE
GETTING STARTED WITH APPWIZARD—"HELLO, WORLD!” .. 29

CHAPTER FOUR

BASIC EVENT HANDLING—USING CLASSWIZARD 51
CHAPTER FIVE

THE GRAPHICS DEVICE INTERFACE (GDI). 75
CHAPTER SIX

THEMODALDIALOG 107

CHAPTER SEVEN
THE MODELESS DIALOG AND

THE COMMDLG DIALOG CLASSES 133
CHAPTER EIGHT

VISUALBASIC CONTROLS i 149
CHAPTER NINE

WINDOWS MEMORY MANAGEMENT—JUST SAY “NEW” ... 167
CHAPTER TEN

BITMAPS . . 181

CHAPTER ELEVEN
BITMAP BUTTONS, THE TIMER,
AND ON-IDLEPROCESSING oo 195

PART Il THE DOCUMENT-VIEW ARCHITECTURE 213

CHAPTER TWELVE
MENUS AND KEYBOARD ACCELERATORS 215

CHAPTER THIRTEEN
TOOLBARS AND STATUSBARS.t 237

INSIDE VISUAL C++

CHAPTER FOURTEEN

AREUSABLEBASECLASS 257

CHAPTER FIFTEEN

SEPARATING THE DOCUMENT FROM ITSVIEW. 273

CHAPTER SIXTEEN v

READING AND WRITING DOCUMENTS—SDI. 317

CHAPTER SEVENTEEN

READING AND WRITING DOCUMENTS—MDI 347

CHAPTER EIGHTEEN

PRINTING AND PRINTPREVIEW 371

CHAPTER NINETEEN

SPLITTER WINDOWS AND MULTIPLEVIEWS 391

CHAPTER TWENTY

CONTEXT-SENSITIVEHELP 403

CHAPTER TWENTY-ONE

A PRACTICAL WINDOWS-BASED APPLICATION 425
PART IV ADVANCED TOPICS 451

CHAPTER TWENTY-TWO

MFC LIBRARY VERSION 2.5 PROGRAMS

WITHOUT DOCUMENTS ORVIEWS. 453

CHAPTER TWENTY-THREE
STORING BITMAPS IN A DOCUMENT—

DIBSAND THECLIPBOARD P 473

CHAPTER TWENTY-FOUR

DATABASE MANAGEMENT WITH MICROSOFT ODBC 501

CHAPTER TWENTY-FIVE

OLE AND OLE AUTOMATION.o 549

CHAPTER TWENTY-SIX

DYNAMIC LINK LIBRARIES (DLLS) 635
PARTV APPENDIXES....... 655

APPENDIX A

A CRASH COURSE IN THE C++ LANGUAGE 657

APPENDIX B

MESSAGE MAP FUNCTIONS IN THE

MICROSOFT FOUNDATION CLASS LIBRARY 693

APPENDIX C

MICROSOFT WINDOWS FUNCTIONS USED IN THIS BOOK . . 699

APPENDIX D

VISUAL C++, VERSION 2.0 FOR WINDOWS NT 701

INDEX . 707

TABLE OF CONTENTS

ACKNOWLEDGMENTS e XXiii
INTRODUCTIONo e XXV
PART 1 WINDOWS, VISUAL C++, AND APPLICATION

FRAMEWORK FUNDAMENTALS 1

CHAPTER ONE

MICROSOFT WINDOWS AND VISUALC++................. 3

The Windows Programming Model 3
Message Processing.o 3
The Windows Graphics Device Interface (GDI). 4
Resource-Based Programming 5
Memory Management 5
Dynamic Link Libraries (DLLS) P 5
Windows NT ... 6

The Visual C++ Components 6
Visual Workbench and the Build Process. 7
The App Studio Resource Editor 9
The C/C++ Compiler. 10
The Linker 10
The Resource Compiler i 10
The Debugger 10
AppWizard . .. 11
ClassWizard 12
The Source BrowsSert 12
Online Help 13
Windows Diagnostic Tools I 13
The Microsoft Foundation Class Library Version 2.5 14

CHAPTER TWO
THE MICROSOFT FOUNDATION CLASS LIBRARY

APPLICATION FRAMEWORK 15
Why Use the Application Framework?. 15
The Learning CUIVE.o e 18
What's an Application Framework? 19
The Application Framework vs. the MFC Library 19
An Application Framework Example. 19
MFC Library Message Mapping v .. 23

Documents and Viewso 23

INSIDE VISUAL C++

Vi

PART I THE MFC LIBRARY VIEWCLASS
CHAPTER THREE
'GETTING STARTED WITH APPWIZARD—"HELLO, WORLD!” ..

Single Document Interface (SDI) vs.

Multiple Document Interface (MDI)
The “Do-Nothing” Application
The CExO3aViewView Class i i
Drawing Inside the View Window—The Windows

Graphics Device Interface

The OnDraw Member Function.o,
The Windows Device Context. i,
Adding Draw Code to the EXO3A Program
A Preview of App Studio—Resources Introduced.
The Contents of EXOBA.RC
Running App Studio o
The Windows Debug Kerneland DBWIN

Speeding Up the Build Process oo,
CreatingaNew MAK File i

CHAPTER FOUR v
BASIC EVENT HANDLING—USING CLASSWIZARD

Getting User Input—Message Map Functions e
TheMessage Map e
Saving the View'’s State-Class DataMembers
Initializing a View Class DataMember
Invalidatingthe Rectangle i
The Window's Client Area i,

The EXO4A Example Program oo

Using ClassWizard with EXQ4A [P
Using AppWizard and ClassWizard Together

EX04B—Dragging a Circle withthe Mouse.
The EX04B Program Elements oo

The m_ellipseRectDataMember.
The m_mousePosDataMember
The m_bCaptured DataMember
The SetCapture and ReleaseCapture Member Functions
The SetCursor and LoadCursor Windows Functions
CRect, CPoint, and CSize Arithmetic
Is a Point Inside the ClientArea?

The Minimum Invalid Rectangle e
The CRect:LPRECTOperatorouuiiiiinunenin.n
Device Coordinates—Necessary for This Example

65

Table of Contents

AScrolling ViewWindow 66
A Window Is Largerthan WhatYouSee 66
SCIOIl BarS . oot 67
Scrolling Alternatives 67
The EXO4C Scrolling Example o 67
The EXO4C Program Elements it 70

The Windows GetSystemMetrics Function. 70
The Virtual OninitialUpdate Function 70
The SetScrollSizes Function. 71
Handling Keystrokes i 71
Connecting Scroll Keys to CScrollView 71
Coordinate Transformations—NotYet 71

Other Windows Messages. oot i i 72
The WM_CREATE MESSaQE . .. oot iiei e 72
The WM_CLOSE MESSAQ0E . . vt v oot ettt e s 72
The WM_QUERYENDSESSION Message 72
The WM_DESTROY Messaget 73
The WM_NCDESTROY Messageot 73

CHAPTER FIVE

THE GRAPHICS DEVICE INTERFACE (GDI). 75

The Device Context Classes oot 75
The Display Context Classes CClientDC and CWindowDC 76
Constructing and Destroying CDCObjects 76
The State of the Device Context 77
The CPaintDC CIaSSo vttt 78

GDIObjects e 78
Constructing and Destroying GDI Objects. 79
Tracking GDI Objects 79
Stock GDI Objectso 80
The Lifetime of a GDI Selection 81
A Permanent Device Context for the Display—

Registering Window Classes, 82

Windows Color Mappingot .. 82
Standard Video Graphics Array (VGA) Display Boards 83
256-Color Display Boards oot 84
24-Bit Color Display Boardst 85

Mapping Modes 85
The MM_TEXT MappingMode i 85
The “Fixed Scale” MappingModes 86
The “Variable Scale” MappingModes 87
Coordinate CONVersiont 89

Fonts ... 20
Fonts Are GDIObjects 91
Choosinga Font 9N
Printingwith Fonts 91
Displaying Fonts o 91

vii

INSIDE VISUAL C++

viii

Points in a Window—Logical Twips 92
Computing Character Height 93
The EXOBA Program 94
The EXO5A Program Elements i ., 97
Mapping Mode Set in the OnPrepareDC Function. 97
The ShowfFont Private Member Function 97
The Callto CFont::CreatefFont, 97
The EXO5B Program 98
The EX05C Example—CScrollView Revisited 102
The EXO5C Program Elements oot 105
The CScroliView::OnPrepareDC Member Function 105
The OnMouseMove Coordinate Transformation Code 106
The OnDraw FUNCLIONo 106
The CScrollView::SetScaleToFitSizeMode 106
CHAPTER SIX
THEMODALDIALOG 107
Modal vs. Modeless Dialogs 107
System Modal Dialogs.o 108
Resourcesand Controls 108
ProgrammingaModal Dialog i 109
The Dialog That Ate Cincinnati—The EXO6A Example 110
ClassWizard and the Dialog Class [118
Connecting the Dialogtothe View 122
, Understanding the EXO6A Application.......................... 124
Enhancing the Dialog Program i 125
Taking Control of the OnOK Exit 125
OnCancel ProcessiNg . .. oo v 127
Hooking Up the Scroll BarControlsot 127
Identifying Controls: CWnd Pointers and Control IDs 130
Setting the Color for the Dialog Background and for Controls 131
Painting Inside the Dialog Window 131
Using Other Control Features 0 .. 132

CHAPTER SEVEN :
THE MODELESS DIALOG AND

THE COMMDLG DIALOG CLASSES 133
Modeless Dialogs P 133
Creating Modeless Dialogs. 133
User-Defined Messagest 134
Dialog Ownership 134
A Modeless Dialog Example—EXO7A 134
The CFormView Class—A Modeless Dialog Altefnative 141
COMMDLG Dialogs . .« oo ot oo 141
Using the CFileDialog Class Directly 142
Adding Dialog Controls at RunTime 142

Table of Contents

Deriving from the COMMDLG Classes.oovivveennnnn 143

A CFileDialog Example—EXQO7B i 143
CHAPTER EIGHT
VISUALBASICCONTROLS 149
Standard Controls for Windows
and Ordinary CustomControls 150
C++ Classes and Visual BasicControls 150
Methods vs. Member Functions 150
Properties vs. DataMembers o 151
Visual Basic Control Events vs. Windows Control Notifications. 151
Visual Basic Event Registration. 152
The CVBControl Classo 152
The EXOBAExample oo, 153
The Visual Basic GRID Control 153
Building the EXO8A Example Program 155
Using Other Visual Basic Controls. 164
Visual Basic Picture Properties 164
Advantages and Disadvantages of
Writing and Using Visual Basic Controls. 164

CHAPTER NINE
WINDOWS MEMORY MANAGEMENT—JUST SAY “NEW”" ... 167

AMemory Model Review o i 168
16-BitWindows 169
The Intel Segment Architecture oo 169
The DGROUP Segment and Multi-Instance Programs 170
Memory Models—One Code Segmentor Many? 171
Near Function Calls. e 171
Memory Models—One Data Segmentor Many? 173
ThelLocalHeap e 174
The GlobalHeap 175
Location of the Program's vtbl 176
Direct Use of Windows Memory Allocation Functions 177
The 80386/80486 Virtual Memory Manager 177
Detecting Memory Leaks. i 178
What to Do When You Run Outof Memory 179
CHAPTER TEN
BITMAPS . . . 181
GDI Bitmaps and Device- Independent Bitmaps (DIBs) 181
Using GDIBItMaps vt 182
Color Bitmaps and Monochrome Bitmaps, 182
Loading a GDI Bitmap fromaResource 183
The Effect of the Display MappingMode 184
Stretchingthe Bits 184
The EX10A Program o 184

INSIDE VISUAL C++

Using Bitmaps to Improve the Screen Display 187
The EX10BProgram .. 188
Other Uses for GDIBitmaps i .. 192

CHAPTER ELEVEN
BITMAP BUTTONS, THE TIMER, AND

ON-IDLEPROCESSING i 195
Bitmap Buttons 195
The EXTTAProgram e 195
Going Further with Bitmap Buttons. 201
Using a Timer and Yielding Control. 201
TIMErS 201
Yielding Control o 202
The EX1TIB Program 203
On-ldle Processingo 206
The EXTICProgram e 207
PART Il THE DOCUMENT-VIEW ARCHITECTURE 213
CHAPTER TWELVE
MENUS AND KEYBOARD ACCELERATORS 215
The Main Frame Window and Document Classes 215
Windows Menus 216
Keyboard Accelerators i 217
Command ProCessingo« v oo e 218
Command Message Handling in Derived Classes 219
Update Command User Interface (U!) Messages 219
Commands That Originate in Dialogsoviu... 220
The Application Framework’s Built-In Menu items 221
Enabling/Disabling of Menu ltems. 222
The CEditView Classt 222
The EX12AExample 223
The CMenuClass i e 229
Extended Command Processing. 230
The EX12BExample i i 231
CHAPTER THIRTEEN
TOOLBARS AND STATUSBARS. 237
Control Bars and the Application Framework 237
TheToolbar 238
The ToolbarBitmap 238
Button States 239
The Toolbar and Command Messages.ovviennn.. 239
Toolbar Update Command Ul Messagesot 240
Locating the Main Frame Window 241
The EX13A Toolbar Example i 242

Table of Contents

The Status Bar 248
The Status Bar Definition. 248
The Message Line. 248
The Status Indicator 249
Taking Control of the Status Bar 249
The EX13B Status Bar Example 250
CHAPTER FOURTEEN
AREUSABLEBASE CLASS 257
Why Reusable Base Classes Are DifficulttoWrite 257
The CPersistentFrame Class e 258
The CFrameWnd Class and the ActivateFrame Member Function. .. 258
The Windows INIFile 259
Usingthe CString Class i 261
The Position of a Maximized Window e 263
Static Data Members 263
The Default Window Rectangle 264
The EXT4A Example 264
Persistent Frames in MDI Applications 270
CHAPTER FIFTEEN
SEPARATING THE DOCUMENT FROMITSVIEW. 273
" Document-View Interaction Functions 273
The CView::GetDocument Function 274
The CDocument::UpdateAllViews Function 274
The CView::OnUpdate Functiono, 275
The CView::OninitialUpdate Function. 275
The Simplest Document-View Application 276
The CFormView Class i 277
The CObJect Class e 278
Diagnostic DUMpINgo 278
The TRACEMEACIO. o e 278
The afxDump Object 279
The Dump Context and the CObjectClass 279
Automatic Dump of Undeleted Objects 281
The EX1BAExample 282
A More Advanced Document-View Interaction. 290
The CDocument::DeleteContents Function. 291
The CObListCollection Class 291
Using the CObList Class for a First-In, First-Out (FIFO) List 292
COblList lteration—The POSITION Variable 294
The Dump Context and Collection Classes 295
The EX15BExample 296
CEXT5DAPDD . . 298
CMainFrame e 298

Xi

INSIDE VISUAL C++

Xii

CStudentDOC 298
ClassWizard and CStudentDoc i . 302
DataMembers............... e 302
Constructor and Destructoro 302
GetList . . 302
DeleteContents i 302
DUmp . . 302

CStudentView 303
ClassWizard and CStudentView:. 311
DataMembers. e 312
OninitialUpdate 312
OnUpdate 312
Toolbar Button Command Message Handlers 312
Toolbar Button Update Command Ul Message Handlers 312
Protected Virtual Functions 313

Resource Requirements i 313
SYMBOIS . . oo 313
EditMenu 314
The IDD_STUDENTDIalOgottt 314
To0IDar . . e e 314
Testing the EX15B Application R 315

Two Exercisesforthe Reader 316

CHAPTER SIXTEEN

READING AND WRITING DOCUMENTS—SDI 317

Serialization—What IsIt?. 317
Disk Filesand Archives. 318
Making a Class Serializable 318
Writing a Serialize Function. 319
Loading from an Archive—Embedded Objects vs. Pointers 320
Serializing Collectionso 322
The Serialize Function and the Application Framework. 323

The SDI Application. i, 324
The Windows Application Object 324
The Document Template Class 325
The Document Template Resource. 327
Multiple Views of an SDI Document P L 328

" Creating an Empty Document—

The CWinApp::OnFileNew Function 328
The Document Class's OnNewDocument Function 329
Connecting File Open :

to Your Serialization Code—OnFileOpen. 329
The Document Class’s DeleteContents Function [330
Connecting File Save and File Save As

to Your SerializationCode i 330
The Document's IsModifiedFlag, 330

Table of Contents

EX16A—An SDI Example with Serialization 331
CStudent 332
CEXT62ADD . . . 334
CFrameWnd. 338
CStudentDoc 341
Serialize 341
OnOpenDocument e 342
OnUpdateFileSave i 342
CStudentView 342
AppWizard and EX1BA 342
Testing the EX16A Applicationo o 343
File Manager Document Association 344
CHAPTER SEVENTEEN
READING AND WRITING DOCUMENTS—MDI 347
The MDI Application 347
A Typical MDI Application, MFC Library Style 348
The MDI Application Object 351
The MDI Document Template Class 351
The MDI Frame Window and Child Window 351
The Main Frame and Document Template Resources 353
Creating an Empty Document—

The CWinApp::OnFileNew Function 353
Creating an Additional View for an Existing Document 354
Loading and Storing Documents i 355
Multiple Document Templates. 355

Drag and Drop—Programs and Documents 355
Program Registration i 356
Enabling Dragand Dropo 357
Enabling Embedded Launch o 357
Program Startup Parameters oo 357
Respondingto DDEMessages. 358

The EX17A Example 358

CEXT78APD .. .o T 359

CMainFrame P 363
Testing the EX17A Application 367

The EX17B Exampleo 367

CHAPTER EIGHTEEN

PRINTING AND PRINT PREVIEW 371

Windows Printing o 371
Standard Printer Dialogso 372
Interactive Print Page Selection 372
Display Pages vs. Printed Pages 373

Print Preview 374

Xiii

INSIDE VISUAL C++

Xiv

Programming forthe Printer 374
The Printer Device Context and the CView::OnDraw Function 374
The CView::OnPrintFunction e 375
Preparing the Device Context—
The CView::OnPrepareDCFunction. 375
"The StartandEndofaPrintJob.............. 376
Example EX18A—A Wysiwyg Print Program 377
Example EX18B—A Multipage Print Program 384
Exercisesforthe Reader i 389
CHAPTER NINETEEN
SPLITTER WINDOWS AND MULTIPLEVIEWS 391
The Splitter Window e 391
Multiple View Options 392
Dynamic and Static Splitter Windows 393
EX19A—A Single View Class SDI Dynamic Splitter Example 393
CMainFrame 393
Resource Requirements i 394
Testing the EX19A Application 395
EX19B—A Double View Class SDI Static Splitter Example......... 395
CHexView 395
CMainFrame i 396
Testing the EX19B Application 397
EX19C—A Multiple View Class MDI Example 398
CEX19cAppo, e 398
CMainFrame 399
Resource Requirements i 401
Testing the EX19C Application [P 401
CHAPTER TWENTY
CONTEXT-SENSITIVEHELP 403
The Windows WINHELP Program 403
Rich Text Format (RTF) i, 403
Writinga SimpleHelp File. 404
The Application Framework and WINHELP 409
Calling WINHELP. e 410
Using Search Strings 411
Help Context All@ases. i e e 411
Determiningthe Help Context 411
Menu AccesstoHelp P 412
FIHelp .. 412
ShiftFI Help ..o 412
Message Box Help—The AfxMessageBox Function e 413
GenericHelp 414
A Help Example—No Programming Required 414
The MAKEHELP Processo e e 416

Table of Contents

Help Command Processing. 417
F1Processing 417
Shift-F1 Processingo 418

A Help Command Processing Example—EX20B 419

Header Requirements i, 419

CEX20BADD . . . o oo 419

CMDIHelpWnd. 420

CStringView 421

CHexView 421

Resource Requirements i 422

Help File Requirements 422

Build and Test the Application. 423

CHAPTER TWENTY-ONE

A PRACTICAL WINDOWS-BASED APPLICATION 425

The MATPLAN Application 426

The Anatomy of the MATPLAN Application. 427

CMatplanApp 428
Initinstance 428
EXItInStance 429

CMatplanDoc. 429
CONSIUCTOr . . o 429
Serialize 429
DeleteContents 429
OnEditClearAll. 430
OnUpdateEditClearAll. i, 430
OnUpdateFileSave F 430

CMainfFrame 430
OnWindowNew1 i [430
OnWindowNew?2 430

CMDISpecialChildWnd 431
OnCommandHelp 431

CPIECE 431
Draw .. . 431
Printline. 432
Serialize 432
InsertinList, ExtractFromList 433

CMatplanDialog 434
CoNStrUCtor . ..o 434
DoDataExchange 434
OnClickedCance! 435
OnClear, OnDelete, Oninsert, OnUpdate. 435
OnCascade 436

CLISIVIEW . . . 436
OnPrepareDC 436
OnDraw 437

INSIDE VISUAL C++

ONPrINt. . .o 437
OnUpdate 438
OnPreparePrinting oo 438
OnBeginPrinting, OnEndPrintingc....... 438
ONCreate 439
ONPaint e 439
ONSize . 439
OnListBoxDDBICIK 440
OnCommandHelp, OnHelpHitTestccco.... 441
StartNewlList 441
UpdatePlanDocument. B 441
CPlanView 442
ONDraw 442
OnPreparePrinting 442
OnUpdate 442
OninitialUpdate 443
OnPaint 444
OnLBUttONDOWN o 444
OnNMOUSEMOVE 445
OnLButtonUp. 446
OnLButtonDbIClk e 447
OnKeyDOown 447
OnCommandHelp, OnHelpHitTest 447
ShoWOVEHAD 447
SafeScrollTo. 448

The MATPLAN Resource File. 448
The IDD_FORMDIalOgot 448

The IDR-MATTYPEMENUt 449
SYMbOIlS . .. 449
Header Files 450
Building and Testing the MATPLAN Application e 450
PARTIV ADVANCED TOPICS 451

CHAPTER TWENTY-TWO
MFC LIBRARY VERSION 2.5 PROGRAMS

WITHOUT DOCUMENTS ORVIEWS. 453
The EX22A Example—An SDI Application 454
CEX228ADD o 457
Inftinstance 457
CMainFrame 457
CONSITUCIOr . ot 457
OnPaint . . . 458
ONCIOSE. . .o 458
OnQUEryENGSESSION v 458
OnFile, OnHIp e 458
Resource Requirements i 458
The EX22B Example—A Dialog-Based Application 458

Table of Contents

CEX22DAPD . . . oo 462
Data Members............ PP 462
INtINStancCe e 462

CEX22bDialog 462
Data Members. 462
CONStIUCTOr . oo 462
DoDataExchange 462
OnCoMPULEo 462

Resource Requirements i 463

The EX22C Example—An MDI Application. 463

CEX22CADPD . . . oo 468
INItinstance 468

CMainFrame 468
CONSIUCTOr . . 468
ONCIOSE. 469
OnQueryEndSession. 469
OnFileNew e 469
OnWindowCloseAll, 469
OnUpdateWindowCIoseAll 469
CloseAllChildWindows 469

CChIldFrame 469
Data Members. 470
CONSIIUCIOr . . .ot e 470
OnPaint O 470
ONCIoSE. 470
OnFileClose 470
Destroying CMDIChildWnd Objects oot 471

Resource Requirements 471

CHAPTER TWENTY-THREE
STORING BITMAPS IN A DOCUMENT—

DIBSAND THE CLIPBOARD 473
" The Windows DIBFormat 473
DIBs, Colors,and Palettes. i 474
Passing Images via the Clipboard 475
Bitmap Clipboard Rules. 476
DIBs in MFC Library Documents 477
Printing with DIBs 477
The CDIb Class e 477
DIB Access FUNCHIONS o e e 481
The EX23A Example S 482
CEX23aDoc 482
Constructor, Destructor. e 483
DeleteContents 483
Serialize 483

OnEditClearAll. e 483

Xvii

INSIDE VISUAL C++

Xviii

CBitsDialog e 483
CDIb . . 484
Memory Allocation.o 484
Serialization of Large Bitmaps oL 484
CEX23aView. 492
Constructor, Destructoro 492 -
ONCreate 493
OninitialUpdate e 493
ONDraw 494
ONEQItCOPY . .\ v e 495
ONEQItCOPYTO . . o e e 496
ONEItCUL . ..t 496
ONEQItPaSte.\ 496
OnEditPasteFrom i 496
ONPriNt. . o o 497
OnUpdate 497
The Update Command Ul Functions e 497
The EX28A ResourceFile i 498
The IDD_BITS Dialog RESOUICE - .. .ot 498
The IDR_MAINFRAME Menu Resource e 498
Testing the EX23A Application 499
Bitmap Manipulation e 500
CHAPTER TWENTY-FOUR
DATABASE MANAGEMENT WITH MICROSOFT ODBC 501
Database Management vs. Serialization. 502
SQL 503
The ODBC Standard i e 503
The ODBC Architecture i 504
ODBC SDK Programmingot 504
The MFC ODBC ClasseS . . . oo v it v et e e e 506
The EX24A Example 508
The EX24A Program Elementsc.covviiiiinnnenn.. 513
Connection of the Recordset Class to the Application 513
The CEx24aView Class’s OnlnitialUpdate Member Function 514
The CEx24aView Class's OnDraw Member Function. 514
The MFC DialogBar i 515
Application Shutdown 516
AROW-View Classottt 517
The Scrolling Problem 529
Dividing the Work Between Base and Derived Classes 529
The CRowView Pure Virtual Member Functions 529
Other CRowView Functions o iiiiinennn.. 530
Programming a Dynamic Recordset 530
Countingthe Rows inaRecordset 531
The EX24B Example 532
CEX2ADADD . . o oo 533

Table of Contents

CMainFrame i DI 533

CEx24bDoc e 533
Data Members. 534
OnNewDocument 534
OnFileConnect. 534
ONFileDisconnect i i e 535
OnQueryRequery 536
PutFilterSort, GetFilterSort. 536
SaveModified. 536
Serialize 536

CEx24bView. 537
Data Members. 537
Onlpdate 537
GetRowWidthHeight, GetActiveRow,

ChangeSelectionNextRow, ChangeSelectionToRow 537
GetRowCouNt 537
OnDrawRow, DrawDataRowc.. .. 538

CEX24bSet 540
Data Members e 540
Initialize 541
DoFieldExchange 542
Destructor 543

ClableSelect 544
Data Members 544
CoNnStructor B 544
OnlnitDialog. 545
OnDDbICIKLISET . . 545

The EX24B Resource File 545

Running the EX24B Program it 546

Going FurtherwithODBC 547

CHAPTER TWENTY-FIVE

OLE AND OLE AUTOMATION. 549

Learning OLE. 549

The Common Object Model (COM).o it 550

' The Problem That COM SoIVES o oo 551
The Essence of COM e 551
What Isa COM interface?. i . 552
The IUnknown Interface and the

Queryinterface Member Function PR 557

Reference Counting: The AddRef and Release Functions 561

Class Factories 561
COM and MFC—The CCmdTargetClass.oci ... 563
A Working COM Example 564
OLE and the Windows Registration Database 574
Run-Time Object Registration. 575
Howa COMClientCallsaDLL Server. 576

Xix

INSIDE VISUAL C++

Howa COM ClientCallsanEXE Server......................... 577

MEC and OLE 579

Containmentvs. Inheritance 580

OLE Automation. 580

Connecting C++ with Visual Basic for Applications (VBA) 580

Automation Controllers and Automation Servers 581

Microsoft Excel—A Better Visual Basic Than Visual Basic 582

Properties, Methods, and Collections 585

The Problem That OLE AutomationSolves. 585

The IDispatchinterface i, 586

OLE Automation Programming i .. 586

The MFC IDispatch Implementation 588

An MFC OLE Automation Server i, 588

An MFC OLE AutomationController 590

The VARIANT TYPE . .ot 592

The CVariant Class e 594

Parameter and Return Type Conversions for Invoke 597

OLE Automation Examples 599

The EX25B Automation Server EXE—No User Interface 599

The EX25C Automation Server DLL 607

The EX25D SDI Automation ServerEXE. 614

The EX25E Automation Controller Program 621

The Market Controller Class for EX25B.EXE. 622

The Controller Class for EX25C.DLL - 624

The Controller Class for EX25D.EXE 626

Controlling Microsoft Excel. i 628

OLEandthe Future i 633

CHAPTER TWENTY-SIX

DYNAMIC LINK LIBRARIES (DLLS) 635

WhyUseaDLL? 635

Conventional DLLS 636

The MFC Library DLL v 637
MFC Library DLL Usage Restricted to

Microsoft C++ Compilers. o 637

The MFC Library ClassesasaDLL 637

Using MFC250D.DLL in an Application 638

MFC Library Extension DLLS it 639

MFC Library DLL Memory Usageo 640

Required Code for Extension DLLs 640

'Searching for RESOUICES.ottt 641

INline ConStrUCtOrS . . oot e e e 642

Extension DLLExports i 642

A DLL-Resident Class Used Directly 642

A DLL-Resident Class Used for Derivation 642

Static Class DataMembers 643

Extension DLL Run-Time Class ldentification 644

Table of Contents

Creatingthe DLL 644
Creating the Import Library.o . .. 644
Debug and Release DLL Versions 644
EX26A—Writing Your Own Class Library Extension DLL 645
The EX26AD.DEF File e 646
Visual Workbench Options for the EX26AD Project 647
Creating the Import Library and Copyingthe DLL.. 648
EX26B—Using an MFC Library Extension DLL. 648
CEX26DAPDo 649
EX26B.H ... 649
EX26B.CPP . . . 649
CEx26bDoco 649
CEX26bView. 649
CStudentDialog 651
Building and Testing the EX26B Program 651
Accessing Resourceso 653
PARTV APPENDIXES... 655
APPENDIX A
A CRASH COURSE IN THE C++ LANGUAGE 657
An Introduction to Classes and Objects 657
User-Defined Typesin C i i 657
Moving to C++ . o 658
CONSIIUCIONS . oo 659
Destructors 661
Other Member Functions, 662
Private vs. Public Class Members 663
Global Functions 664
C++ Encapsulation—ARecap 665
Inheritance and Polymorphism—An Example. 665
The Orbiter Base Class and Virtual Functions 665
Pure Virtual Functions 667
Derived Classes 667
Virtual Functions Called inBase Classes. 668
Embedded Objects 668
Copy Constructors o 669
Assignment Operators e 670
Reference Parameters: const vs. non-const 671
C++ ReferencesatWork i 672
Returning References 675
Construction of Embedded Objects—A Summary 676
Destruction of Embedded Objects 676
Allocation of ObjectsontheHeap............. 677
The C++ new and delete Operators 677
Referring to Objects Through Pointers 677
Virtual Destructors. 679

XXi

INSIDE VISUAL C++

XXii

Allocation of Global Objects i .. 680
Object Interrelationships—Pointer Data Members 680
UseofthethisPointer 682
References to Pointers e 682
Friend Classes and Friend Functions 683
Friend Classes 683
Global Friend Functions i 684
StaticClass Members 685
Static DataMembers. 685
Enumerated Types—A Static Data Member Shortcut 686
Static Member Functions 686
Overloaded Operators.o e 687
Member Function Operators.o i 687
Conversion Operatorst 689
Global Operators. 690
Separating Class Declarations fromCode 691
APPENDIX B
MESSAGE MAP FUNCTIONS IN THE
MICROSOFT FOUNDATION CLASS LIBRARY 693
APPENDIXC
MICROSOFT WINDOWS FUNCTIONS USED IN THISBOOK. . 699
APPENDIX D
VISUAL C++, VERSION 2.0 FORWINDOWS NT 701
32-Bit Programming.ot 702
Porting 16-Bit MFC Library Applications to Windows NT 703
Archive Portability Between Windows 3.1 and Win32 704
Some MFC Library Features for Windows 3.1
Not Supported Under Win32. 704
Enhanced MFC 3.0 Library Features. 704
Windows NT Debugging Considerations 705
The Win32s Subsystem 705
Multiplatform Development Strategy o L 705
INDEX . 707

ACKNOWLEDGMENTS

A lot of people contributed to the first edition of this book, and many of
those same souls worked hard on this edition too. Special thanks go to
Chuck Sphar, who provided advance copies of the MFC documents, and to
Dean McCrory of the AFX development group, who endured and patiently
answered dozens of technical questions, many of which were really stupid.
More stupid questions were cheerfully answered by Russell Williams and Eric
Wells of the Excel group. Not to be ignored are those folks out in cyberspace,
especially John Arnold, who pointed out far too many glitches and mistakes
in the first edition.

On the Microsoft Press side, there’s technical editor Jim Fuchs, who
put in the usual long hours and checked every line of my source code,
and project editor Jack Litewka, who applied his large magnifying glass to
each of my screen dumps. Special thanks go to Dean McCrory (the same
Dean mentioned above), Kraig Brockschmidt, and Charlie Kindel, who re-
viewed the manuscripts for Chapters 24 and 25.

XXiii

INTRODUCTION

It isn’t often that a truly new software product category comes along. The
“application framework” is such a category, and Visual C++ contains what is
arguably the most powerful Windows-based application framework to date.
The product has substantial credibility because it comes from Microsoft, the
author of Windows itself. Even though the Microsoft Visual C++ application
framework is quite different from anything else you might have used, it
builds on elements you might be familiar with already, including the C++ lan-
guage, the Windows Software Development Kit (SDK) for the C language,
the original Microsoft Foundation Class Library version 1.0 that was deliv-
ered with Microsoft C/C++ version 7.0, and the Microsoft Foundation Class
Library version 2.0 that was part of Visual C++ version 1.0.

Microsoft Foundation Class (MFC) Library version 2.5—which I'll of-
ten refer to as “the MFC library,” for short—is an important part of Visual
C++ version 1.5 and the core of the application framework. The MFC library
consists of a library of C++ classes and global functions with source code in-
cluded. Other Visual C++ components—including AppWizard, ClassWizard,
App Studio, Visual Workbench, the compiler, and the linker—are the tools
you’ll use to construct your applications. ,

This book explains the MFC library classes, and it shows you how to use
the classes and the tools to build Windows-based applications. If you already
own Visual Gt++, Inside Visual C++ provides useful techniques, points of view,
examples, and theory that are not included in the product documentation.
If you’re contemplating buying Visual C++, this book gives you an overall pic-
ture of the product’s capabilities.

Who Can Use This Book

When I started working with version 1.0 of the MFC library, after a not-so-
successful attempt to learn Windows SDK programming, I realized that C++
and Windows were a natural fit and that it was actually easier to learn Win-
dows-based programming the C++ way. Why not try to teach it that way? Why
not assume that the reader has a programming background and then bypass
all the “ugly stuff” that beginning SDK programmers have to learn?

INSIDE VISUAL C++

My editors agreed, but they also said, “Don’t forget the experienced
Windows programmers, the ones who have been buying all the Petzold
books.” “OK,” I said, and set my sights on an approach that would serve those
with and without prior Windows experience.

Next there was the question of C++ knowledge: Surely, with so many
C++ books out there, everyone would know the language by now. “Everyone
has bought at least one C++ book” would be a truer statement, however. Per-
haps you began to read a book, did a few of the examples, and then lost inter-
est and dropped back to C. The Visual C++ application framework is a good
excuse to become really proficient at C++, and this book will help.

As a writer, it was easier to assume that my readers didn’t know Windows
than it was to assume that they didn’t know C++. Given the prototype for an
ellipse function, for example, it’s pretty easy for any programmer to write
code that draws an ellipse on the screen, with either an ordinary C function
or a C++ member function. But if the programmer doesn’t understand C++
classes and objects, he or she is in trouble. For this reason, I've included a
C++ crash course in Appendix A. If you're new to C++, read through Appen-
dix A, but keep those other C++ books handy. You might finally be motivated
to read them! :

Notice that I've been talking about programmers. Yes, you do have to
be one, or at least a student of programming. Compilers, tools, and operat-
ing systems have become so complex in recent years that it’s impossible to go
from zero to expert Windows programmer within one book. A background
in C is the absolute minimum because even Appendix A assumes that you
can read C code.

Oh, I almost forgot. You should know how to run Windows-based appli-
cations. If you don’t know what a program for Windows is supposed to do,
how can you design and write one? If you’re looking for an application to
start with, try Microsoft Word for Windows. It’s a good example of a modern
Windows-based program. Besides that, it’s a darn good word processor, and
you can write help files with it. I used it to write this book.

How to Use This Book

XXvi

When you're starting off with Visual G++, you can use this book as a tutorial
by going through it sequentially. Later you can use it as a reference by look-
ing up topics in the table of contents or the index. Because of the tight inter-
relationships among many application framework elements, it wasn’t
possible to cleanly isolate each concept in its own chapter, so the book really

Introduction

isn’t an encyclopedia. When you use this book, you’ll definitely want the
Class Library Reference by your side. :

The Organization of this Book

As the table of contents shows, there are four main parts to this book:

Part I: Windows, Visual C++, and
Application Framework Fundamentals

In this part, I try to strike a balance between abstract theory and practical

application. After a quick review of modern Windows and of the Visual C++

components, you'll be introduced, in a gentle way, to the application frame-

work and the document-view architecture. You’ll see a simple “Hello,

world!” program, built with the MFC library classes, that requires only 30
- lines of code.

Part ll: The MFC Library View Class

The MFC library documentation presents all the application framework ele-
ments in quick succession, with the assumption that you already know Win-
dows SDK programming. Here you’re confined to one major application
framework component—the “view,” which is really a window. It’s here that
you’ll learn what SDK programmers know already, but in the context of C++
and the MFC library classes. There’s something for Windows gurus too, be-
cause the MFC library view environment supports extras such as dialog data
exchange, graphical buttons, and Visual Basic controls. You’ll use the Visual
C++ tools a lot, and that in itself eliminates much of the coding drudgery in
the life of SDK programmers.

Part Ill: The Document—View Architecture

Now the real core of application framework programming is introduced—
the document-view architecture. You’ll learn what a document is (think of it
as something much more general than a word processing document), and
you’ll see how to connect it to the view that you learned about in Part II.
You’ll be amazed, once you have written a document class, at how the MFC
library simplifies file I/O and printing.

Along the way, you'll learn about command message processing,
toolbars and status bars, splitter frames, and context-sensitive help. You’ll
also be introduced to the Windows Multiple Document Interface (MDI)
that’s featured so prominently in MFC library applications.

XXVii

INSIDE VISUAL C++

Pay special attention to the section “Speeding Up the Build Process” on
page 43 because the speed-up hints will help you save time as you work
through the book’s examples.

Part IV: Advanced Topics

This part is a catchall for many useful Windows programming techniques
directly supported by the MFC library. You’ll start with several bare-bones
Windows-based applications that bypass the document-view architecture,
and then you’ll see a useful class for device-independent bitmaps. In Chap-
ter 24, you’ll see examples that use the Microsoft Open Database Connectiv-
ity (ODBC) programming interface. Chapter 25 introduces OLE, and
Chapter 26 explains MFC library—style dynamic link libraries (DLLs).

Going Further with Windows: The Purpose of
the “For SDK Programmers” Sidebars

This book can’t offer the kind of detail—the tricks and hidden features—
found in the newer, specialized books about Windows. Most of these books
are written from the point of view of a C-language SDK programmer. In or-
der to use these books, you'll have to understand the underlying SDK appli-
cation programming interface (API) and its relationship to the MFC library.

This book’s “For SDK Programmers” sidebars, scattered throughout
the text, help you make the connection to the Windows SDK. These specially
formatted boxes help experienced Windows C programmers relate new
MFC library concepts to SDK principles they already know. If you’re unfamil-
iar with SDK programming, you should skip these notes the first time
through, but you should read them on your second pass through the book
because they’ll help you understand the mainstream literature about Win-
dows after you get up to speed with the MFC library.

If You’ve Worked with
Other Application Frameworks

XXViii

You'’re probably already aware of other application framework products.
(The best known is MacApp, for the Apple Macintosh.) The MFC library is
similar to and different from these other products; therefore, please don’t
make any assumptions about terminology or the function of any similarly
named class. '

Introduction

‘Hardware Requirements

If you haven’t discovered this already, your Windows development machine
needs more horsepower than a standard target machine. Because your time
is valuable, go for a fast 80486 or Pentium computer with 8 megabytes (MB)
or more of random access memory (RAM). Extra RAM can be used for a disk
cache and a RAM disk that will work together to speed compiles and links.
Chapter 3 shows you how to configure your extra RAM.

As far as disk space is concerned, plan on 50 MB for the Visual C++ pro-
grams alone. Each project can require as much as 4 MB (including pre-
compiled headers, map files, and a browser database), and you’ll have lots of
projects. A 200-MB hard disk drive is the minimum; a 500-MB hard disk drive
is more realistic. By the way, you'll also need a CD-ROM drive. Visual C++ is
shipped only on CD-ROM, and you’ll probably want to access sample code
and documentation directly from the CD-ROM.

Also consider a large-screen monitor with a super VGA board. With the
large monitor, you can simultaneously display Visual Workbench, the Help
window, and a Windows-based program that’s being debugged.

Using the CD-ROM Companion Disc

The companion disc that’s bound into the inside back cover of this book
contains the source code files and make files for all the sample programs.
The executable program files are not included, so you won’t have to build
the samples that you're interested in. To install the companion disc’s files, in-
sert the disc in your CD-ROM drive, and run the Setup program. Follow the
on-screen instructions.

With a conventional C-language Windows SDK program, the source
code files tell the whole story. With the MFC library application framework,
things are not so simple. Much of the C++ code is generated by AppWizard,
and the resources originate in App Studio. The examples in the early chap-
ters include step-by-step instructions for using the tools to generate and cus-
tomize the source code files. You’d be well advised to walk through those
instructions for the first few examples. There’s very little code to type. For
the middle chapters, use the code from the companion disc, but read
through the steps anyway in order to appreciate the role of App Studio and
the Wizards. For the final chapters, not all the source code is listed. You’ll
need to examine the companion disc’s files for those later examples.

XXiX

'INSIDE VISUAL C++

~ Technical Notes and Sample Programs

You can access a Visual G++ help file that contains 46 useful technical notes.
These notes cover advanced MFC library features not discussed in the docu-
mentation. This book contains references to technical notes that are identi-
fied by numbers. To read a technical note in the help file, you have two
options: You can run WINHELP and then select \MSVC\HELP\MFC-
NOTES.HLP, or you can double-click the MFC Tech Notes icon in the
Microsoft Visual C++ Program Manager group.

The \MSVC\MFC\SAMPLES subdirectory contains 30 useful MFC li-
brary sample programs. These programs, documented in the \MSVC-
\HELP\MFCSAMP help file (accessible from the MFC Samples Help icon
in the Visual C++ Program Manager group), illustrate more advanced MFC

library features. This book contains occasional references to these sample

programs.

Visual C++ Version 1.5

XXX

This book is a revision of an edition that was written for Visual C++ version
1.0. The changes made are numerous and occur throughout the book. Also,
text and screen changes reflect general improvements in AppWizard and
ClassWizard. Chapters 24 and 25 have been completely rewritten because
of the addition of the Open Database Connectivity (ODBC) classes and the
major revision of the OLE classes to accommodate OLE version 2.0.

Both ODBC and OLE 2 are such complex subjects that books have
been written on each. This book will discuss these subjects in a way that re-
lates to the focus of this book—namely, Visual C++. Chapter 24 is an intro-
duction to G++ database programming rather than a thorough explanation
of client-server computing. Chapter 25 concentrates on basic OLE 2 theory
and OLE Automation; other OLE 2 features such as in-place editing, linking,
and drag-and-drop are not covered.

PART |1

WINDOWS, VISUAL C++,
AND APPLICATION
FRAMEWORK
FUNDAMENTALS

CHAPTEHR O N E

MICROSOFT WINDOWS
AND VISUAL C++

Enough has already been written about the acceptance of Microsoft Win-
dows and the benefits of the graphical user interface (GUI). This chapter
summarizes the Windows programming model and shows you how the
Visual C++ components work together to help you write applications for
Windows. Along the way, you’ll learn some new things about Windows. We’ll
be looking toward the future rather than dwelling on the past.

The Windows Programming Model

No matter which development tools you use, programming for Windows is
different from old-style batch or transaction-oriented programming. To get
started, you need to know some Windows fundamentals. As a frame of refer-
ence, we’ll use the well-known MS-DOS programming model. Even if you
don’t currently program for plain MS-DOS, you’re probably familiar with it.

Message Processing

When you write an MS-DOS application in C, the only absolute requirement
is a function named main. The operating system calls main when the user
runs the program, and from that point on, you can use any programming
structure you want. If your program needs to get user keystrokes or other-
wise use operating system services, it calls an appropriate function such as
getchar or perhaps uses a character-based windowing library.

When the Windows operating system launches a program, it calls the
program’s WinMain function. Somewhere your application must have
WinMain, which performs some specific tasks. The most important task is
creating the application’s “main window,” which must have its own code to

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

process messages that Windows sends it. An essential difference between a
program written for Windows and a program written for MS-DOS is that an
MS-DOS program calls the operating system to get user input, but a Windows
program processes user input via messages from the operating system.

‘NOTE: Many development environments for Windows, includ-

ing Microsoft Visual C++ with the Microsoft Foundation Class
(MFC) Library version 2.5, simplify programming by hiding the
WinMain function and structuring the message-handling process.
When you use the MFC library, you need not write a WinMain
function, but understanding the link between the operating sys-
tem and your programs is helpful.

Many messages in Windows are strictly defined and apply to all applica-
tions. For example, a WM_CREATE message is sent as a window is being cre-
ated, a WM_LBUTTONDOWN message is sent when the user presses the
left mouse button, a WM_CHAR message is sent when the user types a char-
acter, and a WM_CLOSE message is sent when the user closes a window.
Other messages (“command” messages) are sent to an application window in
response to user menu choices. These messages depend on the application’s
menu layout. The programmer can define still other messages, known as
“user messages.”

Don’t worry about how your code processes these messages yet. That’s
the job of the application framework. Be aware, though, that the Windows
message processing requirement imposes a lot of structure on your program.
Don’t try to force your Windows programs to look like your old MS-DOS pro-
grams. Study the examples in this book, and then be prepared to start fresh.

The Windows Graphics Device Interface (GDI)

Many MS-DOS programs wrote directly to the video memory and the printer
port. The disadvantage of this technique was the need to supply driver soft-
ware for every display card and every printer model. Windows introduced a
layer of abstraction called the Graphics Device Interface (GDI). Windows
provides the display and printer drivers, so your program doesn’t need to
know the type of display card and printer attached to the system. Instead of
addressing the hardware, your program calls GDI functions that reference a
data structure called a device context. Windows maps the device context
structure to a physical device and issues the appropriate input/output
instructions. The GDI is almost as fast as direct video access, and it allows
different applications written for Windows to share the display.

ONE: Microsoft Windows and Visual C++

Resource-Based Programming

To do data-driven programming in MS-DOS, you have to code the data as
initialization constants, or you have to provide separate data files for your
program to read. When you program for Windows, you store data in a re-
source file using a number of formats. Windows merges a resource file into a
linked program through a process called “binding.” Resource files can in-
clude bitmaps, icons, menu definitions, dialog box layouts, and strings. They
can even include custom resource formats that you define.

You use a text editor to edit a program, but you generally use “what you
see is what you get” (wysiwyg) tools to edit resources. If you're laying out a
dialog box, for example, you select elements from an array of icons called a
control palette, and you position and size the buttons, list boxes, and so forth
with the mouse. With the Visual C++ App Studio resource editor program,
you can effectively edit most resource formats. (Note: In Microsoft Visual
Basic and in Microsoft Access, the control palette is called a toolbox.)

Memory Management

In the old days, the MS-DOS conventional memory limit of 640 kilobytes
(KB) restricted the size of your programs. You could use various overlay man-
agement techniques and extended/expanded memory managers to allow
larger programs, but all had shortcomings. An 80386SX-based (or better)
computer usually has 4 megabytes (MB) or more of memory, and its CPU has
built-in memory management hardware. Windows, together with the Visual
C++ compiler, offers additional memory management features. The net re-
sult is that memory usually isn’t a problem anymore.

Chapter 9 describes current memory management techniques for Win-
dows. If you’ve heard horror stories about locking memory handles, thunks,
and burgermasters, don’t worry. That’s all in the past. Today you simply allo-
cate the memory you need, and Windows takes care of the details. Parts of
your program, including resources, can be automatically swapped to and
from disk and then shuffled in physical memory, but chances are your com-
puter has so much memory that your entire program will fit into physical
memory.

Dynamic Link Libraries (DLLs)

In the MS-DOS environment, all a program’s object modules were statically
linked during the build process. Windows allows dynamic linking, which
means that specially constructed libraries can be loaded and linked at
runtime. Multiple applications can share dynamic link libraries (DLLs),

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

which saves memory and disk space. Dynamic linking increases program
modularity because you can compile and test DLLs separately.

Designers originally created DLLs for use with the Clanguage, and C++
has added some complications. After considerable effort, the Microsoft
Foundation Class Library developers succeeded in combining all the appli-
cation framework classes into a single DLL. Thus, you can statically or
dynamically link the application framework classes into your application.
In addition, you can create your own DLLs that build on the Microsoft Foun- -
dation Class Library. Chapter 26 includes information about creating DLLs.

Windows NT

Windows NT is a new 32-bit operating system that has an advanced file sys-
tem with security features, multithreading, true preemptive multitasking,
enhanced network access, and portability to selected RISC computers. Win-
dows NT can run both existing Windows-based 16-bit applications (includ-
ing Visual C++ version 1.5) and new high-performance Windows-based 32-bit
applications.

How do you develop Windows 32-bit applications? Early beta testers
had to use the Win32 SDK, which includes a new C-language application pro-
gramming interface (API). Because of the need for 32-bit parameters, most
Win32 function prototypes are different from their 16-bit equivalents. In ad-
dition, many functions are new, particularly in the area of disk I/O. Windows
32-bit applications access files through the Win32 API rather than through
the MS-DOS API.

Existing C-language 16-bit applications for Windows will need extensive
conversion to become true 32-bit applications. A Microsoft Foundation Class
(MFC) Library application, on the other hand, will require only recom-
pilation because the MFC library was designed with the Win32 API in mind.
There is a separate 32-bit Visual C++ version for Windows NT. You can use
the 32-bit version to produce applications targeted for Windows NT and
other 32-bit versions of Windows. See Appendix D for information about
Visual C++ for Windows NT. -

The Visual C++ Components

Microsoft Visual C++ is two complete Windows application development sys-
tems in one product. If you so choose, you can develop C-language Windows
programs using the API first introduced in the Windows SDK. Windows SDK
programming techniques -are well known and have been documented in
many books, including Charles Petzold’s Programming Windows 3.1 (Micro-

ONE: Microsoft Windows and Visual C++

soft Press, 1992). You can use many tools newly introduced in Visual C++,
including App Studio, to make Windows SDK~style programming easier.

This book is not about Windows SDK-style programming, however. It’s
about C++ programming within the MFC library application framework
that’s part of Visual C++. You’ll be using the C++ classes that are documented
in the Class Library Reference, and you’ll also be using application framework-
specific Visual C++ tools such as AppWizard and ClassWizard.

NOTE: Use of the Microsoft Foundation Class (MFC) Library
programming interface doesn’t cut you off from the Windows
SDK functions. In fact, you’ll almost always need some direct Win-
dows SDK calls in your MFC library programs.

A quick run-through of the Visual C++ components will help you get
your bearings before you zero in on the application framework. Figure 1-1
on the following page shows an overview of the Visual C++ application build
process.

Visual Workbench and the Build Process

The Visual Workbench is a Windows-hosted interactive development envi-
ronment that’s a direct descendant of Microsoft QuickC for Windows. If
you're accustomed to running a compiler from the command line, please try
Visual Workbench. Trust me. It’s really good. I avoided the old character-
mode Programmer’s Workbench, but I use Visual Workbench now for all my
projects. All examples in this book are built with Visual Workbench.

If you’ve used QuickC for Windows, Programmer’s Workbench, or the
Borland IDE, you already understand how Visual Workbench operates. But if
you’re new to integrated development environments, you’ll need to know
what a project is. A project is a collection of interrelated source files that are
compiled, linked, and bound to make up a working Windows program.
Project source files are generally stored in a separate subdirectory. A project
depends on many files outside the project subdirectory too, such as include
files and library files.

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

Figure 1-1.
The Visual C++ application build process.

Experienced programmers are familiar with make files. A make file ex-
presses all the interrelationships among source files. (A source code file
needs specific include files, an executable file requires certain object mod-

ONE: Microsoft Windows and Visual C++

ules and libraries, and so forth.) A make program reads the make file and
then invokes the compiler, assembler, linker, and resource compiler to pro-
duce the final output, which is generally an executable file. The make pro-
gram uses built-in “inference rules” that tell it, for example, to invoke the
compiler to generate an OB]J file from a specified CPP file.

In a command-line environment, you need to code the make file by
hand. Visual Workbench automatically generates the make file, known as a
“project file.” In most cases, you want your project to include all the source
files in the project subdirectory, but you can exclude files in the project
subdirectory and use files from other subdirectories. After you create a
project, you can edit source code files in individual child windows. Visual
Workbench “remembers” which source code files you were working with and
maintains a list of most recently used projects. As part of the project, you can
save compiler and linker switch settings as specified through a series of dia-
log boxes. To generate the executable program, you simply choose the Build
command from the Visual Workbench Project menu.

Visual Workbench contains a useful text editor that follows Windows in-
terface standards and uses color to highlight C++ syntax. Unfortunately, you
can’t fully customize this editor or install your own editor. If you do decide to
use your own editor, you’ll forfeit the smooth integration that the integrated
development environment provides. For example, Visual Workbench high-
lights lines containing errors in your source code files when you build a
project and allows you to set debugging breakpoints.

The App Studio Resource Editor

The original Windows SDK included separate tools for editing dialog boxes,
bitmaps, and fonts. With Visual G++, you use App Studio to edit most re-
sources. Chapter 3 shows some App Studio windows. (See pages 39 and 40.)
App Studio includes both a wysiwyg menu editor and a powerful dialog box
editor that is far superior to the old Windows SDK DIALOG program. You
can use App Studio as your resource editor for Windows SDK-style program-
ming, but when you use App Studio for MFC library programming, you can
interactively insert Microsoft Visual Basic controls in your dialog boxes for
later connection to your G++ code.

App Studio’s native file format is the ASCII Windows resource (RC) file
format, and each project usually has one RC file with #include statements to
bring in resources from other subdirectories. Editing the RC file outside
App Studio is not recommended. App Studio can also process EXE and DLL
files, so you can use the clipboard to “steal” resources, such as bitmaps and
icons, from other Windows applications.

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

App Studio compares favorably to the best applications written for Win-
dows, so it’s significant that App Studio was written using the Visual C++ tools
and the MFC library. App Studio can even edit its own resources! Try it.
(You’ll need to copy App Studio to another file and load the copy.)

The C/C++ Compiler

The Visual C++ compiler can process both C source code and C++ source
code. It determines the language by looking at the source code filename ex-
tension. A C extension indicates C source code, and CPP or CXX indicates
C++ source code. The compiler is compliant with ANSI version 2.1 and has
additional Microsoft extensions. Template and exception syntax are not sup-
ported in Visual C++ version 1.5. The Visual Workbench’s Use Microsoft

- Foundation Classes option (in the Project Options dialog box) determines

whether the compiler uses the Microsoft Foundation Class Library include
files.

» The Linker

To generate an EXE file, the Visual C++ linker processes the OB]J files that
the compiler produces. If you specify the Visual Workbench option Use
Microsoft Foundation/Classes, the linker uses the MFC library file for the ap-
propriate memory model.

The Resource Compiler

The Visual C++ resource compiler operates in either compile mode or bind
mode. In compile mode, an ASCII resource (RC) file from App Studio is
compiled into a binary RES file. In bind mode, the RES file is merged with
an executable (EXE) file. If you update a RES file, you can rebind it to its
EXE file without relinking.

The Debugger

10

If your program works the first time, you don’t need the debugger. The rest
of us might need one from time to time. The Visual C++ debugger is the first-
ever Windows-hosted C++ debugging environment. The debugger works
closely with Visual Workbench to ensure that breakpoints are saved on disk.
Toolbar buttons toggle breakpoints and control single-step execution. Fig-
ure 1-2 illustrates the Visual C++ debugger in action. Note that the Locals

ONE: Microsoft Windows and Visual C++

| Microsoft Visual Cr+ [break] - MATPLANEXE
ools Options Window Help

: <2> Locals
BP-6004] int nCount = 0x0063
Hi{BP-9806]-CPiece near = pPiece = Ox1F27:0xS57ER
+CObject CObject = (...}
+CRuntimeClass classCPiece = {...}
double m_length = 20.000000800800
double m_width = 38.0800000080006
-cString m_desc = {...}
+char * m_pchbata = 0x1F27:0x5832 *'Ceiling
int m_nbatalLength = 6x00te protected
int m_nAllocLength = 0x681e protected
long m_sheet = 0200080001
long m_x = 6x00000829
long m_y = 6x00060000
unsigned char m_bOverlap = 0x060 "'
in bNeylist = @xcdcd

else {
// copy all data from document's piece array to view's listbex
for{int i = B8; i <= nCount; i++) {
pPiece = (CPiecex) pDoc->m _piecefrray.GetAt(i)

Figure 1-2. ,
The Visual C++ debugger window.

window can expand an object pointer to show all data members of the
derived class and base classes. To debug a program, you must build the
program with the compiler and linker options set to generate debugging
information.

In addition to the Windows-hosted Visual C++ debugger, you get the
character-mode CodeView debugger. CodeView for Windows debugs p-code,
and it has several other useful features.

AppWizard

AppWizard is a code generator that creates a working skeleton of a Windows
application with features, class names, and source code filenames that you
specify through dialog boxes. You’ll use AppWizard extensively as you work
through the examples in this book. Don’t confuse AppWizard with con-
ventional code generators such as Caseworks CASE:W and Blue Sky
WindowsMAKER. AppWizard code is minimalist code; the functionality is
inside the application framework base classes. Its purpose is to get you
started quickly with a new application.

11

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

ClassWizard

ClassWizard is a program (implemented as a DLL) that operates both inside
the Visual Workbench and inside App Studio. ClassWizard takes the drudg-
ery out of maintaining Visual C++ class code. Need a new class or a new func-
tion to handle a Windows message? ClassWizard writes the prototypes,
function bodies, and code to connect the messages to the application frame-
work. ClassWizard can update class code that you write, so you avoid mainte-
nance problems common to ordinary code generators.

The Source Browser

12

If you write an application from scratch, you probably have a good mental
picture of your source code files, classes, and member functions. If you take
over someone else’s application, you’ll need some assistance. The Visual C++
Source Browser (the “browser,” for short) lets you examine (and edit) an
application from the class or function viewpoint instead of from the file view-
point. It’s a little like the “inspector” tools available with other object-
oriented libraries such as Smalltalk. The browser has the following viewing
modes: '

B Definitions and References—You select any function, variable, type,
macro, or class and then see where it’s defined and used in your
project.

& Call Graph/Caller Graph—For a selected function, you get a
graphical representation of the functions it calls or the functions
that call it. '

B Derived Class Graph/Base Class Graph—These are graphics class
hierarchy diagrams. For a selected class, you see the derived classes
or the base classes. You can control the hierarchy expansion with
the mouse.

A typical browser window is shown on page 34 in Chapter 3.

NOTE: If you rearrange the lines in any source code file, you
must rebuild the browser database.

ONE: Microsoft Windows and Visual C++

Online Help

The entire contents of the Windows SDK reference manuals and the MFC li-
brary reference manuals are included in the Visual C++ online Help. Help is
also available for App Studio, AppWizard, and ClassWizard. Don’t under-
estimate the value of Help. Many programmers at Microsoft use it exclu-
sively. If you want help on a function, simply click on (or move the cursor to)
the function in the Visual Workbench editor and press F1; you’ll see a Help
window, as shown in Figure 1-3.

Visual C++ Help resolves conflicts between Windows SDK function
names and identical Microsoft Foundation Class (MFC) Library names. If
you select a function name that corresponds to member functions in several
classes, you can choose the class from a list box. If you ask for help on a class,
you’ll see a member function and data member list in functional order.

Windows Diagnostic Tools

Visual C++ contains the same set of diagnostic tools that were included with
the Windows SDK when it was a separate product: SPY for observing Win-
dows messages, HEAPWALK for examining memory, HC31 for compiling
help files, STRESS for artificially limiting available memory, and a profiler
program that alerts you to bottlenecks in code.

. MFEC Hel

i Edit Bookmark Cnpyright elp

CView::GetDocument

CDocument® GetDocument() const;

Remarks

Call this function to get a pointer to the view's dacument.
This allows you to call the document's member functions.

Return Value

A pointer to the CDocument object associated with the
view. NULL if the view is not attached to a document.

Figure 1-3.
The Visual C++ Help window.

13

PART 1: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

Also included are the DBWIN utility, which displays diagnostic output,
and the NMAKE program, which processes hand-coded make files. NMAKE
is used to build nonstandard versions of the Microsoft Foundation Class
Library.

The Microsoft Foundation Class Library Version 2.5

14

The Microsoft Foundation Class Library version 2.5 (aka the MFC library) is
really the subject of this book. It defines the application framework that
you’ll be getting to know intimately. Chapter 2 gets you started with actual
code and some important concepts.

CHAPTER TWDO

THE MICROSOFT
FOUNDATION CLASS LIBRARY
APPLICATION FRAMEWORK

This chapter introduces the Microsoft Foundation Class Library version 2.5
(aka the MFC library) application framework by explaining its benefits. Early
on, you’ll see a stripped-down but fully operational MFC library program for
Windows that should help you understand what application framework pro-
gramming is all about. Theory is kept to 2 minimum here, but the message
mapping and document-view sections contain important information that
will help you with the examples that follow in later chapters.

Why Use the Application Framework?

If you’re going to develop applications for Windows, you've got to choose a
development environment. Assuming you’ve already rejected the interactive
options such as Microsoft Visual Basic, you must choose among the following
options:

@ The tried-and-true Windows SDK (Software Development Kit)

B The new MFC library application framework

B Other Windows-based application frameworks such as Borland’s
Object Windows Library (OWL)

If you’re starting from scratch, any option involves a big learning curve.
If you're already a Windows SDK programmer, you’ll still have a learning
curve with the MFC library. So what benefits can justify this effort?

15

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

The Microsoft Press editors told me not to make this section sound like
a marketing brochure, but I couldn’t help it. I'm really enthusiastic about
the product. It’s the application development environment I've been waiting
on for 10 years. '

Here are the MFC library benefits as I see them.

MFC library version 2.5 is the C++ Microsoft Windows APl. Your ac-
ceptance of this premise depends on your acceptance of the C++ language. If
C++ takes over from C—and many people expect it to—then it’s natural for
Windows to have a C++ programming interface. It’s highly unlikely that the
Windows-C++ interface standard will come from any company other than
Microsoft, the producer of Windows itself.

I believe C++ will take over because it’s the only universally accepted
object-oriented language, and object-oriented programming is necessary for
large software projects that require reusable, modular components. As more
users demand more sophisticated software, we can’t keep writing bigger C
programs!

Application framework applications use a standard structure. Any
programmer starting on a large project develops some kind of structure for
the code. The problem is that each programmer’s structure is different, and
for a new team member to learn the structure and conform to it is difficult.
The MFC library application framework includes its own application struc-
ture—one that’s been proven in many software environments and in many
projects. If you write a program for Windows that uses the MFC library, you
can safely retire to a Caribbean island, knowing that your minions can easily
maintain and enhance your code back home.

Don’t think that the MFC library’s structure makes your programs in-
flexible. With the MFC library, your program can do anything that a Win-
dows SDK program can do, and that means you can take maximum
advantage of Windows.

Application framework applications are small and fast. Function for
function, MFC library programs are almost as small as Windows SDK pro-
grams. An MFC library “Hello, world!” program is only 80 KB with the MFC
library functions statically linked. The same program is 23 KB with the MFC
- library dynamic link library (DLL). As for speed, in some circumstances an
MFC library application is actually faster than its Windows SDK equivalent.

16

TWO: The Microsoft Foundation Class Library Application Framework

MFC library application framework is feature-rich. The MFC library
version 1.0 classes, supplied with Microsoft C/C++ version 7.0, were essen-
tially a C++ programming interface for Windows. Some significant features
were added, however:
B General-purpose classes (non-Windows-specific), including

Q Collection classes for lists, arrays, and maps

Q A useful and efficient string class

U Time, time span, and date classes

Q File access classes for operating system independence

Q Support for systematic object storage and retrieval to and
from disk

B A “common root object” class hierarchy

B Streamlined Multiple Document Interface (MDI) application
support

B Support for OLE (Object Linking and Embedding) version 1.0
The MFC library version 2.0 classes picked up where the version 1.0
classes left off by supporting many user interface features that are found in

current Windows-based applications. Application framework architecture
aside, here’s a summary of the important new features:

B Full support for File Open, Save, and Save As menu items with
the most recently used file list

@ Print preview and printer support

B Scrolling windows and splitter windows

B Toolbars and status bars

B Access to Microsoft Visual Basic controls

B Contextsensitive help

B Automatic processing of data entered in a dialog box

B An improved interface to OLE version 1.0

B DLL support

17

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

The version 2.5 classes contribute the following:

B ODBC (Open Database Connectivity) support that allows your
application to access and update data stored in many popular
databases such as Microsoft Access, FoxPro, and SQL Server.

An interface to OLE version 2.01, with support for in-place editing,
linking, drag-and-drop, and OLE Automation.

You’ll see examples that exploit all these features, but to appreciate
what the MFC library offers, consider print preview and printer support. The
Windows SDK offers no support for print preview. Charles Petzold devotes 60
pages to printer support in Programming Windows 3.1; other books about
Windows ignore the subject completely. The MFC library contains several
thousand lines of “invisible” code that makes print preview and printing “au-
tomatic.” The Print Preview and Printer support features alone might justify
the use of the MFC library.

The Visual C++ tools reduce coding drudgery. App Studio, AppWizard,
and ClassWizard significantly reduce the time needed to write code that is
specific to your application. For example, App Studio creates a header file
that contains assigned values for #define constants. AppWizard generates
skeleton code for your entire application, and ClassWizard generates proto-
types and function bodies for message handlers.

The Learning Curve

18

All the benefits listed above sound great, don’t they? You’re probably think-
ing that “you don’t get something for nothing.” Yes, that’s true. To use the
application framework effectively you have to learn it thoroughly, and that
takes time. If you have to learn C++, Windows, and the MFC library (without
OLE 2) all at the same time, it will be at least six months before you’re really
productive. Interestingly, that’s close to the learning time for the Windows
SDK alone. :

How can that be if the MFC library offers so much more? For one thing,
you can avoid many programming details that Windows SDK programmers
are forced to learn. From my own experience, I can say that an object-ori-
ented application framework makes programming for Windows easier to
learn—that is, once you understand object-oriented programming.

The MFC library won’t bring real Windows programming down to the
masses. Windows programmers have usually commanded higher salaries
than other programmers, and that situation will continue. The MFC library

TWO: The Microsoft Foundation Class Library Application Framework

learning curve, together with the application framework’s power, should en-
sure that MFC library programmers will be in strong demand.

What’s an Application Framework?

One definition of an application framework is “an integrated collection of
object-oriented software components that offers all that’s needed for a ge-
neric application.” That isn’t a very useful definition, is it? If you really want
to know what an application framework is, you’ll have to read the rest of this
book. The application framework example that you’ll familiarize yourself
with later in this chapter is a good starting point.

The Application Framework vs. the MFC library

One reason that C++ is a popular language is that it can be “extended” with
class libraries. Some class libraries are delivered with C++ compilers, others
are sold by third-party software firms, and still others are developed in-
house. A class library is a set of related C++ classes that can be used in an ap-
plication. A matrix class library, for example, might perform common
mathematical operations involving matrices, and a communications class li-
brary might support the transfer of data over a serial link. Sometimes you
construct objects of the supplied classes; sometimes you derive your own
classes—it all depends on the design of the particular class library.

An application framework is a superset of a class library. An ordinary li-
brary is an isolated set of classes designed to be incorporated into any pro-
gram, but an application framework defines the structure of the program
itself. This sounds like a fine distinction, and it is. Most Windows develop-
ment class libraries, including Microsoft Foundation Class library version
1.0, Borland OWL, and Microsoft Foundation Class Library version 2.5,
are considered application frameworks. Microsoft Foundation Class (MFC)
Library version 2.5, however, provides significantly more features than the
others.

An Application Framework Example

Enough generalizations. It’s time to look at some code—not pseudocode but
real code that actually compiles and runs with the MFC library. Guess what?
It’s the good old “Hello, world!” application with a few additions. (If you’ve
used version 1.0 of the MFC library, this code will be familiar except
for the frame window base class.) It’s about the minimum amount of code
for a working MFC library application for Windows. Contrast it with the

19

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

20

equivalent Windows SDK application! You don’t have to understand every
line now. Don’t bother to type it in and test it. Wait for the next chapter,
where you’ll start using the “real” application framework.

NOTE: By convention, MFC library class names begin with the
letter C.

Following is the source code for the header and implementation files
for our MYAPP application. The two classes, CMyApp and CMyFrame, are each
derived from the MFC library base classes. First the MYAPP.H header file for
the MYAPP application:

// application class
class CMyApp : public CWinApp

{
public:

virtual BOOL InitInstance();
}:

// frame window class
class CMyFrame : public CFrameWnd

{

public:
CMyFrame();

protected:
// 'afx_msg' indicates that the next two functions are part
// ~of the MFC library message dispatch system.
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnPaint();
DECLARE_MESSAGE_MAP()

};

And now the MYAPP.CPP implementation file for the MYAPP application:

#include <afxwin.h> // MFC library header file declares base classes
#include "myapp.h"

CMyApp NEAR theApp; // the one and only CMyApp object

BOOL CMyApp::InitlInstance()

{
m_pMainWnd = new CMyFrame();
m_pMainWnd->ShowWindow(m_nCmdShow) ;
m_pMainWnd->UpdateWindow();
return TRUE;

}

TWO: The Microsoft Foundation Class Library Application Framework

BEGIN_MESSAGE_MAP(CMyFrame, CFrameWnd)
ON_WM_LBUTTONDOWN()
ON_WM_PAINT()

END_MESSAGE_MAP()

CMyFrame: :CMyFrame()
{

Create("AfxFrameOrView"”, "MYAPP Application");
}

void CMyFrame::0nLButtonDown(UINT nFlags, CPoint point)
{
TRACE("Entering CMyFrame::0OnLButtonDown - %1x, %d, %d\n",
(long) nFlags, point.x, point.y);

}
void CMyFrame::0nPaint()
{
CPaintDC dc(this);
dc.TextOut(0, @, "Hello, world!");
}

Here are some of the program elements:

The WinMain function. Remember that Windows requires your applica-
tion to have a WinMain function. You don’t see WinMain here because it’s
hidden inside the application framework.

The CMyApp class. An object of class CMyApp represents an application.
The program defines a single global CMyApp object, theApp. The CWinApp
base class determines most of theApp’s behavior.

Application startup. When the user starts the application, Windows calls
the application framework’s built-in WinMain function, and WinMain looks
for your globally constructed application object of a class derived from
CWinApp. Don’t forget that, in C++, global objects are constructed before the
main program is executed.

The CMyApp::Initinstance member function. When WinMain finds the
application object, it calls the InitInstance member function, which makes
the calls needed to construct and display the application’s main frame win-
dow. You must override InitInstancein your derived application class because
the CWinApp base class doesn’t have the slightest idea about what kind of
main frame window you want.

21

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

22

The CWinApp::Run member function. The Run function is hidden in
the base class, but it dispatches the application’s messages, thus keeping the
application running. WinMain calls Run after it calls InitInstance.

The CMyFrame class. An object of class CMyFrame represents the appli-
cation’s main frame window. When the constructor calls the Create member
function of the base class CFrameWnd, Windows creates the actual window
structure and the application framework links it to the C++ object. The
ShowWindow and UpdateWindow functions, also member functions of the base
class, must be called in order to display the window.

The CMyFrame::OnLButtonDown function. This is a sneak preview of
the MFC library’s message-handling capability. We’ve elected to “map” the
left mouse button down event to a CMyFrame member function. You’ll learn
the details of the MFC library’s message mapping in Chapter 4. For the time
being, accept that this function gets called when the user presses the left
mouse button. The function invokes the MFC library TRACE macro to dis-

play a message in the debugging window. '

The CMyFrame::OnPaint function. The application framework calls this
important mapped member function of class CMyFrame every time it’s neces-
sary to repaint the window: at the start of the program, when the user resizes
the window, and when all or part of the window is newly exposed. The
CPaintDC statement relates to the Graphics Device Interface (GDI) and is
explained in later chapters. The TextOut function displays “Hello, world!”

Application shutdown. The user shuts down the application by closing
the frame window. This action initiates a sequence of events, which ends with
the destruction of the CMyFrame object, the exit from Run, the exit from
WinMain, and the destruction of the CMyApp object.

Look at the example again. This time try to get the big picture. Most of
the application’s functionality is in the MFC library base classes CWinApp and
CFrameWnd. In writing MYAPP, we’ve followed a few simple structure rules,
and we’ve written key functions in our derived classes. C++ lets us “borrow” a
lot of code without copying it. Think of it as a partnership between us and
the application framework. The application framework provided the struc-
ture, and we provided the code that made the application unique.

Now you’re beginning to see why the application framework is more
than a class library. Not only does the application framework define the ap-
plication structure but it also encompasses more than C++ base classes.

TWO: The Microsoft Foundation Class Library Application Framework

You've already seen the hidden WinMain function at work. Other elements
support message processing, diagnostics, DLLs, and so forth.

MFC Library Message Mapping

Refer to the OnLButtonDown member function in the previous example. You
might think that OnLButtonDown would be an ideal candidate for a virtual
function. A window base class would define virtual functions for mouse event
messages and other standard messages, and derived window classes could
override the functions as necessary. Some Windows class libraries do work
this way.

The MFC library application framework doesn’t use virtual functions
for messages used in Windows. Instead, it uses macros to “map” specified
messages to derived class member functions. Why the rejection of virtual
functions? Consider this situation: You have a hierarchy of five window
classes in Windows, and the base class defines virtual functions for 140 mes-
sages. C++ requires a virtual function dispatch structure called a “vtbl” that
has a 4-byte entry for each class-virtual function combination, regardless of
whether the functions are actually overridden in the base classes. Thus, for
each distinct type of window or control, the application needs a 2.8-KB table
to support virtual message handlers.

What about message handlers for menu command messages and mes-
sages from button clicks? You couldn’t define these as virtual functions in a
window base class because each application might have a different set of
menu commands and buttons. The MFC library message map system avoids
large vtbls, and it accommodates application-specific command messages. It
also allows selected nonwindow classes, such as document classes and the
application class, to handle command messages. Unlike the “dynamic dis-
patch table” system that Borland supplied as part of the early versions of
OWL, message maps require no extensions to the C++ language.

An MFC library message handler requires a function prototype, a func-
tion body, and an entry in the message map. ClassWizard helps you add mes-
sage handlers to your classes. You select a Windows message ID from a list
box, and the Wizard generates the code with the correct function param-
eters and return values.

Documents and Views

The previous example used an application object and a frame window ob-
ject. Most of your MFC library applications will be more complex. Typically,
they’ll contain application and frame classes plus two other classes that

23

PART I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

24

represent the “document” and the “view.” This “document-view architec-
ture” is not new. It originated in the early 1980s in the academic world and
was then adopted by Apple Computer in 1985 for the MacApp application
framework product.

In simple terms, the document-view architecture separates data from
the user’s view of the data. One obvious benefit is multiple views of the same
data. Consider a document that consists of a month’s worth of stock quotes
stored on disk. Suppose there are a table view and a chart view of the data.
The user updates values through the table view window, and the chart view
window changes because both windows display the same information (but in
different views).

In the MFC library, documents and views are represented by C++ classes
and objects. Figure 2-1 shows three objects of class CStockDoc corresponding
to three companies: AT&T, IBM, and GM. All three documents have a table
view attached, and one document also has a chart view. As you can see,
there are four view objects—three of class CStockListView and one of class
CStockChartView.

The document base-class code interacts with the File Open and File
Save menu items; the derived document class does the actual reading and
writing of the document object’s data. (The application framework does

Wednesday: 425 .8
Thursgay: 135.7
Frigay: 1245
Manmay: 135.9

List
window

Chart
window

Uednesdey: 125 .6
Thursday: 135.7
Frimay: 12u.5
125.8

List
window

Uedwesday;: 125.6

Thurcday: 135.7 H

Friday: 124.5 2 - H
nsy. 5.3 onan List

window

Figure 2-1.
The document—view relationship.

TWO: The Microsoft Foundation Class Library Application Framework

most of the work of displaying the File Open and File Save dialog boxes and
opening, closing, reading, and writing files.) The view base class represents a
window that is contained inside a frame window; the derived view class inter-
acts with its associated document class and does the application’s display and
printer I/O. The derived view class and its base classes handle messages in
Windows. The MFC library orchestrates all interactions among documents,
views, and frame windows, and the application object, mostly through virtual
functions.

Don’t think that a document object must be associated with a disk file
that is read entirely into memory. If a “document” were really a database, for
example, you could override selected document class member functions,
and the File Open menu item would bring up a list of databases instead of a
list of files.

25

THE MFC LIBRARY
VIEW CLASS

CHAPTER THREE

GETTING STARTED
WITH APPWIZARD—
‘HELLO, WORLD!”

Chapter 2 sketched the Microsoft Foundation Class (MFC) Library version
2.5 document-view architecture. This hands-on chapter shows you how to
build a functioning MFC library application, but it insulates you from the
complexities of the class hierarchy and object interrelationships. You’ll work
with only one document-view program element, the “view class” that is
closely associated with a window. For the time being, you can ignore ele-
ments such as the application class, the frame window, and the document. Of
course, your application won’t be able to save its data on disk, and it won’t
support multiple views, but Part III of this book provides plenty of opportu-
nity to exploit those features.

TIP: 1It’s easy to copy a whole project, either with the Windows
File Manager or from the DOS prompt (XCOPY /S). There’s a
trap that’s easy to fall into, though. If your original project has
open child windows associated with source files, the child windows
in the new project will be associated with files in the original
project. If you’re not careful, you’ll be changing the original
project inadvertently when you meant to change the copy. (I've
fallen into this trap too many times.) To avoid this problem, close
all the project’s child windows, either before or after the copy.

Because resources are so important in Windows-based applications,
you’ll use the App Studio resource editor to visually explore the resources of
your new program. You’ll also get some hints for setting up your Windows
environment for maximum build speed and optimal debugging output.

29

PART Il: THE MFC LIBRARY VIEW CLASS

REQUIREMENTS: To compile and run the examples pre-
sented in this and the following chapters, you must have success-
fully installed Microsoft Windows (version 3.1 or later) and all the
Visual C++ components. Be sure that the Visual Workbench bi-
nary, include, and library directories are set correctly. (You can
change the directories by choosing Directories from the Options
menu.) If you have any problems with the following steps, please
refer to your Visual C++ documentation and README files for
troubleshooting instructions.

What’s a View?

From the user’s standpoint, a “view” is an ordinary window that he or she can
size, move, and close in the same way as any other Windows-based applica-
tion window. From the programmer’s perspective, a view is a C++ object of a
class derived from the MFC library CView class. Like any C++ object, the view
object’s behavior is determined by the member functions (and data mem-
bers) of the class—both the application-specific functions in the derived
class and the standard functions inherited from the base classes.

With Visual C++, you can produce interesting applications for Windows
by simply adding code to the derived view class that the AppWizard code gen-
erator produces. When your program runs, the MFC library application
framework constructs an object of the derived view class, and it displays
a window that is tightly linked to the C++ view object. As is customary in
C++ programming, the MFC library view class is divided into two source
modules—the header file (H) and the implementation file (CPP).

Single Document Interface (SDI) vs.
Multiple Document Interface (MDI)

30

The MFC library supports two distinct application types, SDI and MDI. An
SDI application has, from the user’s point of view, only one window. If the
application depends on disk-file “documents,” only one document can be
loaded at a time. Windows Notepad is an example of an SDI application. An
MDI application has multiple “child windows,” each of which corresponds to
individual documents. The Visual Workbench is a good example of an MDI
application.

When you run AppWizard, MDI is the default application type. For the
early examples in this book, we’ll be generating SDI applications because
fewer classes and features are involved. Be sure you uncheck the AppWizard

THREE: Getting Started with AppWizard—“Hello, world!”

Multiple Document Interface option for these examples. Starting with Chap-
ter 17, we’ll be generating MDI applications. The MFC library application
framework architecture ensures that most SDI examples can be upgraded
easily to MDI applications.

The “Do-Nothing” Application

The AppWizard program generates the code for a functioning MFC library
application. This working application simply brings up an empty window
with a menu attached. Later you’ll add code that draws inside the window.
Follow these steps to build the application:

1. Run AppWizard to generate SDI application source code. Choose
AppWizard from the Visual Workbench Project menu. When AppWizard
starts, you'll see the MFC AppWizard dialog box, as shown here:

' MFCvapWizard

Type the program name as shown, but do not press Enter or click the
OK button. You can enter a different name if you want, but AppWizard
uses the program name when it creates files and classes. If you enter a
different name, your files and classes will have a name that is different
from that of the files and classes shown in this AppWizard dialog box
example.

Next click the Options button, and specify the options in the Options
dialog box, as shown at the top of the following page:

31

PART Il: THE MFC LIBRARY VIEW CLASS

(Options

Click the OK buttons in the Options and MFC AppWizard dialog

boxes.
AppWizard generates files based on the parameters you type in the

MFC AppWizard dialog box. Immediately before AppWizard generates
your code, it displays the New Application Information dialog box shown

here:

sses to be created:
| Application: CEx03aApp in EX03A.H and EX03A.CPP
i | Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
| Document: CExD3aDoc in EX03ADOC.H and EX03ADOC.CPP
| View: CEx03aView in EX03AYW.H and EX03AVW.CPP

| Features:
| 45 the Single D, face (SDI
.+ MSVC Compatible project file (EX03A.MAK)

|+ Initial toolbar and status bar in main frame
| + Uses medium memory model

Click the Create button, and AppWizard bégins to create your
application’s subdirectory, files, and classes. When AppWizard is fin-
ished, look in the application’s subdirectory. The following files are of

interest (for now):

32

THREE: Getting Started with AppWizard—“Hello, world!”

File Description

EXO03A.DEF Windows module definition file

EX03A.MAK Project file that allows Visual Workbench to build
your application

EX03A.RC Resource script file

EX03AVW.CPP View class implementation file that contains
CEx03aView class member functions

EX03AVW.H View class header file that contains the CEx03aView
class declaration

README.TXT Text file that explains the purpose of all generated files
RESOURCE.H #define constant definitions

Open the EX03AVW.CPP and EX03AVW.H files and look at the
source code. Together these files define the CEx(03aView class, which is
central to the application. An object of class CEx03aView corresponds to
the application’s view window, where all the “action” takes place.

. Compile and link the generated code. AppWizard, in addition to
generating code, creates a custom project file for your application. This
file, EX03A.MAK, specifies all the file dependencies together with the
compile and link option flags. Because the new project becomes Visual
Workbench’s current project, you can now build the application by
choosing Build EX03A.EXE from the Project menu.

NOTE: The Compile, Build, and Execute items on the
Project menu display the current project’s name.

If the build is successful, an executable program called EX03A.EXE is
created in the application’s subdirectory.

The EXO03A.DEF file provides useful information to the linker. Most
important is the name of the application, contained in the DEF file’s
first noncomment line:

NAME EX03A

TIP: If you have two or more programs with the same
DEF file NAME parameter, Windows won’t let you run
them simultaneously. (You’ll probably see two copies of
the application you run first.) Be careful.

33

PART Il: THE MFC LIBRARY VIEW CLASS

3. Test the resulting application. Choose Execute EX03A.EXE from the
Project menu. Experiment with the program. It really doesn’t do much,
does it? (What do you expect for no coding, anyway?) Actually, as you
might be able to tell from the size of the EXE file, the program has a lot
of features—you simply haven’t activated them yet. Close the program
window when you’ve finished experimenting.

4. Browse the application. You can use the Visual C++ browser only
after you have successfully compiled an application. Choose Open
EX03A.BSC from the Browse menu, and the browser window appears.
Set the following parameters:

Type: Base Class Graph
Subset: Classes (default)
Symbol: CEx03aView

NOTE: The Symbol text box is case-sensitive, so be sure
to enter the information exactly as shown.

Now click the Display Result button and expand the class hierarchy by
clicking on the icons. The browser window with CEx03aView and base
classes should eventually look similar to this:

Type
Subset
Symbol

CView

L® Cund struct AFX_MSGMAP_ENTRY * CEx03aView::_m
L® CCmdTarget i iew:
L& . CObject

Definitions of CEx03aView
d:\vcpp\ex03a\ex03avw.h(5)
|References to CEx03aView
d:\vcpp\ex03azex03avw.cpp(18)

The CEx03aView View Class

AppWizard generated the CEx03aView view class, and this class is specific to
the EX03A application. (AppWizard generates classes using the project
name you entered in the MFC AppWizard dialog box.) CEx03aView is at the
bottom of a long inheritance chain of MFC library classes, as illustrated pre-
viously in the browser window. The class picks up member functions and

34

THREE: Getting Started with AppWizard—“Hello, world!”

data members all along the chain. You can learn about these classes in the
Class Library Reference document, but you must be sure to look at the descrip-
tions for every base class because the descriptions of inherited member func-
tions aren’t repeated for derived classes.

The most important CEx03aView base classes are CWnd and CView.
CWnd provides CEx03aView's “windowness,” and CView provides the hooks to
the rest of the application framework, particularly to the document and to
the frame window that you’ll see in Part III of this book.

Drawing Inside the View Window—
The Windows Graphics Device Interface

Now you’re ready to write code to draw inside the view window. You’ll be
making a few changes directly to the EX03A source code.

The OnDraw Member Function

Specifically, you’ll be fleshing out the OnDraw member function in
EX03AVW.CPP. OnDraw is a virtual member function of the CView class that
the application framework calls every time the view window needs to be re-
painted. A window needs repainting if the user resizes the window or reveals
a previously hidden part of the window, or if the application changes the
window’s data. If the user resizes the window or reveals a hidden area, the
application framework calls OnDraw, but if a function in your program
changes the data, it must inform Windows of the change by calling the view’s

“inherited Invalidate (or InvalidateRect) member function. This call to Invali-
date triggers a later call to OnDraw.

Even though you can draw inside a window at any time, it’s strongly rec-
ommended that you let window changes accumulate and then process them
all together in the OnDraw function. That way your program can respond to
program-generated events and to Windows-generated events such as size
changes.

The Windows Device Context

Remember from Chapter 1 that Windows doesn’t allow direct access to the
display hardware but communicates through an abstraction called a “device
context” that is associated with the window. In the MFC library, the device
context is a C++ object of class CDC passed (by pointer) as a parameter to
OnDraw. After you have the device context pointer, you can call the many
CDCmember functions that do the work of drawing.

35

PART Il: THE MFC LIBRARY VIEW CLASS

Adding Draw Code to the EX03A Program

Now let’s write the code to draw some text and a circle inside the view win-
dow. Be sure that the project EX03A.MAK is open in Visual Workbench. You
can use the browser to locate the code for the function (double-click on
CEx03a View::On Draw), or you can open the source code file EX03AVW.CPP
and locate the function yourself.

1. Edit the OnDraw function in EXO03AVW.CPP. Find the AppWizard-
generated OnDraw function in EX03AVW.CPP:

void CEx@3aView::0nDraw(CDC* pDC)

{
CEx@3aDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
// TODO: add draw code here

}

The following screened code (which you type in) replaces the previ-
ous code:

void CEx@3aView::0nDraw(CDC* pDC)

You can safely remove the call to GetDocument because we’re not
dealing with documents yet. The functions TextOut, SelectStockObject, and
Ellipse are all member functions of the application framework’s device
context class CDC. The Ellipse function draws a circle if the bounding
rectangle’s length is equal to its width.

The MFC library provides a handy utility class, CRect, for Windows
rectangles. A temporary CRect object serves as the bounding rectangle
argument for the ellipse drawing function. You’ll see more use of the
CRect class later in this book.

N .

Recompile and test EX03A. Choose Build from the Project menu, and,
if there are no compile errors, test the application again. Now you have
a program that visibly does something!

36

THREE: Getting Started with AppWizard—"Hello, world!”

A Preview of App Studio—Resources Introduced

Now that you have a complete application program, it’s a good time for a
quick look at the App Studio resource editor. Although the application’s re-
source script, EX03A.RC, is an ASCII file, modifying it with a text editor is
not a good idea. That’s App Studio’s job.

The Contents of EX03A.RC

The resource file determines much of the EX03A application’s “look and
feel.” The file EX03A.RC contains (or points to) the Windows resources
listed on the following page:

37

PART H: THE MFC LIBRARY VIEW CLASS

Resource Description

Accelerators Definitions for keys that simulate menu and toolbar
selections _

Toolbar bitmap The row of buttons immediately below the menu

Dialog Layout and contents of dialog boxes—the About dialog
box for EX03A

Icon The AFX logo you see in the application’s About dialog
box

Menu The application’s main menu and associated pop-up
menus

String table Strings that are not part of the G++ source code

In addition to the resources listed above, EX03A.RC contains the statement
f#inciude "afxres.h"

which brings in some special MFC library resources common to all applica-
tions. These special resources include strings, graphical buttons, and ele-
ments needed for printing and OLE.

EX03A.RC also contains the statement

#include "resource.h"

This statement brings in the application’s #define constants, which are
IDR_MAINFRAME (identifying the menu, icon, string list, and accelerator
table) and IDD_ABOUTBOX (identifying the About dialog box). This same
RESOURCE.H file is included indirectly by the application’s source code
files. If you use App Studio to add more constants (symbols), the definitions
ultimately show up in RESOURCE.H. If you use a text editor to add your own
constants to RESOURCE.H, App Studio does not disturb them.

NOTE: The file EX03A.RC2, located in the project’s RES sub-
directory, contains resources that App Studio doesn’t edit. The
version resource falls into this category.

Running App Studio

38

Although you can run App Studio from the Windows File Manager or Pro-
gram Manager, running it from within Visual Workbench is easiest.

1. Start the App Studio program. In Visual Workbench, choose App
Studio from the Tools menu. You will see the following App Studio
window:

THREE

Getting Started with AppWizard—"Hello, world!”

2.

App Studin “EXD3ARC
ndow Help

4 abg String Table

TIP: You can also activate App Studio by choosing the
project’s RC file in the Open File dialog box. For this to
work, you must first choose Editor from Visual Work-
bench’s Options menu and check the Open .RC Files Us-
ing App Studio check box in the Editor dialog box.

Examine the application’s resources. Now take some time to explore
the individual resources. Notice that resource selection is a two-step
process: First you click on the resource type on the left, and then you
double-click on a specific resource on the right. When you select a
resource, another window opens with tools appropriate for the selected
resource. (The control palette might also open.)

39

PART II:

THE MFC LIBRARY VIEW CLASS

3.

The W

As

Modify the About dialog box. Make some changes to the About dialog
box, shown here in App Studio:

You can change the size of the window by dragging the right and
bottom borders, move the OK button, change the text, and so forth.
Simply click on an element to select it. When you’re done, save the file
and exit App Studio.

. Rebuild the application with the modified resource file. In Visual

Workbench, choose Build from the Project menu. Notice that no actual
C++ recompilation or linking is necessary. Visual Workbench saves the
edited resource file on disk, and then the Resource Compiler (RC.EXE)
processes EX03A.RC to produce a compiled version, EX03A.RES. Then
RC.EXE runs again to bind the compiled resources to the EX03A.EXE
file, replacing the resources that were there before.

. Test the new version of the application. Run the EX03A program

again, and then choose About from the application’s Help menu to
confirm that your dialog box was changed as expected.

indows Debug Kernel and DBWIN

a developer, you should run the Windows Debug kernel at all times. (The

sidebar on the facing page gives instructions for installing the kernel.) The
Debug kernel provides important error messages that you would miss with
the regular version of Windows.

40

THREE: Getting Started with AppWizard—“Hello, world!”

Select the file groups to install. Use the option buttons to customize
your selections. Choose the Directories button to change the
default directories for the installation file groups.

["Main Components

B e roen!

[X] Mictosoft C/C++ Compiler
Bun-time Libraries

Microsoft Foundation Classes
X Tools

Online Help Files

Sample Source Code

[New Features
[XI MFC OLE
MFC Database (ODBC)

e

"Disk Space Information i 2 ‘ rg

i
Installation root drive/directory: rﬁ‘i’@,
Space available on installation root drive: -
Space required on installation root drive:

T s
e
e
i -

Select the tools to install.
[Windows Tools

ew/ W Windows Profiler
[Debug Kernel Help Compiler
[Pen Files Analysis Tools
[Eont Editor

["MS-DDS Teools
CodeView <] MS-DOS Profiler

[Disk Space Information
Space Available: 43640 Kb
Space Required: 67488 Kb
Tools Size: 3688 Kb

C:\MSVC\BIN\

PART Il: THE MFC LIBRARY VIEW CLASS

To activate the Debug kernel after it is installed, run the N2D batch file
(located in the \MSVC\BIN subdirectory). This batch file copies files from
the \MSVC\DEBUG subdirectory to your WINDOWS subdirectory. The mes-
sage “Enhanced Mode Debug Windows 3.1” at the bottom of Windows’ back-
ground screen indicates that the Debug kernel is properly installed. (This
message should appear the next time you start Windows.)

If your computer is equipped with dual monitors, the error messages
appear on the auxiliary monitor. If you don’t have dual monitors, you should
definitely run the Windows DBWIN program, located in the \MSVC\BIN
subdirectory, to see the error messages in a window. DBWIN is useful not
only for displaying messages from the Windows Debug kernel but also for
displaying output from the application framework diagnostic macros
TRACE, ASSERT, and VERIFY. The TRACE macro is explained in Chapter 15,
on page 278. Consider inserting the line

load=dbwin

in your WIN.INI file to load DBWIN when Windows starts. You can also add a
DBWIN program item in your STARTUP group.

Do You Need to Use the Debugger?

42

Using the debugger with programs for Windows is more complicated than
using the debugger with MS-DOS programs. You can’t use the debugger to
trace through an entire program because Windows-based programs don’t
execute sequentially. You must put breakpoints at the start of the message-
handling functions that you need to debug.

TIP: To avoid stepping through the code in the MFC library, use
the Step Over button, shown here,

to step to the next statement in the function you are debugging.

You might find that you can do most of your debugging without the Vi-
sual C++ debugger. If you find that you're using the debugger infrequently,
you can save considerable compile, link, and load time by eliminating de-
bugging information from your program. The last “speedup” hint (#6 on
page 47) shows you how.

THREE: Getting Started with AppWizard—"Hello, world!”

Enabling the Diagnostic Macros

The application framework TRACE macros are particularly useful for moni-
toring program status. These macros, together with the ASSERT and VERIFY
macros, require the Debug build option (but do not require debugging in-
formation). In addition, the TRACE macros require that tracing be enabled.
You can enable tracing by inserting the statement

afxtrace = TRUE;

in your program. Alternatively, you can insert the statement

TraceEnabled = 1

in the [Diagnostics] section of the AFX.INI file in your WINDOWS
subdirectory. You can control this trace option, together with other trace
options, with the TRACER utility that is included with Visual C++. If you're
using the Visual Workbench debugger, TRACE output appears in the Debug
Output window. Otherwise, you need an auxiliary monitor or the DBWIN
program.

Speeding Up the Build Process

As you saw with the application you created earlier in this chapter, Visual C++
can be slow when building an application. This section’s information will
help you speed up the process of compiling and linking applications. The
speedup hints are presented here instead of in an appendix because you can
begin saving time right away as you build the sample applications.

The procedures described here are optional, but their combined effect
is to cut build time by more than half. Most procedures depend on your com-
puter having sufficient installed memory.

1. Be sure that SMARTDRYV is installed. SMARTDRYV is the disk caching
utility that is normally installed during MS-DOS or Windows setup. The
line SMARTDRYV in your AUTOEXEC.BAT file starts the utility when
your computer boots. The default cache size is usually sufficient. (The
default cache size is based on the amount of memory in your computer.)

SMARTDRYV generally improves the performance of all Windows-
based programs. SMARTDRYV comes with both MS-DOS and Windows;
you should use whichever version is newer. Be sure to use SMARTDRV’s
double-buffering option if your hard disk requires double buffering.
(See your MS-DOS or Windows manual for more information.)

43

PART 1i: THE MFC LIBRARY VIEW CLASS

44

2. Set up a RAM drive. If your computer has 16 MB or more of memory
available, set up a RAM drive. The following line in your CONFIG.SYS
file sets up a 6-MB RAM drive:

devicehigh=c:\windows\ramdrive.sys 6144 512 1024 /e

NOTE: The RAMDRIVE.SYS device driver comes with
both MS-DOS and Windows. You should use whichever
version is newer. Also note that this example assumes
you’re using MS-DOS or a third-party memory manager
to create upper memory blocks. If you're not using
memory management software to create upper memory
blocks, change devicehigh to device in the line above. (For
more information about MS-DOS’s memory management
capabilities, see The Microsoft Guide to Managing Memory
with MS-DOS 6, by Dan Gookin, Microsoft Press, 1993.)

If C is your only hard disk drive, the RAM drive will be drive D. Exit all
applications and reboot the computer to be sure that the RAM drive is
installed.

3. Set the TMP and TEMP environment variables to D:\. If you have
successfully installed a RAM drive, these environment variables instruct
the compiler and linker (and possibly other programs) to store tempo-

rary files in the RAM drive. Set these environment variables in your
AUTOEXEC.BAT file:

set tmp=D:\
set temp=D:\

(Note: Change the drive letter if your RAM drive is not drive D.)

4. Modify your MFC library project files to use the RAM drive for
precompiled headers. This procedure must be performed for each
generated MFC library project file, but the results are worth the effort.
First, though, you need to know about precompiled headers and the way
the MFC library uses them.

NOTE: Visual C++ has two precompiled header “sys-
tems”: automatic and manual. Automatic precompiled
headers, activated with the /Yx compiler switch, are new,
but manual precompiled headers, first introduced with
C/C++version 7.0, are still available. The make files in this
book, as generated by AppWizard, use the manual
precompiled headers.

THREE: Getting Started with AppWizard—“Hello, world!”

Precompiled headers represent compiler “snapshots” taken at a
particular source code line. In all MFC library programs, the snapshot
is taken immediately after the statement

#include "stdafx.h"

The file STDAFX.H contains #include statements for the MFC library
header files. The file’s contents depend on the options that you select
when you run AppWizard, but the file always contains the following
statements:

#include <afxwin.h>
#include <afxext.h>

If you’re using OLE, STDAFX.H contains the statement
ffinclude <afxole.h>

Occasionally you’ll need the “private” header file that is accessed by
the statement

f#include <afxpriv.h>
The source file STDAFX.CPP contains only the statement
#include "stdafx.h"

and is used to generate the precompiled header file in the project
directory. The MFC library headers included by STDAFX.H never
change, but they do take a long time to compile. The compiler switch
/Yc, used only with STDAFX.CPP, causes creation of the precompiled
header (PCH) file. The switch /Yu, used with all the other source code
files, causes use of an existing PCH file. The switch /Fp specifies the
PCH filename that would otherwise default to STDAFX.PCH in the
project subdirectory.

AppWizard sets the /Yc and /Yu switches for you. To change these
switches, choose Project from Visual Workbench’s Options menu, and
click the Compiler button; then click on the Precompiled Headers
category, and check or uncheck the Automatic Use Of Precompiled
Headers check box as necessary.

NOTE: You need to choose Rebuild All from‘ the
Project menu to create the precompiled header in the
RAM drive.

45

PART II:

THE MFC LIBRARY VIEW CLASS

46

You must manually set the /Fp switch to force the PCH file to reside
in the RAM drive. To do so, choose Project from Visual Workbench’s
Options menu, and click the Compiler button; then click on the Custom
Options category, and add the expression

/Fp"D:\STDAFX.PCH"

in the Other Options text box, as shown here:

P-Code Generation
Precompiled Headers
Preprocessor

Segment Names
'Windows Prolog/E pilog

NOTE: Most of the projects on the book’s companion
disc use the /Fp switch to store the PCH file in the \VCPP
subdirectory. This reduces the disk space required when
all the projects are compiled, but it doesn’t require a RAM
drive. You can convert these projects to use a RAM drive
by replacing the expression

/Fp". . \STDAFX.PCH"

in the Other Options text box in the Custom Options cat-
egory of the C/C++ Compiler Options dialog box with the
expression

/Fp"D:\STDAFX.PCH"

If you’re working on several projects simulténeously, those projects can
share the same STDAFX.PCH file because that file isn’t application-.

THREE: Getting Started with AppWizard—"Hello, world!”

dependent. Not only will you save time, but you’ll save disk space be-
cause you’ll eliminate duplicate copies of the very large PCH file.

NOTE: You can share the precompiled header file
among projects only if the contents of STDAFX.H are the
same. A project that uses OLE, for example, can’t use the
PCH file from a project that doesn’t use OLE. See the
Visual C++ documentation for more information.

NOTE: Obviously, the PCH file won’t stay in the RAM
drive when the computer is rebooted or turned off. You
can set up batch files to save and restore this file from
disk, or you can force Visual Workbench to regenerate the
PCH file by choosing Rebuild All from the Project menu.

5. Store the library files in the RAM drive. You’ll reduce link time by
about 25 percent if you keep the library files in the RAM drive. Use a
batch file to copy the appropriate LIB files to the RAM drive when your
computer boots. (If you’re using the medium-model debug library, you’ll
want to copy MLIBCEW.LIB and MAFXCWD.LIB to the RAM drive.)
Finally, tell Visual C++ to look for the library files in the RAM drive. To
do so, choose Directories from the Options menu. In the Directories
dialog box that appears, set the Library Files Path text box to point to
the RAM drive. (Unless you have a very large RAM drive, you’ll probably
want to leave the MFC library files on your hard disk. Be sure the Library
Files Path text box in the Directories dialog box still points to the MFC
library subdirectory on your hard disk.)

6. If you’re not using the debugger, eliminate the debugging infor-
mation. You might want to get the benefits of the TRACE, VERIFY, and
ASSERT macros without using the debugger. AppWizard generates
project files with the compiler and linker switches for debugging infor-
mation. You can save build time by turning off these switches as follows:

Q Choose Project from the Options menu. The Project Options dialog
box appears. Click the Compiler button. The C/C++ Compiler Op-
tions dialog box appears. Click on the Debug Options category, and
then click the None radio button. Your screen now looks like the one
shown at the top of the following page:

47

PART 1l: THE MFC LIBRARY VIEW CLASS

nologo /w3 /AM 701 /D "NDEBUG" /GA

-Code Generation

recompiled Headers

leplOCBSSDl‘

egment Names
'Windows Prolog/E pilog

Q Click OK to close the C/C++ Compiler Options dialog box:

Q Click the Linker button in the Project Options dialog box. The Linker
Options dialog box appears. Click on the Output category, and then
uncheck the Generate Debugging Information check box. Your
screen now looks like this:

| | /NGD /PACKC:61440 /STACK:10240 /ALIGN:16 Z0NERROR:NDEXE /CO
/LIB:"commdlg.lib" /LIB:"olecli.lib" /LIB:"olesvr.lib" /LIB:"shell.lib"

Memory image
cellaneous

(i Output
‘Windows Libraries

Q Close the Linker Options and Project Options dialog boxes.

NOTE: The D‘ebug radio button in the Build Mode sec-
tion of the Project Options dialog box enables a set of
compiler and linker options that relate to debugging.

48

THREE: Getting Started with AppWizard—“Hello, world!”

These options include the generation of debugging infor-
mation for Visual Workbench and CodeView for Windows
debuggers, the definition of the _DEBUG preprocessor
constant (which activates certain diagnostic features in
the MFC library), and the selection of the debug ver-
sion of the MFC library (MAFXCWD.LIB for medium-
memory-model applications).

It’s possible to separately enable and disable each of
these debugging options through the Compiler Options
and Linker Options dialog boxes. If, for example, you
want the MFC library diagnostic features, such as the
TRACE macro, but you don’t want to use the debug-
ger, you must individually adjust the compiler and linker
options.

7. If you aren’t using the browser, don’t build the browser database.
The project’s browser database (BSC file) must be rebuilt every time you
change any source code. If you don’t need the browser, you can save
build time by turning off browser information. To do so, choose Project
from the Options menu. The Project Options dialog box appears. Click
the Compiler button. The C/C++ Compiler Options dialog box appears.
Click on the Listing Files category, and then uncheck the Browser
Information check box. Your screen now looks like this:

e Generation
ustom Options

ustom l]p!mns (C++)

sting Files

ptimizations

-Code Generation
ecompiled Headers
eprocessor

egment Names
indows Pyolog/E pilog

Close the C/C++ Compiler Options and Project Options dialog boxes.

49

PART Il: THE MFC LIBRARY VIEW CLASS

Creating a New MAK File

Sooner or later you’ll need to create your own MAK file for an existing
project. Perhaps the MAK file from AppWizard was lost, or perhaps you pre-
fer not to use AppWizard. Simply do the following:

1. Choose Close All from Visual Workbench’s Window menu. When
you start a new project, Visual Workbench leaves your old windows
open, which is probably not what you want.

2. Choose New from Visual Workbench’s Project menu. A sub-
directory must exist for the project. If you’re starting from scratch,
use File Manager to create a new subdirectory. Select the sub-
directory using the New Project dialog box, and then type the
makefile name. You'll see a list of any CPP and C files that already
exist in the selected subdirectory.

3. Add the necessary source files. Click the Add All button (or double-
click on individual files). Doing so adds the files to the project. Also
add the DEF file (you might have to write one) and the RC file.

4. Set up manual precompiled headers. Assuming your project has
STDAFX.CPP and STDAFX.H files, fill in the Precompiled Headers
category of the C/C++ Compiler Options dialog box, as shown
here:

ologo /Gs /G2 /Zp1 /W3 /Zi /AM Yu"STDAFX.H" /0d /D “_DEBUG™
R /GA /Fd"EX03A.PDB"

indows Prolog/E pilog

50

CHAPTEHR F O UR

BASIC EVENT HANDLING—
USING CLASSWIZARD

In Chapter 3, you saw how the Microsoft Foundation Class (MFC) Library
application framework called the view class’s virtual OnDraw function. Take a
look at the Class Library Reference now. If you look at the documentation for
the CView class and its base class, CWnd, you'll see several hundred member
functions. Functions with names beginning with On—such as OnKeyDown
and OnLButtonUp—are member functions that the application framework
calls in response to various Windows “events” such as keystrokes and mouse
clicks.

Most of these application framework-called functions aren’t virtual
functions such as OnDraw and thus require more effort to program. This
chapter explains how to use the Visual C++ ClassWizard to set up the “mes-
sage map” structure necessary for connecting the application framework to
your functions’ code. You’ll see the practical application of message map
functions. _

~ The first two examples use an ordinary CView class. More often than
not, you'll want a “scrolling” view. The last example uses CScrollView in place
of the CView base class. Now the MFC library application framework inserts
scroll bars and “hooks them up” to the view.

Getting User Input—Message Map Functions

" Your EXO03A application from Chapter 3 did not accept user input (other
than the standard Microsoft Windows resizing and window close com-
mands). The window contained menus and a toolbar, but these were not

51

PART Il: THE MFC LIBRARY VIEW CLASS

“connected” to the view code. The menus and the toolbar must wait until
Part III of this book because they depend on the frame class, but plenty of
other Windows input sources will keep you busy until then. Before you can
process any Windows event, even a mouse click, however, you must learn
how to use the MFC library message map system.

The Message Map

When the user clicks the left mouse button in a view window, Windows sends
a message—specifically WM_LBUTTONDOWN—to that window. If your
program needs to take action in response to WM_LBUTTONDOWN, your
view class must have a member function that looks like this:

void CMyView: :OnLButtonDown (UINT nFlags, CPoint point)
{

// event processing code here

Your class header file must also have the corresponding prototype:
afx_msg void OnLButtonDown (UINT nFlags, CPoint point);

The afx_msgnotation is a “no-op” that alerts you that this is a prototype for a
message map function. Finally, your code file needs a message map macro
that connects your OnLButtonDown function to the application framework:

BEGIN_MESSAGE_MAP (CMyView, CView)
" ON_WM_LBUTTONDOWN () // entry specifically for OnLButtonDown
// other message map entries
END_MESSAGE_MAP()

and your class header file needs the statement

DECLARE_MESSAGE_MAP ()

How do you know which function goes with which Windows message?
Appendix B (and the MFC library online Help file) includes a table that lists
all standard Windows messages and corresponding member function proto-
types. You can manually code the message-handling functions—indeed, that
was the only option for Microsoft Foundation Class Library version 1.0 pro-
grammers. Fortunately, Visual C++ provides a tool, ClassWizard, that auto-
mates the coding of message map functions.

Saving the View’s State—Class Data Members

If your program accepts user input, you’ll want the user to have some visual
feedback. The view’s OnDraw function draws an image based on the view’s

52

FOUR: Basic Event Handling—Using ClassWizard

current “state,” and user actions can alter that state. In a full-blown MFC li-
brary application, the document object holds the state of the application,
but you’re not to that point yet. For now, you’ll use a view class “data mem-
ber,” m_ellipseRect, an object of class CRect, to hold the current bounding rect-
angle of an ellipse. Then you’ll make the member function toggle that
rectangle (the view’s state) between small and large. (The toggle is activated
by pressing the mouse’s left button.) The initial value of m_ellipseRect is set in
the CMyView constructor, and it is changed in the OnLButtonDown member
function.

NOTE: By convention, MFC library nonstatic class data mem-
ber names begin with m_.

TIP: Why not use a global variable for the view’s state? Because
if you did, you’d be in trouble if your application had multiple
views. Besides, encapsulating data in objects is a big part of what
object-oriented programming is all about.

Initializing a View Class Data Member

As Appendix A points out, the most efficient place to initialize a class data
member is in the constructor, like this:

CMyView: :CMyView() : m_ellipseRect (0, 0, 200, 200) { }

Invalidating the Rectangle

The OnLButtonDown function could toggle the value of m_ellipseRect all day,
but the OnDraw function won’t get called unless the user resizes the view win-
dow. The OnLButtonDown function must call the InvalidateRect function (a
member function that the CMyView class inherits from CWnd). InvalidateRect
triggers a call to OnDraw, and OnDraw can access the “invalid rectangle” pa-
rameter that was passed to InvalidateRect.

53

PART Il: THE MFC LIBRARY VIEW CLASS

The smaller the invalid rectangle, the faster Windows draws the win-
dow, even if your OnDraw function issues drawing instructions for all ele-
ments in the window. If your OnDraw function is smart enough to draw only
the items that are inside the invalid rectangle, the display update will be even
faster.

The Window’s Client Area

A window has a rectangular “client area” that excludes the border, caption
bar, and menu. The CWnd member function GetClientRect supplies you with
the client area dimensions. Normally, you’re not allowed to draw outside the
client area, and most mouse messages are received only when the mouse cur-
sor is in the client area.

The EX04A Example Program

54

In the EX04A example, a circle changes size when the user clicks the left
mouse button while the mouse cursor is inside the view window. You'll see
the use of a view class data member to hold the view’s state, and you’ll use the
InvalidateRect function.

In the Chapter 3 example, drawing in the window depended on only
one function, OnDraw. The EX04A example requires three customized func-
tions (including the constructor) and one data member. The complete
CEx04aView header and source code files are listed in Figure 4-1. (The steps
for creating the program are shown after the program listings.) All changes
to the original AppWizard output are screened in gray.

EX04AVW.H

class CEx0Od4aView : public CView

protected: // create from serlallzatlon only
CEx04aview() ;
DECLARE_DYNCREATE (CEx04aView)

// Attributes
public:
CEx04aDoc* GetDocument()

Figure 4-1. (continued)
The CEx04aView header and source code files. :

FOUR: Basic Event Handling—Using ClassWizard

Figure 4-1. continued

// Operations
public:

// Implementation
public:
virtual ~CExO4aview();
virtual void OnDraw (CDC* pDC); // overridden to draw this view
#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump (CDumpContexté& dc) const;
#endif

// Generated message map functions
protected:
//{{AFX_MSG (CEx04aView)

//}}YAFX_MSG
DECLARE_MESSAGE_MAP ()

#ifndef _DEBUG // debug version in exO4davw.cpp
inline CEx0O4aDoc* CEx04aView: :GetDocument ()

{ return (CEx04aDoc*) m_pDocument; 1}
#endif

EX04AVW.CPP

#include “stdafx.h”
#include “ex04a.h”

#include “ex0O4adoc.h”
#include “ex04avw.h”

#ifdef _DEBUG

#undef THIS_FILE

static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

[0 077777777707707777770777777777777777770777771077777777777777777777
// CEx04aView

IMPLEMENT_DYNCREATE (CEx04aView, CView)
BEGIN_MESSAGE_MAP (CEx04aView, CView)

//{{AFX_%gG_MAP(CExq

—
s
piet e

4 Z@E‘ ;5:@%%

(continued)

55

PART 1l: THE MFC LIBRARY VIEW CLASS

56

Figure 4-1. continued

//}}AFX_MSG_MAP
END_MESSAGE_MAP ()

(117000777 77710777777777077777777777777777077070707777/777077777777777777
// CEx04aView construction/destruction

-

CEx04aView::CEx04aView()%
{
}
CEx04aView: :~CEx04avView ()

{
}

11707077 777107777777107707777777770777777777777700777077707777717777777777777
// CEx04aView drawing

void CEx04aView: :OnDraw (CDC* pDC)

117771777 770777777770777777777777777770777777777777777707777777777777777
// CEx04aView diagnostics

#ifdef _DEBUG

~void CEx04aView: :AssertValid() const

{
CView: :Assertvalid();

void CEx04aView: :Dump (CDumpContext& dec) const
{
CView: :Dump (de) ;

CEx0O4aDoc* CEx04aView::GetDocument () // non-debug version is inline
{

ASSERT (m_pDocument ~>IsKindOf (RUNTIME_CLASS (CEx(04aDoc))) ;

return (CEx04aDoc*) m_pDocument;

#endif //_DEBUG

(continued)

FOUR: Basic Event Handling—Using ClassWizard

Figure 4-1. continued

1177777070777 77007777077 07777707707 777777770707770704777777777777777777717
// CEx0O4aView message handlers

void CEx04aView: :0OnLButtonDown (UINT nFlags, CPoint point)

Using ClassWizard with EX04A
Look at the following EX04AVW.H source code:

// {{AFX_MSG (CEx04aView)
afx_msg void OnLButtonDown (UINT nFlags, CPoint point);
//}}YAFX_MSG i

Now look at the following EX04AVW.CPP source code:

//{ {AFX_MSG_MAP (CEx04aView)
ON_WM_LBUTTONDOWN ()
//} YAFX_MSG_MAP

AppWizard generated the funny-looking comment lines for the benefit
of Class Wizard. ClassWizard adds message handler prototypes between the
AFX_MSG “brackets,” and it also adds message map entries between the
AFX_MSG_MAP brackets. In addition, ClassWizard generates a skeleton
OnLButtonDown member function in EX04AVW.CPP, complete with the cor-
rect parameter declarations and return type.

Notice how the AppWizard-ClassWizard combination is different from
a conventional code generator. You run a conventional code generator only
once and then edit the resulting code. You run AppWizard to generate the
application only once, but you can run ClassWizard as many times as neces-
sary, and you can edit the code at any time. You're safe as long as you don’t
alter what’s inside the AFX_MSG and AFX_MSG_MAP brackets.

57

PART 1l: THE MFC LIBRARY VIEW CLASS

Using AppWizard and ClassWizard Together

The following steps illustrate how you use AppWizard and ClassWizard to-
gether to create this application:

1. Run AppWizard to create EX04A. Choose AppWizard from the Visual
Workbench Project menu. Use AppWizard to generate a program named
EX04A in the \VCPP\EX04A subdirectory. The options and the default
class names are shown here:

~ New Application Infarmation

Classes to be created:
Application: CEx04aApp in EX04A.H and EX04A_CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx04aDoc in EX04ADOC H and EX04ADOC.CPP
View: CEx04aView in EX04AVW.H and EX04AVW.CPP

the Single D f (SD
+ MSVC Compatible project file [EX04A.MAK)
+ Initial toolbar and status bar in main frame
+ Uses medium memory model

U]

Click on the Options and the Classes buttons in the MFC AppWizard
dialog box to set these options.

2. Use ClassWizard to add a CEx04aView class message handler.
Be sure you have opened the EX04A project, and choose ClassWizard
from the Browse menu of the Visual Workbench. The ClassWizard dialog
box appears. Now click on CEx04aView at the top of the Object IDs list
box, and then double-click on WM_LBUTTONDOWN in ClassWizard’s
Messages list box. The OnLButtonDown function name should appear in
the Member Functions list box, and a hand symbol should appear next
to the message name in the Messages list box. Here’s the ClassWizard
dialog box:

58

Basic Event Handling—Using ClassWizard

FOUR

EEviasin

5 s
Tose e

i Gmmaseaa
e

< Ll g
= ielirs! ... | v
g8 82 o A
= Ay m 2 . = o
v L - o m e
<0 € 9 a s
=z 5% RN
sE 2% =%
=) S 8
$3%% &0 2508
. = c = 3 \ S < o
SN g I S<s o
S IR i X »n o
[T w o s
o o @ g 1 g 8
(&) = g oYl [¢) .m _
. 2 o & oY jory |
. 3] € o o
w Q o) M O = - o
>7T 2 3 S =~ gl
< E 5= 2) S = i
S =200 © €= o
o o o™ .. 7 .w ® -
X =20y B mu. -
(1T = = o) 2 -
£ - 2 = S E L) .
= 5g g &0 Q o —~ o
P o g v o o S 9} <
w3 o 2 = mmmm%@ﬂmn\ S a
: .m SZ82 ¢ - Q5 a,
R : o & m.. m 5 g - = [2= x
S°oE R 3§ / =2 5
SEEMEE R BTEE L g T - 3
A AS T — . [« = 3) L i) [=4 [*] ~ =
HTEE -5 §S8<5 5 &< : %
E_H_H_K_K_ . m = < ..m H w - e} o H
33333383 =288 2 6 ° = e
z -l Q% g0 8 § b e 3
2 uu @n O m < IS O ¢ <t o
W 3 .n|.a el p— . = a o .
2 O~ 8 Q3 = X 2
8 4C5s5¢ 8 ® o B g
C < S I - k.
. SEE§5Q7 & s3g = %
o 5= §= 2 O 3 3
02 33 Y X o & ¢ X
£°288 09 £5 & &
=g~ 3 o - =2 S ©
T 3L =3 % . IR -
wosSQ L galiii . w8 B8
) <

59

PART IlI:

THE MFC LIBRARY VIEW CLASS

5.

&

5

g
Fosiiain

=

i

Add the m_ellipseRect data member in EX04AVW.H. Insert the follow-
ing code at the start of the CExO4aView class declaration:

T ——
%%%a ~‘r§§%§§m’ e s
SRS
Build and run the EX04A program. In the Visual Workbench, choose
Build from the Project menu and then choose Execute. The resulting
program responds to left-button mouse clicks by shrinking and expand-
ing a circle in the view window. (Don’t press the mouse’s left button
quickly in succession; Windows interprets this as a double-click rather

than two single clicks.)

B

i

e

i

EX04B—Dragging a Circle with the Mouse

60

Le

t’s do something a little more sophisticated with the mouse. The object of

the next example is to draw a circle in the window and then allow the user to
drag the circle with the mouse. As you study the program, you’ll learn a few
more things about Windows.

Mouse message handlers are necessary for the following three mouse

messages:

B The WM_LBUTTONDOWN message begins the tracking process
if the left mouse button is pressed when the mouse cursor is posi-
tioned over the circle.

FOUR: Basic Event Handling—Using ClassWizard

B The WM_MOUSEMOVE message, received periodically while the
mouse moves, causes the circle to follow the mouse cursor position.
This message is processed only when the left mouse button is held
down and the tracking process was successfully started. (See
WM_LBUTTONDOWN at the bottom of the facing page.)

B The WM_LBUTTONUP message, received when the left mouse
button is released, ends the tracking process if it was successfully
started.

Now follow these steps to produce the working EX04B example.

1. Run AppWizard to create EX04B. Close the EX04A project, and use
AppWizard to generate a program named EX04B in the \VCPP\EX04B
subdirectory. The options and the default class names are shown here:

Classes to be created:
Application: CEx04bApp in EX04B.H and EX04B.CPP
Frame: CMainFrame in MAINFRM_.H and MAINFRM.CPP

Document: CEx04bDoc in EX04BDOC.H and EX04BDOC.CPP
View: CEx04bView in EX04BYW.H and EX04BVW.CPP

¢ | Features:
+ Supp the Single D t (SD))
+ MSVYC Compatible project file (EX04B.MAK)
+ Initial toolbar and status bar in main frame
+ Uses medium memory model

2. Edit the CEx04bView class header in the file EX04BVW.H. In the file
EX04BVW.H, add the following lines in the class CEx04bView declaration:

s
5 3 i e h 2 L

! - eSS
3. Use ClassWizard to add three message handlers. Add message-
handling functions for the three mouse messages previously described.
A list of Windows messages and their associated member functions is

shown in the table at the top of the following page:

61

PART lI: THE MFC LIBRARY VIEW CLASS

Message . Member Function Name
WM_LBUTTONDOWN OnLButtonDown
WM_LBUTTONUP OnLButtonUp
WM_MOUSEMOVE OnMouseMove

4, Edit the CEx04bView mouse message-handling functions in the file
EX04BVW.CPP. ClassWizard generated the skeletons for the functions
previously listed. Find them in the file EX04BVW.CPP, and then type in
the screened code (replacing the existing code) as follows:

void CEx04bView: :OnLButtonDown (UINT nFlags, CPoint point)
c :

void CEx04bView: :0nLButtonUp (UINT nFlags, CPoint point)
{

void CEx04bView: :OnMouseMove (UINT nFlags, CPoint point)
{

62

FOUR: Basic Event Handling—Using ClassWizard

.
&

i

o

i

i

5. Edit the constructor and the OnDraw function in the file EX04B-
VW.CPP. AppWizard generated these skeleton functions. Find them
and type in the following code:

e

2 %%@{%@@ e
0.1
29100

e

s
100157,

s

CEx04bView: :CEx04bView ()

%
.

o
-

.

2
P

Build and run the EX04B program. In Visual Workbench, choose Build
from the Project menu and then choose Execute. The resulting program
allows a circle to be dragged with the mouse.

o

- The EX04B Program Elements

Following is a discussion of the major elements in the EX04B program.

The m_ellipseRect Data Member
This object of class CRect holds the current (as of the last mouse move)
bounding rectangle of the moving circle. The OnDraw member function

“uses it.

The m_mousePos Data Member

The OnMouseMove member function must compare the current mouse posi-
tion with the previous mouse position to know how far to move the circle.
This object of class CPoint stores the previous mouse position.

The m_bCaptured Data Member
This Boolean variable is set to TRUE when mouse tracking is in progress.

63

PART Il: THE MFC LIBRARY VIEW CLASS

64

The SetCapture and ReleaseCapture Member Functions
SetCaptureis the CWnd member function that “captures” the mouse such that
mouse movement messages are sent to this window even if the mouse cursor
is outside the window. An unfortunate side effect of this function is that the
circle can be moved outside the window and “lost,” but I'll show you how to
fix that problem in the first paragraph on the facing page. A desirable and
necessary effect is that all subsequent mouse messages are sent to the win-
dow, including the WM_LBUTTONUP message, which would otherwise be
lost. ReleaseCapture turns off mouse capture.

The SetCursor and LoadCursor Windows Functions

The MFC library does not “wrap” some Windows functions. By convention,
we use the C++ scope resolution operator (::) when directly calling Windows
functions. In this case, there is no potential of conflict with a CView member
function, but you can deliberately choose to call a Windows function in place
of a class member function with the same name. In that case, the :: operator
ensures that you call the globally scoped Windows function.

With the first parameter NULL, the LoadCursor function creates a “cur-
sor resource” from the specified predefined mouse cursor that Windows
uses. The SetCursor function activates the specified cursor resource. This cur-
sor remains active as long as the mouse is captured.

CRect, CPoint, and CSize Arithmetic

If you look in the Class Library Reference, you will see that the CRect, CPoint,
and CSize classes have a number of overloaded operators. (Overloaded op-
erators are explained in Appendix A.) You can, among other things, do the
following:

B Add a CSize object to a CPoint object

B Subtract a CSize object from a CPoint object

B Subtract one CPoint object from another, yielding a CSize object
B Add a CPoint object to a CRect object

@ Subtract a CPoint object from a CRect object

From this list, you can begin to see that a CSize object is the “difference
between two CPoint objects” and that you can “bias” a CRect object by a CPoint
object. The C++ compiler enforces the rules above; it will not, for example,
let you add a CSize object to a CRect object.

The OnMouseMove member function uses CRect, CPoint, and CSize ob-
jects to move the circle’s bounding rectangle based on the last mouse move.

FOUR: Basic Event Handling—Using ClassWizard

Is a Point Inside the Client Area?

A captured mouse can move the circle outside the client area, but that’s not
what we want. The OnMouseMove message handler uses the CRect::PtInRect
function to see whether the mouse position is truly inside the client area. If
the mouse cursor is outside the client area, the circle isn’t moved.

Is a Point Inside a Circle?

The Windows GDI provides an element called a “region” that can be used for
clipping and for hit testing. Regions consist of combinations of polygons (in-
cluding rectangles) and ellipses. The OnLButtonDown function creates a tem-
porary CRgn object corresponding to the circle, and then it calls the PtInRgn
function to find out whether the mouse cursor was inside the circle when the
mouse button was pressed.

The Minimum Invalid Rectangle

The previous example, EX04A, invalidated the entire view client area each
time the circle size was changed. The EX04B example invalidates only the
area known to have changed. This rectangular area is computed by first per-
forming a union operation on the rectangle for the circle’s new position and
on the rectangle for the circle’s old position and then by performing an in-
tersection operation with the window’s client area. Figure 4-2 illustrates the
process. ‘

Client Area

Old circle position

| The invalid
rectangle

New circle position

Figure 4-2.
Calculating the minimum invalid rectangle.

65

PART Il: THE MFC LIBRARY VIEW CLASS

The CRect LPRECT Operator

If you read the Class Library Reference carefully, you will notice that the CWnd
InvalidateRect member function takes an LPRECT parameter, not a CRect pa-
rameter. It so happens that LPRECT is a pointer to a Windows RECT struc-
ture and that CRect is derived from RECT. (Yes, C++ lets you derive a class
from a structure.) This derivation ensures that a CRect* parameter is passed
to the function, not a CRect argument.

A CRect argument is allowed because the CRect class defines an over-
loaded operator LPRECTY() that takes the address of a CRect object. Thus, the
compiler converts CRect arguments to LPRECT arguments when necessary.
You call functions as though they had CRect reference parameters. The view
member function code

CRect clientRect;
GetClientRect (clientRect);

retrieves the client rectangle coordinates and stores them in clientRect.

Device Coordinates—Necessary for This Example

In the Windows default device coordinates mode, units map to display pixels
with the origin at the top left. Vertical (y-axis) values increase from top to
bottom. Because they call underlying Windows functions, many CRect opera-
tors work properly only with coordinates that have non-negative values. Also,
the mouse message function point parameter is always in device coordinates.
Chapter 5 illustrates the use of other Windows mapping modes and the ap-
propriate conversion strategies.

A Scrolling View Window

As the lack of scroll bars in EX04A and EX04B indicates, the MFC library
CView class, the base class of CEx04bView, doesn’t directly support scrolling.
The MFC library has another class, CSerollView, that does support scrolling.
CScrollView is derived from CView. We’ll create a new program that uses
CScrollView in place of CView. The new program, EX04C, does not accept
mouse input because the necessary coordinate transformation functions
aren’t covered until Chapter 5. The program does process keyboard mes-
sages, and it introduces an important Windows message, WM_CREATE.

A Window Is Larger than What You See

If you use the mouse to shrink the size of an ordinary window, the contents
of the window remain anchored at the top left of the window, and items at

66

FOUR: Basic Event Handling—Using ClassWizard

the bottom and/or on the right of the window disappear. When you expand
the window, the items reappear. You can correctly conclude that a window is
larger than the “viewport” that you see on the screen. The viewport doesn’t
have to be anchored at the top left of the window area. Through the use of
the CWnd functions ScrollWindow and SetViewportOrg, the CScrollView class al-
lows you to move the viewport anywhere in the window, and that includes
areas above and to the left of the origin.

Scroll Bars

Microsoft Windows makes it easy to display scroll bars at the edges of a win-
dow, but Windows by itself doesn’t make any attempt to connect those scroll
bars to their window. That’s where the CScrollView class fits in. CScrollView
member functions process the WM_HSCROLL and WM_VSCROLL mes-
sages sent by the scroll bars to the view. Those functions move the viewport
within the window and do all the necessary housekeeping.

Scrolling Alternatives

The CScrollView class supports a particular kind of scrolling—one in which
there is one big window and a small viewport. Each item is assigned a unique
position in this big window. What if you have 10,000 address lines to display?
Instead of having a window 10,000 lines long, you probably want a smaller
window with scrolling logic that selects only as many lines as the screen can
display. In that case, you should write your own scrolling view class derived
from CView.

NOTE: Asyou’ll see in Chapter 24, a CScrollView-derived view
can easily and efficiently accommodate as many as 2000 lines.

The EX04C Scrolling Example

The goal of EX04C is to make a window twice as wide and twice as high as the
screen. The program draws a large circle at the exact center of this window
such that the upper left quadrant of the circle is visible when the window is
maximized. The user can scroll the window with the mouse and the direction
keys.

1. Run AppWizard to create EX04C. Use AppWizard to generate a pro-
gram named EX04C in the \VCPP\EX04C subdirectory. In the Classes
dialog box, select CEx04cView and set the base class to CScrollView, as
shown at the top of the following page.

67

PART Il: THE MFC LIBRARY VIEW CLASS

Classes

CExO4cApp
CMainFrame
CEx04cDoc
CExD4cView

[CSciolview |8 [etdovmcop |
CEditView . -
CFormView

CScrollView

‘The options and the default class names are shown here:
o Infarmation

lasses to be created:
| Application: CEx04cApp in EX04C_H and EX04C.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx04cDoc in EX04CDOC_H and EX04CDOC.CPP
ScrollView: CExD4cView in EXD4CVW H and EX04CYW.CPP

| Features:
+ Supports the Single Document Interface (SD1)
+ MSYC Compatible project file {EX04C_MAK)
+ Initial toolbar and status bar in main frame
+ Usges medium memory model

2. Modify the AppWizard-generated OnlnitialUpdate function in
EX04CVW.CPP as follows:

void CEx04CView::0OnInitialUpdate ()

{
CScrollview: :OnInitialUpdate() ;

68

_KEYDOWN
OnKeyDown

ies and prototypes.
UINT nFlags)

ClassWizard gener-
in file EX04C-

ion
it

1

jon
ind

1

F

de

tion.

Basic Event Handling—Using ClassWizard
UINT nRepCnt

ing co

Oowl

FOUR
(UINT nChar,

the foll

m

d generates the member funct

d to add message handlers for the WM
th the necessary message map entr

message. ClassWizar.

along
Ed

OnKeyDown

1zar

P, and then type

w1

t the CEx04cView message handler funct
CP

ated the skeleton for the OnKeyDown func

Use ClassW
void CEx04cView

VW.

3
4

- . ﬁmﬂﬁ - m
L

-

-
m@%@@%@%

.

EEi

-

S . b
-
SRR smmmme G S REREEES

mmmw%mw

%W&w@mmmﬂw

.
.

e

s
o

.
el

s
e =
L

b

-
. -
Gonaia
-

e

69

PART Il: THE MFC LIBRARY VIEW CLASS

\

5. Edit the CEx04cView OnDraw function. Change the AppWizard-gener- |
ated OnDraw function in EX04CVW.CPP by typing in the following code:

void CEx04CView: :OnDraw (CDC* pDC)

.
-
-

5

.

- \“ﬁr ’//w 4]

%

e g;%

L
e
s

e
-

.

&
i

-
eaase
L

W

=

~

6. Build and run the EX04C program. In the Visual Workbench, choose
Build from the Project menu and then choose Execute. The program
shows a large circle in a scrolling window as shown here:

You might need to scroll to see the circle.

The EX04C Program Elements

Following is a discussion of the major elements in the EX04C prografn.

The Windows GetSystemMetrics Function

The Windows GetSystemMetrics function returns the widths and heights of
various Windows display elements, including the screen itself. OnDraw uses
the screen size to determine the circle’s center.

The Virtual OnlnitialUpdate Function

OnlnitialUpdate is called by the framework soon after the window is created.
This is a good place to initialize the window. Be sure to call the base class
function. (OnlnitialUpdateis explained in greater detail in Chapter 15.)

70

FOUR: Basic Event Handling—Using ClassWizard

The SetScroliSizes Function

SetScrollSizes is a CScrollView member function that must be called during the
initialization of a scrolling window. This function specifies the map mode,
total window size, and page and line sizes for scrolling. The MM_TEXT map-
ping mode corresponds to device coordinates where one unit equals one
pixel.

Handling Keystrokes
Most of the time, you’ll get keyboard input through Windows edit controls,
keyboard accelerators, or the CEditView class, all of which will be described
later. Sometimes, though, you need to process raw keystrokes. The Windows
WM_KEYDOWN message gives you the exact, untranslated code for a
pressed key. The message map function OnKeyDown handles this message
with a switch statement that the nChar parameter controls. '
Keystrokes that represent normal ASCII characters also generate a
WM_CHAR message that delivers the translated ASCII character. We cannot
use WM_CHAR here because the direction keys don’t generate ASCII
characters.

Connecting Scroll Keys to CScrollView

In a CScrollView window, the scroll bars send a WM_HSCROLL message
and a WM_VSCROLL message in response to the user’s mouse actions. The
handlers for these messages call the CScrollView::OnHScroll and CScrollView-
::0OnVScroll virtual member functions. If you want only mouse scrolling, you
don’t need to write any code because the base class does the work. If you
want keyboard-actuated scrolling, however, you can use the OnKeyDown func-
tion to simulate scroll messages. All that’s necessary is a direct call to the
OnVScroll function. The Up direction key, for example, with code VK_UP,
calls OnVScroll with the parameters that specify “scroll up one line.” The size
of a line was set in the SetScrollSizes function called in OnlnitialUpdate.

Coordinate Transformations—Not Yet

EX04C is an introductory CScrollView example. Coordinate transformations
are going on in the base class, so don’t try any transformations yourself. See
EXO05A in the next chapter for a complete scrolling example with alternate
mapping modes.

71

PART Il: THE MFC LIBRARY VIEW CLASS

Other Windows Messages

The MFC library directly supports about 130 Windows message-handling
functions. In addition, you can define your own messages. You will see plenty
of message-handling examples in later chapters, including handlers for
menu items, child window controls, and so forth. In the meantime, five spe-
cial Windows messages deserve special attention.

The WM_CREATE Message

This is the first message that Windows sends to a view. It is sent when the
window’s Create function is called by the framework, so the window creation
is not finished and the window is not visible. Therefore, your OnCreate han-
dler cannot call Windows functions that depend on the window being com-
pletely alive. You can call such functions in an overridden OnlnitialUpdate
function, but you must be aware that, in an SDI application, OnInitialUpdate
can be called more than once in a view’s lifetime.

The WM_CLOSE Message

Windows sends the WM_CLOSE message when the user closes a window
from the system menu and when a parent window is closed. If you imple-
ment the OnClose message map function in your derived view class, you can
control the closing process. If, for example, you need to prompt the user to
save changes to a file, you do it in OnClose. Only when you have determined
that it is safe to close the window do you call the base class OrClose function,
which continues the close process. The view object and the corresponding
window are both still active.-

TIP: When you're using the full application framework, you
probably won’t use the WM_CLOSE message handler. As Chapter
24 illustrates, you’ll override the CDocument::SaveModified virtual
function instead, as part of the application framework’s highly
structured program exit procedure.

The WM_QUERYENDSESSION Message

72

Windows sends the WM_QUERYENDSESSION message to all running ap-
plications when the user exits Windows. The OnQueryEndSession message
map function handles it. If you write a handler for WM_CLOSE, write one
for WM_QUERYENDSESSION too.

FOUR: Basic Event Handling—Using ClassWizard

The WM_DESTROY Message

Windows sends this message after the WM_CLOSE message, and the
OnDestroy message map function handles it. When your program receives this
message, it should assume that the view window is no longer visible on the
screen but that it is still active and its child windows are still active. Use this
message handler to do cleanup that depends on the existence of the under-
lying window. Be sure to call the base class OnDestroy function. You cannot
“abort” the window destruction process in your view’s OnDestroy function.
OnClose is the place to do that.

The WM_NCDESTROY Message

This is the last message that Windows sends when the window is being de-
stroyed. All child windows have already been destroyed. You can do final pro-
cessing in OnNcDestroy that doesn’t depend on a window being active. Be sure
to call the base class OnNcDestroy function.

TIP: Do not try to destroy a dynamically allocated window ob-
ject in OnNeDestroy. That job is reserved for a special CWnd virtual
function, PostNcDestroy, that the base class OnNcDestroy calls. Tech-
nical Note # 17 in the MFCNOTES.HLP Help file gives hints on
when it’s appropriate to destroy a window object.

73

CHAPTEHR FI1VE

THE GRAPHICS DEVICE
INTERFACE (GDI)

%u’ve already seen some elements of the GDI. Any time your program
draws directly on the display or printer, it must use the GDI functions. The
GDI has functions for drawing points, lines, rectangles, polygons, ellipses,
bitmaps, and text. This chapter gives you the information you need to use
the GDI effectively in the Visual C++ environment. It emphasizes the use of
text because graphics programming for Microsoft Windows is often intuitive.
We’ll cover in detail the “mapping modes” that determine the size of dis-
played objects.

The Device Context Classes

In Chapters 3 and 4, the OnDraw member function of the view class was
passed a pointer to a device context object. OnDraw selected a brush and
then drew a circle. The Windows device context is the key GDI element that
represents a physical device. Each C++ device context has an associated Win-
dows device context, identified by a handle of type HDC.

Microsoft Foundation Class (MFC) Library version 2.5 has a number of
device context classes. The base class CDC has all the member functions
(some virtual) you’ll need for drawing. Except for the oddball CMetaFileDC
class, derived classes are distinct only in their constructors and destructors. If
you (or the application framework) construct an object of a derived device
context class, you can pass a CDC pointer to a function such as OnDraw. For
the display, the usual derived classes are CClientDC and CWindowDC. For
other devices, such as a printer or a memory buffer, you construct an object
of the base class CDC.

75

PART Il: THE MFC LIBRARY VIEW CLASS

The “virtualness” of the CDC class is an important feature of the appli-
cation framework. In Chapter 18, you’ll see how easy it is to write code that
works with both the printer and the display. A statement in OnDraw such as

pDC->TextOut (0, 0, “Hello”);

sends text to the display, the printer, or the Print Preview window depending
on the class of the object referenced by the CView::OnDraw function’s pDC
parameter.

For display and printer device context objects, the application frame-
work attaches the handle to the object. For other device contexts, such as the
memory device context that you’ll see in Chapter 10, you must call a mem-
ber function after construction in order to attach the handle.

The Display Context Classes CClientDC and CWindowDC

Remember that a window’s client area excludes the border, the caption bar,
and the menu bar. If you create a CClientDC object, you have a device context
that is mapped only to this client area—you can’t draw outside it. The point
(0, 0) usually refers to the upper left corner of the client area. As you’ll see
later, an MFC library CView object corresponds to a “child window” that is
contained in a separate frame window, often along with a toolbar, a status
bar, and scroll bars. The client area of the view, then, does not include these
other windows. If the window contains a toolbar, for example, point (0, 0)
refers to the point immediately under the left edge of the toolbar.

If you construct an object of class CWindowDC, point (0, 0) is at the up-
per left corner of the nonclient area of the window. With this “whole win-
dow” device context, you can draw in the window’s border, in the caption
area, and so forth. Don’t forget that the view window doesn’t have a
nonclient area, so CWindowDC is more applicable to frame windows than to
view windows. '

Constructing and Destroying CDC Objects

76

After you construct a CDC object, it is important to destroy it promptly when
you’re done with it. Windows limits the number of available device contexts,
and if you fail to destroy a device.context object, the Debug kernel gives you
a nasty FatalExit message in the debug window. Most frequently, you’ll con-
struct a device context object inside a message handler function such as
OnLButtonDown. The easiest way to ensure that the device context object is
destroyed (and the underlying Windows device context is released) is to con-
struct the object on the stack like this:

FIVE: The Graphics Device Interface (GDI)

void CMyView: :0nLButtonDown (UINT nFlags, CPoint point)
{
CRect rect;

CClientDC dc(this); // constructs dc on the stack
dc.GetClipBox(rect); // retrieves the clipping rectangle
} // dc automatically destroyed

Notice that the CClientDC constructor takes a window pointer as a pa-
rameter. The destructor for the CClientDC object is called upon return from
the function. You can also get a device context pointer by using the CWnd::-
GetDC member function. You must be careful here to call the ReleaseDC func-
tion to release the device context.

void CMyView::0OnLButtonDown (UINT nFlags, CPoint point)
{

CRect rect;

CDC* pDC = GetDC(); // a pointer to an internal dc
pDC->GetClipBox (rect); // retrieves the clipping rectangle
ReleaseDC (pDC) ; // don’t forget this

WARNING: Youmustnotdestroy the CDCobject passed by the
pointer to OnDraw. The application framework handles the de-
struction for you.

The State of the Device Context

You know already that a device context is required for drawing. When you
use a CDC object to draw an ellipse, for example, what you see on the screen
(or the printer’s hard copy) depends on the current “state” of the device
context. This state includes

B Attached GDI drawing objects such as pens, brushes, and fonts.

The mapping mode that determines the scale of items when they
are drawn.

B Various details such as text alignment parameters and polygon
filling mode. You have already seen, for example, that choosing a
gray brush prior to drawing an ellipse results in the ellipse having
a gray interior.

When you create a device context object, it has certain default charac-
teristics, such as a black pen for shape boundaries. All other state character-
istics are assigned through CDC class member functions. GDI objects are

77

PART Il: THE MFC LIBRARY VIEW CLASS

“selected into the device context” by means of the overloaded SelectObject
functions. A device context can, for example, have one pen, one brush, or
one font selected at any given time.

The CPaintDC Class

You’ll need this class only if you override your view’s OnPaint function. The
default OnPaint calls OnDraw with a properly set up device context, but some-
times you’ll need display-specific drawing code. The CPaintDC class is special
because its constructor and destructor do housekeeping unique to OnPaint.
Once you have a CDCpointer, however, you can use it as you would any other
device context pointer.

Here’s a sample OnPaint function that creates a CPaintDC object:

void CMyView: :OnPaint ()
{

CPaintDC dc(this);

OnPrepareDC (&dc); // explained later

dc.TextOut (0, 0, “for the display, not the printer”);

OnDraw (&dc) ; // stuff that’s common to the display and printer

GDI Objects

78

A Windows GDI object type is represented by an MFC library class.
CGdiObject is the abstract base class for the GDI object classes. A “Windows
GDI object” is represented by a C++ object of a class derived from CGdiObject.
Here’s a list of the GDI derived classes:

8 CBitmap—A bitmap is an array of bits in which one or more bits
correspond to each display pixel. You can use bitmaps to represent
images, including icons and cursors, and you can use them to
create brushes.

B CBrush—A brush defines a bitmapped pattern of pixels that is used
to fill areas with color.

FIVE: The Graphics Device Interface (GDI)

M CFont—A font is a complete collection of characters of a particular
typeface and a particular size. Fonts are generally stored on disk
as resources, and some are device-specific.

W CPalette—A palette is a color mapping interface that allows an ap-
plication to take full advantage of the color capability of an output
device without interfering with other applications.

@ CPen—A pen is a tool for drawing lines and shape borders. You
can specify a pen’s color and thickness and whether it draws solid,
dotted, or dashed lines.

B CRgn—A region is an area that is a combination of polygons and
ellipses. You can use regions for filling, clipping, and mouse hit-
testing.

Constructing and Destroying GDI Objects

You never construct an object of class CGdiObject, but rather you construct
objects of the derived classes. Constructors for some GDI derived classes,
such as CPen and CBrush, allow you to specify enough information to create
the object in one step. Others, such as CFont and CRgn, require a second cre-
ation step. For these classes, you first construct the C++ object with the de-
fault constructor, and then you call a create function such as CreateFont or
CreatePolygonRgn.

The CGdiObject class has a virtual destructor. The derived class destruc-
tors delete the Windows GDI objects that are attached to the C++ objects. If
you construct an object of a class derived from CGdiObject, you must delete it
prior to exiting the program. If you don’t, Windows doesn’t release the
memory, and you’ll get another nasty message in the debug window. To de-
lete a GDI object, you must first separate it from the device context. You’ll
see an example in the next section.

Tracking GDI Objects

OK, so0 you know that you have to delete your GDI objects and that they must
first be disconnected from their device context. How do you disconnect
them? Members of the CDC SelectObject family of functions do the work of se-
lecting a GDI object into the device context and, in the process, return a
pointer to the previously selected object (which gets deselected in the pro-
cess). Trouble is, you can’t deselect the old object without selecting a new
object. One easy way to track the objects is to “save” the original GDI object
when you select your own GDI object and “restore” the original object when

79

PART Il: THE MFC LIBRARY VIEW CLASS

you’re finished. Then you’ll be ready to delete your own GDI object. Here’s
an example:

void CMyView: :0OnDraw (CDC* pDC)
{
CPen newPen (PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
// 2 pixels wide
CPen* pOldPen = pDC->SelectObject (&newPen) ;

pDC->MoveTo (10, 10);

pDC->Lineto (110, 10);

pDC->SelectObject (pOldPen) ; // newPen is deselected
} // newPen automatically destroyed on exit ’

When a device context object is destroyed, all its GDI objects are dese-
lected. Thus, if you know that a device context will be destroyed before its
selected GDI objects are destroyed, then you don’t have to deselect the ob-
jects. If, for example, you declare a pen as a view class data member (and you
initialize it when you initialize the view), you don’t have to deselect the pen
inside OnDrawbecause the device context, controlled by the view base class’s
OnPaint handler, will be destroyed first.

Stock GDI Objects

80

Windows contains a number of “stock GDI objects” that you can use. Because
these objects are inside Windows, you don’t have to worry about deleting
them. (Windows ignores requests to delete stock objects.) The MFC library
function SelectStockObject gives you a CGdiObject pointer that you can select
into a device context. These stock objects are handy when you want to de-
select your own nonstock GDI object prior to its destruction. You can use
a stock object as an alternative to the “old” object you used in the previous
example.

void CMyView::OnDraw (CDC* pDC)
{
CPen newPen (PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
// 2 pixels wide

pDC->SelectObject (&newPen) ;

pDC->MoveTo (10, 10);

pDC->Lineto (110, 10);

pDC->SelectStockObject (BLACK_PEN) ; // newPen 1s deselected
} // newPen destroyed on exit

The Class Library Reference lists the stock objects available for pens,
brushes, fonts, and palettes.

FIVE: The Graphics Device Interface (GDI)

The Lifetime of a GDI Selection

For the display device context, you get a fresh device context at the begin-
ning of each message-handling function. No GDI selections (or mapping
modes or other device context settings) persist after your function exits. You
must, therefore, set up your device context from scratch each time. The
CView class virtual member function OnPrepareDC is useful for setting the
mapping mode, but you must take care of your own GDI objects.

For other device contexts, such as those for printers and memory buff-
ers, your assignments can last longer. For these long-life device contexts,
things get a little more complicated. The complexity results from the tempo-
rary nature of GDI C++ object pointers returned by the SelectObject function.
(The temporary C++ object will be destroyed by the application framework
during the idle loop processing of the application, sometime after the han-
dler function returns the call. See Technical Note #3 in the MFCNOTES.HLP
Help file.) You can’t simply store the pointer in a class data member; rather-
you must convert it to 2 Windows handle (the only permanent GDI identi-
fier) with the GetSafeHdc member function. Here’s an example:

// m_pPrintFont is a CFont pointer initialized in the CMyView constructor
// m_hOldFont is a CMyView data member of type HFONT, initialized to 0

void CMyView: :SwitchToCourier (CDC* pDC)
{
m_pPrintFont->CreateFont (30, 10, 0, 0, 400, FALSE, FALSE,
‘ ’ 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH « FF_MODERN,
“Courier New”); // TrueType
CFont* pOldFont = pDC->SelectObject (m_pPrintFont) ;
// m_hObject is the CGdiObject public data member that contains
// the handle
m_hOldFont = (HFONT) pOldFont->GetSafeHandle();

void CMyView:SwitchToOriginalFont (CDC* pDC)
{
// FromHandle is a static member function that returns an
// object pointer
if (m_hOldFont) {
pDC->SelectObject (CFont: : FromHandle (m_hOldFont)) ;
} .

// m_pPrintFont is deleted in the CMyView destructor

81

PART Il: THE MFC LIBRARY VIEW CLASS

NOTE: Be careful when deleting an object whose pointer is re-
turned by SelectObject. If you’ve allocated the object yourself, you
can delete it. If the pointer is temporary, as it will be for the object
initially selected into the device context, you cannot delete the
C++ object.

A Permanent Device Context for ihe Display—
Registering Window Classes

You'’ve learned that you get a fresh display device context each time a Win-
dows message handler function is called. An exception to this rule, however,
is that at window creation time you can specify a permanent device context
that lasts for the life of the window. The permanent device context retains its
settings, including GDI object selections and mapping mode, but not its
color palette.

You request a permanent Windows device context with a call to the
AfxRegisterWndClass function, with the nClassStyle parameter CS_OWNDC or
CS_CLASSDC. Even though the Windows device context is permanent, you
must still ensure that it is released at the end of each message handler that
uses it.

The AfxRegisterWndClass function is useful for assigning other special
characteristics to a window. For example, you can use this function to inhibit
mouse double-click messages or to prevent the user from closing the window
from the system menu. To call AfxRegisterWndClass, override the CWnd virtual
PreCreateWindow member function for the window you want to customize.
Here’s an example in a derived view class:

BOOL CMyView: :PreCreateWindow (CREATESTRUCT& cs)
{
cs.lpszClass = AfxRegisterWndClass (CS_HREDRAW « CS_VREDRAW &
CS_OWNDC, NULL);
return TRUE;

Of course, you’ll need a prototype for the PreCreateWindow member
function in your view class declaration.

Windows Color Mapping

The Windows GDI provides a “hardware-independent” color interface. Your
program supplies an “absolute” color code, and the GDI maps that code to a
suitable color or color combination on your computer’s video display. Most

82

FIVE: The Graphics Device Interface (GDI)

Windows programmers try to optimize their applications’ color display for a
few common video board categories.

Standard Video Graphics Array (VGA) Display Boards

A standard VGA display board uses 18-bit color registers, and thus it has a
palette of 262,144 colors. Because of video memory constraints, however, the
standard VGA board accommodates 4-bit color codes, which means it can
display only 16 colors at a time. Because Windows needs fixed colors for cap-
tions, borders, scroll bars, and so forth, your programs can use only 16 “stan-
dard” pure colors. You cannot conveniently access the other colors that the
board can display.

Each Windows color is represented by a combination of 8-bit “red,”
“green,” and “blue” values. The 16 standard VGA “pure” (nondithered) col-
ors are shown in the following table:

Red Green Blue Color
0 0 0 Black
0 0 255 Bright blue
255 0 Bright green
0 255 255 Cyan
255 0 0 Bright red
255 0 255 Magenta
255 255 0 Bright yellow
255 255 255 White
0 128 Dark blue
0 128 0 Dark green
128 128 Blue-green
128 0 0 Brown
128 0 128 Dark purple
128 128 0 Olive .
128 128 128 Dark gray

192 192 192 Light gray

Color-oriented GDI functions accept 32-bit COLORREF parameters that
contain 8-bit color codes each for red, green, and blue. The Windows RGB
macro converts 8-bit red, green, and blue values to a COLORREF parameter.
The following statement, when executed on a system with a standard VGA

83

PART Il: THE MFC LIBRARY VIEW CLASS

board, constructs a brush with a dithered color (one that consists of a pat-
tern of pure-color pixels):

CBrush brush(RGB(128, 128, 192));

The following statement (in your view’s OnDraw function) sets the text
background to bright red:

pDC->SetBkColor (RGB(255, 0, 0));

The CDC functions SetBkColor and SetTextColor don’t always display dithered
colors as the brush-oriented drawing functions do. If the dithered color pat-
tern is too complex, the closest matching pure color is displayed.

256-Color Display Boards

84

Many display boards can accommodate 8-bit color codes, which means they
can display 256 colors simultaneously. If you have one of these “super VGA”
boards, you need to install a special Windows display driver, supplied by
Microsoft or your board’s manufacturer, to activate the 256-color mode. Be-
cause 8-bit color images require twice as much memory as 4-bit color images,
Windows display updates can be noticeably slower in 256-color mode.

If Windows is configured for a 256-color display board, your programs
are limited to 20 standard colors unless you activate the Windows “color pal-
ette” system as supported by the MFC library CPaleite class and the Windows
API. Windows color palette programming is covered briefly in Chapter 23.
In this chapter, we’ll assume that the Windows default color mapping is in
effect. :

With a 256-color display driver installed, you get the 16 VGA colors
listed in the table on the previous page, plus 4 more, for a total of 20. The
following table lists the 4 additional colors:

Red Green Blue Color

192 220 192 Pale green
166 202 240 Light blue
255 251 . 240 Off-white
160 160 164 Medium gray

The RGBmacro works much the same as it does with the standard VGA.
If you specify one of the 20 standard colors for a brush, you get a pure color;
otherwise, you get a dithered color. If you use the PALETTERGB macro in-
stead, you don’t get dithered colors; you get the closest matching standard
pure color.

FIVE: The Graphics Device Interface (GDI)

24-Bit Color Display Boards

Other display boards, mostly in the high-end category (which are becoming
more widely used), use 24-bit color codes. This 24-bit capability enables the
display of 16.7 million pure colors. If you’re using a 24-bit color board, you
have full access to all the colors. The RGB macro allows you to specify the
exact colors you want.

Mapping Modes

Up to now, our drawing units have been display pixels, also known as device
coordinates. The statement

pDC->Rectangle (CRect (0, 0, 200, 200));

draws a square 200 pixels by 200 pixels, with its top left corner at the top left
of the window’s client area (with positive y values increasing as you move
down the window). This square would look smaller on a high-resolution dis-
play of 1024 by 768 pixels than it would on a standard VGA display that is 640
by 480 pixels, and it would look tiny if printed on a laser printer with 600-dpi
resolution.

What if you want the square to be 2 inches by 2 inches, regardless of the
display device? Windows provides a number of mapping modes, or coordi-
nate systems, that can be associated with the device context. If you assign the
MM_LOENGLISH mapping mode, for example, a logical unit is /100 inch in-
stead of 1 pixel. In the MM_LOENGLISH mapping mode, the y-axis runs in
the opposite direction to that in the MM_TEXT mode: y values decrease as
you move down. Thus, a 2-inch-by-2-inch square is drawn in logical coordi-
nates this way:

pDC->Rectangle (CRect (0, 0, 200, -200));

Looks easy, doesn’t it? Well, it isn’t, because you can’t work only in logi-
cal coordinates. Your program is always switching between device coordi-
nates and logical coordinates, and you need to know when to convert
between them. This chapter gives you a few rules that could make your pro-
gramming life easier. First you need to know what mapping modes Windows
gives you.

The MM_TEXT Mapping Mode

At first glance, MM_TEXT appears to be no mapping mode at all, but rather
another name for device coordinates. Almost. In MM_TEXT, coordinates
map to pixels, values of x increase as you move right, and values of y increase

85

PART Il: THE MFC LIBRARY VIEW CLASS

as you move down, but you’re allowed to change the origin through calls to
the CDC functions SetViewportOrg and SetWindowOrg. Here’s some code that
sets the origin to (100, 100) and draws a 200-pixel-by-200-pixel square. (An
illustration of the output is shown in Figure 5-1.) Now the logical point (0, 0)
maps to the device point (100, 100).

void CMyView: :OnDraw (CDC* pDC)

{
pDC->SetMapMode (MM_TEXT) ;
pDC->SetViewportOrg (CPoint (100, 100));
pDC->Rectangle (CRect (0, 0, 200, 200));

The “Fixed Scale” Mapping Modes

One important group of Windows mapping modes provides fixed scaling.
With these mapping modes, you can change the viewport origin, but you
cannot change the scale factor. You have already seen that, in the
MM_LOENGLISH mapping mode, x values increase as you move right, and y
values decrease as you move down. All fixed mapping modes follow this con-
vention, and you can’t change it. The only difference among the fixed map-
ping modes is the actual scale factor, listed in the table on the facing page.

Device
coordinate
0, 0) Device coordinate x-axis
Device coordinate (100, 100)
/ becomes logical coordinate (0, 0)
"""" Logical coordinate x-axis
E ___ Device coordinate (300, 300)
; becomes logical coordinate (200, 200)
Device Logical
coordinate coordinate
y-axis y-axis
Figure 5-1.

A square drawn after the origin has been moved to (100, 100).

86

FIVE: The Graphics Device Interface (GDI)

Mapping Mode Logical Unit
MM_LOENGLISH 0.01 inch
MM_HIENGLISH 0.001 inch
MM_LOMETRIC 0.1 mm
MM_HIMETRIC 0.01 mm
MM_TWIPS Yraso inch

The last mapping mode, MM_TWIPS, is most often used with printers.
One “twip” unit is %o point. (A point is a type measurement unit that is ap-
proximately /72 inch.) If the mapping mode is MM_TWIPS, and you want, for
example, 12-point type, set the character height to 12 x 20, or 240 twips.

The “Variable Scale” Mapping Modes

Windows provides two mapping modes, MM_ISOTROPIC and MM_ANISO-
TROPIC, that allow you to change the scale factor as well as the origin. With
these mapping modes, your drawing can change size as the user changes the
size of the window. Also, if you invert the scale of one axis, you can “flip” an
image about the other axis, and you can define your own arbitrary fixed scale
factors.

With the MM_ISOTROPIC mode, a 1:1 aspect ratio is always preserved.
In other words, a circle is always a circle as the scale factor changes. With the
MM_ANISOTROPIC mode, the x and y scale factors can change indepen-
dently. Circles can be squished into ellipses.

Here’s an OnDraw function that draws an ellipse that fits exactly in its
window: '

void CMyView: :OnDraw (CDC* pDC)
{
CRect clientRect;

GetClientRect (clientRect) ;

pDC->SetMapMode (MM_ANISOTROPIC) ;

pDC->SetWindowExt (1000, 1000);

pDC->SetViewportExt (clientRect.right, -clientRect.bottom) ;
pDC-SetViewportOrg(clientRect.right / 2, clientRect.bottom / 2);

pDC->Ellipse (CRect (-500, -500, 500, 500));
}

What'’s going on here? The functions SetWindowExt and SetViewportExt work
together to set the scale, based on the window’s current client rectangle

87

PART Il: THE MFC LIBRARY VIEW CLASS

88

returned by the GetClientRect function. The resulting window size is exactly
1000 by 1000 logical units. The SetViewportOrg function sets the origin to the
center of the window. Thus, a centered ellipse with a radius of 500 logical
units fills the window exactly as illustrated in Figure 5-2.

Here are the formulas for converting logical units to device units:

x scale factor = x viewport extent / x window extent
y scale factor = y viewport extent / y window extent
device x = logical x x x scale factor + x origin offset
device y = logical y x y scale factor + y origin offset

Suppose the window is 448 pixels wide (clientRect.right). The right edge of the
ellipse’s client rectangle is 500 logical units from the origin.The x scale fac-
tor is 448 / 1000, and the x origin offset is 448 / 2 device units. If you use the
formulas above, the right edge of the ellipse’s client rectangle comes out to
448 device units, the right edge of the window. The xscale factor is expressed
as aratio (viewport extent / window extent) because Windows device coordi-
nates are integers, not floating-point values. The extent values are meaning-
less by themselves.

If you substitute MM_ISOTROPIC for MM_ANISOTROPIC in the ex-
ample above, the “ellipse” is always a circle, as shown in Figure 5-3. It ex-

- pands to fit the smallest dimension of the window rectangle.

/— (500, 0)

X-axis

(-500, 0) —\

\ (0, -500)

Figure 5-2.
A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

FIVE: The Graphics Device Interface (GDI)

(500, 0)

Xx-axis

\ (0, -500)

Figure 5-3.
A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

Coordinate Conversion

Once you set the mapping mode (plus the origin and scale) of a device con-
text, you can use logical coordinate parameters for most (but not all) CDC
member functions. If you get the mouse. cursor coordinates from a
WM_MOUSEMOVE message, for example, you’re dealing with device coor-
dinates. Many other MFC library functions, particularly the member func-
tions of class CRect, work correctly only with device coordinates.

Furthermore, you’re likely to need a third set of coordinates that we’ll
call “physical coordinates.” Why another set? Suppose you’re using the
‘MM _LOENGLISH mapping mode in which a logical unit is 0.01 inch, but an
inch on the screen represents a foot (12 inches) in the real world. Now sup-
pose the user works in inches and decimal fractions. A user measurement of
26.75 inches translates into 223 logical units, which must be ultimately trans-
lated to device coordinates. You’ll want to store the physical coordinates as
either floating-point numbers or scaled long integers to avoid rounding-off
€ITors.

For the physical-to-logical translation, you’re on your own, but the Win-
dows GDI takes care of the logical-to-device translation for you. The CDC
functions LPtoDP and DPtoLP translate between the two systems, assuming
the device context mapping mode and associated parameters have already
been set. Your job is to decide when to use each system. Here are a few rules
of thumb:

89

PART II:

THE MFC LIBRARY VIEW CLASS

B Assume CDCmember functions take logical coordinate parameters.
B Assume CWnd member functions take device coordinate parameters.

B Do all hit-test operations in device coordinates. Define regions in
device coordinates. Functions such as the CRect::PtInRect function
work only with non-negative coordinates. Windows, not the MFC
library, imposes this last restriction.

@ Store long-term values in logical or physical coordinates. If you
store a point in device coordinates and the user scrolls a window,
that point is no longer valid.

Suppose you need to know whether the mouse cursor is inside a rect-

angle when the user presses the left mouse button. Here’s the code:

// m_rect is CRect data member of CMyView in MM_LOENGLISH

//

logical coordinates

void CMyView: :0OnLButtonDown (UINT nFlags, CPoint point)

{

}

CRect rect = m_rect; // rect is a temporary copy of m_rect;

CClientDC dc(this);
dc . SetMapMode (MM_LOENGLISH) ;
dc.LPtoDP (rect) ; // rect is now in device coordinates
if (rect.PtInRect(pcint)) {
TRACE (“mouse cursor is inside the rectangle\n”);

}

Notice the use of the TRACE macro (discussed in Chapter 3).

Fonts

NOTE: As you get further into application framework pro-
gramming, you'll see that it’s better to set the mapping mode in
the virtual CView function OnPrepareDC instead of in the OnDraw
function. '

Old-fashioned character-mode applications could display only the boring
system font on the screen. Windows provides multiple, device-independent
fonts in variable sizes. The effective use of these Windows fonts can signifi-
cantly energize an application with minimum programming effort. The new
Windows version 3.1 TrueType fonts are even more effective and easier to
program than the previous device-dependent fonts. You’ll see several ex-
ample programs that use fonts later in this chapter.

90

FIVE: The Graphics Device Interface (GDI)

Fonts Are GDI Objects

Fonts are an integral part of the Windows GDI. This means that fonts behave
in the same way as other GDI objects. They can be scaled and clipped, and
they can be selected into a device context as a pen or a brush can be selected. .
All GDI rules about deselection and deletion apply to fonts.

Choosing a Font

Choosing a Windows font used to be like going to a fruit stand and asking for

- “a piece of reddish-yellow fruit, with a stone inside, that weighs about 4
ounces.” You might have gotten a peach or a plum or even a nectarine, and
you could be sure that it wouldn’t have weighed exactly 4 ounces. Once you
took possession of the fruit, you could weigh it and check the fruit type. Now,
with TrueType, you can specify the fruit type, but you still can’t specify the
exact weight.

Today you can choose between two font types—TrueType device-
independent fonts and device-dependent fonts such as the Windows display
System font and the LaserJet LinePrinter font—or you can specify a font cat-
egory and size and let Windows select the font for you. If you let Windows
select the font, it will choose a TrueType font if possible. The MFC library
provides a font selection dialog box tied to the currently selected printer, so
there’s little need for printer font guesswork. You let the user select the exact
font and size for the printer, and then you approximate the display the best
you can.

Printing with Fonts

For text-intensive applications, you’ll probably want to specify printer font
sizes in points. (1 point = }42 inch.) Why? Most, if not all, built-in printer fonts
are defined in terms of points. The LaserJet LinePrinter font, for example,
comes in one size, 8.5 point. You can specify TrueType fonts in any point
size. If you work in points, you need a mapping mode that easily
accommodates points. That’s what MM_TWIPS is for. An 8.5-point font is
8.5 x 20, or 170, twips, and that’s the character height you’ll want to specify.

Displaying Fonts
If you're not worried about the display matching the printed output, you
have a lot of flexibility. You can choose any of the scalable Windows True-
Type fonts, or you can choose the fixed-size system fonts (stock objects).
With the TrueType fonts, it doesn’t much matter what mapping mode you
use; simply choose a font height and go for it. No need to worry about
points.

91

PART Il: THE MFC LIBRARY VIEW CLASS

Matching printer fonts to make printed output match the screen pre-
sents some problems, but TrueType makes it easier than it was before. Even
if you're printing with TrueType fonts, however, you’ll never quite get the
display to match the printer output. Why? Characters are ultimately dis-
played in pixels, and the width of a string of characters is equal to the sum of
the pixel widths of its characters, possibly adjusted for kerning. The pixel
width of the characters depends on the font, the mapping mode, and the
resolution of the output device. Only if both the printer and the display were
set to MM_TEXT mode (1 pixel or dot = 1 logical unit) would you get an ex-
act correspondence. If you’re using the CDC GetTextExtent function to calcu-
late line breaks, the screen breakpoint will occasionally be different from the
printer breakpoint.

NOTE: In the MFC library Print Preview mode, which we’ll ex-
amine closely in Chapter 18, the line breaks occur exactly as they
do on the printer, but the print quality suffers in the process.

If you’re matching a printer-specific font on the screen, TrueType
again makes the job easier. Windows substitutes the closest matching
TrueType font. For the 8.5-point LinePrinter font, Windows comes pretty
close with its Courier New font.

Points in a Window—Logical Twips

92

If you use twips units (/20 point, /isw inch) for printing, the obvious thing to
do is set the window device context mapping mode to MM_TWIPS. Doing so
is undesirable, however, because 10-point type that looks fine on paper is too
small to read when transferred inch for inch to a VGA screen. If, instead, you
use what Charles Petzold (in Programming Windows 3 I) calls the “logical
twips” mapping mode, things work better.

The following statements set the mapping mode to logical twips.

pDC->SetMapMode (MM_ANISOTROPIC) ;

pDC->SetWindowExt (1440, 1440);

pDC->SetViewportExt (pDC->GetDeviceCaps (LOGPIXELSX) ,
-pDC->GetDeviceCaps (LOGPIXELSY)) ;

Don’t worry too much about the theory behind this mapping mode. Simply
remember that, if you use logical twips on the display, 12-point type (with a
character height of 240 twips) will look the same as it does in Visual Work-
bench and other Windows-based programs. The minus sign on the second
SetViewportExt parameter ensures that y values decrease as you move down, as
in the MM_TWIPS mode.

FIVE: The Graphics Device Interface (GDI)

‘Computing Character Height

Five font height measurement parameters are available through the CDC
function GetTextMetrics, but only three are significant. The tmHeight param-
eter represents the full height of the font, including descenders (for the
characters g, j, p, q, and y) and any diacritics that appear over capital letters.
The tmExternalLeading parameter is the distance between the top of the dia-
critic and the bottom of the descender from the line above. The sum of
tmHeight and tmExternall.eading is the total character height. The value of
tmExternalLeadingis often 0.

You would think that tmHeight would represent the font size in points.
Wrong! Another GetTextMetrics parameter, tminternalLeading, comes into play.
The point size corresponds to the difference between tmHeight and
tmInternalLeading. With the MM_TWIPS mapping mode in effect, a selected
12-point font might have a tmHeight value of 295 logical units and a
tmInternalLeadingvalue of 55. The font’s net height of 240 corresponds to the
point size of 12. Figure 5-4 shows the important font measurements.

tmExternalLeading
Diacritic
tminternalLeading
— tmHeight
| Net
height
— Descender

Figure 5-4.
Font height measurements.

93

PART Il: THE MFC LIBRARY VIEW CLASS

The EX05A Program

This example sets up a view window with the logical twips mapping mode. A
text string is displayed in 10 point sizes with the Arial TrueType font. Here
are the steps for building the application:

1. Run AppWizard to generate a project called EX05A. Choose App-
Wizard from Visual Workbench’s Project menu. The options and the
default class names are shown here:

Application: CEx05aApp in EX05A.H and EX05A.CPP

Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx05aDoc in EX05ADOC.H and EX05ADOC.CPP
View: CExD5aView in EX05AVW.H and EX05AYW.CPP

:: Features:
By

the Single D Interf DIl)
+ MSVYC Compatible project file (EX05A.MAK)
+ Initial toolbar and status bar in main frame
+ Printing and Print Preview support in view
+ Uses medium memory model

Notice that this time we’re accepting the default Printing And Print
Preview option.

2. Add function prototypes in file EXO5AVW.H. ShowFontis a new private
member function in the CEx05aView class. OnPrepareDC is an override of

a CView base class function. The class declaration needs prototypes for
both.

s

3. Add the OnPrepareDC and ShowFont functions in file
EX05AVW.CPP. These are new functions. You’ve already added the
prototypes in the class header.

94

The Graphics Device Interface (GDI)

FIVE

BRaRERnaEeEasEEaY e L e e s

= i FeRitiesmann
cuniaiaan = 2 i %@ :
i ma

=

el
.

Eoee 5 Betn
e W/ .m £ m@%&
< .
Z o . e
® g Bl
- i o
5 4 %mmmmﬂwmmwwﬁm?%
N Z B
2§ e
i < F Bt
W,m@@@sﬁ e
. Q. m Eien
m.v 2 -
AN
25
S &
o = W -
RN
Ll
. =3 2 %
S S 5
i .m w Qg 2
R 558 3
. , e o =
S 25 =
Q ¥ O
2 5= =
0 - =
L S PRT)
Q 4 o
€ 27T =
S ¢8 3
wn o
o 8 o X
£ s 0 H
- =g O
= L9 o
e e e e m = m_
L e w s 2
<

choose
ting
95

b

The resul
tandard VGA

ng pageonas

Oowl1

In Visual Workbench

and then choose Execute

2

ect menu
ke the screen on the foll

9]

1

ild and run the EX05A program

ild from the Pr
output looks 1

. Bu
Bu
card

5

PART Il: THE MFC LIBRARY VIEW CLASS

_ EX05A Windows Application - Ex05a

File Edit View Help

7is ol
his is PB-point Arial
This is 10-point Arial
This is 12-point Arial

This is 14-point Arial

This is 16-point Arial

This is 18-point Arial
This is 20-point Arial
This is 22-point Arial

[This is 24-point Arial

Notice that the output string sizes don’t quite correspond to the point
sizes. This discrepancy results from the font engine’s conversion of
logical units to pixels. The program’s trace output, partially shown
below, shows the display of font metrics (the numbers depending on
your display driver and your video driver):

points = 6, tmHeight = 134, tmInternalLeading
string width = 1032, string height = 134
points = 8, tmHeight = 182, tmInternalleading
string width = 1325, string height = 182
points = 10, tmHeight = 226, tmInternallLeading
string width = 1829, string height = 226
points = 12, tmHeight = 274, tmInternalleading
string width = 2208, string height = 274

14, tmExternalleading

tmExternallLeading

tmExternalLeading

tmExternallLeading

Try Print Preview. Notice, as shown below, that the printer font metrics
are different from the display font metrics, particularly the value of

tmInternalLeading:

tmExternallLeading

points = 6, tmHeight = 150, tmInternalleading
string width = 1065, string height = 150
points = 8, tmHeight = 210, tmInternallLeading
string width = 1380, string height = 210
points = 10, tmHeight = 240, tmInternalLeading
string width = 1770, string height = 240
points = 12, tmHeight = 270, tmInternalleading
String width = 2130, string height = 270

96

45, tmExternalLeading

tmExternalLeading

30, tmExternalLeading

FIVE: The Graphics Device Interface (GDI)

No attempt was made here to set a print scale factor different from the dis-
play scale factor. In Chapter 18, you’ll learn how to control the print scale
factor separately.

The EXO05A Program Elements

Mapping Mode Set in the OnPrepareDC Function

The application framework calls OnPrepareDC prior to calling OnDraw, so the
OnPrepareDC function is the logical place to prepare the device context. If
you had other message handlers that needed the correct mapping mode,
those functions would have contained calls to OnPrepareDC.

The ShowFont Private Member Function
ShowFont contains code that is executed 10 times in a loop. With C, you
would have made this a global function, but with C++ it’s better to make it a
private class member function, sometimes known as a “helper function.”
This function creates the font, selects it into the device context, prints a
string to the window, and then deselects and deletes the font. If you choose
to include debug information in the program, ShowFont also displays useful
font metrics information, including the actual width of the string.

The Call to CFont::CreateFont

This call includes lots of parameters, but the important ones are the first
two—the font height and width. A width value of 0 means that the aspect ra-
tio of the selected font will be set to a value specified by the font designer. If
you put a nonzero value here, as you’ll see in the next example, you can
change the font’s aspect ratio.

TIP: If you want your font to be a specific point size, the
CreateFont font height parameter (the first parameter) must be
negative. If you’re using the MM_TWIPS mapping mode, for ex-
ample, a height parameter of —240 ensures a 12-point font with
tmHeight — tmInternalLeading = 240. A + 240 height parameter gives
you a smaller font with tmHeight = 240.

The last CreateFont parameter specifies the font name, in this case the Arial
TrueType font. If you had used NULL for this parameter, the FF_SWISS speci-
fication (which indicates a proportional font without serifs) would have
caused Windows to choose the “best matching” font, which, depending on
the specified size, might have been the System font or the Arial TrueType
font. The font name takes precedence. If you had specified FF_ROMAN
(which indicates a proportional font with serifs) with Arial, you would have
gotten Arial.

97

PART Il: THE MFC LIBRARY VIEW CLASS

The EX05B Program

This program is similar to EX05A except that it shows multiple fonts. The
mapping mode is MM_ANISOTROPIC, but this time the scale depends on
the window size. The characters change size along with the window. This pro-
gram effectively shows off some TrueType fonts and contrasts them with the
old-style fonts. Here are the steps for building the application:

1. Run AppWizard to generate a project called EX05B. Choose App-
Wizard from Visual Workbench’s project menu. The options and the
default class names are shown here:

asses to be created:

Application: CEx05bApp in EX05B.H and EX05B.CPP

Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx05bDoc in EX05BDOC.H and EX05BDOC.CPP
View: CEx05bView in EXD5BVW.H and EX05BVW.CPP

catures:

+ Supports the Single Document Interface [SDI)
+ MSVC Compatible project file (EXD5B.MAK)

+ Initial toolbar and status bar in main frame

+ Printing and Print Preview support in view
+ Uses medium memory model

Notice that again we’re accepting the default Printing And Print
Preview option.

2. Add function prototypes in file EX05BVW.H. TraceMetrics is a new
private member function in the CEx05bView class. OnPrepareDCis an
override of a CView base class function. The class declaration needs
prototypes for both.

e

i

3. Add the OnPrepareDC and TraceMetrics functions in
EX05BVW.CPP.

98

The Graphics Device Interface (GDI)

FIVE

.%@%M@Q%ﬁ@%@%@%ﬂ@@m@m_w,m ,;!i;!,z
- = - - o
meee . - = =
. e ...

M@mm; .@W&@@mﬁ%w@%m@@ &ﬁ ;
SSRGS e BB SNBSS REG S e mmﬁﬁ@@@m
rere s st a s Lot
- . . e
L e o - o -
aiie 2 o .

mﬁ@m@m&m@mi%@§ﬂwﬂm§ @m@m
. e
o ; .. .
e i) . .
S nseaneenaveda e
.
.
-
. o
-
: @@m%ﬁﬂg@mmmmﬂgmmmmmmmmsgﬁ
s;mwmmm@m@m@%mmm@mm@%@mﬁmm@&mm@m .
- - - = . . @
. . . . @
. .

.

SR e e

sae e - SEsessmepuERseERE a0 IREYENE
S cwad ...
- A T
. o -
e e . i %m@%mm e
b
: 2 .

Eeina

SeanepnaTEs

e ‘ L
e T > - -]

Loy = : -

.. o e

e s R EE R R

4. Edit the OnDraw function in EX05BVW.CPP. AppWizard always

generates a skeleton OnDraw function for your view class. Find the

function and ed

t the code as follows:

i

)

pDC

: :OnDraw (CDC*

lew

d CEx05bVv

Vol

B s e
. - . . |
m@%@ﬂ@ﬁ@mﬁm&%mﬁﬁ GEItEE mmimmm_njsmmx

- -
- e . s s L s

e
. sﬁ@ﬂﬁ%ﬁ@.ﬁ@@mﬁ@mw

.
3
o
e
o
i

ésﬁ:sv
-
.

. .
L S L S 5 G 1 R
. &

©

et
i
e

]

s
.
mm@m@@ﬁ@@m@m@m9

Caeieeen |

e o
G e
e e

wel

e

o
i

-

e =i
L

Qﬁﬁmmwmw

o mmm%mmmm@mw“m
=
L eyl e
ﬁ@mm%m P s =
e]

:
.

amaaassRERa

e
G

Somieany

i ;,
wmmsmeTe s St o]
P e

- -]
. .
- .

Eo g

(continued)

99

PART Il: THE MFC LIBRARY VIEW CLASS

The OnDraw function displays character strings in four fonts as
follows:

M testFontl—The TrueType font Arial with default width selection.

B testFont2—The old-style font Courier with default width selection. .
Notice how jagged the font is in larger sizes.

B testFont3—The generic Roman font for which Windows supplies
the TrueType font Times New Roman with programmed width
selection. The width is tied to the horizontal window scale, so the
font stretches to fit the window.

B testFont4—The LinePrinter font is specified, but because this is not
a Windows font for the display, the font engine falls back on the
FF_MODERN specification and chooses the TrueType Courier New
font.

5. Build and run the EX05B program. In Visual Workbench, choose
Build from the Project menu, and then choose Execute. The program
output is shown in the screen at the top of the facing page:

100

FIVE: The Graphics Device Interface (GDI)

" EX058 Windows Appiication “ExU5h

Edit

This is Arial, default width
Thiz i= Courier. default width

This is generic Roman, variable width

This 1s LinePrinter, default width

Resize the window to make it smaller, and watch the font sizes change.
Compare this screen with the previous one:

_EXUSH Windows Application - Ex05h

This is Arial, default width
This is Courier, default width

This is generic Roman, variable width

This is LinePrinter, default width

If you continue to downsize the window, notice how the Courier font
stops shrinking after a certain size, and notice how the Roman font width
changes.

Now choose Print Preview from the File menu. The output, as shown in
Figure 5-5 on the following page, is very different from the window display
output because the Courier and LinePrinter fonts are not TrueType fonts.
The Windows Courier font maps to one of the printer’s built-in fixed-size
Courier fonts, and the printer’s LinePrinter font is available only in 8.5
point. The other fonts appear small because the MM_TEXT mapping mode
causes printer dots to be mapped directly to display pixels—which is clearly
undesirable. In Chapter 18, you’ll learn more about scaling your printer
output.

101

PART II: THE MFC LIBRARY VIEW CLASS

This is Arial, default width
This is Courier, default width
This i genaicRorrn, varidobe widh

This is LirePrimter, defanlt width

Figure 5-5.
The EXO05B Print Preview output.

The EX05C Example—CScrollView Revisited

102

You saw the CScrollView class in Chapter 4 (in EX04C), but you couldn’t do
much with it because you hadn’t learned about mapping modes. Even with
the MM_TEXT mode, you could not have done mouse hit-testing because
the CScrollView class changes the origin behind your back. Now we’ll revisit
the scrolling view in another example that’s an amalgam of programs EX04B
and EX04C. The new program allows the user to move a circle with a mouse,
but it does so in a scrolling window with the MM_LOENGLISH mapping
mode. Keyboard scrolling is left out, but you can add it by borrowing the
OnKeyDown member function from EX04C.

Instead of a stock brush, we’ll use a pattern brush for the circle—a real
GDI object. There’s one complication with pattern brushes: They have to be
“unrealized” as the window scrolls; otherwise, strips of the pattern don’t line
up, and the effect is ugly.

As with EX04C, this example involves a view class derived from
CScrollView. Here are the steps to create the application:

1. Run AppWizard to generate a project called EX05C. Choose App-
Wizard from Visual Workbench’s Project menu. Be sure to set the view
base class to CScrollView. The options and the default class names are
shown in the screen at the top of the facing page:

FIVE: The Graphics Device Interface (GDI)

E : New Application Information

L | Classes to be created:

. Application: CEx05cApp in EXO5C.H and EX05C.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx05cDoc in EX0SCDOC.H and EX05CDOC.CPP
ScrolView: CEx05cView in EX05CYW.H and EX05CYW.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ MSVC Compatible project file (EX05C.MAK)
+ Initial toolbar and status bar in main frame
+ Uses medium memory model

2. Edit the CEx05cView class header in file EXO5CVW.H. Add the
following lines in the class CEx05¢View declaration:

handlers as follows:

Message Member Function Name
WM_LBUTTONDOWN OnLButtonDown
WM_LBUTTONUP OnLButtonUp
WM_MOUSEMOVE OnMouseMove

4. Edit the CEx05cView message handler functions. ClassWizard
generated the skeletons for the functions listed above. Find them in
EX05CVW.CPP and code them as follows:

void CEx05cView: :0nLButtonDown (UINT nFlags, CPoint point)

1nem
i

(continued)

103

THE MFC LIBRARY VIEW CLASS

PART |1

pu) o
o =}
-m_ ..no._ i
o
3, 0
S %m%ma@%@mmg
I) mm?@m@mmmmaammm Ean e
daneien @m@@@ﬁ@%ﬂ@?@@@s
=} =] SisEeatessennssEaEE RS 3
e o) mmmmmmww@mﬁmmmg SUEh . o
o Q - . =
& L34 - - . Lt
m mmm@mm@mﬁﬁm

mmﬁmm@amﬁﬁ@m

mm

P
el e

i @ewen s
e
iiaiadae s iaieg
P e Y
e e
P
E

e
e
m@mﬁwmm i
eSO G G e S

.

L
...

G

. 3
w@E@m@@W&m@@i@@mmss!%@@@@m@mm@ e
o G e S0 E @m@%mﬁ%&m

L

mE s s
Sebesanranana gt
S

g
.

L . .
iEResRBuE @@m_ﬁn@gw&@ﬁﬁm i
L. 1
. %@mm@ﬁ
s

OnLButtonUp (UINT nFlags,
OnMouseMove (UINT nFlags,

k3 2
] o
- -
> >
0 0
wn un
(=] o
]]
& [
3] 3] i
T e} -
- 3 A , e
P - de s BRreEREOEREREE EaI0!
o . o - O Gl
. b R — D e e e e~

104

FIVE: The Graphics Device Interface (GDI)

5. Edit the CEx05cView constructor, OnDraw function, and Oninitial-
Update function. AppWizard generated these skeleton functions. Find
them in EX05CVW.CPP and code them as follows:

CEx@5cView: :CEx@5cView()
{

void CEx@5cView::0nDraw(CDC+ pDC)

RGB(255, @, 8))

-
e

o

.
o

S
e

. . - . . o she

. s L n . o
> e L € J LT) e o
- poL unjJec 0 o o

.

L L L .
c s6 ...
ek S <] .

.
ipse
.

.

G
ect

e
¢

.
.

|
. i
o dneh
. A G M

b
o

L

Build and run the EX05C program. In the Visual Workbench, choose
Build from the Project menu, and then choose Execute. The program
allows a circle to be dragged with the mouse, and it allows the window to
be scrolled.

The EX05C Program Elements

Following is a discussion of the major elements in the EX05C program.

The CScrollView::0OnPrepareDC Member Function

The CView class has a virtual OnPrepareDC function that does nothing. The
CScrollView class implements the function for the purpose of setting up the
view’s mapping mode, scale factor, and origin, based on the parameters
that you passed to SetScrollSizes in OnCreate. The application framework calls

105

PART I1I: THE MFC LIBRARY VIEW CLASS

OnPrepareDC for you prior to calling OnDraw, so you don’t need to worry
about it. You must call OnPrepareDC yourself in any other message handler
function that uses the view’s device context, such as OnLButtonDown and
OnMouseMove.

The OnMouseMove Coordinate Transformation Code
As you can see, this function contains quite a few translation statements. The
logic can be summarized by the following steps:

1. Convert the previous ellipse rectangle and mouse point (stored
in data members) from logical to device coordinates.

2. Update the mouse point and the ellipse rectangle.

3. Generate an invalid rectangle.

4. Convert the ellipse rectangle and mouse point to logical
coordinates.

The OnDraw Function

The UnrealizeObject and SetBrushOrg calls are necessary to ensure that all of
the circle’s interior pattern lines up when the view is scrolled. The brush is
aligned with a reference point fempPoint, which is at top left of the logical
window, converted to device coordinates. This is a notable exception to the
rule that CDC member functions require logical coordinates.

The CScrollView SetScaleToFitSize Mode

106

The CScrollView class has a stretch-to-fit mode that displays the entire
scrollable area in the view window. The Windows MM_ANISOTROPIC map-
ping mode comes into play, with one restriction: Positive y values always in-
crease in the down direction, as in MM_TEXT mode. '

To use the stretch-to-fit mode, make the following call in your view’s
function in place of the call to SetScrollSizes:

SetScaleToFitSize(totalSize);

The example in Chapter 23 makes this call in OnInitialUpdate, and it also
makes it in response to a Shrink To Fit menu item. Thus, the display can
toggle between scrolling mode and shrink-to-fit mode.

CHAPTEHR S 1 X

THE MODAL DIALOG

Almost every program for Windows uses a dialog window to interact with
the user. The dialog might be a simple OK message box, or it might be a
complex data entry form. Calling this powerful element a dialog “box” is an
injustice. As you'll see, the dialog is truly a window that receives messages,
that can be moved and closed, and that can even accept drawing instructions
in its client area.

The two kinds of dialogs are “modal” and “modeless.” This chapter ex-
plores the most common type, the modal dialog. You’ll be working with a
single dialog example that includes most typical dialog “controls” plus a few
not-so-typical ones. Chapter 7 introduces the modeless dialog and the spe-
cial-purpose COMMDLG modal dialogs for opening files, selecting fonts,
and so forth.

Modal vs. Modeless Dialogs

The CDialog base class supports both modal and modeless dialogs. With a
modal dialog, such as the Open File dialog, the user cannot work elsewhere
in the application until the dialog is closed. With a modeless dialog, the user
can work in another window in the application while the dialog remains on
the screen. The Visual Workbench Find dialog is a good example of a
modeless dialog; you can edit your program during a global search (once the
search is started).

Your choice of a modal or a modeless dialog depends on the applica-
tion. Modal dialogs are much easier to program, which might influence your
decision.

107

PART Il: THE MFC LIBRARY VIEW CLASS

FYIl: The Microsoft Foundation Class Library version 1.0 sup-
ported two dialog classes: CDialog for modeless dialogs and
CModalDialog for modal dialogs. The Microsoft Foundation Class
(MFC) Library versions 2.0 and 2.5 CDialog class accommodate
both modal and modeless dialogs, but CModalDialog still existed as
a macro for compatibility. Do not use the CModalDialog class in
new Microsoft Foundation Class Library version 2.5 programs.

System Modal Dialogs

All modal dialogs restrict the user from working elsewhere in the application
that opens the dialog. With an ordinary modal dialog, however, the user can
switch to another program. One type of modal dialog, the system modal dia-
log, absolutely restricts the user to the dialog; the user must close the dialog
before continuing with any other Windows task.

NOTE: System modal dialogs are not allowed in 32-bit Windows.

Resources and Controls

108

So now you know a dialog is a window. What makes the dialog different from
the CView windows you've seen already? For one thing, a dialog window is al-
most always tied to a Windows resource that identifies the dialog’s elements
and specifies their layout. Because you can use App Studio to create and edit
a dialog resource, you can quickly and efficiently produce dialogs in a visual
manner.

A dialog consists of a number of elements called controls. Dialog con-
trols include edit controls (aka text boxes), buttons, list boxes, combo boxes,
and static text (aka labels). Windows manages these controls through special
grouping and tabbing logic, and that relieves you of a major programming
burden. The dialog controls can be referenced either by a CWnd pointer (be-
cause they themselves are really windows) or by an index number (with an
associated #define constant) assigned in the resource. Controls can send mes-
sages to their dialog in response to user actions such as typing text or click-
ing a button.

The MFC library and ClassWizard work together to enhance the dialog
logic that Windows provides. With ClassWizard, you can associate dialog

S1X: The Modal Dialog

class data members with dialog controls, and you can specify editing param-
eters such as maximum text length and numeric high and low limits.
ClassWizard generates calls to the MFC library data exchange and data vali-
dation functions that move information back and forth between the screen
and the data members.

Programming a Modal Dialog

Modal dialogs are the most frequently used dialogs. A user action (a menu
choice, for example) brings up a dialog on the screen, the user enters data in
the dialog, and then the user closes the dialog. Here’s a summary of the steps
to add a modal dialog to an existing project:

1.

Use App Studio to create a dialog resource that contains various
controls. App Studio updates the project’s resource script (RC) file
to include your new dialog resource, and the RESOURCE.H file is
updated to include corresponding #define constants.

. Use ClassWizard to create a dialog class that is derived from CDialog

and attached to the resource created in step 1. ClassWizard adds
the associated code and header file to the Visual Workbench
project.

. Use ClassWizard to add data members, exchange functions, and

validation functions to the dialog class.

. Use ClassWizard to add message handlers for the dialog’s buttons

and special controls.

. Write the code for special control initialization (in OnlnitDialog)

and for the message handlers. Be sure the CDialog virtual member
function OnOKis called when the user closes the dialog (unless the
user cancels the dialog). (Note: OnOKis called by default.)

. Write the code in your view class to activate the dialog. This code

consists of a call to your dialog class’s constructor followed by a call
to the DoModal dialog class member function. DoModal returns only
when the user exits the dialog window.

Now we’ll proceed with a real example, one step at a time.

109

PART Il: THE MFC LIBRARY VIEW CLASS

The Dialog That Ate Cincinnati—
The EX06A Example

110

Let’s not mess around with wimpy little dialogs. We’ll build a monster dialog
that contains almost every kind of control. The job will be easy because App
Studio is there to help us. The finished product is shown in Figure 6-1.

“The Dialog That Ale Cilicinnat

cumentation

Figure 6-1.
The finished dialog in action.

As you can see, the dialog supports a human resources application.
These kinds of business programs are fairly boring, so the challenge is to
produce something that could not have been done with 80-column punched
cards. The program is brightened a little by the use of scroll bar controls for
“loyalty” and “reliability.” Here is a classic example of direct action and visual
representation of data! Visual Basic controls could add more interest, but
they aren’t covered until Chapter 8.

Here are the steps for building the dialog resource:

1. Run AppWizard to generate a project called EX06A. Choose App-
Wizard from Visual Workbench’s Project menu. The options and the
default class names are shown here:

S1X: The Modal Dialog

lasses to be created:
Application: CEx06aApp in EX06A.H and EX06A.CPP
Frame: CMainFrame in MAINFRM_H and MAINFRM.CPP
Document: CEx06aDoc in EX06ADOC.H and EX06ADOC.CPP
View: CEx06aView in EX06AVW_H and EX06AVW.CPP

+ Supports the Single D Interface (SDI)
+ MSVC Compatible project file (EX06A.MAK)

+ Initial toolbar and status bar in main frame

+ Uses medium memory model

As usual, AppWizard sets the new project to be the Visual Workbench
current project. :

2. From the Visual Workbench, open the file EX06A.RC. Choose App
Studio from Visual Workbench’s Tools menu. This starts App Studio with
the EX06A resource file that AppWizard generated.

3. Create a new dialog with ID IDD_DIALOG1. Click the New button in
the EX06A.RC (MFC Resource Script) window. The New Resource dia-
log appears. Click on Dialog, and then click on OK. App Studio creates
a new dialog resource, as shown here:

111

PART 1l: THE MFC LIBRARY VIEW CLASS

112

App Studio assigns the resource ID IDD_DIALOGI to the new dialog.
Notice that App Studio inserts OK and Cancel buttons for the new
dialog.

4. Size the dialog and assign a caption. When you double-click on the
new dialog, or if you choose Show Properties from App Studio’s Window
menu, the Dialog Properties dialog appears. Type the caption for the
new dialog as shown in the following screen. The state of the pushpin
button determines whether the Dialog Properties dialog stays on top of
other windows. (When the pushpin is “pushed,” the dialog stays on top
of other windows.) Click the Snap To Grid button to reveal the grid and
to help align controls.

Click the Snap
To Grid button

Type the
caption here

5. Set the dialog style. Choose Styles from the drop-down list box at the
top right of the Dialog Properties dialog, and then set the style proper-
ties as shown here:

Click on this pushpin

Choose Styles from
the drop-down list

'SIX: The Modal Dialog

6. Add the dialog’s controls. Use the control palette to add each control.
Drag controls from the control palette to the new dialog with the mouse,
and then position and size the controls, as shown in Figure 6-1 on page
110. (You don’t have to be precise when positioning the controls.) Here
are the control palette’s controls:

Pointer Picture
Static text Edit box
Group box Pushbutton
Check box Radio button
Combo box List box

Vertical scroll bar
Grid (VBX control)

Horizontal scroll bar

User-defined

NOTE: App Studio displays the position and size of
each control in the status bar. The position units are spe-
cial “dialog units,” or DLUs, not device units. A horizontal
DLU is the average width of the dialog font divided by 4. A
vertical DLU is the average height of the font divided by 8.
The dialog font is normally 8-point MS Sans Serif.

Here’s a brief description of the dialog’s controls:

Q The static text control for the Name field. A static text control
simply paints characters on the screen. No user interaction
occurs at runtime. You can type the text after you position the
bounding rectangle, and you can resize the rectangle as needed.
This is the only static text control you'll see listed in text, but you
should also create the other static text controls as shown in
Figure 6 -1. Follow the same procedure for the other static text
controls in the dialog. All static text controls have the same ID,
but that doesn’t matter because the program doesn’t need to
access any of them. :

Q The Name edit control. An edit control is the primary means
of entering text in a dialog. Change this control’s ID from
IDC_EDIT] to IDC_NAME. Accept the defaults for the rest of
the properties. Notice that the default sets Auto HScroll, which
means that the text scrolls horizontally when the box is filled.

13

PART Il: THE MFC LIBRARY VIEW CLASS

Q The SSN (social security number) edit control. As far as App
Studio is concerned, this control is exactly the same as the Name
edit control. Simply change its ID to IDC_SSN. Later you will use
ClassWizard to make this a numeric field.

QO The Biography edit control. This is a multiline edit control.
Change its ID to IDC_BIO, and then set its properties as shown
here: '

Q The Category group box. This control serves only to group two
radio buttons visually. Type in the caption Category. The default
ID is sufficient. ‘

QO The Hourly and Salary radio buttons. Position these radio
buttons inside the Category group box. Set the Hourly button’s
ID to IDC_CAT, and set the other properties, as shown here:

114

S§1X: The Modal Dialog

Be sure that both buttons have the Auto property set (the
default) and that only the Hourly button has the Group property
set. When these properties are set correctly, Windows ensures
that only one of the two buttons can be selected at a time. The
Category group box has no effect on the buttons’ operation.

Q The Insurance group box. This control holds three check boxes.
Type in the caption Insurance.

Q The Life, Disability, and Medical check boxes. Place these
controls inside the Insurance group box. Accept the default
properties, but change the IDs to IDC_LIFE, IDC_DIS, and
IDC_MED. Unlike radio buttons, check boxes are independent;
the user can set any combination.

NOTE: You must also set the Group property for the
control that follows the radio button group, in this case
the Life check box.

Q The Skill combo box. This is the first of three types of combo
boxes. Change the ID to IDC_SKILL; otherwise, accept all the
defaults. Add three skills (terminating each line with Ctrl-Enter)
in the Enter List Choices box, as shown here:

This is a combo box of type Simple. The user can type any-
thing in the top edit control, use the mouse to select an item

R 7
-
L

0

i
o

PART II: THE MFC LIBRARY VIEW CLASS

from the attached list box, or use the Up or Down direction key
to select an item from the attached list box.

Q The Education combo box. Change the ID to IDC_EDUC, and
then set the Type option to Dropdown. Add three education
levels in the Enter List Choices box, as shown in Figure 6-1 on
page 110. With this combo box, the user can type anything in the
edit box, click on the arrow and then select an item from the
drop-down list box, or use the Up or Down direction key to
select an item from the attached list box.

NOTE: . To set the size for the drop-down portion of a
combo box, click on the box’s arrow and pull down
from the bottom center of the rectangle.

Q The Department list box. Change the ID to IDC_DEPT; other-
wise, accept all the defaults. In this list box, the user can select
only a single item by using the mouse, by using the Up or Down
direction key, or by typing the first character of a selection.

Q The Language combo box. Change the ID to IDC_LANG, and
then set the Type option to Drop List. Add three languages
(English, French, and Spanish) to the Enter List Choices box.
With this combo box, the user can select only from the attached
list box. To select, the user can click on the arrow and then
select an entry from the drop-down list, or the user can type
the first letter of the selection and then refine the selection
with the Up or Down direction key.

116

S1X: The Modal Dialog

Q The Loyalty and Reliability scroll bars. Do not confuse scroll bar
controls with a window’s built-in scroll bars as seen in scrolling
views. A scroll bar control behaves in the same manner as do
other controls and can be resized at design time. Position and
size the horizontal scroll bar controls as shown in Figure 6-1 on
page 110, and then assign the IDs IDC_LOYAL and IDC_RELY.

Q The OK, Cancel, and Special pushbuttons. Type the button
captions OK, Cancel, and Special, and then assign the IDC_-
SPECIALID to the Special button. Later you’ll learn about
special meanings that are associated with the default IDOK and
IDCANCEL 1Ds.

Q Any icon. (The AFX icon is shown as an example.) You can
display any icon in a dialog, as long as the resource script defines
the icon. We’ll use the program’s AFX icon, identified as IDR_-
MAINFRAME. Set the Type option to Icon, and set the icon to
IDR_MAINFRAME. Leave the ID as IDC_STATIC.

7. Check the dialog’s tabbing order. Choose Set Tab Order from the
App Studio Layout menu. Use the mouse to set the tabbing order, as
shown here:

Click on each control in the order shown and then press Enter.

117

PART Il: THE MFC LIBRARY VIEW CLASS

TIP: Ifyou mess up the tab sequence part way through,
you can recover with a Ctrl-left mouse click on the last cor-
rectly sequenced control. Subsequent mouse clicks will
start with the next sequence number.

NOTE: Static text controls (such as Name and Skill)
have ampersands (&) embedded in the text for their cap-
tions. The ampersands appear as underscores under the
following character at runtime. (See Figure 6-1 on page
110.) This enables the user to jump to selected controls by
holding down the Alt key and pressing the key corre-
sponding to the underlined character. (The related con-
trol must immediately follow the static text in the tabbing
order.) Thus, AltN jumps to the Name edit control, and
AltK jumps to the Skill combo box. Needless to say, desig-
nated jump characters should be unique within the dia-
log. The Skill control uses K because the SS Nbr control
uses S.

8. Save the resource file on disk. Choose Save from the File menu or
click the Save button on the toolbar to save EX06A.RC. Keep App Studio
running, and keep the newly built dialog on the screen.

ClassWizard and the Dialog Class

118

You have now built a dialog resource, but you can’t use it without a corre-
sponding dialog class. (The section titled “Understanding the EX06A Appli-
cation” later in this chapter explains the relationship between the dialog
window and the underlying classes.) The ClassWizard DLL works in conjunc-
tion with App Studio to create that class as follows:

1. Choose ClassWizard from the App Studio Resource menu. Be sure
that you still have the newly built dialog, IDD_DIALOGI, selected in App
Studio and that \VCPP\EX06A\EXO06A is the current Visual Workbench
project.

2. Add the CEx06aDialog class. Fill in the Add Class dialog, as shown at
the top of the facing page:

SI1X: The Modal Dialog

Be sure to enter the information exactly as shown; some of this informa-
tion is case-sensitive.

Because your newly built dialog was selected in App Studio, Class-
Wizard knew enough to choose CDialog as the base class for CEx06a-
Dialog and to make IDD_DIALOGI the corresponding resource. Click
the Create Class button.

. Add the CEx06aDialog variables. After ClassWizard creates the
CEx06aDialog class, the MFC Class Wizard dialog appears. Cl