
SECOND EDITION

VERSION 1.5

ORVin J.
KRU6l1N~KI

Source code and
executable files

on CD-ROM

TM

SECOND EDITION

VERSION 1.5

ORVID J.
KRU6l1N~KI

TM

®

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1994 by DavidJ. Kruglinski

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Kruglinski, David J.

Inside visual C++ / David J. Kruglinski. -- 2nd ed.
p. cm.

Includes index.
ISBN 1-55615-661-8 : $39.95 ($53.95 Can.)
1. C++ (Computer program language) 2. Microsoft Visual C++.

I. Title.
QA76.73.C153K78 1994;
005.265--dc20 94-19212

CIP

Printed and bound in the United States of America.

123456789 MLML 987654

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

TrueType is a registered trademark of Apple Computer, Inc. ToolBook is a registered trademark of
Asymetrix Corporation. Borland is a registered trademark of Borland International, Inc. CASE:W is a
trademark of Caseworks, Inc. TETRIS is a trademark ofv/o Electronorgtechnica. Hewlett-Packard and
LaserJet are registered trademarks of Hewlett-Packard Company. Informix is a registered trademark
of Informix Software, Inc. Ingres is a trademark of Ingres Corporation. Intel is a registered trademark
and Pentium is a trademark of Intel Corporation. Lego is a registered trademark of Lego Systems,
Inc. FoxPro, Microsoft, Microsoft Access, Microsoft QuickBasic, and Visual Basic are registered
trademarks and Visual C++, Windows, and the Windows operating system logo are trademarks of
Microsoft Corporation. 3M is a registered trademark and Post-it is a trademark of Minnesota Mining
and Manufacturing Corporation. ORACLE is a registered trademark of Oracle Corporation.
PowerBuilder is a trademark of Powersoft Corporation. Smalltalk is a registered trademark of Xerox
Corporation. All other trademarks and service marks are the property of their respective owners.

Acquisitions Editor: Dean Holmes
Project Editor: Jack Litewka
Technical Editor: Jim Fuchs

CONTENTS SUMMARY
ACKNOWLEDGMENTS .. xxiii
INTRODUCTION. .. xxv

PART I WINDOWS, VISUAL C++, AND APPLICATION
FRAMEWORK FUNDAMENTALS 1

CHAPTER ONE

MICROSOFT WINDOWS AND VISUAL C++. 3
CHAPTER TWO

THE MICROSOFT FOUNDATION CLASS LIBRARY
APPLICATION FRAMEWORK. .. 15

PART II THE MFC LIBRARY VIEW CLASS 27
CHAPTER THREE

GETIING STARTED WITH APPWIZARD-"HELLO, WORLD!" .. 29

CHAPTER FOUR
BASIC EVENT HANDLING-USING CLASSWIZARD 51
CHAPTER FIVE

THE GRAPHICS DEVICE INTERFACE (GDI) 75

CHAPTER SIX
THE MODAL DIALOG .. 107
CHAPTER SEVEN

THE MODELESSDIALOG AND
THE COMMDLG DIALOG CLASSES 133

CHAPTER EIGHT
VISUAL BASIC CONTROLS. .. 149
CHAPTER NINE
WINDOWS MEMORY MANAGEMENT-JUST SAY "NEW" ... 167

CHAPTER TEN
BITMAPS. .. 181
CHAPTER ELEVEN

BITMAP BUTTONS, THE TIMER,
AND ON-IDLE PROCESSING. .. 195

PART III THE DOCUMENT-VIEW ARCHITECTURE 213
CHAPTER TWELVE
MENUS AND KEYBOARD ACCELERATORS 215

CHAPTER THIRTEEN
TOOLBARS AND STATUS BARS. .. 237

INSIDE VISUAL C++

iv

CHAPTER FOURTEEN

A REUSABLE BASE CLASS .. 257

CHAPTER FIFTEEN
SEPARATING THE DOCUMENT FROM ITS VIEW 273

CHAPTER SIXTEEN

READING AND WRITING DOCUMENTS-SOl 317

CHAPTER SEVENTEEN

READING AND WRITING DOCUMENTS-MOl 347
CHAPTER EIGHTEEN

PRINTING AND PRINT PREVIEW. .. 371

CHAPTER NINETEEN

SPLITTER WINDOWS AND MULTIPLE VIEWS 391
CHAPTER TWENTY

CONTEXT-SENSITIVE HELP .. 403

CHAPTER TWENTY-ONE

A PRACTICAL WINDOWS-BASED APPLICATION 425

PART IV ADVANCED TOPICS 451
CHAPTER TWENTY-TWO

MFC LIBRARY VERSION 2.5 PROGRAMS
WITHOUT DOCUMENTS OR VIEWS 453
CHAPTER TWENTY-THREE

STORING BITMAPS IN A DOCUMENT-
DIBS AND THE CLIPBOARD 473

CHAPTER TWENTY-FOUR

DATABASE MANAGEMENT WITH MICROSOFT ODBC 501

CHAPTER TWENTY-FIVE

OLE AND OLE AUTOMATION. .. 549

CHAPTER TWENTY-SIX
DYNAMIC LINK LIBRARIES (DLLs) , 635

PART V APPENDiXES.................................. 655
APPENDIX A

A CRASH COURSE IN THE C++ LANGUAGE , 657
APPENDIX B

MESSAGE MAP FUNCTIONS IN THE
MICROSOFT FOUNDATION CLASS LIBRARY , 693

APPENDIX C
MICROSOFT WINDOWS FUNCTIONS USED INTHIS BOOK.. 699

APPENDIX D

VISUAL C++, VERSION 2.0 FOR WINDOWS NT , 701

INDEX 707

TABLE OF CONTENTS
ACKNOWLEDGMENTS . xxiii
INTRODUCTION. .. xxv

PART I WINDOWS, VISUAL C++, AND APPLICATION
FRAMEWORK FUNDAMENTALS .. 1

CHAPTER ONE

MICROSOFT WINDOWS AND VISUAL C++. 3

The Windows Programming Model 3
Message Processing. .. 3
The Windows Graphics Device Interface (GDI) .. 4
Resource-Based Programming 5
Memory Management. .. 5
Dynamic Link Libraries (DLLs) 5
Windows NT ... 6

The Visual C++ Components 6
Visual Workbench and the Build Process. .. 7
The App Studio Resource Editor 9
The C/C++ Compiler. .. 10
The Linker. .. 10
The Resource Compiler 10
The Debugger. .. 10
AppWizard .. 11
ClassWizard ... 12
The Source Browser .. 12
Online Help .. 13
Windows Diagnostic Tools 13
The Microsoft Foundation Class Library Version 2.5 14

CHAPTER TWO

THE MICROSOFT FOUNDATION CLASS LIBRARY
APPLICATION FRAMEWORK. .. 15

Why Use the Application Framework? .. 15
The Learning Curve. .. 18

What's an Application Framework? .. 19
The Application Framework vs. the MFC Library. 19
An Application Framework Example. .. 19

MFC Library Message Mapping , 23
Documents and Views 23

INSIDE VISUAL C++

vi

PART II THE MFC LIBRARY VIEW CLASS 27
CHAPTER THREE

GETTING STARTED WITH APPWIZARD-HHELLO, WORLD!" .. 29

What's a View? .. 30
Single Document Interface (SOl) vs.

Multiple Document Interface (MOl) 30
The "Do-Nothing" Application. .. 31
The CEx03aViewView Class 34
Drawing Inside the View Window-The Windows

Graphics Device Interface 35
The OnOraw Member Function. .. 35
The Windows Device Context. .. 35
Adding Draw Code to the EX03A Program 36

A Preview of App Studio-Resources Introduced. 37
The Contents of EX03A.RC 37
Running App Studio .. 38

The Windows Debug Kernel and DBWIN 40
Do You Need to Use the Debugger? .. 42

Enabling the Diagnostic Macros. .. 43
Speeding Up the Build Process 43
Creating a New MAK File 50

CHAPTER FOUR

BASIC EVENT HANDLING-USING CLASSWIZARD 51

Getting User Input-Message Map Functions 51
The Message Map .. 52
Saving the View's State-Class Data Members. 52
Initializing a View Class Data Member 53
Invalidating the Rectangle 53
The Window's Client Area. .. 54

The EX04A Example Program 54
Using ClassWizard with EX04A 57

Using AppWizard and ClassWizard Together .. 58
EX04B-Dragging a Circle with the Mouse. .. 60

The EX04B Program Elements ; 63
The m_el/ipseRect Data Member. .. 63
The m_mousePos Data Member .. 63
The m_bCaptured Data Member .. 63
The SetCapture and ReleaseCapture Member Functions 64
The SetCursor and LoadCursor Windows Functions 64
CRect, CPoint, and CSize Arithmetic .. 64
Is a Point Inside the Client Area? .. 65
Is a Point Inside a Circle? .. 65
The Minimum Invalid Rectangle. .. 65
The CRect::LPRECT Operator .. 66
Device Coordinates-Necessary for This Example. 66

Table of Contents

A Scrolling View Window 66
A Window Is Larger than What You See. .. 66
Scroll Bars. .. 67
Scrolling Alternatives .. 67
The EX04C Scrolling Example 67
The EX04C Program Elements 70

The Windows GetSystemMetrics Function. 70
The Virtual OnlnitialUpdate Function .. 70
The SetScrollSizes Function. .. 71
Handling Keystrokes 71
Connecting Scroll Keys to CScrollView 71
Coordinate Transformations-Not Yet 71

Other Windows Messages 72
The WM_CREATE Message .. 72
The WM_CLOSE Message .. 72
The WM_QUERYENDSESSION Message 72
The WM_DESTROY Message. .. 73
The WM_NCDESTROY Message .. 73

CHAPTER FIVE

THE GRAPHICS DEVICE INTERFACE (GOI) " 75

The Device Context Classes " 75
The Display Context Classes CClientDC and CWindowDC 76
Constructing and Destroying CDC Objects 76
The State of the Device Context. .. 77
The CPaintDC Class .. 78

GDI Objects' 78
Constructing and Destroying GDI Objects. .. 79
Tracking GDI Objects .. 79
Stock GDI Objects .. 80
The Lifetime of a GDI Selection 81
A Permanent Device Context for the Display-

Registering Window Classes. .. 82
Windows Color Mapping '.' . 82

Standard Video Graphics Array (VGA) Display Boards. 83
256-Color Display Boards. .. 84
24-Bit Color Display Boards .. 85

Mapping Modes .. 85
The MM_ TEXT Mapping Mode. .. 85
The "Fixed Scale" Mapping Modes .. 86
The "Variable Scale" Mapping Modes. .. 87
Coordinate Conversion .. 89

Fonts ... 90
Fonts Are GDI Objects .. 91
Choosing a Font .. 91
Printing with Fonts. .. 91
Displaying Fonts .. 91

vii

INSIDE VISUAL C++

viii

Points in a Window-Logical Twips .. 92
Computing Character Height .. 93

The EX05A Program 94
The EX05A Program Elements , 97

Mapping Mode Set in the OnPrepareDC Function , 97
The ShowFont Private Member Function 97
The Call to CFont::CreateFont , .. 97

The EX05B Program 98
The EX05C Example-CScrol/View Revisited 102

The EX05C Program Elements " 105
The CScroIlView::OnPrepareDC Member Function 105
The OnMouseMove Coordinate Transformation Code. 106

The OnDraw Function .. 106
The CScroll Vie w::SetScale ToFitSize Mode. .. 106

CHAPTER SIX

THE MODAL DIALOG. .. 107

Modal vs. Modeless Dialogs .. 107
System Modal Dialogs. .. 108
Resources and Controls 108
Programming a Modal Dialog .. 109
The Dialog That Ate Cincinnati-The EX06A Example 110

ClassWizard and the Dialog Class. 118
Connecting the Dialog to the View. .. 122
Understanding the EX06A Application. .. 124

Enhancing the Dialog Program. .. 125
Taking Control of the OnOK Exit , 125
On Cancel Processing. .. 127
Hooking Up the Scroll Bar Controls , 127

Identifying Controls: CWnd Pointers and Control IDs 130
Setting the Color for the Dialog Background and for Controls 131
Painting Inside the Dialog Window 131
Using Other Control Features .. 132

CHAPTER SEVEN

THE MODELESS DIALOG AND
THE COMMDLG DIALOG CLASSES 133

Modeless Dialogs .. 133
Creating Modeless Dialogs , 133
User-Defined Messages , 134
Dialog Ownership ... , 134
A Modeless Dialog Example-EX07 A , 134

The CFormViewClass-A Modeless Dialog Alternative 141
COMMDLG Dialogs 141

Using the CFileDialog Class Directly .. 142
Adding Dialog Controls at Run Time 142

Table of Contents

Deriving from the COMMDLG Classes. .. 143
A CFileOialog Example-EX07B .. 143

CHAPTER EIGHT

VISUAL BASIC CONTROLS. .. 149

Standard Controls for Windows
and Ordinary Custom Controls. .. 150

C++ Classes and Visual Basic Controls , 150
Methods vs. Member Functions .. 150
Properties vs. Data Members. .. 151
Visual Basic Control Events vs. Windows Control Notifications. 151

Visual Basic Event Registration , 152
The GVBGontro/ Class. .. 152
The EX08A Example , 153

The Visual Basic GRID Control 153
Building the EX08A Example Program. .. 155

Using Other Visual Basic Controls , 164
Visual Basic Picture Properties , 164
Advantages and Disadvantages of

Writing and Using Visual Basic Controls , 164

CHAPTER NINE

WINDOWS MEMORY MANAGEMENT-JUST SAY "NEW" .. , 167

A Memory Model Review , .. 168
16-BitWindows .. 169

The Intel Segment Architecture 169
The DGROUP Segment and Multi-Instance Programs 170
Memory Models-One Code Segment or Many? 171
Near Function Calls. .. 171
Memory Models-One Data Segment or Many? 173
The Local Heap. .. 174
The Global Heap. .. 175
Location of the Program's vtbl 176
Direct Use of Windows Memory Allocation Functions. 177
The 80386/80486 Virtual Memory Manager. .. 177

Detecting Memory Leaks. .. 178
What to Do When You Run Out of Memory , 179

CHAPTER TEN

BITMAPS. .. 181

GDI Bitmaps and Device-Independent Bitmaps (DIBs) , 181
Using GDI Bitmaps '. .. 182
Color Bitmaps and Monochrome Bitmaps 182
Loading a GDI Bitmap from a Resource , 183
The Effect of the Display Mapping Mode , 184
Stretching the Bits , 184

The EX10A Program .. 184

ix

INSIDE VISUAL C++

x

Using Bitmaps to Improve the Screen Display. 187
The EX10B Program .. 188

Other Uses for GDI Bitmaps 192

CHAPTER ELEVEN

BITMAP BUTTONS, THE TIMER, AND
ON-IDLE PROCESSING 195

Bitmap Buttons .. , .. 195
The EX11A Program .. 195
Going Further with Bitmap Buttons. 201

Using a Timer and Yielding Control. .. 201
Timers ... 201
Yielding Control. .. 202
The EX11 B Program .. 203

On-Idle Processing .. 206
The EX11 C Program .. 207

PART III THE DOCUMENT-VIEW ARCHITECTURE. 213
CHAPTER TWELVE

MENUS AND KEYBOARD ACCELERATORS 215

The Main Frame Window and Document Classes ; 215
Windows Menus ... 216
Keyboard Accelerators .. 217
Command Processing. .. 218

Command Message Handling in Derived Classes 219
Update Command User Interface (UI) Messages. 219
Commands That Originate in Dialogs 220

The Application Framework's Built-In Menu Items 221
Enabling/Disabling of Menu Items. .. 222
The CEditView Class .. 222
The EX12A Example .. 223
The CMenu Class .. 229
Extended Command Processing. .. 230
The EX12B Example 231

CHAPTER THIRTEEN

TOOLBARS AND STATUS BARS. .. 237

Control Bars and the Application Framework 237
The Toolbar .. , 238

The Toolbar Bitmap. .. 238
Button States. .. 239
The Toolbar and Command Messages. .. 239
Toolbar Update Command UI Messages. .. 240

Locating the Main Frame Window 241
The EX13A Toolbar Example. .. 242

Table of Contents

The Status Bar. .. 248
The Status Bar Definition. .. 248
The Message Line. .. 248
The Status Indicator .. 249
Taking Control of the Status Bar. .. 249

The EX13B Status Bar Example 250

CHAPTER FOURTEEN

A REUSABLE BASE CLASS .. 257

Why Reusable Base Classes Are Difficult to Write 257
The CPersistentFrame Class. .. 258
The CFrameWnd Class and the ActivateFrame Member Function. .. 258
The Windows INI File 259
Using the CString Class 261
The Position of a Maximized Window .. 263
Static Data Members , 263
The Default Window Rectangle. .. 264
The EX14A Example 264
Persistent Frames in MOl Applications. .. 270

CHAPTER FIFTEEN

SEPARATING THE DOCUMENT FROM ITS VIEW. 273

Document-View I nteraction Functions 273
The CView::GetOocument Function .. 274
The COocument::UpdateAIIViews Function .. 274
The CView::OnUpdate Function .. 275
The CView::OnlnitiaIUpdate Function. .. 275

The Simplest Document-View Application .. 276
The CFormViewClass 277
The CObject Class 278
Diagnostic Dumping .. 278

The TRACE Macro. .. 278
The afxOump Object .. 279
The Dump Context and the CObject Class 279
Automatic Dump of Undeleted Objects .. 281

The EX15A Example .. 282
A More Advanced Document-View Interaction 290
The COocument::Oe/eteContents Function 291
The CObList Collection Class. .. 291

Using the CObList Class for a First-In, First-Out (FIFO) List. 292
CObList Iteration-The POSITION Variable. .. 294
The Dump Context and Collection Classes .. 295

The EX15B Example 296
CEx 15bApp .. 298
CMainFrame .. 298

xi

INSIDE VISUAL C++

xii

CStudentOoc .. 298
ClassWizard and CStudentDoc " 302
Data Members. .. 302
Constructor and Destructor 302
GetList .. 302
DeleteContents .. 302
Dump 302

CStudentView .. 303
ClassWizard and CStudentView 311
Data Members. .. 312
OnlnitialUpdate .. 312
OnUpdate .. 312
Toolbar Button Command Message Handlers 312
Toolbar Button Update Command UI Message Handlers 312
Protected Virtual Functions. .. 313

Resource Requirements 313
Symbols .. 313
Edit Menu .. 314
The IDO_STUOENTDialog 314
Toolbar ... 314
Testing the EX15B Application : 315

Two Exercises for the Reader 316

CHAPTER SIXTEEN

READING AND WRITING DOCUMENTS-SOl , 317

Serialization-What Is It? 317
Disk Files and Archives. .. 318
Making a Class Serializable 318
Writing a Serialize Function 319
Loading from an Archive-Embedded Objects vs. Pointers 320
Serializing Collections. .. 322
The Serialize Function and the Application Framework. 323

The SDI Application 324
The Windows Application Object. .. 324
The Document Template Class. .. 325
The Document Template Resource 327
Multiple Views of an SDI Document. .. 328
Creating an Empty Document-

The CWinApp::OnFileNew Function 328
The Document Class's OnNewOocument Function. 329
Connecting File Open

to Your Serialization Code-OnFileOpen. 329
The Document Class's DeleteContents Function. 330
Connecting File Save and File Save As '

to Your Serialization Code 330
The Document's IsModified Flag 330

Table of Contents

EX16A-An SOl Example with Serialization 331
CStudent .. 332
CEx16aApp . .. 334
CFrameWnd. .. 338
CStudentOoc .. 341

Serialize. .. 341
OnOpenOocument .. 342
OnUpdateFileSave .. 342
CStudentView .. 342
AppWizard and EX16A 342
Testing the EX16A Application. .. 343
File Manager Document Association .. 344

CHAPTER SEVENTEEN

READING AND WRITING DOCUMENTS-MOl 347

The MOl Application 347
A Typical MDI Application, MFC Library Style. 348
The MDI Application Object 351
The MDI Document Template Class 351
The MDI Frame Window and Child Window 351
The Main Frame and Document Template Resources. 353
Creating an Empty Document-

The CWinApp::OnFileNew Function 353
Creating an Additional View ·for an Existing Document. 354
Loading and Storing Documents .. 355
Multiple Document Templates. .. 355

Drag and Drop...,-Programs and Documents 355
Program Registration 356
Enabling Drag and Drop. .. 357
Enabling Embedded Launch .. 357
Program Startup Parameters 357
Responding to DDE Messages. .. 358

The EX17 A Example .. 358
CEx17aApp ... 359
CMainFrame .. 363

Testing the EX17 A Application .. 367
The EX17B Example .. 367

CHAPTER EIGHTEEN

PRINTING AND PRINT PREVIEW. .. 371

Windows Printing ... 371
Standard Printer Dialogs. .. 372
Interactive Print Page Selection 372
Display Pages vs. Printed Pages .. 373

Print Preview .. 374

xiii

INSIDE VISUAL C++

xiv

Programming for the Printer 374
The Printer Device Context and the CView::OnOraw Function 374
The CView::OnPrint Function 375
Preparing the Device Context-

The CView::OnPrepareOC Function. .. 375
. The Start and End of a Print Job. .. 376

Example EX18A-A Wysiwyg Print Program 377
Example EX188-A Multipage Print Program 384
Exercises for the Reader. .. 389

CHAPTER NINETEEN

SPLITTER WINDOWS AND MULTIPLE VIEWS , 391

The Splitter Window 391
Multiple View Options 392
Dynamic and Static Splitter Windows .. 393
EX19A-A Single View Class SOl Dynamic Splitter Example 393

CMainFrame .. 393
Resource Requirements .. 394
Testing the EX19A Application. .. 395

EX198-A Double View Class SOl Static Splitter Example 395
CHexView .. 395
CMainFrame .. 396
Testing the EX19B Application .. 397

EX19C-A Multiple View Class MOl Example 398
CEx 19cApp '. .. 398
CMainFrame 399
Resource Requirements .. 401
Testing the EX19C Application. .. 401

CHAPTER TWENTY

CONTEXT-SENSITIVE HELP , 403

The Windows WINHELP Program 403
Rich Text Format (RTF) .. 403
Writing a Simple Help File. .. 404

The Application Framework and WINHELP 409
Calling WINHELP ... 410
Using Search Strings 411
Help Context Aliases. .. 411
Determining the Help Context 411
Menu Access to Help '. .. 412
F1 Help .. 412
Shift-F1 Help .. 412
Message Box Help-The AfxMessageBox Function 413
Generic Help. .. 414

A Help Example-No Programming Required 414
The MAKEHELP Process. .. 416

Table of Contents

Help Command Processing. .. 417
F1 Processing. .. 417
Shift-F1 Processing. .. 418

A Help Command Processing Example-EX20B 419
Header Requirements. .. 419
CEx20bApp .. 419
CMOIHelpWnd. .. 420
CStringView . .. 421
CHexView .. 421
Resource Requirements .. 422
Help File Requirements. 422
Build and Test the Application 423

CHAPTER TWENTY-ONE

A PRACTICAL WINDOWS-BASED APPLICATION 425

The MATPLAN Application 426
The Anatomy of the MATPLAN Application 427
CMatplanApp ... 428

Initlnstance ... 428
Exitlnstance. .. 429

CMatplanOoc. .. 429
Constructor .. 429
Serialize. .. 429
DeleteContents .. 429
OnEditClearAII. .. 430
OnUpdateEditClearAII. .. 430
OnUpdateFileSave '. .. 430

CMainFrame .. 430
OnWindowNew1 ... 430
On Win do wNe w2 .. 430

CMOISpecialChildWnd .. 431
OnCommandHelp .. 431

CPiece . .. 431
Draw 431
PrintLine. .. 432
Serialize. .. 432
InsertlnList, ExtractFromList .. 433

CMatplanOia/og. .. 434
Constructor .. 434
DoDataExchange .. 434
OnClickedCancel .. 435
OnClear, OnDelete, On Insert, OnUpdate. .. 435
OnCascade .. 436

CListView .. 436
OnPrepareDC .. 436
OnDraw 437

xv

INSIDE VISUAL C++

xvi

OnPrint. .. 437
OnUpdate .. 438
OnPreparePrinting. .. 438
OnBeginPrinting, OnEndPrinting .. 438
OnCreate .. 439
OnPaint .. 439
On Size .. 439
OnListBoxob/C/k .. 440
OnCommandHe/p, OnHe/pHitTest .. 441
StartNewList .. 441
UpdateP/anoocument. 441

CPlan View .. 442
Onoraw 442
OnPreparePrinting 442
OnUpdate .. 442
On/nitia/Update .. 443
OnPaint .. 444
OnLButtonoown .. 444
OnMouseMove " .. 445
OnLButtonUp. .. 446
OnLButtonob/C/k 447
OnKeyoown .. 447
OnCommandHe/p, OnHe/pHitTest 447
ShowOver/ap : .. 447
SafeScrollTo. .. 448

The MATPLAN Resource File 448
The /oo_FORM Dialog .. 448
The /oR_MATTYPEMenu 449
Symbols .. 449

Header Files .. 450
Building and Testing the MATPLAN Application 450

PART IV ADVANCED TOPICS 451
CHAPTER TWENTY-TWO

MFC LIBRARY VERSION 2.5 PROGRAMS
WITHOUT DOCUMENTS OR VIEWS 453

The EX22A Example-An SOl Application 454
CEx22aApp . .. 457

/nitlnstance .. 457
CMainFrame .. 457

Constructor .. 45~
OnPaint .. 458
OnC/ose. .. 458
OnQueryEndSession. .. 458
OnFi/e, OnH/p .. 458

Resource Requirements 458
The EX22B Example-A Dialog-Based Application 458

Table of Contents

CEx22bApp .. 462
Data Members. .. 462
Initlnstance .. 462

CEx22bOialog .. , 462
Data Members .. , 462
Constructor .. 462
OoOataExchange .. 462
On Camp ute .. 462

Resource Requirements , 463
The EX22C Example-An MOl Application , 463
CEx22cApp .. , 468

Initlnstance .. 468
CMainFrame ... , 468

Constructor .. 468
OnClase . .. , 469
OnQueryEndSessian. .. 469
OnFileNew . .. , 469
OnWindawClaseAII ; 469
OnUpdateWindawClaseAII 469
ClaseAIIChildWindaws .. 469

CChildFrame .. 469
Data Members ... 470
Constructor .. 470
OnPaint 470
OnClase . .. , 470
OnFileClase .. 470
Destroying CMOIChildWnd Objects 471

Resource Requirements , 471

CHAPTER TWENTY·THREE

STORING BITMAPS IN A DOCUMENT-
DIBS AND THE CLIPBOARD 473

The Windows DIB Format , 473
DIBs, Colors, and Palettes 474
Passing Images via the Clipboard 475
Bitmap Clipboard Rules 476
DIBs in MFC Library Documents 477
Printing with DIBs .. 477
The COib Class .. 477
DIB Access Functions , 481
The EX23A Example .. 482
CEx23aOoc .. 482

Constructor, Destructor. .. 483
OeleteCantents .. 483
Serialize. .. 483
OnEditClearAII , 483

xvii

INSIDE VISUAL C++

xviii

CBitsOia/og .. 483
COib . .. 484

Memory Allocation .. 484
Serialization of Large Bitmaps 484

CEx23a View. .. 492
Constructor, Destructor. .. 492'
OnCreate .. 493
OnlnitialUpdate 493
OnDraw ' 494
OnEditCopy. .. 495
OnEditCopyTo . .. 496
OnEditCut .. 496
OnEditPaste. .. 496
OnEditPasteFrom 496
OnPrint. .. 497
OnUpdate .. 497
The Update Command UI Functions , 497

The EX23A Resource File .. 498
The IDD_BITS Dialog Resource .. 498
The lOR_MAINFRAME Menu Resource " , 498

Testing the EX23A Application 499
Bitmap Manipulation , 500

CHAPTER TWENTY-FOUR

DATABASE MANAGEMENT WITH MICROSOFT ODBC 501

Database Management VS. Serialization : 502
SOL ... 503
The ODBC Standard .. 503
The ODBC Architecture 504
ODBC SDK Programming .. 504
The MFC ODBC Classes , 506
The EX24A Example .. 508
The EX24A Program Elements :................ 513

Connection of the Recordset Class to the Application 513
The CEx24aViewClass's OnlnitialUpdate Member Function 514
The CEx24aView Class's OnDraw Member Function , 514

The MFC Dialog Bar .. 515
Application Shutdown , 516
A Row-View Class .. 517

The Scrolling Problem. 529
Dividing the Work Between Base and Derived Classes 529
The CRowView Pure Virtual Member Functions. 529
Other CRowView Functions 530

Programming a Dynamic Recordset 530
Counting the Rows in a Recordset , 531
The EX24B Example .. 532
CEx24bApp .. , 533

Table of Contents

CMainFrame , 533
CEx24bOoe , 533

Data Members .. , 534
OnNewDocument ... , 534
OnFileConnect. .. 534
OnFileDisconnect ... , 535
OnQueryRequery .. 536
PutFilterSort, GetFilterSort. .. 536
SaveModified 536
Serialize . .. , 536

CEx24bView . .. 537
Data Members. .. 537
OnUpdate .. " ... , 537
GetRowWidthHeight, GetActiveRow,

ChangeSelectionNextRow, ChangeSelection ToRow. 537
GetRowCount .. 537
OnDrawRow, DrawDataRow .. 538

CEx24bSet. .. 540
Data Members ... 540
Initialize .. 541
DoFieldExchange .. 542
Destructor .. 543

Crab/eSe/eet .. 544
Data Members. .. 544
Constructor .. 544
On In itDia log .. 545
OnDblclkList1 ... 545

The EX24S Resource File .. 545
Running the EX24S Program. .. 546
Going Further with ODSC 547

CHAPTER TWENTY-FIVE

OLE AND OLE AUTOMATION " 549

Learning OLE ... , 549
The Common Object Model (COM). .. 550

The Problem That COM Solves. .. 551
The Essence of COM 551
What Is a COM Interface? .. 552
The IUnknown Interface and the

Querylnterface Member Function 557
Reference Counting: The AddRef and Release Functions 561

Class Factories .. 561
COM and MFC-The CCmdTarget Class. .. 563
A Working COM Example .. 564
OLE and the Windows Registration Database , 574
Run-Time Object Registration , 575
How a COM Client Calls a DLL Server , 576

xix

INSIDE VISUAL C++

xx

How a COM Client Calls an EXE Server. .. 577
MFC and OLE .. 579
Containment vs. Inheritance 580

OLE Automation ... , 580
Connecting C++ with Visual Basic for Applications (VBA) 580
Automation Controllers and Automation Servers 581
Microsoft Excel-A Better Visual Basic Than Visual Basic 582
Properties, Methods, and Collections 585
The Problem That OLE Automation Solves. .. 585

The IDispatch Interface 586
OLE Automation Programming. .. 586
The MFC IDispatch Implementation 588
An MFC OLE Automation Server 588
An MFC OLE Automation Controller 590
The VARIANT Type " .. 592
The CVariant Class .. 594
Parameter and Return Type Conversions for Invoke. 597

OLE Automation Examples , 599
The EX25B Automation Server EXE-No User Interface 599
The EX25C Automation Server DLL .. 607
The EX25D SOl Automation Server EXE 614
The EX25E Automation Controller Program 621

The Market Controller Class for EX25B.EXE , 622
The Controller Class for EX25CDLL , 624
The Controller Class for EX25D.EXE 626
Controlling Microsoft Excel , 628

OLE and the Future .. 633

CHAPTER TWENTY-SIX

DYNAMIC LINK LIBRARIES (DLLs) " 635

Why Use a DLL? .. 635
Conventional DLLs 636
The MFC Library DLL 637

MFC Library DLL Usage Restricted to
Microsoft C++ Compilers. .. 637

The MFC Library Classes as a DLL .. 637
Using MFC250D.DLL in an Application. .. 638
MFC Library Extension DLLs 639
MFC Library DLL Memory Usage. .. 640
Required Code for Extension DLLs 640
. Searching for Resources. .. 641
Inline Constructors 642
Extension DLL Exports 642

A DLL-Resident Class Used Directly 642
A DLL-Resident Class Used for Derivation 642

Static Class Data Members 643
Extension DLL Run-Time Class Identification 644

Table of Contents

Creating the DLL .. , 644
Creating the Import Library , 644
Debug and Release DLL Versions .. 644

EX26A-Writing Your Own Class Library Extension DLL 645
The EX26ADDEF File. 646
Visual Workbench Options for the EX26AD Project 647
Creating the Import Library and Copying the DLL. 648

EX26B-Using an MFC Library Extension DLL , 648
CEx26bApp .. , 649

EX26B.H .. 649
EX26B.CPP ... , 649

CEx26bOoc .. 649
CEx26b View , 649
CStudentOia/og ... , 651
Building and Testing the EX26B Program. .. 651

Accessing Resources. .. 653

PART V APPENDiXES.................................. 655
APPENDIX A

A CRASH COURSE IN THE C++ LANGUAGE. 657

An Introduction to Classes and Objects ' .. , 657
User-Defined Types in C .. 657
Moving to C++ .. 658
Constructors ... , 659
Destructors .. , 661
Other Member Functions , 662
Private vs. Public Class Members , 663
Global Functions ... 664
C++ Encapsulation-A Recap , 665

Inheritance and Polymorphism-An Example. 665
The Orbiter Base Class and Virtual Functions. 665
Pure Virtual Functions , 667
Derived Classes .. , 667
Virtual Functions Called in Base Classes , 668

Embedded Objects , 668
Copy Constructors .. , 669
Assignment Operators , 670
Reference Parameters: canst vs. non-canst , 671
C++ References at Work 672
Returning References , 675
Construction of Embedded Objects-A Summary 676
Destruction of Embedded Objects. .. 676

Allocation of Objects on the Heap , 677
The C++ new and delete Operators 677
Referring to Objects Through Pointers , 677
Virtual Destructors. .. 679

xxi

INSIDE VISUAL C++

xxii

Allocation of Global Objects 680
Object Interrelationships-Pointer Data Members 680
Use of the this Pointer ; 682
References to Pointers 682
Friend Classes and Friend Functions 683

Friend Classes .. 683
Global Friend Functions .. 684

Static Class Members .. 685
Static Data Members. .. 685
Enumerated Types-A Static Data Member Shortcut 686
Static Member Functions 686

Overloaded Operators. .. 687
Member Function Operators. .. 687
Conversion Operators. .. 689
Global Operators .. , 690

Separating Class Declarations from Code 691

APPENDIX B

MESSAGE MAP FUNCTIONS IN THE
MICROSOFT FOUNDATION CLASS LIBRARY " 693

APPENDIX C

MICROSOFT WINDOWS FUNCTIONS USED IN THIS BOOK.. 699

APPENDIX D

VISUAL C++, VERSION 2.0 FOR WINDOWS NT " 701

32-Bit Programming. .. 702
Porting 16-Bit MFC Library Applications to Windows NT 703

Archive Portability Between Windows 3.1 and Win32 704
Some MFC Library Features for Windows 3.1

Not Supported Under Win32 .. 704
Enhanced MFC 3.0 Library Features 704
Windows NT Debugging Considerations 705
The Win32s Subsystem 705
Multiplatform Development Strategy. .. 705

INDEX 707

ACKNOWLEDGMENTS

A lot of people contributed to the first edition of this book, and many of
those same souls worked hard on this edition too. Special thanks go to
Chuck Sphar, who provided advance copies of the MFC documents, and to
Dean McCrory of the AFX development group, who endured and patiently
answered dozens of technical questions, many of which were really stupid.
More stupid questions were cheerfully answered by Russell Williams and Eric
Wells of the Excel group. Not to be ignored are those folks out in cyberspace,
especially John Arnold, who pointed out far too many glitches and mistakes
in the first edition.

On the Microsoft Press side, there's technical editor Jim Fuchs, who
put in the usual long hours and checked every line of my source code,
and project editor Jack Litewka, who applied his large magnifying glass to
each of my screen dumps. Special thanks go to Dean McCrory (the same
Dean mentioned above), Kraig Brockschmidt, and Charlie Kindel, who re­
viewed the manuscripts for Chapters 24 and 25.

xxiii

INTRODUCTION

It isn't often that a truly new software product category comes along. The
"application framework" is such a category, and Visual C++ contains what is
arguably the most powerful Windows-based application framework to date.
The product has substantial credibility because it comes from Microsoft, the
author of Windows itself. Even though the Microsoft Visual C++ application
framework is quite different from anything else you might have used, it
builds on elements you might be familiar with already, including the C++ lan­
guage, the Windows Software Development Kit (SDK) for the C language,
the original Microsoft Foundation Class Library version 1.0 that was deliv­
ered with Microsoft C/C++ version 7.0, and the Microsoft Foundation Class
Library version 2.0 that was part of Visual C++ version 1.0.

Microsoft Foundation Class (MFC) Library version 2.5-which I'll of­
ten refer to as "the MFC library," for short-is an important part of Visual
C++ version 1.5 and the core of the application framework. The MFC library
consists of a library of C++ classes and global functions with source code in­
cluded. Other Visual C++ components-including AppWizard, ClassWizard,
App Studio, Visual Workbench, the compiler, and the linker-are the tools
you'll use to construct your applications.

This book explains the MFC library classes, and it shows you how to use
the classes and the tools to build Windows-based applications. If you already
own Visual C++, Inside Visual C++ provides useful techniques, points of view,
examples, and theory that are not included in the product documentation.
If you're contemplating buying Visual C++, this book gives you an overall pic­
ture of the product's capabilities.

Who Can Use This Book
When I started working with version 1.0 of the MFC library, after a not-so­
successful attempt to learn Windows SDK programming, I realized that C++
and Windows were a natural fit and that it was actually easier to learn Win­
dows-based programming the C++ way. Why not try to teach it that way? Why
not assume that the reader has a programming background and then bypass
all the "ugly stuff' that beginning SDK programmers have to learn?

xxv

INSIDE VISUAL C++

My editors agreed, but they also said, "Don't forget the experienced
Windows programmers, the ones who have been buying all the Petzold
books." "OK," I said, and set my sights on an approach that would serve those
with and without prior Windows experience.

Next there was the question of C++ knowledge; Surely, with so many
C++ books out there, everyone would know the language by now. "Everyone
has bought at least one C++ book" would be a truer statement, however. Per­
haps you began to read a book, did a few of the examples, and then lost inter­
est and dropped back to C. The Visual C++ application framework is a good
excuse to become really proficient at C++, and this book will help.

As a writer, it was easier to assume that my readers didn't know Windows
than it was to assume that they didn't know C++. Given the prototype for an
ellipse function, for example, it's pretty easy for any programmer to write
code that draws an ellipse on the screen, with either an ordinary C function
or a C++ member function. But if the programmer doesn't understand C++
classes and objects, he or she is in trouble. For this reason, I've included a
C++ crash course in Appendix A. If you're new to C++, read through Appen­
dix A, but keep those other C++ books handy. You might finally be motivated
to read them!

Notice that I've been talking about programmers. Yes, you do have to
be one, or at least a student of programming. Compilers, tools, and operat­
ing systems have become so complex in recent years that it's impossible to go
from zero to expert Windows programmer within one book. A background
in C is the absolute minimum because even Appendix A assumes that you
can read C code.

Oh, I almost forgot. You should know how to run Windows-based appli­
cations. If you don't know what a program for Windows is supposed to do,
how can you design and write one? If you're looking for an application to
start with, try Microsoft Word for Windows. It's a good example of a modern
Windows-based program. Besides that, it's a darn good word processor, and
you can write help files with it. I used it to write 'this book.

How to Use This Book

xxvi

When you're starting off with Visual C++, you can use this book as a tutorial
by going through it sequentially. Later you can use it as a reference by look­
ing up topics in the table of contents or the index. Because of the tight inter­
relationships among many application framework elements, it wasn't
possible to cleanly isolate each concept in its own chapter, so the book really

Introduction

isn't an encyclopedia. When you use this book, you'll definitely want the
Class Library Reference by your side.

The Organization of this Book
As the table of contents shows, there are four main parts to this book:

Part I: Windows, Visual C++, and
Application Framework Fundamentals

In this part, I try to strike a balance between abstract theory and practical
application. Mter a quick review of modern Windows and of the Visual C++
components, you'll be introduced, in a gentle way, to the application frame­
work and the document-view architecture. You'll see a simple "Hello,
world!" program, built with the MFC library classes, that requires only 30
lines of code.

Part II: The MFC Library View Class
The MFC library documentation presents all the application framework ele­
ments in quick succession, with the assumption that you already know Win­
dows SDK programming. Here you're confined to one major application
framework component-the "view," which is really a window. It's here that
you'll learn what SDK programmers know already, but in the context of C++
and the MFC library classes. There's something for Windows gurus too, be­
cause the MFC library view environment supports extras such as dialog data
exchange, graphical buttons, and Visual Basic controls. You'll use the Visual
C++ tools a lot, and that in itself eliminates much of the coding drudgery in
the life of SDK programmers.

Part III: The Document-View Architecture
Now the real core of application framework programming is introduced­
the document-view architecture. You'll learn what a document is (think of it
as something much more general than a word processing document), and
you'll see how to connect it to the view that you learned about in Part II.
You'll be amazed, once you have written a document class, at how the MFC
library simplifies file I/O and printing.

Along the way, you'll learn about command message processing,
toolbars and status bars, splitter frames, and context-sensitive help. You'll
also be introduced to the Windows Multiple Document Interface (MDI)
that's featured so prominently in MFC library applications.

xxvii

INSIDE VISUAL C++

Pay special attention to the section "Speeding Up the Build Process" on
page 43 because the speed-up hints will help you save time as you work
through the book's examples.

Part IV: Advanced Topics
This part is a catchall for many useful Windows programming techniques
directly supported by the MFC library. You'll start with several bare-bones
Windows-based applications that bypass the document-view architecture,
and then you'll see a useful class for device-independent bitmaps. In Chap­
ter 24, you'll see examples that use the Microsoft Open Database Connectiv­
ity (ODBC) programming interface. Chapter 25 introduces OLE, and
Chapter 26 explains MFC library-style dynamic link libraries (DLLs).

Going Further with Windows: The Purpose of
the "For SDK Programmers" Sidebars

This book can't offer the kind of detail-the tricks and hidden features­
found in the newer, specialized books about Windows. Most of these books
are written from the point of view of a C-Ianguage SDK programmer. In or­
der to use these books, you'll have to understand the underlying SDK appli­
cation programming interface (API) and its relationship to the MFC library.

This book's "For SDK Programmers" sidebars, scattered throughout
the text, help you make the connection to the Windows SDK. These specially
formatted boxes help experienced Windows C programmers relate new
MFC library concepts to SDK principles they already know. If you're unfamil­
iar with SDK programming, you should skip these notes the first time
through, but you should read them on your second pass through the book
because they'll help you understand the mainstream literature about Win­
dows after you get up to speed with the MFC library.

If You've Worked with
Other Application Frameworks

xxviii

You're probably already aware of other application framework products.
(The best known is MacApp, for the Apple Macintosh.) The MFC library is
similar to and different from these other products; therefore, please don't
make any assumptions about terminology or the function of any similarly
named class.

Introduction

. Hardware Requirements
If you haven't discovered this already, your Windows development machine
needs more horsepower than a standard target machine. Because your time
is valuable, go for a fast 80486 or Pentium computer with 8 megabytes (MB)
or more of random access memory (RAM) . Extra RAM can be used for a disk
cache and a RAM disk that will work together to speed compiles and links.
Chapter 3 shows you how to configure your extra RAM.

As far as disk space is concerned, plan on 50 MB for the Visual C++ pro­
grams alone. Each project can require as much as 4 MB (including pre­
compiled headers, map files, and a browser database), and you'll have lots of
projects. A 200-MB hard disk drive is the minimum; a 500-MB hard disk drive
is more realistic. By the way, you'll also need a CD-ROM drive. Visual C++ is
shipped only on CD-ROM, and you'll probably want to access sample code
and documentation directly from the CD-ROM.

Also consider a large-screen monitor with a super VGA board. With the
large monitor, you can simultaneously display Visual Workbench, the Help
window, and a Windows-based program that's being debugged.

Using the CD-ROM Companion Disc
The companion disc that's bound into the inside back cover of this book
contains the source code files and make files for all the sample programs.
The executable program files are not included, so you won't have to build
the samples that you're interested in. To install the companion disc's files, in­
sert the disc in your CD-ROM drive, and run the Setup program. Follow the
on-screen instructions.

With a conventional C-Ianguage Windows SDK program, the source
code files tell the whole story. With the MFC library application framework,
things are not so simple. Much of the C++ code is generated by AppWizard,
and the resources originate in App Studio. The examples in the early chap­
ters include step-by-step instructions for using the tools to generate and cus­
tomize the source code files. You'd be well advised to walk through those
instructions for the first few examples. There's very little code to type. For
the middle chapters, use the code from the companion disc, but read
through the steps anyway in order to appreciate the role of App Studio and
the Wizards. For the final chapters, not all the source code is listed. You'll
need to examine the companion disc's files for those later examples.

xxix

INSIDE VISUAL C++

Technical Notes and Sample Programs
You can access a Visual C++ help file that contains 46 useful technical notes.
These notes cover advanced MFC library features not discussed in the docu­
mentation. This book contains references to technical notes that are identi­
fied by. numbers. To read a technical note in the help file, you have two
options: You can run WINHELPand then select \MSVC\HELP\MFC­
NOTES.HLP, or you can double-click the MFC Tech Notes icon in the
Microsoft Visual C++ Program Manager group.

The \MSVC\MFC\SAMPLES subdirectory contains 30 useful MFC li­
brary sample programs. These programs, documented in the \MSVC­
\HELP\MFCSAMP help file (accessible from the MFC Samples Help icon
in the Visual C++ Program Manager group), illustrate more advanced MFC
library features. This book contains occasional references to these sample
programs.

Visual C++ Version 1.5

xxx

This book is a revision of an edition that was written for Visual C++ version
1.0. The changes made are numerous and occur throughout the book. Also,
text and screen changes reflect general improvements in AppWizard and
ClassWizard. Chapters 24 and 25 have been completely rewritten because
of the addition of the Open Database Connectivity (ODBC) classes and the
major revision of the OLE classes to accommodate OLE version 2.0.

Both ODBC and OLE 2 are such complex subjects that books have
been written on each. This book will discuss these subjects in a way that re­
lates to the focus of this book-namely, Visual C++. Chapter 24 is an intro­
duction to C++ database programming rather than a thorough explanation
of client-server computing. Chapter 25 concentrates on basic OLE 2 theory
and OLE Automation; other OLE 2 features such as in-place editing, linking,
and drag-and-drop are not covered.

PAR T I

WINDOWS, VISUAL C++,
AND APPLICATION
FRAMEWORK
FUNDAMENTALS

C HAP T E R ONE

MICROSOFT WINDOWS
AND VISUAL C++

Enough has already been written about the acceptance of Microsoft Win­
dows and the benefits of the graphical user interface (GUI). This chapter
summarizes the Windows programming model and shows you how the
Visual C++ components work together to help you write applications for
Windows. Along the way, you'll learn some new things about Windows. We'll
be looking toward the future rather than dwelling on the past.

The Windows Programming Model
No matter which development tools you use, programming for Windows is
different from old-style batch or transaction-oriented programming. To get
started, you need to know some Windows fundamentals. As a frame of refer­
ence, we'll use the well-known MS-DOS programming model. Even if you
don't currently program for plain MS-DOS, you're probably familiar with it.

Message Processing
When you write an MS-DOS application in C, the only absolute requirement
is a function named main. The operating system calls main when the user
runs the program, and from that point on, you can use any programming
structure you want. If your program needs to get user keystrokes or other­
wise use operating system services, it calls an appropriate function such as
getchar or perhaps uses a character-based windowing library.

When the Windows operating system launches a program, it calls the
program's WinMain function. Somewhere your application must have
WinMain, which performs some specific tasks. The most important task is
creating the application's "main window," which must have its own code to

3

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

process messages that Windows sends it. An essential difference between a
program written for Windows and a program written for MS-DOS is that an
MS-DOS program calls the operating system to get user input, but a Windows
program processes user input via messages from the operating system .

. NOT E : Many development environments for Windows, includ­
ing Microsoft Visual C++ with the Microsoft Foundation Class
(MFC) Library version 2.5, simplify programming by hiding the
WinMain function and structuring the message-handling process.
When you use the MFC library, you need not write a WinMain
function, but understanding the link between the operating sys­
tem and your programs is helpful.

Many messages in Windows are strictly defined and apply to all applica­
tions. For example, a WM_CREATE message is sent as a window is being cre­
ated, a WM_LBUTTONDOWN message is sent when the user presses the
left mouse button, a WM_CHAR message is sent when the user types a char­
acter, and a WM_CLOSE message is sent when the user closes a window.
Other messages ("command" messages) are sent to an application window in
response to user menu choices. These messages depend on the application's
menu layout. The programmer can define still other messages, known as
"user messages. "

Don't worry about how your code processes these messages yet. That's
the job of the application framework. Be aware, though, that the Windows
message processing requirement imposes a lot of structure on your program.
Don't try to force your Windows programs to look like your old MS-DOS pro­
grams. Study the examples in this book, and then be prepared to start fresh.

The Windows Graphics Device Interface (GDI)

4

Many MS-DOS programs wrote directly to the video memory and the printer
port. The disadvantage of this technique was the need to supply driver soft­
ware for every display card and every printer model. Windows introduced a
layer of abstraction called the Graphics Device Interface (GDI). Windows
provides the display and printer drivers, so your program doesn't need to
know the type of display card and printer attached to the system. Instead of
addressing the hardware, your program calls GDI functions that reference a
data structure called a device context. Windows maps the device context
structure to a physical device and issues the appropriate input/output
instructions. The GDI is almost as fast as direct video access, and it allows
different applications written for Windows to share the display.

ONE: Microsoft Windows and Visual C++

Resource-Based Programming
To do data-driven programming in MS-DOS, you have to code the data as
initialization constants, or you have to provide separate data files for your
program to read. When you program for Windows, you store data in a re­
source file using a number of formats. Windows merges a resource file into a
linked program through a process called "binding." Resource files can in­
clude bitmaps, icons, menu definitions, dialog box layouts, and strings. They
can even include custom resource formats that you define.

You use a text editor to edit a program, but you generally use "what you
see is what you get" (wysiwyg) tools to edit resources. If you're laying out a
dialog box, for example, you select elements from an array of icons called a
control palette, and you position and size the buttons, list boxes, and so forth
with the mouse. With the Visual C++ App Studio resource editor program,
you can effectively edit most resource formats. (Note: In Microsoft Visual
Basic and in Microsoft Access, the control palette is called a toolbox.)

Memory Management
In the old days, the MS-DOS conventional memory limit of 640 kilobytes
(KB) restricted the size of your programs. You could use various overlay man­
agement techniques and extended/expanded memory managers to allow
larger programs, but all had shortcomings. An 80386SX-based (or better)
computer usually has 4 megabytes (MB) or more of memory, and its CPU has
built-in memory management hardware. Windows, together with the Visual
C++ compiler, offers additional memory management features. The net re­
sult is that memory usually isn't a problem anymore.

Chapter 9 describes current memory management techniques for Win­
dows. If you've heard horror stories about locking memory handles, thunks,
and burgermasters, don't worry. That's all in the past. Today you simply allo­
cate the memory you need, and Windows takes care of the details. Parts of
your program, including resources, can be automatically swapped to and
from disk and then shuffled in physical memory, but chances are your com­
puter has so much memory that your entire program will fit into physical
memory.

Dynamic link libraries (Dlls)
In the MS-DOS environment, all a program's object modules were statically
linked during the build process. Windows allows dynamic linking, which
means that specially constructed libraries can be loaded and linked at
runtime. Multiple applications can share dynamic link libraries (DLLs),

5

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

which saves memory and disk space. Dynamic linking increases program
modularity because you can compile and test DLLs separately.

Designers originally created DLLs for use with the C language, and c++
has added some complications. Mter considerable effort, the Microsoft
Foundation Class Library developers succeeded in combining all the appli­
cation framework classes into a single DLL. Thus, you can statically or
dynamically link the application framework classes into your application.
In addition, you can create your own DLLs that build on the Microsoft Foun­
dation Class Library. Chapter 26 includes information about creating DLLs.

Windows NT
Windows NT is a new 32-bit operating system that has an advanced file sys­
tem with security features, multithreading, true preemptive multitasking,
enhanced network access, and portability to selected RISC computers. Win­
dows NT can run both existing Windows-based 16-bit applications (includ­
ing Visual c++ version 1.5) and new high-performance Windows-based 32-bit
applications.

How do you develop Windows 32-bit applications? Early beta testers
had to use the Win32 SDK, which includes a new C-Ianguage application pro­
gramming interface (API). Because of the need for 32-bit parameters, most
Win32 function prototypes are different from their 16-bit equivalents. In ad­
dition, many functions are new, particularly in the area of disk I/O. Windows
32-bit applications access files through the Win32 API rather than through
the MS-DOS API.

Existing C-Ianguage 16-bit applications for Windows will need extensive
conversion to become true 32-bit applications. A Microsoft Foundation Class
(MFC) Library application, on the other hand, will require only recom­
pilation because the MFC library was designed with the Win32 API in mind.
There is a separate 32-bit Visual c++ version for Windows NT. You can use
the 32-bit version to produce applications targeted for Windows NT and
other 32-bit versions of Windows. See Appendix D for information about
Visual C++ for Windows NT.

The Visual C++ Components

6

Microsoft Visual C++ is two complete Windows application development sys­
tems in one product. If you so choose, you can develop C-Ianguage Windows
programs using the API first introduced in the Windows SDK. Windows SDK
programming techniques are well known and have been documented in
many books, including Charles Petzold's Programming Windows 3.1 (Micro-

ONE: Microsoft Windows and Visual C++

soft Press, 1992). You can use many tools newly introduced in Visual C++,
including App Studio, to make Windows SDK-style programming easier.

This book is not about Windows SDK-style programming, however. It's
about C++ programming within the MFC library application framework
that's part of Visual C++. You'll be using the C++ classes that are documented
in the Class Library Reference, and you'll also be using application framework­
specific Visual C++ tools such as AppWizard and ClassWizard.

NOT E : Use of the Microsoft Foundation Class (MFC) Library
programming interface doesn't cut you off from the Windows
SDK functions. In fact, you'll almost always need some direct Win­
dows SDK calls in your MFC library programs.

A quick run-through of the Visual C++ components will help you get
your bearings before you zero in on the application framework. Figure 1-1
on the following page shows an overview of the Visual C++ application build
process.

Visual Workbench and the Build Process
The Visual Workbench is a Windows-hosted interactive development envi­
ronment that's a direct descendant of Microsoft QuickC for Windows. If
you're accustomed to running a compiler from the command line, please try
Visual Workbench. Trust me. It's really good. I avoided the old character­
mode Programmer's Workbench, but I use Visual Workbench now for all my
projects. All examples in this book are built with Visual Workbench.

If you've used QuickC for Windows, Programmer's Workbench, or the
Borland IDE, you already understand how Visual Workbench operates. But if
you're new to integrated development environments, you'll need to know
what a project is. A project is a collection of interrelated source files that are
compiled, linked, and bound to make up a working Windows program.
Project source files are generally stored in a separate subdirectory. A project
depends on many files outside the project subdirectory too, such as include
files and library files.

7

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

8

Figure 1-1.
The Visual C++ application build process.

Experienced programmers are familiar with make files. A make file ex­
presses all the interrelationships among source files. (A source code file
needs specific include files, an executable file requires certain object mod-

ONE: Microsoft Windows and Visual C++

ules and libraries, and so forth.) A make program reads the make file and
then invokes the compiler, assembler, linker, and resource compiler to pro­
duce the final output, which is generally an executable file. The make pro­
gram uses built-in "inference rules" that tell it, for example, to invoke the
compiler to generate an OBJ file from a specified CPP file.

In a command-line environment, you need to code the make file by
hand. Visual Workbench automatically generates the make file, known as a
"project file." In most cases, you want your project to include all the source
files in the project subdirectory, but you can exclude files in the project
subdirectory and use files from other subdirectories. Mter you create a
project, you can edit source code files in individual child windows. Visual
Workbench "remembers" which source code files you were working with and
maintains a list of most recently used projects. As part of the project, you can
save compiler and linker switch settings as specified through a series of dia­
log boxes. To generate the executable program, you simply choose the Build
command from the Visual Workbench Project menu.

Visual Workbench contains a useful text editor that follows Windows in­
terface standards and uses color to highlight C++ syntax. Unfortunately, you
can't fully customize this editor or install your own editor. If you do decide to
use your own editor, you'll forfeit the smooth integration that the integrated
development environment provides. For example, Visual Workbench high­
lights lines containing errors in your source code files when you build a
project and allows you to set debugging breakpoints.

The App Studio Resource Editor
The original Windows SDK included separate tools for editing dialog boxes,
bitmaps, and fonts. With Visual C++, you use App Studio to edit most re­
sources. Chapter 3 shows some App Studio windows. (See pages 39 and 40.)
App Studio includes both a wysiwyg menu editor and a powerful dialog box
editor that is far superior to the old Windows SDK DIALOG program. You
can use App Studio as your resource editor for Windows SDK-style program­
ming, but when you use App Studio for MFC library programming, you can
interactively insert Microsoft Visual Basic controls in your dialog boxes for
later connection to your C++ code.

App Studio's native file format is the ASCII Windows resource (RC) file
format, and each project usually has one RC file with #include statements to
bring in resources from other subdirectories. Editing the RC file outside
App Studio is not recommended. App Studio can also process EXE and DLL
files, so you can use the clipboard to "steal" resources, such as bitmaps and
icons, from other Windows applications.

9

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

App Studio compares favorably to the best applications written for Win­
dows, so it's significant thatApp Studio was written using the Visual C++ tools
and the MFC library. App Studio can even edit its own resources! Try it.
(You'll need to copy App Studio to another file and load the copy.)

The C/C++ Compiler
The Visual C++ compiler can process both C source code and C++ source
code. It determines the language by looking at the source code filename ex­
tension. A C extension indicates C source code, and CPP or CXX indicates
C++ source code. The compiler is compliant with ANSI version 2.1 and has
additional Microsoft extensions. Template and exception syntax are not sup­
ported in Visual C++ version 1.5. The Visual Workbench's Use Microsoft
Foundation Classes option (in the Project Options dialog box) determines
whether the compiler uses the Microsoft Foundation Class Library include
files.

The Linker
To generate an EXEfile, the Visual C++ linker processes the OBJ files that
the compiler produces. If you specify the Visual Workbench option Use
Microsoft Foundation)Classes, the linker uses the MFC library file for the ap­
propriate memory model.

The Resource Compiler
The Visual C++ resource compiler operates in either compile mode or bind
mode. In compile mode, an ASCII resource (RC) file from App Studio is
compiled into a binary RES file. In bind mode, the RES file is merged with
an executable (EXE) file. If you update a RES file, you can rebind it to its
EXE file without relinking.

The Debugger

10

If your program works the first time, you don't need the debugger. The rest
of us might need one from time to time. The Visual C++ debugger is the first­
ever Windows-hosted C++ debugging environment. The debugger works
closely with Visual Workbench to ensure that breakpoints are saved on disk.
Toolbar buttons toggle breakpoints and control single-step execution. Fig­
ure 1-2 illustrates the Visual C++ debugger in action. Note that the Locals

ONE: Microsoft Windows and Visual C++

: '"~ Microsoft Visual C++ Ibreak]- MATPlAN.EXE rs;;~;;:
, I

, :
,<> <2> Locals F011f;: ,

] int nCount = Ox0003
BP-0006]-CPiece near * pPiece = Ox1F27: Ox57EA

+CObject CObject = { ••• }
+CRuntilQeClass classCPiece = { ••• }
double IQ_Iength = 20.000000000000
double IQ width = 30.000000000000

-CString iii_desc = { ••• }
+char * lQ_pchData = Ox1F27: Ox5832 "Ceiling
int lQ_nDataLength = Ox001e protected
int lQ_nAllocLength = Ox001e protected

long lQ_sheet = Ox00000001
long IQ_X = Ox00000029
long IQJ = OxOOOOOOOO
unsigned char lQ_bOuerlap = Ox 00 "
int lQ_bHewList = Oxcdcd

}
!~ l.s*~ {

.. pI'

/I copy all data frolll doculllent's piece array to •. lie~l's listbox
for(int i = 0; i <= nCount; i++) {

iece = CPie

Figure 1-2.
The Visual C++ debugger window.

window can expand an object pointer to show all data members of the
derived class and base classes. To debug a program, you must build the
program with the compiler and linker options set to generate debugging
information.

In addition to the Windows-hosted Visual C++ debugger, you get the
character-mode CodeView debugger. CodeView for Windows debugs p-code,
and it has several other useful features.

AppWizard
App Wizard is a code generator that creates a working skeleton of a Windows
application with features, class names, and source code filenames that you
specify through dialog boxes. You'll use AppWizard extensively as you work
through the examples in this book. Don't confuse AppWizard with con­
ventional code generators such as Caseworks CASE:W and Blue Sky
WindowsMAKER. AppWizard code is minimalist code; the functionality is
inside the application framework base classes. Its purpose is to get you
started quickly with a new application.

11

PAR T I:' WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

ClassWizard
ClassWizard is a program (implemented as a DLL) that operates both inside
the Visual Workbench and inside App Studio. ClassWizard takes the drudg­
ery out of maintaining Visual C++ class code. Need a new class or a new func­
tion to handle a Windows message? ClassWizard writes the prototypes,
function bodies, and code to connect the messages to the application frame­
work. ClassWizard can update class code that you write, so you avoid mainte­
nance problems common to ordinary code generators.

The Source Browser

12

If you write an application from scratch, you probably have a good mental
picture of your source code files, classes, and member functions. If you take
over someone else's application, you'll need some assistance. The Visual C++
Source Browser (the "browser," for short) lets you examine (and edit) an
application from the class or function viewpoint instead offrom the file view­
point. It's a little like the "inspector" tools available with other object­
oriented libraries such as Smalltalk. The browser has the following viewing
modes:

• Definitions and References-You select any function, variable, type,
macro, or class and then see where it's defined and used in your
project.

• Call Graph/Caller Graph-For a selected function, you get a
graphical representation of the functions it calls or the functions
that call it.

• Derived Class Graph/Base Class Graph-These are graphics class
hierarchy diagrams. For a selected class, you see the derived classes
or the base classes. You can control the hierarchy expansion with
the mouse.

A typical browser window is shown on page 34 in Chapter 3.

NOT E : If you rearrange the lines in any source code file, you
must rebuild the browser database.

ONE: Microsoft Windows and Visual C++

Online Help
The entire contents of the Windows SDK reference manuals and the MFC li­
brary reference manuals are included in the Visual C++ online Help. Help is
also available for App Studio, AppWizard, and ClassWizard. Don't under­
estimate the value of Help. Many programmers at Microsoft use it exclu­
sively. If you want help on a function, simply click on (or move the cursor to)
the function in the Visual Workbench editor and press Fl; you'll see a Help
window, as shown in Figure 1-3.

Visual C++ Help resolves conflicts between Windows SDK function
names and identical Microsoft Foundation Class (MFC) Library names. If
you select a function name that corresponds to member functions in several
classes, you can choose the class from a list box. If you ask for help on a class,
you'll see a member function and data member list in functional order.

Windows Diagnostic Tools
Visual C++ contains the same set of diagnostic tools that were included with
the Windows SDK when it was a separate product: SPY for observing Win­
dows messages, HEAPWALK for examining memory, HC31 for compiling
help files, STRESS for artificially limiting available memory, and a profiler
program that alerts you to bottlenecks in code.

CView::GetDocument

CDocument* GetDocumentO const;

IIIl1i"III' t1
Remarks

Call this function to get a pointer to the view's document.
This allows you to call the document's member functions.

Return Value

A pointer to the CDocument object associated with the
view. NUll if the view is not attached to a document.

Figure 1-3.
The Visual C++ Help window.

13

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

Also included are the DBWIN utility, which displays diagnostic output,
and the NMAKE program, which processes hand-coded make files. NMAKE
is used to build nonstandard versions of the Microsoft Foundation Class
Library.

The Microsoft Foundation Class Library Version 2.5

14

The Microsoft Foundation Class Library version 2.5 (aka the MFC library) is
really the subject of this book. It defines the application framework that
you'll be getting to know intimately. Chapter 2 gets you started with actual
code and some important concepts.

C HAP T E R TWO

THE MICROSOFT
FOUNDATION CLASS LIBRARY
APPLICATION FRAMEWORK

This chapter introduces the Microsoft Foundation Class Library version 2.5
(aka the MFC library) application framework by explaining its benefits. Early
on, you'll see a stripped-down but fully operational MFC library program for
Windows that should help you understand what application framework pro­
gramming is all about. Theory is kept to a minimum here, but the message
mapping and document-view sections contain important information that
will help you with the examples that follow in later chapters.

Why Use the Application Framework?
If you're going to develop applications for Windows, you've got to choose a
development environment. Assuming you've already rejected the interactive
options such as Microsoft Visual Basic, you must choose among the following
options:

• The tried-and-true Windows SDK (Software Development Kit)

• The new MFC library application framework

• Other Windows-based application frameworks such as Borland's
Object Windows Library (OWL)

If you're starting from scratch, any option involves a big learning curve.
If you're already a Windows SDK programmer, you'll still have a learning
curve with the MFC library. So what benefits can justify this effort?

15

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

16

The Microsoft Press editors told me not to make this section sound like
a marketing brochure, but I couldn't help it. I'm really enthusiastic about
the product. It's the application development environment I've been waiting
on for 10 years.

Here are the MFC library benefits as I see them.

MFC library version 2.5 is the C++ Microsoft Windows API. Your ac­
ceptance of this premise depends on your acceptance of the C++ language. If
C++ takes over from C-and many people expect it to-then it's natural for
Windows to have a C++ programming interface. It's highly unlikely that the
Windows-C++ interface standard will come from any company other than
Microsoft, the producer of Windows itself.

I believe C++ will take over because it's the only universally accepted
object-orIented language, and object-oriented programming is necessary for
large software projects that require reusable, modular components. As more
users demand more sophisticated software, we can't keep writing bigger C
programs!

Application framework applications use a standard structure. Any
programmer starting on a large project develops some kind of structure for
the code. The problem is that each programmer's structure is different, and
for a new team member to learn the structure and conform to it is difficult.
The MFC library application framework includes its own application struc­
ture-one. that's been proven in many software environments and in many
projects. If you write a program for Windows that uses the MFC library, you
can safely retire to a Caribbean island, knowing that your minions can easily
maintain and enhance your code back home.

Don't think that the MFC library's structure makes your programs in­
flexible. With the MFC library, your program can do anything that a Win­
dows SDK program can do, and that means y<?u can take maximum
advantage of Windows.

Application framework applications are small and fast. Function for
function, MFC library programs are almost as small as Windows SDK pro­
grams. An MFC library "Hello, world!" program is only 80 KB with the MFC
library functions statically linked. The same program is 23 KB with the MFC
library dynamic link library (DLL). As for speed, in some circumstances an
MFC library application is actually faster than its Windows SDK equivalent.

TWO: The Microsoft Foundation Class Library Application Framework

MFC library application framework is feature-rich. The MFC library
version 1.0 classes, supplied with Microsoft C/C++ version 7.0, were essen­
tially a C++ programming interface for Windows. Some significant features
were added, however:

• General-purpose classes (non-Windows-specific), including

o Collection classes for lists, arrays, and maps

o A useful and efficient string class

o Time, time span, and date classes

o File access classes for operating system independence

o Support for systematic object storage and retrieval to and
from disk

• A "common root object" class hierarchy

• Streamlined Multiple Document Interface (MDI) application
support

• Support for OLE (Object Linking and Embedding) version 1.0

The MFC library version 2.0 classes picked up where the version 1.0
classes left off by supporting many user interface features that are found in
current Windows-based applications. Application framework architecture
aside, here's a summary of the important new features:

• Full support for File Open, Save, and Save As menu items with
the most recently used file list

• Print preview and printer support

• Scrolling windows and splitter windows

• Toolbars' and status bars

• Access to Microsoft Visual Basic controls

• Context-sensitive help

• Automatic processing of data entered in a dialog box

• An improved interface to OLE version 1.0

• DLL support

17

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

The version 2.5 classes contribute the following:

• ODBC (Open Database Connectivity) support that allows your
application to access and update data stored in many popular
databases such as Microsoft Access, FoxPro, and SQL Server .

• An interface to OLE version 2.01, with support for in-place editing,
linking, drag-and-drop, and OLE Automation.

You'll see examples that exploit all these features, but to appreciate
what the MFC library offers, consider print preview and printer support. The
Windows SDK offers no support for print preview. Charles Petzold devotes 60
pages to printer support in Programming Windows 3.1; other books about
Windows ignore the subject completely. The MFC library contains several
thousand lines of "invisible" code that makes print preview and printing "au­
tomatic." The Print Preview and Printer support features alone might justify
the use of the MFC library.

The Visual C++ tools reduce coding drudgery. App Studio, AppWizard,
and ClassWizard significantly reduce the time needed to write code that is
specific to your application. For example, App Studio creates a header file
that contains assigned values for #define constants. AppWizard generates
skeleton code for your entire application, and ClassWizard generates-proto­
types and function bodies for message handlers.

The Learning Curve

18

All the benefits listed above sound great, don't they?'You're probably think­
ing that "you don't get something for nothing." Yes, that's true. To use the
application framework effectively you have to learn it thoroughly, and that
takes time. If you have to learn C++, Windows, and the MFC library (without
OLE 2) all at the same time, it will be at least six months before you're really
productive. Interestingly, that's close to the learning time for the Windows
SDK alone.

How can that be if the MFC library offers so much more? For one thing,
you can avoid many programming details that Windows SDK programmers
are forced to learn. From my own experience, I can say that an object-ori­
ented application framework makes programming for Windows easier to
learn-that is, once you understand object-oriented programming.

The MFC library won't bring real Windows programming down to the
masses. Windows programmers have usually commanded higher salaries
than other programmers, and that situation will continue. The MFC library

TWO: The Microsoft Foundation Class Library Application Framework

learning curve, together with the application framework's power, should en­
sure that MFC library programmers will be in strong demand.

What's an Application Framework?
One definition of an application framework is "an integrated collection of
object-oriented software components that offers all that's needed for a ge­
neric application." That isn't a very useful definition, is it? If you really want
to know what an application framework is, you'll have to read the rest of this
book. The application framework example that you'll familiarize yourself
with later in this chapter is a good starting point.

The Application Framework vs. the MFC library
One reason that C++ is a popular language is that it can be "extended" with
class libraries. Some class libraries are delivered with C++ compilers, others
are sold by third-party software firms, and still others are developed in­
house. A class library is a set of related C++ classes that can be used in an ap­
plication. A matrix class library, for example, might perform common
mathematical operations involving matrices, and a communications class li­
brary might support the transfer of data over a serial link. Sometimes you
construct objects of the supplied classes; sometimes you derive your own
classes-it all depends on the design of the particular class library.

An application framework is a superset of a class library. An ordinary li­
brary is an isolated set of classes designed to be incorporated into any pro­
gram, but an application framework defines the structure of the program
itself. This sounds . like a fine distinction, and it is. Most Windows develop­
ment class libraries, including Microsoft Foundation Class library version
1.0, Borland OWL, and Microsoft Foundation Class Library version 2.5,
are considered application frameworks. Microsoft Foundation Class (MFC)
Library version 2.5, however, provides significantly more features than the
others.

An Application Framework Example
Enough generalizations. It's time to look at some code-not pseudocode but
real code that actually compiles and runs with the MFC library. Guess what?
It's the good old "Hello, world!" application with a few additions. (If you've
used version 1.0 of the MFC library, this code will be familiar except
for the frame window base class.) It's about the minimum amount of code
for a working MFC library application for Windows. Contrast it with the

19

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

20

equivalent Windows SDK application! You don't have to understand every
line now. Don't bother to type it in and test it. Wait for the next chapter,
where you'll start using the "real" application framework.

NOT E : By convention, MFC library class names begin with the
letter C.

Following is the source code for the header and implementation files
for our MYAPP application. The two classes, CMyApp and CMyFrame, are each
derived from the MFC library base classes. First the MYAPP.H header file for
the MYAPP application:

II application class
class CMyApp : public CWinApp
{

public:
virtual BOOL Initlnstance();

} ;

II frame window class
class CMyFrame : public CFrameWnd
{

public:
CMyFrame() ;

protected:

} ;

II 'afx_msg' indicates that the next two functions are part
II of the MFC library message dispatch system.
afx_msg void OnLButtonDown(UINT nFlags, CPoint pOint);
afx_msg void OnPaint();
DECLARE_MESSAGE_MAP()

And now the MYAPP.CPP implementation file for the MYAPP application:

#include (afxwin.h) II MFC library header file declares base classes
#include "myapp.h"

CMyApp NEAR theApp; II the one and only CMyApp object

BOOL CMyApp::lnitlnstance()
{

m_pMainWnd = new CMyFrame();
m_pMainWnd-)ShowWindow(m_nCmdShow);

m_pMainWnd-)UpdateWindow();
return TRUE;

TWO: The Microsoft Foundation Class Library Application Framework

BEGIN_MESSAGE_MAP(CMyFrame. CFrameWnd)
ON_WM_LBUTTONDOWN()
ON_WM_PAINT()

END_MESSAGE_MAP()

CMyFrame::CMyFrame()
{

Create("AfxFrameOrView". "MYAPP Application");

void CMyFrame::OnLButtonDown(UINT nFlags. CPoint point)
{

}

TRACE("Entering CMyFrame::OnLButtonDown - %lx. %d. %d\n".
(long) nFlags. point.x. pOint.y);

void CMyFrame::OnPaint()
{

CPaintDC dc(this);
dc.TextOut(0. 0. "Hello. world!");

Here are some of the program elements:

The WinMain function. Remember that Windows requires your applica­
tion to have a WinMain function. You don't see WinMain here because it's
hidden inside the application framework.

The CMyApp class. An object of class CMyApp represents an application.
The program defines a single global CMyApp object, theApp. The CWinApp
base class determines most of theApp's behavior.

Application startup. When the user starts the application, Windows calls
the application framework's built-in WinMain function, and WinMain looks
for your globally constructed application object of a class derived from
CWinApp. Don't forget that, in C++, global objects are constructed before the
main program is executed.

The CMyApp::lnitlnstance member function. When WinMain finds the
application object, it calls the InitInstance member function, which makes
the calls needed to construct and display the application's main frame win­
dow. You must override InitInstance in your derived application class because
the CWinApp base class doesn't have the slightest idea about what kind of
main frame window you want.

21

PAR T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

22

The CWinApp::Run member function. The Run function is hidden in
the base class, but it dispatches the application's messages, thus keeping the
application running. WinMain calls Run after it calls InitInstance.

The CMyFrame class. An object of class CMyFrame represents the appli­
cation's main frame window. When the constructor calls the Create member
function of the base class CFrameWnd, Windows creates the actual window
structure and the application framework links it to the c++ object. The
Show Window and Update Window functions, also member functions of the base
class, must be called in order to display the window.

The CMyFrame: :OnLButtonDown function. This is a sneak preview of
the MFC library's message-handling capability. We've elected to "map" the
left mouse button down event to a CMyFrame member function. You'll learn
the details of the MFC library's message mapping in Chapter 4. For the time
being, accept that this function gets called when the user presses the left
mouse button. The function invokes the MFC library TRACE macro to dis­
playa message in the de bugging window.

The CMyFrame::OnPaint function. The application framework calls this
important mapped member function of class CMyFrameevery time it's neces­
sary to repaint the window: at the start of the program, when the user resizes
the window, and when all or part of the window is newly exposed. The
CPaintDC statement relates to the Graphics Device Interface (GDI) and is
explained in later chapters. The TextOut function displays "Hello, world!"

Application shutdown. The user shuts down the application byclosing
the frame window. This action initiates a sequence of events, which ends with
the destruction of the CMyFrame object, the exit from Run, the exit from
WinMain, and the destruction of the CMyApp object.

Look at the example again. This time try to get the big picture. Most of
the application's functionality is in the MFC library base classes CWinApp and
CFrameWnd. In writing MYAPP, we've followed a few simple structure rules,
and we've written key functions in our derived classes. C++ lets us "borrow" a
lot of code without copying it. Think of it as a partnership between us and
the application framework. The application framework provided the struc­
ture, and we provided the code that made the application unique.

Now you're beginning to see why the application framework is more
than a class library. Not only does the application framework define the ap­
plication structure but it also encompasses more than C++ base classes.

TWO: The Microsoft Foundation Class Library Application Framework

You've already seen the hidden WinMain function at work. Other elements
support message processing, diagnostics, DLLs, and so forth.

MFC Library Message Mapping
Refer to the OnLButtonDown member function in the previous example. You
might think that OnLButtonDown would be an ideal candidate for a virtual
function. A window base class would define virtual functions for mouse event
messages and other standard messages, and derived window classes could
override the functions as necessary. Some Windows class libraries do work
this way.

The MFC library application framework doesn't use virtual functions
for messages used in Windows. Instead, it uses macros to "map" specified
messages to derived class member functions. Why the rejection of virtual
functions? Consider this situation: You have a hierarchy of five window
classes in Windows, and the base class defines virtual functions for 140 mes­
sages. C++ requires a virtual function dispatch structure called a "vtbl" that
has a 4-byte entry for each class-virtual function combination, regardless of
whether the functions are actually overridden in the base classes. Thus, for
each distinct type of window or control, the application needs a 2.8-KB table
to support virtual message handlers.

What about message handlers for menu command messages and mes­
sages from button clicks? You couldn't define these as virtual functions in a
window base class because each application might have a different set of
menu commands and buttons. The MFC library message map system avoids
large vtbls, and it accommodates application-specific command messages. It
also allows selected nonwindow classes, such as document classes and the
application class, to handle command messages. Unlike the "dynamic dis­
patch table" system that Borland supplied as part of the early versions of
OWL, message maps require no extensions to the C++ language.

An MFC library message handler requires a function prototype, a func­
tion body, and an entry in the message map. ClassWizard helps you add mes­
sage handlers to your classes. You select a Windows message ID from a list
box, and the Wizard generates the code with the correct function param­
eters and return values.

Documents and Views
The previous example used an application object and a frame window ob­
ject. Most of your MFC library applications will be more complex. Typically,
they'll contain application and frame classes plus two other classes that

23

PA R T I: WINDOWS, VISUAL C++, AND APPLICATION FRAMEWORK FUNDAMENTALS

24

represent the "document" and the 'View." This "document-view architec­
ture" is not new. It originated in the early 1980s in the academic world and
was then adopted by Apple Computer in 1985 for the MacApp application
framework product.

In simple terms, the document-view architecture separates data from
the user's view of the data. One obvious benefit is multiple views of the same
data. Consider a document that consists of a month's worth of stock quotes
stored on disk. Suppose there are a table view and a chart view of the data.
The user updates values through the table view window, and the chart view
window changes because both windows display the same information (but in
differen t views) .

In the MFC library, documents and views are represented by C++ classes
and objects. Figure 2-1 shows three objects of class CStockDoc corresponding
to three companies: AT&T, IBM, and GM. All three documents have a table
view attached, and one document also has a chart view. As you can see,
there are four view objects-three of class CStockListView and one of class
CStockChartView.

The document base-class code interacts with the File Open and File
Save menu items; the derived document class does the actual reading and
writing of the document object's data. (The application framework does

Figure 2-1.
The document-view relationship.

125.1 .8.18
'lIu"Sd.JI~ 'tll!!li.' .8.1.

----i :!:::: ~=::: :!::: List
window

Tllu Fr! lIDo

IIIdliesda!l' 125.1 .1.18
'flU".dllJl~ '1115.' .1.'.

Chart
window

----i :!:::: ~=::: :!::: List
window

.1.19 'Ir sda.!l~ 115.? .1.1.

__ --/ :!:::: ~=::: :!::: List
window

TWO: The Microsoft Foundation Class Library Application Framework

most of the work of displaying the File Open and File Save dialog boxes and
opening, closing, reading, and writing files.) The view base class represents a
window that is contained inside a frame window; the derived view class inter­
acts with its associated document class and does the application's display and
printer I/O. The derived view class and its base classes handle messages in
Windows. The MFC library orchestrates all interactions among documents,
views, and frame windows, and the application object, mostly through virtual
functions.

Don't think that a document object must be associated with a disk file
that is read entirely into memory. If a "document" were really a database, for
example, you could override selected document class member functions,
and the File Open menu item would bring up a list of databases instead of a
list of files.

25

PAR T I I

THE MFC LIBRARY
VIEW CLASS

C HAP T E R T H R E E

GETTING STARTED
WITH APPWIZARD­
"HELLO, WORLD!"

Chapter 2 sketched the Microsoft Foundation Class (MFC) Library version
2.5 document-view architecture. This hands-on chapter shows you how to
build a functioning MFC library application, but it insulates you from the
complexities of the class hierarchy and object interrelationships. You'll work
with only one document-view program element, the "view class" that is
closely associated with a window. For the time being, you can ignore ele­
ments such as the application class, the frame window, and the document. Of
course, your application won't be able to save its data on disk, and it won't
support multiple views, but Part III of this book provides plenty of opportu­
nity to exploit those features.

TIP: It's easy to copy a whole project, either with the Windows
File Manager or from the DOS prompt (XCOPY IS). There's a
trap that's easy to fall into, though. If your original project has
open child windows associated with source files, the child windows
in the new project will be associated with files in the original
project. If you're not careful, you'll be changing the original
project inadvertently when you meant to change the copy. (I've
fallen into this trap too many times.) To avoid this problem, close
all the project's child windows, either before or after the copy.

Because resources are so important in Windows-based applications,
you'll use the App Studio resource editor to visually explore the resources of
your new program. You'll also get some hints for setting up your Windows
environment for maximum build speed and optimal debugging output.

29

PAR T II: THE MFC LIBRARY VIEW CLASS

R E QUI REM EN T S : To compile and run the examples pre­
sented in this and the following chapters, you must have success­
fully installed Microsoft Windows (version 3.1 or later) and all the
Visual C++ components. Be sure that the Visual Workbench bi­
nary, include, and library directories are set correctly. (You can
change the directories by choosing Directories from the Options
menu.) If you have any problems with the following steps, please
refer to your Visual C++ documentation and README files for
troubleshooting instructions.

What's a View?
From the user's standpoint, a "view" is an ordinary window that he or she can
size, move, and close in the same way as any other Windows-based applica­
tion window. From the programmer's perspective, a view is a C++ object of a
class derived from the MFC library CView class. Like any C++ object, the view
object's behavior is determined by the member functions (and data mem­
bers) of the class-both the application-specific functions in the derived
class and the standard functions inherited from the base classes.

With Visual C++, you can produce interesting applications for Windows
by simply adding code to the derived-view class that the AppWizard code gen­
erator produces. When your program runs, the MFC library application
framework constructs an. object of the derived view class, and it displays
a window that is tightly linked to the C++ view object. As is customary in
C++ programming, the MFC library view class is divided into two source
modules-the header file (H) and the implementation file (CPP).

Single Document Interface (SOl) vs.
Multiple Document Interface (MOl)

30

The MFC library supports two distinct application types, SDI and MDI. An
SDI application has, from the user's point of view, only one window. If the
application depends on disk-file "documents," only one document can be
loaded at a time. Windows Notepad is an example of an SDI application. An
MDI application has multiple "child windows," each of which corresponds to
individual documents. The Visual Workbench is a good example of an MDI
application.

When you run AppWizard, MDI is the default application type. For the
early examples in this book, we'll be generating SDI applications because
fewer classes and features are involved. Be sure you uncheck the App Wizard

T H R E E: Getting Started with AppWizard-"Hello, world!"

Multiple Document Interface option for these examples. Starting with Chap­
ter 17, we'll be generating MDI applications. The MFC library application
framework architecture ensures that most SDI examples can be upgraded
easily to MDI applications.

The "Do-Nothing" Application
The App Wizard program generates the code for a functioning MFC library
application. This working application simply brings up an empty window
with a menu attached. Later you'll add code that draws inside the window.
Follow these steps to build the application:

1. Run AppWizard to generate SOl application source code. Choose
AppWizard from the Visual Workbench Project menu. When AppWizard
starts, you'll see the MFC AppWizard dialog box, as shown here:

Type the program name as shown, but do not press Enter or click the
OK button. You can enter a different name if you want, but AppWizard
uses the program name when it creates files and classes. If you enter a
different name, your files and classes will have a name that is different
from that of the files and classes shown in this App Wizard dialog box
example.

Next click the Options button, and specify the options in the Options
dialog box, as shown at the top of the following page:

31

PAR T II: THE MFC LIBRARY VIEW CLASS

32

Click the OK buttons in the Options and MFC AppWizard dialog
boxes.

App Wizard generates files based on the parameters you type in the
MFC App Wizard dialog box. Immediately before App Wizard generates
your code, it displays the New Application Information dialog box shown
here:

Classes 10 be crealed:
Applicalion: CEx03aApp in EX03A.H and EX03A.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx03aDoc in EX03ADOC.H and EX03ADOC.CPP
View: CEx03aView in EX03AVW.H and EX03AVW.CPP

Fealures:
+ Supporls Ihe Single Documenllnlerlace (SDI)
+ MSVC Compalible projecl file (EX03A.MAK)
+ Inilialloolbar and slalus bar in main frame
+ Uses medium memory model

Click the Create button, and App Wizard begins to create your
application's subdirectory, files, and classes. When AppWizard is fin­
ished, look in the application's subdirectory. The following files are of
interest (for now):

T H R E E: Getting Started with AppWizard-"Hello, world!"

File

EX03A.DEF

EX03A.MAK

EX03A.RC

EX03AVW.CPP

EX03AVW.H

Description

Windows module definition file

Project file that allows Visual Workbench to build
your application

Resource script file

View class implementation file that contains
CEx03aView class member functions

View class header file that contains the CEx03a View
class declaration

README.TXT

RESOURCE.H

Text file that explains the purpose of all generated files

#define constant definitions

Open the EX03AVW.CPP and EX03AVW.H files and look at the
source code. Together these files define the CEx03aView class, which is
central to the application. An object of class CEx03aView corresponds to
the application's view window, where all the "action" takes place.

2. Compile and link the generated code. AppWizard, in addition to
generating code, creates a custom project file for your application. This
file, EX03A.MAK, specifies all the file dependencies together with the
compile and link option flags. Because the new project becomes Visual
Workbench's current project, you can now build the application by
choosing Build EX03A.EXE from the Project menu.

NOT E : The Compile, Build, and Execute items on the
Project menu display the current project's name.

If the build is successful, an executable program called EX03A.EXE is
created in the application's subdirectory.

The EX03A.DEF file provides useful information to the linker. Most
important is the name of the application, contained in the DEF file's
first noncomment line:

NAME EX03A

TIP: If you have two or more programs with the same
DEF file NAME parameter, Windows won't let you run
them simultaneously. (You'll probably see two copies of
the application you run first.) Be careful.

33

PAR T II: THE MFC LIBRARY VIEW CLASS

3. Test the resulting application. Choose Execute EX03A.EXE from the
Project menu. Experiment with the program. It really doesn't do much,
does it? (What do you expect for no coding, anyway?) Actually, as you
might be able to tell from the size of the EXE file, the program has a lot
of features-you simply haven't activated them yet. Close the program
window when you've finished experimenting.

4. Browse the application. You can use the Visual C++ browser only
after you have successfully compiled an application. Choose Open
EX03A.BSC from the Browse menu, and the browser window appears.
Set the following parameters:

Type:

Subset:

Symbol:

Base Class Graph

Classes (default)

CEx03aView

NOT E : The Symbol text box is case-sensitive, so be sure
to enter the information exactly as shown.

Now click the Display Result button and expand the class hierarchy by
clicking on the icons. The browser window with CEx03aView and base
classes should eventually look similar to this:

Type
Subset
Symbol

The CEx03aView View Class

34

AppWizard generated the CEx03aView view class, and this class is specific to
the EX03A application. (App Wizard generates classes using the project
name you entered in the MFC AppWizard dialog box.) CEx03aView is at the
bottom of a long inheritance chain of MFC library classes, as illustrated pre­
viously in the browser window. The class picks up member functions and

T H R E E: Getting Started with AppWizard-"Hello, world!"

data members all along the chain. You can learn about these classes in the
Class Library Reference document, but you must be sure to look at the descrip­
tions for every base class because the descriptions of inherited member func­
tions aren't repeated for derived classes.

The most important CEx03aView base classes are CWnd and CView.
CWnd provides CEx03aView's "windowness," and CView provides the hooks to
the rest of the application framework, particularly to the document and to
the frame window that you'll see in Part III of this book.

Drawing Inside the View Window-
The Windows Graphics Device Interface

Now you're ready to write code to draw inside the view window. You'll be
making a few changes directly to the EX03A source code.

The OnDraw Member Function
Specifically, you'll be fleshing out the OnDraw member function in
EX03AVW.CPP. OnDraw is a virtual member function of the CView class that
the application framework calls every time the view window needs to be re­
painted. A window needs repainting if the user resizes the window or reveals
a previously hidden part of the window, or if the application changes the
window's data. If the user resizes the window or reveals a hidden area, the
application framework calls OnDraw, but if a function in your program
changes the data, it must inform Windows of the change by calling the view's
inherited Invalidate (or InvalidateRect) member function. This call to Invali­
date triggers a later call to OnDraw.

Even though you can draw inside a window at any time, it's strongly rec­
ommended that you let window changes accumulate and then process them
all together in the OnDraw function. That way your program can respond to
program-generated events and to Windows-generated events such as size
changes.

The Windows Device Context
Remember from Chapter 1 that Windows doesn't allow direct access to the
display hardware but communicates through an abstraction called a "device
context" that is associated with the window. In the MFC library, the device
context is a C++ object of class CDC passed (by pointer) as a parameter to
OnDraw. Mter you have the device context pointer, you can call the many
CDC member functions that do the work of drawing.

35

PAR T II: THE MFC LIBRARY VIEW CLASS

Adding Draw Code to the EX03A Program

36

Now let's write the code to draw some text and a circle inside the view win­
dow. Be sure that the project EX03A.MAK is open in Visual Workbench. You
can use the browser to locate. the code for the function (double-click on
CEx03a View:: On Draw), or you can open the source code file EX03AVW.CPP
and locate the function yourself.

1. Edit the OnDrawfunction in EX03AVW.CPP. Find the AppWizard­
generated OnDraw function in EX03AVW.CPP:

void CEx03aView::OnDraw(CDC* pDC)
{

CEx03aDoc* pDoc = GetDocument():
ASSERT_VALID(pDoc):

II TODO: add draw code here
}

The following screened code (which you type in) replaces the previ­
ous code:

void CEx03aView::OnDraw(CDC* pDC)

You can safely remove the call to GetDocument because we're not
dealing with documents yet. The functions TextOut, SelectStockObject, and
Ellipse are all member functions of the application framework's device
context class CDC. The Ellipse function draws a circle if the bounding
rectangle's length is equal to its width.

The MFC library provides a handy utility class, CRect, for Windows
rectangles. A temporary CRect object serves as the bounding rectangle
argument for the ellipse drawing function. You'll see more use of the
CRect class later in this book.

2. Recompile and test EX03A. Choose Build from the Project menu, and,
if there are no compile errors, test the application again. Now you have
a program that visibly does something!

T H R E E: Getting Started with AppWizard-"Hello, world!"

For Windows SDK Programmers;
Rest assured that the standard Windows WinMain and,:WntiProcfunc.:.

,tion&,'are hidden away inside the app1ication .. fram~w,9rl<:. Vou~lI~see
those .functions later in this" book,whenth~MF91ibpary frame~~d
application classes are examiIled .• In:~lje)Jle'ln#me',Y()ll.'re:rir~b~))~r
wondering what happened to :the~P~NTlIl.es~~g~;~r~Il"tf?'t;l:?':··
Vouwould expect to dOi,your win~?~:dr~~hpi~}:~:SP9Q;~¢.'· . ~~J~L.;
Windows IIlessage ,and Y:<>;~ ':V():U1~te~:pe~t}f(jig~~·~~\i~;~1~F·· '~~t:.L:i/:
handJe frQmaPAlNTSTllUCTstl;u~tux:~;tli~r~h~., '. '.p'fY~'r bt :;:~
func~on Teturns~,. .•.... ' ,,' "," :~:":;<. ~ :.!, •.. ,>'£;::. ',. ',': .~<;; .•

' .. Itso happells.:t~at 'th~;~ppHcati;o»:'~t~lji~~0~l4;~,~s! i1ijRe!iitlH~~~;i;/~::;:
dirty \Vorl< for Y0Uc tlIl.d,~~,~e~Ucp;a ~~~~' ','~' '" " ',' "';!
fo~~ .,' ill; thevirtu~l ftlricti~1~ Prd)f~tP;
tnieVir:tual functr()Ils :in.' ;willd0w::<;:bl~ , ..: 'l\!:tE " , . ,;;,'

A Preview of App Studio-Resources Introduced
Now that you have a complete application program, it's a good time for a
quick look at the App Studio resource editor. Although the application's re­
source script, EX03A.RC, is an ASCII file, modifying it with a text editor is
not a good idea. That's App Studio'sjob.

The Contents of EX03A.RC
The resource file determines much of the EX03A application's "look and
feel." The file EX03A.RC contains (or points to) the Windows resources
listed on the following page:

37

PAR T 1·1: THE MFC LIBRARY VIEW CLASS

Resource

Accelerators

Toolbar bitmap

Dialog

Icon

Menu

String table

Description

Definitions for keys that simulate menu and toolbar
selections

The row of buttons immediately below the menu

Layout and contents of dialog boxes-the About dialog
box for EX03A

The AFX logo you see in the application's About dialog
box

The application's main menu and associated pop-up
menus

Strings that are not part of the C++ source code

In addition to the resources listed above, EX03A.RC contains the statement

'include "afxres.h"

which brings in some special MFC library resources common to all applica­
tions. These special resources include strings, graphical buttons, and ele­
ments needed for printing and OLE.

EX03A.RC also contains the statement

,include "resource.h"

This statement brings in the application's #define constants, which are
IDR-MAINFRAME (identifying the menu, icon, string list, and accelerator
table) and IDD_ABOUTBOX (identifying the About dialog box). This same
RESOURCE.H file is included indirectly by the application's source code
files. If you use App Studio to add more constants (symbols), the definitions
ultimately show up in RESOURCE.H. If you use a text editor to add your own
constants to RESOURCE.H, App Studio does not disturb them.

NOT E : The file EX03A.RC2, located in the project's RES sub­
directory, contains resources that App Studio doesn't edit. The
version resource falls into this category.

Running App Studio

38

Although you can run App Studio from the Windows File Manager or Pro­
gram Manager, running it from within Visual Workbench is easiest.

1. Start the App Studio program. In Visual Workbench, choose App
Studio from the Tools menu. You will see the following App Studio
window:

T H R E E: Getting Started with AppWizard-"Hello, world!"

TIP: You can also activate App Studio by choosing the
project's RC file in the Open File dialog box. For this to
work, you must first choose Editor from Visual Work­
bench's Options menu and check the Open .RC Files Us­
ing App Studio check box in the Editor dialog box.

2. Examine the application's resources. Now take some time to explore
the individual resources. Notice that resource selection is a two-step
process: First you click on the resource type on the left, and then you
double-click on a specific resource on the right. When you select a
resource, another window opens with tools appropriate for the selected
resource. (The control palette might also open.)

39

PAR T II: THE MFC LIBRARY VIEW CLASS

3. Modify the About dialog box. Make some changes to the About dialog
box, shown here in App Studio:

You can change the size of the window by dragging the right and
bottom borders, move the OK button, change the text, and so forth.
Simply click on an element to select it. When you're done, save the file
and exit App Studio.

4. Rebuild the application with the modified resource file. In Visual
Workbench, choose Build from the Project menu. Notice that no actual
C++ recompilation or linking is necessary. Visual Workbench saves the
edited resource file on disk, and then the Resource Compiler (RC.EXE)
processes EX03A.RC to produce a compiled version, EX03A.RES. Then
RC.EXE runs again to bind the compiled resources to the EX03A.EXE
file, replacing the resources that were there before.

5. Test the new version of the application. Run the EX03A program
again, and then choose About from the application's Help menu to
confirm that your dialog box was changed as expected.

The Windows Debug Kernel and DBWIN

40

As a developer, you should run the Windows Debug kernel at all times. (The
sidebar on the facing page gives instructions for installing the kernel.) The
Debug kernel provides important error messages that you would miss with
the regular version of Windows.

T H R E E: Getting Started with AppWizard-"Hello, world!"

Installing the Windows \D.b~~kern.l~":
You must specifically tell theVis~~rc+~.~e~llpp;~g~~nirt~itt~talt,tbe
Windows Debug kernel files .. to?:()~~;,ril,~~t~e"isll~r;Q~+;Settippro~'
g~a.m~ Adialogbox similar to:t~t~()~~.~ppear~:.·,,/;·A '"

~ Run-lime Libraries

~ Microsoft Foyndalion Classes !
~ T!!ols

~ Online Help Files

~ !!r£indows Profiler

~ HeJp Compiler

~ Analysis Tools ---
"-----___ ----'1 -_ ~ MS-!!.OS Profiler .

,:'C,,< "

,;;~ ":;',,:' ,;:" "', ' < >; " >, ' , '

i,:: ~'~ ", ".:?: ~:
",'(

41

PAR T II: THE MFC LIBRARY VIEW CLASS

To activate the Debug kernel after it is installed, run the N2D batch file
(located in the \MSVC\BIN subdirectory). This batch file copies files from
the \MSVC\DEBUG subdirectory to your WINDOWS subdirectory. The mes­
sage "Enhanced Mode Debug Windows 3.1" at the bottom of Windows' back­
ground screen indicates that the Debug kernel is properly installed. (This
message should appear the next time you start Windows.)

If your computer is equipped with dual monitors, the error messages
appear on the auxiliary monitor. If you don't have dual monitors, you should
definitely run the Windows DBWIN program, located in the \MSVC\BIN
subdirectory, to see the error messages in a window. DBWIN is useful not
only for displaying messages from the Windows Debug kernel but also for
displaying output from the application framework diagnostic macros
TRACE, ASSERT, and VERIFY. The TRACE macro is explained in Chapter 15,
on page 278. Consider inserting the line

load=dbwin

in your WIN.INI file to load DBWIN when Windows starts. You can also add a
DBWIN program item in your STARTUP group.

Do You Need to Use the Debugger?

42

Using the debugger with programs for Windows is more complicated than
using the debugger with MS-DOS programs. You can't use the debugger to
trace through an entire program because Windows-based programs don't
execute sequentially. You must put breakpoints at the start of the message­
handling functions that you need to debug.

TIP: To avoid stepping through the code in the MFC library, use
the Step Over button, shown here,

to step to the next statement in the function you are debugging.

You might find that you can do most of your debugging without the Vi­
sual C++ debugger. If you find that you're using the debugger infrequently,
you can save considerable compile, link, and load time by eliminating de­
bugging information from your program. The last "speedup" hint (#6 on
page 47) shows you how.

T H R E E: Getting Started with AppWizard-"Hello, world!"

Enabling the Diagnostic Macros
The application framework TRACE macros are particularly useful for moni­
toring program status. These macros, together with the ASSERT and VERIFY
macros, require the Debug build option (but do not require debugging in­
formation). In addition, the TRACE macros require that tracing be enabled.
You can enable tracing by inserting the statement

afxtrace = TRUE;

in your program. Alternatively, you can insert the statement

TraceEnabled = 1

in the [Diagnostics] section of the AFX.INI file in your WINDOWS
subdirectory. You can control this trace option, together with other trace
options, with the TRACER utility that is included with Visual C++. If you're
using the Visual Workbench debugger, TRACE output appears in the Debug
Output window. Otherwise, you need an auxiliary monitor or the DBWIN
program.

Speeding Up the Build Process
As you saw with the application you created earlier in this chapter, Visual C++
can be slow when building an application. This section's information will
help you speed up the process of compiling and linking applications. The
speedup hints are presented here instead of in an appendix because you can
begin saving time right away as you build the sample applications.

The procedures described here are optional, but their combined effect
is to cut build time by more than half. Most procedures depend on your com­
puter having sufficient installed memory.

1. Be sure that SMARTDRV is installed. SMARTDRV is the disk caching
utility that is normally installed during MS-DOS or Windows setup. The
line SMARTDRV in your AUTOEXEC.BAT file starts the utility when
your computer boots. The default cache size is usually sufficient. (The
default cache size is based on the amount of memory in your computer.)

SMARTDRV generally improves the performance of all Windows­
based programs. SMARTDRV comes with both MS-DOS and Windows;
you should use whichever version is newer. Be sure to use SMARTDRV's
double-buffering option if your hard disk requires double buffering.
(See your MS-DOS or Windows manual for more information.)

43

PAR T II: THE MFC LIBRARY VIEW CLASS

44

2. Set up a RAM drive. If your computer has 16 MB or more of memory
available, set up a RAM drive. The following line in your CONFIG.SYS
file sets up a 6-MB RAM drive:

devicehigh=c:\windows\ramdrive.sys 6144 512 1024 Ie

NOT E : The RAMDRIVE.SYS device driver comes with
both MS-DOS and Windows. You should use whichever
version is newer. Also note that this example assumes
you're using MS-DOS or a third-party memory manager
to create upper memory blocks. If you're not using
memory management software to create upper memory
blocks, change devicehigh to device in the line above. (For
more information about MS-DOS's memory management
capabilities, see The Microsoft Guide to Managing Memory
with MS-DOS 6, by Dan Gookin, Microsoft Press, 1993.)

If C is your only hard disk drive, the RAM drive will be drive D. Exit all
applications and reboot the computer to be sure that the RAM drive is
installed.

3. Set the TMP and TEMP environment variables to D:\. If you have
successfully installed a RAM drive, these environment variables instruct
the compiler and linker (and possibly other programs) to store tempo­
rary files in the RAM drive. Set these environment variables in your
AUTOEXEC.BAT file:

set tmp=D:\
set temp=D:\

(Note: Change the drive letter if your RAM drive is not drive D.)

4. Modify your MFC library project files to use the RAM drive for
precompiled headers. This procedure must be performed for each
generated MFC library project file, but the results are worth the effort.
First, though, you need to know about precompiled headers and the way
the MFC library uses them.

NOT E : Visual C++ has two precompiled header "sys­
tems": automatic and manual. Automatic precompiled
headers, activated with the /Yx compiler switch, are new,
but manual precompiled headers, first introduced with
C/C++ version 7.0, are still available. The make files in this
book, as generated by AppWizard, use the manual
precompiled headers.

T H R E E: Getting Started with AppWizard-"Hello, world!"

Precompiled headers represent compiler "snapshots" taken at a
particular source code line. In all MFC library programs, the snapshot
is taken immediately after the statement

/linclude "stdafx.h"

The file STDAFX.H contains #include statements for the MFC library
header files. The file's contents depend on the options that you select
when you run AppWizard, but the file always contains the following
statemen ts:

/linclude <afxwin.h>
/linclude <afxext.h>

If you're using OLE, STDAFX.H contains the statement

/linclude <afxole.h>

Occasionally you'll need the "private" header file that is accessed by
the statement

/linclude <afxpriv.h>

The source file STDAFX.CPP contains only the statement

/linclude "stdafx.h"

and is used to generate the precompiled header file in the project
directory. The MFC library headers included by STDAFX.H never
change, but they do take a long time to compile. The compiler switch
lYe, used only with STDAFX.CPP, causes creation of the precompiled
header (PCH) file. The switch IYu, used with all the other source code
files, causes use of an existing PCH file. The switch IFp specifies the
PCH filename that would otherwise default to STDAFX.PCH in the
project subdirectory.

AppWizard sets the lYe and IYu switches for you. To change these
switches, choose Project from Visual Workbench's Options menu, and
click the Compiler button; then click on the Precompiled Headers
category, and check or uncheck the Automatic Use Of Precompiled
Headers check box as necessary.

NOT E : You need to choose Rebuild All from the
Project menu to create the precompiled header in the
RAM drive.

45

PAR T II: THE MFC LIBRARY VIEW CLASS

46

You must manually set the /Fp switch to force the PCR file to reside
in the RAM drive. To do so, choose Project from Visual Workbench's
Options menu, and click the Compiler button; then click on the Custom
Options category, and add the expression

IFp"D:\STDAFX.PCH"

in the Other Options text box, as shown here:

NOT E : Most of the projects on the book's companion
disc use the /Fp switch to store the PCR file in the \VCPP
subdirectory. This reduces the disk space required when
all the projects are compiled, but it doesn't require a RAM
drive. You can convert these projects to use a RAM drive
by replacing the expression

IFp" .. \STDAFX.PCH"

in the Other Options text box in the Custom Options cat­
egory of the C/C++ Compiler Options dialog box with the
expression

IFp"D:\STDAFX.PCH"

If you're working on several projects simultaneously, those projects can
share the same STDAFX.PCR file because that file isn't application-

T H R E E: Getting Started with AppWizard-"Hello, world!"

dependent. Not only will you save time, but you'll save disk space be­
cause you'll eliminate duplicate copies of the very large PCH file.

NOT E : You can share the precompiled header file
among projects only if the contents of STDAFX.H are the
same. A project that uses OLE, for example, can't use the
PCH file from a project that doesn't use OLE. See the
Visual C++ documentation for more information.

NOTE: Obviously, the PCH file won't stay in the RAM
drive when the computer is rebooted or turned off. You
can set up batch files to save and restore this file from
disk, or you can force Visual Workbench to regenerate the
PCH file by choosing Rebuild All from the Project menu.

5. Store the library files in the RAM drive. You'll reduce link time by
about 25 percent if you keep the library files in the RAM drive. Use a
batch file to copy the appropriate LIB files to the RAM drive when your
computer boots. (If you're using the medium-model debug library, you'll
want to copy MLIBCEW.LIB and MAFXCWD.LIB to the RAM drive.)
Finally, tell Visual C++ to look for the library files in the RAM drive. To
do so, choose Directories from the Options menu. In the Directories
dialog box that appears, set the Library Files Path text box to point to
the RAM drive. (Unless you have a very large RAM drive, you'll probably
want to leave the MFC library files on your hard disk. Be sure the Library
Files Path text box in the Directories dialog box still points to the MFC
library subdirectory on your hard disk.)

6. If you're not using the debugger, eliminate the debugging infor­
mation. You might want to get the benefits of the TRACE, VERIFY, and
ASSERT macros without using the debugger. AppWizard generates
project files with the compiler and linker switches for debugging infor­
mation. You can save build time by turning off these switches as follows:

o Choose Project from the Options menu. The Project Options dialog
box appears. Click the Compiler button. The CjC++ Compiler Op­
tions dialog box appears. Click on the Debug Options category, and
then click the None radio button. Your screen now looks like the one
shown at the top of the following page:

47

PAR T II: THE MFC LIBRARY VIEW CLASS

48

o Click OK to close the C/C++ Compiler Options dialog box;

o Click the Linker button in the Project Options dialog box. The Linker
Options dialog box appears. Click on the Output category, and then
uncheck the Generate Debugging Information check box. Your
screen now looks like this:

o Close the Linker Options and Project Options dialog boxes.

NOTE: The Debug radio button in the Build Mode sec­
tion of the Project Options dialog box enables a set of
compiler and linker options that relate to debugging.

T H R E E: Getting Started with AppWizard-uHello, world!"

These options include the generation of debugging infor­
mation for Visual Workbench and Code View for Windows
debuggers, the definition of the _DEBUG preprocessor
constant (which activates certain diagnostic features in
the MFC library), and the selection of the debug ver­
sion of the MFC library (MAFXCWD.LIB for medium­
memory-model applications).

It's possible to separately enable and disable each of
these debugging options through the Compiler Options
and Linker Options dialog boxes. If, for example, you
want the MFC library diagnostic features, such as the
TRACE macro, but you don't want to use the debug­
ger, you must individually adjust the compiler and linker
options.

7. If you aren't using the browser, don't build the browser database.
The project's browser database (BSC file) must be rebuilt every time you
change any source code. If you don't need the browser, you can save
build time by turning off browser information. To do so, choose Project
from the Options menu. The Project Options dialog box appears. Click
the Compiler button. The CjC++ Compiler Options dialog box appears.
Click on the Listing Files category, and then uncheck the Browser
Information check box. Your screen now looks like this:

Close the CjC++ Compiler Options and Project Options dialog boxes.

49

PAR T II: THE MFC LIBRARY VIEW CLASS

Creating a New MAK File

50

Sooner or later you'll need to create your own MAK file for an existing
project. Perhaps the MAK file from App Wizard was lost, or perhaps you pre­
fer not to use App Wizard. Simply do the following:

1. Choose Close All from Visual Workbench's Window menu. When
you start a new project, Visual Workbench leaves your old windows
open, which is probably not what you want.

2. Choose New from Visual Workbench's Project menu. A sub­
directory must exist for the project. If you're starting from scratch,
use File Manager to create a new subdirectory. Select the sub­
directory using the New Project dialog box, and then type the
makefile name. You'll see a list of any CPP and C files that already
exist in the selected subdirectory.

3. Add the necessary source files. Click the Add All button (or double­
click on individual files). Doing so adds the files to the project. Also
add the DEF file (you might have to write one) and the RC file.

4. Set up manual precompiled headers. Assuming your project has
STDAFX.CPP and STDAFX.H files, fill in the Precompiled Headers
category of the C/C++ Compiler Options dialog box, as shown
here:

C HAP T E R F 0 U R

BASIC EVENT HANDLING­
USING CLASSWIZARD

In Chapter 3, you saw how the Microsoft Foundation Class (MFC) Library
application framework called the view class's virtual OnDrawfunction. Take a
look at the Class Library Reference now. If you look at the documentation for
the CView class and its base class, CWnd, you'll see several hundred member
functions. Functions with names beginning with On-such as OnKeyDown
and OnLButtonUp-are member functions that the application framework
calls in response to various Windows "events" such as keystrokes and mouse
clicks.

Most of these application framework-called functions aren't virtual
functions such as OnDrawand thus require more effort to program. This
chapter explains how to use the Visual C++ ClassWizard to set up the "mes­
sage map" structure necessary for connecting the application framework to
your functions' code. You'll see the practical application of message map
functions.

The first two examples use an ordinary CView class. More often than
not, you'll want a "scrolling" view. The last example uses CScrollView in place
of the CView base class. Now the MFC library application framework inserts
scroll bars and "hooks them up" to the view.

Getting User Input-Message Map Functions
Your EX03A application from Chapter 3 did not accept user input (other
than the standard Microsoft Windows resizing and window close com­
mands). The window contained menus and a toolbar, but these were not

51

PA RT II: THE MFC LIBRARY VIEW CLASS

"connected" to the view code. The menus and the toolbar must wait until
Part III of this book because they depend on the frame class, but plenty of
other Windows input sources will keep you busy until then. Before you can
process any Windows event, even a mouse click, however, you must learn
how to use the MFC library message map system.

The Message Map
When the user clicks the left mouse button in a view window, Windows sends
a message-specifically WM_LBUTTONDOWN-to that window. If your
program needs to take action in response to WM_LBUTTONDOWN, your
view class must have a member function that looks like this:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)

II event processing code here

Your class header file must also have the corresponding prototype:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

The afx_msgnotation is a "no-op" that alerts you that this is a prototype for a
message map function. Finally, your code file needs a message map macro
that connects your OnLButtonDown function to the application framework:

BEGIN_MESSAGE_MAP(CMYView, CView)

ON_WM_LBUTTONDOWN() II entry specifically for OnLButtonDown

II other message map entries

END_MESSAGE_MAP()

and your class header file needs the statement

How do you know which function goes with which Windows message?
Appendix B (and the MFC library online Help file) includes a table that lists
all standard Windows messages and corresponding member function proto­
types. You can manually code the message-handling functions-indeed, that
was the only option for Microsoft Foundation Class Library version 1.0 pro­
grammers. Fortunately, Visual C++ provides a tool, ClassWizard, that auto­
mates the coding of message map functions.

Saving the View's State-Class Data Members

52

If your program accepts user input, you'll want the user to have some visual
feedback. The view's OnDraw function draws an image based on the view's

F 0 U R: Basic Event Handling-Using ClassWizard

current "state," and user actions can alter that state. In a fun-blown MFC li­
brary application, the document object holds the state of the application,
but you're not to that point yet. For now, you'll use a view class "data mem­
ber," m_ellipseRect, an object of class CRect, to hold the current bounding rect­
angle of an ellipse. Then you'll make the member function toggle that
rectangle (the view's state) between small and large. (The toggle is activated
by pressing the mouse's left button.) The initial value of m_ellipseRectis set in
the CMy View constructor, and it is changed in the OnLButtonDown member
function.

NOTE: By convention, MFC library nonstatic class data mem­
ber names begin with m_.

TIP: Why not use a global variable for the view's state? Because
if you did, you'd be in trouble if your application had multiple
views. Besides, encapsulating data in objects is a big part of what
object-oriented programming is all about.

Initializing a View Class Data Member
As Appendix A points out, the most efficient place to initialize a class data
member is in the constructor, like this:

CMyView: :CMyView() : ffi_ellipseRect(O, 0, 200, 200) { }

Invalidating the Rectangle
The OnLButtonDown function could toggle the value of m_ellipseRect all day,
but the OnDraw function won't get called unless the user resizes the view win­
dow. The OnLButtonDown function must call the InvalidateRect function (a
member function that the CMy View class inherits from CWnd). InvalidateRect
triggers a call to OnDraw, and OnDraw can access the "invalid rectangle" pa­
rameter that was passed to InvalidateRect.

53

PA R T II: THE MFC LIBRARY VIEW CLASS

The smaller the invalid rectangle, the faster Windows draws the win­
dow, even if your OnDraw function issues drawing instructions for all ele­
ments in the window. If your OnDraw function is smart enough to draw only
the items that are inside the invalid rectangle, the display update will be even
faster.

The Window's Client Area
A window has a rectangular "client area" that excludes the border, caption
bar, and menu. The CWnd member function GetClientRect supplies you with
the client area dimensions. Normally, you're not allowed to draw outside the
client area, and most mouse messages are received only when the mouse cur­
sor is in the client area.

The EX04A Example Program

54

In the EX04A example, a circle changes size when the user clicks the left
mouse button while the mouse cursor is inside the view window. You'll see
the use of a view class data member to hold the view's state, and you'll use the
InvalidateRect function.

In the Chapter 3 example, drawing in the window depended on only
one function, OnDraw. The EX04A example requires three customized func­
tions (including the constructor) and one data member. The complete
CEx04a View header and source code files are listed in Figure 4-1. (The steps
for creating the program are shown after the program listings.) All changes
to the original App Wizard output are screened in gray.

EX04AVW.H

class CEx04aView public CView

protected: II create from serialization only

CEx04aView () ;

DECLARE_DYNCREATE(CEx04aView)

II Attributes
public:

CEx04aDoc* GetDocument();

Figure 4-1.
The CEx04a View header and source code files.

(continued)

F 0 U R: Basic Event Handling-Using ClassWizard

Figure 4-1. continued

// Operations

pUblic:

// Implementation

public:

virtual -CEx04aView();

virtual void OnDraw(CDC* pDC); // overridden to draw this view

#ifdef _DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;

#endif

// Generated message map functions

protected:

} ;

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

#ifndef _DEBUG // debug version in ex04avw.cpp

inline CEx04aDoc* CEx04aview: :GetDocument()

{ return (CEx04aDoc*) m-pDocument; }

#endif

EX04AVW.CPP

#include "stdafx.h"

#include "ex04a.h"

#include "ex04adoc.h"

#include "ex04avw.h"

#ifdef _DEBUG

#undef THIS_FILE

static char BASED_CODE THIS_FILE[]

#endif

///////1// ////////////////

// CEx04aView

IMPLEMENT_DYNCREATE(CEx04aView, CView)

BEGIN_MESSAGE_MAP(CEx04aView, CView)

{ {AFX_MSG_MAP

(continued)

55

PAR T II: THE MFC LIBRARY VIEW CLASS

56

Figure 4-1. continued

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

//

// CEx04aView construction/destruction

CEx04aview: : CEx04aView ()

CEx04aView: :-CEx04aView()

//

// CEx04aView drawing

void CEx04aView::OnDraw(CDC* pDC)

//

// CEx04aView diagnostics

#ifdef _DEBUG

void CEx04aView::AssertValid() const

CView::AssertValid() ;

void CEx04aView: : Dump (CDumpContext& dc) const

CView: : Dump (dc) ;

CEx04aDoc* CEx04aView::GetDocument() // non-debug version is inline

ASSERT(m-pDocument->IsKindOf(RUNTIME_CLASS(CEx04aDoc)));

return (CEx04aDoc*) m-pDocument;

#endif //_DEBUG

(continued)

F 0 U R: Basic Event Handling-Using ClassWizard

Figure 4-1. continued

//

// CEx04aview message handlers

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)

Using ClassWizard with EX04A
Look at the following EX04AVW.H source code:

//{{AFX_MSG(CEx04aView)

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

//}}AFX_MSG

Now look at the following EX04AVW.CPP source code:

//{{AFX_MSG_MAP(CEx04aView)

ON_WM_LBUTTONDOWN()

//}}AFX_MSG_MAP

App Wizard generated the funny-looking comment lines for the benefit
of Class Wizard. ClassWizard adds message handler prototypes between the
AFX_MSG "brackets," and it also adds message map entries between the
AFX_MSG_MAP brackets. In addition, ClassWizard generates a skeleton
OnLButtonDown member function in EX04AVW.CPP, complete with the cor­
rect parameter declarations and return type.

Notice how the AppWizard-ClassWizard combination is different from
a conventional code generator. You run a conventional code generator only
once and then edit the resulting code. You run AppWizard to generate the
application only once, but you can run ClassWizard as many times as neces­
sary, and you can edit the code at any time. You're safe as long as you don't
alter what's inside the AFYLMSG and AFYLMSG_MAPbrackets.

57

PAR T II: THE MFC LIBRARY VIEW CLASS

Using AppWizard and ClassWizard Together

58

The following steps illustrate how you use AppWizard and ClassWizard to­
gether to create this application:

1. Run AppWizard to create EX04A. Choose AppWizard from the Visual
Workbench Project menu. Use AppWizard to generate a program named
EX04A in the \VCPP\EX04A subdirectory. The options and the default
class names are shown here:

Classes 10 be crealed:
Applicalion: CEx04aApp in EX04A.H and EX04A.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Documenl: CEx04aDoc in EX04ADOC.H and EX04ADOC.CPP
View: CEx04aView in EX04AVW.H and EX04AVW.CPP

Fealures:
+ Supporls Ihe Single Documenllnlerface (SDI)
+ MSVC Compatible projecl file (EX04A.MAK)
+ Inilialloolbar and slalus bar in main frame
+ Uses medium memorjl model

Click on the Options and the Classes buttons in the MFC AppWizard
dialog box to set these options.

2. Use ClassWizard to add a CEx04aViewclass message handler.
Be sure you have opened the EX04A project, and choose ClassWizard
from the Browse menu of the Visual Workbench. The ClassWizard dialog
box appears. Now click on CEx04aView at the top of the Object IDs list
box, and then double-click on WM_LBUTTONDOWN in ClassWizard's
Messages list box. The OnLButtonDown function name should appear in
the Member Functions list box, and a hand symbol should appear next
to the message name in the Messages list box. Here's the ClassWizard
dialog box:

F 0 U R: Basic Event Handling-Using ClassWizard

3. Edit the OnLButtonDown code in EX04AVW.CPP. Click on the Edit
Code button. ClassWizard opens an edit window for EX04AVW.CPP in
the Visual Workbench and positions the cursor on the newly generated
OnLButtonDown member function. The following screened code (which
you type in) replaces the previous code:

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)

4. Edit the constructor and the OnDraw function in EX04AVW.CPP. The
following screened code (which you type in) replaces the previous code:

CEx04aView::CEx04aView()
{

void CEx04aview: : OnDraw(CDC* pDC)

59

PAR T II: THE MFC LIBRARY VIEW CLASS

5. Add the m_ellipseRect data member in EX04AVW.H. Insert the follow­
ing code at the start of the CEx04a View class declaration:

6. Build and run the EX04A program. In the Visual Workbench, choose
Build from the Project menu and then choose Execute. The resulting
program responds to left-button mouse clicks by shrinking and expand­
ing a circle in the view window. (Don't press the mouse's left button
quickly in succession; Windows interprets this as a double-click rather
than two single clicks.)

EX04B-Dragging a Circle with the Mouse

60

Let's do something a little more sophisticated with the mouse. The object of
the next example is to draw a circle in the window and then allow the user to
drag the circle with the mouse. As you study the program, you'll learn a few
more things about Windows.

Mouse message handlers are necessary for the following three mouse
messages:

• The WM_LBUTTONDOWN message begins the tracking process
if the left mouse button is pressed when the mouse cursor is posi­
tioned over the circle.

F 0 U R: Basic Event Handling-Using ClassWizard

• The WM_MOUSEMOVE message, received periodically while the
mouse moves, causes the circle to follow the mouse cursor position.
This message is processed only when the left mouse button is held
down and the tracking process was successfully started. (See
WM_LBUTTONDOWN at the bottom of the facing page.)

• The WM_LBUTTONUP message, received when the left mouse
button is released, ends the tracking process if it was successfully
started.

Now follow these steps to produce the working EX04B example.

1. Run AppWizard to create EX04B. Close the EX04A project, and use
App Wizard to generate a program named EX04B in the \VCPP\EX04B
subdirectory. The options and the default class names are shown here:

Classes to be created:
Application: CEx04bApp in EX04B.H and EX04B.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx04bDoc in EX04BDOC.H and EX04BDOC.CPP
View: CEx04bView in EX04BVW.H and EX04BVW.CPP

Features:
+ Supports the Single Document Interface (501)
+ MSVC Compatible project file (EX04B.MAK)
+ Initial toolbar and status bar in main frame
+ Uses medium memory model

2. Edit the CEx04bViewclass header in the file EX04BVW.H. In the file
EX04BVW.H, add the following lines in the class CEx04b View declaration:

3. Use ClassWizard to add three message handlers. Add message­
handling functions for the three mouse messages previously described.
A list of Windows messages and their associated member functions is
shown in the table at the top of the following page:

61

PAR T II: THE MFC LIBRARY VIEW CLASS

62

Message

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_MOUSEMOVE

Member Function Name

OnLButtonDown

OnLButtonUp

OnMouseMove

4. Edit the CEx04bView mouse message-handling functions in the file
EX04BVW.CPP. ClassWizard generated the skeletons for the functions
previously listed. Find them in the file EX04BVW.CPP, and then type in
the screened code (replacing the existing code) as follows:

void CEx04bView::OnLButtonDown(UINT nFlags, CPoint point)

void CEx04bView: :OnLButtonUp(UINT nFlags, CPoint point)

{

void CEx04bView::OnMouseMove(UINT nFlags, CPoint point)
{

F 0 U R: Basic Event Handling-Using ClassWizard

5. Edit the constructor and the OnDraw function in the file EX04B­
VW.CPP. App Wizard generated these skeleton functions. Find them
and type in the following code:

void CEx04bView::OnDraw(CDC* pDC)

6. Build and run the EX04B program. In Visual Workbench, choose Build
from the Project menu and then choose Execute. The resulting program
allows a circle to be dragged with the mouse.

The EX04B Program Elements
Following is a discussion of the major elements in the EX04B program.

The m_ellipseRect Data Member
This object of class CRect holds the current (as of the last mouse move)
bounding rectangle of the moving circle. The OnDraw member function
uses it.

The m_mousePos Data Member
The OnMouseMove member function must compare the current mouse posi­
tion with the previous moustt position to know how far to move the circle.
This object of class CPoint stores the previous mouse position.

The m_bCaptured Data Member
This Boolean variable is set to TRUE when mouse tracking is in progress.

63

PAR T II: THE MFC LIBRARY VIEW CLASS

64

The SetCapture and ReleaseCapture Member Functions
SetCaptureis the CWndmemberfunction that "captures" the mouse such that
mouse movement messages are sent to this window even if the mouse cursor
is outside the window. An unfortunate side effect of this function is that the
circle can be moved outside the window and "lost," but I'll show you how to
fix that problem in the first paragraph on the facing page. A desirable and
necessary effect is that all subsequent mouse messages are sent to the win­
dow, including the WM_LBUTTONUP message, which would otherwise be
lost. ReleaseCapture turns off mouse capture.

The SetCursorand LoadCursorWindows Functions
The MFC library does not "wrap" some Windows functions. By convention,
we use the C++ scope resolution operator (::) when directly calling Windows
functions. In this case, there is no potential of conflict with a CView member
function, but you can deliberately choose to call a Windows function in place
of a class member function with the same name. In that case, the :: operator
ensures that you call the globally scoped Windows function.

With the first parameter NULL, the LoadCursorfunction creates a "cur­
sor resource" from the specified predefined mouse cursor that Windows
uses. The SetCursorfunction activates the specified cursor resource. This cur­
sor remains active as long as the mouse is captured.

CRect, CPoint, and CSize Arithmetic
If you look in the Class Library Reference, you will see that the CRect, CPoint,
and CSize classes have a number of overloaded operators. (Overloaded op­
erators are explained in Appendix A.) You can, among other things, do the
following:

• Add a CSize object to a CPoint object

• Subtract a CSize object from a CPoint object

• Subtract one CPoint object from another, yielding a CSize object

• Add a CPoint object to a CRect object

• Subtract a CPoint object from a CRect object

From this list, you can begin to see that a CSize object is the "difference
between two CPoint objects" and that you can "bias" a CRect object by a CPoint
object. The C++ compiler enforces the rules above; it will not, for example,
let you add a CSize object to a CRect object.

The OnMouseMove member function uses CRect, CPoint, and CSize ob­
jects to move the circle's bounding rectangle based on the last mouse move.

F 0 U R: Basic Event Handling-Using ClassWizard

Is a Point Inside the Client Area?
A captured mouse can move the circle outside the client area, but that's not
what we want. The OnMouseMove message handler uses the CRect::PtlnRect
function to see whether the mouse position is truly inside the client area. If
the mouse cursor is outside the client area, the circle isn't moved.

Is a Point Inside a Circle?
The Windows GDI provides an element called a "region" that can be used for
clipping and for hit testing. Regions consist of combinations of polygons (in­
cluding rectangles) and ellipses. The OnLButtonDown function creates a tem­
porary CRgn object corresponding to the circle, and then it calls the PtlnRgn
function to find out whether the mouse cursor was inside the circle when the
mouse button was pressed.

The Minimum Invalid Rectangle
The previous example, EX04A, invalidated the entire view client area each
time the circle size was changed. The EX04B example invalidates only the
area known to have changed. This rectangular area is computed by first per­
forming a union operation on the rectangle for the circle's new position and
on the rectangle for the circle's old position and then by performing an in­
tersection operation with the window's client area. Figure 4-2 illustrates the
process.

Client Area

Old circle position

New circle position

Figure 4-2.
Calculating the minimum invalid rectangle.

The invalid
rectangle

65

PAR T II: THE MFC LIBRARY VIEW CLASS

The CRect LPRECT Operator
If you read the Class Library Reference carefully, you will notice that the CWnd
InvalidateRect member function takes an LPRECT parameter, not a CRect pa­
rameter. It so happens that LPRECTis a pointer to a Windows RECTstruc­
ture and that CRect is derived from RECT. (Yes, C++ lets you derive a class
from a structure.) This derivation ensures that a CRect* parameter is passed
to the function, not a CRect argument.

A CRect argument is allowed because the CRect class defines an over­
loaded operator LPRECT() that takes the address of a CRect object. Thus, the
compiler converts CRect arguments to LPRECTarguments when necessary.
You call functions as though they had CRect reference parameters. The view
member function code

CRect clientRect;

GetClientRect(clientRect);

retrieves the client rectangle coordinates and stores them in clientRect.

Device Coordinates-Necessary for This Example
In the Windows default device coordinates mode, units map to display pixels
with the origin at the top left. Vertical (y-axis) values increase from top to
bottom. Because they call underlying Windows functions, many CRect opera­
tors work properly only with coordinates that have non-negative values. Also,
the mouse message function point parameter is always in device coordinates.
Chapter 5 illustrates the use of other Windows mapping modes and the ap­
propriate conversion strategies.

A Scrolling View Window
As the lack of scroll bars in EX04A and EX04B indicates, the MFC library
CView class, the base class of CEx04bView, doesn't directly support scrolling.
The MFC library has another class, CScrollView, that does support scrolling.
CScrollView is derived from CView. We'll create a new program that uses
CScrollView in place of CView. The new program, EX04C, does not accept
mouse input because the necessary coordinate transformation functions
aren't covered until Chapter 5. The program does process keyboard mes­
sages, and it introduces an important Windows message, WM_CREATE.

A Window Is Larger than What You See

66

If you use the mouse to shrink the size of an ordinary window, the contents
of the window remain anchored at the top left of the window, and items at

F 0 U R: Basic Event Handling-Using ClassWizard

the bottom and/or on the right of the window disappear. When you expand
the window, the items reappear. You can correctly conclude that a window is
larger than the "viewport" that you see on the screen. The viewport doesn't
have to be anchored at the top left of the window area. Through the use of
the CWnd functions ScrollWindow and SetViewportOrg, the CScrollView class al­
lows you to move the viewport anywhere in the window, and that includes
areas above and to the left of the origin.

Scroll Bars
Microsoft Windows makes it easy to display scroll bars at the edges of a win­
dow, but Windows by itself doesn't make any attempt to connect those scroll
bars to their window. That's where the CScrollView class fits in. CScrollView
member functions process the WM_HSCROLL and WM_ VSCROLL mes­
sages sent by the scroll bars to the view. Those functions move the viewport
within the window and do all the necessary housekeeping.

Scrolling Alternatives
The CScrollView class supports a particular kind of scrolling-one in which
there is one big window and a small viewport. Each item is assigned a unique
position in this big window. What if you have 10,000 address lines to display?
Instead of having a window 10,000 lines long, you probably want a smaller
window with scrolling logic that selects only as many lines as the screen can
display. In that case, you should write your own scrolling view class derived
from CView.

NOT E : As you'll see in Chapter 24, a CScrollView-derived view
can easily and efficiently accommodate as many as 2000 lines.

The EX04C Scrolling Example
The goal ofEX04C is to make a window twice as wide and twice as high as the
screen. The program draws a large circle at the exact center of this window
such that the upper left quadrant of the circle is visible when the window is
maximized. The user can scroll the window with the mouse and the direction
keys.

1. Run AppWizard to create EX04C. Use App Wizard to generate a pro­
gram named EX04C in the \VCPP\EX04C subdirectory. In the Classes
dialog box, select CEx04cView and set the base class to CScrollView, as
shown at the top of the following page.

67

PAR T II: THE MFC LIBRARY VIEW CLASS

68

The options and the default class names are shown here:

Classes to be created:
Application: CEx04cApp in EX04C.H and EX04C.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx04cDoc in EX04CDOC.H and EX04CDOC.CPP
ScrollView: CEx04cView in EX04CVW.H and EX04CVW.CPP

Features:
+ Supports the Single Document Interlace (SDI)
+ MSVC Compatible project lile (EX04C.MAK)
+ Initial toolbar and status bar in main Irame
+ Uses medium memor.!' model

2. Modify the AppWizard-generated OnlnitialUpdate function in
EX04CVW.CPP as follows:

void CEx04CView::OnlnitialUpdate()
{

CScrollView::OnlnitialUpdate() i

F 0 U R: Basic Event Handling-Using ClassWizard

3. Use ClassWizard to add message handlers for the WM_KEYDOWN
message. ClassWizard generates the member function OnKeyDown
along with the necessary message map entries and prototypes.

4. Edit the CEx04cView message handler function. ClassWizard gener­
ated the skeleton for the OnKeyDown function. Find it in file EX04C­
VW.CPP, and then type in the following code:

void CEx04cView::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)

69

PA R T II: THE MFC LIBRARY VIEW CLASS

5. Edit the CEx04cView OnDrawfunction. Change the AppWizard-gener­
ated OnDraw function in EX04CVW.CPP by typing in the following code:

void CEx04CView: : OnDraw(CDC* pDC)

6. Build and run the EX04C program. In the Visual Workbench, choose
Build from the Project menu and then choose Execute. The program
shows a large circle in a scrolling window as shown here:

You might need to scroll to see the circle.

The EX04C Program Elements

70

Following is a discussion of the major elements in the EX04C program.

The Windows GetSystemMetrics Function
The Windows GetSystemMetrics function returns the widths and heights of
various Windows display elements, including the screen itself. OnDraw uses
the screen size to determine the circle's center.

The Virtual OnlnitialUpdate Function
OnlnitialUpdate is called by the framework soon after the window is created.
This is a good place to initialize the window. Be sure to call the base class
function. (OnlnitialUpdate is explained in greater detail in Chapter 15.)

F 0 U R: Basic Event Handling-Using ClassWizard

The SetScrollSizes Function
SetScrollSizes is a CScrollView member function that must be called during the
initialization of a scrolling window. This function specifies the map mode,
total window size, and page and line sizes for scrolling. The MNLTEXTmap­
ping mode corresponds to device coordinates where one unit equals one
pixel.

Handling Keystrokes
Most of the time, you'll get keyboard input through Windows edit controls,
keyboard accelerators, or the CEditView class, all of which will be described
later. Sometimes, though, you need to process raw keystrokes. The Windows
WM_KEYDOWN message gives you the exact, untranslated code for a
pressed key. The message map function OnKeyDown handles this message
with a switch statement that the nChar parameter controls.

Keystrokes that represent normal ASCII characters also generate a
WM_CHAR message that delivers the translated ASCII character. We cannot
use WM_CHAR here because the direction keys don't generate ASCII
characters.

Connecting Scroll Keys to CScrollView
In a CScrollView window, the scroll bars send a WM_HSCROLL message
and a WM_ VSCROLL message in response to the user's mouse actions. The
handlers for these messages call the CScrollView::OnHScroll and CScrollView­
::On VScroll virtual member functions. If you want only mouse scrolling, you
don't need to write any code because the base class does the work. If you
want keyboard-actuated scrolling, however, you can use the OnKeyDown func­
tion to simulate scroll messages. All that's necessary is a direct call to the
OnVScroll function. The Up direction key, for example, with code VK_UP,
calls On VScroll with the parameters that specify "scroll up one line." The size
of a line was set in the SetScrollSizes function called in OnlnitialUpdate.

Coordinate Transformations-Not Vet
EX04C is an introductory CScrollViewexample. Coordinate transformations
are going on in the base class, so don't try any transformations yourself. See
EX05A in the next chapter for a complete scrolling example with alternate
mapping modes.

71

PART II: THE MFC LIBRARY VIEW CLASS

Other Windows Messages
The MFC library directly supports about 130 Windows message-handling
functions. In addition, you can define your own messages. You will see plenty
of message-handling examples in later chapters, including handlers for
menu items, child window controls, and so forth. In the ~eantime, five spe­
cial Windows messages deserve special attention.

The WM_CREATE Message
This is the first message that Windows sends to a view. It is sent when the
window's Create function is called by the framework, so the window creation
is not finished and the window is not visible. Therefore, your OnCreate han­
dler cannot call Windows functions that depend on the window being com­
pletely alive. You can call such functions in an overridden OnlnitialUpdate
function, but you must be aware that, in an SDI application, OnlnitialUpdate
can be called more than once in a view's lifetime.

The WM_CLOSE Message
Windows sends the WM_CLOSE message when the user closes a window
from the system menu and when a parent window is closed. If you imple­
ment the On Close message map function in your derived view class, you can
control the closing process. If, for example, you need to prompt the user to
save changes to a file, you do it in On Close. Only when you have determined
that it is safe to close the window do you call the base class On Close function,
which continues the close process. The view object and the corresponding
window are both still active.·

TIP: When you're using the full application framework, you
probably won't use the WM_CLOSE message handler. As Chapter
24 illustrates, you'll override the CDocument::SaveModified virtual
function instead, as part of the application framework's highly
structured program exit procedure.

The WM_QUERYENDSESSION Message

72

Windows sends the WM_QUERYENDSESSION message to all running ap­
plications when the user exits Windows. The OnQueryEndSession message
map function handles it. If you write a handler for WM_CLOSE, write one
for WM_QUERYENDSESSION too.

F 0 U R: Basic Event Handling-Using ClassWizard

The WM_DESTROY Message
Windows sends this message after the WM_CLOSE message, and the
OnDestroy message map function handles it. When your program receives this
message, it should assume that the view window is no longer visible on the
screen but that it is still active and its child windows are still active. Use this
message handler to do cleanup that depends on the existence of the under­
lying window. Be sure to call the base class OnDestroy function. You cannot
"abort" the window destruction process in your view's OnDestroy function.
OnClose is the place to do that.

The WM_NCDESTROY Message
This is the last message that Windows sends when the window is being de­
stroyed. All child windows have already been destroyed. You can do final pro­
cessing in OnNcDestroy that doesn't depend on a window being active. Be sure
to call the base class OnNcDestroy function.

TIP: Do not try to destroy a dynamically allocated window ob­
ject in OnNcDestroy. That job is reserved for a special CWndvirtual
function, PostNcDestroy, that the base class OnNcDestroy calls. Tech­
nical Note # 17 in the MFCNOTES.HLP Help file gives hints on
when it's appropriate to destroy a window object.

73

C HAP T E R F I V E

THE GRAPHICS DEVICE
INTERFACE (GDI)

You've already seen some elements of the CDI. Any time your program
draws directly on the display or printer, it must use the CDI functions. The
CDI has functions for drawing points, lines, rectangles, polygons, ellipses,
bitmaps, and text. This chapter gives you the information you need to use
the CDI effectively in the Visual C++ environment. It emphasizes the use of
text because graphics programming for Microsoft Windows is often intuitive.
We'll cover in detail the "mapping modes" that determine the size of dis­
played objects.

The Device Context Classes
In Chapters 3 and 4, the On Draw member function of the view class was
passed a pointer to a device context object. OnDraw selected a brush and
then drew a circle. The Windows device context is the key CDI element that
represents a physical device. Each C++ device context has an associated Win­
dows device context, identified by a handle of type HDG.

Microsoft Foundation Class (MFC) Library version 2.5 has a number of
device context classes. The base class CDC has all the member functions
(some virtual) you'll need for drawing. Except for the oddball CMetaFileDC
class, derived classes are distinct only in their constructors and destructors. If
you (or the application framework) construct an object of a derived device
context class, you can pass a CDC pointer to a function such as OnDraw. For
the display, the usual derived classes are CClientDC and CWindowDG. For
other devices, such as a printer or a memory buffer, you construct an object
of the base class CDG.

75

PA R T II: THE MFC LIBRARY VIEW CLASS

The "virtualness" of the CDC class is an important feature of the appli­
cation framework. In Chapter 18, you'll see how easy it is to write code that
works with both the printer and the display. A statement in OnDraw such as

pDC->TextOut(O, 0, NHello N);

sends text to the display, the printer, or the Print Preview window depending
on the class of the object referenced by the CView::OnDraw function's pDC
parameter.

For display and printer device context objects, the application frame­
work attaches the handle to the object. For other device contexts, such as the
memory device context that you'll see in Chapter 10, you must call a mem­
ber function after construction in order to attach the handle.

The Display Context Classes CClientDC and CWindowDC
Remember that a window's client area excludes the border, the caption bar,
and the menu bar. If you create a CClientDCobject, you have a device context
that is mapped only to this client area-you can't draw outside it. The point
(0, 0) usually refers to the upper left corner of the client area. As you'll see
later, an MFC library CView object corresponds to a "child window" that is
contained in a separate frame window, often along with a toolbar, a status
bar, and scroll bars. The client area of the view, then, does not include these
other windows. If the window contains a toolbar,for example, point (0, 0)
refers to the point immediately under the left edge of the toolbar.

If you construct an object of class CWindowDC, point (0, 0) is at the up­
per left corner of the nonclient area of the window. With this "whole win­
dow" device context, you can draw in the window's border, in the caption
area, and so forth. Don't forget that the view window doesn't have a
nonclient area, so CWindowDC is more applicable to frame windows than to
view windows.

Constructing and Destroying CDC Objects

76

Mter you construct a CDC object, it is important to destroy it promptly when
you're done with it. Windows limits the number of available device contexts,
and if you fail to destroy a device context object, the Debug kernel gives you
a nasty FatalExit message in the debug window. Most frequently, you'll con­
struct a device context object inside a message handler function such as
OnLButtonDown. The easiest way to ensure that the device context object is
destroyed (and the underlying Windows device context is released) is to con­
struct the object on the stack like this:

F I V E: The Graphics Device Interface (GDI)

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)

CRect recti

CClientDC dc(this) i II constructs dc on the stack

dc.GetClipBox(rect) i II retrieves the clipping rectangle

II dc automatically destroyed

Notice that the CClientDC constructor takes a window pointer as a pa­
rameter. The destructor for the CClientDC object is called upon return from
the function. You can also get a device context pointer by using the CWnd::­
GetDCmember function. You must be careful here to call the ReleaseDCfunc­
tion to release the device context.

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)

CRect recti

CDC* pDC = GetDC() i II a pointer to an internal dc

pDC->GetClipBox(rect) i II retrieves the clipping rectangle

ReleaseDC(pDC) i II don't forget this

WAR N I N G : You must not destroy the CDC object passed by the
pointer to OnDraw. The application framework handles the de­
struction for you.

The State of the Device Context
You know already that a device context is required for drawing. When you
use a CDC object to draw an ellipse, for example, what you see on the screen
(or the printer's hard copy) depends on the current "state" of the device
context. This state includes

• Attached GDI drawing objects such as pens, brushes, and fonts.

• The mapping mode that determines the scale of items when they
are drawn.

• Various details such as text alignment parameters and polygon
filling mode. You have already seen, for example, that choosing a
gray brush prior to drawing an ellipse results in the ellipse having
a gray in terior.

When you create a device context object, it has certain default charac­
teristics, such as a black pen for shape boundaries. All other state character­
istics are assigned through CDC class member functions. GDI objects are

77

PAR T II: THE MFC LIBRARY VIEW CLASS

"selected into the device context" by means of the overloaded SelectObject
functions. A device context can, for example, have one pen, one brush, or
one font selected at any given time.

The CPaintDC Class
You'll need this class only if you override your view's OnPaint function. The
default OnPaintcalls OnDrawwith a properly set up device context, but some­
times you'll need display-specific drawing code. The CPaintDC class is special
because its constructor and destructor do housekeeping unique to OnPaint.
Once you have a CDC pointer, however, you can use it as you would any other
device context pointer.

Here's a sample OnPaint function that creates a CPaintDC object:

void CMyView::OnPaint()

CPaintDC dc(this);

OnPrepareDC(&dc); II explained later

dc.TextOut(O, 0, "for the display, not the printer");

OnDraw(&dc); II stuff that's common to the display and printer

GDIObjects

78

A Windows GDI object type is represented by an MFC library class.
CGdiObject is the abstract base class for the GDI object classes. A 'Windows
GDI object" is represented by a c++ object of a class derived from CGdiObject.
Here's a list of the GDI derived classes:

• CBitmap-A bitmap is an array of bits in which one or more bits
correspond to each display pixel. You can use bitmaps to represent
images, including icons and cursors, and you can use them to
create brushes.

• CBrush-A brush defines a bitmapped pattern of pixels that is used
to fill areas with color.

F I V E: The Graphics Device Interface (GDI)

• CFont-A font is a complete collection of characters of a particular
typeface and a particular size. Fonts are generally stored on disk
as resources, and some are device-specific.

• CPalette-A palette is a color mapping interface that allows an ap­
plication to take full advantage of the color capability of an output
device without interfering with other applications.

• CPen-A pen is a tool for drawing lines and shape borders. You
can specify a pen's color and thickness and whether it draws solid,
dotted, or dashed lines.

• CRgn-A region is an area that is a combination of polygons and
ellipses. You can use regions for filling, clipping, and mouse hit­
testing.

Constructing and Destroying GDI Objects
You never construct an object of class CGdiObject, but rather you construct
objects of the derived classes. Constructors for some GDI derived classes,
such as CPen and CBrush, allow you to specify enough information to create
the object in one step. Others, such as CFont and CRgn, require a second cre­
ation step. For these classes, you first construct the C++ object with the de­
fault constructor, and then you call a create function such as CreateFont or
CreatePolygonRgn.

The CGdiObject class has a virtual destructor. The derived class destruc­
tors delete the Windows GDI objects that are attached to the C++ objects. If
you construct an object of a class derived from CGdiObject, you must delete it
prior to exiting the program. If you don't, Windows doesn't release the
memory, and you'll get another nasty message in the debug window. To de­
lete a GDI object, you must first separate it from the device context. You'll
see an example in the next section.

Tracking GDI Objects
OK, so you know that you have to delete your CDI objects and that they must
first be disconnected from their device context. How do you disconnect
them? Members of the CDC SelectObject family of functions do the work of se­
lecting a GDI object into the device context and, in the process, return a
pointer to the previously selected object (which gets deselected in the pro­
cess). Trouble is, you can't deselect the old object without selecting a new
object. One easy way to track the objects is to "save" the original GDI object
when you select your own GDI object and "restore" the original object when

79

PAR T II: THE MFC LIBRARY VIEW CLASS

you're finished. Then you'll be ready to delete your own GDI object. Here's
an example:

void CMyView::OnDraw(CDC* pDC)

CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); II black pen,

CPen* pOldPen = pDC->SelectObject(&newPen);

pDC->MoveTo(10, 10);

pDC->Lineto(110, 10);

pDC->SelectObject(pOldPen) ;

II newPen automatically destroyed on exit

II 2 pixels wide

II newPen is deselected

When a device context object is destroyed, all its GDI objects are dese­
lected. Thus, if you know that a device context will be destroyed before its
selected GDI objects are destroyed, then you don't have to deselect the ob­
jects. If, for example, you declare a pen as a view class data member (and you
initialize it when you initialize the view), you don't have to deselect the pen
inside OnDraw because the device context, controlled by the view base class's
OnPaint handler, will be destroyed first.

Stock GOI Objects

80

Windows contains a number of "stock GDI objects" that you can use. Because
these objects are inside Windows, you don't have to worry about deleting
them. (Windows ignores requests to delete stock objects.) The MFC library
function SelectStockObject gives you a CGdiObject pointer that you can select
into a device context. These stock objects are handy when you want to de­
select your own nonstock GDI object prior to its destruction. You can use
a stock object as an alternative to the "old" object you used in the previous
example.

void CMyView::OnDraw(CDC* pDC)
{

CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); II black pen,

pDC->SelectObject(&newPen) ;

pDC->MoveTo(10, 10);

pDC->Lineto(110, 10);

pDC->SelectStockObject(BLACK_PEN) ;

II newPen destroyed on exit

II 2 pixels wide

II newPen is deselected

The Class Library Reference lists the stock objects available for pens,
brushes, fonts, and palettes.

F I V E: The Graphics Device Interface (GOI)

The Lifetime of a GOI Selection
For the display device context, you get a fresh device context at the begin­
ning of each message-handling function. No GDI selections (or mapping
modes or other device context settings) persist after your function exits. You
must, therefore, set up your device context from scratch each time. The
CView class virtual member function OnPrepareDC is useful for setting the
mapping mode, but you must take care of your own GDI objects.

For other device contexts, such as those for printers and memory hl~ff­
ers, your assignments can last longer. For these long-life device contexts,
things get a little more complicated. The complexity results from the tempo­
rary nature of GDI C++ object pointers returned by the SelectObject function.
(The temporary C++ object will be destroyed by the application framework
during the idle loop processing of the application, sometime after the han­
dlerfunction returns the call. See Technical Note #3 in the MFCNOTES.HLP
Help file.) You can't simply store the pointer in a class data member; rather
you must convert it to a Windows handle (the only permanent GDI identi­
fier) with the GetSafeHdcmember function. Here's an example:

II m-pPrintFont is a CFont pointer initialized in the CMyView constructor

II m_hOldFont is a CMyView data member of type HFONT, initialized to °
void CMyView::SwitchToCourier(CDC* pDC)
{

m-pPrintFont->CreateFont(30, 10, 0, 0, 400, FALSE, FALSE,

0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,

CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,

DEFAULT_PITCH re FF_MODERN,

"Courier New"); II TrueType

CFont* pOldFont pDC->SelectObject(m-pPrintFont);

II m_hObject is the CGdiObject public ~ata member that contains

II the handle

m_hOldFont = (HFONT) pOldFont->GetSafeHandle();

void CMyView:SwitchToOriginalFont(CDC* pDC)

II FromHandle is a static member function that returns an

II object pointer

if (m_hOldFont) {

pDC->SelectObject(CFont::FromHandle(m_hOldFont));

}

II m-pPrintFont is deleted in the CMyView destructor

81

PA R T II: THE MFC LIBRARY VIEW CLASS

NOT E : Be careful when deleting an object whose pointer is re­
turned by SelectObject. If you've allocated the object yourself, you
can delete it. If the pointer is temporary, as it will be for the object
initially selected into the device context, you cannot delete the
C++ object.

A Permanent Device Context for the Display­
Registering Window Classes

You've learned that you get a fresh display device context each time a Win­
dows message handler function is called. An exception to this rule, however,
is that at window creation time you can specify a permanent device context
that lasts for the life of the window. The permanent device context retains its
settings, including CDI object selections and mapping mode, but not its
color palette.

You request a permanent Windows device context with a call to the
AfxRegisterWndClass function, with the nClassStyle parameter CS_OWNDC or
CS_CLASSDG. Even though the Windows device context is permanent, you
must still ensure that it is released at the end of each message handler that
uses it.

The AfxRegisterWndClass function is useful for assigning other special
characteristics to a window. For example, you can use this function to inhibit
mouse double-click messages or to prevent the user from closing the window
from the system menu. To call AfxRegisterWndClass, override the CWndvirtual
PreCreateWindow member function for the window you want to customize.
Here's an example in a derived view class:

BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass = AfxRegisterWndClass(CS_HREDRAW ~ CS_VREDRAW ~

CS_OWNDC, NULL);

return TRUE;

Of course, you'll need a prototype for the PreCreateWindow member
function in your view class declaration.

Windows Color Mapping

82

The Windows CDI provides a "hardware-independent" color interface. Your
program supplies an "absolute" color code, and the CDI maps that code to a
suitable color or color combination on your computer's video display. Most

F I V E: The Graphics Device Interface (GDI)

Windows programmers try to optimize their applications' color display for a
few common video board categories.

Standard Video Graphics Array (VGA) Display Boards
A standard VGA display board uses 18-bit color registers, and thus it has a
palette of 262,144 colors. Because of video memory constraints, however, the
standard VGA board accommodates 4-bit color codes, which means it can
display only 16 colors at a time. Because Windows needs fixed colors for cap­
tions, borders, scroll bars, and so forth, your programs can use only 16 "stan­
dard" pure colors. You cannot conveniently access the other colors that the
board can display.

Each Windows color is represented by a combination of 8-bit "red,"
"green," and "blue" values. The 16 standard VGA "pure" (nondithered) col­
ors are shown in the following table:

Red Green Blue Color

0 0 0 Black

0 0 255 Bright blue

0 255 0 Bright green

0 255 255 Cyan

255 0 0 Bright red

255 0 255 Magenta

255 255 0 Bright yellow

255 255 255 White

0 0 128 Dark blue

0 128 0 Dark green

0 128 128 Blue-green

128 0 0 Brown

128 0 128 Dark purple

128 128 0 Olive

128 128 128 Dark gray

192 192 192 Light gray

Color-oriented GDI functions accept 32-bit COLORREFparameters that
contain 8-bit color codes each for red, green, and blue. The Windows RGB
macro converts 8-bit red, green, and blue values to a COLORREFparameter.
The following statement, when executed on a system with a standard VGA

83

PAR T II: THE MFC LIBRARY VIEW CLASS

board, constructs a brush with a dithered color (one that consists of a pat­
tern of pure-color pixels) :

CBrush brush(RGB(128, 128, 192));

The following statement (in your view's OnDraw function) sets the text
background to bright red:

pDC->SetBkColor(RGB(255, 0, 0));

The CDC functions SetBkColor and SetTextColor don't always display dithered
colors as the brush-oriented drawing functions do. If the dithered color pat­
tern is too complex, the closest matching pure color is displayed.

256-Color Display Boards

84

Many display boards can accommodate 8-bit color codes, which means they
can display 256 colors simultaneously. If you have one of these "super VGA"
boards, you need to install a special Windows display driver, supplied by
Microsoft or your board's manufacturer, to activate the 256-color mode. Be­
cause 8-bit color images require twice as much memory as 4-bit color images,
Windows display updates can be noticeably slower in 256-color mode.

If Windows is configured for a 256-color display board, your programs
are limited to 20 standard colors unless you activate the Windows "color pal­
ette" system as supported by the MFC library CPalette class and the Windows
API. Windows color palette programming is covered briefly in Chapter 23.
In this chapter, we'll assume that the Windows default color mapping is in
effect.

With a 256-color display driver installed, you get the 16 VGA colors
listed in the table on the previous page, plus 4 more, for a total of 20. The
following table lists the 4 additional colors:

Red Green Blue Color

192 220 192 Pale green

166 202 240 Light blue

255 251 240 Off-white

160 160 164 Medium gray

The RGB macro works much the same as it does with the standard VGA.
If you specify one of the 20 standard colors for a brush, you get a pure color;
otherwise, you get a dithered color. If you use the PALETTERGB macro in­
stead, you don't get dithered colors; you get the closest matching standard
pure color.

F I V E: The Graphics Device Interface (GOI)

24-Bit Color Display Boards
Other display boards, mostly in the high-end category (which are becoming
more widely used), use 24-bit color codes. This 24-bit capability enables the
display of 16.7 million pure colors. If you're using a 24-bit color board, you
have full access to all the colors. The RGB macro allows you to specify the
exact colors you want.

Mapping Modes
Up to now, our drawing units have been display pixels, also known as device
coordinates. The statement

pDC->Rectangle(CRect(O, 0, 200, 200));

draws a square 200 pixels by 200 pixels, with its top left corner at the top left
of the window's client area (with positive y values increasing as you move
down the window). This square would look smaller on a high-resolution dis­
play of 1024 by 768 pixels than it would on a standard VGA display that is 640.
by 480 pixels, and it would look tiny if printed on a laser printer with 600-dpi
resolution.

What if you want the square to be 2 inches by 2 inches, regardless of the
display device? Windows provides a number of mapping modes, or coordi­
nate systems, that can be associated with the device context. If you assign the
MM_LOENGLISH mapping mode, for example, a logical unit is 1/100 inch in­
stead of 1 pixel. In the MM_LOENGLISH mapping mode, the y-axis runs in
the opposite direction to that in the MM_TEXTmode: y values decrease as
you move down. Thus, a 2-inch-by-2-inch square is drawn in logical coordi­
nates this way:

pDC->Rectangle(CRect(O, 0, 200, -200));

Looks easy, doesn't it? Well, it isn't, because you can't work only in logi­
cal coordinates. Your program is always switching between device coordi­
nates and logical coordinates, and you need to know when to convert
between them. This chapter gives you a few rules that could make your pro­
gramming life easier. First you need to know what mapping modes Windows
gives you.

The MM_ TEXT Mapping Mode
At first glance, MM_TEXTappears to be no mapping mode at all, but rather
another name for device coordinates. Almost. In MM_ TEXT, coordinates
map to pixels, values of x increase as you move right, and values of y increase

85

PAR T II: THE MFC LIBRARY VIEW CLASS

as you move down, but you're allowed to change the origin through calls to
the CDC functions SetViewportOrg and SetWindowOrg. Here's some code that
sets the origin to (100, 100) and draws a 200-pixel-by-200-pixe1 square. (An
illustration of the output is shown in Figure 5-1.) Nowthe logical point (0, 0)
maps to the device point (100, 100).

void CMyView: :OnDraw(CDC* pDC)

{

pDC->SetMapMode(MM_TEXT)i

pDC->SetViewportOrg(CPoint(100, 100)) i

pDC->Rectangle(CRect(O, 0, 200, 200)) i

The "Fixed Scale" Mapping Modes

86

One important group of Windows mapping modes provides fixed scaling.
With these mapping modes, you can change the viewport origin, but you
cannot change the scale factor. You have already seen that, in the
MM_LOENGLISH mapping mode, x values increase as you move right, and y
values decrease as you move down. All fixed mapping modes follow this con­
vention, and you can't change it. The only difference among the fixed map­
ping modes is the actual scale factor, listed in the table on the facing page.

Device
coordinate

(0,0)

Device
coordinate

y-axis

Figure 5-1.

Device coordinate x-axis

,..--________ Device coordinate (100, 100)
/ becomes logical coordinate (0, 0)

Logical
coordinate
y-axis

Logical coordinate x-axis

'-Device coordinate (300, 300)
becomes logical coordinate (200, 200)

A square drawn after the origin has been moved to (100, 100).

F I V E: The Graphics Device Interface (GDI)

Mapping Mode

MM_LOENGLISH

MM_HIENGLISH

MM_LOMETRIC

MM_HlMETRIC

MM_TWIPS

Logical Unit

0.01 inch

0.001 inch

0.1 mm

0.01 mm

Y1440 inch

The last mapping mode, MM_ TWIPS, is most often used with printers.
One "twip" unit is Y20 point. (A point is a type measurement unit that is ap­
proximately Y72 inch.) If the mapping mode is MM_TWIPS, and you want, for
example, 12-point type, set the character height to 12 x 20, or 240 twips.

The "Variable Scale" Mapping Modes
Windows provides two mapping modes, MM_ISOTROPIC and MM_ANISO­
TROPIC, that allow you to change the scale factor as well as the origin. With
these mapping modes, your drawing can change size as the user changes the
size of the window. Also, if you invert the scale of one axis, you can "flip" an
image about the other axis, and you can define your own arbitrary fixed scale
factors.

With the MM_ISOTROPIC mode, a 1: 1 aspect ratio is always preserved.
In other words, a circle is always a circle as the scale factor changes. With the
MM_ANISOTROPIC mode, the x and y scale factors can change indepen­
dently. Circles can be squished into ellipses.

Here's an OnDraw function that draws an ellipse that fits exactly in its
window:

void CMyView: :OnDraw(CDC* pDC)

CRect clientRect;

GetClientRect(clientRect);

pDC->SetMapMode(MM_ANISOTROPIC) ;

pDC->SetWindowExt(1000, 1000);

pDC->SetViewportExt(clientRect.right, -clientRect.bottom);

pDC-SetViewportOrg(clientRect.right 2, clientRect.bottom / 2);

pDC->Ellipse(CRect(-500, -500, 500, 500));

What's going on here? The functions SetWindowExt and SetViewportExt work
together to set the scale, based on the window's current client rectangle

87

PAR T II: THE MFC LIBRARY VIEW CLASS

88

returned by the GetClientRect function. The resulting window size is exactly
1000 by 1000 logical units. The SetViewportOrg function sets the origin to the
center of the window. Thus, a centered ellipse with a radius of 500 logical
units fills the window exactly as illustrated in Figure 5-2.

Here are the formulas for converting logical units to device units:

x scale factor = x viewport extent / x window extent
y scale factor = y viewport extent / y window extent
device x = logical x x x scale factor + x origin offset
device y = logical y x y scale factor + y origin offset

Suppose the window is 448 pixels wide (clientRect. right). The right edge of the
ellipse's client rectangle is 500 logical units from the origin.The x scale fac­
tor is 448/ 1000, and the x origin offset is 448 /2 device units. If you use the
formulas above, the right edge of the ellipse's client rectangle comes out to
448 device units, the right edge of the window. The x scale factor is expressed
as a ratio (viewport extent / window extent) because Windows device coordi­
nates are integers, not floating-point values. The extent values are meaning­
less by themselves.

If you substitute MM_ISOTROPIC for MM_ANISOTROPIC in the ex­
ample above, the "ellipse" is always a circle, as shown in Figure 5-3. It ex­
pands to fit the smallest dimension of the window rectangle.

y-axis

1

(-500, 0) ~i / (0, 0) i/ (500: 0)

-----'''i-----------F------------r--- x-axIs

--------------------~-~-----~~----~--~~~~~~~~~-------------

Figure 5-2.
A centered ellipse drawn in the MM~ISOTROPIC mapping mode.

F I V E: The Graphics Device Interface (GOI)

y-axis

(-500, 0) ----i--------.~ ,,--__ .J--_ (500,0)

--+-------=~----~----~-----'--- x-axis

_________________________ =""'_ ---.L.-'-______ ~ ~~ ~~~~-) ____________ _

Figure 5-3.
A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

Coordinate Conversion
Once you set the mapping mode (plus the origin and scale) of a device con­
text, you can use logical coordinate parameters for most (but not all) CDC
member functions. If you get the mouse cursor coordinates from a
WM_MOUSEMOVE message, for example, you're dealing with device coor­
dinates. Many other MFC library functions, particularly the member func­
tions of class CRect, work correctly only with device coordinates.

Furthermore, you're likely to need a third set of coordinates that we'll
call "physical coordinates." Why another set? Suppose you're using the
MM_LOENGLISH mapping mode in which a logical unit is 0.01 inch, but an
inch on the screen represents a foot (12 inches) in the real world. Now sup­
pose the user works in inches and decimal fractions. A user measurement of
26.75 inches translates into 223 logical units, which must be ultimately trans­
lated to device coordinates. You'll want to store the physical coordinates as
either floating-point numbers or scaled long integers to avoid rounding-off
errors.

For the physical-to-Iogical translation, you're on your own, but the Win­
dows GDI takes care of the logical-to-device translation for you. The CDC
functions LPtoDP and DPtoLP translate between the two systems, assuming
the device context mapping mode and associated parameters have already
been set. Your job is to decide when to use each system. Here are a few rules
of thumb:

89

PAR T II: THE MFC LIBRARY VIEW CLASS

• Assume CDC member functions take logical coordinate parameters.

• Assume CWnd member functions take device coordinate parameters.

• Do all hit-test operations in device coordinates. Define regions in
device coordinates. Functions such as the CRect::PtlnRect function
work only with non-negative coordinates. Windows, not the MFC
library, imposes this last restriction.

• Store long-term values in logical or physical coordinates. If you
store a point in device coordinates and the user scrolls a window,
that point is no longer valid.

Suppose you need to know whether the mouse cursor is inside a rect­
angle when the user presses the left mouse button. Here's the code:

II m_rect is CRect data member of CMyView in MM_LOENGLISH

II logical coordinates

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)

CRect rect = m_recti II rect is a temporary copy of m_recti

CClientDC dc(this) i

dc.SetMapMode(MM_LOENGLISH)i

dc.LPtoDP(rect) i II rect is now in device coordinates

if (rect.PtlnRect(point)) {

TRACE("mouse cursor is inside the rectangle\n");

Notice the use of the TRACEmacro (discussed in Chapter 3).

NOT E: As you get further into application framework pro­
gramming, you'll see that it's better to set the mapping mode in
the virtual CView function OnPrepareDC instead of in the OnDraw
function.

Fonts

90

Old-fashioned character-mode applications could display only the boring
system font on the screen. Windows provides multiple, device-independent
fonts in variable sizes. The effective use of these Windows fonts can signifi­
cantly energize an application with minimum programming effort. The new
Windows version 3.1 TrueType fonts are even more effective and easier to
program than the previous device-dependent fonts. You'll see several ex­
ample programs that use fonts later in this chapter.

F I V E: The Graphics Device Interface (GDI)

Fonts Are G DI Objects
Fonts are an integral part of the Windows GDI. This means that fonts behave
in the same way as other CDI objects. They can be scaled and clipped, and
they can be selected into a device context as a pen or a brush can be selected.
All GDI rules about deselection and deletion apply to fonts.

Choosing a Font
Choosing a Windows font used to be like going to a fruit stand and asking for
"a piece of reddish-yellow fruit, with a stone inside, that weighs about 4
ounces." You might have gotten a peach or a plum or even a nectarine, and
you could be sure that it wouldn't have weighed exactly 4 ounces. Once you
took possession of the fruit, you could weigh it and check the fruit type. Now,
with TrueType, you can ~pecify the fruit type, but you still can't specify the
exact weight.

Today you can choose between two font types-TrueType device­
independent fonts and device-dependent fonts such as the Windows display
System font and the LaserJet LinePrinter font-or you can specify a font cat­
egory and size and let Windows select the font for you. If you let Windows
select the font, it will choose a TrueType font if possible. The MFC library
provides a font selection dialog box tied to the currently selected printer, so
there's little need for printer font guesswork. You let the user select the exact
font and size for the printer, and then you approximate the display the best
you can.

Printing with Fonts
For text-intensive applications, you'll probably want to specify printer font
sizes in points. (l point = Y72 inch.) Why? Most, ifnot all, built-in printer fonts
are defined in terms of points. The LaserJet LinePrinter font, for example,
comes in one size, 8.5 point. You can specify TrueType fonts in any point
size. If you work in points, you need a mapping mode that easily
accommodates points. That's what MM_TWIPS is for. An 8.S-point font is
8.5 x 20, or 170, twips, and that's the character height you'll want to specify.

Displaying Fonts
If you're not worried about the display matching the printed output, you
have a lot of flexibility. You can choose any of the scalable Windows True­
Type fonts, or you can choose the fixed-size system fonts (stock objects).
With the TrueType fonts, it doesn't much matter what mapping mode you
use; simply choose a font height and go for it. No need to worry about
points.

91

PART II: THE MFC LIBRARY VIEW CLASS

Matching printer fonts to make printed output match the screen pre­
sents some problems, but TrueType makes it easier than it was before. Even
if you're printing with TrueType fonts, however, you'll never quite get the
display to match the printer output. Why? Characters are ultimately dis­
played in pixels, and the width of a string of characters is equal to the sum of
the pixel widths of its characters, possibly adjusted for kerning. The pixel
width of the characters depends on the font, the mapping mode, and the
resolution of the output device. Only if both the printer and the display were
set to MM_TEXTmode (l pixel or dot = 1 logical unit) would you get an ex­
act correspondence. If you're using the CDC GetTextExtentfunction to calcu­
late line breaks, the screen breakpoint will occasionally be different from the
printer breakpoint.

NOT E: In the MFC library Print Preview mode, which we'll ex­
amine closely in Chapter 18, the line breaks occur exactly as they
do on the printer, but the print quality suffers in the process.

If you're matching a printer-specific font on the screen, TrueType
again makes the job easier. Windows substitutes the closest matching
TrueType font. For the 8.5-point LinePrinter font, Windows comes pretty
close with its Courier New font.

Points in a Window-Logical Twips

92

If you use twips units (%0 point, %440 inch) for printing, the obvious thing to
do is set the window device context mapping mode to MM_TWIPS. Doing so
is undesirable, however, because 10-point type that looks fine on paper is too
small to read when transferred inch for inch to a VGA screen. If, instead, you
use what Charles Petzold (in Programming Windows 3.1) calls the "logical
twips" mapping mode, things work better.

The following statements set the mapping mode to logical twips.

pDC->SetMapMode(MM_ANISOTROPIC);

pDC->SetWindowExt(1440, 1440);

pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX) ,

-pDC->GetDeviceCaps(LOGPIXELSY)) ;

Don't worry too much about the theory behind this mapping mode. Simply
remember that, if you use logical twips on the display, l2-point type (with a
character height of 240 twips) will look the same as it does in Visual Work­
bench and other Windows-based programs. The minus sign on the second
SetViewportExt parameter ensures that y values decrease as you move down, as
in the MM_TWIPSmode.

F I V E: The Graphics Device Interface (GDI)

Computing Character Height
Five font height measurement parameters are available through the CDC
function GetTextMetrics, but only three are significant. The tmHeight param­
eter represents the full height of the font, including descenders (for the
characters g,j, p, q, and y) and any diacritics that appear over capital letters.
The tmExternalLeading parameter is the distance between the top of the dia­
critic and the bottom of the descender from the line above. The sum of
tmHeight and tmExternalLeading is the total character height. The value of
tmExternalLeading is often O.

You would think that tmHeight would represent the font size in points.
Wrong! Another GetTextMetrics parameter, tmlnternalLeading, comes into play.
The point size corresponds to the difference between tmHeight and
tmlnternalLeading. With the MM_ TWIPS mapping mode in effect, a selected
12-point font might have a tmHeight value of 295 logical units and a
tmlnternalLeadingvalue of 55. The font's net height of240 corresponds to the
point size of 12. Figure 5-4 shows the important font measurements.

Figure 5-4.

}
tm~xternalLeading

A--+---+--+--+--+--t--ll--f--+-+-+-- Diacritic

--II--f--+-+-+--+--+--+----i} tmlntemalLeading

Net
height

Descender

tmHeight

Font height measurements.

93

PA RT II: THE MFC LIBRARY VIEW CLASS

The EX05A Program

94

This example sets up a view window with the logical twips mapping mode. A
text string is displayed in 10 point sizes with the Arial TrueType font. Here
are the steps for building the application:

1. Run AppWizard to generate a project called EXOSA. Choose App­
Wizard from Visual Workbench's Project menu. The options and the
default class names are shown here:

Classes 10 be crealed:
Applicalion: CEx05aApp in EX05A.H and EX05A.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Documenl: CEx05aDoc in EX05ADOC.H and EX05ADOC.CPP
View: CEx05aView in EX05AVW.H and EX05AVW.CPP

Fealures:
+ Supporls Ihe Single Documenllnlerlace (SOl)
+ MSVC Compalible projecl file (EX05A.MAK)
+ Inilialloolbar and slalus bar in main frame
+ Prinling and Prinl Preview supporl in view
+ Uses medium memory model

Notice that this time we're accepting the default Printing And Print
Preview option.

2. Add function prototypes in file EXOSAVW.H. Show Font is a new private
member function in the CEx05a View class. OnPrepareDC is an override of
a CView base class function. The class declaration needs prototypes for
both.

3. Add the OnPrepareDC and ShowFont functions in file
EXOSAVW.CPP. These are new functions. You've already added the
prototypes in the class header.

F I V E: The Graphics Device Interface (GDI)

4. Edit the OnDraw function in EXOSAVW.CPP. AppWizard always
generates a skeleton OnDraw function for your view class. Find the
function and edit the code as follows:

void CEx05aView::OnDraw(CDC* pDC)

S. Build and run the EXOSA program. In Visual Workbench, choose
Build from the Project menu, and then choose Execute. The resulting
output looks like the screen on the following page on a standard VGA
card:

95

PAR T II: THE MFC LIBRARY VIEW CLASS

96

6-poi~t "'ri~1

8-point Arial
is 1 D-point Arial

sis 12-poi nt Arial
is is 14-point Arial
is is 16-point Arial

h is is 18-point Arial
his is 20-point Arial
his is 22-point Arial

is is 24- oint Arial

Notice that the output string sizes don't quite correspond to the point
sizes. This discrepancy results from the font engine's conversion of
logical units to pixels. The program's trace output, partially shown
below, shows the display of font metrics (the numbers depending on
your display driver and your video driver):

points = 6, tmHeight = 134, tmlnternalLeading 14, tmExternalLeading

string width = 1032, string height ::: 134
points = 8, tmHeight = 182, tmlnternalLeading 24, tmExternalLeading

string width = 1325, string height = 182
points = 10, tmHeight = 226, tmlnternalLeading 24, tmExternalLeading

string width = 1829, string height = 226

points = 12, tmHeight = 274, tmlnternalLeading 34, tmExternalLeading

string width = 2208, string height = 274

5

5

5

10

Try Print Preview. Notice, as shown below, that the printer font metrics
are different from the display font metrics, particularly the value of
tmlnternalLeading.

points = 6, tmHeight = 150, tmlnternalLeading 30, tmExternalLeading 0
string width = 1065, string height = 150
points = 8, tmHeight = 210, tmlnternalLeading 45, tmExternalLeading 0

string width = 1380, string height = 210
points = 10, tmHeight = 240, tmlnternalLeading 45, tmExternalLeading 0

string width = 1770, string height = 240
points = 12, tmHeight = 270, tmlnternalLeading 30, tmExternalLeading 15

string width = 2130, string height = 270

F I V E: The Graphics Device Interface (GDI)

No attempt was made here to set a print scale factor different from the dis­
play scale factor. In Chapter 18, you'll learn how to control the print scale
factor separately.

The EX05A Program Elements

Mapping Mode Set in the OnPrepareDC Function
The application framework calls OnPrepareDC prior to calling OnDraw, so the
OnPrepareDC function is the logical place to prepare the device context. If
you had other message handlers that needed the correct mapping mode,
those functions would have contained calls to OnPrepareDG.

The ShowFont Private Member Function
Show Font contains code that is executed 10 times in a loop. With C, you
would have made this a global function, but with C++ it's better to make it a
private class member function, sometimes known as a "helper function."

This function creates the font, selects it into the device context, prints a
string to the window, and then deselects and deletes the font. If you choose
to include debug information in the program, Show Font also displays useful
font metrics information, including the actual width of the string.

The Call to CFont::CreateFont
This call includes lots of parameters, but the important ones are the first
two-the font height and width. A width value of 0 means that the aspect ra­
tio of the selected font will be set to a value specified by the font designer. If
you put a nonzero value here, as you'll see in the next example, you can
change the font's aspect ratio.

TIP: If you want your font to be a specific point size, the
CreateFont font height parameter (the first parameter) must be
negative. If you're using the MM_TWIPS mapping mode, for ex­
ample, a height parameter of -240 ensures a 12-point font with
tmHeight - tmlnternalLeading= 240. A + 240 height parameter gives
you a smaller font with tmHeight = 240.

The last CreateFont parameter specifies the font name, in this case the Arial
TrueType font. If you had used NULL for this parameter, the FF_SWISS speci­
fication (which indicates a proportional font without serifs) would have
caused Windows to choose the "best matching" font, which, depending on
the specified size, might have been the System font or the Arial TrueType
font. The font name takes precedence. If you had specified FF_ROMAN
(which indicates a proportional font with serifs) with Arial, you would have
gotten Arial.

97

PA RT II: THE MFC LIBRARY VIEW CLASS

The EX05B Program

98

This program is similar to EX05A except that it shows multiple fonts. The
mapping mode is MM_ANISOTROPIC, but this time the scale depends on
the window size. The characters change size along with the window. This pro­
gram effectively shows off some TrueType fonts and contrasts them with the
old-style fonts. Here are the steps for building the application:

1. Run AppWizard to generate a project called EXOS8. Choose App­
Wizard from Visual Workbench's project menu. The options and the
default class names are shown here:

Classes to be created:
Application: CEx05bApp in EX05B.H and EX05B.CPP
Frame: ChtainFrame in htAINFRht.H and htAINFRht.CPP
Document: CEx05bDoc in EX05BDOC.H and EX05BDOC.CPP
View: CEx05bView in EX05BVW.H and EX05BVW.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ htSVC Compatible project file (EX05B.htAK)
+ Initial toolbar and status bar in main frame
+ Printing and Print Preview support in view
+ Uses medium memory model

Notice that again we're accepting the default Printing And Print
Preview option.

2. Add function prototypes in file EXOS8VW.H. TraceMetrics is a new
private member function in the CEx05bView class. OnPrepareDCis an
override of a CView base class function. The class declaration needs
prototypes for both.

3. Add the OnPrepareDC and TraceMetrics functions in
EXOS8VW.CPP.

F I V E: The Graphics Device Interface (GDI)

4. Edit the OnDrawfunction in EX05BVW.CPP. AppWizard always
generates a skeleton OnDraw function for your view class. Find the
function and edit the code as follows:

void CEx05bView::OnDraw(CDC* pDC)

(continued)

99

PAR T II: THE MFC LIBRARY VIEW CLASS

100

The OnDraw function displays character strings In four fon ts as
follows:

• testFontl-The TrueType font Arial with default width selection.

• testFont2-The old-style font Courier with default width selection.
Notice how jagged the font is in larger sizes.

• testFont3-The generic Roman font for which Windows supplies
the TrueType font Times New Roman with programmed width
selection. The width is tied to the horizontal window scale, so the
font stretches to fit the window.

• testFont4-The LinePrinter font is specified, but because this is not
a Windows font for the display, the font engine falls back on the
FF_MODERN specification and chooses the TrueType Courier New
font.

5. Build and run the EX05B program. In Visual Workbench, choose
Build from the Project menu, and then choose Execute. The program
output is shown in the screen at the top of the facing page:

F I V E: The Graphics Device Interface (GDI)

is is Courier, default width

. is generic Roman:> variable width

his is LinePrinter, default width

Resize the window to make it smaller, and watch the font sizes change.
Compare this screen with the previous one:

width

is generic Roman, variable vvidth

is LinePrinter, default width

If you continue to downsize the window, notice how the Courier font
stops shrinking after a certain size, and notice how the Roman font width
changes.

Now choose Print Preview from the File menu. The output, as shown in
Figure 5-5 on the following page, is very different from the window display
output because the Courier and LinePrinter fonts are not TrueType fonts.
The Windows Courier font maps to one of the printer's built-in fixed-size
Courier fonts, and the printer's LinePrinter font is available only in 8.5
point. The other fonts appear small because the MM_TEXTmapping mode
causes printer dots to be mapped directly to display pixels-which is clearly
undesirable. In Chapter 18, you'll learn more about scaling your printer
output.

101

PA RT II: THE MFC LIBRARY VIEW CLASS

This is Ivi.al. dt?f.ault widlh

This is Coy(it?(. dt?f.aylt width

Thi::i::g<Mi:l\ormn.~widh

This is LirePrinter, defaJ.l.t width

Figure 5-5.
The EX05B Print Preview output.

The EX05C Example-CScrollView Revisited

102

You saw the CScrollView class in Chapter 4 (in EX04C), but you couldn't do
much with it because you hadn't learned about mapping modes. Even with
the MM_ TEXT mode, you could not have done mouse hit-testing because
the CScrollView class changes the origin behind your back. Now we'll revisit
the scrolling view in another example that's an amalgam of programs EX04B
and EX04C. The new program allows the user to move a circle with a mouse,
but it does so in a scrolling window with the MM_LOENGLISH mapping
mode. Keyboard scrolling is left out, but you can add it by borrowing the
OnKeyDown member function from EX04C.

Instead of a stock brush, we'll use a pattern brush for the circle-a real
GDI object. There's one complication with pattern brushes: They have to be
"unrealized" as the window scrolls; otherwise, strips of the pattern don't line
up, and the effect is ugly.

As with EX04C, this example involves a view class derived from
CScrollView. Here are the steps to create the application:

1. Run AppWizard to generate a project called EX05C. Choose App­
Wizard from Visual Workbench's Project menu. Be sure to set the view
base class to CScrollView. The options and the default class names are
shown in the screen at the top of the facing page:

F I V E: The Graphics Device Interface (GDI)

Classes to be created:
Application: CEx05cApp iri EX05C.H and EX05C.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx05cDoc in EX05CDOC.H and EX05CDOC.CPP
ScrollView: CEx05cView in EX05CVW'.H and EX05CVW'.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ MSVC Compatible project file (EX05C.MAK)
+ Initialtoolbar and status bar in main frame
+ Uses medium memor.l' model

2. Edit the CEx05cViewclass header in file EX05CVW.H. Add the
following lines in the class CEx05cView declaration:

3. Use ClassWizard to add four message handlers. Add the message
handlers as follows:

Message

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_MOUSEMOVE

Member Function Name

OnLButtonDown

OnLButtonUp

OnMouseMove

4. Edit the CEx05cView message handler functions. ClassWizard
generated the skeletons for the functions listed above. Find them in
EX05CVW.CPP and code them as follows:

void CEx05cView::OnLButtonDown(UINT nFlags, CPoint point)

(continued)

103

PAR T II: THE MFC LIBRARY VIEW CLASS

void CEx05cView::OnLButtonUp(UINT nFlags, CPoint point)

void CEx05cView: :OnMouseMove(UINT nFlags, CPoint point)

104

F I V E: The Graphics Device Interface (GDI)

5. Edit the CEx05cViewconstructor, OnDrawfunction, and Onlnitial­
Update function. App Wizard generated these skeleton functions. Find
them in EX05CVW.CPP and code them as follows:

CEx05cView::CEx05cView()

}

void CEx05cView::OnDraw(CDC* pDC)
{

}

void CEx05cView::OnlnitialUpdate

}

6. Build and run the EX05C program. In the Visual Workbench, choose
Build from the Project menu, and then choose Execute. The program
allows a circle to be dragged with the mouse, and it allows the window to
be scrolled.

The EX05C Program Elements
Following is a discussion of the major elements in the EX05C program.

The CScroIlView::OnPrepareDC Member Function
The CView class has a virtual OnPrepareDC function that does nothing. The
CScrollView class implements the function for the purpose of setting up the
view's mapping mode, scale factor, and origin, based on the parameters
that you passed to SetScrollSizes in On Create. The application framework calls

105

PAR T II: THE MFC LIBRARY VIEW CLASS

OnPrepareDC for you prior to calling OnDraw, so you don't need to worry
about it. You must call OnPrepareDC yourself in any other message handler
function that uses the view's device context, such as OnLButtonDown and
OnMouseMove.

The OnMouseMove Coordinate Transformation Code
As you can see, this function contains quite a few translation statements. The
logic can be summarized by the following steps:

1. Convert the previous ellipse rectangle and mouse point (stored
in data members) from logical to device coordinates.

2. Update the mouse point and the ellipse rectangle.

3. Generate an invalid rectangle.

4. Convert the ellipse rectangle and mouse point to logical
coordinates.

The OnDraw Function
The UnrealizeObject and SetBrushOrg calls are necessary to ensure that all of
the circle's interior pattern lines up when the view is scrolled. The brush is
aligned with a reference point tempPoint, which is at top left of the logical
window, converted to device coordinates. This is a notable exception to the
rule that CDC member functions require logical coordinates.

The CScrollView SetScaleToFitSize Mode

106

The CScrollView class has a stretch-to-fit mode that displays the entire
scrollable area in the view window. The Windows MM_ANISOTROPIC map­
ping mode comes into play, with one restriction: Positive y values always in­
crease in the down direction, as in MM_TEXTmode.

To use the stretch-to-fit mode, make the following call in your view's
function in place of the call to SetScrollSizes:

SetScaleToFitSize(totalSize);

The example in Chapter 23 makes this call in OnlnitialUpdate, and it also
makes it in response to a Shrink To Fit menu item. Thus, the display can
toggle between scrolling mode and shrink-to-fit mode.

C HAP T E R 5 I X

THE MODAL DIALOG

Almost every program for Windows uses a dialog window to interact with
the user. The dialog might be a simple OK message box, or it might be a
complex data entry form. Calling this powerful element a dialog "box" is an
injustice. As you'll see, the dialog is truly a window that receives messages,
that can be moved and closed, and that can even accept drawing instructions
in its client area.

The two kinds of dialogs are "modal" and "modeless." This chapter ex­
plores the most common type, the modal dialog. You'll be working with a
single dialog example that includes most typical dialog "controls" plus a few
not-so-typical ones. Chapter 7 introduces the modeless dialog and the spe­
cial-purpose COMMDLG modal dialogs for opening files, selecting fonts,
and so forth.

Modal vs. Modeless Dialogs
The CDialog base class supports both modal and modeless dialogs. With a
modal dialog, such as the Open File dialog, the user cannot work elsewhere
in the application until the dialog is closed. With a modeless dialog, the user
can work in another window in the application while the dialog remains on
the screen. The Visual Workbench Find dialog is a good example of a
modeless dialog; you can edit your program during a global search (once the
search is started).

Your choice of a modal or a modeless dialog depends on the applica­
tion. Modal dialogs are much easier to program, which might influence your
decision.

107

PA R T II: THE MFC LIBRARY VIEW CLASS

FY I: The Microsoft Foundation Class Library version 1.0 sup­
ported two dialog classes: CDialog for modeless dialogs and
CModalDialog for modal dialogs. The Microsoft Foundation Class
(MFC) Library versions 2.0 and 2.5 CDialog class accommodate
both modal and modeless dialogs, but CModa IDia log still existed as
a macro for compatibility. Do not use the CModalDialog class in
new Microsoft Fo~ndation Class Library version 2.5 programs.

System Modal Dialogs
All modal dialogs restrict the user from working elsewhere in the application
that opens the dialog. With an ordinary modal dialog, however, the user can
switch to another program. One type of modal dialog, the system modal dia­
log, absolutely restricts the user to the dialog; the user must close the dialog
before continuing with any other Windows task.

NOT E: System modal dialogs are not allowed in 32-bit Windows.

Resources and Controls

108

So now you know a dialog is a window. What makes the dialog different from
the CViewwindows you've seen already? For one thing, a dialog window is al­
most always tied to a Windows resource that identifies the dialog's elements
and specifies their layout. Because you can use App Studio to create and edit
a dialog resource, you can quickly and efficiently produce dialogs in a visual
manner.

A dialog consists of a number of elements called controls. Dialog con­
trols include edit controls (aka text boxes), buttons, list boxes, combo boxes,
and static text (aka labels). Windows manages these controls through special
grouping and tabbing logic, and that relieves you of a major programming
burden. The dialog controls can be referenced either by a CWnd pointer (be­
cause they themselves are really windows) or by an index number (with an
associated #define constant) assigned in the resource. Controls can send mes­
sages to their dialog in response to user actions such as typing text or click­
ing a button.

The MFC library and ClassWizard work together to enhance the dialog
logic that Windows provides. With ClassWizard, you can associate dialog

S I X: The Modal Dialog

class data members with dialog controls, and you can specify editing param­
eters such as maximum text length and numeric high and low limits.
ClassWizard generates calls to the MFC library data exchange and data vali­
dation functions that move information back and forth between the screen
and the data members.

Programming a Modal Dialog
Modal dialogs are the most frequently used dialogs. A user action (a menu
choice, for example) brings up a dialog on the screen, the user enters data in
the dialog, and then the user closes the dialog. Here's a summary of the steps
to add a modal dialog to an existing project:

1. Use App Studio to create a dialog resource that contains various
controls. App Studio updates the project's resource script (RC) file
to include your new dialog resource, and the RESOURCE.H file is
updated to include corresponding #define constants.

2. Use Class Wizard to create a dialog class that is derived from CDialog
and attached to the resource created in step 1. ClassWizard adds
the associated code and header file to the Visual Workbench
project.

3. Use ClassWizard to add data members, exchange functions, and
validation functions to the dialog class.

4. Use ClassWizard to add message handlers for the dialog's buttons
and special controls.

5. Write the code for special control initialization (in OnlnitDialog)
and for the message handlers. Be sure the CDialogvirtual member
function OnOKis called when the user closes the dialog (unless the
user cancels the dialog). (Note: OnOKis called by default.)

6. Write the code in your view class to activate the dialog. This code
consists of a call to your dialog class's constructor followed by a call
to the DoModal dialog class member function. DoModal returns only
when the user exits the dialog window.

Now we'll proceed with a real example, one step at a time.

109

PAR T II: THE MFC LIBRARY VIEW CLASS

The Dialog That Ate Cincinnati­
The EX06A Example

110

Let's not mess around with wimpy little dialogs. We'll build a monster dialog
that contains almost every kind of control. The job will be easy because App
Studio is there to help us. The finished product is shown in Figure 6-1.

Figure 6-1.
The finished dialog in action.

As you can see, the dialog supports a human resources application.
These kinds of business programs are fairly boring, so the challenge is to
produce something that could not have been done with SO-column punched
cards. The program is brightened a little by the use of scroll bar controls for
"loyalty" and "reliability." Here is a classic example of direct action and visual
representation of data! Visual Basic controls could add more interest, but
they aren't covered until Chapter S.

Here are the steps for building the dialog resource:

1. Run AppWizard to generate a project called EX06A. Choose App­
Wizard from Visual Workbench's Project menu. The options and the
default class names are shown here:

Classes to be created:
Application: CEx06aApp in EX06A.H and EX06A.CPP
Frame: ChtainFrame in htAINFAht.H and htAINFAM.CPP
Document: CEx06aDoc in EX06ADOC.H and EX06ADOC.CPP
View: CEx06aView in EX06AVW.H and EX06AVW.CPP

Features:
+ Supports the Single Document Interface (501)
+ MSVC Compatible project file (EX06A.htAK)
+ Initial toolbar and status bar in main frame
+ Uses medium memory model

S I X: The Modal Dialog

As usual, App Wizard sets the new project to be the Visual Workbench
current project.

2. From the Visual Workbench, open the file EX06A.RC. Choose App
Studio from Visual Workbench's Tools menu. This starts App Studio with
the EX06A resource file that AppWizard generated.

3. Create a new dialog with 10 IDD_DIALOG1. Click the New button in
the EX06A.RC (MFC Resource Script) window. The New Resource dia­
log appears. Click on Dialog, and then click on OK. App Studio creates
a new dialog resource, as shown here:

111

PA RT II: THE MFC LIBRARY VIEW CLASS

112

App Studio assigns the resource ID IDD_DIALOGJ to the new dialog.
Notice that App Studio inserts OK and Cancel buttons for the new
dialog.

4. Size the dialog and assign a caption. When you double-click on the
new dialog, or if you choose Show Properties from App Studio's Window
menu, the Dialog Properties dialog appears. Type the caption for the
new dialog as shown in the following screen. The state of the pushpin
button determines whether the Dialog Properties dialog stays on top of
other windows. (When the pushpin is "pushed," the dialog stays on top
of other windows.) Click the Snap To Grid button to reveal the grid and
to help align controls.

.
: : : :::..... :: ::: ... ::::::: ::: I

.......::::::::::::::::: :: I
.

Click the Snap
To Grid button

Type the
caption here

5. Set the dialog style. Choose Styles from the drop-down list box at the
top right of the Dialog Properties dialog, and then set the style proper­
ties as shown here:

Click on this pushpin

Choose Styles from
the drop-down list

S I X: The Modal Dialog

6. Add the dialog's controls. Use the control palette to add each control.
Drag controls from the control palette to the new dialog with the mouse,
and then position and size the controls, as shown in Figure 6-1 on page
110. (You don't have to be precise when positioning the controls.) Here
are the control palette's controls:

Pointer Picture

Static text Edit box

Group box Pushbutton

Check box Radio button

Combo box List box

Horizontal scroll bar Vertical scroll bar

User-defined Grid (VBX control)

NOT E : App Studio displays the posItIon and size of
each control in the status bar. The position units are spe­
cial "dialog units," or DLUs, not device units. A horizontal
DLU is the average width of the dialog font divided by 4. A
vertical DLU is the average height of the font divided by 8.
The dialog font is normally 8-point MS Sans Serif.

Here's a brief description of the dialog's controls:

o The static text control for the Name field. A static text control
simply paints characters on the screen. No user interaction
occurs at runtime. You can type the text after you position the
bounding rectangle, and you can resize the rectangle as needed.
This is the only static text control you'll see listed in text, but you
should also create the other static text controls as shown in
Figure 6 -1. Follow the same procedure for the other static text
controls in the dialog. All static text controls have the same ID,
but that doesn't matter because the program doesn't need to
access any of them.

o The Name edit controt An edit control is the primary means
of entering text in a dialog. Change this control's ID from
IDC_EDITl to IDC_NAME. Accept the defaults for the rest of
the properties. Notice that the default sets Auto HScroll, which
means that the text scrolls horizontally when the box is filled.

113

PAR T II: THE MFC LIBRARY VIEW CLASS

114

o The SSN (social security number) edit control. As far as App
Studio is concerned, this control is exactly the same as the Name
edit control. Simply change its ID to IDC_SSN. Later you will use
ClassWizard to make this a numeric field.

o The Biography edit control. This is a multiline edit control.
Change its ID to IDC_BID, and then set its properties as shown
here:

o The Category group box. This control serves only to group two
radio buttons visually. Type in the caption Category. The default
ID is sufficient.

o The Hourly and Salary radio buttons. Position these radio
buttons inside the Category group box. Set the Hourly button's
ID to IDC_CAT, and set the other properties, as shown here:

S I X : The Modal Dialog

Be sure that both buttons have the Auto property set (the
default) and that only the Hourly button has the Group property
set. When these properties are set correctly, Windows ensures
that only one of the two buttons can be selected at a time. The
Category group box has no effect on the buttons' operation.

o The Insurance group box. This control holds three check boxes.
Type in the caption Insurance.

o The Life, Disability, and Medical check boxes. Place these
controls inside the Insurance group box. Accept the default
properties, but change the IDs to IDC_LIFE, IDC_DIS, and
IDC_MED. Unlike radio buttons, check boxes are independent;
the user can set any combination.

NOTE: You must also set the Group property for the
control that follows the radio button group, in this case
the Life check box.

o The Skill combo box. This is the first of three types of combo
boxes. Change the ID to IDC_SKILL; otherwise, accept all the
defaults. Add three skills (terminating each line with Ctrl-Enter)
in the Enter List Choices box, as shown here:

This is a combo box of type Simple. The user can type any­
thing in the top edit control, use the mouse to select an item

115

PAR T II: THE MFC LIBRARY VIEW CLASS

116

from the attached list box, or use the Up or Down direction key
to select an item from the attached list box.

o The Education combo box. Change the ID to IDC_EDUC, and
then set the Type option to Dropdown. Add three education
levels in the Enter List Choices box, as shown in Figure6 -Ion
page 110. With this combo box, the user can type anything in the
edit box, click on the arrow and then select an item from the
drop-down list box, or use the Up or Down direction key to
select an item from the attached list box.

NOT E: To set the size for the drop-down portion of a
combo box, click on the box's arrow and pull down
from the bottom center of the rectangle.

o The Department list box. Change the ID to IDC_DEPT; other­
wise, accept all the defaults. In this list box, the user can select
only a single item by using the mouse, by using the Up or Down
direction key, or by typing the first character of a selection.

o The Language combo box. Change the ID to IDC_LANG, and
then set the Type option to Drop List. Add three languages
(English, French, and Spanish) to the Enter List Choices box.
With this combo box, the user can select only from the attached
list box. To select, the user can click on the arrow and then
select an entry from the drop-down list, or the user can type
the first letter of the selection and then refine the selection
with the Up or Down direction key.

S I X: The Modal Dialog

o The Loyalty and Reliability scroll bars. Do not confuse scroll bar
controls with a window's built-in scroll bars as seen in scrolling
views. A scroll bar control behaves in the same manner as do
other controls and can be resized at design time. Position and
size the horizontal scroll bar controls as shown in Figure 6-1 on
page 110, and then assign the IDs IDC_LOYAL and IDC_RELY.

o The OK, Cancel, and Special pushbuttons. Type the button
captions OK, Cancel, and Special, and then assign the IDC_­
SPECIAL ID to the Special button. Later you'll learn about
special meanings that are associated with the default IDOK and
IDCANCEL IDs.

o Any icon. (The AFX icon is shown as an example.) You can
display any icon in a dialog, as long as the resource script defines
the icon. We'll use the program's AFX icon, identified as IDlL­
MAINFRAME. Set the Type option to Icon, and set the icon to
IDlLMAINFRAME. Leave the ID as IDC_STATIC.

7. Check the dialog's tabbing order. Choose Set Tab Order from the
App Studio Layout menu. Use the mouse to set the tabbing order, as
shown here:

.n.--~:::? ..
::·7··
::.,. 1.-.--__ __

: :IJI~ (~r~~d~~~ ·c~~~~J:.~ id~~p·,i~,·~o~~~i .
:JII·· ···1.:::,,1" II::·

'-'..."'--' .. --'-.'--'. .. -'--:,--,-::-'--': :'-'-'::::::::::

:::::: ..•..
. , ... , ... , ..

.................

Click on each control in the order shown and then press Enter.

117

PAR T II: THE MFC LIBRARY VIEW CLASS

TIP: If you mess up the tab sequence part way through,
you can recover with a Ctrl-Ieft mouse click on the last cor­
rectly sequenced control. Subsequent mouse clicks will
start with the next sequence number.

NOTE: Static text controls (such as Name and Skill)
have ampersands(&) embedded in the text for their cap­
tions. The ampersands appear as underscores under the
following character at runtime. (See Figure 6-1 on page
110.) This enables the user to jump to selected controls by
holding down the AIt key and pressing the key corre­
sponding to the underlined character. (The related con­
trol must immediately follow the static text in the tabbing
order.) Thus, AIt-N jumps to the Name edit control, and
AIt-Kjumps to the Skill combo box. Needless to say, desig­
nated jump characters should be unique within the dia­
log. The Skill control uses K because the SS Nbr control
uses S.

8. Save the resource file on disk. Choose Save from the File menu or
click the Save button on the toolbar to save EX06A.RC. Keep App Studio
running, and keep the newly built dialog on the screen.

ClassWizard and the Dialog Class

118

You have now built a dialog resource, but you can't use it without a corre­
sponding dialog class. (The section titled "Understanding the EX06AAppli­
cation" later in this chapter explains the relationship between the dialog
window and the underlying classes.) The ClassWizard DLL works in conjunc­
tion with App Studio to create that class as follows:

1. Choose ClassWizard from the App Studio Resource menu. Be sure
that you still have the newly built dialog, IDD_DIALOC1, selected in App
Studio and that \VCPP\EX06A\EX06A is the current Visual Workbench
project.

2. Add the CEx06aDialog class. Fill in the Add Class dialog, as shown at
the top of the facing page:

S I X: The Modal Dialog

Be sure to enter the information exactly as shown; some of this informa­
tion is case-sensitive.

Because your newly built dialog was selected in App Studio, Class­
Wizard knew enough to choose CDialog as the base class for CEx06a­
Dialogand to make IDD_DIALOCJ the corresponding resource. Click
the Create Class button.

3. Add the CEx06aDialog variables. Mter ClassWizard creates the
CEx06aiJialog class, the MFC Class Wizard dialog appears. Click the
Member Variables tab, and the Member Variables page appears, as
shown here:

You need to associate data members with each of the dialog's controls.
To associate a data member with one of the dialog's controls, click on a
control ID and then click the Add Variable button. The Add Member
Variable dialog appears, as shown on the following page:

119

PAR T II: THE MFC LIBRARY VIEW CLASS

120

Type in the member variable name and choose the variable type
according to the following table. Be sure to type the member variable
name exactly as shown; the case of each letter is important. Click OK to
return to the MFC Class Wizard dialog. Repeat this process for each of
the listed controls.

ControllD Data Member Type

IDC_BIO m_bio CString

IDC_CAT m_nCat int

IDC_DEPT m_dept CString

IDC_DIS m_bInsDis BOOL

IDC_EDUC m_educ CString

IDC_LANG m_lang CString

IDC_LIFE m_bInsLife BOOL

IDC_MED m_bInsMed BOOL

IDC_NAME m_name CString

IDC_SKILL m_skill CString

IDC_SSN m_lSsn long

As you select controls in the MFC Class Wizard dialog, various edit
boxes appear at the bottom of the dialog. If you select a CStringvariable,
you can set its maximum number of characters; if you select a numeric
variable, you can set its high and low limits. Set the minimum value for
IDC_SSN to 0 and the maximum value to 999999999.

Most relationships between control types and variable types are
obvious. The way in which radio buttons correspond to variables is not
so intuitive, however. The CDialogc1ass associates an integer variable with

S I X: The Modal Dialog

each radio button group, with the first button corresponding to value 0,
the second to 1, and so forth.

4. Add the message-handling function for the Special button.
CEx06aDialog doesn't need many message-handling functions because
the CDialogbase class, with the help of Windows, does most of the dialog
management. When you specify the IDOKID for the OK button (Class­
Wizard's default), for example, the virtual CDialogfunction On OK gets
called when the user clicks the button. For other buttons, however, you
need message handlers. Click the Message Maps tab.

The MFC Class Wizard dialog should contain an entry for IDC_SPE­
CIAL in the Object IDs list box. Click on this entry, and double-click on
the BN_CLICKED message that appears in the Messages list box. Class­
Wizard invents a member function name, OnSpecial, and opens the Add
Member Function dialog, as shown here:

You could type your own function name here, but this time accept the
default and click OK. Next click the Edit Code button in the ClassWizard
dialog. This opens the file EX06ADLG.CPP in Visual Workbench and
moves to the OnSpecial function. Insert a TRACE statement in the
OnSpecialfunction by typing in the screened code, which replaces the
existing code.

void CEx06aDialog::OnSpecial()

5. Use ClassWizard to add an OnlnitDialog message-handling
function. As you'll see in a moment, ClassWizard generates code that
initializes a dialog's controls. This DDX (Dialog Data Exchange) code
won't initialize the list box choices, however, so you must override the
CDialog::OnInitDialogfunction. Although OnInitDialogis a virtual mem­
ber function, ClassWizard can generate the prototype if you map the

121

PAR T II: THE MFC LIBRARY VIEW CLASS

WM_INITDIALOG message in the derived dialog class. To do so, choose
ClassWizard from Visual Workbench's Browse menu. Click on CEx06a­
Dialogin the Object IDs list box, and then double-click on the WM_­
INITDIALOG message in the Messages list box. Click the Edit Code
button in the ClassWizard dialog to edit the OnlnitDialogfunction. Type
in the screened code, which replaces the existing code:

BOOL CEx06aDialog::OnlnitDialog()
{

You could use the same initialization technique for the combo boxes
if you wanted, in place of the initialization in the resource.

Connecting the Dialog to the View

122

Now we've got the resource and the code for a dialog, but it's not connected
to the view. In most applications, you would probably use ~ menu choice to
activate a dialog, but we haven't studied menus yet. Here we'll use the famil­
iar mouse click message WM_LBUTTONDOWN to start the dialog. The
steps are as follows:

1. In ClassWizard, select the CEx06aViewclass. At this point, be sure
that \VCPP\EX06A\EX06A is the current Visual Workbench project.

2. Use ClassWizard to add the OnLButtonDown member function.
You've done this in the examples in earlier chapters. Simply select the
CEx06aView class name, click on the CEx06aView object ID, and then
double-click on WM_LBUTTONDOWN.

3. Add code to the virtual OnDraw function in file EX06AVW.CPP.
To prompt the user to press the left mouse button, code the CEx06a View
OnDraw function. (The skeleton was generated by App Wizard.) The
following screened code (which you type in) replaces the existing code:

S I X: The Modal Dialog

void CEx06aView: :OnDraw(CDC* pDC)

4. Write the code for OnLButtonDown in file EX06AVW.CPP. Most of
the code consists of TRACE statements to print the dialog data members
after the user exits the dialog. The CEx06aDialog constructor call and the
DoModal call are the critical statements, however:

void CEx06aview: :OnLButtonDown(UINT nFlags, CPoint point)

NOTE: The statements that are "commented out" will be used
later in this chapter.

5. To EX06AVW.CPP, add the dialog class include statement. The
OnLButtonDown function above depends on the declaration of class
CEx06aDialog. You must insert the include statement

123

PA R T II: THE MFC LIBRARY VIEW CLASS

at the top of the CEx06a View class source code file (EX06AVW.CPP),
after the statement

#include lex06avw.h"

6. Build and test the application. If you have done everything right, you
should be able to build and run the EX06A application through Visual
Workbench. Try entering data in each control, and then click the OK
button and observe the TRACE results. Notice that the scroll bar controls
don't do much yet, but we'll attend to them later. Notice what happens
when. you press Enter while entering text data in a control: The dialog
closes immediately.

Understanding ·the EX06A Application

124

When your program calls DoModal, control is returned to your program only
when the user closes the dialog. If you understand that, you understand
modal dialogs. When you get to modeless dialogs, you'll begin to appreciate
the programming simplicity of modal dialogs. A lot happens "out of sight" as
a result of that DoModal call, however. Here's a "what calls what" summary:

CDialog: :DoModal
CEx06aDialog:: OnIni tDialog

... additional initialization ...
CDialog::OnInitDialog

CWnd:: U pdateData (FALSE)
CEx06aDialog: :DoDataExchange

user enters data ...
user clicks the OK button
CEx06aDialog::OnOK

... additional validation ...
CDialog::OnOK

CWnd:: U pdateData (TRUE)
CEx06aDialog: :DoDataExchange

CDialog::EndDialog(IDOK)

OnlnitDialog and DoDataExchange are virtual functions overridden in
the CEx06a Dialog class. Windows calls OnlnitDialog as part of the dialog ini­
tialization process, and that results in a call to DoDataExchange, a function
that was generated by ClassWizard. Here is a listing of that function:

void CEx06aDialog: : DoDataExchange (CDataExchange* pDX)

CDialog::DoDataExchange(pDX)

//{{AFX_DATA_MAP(CEx06aDialog)

DDX_Text(pDX, IDC_BIO, ill_bio);

DDX_Radio(pDX, I DC_CAT , ill_nCat);

S I X: The Modal Dialog

DDX_LBString(pDX, IDC_DEPT, ffi_dept);
DDX_Check(pDX, IDC_DIS, ffi_bInsDis);
DDX_CBString(pDX, IDC_EDUC, ffi_educ);
DDX_CBString(pDX, I DC_LANG , ffi_lang);
DDX_Check(pDX, IDC_LIFE, ffi_bInsLife);

DDX_Check(pDX, IDC~MED, ffi_bInsMed);
DDX_Text(pDX, I DC_NAME , ffi_naffie);
DDX_CBString(pDX, IDC_SKILL, ffi_skill);
DDX_Text(pDX, IDC_SSN, ffi_lSsn);
DDV_MinMaxLong(pDX, ffi_lSsn, 0, 999999999);
//}}AFX_DATA_MAP

DoDataExchangeand theDDL (exchange) andDDV_ (validation) func­
tions are "bi-directional." If UpdateData is called with a FALSE parameter, the
functions transfer data from the data members to the dialog controls. If the
parameter is TRUE, the functions transfer data from the dialog controls to
the data members. DDLText is overloaded to accommodate a variety of data
types.

The EndDialogfunction is critical to the dialog exit procedure. DoModal
returns the parameter passed to EndDialog. IDOK accepts the dialog's data,
and IDCANCEL cancels the dialog.

TIP: You can write your own "custom" DDX functions and wire
them into App Studio. This feature is useful if you're using a
unique data type throughout your application. See Technical
Note #26 in the MFCNOTES.HLP file.

Enhancing the Dialog Program
The EX06A program required little coding for a lot of functionality. Now
we'll make a new version of this program that uses some hand-coding to add
extra features. We'll eliminate EX06A's rude habit of dumping the user in
response to the Enter key, and we'll hook up the scroll bar controls.

Taking Control of the OnOK Exit
In the original EX06A program, the CDialog::OnOK virtual function handled
the OK button, which triggered data exchange and the exit from the dialog.
The Enter key happens to have the same effect, and that might or might not
be what you want. If the user presses Enter in the Name edit control, for ex­
ample, he or she is immediately bounced out of the dialog.

What's going on here? When the user presses Enter, Windows looks to
see which pushbutton has the "input focus" as indicated by a dotted rect-

125

PAR T II: THE MFC LIBRARY VIEW CLASS

126

angle. If no button has the focus, Windows looks for the "default push­
button" that the program or the resource specifies. (The default pushbutton
has a thicker border.) If the dialog has no default button, the OnOKfunction
is called, even if the dialog does not contain an OK button.

You can disable the Enter key simply by writing a do-nothing
CEx06aDialog::OnOK function and adding the exit code to a new function
that responds to the OK button. Here are the steps:

1. Use App Studio to change the OK button 10. Open the resource file
EX06A.RC, select dialog IDD_DIALOGJ, and then select the OK button.
Change its ID from IDOKto IDe_OK, and un check its Default Button
property.

S I X : The Modal Dialog

2. Use ClassWizard to create a member function called OnClickedOk.
This CEx06aDialog class memb<;r function is keyed to the BN_CLICKED
message from control IDC_OK

3. Write the body of the OnClickedOk function. This function calls the
base class OnOKfunction, as did the original CEx06aDialog::OnOK
function. Here is the code:

void CEx06aDialog::OnClickedOk()

4. Create a dummy OnOKfunction. Add the following prototype to
EX06ADLG.H:

Now add the following code in EX06ADLG.CPP:

Pressing Enter while entering text data in one of the dialog's controls
now calls this function.

5. Build and test the application. Try the Enter key now. Nothing should
happen, but the OK button should work as before.

OnCancei Processing
Just as the Enter key triggers a call to OnOK, the Escape key triggers a call to
On Cancel, which results in an exit from the dialog with a DoModal return
code of IDCANCEL. EX06A does no special processing for IDCANCEL;
therefore, the Esc key (and the system menu Close command) closes the dia­
log. You can circumvent this process by substituting a dummy On Cancel func­
tion, following the same procedure you used for the OK button.

Hooking Up the Scroll Bar Controls
The App Studio dialog editor allows you to put scroll bar controls in your
dialog, but ClassWizard doesn't provide any direct support for these con-

127

PAR T II: THE MFC LIBRARY VIEW CLASS

128

troIs. You will now add the code that makes the Loyalty and Reliability scroll
bars work.

Scroll bar controls have position and range values that can be read and
written. If you set the range to (0, 100), for example, and you call the
CScrollBar member function SetScrollPos with parameter 50, the scroll box is
positioned at the center of the bar. The scroll bars send the WM_HSCROLL
and WM_VSCROLL messages to the dialog when the user drags the scroll
box or clicks on the arrows. The dialog's message handlers must decode
these messages and position the scroll box accordingly.

One tricky thing about scroll bar controls is that all horizontal bars
send the same message, WM_H~CROLL, and all vertical bars send the
WM_VSCROLL message. Because this monster dialog contains two horizon­
tal scroll bars, the one and only WM_HSCROLL message handler must fig­
ure out which scroll bar sent the scroll message.

Also, scroll bars have no data exchange functions. You must code your
own data exchange in the OnlnitDialog and OnOK (or rather OnClickedOK)
functions.

Here are the steps for adding the scroll bar logic to EX06A:

1. Add the class data members m_nLoyal and m_nRely. Add the
following code to the class declaration in EX06ADLG.H, placing the
statements outside the AFLDATA brackets:

These data members are made public so that they are consistent with
the ClassWizard-generated public data members. Also add enum state­
ments for the minimum and maximum scroll range:

2. Change the OnlnitDialog function to add data exchange logic. The
OnlnitDialogfunction must set the positions of the scroll boxes accord­
ing to percentage values stored in the CEx06aDialog data members. A
value of 100 means "Set the scroll box to the extreme right"; a value of 0
means "Set the scroll box to the extreme left."

Add the following code to the CEx06aDialogmember function
OnlnitDialogin the file EX06ADLG.CPP:

S I X: The Modal Dialog

i

3. Change the OnClickedOK function to add data exchange logic.
Here is the new OnClickedOK function (in EX06ADLG.CPP) that "reads"
the scroll box positions and sets the values of m_nLoyal and m_nRely:

void CEx06aDialog::OnClickedOK()

4. Use ClassWizard to add a scroll bar message handler to CEx06a­
Dialog. Choose the ~HSCROLL message, and then add the member
function OnHScroll. Enter the following code:

void CEx06aDialog: :OnHScroll(UINT nSBCode, UINT nPos,

CScrollBar* pScrollBar)

(continued)

129

PAR T II: THE MFC LIBRARY VIEW CLASS

5. In EX06AVW.CPP, add initialization code to OnLButtonDown. To
test the data exchange logic, you'll want to set the values of m_nLoyal
and m_nRely. In OnLButtonDown, remove the comment characters in
front of the lines that relate to m_nLoyal and m_nRely.

6. Build and test the application. Build and run EX06A again. Do the
scroll bars work this time? The scroll boxes should "stick" after you drag
them with the mouse, and they should move when you click the scroll
bars' arrows. (Notice that we haven't added logic for when the user clicks
on the scroll bar itself.)

Identifying Controls:
CWnd Pointers and Control IDs

130

When you layout a dialog resource in App Studio, you identify controls by
IDs such as IDC_SSN. In your program code, however, you often need access
to a control's underlying window object. The MFC library provides the CWnd­
::GetDlgltemfunction for converting an ID to a CWndpointer. You've seen this
already in the OnlnitDialog and OnClickedOK member functions of class
CEx06aDialog. The application ~ramework "manufactured" this returned
CWnd pointer because there never was a constructor call for the control ob-
jects. This pointer is temporary and should not be stored for later use.

TIP: If you need to convert a CWnd poin ter to aeon trol ID, use
the MFC library GetDlgCtrlID member function of class CWnd.

S I X: The Modal Dialog

Setting the Color for the
Dialog Background and for Controls

It's very easy to select a new color for all the dialogs in your application. Just
edit the call to SetDialogBkColor in your derived application class InitInstance
function. The following line causes all dialogs to have a green background
and white static text:

SetDialogBkColor(RGB(O, 255, 0), RGB(255, 255, 255));

If you want to change the background color of individual dialogs or
specific controls in a dialog, you have to work a little harder. There is no
SetDlgltemColor function. Instead, each control sends a WM_CTLCOLOR
message to the parent dialog immediately before the control is displayed. A
WM_CTLCOLOR message is also sent on behalf of the dialog itself. If you
map this message in your derived dialog class, you can set the foreground
and background text colors, and you can select a brush for the control or
dialog non text area.

Here's a sample OnCtlColor function that sets all edit control back­
grounds to yellow and the dialog background to red. The m_hYellowBrush
and m_hRedBrush variables are data members of type HBRUSH, initialized
in the dialog's OnlnitDialog function. The nCtlColor parameter indicates the
type of control, and the pWnd parameter identifies the specific control. If
you wanted to set the color for an individual edit control, you would convert
p Wnd to a child window ID and test it.

HBRUSH CMyDialog: :OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)

if (nCtlColor == CTLCOLOR_EDIT) {

pDC->SetBkColor(RGB(255, 255, 0)); II yellow

return ffi_hYellowBrush;

if (nCtlColor == CTLCOLOR_DLG)

pDC->SetBkColor(RGB(255, a, 0));

return ffi_hRedBrush;
II red

return CDialog::OnCtlColor(pDC, pWnd, nCtlColor);

Painting Inside the Dialog Window
You can paint directly in the client area of the dialog window, but you'll avoid
overwriting dialog elements if you paint only inside a control window. If you

131

PAR T II: THE MFC LIBRARY VIEW CLASS

want to display only text, use App Studio to create a blank static control with
a unique ID, and then call the CWnd::SetDlgltemText function in a dialog mem­
ber function such as OnlnitDialog to place text in the control.

Displaying graphics is more complicated. You must use ClassWizard to
add an OnPaint member function to the dialog; this function converts the
static control's ID to a CWnd pointer and gets its device context. The trick
is to draw inside the control window while preventing Windows from
overwriting your work later. The Invalidate/UpdateWindow sequence achieves
this. Here is an OnPaint function that paints a small black square in a static
control:

void CMyDialog::OnPaint()
{

CPaintDC dc(this);

CWnd* pWnd = GetDlgltem(IDC_STATIC1);

CDC* pControlDC = pWnd->GetDC();

pWnd->Invalidate() ;

II keeps Windows happy

II IDC_STATIC1 specified

II in App Studio

pWnd->UpdateWindow() ;

pControlDC->SelectStockObject(BLACK_BRUSH) ;

pControlDC->Rectangle(O, 0, 10, 10); II black square bullet

pWnd->ReleaseDC(pControlDC);

As with all windows, the dialog's OnPaint function is called only if some
part of the dialog is invalidated. You can force the OnPaint call from another
dialog member function with the following statement:

Invalidate() ;

Using Other Control Features

132

You've seen how to "extend" one control class, CScrollBar, with code in the
OnlnitDialogmember function and the dialog's exit function. You can extend
the other controls in similar fashion. Look in the Class Library Reference at the
control classes, particularly CListBox and CComboBox. Each has a number of
features that ClassWizard does not directly support. List boxes and some
combo boxes, for example, can support multiple selections. If you want to
use these features, don't use ClassWizard to add data members,
but define your own data members and add your own exchange code in
OnlnitDialog and OnClickedOK.

C HAP T E R S EVE N

THE MODELESS DIALOG
AND THE COMMDLG DIALOG
CLASSES

In Chapter 6, you saw the ordinary modal dialog and most of the controls
for Microsoft Windows. Now you'll move on to the modeless dialog and the
Windows COMMDLG classes. Modeless dialogs, as you'll remember, allow
the user to work elsewhere in the application while the dialog is active. The
COMMDLG classes are the C++ programming interface to the group of
Windows utility dialogs that include File Open, Printer Setup, Color Selec­
tion, and so forth, which are supported by the dynamic link library
COMMDLG.DLL.

In this chapter's first example, you'll build a simple modeless dialog
that is controlled from a view. In the second example, you'll derive a class
from the COMMDLG CFileDialog class, which allows file deletion.

Modeless Dialogs
In Microsoft Foundation Class (MFC) Library versions 2.0 and 2.5, modal
and modeless dialogs share the same base class, CDialog, and they both use a
dialog resource that you can build with App Studio. If you're using a
modeless dialog with a view, then you'll need some specialized programming
techniques.

Creating Modeless Dialogs
You've already learned that you display a modal dialog window by calling the
DoModal function and that the window ceases to exist as soon as DoModal re­
turns. You can construct a modal dialog object on the stack knowing that the

133

PAR T II: THE MFC LIBRARY VIEW CLASS

Windows dialog has been destroyed by the time the C++ dialog object goes
out of scope. Modeless dialogs are more complicated. You start by construct­
ing a dialog object, but then to create the dialog window you call the CDialog­
::Create member function instead of DoModal. Control returns immediately
with the dialog still on the screen. Now you must worry about exactly when
to construct the dialog object, when to create the dialog window, when to
destroy the dialog, and when to process user-entered data.

User-Defined Messages
Suppose you want the modeless dialog window destroyed when the user
clicks the dialog's OK button. This presents a problem. How does the view
know that the user has clicked the OK button? The dialog could call a view
class member function directly but that would "marry" the dialog to a par­
ticular view class. A better solution is for the dialog to send the view a user­
defined message as the result of a call to the OK button message-handling
function. When the view gets the message, it can destroy the dialog window
(but not the object). This sets the stage for the creation of a new dialog.

You have two options for sending Windows messages. You can use the
CWind::SendMessage function or the PostMessage function. The former causes
an immediate call to the message-handling function, and the latter posts a
message in the Windows message queue. With the PostMessageoption, there's
a slight delay, so it's reasonable to expect that the dialog is completely gone
by the time the view gets the message.

Dialog Ownership
Now suppose you've accepted the dialog default pop-up style, which means
the dialog isn't confined to the view's client area. As far as Windows is con­
cerned, the dialog's "oWner" is the application's main frame window (intro­
duced in Chapter 12), not the view. You need to know the dialog's view to
send the view a message. Therefore, your dialog class must track its own view
through a data member that the constructor sets.

A Modeless Dialog Example-EX07A

134

We could convert the Chapter 6 monster dialog to a modeless dialog, but
starting from scratch with a simpler dialog is easier. Example EX07 A uses a
dialog with one edit control, an OK button, and a Cancel button. As in the
Chapter 6 example, pressing the left mouse button while the mouse cursor is
inside the view window brings up the dialog, but now we have the option of

S EVE N: The Modeless Dialog and the COMMDLG Dialog Classes

destroying it in response to another event-pressing the right mouse button
when the mouse cursor is inside the view window. We'll allow only one dialog
at a time, so we must be sure that a second left button press doesn't bring up
a duplicate dialog.

To summarize the upcoming steps, the EX07A view class has a single
associated dialog object that is constructed on the heap when the view is
constructed. The dialog window is created and destroyed in response to
user actions, but the dialog object is not destroyed until the application
terminates.

Here are the steps to create the EX07A example:

1. Run AppWizard to produce \VCPP\EX07A\EX07A. Choose AppWizard
from Visual Workbench's Project menu. The options and the default
class names are shown here:

Classes to be created:
Application: CEx07aApp in EX07A.H and EX07A.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx07aDoc in EX07ADOC.H and EX07ADOC.CPP
View: CEx07aView in EX07AVW.H and EX07AVW.CPP

Features:
+ Supports the Single Document Interlace (SDI)
+ MSVC Compatible proiectlile (EX07A.MAKJ
+ Initialtoolbar and status bar in main frame
+ Uses medium memory model

2. Use App Studio to create a new dialog. Choose App Studio from
Visual Workbench's Tools menu. When App Studio starts up, click the
New button and then choose Dialog. App Studio assigns the ID IDD_­
DIALOGl to the new dialog. Change the dialog caption to Modeless
Dialog. Accept the default OK and Cancel buttons with IDs IDOK and
IDCANCEL, and then add a static text control and an edit control with
the default ID IDC_EDIT1. Change the static text control's caption to
Edit 1. The completed dialog is shown at the top of the following page:

135

PAR T II: THE MFC LIBRARY VIEW CLASS

136

..........................

. ,

3. Use ClassWizard to create the CEx07aDialog class. Choose Class­
Wizard from the App Studio Resource menu. Fill in the Add Class dialog
as shown here, and then click the Create Class button.

Add the message-handling functions shown below. To add a message­
handling function, click on an object ID, click on a message, and click
the Add Function button. The Add Member Function dialog box ap­
pears. Type the function name and click the OK button.

Object 10

IDCANCEL

IDOK

Message

BN_CLICKED

BN_CLICKED

Member Function Name

OnCancel

On OK

4. Add a variable to the CEx07aDialog. While in ClassWizard, click the
Member Variables tab, and then click the Add Variable button to add the
CStringvariable m_editl to the IDC_EDITl control.

S EVE N: The Modeless Dialog and the COMMDLG Dialog Classes

5. Edit EX07ADLG.H to add a view pointer and function prototypes.
Type in the following screened code in the CEx07aDialogclass declaration:

Also, add the function prototypes as follows:

NOT E: Using the CView class rather than the CEx07a­
View class allows the dialog class to be used with any view
class.

6. Add the modeless constructor in file EX07ADLG.CPP. You could
modify the existing CEx07aDialog constructor, but if you add a separate
one, the dialog class can serve for both modal and modeless dialogs.

You should also add the following line to the App Wizard-generated
modal constructor:

The C++ compiler is clever enough to distinguish between the mode­
less constructor CEx07aDialog(CView*) and the modal constructor CEx-
07aDialog(CWnd*). If the compiler sees an argument of class CView or a
derived CView class, it generates a call to the modeless constructor. If it
sees an argument of class CWnd or another derived CWnd class, it gener­
ates a call to the modal constructor.

7. Add the Create function in EX07ADLG.CPP. This derived dialog class
Create function calls the base class function with the dialog resource ID as
a parameter.

137

PAR T II: THE MFC LIBRARY VIEW CLASS

138

8. Edit the OnOK and OnCancei functions in EX07AOLG.CPP. These
virtual functions generated by ClassWizard are called in response to
dialog button clicks.

void CEx07aDialog::OnOK()

void CEx07aDialog::OnCancel()

{ II Do not call base class OnCancel

If the dialog is being used as a modeless dialog, it sends the user­
defined message WM_GOODBYE to the view. We'll worry about han­
dling the message later.'

NOT E : For a modeless dialog, be sure you do not call
the CDialog::OnOK or CDialog::OnCancel function. This
means you must override these virtual functions in your
derived class; otherwise, using the Esc key, the Enter key,
or a button click would result in a call to the base class
functions, which call the Windows EndDialog function.
EndDialog is appropriate only for modal dialogs. In a
modeless dialog, you must call Destroy Window instead, and,
if necessary, you must call UpdateData to transfer data from
the dialog controls to the class data members.

9. Edit RESQURCE.H to define the WM_GOODBYE message 10. Add
the following line of code:

The Windows constant WM_VSER is the first message ID available for
user-defined messages. The application framework uses a few of these
messages, so we'll skip over the first five messages.

NOT E : App Studio does not understand constants
based on other constants. When App Studio reads

S EVE N: The Modeless Dialog and the COMMDLG Dialog Classes

RESOURCE.H, it ignores WM_GOODBYE, and thus you
won't see it in the list of symbols. App Studio does rewrite
the WM_GOODBYE definition back to RESOURCE.H on
exit, however, so it's not lost.

10. Modify the CEx07aViewconstructor and destructor in EX07A­
VW.CPP. The CEx07a View class has a data member m_pDlg that points
to the view's CEx07aDialog object. The view constructor constructs the
dialog object on the heap, and the view destructor deletes it.

CEx07aview: :CEx07aView()

CEx07aView::-CEx07aView()

11. Add code to the virtual OnDrawfunction in file EX07AVW.CPP.
The CEx07a View OnDraw function (the skeleton was generated by
AppWizard) should be coded as follows in order to prompt the user to
press the mouse button:

void CEx07aView::OnDraw(CDC* pDC)

12. Use ClassWizard to add CEx07aViewmouse message handlers.
Add handlers for the WM_LBUTTONDOWN and WM_RBUTTON­
DOWN messages. Now edit the code in file EX07AVW.CPP as follows:

void CEx07aView::OnLButtonDown(UINT nFlags, CPoint point)

void CEx07aView: :OnRButtonDown(UINT nFlags, CPoint point)

139

PAR T II: THE MFC LIBRARY VIEW CLASS

140

For almost all window types except main frame windows, the Destroy­
Window function does not destroy the C++ object. We want this behavior
because we'll take care of the dialog object's destruction in the view
destructor.

13. Add the dialog header include statement to file EX07AVW.CPP.
While you're in EX07AVW.CPP, add the following dialog header include
statement after the view header include statement.

14. Add your own message code for the WM_GOODBYE message.
Because ClassWizard does not support user-defined messages, you must
write the code yourself. This task makes you appreciate the work Class­
Wizard does for the other messages.

o In EX07AVW.CPP, add the following line after the BEGIN_MES­
SAGE_1WAPstatement but outside the AFX_MSG_1WAPbrackets:

o In EX07AVW.CPP, add the message handler function itself:

o In EX07AVW.H, add the function prototype:

With the Windows SDK, the wParam and lParam parameters are the
usual means of passing message data. In a mouse button down message,
for example, the mouse x- and y-coordinates are packed into the lParam
value. With the MFC library, message data is passed in more meaning­
ful parameters. The mouse position is passed as a CPoint object. User­
defined messages must use wParam and lParam; so you can use these two
variables however you want. In this example, we've put the button ID in
wParam.

S EVE N: The Modeless Dialog and the COMMDLG Dialog Classes

15. Edit the EX07AVW.H header file. You need a data member to hold the
dialog pointer:

If you add the forward declaration

at the beginning of EX07AVW.H, you won't have to include EX07A­
DLG.H in every module that includes EX07AVW.H.

16. Build and test the application. Build and run EX07A. Try pressing the
mouse's left mouse button and then its right button. (Be sure the mouse
cursor is outside the dialog window when you press the right mouse
button.) Also enter some data and click the dialog's OK button. Does
the view's TRACE statement correctly list the edit control's contents?

NOT E : If you use the EX07A view and dialog classes in
an MDI application, each MDI child window can have one
modeless dialog. When the user closes an MDI child, the
child's modeless dialog is destroyed because the view's
destructor calls the dialog destructor, which, in turn, de­
stroys the dialog window.

The CFormView Class-
A Modeless Dialog Alternative

If you need an application based on a single modeless dialog, the CFormView
class will save you a lot of work. You'll have to wait until Chapter 15, however,
because the CFormView class is most useful when coupled with the CDocument
class, and we haven't progressed that far in our exploration of the applica­
tion framework.

COMMDLG Dialogs
Windows provides a group of standard user interface dialogs, and these are
supported by the MFC library classes. You are probably familiar with all or
most of these dialogs because so many Windows-based applications, includ­
ing Visual C++, already use them. A list of the COMMDLG classes is in the
table at the top of the following page:

141

PAR T II: THE MFC LIBRARY VIEW CLASS

Class

CFi leDi a log

CFontDialog

CColorDialog

CPrintDialog

CFindReplaceDialog

Purpose

Allows the user to open a new file or an existing file

Allows the user to sele~t a font from a list of available
fonts

Allows the user to select or create a color

Allows the user to set up the printer and print a
document

Allows the user to substitute one string for another

The resources for these dialogs are buried inside the COMMDLG.DLL
dynamic link library in the \WINDOWS\SYSTEM directory. You can access
these resources through App Studio, but you shouldn't try to update them
directly. You can use the clipboard to copy the dialogs to your own resource
script if you want to.

Using the CFileDialog Class Directly
Using the CFileDialogclass to open a file is easy. Here is some code that opens
a file that the user has selected through the dialog:

CFileDialog dlg(TRUE, "bmp", I/*.bmp");

if (dlg.DoModal() == IDOK) {

CFile file;

VERIFY(file.Open(dlg.GetPathName(), CFile::modeRead)));

The first constructor parameter (TRUE) specifies that this object is a
"File Open" dialog instead of a "File Save" dialog, and "bmp" is the default
file extension. The CFileDialog::GetPathName function returns a CString ob­
ject that contains the full pathname of the selected file.

Adding Dialog Controls at Run Time

142

You can use the App Studio resource editor to create dialog controls at build
time. If you need to add a dialog control at run time, here are the program­
ming steps:

1. Add an embedded control window data member to your dialog
class. The MFC library control window classes include CButton,
CEdit, CListBox, and CComboBox. An embedded control window is
constructed and destroyed along with the dialog.

2. Use the App Studio symbol editor to add an ID constant for the
control.

S EVE N: The Modeless Dialog and the COMMDLG Dialog Classes

3. Override the CDialogfunction OnlnitDialog to call the embedded
control window's Create member function. This call displays the new
control in the dialog.

4. In your derived dialog class, manually add the necessary"message
handlers for your new control.

Deriving from the COMMDLG Classes
Most of the time you can use the COMMDLG classes directly. If you derive
your own COMMDLG classes, however, you can add functionality without
duplicating code. You have to be careful, though, because quite a lot hap­
pens inside the Windows code before class member functions such as OnOK
are called. Sometimes you must innovate to get the features you want.

A CFileDialog Example-EX07B
In this example, you will derive a class CEx07bDialogthat adds a working De­
lete button to the standard file dialog. It also changes the dialog's caption
and changes the OK button's caption to Open. The example illustrates how
you can create dialog controls "on the fly" without a corresponding resource
entry. The new file dialog is activated as in the previous examples-by press­
ing the left mouse button when the mouse cursor is in the view window. Be­
cause you should be gaining skill with Visual C++, the following steps won't
be as detailed as those for the earlier examples. Figure 7-1 shows what the
dialog looks like.

Figure 7-1.
The File Delete dialog in action.

Follow these steps to build the EX07B application:

1. Run AppWizard to produce \VCPP\EX07B\EX07B. Choose App­
Wizard from Visual Workbench's Project menu. The options and the
default class names are shown at the top of the following page:

143

PA RT II: THE MFC LIBRARY VIEW CLASS

144

Classes to be created:
Application: CEx07bApp in EX07B.H and EX07B.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx07bDoc in EX07BDOC.H and EX07BDOC.CPP
View: CEx07bView in EX07BVW.H and EX07BVW.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ MSVC Compatible project file (EX07B.MAKJ
+ Initial toolbar and status bar in main frame
+ Uses medium memory model

2. Use ClassWizard to create the CEX07bDialogclass. ClassWizard
won't let you specify CFileDialogas a base class, so you'll have to choose
CDialog. Fill in the Add Class dialog, as shown here:

Be sure to leave the Dialog ID edit control empty in the Add Class
dialog. When you click the Create Class button, ClassWizard displays
this dialog:

S EVE N: The Modeless Dialog and the COMMDLG Dialog Classes

This is OK. Click the Yes button to continue.
ClassWizard produces the files EX07BDLG.H and EX07BDLG.CPP

and adds them to the project.

3. Edit the file EX07BDLG.H. Change the line

class CEx07bDialog : public CDialog

to

class CEx07BDialog : public '~~~i~Dialog

to change the CEx07BDialog base class.
In the CEx07BDialog class declaration, replace the following lines

II Dialog Data

11{{AFX_DATA(CEx07bDialog)

enum { IDD = _UNKNOWN_RESOURCE_ID_ };

II NOTE: the ClassWizard will add data members here

II}}AFX_DATA

with the following data member declarations:

And, finally, add the following function prototypes:

4. Use App Studio to add a define constant for the Delete button.
Choose Symbols from the Edit menu, and then click the New button in
the Symbol Browser dialog. In the New Symbols dialog, add the constant
IDC_DELETE. (You can accept the default value.)

5. Replace CDialog with CFileDialog in EX07BDLG.CPP. Choose
Replace from the Visual Workbench Edit menu and replace this name
globally.

6. Replace the CEx07bDialog constructor in EX07BDLG.CPP. The
constructor for the CFileDialog class takes a long string of optional
parameters. We set the first parameter, bOpenFileDialog, to TRUE (for the
File Open dialog) because we want to select an existing file. The third
parameter, lpszFileName, is the initial filename. If you set it to "*.*", you
will see a list of all files in the current directory. The body of the con­
structor sets the dialog caption by accessing an internal structure called
m_ofn.

145

PAR T II: THE MFC LIBRARY VIEW CLASS

146

CEx07bDialog: : /*=NULL*/)

7. Add the OnlnitDialog function in file EX07BDLG.CPP. This member
function calls the CButton Create member function to create the new
Delete button window and insert it in the dialog. The function sets the
position, size, and font of the new button based on the existing Cancel
button. The SetDlgltemText function changes the title of the existing OK
button.

8. Add the Delete button message handler in file EX07BDLG.CPP. The
Windows COMMDLG code does important processing before calling the
dialog class's On OK function. Therefore, the dialog must simulate click­
ing the OK button by sending itself an IDOK button-click message. Call­
ing EndDialogor the base class OnOKdoesn't work. The data member
m_bDeleteFlag tells the view that the Delete button was clicked rather than
the Open button.

S EVE N: The Modeless Dialog and the COMMDLG Dialog Classes

ClassWizard supports only control handlers that are defined in the
dialog resource. This means you'll have to manually insert the following
entry in the EX07BDLG.CPP message map:

BEG IN_ME S SAGE_MAP (CEx07bDialo9, CFileDialog)

//{{AFX_MSG_MAP(CEx07bDialog)

/ NOTE:

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

You've already put the function prototype in the header file.

9. Add code to the virtual OnDraw function in file EX07BVW.CPP.
The CEx07bView OnDrawfunction (the skeleton was generated by App­
Wizard) should be coded as follows to prompt the user to press the
mouse button:

void CEx07bView: : OnDraw(CDC* pDC)

10. Add the OnLButtonDown message handler to the CEx07bView
class. Use ClassWizard to create the message handler for WM_L­
BUTTONDOWN, and then edit the code as follows:

void CEx07bView: :OnLButtonDown(UINT nFlags, CPoint point)

147

PAR T II: THE MFC LIBRARY VIEW CLASS

148

Using the global AfxMessageBoxfunction is a convenient way to pop
up a simple dialog that displays some text and that queries the user for a
Yes/No answer. The Class Library Reference describes all the message box
variations and options.

Of course, you'll need the statement

after the line

#include "ex07bvw.h"

11. Build and test the application. Build and run EX07B. Pressing the left
mouse button should bring up the Delete dialog, and you should be able
to use it to navigate through the disk directory and to delete files.

C HAP T E R E I G H T

VISUAL BASIC CONTROLS

Microsoft Visual Basic, introduced in 1991, has proven to be a very popular
and successful application development system for Microsoft Windows. Part
of its success is attributable to its open-ended nature. You can extend the
Basic language by adding Visual Basic "controls"-special dynamic link li­
braries (DLLs), written in C, that are available from Microsoft and from
third-party software developers. You can now use these same Visual Basic
controls with Visual C++, and App Studio fully supports them. The Profes­
sional Edition of Microsoft Visual Basic 3.0 includes a Control Development
Kit (CDK) that allows you to write your own custom controls.

Unfortunately, it was not possible for Microsoft to port Visual Basic con­
trols to 32-bit Windows. Visual Basic controls are in the process of being re­
placed with "OLE controls," which will work in both the 16-bit and the
32-bit environments. The 16-bit VBX controls described in this chapter will
probably remain the standard for 16-bit applications for Windows. The new
OLE controls will be integrated into future 32-bit versions of App Studio and
the Microsoft Foundation Classes. You will be able to write custom OLE con­
trols in C++, and you can call on Control Wizards for help.

In this chapter, you'll learn why Visual Basic controls are different from
standard Windows controls and custom Windows controls, and you'll learn
how to integrate these controls into a Microsoft Foundation Class (MFC) Li­
brary version 2.5 program. An example, built with the Visual Basic GRID
control included with Visual C++, illustrates the use of control properties,
methods, and events. The end result is a crude but workable spreadsheet
program.

149

PAR T II: THE MFC LIBRARY VIEW CLASS

NOT E : See Technical Note #27 in the MFCNOTES.HLP file for
detailed documentation on each standard VBX event, each stan­
dard VBX property, and specific properties and events for the Vi­
sual Basic GRID control.

Standard Controls for Windows
and Ordinary Custom Controls

You've already seen the standard Windows controls as represented by the
classes CEdit, CButton, CScrollBar, and so forth. These controls are built into
Windows, and the MFC library fully supports them. You can also use ordinary
custom controls (written in C and usually implemented as DLLs) with the
MFC library. With App Studio you can size and position ordinary custom
controls in a dialog, but at design time you can't see what the controls look
like.

Consider any control a "smart window" that's usually (but not always)
embedded in a dialog. Many controls accept input, but all controls provide
some sort of visual output. Controls can support extensive interaction with
the user without the involvement of your application. The Windows CEdit
control, for example, processes cursor movements and backspace key­
strokes, and it supports wordwrap-all by itself. The more work a control
does, the less programming you have to do.

C++ Classes and Visual Basic Controls
C++ is a totally flexible object-oriented programming language, but a C++
program's features must be specified at compile time. Visual Basic limits
your flexibility, but it allows interactive program development. Visual Basic
controls are the closest thing Visual Basic has to classes. These controls are
stand-alone modules that interact, both at design time and at run time, with
the Visual Basic environment. With Visual C++, you can use both compiled
C++ classes and Visual Basic controls. Comparing the behavior of these two
diverse programming elements is useful.

Methods vs. Member Functions

150

If you write your own C++ class, it can have a member function called
DanceAroundTheTable if you want it to. Of course, the other classes in your
application must know, at compile time, specifically what DanceAroundThe­
Table does and what its parameters are. Classes for Windows controls use

E I G H T: Visual Basic Controls

hard-coded notification messages and member functions. Some member
functions, such as the CEdit::GetLineCount function, apply to only one con­
trol class, but others, such as CWnd::GetDlgltemText, apply to all controls.

Visual Basic controls have "methods" that are similar to class member
functions. These methods are limited to a predefined set that includes
Addltem, Removeltem, Move, and Refresh (among others). Not all Visual Basic
controls respond to all the methods. The Move method, though, works with
all controls.

Properties vs. Data Members
At first the limited set of Visual Basic control methods seems restrictive. For­
tunately, Visual Basic controls have "properties" in addition to methods. You
could say that Visual Basic properties correspond to c++ data members.
Each Visual Basic control can define its own set of properties, which can in­
clude strings, long integers, or floating-point numbers. You could create a
Visual Basic control with a string property called "DanceAroundTheTable"
that could be set to "waltz" or "foxtrot." Most Visual Basic controls recognize
a standard set of properties, such as BackColor and FontName. The control
will list its collection of properties when interrogated.

Properties are limited to three data types, but using a property instead
of a fixed data type offers a significant advantage in Visual Basic-namely,
that the run-time system requires no advance knowledge of a control's prop­
erties when it executes the application program. Other programs besides the
Visual Basic run-time system can take advantage of this run-time property ac­
cess. App Studio, for example, can present a list of a control's properties, and
it allows you to set initial values.

Some Visual Basic controls support array properties. A graph control,
for example, might have an array of numeric points that can be individually
set and retrieved.

Visual Basic Control Events vs. Windows Control Notifications
Standard controls send notification messages to a dialog in response to
events. A pushbutton sends a BN_CLICKED message, for example.
ClassWizard helps you define a dialog class member function to handle the
message. Visual Basic controls work in exactly the same way. Most Visual Ba­
sic controls send standard messages (called events) such as VBN_CLICKand
VBN_KEYDOWN. Some Visual Basic controls send unique messages such as
VBN_ROWCOLCHANGE. When you run ClassWizard from inside App Stu­
dio (with a dialog selected), Class Wizard knows which Visual Basic control
you're using, and it presents a list of the events for the selected control.

151

PAR T II: THE MFC LIBRARY VIEW CLASS

Visual Basic Event Registration
Your program must call the global MFC library function AfxRegisterVBEvent
for each Visual Basic control event that needs handling. When ClassWizard
creates a dialog that uses an event-oriented Visual Basic control, it gener­
ates the AfxRegisterVBEvent call for you in your program's main module
(MYAPP.CPP). If your control uses the GRID control's ROWCOLCHANGE
even t, the generated code looks like this:

II{{AFX_VBX_REGISTER_MAP()

UINT NEAR VBN~ROWCOLCHANGE = AfxRegisterVBEvent("ROWCOLCHANGE") i

II}}AFX_VBX_REGISTER_MAP

A corresponding extern statement is in the main header file (MYAPP.H)
and is included by the programs that use the Visual Basic control:

II{{AFX_VBX_REGISTER()

extern UINT NEAR VBN_ROWCOLCHANGEi

II}}AFX_VBX_REGISTER

.

For every dialog class that uses the Visual Basic control, ClassWizard
generates a message map entry such as this:

ON_VBXEVENT(VBN_ROWCOLCHANGE, IDC_GRID1, OnRowcolchangeGridl)

The CVBContro/ Class

152

You've seen that the MFC library provides classes for the standard Windows
controls. As you've probably guessed, it also provides a class for Visual Basic
controls. This class, CVBControl, is derived from CWnd and thus has the char­
acteristics of a window, as do CEdit, CButton, and so forth. The CVBControl
class serves all Visual Basic controls.

In a dialog class member function, you can get a temporary pointer to a
CVBControl object with a statement such as this:

CVBControl* pVBC = GetDlgItem(IDC_GRID1) i II IDC_GRIDl defined

II in RESOURCE.H

A better option, though, is to let ClassWizard define a Visual Basic con­
trol pointer variable that is initialized in the dialog's DoDataExchange mem­
ber function. The application framework cleans up the CVBControl objects
when the dialog closes, so don't try to delete a CVBControl object unless you
have constructed it yourself.

As the Class Library Reference shows, the CVBControl class contains all the
member functions you'll need to access Visual Basic controls. The Move,

E I G H T: Visual Basic Controls

Refresh, Get/tem, and Remove/tem functions activate a control's methods, and
there are functions for setting and getting the different kinds of properties
based on data type. You use the CVBControl::Create member function when
you need a Visual Basic control outside a dialog.

The EX08A Example
One Visual Basic control included with Visual C++ is the GRID control,
which was originally distributed with the Visual Basic CDK. The EX08A pro­
gram uses the GRID control to create a simple spreadsheet. Remember that
this is only an example, so don't erase Microsoft Excel from your hard disk.
Figure 8-1 shows the EX08A program containing data.

Figure 8-1.
The EX08A window.

The EX08A spreadsheet consists of 12 rows and 8 columns. The top row
and the left column are used for labels, and the bottom row is used for col­
umn sums that the program updates. When the user selects a cell with the
mouse, the cell's value is copied to the dialog'S edit control. The user can
then edit the value, which is copied back into the grid when the user presses
Enter.

The Visual Basic GRID Control
The Visual Basic GRID control consists of a rectangular array of addressable
cells. The host program sets the initial number of rows and columns, and it
stores data in and retrieves data from the individual cells. At run time, the
user can use the mouse (but not the direction keys) to select an individual
cell or a range of cells. The GRID control is more an "output control" than

153

PA RT II: THE MFC LIBRARY VIEW CLASS

154

an "input control" because the user cannot type directly into the cells. As
you'll see in the example, however, you can make it reasonably easy for the
user to enter and edit cell data.

NOT E : The Visual C++ VBCHART example application, lo­
cated in the \MSVC\MFC\SAMPLES\VBCHART subdirectory,
demonstrates the GRID control's ability to be customized. Be­
cause of some clever tricks, such as moving an edit window, the
program's grid behaves the same as a real spreadsheet. Be sure to
build and run VBCHART to see what is possible with some cre­
ative programming.

The GRID control supports most standard Visual Basic control proper­
ties, events, and methods, and it has a number of unique properties and
events. The ones you'll use in EX08A are listed here:

Name

Property

CellSelected (numeric)

Col (numeric)

ColAlignment
(numeric, indexed)

*Cols (numeric)

ColWidth
(numeric, indexed).

FixedAlignmen t
(numeric, indexed)

Row (numeric)

RowHeight
(numeric, indexed)

*Rows (numeric)

Text (string)

Event

SelChange

Method

AddItem

RemoveItem

Description

True (-1) if a cell is selected; False (0) otherwise

Curren t column

Non-fixedcells/row labels (0 = left aligned,
1 = right aligned, 2 = centered)

Total number of columns

Column width in "logical twips"

Fixed cells/row labels (0 = left aligned,
1 = right aligned, 2 = centered)

Current row

Row height in "logical twips"

Total number of rows

The text in the selected cell, defined by Col and Row

Notifies the program when the user uses the
mouse to select a new cell

Inserts a row

Deletes a row

*These properties can be set in App Studio; others can be set and read only at run time.

E I G H T: Visual Basic Controls

Building the EX08A Example Program
Before you begin to build the EX08A program, be sure that the files
GRID.VBX and VB.LIC are present in the \WINDOWS\SYSTEM sub­
directory. Now follow these steps to build the program:

1. Run AppWizard to produce \VCPP\EX08A\EX08A. Choose App­
Wizard from Visual Workbench's Project menu. The options and the
default class names are shown here:

Classes to be created:
Application: CEH08aApp in EXOOA.H and EXOOA.CPP
Frame: ChtainFrame in htAINFRht.H and htAINFRht.CPP
Document: CEx08aDoc in EXOOADOC.H and EXOOADOC.CPP
View: CEH08aView in EXOOAVW.H and EXOOAVW.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ htSVC Compatible project file (EXOOA.htAK)
+ Initial toolbar and status bar in main frame
+ Custom VOX Control support enabled
+ Uses medium memory model

Be sure to check the Custom VBX Controls option.

TIP: If you forget to check the Custom VBX Controls
option, or if you want to add VBX capability to an existing
application, simply insert the line

EnableVBX() ;

at the start of the InitInstance member function in your de­
rived application class.

2. Add a WM_LBUTTONDOWN message handler to CExOBaView in
EX08AVW.CPP. Use ClassWizard to add the OnLButtonDown function,
and then edit the function. The following screened code (which you
type in) replaces the existing code:

void CEx08aView::OnLButtonDown(UINT nFlags, CPoint point)

(continued)

155

PA R T II: THE MFC LIBRARY VIEW CLASS

156

This function brings up the modal dialog when the user presses the
left mouse button while the mouse cursor is in the view window. It also
initializes and prints the data array.

3. Edit the OnDraw function in EX08AVW.CPP. The following screened
code replaces the existing code:

void CEx08aView: : OnDraw(CDC*pDC)

While you're in EX08AVW.CPP, add the following include statement
near the top of the file:

4. Install the GRID control in App Studio. Start App Studio by choosing
App Studio from Visual Workbench's Tools menu. Choose Install Con­
trols from the App Studio File menu, and specify \WINDOWS\SYS­
TEM\GRID.VBX. A Grid button will appear in the control palette when
you edit the dialog.

5. Use App Studio to create the dialog IDD_DIALOG1. Use the dialog
pictured in Figure 8-1 on page 153 as a model. Click on Dialog in the
Type list, and then click the New button. The New Resource dialog ap­
pears. Click on Dialog in the Resource Type list, and then click the OK
button. A new window appears, showing the IDD_DIALOCJ dialog, and
the control palette also appears, containing the Grid button, as shown at
the top of the facing page:

E I G H T: Visual Basic Controls

Draw a large GRID control on the IDD_DIALOG1 dialog. Double-click
on the IDD_DIALOG1 dialog to open the Properties window. Set the
GRID control's Rows property to 12 and the Cols property to 8. Notice
that there are many GRID properties you can't set at design time, includ­
ing the column width, row height, and initial cell text. The GRID control
ID defaults to IDe_GRID1.

Add buttons to the dialog, and then assign button and edit control
IDs as follows:

Control 10 Caption

OK button IDOK (the default) OK (the default)

Cancel button IDCANCEL (the default) Cancel (the default)

Add Row button IDC_ADDROW Add Row

Delete Row button IDC_DELETEROW Delete Row

Edit window IDC_VALUE

Update Value button IDC_UPDATEVALUE Update Value
(default button)

6. Use ClassWizard to create the CExOBaDialog class. Choose Class­
Wizard from the App Studio Resource menu. Fill in the Add Class
dialog, as shown at the top of the following page:

157

PAR T II: THE MFC LIBRARY VIEW CLASS

158

Click the Create Class button. The MFC ClassWizard dialog appears,
as shown here:

Add message-handling functions as shown in the following table.
To add a message-handling function, click on an object ID, click on a
message, and then click the Add Function button. The Add Member
Function dialog appears. Type the function name, and click the OK
button.

Object 10 Message Function Name

CEx08aDialog WM_INITDIALOG OnInitDialog

IDC_ADDROW BN_CLICKED OnAddrow

IDC_DELETEROW BN_CLICKED OnDeleterow

IDC_GRIDl VBN_SELCHANGE OnSelchangeGridl

IDC_UPDATEVALUE BN_CLICKED On Updatevalue

IDCANCEL BN_CLICKED OnCancel

IDOK BN_CLICKED On OK

E I G H T: Visual Basic Controls

Now click the Edit Variables button and add the following two dialog
data members:

Control 10

IDC_VALUE

IDC_GRIDl

Member Variable Name

m_cellValue

m_pVBGrid

Property

Value

Control

Save changes and exitApp Studio when you're done.

Variable Type

CString

CVBControl*

7. Add an array data member in EXOSADLG.H. The m_dArray data
member is a two-dimensional array of doubles that correspond to the
values in the Grid control. Put the array inside the CEx08aDialogdeclara­
tion but outside the AFX_DATA brackets.

//{{AFX_DATA(CEx08aDialog)

enUffi { IDD = IDD_DIALOGl };

CVBControl* ffi-pVBGrid;

CString ffi_cellValue;

//}}AFX_DATA

S. Add a member function prototype in EXOSADLG.H. Add the function
prototype as shown:

9. Code the OnlnitDialog function in EXOSADLG.CPP. Visual Basic
controls use a measurement system called "logical twips." If you want
to convert between pixels and logical twips, you can't rely on the CDC
functions DPtoLP and LPtoDP; rather, you must do the conversions
yourself using values returned by the CDC::GetDeviceCaps function.

The first part of the OnlnitDialog function sets the column widths to
Ys of the control's client-area width, and it sets the row height to Y12 of
the total control height. The client-area width in logical twips is com­
puted according to the following formula:

client logical twips = client pixels x 1440 / logical pixels per inch

The CWnd::GetClient&ct function retrieves a rectangle whose width is
the width of the client rectangle in device coordinates (pixels).

Now look at the first for loop. This code cycles through all 8 columns
and sets the column width and column heading, using the CVBControl::­
SetNumProperty and the CVBControl::SetStrProperty member functions.

159

PAR T II: THE MFC LIBRARY VIEW CLASS

160

ColWidth is an indexed property, so you must use the index parameter
to set the element's value. Text is not indexed but depends on both the
Col and Row properties having been set to point to a particular cell.

The second for loop sets the row heights and row labels. It also sets the
indexed FixedAlignment and ColAlignment properties of all the fixed
cells (top row, left column) to centered alignment and the ColAlignment
property of the other cells to right alignment.

The nested for loops near the end of the function set a grid cell's text
to the value in the corresponding m_dArray data member. The double
values must be converted to strings before they can be used to set the
cells' Text property. The following screened code replaces the existing
code:

BOOL CEx08aDialog::OnlnitDialog()

E I G H T: Visual Basic Controls

10. Code the OnOK function in EX08ADLG.CPP. This function retrieves
the grid cell values and stores them in the m_dArray data member. The
following screened code replaces the existing code:

void CEx08aDialog: :OnOK()

11. Code the OnAddrowand OnDeieterowfunctions in EX08ADLG.CPP.
To add or delete a row, a cell must be currently selected. Notice the use of
the Addltem and Removeltem method functions. The screened code on the
following page replaces the existing code:

161

PA RT II: THE MFC LIBRARY VIEW CLASS

162

void CEx08aDialog: :OnAddrow()

void CEx08aDialog: :OnDeleterow()

12. Code the OnUpdatevalue function in EX08ADLG.CPP. This function
is activated by the Update Value button, which is the dialog's default
button. Its main duty is to transfer the edit control value to the selected
grid cell. It also computes the sum of each column and stores the results
in row 11. The program takes advantage of the fact that pressing Enter
sends the same message as clicking the default button. When the user
enters a value in the one-and-only edit control, he or she can press Enter
to make OnUpdatevalue process the value. The following screened code
replaces the existing code:

void CEx08aDialog::OnUpdatevalue()

E I G H T: Visual Basic Controls

13. Code the OnSeichangeGrid1 function in EX08ADLG.CPP. This
function handles the GRID control's SelChange event. It copies the
selected cell's value to the edit control so that the user can update it.
The m_p VBGrid pointer must be tested for a NULL value because the
first SelChange event occurs before the pointer is initialized. The fol­
lowing screened code replaces the existing code:

void CEx08aDialog: :OnSelchangeGridl(UINT, int, CWnd*, LPVOID)

14. Code the private ComputeSums function in EX08ADLG.CPP. Type
in the following screened code:

(continued)

163

PAR Til: THE MFC LIBRARY VIEW CLASS

15. Build and run the EX08A program. In Visual Workbench, choose
Build from the Project menu, and then choose Execute. The resulting
output looks like that shown in Figure 8-1 on page 153. Try updating
values, and then try deleting and adding rows. Check that the sums in
the bottom row are correct.

NOTE: If you don't see all the numbers in the grid, you
need to make the grid larger in App Studio.

Using Other Visual Basic Controls
The GRID control is not the best example of a Visual Basic control, but it is a
good learning tool. Many sophisticated Visual Basic controls are available
from third-party software firms. Un til the Visual C++ installed base grows, the
documentation for these controls will be oriented only to Visual Basic. You
will have to "translate" the Visual Basic calling sequences to C++, but this
shouldn't be too difficult if you have studied the EX08A example. A few Vi­
sual Basic methods, such as Drag and SetFocus, aren't directly supported by
the MFC library.

Chapter 11 uses another Visual Basic control, CNTR.VBX. This control
is available on the companion disc included with this book.

Visual Basic Picture Properties
Some Visual Basic controls, GRID included, support picture properties.
Technical Note #27 in the MFCNOTES.HLP file explains how the MFC li­
brary supports these Visual Basic picture properties.

Advantages and Disadvantages of
Writing and USing Visual Basic Controls

164

If a developer writes a Visual Basic control, that control can be sold to both
Visual Basic and Visual C++ programmers. That in itself should be reason
enough to write a Visual Basic control instead of an ordinary custom control.
Also, App Studio directly supports Visual Basic controls. Once a Visual Basic

E I G H T: Visual Basic Controls

control is installed in App Studio, a corresponding button appears in the
control palette, the control is visible in a dialog, and the design-time proper­
ties can be set.

On the negative side, Visual Basic controls are less efficient than ordi­
nary DLLs because of the need to communicate via properties instead of di­
rectly by function calls. You can improve efficiency if you use property index
numbers instead of property name strings. The CVBControl member function
GetProplndex returns a property's index value, which you can use subse­
quently for getting and setting properties.

Also, Visual Basic controls aren't very compatible with the MFC library
document-view architecture. A GRID control, for example, stores all its
spreadsheet data inside itself. This makes it difficult to support multiple
views of spreadsheet data.

For the time being, if you write your own Visual Basic controls, you'll
have to use C, and that means you won't get the benefit of the MFC library
classes. Of course, you must write ordinary custom control DLLs in C too.

165

C HAP T E R N N E

WINDOWS MEMORY
MANAGEMENT­
JUST SAY "NEW"

If you've read about memory management in other books on the Microsoft
Windows operating system, you'll wonder whether I'm talking about the
·same operating system here. Yes, indeed I am, but I'm talking about "post
real mode" Windows-versions 3.1 and later. The old Intel 8088 micropro­
cessor chips, as found in the original IBM PC, are no longer supported. As
the 8088 chip fades from view, so does real mode with its 1-MB memory limi­
tation and lack of hardware memory management. In its place is 16-bit pro­
tected mode with a much larger address space and two levels of hardware
memory management.

Many of the ugly things the older books about Windows discuss­
memory handles, locking, burgermasters, thunks, and so forth-are no
longer relevant. Some nasties remain, particularly segments, but even seg­
ments are due to disappear when we move to 32-bit Windows.

You were able to get started with Visual C++ programming without
knowing anything about Windows memory management. If you've followed
the examples up to this point, you've used the C++ new operator when you
wanted heap memory, and your applications have worked fine. As you write
larger and more sophisticated Windows programs, you'll still use new, but
you'll need to know what Windows does behind the scenes to make some
basic decisions. Should you use the medium memory model or the large
memory model? What's the difference between far and near declarations?
Must your program periodically reorganize its heap memory?

167

PAR T II: THE MFC LIBRARY VIEW CLASS

This chapter starts with an advance look at 32-bit programming for
Windows and suggests a strategy for migration to this up-and-coming envi­
ronment. Not left out, however, is the here-and-now 16-bit protected mode
environment. You'll learn about segments, the near heap, the far heap, and
near vs. far function calls. You'll also learn how to make your large-model
application run in "multiple instance" mode.

A Memory Model Review

168

If you've been writing C programs for Intel microprocessors, you're no
doubt familiar with the four standard "memory models." The following table
shows the relationships between memory models and address lengths:

16-Bit Code Addresses

32-Bit Code Addresses

16-Bit Data Addresses

Small

Medium

32-Bit Data Addresses

Compact

Large

You'll learn more about the composition of these address fields later.
We're very close to the age of 32-bit Windows, with its flat 32-bit address

space. Indeed, Microsoft Foundation Class Library version 2.5 was designed
with 32-bit Windows in mind, and it has already been tested with the Win­
dows NT operating system. Most MFC library applications you write now
should be portable to Windows NT with a simple recompilation and relink­
that is, unless you make your code too dependent on the current 16-bit
memory architecture.

How do you eliminate 16-bit dependencies? For a start, you can use the
large memory model for all your applications. This might sound like heresy
because other books have warned you specifically to avoid the large model
for Windows-based programs. There were some good reasons not to use the
large model in the old real mode, but the real mode wicked witch is dead.
The 16-bit large memory model generally uses 32-bit addresses for both pro­
grams and data, and this closely matches what you'll find in the 32-bit ver­
sions of Windows.

Yes, your large-model compiled program will be a bit larger than the
medium-model equivalent, and execution will be a little slower, but you will
save development time because you won't have to worry about the distinc­
tion between 16-bit "near" and 32-bit "far" pointers. If you apply the develop­
ment time savings to profiling and otherwise optimizing your application,
you'll come out ahead, plus you'll have a program that is easily portable to
the 32-bit environment.

N I N E: Windows Memory Management-Just Say "New"

16-Bit Windows
Now it's back to reality. Users will have Windows version 3.1 for a while, and
you'll have to produce 16-bit applications to run on that operating system.
So you're stuck learning about segments, near heap memory management,
and the various 16-bit memory models ..

. The Intel Segment Architecture
The Intel 80286, 80386, and 80486 families of microprocessor chips support
the 16-bit protected mode. The segment is the basic memory allocation unit,
and it can have a maximum size of 64KB. All memory addresses are com­
posed of a 16-bit segment address (also known as a "selector") and a 16-bit
offset within the segment. The microprocessors listed above all support a
hardware memory management scheme that uses a descriptor table in
memory. Each entry in the table maps a 13-bit descriptor table index, con­
tained in the selector, to a physical memory address range. Windows can
shuffle segments in physical memory if it updates the base address in the de­
scriptor table accordingly. If necessary, you can specify that particular seg­
ments be fixed in physical memory.

The size of segments can change too. If your program is using a 20-KB
segment, for example, and it needs that segment "expanded" to 40 KB, the
operating system allocates a new 40-KB segment, copies the contents from
the original 20-KB segment, and then frees the original 20-KB segment for
subsequent use by other programs. Because the selector does not change
(only the base address in the descriptor table changes), your program can
continue to use the data in the bottom 20 KB of the new segment as though
the data had never moved. Figure 9-1 on the following page is a simplified il­
lustration of the descriptor table in action.

Segments store code or data. Code segments are considered "read­
only" because their contents don't change during program execution. Data
segments are usually "read/write" because a running program changes
memory variables. The Windows memory manager takes an active role in
writing and reading segments to and from disk during program execution. If
memory is full, the Windows memory manager can discard a code segment
that hasn't been used in a while. Windows reloads a discarded code segment
when a program needs it. (Discarding an infrequently used code segment is
not usually necessary in 386 enhanced mode because of Windows' virtual
memory manager.)

169

PA RT II: THE MFC LIBRARY VIEW CLASS

Segment Address
(selector)

descriptor table index

Descriptor Table

Figure 9-1.

Offset

Protected mode addressingfor the 80386 microprocessor.

Memory

OKB

The DGROUP Segment and Multi-Instance Programs

170

All Windows and MS-DOS programs use one special segment: the "default
data segment," known as the DGROUP segment. This segment contains the
stack together with some (or all) of the application's static data plus data in
the local heap (explained later). When a program is running, the data seg­
ment (DS) and stack segment (SS) registers are loaded with the DGROUP
segment address, in such a manner that subsequent memory reference in­
structions access data in the DGROUP segment.

NOT E: You specify the maximum stack size in the program's
Memory Image category of the Linker Options dialog. AppWizard
uses a default value of 10,240.

Under certain conditions, a Windows program can run in multi-in­
stance mode. This means you can start several instances of a program, but
only one copy of the program's code will be loaded into memory. Windows
Notepad is a good example of a multi-instance program. Each instance of
the program has its own DGROUP segment, assigned at startup. For a pro­
gram to run in multi-instance mode, all its data (with some exceptions) must
fit into one segment. This restriction is necessary because the DS register,
loaded once for each instance, can address only one segment at a time.

Windows can move a DGROUP segment to another location in physical
memory because it is accessed through the descriptor table the same way as
any other segment.

N I N E: Windows Memory Management-:Just Say "New"

Memory Models-One Code Segment or Many?
In the "small" and "compact" memory models, all the application's code
must fit into one code segment. Simple Windows SDK programs can be com­
piled for the small or compact models because most of their functionality is
contained in the Windows kernel and DLLs. MFC library programs are gen­
erally too large for the small model because many MFC library functions
must be statically linked. With the medium and large models, the code is
split into several code segments. Therefore, you'll see most Windows pro­
grams use these large-code models.

With the medium and large models, the default compiler behavior is to
make one code segment for each C or C++ source module. This is fine for
applications that typically have three or four source modules. If you used the
same strategy for libraries, however, you might have too many code seg­
ments. (This would be very rare-the descriptor table can contain up to
8192 8-byte entries.) The compiler directive #pragma code_segenables you to
combine the code from multiple source modules into a single code segment.
The __ based keyword or the compiler directive #pragma alloctext allows you
to split a C source module's code into several segments.

If you need a Windows application to run on a computer with limited
memory, you can "swap-tune" the program by matching functions with code
segments according to the program's execution pattern. The Module Defini­
tion File (DEF) defines the attributes of the segments. You can, for example,
select which segments are initially loaded into memory when the application
starts. (See the Command-Line Utilities User's Guide for more information.)

NOT E : Generally, you cannot mix modules compiled for differ­
ent memory models. If you compile a module for the medium
model, for example, you cannot link it with another module com­
piled for the small or large model.

Near Function Calls
By default, in the medium and large memory models, function calls use 32-
bit addresses (selector plus offset). This rule applies even to calls within a
single segment. If you know that a particular function won't be called from
outside its segment, you can declare it near and thus make the compiler gen­
erate a shorter, faster, 16-bit calling sequence. Near declarations are handy
for private class member functions. If you follow the convention of placing
all of a class's member functions in one source file, you know that a private
function can't be called from outside that module (unless the class or func­
tion is declared a friend). Following is an example:

171

PA RT II: THE MFC LIBRARY VIEW CLASS

172

class CMyView : public CView

II constructor, macros, etc. not shown

private:

void NEAR NearTest();

void FarTest();

public:

virtual void OnDraw(CDC* pDC);

} ;

void CMyView::OnDraw(CDC* pDC)

NearTest() ;

FarTest();

void NEAR CMyView::NearTest()

int i = 0; II force compiler to generate some code

void CMyView::FarTest()

int i = 0; II force compiler to generate some code

It's interesting to look at the generated code for the calls to NearTest
and FarTest. Here is what you get with the medium model:

NearTest() ;

2737:0271 56 PUSH SI

2737:0272 E8E700 CALL CEx12View::NearTest (035C)

FarTest() ;

2737:0275 56 PUSH SI

2737:0276 9A7E033727 CALL CEx12View::FarTest (2737:037E)

You saved 2 bytes by using a near function-big deal.
Here is the equivalent large-model code:

NearTest() ;

252F:02B7 FF7608 PUSH WORD PTR [BP+08]

252F:02BA FF7606 PUSH WORD PTR [This]

252F:02BD E81601 CALL CEx12View:~NearTest (03D6)

FarTest();

252F:02CO FF7608 PUSH WORD PTR [BP+08]

252F:02C3 FF7606 PUSH WORD PTR [This]

252F:02C6 9AF4032F25 CALL CEx12View::FarTest (252F:03F4)

N I N E: Windows Memory Management-Just Say "New"

As you can see, the large model has even more code, and you still save 2 bytes
by using a near function.

Memory Models-One Data Segment or Many?
You might think that the small and medium models imply one data segment
and that the large and compact models imply several data segments. The
rules, however, are more complex than that. A medium-model application,
for example, might use several data segments, and a large-model application
might use only one data segment. What's going on?

Here is a summary of the data access rules by memory model:

• Small and medium models

o The default pointer size is 16 bits.

o The stack, all static variables, and the local heap are in the
DGROUP segment.

o The C++ new operator allocates memory from the Windows local
heap .

• Large and compact models

o The default pointer size is 32 bits.

o The stack is in the DGROUP segment.

o Static variables, excluding non-near C++ objects, are in the
DGROUP segment when possible.

o DGROUP static variables are accessed via 16-bit addresses where
possible.

o Large static items are located in their own data segments.

o C++ non-near static objects are located in a data segment associ­
ated with their code module.

o The C++ new operator allocates memory from the Windows
global heap.

But what do these rules mean to the average programmer? First of all,
the medium memory model doesn't give you much data space. You're lim­
ited to 64 KB total, and all of that isn't usable. (Some of this memory is used
by the stack, uninitialized global and static near data, and compiler-gener­
ated near data.) If you want, you can do "mixed-model" programming, which

173

PAR T II: THE MFC LIBRARY VIEW CLASS

involves declaring far (32-bit) pointers to data in other data segments and
using the Windows global memory allocation functions instead of new. Per­
haps the large model isn't such a bad idea after all!

If you're using the large model, you can make your program run multi­
instance if you ensure that it has only one data segment. The project's map
file (MAP) specifies how many data segments are in your program. To ensure
one data segment, don't declare large amounts of static data (either large
individual objects or numerous small ones), and be sure that all global c++
objects (particularly your CWinApp object) are declared near.

NOTE: With the large model, you can force a module's static
data to reside in a particular data segment by using the #prag;ma
data_segstatement. Be careful when referencing extern static data
that is not in the DGROUP segment. You must declare the vari­
ables far, or you must check the Assume 'Extern' And Un­
initialized Data 'Far' check box in the Memory Model category of
the Compiler Options dialog (/Gx- switch).

Now that you're beginning to understand the difference between near
(16-bit offset only) and far (segment address plus offset) addressing, it's time
to look at some more compiler-generated code. Assume that i is a static inte­
ger variable. With the medium model (and, most of the time, with the large
model), static variables are stored in the DGROUP segment, and you get the
following machine instruction:

i = 0;

247F:02CB C7067E140000 MOV WORD PTR [?I@@3HE (147E)],OOOO

Now, with the large model and the variable i in a different data seg­
ment, you get two instructions instead of one:

i = 0;

252F:02CB 8E060C10 MOV

252F:02CF 26C70636140000 MOV

ES, [100C]

WORD PTR ES: [?I@@3HE (1436)],0000

The extra MOV instruction loads the extended data segment (ES) reg­
ister with the segment selector value that is stored in a temporary variable
(lOOC) in the DGROUP segment. Notice the addition of 5 bytes of code.
These bytes do add up in a large application. In 32-bit Windows, however, the
code will be simpler and shorter.

The Local Heap

174

If you use the small or medium memory model, the C++ new operator is
mapped to the compiler's _nmalloe (that is, near malloe) function, which in
turn is mapped directly to the Windows LoealAlloe function. What does this

N I N E: Windows Memory Management-Just Say "New"

mean? It means that you're using the "local heap" that is entirely contained
in your application's DGROUP segment. The initial size of the heap is speci­
fied in the module definition file.

When you get memory from the local heap, the underlying DGROUP
segment can move and change size, but the allocated memory blocks have
fixed offsets within the segment. This means that local heap memory can
become fragmented. In the old days, Windows programmers would call
LocalAlloc themselves and then carefully lock and unlock the returned
"memory handles" to allow Windows to shuffle the individual blocks within
the heap. There's still some benefit to doing this, but the technique excludes
use. of the new operator. Most fragmentation problems disappear when you
switch to the large model and the Windows global heap.

The Global Heap
With the large and compact memory models, the C++ new operator is
mapped to the compiler's _fmalloc function. In Microsoft C version 6.0,
_fmalloccalled the Windows GlobalAllocfunction directly, and GlobalAllocallo­
cated a brand-new movable segment on the "global heap" each time it was
called. Because the number of descriptor table entries is limited (4096 seg­
ment selectors with 80286 computers and 8192 selectors with 80386- and
80486-based computers), you couldn't afford to use _fmalloc every time you
needed a little bit of memory.

With Microsoft CjC++ version 7.0 and with Visual C++, the _fmalloc
function works differently (as does the new operator). The _fmallocfunction
now does "subsegment allocation," which means that it can satisfy many
memory requests by allocating a single large segment. The Windows
GlobalAllocfunction is called only when necessary to get a new segment. The
amount of memory actually allocated is rounded up to the nearest 4-KB
boundary. If a segment needs to grow, it is reallocated with the Windows
GlobalReAlloc function, also to the nearest 4-KB boundary.

NOT E : The 4-KB minimum allocation and reallocation sizes
are subject to change. You can set internal Windows variables, and
future versions of Windows might change the default values.

Global heap segments are completely movable and resizable through
their descriptor table selectors, but the memory offsets within the segments
are fixed. This means that you can still have fragmentation within a segment.

There's another problem too. Suppose your program allocates five
memory blocks in three segments and then frees blocks 2, 3, and 5, as shown
in Figure 9-2 on the following page.

175

PAR T II: THE MFC LIBRARY VIEW CLASS

Selector 1

overhead

block 1

padding to 4-KB
boundary

Figure 9-2.

Selector 2

block 4

padding to 4-KB
boundary

Memory allocation with freed blocks.

Selector 3

padding to 4-KB
boundary

All freed memory is available to your program, but the third segment is
not returned to Windows, even though your program is not using it. You can
avoid this condition if your program frequently calls the _heapmin function.
Figure 9-3 shows the effects of _heapmin on the three segments above.

Selector 1 Selector 2

overhead

block 1

block 4

Figure 9-3.
The third segment (Selector 3, shown in Figure 9-2) has been returned to
Windows.

Now the second segment has been reallocated, and the third segment
has been returned to Windows with the GlobalFree function. The padding
bytes have been removed too.

Location of the Program's vtbl

176

The "vtbl" is the data structure that dispatches calls to C++ virtual functions.
In all MFC library applications, whatever the memory model, the vtbl is
stored in a code segment. You never have to worry about the vtbl using up
valuable space in your DGROUP segment.

N I N E: Windows Memory Management-Just Say "New"

Direct Use of Windows Memory Allocation Functions
In many Windows applications, you can get away with not directly using any
Windows memory allocation functions. (Just say "new.") In a few cases, how­
ever, you need them. If you're using the Windows clipboard or dynamic data
exchange (DDE), you need sharable memory. You can call GlobalAlloc di­
rectly with the flag parameter set to GMEM_DDESHARE, but then you're
stuck using one of those obsolete Windows memory handles. Try using
GlobalAllocPtr instead. This macro, defined in WINDOWSX.H, allocates
memory, locks the handle, and returns a pointer to the locked memory
block. The companion GlobalFreePtr macro unlocks and frees the memory
identified by a pointer. See Chapter 23 for a global memory usage example.

Suppose you've been asked to write a Windows-based program to con­
trol the neighborhood nuclear plant. You absolutely can't afford to have the
program crash as a result of memory fragmentation. In this case, you might
be forced to write your own memory manager, based on GlobalAllocPtr and
GlobalFreePtr. This memory manager might allocate memory in fixed-size
chunks, or it might periodically perform garbage collection to compact the
heap. The _fheapwalk function is helpful if you want to know what memory
your program has allocated on the global heap.

The 80386/80486 Virtual Memory Manager
Now that you think you have memory management all figured out, I'm going
to throw a whole new memory management system at you. This 386 en­
hanced mode virtual memory allocation system works separately and on top
of the segment scheme you've seen already. Once physical memory fills up,
memory pages, each 4 KB in size, are swapped to and from disk. The net re­
sult is a linear memory address space that can be as large as 64 megabytes
(MB). Usually, the address space is much smaller. It's limited by the size
of the Windows swap file (386SPART.PAR, SPART.PAR, or WIN386.SWP),
which depends on the amount of physical memory ane! the space available
on the hard disk. Figure 9-4 on the following page illustrates 386 enhanced
mode memory management.

This virtual memory manager pretty much defeats the Windows seg­
ment management capability. Because Windows thinks it has, say, 20 MB of
RAM, it won't have to discard or even move its segments until the 20 MB are
used up. The virtual memory manager is in control, swapping (but not dis­
carding) 4-KB blocks. This puts a different spin on swap-tuning. The new
goal is to combine related code and data in 4-KB chunks. This, incidentally,
is the same strategy that you'll need for 32-bit Windows.

177

PAR T II: THE MFC LIBRARY VIEW CLASS

20MB

4-KB page

OKB

Figure 9-4.

Virtual
Memory

386 enhanced mode memory management.

Physical
Memory

Windows swap file

Maximum
Memory

4-KB page

OKB

Detecting Memory Leaks

178

Memory fragmentation can affect program performance, but memory
"leaks" frequently cause programs to crash. A memory leak occurs when your
program fails to free an allocated memory block. If you consistently use the
new operator for allocating heap memory, you can benefit from the applica­
tion framework's diagnostic memory manager. When you use the Debug
build option, new is overloaded to write signature bytes for the blocks it allo­
cates. Thus, you can request a "snapshot" of the heap at any time. This dump
identifies all C++ objects and non-object blocks.

If you need even more information about allocated memory, add the
following line in each applicable source module:

#define new DEBUG_NEW

This tracks the source module name and source line number where the new

operator was used.

N I N E: Windows Memory Management-Just Say "New"

Chapter 15 explains the memory dump process, which requires a
knowledge of the CObject and CDumpContext classes. You'll see that the appli­
cation framework automatically dumps all allocated memory blocks that
have not been freed when the program terminates. Remember that you must
allocate memory with new to take advantage of this application framework
diagnostic feature; if you use GlobalAlloc, you can rely on the Windows Debug
kernel to tell you about unfreed allocation units.

What to Do When You Run Out of Memory
Before you can plan your strategy for this unhappy situation, you must first
learn how to detect the out-of-memory condition. I've encountered three
separate out-of-memory conditions, but there are probably more. Here are
the three conditions:

• Full local heap-This is usually detected by the exception-processing
code built into the MFC library. (A message box appears when
memory runs out.) Don't even bother with recovery strategies; just
recompile your program for the large model.

• Full global heap-You don't get an exception with this condition;
Windows just bogs down, usually after about 12 megabytes of
memory have been used up. This usually indicates a logic problem,
and you have to fix your program.

• The exhausting of Windows resources, usually in the USER.EXE component
of Windows-This condition is more common, and it's also detected
by an exception. Perhaps the end user opens up 20 form view
windows, each with a dozen controls. One solution is to write your
own exception-processing code, which frees all known allocated
memory and gracefully shuts down the program. This is difficult
because Windows might not be able to perform the operations you
need. A more effective strategy is to have your program limit the
number of windows that the user can open. The 32-bit versions of
Windows have more resource memory available, so this problem
should disappear eventually.

179

C HAP T E R TEN

BITMAPS

Without graphics images, Windows-based applications would be pretty
dull. Some applications depend on images for their usefulness, but any ap­
plication can be spruced up with the addition of decorative clip art frorp a
variety of sources. Windows bitmaps are arrays of bits mapped to display pix­
els. That might sound simple, but you have to learn a lot about bitmaps be­
fore you can use them to create professional Windows-based applications.

This chapter starts with the simplest bitmap program-one that loads
and displays a bitmap from a resource. The second example shows you how
to use bitmaps for smooth movement of items on the screen. You'll have to
wait until Chapter 23, however, to see the real power of bitmaps. There you'll
save bitmaps on disk and print them out, and you'll also transfer them to
other applications by means of the clipboard.

GDI Bitmaps and
Device-Independent Bitmaps (DIBs)

The two kinds of Windows bitmaps are GDI bitmaps and DIBs.GDI bitmap
objects are represented by the Microsoft Foundation Class (MFC) Library
version 2.5 CBitmap class. The bitmap object has an associated Windows data
structure, maintained inside the Windows GDI module, that is device-depen­
dent. Your program can get a copy of the bitmap data, but the bit arrange­
ment depends on the display hardware. GDI bitmaps can be freely
transferred among programs on a single computer, but because of the device
dependency, transferring them by disk or modem doesn't make sense.

The DIB is an alternative bitmap format that solves the interchange­
ability problem. Any computer running Windows can process DIBs, which
are usually stored in BMP disk files. The wallpaper that forms your back­
ground is read from a BMP file when you start Windows. The primary

181

PART II: THE MFC LIBRARY VIEW CLASS

storage format for Windows Paintbrush is the BMP file, and App Studio uses
BMP files for. toolbar buttons and other images. When a BMP file is read
from disk, it's often translated into a GDI bitmap, but programs can work
directly from the DIB format if necessary.

Using GOI Bitmaps
A GDI bitmap is simply another GDI object, such as a pen or a font. You must
somehow create a bitmap, and then you must select it into a device context.
When you're done with the object, you must deselect it and delete it. You
know the drill.

There's a catch, though, because the "bitmap" of the display or printer
device is effectively the display surface or the printed page itself. Therefore,
you can't select a bitmap into a display device context or a printer device
context. You have to create a special memory device context for your
bitmaps, using the Create::CompatibleDC function. You must then use the CDC
member function StretchBlt or BitBlt to copy the bits from the memory device
context to the "real" device context. These "bit-blitting" functions are gener­
ally called in your view class's OnDrawfunction. Of course, you mustn't forget
to clean up the memory display context when you're done.

Color Bitmaps and Monochrome Bitmaps

182

Now might be a good time to reread the "Windows Color Mapping" section
in Chapter 5. As you'll see here, Windows deals with color bitmaps a little
differently from the way it deals with brush colors.

Most color bitmaps are 16-color. A standard VGA board has 4 contigu­
ous "color planes," with 1 corresponding bit from each plane combining to
represent a pixel. The 4-bit color values are set when the bitmap is created.
With a standard VGA board, bitmap colors are limited to the standard 16
colors. Windows does not use dithered colors in bitmaps.

With monochrome bitmaps, you have more flexibility. A monochrome
bitmap has only one plane. Each pixel is represented by a single bit that is
either on or off. The CDC SetTextColor function sets the "on" display color,
and SetBkColor sets the "off' color. You can specify both of these pure colors
with the Windows RGB macro.

TEN: Bitmaps

Loading a GDI Bitmap from a Resource
The easiest way to use a bitmap is to load it from a resource. If you open a
resource script with App Studio, you'll find a list of bitmap resources. If you
select any bitmap and examine its properties, you'll see a filename. Here's an
example entry in an RC file, when viewed by a text editor:

BITMAP DISCARDABLE "RES\\LEAVES.BMP"

IDB_LEAVES is the resource ID, and the file is LEAVES.BMP in the
project's RES subdirectory. (LEAVES is one of the Windows. 3.0 wallpaper
bitmaps, normally located in the WINDOWS directory.) The resource com­
piler reads the DIB from disk and stores it in the RES file. The resource­
binding process copies the DIB into the program's EXE file. The LEAVES
bitmap must be in device-independent format because the EXE can be run
with any display board that Windows supports.

The CDC LoadBitmap function converts a resource-based DIB to a GDI
bitmap. Below is the simplest possible self-contained OnDraw function that
displays the LEAVES bitmap.

CMyView::OnDraw(CDC* pDC)
{

}

CDC* pDisplayMemDC = new CDC;
CBitmap* pBitmap = new CBitmap;
pBitmap->LoadBitmap(IDB_LEAVES);
pDisplayMemDC->CreateCompatibleDC(pDC);
pDisplayMemDC->SelectObject(pBitmap);
pDC->BitBlt(100. 100. 200. 150. pDisplayMemDC. 0. 0. SRCCOPY);
delete pDisplayMemDC; II deselects bitmap
del ete pBitmap;

The BitBltfunction copies the LEAVES pixels from the memory display
context to the display (or printer) device context. The LEAVES bitmap is 200
pixels by 150 pixels, and, on the display, it occupies a rectangle 200 logical
units by 150 logical units, offset 100 units down and to the right of the upper
left corner of the window's client area.

NOT E : The code shown above works fine for the display. As you'll
see in Chapter 18, the application framework calls the OnDraw
function for printing, in which case pDCpoints to a printer device
context. The bitmap here, unfortunately, is configured specifically
for the display and thus cannot be selected into the printer­
compatible memory device context. If you want to print a bitmap,

183

PAR T II: THE MFC LIBRARY VIEW CLASS

you can create a display-compatible memory device context in the
view's OnlnitialUpdate function and then call BitBlt in OnDraw to
copy the bits to the printer device context. The EXIOA program
in this chapter demonstrates this technique. Even this technique
isn't perfect, however, because bitmap colors aren't converted to
gray shades on the printer. Chapter 23 introduces the CDib class,
which allows you to make a DIB from a bitmap and then print the
DIB directly.

The Effect of the Display Mapping Mode
If the display mapping mode in the LEAVES example is MM_TEXT, each
bitmap pixel maps to a display pixel, and the bitmap looks nice. If the map­
ping mode is MM_LOENGLISH, the bitmap size is 2.0 inches by 1.5 inches,
or 192 pixels by 144 pixels on a VGA screen, and the GDI must do some bit­
crunching to make the bitmap fit. Consequently, the bitmap won't look as
good with the MM_LOENGLISH mapping mode.

Stretching the Bits
What if we want LEAVES to occupy a rectangle exactly 200 pixels by 150 pix­
els, even though the mapping mode is not MM_ TEXT? The StretchBlt func­
tion is the answer. If we replace the BitBlt call with the following three
statements, LEAVES is displayed cleanly, whatever the mapping mode.

CRect rect(0, 0, 320, 240);
pDC-)DPtoLP(&rect);
pDC-)StretchBlt(0, 0, rect.Width(), rect.Height(),

pDisplayMemDC, 0, 0, 200, 150, SRCCOPY);

With either BitBlt or StretchBlt, the display update is slow if the GDI has
to actually stretch or compress bits. If the GDI determines, as in the case
above, that no conversion is necessary, the update is fast.

The EX10A Program

184

The EXIOA example displays a resource-based bitmap ina scrolling view
with mapping mode set to MM_LOENGLISH. The program uses the Stretch­
Blt logic described above, except that the memory device context and the
bitmap are created in the view's OnCreate member function and last for the
life of the program. Also, the program reads the bitmap size through a call to
the CGdiObject member function GetObject, so it's not using hard-coded values
as in the examples above.

TEN: Bitmaps

Here are the steps for building the example:

1. Run AppWizard to produce \VCPP\EX1 OA\EX1 OA. Choose App­
Wizard from Visual Workbench's Project menu. The options and the
default class names are shown below. Be sure to specify the view's base
class as CScrollView and to specify CScrollViewon the view's base class.

Classes to be created:
Application: CExl0aApp in EX10A.H and EX10A.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CExl0aDoc in EX10ADOC.H and EX10ADOC.CPP
ScrollView: CExl0aView in EX10AVW.H and EX10AVW.CPP

Features:
+ Supports the Single Document Interlace (SDI)
+ MSVC Compatible project lile (EX10A.MAK)
+ Initial toolbar and status bar in main frame
+ Printing and Print Preview support in view
+ Context Sensitive Help and initial RTF liles
+ Uses medium memory model

Be sure to select the Context Sensitive Help option in the Options
dialog and accept the Printing And Print Preview default.

2. Add the following data members to class CEx10aView. Edit the file
EXIOAVW.H. The memory device context lasts for the life of the view.
The integers in the code are the source (bitmap) dimensions and the
destination (display) dimensions.

private:
CDC* m:...pDisplayMemDC;
HBITMAP m.,.hOldDi spl ayBttmap:
intm_nSWidth. m_nSHeight. m_nDWidth. m_nDHeight;

3. Edit the following member functions in class CEx10aView. Edit the
file EXIOAVW.CPP. The OnlnitialUpdatefunction sets up the memory
display context and the bitmap; the OnDraw function has only to call
BitBlt. When OnlnitialUpdate sets the bitmap destination dimensions, it
multiplies the pixel values by 4 to make a giant-size bitmap. Onlnitial­
Update must save the old bitmap handle in the data member m_hOld­
DisplayBitmap so that the destructor can restore it later. You've already
seen this technique used for fonts.

185

PAR T II: THE MFC LIBRARY VIEW CLASS

186

void CEx10aView::OnlnitialUpdate()
{

void CEx10aView::OnOraw(COC* pOC)

CEx10aView::CEx10aView()

}

CEx10aView::~CEx10aView()

TEN: Bitmaps

4. In App Studio, import the IDB_APPEXIT bitmap. Choose App Studio
from Visual Workbench's Tools menu, and then choose Import from
App Studio's Resource menu. Select the file \VCPP\EXIOA\HLP\APP­
EXIT.BMP. AppWizard generated this file when you asked for context­
sensitive help. Now App Studio will copy it into the project's RES sub­
directory. Assign the ID IDB_APPEXIT and save the changes.

5. Build and test the EX10A application. Your screen should look like
this:

The bitmap "bits" are now exactly 4 pixels by 4 pixels.

6. Try the Print Preview function. The bitmap prints to scale because the
application framework applies the MM_LOENGLISH mapping mode to
the printer device context just as it does to the display device context.

Using Bitmaps to Improve the Screen Display
You've seen an example program that displayed a bitmap that originated
outside the program. Now you'll see an example program that generates its
own bitmap to support smooth motion on the screen. The principle is
simple: You draw on a memory device context with a bitmap selected, and
then you "zap" the bitmap onto the screen.

187

PAR T II: THE MFC LIBRARY VIEW CLASS

The EX108 Program

188

In the EX05C example in Chapter 5, the user dragged a circle with the
mouse. As the circle moved, the display flickered because the circle was
erased and redrawn on every mouse move message. EXIOB uses a GDI
bitmap to correct the problem. The EX05C custom code for mouse message
processing carries over almost intact; most of the new code is in the OnPaint
and On Create functions.

In summary, the EXIOB OnCreate function creates a memory device
context and a bitmap that are compatible with the display. The OnPaintfunc­
tion prepares the memory device context for drawing, passes OnDraw a
handle to the memory device context, and copies the resulting bitmap from
the memory device context to the display.

Here are the steps to build EXIOB from scratch:

1. Run AppWizard to produce \VCPP\EX1 OB\EX1 DB. Choose App­
Wizard from Visual Workbench's Project menu. The options and the
default class names are shown below. Be sure to specify CScrollView on
the view's base class.

Classes to be created:
Application: CExl0bApp in EX10B.H and EX10B.CPP
Frame: ChtainFrame in htAINFRht.H and htAINFRht.CPP
Document: CExl0bDoc in EX10BDOC.H and EX10BDOC.CPP
ScrollView: CExl0bView in EX10BVW'.H and EX10BVW'.CPP

Features:
+ Supports the Single Document Interlace (SDI)
+ htSVC Compatible projectlile (EX10B.htAK)
+ Initialtoolbar and status bar in main frame
+ Uses medium memory model

2. Use ClassWizard to add CEx10bViewmessage handlers. Add
message handlers for the following messages:

o WM_LBUTTONDOWN

o WM_LBUTTONUP

o WM_MOUSEMOVE

o WM_PAINT

TEN: Bitmaps

3. Edit the EX10BVW.H header file. Add the private data members shown
here to the CExl Ob View class:

private:
CRect m_ell i pseRect;
CPoint m_mousePos;
BOOl m~bCaptured;

CDC* m_pMemDC;
CBitmap* m"..pBitmap;

4. Code the CEx1 Ob View constructor and destructor in EX10BVW.CPP.
You need a memory device context object and a bitmap CDI object. These
are constructed in the view's constructor and destroyed in the view's
destructor.

CEx10bVi ew: : C Ex10bVi ew() : mS-ell ip:seRect(0,e 0,:'le~;.",:400' 'l:£.coristtuGt~r
{

m:"'bCaptured= FALSE;
m_pMel!lOG . 'f=;ne\ol~GDC:; .
m...:pBftmap '···'7·.:t;l(ew:CB:ltrnap,:;;~

CEx10bView::~CExlebView()

{

deletem_pJHtroap;; .
de lete: !TLpMemDC:

5. Add code for the OnlnitialUpdate function in EX10BVW.CPP. The
C++ memory device context and bitmap objects are already constructed.
This function creates the corresponding Windows objects. Both the
device context and the bitmap are compatible with the display context
dc, but you must explicitly set the memory display context's mapping
mode to match the display context. You could create the bitmap in the
OnPaint function, but the program runs faster if you create it once here.

void CEx10bView::OnInitialUpdate()
{

CScrollView::OnInitialUpdat~();

(continued)

189

PAR T II: THE MFC LIBRARY VIEW CLASS

190

6. Add code for the OnPaintfunction in EX10BVW.CPP. Normally, it
isn't necessary to override OnPaint to reduce screen flicker through the
use of a memory display context. The CViewversion of OnPaint contains
the following code:

CPaintDC dc(this);
OnPrepareDC(&dc);
OnDraw(&dc);

In this example, you will be overriding OnPaint to reduce screen
flicker through the use of a memory display con text. OnDraw is passed
this memory display context for the display, and it is passed the printer
device context for printing. Thus On Draw can perform tasks common to
the display and the printer. You don't need to use the bitmap with the
printer because the printer has no speed constraint.

The overridden OnPaint must perform three steps to prepare the
memory device context for drawing. Here are the three steps, in order:

o Select the bitmap into the memory device context.

o Transfer the invalid rectangle (as calculated by OnMouseMove) from
the display context to the memory device context. There is no Set­
ClipRect function, but the CDC IntersectClipRect function, when called
after the CDC SelectClipRgn function (with a NULL parameter), has the
same effect. If you don't set the clipping rectangle to the minimum
size, the program runs slower.

o Initialize the bitmap to the current window background color. The
CDC PatBlt function fills the specified rectangle with a pattern. In this
case, the pattern is the brush pattern for the current window back­
ground. That brush must first be constructed and selected into the
memory device con text.

TEN: Bitmaps

After the memory device context is prepared, OnPaint can then call
On Draw with a memory device context parameter. Afterward, the CDC
BitBlt function copies the updated rectangle from the memory device
context to the display device context.

void CEx10bView::OnPaint()
{

CRect updateRect:

CPaintDC dc(this):
OnPr~pareDC (&dc):
. dt.GetCl ipBox(&up.dateRect):
:CBltmap*.~··pOl dBi tmap'= (CB1 tm;ap*) Jm_pMemDC~)Se;1 ectOb:j~~t;C~~pBi ~map).):;

",,',

'nLpMemOC~)~el ectCl ipRgn (NU LL): .. ' ..•
..•. m";:pMeTllOC''')lntersectCli PR~ct(&uPdateRect); ,·.r "

CBrush backgroundBrush((COLORREF) :: GetSysCol or {CaLOILWnloow)):
r CBr u~ h* pOldB rush = m:,pM}~:mDC ?Se 1 e,ctP9j·e d(&hac~grQ.UYl:d13;~1.lS ~)::; : '. ;':;;'

·.Php~~mpC.~ >PatBJt(.l)pdat.e·~e:ct.:l.ef~< .~pdat;¢RM~ .~oci:~ ".;, ~~~;')\ij:;L~';:;;~«"":;
..• .> '.' .: .':; . iupdaxeRe.ct ;wi~:th(}i:~lJda;~ege~t1'}H~jijh·ti(:i)!.::~~:FCQP~);f ,.
:amnFa~€m~PMe~OCY;.:; •. ' ...•....•........ < ••. :;~;.: ;;~.;:~:~;: :.; •. :.;.~;:i:'; '" '; "" ;~:~."
d~: SitBlt (UPdateRect~left.:uPdat)Re'€t·j t:q~:· ; ;:: :;;>~~; j;;:;'.,":'~;:"
'.upda'teRe¢:t:fWi'd;"tH(:};' ·upa;ate;Re:cit;.~e:ig;ht:{~''':~~~M·~;nj!>~(~:l;.\

uPdat~Recf:left;'updateg~ct:i0p" S~CeQ~~.).,~;' ... ,':. '
m~pMe~DC:->Se 1EictObj~G·t~pOldBi~m~~):('"
m_pMemDC-)S~l ectObje.ct(pOl dBhisht:: '"

7. Code the OnDrawfunction in EX10BVW.CPP. This CExlObView
member function is similar to the EX05C OnDraw function except that
it draws a stationary black square in addition to the moving circle. In
EXIOB, OnDraw is passed a pointer to a memory device context by the
OnPaint function. For printing, OnDraw is passed a pointer to the printer
device con text.

void CEx10bView: :OnOraw(COC* pOC)
{

}

J~Q(> >Se l~~tStockObj~¢t(aLACt<...BRU~H):: .• ',
Hppt~>ReSf.angle ~·100.. ~ 100. ' 2,e~;.:'-:200~ ;,: .
" pOC->SelectStockObject(GRAY~aRU$H)::

·p:OC:.>Ellipse'(m..::ellipseRect).; ,

8. Copy mouse message-handling code from EX05CVW.CPP. Copy
the functions shown on the following page from EX05CVW.CPP to
EXIOBVW.CPP. Be sure to change the class names of these functions
from CEx05cView to CExlObView.

191

PAR T II: THE MFC LIBRARY VIEW CLASS

o OnLButtonDown

o OnLButtonUp

o OnMouseMove

9. Change one line in the OnMouseMove function in EX10BVW.CPP.
Change the line

InvalidateRect(invalidRect, TRUE);

to

Inval i dateRect(i nval i dRect, @NlNS'!"?hI'III,'

If the second CWnd::lnvalidateRect parameter is TRUE, Windows erases
the background before repainting the invalid rectangle. That's what you
needed in EX05C, but the background erasure is what causes the flicker.
Because the entire invalid rectangle is being copied from the bitmap,
you no longer need to erase the background. The FALSE parameter
prevents this erasure.

10. Build and run the application. Here is the EXIOB program output:

Is the circle's movement smoother now?

Other Uses for GDI Bitmaps

192

GDI bitmaps are often used in animation. At the start of a program, you
might create a series of bitmaps that correspond to states of an animated

TEN: Bitmaps

object. Logic in the OnPaint function would then select the appropriate
bitmap into the memory display context, and then OnPaint would use the
BitBlt function to copy from the memory device context to a specific rectan­
gular region in the display context. If the moving object is not itself rectan­
gular, you must use some of the more esoteric BitBlt "raster operation codes"
(ROPs) to merge the moving object with the rest of the display image. You
might even need a separate "mask" bitmap. The BitBlt SRCCOPY ROP param­
eter in EXIOB causes the source bitmap to be copied directly to the destina­
tion bitmap. See the Class Library Reference for information about other raster
operation codes.

193

~ ~~ J' \~~" ~ w~\/~ii3J~_ :'11~«l\'\~'~:i ~+~iI\
19tk >~~*W~" :,,~~l~. ~t#~;~\:il~ ~w ~~.

*~ m }~~~ f ML*1t t% if! "~~¥~fu1~::'~\ll\\~1~1t\:~\il

C HAP T E R E LEV E N

BITMAP BUTTONS, THE TIMER,
AND ON-IDLE PROCESSING

This chapter presents a few useful Microsoft Foundation Class (MFC) Li­
brary programming techniques that don't .depend on the document-view
architecture. First you'll build a dialog that contains graphical bitmap but­
tons, and then you'll exercise the Windows timer. Last you~ll see two places
to attach "on-idle" code. (On-idle code can be used to perform background
tasks while no messages are being processed.) The on-idle example intro­
duces the application framework's main frame class, thus making this chap­
ter a lead-in to Part III of this book.

Bitmap Buttons
The MFC library'S CBitmapButton class allows you to easily create buttons that
are labeled with graphics instead of text. You don't have to call BitBlt or
StretchBlt. This chapter's first example shows you how to add bitmap buttons
to a dialog.

The EX11A Program
In this example, you'll build a dialog with three bitmap buttons. These but­
tons use Copy, Cut, and Paste bitmaps "stolen" from the help system. So that
you'll know that the buttons are working, the program displays appropriate
text in a static text control and sets a dialog data member when you click the
buttons.

Follow these steps closely to construct the example:

1. Run AppWizard to produce \VCPP\EX11 A\EX11 A. Choose AppWizard
from Visual Workbench's Project menu. The options and the default
class names are shown at the top of the next page:

195

PAR T II: THE MFC LIBRARY VIEW CLASS

196

Classes to be 1:reated: .
Application: CExllaApp in EXllA.H and EXllA.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CExllaDoc in EXllADOC.H and EXllADOC.CPP
View: CExllaView in EXllAVW.H and EXllAVW.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ MSVC Compatible project file (EXllA.MAK)
+ Initialtoolbar and status bar in main frame
+ Context Sensitive Help and initial RTF files
+ Uses medium memor, model

Be sure to specify the Context Sensitive Help option to create the bitmap
files that the example needs.

2. Start App Studio, and then import the button bitmaps. Choose Im­
port from App Studio's Resource menu to import and name the follow­
ing bitmap files. You'll be importing each resource twice, once for the
button's up (U) state and again for the button's down (D) state.

File First Resource 10 Second Resource 10

HLP\EDITCOPYBMP

HLP\EDITCUT.BMP

HLP\EDITPAST.BMP

"COPYU"

"CUTU"

"PASTEU"

"COPYD"

"CUTD"

"PASTED"

Be sure to use quotation marks in the ID field of the Bitmap Properties
dialog to ensure that the resources are identified by strings instead of
constants. The IDs will thus not appear in the RESOURCE.H file.

3. Invert the colors for the "down" bitmaps. Select the COPYD bitmap,
and choose Invert Colors from the App Studio Image menu. Repeat
for the CUTD and PASTED bitmaps. At run time, when a bitmap button
changes from the up state to the down state, the U (noninverted) bitmap
is replaced with the D (inverted) bitmap, which changes the button's
colors. The screen at the top of the facing page shows the COPYD
bitmap in App Studio:

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

4. Use App Studio to produce the dialog IOO_BITMAP. Create the
dialog shown here:

===

Notice the highlighted static text control in the dialog.
The three bitmap buttons are defined at the top of the following

page:

197

PAR T II: THE MFC LIBRARY VIEW CLASS

198

Button 10

IDC_EDIT_COPY

IDC_EDIT_CUT

IDC_EDIT_PASTE

Caption*

COPY

CUT

PASTE

*Note: Be sure to use uppercase for the captions.

Check the Owner Draw check box in the Push Button Properties
dialog for each bitmap button.

The button captions correspond to the bitmap resource names. When
the application framework draws the button COPY, it looks for bitmap
resources named COPYD and COPYU.

Change the static text control's ID to IDe_MESSAGE.

5. Use ClassWizard to generate the CEx11aDialog class. If you run
Class Wizard from inside App Studio, you won't have to specify the
dialog ID. Fill in the Add Class dialog as shown here:

Mter the class is generated, define the following message handlers:

Object 10 Message Member Function Name

CExll aDialog

IDCJ;DIT_COPY

IDC_EDIT_CUT

IDC..EDIT_PASTE

WM_INITDIALOG

BN_CLICKED

BN_CLICKED

BN_CLICKED

OnlnitDialog

OnEditCopy

OnEditCut

OnEditPaste

Don't bother to define any dialog class data members with ClassWizard.

6. Add data members to the CEx11aDialog class. In the EXIIADLG.H
file, add the following friend statement and private data members in the
CExllaDialog class declaration:

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

7. Edit the EX11ADLG.CPP file. The CBitmapButton AutoLoad function
initializes a button by loading the bitmap and sizing the button to fit the
bitmap. Call it in the dialog's OnlnitDialogfunction.

BOOl CExllaDialog::OnlnitDialog()

}

The following button message handlers set the text in the dialog's static
control, and they set the value of m_nButton, which is available to the
view class:

void CExllaDialog::OnEditCopy()

void CExllaDialog::OnEditCut()

void CExllaDialog::OnEditPaste()

}

Typically, you use these functions to set dialog data members that would
be returned to the view.

8. Edit theCEx11aView class in EX11AVW.CPP to accommodate
the dialog. With ClassWizard, add a message handler for the WM_L­
BUTTONDOWN message for the view, and then edit the code, as
shown at the top of the following page:

199

PAR T II: THE MFC LIBRARY VIEW CLASS

200

void CExllaView::OnLButtonOown(UINT nFlags. CPoint point)

}

Pressing the left mouse button while the mouse cursor is inside the view
window activates the dialog.

Add the following #include statement to EXIIAVW.CPP:

While you are in EXIIAVW.CPP, edit the OnDraw function to display a
message:

void CExllbView::OnDraw(COC* pOC)

9. Build and test the program. When you press the left mouse button
while the mouse cursor is inside the view window, you should see the
EXIIA dialog shown here:

A message appears when you click on a bitmap button. The bitmap
buttons are smaller than the rectangles you specified in App Studio. (See
the dialog shown in step 4.) They shrank because the application frame­
work maps the bitmap bits to pixels in the dialog.

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

Going Further with Bitmap Buttons
Bitmap buttons can assume "focused" and "disabled" states in addition to the
"up" and "down" states you've already seen. If the button has a bitmap re­
source name that ends in F, that bitmap appears when the button has the
input focus. If the resource name ends in X, that bitmap appears when
the button is disabled (through a call to the CWnd::EnableWindow function,
for example). See the Class Library Reference for additional details on the
CBitmapButton class.

Using a Timer and Yielding Control
You can program a Windows timer to send your program messages at regular
intervals independent of microprocessor speed. You can use timers to con­
trol animation speed, to trigger alarms, to implement pseudo-multitasking,
or, as illustrated by the example beginning on page 203, to provide a visual
status indication during a long compute process.

Timers
Timers are easy to use. You simply call the CWnd function SetTimer with an
interval parameter, and then you provide, with the help of ClassWizard, a
message handler function for the WM_TIMER message. If you set the timer
interval to, say, 200 milliseconds, WM_TIMER messages will be generated at
that interval until you call the CWnd function KillTimer or until the timer's
window is destroyed.

A simple timer-based' animation program is trivial. The view's OnCreate
function starts the timer, and the timer message handler updates position
variables and invalidates a rectangle. The OnDraw function paints the image
according to the position variables. The EXIIB sample program later in this
chapter is a little more interesting because you'll be using the timer to inter­
rupt a long compute process. While you experiment with the timer, you'll
learn more about Windows message processing, and you'll gain some in­
sights for building your own multitasking applications.

201

PAR T II: THE MFC LIBRARY VIEW CLASS

Yielding· Control

202

The 16-bit Windows model is definitely not a preemptive multitasking oper­
ating system. If your program enters a long compute loop, it takes complete
control of the computer unless it is nice enough to yield control. So why
yield control? Maybe the user needs to click a Cancel button to terminate the
process, or maybe the user would like the ability to switch to another applica­
tion. In case you haven't guessed,· the timer won't work unless your program
yields control.

How do you yield control? To understand the answer, you must delve a
little deeper into the Windows message-handling process. You've already
seen the tail end of the process-your message-handling member functions
are called in response to messages such as BN_CLICKED (actually a
WM_COMMAND message). Windows provides access to these messages, di­
rectly from the message queue, at an early stage in their development. If you
put the following code almost anywhere in a Windows program, you can see
the raw messages as they come in.

MSG Message; II Windows message structure
while (1) { II infinite loop

if (::PeekMessage(&Message. NULL. 0. 0. PM_REMOVE» {
TRACE("message = %x. wParam = %x. lParam = %lx\n".

Message.message. Message.wParam. Message.1Param);
::TranslateMessage(&Message);
::DispatchMessage(&Message);

If you look for WM_COMMAND or WM_CHAR messages after the
PeekMessage call, you'll never see any because they don't come into existence
until after the call to TranslateMessage. This translation function converts
WM_KEYDOWN messages to WM_CHAR messages, and, if the user clicks a
dialog button, the resulting WM_LBUTTONDOWN message is converted to
the appropriate WM_COMMAND message. You'll never see a WM_PAINT
message either because these messages bypass the message queue.

The application framework, while in control, gets the raw messages
from the queue and calls TranslateMessage and DispatchMessage. If your pro­
gram takes control, it must do the dispatch work to keep the messages flow­
ing. All you need to do, every once in a while, is make the calls to PeekMessage,
TranslateMessage, and DispatchMessage.

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

The EX11B Program
Suppose your application has a process that takes several minutes. If you let
your program take control of the computer during that interval, even if it
displays an hourglass cursor, the user is likely to get frustrated and reboot the
machine. It's customary to provide a visual "percent complete" indicator to
relieve the user's anxiety. In EXllB, we'll use a scroll bar control as an indi­
cator, and we'll use a timer to update the thumbtrack every 100 milliseconds.
(Of course, a real application would never use a scroll bar for this purpose,
but it serves as a useful example.) We'll tie the compute process to this
EXllB modal dialog:

Here are the steps for building the EXllB application:

1. Run AppWizard to produce \VCPP\EX11 B\EX11 B. Choose AppWizard
from Visual Workbench's Project menu. The options and the default
class names are shown here:

Classes to be created:
Application: CExllbApp in EXllB.H and EXllB.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CExllbDoc in EXllBDOC.H and EXllBDOC.CPP
View: CExllbView in EXllBVW'.H and EXllBVW'.CPP

Features:
+ Supports the Single Document Interface (501)
+ MSVC Compatible project lile (EXll B.MAKJ
+ Initialtoolbar and status bar in main frame
+ Uses medium memory model

203

PAR T II: THE MFC LIBRARY VIEW CLASS

204

2. Add a WM_LBUTTONDOWN message handler to CEx11 bView in
EX11 BVW.CPP. First edit the virtual OnDraw function to display a
message:

void CExllbView::OnOraw(COC* pOC)

}

Then use ClassWizard to add the OnLButtonDown function, and add the
following code:

void CExllbView::OnLButtonOown(UINT nFlags, CPoint point)

}

This code brings up the modal dialog whenever the user presses the left
mouse button while the mouse cursor is in the view window.

While you're in EXIIBVW.CPP, add the following #include statement:

3. Use App Studio to create the dialog IDD_DIALOG1. Use the dialog
shown in step 1 as a model. Keep the default control ID for the Cancel
button, but use IDC_STARTfor the Start button. Change the scroll.bar
ID from IDC_STATIC to IDC_SCROLLBARl. Save the resource script
when you're finished.

4. Use ClassWizard to create the CEx11 bDialog class. Choose Class­
Wizard from the App Studio Resource menu. Fill in the Add Class dialog
as shown here:

Mter the class is generated, add message-handling functions for
IDC_START, IDCANCEL, and WM_TIMER. (Add BN_CLICKED message
handlers for IDC_START and IDCANCEL. Accept the default names
OnStart and On Cancel.)

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

5. Add the following data members in EX11BDLG.H:

:~j-,*~~~~~~,\(C,

. '" 1;ijng'1l11.:1tount:
',stati~:c(!)nst 'lc;mg

The m_lCountdata member of class CExllbDialogis incremented during
the compute process. It serves as a percent complete measurement when
divided by the static variable m_lMaxCount.

6. Add a static variable to EX11 BDLG.CPP. The static data member
lMaxCount was declared in the class header, but it must be defined in the
EXIIBDLG.CPP file.

7. Add initialization code to the CEx11bDialog constructor in
EX11 BDLG.CPP. Add the following line to the constructor to ensure
that the Cancel button works if the compute process was not started:

8. Code the OnStart function in EX11 BDLG.CPP. This code is executed
when the user clicks the Start button.

void CExllbDialog::OnStart()

}

The main for loop is controlled by the value of m_lCount. Each time
through the loop, PeekMessage allows other messages, including WM_­
TIMER, to be processed. The EnableWindow(FALSE) call disables the
Start button during the computation. Ifwe didn't take this precaution,
the On Start function could be reentered.

205

PAR T II: THE MFC LIBRARY VIEW CLASS

9. Code the OnTimer function in EX11BDLG.CPP. When the timer fires,
the scroll bar's scroll box is set according to the value of m_lCount.

void CExllbDialog::OnTimer(UINT nIDEvent)

}

10. Update the OnCancei function in EX11 BDLG.CPP. When the user
clicks the Cancel button during computation, we don't destroy the
dialog, but we set m_lCount to its maximum value, which causes OnStart
to exit the dialog. If the computation hasn't started, it's OK to exit
directly.

void CExllbDialog::OnCancel()

}

11. Build and run the application. Press the left mouse button while the
mouse cursor is inside the view window to bring up the dialog. Try the
Start button, and then try Cancel. The scroll bar's scroll box should
move during the computation.

On-Idle Processing

206

When it doesn't have anything else to do, the application framework calls an
on-idle function that is, by default, a dummy function. If you have a long
computation that can be conveniently broken into chunks or if you must
regularly update an element on the screen, you should consider hooking
into this on-idle function. Remember that anyon-idle function should com­
plete its work and return to Windows as soon as possible; otherwise, the per­
formance of other applications will suffer.

CWinApp::OnIdle is the application framework's standard on-idle func­
tion. You can override this function in your derived application class if you
need to do special processing. OnIdle doesn't get called, however, when the
menu system or a modal dialog is active. If you need to do on-idleprocessing

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

for modal dialogs and menus, you'll have to add a message handler function
for the WM_ENTERIDLE message, but you must add it to the frame class
rather than to the view class. That's because pop-up dialogs are always
"owned" by the application's main frame window, not by the view window.

The EX11C Program
This example uses CNTR, a cute little Visual Basic control that acts like an
automobile odometer. CNTR:vBX is not included with Visual C++, but a
copy of it is on the companion disc. Mter you install the companion disc,
you'll find a copy of the file CNTR:vBX in your\VCPP\EXIIC subdirectory.
Copy this file to your \WINDOWS\SYSTEM subdirectory. The CNTR control
appears twice in the EXIIC example-once in the view window and once in
a dialog. Here is EXII C in action:

When the program starts, the view's counter runs. When the dialog comes
up (in response to a mouse click), the dialog's counter starts and the view's
counter stops.

Here are the steps for building the EXII C application:

1. Run AppWizard to produce \VCPP\EX11 C\EX11 C. Choose AppWizard
from Visual Workbench's Project menu. The options and the default
class names are shown at the top of the following page:

207

PAR T II: THE MFC LIBRARY VIEW CLASS

208

Classes to be created:
Application: CExllcApp in EXllC.H and EXllC.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CExllcDoc in EXllCDOC.H and EXllCDOC.CPP
View: CEKllcView in EXllCVW.H and EXllCVW.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ MSVC Compatible project file (EXll C.MAK)
+ Initial toolbar and status bar in main frame
+ Custom VOX Control support enabled
+ Uses medium memor.!' model

Be sure to select the Custom VBX Controls option.

2. Add a data member and function prototype to CEx11cApp. The
derived application class is declared in the file EX}} C.H. For the view's
CNTR control, we need an object of class CVB Con trol. The application
class is the best place for the control because the application class's
Onldlefunction must be able to access the control. It's easy for the view
object to find the application object when it's time to create the CNTR
control window. Because the control object is embedded, we don't have
to worry about its destruction.

We're going to override the CWinApp::Onldle function; so we'll need a
function prototype in the application's class.

3. Add the CEx11cApp Onldlefunction in EX11C.CPP. The application
framework calls this overridden Onldle function whenever the applica­
tion's modal dialog and menu are not active. Each time it's called, the
function increments the value of the CNTR control, which is a child of
the view window.

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

4. Use ClassWizard to add message handlers in CEx11cView.
In EXll CVW.H, add message handlers for WM_CREATE and
WM_LBUTTONDOWN.

5. Code the CEx11cView OnCreate message-handling function.
In EXIICvw.CPP, find the ClassWizard-generated skeleton and add
code as shown:

int CEx11cView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate(lpCreateStruct) == -1)
return -1;

CVBContro1*pCntr =&((CExllcApp*) AfxGetAppO):->m7'"cntr;
Pcntr->create("CNTR.VB~:G()Unter;"',WS""VISIBLEI WS~CHJL[) ;I'WS~~PRDER,

CRec:t{50, 175,180 ,'208) ,~h'i:s~; 1):;""

pCY:1tr->SetNuniProper~Y('~rrtgj t)Left ", ' 3):
pCntr->SetNumPropertY("Dfgit$~j9ht", 2):
pCntr->SetFl oatP,roperty("Va.1 tie", ''123.'4'5J;'

return 0;

This function actually creates the CNTR control window for the
CVBControl object that's embedded in the application object.

6. Code the CEx11cView OnLButtonDown message-handling
function. First, in EXIICVW.CPP, edit the virtual OnDrawfunction
to display a message:

void CEx11cView::OnOraw(COC* pOC)
{

~ > >< /

p'DC- >TextOut(0.0. "Pr'ess, th$ left mouse,button, ,here,'" :
}

Then find the ClassWizard-generated skeleton and add code as shown:

void CEx11cView::OnLButtonOown(UINT nFlags, CPoint point)
{

dJg .. DoModal () :

This function activates the dialog that will contain the other CNTR
control.

While you're in EXIICVW.CPP, add the following #include statement:

209

PAR T II: THE MFC LIBRARY VIEW CLASS

210

#include "exllcdlg.h"

7. Use App Studio to create a dialog. Use the dialog shown on page 207
as a model. Accept the default ID IDD_DIALOCl. Be sure you first install
the Visual Basic control CNTR:vBX. (Choose Install Controls from the
App Studio File menu to do so.) Position the CNTR control, and then
double-click on it to bring up its Counter Properties dialog. Set its
DigitsRight property to 2. Save the changes when you're finished.

8. Use ClassWizard to create the CEx11cDialog class. Choose
ClassWizard from the App Studio Resource menu.

Fill in the Add Class dialog, as shown here:

You don't need any message handlers, but you must add data mem-:­
bers for the dialog's CNTR control. Click the Edit Variables button, and
then add the following variables for the IDC_COUNTERl control:

Variable Property Type Description

m_fCntrValue

m_pVBCntr

Value

Control

float

CVBControl*

Control's floating-point value

CNTR control pointer

9. Use ClassWizard to add a WM_ENTERIDLE message handler to
CMainFrame in MAINFRM.CPP. The frame class OnEnterIdle function
is called when any menu or modal dialog is active. In this example, it
updates the dialog's CNTR control. Both the CExl lcDialog dialog and
the system menu can trigger a call to OnEnterIdle. Because there are two
dialogs in this program (IDD_ABOUTBOX and IDD_DIALOC1) , the pro­
gram must be sure that this OnEnterIdle call is associated with the dialog
that contains the counter. Only the IDD_DIALOCl dialog has a control
with ID IDC_COUNTER1.

E LEV EN: Bitmap Buttons, the Timer, and On-Idle Processing

void CMainFrame::OnEnterldle(UINT nWhy, CWnd* pWho)
{

. ,GVBCont r'pl *pVBc. =CCVBControl *)pWho;"iGe~Orglt'emflD:e2cQlJNTER1);
if <pVBcl= NULP£ , , ...•. ,..... •....•....' " .

fJ oa~val=pVBc+>G:et~loa,tPr~opertyt;!:va 1.u~~~:)J
v~].+:=:~'(·fl~a.~)~001;· ;<":':" ..'
pVBc~>SetFl:oatPto'~'~ttY{~'Ya 1, \Je·'~.' val);

'}o. ;,' .' ' ... >, ,0. ;" '" .,:;~.;:.;:.:.

While you're in MAINFRM. CPP, add the following #include statemen t:

IHricl~ud~e'; 'N~~J:tdd ~.g, ~#f:;l:'·~· \;
10. Build and test the application. As pictured in the screen on page 207,

the lower view CNTR should come up and run when the program starts.
When you click inside the view window, the dialog'S CNTR dialog should
appear and the counter should run. Dismiss the dialog, and then close
the main window.

FYI: Try starting a second instance of the application.
This is really interesting. The dialog's counter blocks the
view's counter in its own instance, but Windows permits
counters to run simultaneously in the other instances.

211

PART III

THE
DOCUMENT-VI EW
ARCHITECTURE

C HAP T E R TWELVE

MENUS AND KEYBOARD
ACCELERATORS

In all the examples to this point, mouse clicks have triggered most program
activity. Even though menu selections might have been more appropriate,
we've used mouse clicks because mouse click messages are handled simply
and directly within the Microsoft Foundation Class (MFC) Library version
2.5 view window. If you want program activity to be triggered when the user
chooses a command from a menu, you must first become familiar with the
other application framework elements.

This chapter concentrates on menus and the "command routing archi­
tecture." Along the way, it introduces frames and documents, explaining the
relationships between these new application framework elements and the
already-familiar view element. You'll use App Studio to layout a menu visu­
ally, and you'll use ClassWizard to link document and view member func­
tions to menu items. You'll learn how to use special update command user
interface member functions to check and disable menu items, and you'll see
how to use keyboard accelerators as menu shortcut keys.

At the end of the chapter is an example that shows you how to create
dynamic menus whose content is determined at run time. Here you'll bypass
App Studio and instead use the low-level menu elements together with the
extended command message handlers. In case you're tired of the circles
used in earlier examples, this chapter introduces the CEditView class, which
has the functionality of a simple text editor.

The Main Frame Window and Document Classes
Up to now, you've been using a view window as if it were the application's
only window. In an SDI application, the view window sits inside another win­
dow-the application's main frame window. It's the main frame window that

215

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

has the title bar and the menu bar. Various child windows, including the view
window, the toolbar window, and the status bar window, occupy the main
frame window's client area. (See Figure 12-1.) The application framework
controls the interaction between the frame and the view by routing messages
from the frame to the view.

Child
windows

Figure 12-1.

Title bar

Menu bar

View window

The child windows within an SDI main frame window.

SDI main
frame window

Look again at the files generated by App Wizard. The MAINFRM.H and
MAINFRM.CPP files contain the code for the application's main frame win­
dow class, derived from the class CFrameWnd. Other files, with names such as
EX12ADOC.CPP and EX12ADOC.H, contain code for the application's
document class, which is derived from CDocument. Starting with this chapter,
you'll be modifying those frame and document files a lot.

Windows Menus

216

A Windows menu is the familiar application element that consists of a top­
level horizontal list of items with associated pop-up menus that appear when
the user selects a top-level item. Most of the time, you define a default menu
resource for a frame window that loads when the window is created. You can
also define a menu resource independently of a frame window. In that case,
your program must call the functions necessary to load and activate the
menu.

A menu resource completely defines the initial appearance of a menu.
Menu items can be grayed or have check marks, and bars can separate
groups of menu items. Multiple levels of pop-up menus are possible. If a first-

T W E L V E: Menus and Keyboard Accelerators

level menu item is associated with a subsidiary popup, the menu item carries
a right-pointing arrowhead symbol, as shown in Figure 12-2, next to the Load
Workspace menu item.

App Studio includes an easy-to-use menu resource editing tool. With
this tool, you edit menus in a wysiwyg environment. Each menu item has a
properties dialog that defines all the characteristics of that item. The result­
ing resource definition is stored in the application's resource script (RC)
file. Each menu item is associated with an ID, such as ID_FILE_OPEN, that is
defined in the RESOURCE.H file.

Figure 12-2.

1 C:\VCPp\EX12A\EX12A.MAK
Z C:\VCPp\EX12B\EX12B.MAK
~ C:\VCPp\EXll C\EXll C.MAK
~ C:\VCPp\EXll B\EXll B.MAK

Multilevel pop-up menus (from Microsoft Visual C++).

Version 2.5 of the Microsoft Foundation Class Library extends the func­
tionality of the standard menus for Windows. Each menu item can have a
prompt string that appears in the frame's status bar when the item is high­
lighted. These prompts are really Windows string resource elements linked
to the menu item by a common ID. From the point of view of App Studio,
they appear to be part of the menu item definition.

Keyboard Accelerators
You have probably noticed that one letter is underlined in most menu items.
In Visual Workbench (and most other applications), pressing Alt-F followed
by S activates the File Save menu item. This is the standard Windows method
of using the keyboard to choose from menus. If you looked at the
application's menu resource script (or the App Studio properties dialog),

217

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

you would see ampersands (&) in front of the characters that are underlined
in the application's menu items.

Windows offers an alternative way of linking keystrokes to a menu item.
The keyboard accelerator resource consists of a table of key combinations
with associated command IDs. The Edit Copy menu item, for example (with
command ID ID_EDIT_COPY), might be linked to the Ctrl-C key combina­
tion through a keyboard accelerator entry. A keyboard accelerator entry
does not have to be associated with a menu item. If there were no Edit Copy
menu item, the Ctrl-C key combination would nevertheless activate the
ID_EDIT_COPY command.

NOT E : If a keyboard accelerator is associated with a menu item,
the accelerator key is disabled when the menu item is disabled.

Command Processing

218

As Chapter 2 pointed out, the application framework provides a sophisti­
cated routing system for command messages. These messages originate from
menu selections, keyboard accelerators, and toolbar and dialog button clicks.
Also, command messages can be sent by calls to the CWnd::SendMessagefunc­
tion. Each message is identified by.a #define constant that is often assigned by
App Studio. The application framework has its own set of internal command
message IDs, such as ID_FILE_PRINT and ID_FILE_OPEN. Your project's
RESOURCE.H file contains IDs that are unique to your application.

Most command messages originate in the application's frame window,
and, without· the application framework in the picture, that's where you
would put the message handlers. With command routing, however, you can
handle the message almost anywhere. When the application framework sees
a frame window command message, it starts looking for message handlers in
one of the sequences listed below:

SOl Application

View
Document

SDI main frame

Application

MOl Application

View
Document

MDI child frame

MDI main frame

Application

Most applications have a particular command handler in only one
class, but suppose your one-view application has an identical handler in both

T W E L V E: Menus and Keyboard Accelerators

the view and the document classes. Because the view is higher in the com­
mand route, only the view's command handler function will be called.

What does it take to install a command handler function? The require­
ments are similar to those of the window message handlers you've already
seen. You need the function itself, a corresponding message map entry, and
the function prototype. Suppose you have a menu item called Zoom (with
IDM_ZOOM as the associated ID) that you want your view class to handle.
First you add the following code to your view implementation file:

BEGIN_MESSAGE_MAP(CMyView. CView)
ON_COMMAND(IDM_ZOOM. OnZoom)

END_MESSAGE_MAP()

void CMyView::OnZoom()
{

II command message processing code
}

Now add the following function prototype to the CMyView class header file:

afx_msg void OnZoom();

Of course, ClassWizard automates the process of inserting command mes­
sage handlers the same way that it facilitates the insertion of window message
handlers. You'll learn how in the next example.

Command Message Handling in Derived Classes
The command routing system is one dimension of command message han­
dling. The class hierarchy is a second dimension. If you look at the source
code for the MFC library classes, you'll see lots of ON_COMMAND message
map entries. When you derive a class from one of these base classes-CView,
for example-the derived class inherits all the CView message map functions,
including the command message functions. To override one of the base class
message map functions, you must add both a function and a message map
en try to your derived class.

Update Command User Interface (UI) Messages
You often need to change the appearance of a menu item to match the inter­
nal state of your application. If you have a Clear All item in your application's
Edit menu, for example, you might want to disable that item if there's nothing
to clear. You've undoubtedly seen such grayed menu items in Windows-based
applications. You've probably seen check marks next to menu items too.

219

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

With SDK programming for Windows, it's difficult to keep menu items
synchronized with the application's state. Every piece of code that changes
the internal state must contain statements to update the menu. The MFC li­
brary takes a different approach by sending a special update command UI
message whenever a pop-up menu is first displayed. That message is gen­
erally routed to the same object that was the target of the menu item: The
message handler function's argument is a CCmdUI object, which contains a
pointer to the corresponding menu item. The handler function can then use
this pointer to modify the menu item's appearance. Update command UI
messages apply only to items in pop-up menus, not to top-level menu items
that are permanently displayed. You couldn't use an update command UI
message to disable the File menu item, for example.

The update command UI coding requirements are similar to those for
commands. You need the function itself, a special message map entry, and, of
course, the prototype. The associated ID, IDM_ZOOM in this case, is the
same constant used for the command. Here is an example of the necessary
additions to the view class code file:

BEGIN_MESSAGE_MAP(CMyView. CView)
ON_UPDATE_COMMAND_UI(IDM_ZOOM. OnUpdateZoom)

END_MESSAGE_MAP()

void CMyView::OnUpdateZoom(CCmdUI* pCmdUI)
{

pCmdUI->SetCheck(m_bZoomed); II m_bZoomed is a class data member

Here is the function prototype that you must add to the class header:

afx_msg void OnUpdateZoom(CCmdUI* pCmdUI);

Needless to say, ClassWizard automates the process of inserting update
command UI messages.

Commands That Originate in Dialogs

220

Suppose you have a pop-up dialog with buttons, and you want a particular
button to send a command message. Command IDs must be in the range
Ox8000-0xDFFF, the same ID range that App Studio uses for your menu
items. If you assign a dialog button an ID in this range, the button will gener­
ate a routable command. The application framework first routes this com­
mand to the main frame window because the frame window owns all pop-up
dialogs. Then the command routing proceeds normally; if your view has a
handler for the button's command, that's where it will be handled. It's not so

T W E L V E: Menus and Keyboard Accelerators

easy to use update command VI handlers for dialog buttons. See the code in
the example program \MSVC\MFC\SRC\BARCORE.CPP for some hints.

To ensure that the ID is in the range Ox8000-0xDFFF, you must use the
App Studio symbol editor to enter the ID prior to assigning it to a button.

The Application Framework's Built-In Menu Items
You don't have to start each frame menu from scratch because the MFC li­
brary defines some useful menu items for you, along with all the command
handler functions, as shown in Figure 12-3.

1 RECENT2.12A
Z RECENT1.12A

Figure 12-3.
The standard SDI frame menus. (Font is not a built-in menu.)

The menu items and command message handlers you get depend on
the options you choose in AppWizard. If you don't select printing, for ex-

221

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

ample, you don't get the Print and Print Preview menu items. Because print­
ing is optional, the message map entries are not defined in the CView class
but are generated in your derived view class. That's why entries such as

ON_COMMANDCID_FILE_PRINT, CView::OnFilePrint)
ON_COMMANDCID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

are defined in your CMy View class instead of in the CView class.

Enabling/Disabling of Menu Items
The application framework can disable a menu item if it does not find a com­
mand message handler in the current command route. This feature saves
you the trouble of having to write ON_UPDATE_COMMAND_UI message han­
dlers. You can disable the feature if you set the CFrameWnd data member
m_bAutoMenuEnable to FALSE (the default).

Suppose you have two views for one document, but only the first view
class has a message handler for the IDM_ZOOM command. The frame
menu's Zoom item will be enabled only when the first view is active. For an­
other example, consider the application framework-supplied Edit Cut,
Copy, and Paste menu items. These will be disabled if you have not provided
message handlers in your derived view or document classes.

The CEditView Class

222

This chapter focuses on command messages, but the CEditView class plays a
prominent role. This class, itself derived from CView, serves as the base class
for an application's custom view class. An object of a class derived from
CEditView is like a CView object because it can process command messages.
It's also like a CEdit object because it permits text editing and formatting. A
CEditView object is really an ordinary view object with the functionality of an
edit control window. The class member functions make the two related win­
dows act as one object-an ideal tool when you need text input.

As is an edit control, the CEditView object's text is contained deep within
the CEdit part of the object. To access that text (and otherwise interact with
the window), you must use specific CEditView functions together with func­
tions inherited from CWnd and (indirectly) from CEdit. The CEditView class
does not employ C++ multiple inheritance but rather provides the GetEditCtrl
member function for access to the CEdit member functions.

Don't try to build a full-featured word processor with CEditView. The
class has many limitations that are imposed by the underlying Windows edit
control. You cannot mix fonts within the window, for example, and you are

T W E L V E: Menus and Keyboard Accelerators

limited to a text buffer size of about 64 KB. CEditView does implement the
clipboard Cut, Copy, and Paste commands, however. These are connected to
the standard application framework Edit menu items.

NOT E: If you need to intercept control notification messages
from the CEditView internal edit control, manually set up message
map entries such as the following:

ON_EN_CHANGE(AFX_IDW_PANE_FIRST, OnEditChange)

The constant AFX_ID~PANE_FIRST identifies the view's edit
control.

The EX12A Example
This example illustrates the routing of menu and keyboard accelerator com­
mands to both documents and views. The application's view class is derived
from CEditView. View-directed menu commands, originating from a Font
menu, alter the view's font, and a document-directed Clear All menu item
erases the document's contents. The Font menu contains items for System
and Fixed fonts with the capability of displaying a check mark next.to the
selected font. The Clear All item, located on the Edit menu, is grayed when
the document is empty. Figure 12-4 shows the EX12A program in use.

This is sam pie tf"'lIthniiT'lr:<:'"T"i'iTT'I"Ti1Tf1

displayed in the SYSTEM font.

Figure 12-4.
The EX12A program in use.

Ifwe exploited the document-view architecture fully, we would keep the
edit view's text inside the document, but that's a little too advanced for this
chapter. Instead, we'll define a "phony" document CString data member
called m_text that won't be reflected in the view. The initial value of m_text is

223

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

224

"Hello," and choosing 'Clear All from the Edit menu sets it to empty. At least
you'll start to get the idea about the separation of the document and the view.

The EX12A example exercises the App Studio wysiwyg menu editor
and keyboard accelerator editor together with the ClassWizard. You'll need
to do very little C++ coding. Simply follow these steps:

1. Run AppWizard to generate \VCPP\EX12A\EX12A. Choose App­
Wizard from Visual Workbench's Project menu. In the Classes dialog, set
the view's base class to CEditView, as shown below:

CFormView
CS crollView
CView

The options and the default class names are shown here:

Classes to be created:
Application: CEx12aApp in EXl2A.H and EXl2A.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx12aDoc in EXl2ADOC.H and EXl2ADOC.CPP
EditView: CEx12aView in EXl2AVW'.H and EXl2AVW'.CPP

Features:
+ Supports the Single Document Interface (501)
+ MSVC Compatible project file (EXl2A.MAKJ
+ Initialtoolbar and status bar in main frame
+ Printing and Print Preview support in view
+ Uses medium memor.l' model

T W E L V E: Menus and Keyboard Accelerators

2. Use App Studio to edit the application's main menu. Choose App
Studio from Visual Workbench's Tools menu. Edit the IDR_MAINFRAME
menu resource to add a Clear All item to the Edit menu so that it looks
like this:

Clear All
CuI Ctrl+X
.I;.opy Ctrl+C
Easte Ctrl+V

NOTE: The App Studio menu resource editor is intui­
tive, but you might need some help the first time you in­
sert an item in the middle of a menu. Each menu has a
blank item at the bottom. Use the mouse to drag the
blank item to the insertion position to define a new item.
A new blank item will appear at the bottom when you've
finished.

Now add a Font menu, and then define the underlying System and
Fixed items as shown here:

225

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

226

Use the following command IDs for your new menu items:

Menu Item Command 10

Edit

Font

Font

Clear All

&System\tF2

&Fixed\tF3

ID_EDIT_CLEARALL

ID_FONT_SYSTEM

ID_FONT_FlXED

The MFC library has defined the first choice, ID_EDIT_CLEARALL.
(Note: \t is a tab character-but type \t, don't press the Tab key.)

When you add the menu items, type appropriate prompt strings in the
Menu Item Properties dialog. These prompts will appear in the status
window when the menu item is highlighted.

3. Use App Studio to add keyboard accelerators. Open the IDR_MAIN­
FRAME accelerator table, and then add the following items:

Accelerator 10 Key

ID_FONT_SYSTEM

ID_FONT_FlXED

Be sure to turn off the Ctrl, Alt, and Shift modifiers. The App Studio
Accelerator Properties dialog is shown below:

Save the resource file on disk when you are finished.

4. Use ClassWizard to add the view class command and update com­
mand UI message handlers. Select the CEx12aView class, and then add
the following member functions:

T W E L V E: Menus and Keyboard Accelerators

Object 10 Message Member Function Name

ID_FONT_FlXED

ID_FONT_FlXED

ID_FONT_SYSTEM

ID_FONT_SYSTEM

COMMAND

UPDATE_COMMAND_UI

COMMAND

UPDATE_COMMAND_UI

OnFontFixed

OnUpdateFontFixed

OnFontSystem

OnUpdateFontSystem

5. Use ClassWizard to add the document class command and update
command UI message handlers. Select the CEx12aDoc class, and then
add the following member functions:

Object 10 Message Member Function Name

ID_EDIT_CLEARALL

ID_EDIT_CLEARALL

COMMAND OnEditClearall

UPDATE_COMMAND_UI OnUpdateEditClearall

6. Add a data member in file EX12ADOC.H. Add the following code in
the CEx12aDoc class definition.

7. Add a data member and a function prototype in file EX12AVW.H.
Add the following code in the CEx12aView class definition:

Add the following function prototype:

,""",1 "M" 0 I'I"n f' ,," ; F'~~d~~~~t~~ ij:J;l~~w(i0~t~f: EiSJ~&:rif:&: cis),,:;";

8. Edit the document class member functions in EX12ADOC.CPP.
Remember that we're faking the document view interaction in this
example. The constructor sets the initial value of m_text for only one
reason-so that the Edit Clear All menu item is initially enabled.

CEx12aDoc: : CEx12aDoc() ,:,,,,JtI~~$X~'C':~~J;l~"T
{

}

The Edit Clear All message handler sets m_text to empty. You get only
one chance to clear the document-once it's cleared, it stays cleared,
and the menu item becomes gray (disabled).

A pop-up message box indicates that the function was called.

227

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

228

void CEx12aDoc::OnEditClearall()
{

If m_text is empty, the Edit Clear All menu item is disabled.

void CEx12aDoc::OnUpdateEditClearAll(CCmdUI* pCmdUI)

}

9. Edit the view class member functions in EX12AVW.CPP. The con­
structor initializes the font data member so that the font menu check
marks match the initial font.

CEx12aView::CEx12aView()

}

The following two functions are called in direct response to the ID_­
FONT_SYSTEM and ID_FONT_FIXED menu command messages. They
set the m_nFont data member to support the update command VI
functions.

void CEx12aView::OnFontSystem()

}

void CEx12aView::OnFontFixed()

}

The following two functions are called when the user chooses an item
from the Font menu. The System and Fixed items are checkmarked
according to the contents of the m_nFont data member.

T W E L V E: Menus and Keyboard Accelerators

void CEx12aView::OnUpdateFontSystem(CCmdUI* pCmdUI)
{

ptmduf~ >SetC'heck (m~nFont
}

void CEx12aView::OnUpdateFontFixed(CCmdUI* pCmdUI)
{

:penidUI+)Se,tJ::becldm';';nRdnt:=#:··\SY·$TSMlPiI~{EO.:.;~(}f:41S.;:'

If we didn't override the CWnd virtual PreCreateWindow function, the
edit view would have a horizontal scroll bar and would not support
wordwrap. This CEx12aView function, called by the application frame­
work, sets the style parameter appropriately.

1 o. B~ild and test the EX12A application. When the application starts,
the Clear All item on the Edit menu should be enabled, and the System
menu item on the Font menu should be checkmarked. Type some text,
and then change the font. Try pressing the F2 and F3 keys. Next, choose
Clear All from the Edit menu. The text won't be cleared, but you should
get the pop-up message box, and the Clear All item should be disabled.
Note that the CEditView class supports printing and Print Preview as well
as clipboard operations.

The CMenu Class
Up to this point, the application framework and App Studio have shielded
you from the menu class, CMenu. A CMenu object can represent each Win­
dows menu, including the top-level menu items and associated popups. Most
of the time, the menu's resource is directly attached to a frame window when
the window's Create function is called, and a CMenu object is never explicitly
constructed. The CWnd member function GetMenu returns a temporary
CMenu pointer. Once you have this pointer, you can freely access and update
the menu object.

Suppose you want to switch menus sometime after the application
starts. IDR_MAINFRAME always identifies the initial menu in the resource
script. If you want a second menu, you use App Studio to create a menu re-

229

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

source with your own ID. Then, in your program, you construct a CMenu ob­
ject, use the CMenu::LoadMenu function to load the menu from the resource,
and call the CWnd::SetMenu function to attach the new menu to the frame
window.

You can use a resource to define a menu, and then your program can
modify the menu items at run time. If necessary, however, you can build the
whole menu at run time, without benefit of a resource. In either case, you
can use CMenu member functions such as ModifyMenu, InsertMenu, and
DeleteMenu. Each of these functions operates on an individual menu item
identified by ID or by a relative position index.

A menu object is actually composed of a nested structure of submenus.
You can use the GetSubMenu member function to get a CMenu pointer to a
pop-up menu contained in the main CMenu object. Inserting a new pop-up
menu is more difficult because you must use a Windows menu handle
(HMENU) instead of a CMenu pointer. The CMenu::GetMenuStringfunction
returns the menu item string based ona zero-based index or a command ID.
If you use the command ID option, the menu is searched, together with any
submenus.

It's possible to use graphics inside menus, and there is a special "free­
floating" type of pop-up menu. See the Class Library Reference for details on
these seldom-used menu features.

Extended Command Processing

230

In addition to the ON_COMMAND message map macro you've seen already,
the MFC library provides an extended variation, ON_COMMAND_EX. The
extended command message map macro provides two features that are not
supplied by the regular command message-a command ID function param­
eter, and the ability to reject a command at run time, sending it to the next
object in the command route. If the extended command handler returns
TRUE, the command goes no further; if it returns FALSE, the application
framework looks for another command handler.

The command ID parameter is useful, as you'll see in EX12B, when you
want one function to handle several related command messages. The rejec­
tion feature is used in the Help system (introduced in Chapter 20). If a view
can't handle a Help request, for example, the request can be passed to the
document or the application. You might invent some of your own uses for
this feature.

T W E L V E: Menus and Keyboard Accelerators

ClassWizard can't help you with extended command handlers, so you'll
have to do the coding yourself, outside the AFX_MSG_MAP brackets. As­
sume IDM_ZOOM_l and IDM_ZOOM_2 are related command IDs defined
in RESOURCE.H. Here's the class code you'll need to process both messages
with one function, On Zoom:

BEGIN_MESSAGE_MAP(CMyView. CView)
ON_COMMAND_EX(IDM_ZOOM_I. OnZoom)
ON_COMMAND_EX(IDM_ZOOM_2. OnZoom)

END_MESSAGE_MAP()

BOOl CMyView::OnZoom(UINT nID)
{

if (nID == IDM_ZOOM_I) {
II code specific to first zoom command

else {
II code specific to second zoom command

}

II code common to both commands
return TRUE; /1 command goes no further

Here's the function prototype:

afx_msg BOOl OnZoom(UINT nID);

The EX12B Example
This example uses the CEditView class, but with a twist. A new top-level menu
item lets the user change the size of the edit window's font. We could hard­
code the size choices in the menu resource, but instead we dynamically cre­
ate the Size popup with eight font sizes, and then we use extended command
macros to route the eight distinct command messages to one member func­
tion. Figure 12-5 on the following page shows the EX12B program in use.

NOT E: If you're serious about font and size selection, you'll
probably use the COMMDLG class CFontDialog. EX12B illustrates
the use of menu commands, which is not an ideal font-selection
technique. .

Because menus are always associated with an application's frame win­
dow, we must build the font popup in the CMainFrame class. We depend on
the application framework's command routing to send the resulting com­
mand messages to the CEx12bView class. We won't attempt to use the ex­
tended command's rejection mechanism, though.

231

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

232

Figure 12-5.
The EX12B program in use.

Follow these steps to build the EX12B example:

1. Run AppWizard to generate \VCPP\EX12B\EX12B. Choose App­
Wizard from Visual Workbench's Project menu. Theoptions and the
default class names are shown here:

Classes to be created:
Application: CEx12bApp in EX12B.H and EX12B.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx12bDoc in EX12BDOC.H and EX12BDOC.CPP
EditView: CEx12bView in EX12BVW.H and EX12BVW.CPP

Features:
+ Supports the Single Document Interface (SDI)
+ MSVC Compatible project file (EX12B.MAKJ
+ Initialtoolbar and status bar in main frame
+ Uses medium memory model

Note that the view's base class is CEditView.

T W E L V E: Menus and Keyboard Accelerators

2. Use App Studio to edit the application's main menu. Choose App
Studio from Visual Workbench's Tools menu. Edit the IDR_MAIN­
FRAME menu resource to create a menu that looks like this:

You need the dummy Base menu item in the Size menu to force Size
to be a pop-up menu rather than an ordinary top-level menu item. This
menu item will be replaced at run time. Use IDM_SIZE_BASEfor the
dummy menu item ID.

NOT E: This application requires eight sequential com­
mand IDs, starting with IDM_SIZE_BASE. If· you add
menu items, they might overlap the range of size
commands. Be sure that App Studio doesn't assign com­
mand IDs inside the range IDM_SIZE_BASE through
IDM_SIZE_BASE + 7.

3. Add code to the On Crea te function in MAINFRM.CPP. When the
application's frame window is created, the CMainFrame::OnCreate func­
tion alters the associated menu, specified in the IDR_MAINFRAME
resource. The function first locates the Size pop-up submenu, and then
it deletes the Base menu item that was defined in the resource. Finally
it adds eight font size entries and creates the initial font. Because the
CEditView class uses the MM_TEXTmapping mode, the font sizes are
arbitrary and are not related to points.

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

(continued)

233

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

234

if (CFrameWnd::OnCreate(lpCreateStruct) -1)
return ~1;

if (!m_wndToolBar.Create(this) ::
!m_wndToolBar.LoadBitmap(IDILMAINFRAME) ::
!m_wndToolBar.SetButtons(buttons.

sizeof(buttons)/sizeof(UINT»)

TRACE("Failed to create toolbar\n");
return -1; II fail to create

if (!m_wndStatusBar.Create(this) ::
!m_wndStatusBar.Setlndicators(indicators.

sizeof(indicators)/sizeof(UINT»)

TRACE("Failed to create status bar\n");
return -1; II fail to create

return 0;

4. Use ClassWizard to add a CEx12bViewclass message handler. Add
a message handler for WM_CREATE.

5. Edit the EX12BVW.H header. You must add the CEx12bViewfunction
prototype for OnCommandSize because ClassWizard doesn't do it for you.

You also need a font data member in class CEx12bView.

T W E L V E: Menus and Keyboard Accelerators

6. Add the extended command message map entries in EX12BVW.CPP.
Add the following entries after the BEGIN_MESSAGE_MAPstatement
but outside the AFX_MSG_MAPbrackets:

7. Edit the OnCreate member function in EX12BVW.CPP. The OnCreate
function creates the edit view's initial TrueType font:

int CEx12bView::OnCreate(LPCREATESTRUCT lpCreateStruct)

return 0;

8. Add the OnCommandSize member function to EX12BVW.CPP. This
single function is called for all size command messages. The nID param­
eter corresponds to the command ID and thus ranges between IDM_­
SIZE_BASE and IDM_SIZE_BASE + 7. Simple arithmetic converts nID to
a reasonable font size, and then a Windows font object is created. This
font must be available when the view's OnDraw function paints the text,
so the C++ font object can't be defined on the stack. The class data mem­
ber m_pFont holds a pointer to the heap-based CFont object.

The temporary CFont object font exists only for housekeeping pur­
poses. As pointed out in Chapter 5, font GDI objects must be deleted
eventually, and they can't be deleted as long as they're selected. If the
SYSTEMYONT stock object is selected, the prior font is released.

235

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

236

9. Edit other view constructor and destructor in EX12BVW.CPP. The
CEx12bView constructor allocates memory for the font object.

CEx12bView::CEx12bView()

}

Because the CEditView class deselects the font, you don't have to. You
do have to destroy the font object, however. The destructor takes care of
deleting the attached GDI font.

CEx12bView::-CEx12bView()
{

}

10. Build and test the EX12B application. Test the compiled application
by typing in the window and then selecting a font size from the menu.
Does the text change size? Are there any unpleasant "undeleted font"
messages in the De bug window?

C HAP T E R THIRTEEN

TOOLBARS AND STATUS BARS

All the Visual C++ examples up to this point have included toolbars and sta­
tus bars. App Wizard generated the code that initialized these application
framework elements as long as you accepted the AppWizard default option
Initial Toolbar. The default toolbar provides graphics equivalents for many
of the standard application framework menu selections, and the default sta­
tus bar displays menu prompts together with the keyboard state indicators
CAP, NUM, and SCRL.

This chapter shows you how to customize the toolbar and status bar for
your application. You'll be able to add your own toolbar graphical buttons
and control their appearance. You'll also learn how to disable the status bar's
normal display of menu prompts and keyboard indicators. This allows your
application to take over the status bar for its own use.

Control Bars and the Application Framework
The toolbar is an object of class CToolBar, and the status bar is an object of
class CStatusBar. Both these classes are derived from class CControlBar, which
is itself derived from CWnd. The CControlBar class supports control bar win­
dows that are positioned inside frame windows. These control bar windows
resize and reposition themselves as the parent frame moves and changes
size. The application framework takes care of the construction, window cre­
ation, and destruction of the control bar objects. AppWizard generates con­
trol bar code for its derived frame class located in the files MAINFRM.CPP
and MAINFRM.H.

In a typical SDI application, a CToolBarobject occupies the top portion
of the CMainFrame client area, and a CStatusBar object occupies the bottom
portion. The view occupies the remaining (middle) part of the frame.

237

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

Assuming that AppWizard has generated the control bar code for your
application, the user can enable and disable the toolbar and the status bar
individually by choosing commands in the application's View menu. When a
control bar is disabled, it disappears, and the view size is recalculated. Apart
from the common behavior just described, toolbar and status bar objects op­
erate independently of each other and have rather different characteristics.

The Toolbar
A toolbar object is a window consisting of a number of horizontally arranged
graphical buttons that might be clustered in groups. The programming in­
terface determines the grouping. The graphical images for the buttons are
stored in a single bitmap that is attached to the application's resource file.
When the buttons are clicked, they send command messages, as do menus
and keyboard accelerators. Update command UI message handlers are used
to update the buttons' states, which, in turn, are used by the application
framework to modify the buttons' graphical images.

The Toolbar Bitmap

238

Each button in a toolbar appears to have its own bitmap, but actually there is
a single bi~map for the entire toolbar. The toolbar bitmap has a tile, 15 pixels
high and 16 pixels wide, for each button. The application framework sup­
plies the button borders, and it modifies those borders, together with the
button's bitmap tile color, to reflect the current button state. Figure 13-1
shows the relationship between the toolbar bitmap and a typical toolbar.
(The last image in each toolbar is for a context-sensitive Help button, which
has not been discussed yet.)

The toolbar bitmap is stored in the file TOOLBAR.BMP in the
application's RES subdirectory. It's identified in the RC file as IDR_MAIN­
FRAME. You can use App Studio to edit the toolbar bitmap.

Figure 13-1.
A toolbar bitmap and an actual toolbar.

T H I R TEE N: Toolbars and Status Bars

Button States
Each button can assume the following states:

State

TBBS_CHECKED

TBBS_DISABLED

TBBS_INDETERMINATE

TBBS_CHECKED : TBBS_DISABLED

Meaning

Normal, unpressed state (up)

Currently selected (pressed) with
·the mouse

In the checked (down) state

Unavailable for use

Enabled, but neither up nor down

In the checked state, but unavailable
for use

A button can behave in either of two ways. It can be a pushbutton,
which is down only when currently selected by the mouse, or it can be a
check box button, which can be toggled up and down with mouse clicks. All
buttons in the standard application framework toolbar are pushbuttons.

The Toolbar and Command Messages
When the user clicks a toolbar button with the mouse, a command message
is generated. This message is routed like the menu command messages you
saw in Chapter 12. Most of the time, a toolbar button matches a menu
choice. In the standard application framework toolbar, for example, the Disk
button is equivalent to the File Save menu choice because both generate the
ID_FILE_SAVE message. The object receiving the command message
doesn't need to know whether the message was produced by a click in the
toolbar or by a choice from the menu.

A toolbar button doesn't have to mirror a menu item. If you don't pro­
vide the equivalent menu item, however, you are advised to define a key­
board accelerator for the button so that the user can activate the command
with the keyboard or with a Windows keyboard macro product. If your appli­
cation has toolbar buttons without corresponding menu items, ClassWizard
can't define command and update command UI message handlers. You'll
have to add the functions, message map entries, and prototypes yourself.

The static buttons array, defined in the application's main frame class,
associates commands with buttons. On the following page is the code, found
in MAINFRM. CPP, that App Wizard normally generates:

239

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

static UINT BASED_CODE buttons[] =
{

} ;

II same order as in the bitmap 'toolbar.bmp'
ID_FILE_NEW.
ID_FI LE_OPEN,
ID_FILE_SAVE,

ID_SEPARATOR,

ID_EDIT_CUT,
ID_EDIT_COPY,
I D_EDIT _PASTE,

ID_SEPARATOR.
ID_FILE_PRINT.
ID_APP _ABOUT.
ID_CONTEXT_HELP.

The ID_SEPARATOR constants serve to group the buttons by inserting
corresponding spaces in the toolbar. If the number of toolbar bitmap panes
exceeds the number of buttons array elements (excluding separators), the
extra buttons are not displayed.

Toolbar Update Command UI Messages

240

You remember from Chapter 12 that update command VI message handlers
were used to disable or check menu items. These same message handlers
apply to toolbar buttons. If your update command VI message handler calls
the CCmdUI::Enable member function with a FALSE parameter, the corre­
sponding button is set to the disabled (grayed) state and no longer responds
to mouse clicks.

With menu items, the CCmdUI::SetCheck member function displays a
check mark next to the menu item. For the toolbar, the SetCheck function
implements check box buttons.)fthe update command VI message handler
calls Set Check with a parameter value of 1, the button is toggled to the down
(checked) state; if the parameter is 0, the button is toggled up (uncheck~d).

NOT E: If the SetCheck parameter value is 2, the button is set to
the "indeterminate" state. This state looks like the disabled state,
but the button is still active and its color is a bit brighter. Microsoft
Word for Windows uses the up, down, and indeterminate states
for its boldface toolbar button. If the user has selected some text
that contains only boldface characters, the boldface button is
down. If no selected characters are boldface, the button is up; but
if the selected characters are mixed, the button is indeterminate.

T H I R TEE N: Toolbars and Status Bars

The update command UI message handlers for menu items are called
only when the items' drop-down menu is painted. The toolbar is displayed
all the time, so when are its update command UI message handlers called?
They're called during the application's idle processing, so the buttons can
be updated continuously. If the same handler covers a menu item and a
toolbar button, it is called both during idle processing and when the drop­
down menu is displayed.

NOT E: Even though a toolbar button is disabled, keyboard ac­
celerators can still send the associated command messages. Your
command handlers, therefore, must be able to ignore these accel­
erator keys and, other spurious commands. In other words, you
can't count on the command UI message handler totally disabling
the command.

Locating the Main Frame Window
The toolbar and status bar objects you'll be working with are attached to the
application's main frame window, not to the view window. How does your
view find its main frame window? In an SDI application, you can use the
CWnd::GetParentFrame function. Unfortunately, this function won't work in
an MDI application because the view's parent frame is the MDI child frame,
not the MDI frame window.

If you want your view class to work in both SDI and MDI applications,
you must find the main frame window through the application object. The
AfxGetApp global function returns a pointer to the application object, and
you can use that pointer to get the CWinApp data member m_pMain Wnd. In
an MDI application, AppWizard generates code that sets m_pMainWnd, but
in an SDI application, the framework sets m_pMain Wnd during the view cre­
ation process. Once m_pMain Wnd is set, you can use it in a view class to get
the frame's toolbar with a statement such as this:

CToolBar* pToolBar = (CToolBar*)
AfxGetApp()->m_pMainWnd->GetDescendantWindow(AFX_IDW_TOOLBAR);

You can use the same logic to locate menu objects, status bar objects, and dia­
log objects.

NOTE: In an SDI application, the value of m_pMainWndis not
set when the view's On Create message handler is called. If you need
to access the main frame window in your OnCreate function, you
must use the GetParentFrame function.

241

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

The EX13A Toolbar Example

242

In this example, you will replace the standard application framework Edit
Cut, Copy, and Paste toolbar buttons with three special-purpose buttons that
control drawing in the view window. You will also construct a Draw menu
with three corresponding menu items as follows:

Menu Item

Circle

Square

Pattern

Function

Draws a circle in the view window

Draws a square in the view window

Toggles a diagonal line fill pattern for new squares and circles

The menu and toolbar choices force the user to alternate between
drawing circles and squares. Mter the user draws a circle, the Circle menu
item and toolbar button are disabled; after the user draws a square, the
Square menu item and toolbar button are disabled.

In the application's Draw menu, the Pattern menu item gets a check
mark when pattern fill is active. In the toolbar, the corresponding button is
a check box button that is down when pattern fill is active and up when it is
not active.

Figure 13-2 shows the application in action. The user has drawn a circle
with pattern fill. Note the states of the three drawing buttons.

Figure 13-2.
The EX13A program in action.

The EX13A example introduces the App Studio bitmap editor. You'll
need to do very little C++ coding. Simply follow these steps:

T H I R TEE N: Toolbars and Status Bars

1. Run AppWizard to generate \VCPP\EX13A\EX13A. Choose App­
Wizard from Visual Workbench's Project menu. The options and the
default class names are shown here:

Classes to be created:
Application: CEx13aApp in EXl3A.H and EXl3A.CPP
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP
Document: CEx13aDoc in EXl3ADOC.H and EXl3ADOC.CPP
View: CEx13aView in EXl3AVW.H and EXl3AVW.CPP

Features:
+ Supports the Single Document Interface (501)
+ MSVC Compatible project file (EXl3A.MAK)
+ Initialtoolbar and status bar in main frame
+ Uses medium memory model

2. Use App Studio to edit the application's main menu. Choose App
Studio from Visual Workbench's Tools menu. Edit the IDR_MAINFRAME
menu resource to make a menu that looks like this (which means you'll
need to remove the Edit menu):

Use the following command IDs for your new menu items:

Menu

Draw

Draw

Draw

Menu Item

Circle

Square

Pattern

Command 10

ID_DRAW_CIRCLE

ID_DRA ~SQUARE

ID_DRAW_PATTERN

243

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

244

When you're in the Menu Item Properties dialog, add some appropriate
prompt strings.

3. Use App Studio to edit the application's toolbar. Edit the IDR_­
MAINFRAME bitmap resource to create a bitmap that looks like this:

You'll'be erasing the Edit Cut, Copy, and Paste tiles (fourth, fifth, and
sixth from the left) and replacing them with new patterns. Here's a
close-up of the three new tiles:

The trick here is to turn on App Studio's tile grid. Choose Grid Set­
tings from the Image menu, and then check the Tile Grid check box
and accept the I6-pixel width and I5-pixel height default values. The
resulting grid lines separate the individual button images. Remember
that you're working with a general-purpose bitmap editor with the tile
grid added as a special feature for tool bar buttons.

T HI R TEE N: Toolbars and Status Bars

Use the rectangle and ellipse tools from the bitmap editor's palette.
Experiment with different line widths. You can change the magnification
by selecting the magnifying glass icon in the Graphics Palette. (To open
the Graphics Palette, press F2 or choose Show Graphics Palette from the
Window menu.) Save the resource file when you're done.

4. Edit the MAINFRM.CPP file. Replace the original buttons array with the
following:

static UINT BASED_CODE buttons[] =
{

II same order as in the bitmap 'toolbar.bmp'
IO_FILE_NEW.
IO_FILE_OPEN.
IO_FILE_SAVE.

IO_SEPARATOR.
ULDRAW_SQUARt.

;~D_DRAW;;..CI,I{Cl.E., "
, ',' :',< :lD;;..SEP'ARATOii:.

c::ip:.:.Dr{AW"':PATtERN. '

} ;

IO_SEPARATOR.
IO_FILE_PRINT.
IO_APP_ABOUT.

5. Use ClassWizard to add CEx13aViewview class message han­
dlers. Add message handlers for the following command and update
command UI messages, and accept the default function names:

Member
Object 10 Message Function Name

ID_DRAW_CIRCLE COMMAND OnDrawCircle

ID_DRAW_CIRCLE UPDATE_COMMAND_UI On UpdateDrawCircle

ID_DRA W_PATTERN COMMAND OnDrawPattern

ID_DRAW_PATTERN UPDATE_COMMAND_UI On UpdateDrawPattern

ID_DRAW_SQUARE COMMAND OnDrawSquare

ID_DRAW_SQUARE UPDATE_COMMAND_UI On UpdateDrawSquare

6. Edit the EX13AVW.H file. Add the following data members to the
CEx13a View class header.

~: t ;,;",

;:
,i :; ? ;: iii,

;!
R,

I

'"
i :.6

245

PAR Till: THE DOCUMENT-VIEW ARCHITECTURE

246

7. Edit the EX13AVW.CPP file. The CEx13aView constructor simply
initializes the class data members.

CEx13aView::CEx13aView()
{

The OnDraw function draws an ellipse or a rectangle, depending on
the value of the m_bCircle flag. The brush is plain white or a diagonal
pattern, depending on the value of m_bPattern.

void CEx13aView::OnOraw(COC* pOC)

The OnDrawCircle function handles the ON_DRAW _CIRCLE com­
mand message, and the OnDrawSquare function handles the ON_DRAW_­
SQUARE command message. These two functions move the drawing
rectangle down and to the right, and then they invalidate the rectangle,
causing the OnDraw function to redraw it. The effect of this invalidation
strategy is a diagonal cascading of alternating squares and circles.

void CEx13aView::OnOrawCircle()
{

void CEx13aView::OnOrawSquare()
{

T H I R TEE N: Toolbars and Status Bars

~~~c~iFcle '= FALs~';";'",;:{; "~', 
. :nl....rect, .~= 'c;p oint t 2 s'.'.as.:Y ;,~::,'~~ 
';"ih,,~j'd~t'eRect(m_r~ct'){":')'))' 

The following two update command VI functions alternately enable 
and disable the Circle and Square buttons and corresponding menu 
items. Only one item can be enabled at a time. 

void CEx13aView::OnUpdateDrawCircle(CCmdUI* pCmdUI) 
{ 

~;~T,\~,;;~~~~ ij t Z,~£.A~~:te.l;tm~6:~i:p2~1~);};',~:;: '. 
} 

void CEx13aView::OnUpdateDrawSquare(CCmdUI* pCmdUI) 
{ 

} 

The OnDrawPattern function toggles the state of the m_bPattern flag. 
It also accesses the toolbar object to dump a list of the button charac­
teristics. 

void CEx13aView::OnDrawPattern() 

The OnUpdateDrawPattern function updates the Pattern button and 
menu item according to the state of the m_bPattern flag. The toolbar 
button appears to move in and out, and the menu item check mark 
appears and disappears. 

247 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

void CEx13aView::OnUpdateDrawPattern(CCmdUI* pCmdUI) 

8. Build and test the EX13A application. Notice the behavior of the 
tool bar buttons. Try the corresponding menu items, and notice that 
they too are enabled, disabled, and checked as the application's state 
changes. 

The Status Bar 
The status bar window neither accepts user input nor generates command 
messages. Its job is simply to display text in panes under program control. 
The status bar supports two types of text panes-a message line pane and a 
status indicator pane. To use the status bar for application-specific data, you 
must first disable the standard status bar that displays the menu prompt and 
keyboard status. 

The Status Bar Definition 
The static indicators array that AppWizard generates in the MAINFRM.CPP 
file defines the application's status bar. The constantID~SEPARATOR identi­
fies a message line pane; the other constants are string resource IDs that 
identify indicator panes. Here is the indicators array for the standard frame­
work status bar: 

static UINT BASED_CODE indicators[] = 
{ 

} : 

ID_SEPARATOR, 
ID_INDICATOR-CAPS, 
ID_INDICATOR_NUM, 
ID_INDICATOR-SCRL, 

II status line indicator 

The CStatusBar::Setlndicators member function, called in the applica­
tion's derived frame class, configures the status bar according to the con­
ten ts of the indicators array. 

The Message Line 

248 

A message line pane displays a string that the program supplies dynamically. 
To set the value of the message line, you must first get access to the status bar 
object, and then you must call the CStatusBar::SetPaneText member function 



T HI R TEE N: Toolbars and Status Bars 

with a zero-based index parameter. Pane 0 is the leftmost pane, 1 is the next 
pane to the right, and so forth. 

The following code fragment is part of a view class member function. 
Because the view window is not always a sibling of the status bar window, it's 
necessary to access the parent frame window through the application object. 
The CWnd::GetDescendantWindow function retrieves a pointer to the status 
bar that is identified by the constant ID_MY_STATUS_BAR. 

CStatusBar* pStatus = (CStatusBar*) 
AfxGetApp()-)m_pMainWnd-)GetDescendantWindow(ID_MY_STATUS_BAR); 

pStatus-)SetPaneText(0. "message line for first pane"); 

Normally, the length of a message line pane is exactly one-fourth the 
width of the display. If, however, the message line is the first (index 0) pane, 
it is a stretchy pane without a beveled border. Its minimum length is one­
fourth the display width, and it expands if room is available in the status bar. 

The Status Indicator 
A status indicator pane is linked to a single resource-supplied string that is 
displayed or hidden by logic in an associated update command VI message 
handler function. Indicators are identified by a string resource ID, and that 
same ID is used to route update command VI messages. The Caps Lock indi­
cator is handled in the frame class by the following message map entry and 
handler function. The Enable function turns on the indicator if the Caps 
Lock mode is set. 

void CMainFrame::OnUpdateKeyCapsLock(CCmdUI* pCmdUI) 
{ 

pCmdUI-)Enable(::GetKeyState(VK-CAPITAL) & 1); 
} 

The status bar update command VI functions are called during idle 
processing so that the status bar is updated continuously. 

The length of a status indicator pane is the exact length of the corre­
sponding resource string. 

Taking Control of the Status Bar 
In the standard application framework implementation, the status bar has 
the child window ID AFX_IDW_STATUS_BAR. The application framework 
looks for this ID when it wants to display a menu prompt. The update com­
mand VI handlers for the keyboard state indicators, embedded in the frame 

249 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

window base class, are linked to three string IDs: ID_INDICATOR_CAPS, 
ID_INDICATOR_NUM, and ID_INDICATOR_SCRL. To take control of the 
status bar, you must use a different child window ID, and you must use differ­
ent indicator ID constants. 

The status bar window ID is assigned in the CStatusBar::Create function 
called by the derived frame class OnCreate member function. That function is 
contained in the MAINFRM.CPP file that AppWizard generates. The window 
ID is the third Create parameter, and it defaults to AFX_IDW_STATUS_BAR. 

To assign your own ID, you must replace this call: 

m_wndStatusBar.Create(this); 

with this call: 

m_wndStatusBar.Create(this, WS_CHILD : WS_VISIBLE : CBRS_BOTTOM, 
ID_MY_STATUS_BAR); 

You must also, of course, define the ID_MY_STATUS_BAR constant in the 
RESOVRCE.H file (using App Studio). 

We forgot one thing. The standard application framework's View menu 
allows the user to turn the status bar on and off. That logic is pegged to the 
AFX_IDW_STATUS_BAR window ID, so you'll have to change the menu logic 
too. In your derived frame class, you must write message map entries and 
handlers for the ID_ VIEW_STATUS_BAR command and update command 
VI messages. ID_ VIEW_STATUS_BAR is the ID of the Status Bar menu item. 
The derived class handlers override the standard handlers in the CFrameWnd 
base class. See the EX13B example for code details. 

The EX13B Status Bar Example 

250 

The EX13B example replaces the standard application framework status bar 
with a new status bar with the following text panes: 

Pane 
Index String ID Type Description 

0 ID_SEPARATOR (0) Message line x cursor coordinate 

1 ID_SEPARATOR (0) Message line y cursor coordinate 

2 ID_INDICATOR_SHIFT Status indicator Keyboard Shift key status 

3 ID_INDICATOR_CTRL Status indicator Keyboard Ctrl key status 

4 ID_INDICATOR_ALT Status indicator Keyboard Alt key status 



T H I R TEE N: Toolbars and Status Bars 

The resulting status bar is shown in Figure 13-3. 

Figure 13-3. 
The status bar of the EX13B example. 

The leftmost pane stretches past its normal 1/4-screen length as the dis­
played frame window expands to fill more than %-screen width. 

Follow these steps to produce the EX13B example: 

1. Run AppWizard to generate \VCPP\EX13B\EX13B. Choose App­
Wizard from Visual Workbench's Project menu. The options and the 
default class names are shown here: 

Classes to be created: 
Application: CEx13bApp in EX138.H and EX138.cPP 
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP 
Document: CEx13bDoc in EX138DOC.H and EX138DOC.CPP 
View: CEx13bView in EX138VW.H and EX138VW.CPP 

Features: 
+ Supports the Single Document Interface (501) 
+ MSVC Compatible project file (EX138.MAKJ 
+ Initial toolbar and status bar in main frame 
+ Uses medium memory model 

251 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

252 

2. Use App Studio to edit the application's string table resource. 
Select any string table segment, and then add the following three strings: 

String 10 String Caption 

ID_INDICATOR_SHIFT 

ID_INDICATOR_CTRL 

ID_INDICATOR_ALT 

SHIFT 

CTRL 

ALT 

This process adds the three IDs to the symbol table stored in the 
project's RESOURCE.H file. 

3. Use App Studio to edit the application's symbols. Click the symbol 
toolbar button or choose Symbols from the Edit menu. Add the new 
status bar identifier, ID_MY_STATUS_BA~ and accept the default value. 

4. Use ClassWizard to add View menu command handlers in class 
CMainFrame. Add the following command message handlers: 

Object 10 Message Member Function Name 

ID_VIEW_STATUS_BAR COMMAND On ViewStatusBar 

ID_VIE~STATUS_BAR UPDATE_COMMAND_UI OnUpdateViewStatusBar 

5. Add the following function prototypes to MAINFRM.H. You must add 
these CMainFrame message handler prototypes manually because Class­
Wizard doesn't recognize the associated command message IDs. 

Add the message handler statements inside the AFX_MSG brackets so 
that ClassWizard will let you access and edit the code later. 

6. Edit the MAINFRM.CPP file. Replace the original indicators array with 
the following: 

static UINT BASED_CODE indicators[] = 

} ; 

Next, edit the OnCreate member function as shown here: 



T H I R TEE N: Toolbars and Status Bars 

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct) 
{ 

if (CFrameWnd::OnCreate(lpCreateStruct) == -1) 
return -I; 

if (!m_wndToolBar.Create(this) :: 
!m_wndToolBar.LoadBitmap(IDR_MAINFRAME) :: 
!m_wndToolBar.SetButtons(buttons. 

sizeof(buttons)/sizeof(UINT») 

TRACE("Failed to create toolbar\n"); 
return -I; II fail to create 

} 

TRACE("Failed to create status bar\n"); 
return -I; II fail to create 

} 

return 0; 

The modified call to Create uses our own status bar ID, ID_MY_­
STATUS_BAR, instead of AFX_IDW_STATUS_BAR (the application 
framework's status bar object). 

Now add the following message map entries for class CMainFrame. 
ClassWizard can't add these for you because it doesn't recognize the 
string table IDs and the constant ID_ VIEW_STATUS_BAR as object IDs. 

Next, add the following CMainFrame member functions that update 
the three status indicators: 

(continued) 

253 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

254 

Finally, edit the following View menu functions that ClassWizard 
originally generated in MAINFRM.CPP: 

void CMainFrame::OnViewStatusBar() 
{ 

void CMainFrame::OnUpdateViewStatusBar(CCmdUI* pCmdUI) 
{ 

} 

These functions ensure that the View menu Status Bar command is 
properly linked to the new status bar. 

7. Use ClassWizard to add a CEx13b View class message handler for 
WM_MOUSEMOVE. The mouse move message handler updates the 
status bar with the current mouse cursor position. 

S. Edit the OnDraw function in EX13BVW.CPP. The OnDraw function 
displays a message in the view window. 

void CEx13bView::OnDraw(COC* pOC) 
{ 



T H I R TEE N: Toolbars and Status Bars 

9. Edit the OnMouseMove function in EX13BVW.CPP. This function 
gets a pointer to the status bar object and then calls the SetPaneText 
function to update the first and second message line panes. 

void CEx13bView::OnMouseMove(UINT nFlags, CPoint point) 
{ 

10. Build and test the EX13B application. Move the mouse, and observe 
that the left two status bar panes accurately reflect the mouse cursor's 
position. AIso, press Shift and Ctrl. Do the status bar indicators operate 
correctly? Does AIt toggle the ALT status indicator? Remember that, in 
Windows, AIt doesn't work like Ctrl and Shift. You don't have to hold AIt 
down to AIt-Shift another key. Can you toggle the status bar on and off 
from the View menu? 

NOTE: If you want the first (Oth) status bar pane to 
have a beveled border like the other panes, include the 
following line in the CMainFrame::OnCreate function, after 
the call to the status bar Create function: 

m_wndStatusBar.SetPanelnfo(0, 0, SBPS_STRETCH, 0); 

255 





C HAP T E R F 0 U R TEE N 

A REUSABLE BASE CLASS 

A promise of C++ is its ability to produce "software Lego blocks" that can be 
taken "off the shelf' and fitted easily into an application. The Microsoft 
Foundation Class (MFC) Library version 2.5 classes are a good example of 
reusable software. This chapter shows you how to build your own reusable 
base class that builds on what the MFC library already provides. 

In the process of building the reusable class, you'll learn a few more 
things about Windows and the MFC library. In particular, you'll see how the 
application framework allows access to the Windows "initialization" (INI) 
file, you'll learn more about the mechanics of the CFrameWnd class, and 
you'll get more exposure to static class variables and the CString class. 

Why Reusable Base Classes Are Difficult to Write 
In a normal application, you write software components that solve particular 
problems. It's usually a simple matter of meeting the project specification. 
With reusable base classes, however, you must anticipate future program­
ming needs, both your own and those of others. You have to write a class 
that's general and complete yet efficient and easy to use. 

This chapter's example showed me the difficulty in building reusable 
software. I started out with the intention of writing a frame class that would 
"remember" its window size and position. When I got into the job, I discov­
ered that existing Windows-based programs such as Notepad remember 
whether they have been iconized or whether they have been maximized to 
full screen. Then there was the oddball case of a window that was both 
iconized and maximized. Mter that, I had to worry about the toolbar and the 
status bar, plus the class had to work in a dynamic link library (DLL). In 
short, it was surprisingly difficult to write a frame class that would do every­
thing that a programmer might expect. 

257 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

In a production programming environment, reusable base classes 
might fall out of the normal software development cycle. A class written for 
one project might be extracted and further generalized for another project. 
There's always the temptation, though, to cut and paste existing classes with­
out asking, ''What can I factor out into a base class?" If you're in the software 
business for the long term, it's really beneficial to start building your library 
of truly reusable components. 

The CPersistentFrame Class 
In this chapter, you'll be making a class called CPersistentFrame that is derived 
from the CFrameWnd class. This CPersistentFrame class supports a persistent 
SDI (Single Document Interface) frame window that remembers the follow­
ing characteristics: 

• Window size 

• Window position 

• Maximized status 

• Iconized status 

• Toolbar enablement 

• Status bar enablement 

When you terminate an application that's built with the CPersistentFrame 
class, the above information is saved on disk in the application's private INI 
file. When the application starts again, it reads the INI file and restores the 
frame to its state at the previous exit. 

You can use the persistent view class in any SDI application, including 
the examples in this book. All you have to do is substitute CPersistentFramefor 
CFrameWnd in your application's derived frame class files. 

The CFrameWnd Class and the 
ActivateFrame Member Function 

258 

Why choose CFrameWnd as the base class for a persistent window? Why not 
have a persistent view instead? In an MFC library SDI application, the main 
frame window is always the parent of the view window. This frame window is 
created first, and then the control bars and the view are created as child win­
dows. The application framework ensures that the child windows shrink and 



F 0 U R TEE N: A Reusable Base Class 

expand appropriately as the user changes the size of the frame window. It 
wouldn't make sense to change the view size after the frame was created. 

The key to controlling the frame's size is the CFrameWnd::ActivateFrame 
member function. The application framework calls this virtual function dur­
ing the SDI main frame creation process (and in response to the File New 
and File Open menu items). Itsjob is to call the CWnd::ShowWindow function 
with the parameter nCmdShow. ShowWindow makes the frame window visible, 
along with its menu, view window, and control bars. The nCmdShow param­
eter determines whether the window is maximized or iconized or both. 

If you override ActivateFrame in your derived frame class, you can 
change the value of nCmdShow before passing it to the CFrameWnd::Activate­
Frame function. Also, you can call the CWnd::SetWindowPlacement function 
that sets the size and position of the frame window, and you can set the vis­
ible status of the control bars. Because all changes are made before the 
frame window becomes visible, there is no annoying flash on the screen. 

You must be careful not to reset the frame window's position and size 
after every File New or File Open command. A first-time flag data member 
ensures that your CPersistentFrame: :ActivateFrame function operates only when 
the application starts. 

The Windows INI File 
If you've used Windows-based applications before, you've probably seen INI 
files. The WIN .INI and SYSTEM.lNI files, located in the WINDOWS direc­
tory, hold important profile information. Older Windows-based applications 
stored their private profile data in WIN.lNI, but current applications store 
their own INI files in the WINDOWS directory. An application generally 
reads its INI file on startup and writes it back on exit. 

The MFC library application framework uses an INI file to store a list of 
most recently used files. The INI file is usually named after the application. 
The Windows Clock program's INI file is calledCLOCK.lNI, for example. In 
an MFC library program, the INI file is managed by member functions in the 
CWinApp application class. These functions are available for your use. Before 
you study the functions, however, you should know something about the 
structure of the INI file. 

A Windows INI file is divided into sections, each identified by a heading 
name in square brackets. Each section consists of a series of entry names with 
associated string or numeric values. Both heading names and entry names 
are case-independent. At the top of the following page is a listing of a hypo­
thetical INI file: 

259 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

260 

[Text formatting] 
Font=Helvetica Narrow 
Points=12 
Tabs=5 
[Numeric formatting] 
MaxDigits=16.2 
Radix=10 

Heading names are "Text formatting" and "Numeric formatting," and entry 
names are "Font," "Points," "Tabs," "MaxDigits," and "Radix." 

By default, the application framework reads and writes the INI file for 
you. The MFC library provides four CWinApp member functions for access­
ing INI file entries: 

• GetProfileInt 

• WriteProfileInt 

• GetProfileString 

• WriteProfileString 

These functions treat INI file entries as either CString objects or unsigned 
integers. If you need floating-point values as entries, you must use the string 
functions and do the conversion yourself. All the functions take a heading 
name and an entry name as parameters. Now the INI file is starting to look 
like a mini hierarchical database. 

To use the INI file entry access functions, you need a pointer to the ap­
plication object. The global function AfxGetApp does the job. With the previ­
ous sample INI file, you can change the Font and Points entries with the 
following code: 

AfxGetApp()-)WriteProfileString("Text formatting". "Font". 
"Times Roman"); 

AfxGetApp()-)WriteProfilelnt("Text formatting". "Points". 10); 



F 0 U R TEE N: A Reusable Base Class 

Using the CString Class 
The MFC library CString class is a significant de facto extension to the C++ 
language. As the Class Library Reference points out, the CStringclass has many 
useful operators and member functions, but perhaps its most important fea­
ture is its dynamic memory allocation. You never have to worry about the size 
of a CStringobject. The following statements represent typical uses of CString 
objects: 

CString firstName("Elvis"); 
. CString lastName("Presley"); 

CString truth = firstName + " " + lastName; II concatenation 
truth += " is alive"; 
ASSERT(truth == "Elvis Presley is alive"); 
ASSERT(truth.Left(5) == firstName); 
ASSERT(truth[2] == 'v'); II subscript operator 

In a perfect world, C++ programs would always use 'all CString objects 
and never use ordinary zero-terminated character arrays. Unfortunately, 
many runtime library functions still use character arrays, so programs must 
always mix and match their string representations. Fortunately, the CString 
class provides a const char* () operator that converts a CStringobject to a char­
acter pointer. Many of the MFC library functions have const char* param­
eters. Take the global AfxMessageBox function, for example. Here is one of its 
prototypes: 

int AFXAPI AfxMessageBox(LPCSTR lpszText, UINT nType = MB_OK, 
UINT nIDHelp = 0); 

(Note: LPCSTR is not a pointer to a CString object but rather is a replace­
ment for const char FAR*.) 

You can call AfxMessageBox this way: 

char szMessageText[] = "Unknown error"; 
AfxMessageBox(szMessageText); 

Or you can call it this way: 

CString messageText("Unknown error"); 
AfxMessageBox(messageText); 

Now, suppose you want to use the wsprintffunction to generate a for­
matted string. You can easily use a character array such as this: 

int nError = 23; 
char szMessageText[50]; 
wsprintf(szMessageText, "Error number %d", nError); 
AfxMessageBox(szMessageText); 

261 



PART III: THE DOCUMENT-VIEW ARCHITECTURE 

262 

It would be inappropriate to use a CString object here because it would 
be awkward to convert the output from wsprintf to a CString object. What if 
you really want a CString? How do you use wsprintf to format to a CString ob­
ject? You can't use a CString object as the first parameter because the com­
piler expects a char*, not the const char* that the CString class provides. 

To use a CString object as a function output parameter, you must use the 
CString GetBuffer and ReleaseBuffer functions. The GetBuffer function locks 
down a CString object and fixes its size. The ReleaseBuffer function makes the 
CString object dynamic again. Here is some code that allows wsprintf to send 
its output to a CString object. 

CString fontFamily("Helvetica"); 
CString fontModifier("Narrow"); 
CString font; 
wsprintf(font.GetBuffer(20), "%5 %5", (LPCSTR) fontFamily, 

(LPCSTR) fontModifier); 
font.ReleaseBuffer(); 
ASSERT(font.MakeUpper() == "HELVETICA NARROW"); 

The GetBuffer parameter value of 20 was chosen because the font string 
is not expected to exceed 20 characters (not counting the null terminator). 
The ReleaseBuffer call is not absolutely necessary here because we're not call­
ing any CString member functions that would change the length of the font 
object. 



F 0 U R TEE N: A Reusable Base Class 

The const char* operator takes care of converting a CString to a constant 
character pointer (except for special functions such as sprintf) , but what 
about conversion in the other direction? It so happens that the CString class 
has a constructor that converts a constant character pointer to a CString ob­
ject, and it has a set of overloaded operators for these pointers. That's why 
statements such as this work: 

truth += " is alive"; 

The special constructor works with functions that take a CString refer­
ence parameter, such as CDC::TextOut. In the following statement, a CString 
object is created on the calling program's stack and then its address is passed 
to Text Ou t. 

pDC-)TextOut(0, 0, "Hello world"); 

The Position of a Maximized Window 
As a Windows user, you know that you can maximize a window from the sys­
tem menu or by clicking a button at the top right corner of the window. You 
can return a maximized window to its original size in a similar fashion. It's 
obvious that a maximized window remembers its original size and position. 

The CWnd function GetWindowRect retrieves the screen coordinates of a 
window. If a window is maximized, GetWindowRect returns the coordinates of 
the screen rather than the window's unmaximized coordinates. If a persis­
tent frame class is to work for maximized windows, it has to know the 
window's unmaximized coordinates. The CWnd::GetWindowPlacement func­
tion retrieves the window's unmaximized coordinates together with some 
flags that indicate whether the window is currently iconized or maximized 
or both. 

Static Data Members 
If your application uses constants that are associated with a particular class, it 
makes sense to declare these constants as static data members. This strategy 
avoids name conflicts, and it makes your programs more modular. Appendix 
A shows you how to declare and define static data members, but it avoids the 
issue of memory models. The static data members in the MFC library are all 
declared NEAR. In the small and medium models, this designation has no 
effect, but in the large and compact models, the statics are placed in the 
DGROUP segment for efficiency and to facilitate multi-instance applications. 

263 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

You should follow this convention in your own classes unless you know that 
you have a full DGROUP. 

NOT E : Chapter 26 will discuss the implications of using static 
data members in a DLL. For now, avoid using initialized CString 
static data members in any class that you might place in an exten­
sion DLL. 

The Default Window Rectangle 
You're used to defining rectangles with device or logical coordinates. A CRect 
object constructed with the statement 

CRect rect(CW_USEDEFAULT, CW_USEDEFAULT, 0, 0); 

has a special meaning. When Windows creates a new window with this special 
rectangle, it positions the window in a cascade pattern with the top left cor­
ner below and to the right of the window most recently created. The right 
and bottom edges of the window are always within the display's boundaries. 

The CFrameWnd static rectDefault data member contains the special rect­
angle in the previous example. The CPersistentFrame class declares its own 
rectDefault default window rectangle with a fixed size and position as a static 
data member, thus hiding the base class member. 

The EX14A Example 

264 

The EXl4A program illustrates the use of a persistent frame window class, 
CPersistentFrame. Figure 14-1 shows the contents of the files PERSIST.H and 
PERSIST.CPP, which are included in the EXl4A project. In the example, 
you'll insert the new frame class into an AppWizard-generated SDI applica­
tion. EXl4A is a "do-nothing" application, but you can easily insert the per­
sistent frame class into any of your own SDI "do-something" applications. 

PERSIST.H 

Figure 14-1. (continued) 

The CPersistentView class listing. 



F 0 U R TEE N: A Reusable Base Class 

Figure 14-1. continued 

PERSIST.CPP 

(continued) 

265 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Figure 14-1. continued 

(continued) 

266 



F 0 U R TEE N: A Reusable Base Class 

Figure 14-1. continued 

(continued) 

267 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

268 

Figure 14-1. continued 

Here are the steps for building the EXl4A example program: 

1. Run AppWizard to generate \VCPP\EX14A\EX14A. Choose App­
Wizard from Visual Workbench's Project menu. The options and the 
default class names are shown in the screen at the top of the facing page: 



F 0 U R TEE N: A Reusable Base Class 

Classes to be created: 
Application: CEx14aApp in EXl4A.H and EXl4A.CPP 
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP 
Document: CEx14aDoc in EXl4ADOC.H and EXl4ADOC.CPP 
View: CEK14aView in EXl4AVW.H and EXl4AVW.CPP 

Features: 
+ Supports the Single Document Interface (501) 
+ MSVC Compatible project file (EXl4A.MAIC) 
+ Initial toolbar and status bar in main frame 
+ Uses medium memory model 

2. Modify MAINFRM.H. You must change the base class of CMainFrame. To 
do this, simply change the line 

class CMainFrame : public CFrameWnd 

to 

class CMainFrame : public CPersi:ste'n:tF;r:~in:e 

3. Modify MAINFRM.CPP. Globally replace all occurrences of CFrameWnd 
with CPersistentFrame. Also, add the line 

fpi~:t:J'Q'~$~ 'i~~e hs ]'st~h~f: < 

immediately before the line 

#include "m~infrm.h" 

4. Modify EX14A.CPP. Add the line 

iJi:~p1~~ijg ::'H)e:r:si:$ t)h~' 

immediately before the line 

#include "mainfrm.h" 

NOT E : As an alternative to. modifying EXl4A. CPP, you 
can insert 

lfiiJlGj,u:de:}~per;$i.~~,; 

at the top of the MAINFRM.H file. If you do this, you 
won't need to add the #include statements in MAIN­
FRM.CPP and EXl4A.CPP. 

269 



PAR T III: THE DOCUMENT-VIEW ARCHITECTURE 

5. Add the file PERSIST.CPP to the project. Use Visual Workbench's 
Project Edit dialog to add the file PERSIST.CPP. 

S. Use ClassWizard to import the new CPersistentFrame class. 
Choose ClassWizard from Visual Workbench's Browse menu, and then 
add the class CPersistentFrame with the base class CFrameWnd. Fill in the 
Import Class dialog as shown here: 

Be sure that the class header file is PERSIST.H and that the implemen­
tation file is PERSIST. CPP. 

7. Build and test the EX14A application. Size and move the application's 
frame window, and then close the application. When you restart the 
application, does its window open at the same location where it was 
closed? Experiment with maximizing and iconizing, and then change the 
status of the control bars. Does the persistent frame remember its set­
tings? Examine the file EXl4A.lNI in the WINDOWS directory. Does it 
look similar to this? 

[Window size] 
rect=0480 0005 0598 0378 
icon=0 
max=0 
tool=1 
status=l 

Persistent Frames in MOl Applications 

270 

You won't get to MDI applications until Chapter 17, but if you're using this 
book as a reference, you might want to apply the persistent frame technique 
to MDI applications. 

The CPersistentFrame class, as presented in this chapter, won't work in an 
MDI application because the MDI main frame window's ShowWindow func­
tion is called, not by a virtual ActivateFrame function, but by the application 



F 0 U R TEE N: A Reusable Base Class 

class's Initlnstance member function. If you need to control the characteris­
tics of an MDI main frame window, add the necessary code to Initlnstance. 

The ActivateFrame function is called, however, for CMDIChildWnd ob­
jects. This means your MDI application could remember the sizes and posi­
tions of its child windows. You could store the information in the INI file, but 
you would have to accommodate multiple windows. You would have to 
modify the CPersistentFrame class for this purpose. 

271 





C HAP T E R F F TEE N 

SEPARATING THE DOCUMENT 
FROM ITS VIEW 

Now you're finally going to see the interaction between documents and 
views. Chapter 12 gave you a preview of this interaction when it showed the 
routing of command messages to both view objects and document objects. In 
this chapter, you'll see how the document maintains the application's data 
and how the view presents the data to the user. You'll also learn how the 
document and view objects talk to each other while the application executes. 

The two examples in this chapter both use the CForm View class as the 
base class for their views. The first example is as simple as possible, with the 
document holding only one simple object of class CStudent, which represents 
a single student record. The view shows the student's name and grade and 
allows editing. With the CStudent class, you'll get some practice writing classes 
to represent real-world entities. You'll also get to use the Microsoft Founda­
tion Class (MFC) Library version 2.5 diagnostic dump functions. 

The second example goes further by introducing collection classes, the 
CObList class in particular. Now the document holds a collection of student 
records, and the view allows the sequencing, insertion, and deletion of indi­
vidual records. The frame class gets involved too because it contains the 
toolbar that generates command messages for the view. 

Document-View Interaction Functions 
You already know that the document object holds the data and that the view 
object displays the data and allows editing. An SDI application has a docu­
ment class derived from CDocument, and it has one or more view classes, each 
ultimately derived from CView. A complex handshaking process takes place 
among the document, the view, and the rest of the application framework. 
To understand this process, you need to know about four important member 

273 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

functions in the document and view classes. Two are virtual functions that 
you often override in your derived classes; two are nonvirtual base class func­
tions that you call in your derived classes. Let's look at these functions one at 
a time. 

The CView::GetDocument Function 
A view object has only one associated document object. The GetDocument 
function allows an application to navigate from a view to its document. Sup­
pose a view object gets a message that the user has entered new data into an 
edit control. The view musftell the document object to update its internal 
data accordingly. The GetDocument function provides the document pointer 
that can be used to access document class member functions or public data 
members. 

The CDocument::GetNextView function navigates from the document to 
the view, but because a document can have more than one view, it's necessary 
to call this member function once for each view, inside a loop. The 
GetDocument function is used more frequently than GetNextView. 

When AppWizard generates a derived CView class, it creates a special 
"type-safe" version of the GetDocument function that returns not a CDocument 
pointer but a pointer to your derived class. This function is an inline func­
tion and looks something like this: 

CMyDoc* GetDocument() 
{ 

return (CMyDoc*) m_pDocument; 

When the compiler sees a call to GetDocument in your view class code, it 
uses the derived class version instead of the CDocument version, so you do not 
have to cast the returned pointer to your derived document class. Because 
the CView::GetDocument function is not a virtual function, a statement such as 

pView->GetDocument(); II pView is declared CView* 

calls the base class GetDocument function and thus returns a pointer to a 
CDocument object. 

The CDocument::UpdateAIIViews Function 

274 

If the document data changes for any reason, all views must be notified so 
that they can update their representations of that data. If UpdateAllViews is 
called from a member function of a derived document class, its first param­
eter, pSender, is NULL. If UpdateAllViews is called from a member function of a 
derived view class, set the pSender parameter to the current view like this: 



F 1FT E EN: Separating the Document from Its View 

GetDocument()->UpdateAllViews(this); 

The non-null parameter prevents the application framework from notifying 
the current view. The assumption is that the current view has already up­
dated itself. 

The function has optional "hint" parameters that can be used to give 
the view specific and application-dependent information about which parts 
of the view to update. This is an advanced use of the function. 

How exactly does a view get notified when UpdateAllViews gets called? 
Take a look at the next function, On Update. 

The CView::OnUpdate Function 
This is a virtual function that the application framework calls in response to 
your application's call to the CDocument::UpdateAllViews function. You can, of 
course, call it directly within your derived CView class. Typically, your derived 
view class's OnUpdate function accesses the document, gets the document's 
data, and then updates the view's data members or controls to reflect the 
changes. Alternatively, On Update can invalidate a portion of the view, causing 
the view's OnDrawfunction to use document data to draw in the window. The 
On Update function might look something like this: 

void CMyView::OnUpdateCCView* pSender, LPARAM lHint, CObject* pHint) 
{ 

CMyDocument* pMyDoc = GetDocument(); 
CString lastName = pMyDoc->GetLastName(); 
m_pNameStatic->SetWindowText(lastName); II m_pNameStatic is 

II a CMyView data member 

The hint information is passed through directly from the call to UpdateAll­
Views. The default OnUpdate implementation invalidates the entire window 
rectangle. In your overridden version, you can choose to define a smaller in­
valid rectangle ,as specified by the hint information. 

If the CDocument function UpdateAllViews is called with the pSender 
parameter pointing to a specific view object, OnUpdate is called for all the 
document's views except the specified view. 

The CView::OnlnitiaIUpdate Function 
This virtual CView function is called when the application starts, when the 
user chooses New from the File menu, and when the user chooses Open 
from the File menu. The CView base class version of OnlnitialUpdate does 
nothing but call On Update. If you override OnlnitialUpdate in your derived 
view class, be sure it calls the base class's OnlnitialUpdate function or the de­
rived class's OnUpdate function. 

275 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

You can use your derived class's OnlnitialUpdate function to initialize 
your view object. When the application starts, the application framework 
calls OnlnitialUpdate immediately after OnCreate (if you've mapped OnCreate 
in your view class). OnCreate is called only once, but OnlnitialUpdate can be 
called many times. 

The Simplest Document-View Application 

276 

Suppose that you don't need multiple views of your document but you plan 
to take advantage of the application framework's file support. In this case, 
you can forget about the UpdateAllViews and OnUpdate functions. Simply fol­
low these steps when you develop the application: 

1. In your derived document class header file (generated by AppWiz­
ard) , declare your document's data members. These data members 
are the primary data storage for your application. You can make 
these data members public, or you can declare the derived view 
class a friend of the document class. 

2. In your derived view class, override the OnlnitialUpdatevirtual 
member function. The application framework calls this function 
when the document data has been initialized or read from disk. 
(Chapter 16 discusses disk file I/O.) OnlnitialUpdate should update 
the view to reflect the current document data. 

3. In your derived view class, let your window message and command 
message handlers update the document data members directly, 
using GetDocument to access the document object. 

Here is the sequence of events for this simplified document-view 
environment: 

Application starts 

User edits data 

User exits. 
application 

CMyDocument object constructed 
CMyView object constructed 
View window created 
CMyView::OnCreate called (if mapped) 
CMyView::OnlnitialUpdate called 

View object initialized 
View window invalidated 

CMyView functions update CMyDocument data members 

CMyView object destroyed 
CMyDocument object destroyed 



F 1FT E EN: Separating the Document from Its View 

The CFormView Class 
The CFormView class is a useful view class that has many of the characteristics 
of a modeless dialog window. Like a class derived from CDialog, a derived 
CFormView class is associated with a dialog resource that defines the frame 
characteristics and enumerates the controls. The CFormView class supports 
the same dialog data exchange and validation (DDX and DDV) functions 
that you saw in·the CDialogexamples in Chapter 7. 

WAR N I N G : If you use App Studio to make a dialog for a form 
view, you must specify the following items in the Dialog Properties 
dialog: 

Style = Child 
Border = None 
Visible = unchecked 

A CFormView object receives notification messages directly from its con­
trols, and it receives command messages from the application framework. 
This application framework command-processing ability clearly separates 
CFormViewfrom CDialog, and it makes controlling the view from the frame's 
main menu or toolbar easy. 

The CFormView class is derived from CView (actually, from CScrollView) and 
not from CDialog. You can't, therefore, assume that CDialogmember functions 
are supported. CFormView does not have virtual OnlnitDialog, On OK, and 
OnCancel functions. CFormView does not call UpdateData and the DDX func­
tions. You have to call these functions yourself at the appropriate times, usually 
in response to control notification messages or command messages. 

Even though the CFormView class is not derived from the CDialogclass, it 
is built around the Windows dialog. For this reason, you can use many of the 
CDialog class member functions such as GotoDlgCtrl and NextDlgCtrl. All you 
have to do is cast your CFormView pointer to a CDialogpointer. The following 
statement, extracted from a member function of a class derived from 
CFormView, sets the focus to a specified control. GetDlgltem is a CWnd function 
and is thus inherited by the derived CFormView class. 

«CDialog*) this)->GotoDlgCtrl(GetDlgltem(IDC_NAME»; 

App Wizard, through its Classes dialog, gives you the option of using 
CFormView as the base class for your view. When you select CFormView, 
AppWizard generates an empty dialog with the correct style properties set. 
The next step is to use ClassWizard to add control notification message han­
dlers, command message handlers, and update command VI handlers. (The 
example steps beginning on page 284 show you what to do.) You can also de­
fine data members and validation criteria. 

277 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

NOTE: If you want ClassWizard to add menu command mes­
sage handlers to a CFormView derived class, yo~ must run Class­
Wizard from inside App Studio after selecting the appropriate 
menu. 

The CObjectClass 
If you study the MFC library hierarchy, you'll notice that the CObject class is at 
the top. All other classes, except CString and trivial classes such as CRect and 
CPoint, are derivedfrom the CObject "root" class. When a class is derived from 
CObject, it inherits a number of important characteristics. The many benefits 
of CObject derivation will become clear as you read the chapters that follow. 

In this chapter, you'll see how CObject derivation allows objects to par­
ticipate in the diagnostic dumping scheme and to be elements in the collec­
tion classes. 

Diagnostic Dumping 
The MFC library gives you some useful tools for diagnostic dumping. You 
enable these tools when you use the Debug project build option. When you 
use the Release build option, diagnostic dumping is disabled, and the diag­
nostic code is not linked to your program. 

The TRACE Macro 

278 

You've seen the TRACE macro used throughout the preceding examples in 
this book. TRACE statements are active whenever the constant _DEBUG is 
defined (when you use the Debug project build option and when the 
afxTraceEnabled variable is set to TRUE). TRACE statements work like C lan­
guage printf statements, but they're completely disabled in the release ver­
sion of the program. The output from TRACE statements goes to the AUX 
output device, the debugger's output window, or, more commonly, to the 
Debug Window (DBWIN.EXE). Here's a typical TRACE statement: 

int nCount = 9; 
CString desc("total"); 
TRACE("Count = %d. Description = %s\n". nCount. (const char*) desc); 

NOT E : You must use the (const char*) cast for CString objects in a 
TRACE statement. Be careful to match all TRACE format strings to 
variables because the compiler's type checking is turned off in this 
situation. If the formats are mismatched, the TRACE statement will 
give you incorrect results and thus hinder your debugging efforts. 



F 1FT E EN: Separating the Document from Its-View 

NOT E : The TRACE macro takes a variable number of param­
eters and'is thus easy to use. If you look at the Microsoft Founda­
tion Class (MFC) source code, you won't see TRACE macros but 
rather TRACEO, TRACEl, TRACE2, and TRACE3 macros. These 
macros take 0, 1, 2, and 3 parameters respectively, and they have 
the advantage of storing their strings in a code segment rather 
than in the program's DGROUP segment. If your program is 
pushing the limits of the DGROUP segment in Debug mode, use 
the TRACEn macros instead of TRACE. 

The afxDump Object 
An alternative to the TRACE statement is more compatible with the C++ lan­
guage. The MFC library afxDump object accepts program variables with a 
syntax similar to that of cout, the C++ output stream. You don't need complex 
formatting strings; instead, overloaded operators control the output format. 
(Overloaded operators are explained in Appendix A.) The afxDump output 
goes to the same destination as TRACE output, but the afxDump object is de­
fined only in the Debug version of the MFC library. Here is a typical stream­
oriented diagnostic statement that produces the same output as the TRACE 
statement above: 

int nCount = 9; 
CString desc("total"); 
1fi fdef _DEBUG 

afxDump « "Count = " « nCount « ", Description = " « desc « "\n"; 
tfendif 

Although both afxDump and cout use the same insertion operator «<), 
they don't share any code. The cout object is part of the Visual C++ iostream 
library, and afxDump is part of the MFC library. Don't assume that any of the 
cout formatting capability is available through afxDump. 

Classes that aren't derived from CObject, such as CString, CTime, and 
CRect, contain their own overloaded insertion operators for CDumpContext 
objects. The CDumpContext class, of which afxDump is an instance, includes 
the overloaded insertion operators for the native C++ data types (int, double, 
char*, and so on). The CDumpContext class also contains insertion operators 
for CObject references and pointers, and that's where things get interesting. 

The Dump Context and the CObject Class 
If the CDumpContext insertion operator accepts CObject pointers and refer­
ences, it must also accept pointers and references to derived classes. Con­
sider a trivial class, CEvent, that is derived from CObject: 

279 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

280 

class CEvent public CObject 
{ 

public: 

} ; 

What happens when the following statement executes? 

IIi fdef _DEBUG 
afxDump « event; II event is an object of class CEvent 

Ilend if 

The virtual CObject::Dump function gets called. If you haven't overridden 
Dump for CEvent, you don't get much except for the address of the object. If 
you have overridden Dump, however, you can get the internal state of your 
object. Here's a CEvent::Dump function: 

IIi fdef _DEBUG 
void CEvent::Dump(CDumpContext& dc) canst 
{ 

CObject::Dump(dc); II always call the base class function 
dc « "\ntime = " « m_nTime « "\n"; 

flendif 

The base class (CObject) Dump function prints a line such as this: 

a CObject at $4498 

If you have called the DECLARE_DYNAMIC macro in your CEvent class 
definition and the IMPLEMENT_DYNAMIC macro in your CEvent declara­
tion, you will see the name of the class in your dump, like this: 

a CEvent at $4498 

even if your dump statement looks like this: 

IIi fdef _DEBUG 
afxDump « (COBject*) pEvent; 

Ilendi f 

The two macros work together to include the MFC library runtime class code 
in your derived CObject class. With this code in place, your program can de­
termine an object's class name at runtime (for the dump, for example), and 
it can obtain class hierarchy information. 

NOT E : The macro pairs (DECLARE_SERIAL, IMPLEMENL­
SERIAL) and (DECLARE_DYNCREATE, IMPLEMENT_DYNCRE­
ATE) provide the same runtime class features as those provided by 
the (DECLARE_DYNAMIC, IMPLEMENT_DYNAMIC) pair. 



F 1FT E EN: Separating the Document from Its View 

Automatic Dump of Undeleted Objects 
With the Debug build mode set, the application framework dumps all ob­
jects that are undeleted when your program exits. This dump is a useful diag­
nostic aid, but if you want it to be really useful, you must be sure to delete all 
your objects, even the ones that would normally disappear after the exit. This 
object cleanup is good programming discipline. 

(continued) 

281 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

continued 

The EX15A Example 

282 

The first of this chapter's two examples shows a very simple document-view 
interaction. The CEx15aDoc document class, derived from CDocument, allows 
for a single embedded CStudent object. The CStudent class represents a stu­
dent record that is composed of a CString name and a long integer grade. 
The CEx15aViewview class is derived from CFormView. It is a visual representa­
tion of a student record that has edit controls for the name and grade. The 
default Enter pushbutton updates the document with data from the edit con­
trols. Figure 15-1 shows the EX15A window. 

Figure 15-2 shows the code for the CStudent class. Most of the class's fea­
tures serve EX15A, but a few items carry forward to EX15B and the programs 
discussed in Chapter 16. For now, take note of the two data members, the de­
fault constructor, the operators, and the Dump function declaration. The 
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros ensure that the 
class name is available for the diagnostic dump. 



F 1FT E EN: Separating the Document from Its View 

Student Data Entry Form 

Name 

Grade 

1* 

Figure 15-1. 
The EX15A program in action. 

STUDENT.H 

class C.Student·: publ i c CObJect 
i{ 

IJECLARE .... IJYNAMIC(CStudent) 
hUbl i C:: . ' " 

CStr:i ngm_name; 
~ON.G m_HH'a(:le; 

} 

J 

const 

return*thi s ' 

Figure 15-2. 
CStudent class listing. 

(continued) 

283 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

284 

Figure 15-2. continued 

STUDENT.CPP 

In Figure 15-2, the grade data member is declared to be of type LONG 
instead of type int to enable the same CStudent class to be used for disk input 
and output in the following chapters. 

Follow these steps to build the EX15A example: 

1. Run AppWizard to generate \VCPP\EX15A\EX15A. Choose 
AppWizard from Visual Workbench's Project menu. In the Classes 
dialog, change the view's base class to CFormView, as shown in the 
screen at the top of the following page: 



F 1FT E EN: Separating the Document from Its View 

CScrollView 
CView 

The options and the default class names are shown here: 

Classes 10 be crealed: 
Applicalion: CEx15aApp in EXl5A.H and EXl5A.CPP 
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP 
Documenl: CEx15aDoc in EXl5ADOC.H and EXl5ADOC.CPP 
FormView: CEx15aView in EXl5AVW.H and EXl5AVW.CPP 

Fealures: 
+ Supporls Ihe Single Documenllnlerface (SDI) 
+ MSVC Compalible projecl file (EXl5A.MAK) 
+ Inilial loolbar and slalus bar in main frame 
+ Uses medium memory model 

2. Use App Studio to replace the Edit menu choices. Delete the current 
Edit menu items, and replace them with a Clear All choice, as shown 
here: 

Use the default constant ID_EDIT_CLEARALL, which is assigned by the 
application framework. 

285 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

286 

3. Use App Studio to modify the IDD_EX15JLFORM dialog. Open the 
AppWizard-generated dialog IDD_EX15A_FORM, and add controls as 
shown here: 

Be sure the Style properties are set exactly as shown in the Dialog Prop­
erties dialog (Style = Child, Border = None, Visible is unchecked). 

Use the following IDs for the controls: 

Control 10 

Name edit control 

Grade edit control 

Enter pushbutton 

IDC_NAME 

IDC_GRADE 

IDC_ENTER 

4. Use ClassWizard to add message handlers for CEx15aView. 

NOTE: You must run ClassWizard from App Studio 
(with the menu IDR_MAINFRAME selected) to see the 
menu's Object ID. 

Select the CEx15aView class, and then add handlers for the following 
messages. Accept the default function names. 

Object 10 Message Member Function Name 

IDC_ENTER 

ID_EDIT_CLEARALL 

ID_EDIT_CLEARALL 

BN_CLICKED 

COMMAND 

UPDATE_COMMAND_UI 

OnEnter 

OnEditClearall 

OnUpdateEditClearall 



F 1FT E EN: Separating the Document from Its View 

5. Use ClassWizard to add variables for CEx15aView. Click the Mem­
ber Variables tab in the MFC Class Wizard dialog, and then add the 
following variables: 

Control Member Variable Name Property Type Variable Type 

IDC_GRADE m_lGrade 

IDC_NAME m_name 

Value 

Value 

long 

CString 

For m_lGrade, enter a minimum value of Oand a maximum value of 100. 
Notice that ClassWizard generates the code necessary to validate data 
entered by the user. 

6. Add member function prototypes to EX15AVW.H. ClassWizard has 
written a very complete header file for class CEx15aView, but you must 
add two function prototypes: 

protec,t~d:", .' ' ...... : 
. .' v Htua 1 vo.iid>OnIniti QI.\I\J.!.I.q •. I.!= \ 

pri'v:ate{' ' •. ...' ~ , 
. : V:01 d iJpdate:Etlt·~Yd j 

7. Edit EX15AVW.CPP. Because the view class uses the CStudent class, you 
must include the CStudent class declaration. You must enter the following 
two functions from scratch because App Wizard did not generate skele­
ton code for them. The application framework calls the OnlnitialUpdate 
function when the application starts. The UpdateEntry function is a pri­
vate "helper" member function that transfers data from the document 
to the CEx15aView data members and then to the dialog edit controls. 
It also sets the focus to the Name edit control. 

vai d GE~·I!~aVijew::()nlnitia ltJp~~te(). 
{ . IIca:lfed .t>rr start'j:Jp 

lJpd;ateEritr~(l; " 
} 

vord GEx15aVi.ew: :UpdateEotry{) 
{ 1/. ca l' ~d, :from .. en!:n1 .ti'a.lUp~ ~ t:e: '~nQ~:IDn'~d i:t~l ~M!~l:~ 

CEx15a'r>o:c*pOo¢=~Get[Jocum~l'l.t:(Y; ':~ , ";,',~."'" ' 

} 

IJt_1Grad:e= pDoc';>m~~t~qeAt.m_+Gta:d~:t. 
m_nam~ .. ~:pooc~>m_stu:dent .m.J'I.~llle; 
Updat~Data ~~~U.SE};)I, ¢a lJs. ~:~:~" 
(CDi al ~g;t<):thj:$):"> •.... /'<:;.' '. .....'; 
. GotOD19Cfrl($etDrgItem:(iaCiNA.~E);)';;:1~f :,ijht;~;:~~r:~~~fi~s".e'~~. 

o ,C:'~~V' "~:~:: 

287 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

288 

Add the statement 

1frfncl.lid e 

before the statement that reads 

1/include "ex15adoc.h" 

The OnEnter function replaces the OnOK function you'd expect to see 
in a dialog class. The function transfers data from the edit controls to 
the view's data members and then to the document. 

void CEx15aView::OnEnter() 
{ 

In a complex multiview application, the Edit Clear All command 
would be routed directly to the document. In this simple example, it's 
routed to the view. The update command VI handler disables the menu 
item if the document's student object is already blank. 

void CEx15aView::OnEditClearall() 
{ 

void CEx15aView::OnUpdateEditClearall(CCmdUI* pCmdUI) 

8. Edit the EX15ADOC.H file. The CEx15aDoc class provides for an embed­
ded CStudent object. The CStudent default constructor is called when the 
document object is constructed, and the CStudent destructor is called 
when the document object is destroyed. 

9. Edit the EX15ADOC.CPP file. Because the document class incorporates 
the CStudent class, you must include its declaration. Before the statement 

1/include "ex15adoc.h" 



F 1FT E EN: Separating the Document from Its View 

add the statement 

'include "student.h" 

Let's use the CEx15aDoc constructor to set some initial values for the 
student object. 

CEx15aDoc::CEx15aDoc() 
{ 

} 

TRACE("Document object constructed\n"): 
m_student.m_name= "default value"; 
m_student.m_1Grade = 0L: 

We can't tell whether the EX15A program worked properly unless we 
dump the document when the program exits. We'll use the destructor to 
call the document's Dump function, which calls the CStudent::Dump 
function. 

CEx15aDoc::~CEx15aDoc() 

{ 

iIi fdef _DEBUG 
. DUIl1P( afx:Domp}; 

1foendir 
} 

void CEx15aDoc::Dump(CDumpContext& dc) const 
{ 

CDocument::Dump(dc); 
de «"\n"«m_student « "'\rl';; 

1 O. Edit the EX15A.CPP file. Before the statement 

'include "ex15adoc.h" 

add the statement 

~inc~~d~ "student.h" 

11. Edit the EX15A project to add STUDENT.CPP. You must tell Visual 
Workbench that you are adding the CStudent code to the project. When 
you add the STUDENT.CPP source code file, Visual Workbench will ana­
lyze the other project files and establish the STUDENT.H dependencies. 

12. Build and test the EX15A application. Type a name and a grade, and 
then click the Enter button. Now exit the application. Does the debug 
window show messages similar to those shown at the top of the following 
page? 

289 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

a CEx15aDoc at $4472 
m_strTitle = Ex15a 
m_strPathName = 
m_bModified = 0 
m_pDocTemplate = $438E 
a CStudent at $4498 
m_name = default value 
m_1Grade = 0 

NOT E : You must compile the application with the De­
bug project build option to see these messages. 

A More Advanced Document-View Interaction 

290 

If you're laying the groundwork for a multiview application, the document­
view interaction must be more complex than the simple interaction in ex­
ample EX15A. The fundamental problem is this: The user edits in view #1, so 
view #2 (and any other views) must be updated to reflect the changes. Now 
you need the UpdateAllViews and OnUpdate functions because the document 
is going to act as the clearinghouse for all view updates. The development 
steps are as follows: 

1. In your derived document class header file (generated by App­
Wizard), declare your document's data members. If you want, 
you can make these data members private, and you can define 
member functions to access them or declare the view class as a 
friend of the document class. 

2. In your derived view class, override the OnUpdate virtual member 
function. The application framework calls this function whenever 
the document data has changed for any reason. OnUpdate should 
update the view to reflect the current document data. 

3. Evaluate all your command messages. Determine whether each is 
document-specific or view-specific .. (A good example of a docu­
ment-specific command is the Clear All command on the Edit 
menu.) Now map the commands to the appropriate classes. 

4. In your derived view class, allow the appropriate command message 
handlers to update the document data. Be sure that these message 
handlers call the CDocument::UpdateAllViews function before they 
exit. Use the CView::GetDocument member function to access the 
view's document. 



F 1FT E EN: Separating the Document from Its View 

5. In your derived document class, allow the appropriate command 
message handlers to update the document data. Be sure that these 
message handlers call the CDocument UpdateAllViews function before 
they exit. 

The sequence of events for the complex document-view interaction is 
shown here: 

Application starts 

User executes 
view command 

User executes 
document 
command 

User exits 
application 

CMyDocument object constructed 
CMyView object constructed 
Other view objects constructed 
View windows created 
CMyView::OnCreate called (if mapped) 
CView: :OnlnitialUpdate called 

Calls CMyView::OnUpdate 
Initializes the view 

CMyView functions update CMyDocument data members 
Calls CDocument:: UpdateAllViews 

Other views' OnUpdate function called 

CMyDocument functions update data members 
Calls CDocument:: UpdateAllViews 

CMyView::OnUpdate called 
Other views' OnUpdate called 

View objects destroyed 
CMyDocument object destroyed 

The CDocument::DeieteContents Function 
At some point, you'll need a function to delete the contents of your docu­
ment. You could write your own private member function, but it happens 
that the application framework declares a virtual DeleteContents function for 
the CDocument class. The application framework calls your overridden Delete­
Contents function when the document is closed and, as you'll see in the next 
chapter, at other times as well. 

The CObList Collection Class 
Once you get to know the collection classes, you'll wonder how you ever got 
along without them. The CObList class is a useful representative of the collec­
tion class family. If you're familiar with this class, it's easy to learn the other 
list classes, the array classes, and the map classes. 

291 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

You might think that collections are something new, but the C pro­
gramming language has always supported one kind of collection-the array. 
C arrays must be fixed in size, and they do not support insertion of elements. 
Many C programmers have written function libraries for other collections, 
including linked lists, dynamic arrays, and indexed dictionaries. For imple­
menting collections, the C++ class is an obvious and better alternative than a 
C function library. A list object, for example, neatly encapsulates the list's in­
ternal data structures. 

The CObList class supports ordered lists of pointers to objects of classes 
derived from CObject. Why is the CObject class involved at all? Suppose there 
weren't a CObject root class, and you needed a general-purpose list class for 
storing pointers to objects. How would you declare the return values and pa­
rameters of your list class member functions? You could use void pointers, 
but that would require a lot of casting. The CObject class solves the problem. 
If you derive all your collectable object classes from CObject, you can store 
their pointers in a list of CObject pointers. You can even mix and match point­
ers to objects of different derived classes. 

Instead of a collection of CObject pointers, why not define a collection 
for a specific derived class such as CMyObject? A collection of CMyObject point­
ers would be type-safe because it would accept pointers only to those objects 
and require no casting whatsoever. Indeed, you could derive your own 
CMyObList class from CObList, or you could use the Microsoft Foundation 
Class Library collection template tool (TEMPLDEF) documented in Techni­
cal Note #4 in the MFCNOTES.HLP file. Both alternatives are probably 
more trouble than they're worth. Besides, the template tool is more useful 
for generating collection classes for native types such as floats and doubles. 

The CObList class and the other collection classes provide special ben­
efits when you do diagnostic dumping and serialization. You'll see the dump 
context in this chapter, but you must wait until Chapter 16 to see serialization. 

USing the CObList Class for a First-In, First-Out (FIFO) List 

292 

One of the easiest ways to use a CObList object is to add new elements to the 
tail, or bottom, of the list, and to remove elements from the head, or top, of 
the list. The first element added to the list will always be the first element re­
moved from the head of the list. Suppose you're working with element ob­
jects of class CEvent, which is your own custom class derived from CObject. An 
MS-DOS program that puts five elements into a list and then retrieves them 
in the same sequence is shown at the top of the facing page: 



F 1FT E EN: Separating the Document from Its View 

#include <afx.h> 
#include <afxcoll .h> 
class CEvent : public CObject 
{ 

private: 
int m_nTime; 

public: 
CEvent(int nTime) { m_nTime = nTime; } II constructor 

II stores integer time value 
void PrintTime() { TRACE("time = %d\n", m_nTime); } 

} ; 

i nt rna in ( ) 

CEvent* pEvent; 
CObList eventList; II event list constructed on the stack 
i nt i ; 

II inserts event objects in sequence {0, 1, 2, 3, 4} 
for (i = 0; i < 5; i++) { 

pEvent = new CEvent(i); 
eventList.AddTail(pEvent); II no cast necessary for pEvent 

II retrieves and removes event objects in sequence {0, 1, 2, 3, 4} 
while (!eventList.lsEmpty(» { 

pEvent = (CEvent*) eventList.RemoveHead(); II cast required for 
II return value 

pEvent->PrintTime(); 
delete pEvent; 

return 0; 

Here's what's going on in the program. First a CObList object, eventList, 
is constructed. Then the CObList::AddTail member function inserts pointers 
to newly constructed CEvent objects. No casting is necessary for pEvent be­
cause AddTail takes a CObject pointer parameter, and pEvent is a pointer to a 
derived class. 

Next the CEvent object pointers are removed from the list of the objects 
deleted. A cast is necessary for the returned value of RemoveHead because 
RemoveHead returns a CObject pointer that is higher in the class hierarchy 
than CEvent. 

293 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

When you remove an object pointer from a collection, the object is not 
automatically deleted. The delete statement is necessary for deleting the 
CEvent objects. 

CObList Iteration-The POSITION Variable 

294 

Suppose you want to iterate through the elements in a list. The CObList class 
provides a GetNext member function that returns a pointer to the "next" list 
element, but using it is a little tricky. GetNext takes a parameter of type POSI­
TION, which is simply a long integer. The POSITION variable is an inter­
nal representation of the retrieved element's position in the list. Because 
the POSITION parameter is declared as a reference (&), the function can 
change its value. 

GetNext does the following: 

l. Returns a pointer to the "current" object in the list, identified by 
the incoming value of the POSITION parameter. 

2. Increments the value of the POSITION parameter to the next list 
element. 

Here's what a GetNext loop looks like, assuming that you're using the list 
generated in the previous example: 

POSITION pas = eventList.GetHeadPasitian(); 
while (pas != NULL) { 

pEvent = (CEvent*) GetNext(pas); 
pEvent->PrintTime(); 

Now, suppose you have an interactive Windows program that uses 
toolbar buttons to sequence forward and backward through the list, one ele­
ment at a time. You can't use GetNext to retrieve the entry because GetNext al­
ways increments the POSITION variable, and you don't know in advance 
whether the user is going to want the next element or the previous element. 
Here's a sample view class command message handler function that gets the 
next list entry. In the CMyView class, m_eventList is an embedded CObList ob­
ject, and the m_position data member is a POSITION variable. that holds the 
current list position. 



F 1FT E EN: Separating the Document from Its View 

Now GetNext is called first to increment the list position, and the 
CObList GetAt member function is called to retrieve the entry. The m_position 
variable is updated only when we're sure we're not at the tail of the list. 

The Dump Context and Collection Classes 
The Dump function for CObList and the other collection classes has a useful 
property. If you call Dump for a collection object, you can get a display 
of each object in the collection. If the element objects employ the 
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros, the dump will 
show the class name for each object. 

The default behavior of the collection Dump functions is to display only 
class names and addresses of element objects. If you want the collection 
Dump functions to call the Dump function for each element object, you must, 
somewhere at the start of your program, make the following call: 

lIifdef _DEBUG 
afxDump.SetDepth(l); 

lIendif 

Now the statement 

lIifdef _DEBUG 
afxDump « eventList; 

11endif 

produces output such as this: 

a CObList with 4 elements 

a CEvent at $4CD6 
time = 0 

a CEvent at $5632 
time = 1 

a CEvent at $568E 
time = 2 

a CEvent at $56EA 
time = 3 

295 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The EX15B Example 

296 

This second SDI example improves on EX15A in the following ways: 

III Instead ofa single embedded CStudent object, the document now 
contains a list of CStudent objects. 

III Toolbar buttons allow the user to sequence through the list. 

III The application is structured to allow the addition of extra views. 
The Edit Clear All command is now routed to the document object, 
so the document's UpdateAllViews function and view's OnUpdate 
function are brought into play. 

III The student-specific view code is isolated so that the CEx15bView 
class can later be transformed into a base class that contains only 
general-purpose code. Derived classes can override selected func­
tions to accommodate lists of application-specific objects. 

The EX15B window, shown in Fi~ure 15-3, looks a little different from 
the EX15A window (shown in Figure 15-1 on page 283). The toolbar buttons 
are enabled only when appropriate. The Next (arrow-down graphic) button, 
for example, is disabled when we're positioned at the bottom of the list. 

Student Data Entrv Form 

Name I Nevers. Brian 

Grade ~ 

Figure 15-3. 
The EX15B program in action. 



F 1FT E EN: Separating the Document from ·Its View 

The toolbar buttons function as follows: 

Button Function 

Retrieves the first student record 

Retrieves the last student record 

Retrieves the previous student record 

Retrieves the next student record 

Deletes the current student record 

Inserts a new student record 

The Clear button in the view window clears the contents of the Name 
and Grade edit controls. The Clear All command on the Edit menu deletes 
all the student records in the list and clears the view's edit controls. 

This example deviates from the step-by-step format in the previous ex­
amples. Because there's now more code, we'll simply list selected code and 
the resource requirements. In the listing figures, shaded code indicates that 
the user entered additional code or entered other changes to the output 
from AppWizard and ClassWizard. The frequent use of TRACE statements 
lets you follow the program's execution in the debugging window. 

Here's a list of the files and classes in the EX15B example: 

Header File 

EX15B.H 

MAINFRM.H 

STUDOC.H 

STUVIEW.H 

STUDENT.H 

STDAFX.H 

Source Code File 

EX15B.CPP 

MAINFRM.CPP 

STUDOC.CPP 

STUVIEW.CPP 

STUDENT.CPP 

STDAFX.CPP 

Classes 

CEx15bApp 

CAboutDlg 

CMainFrame 

CStudentDoc 

CStudentView 

CStudent 

Description 

Application class 
(from AppWizard) 

About dialog 

SDI main frame 

Studen t document 

Student form view 
(derived from 
CFormView) 

Student record (from 
EX15A) 

Includes the standard 
precompiled headers 

297 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

CEx15bApp 
EX15B.CPP is standard AppWizard output except for the following line: 

included immediately before the statement 

/linclude "studoc.h" 

CMainFrame 
The code for the CMainFrame class in MAINFRM.CPP is the standard output 
from App Wizard except for the tool bar button array: 

static UINT BASED_CODE buttons[] = 
{ 

} : 

/1 same order as in the bitmap "toolbar.bmp" 
ID_FILE_NEW, 
ID_FILE_OPEN, 
ID_FILE_SAVE, 

ID_SEPARATOR, 

ID_SEPARATOR, 
ID_FILE_PRINT, 
ID_APP_ABOUT, 

CStudentDoc 

298 

App Wizard originally generated the CStudentDoc class. Figure 15-4 shows the 
code used in the EX15B example. 

STUDOC.H 

II studoc.h : interface of the CStudentDoc class 

class CStudentDoc : public CDocument 
{ 

Figure 15-4. 
The CStudentDoc class listing. 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-4. continued 

protected: // create from serialization only 
CStudentDoc(); 

// Attributes 

// Operations 
public: 

// Implementation 
public: 

virtual -CStudentDoc(); 
virtual void Serialize(CArchive& ar); // overridden for document 

/ / i/o 
lIifdef _DEBUG 

virtual void AssertValid() const; 
virtual void Dump(CDumpContext& dc) const; 

lIendif 

// Generated message map functions 
protected: 

//{{AFX_MSG(CStudentDoc) 
afx_msg void OnEditClearAll(); 

} ; 

afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI); 
/ /} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

//////////////////////////////////////////////1/////// /////////// 

STUDOC.CPP 

// studoc.cpp implementation of the CStudentDoc class 

lIinclude "student.h" 
lIinclude "studoc.h" 

(continued) 

299 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

300 

Figure 15-4. continued 

1Iifdef _DEBUG 
1Iundef THIS_FILE 
static char BASED_CODE THIS_FILE[] = __ FILE __ : 
1Iendif 

///////////////////////////////////////////////////////////////////// 

// CStudentDoc 

//IMPLEMENT_SERIAL(CStudentDoc. CDocument. 0) 
IMPLEMENT_DYNCREATE(CStudentDoc. CDocument) 

BEGIN_MESSAGE_MAP(CStudentDoc. CDocument) 
//{{AFX_MSG_MAP(CStudentDoc) 
ON_COMMAND(ID_EDIT_CLEAR_ALL. OnEditClearAll) 
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL. OnUpdateEditClearAll) 
/ /} }AFX_MSG_MAP 

END_MESSAGE_MAP() 

///////////////////////////////////////////////////////////////////// 

// CStudentDo~ construction/destruction 

CStudentDoc::CStudentDoc() 
{ 

1Iifdef _DEBUG 
afxDump.SetDepth(l); // ensure dump of list elements 

1Iendif 
} 

CStudentDoc::~CStudentDoc() 

{ 

} 

///////////////////////////////////////////////////////////////////// 

// CStudentDoc serialization 

void CStudentDoc::Serialize(CArchive& ar) 
{ 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-4. continued 

if (ar.lsStoring(» 
// any other document variables to archive 

} 

else { 
// any other document variables from archive 

} 

} 

/////////////////!/////////////////////////////////////////////////// 

// CStudentDoc diagnostics 

lIifdef _DEBUG 
void CStudentDoc::AssertValid() const 
{ 

CDocument::AssertValid(); 
} 

void CStudentDoc::Dump(CDumpContext& dc) const 
{ 

~,D~,c~rn,~n.,t: :~,um8(1c),i 
; .(1(; •.• ~<.~ \rt ~'.i<·<:: :m~~£tude:ij:e,~t~t. «; .'i\,ri 1r;i.i " ·;g~JH if!; Iii:r'l+: ;ll1· i;1HIH~:HI{UHHH:i!~ !flJ;:'llWfUllj 

} 

lIendif //_DEBUG 

///////////////////////////////////////////////////////////////////// 

// CStudentDoc commands 

void CStudentDoc::OnEditClearAll() 

} 

(continued) 

301 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Figure 15-4. continued 

///////////////////////////////////////////////////////////1///////// 

void CStudentDoc::OnUpdateEditClearAll(CCmdUI* pCmdUI) 

} 

ClassWizard and CStudentDoc 
The Edit Clear All command is handled in the document class. The follow­
ing message handlers were added through ClassWizard: 

Object 10 

ID_EDIT_CLEAR_ALL 

ID_EDIT_CLEAR_ALL 

Message 

COMMAND 

ON_UPDATE_COMMAND_UI 

Member Function 
Name 

OnEditClearAll 

OnUpdateEditClearAll 

Data Members 
The document class provides for an embedded CObList object, m_studentList, 
that holds pointers to CStudent objects. The list object is constructed when 
the CStudentDoc object is constructed, and it is destroyed at program exit. 

Constructor and Destructor 
The document constructor sets the depth of the dump context so that a 
dump of the list causes a dump of the individual list elements. 

GetList 
The inline CetList function helps isolate the view from the document. The 
document class must be specific to the type of object in the list, in this case 
objects of the class CStudent. A view base class, however, can use a member 
function to get a pointer to the list without knowing the name of the list 
object. 

DeleteContents 

302 

The DeleteContents function is a virtual override function that is called by 
other document functions and by the application framework. Its job is to 
remove all student object pointers from the document's list and to delete 
those student objects. An important point to remember here is that SDI 
document objects are reused after they are closed. DeleteContents also dumps 
the student list. 



Dump 

F 1FT E EN: Separating the Document from Its View 

App Wizard generates the Dump function skeleton between the lines #ifdef 
_DEBUGand#endif. Because the afxDump depth was set to 1 in the document 
constructor, all the CStudent objects contained in the list are dumped. 

CStuden t View 
Figure 15-5 shows the code for the CStudentView class. This code will be car­
ried over into the next two chapters. 

STUVIEW.H 

II stuview.h : interface of the CStudentView class 

class CStudentView : public CFormView 
{ 

DECLARE_DYNCREATE(CStudentView) 
protected: II create from serialization only 

CStudentView(); 
II Form data 
public: 

11{{AFX_DATA(CStudentView) 
enum { IDD = IDD_STUDENT }; 
CString m_name; 
long m_1Grade; 
I/} }AFX_DATA 

II Attributes 
public: 

CStudentDoc* GetDocument() 
{ 

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CStudentDoc»); 
return (CStudentDoc*) m_pDocument; 

II Operations 
public: 

II Implementation 

public: 
virtual -CStudentView(); 

Figure 15-5. (continued) 

The CStudentView class listing. 

303 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

304 

Figure 15-5. continued 

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 

virtual void OnDraw(CDC* pDC); 
41ifdef _DEBUG 

// support 
// overridden to draw this view 

virtual void AssertValid() const; 
virtual void Dump(CDumpContext& dc) const; 

41endif 

// Printing support 
protected: 

virtual void OnlnitialUpdate(); 
virtual void OnUpdate(CView* pSender. LPARAM lHint. CObject* 

pHint); 

functions 

} ; 

//////////////////////////////////////////////////////////////// 

STUVIEW.CPP 

// stuview.cpp : implementation of the CStudentView class 

41include "stdafx.h" 
Ilinclude "resource.h" 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-5. continued 

'include "student.h" 
/Ii ncl ude "studoc. h" 
'include "stuview.h" 

'ifdef _DEBUG 
'undef THIS_FILE 
static char BASED_CODE THIS_FILE[] = __ FILE~_; 
'endif 

//////////////////////////////////////////////////////////////// 

// CStudentView 

IMPLEMENT_DYNCREATE(CStudentView, CFormView) 

BEGIN_MESSAGE_MAP(CStudentView, CFormView) 
//{{AFX_MSG_MAP(CStudentView) 
ON_COMMAND'( ID.:.;POS_HOME. OnCommaf:ldHoma) ,,', "< " ",,' 
ON~UPD~TE_COMMAND~UJ (IO~BOS ... JiOM:E~"on~p.'lat~C~mm~r~tio~e) 
ON .... COMMANIJ( I D~POS~E~fJ.,. :o.ncolti~~~~d:~n:G;}.:; ~ ::; ,~, :~.:: ':: ..... , )'~':' ~ 
UN;.;.UP DA TE~C~MMAN D~Ui(l~-,-~·OS~E:ND ,.~; :()BU.P;Q<l t~gtQi!lla~~En<i;) :';',' 
QN~COMMAN D(ID~Pq s,~p R'l:V ~ . j):nq~~fflatlilPr e:y':{: ;', ... : + :,;~:::; ;,~ ;;': '. 
ON_ UPDATE .... GOMMAND .... U I (. I[};.;.p 0 S~P REV" .• , .:On Updat'~Gomrtlandp:J.'~v l 
ON_COMMAND (I D_p6s_NEXT'~TlC'qnima:nd~e,xt), '" :',,:' 
ON_U PDAT E_C OMMAND .. JU <'1 D .. J~O:S~NE~T.;.On Updat,eC o:rilma'Tld;N~xfJ ' 
ON_COMMANtH I D_POS_DEL, 0t1C6~mat1dDel} ",; ',' ",', ",:." 
ON .... UP OAT E_COMMAN (L.U I( JD"';PClS.l,-f)E~","O n u:pq~te'Cdm~~f:!~Qe·l·:r 
ON_COMMANDOILPOS .• JNS ;':Oh{ommandlns) , ". ' , 
ON __ BN;.;.CLICKEI:)(rDC..;.C~~AR. OnClea:r.) , 
/ /} lAFX_MSG_MAP 
// Standard printing commands 

END_MESSAGE_MAP() 

//////////////////////////////////////////////////////////////// 

// CStudentView construction/destruction 

CStudentView::CStudentView() 

1 

: CFormView(CStudentView::IDD) 

TRACE(lfEnterlng 'CStuderttV'i ~wc6nstructbr\n;'5;; 
//{{AFX_DATA_INIT(CStudentView) 
m_1Grade = 0; 
//llAFX_DATA_INIT 
~posit50n' = ,NULL: \ ; 

(continued) 

305 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

306 

Figure 15-5. continued 

CStudentView::~CStudentView() 

{ 

} 

1111111111111111111111111111111111111111111111111111111111////// 
void CStudentView::OnDraw(CDC* pDC) 
{ 

CStudentDoc* pDoc = GetDocument(); 

/1 TODO: add draw code here 
} 

1///11111////111////1/1111/////111///////1///1////////11///////1 
1/ CStudentView diagnostics 

Iii fdef _DEBUG 
void CStudentView::AssertValid() const 
{ 

CFormView::AssertValid(); 
} 

void CStudentView::Dump(CDumpContext& dc) const 
{ 

CFormView::Dump(dc); 
} 

1Iendif /I_DEBUG 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-5. continued 

//////////////////////////////////////////////////////////////// 

// CStudentView commands 

void CStudentView::DoDataExchange(CDataExchange* pDX) 
{ 

} 

CFormView::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CStudentView) 

(continued) 

307 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Figure 15-5. continued 

(continued) 

308 



F 1FT E EN: Separating the Document from Its View 

Figure 15-5. continued 

(continued) 

309 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

310 

Figure 15-5. continued 

11111111111111111111//111/1/////1/1/1/1//1/111111/1////111//111/ 
void CStudentView::OnClear() 

} 

(continued) 



F 1FT E EN: Separating the Document from Its View 

Figure 15-5. continued 

ClassWizard and CStudentView 
ClassWizard was used to map the CStudentView Clear pushbutton notification 
message as follows: 

Object ID Message Member Function Name 

BN_CLICKED On Clear 

Because CStudentView is derived from CFormView, ClassWizard supports the 
definition of dialog data members. The variables shown here were added 
with the Edit Variables button: 

ControllD Member Variable Name Property Type 

Value 

Value 

Variable Type 

long 

CString 

Set the minimum value of the m_lGrade data member to 0 and its maxi­
mum value to 100. 

Because the toolbar buttons aren't duplicated by menu items, Class­
Wizard won't help you with the message handlers. You must add the com­
mand and update command VI function prototypes manually. 

311 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Data Members 
The m_position data member is a kind of cursor for the document's collec­
tion. It points to the CStudent object that is currently displayed. The m_pList 
variable provides a quick way to get at the student list in the document. 

OnlnitialUpdate 
The virtual OnlnitialUpdate function is called when you start the application. 
It sets the view's m_pList data member for subsequent access to the docu­
ment's list object. 

On Update 
The virtual OnUpdate function is called both by OnlnitialUpdate and by the 
CDocument::UpdateAllViews function. It resets the list position to the head of 
the list, and it displays the head entry. In this example, the UpdateAllViews 
function is called only in response to the Edit Clear All command. In a 
multiview application, you might need a different strategy for setting the 
CStudentView m_position variable in response to document updates from an­
other view. 

Toolbar Button Command Message Handlers 
These functions are called in response to toolbar button clicks: 

OnCommandHome 

OnCommandEnd 

OnCommandPrev 

OnCommandNext 

OnCommandDel 

OnCommandlns 

Each function has built-in error checking. 

Toolbar Button Update Command UI Message Handlers 

312 

These functions are called during idle processing to update the state of the 
toolbar buttons: 

OnUpdateCommandHome 

OnUpdateCommandEnd 

OnUpdateCommandPrev 



F 1FT E EN: Separating the Document from Its View 

OnUpdateCommandNext 

OnUpdateCommandDel 

For example, this button, 

which retrieves the first student record, is disabled when the list is empty and 
when the m_position variable is already set to the head of the list. Because a 
delay sometimes occurs in calling the update command UI functions, the 
command message handlers must check for error conditions. 

Protected Virtual Functions 
These three functions are protected virtual functions that deal specifically 
with CStudent objects: 

GetEntry 

InsertEntry 

ClearEntry 

Move these to a derived class if you want to isolate the general-purpose list­
handling features in a base class. 

Resource Requirements 
The file EX15B.RC defines the application's resources as follows. 

Symbols 
Because the toolbar buttons aren't duplicated by menu items, you must add 
the command symbols manually. If you click the App Studio ID= toolbar but­
ton, you'll see the following symbols (among others): 

Symbol Value 

ID_POS_DEL Ox8005 
ID_POS_END Ox8002 
ID_POS_HOME Ox8001 
ID_POS_INS Ox8006 
ID_POS_NEXT Ox8004 
ID_POS_PREV Ox8003 

313 



PART .111 : THE DOCUMENT-VIEW ARCHITECTURE 

Edit Menu 
On the Edit menu, the clipboard menu items are replaced by the Clear All 
menu item. See step 2 on page 285 for an illustration of the Edit menu. 

The IDD_STUDENT Dialog 
The IDD_STUDENT dialog, shown here, is similar to the EX15A dialog 
shown in Figure 15-1 except that the Enter pushbutton has been replaced by 
the Clear pushbutton: 

: : : Student Data Entry Form 

: : : ·G·r~de: : D : : : : : : : : : : : : : : : : : : : : : : 
..................................... 
. . . . . . . . . . . ====::::2 .............. . 

The following IDs identify the controls: 

Control 

Name edit control 

Grade edit control 

Clear pushbutton 

10 

IDC_NAME 

IDC_GRADE 

IDC_CLEAR 

The controls' styles are the same as for the EX15A program. 

Toolbar 
Here's the IDR_MAINFRAME bitmap resource: 

314 



F 1FT E EN: Separating the Document from Its View 

The bitmap was created by erasing the Edit Cut, Copy, and Paste tiles 
(fourth, fifth, and sixth from the left) and replacing them with six new pat­
terns. The Flip Vertical command (on the Image menu) was used to dupli­
cate some of the tiles. 

Testing the EX15B Application 
Fill in the student name and grade fields, and then click this button 

to insert the entry into the list. Repeat this action several more times, using 
the Clear push button to erase the data from the previous entry. When you 
exit the application, the debug output should look similar to this: 

a CStudentDoc at $48EE 
m_strTitle = Ex15b 
m_strPathName = 
m_bModified = 0 
m_pDocTemplate $46AE 
a CObList with 4 elements 

a CStudent at $4DC2 
m_name = Fisher, Lon 
m_1Grade = 67 

a CStudent at $50FA 
m_name = Meyers, Brian 
m_1Grade = 80 

a CStudent at $5152 
m_name = Seghers, John 
m_1Grade = 92 

a CStudent at $51AA 
m_name = Anderson, Bob 
m_1Grade = 87 

315 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Two Exercises for the Reader 

316 

You might have noticed the absence of a modify toolbar button. Without 
such a button, you can't modify an existing student record. Can you add the 
necessary toolbar button and message handlers? The most difficult task 
might be designing agraphic for the button's tile. 

Recall that the CStudentView class is just about ready to be a general­
purpose base class. Try separating the CStudent-specific virtual functions into 
a derived class. Mter that, make another derived class that uses a new ele­
ment class other than CStudent. 



C HAP T E R SIXTEEN 

READING AND WRITING 
DOCUMENTS-SOl 

As you've probably noticed, every AppWizard-generated program has a File 
menu that contains the familiar New, Open, Save, and Save As commands. In 
this chapter, you'll learn how to make your application respond to read and 
write documents. 

Here we'll stick with the Single Document Interface (SDI) application 
because it's familiar territory. Chapter 17 introduces the Multiple Document 
Interface (MDI) application, which is more flexible in its handling of docu­
ments and files. In both chapters, you'll get a heavy but necessary dose of 
application framework theory; you'll learn a lot about the various helper 
classes that have been concealed up to this point. The going will be rough, 
but, believe me, you really have to know the details to get the most out of the 
application framework. 

This chapter's example, EX16A, is an SDI applicationbased on EX15B 
in the previous chapter. It uses the student list document with a CFormVieUJ­
derived view class minus some of the frills such as the Edit Clear All com­
mand. Now the student list can be written to and read from disk through a 
process called serialization. Chapter 17 shows you how to use the same view 
and document classes to make an MDI application, and it shows how to ret­
rofit an SDI application with the drag-and-drop file capability that is nor­
mally reserved for MDI applications. 

Serialization-What Is It? 
The term "serialization" might be new to you, but it's already seen some use 
in the world of object-oriented programming. The idea is that objects can be 

317 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

persistent, which means they can be saved on disk when a program exits and 
restored when the program is restarted. The process of saving and restoring 
objects is called serialization. In the Microsoft Foundation Class (MFC) Li­
brary, designated classes have a member function named Serialize. When the 
application framework calls Serialize for a particular object-for example, an 
object of class CStudent-the data for the student is either saved on disk or 
read from disk. 

In the MFC library, serialization is not a substitute for a database man­
agement system. All the objects associated with a document are sequentially 
read from or written to a single disk file. It's not possible to access individual 
objects at random disk file addresses. If you need database capability in your 
application, consider using the Microsoft Open Database Connectivity 
(ODBC) software. Chapter 24 shows you how to use ODBC with the MFC 
library application framework. 

Disk Files and Archives 
How do you know whether Serialize should read or write data? How is Serialize 
connected to a disk file? With the MFC library, disk files are represented by 
objects of class CFile. A CFile object encapsulates the file handle that you get 
through the CRuntime function _open. This is not the buffered FILE pointer 
that you'd get with a call to fopen; rather, it's a handle to a binary file. This file 
handle is used by the application framework for _read, _write, and _lseek calls. 

If your application does no direct disk 110 but instead relies on the se­
rialization process, you can avoid direct use of CFile objects. Between the Seri­
alize function and the CFile object is an archive object (of class CArchive) , as 
shown in Figure 16-1. 

The CArchive object buffers data for the CFile object, and it maintains an 
internal flag that indicates whether the archive is storing (writing to disk) or 
loading (reading from disk). Only one active archive is associated with a file 
at anyone time. The application framework takes care of constructing the 
CFile and CArchive objects, opening the disk file for the CFile object, and asso­
ciating the archive object with the file. All you have to do, in your Serialize 
function, is load data from or store data in the archive object. The applica­
tion framework calls the document's Serialize function during the File Open 
and File Save processes. 

Making a Class Serializable 

318 

A serializable class must be derived directly or indirectly from CObject. In addi­
tion, the class declaration must contain the DECLARE_SERIAL macro call, 



S I X TEE N: Reading and Writing Documents-SOl 

1 

The Serialize function is called 
by the application framework 
when the File Open or File 
Save command is chosen. 

Figure 16-1. 
The serialization process. 

and the class implementation file must contain the IMPLEMENT_SERIAL 
macro call. (See the Class Library Reference for a description of these macros.) 
The CStudent class, which you'll be using in this chapter's examples, already 
uses these macros. 

Writing a Serialize F~nction 
In Chapter 15, you saw a CStudent class, derived from CObject, with these data 
members: 

public: 
CString m_name; 
LONG m_1Grade; 

Now your job is to write a Serialize member function for CStu den t. Be­
cause Serialize is a virtual member function of class CObject, you must be sure 
that the return value and parameter types match the CObject declaration. 
Here's the Serialize function for the CStudent class: 

void CStudent::Serialize(CArchive& ar) 
{ 

if (ar.lsStoring(» 
ar « m_name « m_1Grade; 

else 
ar » m_name » m_1Grade; 

319 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Serialization functions generally call the Serialize function of their base 
class. If CStudent were derived from CPerson, for example, the first line of the 
Serialize function would be 

CPerson::Serialize(ar); 

The Serialize functions for CObject and CDocument don't do anything useful, so 
there's no need to call them. 

Notice that ar is a CArchive reference parameter that identifies the 
application's archive object. The CArchive::IsStoringmember function tells us 
whether the archive is currently being used for storing or loading. The 
CArchive class has overloaded insertion operators «<) and extraction opera­
tors (») for many of the C++ built-in types. MFC library classes that are not 
derived from CObject, such as CString and CRect, have their own overloaded 
insertion and extraction operators for CArchive. 

Loading from an Archive-Embedded Objects vs. Pointers 

320 

Now, suppose your CStudent object has other objects embedded in it, and 
these objects are not instances of standard classes such as CString, CTime, and 
CRect. Let's add a new data member to the CStudent class: 

public: 
CTranscript m_transcript; 

Assume that CTranscript is a custom class, derived from CObject, with its 
own Serialize member function. The CStudent::Serialize function now becomes 

void CStudent::Serialize(CArchive& ar) 
{ 

if (ar.IsStoring()) 
ar « m_name « m_1Grade; 

else 
ar » m_name » m_1Grade; 

m_transcript.Serialize(ar); 

Before the CStudent::Serialize function can be called to load a student 
record from the archive, a CStudent object must be constructed somewhere. 
The embedded CTranscript object m_transcript is constructed along with the 
CStudent object before the call to the CTranscript::Serializefunction. When the 
CTranscript::Serialize function does get called, it can load the archived tran­
script data into the embedded m_transcript object. 

Suppose that, instead of an embedded object, your CStudent object con­
tained a CTranscript pointer data member such as this: 

public: 
CTranscript* m_pTranscript; 



S I X TEE N: Reading and Writing Documents-SOl 

You could write your Serialize function as shown below, but as you can 
see, you must construct a new CTranscript object yourself: 

void CStudent::Serialize(CArchive& ar) 
{ 

if (ar.IsStoring(» 
ar « m_name « m_1Grade; 

(continued) 

321 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

else { 
m_pTranscript new CTranscript; 
ar » m_name » m_1Grade; 

m_pTranscript->Serialize(ar); 

Because the CArchive insertion and extraction operators are overloaded for 
CObject pointers, you could write Serialize this way instead: 

void CStudent::Serialize(CArchive& ar) 
{ 

if (ar.lsStoring()) 
ar « m_name « m_1Grade « m_pTranscript; 

else 
ar » m_name » m_1Grade » m_pTranscript; 

In the second case, use of the DECLARE_SERIAL and IMPLEMENT_SERIAL 
macros in the CTranscript class ensures that a CTranscript object will be con­
structed even though the archive extraction operator is overloaded for the 
CObject base class. Once the CTranscript object is constructed, the overridden 
Serialize function for CTranscript can be called to do the work of reading the 
student data from the disk file. Finally, the the CTranscript pointer is stored in 
the m_pTranscript data member. To avoid a memory leak, you must be sure 
that m_pTranscript does not already contain a pointer to a CTranscript object. 
If the CStudent object was just constructed and thus was not previously loaded 
from the archive, the transcript pointer will be null. 

The insertion and extraction operators do not work with embedded 
objects of classes derived from CObject. 

ar » m_name » m_1Grade » &m_transcript; II don't try this 

Serializing Collections 

322 

Because all collection classes are derived from the CObject class and the col­
lection class declarations contain the DECLARE_SERIAL macro call, you can 
conveniently serialize collections with a call to the collection class's Serialize 
member function. If you call Serialize for a CObList collection of CStudent 
objects, for example, the Serialize function for each CStudent object will be 
called in turn. You should, however, know the following specific things about 
loading collections from an archive: 



S I X TEE N: Reading and Writing Documents-SOl 

• If a collection contains pointers to objects of mixed classes (all 
derived from CObject) , the individual class names in essence are 
stored in the archive so that the objects can be properly con­
structed with the appropriate class constructor. 

• If a container object, such as a document, contains an embedded 
collection, loaded data is appended to the existing collection. 
You might need to empty the collection before loading from the 
archive. This is usually done in aDeleteContents function, which is 
called by the application framework. 

• If a container object contains a pointer to a collection, a new col­
lection object is constructed when the extraction operator loads 
data from the archive. A pointer to the new collection is stored in 
the container object's pointer data member. You might need to 
destroy the old collection object (after emptying it) before loading 
from the archive. 

• When a collection of CObject pointers is loaded from an archive, 
the following processing steps take place for each object in the 
collection: 

o The object's class is identified. 

o Heap storage is allocated for the object. 

o The object's data is loaded into the newly allocated storage. 

o A pointer to the new object is stored in the collection. 

The EX16A example, beginning on page 331, shows serialization of an 
embedded CObList collection. 

The Serialize Function and the Application Framework 
OK, so you know how to write serialize functions, and you know that these 
function calls can be nested. But do you know when the first Serialize func­
tion gets called to start the serialization process? With the application frame­
work, everything is keyed to the document (the object ofa class derived from 
CDocument). When you choose Save or Open from the File menu, the appli­
cation framework creates a CArchive object (and underlying CFileobject) and 
then calls your document class's Serialize function, passing a reference to the 
CArchive object. Your derived document class Serialize function then serializes 
each of its non temporary data members. 

323 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

NOT E : If you take a close look at any App Wizard-generated 
document class, you will notice that the class includes the 
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros 
instead of the DECLARE_SERIAL and IMPLEMENT_SERIAL mac­
ros. The SERIAL macros are not needed because document ob­
jects are never used in conjunction with the CArchive extraction 
operator or included in collections; the application framework 
calls the document's Serialize member function directly. You 
should include the DECLARE_SERIAL and IMPLEMENT_SERIAL 
macros in all other serializable classes. 

The SOl Application 
You've seen many SDI applications that have orie document class and one 
view class. We'll stick to a single view class in this chapter, but we'll explore 
the interrelationships among the application object, the main frame win­
dow, the document, the view, the document template object, and the associ­
ated string and menu resources. 

The Windows Application Object 

324 

For each of your applications, AppWizard has been quietly generating a class 
derived from CWinApp. It has also been generating a statement such as this: 

CMyApp theApp; 

What you're seeing here is the mechanism that starts an MFC library 
application. The class CMyApp is derived from the class CWinApp, and theApp 
is a globally declared instance of the class. This global object is called the 
Windows application object. Here's a summary of the startup steps in a 
Microsoft Windows MFC library application: 

1. Windows loads your program into memory. 

2. The global object theApp is constructed. (All globally declared 
objects are constructed immediately when the program is loaded.) 

3. Windows calls the global function WinMain, which is part of the 
MFC library. (WinMain is equivalent to the non-Windows main 
function-each is a main program entry point.) 

4. WinMain searches for the one and only instance of a class derived 
from CWinApp. 



S I X TEE N: Reading and Writing Documents-SOl 

5. WznMain calls the InitInstance member function for theApp, which is 
overridden in your derived application class. 

6. Your overridden InitInstance function starts the process of loading a 
document and displaying the main frame and view windows. 

7. WinMain calls the Run member function for theApp, which starts the 
processes of dispatching window messages and command messages. 

You can override another important CWinApp member function. The 
ExitInstance function is called when the application terminates, after all its 
windows are closed. 

NOTE: Under certain conditions, Windows allows multiple in­
stances of programs to run. Code is shared, but read/write data 
is not shared. The Initlnstance function is called each time a program 
instance starts up. Another CWinApp function, InitApplication, is 
called when the first instance starts up. You can override Init­
Application in your derived application class, but there's seldom a 
reason to do so. 

The Document Template Class 
If you look at the InitInstance function that App Wizard generates for your 
derived application class, you'll see that the following statement is featured 
prominently: 

AddOocTemplate(new CSingleOocTemplate(IOR_MAINFRAME. 
RUNTIME_CLASS(CMyOoc). 
RUNTIME_CLASS(CMainFrame). II main SOl frame window 
RUNTIME_CLASS(CMyView»); 

Unless you start doing fancy things with splitter windows and multiple 
views, this is the only time you'll actually see a document template object. In 
this case it's an object of the class CSingleDocTemplate, which is derived from 
CDocTemplate. The' CSingleDocTemplate class applies only to SDI applications 
because SDI applications are limited to one document object. AddDoc­
Template is a member function of class CWinApp. 

The AddDocTemplate call, together with the document template con­
structor call, establishes the relationships among classes-the application 
class, the document class, the view window class, and the main frame window 
class. The application object exists, of course, before template construction, 
but the document, view, and frame objects are not constructed at this time. 
The application framework later dynamically constructs these objects when 
they are needed. 

325 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

326 

This dynamic construction is a sophisticated use of 'the C++ language. 
Through the use of the DECLARE_DYNCREATE and IMPLEMENT_DYN­
CREATE macros in the class declaration and implementation, the MFC li­
brary is able to construct objects of specified classes dynamically. If this 
dynamic construction capability weren't present, more relationships among 
your application's classes would have to be hard-coded. Your derived applica­
tion class, for example, would need code for constructing document, view, 
and frame objects of your specific derived classes. This would compromise 
the object-oriented nature of your program. 

With the template system, all that's required in your application class is 
use of the RUNTIME_CLASS macro, which converts a class name to a special 
pointer that the MFC library runtime mechanism can process. Notice that 
the target class's declaration must be included for this macro to work. 

Figure 16-2 illustrates the relationships among the various classes, and 
Figure 16-3 illustrates the object relationships. The application can have 
more than one template (and associated class groups), but when the SDI 
program is running there can be only one document object and only one 
main frame window object. 

Figure 16-2. 
Class relationships. 



S I X TEE N: Reading and Writing Documents-SOl 

Figure 16-3. 
Object relationships. 

t · · I · 
· · .......... _ ............ 

The Document Template Resource 

v . r . 

The first AddDocTemplate parameter is IDR_MAINFRAME, the identifier for 
a string table resource. Here is the corresponding string that AppWizard 
might generate in the application's RC file: 

lOR_MAINFRAME 
"MYAPP Windows Application\n" 
"MYAPP\n" 
"MYAPP Oocument\n" 
"MYAPP Files (*.xyz)\n" 
".xyz" 

II application window caption 
II root for default document name 
II document type name 
II document type description & filter 
II extension for documents of this type 

(Note: The resource compiler won't accept the string concatenations 
as shown above. If you examine the EX16A.RC file, you'll see the substrings 
combined in one large string.) 

IDR_MAINFRAME specifies one string that is separated into substrings 
by \n. The substrings show up in various places when the application ex­
ecutes. The string xyz is the default document file extension specified to 
AppWizard. 

The IDR_MAINFRAME ID, in addition to specifying the application's 
strings, identifies the application's icon, toolbar bitmap, and menus. 
AppWizard generates these resources, and App Studio maintains them. 

327 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

So now you've seen how the AddDocTemplate call ties all the application 
elements together. Be aware, though, that no windows have been created yet, 
and therefore nothing appears on the screen. 

Multiple Views of an SOl Document 
Providing multiple views of an SDI document is a little more complicated. 
You could simply provide a menu item that allows the user to choose a view, 
or you could allow multiple views in a splitter window. Chapter 19 shows you 
how to use a splitter window. 

Creating an Empty Document-The CWinApp::OnFileNew Function 
Mter your application class's InitInstance function calls AddDocTemplate, it 
calls OnFileNew, another important CWinApp member function. OnFileNew, 
through a call to another CWinApp function, OpenDocumentFile, sorts through 
the web of interconnected class names and does the following: 

328 

1. Constructs the document object but does not attempt to read data 
from disk. 

2. Constructs the main frame object (of class CMainFrame); also 
creates the main frame window but does not show it. The main 
frame window includes the IDR_MAINFRAME menu, the toolbar, 
and the status bar. 

3. Constructs the view object; also creates the view window but doesn't 
show it. 

4. Establishes connections among the document, main frame, and 
view objects. Do not confuse these object connections with the class 
connections established by the call to AddDocTemplate. 

5. Calls the virtual OnNewDocument member function for thedocu­
ment object, which calls the virtual DeleteContents function. 

6. Calls the virtual OnlnitialUpdate member function for the view 
object. 

7. Calls the virtual ActivateFrame for the frame object to show the main 
frame window together with the menus, view window, and control 
bars. 

NOT E : Some of the functions listed above are not called di­
rectly by OpenDocument but are called indirectly through the appli­
cation framework. 



S I X TEE N: Reading and Writing Documents-SDI 

In an SDI application, the document, main frame, and view objects are 
created only once, and they last for the life of the program. The CWinApp::­
OnFileNew function is called by lnitlnstance. It's also called in response to the 
File New menu item. In this case, OnFileNewmust behave a little differently. It 
can't construct the document, frame, and view objects because they're al­
ready constructed. Instead, it reuses the existing document object and per­
forms steps 5,6, and 7 on the facing page. Notice that OnFileNewalways calls 
DeleteContents to empty the document. 

The Document Class's OnNewDocument Function 
You've seen the view class OnlnitialUpdate member function in Chapter 15, 
but the document class OnNewDocument member function is new. If an SDI 
application didn't reuse the same document object, you wouldn't need 
OnNewDocument because you could perform all document initialization in 
your document class constructor. Now you must override OnNewDocument to 
initialize your document object each time the user chooses File New or File 
Open. App Wizard helps you by providing a skeleton function in the derived 
document class it generates. 

Connecting File Open to Your Serialization Code-OnFileOpen 
When AppWizard generates an application, it maps the File Open menu 
item to the CWinApp OnFileOpen member function, which, through a call to 
the CWinApp function OpenDocumentFile, does the following: 

1. Calls the virtual OnOpenDocument member function for the already 
existing document object. This function prompts the user to select 
a file and then opens the file, constructs a CArchive object set for 
loading, and calls DeleteContents. 

2. Calls the document's Serialize function, which loads data from the 
archive. 

3. Calls the view's OnlnitialUpdate function. 

NOT E : Some of the functions listed above are not called di­
rectly by OpenDocument but are called indirectly through the appli­
cation framework. 

The Most Recently Used (MRU) file list is a handy alternative to the 
File Open menu item. The application framework tracks the four most re­
cently used files and displays their names on the File menu. These filenames 
are stored in the application's INI file between program executions. 

329 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The Document Class's DeleteContents Function 
When you load an existing SDI document object from a disk file, you must 
somehow erase the existing contents of the document object. The best way 
to do this is to override the CDocument::DeleteContents virtual function in your 
derived document class. The overridden function, as you've seen in Chapter 
15, does whatever is necessary to clean up your document class's data mem­
bers. In response to both the File New and the File Open menu items, the 
CDocument OnFileNew and OnFileOpen functions both call the DeleteContents 
function, which means DeleteContents is called immediately after the docu­
ment object is first constructed. It's called again when you close a document. 

If you want your document classes to work in SDI applications, plan on 
emptying the document's contents in the DeleteContents member function 
rather than in the destructor. Use the destructor only to clean up items that 
last for the life of the object. 

Connecting File Save and File Save As to Your Serialization Code 
When AppWizard generates an application, it maps the File Save menu item to 
the OnFileSave member function of the CDocument class. OnFileSave calls the 
CDocument function OnSaveDocument, which in turn calls your document's Seri­
alize function with an archive object set for storing. The File Save As menu item 
is handled in a similar manner; it is mapped to the CDocument function 
OnFileSaveAs, which calls OnSaveDocument. Here the application framework does 
all the file management necessary to save a document on disk. 

NOT E : Yes, it is true that the File New and File Open menu 
choices are mapped to application class member functions, but 
File Save and File Save As are mapped to document class member 
functions. File New is mapped to OnFileNew. The SDI version of 
InitInstance also calls OnFileNew. No document object exists when 
the application framework calls Initlnstance, so OnFileNew can't 
possibly be a member function of CDocument. When a document is 
saved, however, a document object certainly exists. 

The Document's IsModified Flag 

330 

Many document-oriented applications for Windows track the user's modifi­
cation of a document. If the user tries to close a document or exit the pro­
gram, a message box asks whether the user wants to save the document. The 
MFC library application framework directly supports this behavior with the 
CDocument data member m_bModified. This Boolean variable is TRUE if the 
document has been modified; otherwise, it is FALSE. 



S I X TEE N: Reading and Writing Documents-SOl 

The protected m_bModified flag is accessed through the CDocument 
member functions SetModifiedFlag and IsModified. A document object's flag is 
set to FALSE when the document is created or read from disk and when it is 
saved on disk. You, the programmer, must use the SetModifiedFlag function to 
set the flag to TRUE when the document data changes. 

In Visual Workbench, the toolbar disk button, which corresponds to 
the File Save menu item, is disabled whenever the currently selected docu­
ment has not been modified. In the EX16A example, you'll see how a one­
line update command UI function can use IsModified to control the state of 
the disk button and the corresponding menu item. 

NOT E : In one respect, Microsoft Foundation Class Library ver­
sion 2.5 SDI applications behave a little differently from other 
Windows SDI applications such as Notepad and Paintbrush. 
Here's a typical sequence of events: 

1. The user creates a document and saves it on disk under the 
name, say, TEST.DAT. 

2. The user modifies the document. 

3. The user chooses File Open and then specifies TEST.DAT. 

When the user chooses File Open, both Notepad and Paint­
brush ask whether the user wants to save the changes made to the 
document (in step 2, above). If the user says no, the program re­
reads TEST.DAT from disk. A Microsoft Foundation Class Library 
version 2.5 application, on the other hand, assumes the changes 
are permanent and does not reread the file. 

EX16A-An SOl Example with Serialization 
This example is similar to example EX15B. The student dialog and bitmaps 
are the same, and the view class is the same. Serialization has been added, 
together with an update command UI function for File Save. The header 
and implementation files for the view and document classes will be reused in 
example EX17 A in the next chapter. 

All the new code (code that is different from EX15B) is listed, with ad­
ditions and changes to the AppWizard-generated code and ClassWizard 
code shaded. 

A list of the files and classes in the EX16A example is shown in the table 
on the following page: 

331 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Header File Source Code File Class Description 

EX16A.H EX16A.CPP CEx16aApp Application class 
(from AppWizard) 

CAboutDlg About dialog 

MAINFRM.H MAINFRM.CPP CMainFrame SDI main frame 

STUDOC.H STUDOC.CPP CStudentDoc Student document 

STUVIEW.H STUVIEW.CPP CStudentView Student form view 
(from EX15B) 

STUDENT.H STUDENT.CPP CStudent Student record 

STDAFX.H STDAFX.CPP Precompiled headers 

CStudent 

332 

The EX16A STUDENT.H file is based on the file in the EX15A project 
(shown in Figure 15-2 on page 283) and contains a prototype added for the 
Serialize function, as shown in Figure 16-4. The CStudent implementation file, 
STUDENT.CPP, now has the Serialize member function added, as shown in 
Figure 16-4. 

STUDENT.H 

Figure 16-4. (continued) 

The STUDENT. H and STUDENT. CPP listings. 



S I X TEE N: Reading and Writing Documents-SOl 

Figure 16-4. continued 

COtls;t CS:tuden:t&;.:o.pJa·rator. =( canst 
C 

STUDENT.CPP 

(continued) 

333 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Figure 16-4. continued 

CEx16aApp 

334 

Look carefully at the App Wizard-generated application class, shown in Fig­
ure 16-5, because it illustrates much of what we talked about earlier in this 
chapter. Your input to AppWizard determines how the application class 
opens documents. If you specify a file extension in the Classes dialog for the 
document class, you get the following code: 

II simple command line parsing 
if (m_lpCmdLine[0] == '\0') 
{ 

else 
{ 

II create a new (empty) document 
OnFil eNew(); 

II open an existing document 
Open Document Fil e (m_l pCmdL i ne) ; 

In this case, the application accepts a document name on the com­
mand line. You can start the program from File Manager, and you can specify 
a file when setting up a Program Manager icon. 

If you leave the file extension blank (the default case), you get this 
code: 

II create a new (empty) document 
OnFil eNew(); 

if (m_lpCmdLine[0] != '\0') 
{ 

II TODO: add command line processing here 

Now the application won't accept a filename command-line argument. 



S I X TEE N: Reading and Writing Documents-SOl 

EX16A.H 

#ifndef __ AFXWIN_H __ 
#error include 'stdafx.h' before including this filefo~ PtH 

fiendif 

#include "resource.h" //main. symbols 

/ / / / / / / / 1/ / I 11/ / / / / / / / /I /I //1 / / /I / / /1/11/ i IllI/1 / / /1/ /// j i/ 1/ II II/ / /ll j 1/// 
/ICEx16aApp:. . . ." ". ..••........ ..: 
II See ex16a .cpp for the impl ementati on of this .. class 
1/ 

pubHc: 
. . ,·C Ex1:6iiApP'(); ... 

l: 

EX16A.CPP 

. I;irrclucfe n,stdafX. hIt 
1;; nelude "ex16a.~ h" 

I;include"mai nfrm.h" 
, Iii DC lude "studoc. h'" 
f;in'clude"stuv·i ew .n" 

llifdef .;..Of:BUG 
liundef IH I S.;..F I LE . .•. .•.• . ... ;. 
static char BAS~O_CaOE THIS_FILED 
liemji f 

Figure 16-5. 
The CEx16aApp class listing. 

(continued) 

335 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Figure 16-5. continued 

(continued) 

336 



S I X TEE N: Reading and Writing Documents-SOl 

Figure 16-5. continued 

(continued) 

337 



PAR Till: THE DOCUMENT -'-VIEW ARCHITECTURE 

Figure 16-5. continued 

CFrameWnd 

338 

The main frame window class code, shown in Figure 16-6, is almost un­
changed from the code that App Wizard generated. The toolbar button con­
stan ts are added, and the overridden ActivateFrame function exists solely for 
trace purposes. 

MAINFRM.H 

class CMainFrame : public CFrameWnd 
{ 

protected: II create from serialization only 
CMainFrame(); 
DECLARE_DYNCREATE(CMainFrame) 

II Attributes 
public: 

II Operations 
public: 

II Implementation 
public: 

Figure 16-6. 
The CMainFrame class listing. 

(continued) 



S I X TEE N: Reading and Writing Documents-SDI 

Figure 16-6. continued 

virtual ~CMainFrame(): 
vf~tua 1 vo; dA~tj,';a~eF\ra~~ri!'lt n~Mqhow =.1): 

protected: // control bar embedded members 
CStatusBar m_wndStatusBar: 
CToolBar m_wndToolBar: 

// Generated message map functions 
protected: 

//{{AFX_MSG(CMainFrame) 
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct): 

// NOTE - the ClassWizard will add and remove member functions here. 
// DO NOT EDIT what you see in these blocks of generated code! 

/ /} lAFX_MSG 
DECLARE_MESSAGE_MAP() 

1 : 

MAINFRM.CPP 

#include "stdafx.h" 
#include "ex16a.h" 

#include "mainfrm.h" 

Iii fdef _DEBUG 
#undef THIS_FILE 
static char BASED_CODE THIS_FILE[] = __ FILE __ : 
#endif 

/////////////////////////////////////////////////////////////////////////// 
II CMa in Frame 

IMPLEMENT_DYNCREATE(CMainFrame. CFrameWnd) 

BEGIN_MESSAGE_MAP(CMainFrame. CFrameWnd) 
//{{AFX_MSG_MAP(CMainFrame) 

// NOTE - the ClassWizard will add and remove mapping macros here. 
// DO NOT EDIT what you see in these blocks of generated code! 

ON_WM_CREATE() 
/ /} lAFX_MSG_MAP 

END_MESSAGE_MAP() 

/////////////////////////////////////////////////////////////////////////// 
// arrays of IDs are used to initialize control bars. 

(continued) 

339 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

340 

Figure 16-6. continued 

// tool bar buttons - IDs are command buttons 
static UINT BASED_CODE buttons[] = 
{ 

} ; 

// same order as in the bitmap 'toolbar.bmp' 
ID_FILLNEW. 
ID_FILE_OPEN. 
ID_FI LE_SAVE. 

ID_SEPARATOR. 
ID_FILE_PRINT. 
ID_APP_ABOUT. 

static UINT BASED_CODE indicators[] = 

{ 

} ; 

ID_SEPARATOR. 
ID_INDICATOR-CAPS. 
ID_INDICATOR_NUM. 
ID_INDICATOR_SCRL. 

// status line indicator 

/////////////////////////////////////////////////////////////////////////// 
// CMainFrame construction/destruction 

CMainFrame::CMainFrame() 
{ 

// TODO: add member initialization code here 

CMainFrame::-CMainFrame() 
{ 

} 

(continued) 



S I X TEE N: Reading and Writing Documents-SOl 

Figure 16-6. continued 

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct) 
{ 

if (CFrameWnd::OnCreate(lpCreateStruct) == -1) 
return -1; 

if (!m_wndToolBar.Create(this) :: 
!m_wndToolBar.LoadBitmapCIDILMAINFRAME) :: 
!m_wndToolBar.SetButtons(buttons. 

sizeof(buttons)/sizeof(UINT») 

TRACE("Failed to create toolbar\n"); 
return -1; // fail to create 

if (!m_wndStatusBar.Create(this) :: 
!m_wndStatusBar.SetIndicators(indicators. 

sizeof(indicators)/sizeof(UINT)) 

TRACE("Failed to create status bar\n"); 
return -1; // fail to create 

return 0; 

CStudentDoc 
The CStudentDoc class is the same as the CStudentDoc class from the previous 
chapter (shown in Figure 15-4 on page 298) except for three functions: Seri­
alize, OnOpenDocument, and OnUpdateFileSave. 

Serialize 
One line has been added to the App Wizard-generated function to serialize 
the document's student list. 

//////////////////////////////////////////////////////////////////////// 

// CStudentDoc serialization 

void CStudentOoc::Serialize(CArchive& ar) 
{ 

if (ar.IsStoring(» 
{ 

// TOOO: add storing code here for other data members 

(continued) 

341 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

else 
{ 

II TODO: add loading code here for other data members 

m.,..stud.el1tList .Se.rl 

OnOpenDocument 
This virtual function is overridden only for the purpose of displaying a 
TRACE message. 

BOOl CStudentDoc::OnOpenDocument(const char* pszPathName) 
{ 

if (!CDocument::OnOpenDocument(pszPathName» 
return FALSE; 

return TRUE; 

On UpdateFileSave 
This is a message map function that grays the File Save toolbar button when 
the document is in the unmodified state. The view controls this state by call­
ing the document's SetModifiedFlag function. 

void CStudentDoc::OnUpdateFileSave(CCmdUI* pCmdUI) 
{ 

CStudentView 
The code for the CStudentView class comes from the previous chapter. Figure 
15-5 on page 303 shows the code. 

AppWizard and EX16A 

342 

If you were using App Wizard to start the EX16A project, you would specify 
document type name Student and file extension 16a in the Classes dialog as 
shown in Figure 16-7. 



S I X TEE N: Reading and Writing Documents-SDI 

Figure 16-7. 
The EX16A App Wizard Classes dialog. 

This ensures that the document template resource string contains the cor­
rect default extension. 

Testing the EX16A Application 
Build the program, and then test it by typing some data and saving it on disk 
with the filename TEST.l6A. (You don't need to type the .l6A.) Now the win­
dow should look similar to Figure 16-8. 

Student Data Entry Form 

Name It.m!UNe;:mn 

Grade EI 

Figure 16-8. 
The EX16A window. 

343 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Exit the program, and then restart it and open the file you saved. Did 
the names come back? Take a look at the Debug Messages window and ob­
serve the sequence of function calls. Is the following sequence produced 
when you start the application? 

Entering CStudentDoc constructor 
Entering CMainFrame constructor 
Entering CStudentView constructor 
Entering CStudentDoc::OnNewDocument 
Entering CStudentDoc::DeleteContents 
Entering CStudentView::OnlnitialUpdate 
Entering CStudentView::OnUpdate 
Entering CMainFrame::ActivateFrame 

File Manager Document Association 

344 

Start the Windows File Manager, and then open the directory\VCPP\EX16A. 
Widen the file search to include Other Files, and then select the file 
TEST.16A. Choose Associate from the File menu. Fill in the dialog as shown 
in Figure 16-9. 

Figure 16-9. 
File Manager window with File Manager Associate dialog. 



S I X TEE N: Reading and Writing Documents-SOl 

Now narrow the File Manager's search to Documents. Only files with 
the 16A suffix will be shown, denoted by this document symbol: 

Double-click TEST.16A. Does the EX16A program start up? If you look in 
WIN.lNI, you'll see the line 

16A=c:\vcpp\ex16a\ex16a.exe A.16A 

File Manager also inserts a new (redundant) entry in the Windows Registra­
tion Database; you'll learn more about that in the next chapter. 

345 



I 

I 

I 

I 

I 
I 

I 
I 

I 

I 

I 
I 

I 

I 
I 

I 

I 
I 

I 
I 

I 

I 

I 
I 

I 

I 

I 

I 

I 
I 

I 

I 
I 

I 

I 
I 

I 

I 
I 

I 

I 
I 



C HAP T E R S EVE N TEE N 

READING AND WRITING 
DOCUMENTS-MOl 

This chapter introduces the Microsoft Foundation Class (MFC) Library ver­
sion 2.5 Multiple Document Interface (MDI) application and explains how it 
reads and writes its document files. The MDI application is really the pre­
ferred MFC library program style. AppWizard endows only MDI applications 
with capabilities such as File Manager drag and drop, and most of the sample 
programs that come with Microsoft Visual C++ are MDI applications. 

Here you'll learn the similarities and differences between Single 
Document Interface (SDI) and MDI applications, and you'll see how the 
MDI application handles files dragged and dropped from Windows File 
Manager. You'll also learn how, with little effort, you can retrofit SDI applica­
tions with this drag-and-drop capability. Be sure you thoroughly understand 
the SDI application, as described in Chapter 16, before you attack the MDI 
application. 

The MOl A,pplication 
Before you look at the class library code for MDI applications, you should be 
familiar with the operation of Windows l\1DI programs. Take a close look at 
the Visual C++ Visual Workbench now. It's an MDI application whose "mul­
tiple documents" are program source code files. Visual Workbench is not the 
most typical MDI application, though, because it collects its documents into 
projects. It's better to examine Microsoft Word for Windows or, better yet, 
to examine a real class library MDI application-the kind that AppWizard 
generates. 

347 



PART III: THE DOCUMENT-VIEW ARCHITECTURE 

A Typical MOl Application, MFC Library Style 

348 

This chapter's first example, EX17A, is an MDI version of EX16A. Look back 
at Figure 16-8 on page 343 to see an illustration of the SDI version after 
the user has selected a file. Now look at the MDI equivalent, shown in 
Figure 17-1. 

Student Data Entry Form 

Name I Christian, Brad 

Grade ~ 

Figure 17-1. 
The EX17 A application with two files open and the Window menu shown. 

The user has two separate document files open, each in a separate MDI 
child window, but only one child window is active-the lower window, which 
lies on top of the other child window. The application has only one menu 
and one toolbar, and all commands are routed to the active child window. 
The main window's title bar reflects the name of the active child window's 
documen t file. 

The child window's minimize box allows the user to reduce the child 
window to an icon in the main window. The application's Window menu 
(shown in Figure 17-1) lets the user control the presentation through the fol­
lowing items: 



Menu Item 

New Window 

Cascade 

Tile 

Arrange Icons 

(document names) 

S EVE NT E EN: Reading and Writing Documents-MOl 

Action 

Opens an additional child window for the selected 
document 

Arranges the existing windows in an overlapped 
pattern 

Arranges the existing windows in a nonoverlapped, 
tiled pattern 

Arranges iconized windows in the frame window 

Selects the corresponding child window and brings it to 
the top 

If the user saves and closes both child windows (and opens the File menu), 
the application looks like Figure 17-2 on the next page. 

The menu is different: Most toolbar buttons are disabled, and the win­
dow caption does not show a filename. About the only thing the user can do 
is start a new document or open an existing document from disk. 

Figure 17-3 on the next page shows the application when it first starts up 
and a new document is created. The single child window has been maximized. 

, ~"~'~J ,;:<~': ~":i<: :" ~'J; ',q'd " 

For Wi,l1dows Sgf(l>r6g,a~m4!!t'; ",:'" \ A' ,;'", ;~~,L;; 
Starti~g with versionB}O~ Wi~d9'WS~;h~$idiree~1~~tipP~~ , ~ ~, •• ,: N~~lM ,: f; ~:i;Lrf';:" 
qations.'T1i~Microst)~tFoun~atipn<?1~~~(~~9.';ti~!~~,;:~· "HH" ",7,,',', 

, builds :Qnthis Wind(jws 8up"p~rt tOn:uikn~: ;MD'~:€DVit#~~~~t ~1\!r 
parallels, tb~ SDlenviiton~entln ali '~DK'lVlJ!)~~lJplit~tiobJ, ~~~ili. 
a:pplicat!on frame, wihdow 'containsthe tt1~riu';aii~·a ~,,; 7:~ '"~~~Ilt, 
wi:nd0'Y'" The ·dient~ndC)wm;anage$ :ariaus ,child ~Il:~~~$~t~ft~o~~: i 

, respond: to documents.theM~I'()lieh~wi!l~o~Jias i~~ 9~i~r~rf:~S'-". ~,; i; 
. te~e'dwi~dowdas$ (riot (o·beconfus'~~with· a>~tt(;~ass,lwi~~~pr~~:.," 
cedtire that handles 'special 'ni~ssages; si!lc1r:as, WiNriJf~f~~E;~ . 
and'WM __ MDITILE~An' MDl'~hlld Wi:ha6w,!~:fu~~~ttti!l~e~i~;si~ii~f t~:~"··.'· 
tlle ~lndow pro,eduref()ranSDIm~inwit14~W>:~i ..•.• ··i: :~, .:::'; ." 

.. '. .. In'the MFC . library, the: tMlJ1FrQ/m~'fnasul~s!,:~~~aPs\l,1~tbs; th€~ 

. functions ·of b~th'theInain fram~. wilt~~'!'~!l~ ;F~;~Pl,~c~~~~~~n7 
dow. This cl,assihas,me~sag~ l1andlers'for: aU~e:Win4~tw$ ~I?~ nies .. 
sagesanci t~us',cat1.lI1afi~g¢ its child W-infl~ws~*1ii;~~ar~r¢pr~~~t1t~cl: 
by:Objects of das~Xl¥IJl'ChildWml~ ....... .'. . · 

349 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

350 

Figure 17-2. 
EX17 A with no child windows. 

Student Data Entry Form 

Name 

Grade Cl 1-
Figure 17-3. 
EX17 A with initial child window. 

The single, empty child window has the default document name 
Exl7al. This name is based on the Doc Type Name you selected in the 
AppWizard Classes dialog, Exl7a. The first new file is Exl7al, the second is 
Ex17a2, and so forth. The user normally chooses a different name when sav­
ing the document. 



S EVE N TEE N: Reading and Writing Documents-MOl 

MFC library MDI applications, like many commercial MDI applica­
tions, start up with a new, empty document. (Visual Workbench is an excep­
tion.) If you want your application to start up with a blank frame, you can 
remove the OnFileNew call in the application class file as shown in example 
EX17A. 

The MDI Application Object 
You're probably wondering how an MDI application works and what code 
makes it different from an SDI application. Actually, the startup sequences 
are pretty much the same. An application object, of a class derived from class 
CWinApp, has an overridden Initlnstance member function. This Initlnstance 
function is somewhat different from the SDI InitInstance, starting with the 
call to AddDocTemplate. 

The MDI Document Template Class 
The MDI template construction call in Initlnstance looks like this: 

AddDocTemplate(new CMultiDocTemplate(lDR_MYDOCTYPE, 
RUNTlME_CLASS(CMyDoc), 
RUNTlME_CLASS(CMDlChildWnd), II standard MDl child frame 
RUNTlME_CLASS(CMyView»); 

Like the CSingleDocTemplate class you saw in Chapter 16, the CMultiDoc­
Template class allows an application to use multiple document types, but, un­
like the CSingleDocTemplateclass, it allows the simultaneous existence of more 
than one document object. This is the essence of the MDI application. 

The single AddDocTemplate call shown above permits the MDI applica­
tion to support multiple child windows, each connected to a document ob­
ject and a view object. It's possible to have several child windows (and 
corresponding view objects) connected to the same document object. In this 
chapter, we'll start with only one view class and one document class. You'll 
see multiple view classes and multiple document classes in Chapter 19. 

The MDI Frame Window and Child Window 
The SDI examples had only one frame window class and only one frame win­
dow object. For SDI applications, AppWizard generated a class called CMain­
Frame, which was derived from the class CFrameWnd. An MDI application has 
two frame window base classes and many frame objects, as shown in the table 
on the following page. The MDI frame-view window relationship is shown in 
Figure 17-4 on the following page. 

351 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

352 

AppWizard- Number 
Generated of 

Base Class Class Objects 

CMDIFrameWnd CMainFrame ·1 only 

CMDIChildWnd No derivation 1 per 
child 
window 

View· window 

Figure 17-4. 
The MDI frame-view window relationship. 

Menu and 
Control 
Bars 

Yes 

No 

Contains 
a View 

No 

Yes 

MDI main 
frame 
window 

Object 
Con-
structed 

In applica-
tion class's 
InitInstance 
function 

Byapplica-
tion frame-
work when 
a new child 
window is 
opened 

In an SDI application, the CMainFrame object framed the application 
and contained the view object. In an MDI application, the two roles are sepa­
rated. Now the CMainFrame object is constructed in InitInstance, and the 
CMDIChildWnd object contains the view. AppWizard generates code as 
shown here: 

CMainFrame* pMainFrame = new CMainFrame; 
if (!pMainFrame-)LoadFrame(IDR_MAINFRAME)) 

return FALSE; 
pMainFrame-)ShowWindow(m_nCmdShow); 
pMainFrame-)UpdateWindow(); 
m_pMainWnd = pMainFrame; 



S EVE N TEE N: Reading and Writing Documents-MOl 

The application framework can create the CMDIChildWnd objects 
dynamically because the CMDIChildWnd class is passed to the CMultiDoc­
Template constructor. 

(Note: The MDI Initlnstance function sets the CWinApp data member 
m_pMainWnd to point to the application's main frame window. This means 
you can access m_pMainWnd through the global AfxGetApp function any time 
you need to get your application's main frame window.) 

The Main Frame and Document Template Resources 
An MDI application has two separate string and menu resources, identified 
by the constants IDR-MAINFRAME and IDR-MYD0 CTYPE. The first re­
source set goes with the empty main frame window; the second set goes with 
the occupied main frame window. Here are the two string resources with 
substrings broken out: 

IDR_MAINFRAME 
"MYAPP Windows Application" 

IDR_MYDOCTYPE 
"\nn 
"MYAPP\n" 
"MYAPP Document\n" 
"MYAPP Files (*.17a)\n" 
".17a\n" 
"MYAPPFileType\n" 
"MYAPP File Type" 

II application window caption 

II application window caption 
II root for default document name 
II document type name 
II document type description and filter 
II extension for documents of this type 
II registration database document ID 
II registration database document 
II description 

(Note: The resource compiler won't accept the string concatenations as 
shown above. If you examine the EX17A.RC file, you'll see the substrings 
combined in one large string.) 

The application window caption comes from the IDR_MAINFRAME 
string. When a document is open, the document filename is appended. The 
last two substrings in the IDR-MYDOCTYPE string are there to support drag 
and drop. 

Creating an Empty Document-The CWinApp::OnFileNew Function 
The MDI Initlnstance function calls OnFileNew, as did the SDI InitInstance 
function. This time, however, the main frame window has already been cre­
ated. OnFileNew, through a call to the CWinApp function GpenDocumentFile, 
now does the following: 

353 



PAR Till: THE DOCUMENT-:-VIEW ARCHITECTURE 

l. Constructs a document object but does not attempt to read data 
from disk. 

2. Constructs a child frame window object (of class CMDIChildWnd). 
Also creates the child frame window but does not show it. In the 
main frame window, the IDR_MAINFRAME menu is replaced by the 
IDR_MYDOCTYPE menu. IDR_MYDOCTYPE also identifies an icon 
resource that is used when the child window is minimized within 
the frame. 

3. Constructs a view object. Also creates the view window but does not 
show it. 

4. Establishes connections among the document, the main frame, and 
view objects. Do not confuse these object connections with the class 
associations established by the call to AddDocTemplate. 

5. Calls the virtual OnNewDocument member function for the docu­
ment object. 

6. Calls the virtual OnlnitialUpdate member function for the view object. 

7. Calls the virtual ActivateFrame for the child frame object to show the 
frame window and view window. 

The OnFileNew function is also called in response to the File New menu 
command. In an MDI application, OnFileNew performs the exact same steps 
as it does when called from Ini tIns tan ce. 

NOT E : Some functions listed above are not called directly by 
OpenDocumentFile but are called indirectly through the application 
framework. 

Creating an Additional View for an Existing Document 

354 

If you choose New Window from the Window menu, the application frame­
work opens a new child window that's linked to the currently selected docu­
ment. The associated CMDIFrameWnd function, OnWindowNew, does the 
following: 

1. Constructs a child frame object (of class CMDIChildWnd). Also 
creates the child frame window but does not show it. 

2. Constructs a view object. Also creates the view window but does not 
show it. 

3. Establishes connections between the new view object and the 
existing document and main frame objects. 



S EVE N TEE N: Reading and Writing Documents-MOl 

4. Calls the virtual OnlnitialUpdate member function for the view 
object. 

5. Calls the virtual ActivateFrame for the child frame object to show the 
frame window and the view window. 

Loading and Storing Documents 
In MDI applications, documents are loaded and stored the same way as in 
SDI applications, but with two important differences: A new document ob­
ject is constructed each time a document file is loaded from disk, and the 
document object is destroyed when the child window is closed. Don't worry 
about clearing a document's contents before loading~but you should over­
ride the CDocument::DeleteContentsfunction anyway to make the class portable 
to the SDI environment. 

Multiple Document Templates 
An MDI application can support multiple document templates through mul­
tiple calls to the AddDocTemplate function. Each template can specify a differ­
ent combination of document, view, and MDI child frame classes. When the 
user chooses New from the File menu, the application framework displays a 
list box that allows the use,r to choose a template by name as specified in the 
string resource. Multiple AddDocTemplate calls are not fully supported in SDI 
applications because the document, view, and frame objects are constructed 
once for the life of the application. 

Drag and Drop-Programs and Documents 
In the IBM PC world, users are accustomed to starting up a program and 
then selecting a disk file (sometimes called a document) that contains data 
the program understands. All MS-DOS programs worked this way, and Win­
dows improved things by allowing the user· to double-click on a program 
icon instead of typing a program name. Meanwhile the Apple Macintosh us­
ers were double-clicking on a document icon, and the Macintosh operating 
system figured out which program to run. 

Windows version 3.1 also allows users to double-click on a document 
icon to run programs. But how does Windows know which program to run 
when a user double-clicks a document icon? In Chapter 16, you used File 
Manager to manually associate a file type with a program. This association 
process placed a line in the [Extensions] section of WIN.INI that linked a 
three-character file extension with the program name. When File Manager 

355 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

started the program, it put the selected filename in the command line, and 
the program opened the file on startup. 

Now we'll take this process to a new level. No longer will we (or the 
user) need to manually associate a document type with a program. Mter the 
user executes the program the first time as part of the installation process, 
he or she will be able to drag a file from File Manager and drop it into a run­
ning application's main window. The user can still double-click on a docu­
ment icon in File Manager, but the program launch process is signifi­
can tly differen t. 

Program Registration 

356 

Windows maintains a database of program information in a file called 
REG.DAT. This registration database supports both OLE and File Manager 
drag and drop. As far as drag and drop is concerned, each database entry 
contains program parameters, including the program identifier, the file type 
description, and the command line. A Windows utility program, REGEDIT, 
allows editing of the registration database. Figure 17-5 shows a typical 
REGEDIT window for an MFC library MDI program. 

You and your user don't have to mess with REGEDIT because Windows 
provides a function to register a program, and the application framework 
wraps this function with a CWinApp member function. The following line in 
your derived application class InitInstance function does the job: 

RegisterShellFileTypes(); 

The first time your MDI program is run (from Visual Workbench or 
from Program Manager), the registration database is updated to include the 
program's identifier and command line parameters, and the WIN.lNI file is 
updated to associate the file extension with the program identifier. You 
might notice a slight delay while the files are updated. 

shell 
L open 
~ command = C:WCPP\EX17A\EX17A_EXE %1 
L ddeexec = r .......... r .. '')''1 "'11 

Figure 17-5. 
The REGEDIT window. 



S EVE N TEE N: Reading and Writing Documents-MDI 

NOT E : REGEDIT was run with the Iv switch. 

Enabling Drag and Drop 
If you want your already-running program to open files dragged from File 
Manager, you must call the CWnd function DragAcceptFiles for the applica­
tion's main frame window. The application object's public data member 
m_pMainWnd points to the CMDIFrameWnd object. The following line in Init­
Instance enables drag and drop: 

m_pMainWnd->OragAcceptFiles(); 

Enabling Embedded Launch 
In the SDI example EX16A, File Manager started an associated program by 
including the document filename in the program's command line. File Man­
ager can also start a program through an embedded launch procedure, and 
that's what AppWizard sets up for MDI applications. An embedded launch is 
a two-step process. First, the program is executed with the -e parameter as 
specified in the registration database. Mter it's running, the program gets 
a message via Windows' Dynamic Data Exchange (DDE) that tells it to load 
a file. 

The following call to a CWinApp member function is included in 
InitInstance: 

EnableShellOpen(); 

This function does the setup necessary for the program to accept DDE 
messages. 

Program Startup Parameters 
When an MFC library MDI program is run from Program Manager, there is 
usually no command line parameter. When it's run from File Manager (an 
embedded launch), the registration database ensures that the program is 
run with the -e parameter. Here's the code in the derived application class 
InitInstance function that processes the command line: 

if (m_lpCmdLine[0] == '\0') 
{ 

} 

II Create a new (empty) document. 
OnFileNew(); 

(continued) 

357 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

else if «m_lpCmdLine[0] 
(m_lpCmdLine[l] 

, , :: m_lpCmdLine[0] 
'e' :: m_lpCmdLine[l] 

'I') && 
, E' ) ) 

II program launched embedded - wait for DOE or OLE open 

else 
{ 

II open an existing document 
OpenDocumentFile(m_lpCmdLine); 

If there's no command line argument, the program creates a new, 
empty child window. If the command line contains something that looks like 
a filename, the program creates a new child window and loads that file. In an 
embedded launch, the program waits for a DDE message. 

Responding to DOE Messages 
The base classes take care of the DDE messages that result from drag and 
drop and File Manager embedded launch (with the -e command line param­
eter). In drag and drop, the application framework calls the CWinApp func­
tion OpenDocumentFile with the filename as a parameter. In an embedded 
launch, the application framework calls two CWinApp functions: OnDDE­
Command and OpenDocumentFile. You normally don't need to override these 
functions in your derived application class. Let the application framework 
do the work. 

The EX17A Example 

358 

This example is the MDI version of EX16A from the previous chapter. It uses 
exactly the same document and view class code and the same resources (ex­
cept for the program name). The application code and main frame class 
code are different, however. All the new code is listed here, including the 
code that App Wizard generates. 

Here's a list of the files and classes in the EX17A example: 

HeaderFile Source Code File 

EX17A.H EX17A.CPP 

MAINFRM.H MAINFRM.CPP 

Class 

CEx17aApp 

CAboutDlg 

CMainFrame 

Description 

Application class 
(from AppWizard) 

About dialog 

MDI main frame 

(continued) 



S EVE NT E EN: Reading and Writing Documents-MOl 

Header File Source Code File Class Description 

STUDOC.H STUDOC.CPP CStudentDoc Student document 
(from EX16A) 

STUVIEW.H STUVIEW.CPP CStudentView Student form view 
(from EX15B) 

STUDENT.H STUDENT.CPP CStudent Student record 
(from EX16A) 

STDAFX.H STDAFX.CPP Precompiled 
headers 

CEx17aApp 
Two functions, OpenDocumentFile and OnDDECommand, are overridden only 
for the purpose of inserting TRACE statements. Also, the OnFileNew call in 
Initlnstance has been commented out to prevent the creation of an empty 
document window on startup. Figure 17-6 shows the source code. 

EX17A.H 

1/ifndef __ A FXW I N_H __ 
#error include 'stdafx.h' before including this file for PCH 

#endif 

#include "resource.h" // main symbols 

////////////////////////////////////////////////////////////////////// 

// CEx17aApp: 
// See ex17a.cpp for the implementation of this class 
II 

class CEx17aApp public CWinApp 

public: 
CEx17aApp() ; 

// Overrides 
virtual BOOl InitlnstanceC); 
"f:upennaJTI~:afi}e < ",~.:::,;' ;.,:?~'::F: :;".~;:: ,>;,:,";~:I ~, 
Vi,~.t:ita l'CDocUTlI!=!t1't ~ . '9~~h~~:C ta.rIt~n.~f;:i 'l;e;( ;E;~C?:JIR;'l: ~~.~~!;l;~N?;t!'~~::: '~.' 

'; vfrttlafBOQLQn[jeECoTllm~.o~~c~tla:r~ Lp~z,eoJnmaiid ~;~: i: ~:;::.;:: .:; ,:~ ;;~: :i'. 

Figure 17-6. (continued) 

The CEx17aApp source listing. 

359 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

360 

Figure 17-6. continued 

II Implementation 

11{{AFX_MSG(CEx17aApp) 
afx_msg void OnAppAbout(); 

II NOTE - the ClassWizard will add and remove member functions 
II here. 
II DO NOT EDIT what you see in these blocks of generated code 

I/} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

} ; 

EX17A.CPP 

#include "stdafx.h" 
#include "ex17a.h" 

)Fin,clude "mainfrm.h" 
;;:",:,~J:if~cnUde; ~'!st:tl;d:etX~ ::ij;~ <"C"" ""'"",',,,,"""""""'" 

#include "studoc.h" 
#include "stuview.h" 

#ifdef _DEBUG 
#undef THIS_FILE 
static char BASED_CODE THIS_FILE[] = __ FILE __ ; 
ffendi f 

1111111111111111111111111111111111111111111111111111111111111111111111 
II CEx17aApp 

BEGIN_MESSAGE_MAP(CEx17aApp, CWinApp) 
11{{AFX_MSG_MAP(CEx17aApp) 
ON_COMMAND(ID_APP_ABOUT, OnAppAbout) 

II NOTE - the ClassWizard will add and remove mapping macros here. 
II DO NOT EDIT what you see in these blocks of generated code! 

I/} }AFX_MSG_MAP 
II Standard file based document commands 
ON_COMMANQ(ID_FILE_NEW, CWinApp::OnFileNew) 
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen) 

END_MESSAGE_MAP() 

1111111111I11111111111111111111111111111111111111111111111111111111111 
II CEx17aApp construction 

CEx17aApp::CEx17aApp() 
{ 

(continued) 



S EVE N TEE N: Reading and Writing Documents-MOl 

Figure 17-6. continued 

II TODO: add construction code here 
II Place all significant initialization in Initlnstance 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIII1111111111111111 
II The one and only CEx17aApp object 

CEx17aApp NEAR theApp; 

1111111111111111111111111111111111111111111111111111111111111111111111 
II CEx17aApp initialization 

Baal CEx17aApp::lnitlnstance() 
{ 

II Standard initialization 
II If you are not using these features and wish to reduce the size 
II of your final executable, you should remove from the following 
II the specific initialization routines you do not need. 

SetDialogBkColor(); 
loadStdProfileSettings(); 

II set dialog background color to gray 
II load standard INI file options 
II (including MRU) 

II Register the application's document templates. Document templates 
II serve as the connection between documents, 
II frame windows, and views. 

AddDocTemplate(new CMultiDocTemplate(IDR-EX17ATVPE, 
RUNTIME_ClASS(CStudentDoc), 
RUNTIME_ClASS(CMDIChildWnd), II standard MDI 

I I chil d frame 
RUNTIME_ClASS(CStudentView))); 

II create main MDI Frame window 
CMainFrame* pMainFrame = new CMainFrame; 
if (!pMainFrame->loadFrame(IDR-MAINFRAME)) 

return FALSE; 
pMainFrame->ShowWindow(m_nCmdShow); 
pMainFrame->UpdateWindow(); 
m_pMainWnd = pMainFrame; 

II enable file manager drag/drop and DDE Execute open 
m_pMainWnd-)DragAcceptFiles(); 
EnableShellOpen(); 
RegisterShellFileTypes(); 

(continued) 

361 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

362 

Figure 17-6. continued 

// simple command line parsing 
if (m_lpCmdLine[0] == '\0') 
{ 

// create a new (empty) doc~ment 
/1, On'FileNew(); 

else if «m_lpCmdLine[0] == '-' :: m_lpCmdLine[0] == 'I') && 
(m_lpCmdLine[l] == 'e' :: m_lpCmdLine[l] == 'E')) 

else 
{ 

// program launched embedded - wait for DDE or OLE open 

// open an existing document 
OpenDocumentFile(m_lpCmdLine); 

return TRUE; 

////////////////////////////////////////////////////////////////// 

// CAboutDlg dialog used for App About 

class CAboutDlg : public CDialog 
{ 

public: 
CAboutDlg(); 

// Dialog Data 
//{{AFX_DATA(CAboutDlg) 
enum { IDD = IDD_ABOUTBOX }; 
/ /} }AFX_DATA 

(continued) 



S EVE NT E EN: Reading and Writing Documents-MOl 

Figure 17-6. continued 

// Implementation 
protected: 

virtual void OoOataExchangeCCOataExchange* pOX); // OOX/OOV support 
//{{AFX_MSGCCAboutOlg) 

} ; 

1/ No message handlers 
/ /} } AFX_MSG 
DECLARE_MESSAGE_MAP() 

CAboutOlg::CAboutOlgC) : COialogCCAboutOlg::IOO) 
{ 

//{{AFX_OATA_INITCCAboutOlg) 
//}}AFX_OATA_INIT 

void CAboutOlg::OoOataExchange(COataExchange* pOX) 
{ 

COialog::OoOataExchange(pOX); 
//{{AFX_OATA_MAP(CAboutOlg) 
//}}AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CAboutOlg. CDialog) 
//{{AFX_MSG_MAP(CAboutDlg) 

// No message handlers 
/ /} }AFLMSG_MAP 

ENO_MESSAGE_MAP() 

// App command to run the dialog 
void CEx17aApp::OnAppAbout() 
{ 

CAboutDlg aboutOlg; 
aboutOlg.OoModal(); 

////////////////////////////////////////////////////////////////// 
// CEx17aApp commands 

CMainFrame 
This main frame class, listed in Figure 17~7 beginning on the following page, 
is almost identical to the SDI version, except that it is derived from 
CMDIFrameWnd instead of from CFrameWnd. The same toolbar definitions 
are included. 

363 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

364 

MAINFRM.H 

class CMainFrame : public CMDIFrameWnd 
{ 

DECLARE_DYNAMIC(CMainFrame) 
public: 

CMainFrame(): 

II Attributes 
public: 

II Operations 
public: 

II Implementation 
public: 

virtual ~CMainFrame(): 

protected: II control bar embedded members 
m_wndStatusBar: 
m_wndToolBar: 

CStatusBar 
CToolBar 

II Generated message map functions 
protected: 

} : 

11{{AFX_MSG(CMainFrame) 
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct): 

II NOTE - the ClassWizard will add and remove member functions here. 
II DO NOT EDIT what you see in these blocks of generated code! 

I/} }AFLMSG 
DECLARE_MESSAGE_MAP() 

MAINFRM.CPP (the class implementation file) 

#include "stdafx.h" 
Ifinclude "ex17a.h" 

#include "mainfrm.h" 

#ifdef _DEBUG 
#undef THIS_FILE 
static char BASED_CODE THIS_FILE[] __ FILE __ : 
#endif 

Figure 17-7. (continued) 

The CMainFrame class listing. 



S EVE N TEE N: Reading and Writing Documents-MOl 

Figure 17-7. continued 

////////////////////////////////////////////////////////////////////// 

II CMainFrame 

IMPLEMENT_DYNAMIC(CMainFrame. CMDIFrameWnd) 

BEGIN_MESSAGE_MAP(CMainFrame. CMDIFrameWnd) 
//{{AFX_MSG_MAP(CMainFrame) 

// NOTE - the ClassWizard will add and remove mapping macros here. 
// DO NOT EDIT what you see in these blocks of generated code! 

ON_WM_CREATE( ) 
/ /} }AFX_MSG_MAP 

END_MESSAGE_MAP() 

////////////////////////////////////////////////////////////////////// 
// arrays of IDs used to initialize control bars 

// toolbar buttons - IDs are command buttons 
static UINT BASED_CODE buttons[] = 
{ 

} ; 

// same order as in the bitmap 'toolbar.bmp' 
ID_FILE_NEW. 
ID_FILE_OPEN. 
ID_FILE_SAVE. 

I D_FI LE_PRI NT • 
ID_APP_ABOUT. 

static UINT BASED_CODE indicators[] = 
{ 

} ; 

ID_SEPARATOR. 
ID_INDICATOR-CAPS. 
ID_INDICATOR_NUM. 
ID_INDICATOR-SCRL. 

// status line indicator 

(continued) 

365 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

366 

Figure 17-7. continued 

////////////////////////////////////////////////////////////////////// 

// CMainFrame construction/destruction 

CMainFrame::CMainFrame() 
{ 

// TODO: add member initialization code here 

CMainFrame::~CMainFrame() 

{ 

} 

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct) 

if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1) 
return -1; 

if (!m_wndToolBar.Create(this) II 
lm_wndToolBar.LoadBitmap(IDR-MAINFRAME) I: 
!m_wndToolBar.SetButtons(buttons, 

sizeof(buttons)/sizeof(UINT))) 

TRACE("Failed to create toolbar\n"); 
return -1; // fail to create 

if (!m_wndStatusBar.Create(this) :: 
!m_wndStatusBar.Setlndicators(indicators, 

sizeof(indicators)/sizeof(UINT))) 

T RA C E ( " Fail edt 0 c rea t est a t usb a r \ n " ) ; 
return -1; // fail to create 

return 0; 

///////////////////////////////////////////////////////////////// 
// CMainFrame diagnostics 

IFi fdef _DEBUG 
void CMainFrame::AssertValid() const 
{ 

CMDIFrameWnd::AssertValid(); 

(continued) 



S EVE NT E EN: Reading and Writing Documents-MOl 

Figure 17-7. continued 

void CMainFrame::DumpCCDumpContext& dc) const 
{ 

CMDIFrameWnd::DumpCdc); 

flendi f / / _DEBUG 

///////////////////////////////////////////////////////////////// 

// CMainFrame message handlers 

Testing the EX17A Application 
Do the build, run the program from Visual Workbench, and then make sev­
eral documents. Try saving the documents on disk, closing them, and reload­
ing them. Now exit the program and start File Manager. The files you created 
should show up with File Manager document icons. Double-click on a docu­
ment icon and see whether the EX17A program starts up. Now, with both File 
Manager and EX17A on the screen, drag a document from File Manager to 
EX17A. Was the file opened? 

NOT E : If File Manager is already running when you first start 
EX17A, it won't recognize the changes made to the registration 
database. You must exit File Manager and restart or drag a file into 
the EX17A main frame window for File Manager to recognize the 
changes made to the registration database. 

The EX17B Example 
In this example, you'll retrofit the embedded launch and drag-and-drop ca­
pabilities into an SDI application. You need to modify only the application 
class and the main frame class. The resulting program does nothing, but you 
can apply the same changes to any SDI program, including EX16A. We'll go 
back to the old step-by-step method because so little code is new. 

1. Run AppWizard to generate \VCPP\EX17B\EX17B. Choose App­
Wizard from Visual Workbench's Project menu. The options and default 
class names are shown in the screen at the top of the following page: 

367 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

368 

Classes to be created: 
Application: CEx17bApp in EX17B.H and EX17B.CPP 
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP 
Document: CEx17bDoc in EX17BDOC.H and EX17BDOC.CPP 
View: CEx17bView in EX17BVW.H and EX17BVW.CPP 

Features: 
+ Supports the Single Document Interface (SDI) 
+ MSVC Compatible project file (EX17B.MAK) 
+ Initialtoolbar and status bar in main frame 
+ Printing and Print Preview support in view 
+ Document supports files with extension .17b 
+ Uses medium memory model 

Be sure you turn off the Multiple Document Interface check box. 
For the document class, specify a file extension of 17b. 

2. Edit the derived application class Initlnstance function in 
EX17B.CPP. After updating the registration database and enabling 
an embedded launch, this function calls OnFileNew when it detects 
an embedded launch. This call constructs, creates, and shows all the 
necessary windows. The application framework CWinApp functions 
OnDDECommand and OpenDocumentFile can then handle the DDE 
messages. 

BOOl CEx17bApp::lnitlnstance() 
{ 

II Standard initialization 
II If you are not using these features and wish to reduce the size 
II of your final executable. you should remove from the following 
II the specific initialization routines you do not need. 

SetDialogBkColor(); 
loadStdProfileSettings(); 

II set dialog background color to BTNFACE 
II load standard INI file options 
II (including MRU) 

II Register the application's document templates. Document templates 
II serve as the connection between documents. 
II frame windows and views. 

AddDocTemplate(new CSingleDocTemplate(IDR_MAINFRAME. 
RUNTIME_ClASS(CEx17bDoc). 
RUNTIME_ClASS(CMainFrame). II main SDI frame window 
RUNTIME_CLASS(CEx17bView»); 



S EVE N TEE N: Reading and Writing Documents-MOl 

EnableShellOpen(); 
RegisterShellFileTypes(); 

II create a new (empty) document 
if (m_lpCmdLine[0] == '\0') 
{ 

II create a new (empty) document 
TRACE("create a new empty document\n"); 
OnFi 1 eNew(); 

else if nm.JpCm~LineI0] =='-' II m_lpCmdl1ne[01;:= 'l') && 
(m .. JpCmdl1neUJ:== 'e' I L m~lpCmdLine[1] == 'Et» 

{ 

T~~cf~~'O~Bn' .. ~~\; ~xtlti n9·. dodu~~nt. ~ 
{l:.:O.peri: ,a~nex ~'$ tJngdocul)tenl~ 
·o~e~nDec4fu~fI'tF~ 1 e(m .... lpCmd Li n'e:}.: 

return TRUE; 

3. Use App Studio to edit the lOR_MAINFRAME string resource. 
Choose String Table, and then select the IDR_MAINFRAME string. 
Add the following text to the end of the AppWizard-generated string: 

\nEX17SFileType\nEX17B Fi 1 e Type 

The resulting string should look like this: 

EX17B Windows Application\nEx17b\nEX17B Document\nEX17B Files 
(*.17b)\n.17b\nEX17BFileType\nEx17B File Type 

4. Edit the main frame window OnCreate function in MAINFRM.CPP. 
Add the following line at the end of the CMainFrame On Create function, 
immediately before the return statement: 

I)rjigAtr;eptFil es.(): 

When the frame window is created, the drag-and-drop capability is 
activated. 

369 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

370 

5. Build and test the resulting application. It's not interesting to test a 
do-nothing application, but you can create zero-length files and load 
them later. Run the program first from Visual Workbench to update the 
registration database. Save a file, exit the program, and then run File 
Manager. The newly saved file should show up in File Manager as a 
document icon, and you should be able to execute EX17B by double­
clicking on the document icon. Drag and drop should work too. 



C HAP T E R EIGHTEEN 

PRINTING AND 
PRINT PREVIEW 

If you're depending on the Windows SDK alone, printing is one of the 
tougher programming jobs you'll have. If you don't believe me, just skim 
through the 60-page chapter ("Using the Printer") in Charles Petzold's Pro­
gramming Windows. Other books about Microsoft Windows ignore the subject 
completely. The Microsoft Foundation Class (MFC) Library version 2.5· ap­
plication framework goes a long way toward making printing easy. As a 
bonus, it adds a print preview capability that behaves like the print preview 
functions in commercial Windows-based programs such as Microsoft Word 
for Windows and Microsoft Excel. 

In this chapter, you'll learn how to use the MFC library Print and Print 
Preview functions. In the process, you'll get a feeling for what's involved in 
Windows printing and how it's different from MS-DOS printing. First you'll 
do some wysiwyg printing, in which the printer output matches the screen 
display (except for the scale factor). This option requires careful use of Win­
dows' mapping modes. Later you'll print a paginated data processing style 
report that doesn't reflect the screen display at all. In that example, you will 
learn how to structure your document so that the program can print any 
specified range of pages on demand. 

Windows Printing 
In the old days, programmers had to worry about configuring their applica­
tions for dozens of printers. Now Windows makes life easy because it pro­
vides all the printer drivers you'll ever need. It also supplies a consistent user 
interface for printing. 

371 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Standard Printer Dialogs 
When the user chooses Print from the File menu of an application for 
Windows, the standard Print dialog appears, as shown in Figure 18-1. 

Figure 18-1. 
The standard Print dialog. 

If the user clicks the Setup button, the standard Print Setup dialog appears, 
as shown in Figure 18-2. 

Figure 18-2. 
The standard Print Setup dialog. 

During the printing process, the application displays a standard printer sta­
tus dialog, as shown in Figure 18-3. 

Interactive Print Page Selection 

372 

If you've worked in the data processing field, you're used to batch-mode 
printing. A program reads a record and then formats and prints selected 
information as a line in a report. Every time, say, 50 lines have been printed, 



E I G H TEE N: Printing and Print Preview 

Figure 18-3. 
The standard printer status dialog. 

the program ejects the paper and prints a new page heading. The program­
mer assumes that the whole report will be printed at one time and makes no 
allowance for interactively printing selected pages. 

As Figure 18-1 shows, page numbers are important in Windows-based 
printing. A program must respond to a user's page selection by calculating 
which information to print and then printing the selected pages. If you're 
aware of this page selection requirement, you can design your application's 
data structures accordingly. 

Remember the student list from Chapter 16? What if there were 1000 
students and the user wanted page 5 of a student report? If you assumed that 
each student record required one print line and that a page held 50 lines, 
page 5 would include records 201 through 250. With the cObList class, 
you're stuck iterating through the first 200 list elements before you can start 
printing. Maybe the list isn't the ideal data structure. How about an array in­
stead? With the COb Array class, you can directly access the 201st student 
record. 

Not every application has elements that map to a fixed number of print 
lines. Suppose the student record contained a multiline text biography field? 
Because you don't know how many biography lines each record has, you'd 
have to search through the whole file to determine the page breaks. If your 
program remembered those page breaks as it calculated them, its efficiency 
would increase. 

Display Pages vs. Printed Pages 
In many cases, you'll want a printed page to correspond to a display page. As 
you learned in Chapter 5, you cannot guarantee that objects will be printed 
exactly as they are displayed. With TrueType fonts, however, and some extra 
margin room, you can get pretty close. If you're working with full-size paper 

373 



PA RT III: THE DOCUMENT-VIEW ARCHITECTURE 

and you want the corresponding display to be readable, you'll certainly want 
a display window that's larger than the screen. Thus, the CScrollView class is 
ideal for your printable views. 

Sometimes, however, you might not care about display pages. Perhaps 
your view holds its data in a list box, or maybe you don't need to display the 
data at all. In these cases, your program can contain stand-alone print logic 
that simply extracts data from the document and sends it to the printer. Of 
course, the program must properly respond to a user's page range request. If 
you query the printer to find out the paper size and portrait/landscape con­
figuration, you can adjust the pagination accordingly. 

Print Preview 
The Microsoft Foundation Class Library version 2.5 Print Preview feature 
shows you on screen the exact page breaks and line breaks you'll get when 
you print your document on the selected printer. The fonts might look a 
little funny, especially in the smaller sizes, but it's not a problem. Look now at 
the print preview windows that appear on pages 381 and 383. 

Print Preview is an MFC library feature, not a Windows feature. Don't 
underestimate how much effort went into programming Print Preview. The 
Print Preview program examines each character individually, determining its 
position based on the printer's device context. Mter selecting an approxi­
mating font, the program displays the character in the print preview window 
at the proper location. 

Programming for the Printer 
The application framework does most of the work for printing and print pre­
view. To use the printer effectively, you must understand the sequence of 
function calls and know which functions to override. 

The Printer Device Context and the CView::OnDraw Function 

374 

When your program prints on the printer, it uses a device context object of 
class CDC. Don't worry about where the object comes from; the application 
framework constructs it and passes it as a parameter to your view's OnDraw 
function. If your application uses the printer to duplicate the display, the 
OnDraw function can do double duty. If you're displaying, OnPaint calls On­
Draw, and the device context is the display context. If you're printing, 



E I G H TEE N: Printing and Print Preview 

OnDraw is called by another CView function, OnPrint, with a printer device 
context. The OnPrintfunction is called once to print an entire page. 

In print preview mode, the CDC object is linked to another device con­
text object of class CPreviewDC, but that linkage is transparent. Your OnPrint 
and OnDraw functions work the same regardless of whether you're printing 
or previewing. 

The CView::OnPrint Function 
You know that OnPrint calls OnDraw, and that OnDraw can use both a display 
device context and a printer device context. The mapping mode should be 
set before OnPrint is called. You can override OnPrint to print items that you 
don't need on the display, such as a title page, headers, and footers. The 
OnPrint parameters are 

• A pointer to the device context 

• A pointer to a print information structure (CPrintlnfo) that includes 
page dimensions, the current page number, and the maximum 
page number 

In your overridden OnPrint function, you can elect not to call OnDraw 
at all to support print logic that is totally independent of the display logic. 
The application framework calls the OnPrint function once for each page 
to be printed, with the current page number in the CPrintInfo structure. 
You're about to find out how the application framework determines the page 
number. 

Preparing the Device Context-The CView::OnPrepareDC Function 
If you need a display mapping mode other than MM_ TEXT (and you usually 
do), that mode is generally set in the view's OnPrepareDC function. You over­
ride this function yourself if your view class is derived directly from CView, -
but it's already overridden if your view is derived from CScrollView. The 
OnPrepareDC function is called in OnPaint immediately before the call to 
OnDraw. If you're printing, the same OnPrepareDC function is called, this time 
immediately before the application framework calls OnPrint. Thus, the map­
ping mode is set before both the painting of the view and the printing 
ofa page. 

The second parameter of the OnPrepareDC function is a pointer to a 
CPrintInfo structure. This pointer is valid only if OnPrepareDC is being called 
prior to printing. You can test for this condition by calling the CDC member 

375 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

function IsPrinting. The IsPrintingfunction is particularly handy if you're us­
ing OnPrepareDC to set different map modes for the display and the printer. 

If you do not know in advance how many pages your print job requires, 
your overridden OnPrepareDC function can detect the end of the document 
and reset the m_bContinuePrintingflag in the CPrintInfo structure. When this 
flag is FALSE, the OnPrint function won't be called, and control will pass to 
the end of the print loop. 

TIP: If your view class is derived from the CScrollView class and your 
OnPrepareDCfunction sets the m_bContinuePrintingflag, the base class 
OnPrepareDC function must be called before the flag is set. 

The Start and End of a Print Job 

376 

When a print job starts, the application framework calls two CViewfunctions, 
OnPreparePrinting and OnBeginPrinting~ The first function, OnPreparePrinting, 
is called before the display of the Print dialog. You must override this func­
tion to enable printing and print preview. (AppWizard generates the 
OnPreparePrinting, OnBeginPrinting, and OnEndPrinting functions for you if 
you select the Printing And Print Preview option.) If you know the minimum 
and maximum page numbers, call SetMinPages and SetMaxPages in OnPrepare­
Printing. The numbers you pass to these functions will appear in the Print 
dialog for the user to override. 

The second function, OnBeginPrinting, is called after the Print dialog 
exits. Override this function to create Graphics Device Interface (GDI) ob­
jects, such as fonts, that you need for the entire print job. A program runs 
faster if you create a font once instead of creating it repetitively for each 
page. 

The CView function OnEndPrinting is called at the end of the print job, 
after the last page has been printed. Override this function to get rid of GDI 
objects created in OnBeginPrinting. 

The following table summarizes the important overridable CView print 
loop functions: 

OnPreparePrinting 

OnBeginPrinting 

OnPrepareDC (for each page) 

OnPrint (for each page) 

OnEndPrinting 

Sets minimum and maximum page 
numbers 

Creates GDI objects 

Sets mapping mode and optionally detects 
end of print job 

Does print-specific output and then calls 
OnDraw 

Deletes GDI objects 



E I G H TEE N: Printing and Print Preview 

Example EX18A-A Wysiwyg Print Program 
This example displays and prints a single page of text stored in a document. 
The printed image is supposed to match the displayed image. In the first it­
eration, the program uses the MM_ TWIPS mapping mode for both the 
printer and the display. Because the application uses a 1 O-point font, the text 
is too small to read on the display. The second iteration changes the display's 
mapping mode to logical twips, making the display text legible. 

Here are the steps for building the example: 

1. Run AppWizard to produce \VCPP\EX18A\EX18A. Choose App­
Wizard from Visual Workbench's Project menu. The options and the 
default class names are shown here: 

Classes to be created: 
Application: CEx18aApp in EX1BA.H and EX1BA.CPP 
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP 
Document: CPoemDoc in POEMDOC.H and POEMDOC.CPP 
View: CStringView in STRINGVW.H and STRINGVW.CPP 

Features: 
+ Supports the Multiple Document Interface (MDI) 
+ MSVC Compatible project file (EX1BA.MAK) 
+ Initial toolbar and status bar in main frame 
+ Printing and Print Preview support in view 
+ Document supports files with extension .18a 
+ Uses medium memory model 

Be sure to select CScrollViewas the view's base class. Also, be sure 
to accept the Printing And Print Preview default option. Name the 
document and view classes exactly as specified. You will be using them 
again in later chapters. Remember that we're accepting the MDI option 
this time. 

2. Edit the POEMDOC.H header file. The document data is stored in a 
string array. You need not set a maximum dimension in the declaration 
because the array is dynamic. Add the following lines to the CPoemDoc 
class declaration: 

377 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

378 

Also add a prototype for the virtual DeleteContents function: 

3. Edit three CPoemDoc member functions in file POEMDOC.CPP. 
We'll initialize the poem document in the overridden OnNewDocument 
function. DeleteContents is called in CDocument::OnNewDocument, so we're 
sure the poem won't be deleted. (The poem, by the way, is an excerpt 
from the 20th poem in Lawrence Ferlinghetti's book A Coney Island of the 
Mind.) Type 10 lines of your choice. It could be another poem or maybe 
your favorite Windows function description. 

BOOl CPoemDoc::OnNewDocument() 
{ 

if (!CDocument::OnNewDocument()) 
return FALSE; 

return TRUE; 

(Note: The CStringArray class supports dynamic arrays, but here we're 
using the m_stringArray object as though it were a static array of 10 
elements. You'll see arrays used more dynamically in examples EX21A 
and EX26B.) 

The application framework calls the document's virtual DeleteContents 
function when it closes the document; this action deletes the strings in 
the array. A CStringArray contains actual objects, and a CObArray contains 
pointers to objects. This distinction is important when it is time to delete 
the array elements. Here the RemoveAll function actually deletes the 
string objects. 



E I G H TEE N: Printing and Print Preview 

void CPoemDoc::DeleteContents() 
{ 

} 

I I ca 11 ed before OnNewDocument and when. document is closed 
m_stringArray.RemoveAll(); 

Serialization isn't important in this example, but the following func­
tion illustrates how easy it is to serialize strings. The application frame­
work calls the DeleteContents function before loading from the archive, 
so you don't have to worry about emptying the array. 

void CPoemDoc::Serialize(CArchive& ar) 
{ 

m_str1ngArray.Serialize(ar); 
} 

4. Edit the OnlnitialUpdate function in STRINGVW.CPP. You must 
override the function for all classes derived from CScrollView. This 
function's job is to set the logical window size and the mapping mode. 

void CStringView::OnlnitialUpdate() 
{ 

CScrollView::OnlnitialUpdate(); 
CSize total Size = CS;ze(11520. 15120)~ /1 S·· X 10.5" 
CSize pageSiz~ = CSize(totalS;ze.cx I 2. 

tota 1 S1 ze. cy I 2); II page ~croll 
CSize lineSize = CSize(totalSize.cx I 100. 

totalSize.cy I 100): II ltne,s:cruH 
SetScro 11 Si zes( MM_ TWI PS. tot·a lSi ze. pageSize. . . 

lineSize); II CScr,ol1Vfew fun~tioi1 

5. Edit the OnDraw function in STRINGVW.CPP; The OnDraw function 
of class CStringView draws on both the display and the printer. In addi­
tion to displaying the poem text lines in 10-point roman font, it draws a 
border around the printable area together with a crude ruler along the 
top and left margins. The function assumes an HP LaserJet printer that 
has a printable area of 8 inches by 10.5 inches offset from the upper left 
corner of the paper. Also assumed is the MM_TVVlPSmapping mode, in 
which 1 inch = 1440 units. 

NOT E : A more general function could call the Windows Get­
DeviceCaps function to retrieve the actual dimensions of the print­
able area, and then it could adjust the printed output accordingly. 

379 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

380 

void CStringView::OnDraw(CDC* pDC) 
{ 

} 

6. Edit theOnPreparePrinting function in STRINGVW.CPP. This func­
tion sets the maximum number of pages in the print job. This example 
has only one page. It's absolutely necessary to call the base class DoPre­
parePrinting function in your overridden OnPreparePrinting function. 

BOOl CStringView: :OnPreparePrinting(CPrintInfo* pInfo) 
{ 

} 



E I G H TEE N: Printing and Print Preview 

7. Build and test the application. When you start the EX18A application, 
your MDI child window should look like this: 

The pennycandystore beyond. the El 
is where I first 

fell in love 
with'lJl1l'eality 

Jellybeans glowed in the semi-gloom 
of that september afternoon 
A cat upon the counter moved among 

the licorice sticks 
and tootsie rolls 

andOhBoyGurn 

The window text is too small, isn't it? Go ahead and choose Print Preview 
from the File menu, and then use the magnifying glass to zoom in on the 
text in the upper left corner. The window should look like this: 

00 01 02 

The penn~andystore beyond the EI 
is where I first 

fell in love 

03 

01 with unreality 
Jellybeans glowed in the semi-gloom 
of that september afternoon 
A cat upon the counter moved among 

the licorice sticks 
and tootsi e rolls 

and Oh Boy Gum 

381 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

382 

Remember "logical twips" from Chapter 5? Now we're going to use 
logical twips to enlarge type on the display while keeping the printed 
text the same size. This requires some extra work because the CScrollView 
class wasn't designed for nonstandard mapping modes. The techniques 
you'll see here will be helpful if you write an OLE in-place-editing 
application. 

8. Edit the STRINGVW.H header file. Now we're going to override the 
CStringView OnPrepareDCfunction, and we're going to add the helper 
function SetScrolllnfo: 

protected: .' '" ..... ' .. " ,...<'.: 
. 'vi rtual. yoi:d':ffn~:~~I?·axfe~~;{cQ~·~·.:lP;P~;~ 

yo; d S~tScrQ1:11ofQO ;., '. . . , ;' .. 

9. Add the functions OnPrepareDC and SetScrolllnfo in STRING­
VW.CPP. The OnPrepareDC function sets the mapping mode to 
MM_TWIPS if the program is printing; otherwise, it sets the mode 
to logical twips. 



E I G H TEE N: Printing and Print Preview 

10. Use ClassWizard to map the view's WM_SIZE message. 

11. Modify the CStringView functions, as shown. 

CStringView::CStringView() 
{ 

SetScrollSizes(MM_TEXT, CSize(e. e»: 

void CStringView::OnlnitialUpdate() 
{ 

} 

SetScrolllnfo(); 
CSerollView::OnlnitialUpdate(); 

void CStringView::OnSize(UINT nType, int ex, int ey) 
{ 

} 

SetScrolllnfo(); 
CSerollView::OnSize(nType, ex, ey); 

12. Build and test the application. This time the text should be larger. 
Here's what the child window should look like now (though the appear­
ance depends on the resolution of your video board): 

The peonycandystore beyond the E1 
is where I first 

fell in love 
with unre ality 

Jellybeans glowed in the semi-gloom 
of that september afternoon 
A cat upon the counter moved among 

the licorice sticks 
and to otsie rolls 

and Oh Boy Gum 

383 



PART III: THE DOCUMENT-VIEW ARCHITECTURE 

Example EX188-A Multipage Print Program 

384 

In this example, the document contains an array of 50 CRect objects that de­
fine circles. The circles are randomly positioned in a 6-by-6-inch area and 
have random diameters of as much as 0.5 inch. The circles, when drawn on 
the display, look like two-dimensional simulations of soap bubbles. Instead of 
drawing the circles on the printer, the application prints the corresponding 
CRect coordinates in numeric form, 12 to a page with headers and footers. 

1. Run AppWizard to produce \VCPP\EX18B\EX18B. Choose App­
Wizard from Visual Workbench's Project menu. The options and the 
default class names are shown here: 

Classes to be created: 
Application: CEx18bApp in EX18B.H and EX18B.CPP 
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP 
Document: CEx18bDoc in EX18BDOC.H and EX18BDOC.CPP 
View: CEx18bView in EX18BVW.H and EX18BVW.CPP 

Features: 
+ Supports the Multiple Document Interface (MOl) 
+ MSVC Compatible project file (EX18B.MAK) 
+ Initial toolbar and status bar in main frame 
+ Printing and Print Preview support in view 
+ Uses medium memory model 

2. Edit the EX18BDOC.H header file. In the EX18A example, the docu­
ment data consisted of strings stored in a CStringArray collection. Here 
we need an array of bounding rectangles for the circles. Because the 
CRect class is not derived from CObject, we can't use the CObArray class. 
We could use the TEMPLDEF program to generate a special array class 
for rectangles, but it's easier to use a normal fixed-size array, m_ellipse­
Array. That means, of course, that the document must contain a member 
variable, m_nEllipseQty, that tracks the array size. We'll also need a static 
member variable that specifies the number of printed lines (or records) 
per page. Here's the code that you'll need to add to the CEx18bDoc 
header file: 



E I G H TEE N: Printing and Print Preview 

public: 
CRect m_ellipseArray[50]; 
int m_nEllipseQty; 
static const ;nt NEAR nLinesPerPage: 

3. Edit the EX18BDOC.CPP implementation file. The document con­
structor initializes the ellipse array with some random values. This saves 
the trouble of writing serialization code. The static member variable, 
nLinesPerPage, needs to be initialized in the class implementation file. 

CExI8bDoc::CExI8bDoc() 
{ 

int nl. n2. n3; 
II make 50 random circles 
srand«unsigned) time(NULL»; 
m_nEllipseQty = 50; 

for (i nti= 0; i < m_nElli pseQty: i++) { 
nl = (long) rand() * 600l I RAND_MAX; 
n2 = (long) randO * 600L./ RAND:......MAX; 
n3 = (long) rand() * 50l I RAND_MAX: 
ID_ell ipseArray[i] = CRect(nl. -n2. n1 

} 

const int NEAR CEx18bOoc::nL;nesPerPag~ = 12; 

4. Edit the EX18BVW.H header file. The m_nPage data member holds 
the document's current page number for printing. The public function 
prototypes are for overrides of application framework functions, and the 
private function prototypes are for the header and footer subroutines. 

public: 
UINT m_nPage; 
virtual void OnPrint(CDC* pOC. CPrintlnfo* .plrrfo); 

protected: 
vi rtua 1 vo; d .OnPrepareDC( COC* pOC. CPr; ntJhfo*plnro' :f:',flOLLI:" 

private:. 
void Pr;ntPageHeader(CDC* pDC); 
vo1dPrintPageFooter(CDC* pOC); 

5. Edit the OnDraw function in EX18BVW.CPP. The overridden OnDraw 
function simply draws the bubbles in the view window: 

385 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

386 

void CEx18bView::OnOraw(COC* pOC) 
{ 

6. Insert the OnPrepareDC function in EX18BVW.CPP. The view class is 
not a scrolling view, so the mapping mode must be set in this function. 

7. Insert the OnPrintfunction in EX18BVW.CPP. The CViewdefault 
OnPrintfunction calls OnDraw. In this example, we want the printed 
output to be entirely different from the displayed output, so the OnPrint 
function must take care of the print output without calling OnDraw. 
OnPrint first sets the mapping mode to MM_ TWIPS and then creates a 
fixed-pitch font. Mter printing the numeric contents of 12 m_ellipseArray 
elements, it deselects the font. You could have created the font once in 
OnBeginPrinting, but you wouldn't have noticed the increase in efficiency. 



E I G H TEE N: Printing and Print Preview 

8. Edit the OnPreparePrinting function in EX18BVW.CPP. The OnPre­
parePrintingfunction computes the number of pages in the document 
and then communicates that value to the application framework through 
the SetMaxPage function. 

BOOl CEx18bView::OnPreparePrinting(CPrintInfo* pInfo) 

return DoPreparePrinting(pInfo); 
} 

9. Insert the page header and footer functions in EX18BVW.CPP. 
These private functions, called from OnPrint, print the page headers and 
the page footers. The page footer includes the page number, stored by 
OnPrint in the view class data member m_nPage. The CDC GetTextExtent 
function right justifies the page number. 

(continued) 

387 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

388 

10. Build and test the application. For one set of random numbers, the 
bubble child window looks like this: 

0 0 0° 
o 

o o o 
o o o o 



E I G H TEE N: Printing and Print Preview 

In Print Preview, the first page of the output should look like this: 

Bubble Report 

Index Left Top Right Bottom 

387 -33 430 -76 
289 -170 291 -172 
363 -408 404 -449 
17 -328 66 -377 

224 -337 227 -340 
283 -409 318 -444 
109 -540 130 -561 
108 -164 125 -181 
214 -174 220 -180 

10 317 -275 324 -282 
11 422 -204 446 -228 
12 438 -593 469 -624 

Exercises for the Reader 
Pretend that the function OnPreparePrinting can't compute the number of 
pages to be printed. Instead, modify OnPrepareDC to reset the m_bContinue­
Printing flag (in the CPrintInfo structure) when there are no more elements 
to print. r 

The printing examples in this chapter have assumed a standard 8-inch­
by-lO.5-inch printable area. The actual printable area depends on the in­
stalled printer driver, however. Some printers, such as the Hewlett-Packard 
LaserJet, can be switched between portrait and landscape mode. Try modify­
ing the print examples to use the actual printable area dimensions stored in 
the m_rectDraw data member of the CPrintInfo structure. The rectangle is 
in logical coordinates as specified by OnPrepareDC, so you might have to do 
some mapping mode conversion. 

389 





C HAP T E R N NET E E N 

SPLITTER WINDOWS 
AND MULTIPLE VIEWS 

Up to now, you've seen only one view attached -to a document. If you've 
used a Windows-based word processor, yo~ know that it's convenient to have 
two windows open simultaneously on various parts of a document. Both win­
dows might contain a normal view, or one window might contain a page lay­
out view and another might contain an outline view. 

The application framework has several ways to present multiple views­
the splitter window and multiple MDI child windows. You'll learn about both 
presentation options here, and you'll see that in each it's easy to make mul­
tiple view objects of the same view class (the normal view). It's slightly more 
difficult, though, to use two or more view classes in the same application (say, 
the outline view and the page layout view). 

This chapter emphasizes the selection and presentation of multiple 
views. The examples depend on a document with data initialized in the 
OnNewDocument function. Look back to Chapter 15 for a review of docu­
ment-view communication, and look ahead to Chapter 21 for a multiview 
example that exercises the full suite of application framework features. 

The Splitter Window 
A splitter window appears as a special type of frame window that holds sev­
eral views in panes. The application can split the window on creation, or the 
user can split the window by choosing a menu command or by dragging a 
splitter box in the splitter window's scroll bar. After the window is split, the 
user can move the splitter bars with the mouse to adjust the relative sizes of 
the panes. Splitter windows can be used in both SDI and MDI applications. 

391 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

You can see illustrations of splitter windows in the sections ahead, on pages 
395 and 397. 

The splitter window is represented by the class CSplitterWnd. As far 
as Windows is concerned, a CSplitterWnd object is an actual window that 
fully occupies the frame window (CFrameWnd or CMDIChildWnd) client area. 
The view windows occupy the splitter window pane areas. The splitter win­
dow does not take part in the command dispatch mechanism. The active 
viewwinddw (in the splitter pane) is logically connected directly to its frame 
window. 

Multiple View Options 

392 

When you combine multiview presentation methods with application mod­
els, you get a number of permutations. Here are some of them: 

• SDI application With splitter window, single view class-This chap­
ter's first example, EX19A, covers this case. Each splitter window 
pane can be scrolled to a different part of the document. The 
programmer determines the maximum number of horizontal and 
vertical panes; the user makes the split at run time. 

• SDI application with splitter window, multiple view classes-The 
EX19B example illustrates this case. The programmer determines 
the number of panes and the sequence of views; the user can 
change the pane size at run time. 

• MDI application with no splitter windows, single view class-This is 
the standard MDI application you've seen already. The New Win­
dow menu item lets the user open a new child window for a docu­
ment that's open already. 

• MDI application with no splitter windows, multiple view classes­
A small change to the standard MDI application allows the use of 
multiple views. As example EX19C shows, all that's necessary is 
replacing the New Window menu item with menu items and func­
tions for each of the available view classes. 

• MDI application with splitter child windows-This case is covered 
thoroughly in the Class Library User's Guide. The SCRIBBLE ex­
ample illustrates the splitting of an MDI child window. 



N I NET E EN: Splitter Windows and Multiple Views 

D" -~--;~ ",.nt"l ~tAtic SDlitter Windows 

BARNES & NOBLE 
BlOOMFIRD HILLS, MI 810-540=I!40169 

RESI05 BOOKSElLER#033 
RECEIPT. 38526 02/19/95 3:25 PM 

S 1556156618 INSIDE VISUAL C 2E 
1 @ 39. 95 39. 95 

SUBTOTAl 
SAlES TAX - 6% 
TOTAl 
MASTER CARD PAYMENT 
ACCOUNT. 518064803153 
AUTHORIZATION' 0909073109 

39.95 
2.40 

42.35 
EXP 079642•35 
ClERK 33 

BOOKSELLERS SINCE 1873 

,ws the user to split the window at any time by 
agging a splitter box located on the scroll bar. 
:er window generally use the same view class. 
to a particular view when the splitter window is 
r window, scroll bars are shared among the 
gle horizontal split, for example, the bottom 

litter window are defined when the window is 
t be changed. The user can move the bars but 
window. Static splitter windows can accommo­
ith the configuration set at creation time. In a 
ane has separate scroll bars. 

eve noticed a "splitter" class type option in 
;lass dialog. If you choose this option, you 
s, derived from CMDIChildWnd, that imple­
er. This class is useful only in MDI applica­
LE. If you need an SDI splitter, you must 
chapter's examples. 

EX19A-A Single View Class 
SOl Dynamic Splitter Example 

In this example, the user can dynamically split the view into four panes. A 
four-way split produces four separate view objects, all managed by a single 
view class. We'll use the document and the view code from EX18A. The appli­
cation class is standard AppWizard issue, but the main frame window class 
code has been modified. 

CMainFrame 
The application's main frame window class needs a splitter window data 
member and a prototype for an overridden OnCreateClient function. The fol­
lowing code has been added to the App Wizard-generated CMainFrame class 
declaration in MAINFRM.H: 

393 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The application framework calls the CFrameWnd::OnCreateClient virtual mem­
ber function when the frame object is created. The base class version creates 
a single view window as specified by the document template. The overridden 
OnCreateClientversion here (in MAINFRM.CPP) creates a splitter window in­
stead, and the splitter window creates the first view. 

The CSplitterWnd Create member function makes a dynamic splitter window. 
The CSplitterWnd object knows the view class because its name is embedded 
in the CCreateContext structure that's passed as a parameter to Create. 

The second and third Create parameters (2, 2) specify that the window 
can be split into a maximum of two rows and two columns. The CSize param­
eter specifies the minimum pane size. 

Resource Requirements 

394 

EX19A has an added Window main menu item and a pop-up menu with a 
Split item, as shown in Figure 19-1. The menu command ID is ID_WIN­
DOW_SPLIT. The application framework recognizes this constant; its han­
dler initiates the window-splitting action. 

Figure 19-1. 
The EX19A Window menu. 



N IN E TEE N: Splitter Windows and Multiple Views 

Testing the EX19A Application 
When the application starts, you can split the window by choosing Split from the 
Window menu or by dragging the splitter boxes at the left and top of the scroll 
bars. Figure 19-2 shows a typical single view window with a four-way split. Mul­
tiple views share the scroll bars. 

Figure 19-2. 
A single view window with a four-way split. 

EX198-A Double View Class 
SOl Static Splitter Example 

In EX19B, we'll extend EX19A by defining a second view class and allowing a 
static splitter window to show the two views. (The Hand CPP files are cloned 
from the original view class.) This time the splitter window works a little dif­
ferently. Instead of starting off as a single pane, the splitter is initialized with 
two panes. The user can move the bar between the panes by using the splitter 
box on the right scroll bar or by using the Window Split menu item. 

CHex Vie w 
The CHexView class was written to allow programmers to appreciate poetry. 
As shown on the following page, it is essentially the same as CStnngViewex­
cept for the OnDraw member function: 

395 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

CHexView::OnOraw(COC* pOC) 

This function displays a hexadecimal dump of all strings in the document's 
m_stringArray collection. Notice the use of the subscript operator to access 
individual characters in a CStringobject. 

CMainFrame 

396 

As in the previous example, the application's main frame window class needs 
a splitter window data member and a prototype for an overridden 
OnCreateClient function. The following code has been added to the 
App Wizard-generated CMainFrame class declaration file MAINFRM.H: 



N I NET E EN: Splitter Windows and Multiple Views 

The implementation file, MAINFRM.CPP, needs both view class head­
ers (and the prerequisite document header): 

,include "poemdoc.h" 
'include "stringvw.h" 
'include "hexvw.h" 

The overridden OnCreateClient function creates the splitter window as 
it did in EX19A, but this time it calls the CSplitterWnd::CreateStatic function, 
which is tailored for multiple view classes. The following calls to CSplitterWnd­
::CreateViewattach the two view classes. As the second two CreateStatic param­
eters (2, 1) dictate, this splitter window contains only two panes, with an 
initiaI'horizontal split 100 device units from the top of the window. The top 
pane is the string view; the bottom pane is the hex dump view. The user can 
change the splitter bar position but cannot change the view configuration. 

BOOl CMainFrame::OnCreateClient(LPCR£ATESTRUCT lpc$i 
CCreateContext* pCon'tje'xt f" 

C, ,c, 

BOOL rtn =m .... wndSplitte.r.CreateStatic(thts. 2.:11£ 
rtn 1= m_wndSpl i tter . .treateV; ewHh 0. RUNT1M:E~GLA$.~(:~,~tri'~~~1~~h~;'" 

, , CSize(100~' 100';Lpc,~n'tex~,),~",' 

} 

rtn 1= m_wndSplitter,CreateView(1. 0. RUNTIME;.;.;CI;ASS(CH~xVie:w~ •• 
CSize<100. l(0)~ pCohtext); 

return rtn: 

Testing the EX19B Application 
When you start the EX19B application, the window should look like the one 
shown below. Notice the separate horizontal scroll bars for the two views. 

The pennycandystore beyond the El 
is where I first 

fell in love 

00 546865207065 6e 6e 79 63 61 6e 64 79 73 74 6f72 65 20 62 
01 69732077 68 65 7265 20 49 20 66 69 72 73 74 
02 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

397 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

EX19C-A Multiple View Class MOl Example 
The final example, EX19C, uses the previous document and view classes to 
create a multiple view class MDI application without a splitter window. The 
logic is different from the logic in the other multiple view class application, 
EX19B. This time the action takes place in the application class rather than 
in the main frame class. As you study EX19C, you'll gain some more insight 
into the use of CDocTemplate objects. 

This example was generated with the AppWizard Context Sensitive 
Help option. In Chapter 20, you'll be activating the context-sensitive help 
capability. 

CEx19cApp 

398 

In the application class header file, EX19C.H, the following data members 
and function prototype have been added: 

The implementation file, EX19C.CPP, contains the following #include 
statements: 

1/include "poemdoc.h" 

The CEx19cApp Initlnstance member function has the following code 
inserted immediately after the AddDocTemplate function call: 

The AddDocTemplate call generated by App Wizard established the pri­
mary document/frame/view combination for the application that is effec-



N I NET E EN: Splitter Windows and Multiple Views 

tive when the program starts. The two template objects above are secondary 
templates that can be activated in response to menu items. 

Now all you need is an Exitlnstance member function that cleans up the 
secondary templates: 

int CEx19cApp::Exitlnst~nce() 
{ 

delete m_pTemplatel; 
delete flLpTemplate2; 
returnCWi nApp £txi tI~nstaric'EH ); !I saves p'r'ofile 

, '" ~<~ ~ 

CMainFrame 
The main frame class implementation file, MAINFRM.CPP, has both view 
class headers (and the prerequisite document header) included: 

The base frame window class, CMDIChildWnd, has an On WindowNew 
function that is normally connected to the standard Window New menu 
item. The following two command-handling functions are clones of 
On WindowNew, adapted for the two view-specific templates that are defined 

. in InitInstance. They create new child windows based on the specified view 
class. 

(continued) 

399 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

400 

NOT E : The function cloning above is a useful MFC library pro­
gramming technique. You must first find a base class function that 
does almost what you want, and then you copy it from the 
\MSVC\MFC\SRC subdirectory into your derived class, changing 
it as required. The only danger is that subsequent versions of the 
MFC library will implement the original function differently. 



N I NET E EN: Splitter Windows and Multiple Views 

Resource Requirements 
The following two items have been added to the Window menu identified by 
IDR_POEMTYPE: 

Menu Item Command 10 Function 

New &String Window On WindowNewl 
(replaces New Window item) 

New &Hex Window On WindowNew2 

ClassWizard was used to add the command-handling functions to the 
CMainFrame class. 

Testing the EX19C Application 
When you start the EX19C application, a text view child window appears. 
Choose New Hex Window from the Window menu. The application should 
look like this: 

00 546865207065 6e 6e 79 63 61 6e 64 79 73 74 6f72 65 
01 69732077 68 65 72 65 20 49 20 666972 73 74 
02 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
03 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
04 4a 65 6e 6e 79 62 65 61 6e 73 20 67 6e 6f77 65 64 20 69 
05 6f66 20 74 68 61 74207365707465 6d 62 65 72 20 61 

401 





CHAPTER TW E N T Y 

CONTEXT-SENSITIVE HELP 

Most commercial Windows-based programs, including Visual Workbench, 
take advantage of the powerful WINHELP help engine that's included with 
Windows. The Microsoft Foundation Class (MFC) Library version 2.5 appli­
cation framework allows you to use this same help engine for context-sensi­
tive help in your own applications. This chapter first shows you how to 
construct and process a simple stand-alone help file that has a table of con­
tents and allows the user to jump between topics. Next, you'll see how your 
MFC library program activates WINHELP with help context IDs that are de­
rived from window and command IDs that are keyed to an App Wizard-gener­
ated help file. Finally, you'll learn how to modify the MFC library help 
message-handling system to customize the help capability. 

The Windows WINHELP Program 
If you've used commercial Windows-based applications, you've probably 
marveled at their sophisticated help screens with graphics, hyperlinks, and 
popups. At some software firms, including Microsoft, help authoring has 
been elevated to a profession in its own right. This section can't turn you into 
a help expert, but it can get you started by showing you how to prepare a 
simple no-frills help file. 

Rich Text Format (RTF) 
The Windows SDK documentation shows you how to format help files with 
an ASCII file format called Rich Text Format (RTF). We'll be using Rich Text 
Format too, but we'll be working in wysiwyg mode, thereby avoiding the di­
rect use of awkward ASCII codes. You write with the same fonts, sizes, and 
styles that youruser sees on the help screens. You'll definitely need a word 
processor that handles RTF. I've used Microsoft Word for Windows for this 
book, but many other word processors accommodate the RTF format. 

403 



PAR T III: THE DOCUMENT-VIEW ARCHITECTURE 

NOTE: Several commercial Windows help tools are available, 
including RoboHELP from Blue Sky Software and The Windows 
Help Magician from Software Interphase. These products are 
easier to use than an ordinary word processor and can thus re­
duce the effort needed to produce help files. Some of these prod­
ucts are templates for Word for Windows; others are stand-alone 
programs.) 

Writing a Simple Help File 

404 

We're going to write a simple help file with a table of contents and three top­
ics. This help file is designed to be run directly from WINHELP, started from 
the Windows Program Manager. No C++ programming is involved. Here are 
the steps: 

1. Create a \VCPP\EX20A subdirectory. 

2. Write the main help text file. Use Microsoft Word for Windows (or 
another RTF-compatible word processor) to type text as shown here: 

Strikethrough text formatting 

Single-underline text formatting 

Double-underline text formatting 

Simple' Help'Table'ofContents~ 
11 
Help -topic slI 

L......fI--- ~ULIQ.r.).q).lI 
L.......fI--- Topic·2ij!,J;LIQ.r.).9.~1I 1-------------­
'--11---- ~ij!,J;LIQ.r.).9)1I 

Help'Topic'111 
11 
This·is·the·text-for·help-topic·number·one·lI 

L 

Hidden text 
formatting 

Page break 
inserted with 
Ctrl-Enter 

Be sure to apply the double-underline and hidden formats correctly and 
to insert the page break at the correct place. 

3. Insert footnotes for the Table of Contents screen. The Table of 
Contents screen is the first topic screen in this help system. Turn on the 
word processor's footnote view, and then insert the following footnotes 



T WEN T Y: Context-Sensitive Help 

at the beginning of the topic title, using the specified custom footnote 
marks:· 

Footnote Mark 

# 

$ 

Text 

HID_CONTENTS 

SIMPLE Help Contents 

Description 

Help context ID 

Topic title 

When you're finished with this step, the document should look like this: 

#$Simple' Help'Table'of-Contents~ 
n 
Help -topic sn 

~UL1'.Q!'IG_~_n 
Topic-2!:1:!_P.3.Q.f.IG_~n 

~!:I:!_P.3.Q.f.IG.~n 

Help'Topic'11l 
11 
This-is-the-text-for-help-topic-number-one_n 

4. Insert footnotes for the Topic 1 screen. The Topic 1 screen is the 
second topic screen in the help system. Insert the following footnotes, 
using the specified custom footnote marks: 

Footnote Mark 

# 

$ 
K 

Text 

HID_TOPIC 1 

SIMPLE Help Topic 1 

SIMPLE Topics 

Description 

Help context ID 

Topic title 

Keyword text 

5. Clone the Topic 1 screen. Copy the entire Topic 1 section of the docu­
ment, including the page break, to the clipboard, and then paste two 
copies of the text into the document. The footnotes are copied along 
with the text. In the first copy, change all occurrences of 1 to 2. In the 
second copy, change all occurrences of 1 to 3. Don't forget to change 
the footnotes. With Word for Windows, it's a little difficult to see which 
footnote goes with which topic, so be careful. When you're finished 
with this step, the document text should look like that shown at the 
top of the following page: 

405 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

406 

#$Simple· Help·Table·ofContents, 
1[ 
Help·topics1[ 

~!:U.l;LJ;'qJ1GJ.1[ 
Topic·2H!.J;LTq.r.'-G.~1I 
~H!);LIQr.'-G.~1[ 

#$K.Help·Topic·1 ~ 
1[ 
This·is·the-text·for·help·topic·number·one.1[ 
1[ 

#$K.Help·Topic·2~ 
1[ 

. .. .. .... .. . Page Break· .. · ........ · .......... · .......... · ...... · ........ · ................ · .......... · .... · ............................................ .. 

This·is·the -text·for·help-topic·number -two.1[ 
11 

. .. . .. .. . . . .. . .. . . .. . .. . . .. Page Break· ........ · ............ · .......... · .......... · .. · .. · .... · .......... · .......... · ................................................. .. 

The footnotes should look like this: 

#f1ID_CONTENTS1[ 
$SIMPLE' Help 'Contentsll 
#f1ID_TOPICI1[ 
$SIMPLE' Help' Topic' 111 
KSIMPLE· Topics1[ 
#f1ID _ TOPIC21[ 
$SIMPLE· Help' Topic' 21[ 
KSIMPLE'Topics1[ 
#f1ID _TOPIC31[ 
$SIMPLE' Help' Topic' 31[ 
KSIMPLE'Topics1[ 

6. Save the document. Save the document as \VCPP\EX20A\SIM­
PLE.RTF. Specify Rich Text Format as the file type. 



T WEN TV: Context-Sensitive Help 

7. Write a help project file. Using your word processor, create a file 
named \VCPP\EX20A\SIMPLE.HPj, as follows: 

[OPTIONS] 
CONTENTS=HID_CONTENTS 
TITlE=SIMPlE Appltcation 
COMPRESS=true . 
WARNING=2 

[FILES] 
simple. rtf 

This file specifies the context ID of the Table of Contents screen and 
the name of the RTF file that contains the help text. Be sure to save the 
file in text (ASCII) format. 

8. Build the help file. At the MS-DOS command prompt, type the follow­
ing MS-DOS commands: 

Cd~ \vcl?:p~fex2@:?~: ::;: ,,' 
hi;:~ 1. ;5 ;;ro~r.e:;llip~·' 

This step runs the Windows Help Compiler with the project file 
SIMPLE.HPj. The output is the help file SIMPLE.HLP. This example 
assumes that the \MSVC\BIN subdirectory is in your computer's search 
path. Use the MSVCVARS.BAT batch file in \MSV\BIN to set your com­
puter's search path. 

9. Run WINHELP with the new help file. From the Windows Program 
Manager, run WINHELP and then open the file \VCPP\EX20A\SIM­
PLE.HLP. The Table of Contents screen should look like this: 

Simple Help Table of Contents 

Help topics 
ToVic 1 
I.QP.i.c.:.4 
Topid 

407 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

408 

N ow move the mouse cursor to Topic 1, and notice that the mouse 
cursor changes from an arrow to a pointing hand. When you press the 
left mouse button, the Topic 1 screen should appear as shown here: 

Help Topic 1 

This is the text for help topic number one. 

The HID_TOPIC1 text in the Table of Contents screen links to the 
corresponding context ID (the # footnote) in the topic page. This link 
is known as a 'Jump." 

The link to Topic 2 is coded as a pop-up jump. When you click on 
Topic 2, here's what you see: 

Simple Help Table of Contents 

Help topics 
T01=,ic 1 

10. Try the WINHELP Contents pushbutton. Clicking this button should 
take you to the Table of Contents screen, as shown in step 9. WINHELP 
knows the ID of the Table of Contents screen because you specified it in 
the HPJ file. 



T WEN T Y: Context-Sensitive Help 

11. Try the WINHELP Search pushbutton. When you click the Search 
button, WINHELP opens Help's Search dialog, which displays the Help 
file's list of keywords. In SIMPLE. HLP, all topics (excluding the table 
of con ten ts) have the same keyword (the K footnotes), SIMPLE Topics. 
When you double-click on this keyword, you see all associated topic titles 
(the $ footnotes), as shown here: 

Type a !!ord. or select one from the list. 
Then choose Show Topics. 

Select a topic. then choose Go To. 

SIMPLE Hel To ic 1 
SIMPLE Help Topic 2 
SIMPLE Help Topic 3 

What you have here is a two-level search hierarchy. The user can type 
the first few letters of the keyword and then select a topic from a list box. 
The more carefully you select your keywords and topic titles, the more 
effective your help system will be. 

The Application Framework and WINHELP 
You've seen WINHELP running as a stand-alone program. The application 
framework and WINHELP cooperate to give you context-sensitive help. 
Here's a summary of how this works: 

1. You select the Context Sensitive Help option when you run 
AppWizard. 

2. AppWizard generates Contents and Search items on your 
application's Help menu, and it creates one or more generic 
RTF files together with an HPJ file and a batch file that runs 
the Help Compiler. 

409 



PART III: THE DOCUMENT-VIEW ARCHITECTURE 

3. AppWizard inserts a keyboard accelerator for the Fl key, and it 
maps the Fl key and the Help menu items to CWinApp member 
functions. 

4. When your program runs, it calls WINHELP when the user presses 
Fl or chooses an item from the Help menu, passing a context ID 
that determines which help topic is displayed. 

You now need to understand how WINHELP is called from another ap­
plication and how your application generates context IDs for WINHELP. 

Calling WINHELP 

410 

The CWinApp member function WinHelp activates WINHELP from within 
your application. If you look up WinHelp in the Class Library Reference, you'll 
see a long list of actions that the optional second parameter controls. Ignore 
the second parameter and pretend thatWinHelp has only one unsigned long 
integer parameter, dwData. This parameter corresponds to a help topic. Sup­
pose that the SIMPLE help file is available and that your program contains 
the statement 

AfxGetApp()->WinHelp(HID_TOPIC1); 

When the statement is executed, in response to the Fl key or some other 
event, the Topic 1 Help screen comes up, as it would if the user had clicked 
on Topic 1 in the Help Table of Contents screen. 

"Wait a minute," you say. "How does WINHELP know what help file to 
use?" The name of the help file matches the application name. If the execut­
able program name is SIMPLE.EXE, the help file is named SIMPLE.HLP. 

NOTE: You can force WinHelp to use a different Help file by 
setting the CWinApp data member m_pszHelpFilePath. 

"And how does WINHELP match the program constant HID_TOPICl to 
the help file's context ID?" you ask. The Help project file must contain a 
MAP section that maps context IDs to numbers. If your application's 
RESQURCE.H file defines HID_TOPICl as 101, the SIMPLE.HPJ MAP sec­
tion looks like this: 

[MAP] 
HID_TOPIC1 101 

The program's #de:fine constant name doesn't have to match the help 
context ID; only the numbers must match. Making the names correspond, 
however, is good practice. 



T WEN T Y: Context-Sensitive Help 

Using Search Strings 
For a text-based application, you might need help based on a keyword rather 
than a numeric context ID. In that case, use the WinHelp HELP_KEY or 
HELP_PARTIALKEYoption as follows: 

CString string("find this string"); 
AfxGetApp()-)WinHelp«DWORD) (LPCSTR) string. HELP_KEY); 

The double cast for string is necessary because the first WinHelp parameter is 
multipurpose; its meaning depends on the value of the second parameter. 

Help Context Aliases 
The ALIAS section of the HPJ file allows you to equate one context ID to 
another. Suppose your HPJ file contained the following statements: 

[ALIAS] 
HID_TOPIC1 = HID_GETTING_STARTED 

[MAP] 
HID_TOPIC1 101 

Your RTF files could use HID_TOPIC1 and HID_GETTING_STARTED inter­
changeably. Both would be mapped to the help context 101 as generated by 
your application. 

Determining the Help Context 
You now have enough information to add a simple context-sensitive help sys­
tem to the MFC library program. You define F1 (the standard MFC library 
Help key) as a keyboard accelerator, and then you write a command handler 
that maps the program's help context to a WinHelp parameter. You could in­
vent your own method for mapping the program state to a context ID, but 
why not take advantage of the system that's already built into the application 
framework? 

The application framework determines the help context based on the 
ID of the active program element. These identified program elements 
include menu commands, frame windows, dialog windows, message boxes, 
and control bars. A menu item might be identified as ID_EDIT_CLEAR_ALL, 
for example, and the main frame window usually has the identifier 
IDR_MAINFRAME. You might expect these identifiers to map directly to 
help contexts. IDR_MAINFRAME, for example, would map to a help context 
of the same name. But what if a frame ID and a command ID had the same 
numeric value? Obviously, you need a way to prevent these overlaps. 

411 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The application framework solves the overlap problem by defining 
a new set of help #define constants that are derived from program element 
IDs. These help constants are the sum of the element ID and a base value as 
follows: 

Program Element Help Context Base 
Element 10 Prefix 10 Prefix (Hexadecimal) 

Menu item ID_ HID_ 10000 
Frame or dialog IDR-,IDD_ HIDR_, HIDD_ 20000 
Error message box IDP_ HIDP_ 30000 
Nonclient areas Other H .... 40000 
Control bar IDW- HIDW_ 50000 

HID_EDIT_CLEAR_ALL (OxlE121) corresponds to ID_EDIT_CLEAR-ALL 
(OxE121), and HIDR_MAINFRAME (Ox20002) corresponds to IDR_MAIN­
FRAME (2). 

Menu Access to Help 
If you've checked the AppWizard Context Sensitive Help option, your appli­
cation will have an Index item on its Help menu. This item brings up the 
Help Table of Contents screen, and the user can navigate the help file 
through jumps and searches. 

F1 Help 
Two separate context-sensitive help access methods are built into an MFC li­
brary application and are available if you've checked the AppWizard Context 
Sensitive Help option. The first is standard Fl help. The user presses Fl; the 
program makes its· best guess about the help context and then calls 
WINHELP. In this mode, it is possible to determine the menu item currently 
selected with the keyboard or the currently selected window (frame, view, 
dialog, or message box) . 

Shift-F1 Help 

412 

This second context-sensitive help mode is more powerful than the Fl mode. 
With Shift-Fl help, the program can identify the following help contexts: 



T WEN T Y: Context-Sensitive Help 

• A menu item selected with the mouse cursor 

• A toolbar button 

• A frame window 

• A view window 

• A specific graphics element within a view window 

• The status bar 

• Various non client elements such as the system menu control 

The user activates Shift-Fl help by pressing Shift-Fl or by clicking the 
Context Help toolbar button shown here: 

II 
In either case, the mouse cursor changes to 

h9 • 

On the next mouse click, the help topic appears, with the position of the 
mouse cursor determining the context. 

Shift-Fl help doesn't work with modal dialogs or message boxes. 

Message Box Help-The AfxMessageBox Function 
The global function AfxMessageBox displays application framework error 
messages. This function is similar to the CWnd::MessageBox member function 
except that it has a prompt ID as a parameter. The application framework 
maps this prompt ID to a help context ID and then calls WINHELP when the 
user presses Fl. You can use AfxMessageBox for your own messages if you use 
prompt IDs that begin with IDP_. In your RTF file, use help contexts that be~ 
gin with HIDP_. 

There are two versions of AfxMessageBox. In the first version, the 
prompt string is specified by a pointer to a character-array parameter. In the 
second version, the prompt ID parameter specifies a string resource. If you 
use the second version, your executable program will be more efficient. Both 
AfxMessageBox versions take a style parameter that makes the message box 
display an exclamation point, a question mark, or another graphics symbol. 

413 



PART III: THE DOCUMENT-VIEW ARCHITECTURE 

Generic Help 
When context-sensitive help is enabled, AppWizard assembles a series of 
default help topics that are associated with standardMFC library program 
elements. Following are some of the standard topics: 

II Menu and toolbar commands (File, Edit, and so forth) 

II Nonclient window elements (maximize box, caption bar, and 
so forth) 

II Status bar 

II Error message boxes 

These topics are contained in the files AFXCORE.RTF and AFXPRINT.RTF, 
which are contained, along with associated bitmap files, in the application's 
HLP subdirectory. Your job is to customize the generic help files. 

NOT E : App Wizard generates AFXPRINT.RTF only if you 
specify the Printing And Print Preview option. 

A Help Example-No Programming Required 

414 

If you followed the instructions for EX19C in Chapter 19, you selected the 
AppWizard Context Sensitive Help option. We'll now return to that example 
and explore the application framework's built-in help capability. You'll see 
how easy it is to link help topics to menu command IDs and frame window 
resource IDs. You edit RTF files, not CPP files. 

Here are the steps for customizing the help for EX19C: 

1. From the EX19C project directory, run MAKEHELP. At the MS-DOS 
prompt, type the following commands: 

The MAKEHELP batch file builds the application's ready-to-use HLP 
file from components located mostly in the project's HLP subdirectory. 
Be sure the \MSVC\BIN subdirectory is in your computer's search path. 
The project should also be on the same hard drive as Visual C++. (Some 
of the commands in the MAKEHELP batch file assume this.) 

2. Test the generic help file. Run the EX19C application. Try the follow­
ing experiments: 



T WEN T Y: Context-Sensitive Help 

o Move the mouse cursor into the application's main frame window, and 
then press Fl. You should see the generic Application Help screen, as 
shown here: 

- lit .j;. 
File Edit Bookmark Help 

Modifying the Document 

Because EX19C is a sample program, we have not included a means to modify the 
document. Sony. 

II your application supports multiple document types and you want to have a distinct help topic 
lor each, then use the help context i.d. generated by running the MAKEHELP.BAT lile 
produced by AppWizard. Alternatively, run MAKEHM aslollows: 

makehm IDR_HIDR~Ox2000 resource.h 

lithe IDR_ symbol lor one olyour document types is, lor example, IDR_CHARTTY'PE, then the 
help context i.d. generated by MAKEHM will be HIDR_CHARTTY'PE. 

Note, AppWizard delines the HIDR_DOC1 TYPE help context i.d. used by this help topic lor the 
lirst document type supported byyour application. AppWizard produces an alias in the .HPJ 
lile lor your application, mapping HIDR_DOC1TYPE to the HIDR_ produced by MAKEHM lor 
that document type. » 

o Close the Help dialog and then press AIt-F, Fl. This should open the 
Help topic for the File New command. 

o Close the Help dialog, click the Context Help toolbar button (shown 
on page 413), and then choose Save from the File menu. Do you get 
the appropriate Help topic? 

o Click the Context Help toolbar button again, and then select the 
frame window's title bar. You should get an explanation of a Windows 
title bar. 

o Choose New from the EX19C File menu. Select the Poem document 
frame, and then press Fl. You should see a generic Application Help 
screen with the title Modifying The Document. 

3. Change the application title. The file AFXCORE.RTF, in the \VCPP­
\EXl 9C \HLP directory, contains the string «YourApp» throughout. 
Replace it globally with EX19G. 

4. Change the Modifying The Document help screen. The AFXCORE­
.RTF file in the \VCPP\EX19C\HLP subdirectory contains text for the 
generic Application Help screen. Search for Modifying The Document, 
and then change the text to something appropriate for the application. 
This topic has the help context ID HIDR_DOC1TYPE. The EX19C.HP] 
file provides the alias HIDR~POEMTYPE. 

415 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

5. Add a topic for the Window New String Window menu item. The 
New String Window menu item was added to EX19C and thus didn't 
have associated help text. Add a topic to AFXCORE.RTF, as shown here: 

#New'String'Window'command'(Window'menu)~ 
~ 
Use·this· comma nd·to· 0 pen· a' new' STR I NG·wi nd ow·with·th e· same· cont ents· as·the· active·wi ndow.·· 
You' can· a pen· multi pie' docum ent·wi ndows·to· display' diffe re nt· pa rts' or' views· of. a· docu ment· at· 
the· same·tim e.' ·If· yo u· chan ge·the· co ntents· in· on e·win dow,' a II· oth er·wi nd ows· containi ng·th e· same· 
docum ent· reflect·those· cha nges.· 'Whe n· you· 0 pen· a· new· wind ow,' it· beco mes·the· active ·win dow· 
and· is· displaye d· on·to p' of. all· othe r· op en·wi nd ows. ~ 
~ 

II .... · .. · ............ · ............ · .... · .......... · ........ · ............ · .......... · ........ · .. ·· ............. · .................. · .... · ...... ·Piloe Break·· .................. · .... · ............ · ............ · .......... · .. · .......................................................................... .. 

#New'Hex'Window'command'(Window'menu)~ 

Notice the # footnote that links the topic to the context ID HID_WIN­
DO~NEWl as defined in HLP\EX19C.HM. The program's command ID 
for the New String Window menu item is, of course, ID_WINDO~NEW1. 

6. Rebuild the help file, and test the application. Run the MAKEHELP 
batch file again, and then rerun the EX19C program. Try the two new 
help links. 

The MAKEHELP Process 

416 

The process of building the application's HLP file is complex. Part of the 
complexity results from the Help Compiler's nonacceptance of statements 
such as 

HID_MAINFRAME = ID_MAINFRAME + 0x20000 

Because of this nonacceptance, a special preprocessing program, 
MAKEHM.EXE, must read the RESOURCE.H file to produce a help map file 
that defines the help context values. At the top of the facing page is a dia-
gram of the en tire MAKEHELP process: . 



T WEN TV: Context-Sensitive Help 

AppWizard generates the application's Help project file (HPJ). Its 
FILES section brings in the RTF files, and its MAP section contains #include 
statements for both the generic and the application-specific help map (HM) 
files. The Help Compiler, HC31, processes the project file to produce the 
help file that WINHELP reads. 

Help Command Processing 
You've seen the components of a help file, and you've seen the effects of Fl 
and Shift-Fl. You know how the application element IDs are linked to help 
context IDs. What you haven't seen is the application framework's internal 
processing of the help requests. Why should you be concerned? Suppose you 
want to provide help on a specific view window instead of a frame window. 
What if you need help topics linked to specific graphics items in a view win­
dow? These and other needs can be met only by overriding the Help com­
mand processing functions. 

Help command processing is different because it depends on whether 
the help request was an Fl request or a Shift-Fl request. The processing of 
each help request will be described separately. 

F1 Processing 
The Fl key is normally handled by a keyboard accelerator entry that 
AppWizard inserts in the RC file. The accelerator associates the FI key with 
an ID_HELP command that is mapped to the CWinApp member function 
OnHelp. 

417 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

NOT E: In an active modal dialog or menu selection in 
progress, the Fl key is processed by a Windows hook that causes 
the same OnHelp function to be called. 

The CWinApp::OnHelp function sends a WM_COMMANDHELP mes­
sage to the outermost frame window. In an SDIapplication, that message is 
handled by the main frame base class function, CFrameWnd::OnCommandHelp, 
which calls WINHELP with help context HIDR_MAINFRAME. The main 
frame window is the top-level window, and that is the starting point for daisy­
chained WM_COMMANDHELP message processing. If you need to show 
help for a view window or another child window, you must map 
WM_COMMANDHELP in your derived frame class. Your OnCommandHelp 
function should then send the WM_COMMANDHELP message down the 
line to the active view window. When the view window gets the message, it 
calls WINHELP with an appropriate help context ID. 

In an.MDI application, the WM_COMMANDHELP message is mapped 
in both the CMDIFrameWnd class and the CMDIChildWnd class. If there are 
no MDI children, the frame window sets the context to HIDR_MAINFRAME; 
if there are one or more children, the frame window sends the message to 
the active child window, which sets the help context for the document. If you 
need Help for views, you must derive a class from CMDIChildWnd and then 
map the OnCommandHelp function in that derived class. This function then 
sends the WM_COMMANDHELP message down to the view. 

Remember that Fl WM_COMMANDHELP processing is always in top­
down order. The application first sends the message to the top-level window, 
which has the option of delegating the message to a child window. This rout­
ing is different from the normal command routing. 

Shift-F1 Processing 

418 

When the user presses Shift-Fl or clicks the Context Help toolbar button, a 
mapped menu command message is sent to the CWinApp function On­
ContextHelp. When the user clicks the mouse again after positioning· the 
mouse cursor, a WM_HELPHITTEST message is sent to the innermost win­
dow, where the mouse click is detected. If the message is not mapped in that 
window's class, the next outer window gets a chance at it. 

In an SDI application, WM_HELPHITTEST is mapped to the 
CFrameWnd class member function OnHelpHitTest, which sets the help con­
text to HIDR_MAINFRAME. In an MDI application, the message is mapped 
to both the CMDIChildWnd and the CMDIFrameWnd classes. If the ~ouse cur­
sor is in the child window, the document help context is set; otherwise, the 
context is set to HID~MAINFRAME. 



T WEN T Y: Context-Sensitive Help 

If you want a view-specific help context, simply map WM_HELPHIT­
TEST in your view class and don't pass the message on to the frame. The 
lParam parameter of OnHelpHitTest contains the mouse coordinates in device 
units, relative to the upper left corner of the window's client area. The y 
value is in the high-order half; the x value is in the low-order half. You can 
use these coordinates to set the help context specifically for an item in the view. 

Remember that Shift-F1 processing is always in bottom-up order. The 
message is first sent to the lowest-level window. If that window doesn't map 
the message, it's sent to the parent window. 

A Help Command Processing Example-EX20B 
This example, EX20B, is based on example EX19C from Chapter 19. It's a 
two-view MDI application with view-specific help added. The purpose of the 
added code is as follows: 

• A new derived MDI child frame window class delegates the Fl help 
response to the active view object, and each of the two view classes 
has the necessary OnCommandHelp message handler . 

• Each view class has an OnHelpHitTest message handler to process 
Shift-F1 help requests. 

Header Requirements 
The compiler recognizes help-specific identifiers only if the following #in­
elude statemen t is present: 

1F'i,it~ hlde:<:~r)(pr:jy; fi·~ . 

In EX20B, the statement is in the STDAFX.H file. 

CEx20bApp 
You need a special MDI child frame window class, CMDIHelp Wnd, to accom­
modate the new Help processing. This class is specified in the application 
class AddDocTemplate calls. Replace the EX19C.CPP line 

RUNTIME_CLASS(CMDIChildWnd) 

with 

419 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

CMDIHelpWnd 
The new class declaration is added to the MAINFRM.H header file as follows: 

Here's the Cl\1DIHelpWndimplementation code, inserted in MAINFRM.CPP. 

420 



T WEN T Y: Context-Sensitive Help 

The OnCommandHelp function first tests the m_nIDTracking data mem­
ber to see whether the user was asking for help on a menu item. If no menu 
was .open, the function tries to pass the WM_COMMANDHELP command 
message on to the active view. If no view is available, the function brings up 
the Help topic for the MDI client window. The document-specific topic isn't 
needed here because a document MDI child window can't exist without a view. 

CStringView 
The modified string view in STRINGVW.H needs message map function pro­
totypes for both Fl help and Shift-Fl help: 

afx_msg;.LRf::SOL r .OnCommandHe lp.(W~A~AM ;wp.ara~ ~:~.PA~AM.r~a'J',allt);. 
af:~i:m·sg.t;RE:S~:L 'T . On~ eJ pHHJ~ stt( kJ~c~RAM :wP:~:r: alll~; ~ LP:~R.4;M.l:pa~ram); ~ 

Here are the message map entries in STRINGVW.CPP: 

m·tMES SA~cECWM::COMMANiiH E (p ~·:.on C:oJfi~a~~Jij:l:~J ; : ••• ;~.::' .•. c c.: .' ':'.If 
,()ji]ME S;3:AS;E':~f.tjH~~~ Pfri T~E'Sf ;' ~ OH~~~~Hi ~J1e;s~')' ~ ~ :::: ~\:'I : •. ;di~:· .~"j ;: :·.·.·V'; 

The OnCommandHelp message-handling member function in STRING­
VW.CPP processes Fl help requests. It responds to the message sent from the 
MDI child frame and displays the help topic for the string view window. 

Finally, the OnHelpHitTest member function handles Shift-Fl help. 

In a more complex application, you might want OnHelpHitTest to set the 
help context based on the mouse cursor position. 

CHexView 
The CHexView class processes help requests the same way the CStringView 
class does. Following is the necessary header code in HEXVW.H: 

421 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

:a,f;i<jrisgU~ESU L tOn Camina n (j'r-rel P('W FrA~A~'wp;~ r~ hi 1 tpi,tiRAMl;P~:r~irr:)~ ;f~c~t!; 
~;f~..;,~$9:LR~~iJLf . ClnHe;' pHitfest(WP:l~R:A·M cWI?:a·t\~in •. LP~R~M:l;P~if~iri~; ;;Y:' ~ 

Here are the message map entries in HEXVW.CPP: 

~N.:.t4ESSAGE:(WM_COMMANDHELP:. crncomcma~~He1p~: 
ri~l..:~ESSAGE:{WM..;.HElPHITTEST.· OnH~lpHiiie~ir 

And here is the implementation code in HEXVW.CPP: 

Resource Requirements 
Two new symbols were added to the resource file. Here are their values and 
corresponding help context IDs: 

Symbol 

IDR_STRINGVIEW 

IDR_HEXVIEW 

Value 

101 

102 

Help Context 

HIDR_S TRING VIEW 

HIDR_HEXVIEW 

Value 

Ox20065 
Ox20066 

Help File Requirements 

422 

Two topics were added to the AFXCORE.RTF file with the help context IDs 
HIDR_STRINGVIEWand HIDR_HEXVIEWas shown in the screen on the 
facing page: 



T WEN T Y: Context-Sensitive Help 

fl._ EX20 B·String·Vie~ 
11 
The-EX20B-application-String-V iew-shows-the-text-ofthe -documenVs-poem- as-it-wi11-be-printed_1I 

fl._ EX20 B·Hexadecimal·Vie~ 
11 
The-EX20B-application-Hexadecimal-V iew-shows-a-hex-dump-ofthe-poem-document's-contenls_lI 

The generated EX20B.HM file, in the project's HLP subdirectory, should 
look like this: 

II MAKEHELP.BAT generated Help Map file. Used by EX20B.HPJ. 

II Commands (10_* and 1DM_*) 
HID_WI NDOW_NEWl 0x18000 
HID_WI NDOW_NEW2 0x18001 

II Prompts (1DP_*) 

II Resources (1DR_*) 
H1DR_MA1NFRAME 
H1DR_POEMTYPE 
H1DR_STR1NGVIEW 
H1DR_HEXV1EW 

II Dialogs (100_*) 
H1DD_ABOUTBOX 

II Frame Controls (1DW_*) 

Build and Test the Application 

0x20002 
0x20003 
0x20065 
0x20066 

0x20064 

Open a string child window and a hexadecimal child window. Test the action 
of FI help and Shift-FI help. 

423 





C HAP T E R TWENTY-ONE 

A PRACTICAL WINDOWS­
BASED APPLICATION 

The examples in the preceding chapters have illustrated specific Microsoft 
Foundation Class Library version 2.5 features. This chapter is different. It 
shows a complete two-view-class MDI application that combines most of the 
elements you've seen already, including 

• Mouse capture and tracking 

• Bit-block transfers 

• A scrolling view 

• Document-view interaction 

• Dynamic array usage 

• Serialization 

• Wysiwyg printing 

• Non-wysiwyg printing with pagination 

• Menu command processing 

• Dialog data exchange 

• Context-sensitive help linked to the view 

The application also illustrates the use of the list box as a central view 
element, and it shows the use of a document item class that streamlines the 
interface between view and document. 

This chapter's presentation is a little different too. You won't see step­
by-step instructions but rather selected code plus a summary of the resource 
requirements. The entire source is, of course, included on the companion 

425 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

disc. The class and file names are application-oriented and thus are not 
based on the chapter number. 

The example is a materials planning application, named MAT P LAN , 
that takes advantage of Windows' graphical user interface-the user can di­
rectly manipulate data with the mouse. I hope that the MATPLAN applica­
tion will give you ideas for your own applications. 

The MATPLAN Application 

426 

Have you ever planned a home project, a doghouse for example, that re­
quired plywood pieces cut from 4-foot-by-8-foot sheets? Or has your boss 
ever asked you to design a jet fighter that needed skin sections cut from 
sheets of titanium? The MATPLAN application addresses both these com­
mon, everyday problems. 

Typically, the project design dictates the dimensions of the pieces of 
material. The challenge is to cut the pieces with a minimum amount of 
waste. MATPLAN uses a document that consists of an array of "piece" ob­
jects. The lengths, widths, and descriptions of the pieces are maintained 
through the list view; the user types the data for each piece in a dialog. The 
pieces are arranged through the graphical plan view; the user moves the 
pieces with the mouse on a grid that shows the material sheet boundaries. 

Look at Figure 21-1 to get an idea of how MATPLAN works. Both the 
list view (in the top child window) and the plan view (in the bottom child 
window) are updated as the document's data changes. 

When the user double-clicks on a line in the list view, a dialog appears, 
as shown in Figure 21-2. 

The dialog's edit controls correspond to the columns in the list view. 
The x and y values represent the plan grid coordinates of the piece's top left 
corner. As the user moves the pieces in the plan view, the list view is updated 
to reflect the new coordinates. As the user changes the dimensions and de­
scriptions in the list view, the plan view is updated accordingly. Of course, the 
computer could figure out how to layout the pieces by itself, but that 
wouldn't be any fun. MATPLAN does offer some help to the user during the 
layout process. Overlapping pieces are displayed in black, and if the user 
double-clicks on a piece, it drops into place (like a piece in the TETRIS 
game). 

MATPlAN fully supports the printer and Print Preview from both 
views. In the plan view, the entire grid of eight sheets is printed on one page. 
In the list view, list entries are printed report-style, three lines per page. (The 
lines-per-page is small to more easily illustrate paginated printing.) 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

Figure 21-1. 
The MA TPLAN application in action, with two views active. 

Figure 21-2. 
The MA TPLAN dialog. 

The Anatomy of the MATPLAN Application 
The MATPLAN application structure should start making sense quickly be­
cause of your work with this book's earlier examples. That's the idea behind 
programming with a standard application framework. First you identify the 
document and view and document classes, and then you analyze the other 
classes and find out how they interrelate. 

Let's start with a list of the files and classes at the top of the next page: 

427 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Header File Source Code File Classes Description 

MATPLAN.H MATPLAN.CPP CMatplanApp Application class 
CAboutDlg About dialog 

MAINFRM.H MAINFRM.CPP CMainFrame MDI main frame 
CMDISpecialChildWnd MDI child frame 

MATDOC.H MATDOC.CPP CMatplanDoc MAT PLAN 
document 

LISTVIEW.H LISTVIEW.CPP CListView List view 

PLANVIEW.H PLANVIEW.CPP CPlanView Plan view 

MATDLG.H MATDLG.CPP CMatplanDialog Data entry 
dialog 

MATPIECE.H MATPIECE.CPP CPiece Document item 

STDAFX.H STDAFX.CPP Standard class 
library include 
files 

RESOURCE.H Constants from 
App Studio 

Now we'll discuss each class separately, and we'll look at some of the 
important member functions. 

CMatplanApp 
This class is the standard App Wizard-generated application class derived 
from CWinApp. Only its InitInstance and ExitInstance functions are unique. 

Initinstance 

428 

As in the EX19C example, the InitInstance member function constructs two 
secondary document template objects, one for the list view and the other for 
the plan view, as shown below: 

m_pTemplatel = new CMultiDocTemplate(IDR_MATTYPE, 
RUNTIME_CLASS(CMatplanDoc), 
RUNTIME_CLASS(CMDISpecialChildWnd), 
RUNTIME_CLASS(CListView)); 

m_pTemplate2 = new CMultiDocTemplate(IDR_MATTYPE, 
RUNTIME_CLASS(CMatplanDoc), 
RUNTIME_CLASS(CMDISpecialChildWnd), 
RUNTIME_CLASS(CPlanView)); 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

Exitlnstance 
This function destroys the templates constructed in Initlnstance. 

CMatplanDoc 
This is the materials planning document class. It contains a dynamic array of 
CPiece object pointers, m_pieceArray, and is a friend to both view classes. This 
friendship allows the view class member functions to access the private piece 
array. 

The piece array contains the primary copy of the application's data. 
The plan view accesses the CPiece objects directly, and the list view copies all 
the information contained in the array to and from its list box. 

Constructor 
The CMatplanDoc constructor illustrates the initialization of a dynamic array. 
The CObArray SetSize member function sets the initial array size to 0, but it 
sets the grow factor to 20. That means that the new operator is called only 
after the addition of every twentieth element to improve performance. The 
array elements are added in the CListView class with the CObArray::SetAtGrow 
member function. 

CMatplanDoc::CMatplanDoc() 
{ 

m .... pieceArray ~SetS;:ze( 0. 20); fj ai locate m.em 20~letr\entsat a :tfme 

Serialize 
The document class's Serialize function simply serializes m_pieceArray, which, 
in turn, serializes each CPiece object. 

Delete Con ten ts 
A CObArray collection contains pointers to objects, not the objects them­
selves. This overridden virtual function not only removes the object pointers 
from the collection but also deletes the objects. 

VOl d CM.atplanDoc:: Del eteContents () 
{ 

.fbr '. Cihti =m_pieceAttay.:@etlJpperBound(); ;>= 0; 
idel ete m;..;.pi eCeJ\rray.GetAt (i): 

429 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

OnEditClearAII 
In addition to emptying the array, the OnEditClearAll function marks the 
document as modified and updates all views. 

void CMatplanDoc::OnEditClearAll() 
{' II' g~tsrid bf'khe·o ldl:h ~ce··q r:t'~y In t·H~ .. ~QqUiri~~i 

} 

.~ .Del eteContentso; 
SetModi fi edFlag( ).; . 
Updat,eA 'l·Views (NULL); 

On UpdateEditClearA II 
The Edit Clear All menu item should be grayed when the document's array is 
empty. 

void CMatplanDoc::OnUpdateEditClearAll(CCmdUI* pCmdUI) 
{ 

pCmdlJl~ >.E:nab le(nLpi eteArfay. GetOp;p;erB:ounn,( r: 

On UpdateFileSave 
This update command UI function tests the modified flag and enables the 
toolbar disk (File Save) button accordingly. 

CMainFrame 
As in EX19C, this class, derived from CMDIFrameWnd, has command mes­
sage handlers for the New List Window and New Plan Window menu items. 

OnWindowNew1 
This function opens a new MDI child frame window and associated list view, 
based on the document that is currently active. It is associated with the New 
List Window item on the Window menu and with the ID_WINDO~NEWl 
constant. 

OnWindowNew2 

430 

This function opens a new MDI child frame window and associated plan 
view, based on the document that is currently active. It is associated with 
the New Plan Window item on the Window menu and with the ID_WINDOW 
_NEW2 constant. 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

CMDISpecialChildWnd 
This class, derived from CMDIChildWnd, exists only to support view-related, 
context-sensitive Fl help. 

OnCommandHelp 
This function handles the WM_COMMANDHELP message that the MDI 
main frame sends. It delegates the Fl help request to the active view. 

CPiece 

Draw 

A MATPLAN document is composed of an array of CPiece objects. These 
pieces, known as document items, can draw and print themselves. This capa­
bility seems to violate the separation of view from document, but it's an ac­
cepted programming technique. 

The CPiece class has data members for length, width, description, and 
position on the material grid. The length and width are maintained in physi­
cal coordinates-double-precision floating-point variables representing 
inches-and that's what the user edits in the dialog. Those physical coordi-

. nate values are converted to logical coordinates (1 logical unit = 0.01 inch) 
within the CPiece member functions, and subsequently they're converted to 
device coordinates. 

The CPiece Draw function is called from the plan view OnDraw function for 
each piece in the array. The object's data members convey sufficient infor­
mation to draw a rectangle representing the piece. If the m_bOverlap flag in­
dicates that the piece overlaps another piece, the rectangle's fill color is 
black. Draw is designed to work with both the display and the printer. 

void CPiece::Draw(CDC* pDC. int y~har) 
{ 

CRect rect; 
Get Rect (rect) ; 

pDC ->SelectStockObj ect (BLACK_PEN); 
if Cm_bOverTap) { 

pOC.;)SE1!lectStock:Object< BLACK...B~USH) ; 
} 

(continued) 

431 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

The piece description is printed in white, and that works fine on the 
display and with many printers. Older HP LaserJet printers can't print fonts 
white-on-black, however. 

PrintLine 
The list view OnDraw function calls the CPiece::PrintLine function for each 
piece in the array. PrintLine is designed for printing only. 

MATPLAN uses a fixed-pitch font, and that allows use of the sprintf 
function. If you wanted a proportional font, you would have to compute the 
starting positions for each field. 

Serialize· 

432 

The Serialize function does disk 110 for all the. CPiece data members except 
the flags m_bNewList and m_bOverlap. 



T WEN TV - 0 N E: A Practical Windows-Based Application 

InsertlnList, ExtractFromList 
A CPiece object is represented by an entry in the CListView list box. These two 
functions transfer the piece object's data members to and from a specified 
(by index) list box entry, which consists of a single formatted string. 

NOTE: In MATPlAN, all the document's data must be copied 
to or from the list box every time the document is updated. For 
large documents, performance suffers, and the document-view 
architecture is compromised. In Chapters 24 and 26, you'll see the 
CRowView class, which displays rows consisting of separate fields. 
This class eliminates the need for strncpy gymnastics, and it better 
supports the document-view architecture. With CRowView, the 
only rows copied are the rows actually being displayed. 

433 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

CMatplanDialog 
This modal dialog class, based on the dialog resource IDD_FORM, is the data 
entry form for material pieces. It works differently from the standard 
ClassWizard-generated dialog because it doesn't have individual data mem­
bers for its edit controls. Instead, it has a single CPiece object pointer as a data 
member. The list view object owns the actual CPiece object. 

Constructor 
The CMatplanDialogconstructor initializes the m_pPiece data member. 

CMatplanDialog::CMatplanDialog(CWnd* pParentWnd, CPiece* pPiece) 
CModalDialog(CMatplanDialog::IDD, pParentWnd) 

} 

DoDataExchange 

434 

ClassWizard did not generate this DoDataExchange virtual function. It was 
hand-coded with references to CPiece data members. The Description field, 
for example, is referenced by the expression m_pPiece->m_desc. The first part 
is the CMatplanDialogdata member that points to the view's CPieceobject; the 
second part is the CPiece data member that holds the description string. 

The DoDataExchangefunction also adjusts the default pushbutton. If the 
user is modifying an existing piece, the default button is the Update button; 
otherwise, it is the Insert button. Because we're taking control of the default 
pushbutton, overriding the virtual OnOK function is unnecessary. The func­
tion simply doesn't get called. 

void CMatplanDialog::DoDataExchange(CDataExchange* pDX) 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

} 

NOT E : The Visual C++ documentation might lead you to be­
lieve that ClassWizard's "foreign object" support can generate the 
DDX code shown here. Unfortunately, this is not the case. The for­
eign object feature applies only to database "recordset" classes. 

OnClickedCance/ 
This message map function is called in response to the dialog's Cancel but­
ton. DoModal then returns the IDCancel code. 

void CMatplanDialog::OnClickedCancel() 
{ 

. COj a log: : OnCancel:O: 
} 

OnC/ear, OnDe/ete, On/nsert, On Update 
These command message handler functions are called in response to associ­
ated pushbuttons. Their main function is to pass the button's ID code to the 
CDialog::EndDialog function, which establishes the return value from Do­
Modal. Here's the Onlnsert function, which triggers a call to DoDataExchange: 

void CMatplanDialog::Onlnsert() 
{ 

if (!UpdateData(TRUE)) 
return; It. returns on error 

EndOialog{IOC_INSERT): 

The On Clear function clears CPiece data members and sets the Insert button ' 
as the default. 

435 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

void CMatplanDialog::OnClear() 
{ 

} 

m~pPiece~')m_l eng:th = lll"'pPfece:,:}m_w,1,dt:6 ~0.0;i 
m:.Ppiet:e->IJ1_desc = .. ··: :,'" , .. '.'.:, >::,.' 
m~pPiece- >riLsheet:::i m_pPfEiEe~)m .... x· ,;m .... p:Piece~>'~8i= 
UpdateD'ataCFALSE); 
$.etbefID( TOC,.,.INS'ERT); /Iins'et'tlstl'le 
GotoDl gCt r 1 (GetDlgl tern( IOC"':LENGTH) J: 

On Cascade 
This virtual override is necessary to prevent the default On Cancel function 
being called when the user closes the dialog from the system menu or with 
the Esc key. This OnCancel function displays a message box through which 
the user confirms that he or she wants to exit the dialog. If the user chooses 
OK, DoModal returns the IDCancel code. 

void CMatplanDialog::OnCancel() 
{ 

if (AfxMessageBox("Exit Dialog? (Fl fbr help)", 
lOP .... EXIT .. ]llG) '. f:= '. IO{)K) 

{ 

CDfalog::bnC~ncel()~ 
} 

} 

The IDP_EXIT_DLG symbol maps to a help context. 

CList Vie w 
This is the MATPLAN list view class. A CListView object contains a pointer to 
a single CListBox object that occupies the entire view client area. It also con­
tains pointers to a dialog object and to a CPiece object. Both the list box and 
the dialog pointer data members specify heap-allocated objects that belong 
to the view object. The CPiece pointer, however, specifies the current piece, 
which is associated with the selected item in the view's list box. 

OnPrepareDC 

436 

The OnPrepareDC function sets the view's map mode and selects the font for 
printing. 

void CListView::OnPrepareDC(CDC* pOC. CPrintInfo* pInfo) 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

pDC->SelectObject(m_pPrintFont); II need to do it every page 

OnDraw 
This view's OnDraw function is not called for the display; it's called only for 
printing. It gets the document's piece array, and then it calls theCPiece::­
PrintLine member function for each piece that appears on the current page. 

void CListView: :OnDraw(CDC* pDC) 
{ II called for Print/Print Preview ONLY, not for display 

CPoint pOint(0, 0): 

OnPrint 

CPiece* pPiece: 
int nLineMin, nLineMax; lI.zero-based line numbers 

CMatplanOoc* pOac = GetOoeument(): 
nLineMin = (m_nPage - 1) * CMatplanDoc::m .... nLinesPerPage:; 
nL i neMax = nL i neMi n + CMatplanDoc ::I1LnLinesPerPage -
if (n L ineMax > pOae ->m_pi eceArray. GetU'pper,BoundO ) { 

nLineM.ax = PDoc->m..,..pieteArray,.GetUpper~?undO; 
} 

pOint += nLdrawOffset; 
point.y ~= m-yChar * 2; II space for col head &blanR lfne 
for (inti = nLineMin; i <= nLineMax; i++) { 

pPiece = (CPieee*) (pOoc->m_pieceArray.GetAt(i»; 
point.y -= m-yChar; . 
pPiece->PrintLine(pOC, pOint); 

The application framework calls OnPrint for each printed page. The func­
tion prints the page header and then calls the OnDraw function. It also sets 
the value of the m_ nPage data member so that the page footer function can 
access the current page. 

void CListView::OnPrint(COC* pOC, CPrintlnfo* plnfo) 
{ 

II application framework 
PrintPageHeader(pOC); 
m~nPage = plnfo->m_nCurPage: 

OI1Dt'Qw(pDC); 
P'ffnfPatjeFooter( POC): 

437 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

On Update 
This important virtual member function copies all the information in the 
document's CPiece array to the view's list box. It is called on File New, on File 
Open after the document has been read from disk, and when the docu­
ment's UpdateAllViews function is called from some other view. OnUpdate is 
called by the application framework on File New, on File Open after the 
document has been read from disk, and when the document's UpdateAllViews 
function is called from some other view. If the piece array is empty, the 
StartNewList member function is called. 

OnPreparePrinting 
The OnPreparePrinting function is called immediately before the application 
framework's print dialog appears, and it sets the maximum page number 
based on the CPiece array size and the number of entries per page. 

OnBeginPrinting, OnEndPrinting 

438 

A special fixed-pitch font is created in OnBeginPrinting and deleted in 
OnEndPrinting. This font exists for the duration of the print process. 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

On Create 
The view's list box is created in this message handler. The list box uses a 
fixed-pitch font because that's an easy way to line up the columns. 

int CListView::OnCreate(LPCREATESTRUCT lpcs) 
{ 

CRect rect: 
CFont font: 

II makes a list box the exact size of the window 
GetCl i entRect (&rect) : 
rect.lnflateRect(GetSystemMetrics(SM_CXBORDER), 

GetSystemMet~ics(SM_CYBORDER»: 

m_pListBox->Create(WS_CHILDI WS_HSCROLL I W$ .... VSCROLl WS .... VISIBLE 
LBS_NOn FY I LBS_NOINTEGRALHEIGHT. 

OnPaint 

rect, thi s. I DR-LI STBOX) ; 
fl creates and attaches a fixed font to the list box 

font.CreateStoekObjeet(SYSTEM_FIXED...;.FONT); 
tn,...pListBox->SetFont(&fpnt>; . 
return CView::OnCreate(lpcs); 

The base class OnPaint message handler calls OnDraw. We don't want to 
call OnDraw here, so we override OnPaint. The function must construct a 
CPaintDC object to validate the rectangle that contains the list box, thus as­
suring proper repainting of the list box. 

void CListView::OnPaint() 
{ 

On Size 

CPaintDC dc(this): II this statement is necessary to g~i:t:er&te 
1/ the Begi nPai nt .and EndPai. nt call.s to 
1/ validate the rectahgle 

This message handler ensures that the list box is resized every time the view 
window is resized. 

void CListView::OnSize(UINT nType, int cx, int cy) 
{ 

eRect reet; 

(continued) 

439 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

} 

OnListBoxDblClk 

440 

When the user double-clicks on a list box entry, a dialog pops up, allowing 
the user to edit the length, width, and description for the selected piece. The 
user can also delete the piece or insert a new piece. If the list box is empty, 
the user obviously can't select an entry; so the user must close the view and 
use File New to create a new view. 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

} 

delete m_pD1alog; 

OnCommandHelp, OnHelpHitTest 
These two functions process the WM_COMMANDHELP and WM_HELPHIT­
TEST messages, thus implementing context-sensitive help for the list view. 

StartNewList 
This private member function really doesn't create a new list-that's done 
in On Create. StartNewList, called when the document CPiece array is empty, 
brings up an empty dialog and invites the user to insert a new entry in the list 
box, which, up to this point, is empty. 

UpdatePlanDocument 
This private member function copies the entire contents of the list box to 
the document's CPiece array. It is called when the user changes an entry 
through the dialog. 

void CListView::UpdatePlanDocument() 
{ ./ / traosfersati data'from vie.w' (l'ist)l6xJ 

} 

copi'e~a:1 ~1.~!tFjn9s:fromview~s{ll~t 
i nt 1 istLen<==m~pL1 stSox->GetGoun't'() { 
Jor (; == 0: . L < :1 i·st12en::i++)·.{ : 

441 



PA R Till: THE DOCUMENT-VIEW ARCHITECTURE 

CPlanView 
This is the MATPLAN plan view class. It shows a visual representation of each 
piece as a rectangle. The user can position the pieces with the mouse, but 
the size of the pieces is controlled from the list view. As does the list view, the 
plan view has a pointer to the current piece. The plan view's list pointer re­
fers to an element in the document's CPiece array. 

OnDraw 
The application framework calls this function both from OnPaint (for the 
display) and from OnPrint (for the printer). The mapping mode is the same 
for both destinations. For the display, OnDraw is passed a memory display 
context, but for the printer, OnDraw is passed a printer device context. 

OnDraw calls the Draw member function for each piece in the docu­
ment's array. The array order determines the drawing sequence so that the 
last piece in the list is always on top. 

void CPlanView::OnOraw(COC* pOC) 
{ 

} 

OnPreparePrinting 
The material grid fits on one printed page, so OnPreparePrinting sets the 
maximum page number to 1. 

On Update 

442 

The virtual OnUpdate function calls ShowOverlap to recalculate overlapping 
rectangles, and then it invalidates the client rectangle. This forces OnDraw to 
refresh the screen from the current document. On Update is called by the ap­
plication framework on File New, on File Open after the document has been 
read from disk, and when the document's UpdateAllViews function is called 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

from some other view. The repaint process has not been optimized because 
the draw time of rectangles is not a concern. The draw time is more critical 
for complex shapes such as ellipses. 

void CPlanView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint) 
{ 

ShowOverlap(); 
InvalidateCTRUE); II forces total redraw 

OnlnitialUpdate 
The overridden OnlnitialUpdatevirtual function initializes the scroll view and 
creates a memory device context and bitmap to support the BitBlt calls when 
a rectangular piece is moved with the mouse. Note that the memory device 
context applies only to the display. For printing, the OnDraw function writes 
to the printer DC directly, so the gray rectangles are printed properly. The 
bitmap and device context are deleted in the view's destructor. 

void CPlanView::OnlnitialUpdate () 
{ 

TEXTr.,tElRlC tm; 

OnPrepareDC(&dc); 
CRsctrectMax(CPoint(0, 
dc.LPtoDP(rectMax): 

m_pMemDC~>C~eateCompatibleDC(&qc); 
Cllitmap* pBitmap = new CBitmap; 
pBi.tmap~ >CreateCoITlpatibl eBitmqp{,&dc,!ir'ectMa:x,. r~ght;. 

, . .... . .... . . ......~r~c,tMax.~Qttomt; •...•.•. :; ." ". . ' 
CSi tmap*pOl aBitmap = tC'Bltm/ip* ) (m_PMemffC--jseJ ectObject XtfBJvm~f>:»£ 

IITtJ;i.s ·tempreturJjed'pointerdoesfl~t remJiUl: v:ali dpast lDLEproces~ing~ 
therefore, we:mu,st savethehandlei;nste(ld~.. .' . ., ., 

, 1I4hOl dB~ tmap. = (HBtrMAP ) . pOl dB itfnap:- >!ILhOpject:,~ 
m_pMemDC- >SetMapMode( MM~U)ENGlISfiJ:; . 

(continued) 

443 



PAR T III: THE DOCUMENT-VIEW ARCHITECTURE 

CScrollView::OnInitialUpdate(); 

OnPaint 
The OnPaint message handler is overridden in this view to permit use of the 
memory device context and bitmap. OnPaint clears the bitmap, calls OnDraw, 
and then uses the BitBlt function to copy the piece rectangle. from the 
memory device context to the display. This process ensures smooth move­
ment of the rectangle. 

void CPlanView::OnPaint() 
{ 

OnLButtonDown 

444 

When the user clicks on a piece rectangle, the mouse is captured, and piece 
movement can begin. The OnLButtonDown function sets the view's m_pPiece 
data member to point to the selected piece object. 

void CPlanView::OnLButtonDown(UINT nFlags, CPoint point) 



} 

T WEN T Y - 0 N E: A Practical Windows-Based Application 

for (int i = pDoc-)m_pieceArray.GetUpperBound(); i >= 0; i~-) { 
pPiece = (CPiece*) pDoc->m_pieceArray.GetAt(;): 
pPiece-)GetRect(rect); 

} 

dc.LPtoDP(&rect}; 
// PtlnRect works only for device coordinates 
if (rect.PtlnRect(point» 

} 

SetCapture(): 
m_bCaptured = TRUE; 
m_pPiece = pPiece; 
dc.DPtoLP(&point); 
m_mousePoint = pOint; 
::SetCursor(::LoadCursor(NULL, IDC_CROSS»; 
break; 

OnMouseMove 
As the mouse moves, this function updates the xy-coordinates for the current 
piece, which is stored in the document's CPiece array. If the user moves the 
piece outside the view, the view is scrolled accordingly. This scrolling contin­
ues as long as the mouse is in motion. The OnMouseMove function invalidates 
the union of the previous rectangle and the new rectangle. 

void CPlanView::OnMouseMove(UINT nFlags, CPoint pOint) 
{ 

CSize offset; 
CRect clientRect, pr'1orRect, newRect, invalidRect: 

if (m_bCaptured) { 
/1 let's work in devicecoordsfor scrol1.ing 
CPoint scrollPos = GetDeviceScrollPosit1on(): 
// scrolls in response to mouse movement outside Cl'ierit ·qrea· 
GetClientRect(&clientRect}; 
jf (point.y. > client~~cit.bottom) { 

scrollPos.y += point.y - clientRect.bottom; 
Safe$crollTo(scrollPos); 

} 

if (point.y< 0) { 
scrollPos.y += pOint.y; 
SafeScrollTo(scrollPos); 

} 

if (pbint.x ) t11entR~tt.right) { 
scrollPos.x +::i point.x - clientRect.right: 

(continued) 

445 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

OnLButtonUp 

446 

When the mouse button is released, mouse capture is turned off, and the 
OnLButtonUp message handler calls UpdateAllViews to update the list view 
with the new piece position. If the user has moved any part of the piece rect­
angle outside the grid boundaries, the piece is brought back into the grid. 

void CPlanView::OnLButtonUp(UINT nFlags, CPoint point) 



T WEN T Y • 0 N E: A Practical Windows-Based Application 

} 

if «m_pPiece->m-y >= 0» { 
ffi-pPiece~>m-y = 0; 

if (m_pPiece->m-y - width < -m_totalLog.cx) 
m_pPiece-)m-Y = -m_totalLog.cy + width; 

1 
ReleaseCapture(); 
m_bCaptured = FALSE; 
ShowOverlap(): 
pDoc-)SetModifiedFla,gO: 

,pOoC:">UpdateA llVi ews(this); / / except this 

OnLButtonDblClk 
This is the so-called TETRIS function. When the user double-clicks on a 
piece, the piece drops into place in the upper left corner of the sheet. If the 
upper left corner is occupied, the selected piece drops into the closest avail­
able position. 

OnKeyDown 
This message handler implements view scrolling from the keyboard. 

OnCommandHelp, OnHelpHitTest 
These two functions process the WM_COMMANDHELP and WM_HELP­
HITTEST messages, thus implementing context-sensitive help for the plan 
view. The OnHelpHitTest lParam parameter contains the cursor position in 
device coordinates. 

LRtSULT CPlanView: :OnHelpHitieshWPARAMwPariuItitP~.RAM 
{ , . 

TRAcEC"Mou$e!' po~; t19fl=(%d. ·%d)\n';·,. :..... . 
(i ntJ HIWORD(lPara'~). (tot) L.OWORO(1 

r'et urn HI O..c.BASE2.RE sou RC E . + . I OR...;.P l.ANV lEW; 

ShowOverlap 
The ShowOverlap private member function computes which piece rectangles 
overlap other piece rectangles. The function sets the m_bOverlap flag for 
overlapping pieces. 

447 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

SafeScrollTo 
The CScrollView class establishes a logical size for the view window. The scroll 
bar control handlers are programmed to restrict scrolling to this area. No 
such restriction exists for the CScrollView::ScrollToDevicePosition function, 
however. The SafeScrollTo private member function wraps the ScrollTo­
DevicePosition function in such a way that scrolling is limited to the logical 
window area. 

;yi)l'~CPlanVie,w: :SafeScro) lTq(c~dtnf])piD~v) ." '" .,. . ., .. ' 
tt1exe~ute~i,sFroll qn.ly ff'viewport withlll'wjj'l:dow,rlHHrrrCfs','" 

'. eRect :c 1 JeJlt Rect f 

The MATPLAN Resource File 
App Studio was used to enhance the application's resource file, which was 
originally generated by App Wizard. 

The IDD_FORM Dialog 

448 

The most important element in MATPlAN.RC is the form dialog resource 
IDD_FORM. You've seen the form image in Figure 21-2 on page 427. Here 
are the dialog controls as input to App Studio: 



T WEN T Y - 0 N E: A Practical Windows-Based Application 

Text 

Width 

Length 

Description 

Sheet # 

x-coordinate 

y-coordinate 

Text Control 10 

IDC_WIDTH 

IDC_LENGTH 

IDC_DESC 

IDC_SHEET 

IDC_X 

IDC_Y 

Data Member 

m_pPiece->m_width 

m_pPiece->m_length 

m_pPiece->m_desc 

m_pPiece->m_sheet 

m_pPiece->m_x 

m_pPiece->m_y 

Button Caption Button 10 CMatp/anOia/og Member Function 

&CANCEL 

CLEA&R 

&DELETE 

&INSERT 

&UPDATE 

IDC_CANCEL 

IDC_CLEAR 

IDC_DELETE 

IDC_INSERT 

IDC_UPDATE 

On Clicked Cancel 

On Clear 

OnDelete 

OnInsert 

On Update 

The IDR_MATTYPE Menu 
The following table shows the new MATPLAN menu items: 

Menu 

Edit 

Window 

Symbols 

Menu Item 

Clear All 

New List Window 
New Plan Window 

Command 10 

ID_EDIT_CLEAR_ALL 

ID_ WINDOW_NEWl 
ID_ WINDOW_NEW2 

Here are the new symbols for MATPLAN: 

Symbol 

IDP_EXIT_DLG 

IDR_LISTBOX 

IDR_LISTVIEW 

IDR_PLANVIEW 

Description 

Dialog exit error prompt ID for help 

Identifier for list box child window 

List view window ID for help 

Plan view window ID for help 

449 



PAR Till: THE DOCUMENT-VIEW ARCHITECTURE 

Header Files 
The file STDAFX.H contains the following #include statements: 

#include <afxwin.h> 
#include .h> 
rfth,¢luge, 

II MFC core and standard components 

Building and Testing the MATPLAN Application 

450 

Mter you build MATPLAN from the Visual Workbench, be sure to run 
MAKEHELP to create the Help file. 

When you run MATPLAN, you must choose New from the File menu to 
start a new plan document. The Materials Data Entry Form dialog pops up to 
let you insert the first piece. Mter that, double-click on the list box to insert 
more pieces, and then, from the Window menu, choose New Plan Window. 
Move the pieces with the mouse, and double-click on a rectangle to test the 
autopositioning feature. Next, try Print Preview and Print for both views. 
Also check Help for the views, the dialog, and the dialog exit message box. 



PART IV 

ADVANCED TOPICS 





C HAP T E R TWENTY-TWO 

MFC LIBRARY VERSION 2.5 
PROGRAMS WITHOUT 
DOCUMENTS OR VIEWS 

The document-view architecture is useful for many applications, but some­
times a simpler program structure is sufficient. This chapter illustrates three 
applications-a Single Document Interface (SDI) program, a dialog-based 
program, and a Multiple Document Interface (MDI) program. None of 
these programs use document, view, or document-template classes, but they 
use command routing and some other Microsoft Foundation Class Library 
features. When you build the examples, you don't use App Wizard, but you 
do use App Studio and Class Wizard. The source code for these applications 
is also on the companion disc. 

The greatest benefit from avoiding documents and view is reduced 
code size. A normal do-nothing SDI application is about 66 KB (without de­
bugging information), but a stripped-down version is only about 36 KB. If 
you don't need the document-view features such as serialization, print sup­
port, and control bars, why include them in your program? If you don't care 
about saving 30 KB, you can still learn more about Windows and the applica­
tion framework by studying this chapter's examples. 

The following three examples don't have a lot in common, but they all 
do use an application object of a class derived from CWinApp. The examples 
start to diverge in the application class's InitInstance function. 

453 



PAR T I V: ADVANCED TOPICS 

The EX22A Example-An SOl Application 

454 

This SDI "Hello, world!" example builds on the code you saw way back in 
Chapter 2. The application has only one window, an object of a class derived 
from CFrameWnd. All drawing occurs inside the frame window, and all mes­
sages are handled there. Besides the frame and application classes, here are 
the application's necessary elements: 

• A main menu. You can have a Windows-based application without a 
menu; you don't even need a resource script. But EX22A has both. 
The application framework routes menu commands to message 
handlers in the frame class. 

• An icon. An icon is necessary if the program is to be activated from 
Windows Program Manager. It's also useful when the application's 
main frame window is minimized. The icon is stored in the re­
source, along with the menu. 

• Window Close message command handler. Many applications need 
to do special processing when their main window is closed. If you 
were using documents, you could override the CDocument::Save­
Modified function, as illustrated in Chapter 24. Here, to take control 
of the Close process, you must write message handlers to process 
"close" messages sent as a result of user actions and by Windows 
itself when it shuts down. 

• Precompiled headers. Precompiled headers offer such a compile 
speed advantage that you can't afford not to use them. This de­
mands two extra files in the project, but they are short and simple. 

Except for the precompiled header files, STDAFX.H and STDAFX.CPP, all 
this example's code is combined into two files, EX22A.H and EX22A.CPP. 
The only other file is the resource script, EX22A.RC. The AFX_MSG brackets 
allow you to use ClassWizard to add message handlers. The listings for the 
EX22A header and implementation files are shown in Figure 22-1. 

EX22A.H 

Figure 22-1. (continued) 

The EX22A header and implementation file listings. 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

Figure 22-1. continued 

{ 

public: 
vi rtual BOOL 

EX22A.CPP 

(continued) 

455 



PAR T I V: ADVANCED TOPICS 

Figure 22-1. continued 

(continued) 

456 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

Figure 22-1. continued 

.TRACE("Entering CMainFrame: :OnHlp\n.U
); 

} 

STDAFX.H 

IIi ncl ude <afxwi n. h> 

STDAFX.CPP 

,include "stdafx.h" 

CEx22aApp 
This is the standard Microsoft Foundation Class Library application class. All 
class library applications depend on the existence of a global object of a class 
derived from CWinApp. 

Initlnstance 
This function is modeled on the Initlnstance function you see in a typical full­
scale MDI application. It simply creates a main frame window and shows it. 

CMainFrame 
This is the main frame window class, derived from CFrameWnd. It is the only 
window class in the application, and there is only one CMainFrame object. 

Constructor 
The CMainFrame constructor calls the CFrameWnd::Create function to create 
the window. The first parameter specifies the default application frame­
work-defined window registration class (not to be confused with a C++ class) . 
that attaches an icon resource with ID = 2. The last parameter specifies the 
menu resource. 

NOTE: Placing the window Create call in a window class construc­
tor is a shortcut. Everything works fine unless you derive another 
class from CMainFrame. In that case, the base class OnCreate func­
tion gets called instead of the derived class OnCreate function. You 
would be more nearly correct to use two-phase construction here. 
The Create call would reside in its own base class or derived class 
member function, separate from the constructor. 

457 



PAR T I V: ADVANCED TOPICS 

OnPaint 
If you've been using view classes, you're accustomed to using the virtual 
OnDraw function for painting in the window. Without the view class in the 
picture, you must use OnPaint. 

One/ose 
The On Close function is called when the user closes the window. It's mapped 
here to allow the application to perform shutdown processing. In this appli­
cation, a message box appears to confirm that you want to close the window. 

On QueryEndSession 
When Windows itself shuts down, it sends the WM_QUERYENDSESSION 
message to all applications. If you had thought that the WM_CLOSE mes­
sage is automatically sent in this case, you'd be wrong. Here the On Query­
EndSession function sends the WM_CLOSE message, which is handled by the 
CMainFrame::OnClose member function. 

OnFile, OnH/p 
These two dummy functions are linked to the application's menu, which lets 
you observe that command routing is operational. 

Resource Requirements 
The application framework expects the application's icon resource to have 
an ID of2. Use the IDR_MAINFRAMEidentifier to be consistent with other 
programs, but be sure to check that it's set to 2 in RESOURCE.H. You can 
use IDR_MAINFRAME for the menu also. 

It doesn't matter what's on the menu, but the message handlers expect 
the identifiers ID_FlLEand ID_HLP. 

The EX22B Example-A Dialog-Based Application 

458 

When a resizable main frame window is unnecessary, a dialog can be suffi­
cient for an application's user interface. The dialog window appears straight­
away when the user starts the application. Obviously, there's no way to 
iconize the program, but as long as the dialog is not system modal, the user 
can freely switch to other applications. 

In this example, the dialog functions as a simple calculator, as shown in 
Figure 22-2. ClassWizard takes charge of defining the class data members 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

and generating the dialog data exchange (DDX) function calls. The appli­
cation's resource script, EX22B.RC, defines an icon as well as the dialog. 

1100. 

Figure 22-2. 

o per ation 13. 1 = 133.3333333333333 o Add '-------' 

o Subtract 
o Multiply 
@ Divide 1-

IBI" 

The EX22B Calculator dialog. 

The listings for the EX22B header and implementation files are shown 
in Figure 22-3. The precompiled header files, STDAFX.H and STDAFX.CPP, 
are the same as in the previous example. 

EX22B.H 

IHnc 1 ude "resource. hIt 
class CEx22bDialog : public COialog 
{ 

public: 
CEx22bDi a log () ; 

II Di i;ll o,g Data 
Il{{AFX_DATA<CExZ2bDialog) 
enum.{ IDD= IDD_EX22BOLG }: 
double m_dl; 
double. m_d2: 
double m_d3; 
int m_nOpr: 
II} }AFX_DATA 

II Implemen·tati on 

protected:.. . ' ." .. ', :~.'. ..,.,.., :, . : 
virtualvoi d DolJata Exch:ang.e( CDatatxChirig:e*pb.xr'; '/I .0Dxr1)0:V ;~~RPb:rt. 
IIt{AFX..:MS.GCCEx22bDia log} 
afX~mSg·Yoid On.Compute(); 
.1 I:} }~FX~MSG. 

Figure 22-3. (continued) 

The EX22B header and implementation file listings. 

459 



PAR T I V: ADVANCED TOPICS 

Figure 22-3. continued 

EX22B.CPP 

(continued) 

460 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

Figure 22-3. continued 

TIP: If you need to open another modal dialog, pass this as 
the optional pParentWind parameter for the inner dialog con­
structor. 

461 



PAR T I V: ADVANCED TOPICS 

CEx22bApp 
The EX22B application class is unique. Because there is no main window, 
there is no need for the Run function to translate and dispatch messages. All 
commands are handled within the application framework and the dialog~ 

Data Members 
The variable m_dialog holds a dialog object of class CEx22bDialog. Because 
the object is embedded, the dialog is constructed and destroyed along with 
the application object. 

Initlnstance 
The CEx22bApp::lnitInstance function calls DoModal for m_dialog. Mter the 
user exits the dialog (through the CDialog::OnCancel function), Initlnstance 
returns 0, thereby signaling the application framework to terminate the ap­
plication immediately. The CWinApp::Run and CWinApp::ExitInstance func­
tions are never called. 

CEx22bDialog 
This a standard dialog class derived from CDialog. The AFX_MSG brackets 
permit ClassWizard to operate on the code. 

Data Members 
ClassWizard helps you define data members for each dialog control. The 
edit controls have double values attached (m_dl, m_d2, m_d3) , and the radio 
button group has an integer (m_nOpr) that takes on the value 0, 1, or 2. 

Constructor 
The constructor is tied to the dialog resource ID, IDD_EX22BDLC. 

DoDataExchange 
This function calls the DDX functions that ClassWizard assigned. 

On Compute 

462 

This notification message handler is activated by the dialog's Compute but­
ton and by the Enter key (because Compute is the default button). 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

Resource Requirements 
The application's resource script, EX22B.RC, contains the dialog resource, 
identified as IDD_EX22BDLC, and a reference to the icon, IDR_MAIN­
FRAME (set to 2). The dialog controls are listed in the following table, in 
their tabbing order: 

Description Type 10 Tab Stop Group 

First Input Edit control IDC_EDITl X 

Add Radio button IDC_RADIOl X X 

Subtract Radio button IDC_RADI02 X 

Multiply Radio button IDC_RADI03 X 

Divide Radio button IDC_RADI04 X 

Second Input Edit control IDC_EDIT2 X X 

Result Edit control (no input) IDC_EDIT3 

Compute Default pushbutton IDC_COMPUTE 

Exit Pushbutton IDOK 

The Second Input edit control needs the Group property set to terminate 
the preceding radio button group. 

The EX22C Example-An MOl Application 
This bare-bones MDI example isn't as simple as the SDI example, EX22A. 
Remember, from Chapter 17, that an MDI application consists of a main 
frame window and one or more child windows. Also, a single MDI client win­
dow is attached to the main frame window, but the application framework 
keeps that window hidden. If you use EX22C as a prototype, you'll be doing 
most of your programming in classes derived from CMDIChildWnd. Child 
window objects can receive and process messages as did the frame window 
object in example EX22A. 

The EX22C MDI program doesn't have all the features of a full-blown 
document-view MDI application, but it does have these basic elements: 

• A main menu. A full-blown MDI application has two (or more) 
menus. EX22C has only one menu, and that menu is attached to 
the main frame window. The MDI Window submenu (with the 
Cascade, Tile, and child selection items) is part of this main menu 
structure, but the items (along with the File Close item) are dis­
abled when no child windows are present. 

463 



PAR T I V: ADVANCED TOPICS 

464 

• An icon. Every Windows-based program needs an icon. The EX22C 
resource script defines one for this application. 

• Initial child window. Many MDI applications open an empty child 
window on startup. EX22C is no exception. If you use EX22C as a 
prototype for your own MDI application, you can easily disable this 
feature. 

• Window Close message command handler. MDI window close logic 
is more complex than SDI window close logic because of the many 
windows involved. Child windows can be closed individually or as a 
result of the main frame window's closure. In the EX22C program, 
the main frame window sends WM_CLOSE messages to all child 
windows, and the child window message handlers can process these 
messages. The Window menu even has a Close All item, a feature 
not present in a standard document-view MDI application. 

• Precompiled headers. As in the previous examples, EX22C uses 
precompiled headers to speed compilation. 

The listings for the EX22C header and implementation files are shown in 
Figure 22-4. 

EX22C.H 

Figure 22-4. (continued) 

The EX22C header and implementation file listings. 



T WEN T V - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

EX22C.CPP 

(continued) 

465 



PAR T I V: ADVANCED TOPICS 

Figure 22-4. continued 

(continued) 

466 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

Figure 22-4. continued 

(continued) 

467 



PAR T I V: ADVANCED TOPICS 

Figure 22-4. continued 

CEx22cApp 
This is the standard application class again, derived from CWinApp. 

Initlns tan ce 
In this MDI example, InitInstance performs one of the same functions that it 
performs in a document-view MDI application. It constructs an object of 
class CMainFrame and then shows the window. It also constructs the initial 
child window. 

CMainFrame 
You can use this class directly in your own minimalist MDI applications, or 
you can rename it and use it as a base class. 

Constructor 

468 

The CMainFrame constructor creates the main frame window object. The 
note on page 457 about the EX22A two-phase constructor applies here also. 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

On Close 
The CMainFrame::OnClose function is called only when the user closes the 
main frame window from the system menu or with Alt-F4. Its purpose is to 
send WM_CLOSE messages to all the child windows. If this function weren't 
mapped, the child windows would be summarily destroyed without the op­
portunity to process the close message. 

On QueryEndSession 
When Windows itself is shutting down, it sends the WM_QUERYEND­
SESSION message to the main windows of all applications. If any application 
returns 0, Windows does not shut down. The message handler here does the 
same thing as On Close. 

OnFileNew 
The File New menu item, through the OnFileNew message handler, causes 
construction of a new child window. If the current active child is maximized, 
the new child is maximized. 

On Win do wCloseA II 
The application's Window menu has a Close All item that is mapped to this 
function. The On WindowCloseAll function sends a WM_CLOSE message to 
all child windows. 

OnUpdateWindowCloseAII 
The Window menu Close All item is enabled only when there is at least one 
child window. 

CloseAIIChiidWindows 
This is a protected member function that sends the WM_CLOSE message to 
the child windows. In a loop, the function sends the close message to the cur­
rent active child window. If the active child refuses to be closed (the window 
stays active), the looping terminates, and the function returns failure status 
(FALSE). 

CChildFrame 
This class is derived from CMDIChildWnd. Add your own message handlers 
and OnPaint code to customize this class. 

469 



PART I V: ADVANCED TOPICS 

Data Members 
The CChildFrame class has a static data member nChild that is incremented 
each time a new child window is created. This number is used in the child 
window titles. 

Constructor 
The CChildFrame constructor creates the child window object. If the optional 
bMaximized parameter is TRUE, the child window occupies the entire main 
frame client area. The window title includes a sequential window number 
from the static nChild data member. The note on page 457 about the EX22A 
two-phase constructor applies here also. 

OnPaint 
As in EX22A, you must use OnPaintfor painting in the window. 

OnC/ase 
This message handler is called in response to the WM_CLOSE message, sent 
by the main frame window or by the user's closing of a child window. This 
OnClose function displays a message box that asks the user for permission to 
close the window. 

On File Clase 

470 

This function is called when the user chooses Close from the File menu. It 
sends the WM_CLOSE message so that the OnClose member function can 
veto the window closing. The File Close menu item is disabled if there are no 
child windows. 



T WEN T Y - TWO: MFC Library Version 2.5 Programs Without Documents or Views 

Destroying CMDIChildWnd Objects 
You might have noticed that child frame window objects are constructed 
with the new operator and not explicitly destroyed. These window objects are 
destroyed by the application framework in the CWnd virtual function 
PostNCDestroy (which is overridden in CFrameWnd) when the window itself 
is destroyed as a result of user action. Technical Note #17 in the MFC­
NOTES.HLP file tells you which window objects are destroyed. 

Resource Requirements 
The EX22C program needs an icon resource with ID IDR_MAINFRAME set 
to 2. The EX22C Window menu, shown in Figure 22-5, uses the same ID. 

Figure 22-5. 
The EX22C Window menu. 

For Windows to insert the child window list at the bottom of the Win­
dow menu, the Window menu must be second from the right on the main 
menu. 

Here are the command IDs for the menu items: 

Menu Item 

File New 

File Close 

File Exit 

Window Cascade 

Window Tile 

Window Arrange Icons 

Window Close All 

Help 

Command 10 

ID_FILE_NEW 

IDYILE_ CLOSE 

ID_APP_EXIT 

ID_ WIND OW_ CASCADE 

ID_WINDOW_TILE_HORZ 

ID_ WINDOW_ARRANGE 

ID_ WIND OW_ CLOSE_ALL 

ID_HELP 

471 





C HAP T E R TWENTY-THREE 

STORING BITMAPS IN A 
DOCUMENT-DIBS AND 
THE CLIPBOARD 

In Chapter 10, you studied GDI bitmaps, and you saw how easy it was to load 
a device-independent bitmap (DIB) from a resource. Direct disk accessing of 
DIBs is more difficult, but this chapter presents a class, called CDib, that sim­
plifies DIB processing. The EX23A example program, built around the CDib 
class, illustrates serialization ofDIBs, direct file I/O, and transferring of GDI 
bitmaps through the Windows clipboard. 

The Windows DIB Format 
If you want to save bitmaps in a document file (or database) that other com­
puters can read, you must use a device-independent format. The Windows 
DIB format is a good candidate because the Windows API directly supports 
it. Many applications, including Windows Paintbrush, process disk files in 
DIB format (BMP files). The standard DIB format supports monochrome, 
16-color, and 256-color bitmaps, and it also supports 24-bit color bitmaps. 

The DIB format has compression options for 16-color and 256-color 
bitmaps, and this compression can save substantial amounts of disk space 
and RAM. An uncompressed 16-color VGA screen dump bitmap, for ex­
ample, requires 154 KB, but a compressed version might be as small as 30 KB. 

A DIB is different from a GDI bitmap in that you have direct access to 
the DIB's data. As a matter of fact, you must allocate memory for the DIBs 
you create. In a DIB data structure, each pixel is represented by 1, 4, 8, or 24 
adjacent bits. The bits are packed into bytes, which are organized by row and 
then by column, as shown in Figure 23-1, on the next page. Rows are padded 

473 



PAR T I V: ADVANCED TOPICS 

to 4-byte boundaries, and a header provides the necessary access informa­
tion. For the DIB header layout, look up the BITMAPINFOHEADER struc­
ture in the Microsoft Windows 3.1 Programmer's Reference. Figure 23-1 shows the 
layout of a 16-color DIB that is 10 pixels wide by 7 pixels high. Notice that 
the DIB requires 56 bytes of storage, plus the header. 

0 2 

Row 0 

2 

3 

4 

5 

6 

Column ---
3 4 5 6 7 

Gray boxes represent 
padding to an 8-byte 
boundary 

'---",---'---'--....L---'---'--'----'} Each byte stores 2 pixels 

01234567 
I 

4 bits select one of 
sixteen color table entries 

Figure 23-1. 
The organization of a 16-color DIB. 

DIBs, Colors, and Palettes 

474 

Refer to Chapter 5 for a description of the default color mapping for the 
common types of display boards in Windows systems. Be sure you're familiar 
with the standard pure colors that the VGA and 256-color display drivers 
support. 

Because we are talking about a device-independent format, the DIB 
color information must be device-~ndependent. A DIB contains its own color 
table. A 16-color DIB, for example, contains sixteen 24-bit absolute red­
green-blue color values. Windows doesn't use dithered colors in bitmaps; it 
uses the closest matching pure color. Monochrome DIBs (with 1 bit per 
pixel) contain values for both the foreground and background colors. 

When Windows displays a monochrome or a 16-color DIB (or converts 
it to a GDI bitmap) with a standard VGA display board, it chooses standard 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

pure colors that most closely match the specified colors. You have no control 
over this process. Color palettes have no effect with a standard VGA display 
board. 

With a 256-color display board, however, you have more flexibility. If 
you don't use color palettes (the default), Windows maps a DIB's colors to 
the driver's 20 standard colors. If you do use color palettes, Windows maps 
the DIB's colors as best it can to the colors that the display board supports; 
20 palette colors are always reserved for the standard colors, but 236 palette 
colors can be changed to accommodate the bitmap. 

Color palette programming is quite complex because you have to con­
sider the interactions both among applications and among sibling MDI child 
windows. The 256-color display board can display only 256 colors at any time, 
as specified by the system palette. Suppose, for example, that a window gets 
the input focus and replaces the system palette'S dark green entry with neon 
pink. Suppose a second window is showing a forest scene bitmap. Because 
you don't want neon pink trees, even in an inactive window, you must remap 
the inactive window's colors to enable Windows to choose another shade of 
green for the trees. 

Inactive window programs can respond to the Windows message 
WM_PALETTE CHANGED, which is sent to all windows when the system 
palette is changed. When a program gets the input focus, it receives a 
WM_QUERYNEWPALETTE message if the system palette has been 
changed. In both cases, the program realizes its own color palette into the 
system palette. See the DIBLOOK program in the \MSVC\MFC\SAMPLES 
subdirectory for an example of the use of DIBs with color palettes. Remem­
ber that color palette programming applies only to color-intensive programs 
running on 256-color display boards. 

A 24-bit DIB doesn't need a color table because the pixel groups specify 
colors directly. If you display a 24-bit DIB with a 24-bit display board, you 
don't need a color palette. If you display a 24-bit DIB with a 256-color display 
board, you can define your own 256-color palette that contains appropriate 
color values. Windows then matches the DIB's colors with the closest match­
ing palette colors. If you don't define a palette, the DIB will be displayed with 
the 20 standard colors. 

Passing Images via the Clipboard 
As a Windows user, you're probably aware that the clipboard is a useful tool 
for transferring information among Windows-based programs. The clip­
board can accommodate both text and image data, but the clipboard writer 
program and the clipboard reader program must agree on a format. The 

475 



PAR T I V: ADVANCED TOPICS 

clipboard writer often provides data in several formats, and the reader 
chooses one that it understands. It's possible to transfer DIBs via the clip­
board, but few programs use the DIB format. Many Windows programs use 
the CDI bitmap format, however, so that's the format we'll use in the EX23A 
example. 

Bitmap Clipboard Rules 

476 

When you use the clipboard, first be aware that all applications must share 
one clipboard. Then be prepared to follow some strict rules when transfer­
ring CDI bitmaps via the clipboard. 

• The clipboard must be open before you can transfer information. 
Call the CWnd::OpenClipboard member function. If it returns TRUE, 
you have exclusive access to the clipboard; otherwise, you know that 
another program is using it. 

• If you are going to place information on the clipboard, you must 
first empty the clipboard with the Windows API function 
Empty Clipboard. 

• The Windows API function SetClipboardData accepts a CDI bitmap 
handle (HBITMAP). The designated bitmap cannot be currently 
selected into a device context when you call SetClipboardData. You 
cannot use the bitmap again after you send it to the clipboard. This 
means that you'll have to copy the bitmap if your OnDrawfunction 
needs to display it. 

• The clipboard deletes HBITMAP entities that have been sent to it. 
If you've used a CBitmap object, you can't delete that object until 
you've called the CGdiObject member function Detach. The Detach 
function separates the CDI bitmap handle from the C++ object so 
that the destructor doesn't delete the bitmap. Detach returns the 
bitmap handle. 

• The Windows API function GetClipboardData returns a CDI bitmap 
handle (HBITMAP). The CGdiObject::FromHandle static function con­
verts the handle to a temporary CBitmap object pointer. You don't 
have to worry about deleting this object or detaching the handle 
from it. You cannot, however, leave the bitmap selected into a de­
vice context. If you want to display the bitmap, you must copy it. 

• When you're finished with the clipboard, you must use the Win­
dows Close Clipboard function. 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DlBs and the Clipboard 

NOT E : Be careful with dialogs and message boxes that you cre­
ate while the clipboard is open. If you don't make these dialogs 
system modal, the user could try to access the busy clipboard from 
another program. 

DIBs in MFC Library Documents 
Microsoft Foundation Class (MFC) Library version 2.5 application data is 
stored in CDocument objects and transferred to and from document files. If 
your application needs to save and retrieve images, those images must be 
stored in the document in device-independent format. In this chapter's ex­
ample, EX23A, the document maintains an image in Windows DIB format. 

Printing with DIBs 
DIBs (device-independent bitmaps) are extremely useful for printing. Sup­
pose you're trying to print a GDI bitmap that is selected into a memory de­
vice context that is compatible with the display. Most printer drivers won't 
show colors as gray shades if you call BitBlt or StretchBlt; they produce black­
and-white output instead. If you send a DIB to the printer, however, you get 
the proper gray shades. The CDib class described below makes bitmap print­
ing easy. 

The CDib Class 
The MFC Library has no CDib class, so we'll write our own. This class works 
fairly well, but it's designed as a teaching tool rather than as a piece of com­
mercial software. You might want to add more error checking plus other fea­
tures such as palette support and functions that access DIBs in resources. 
The CDib class is designed to be used directly. There are no virtual functions 
to implement in derived classes. 

A CDib object represents a single device-independent bitmap. The im­
age bits, together with all necessary decoding information, are contained 
within the object. There is no copy constructor or assignment operator be­
cause DIBs are often big, and it doesn't make much sense to copy them 
within a program. Also, there are no public data members. 

A document can contain a single CDib object, or multiple CDib objects 
can exist in a document structure, such as a list or an array. Thus, DIBs can 
be serialized along with the rest of the document data. 

Figure 23-2 on the following page shows the CDib class declaration: 

477 



PAR T I V: ADVANCED TOPICS 

478 

CDIB.H 

Figure 23-2. 
The CDib class declaration .. 

Here's a rundown of the CDib member functions. (The implementa­
tion code is shown in Figure 23-3 beginning on page 485.) 

II Default constructor-You'll use the default constructor when 
you're loading a DIB from an archive or from a file. It creates an 
empty DIB object. 

II Bitmap constructor-Despite the absence of a CBitmap parameter, 
this second constructor makes a DIB from a GDI bitmap. The bitmap 
must have been previously selected into a memory device context. 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DlBs and the Clipboard 

Parameter Description 

pDC A pointer to the memory device context into which the 
CDI bitmap is selected. 

nBt The number of color bits for the DIB; 0 means use the 
value from the CDI bitmap. 

bCompr TRUE for a compressed DIB (the default); FALSE for an 
uncompressed DIB. 

• Destructor-The CDib destructor frees all allocated DIB memory. 

• Serialize-See the Class Library Reference for a description of the 
CObject virtual Serialize function. 

• Read-This function reads a BMP file into the CDib object. The file 
must have been successfully opened. 

Parameter Description 

pFile A pointer to a CFile object. The corresponding disk file 
contains the DIB. 

Return value TRUE if successful. 

• Write-This function writes a BMP file from the CDib object. The 
file must have been successfully opened or created. 

Parameter Description 

pFile A pointer to a CFile object. The DIB will be written to 
the corresponding disk file. 

Return value TRUE if successful. 

• MakeBitmap-This function creates a CDI bitmap from the contents 
of the CDib object. The bitmap is then selected into the memory de­
vice context that is passed as a parameter. The bitmap size and num­
ber of color bits are set according to the DIB characteristics. 

Parameter Description 

pDC A pointer to the memory device context into which the 
CDI bitmap will be selected. 

bmSize A reference to a CSize object that holds the CDI bitmap 
size. The MakeBitmap function sets the value of this 
parameter. 

Return value A pointer to the previously selected CDI bitmap. 

479 



PAR T I V: ADVANCED TOPIGS 

480 

• Display-This function sends this CDib object to the display (or 
printer) without creating an intermediate CDI bitmap. The func­
tion does no scaling under any circumstances. 

Parameter Description 

pDC A pointer to the display or printer device context that 
will receive the DIB image. 

origin A CPoint object that holds the logical coordinates at 
which the DIB will be displayed. 

Return value TRUE if successful. 

• Stretch-This function outputs this CDibobject to the display (or 
printer) without creating an intermediate CDI bitmap. The bitmap 
will be stretched as necessary to fit the specified rectangle. 

Parameter Description 

pDC A pointer to the display or printer device context that 
will receive the DIB image. 

origin A CPoint object that holds the logical coordinates at 
which the DIB will be displayed. 

szze A CSize object that represents the display rectangle's 
width and height in logical units. 

Return value TRUE if successful. 

• GetColorBits-This function returns the number of color bits per 
pixel for this CDib object. If the DIB is empty, 0 is returned. 

• GetLength-This function returns the total number of bytes in the 
CDib data buffer. This is the length of a corresponding BMP file. 
If the DIB is empty, 0 is returned. 

• GetSize-This function returns a CSize object that represents the 
width and height of the bitmap in pixels. 

• SetMonoColors, GetMonoColors-Monochrome DIBs contain the 
values for the bitmap's foreground and background colors. Because 
this information is not part of the CDI bitmap structure, we need 
functions to set and retrieve the two color values. GetMonoColors 
returns TRUE if the DIB is a monochrome bitmap. 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

DIB Access Functions 
The CDib class uses four important Windows DIB access functions. None 
of these functions is a class library function, so you'll need to refer to the 
Windows SDK documentation (or the online help) for details. Here's a 
summary: 

• SetDIBitsToDevice-The CDib Display member function uses this 
function. It displays a DIB directly on the display or printer. No 
scaling occurs; one bitmap bit corresponds to one display pixel or 
one printer dot. This scaling restriction limits the function's use­
fulness. The function doesn't work like BitBlt because BitBlt uses 
logical coordinates. 

• StretchDIBits-The CDib Stretch member function uses this function. 
It displays a DIB directly on the display or printer in a manner simi­
lar to that of StretchBlt. 

NOT E : If you call SetDIBitsToDevice or StretchDIBits for a 
compressed DIB, some printer drivers won't show gray 
shades correctly. 

• GetDIBits-The CDib bitmap constructor uses this function. It con­
structs a DIB from a GDI bitmap, using memory that you allocate. 
You have some control over the format of the DIB because you can 
specify the number of color bits per pixel and the compression. If 
you are using compression, you have to call GetDIBits twice, once to 
calculate the memory needed and again to generate the DIB data. 

• CreateDIBitmap-Contrary to its name, this function creates a GDI 
bitmap from a DIB. The CDib::MakeBitmap member function uses it. 
Before you call CreateDIBitmap, you must have a memory device 
context with a selected prototype bitmap that has the same charac­
teristics as the bitmap you want CreateDIBitmap to create. If you want 
a 16-color bitmap, for example, you must first construct a 16-color 
prototype bitmap. If you don't first select the prototype bitmap 
into the memory device context, CreateDIBitmap provides a mono­
chrome bitmap. 

481 



PAR T I V: ADVANCED TOPICS 

A strange thing happens when CreateDIBitmap processes a mono­
chrome DIB. The function switches the image bits depending on the DIB's 
two color values. In the CDib class, we circumvent this behavior and preserve 
the original DIB bit values. 

The EX23A Example 
The EX23A example program uses a serializable document to hold a single 
CDib object. The one and only view class allows the display of the DIB in a 
scrolling view with a shrink-to-fit option. The view also supports the Printing 
and Print Preview features. The Edit menu has items for cutting, copying, 
and pasting bitmaps (in GDI format) to and from the clipboard. It also has 
Copy To and Paste From items for writing and reading BMP files. EX23A 
fully exploits the new CDib class. 

As was the MATPLAN example in Chapter 21, this example is pre­
sented with code highlights and resource requirements. Here is a table of 
the files and classes: 

Header File Source Code File Class Description 

EX23A.H EX23A.CPP CEx23aApp Main application-
from App Wizard 

MAINFRM.H MAINFRM.CPP CMainFrame SDI main frame-
from App Wizard 

EX23ADOC.H EX23ADOC.CPP CEx23aDoc EX23A document 

EX23AVW.H EX23AVW.CPP CEx23aView Scrolling view class 

BITSDLG.H BITSDLG.CPP CBitsDialog Dialog for color bits 
and compression 

CDIB.H CDIB.CPP CDib DIB class 

STDAFX.H STDAFX.CPP Precompiled headers 

The application and main frame class consist of standard code generated by 
App Wizard, so they are not listed or described. The other classes are de­
scribed together with their member functions. 

CEx23aDoc 

482 

This document class contains a single pointer to a CDib object. Why not use 
an embedded object? Consider the problem of replacing the document's 
DIB with a new DIB just read from the clipboard or disk. With an embedded 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

CDib object, the class would need an assignment operator, or the serializa­
tion code would have to delete old data. With the CDib pointer, we simply 
delete the old object and construct a new one. 

Constructor, Destructor 
The CEx23aDoc constructor constructs the initial CDib object on the heap, 
and the destructor destroys it. 

Dele te Con ten ts 
This overridden application framework virtual function deletes the docu­
ment's current CDib object and constructs a new, empty one. This function is 
crucial in SDI applications because it's called every time the user opens a 
new document or loads a document from disk. 

Serialize 
This overridden application framework virtual function calls the Serialize 
function for the document's CDib object. Because the document class has 
no other data members to serialize, the resulting archive is equivalent to a 
BMP file. 

OnEditClearAII 
This message handler responds to the Edit Clear All menu item. 

void CEx23aDoc::OnEditClearAll() 
{ 

'dE'~~1¥~c:~~;Qhf:~nlsl?;;:;" !;:c:~! 
, 'H~~:q~~~~1JY'2 ~~~fN~~k}n;~:,: 

,.'5 ~;t'~n(Hf:H:!d:];'~~gO;:;; ;' ci::: /.; c';;:: ",' 

CBitsDialog 
The CBitsDialog class is generated entirely by ClassWizard. It's based on the 
dialog resource discussed in the EX23A resource file section. 

483 



PAR T I V: ADVANCED TOPICS 

CDib 
You've already seen the CDib class declaration and member function descrip­
tions. Figure 23-3 lists the CDib implementation code. Below are a couple of 
important observations about the class. 

Memory Allocation 
Memory is allocated and freed with the WINDOWSX.H macros GlobalAlloc­
Ptr, GlobalReAllocPtr, and GlobalFreePtr. These functions are suitable for the 
large memory blocks that bitmaps often require. Memory is allocated in the 
private member function AllocateMemory. 

Serialization of Large Bitmaps 

484 

Because so many bitmaps are larger than 64 KB, the CDib class must use huge 
pointers to manage data. The CFile class has the ReadHuge and WriteHuge 
member functions for reading and writing large data blocks, but there are 
no equivalent CArchive member functions. It's easy enough to get the 
archive's associated file object so that you can use the CFile functions for 
huge pointers. You must call the CArchive Flush function before reading or 
writing, however, to synchronize the archive's buffer. The CDib::Serialize func­
tion calls the Read and Write member functions, which are shared by the Edit 
menu's Paste From and Copy To handlers. 

The CDib::Write function, shown below, is the first place where we've 
had to use the MFC library exception-handling mechanism. The TRY and 
CATCH macros work together to process errors where there is no error re­
turn value. These macros will be replaced when the C++ compiler officially 
supports exception handling. 

BOOl CDib::Write(CFile* pFile) 
{ 

TRY { 
pFile->WriteHuge(m_lpBuf, m_dwlength); 

CATCH (CException, e) { 

} 

AfxMessageBox("Write error--possible disk full condition"); 
return FALSE; 

END_CATCH 
return TRUE; 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DlBs and the Clipboard 

CDIB.CPP 

Figure 23-3. (continued) 

The CDib implementation code listing. 

485 



PAR T I V: ADVANCED TOPICS 

Figure 23-3. continued 

(continued) 

486 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DlBs and the Clipboard 

Figure 23-3. continued 

(continued) 

487 



PAR T I V: ADVANCED TOPICS 

Figure 23-3. continued 

488 
(continued) 



T WEN TV - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

Figure 23-3. continued 

(continued) 

489 



PAR T I V: ADVANCED TOPICS 

Figure 23-3. continued 

(continued) 

490 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

Figure 23-3. continued 

(continued) 

491 



PAR T I V: ADVANCED TOPICS 

Figure 23-3. continued 

CEx23aView 
This class, derived from CScrollView, does most of the application's work. All 
the Edit menu items are routed to CEx23aView except for Edit Clear All. The 
view's most important data member, m_pDisplayMemDC, is a pointer to the 
memory device context that's used throughout the application. Other data 
members hold the size of the view and the view's GDI bitmap. The m_bShrink­
ToFit member, controlled from the View menu, indicates whether the bitmap 
occupies the whole view. 

The CEx23a View class uses the MM_TEXT mapping mode so that it can 
take advantage of the CScrollView shrink-to-fit feature. When the shrink-to-fit 
mode is active, the entire view is visible in the window; otherwise, the view 
scrolls normally. 

Constructor, Destructor 

492 

The CEx23a View constructor and destructor take care of routine housekeep­
ing. The destructor ensures that the view's memory display context and last 
bitmap are deleted. 

CEx23aView::CEx23aView() : m_totalSize(800, 1050) II 8" x 10.5" when 
II printed 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

m_pDisplayMemDC = new CDC; II DC lasts for the life of the view 
m_bShrinkToFit = FALSE; 

CEx23aView::~CEx23aViewC) 

( 

On Create 

delete m_pDisplayMemDC->SelectObject 
CCBitmap::FromHandleCm_hOldDisplayBitmap»; 

delete m_pDisplayMemDC; 

As in any view class derived from CScrollView, the OnCreate message handler 
must set the scroll sizes. The OnCreate function also sets the shrink-to-fit 
mode flag, and it sets up the memory device context for later use. The dis­
play mapping mode is MM_TEXT, but the print mapping mode is a modified 
MM_LOENGLISH. 

intCE),<23aView::~OnCreate(LPCREAtt5:T;R4G';J:;;lpC:~eate'St:~,u'etJ~ {; '. . ... ,. 

i:f (C Sc r 0 llV i ew: : OnC r'e at e.O ~cr~ateStru c,t n'i 
} 

/ / 'pr.lme the'pump' 
CCli entOC dc(thJs);' ., .... ,.' ....... ' ........' 
m_po is pl ayMernOC- ~ C ~ea ~~GoITlPa ti ,b 1.: peC &Oc};; 
CHi tmap*pEmpt~B:it~~~.~ .new CB;~m~p,;: .... : 
PEmptYB.ttlTlath>Crc=a~~C0Illp~tibleBftma~(\&:dc. 
CBitmaPfPOldBi:tmap'; .' " ....• ,. ." .:".' 

. (CBi tmap*,) .. m""POtsPlaYMeinDC->~:~lectObject(p~.mpt~~Jtm~p): 
l( '. so we! 11 ,have'an019~}:)itmalJ;t(j,:s\;it~h~~o·.a'(;th~>:~n9 :' 

.m_hOT90ispl'aYBi tma ~=,,( ~BI:lMAP)' pQld,B ttmal:t,.:?~~:t~~:f,e~:ahd,il~ () ,:. 
return 0; 

OnlnitialUpdate 
As is true in any view class derived from CScrollView, the overridden Onlnitial­

Update function must set the scroll sizes. The display mapping mode is 
MM_TEXT, but the OnPnnt function sets the printer mapping mode to 
modified MM_LOENGLISH. Thus, one pixel on the screen maps to 0.01 
inch on the printer. 

493 



PAR T I V: ADVANCED TOPICS 

void CEx23aView::OnlnitialUpdate() 
{ 

} 

OnDraw 

494 

This function is actually four functions in one. The DRA~ALTpreprocessor 
constant determines which alternative drawing code is compiled. Here's a 
list of the alternatives with their key bitmap display function calls: 

• Alternative l-StretchBlt: Even though the application's bitmap is 
stored in the document as a DIB, the view keeps a GDI bitmap in 
memory, selected into the m_pDisplayMemDCmemory display con­
text. Every time a DIB is read from disk, this bitmap is refreshed. 
It's more efficient to draw from a GDI bitmap than directly from a 
DIB because the color conversion is done once when the DIB is 
read. In the StretchBlt display alternative, the bitmap occupies the 
entire view-800 by 1050 logical units. 

pDC->StretchBlt(0. 0. m_totalSize.cx, m_totalSize.cy, 
m_pDisplayMemDC, 0. 0. m_bmSize.cx, 
m_bmSize.cy, SRCCOPY); 

The StretchBlt call above works in both scroll mode and shrink-to-fit 
mode. In shrink-to-fit mode, the bitmap size exactly matches the window 
size. Scroll mode can slow StretchBlt because we're mapping bits to a 
much larger area than the window. A second version of the code chops 
down the bitmap size to match the window rectangle. 

pDC->StretchBlt(clientRect.left, clientRect.top, 
clientRect.Width(), clientRect.Height(), 
m_pDisplayMemDC, 
(int) «long) m_bmSize.cx * (long) clientRect.left / 

(long) m_totalSize.cx), 
(int) «long) m_bmSize.cy * (long) clientRect.top / 

(long) m_totalSize.cy), 
(int) «long) m_bmSize.cx * (long) clientRect.Width() 

(long) m_totalSize.cx), 
(int) «long) m_bmSize.cy * (long) clientRect.Height() / 

(long) m_totalSize.cy), SRCCOPY); 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

• Alternative 2-BitBlt: With this alternative, the bitmap bits are 
mapped directly to pixels, but only in scroll mode. If the bitmap 
size is 400 by 525 pixels, for example, the bitmap occupies the top 
left quadrant of the view. In the view's shrink-to-fit mode, the 
bitmap pixels are mapped to logical units in such a way that the 
800-by-l050-unit document occupies the entire window. Display 
update is faster in scroll mode than it is in shrink-to-fit mode. 

pDC->BitBlt(0, 0, m_bmSize.cx, m_bmSize.cy, 
m_pDisplayMemDC, 0, 0, SRCCOPY); 

• Alternative 3-CDib::Stretch: This alternative produces the same 
result as Alternative 2. This time the bitmap is rendered directly 
from the DIB. 

GetDocument()->m_pDib->Stretch(pDC, CPoint(0, 0), m_bmSize); 

• Alternative 4-CDib::Display: This alternative does not produce the 
same result as Alternative 2. The bitmap pixels are always mapped 
one-to-one to the display (or printer). 

GetDocument()->m_pDib->Display(pDC, CPoint(0, 0»; 

On EditCopy 
This command message handler is called in response to the Edit Copy menu 
item. Its job is to send a GDI bitmap to the clipboard, but remember that a 
bitmap can't be sent if it's selected into a device context. We need a bitmap 
selected, though, to create it and to display it. The OnEditPaste function 
solves the problem with two GDI bitmaps. First the function calls the CDib 
MakeBitmap function to create a new bitmap from the document's DIB. 
MakeBitmap then selects the new bitmap into the memory device context and 
returns the previously selected bitmap, which contains the same bit pattern. 
The deselected bitmap is passed to the clipboard. 

void CEx23aView::OnEditCopy() 
{ 

CBitmap* pBitmap = 
GetDocument()->m_pDib->MakeBitmap(m_pDisplayMemDC, m_bmSize); 

if (pBitmap) { 
VERIFY(OpenClipboard(»; 
VERIFY(::EmptyClipboard(»; 
VERIFY(::SetClipboardData(CF_BITMAP, pBitmap->Detach(»); 
VERIFY(::CloseClipboard(»; 
delete pBitmap; 

495 



PAR T I V: ADVANCED TOPICS 

On EditCopyTo 
This function copies the document's CDib object to a device-independent 
bitmap disk file, usually with a BMP extension. It's called in response to the 
Edit Copy To menu item. This function does not involve GDI bitmaps or the 
memory display contents. It merely writes out the data in the document's 
CDib object. 

OnEditCut 
The OnEditCut message handler, called in response to the Edit Cut menu 
item, first calls OnEditCopy and then clears the document. When the docu­
ment is cleared, its CDib object is reset and the view's OnUpdate function is 
called. The OnUpdate function loads the view's GDI bitmap from an empty 
DIB and thus clears the view window. 

OnEditPaste 
This command message handler is called in response to the Edit Paste menu 
item. It gets a GDI bitmap from the clipboard and then converts it to a DIB 
for storage in the document. It also updates the view's memory device con­
text so that OnDraw displays the new bitmap. The OnEditPastefunction uses a 
dialog of class CBitsDialog to query the user for some DIB specifications. The 
user can decide whether the DIB will use 1, 4, 8, or 24 bits per pixel and 
whether the DIB will be stored in compressed format. 

First the clipboard GDI bitmap is selected into the view's memory de­
vice context, and then a CDib object is constructed from the GDI bitmap, re­
placing the existing CDib object. The new DIB is used to construct a second, 
identical, GDI bitmap, which is selected into the device context, thereby de­
selecting the clipboard's bitmap. The corresponding C++ bitmap object 
doesn't have to be deleted because it's a temporary object. 

The OnEditPaste function displays, through the Windows debug win­
dow, the available clipboard formats. If a particular application does not 
copy GDI bitmaps to the clipboard, at least you'll know which formats it 
does copy. 

OnEditPasteFrom 

496 

This command message handler is called in response to the Edit Paste From 
menu item. It reads a device-independent bitmap file, usually a file with a 
BMP extension, into the document's CDib object. In the process, the file is 
converted to a GDI bitmap for the OnDraw function. 



T WEN T Y - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

A new, empty CDib object is constructed to replace the existing object, 
and then the CDib::Read function reads data from an open file. The 
MakeBitmap function creates the GDI bitmap that is selected into the 
memory device context. The previously selected bitmap is deleted. 

OnPrint 
The OnPrint function prepares the printer device context for the OnDraw 
function. What we have here is a custom mapping mode that's really "upside­
down MM_LOENGLISH." There are 100 logical units per inch, but, unlike 
in the real MM_LOENGLISH mode, y values increase from top to bottom. 
We can't simply use MM_LOENGLISH because that mapping mode is in­
compatible with the view's shrink-to-fit capability. 

void CEx23aView::OnPrint(CDC* pDC, CPrintlnfo* plnfo) 
{ 

} 

int nHsize = (int) (pDC->GetDeviceCaps(HORZSIZE) * 1000L / 254L); 
int nVsize = (int) (pDC->GetDeviceCaps(VERTSIZE) * 1000L / 254L); 
pDC->SetMapMode(MM_ANISOTROPIC); 
pDC->SetWindowExt(nHsize, nVsize); 
pDC->SetViewportExt(pDC->GetDeviceCaps(HORZRES), 

pDC->GetDeviceCaps(VERTRES)); 
OnDraw(pDC); 

On Update 
The application framework calls the view's OnUpdate function when the 
document changes. This overridden function makes a new GDI bitmap from 
the document's CDib object. 

void CEx23aView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint) 
{ 

delete GetDocument()->m_pDib->MakeBitmap(m_pDisplayMemDC, m_bmSize); 
if (!m_bShrinkToFit) { 

ScrollToPosition(CPoint(0, 0)); 

Inval i date(); 

The Update Command UI Functions 
The OnUpdateEditPaste and OnUpdateEditCopy functions enable the Edit 
menu items and corresponding toolbar buttons according to the status of 
the clipboard and the document. 

497 



PAR T I V: ADVANCED TOPICS 

The EX23A Resource File 
The EX23A.RC resource script was generated by AppWizard and enhanced 
with App Studio. There are a new dialog and some extra menu items: 

The IDD_BITS Dialog Resource 
The IDD_BITS dialog is arranged as shown in Figure 23-4. 

N umber of color bits per pixel 

o 1 (mono) 

o 4 (16 colors) 

o 8 (256 colors) 

024 

D Compression 

Figure 23-4. 
The EX23A Color Bits dialog layout from App Studio. 

This dialog appears when you paste a bitmap from the clipboard into the 
application. Notice the default OK and Cancel buttons. Add the radio but­
tons and the check box with data members as shown in the table below: 

Button Caption Type Group Symbol Data Member 

1 (mono) Radio Yes IDC_BITSl 

4 (16 colors) Radio No IDC_BITS4 

8 (256 colors) Radio No IDD_BITS 

24 Radio No IDC_BITS24 

Compression Check box Yes IDC_COMPRESSION m_bCompression 

The lOR_MAINFRAME Menu Resource 

498 

You must add the items in the following table to the standard menu. Use 
ClassWizard to define the functions. 



T WEN TV - T H R E E: Storing Bitmaps in a Document-DIBs and the Clipboard 

Update UI 
Menu Menu Item Command 10 Function Function 

Edit Clear All ID_EDIT_CLEAR_ALL OnEditClearAll 

Cut ID_EDIT_CUT OnEditCut On UPdate-
EditCut 

Copy ID_EDIT_COPY OnEditCopy On UPdate-
Edit Copy 

Copy To ID_EDIT_COPE.TO OnEditCopyTo On UPdate-
EditCopyTo 

Paste ID_EDIT_PASTE OnEditPaste On UPdate-
EditPaste 

Paste From ID_EDIT_PASTE_FROM OnEditPasteFrom 

View Shrink To Fit ID_VIE~SHRINK OnViewShrink On Update-
ViewShrink 

Testing the EX23A Application 
Try building EX23A with all four drawing alternatives (as determined by the 
value of DRAnLALT in EX23AVW.CPP). Try scroll mode and shrink-to-fit 
mode with all alternatives. Remember that File Save is different from Edit 
Copy To. The former creates a class library archive file with the DIB exten­
sion, and the latter creates a standard BMP file. The two formats are not 
compatible. Figure 23-5 shows the EX23A display with drawing Alternative 2 
in scroll mode. 

Figure 23-5. 
The EX23A display. 

499 



PAR T I V: ADVANCED TOPICS 

Bitmap Manipulation 

500 

Every bitmap you've seen so far has originated in another program. ¥ou can 
build and modify bitmaps in your own programs if you want to. You've al­
ready seen how the CBitmap member function CreateCompatibleBitmap can 
create a blank bitmap of a specified size. The CBitmap member functions Get­
BitmapBits and SetBitmapBits allow you to copy bytes from and to a GDI 
bitmap. If you use these functions, you must carefully account for the 
bitmap's number of planes, bits per pixel, and byte alignment. These param­
eters are hardware-dependent, but they are readily available from the 
BITMAP structure returned by the CGdiObject::GetObject member function. 

Bitmap access might be easier if you use the hardware-independent 
DIB format. ¥ou have direct access to the bits, and the format is fixed. Be 
careful, though, that the DIBs you work with are not compressed. 



.. ~': ;,'~ ":~~~'~~~~~:::i~! 
~ J ~ h» ~ ~ * ~~~;~wit(a'it~.\~i':11 

"'" ~ ~ ":::: ~ \i:;:»-<o: ».<i:4r~":::>,-%:: ;-&~0:::d§:;'lli 

C HAP T E R TWENTY-FOUR 

DATABASE MANAGEMENT 
WITH MICROSOFT ODBC 

Microcomputers became popular, in part, because businesspeople saw 
them as a low-cost means of tracking inventory, processing orders, printing 
payroll checks, and so forth. These applications required fast access to indi­
vidual records in a large database. One of the first microcomputer database 
tools was dBASE II, a single-user product with its own programming lan­
guage and file format. Today, Microsoft Windows programmers have a wide 
choice of programmable database management systems (DBMS's), includ­
ing Powersoft PowerBuilder, Borland Paradox, Microsoft Access, and 
Microsoft FoxPro. Most of these products can access both local data and re­
mote data on a central computer. The latter case requires the addition of 
"database server" software such as ORACLE or Microsoft SQL Server. 

How do you, as an MFC programmer, fit into the picture? Beginning 
with version 1.5, Visual C++ contains all the components you'll need to write 
C++ database applications for Windows. The key element is the ODBC 
(Microsoft's Open Database Connectivity) standard, which consists of an ex­
tensible set of dynamic link libraries (DLLs) that provide a standard data­
base application programming interface. ODBC is based on a standardized 
version of Structured Query Language (SQL). With ODBC and SQL, you 
can write database access code that is independent of any database product. 

Visual C++ includes tools and MFC classes for ODBC, and that's the 
subject of this chapter. You'll learn the basics of ODBC, and you'll see two 
sample programs-one that is hard-coded for a particular database table and 
another, more dynamic, application that lets you view any table in any data­
base. Along the way, you'll see the MFC di~log bar in action, you'll use a class 
that provides a scrolling row view of a database table, and you'll learn how to 
control the MFC application shutdown sequence. 

501 



PAR T I V: ADVANCED TOPICS 

Database Management vs. Serialization 

502 

The serialization process, introduced in Chapters 16 and 17, ties a document 
object to a disk file. All the document's data must be read into memory when 
the document is opened, and all the data must be written back to disk when 
an updated document is closed. Obviously, you can't serialize a document 
that's bigger than the available virtual memory. Even if the document is small 
enough to fit in memory, you might not need to read and write all the data 
every time the program runs. 

You could, of course, program your own random-access disk file, thus 
inventing your own database management system (DBMS), but you probably 
have enough other work to do. Besides, using a real DBMS gives you many 
advantages, including these: 

• Use of standard file formats-Many people think of dBASE/Xbase 
DBF files when they think of database formats. This is only one 
database file format, but it's a popular one. A lot of data is distrib­
uted in DBF files, and many programs can read and write in this 
format. Recently, the Microsoft Access MDB format has become 
popular too. With the MDB format, all of a database's tables and 
indexes can be contained in a single disk file. 

• Indexed file access-If you need quick access to records by key (a 
customer name, for example), you need indexed file access. You 
could always write your own B-tree file access routines, but that's a 
tedious job that's been done already. All DBMS's contain efficient 
indexed access routines. 

• Data integrity safeguards-Many professional DBMS products have 
procedures for protecting their data. One example is transaction 
processing. A transaction encompasses a series of related changes. 
If the entire transaction can't be processed, it is rolled back so that 
the database reverts to its original state before the transaction. 

• Multiuser access .control-Ifyour application doesn't need 
multiuser access now, it might in the future. Most DBMS's provide 
record locking to prevent interference among simultaneous users. 
Some multiuser DBMS's use the client-server model, which means 
that most processing is handled on a single database server com­
puter; the workstations handle the user interface. Other multiuser 
DBMSs handle database processing on the workstations, and they 
control each workstation's access to shared files. 



Sal 

T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

You could not have worked in the software field without at least hearing 
about SQL, a standard database access language with its own grammar. In 
the SQL world, a database is a collection of tables that consist of rows and 
columns. Many DBMS products support SQL, and many programmers know 
SQL. The SQL standard is continually evolving, and SQL grammar varies 
between products. SQL extensions, such as binary large object ("blob") ca­
pability, allow storage of pictures, sound, and complex data structures. 

The oose Standard 
The Microsoft Open Database Connectivity (ODBC) standard defines not 
only the rules of SQL grammar but also the C-Ianguage programming inter­
face to an SQL database. It's now possible for a single compiled C or C++ 
program to access any DBMS that has an ODBC driver. The ODBC Software 
Development Kit (SDK), which is included with Visual C++, contains drivers 
for DBF files, Access MDB databases, Microsoft Excel XLS files, Microsoft 
FoxPro files, ASCII text files, and SQL Server databases. Other database 
companies, including Oracle, Informix, Progress, Ingres, and Gupta, pro­
vide ODBC drivers for their own DBMS's. 

If you develop an MFC program with the dBASEjXbase driver, for ex­
ample, you can run the same program with an Access database driver. No 
recompilation is necessary-the program simply loads a different DLL. 

Not only can C++ programs use ODBC, but other DBMS programming 
environments can take advantage of this new standard. You could write a C++ 
program to update an SQL Server database, and then you could use an off­
the-shelf ODBC-compatible report writer to format and print the data. 
ODBC thus separates the user interface from the actual database manage­
ment process. You no longer have to buy your interface tools from the same 
company that supplies the database engine. 

Some people have publicly criticized ODBC because it doesn't let pro­
grammers take advantage of the special features of some particular DBMS. 
Well, that's the whole point! Programmers need only learn one application 
programming interface (API), and they can choose their software compo­
nents based on price, performance, and support. No longer will developers 
be locked into buying all their tools from their database supplier. 

What's the future of ODBC? That's a difficult question. Microsoft is 
driving the standard, but it isn't actually "selling" ODBC; it's giving ODBC 
away for the purpose of promoting other products. Another company, Q+E 

503 



PAR T I V: ADVANCED TOPICS 

Software, is supporting ODBC along with its own proprietary multi-DBMS 
access library. Q+E sells ODBC drivers, which it claims have a performance 
advantage over Microsoft's "free" drivers. Meanwhile, there are noises about 
Microsoft publishing a new OLE interface for database access. (See Chapter 
25 for an explanation of OLE and interfaces.) Will OLE supersede ODBC? 
Perhaps later, but for the time being ODBC is an efficient standard that 
works. 

The OOBC Architecture 
ODBC has a unique DLL-based architecture that makes the system fully 
modular. A small top-level DLL, ODBC.DLL, defines the API. ODBC.DLL 
calls database-specific DLLs, known as drivers, during program execution. 
With the help of the ODBC.INI file (maintained by the ODBC Administrator 
module in the Windows Control Panel), ODBC.DLL tracks which database­
specific DLLs are available and thus allows a single program to access data in 
several DBMS's simultaneously. A program could, for example, keep some 
local tables in DBF format and use other tables controlled by a database 
server. Figure 24-1 shows the ODBC DLL hierarchy. 

OOBe SDK Programming 

504 

If you program directly at the. ODBC C-Ianguage API level, you must know 
about three important ODBC elements: the environment, the connection, 
and the statement. All three are accessed through handles. First you need an 
environment, which establishes the link between your program and the 
ODBC system. An application usually has only one environment handle. 

N ext you need one or more connections. The connection references a 
specific driver and data source combination. You might have several connec­
tions to subdirectories that contain DBF files, and you might have con­
nections to several SQL servers on the same network. A specific ODBC 
connection can be hard-wired into a program, or the user can be allowed to 
choose from a list of available drivers and data sources. 

ODBC.DLL has a built-in Windows dialog that lists the connections 
that are defined in the INI file. Once you have a connection, you need an 
SQL statement to execute. The statement might be a query, such as 

SELECT FNAME, LNAME, CITY FROM AUTHORS 
WHERE STATE = oUT' 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

Local 
DBF files 

Figure 24-1. 
Typical ODBC architecture. 

Or the statement could be an update statement, such as 

UPDATE AUTHORS SET PHONE = '801 232-5780' 
WHERE ID = '357-86-4343' 

Because query statements need a program loop to process the returned 
rows, your program might need several statements active at the same time. 
Many ODBC drivers allow multiple active statement handles per connection. 

Look again at the SQL statement on page 504. Suppose there were 10 
authors in Utah. ODBC lets you define the query result as a block of data 
called a "rowset," which is associated with an SQL statement. Through the 
ODBC SDK function SQIExtendedFetch, your program can move through the 
10 selected records, forward and backward, by means of an ODBC cursor. 
This cursor is a programmable pointer into the rowset. 

505 



PAR T I V: ADVANCED TOPICS 

What if, in a multiuser situation, another program modified (or de­
leted or added) a Utah author record while your program was stepping 
through the rowset? With an ODBC Level 2 driver, the rowset would prob­
ably be dynamic, and ODBC could update the rowset whenever the database 
changed. A dynamic rowset is called a "dynaset." Most of today's ODBC driv­
ers are Level 1, however, and they don't support dynasets. Visual C++ in­
cludes the ODBC cursor library module ODBCCURS.DLL, which supports 
static rowsets called "snapshots." When the SELECT statement is executed, 
ODBC makes what amounts to a local copy of the 10 author records and 
builds an in-memory list of pointers to those records. These records are guar­
anteed not to change once you've scrolled into them, so in a multiuser situa­
tion, you might need to requery the database periodically to rebuild the 
snapshot. 

The MFC OOBC Classes 

506 

With the MFC classes for Windows, you use C++ objects instead of window 
handles and device context handles; with the MFC ODBC classes, you use 
objects instead of connection handles and statement handles. The environ­
ment handle is stored in a global variable and is not represented by a C++ 
object. The two principal ODBC classes are CDatabase and CRecordset. Objects 
of class CDatabase represent ODBC connections to data sources, and objects 
of class CRecordset represent scrollable rowsets (usually snapshots). The Vi­
sual C++ documentation uses the term "recordset" instead of "rowset" to be 
consistent with Microsoft Visual Basic and Access. You seldom derive classes 
from CDatabase, but you always derive classes from CRecordset to match the 
columns in your database tables. 

NOTE: CRecordView is another important MFC ODBC class, but 
this user interface class is "one step removed" from the database 
and is not covered in this chapter. A very good example of a 
CRecordView application can be found by choosing Books Online, 
Database Classes, and Part 1: Database Tutorial. 

For the author query on page 504, you would derive (with the help of 
ClassWizard) a CAuthorSet class from CRecordset that had data members for 
first name, last name, city, and zip code. Your program would construct a 
CAuthorSet object (typically embedded in the document) and call its inher­
ited Open member function. Using the values of parameters and data mem­
bers, CRecordset::Open constructs and opens a CDatabase object; it issues an 



T WEN T Y - F 0 U R: Database Management with Microsoft ODSC 

SQL SELECT statement and then moves to the first record. Your program 
would then call other CRecordset member functions to position the ODBC 
cursor and exchange data between the database fields and the CAuthorSet 
data members. When the CAuthorSet object is deleted, the recordset is closed, 
and under certain conditions, the database is closed and deleted. Figure 24-2 
shows the relationships between the C++ objects and ODBC components. 

CDatabase object 

Figure 24-2. 

CAuthorSet object 
(embedded in document) 

MFC ODBC class database relationships. 

It's important to recognize that the CAuthorSet object contains data 
members that represent only one row in a table, the so-called "current 
record." The CRecordset class, together with the underlying ODBC rowset 
code, manages the database snapshot. 

NOT E : It's possible to have several active snapshots per data 
source, and you can use multiple data sources within the same 
program. 

507 



PAR T I V: ADVANCED TOPICS 

The EX24A Example 

508 

You can use AppWizard to generate a complete forms-oriented database ap­
plication, and that's what the Database Tutorial is all about. If customers or 
users wanted a straightforward business database application like that, how­
ever, they probably wouldn't call in a Visual C++ programmer; instead, they 
might use a less technical tool, such as Microsoft Access. Visual C++ and the 
MFC ODBC classes are more appropriate for a complex application that 
might have an incidental need for database access. As you'll see in EX24B, 
you can also use the classes to make your own general-purpose database 
query tool. 

The EX24A program isolates the database access code from user inter­
face code so that you can see how to add ODBC database capability to any 
MFC application. You'll be using ClassWizard to generate a CRecordset class, 
but you won't be using the CRecordView class that App Wizard always gener­
ates when you ask for a database application. 

The application is fairly simple. It displays the rows from the student da­
tabase table in a scrolling view, as shown in the screen on page 512. The stu­
dent table is part of the Student Registration (Microsoft Access version 1.1) 
sample database that's included with Visual C++. 

Here are the steps for building the EX24A example: 

1. Run OOBC Administrator to verify OOBC data source installa­
tion. Start the ODBC Administrator module from the Windows Control 
Panel. If the ODBC icon isn't there, or if Student Registration doesn't 
appear among the data sources, rerun the Visual C++ Setup program. 
The required database is contained in the file \MSVC\MFC\SAMPLES­
\ENROLL\STDREG.MDB. 

NOTE: If you're using Visual C++ 1.5 under Windows 
NT, look for the ODBC Administrator icon in the Micro­
soft ODBC group, not in the Control Panel. 

2. Run AppWizard to produce \VCPP\EX24A\EX24A. Choose App­
Wizard from Visual Workbench's Project menu. Specify an SDI applica­
tion with CScrollView as the view's class type. Select the Include Header 
Files option from the Database Options dialog. The options and the 
default class names are shown in the screen at the top of the facing page: 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

Classes to be created: 
Application: CEx24aApp in EX24A.H and EX24A.CPP 
Frame: CMainFrame in MAINFRM.H and MAINFRM.CPP 
Document: CEx24aDoc in EX24ADOC.H and EX24ADOC.CPP 
ScrollView: CEx24aView in EX24AVW.H and EX24AVW.cPP 

Features: 
+ Supports the Single Document Interface (SDI) 
+ MSVC Compatible project file (EX24A.MAK) 
+ Initial toolbar and status bar in main frame 
+ Printing and Print Preview support in view 
+ Includes database header files 
+ Uses medium memory model 

3. Choose ClassWizard from Visual Workbench's Browse menu. 
Click the Add Class button, and then fill in the Add Class dialog as 
shown here: 

4. Select the Student Registration STUDENT table for the CEx24aSet 
class. When you click the Create Class button in the Add Class dialog, 
ClassWizard displays the SQL Data Sources dialog. Select the Student 
Registration data SOUTce, as shown here: 

509 



PAR T I V: ADVANCED TOPICS 

510 

NOT E : If more data sources are installed on your com­
puter, the SQL Data Sources list box will show their names 
along with Student Registration. 

After you select the data source, ClassWizard prompts you to select a 
table. Pick STUDENT, as shown here: 

5. Examine the data members that ClassWizard generates. Click the 
Member Variables tab for the newly generated CEx24aSet class. 
ClassWizard should have generated data members based on student 
column names, as shown here: 



T WEN TV - F 0 U R: Database Management with Microsoft ODSe 

6. Declare an embedded recordset object in EX24ADOC.H. Add the 
following lines in the CEx24aDoc class declaration: 

public: 
CEx24aSet m_ex24aSet; 

7. Edit the EX24ADOC.CPP file. Add the line 

'include "ex24aset.h" 

just before the line 

'include "ex24adoc.h" 

8. Declare a recordset pointer in EX24AVW.H. Add the following lines 
in the CEx24a View Class declaration: 

public: 
CEx24aSet* m_pSet: 

9. Edit the OnDrawand OnlnitialUpdate functions in EX24AVW.CPP: 

void CEx24aView::OnDraw(CDC* pDC) 
{ 

int y=0: 
char temp[21]: 

return; 
, } 

ITLPSet::~Mov~F:i rstO;,.. Xl :ra:.rl~ :iJ:~e'cord,se.t;js emp~y: 
while (1m~pSet->IsEOF(») { 

} 

wsprintf(temp, "%ld" .m __ pSet-)m_StudentID); 
pDC~>TextOut(0, Y. temp); 
pDC- > TextOut< 500 •.... y •. m .... pset~~in_Name); .. 
wspri ntt< temp, n%d". m-,pSet-: :>m....,.GradYear;) ; 
pDC-)TextOut(2500. y.temp): 
m....,.pSet->MoveNext(); 
y -= 200; II 0.2.inch down 

void CEx24aView: :OnInitialUpdate() 
{ 

CScrollView::OnInitialUpdate(); 
CSize sizeTotal; 

sizeTotal.cx =8000; 
sizeTotal .cy = 10500; 

(continued) 

511 



PAR T I V: ADVANCED TOPICS 

512 

Also in EX24AVW.CPP, add the line 

IH:n~:;i.u~i~;;'~Eii~:4i,~e;£'.:b~~;' .. 0 

just before the line 

Ifi nc 1 ude "ex24adoc. h" 

1 O. Edit the EX24A.CPP file. Add the line 

1Hrl'dl. ua;~~f:~~~i~~~~~~:~:~:" 

just before the line 

If inc 1 u de" ex 2 4 ado c . h" 

11. Build and test the application. Does the resulting screen look like the 
one shown here? 

001 Smith. Randy 96 
002 Maples. Alex 95 
003 Jones. Thomas 95 
004 Shanno~Erlc 96 
005 Foster. Susan 96 
006 Jefferson. Nancy 95 
007 Tuner. Bob 96 
008 Holm. David 95 
009 Reynolds. Don 96 
010 Taylor. Robert 95 
011 Karr. Dave 96 
012 Tannant Tim 96 
013 Marcus. Susan 95 



T WEN T Y - F 0 U R: Database Management with Microsoft ODSe 

Adding OOBC Capability to an MFC Application 
If you need to add ODBC capability to an existing MFC application, 
make the following changes to the project: 

1. Add the following line at the end of STDAFX.H: 

/linclude Uafxdb.h" 

2. In the Linker Input dialog, under Project Options, add ODBC 
to the list of libraries. 

3. Edit the RC file in text mode. After the line 

"/linclude "uafxprint.rc" 
// printing/print preview resources\r\n" 

add the line 

"/linclude ""afxdb.rc"" 

And after the line 
,', " "" 

/linclude "afxprint.rc" 

add the line 

// printing/print preview reSQldr"ces 

#include "afxdb.rc" // Database resources 

The EX24A Program Elements 
The following is a discussion of the major elements in the EX24A program. 

Connection of the Recordset Class to the Application 
When ClassWizard generates the CEx24aSet class, it adds the CPP file to the 
project-and that's all. It's up to you to link the recordset to your view and to 
your document. By embedding a CEx24aSet object inside the CEx24a­
Document class, you ensure that the recordset object will be constructed when 
the application starts. 

The view could always get the recordset via the document, but it's more 
efficient if the view keeps its own recordset pointer. Notice how the view's 
OnlnitialUpdate function sets the m_pSet data member. 

513 



PAR T I V: ADVANCED TOPICS 

NOTE: If you run AppWizard with the Database Support op­
tion, App Wizard generates a class derived from CRecordset, a class 
derived from CDatabaseView, and all the necessary linkage as just 
described. We're not using AppWizard in this mode because we 
don't want a form-based application. 

The CEx24aView Class's OnlnitialUpdate Member Function 
Thejob of the OnlnitialUpdatefunction is to open the recordset that's associ­
ated with the view. The recordset constructor was called with a NULL data­
base pointer parameter, so the CRecordset::Open function knows it must 
construct a CDatabase object and link that database one-to-one with the 
recordset. But how does Open know what data source and table to use? It 
calls two CRecordset virtual functions, GetDefaultConnect and GetDefaultSQL. 
ClassWizard generates implementations of these functions in your derived 
recordset class, as shown here: 

CString CEx24aSet::GetDefaultConnect() 
{ 

return "ODBC;DSN=Student Registration;"; 

CString CEx24aSet::GetDefaultSQL() 
{ 

return "STUDENT"; 

GetDefaultSQL is a pure virtual function, so the derived class must im­
plement it. GetDefaultConnect, on the other hand, has a base class implemen­
tation that brings up an ODBC dialog that prompts the user for the data 
source name. 

Because documents are reused in SDI applications, the OnlnitialUpdate 
function must close any open recordset before it opens a new recordset. The 
IsOpen member function makes the test. 

The CEx24aView Class's OnDraw Member Function 

514 

As in any document-view application, the On Draw function is called every 
time the view is invalidated and once for every printed page. Here OnDraw 
inefficiently slogs through every row in the recordset and paints its column 
values with the CDC::TextOut function. The principal CRecordset member 
functions it calls are MoveFirst and MoveNext. MoveFirst will fail if the recordset 
is empty, so a prior call to IsBOF is necessary to detect the beginning-of-file 
condition. The IsEOF member function detects the end-of-file for the 
recordset and terminates the row loop. 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

Remember that ClassWizard generated CEx24aSet class data members 
for the recordset's columns. This means that the recordset class, and now the 
view class, are both hard-coded for the student record. The CRecordset mem­
ber functions call a pure virtual function DoFieldExchange that ClassWizard 
generates based on the data members m_StudentID, m_Name, and m_Grad­
Year. Here is the code for this example's derived recordset class: 

void CEx24aSet::OoFieldExchangeCCFieldExchange* pFX) 
{ 

} 

//{{AFX_FIELO_MAPCCEx24aSet) 
pFX-)SetFieldTypeCCFieldExchange::outputColumn); 
RFX_Long C p FX, "Student 10", m_StudentI 0) ; 
RFX_TextCpFX, "Name", m_Name); 
RFX_IntCpFX, "GradYear", m_GradYear); 
//}}AFX_FIELO_MAP 

Each SQL data type has a field exchange (RFX_) function. These func­
tions are quite complex and are called many times during database process­
ing. You might first think, as I did, that the RFX_ functions are like the 
CDialog DDX_ functions and thus actually transfer data between the database 
and the data members. This is not the case. The primary purpose of the 
RFX_ functions is to "bind" the database columns to the data members so 
that the underlying ODBC functions, such as SQLExtendedFetch, can transfer 
the column data. To this end, the DoFieldExchange function is called from 
CRecordSet::Open. DoFieldExchange is also called by the Move functions for the 
purpose of reallocating strings and clearing status bits. 

Because the DoFieldExchange function is so tightly integrated with MFC 
database processing, you are advised not to call this function directly in 
your programs. In the next example, EX24B, you'll learn how to write a 
DoFieldExchange function that is not hard-coded for specific columns. 

The MFC Dialog Bar 
You haven't seen the CDialogBarclass yet because it didn't make sense to use 
it in the earlier example. (A dialog bar is a child of the frame window that is 
arranged according to a dialog template resource and that routes commands 
in a manner similar to that of a toolbar.) It fits well in the ODBC example, 
however. Look at Figure 24-4 on page 532, which shows the EX24B example 
in operation. The dialog bar contains edit controls for the SQL sort and fil­
ter strings, and it has a pushbutton to re-execute the query. The button sends 
a command message that can be handled in the view, and it can be disabled 
by an update command DI handler. Most dialog bars reside at the top of the 
frame window, immediately under the toolbar. 

515 



PAR T I V: ADVANCED TOPICS 

It's surprisingly easy to add a dialog bar to an application. You don't 
even need a new derived class. Here are the steps: 

1. Use App Studio to layout the dialog. Apply the following styles: 

Style = Child 
Border = None 
Visible = unchecked 

You can choose a horizontally oriented bar for the top or bottom 
of the frame, or you can choose a vertically oriented bar for the left 
or right of the frame. Add any controls you need, including buttons 
and edit controls. 

2. Declare an embedded CDialogBarobject in your derived main 
frame class declaration, like this: 

c b:i~ 1.0 gSa rt~.mi~a:dM¥ ~ air, : 
3. Add dialog bar object creation code in your main frame class 

OnCreate member function, like this: 

IDD_MY_BAR is the dialog resource ID assigned in App Studio. 
The CBRS_TOPstyle tells the application framework to place the 
dialog bar at the top of the frame window. ID_MY_BAR is the 
dialog bar's control window ID, which should be within the range 
OxE800-0xE820 to ensure that the print preview window preempts 
the dialog bar. 

Application Shutdown 

516 

Up to now, you haven't been too concerned about the process of shutting 
down an application. With ordinary document-oriented MFC library applica­
tions, your calling the CDocument::SetModifiedFlag function ensured that the 
application framework would prompt the user to save documents. With the 
EX24A ODBC application, you were OK because the database was closed 
automatically when the document was destroyed. But what if you want to 
force the user to disconnect from the data source before he or she closes the 
document? 



T WEN T Y - F 0 U R: Database Management with Microsoft ODSe 

The application framework provides the means for trapping the user's 
attempt to exit the application. It's all done at the document level through 
the virtual CDocument::SaveModified member function. The application 
framework calls this function whenever a document is to be closed, even if 
the closing was triggered by the user's attempt to close the application's 
main frame window or to shut down Windows. If SaveModified returns 0, the 
application framework doesn't close the document. In the EX24B example, 
the derived document class overrides SaveModified to check whether the da­
tabase is still connected. 

A Row-View Class 
Database applications are often built around scrolling lists of database 
records. The EX24A example was a feeble attempt in this direction. The 
EX24B example goes further. If you've read other books about program­
ming for Windows, you know that authors spend lots of time on the problem 
of scrolling lists. This is a tricky programming exercise that must be repeated 
over and over again. Why not encapsulate a scrolling list in a base class? All 
the ugly details would be hidden, and you could get on with the business of 
writing your application. 

The CRow View class, adapted from the class of the identical name in the 
\MSVC\MFC\SAMPLES\CHKBOOK directory, does the job. Through its use 
of virtual callback functions, it serves as a model for other derivable base 
classes. CRow View has some limitations, and it's not built to industrial­
strength specifications, but it works well in the ODBC example. Figure 24-3 
contains the complete listing. 

ROWVIEW.H 

II rowview.h : interface of the CRowView class 
II 

This 'class implements the behaviOr of a scrolling view that 
/I presents lTiultiple.Tows off.ixed-hetght data. A row view ;s 
II simil~~ to an owner-draw list box in its vfsual behavior: but 
II unlike a list box, a row view hasall;the benef; ts of a 
1/ view{aswellasa scroll view),~nclllding-"'pe.rhaps most 
II important--prfnting andprintpreview~ 
II I I I II I I I II I I I I I I II I I j I I I I I j 11111111111 I 1111 III j I II I 1111 I I I I I I 

Figure 24-3. (continued) 

The CRowView listing. 

517 



PAR T I V: ADVANCED TOPICS 

Figure 24-3. continued 

(continued) 

518 



T WEN TV - F 0 U R: Database Management with Microsoft ODSC 

ROWVIEW.CPP 

(continued) 

519 



PAR T I V: ADVANCED TOPICS 

Figure 24-3. continued 

(continued) 

520 



Figure 24-3. continued 

T WEN T Y - F 0 U R: Database Management with Microsoft ODBe 

currently selected row changes. SC~61' the view 
the newly selected row is visible. and ask the 

repaint the selected and previously 

(continued) 

521 



PAR T I V: ADVANCED TOPICS 

Figure 24-3. continued 

( continued) 

522 



T WEN TV - F 0 U R: Database Management with Microsoft DDBe 

Figure 24-3. continued 

(continued) 

523 



PAR T I V: ADVANCED TOPICS 

Figure 24-3. continued 

(continued) 

524 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

Figure 24-3. continued 

(continued) 

525 



PAR T I V: ADVANCED TOPICS 

Figure 24-3~ continued 

(continued) 

526 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

(continued) 

527 



PAR T I V: ADVANCED TOPICS 

Figure 24-3. continued 

528 



T WEN TV - F 0 U R: Database Management with Microsoft ODSe 

The Scrolling Problem 
You've seen the CScrollView base class used in EX24A. The scroll view's win­
dow consists of an area as large as 32,767 units high by 32,767 units wide, 
only a small part of which is visible on the screen. Suppose you had a list of 
2000 database query result rows, each 14 units high. Your view class OnDraw 
function could use the CDC:: TextOut function to paint all 2000 records each 
time the list was updated. This would work, but it would be terribly slow. As 
you've probably guessed, the trick is to paint only those rows that fall within 
the invalid rectangle that corresponds to the display screen-and this is what 
CRow View does. 

Dividing the Work Between Base and Derived Classes 
Because the CRow View class (itself derived from CScrollView) is designed to be 
a base class, it is as general as possible. CRowView relies on its derived class to 
access and paint the row's data. The EX24B example's document class ob­
tains its row data from a scrollable database, but the CHKBOOK example 
uses a random-access disk file. The CRowView class serves both examples ef­
fectively. It supports the concept of a selected row that is highlighted in the 
view. Through the CRowView virtual member functions, the derived class is 
alerted when the user changes the selected row. 

The CRowView Pure Virtual Member Functions 
Classes derived from CRowView must implement the following pure virtual 

. member functions: 

a GetRowWidthHeight-This function returns the character width and 
height of the currently selected font, and the width of the row, 
based on average character widths. As the device context switches 
between printer and display, the returned font metric values 
change accordingly. 

a GetActiveRow-The base class calls this function frequently, so if 
another view changes the selected row, this view can track it. 

a ChangeSelectionNextRow, ChangeSelectionToRow-These two func­
tions serve to alert the derived class that the user has changed the 
selected row. The derived class can then update the document 
(and other views) if necessary. 

a OnDrawRow-The OnDrawRow function is called by the CRow­
View::OnDraw function to draw a specific row. 

529 



PAR T I V: ADVANCED TOPICS 

Other CRowView Functions 
Three other CRow View functions are available to be called by derived classes 
and the application framework. These are UpdateRow, UpdateScrollSizes, and 
OnPrint. 

• UpdateRow-This public function triggers a view update when the 
row selection changes. Normally, only the newly selected row and 
the deselected row are invalidated, and this means that the final 
invalid rectangle spans both rows. If the total number of rows has 
changed, UpdateRow calls UpdateScrollSizes. 

• UpdateScrollSizes-This is a virtual function, so you can override it if 
necessary. The CRowView implementation updates the size of the 
view, which invalidates the visible portion. UpdtiteScrollSizes is called 
by OnSize and by OnUpdate (after the user executes a new query). 

• OnPrint-The CRow View class overrides this function to cleverly 
adjust the viewport origin and clipping rectangle so that OnDraw 
can paint on the printed page as it does in the visible portion of a 
window. 

Programming a Dynamic Recordset 

530 

The recordset you saw in EX24A had a DoFieldExchange function that was 
hard-coded for the columns in a specific database table. For a dynamic 
recordset class, we need to determine the column names and data types at 
run time. That information is always available from an ODBC data source, 
and the sample program \MSVC\MFC\5AMPLES\CATALOG has recordset 
classes CTables and CColumns that retrieve the necessary data. 

We have a sequencing problem here: If we construct and open the 
main recordset, as we did in EX24A, we'll get an error because DoField­
Exchange gets called before we've defined the columns. We must construct a 
CDatabase object first, make a CTables recordset to select a table, make a 
CColumns recordset, and, finally, make the main recordset. All recordsets are 
attached to the same CDatabase object. 

Here are the steps to follow for creating the main recordset: 

1. Use the default constructor to make a CDatabaseobject. It's a good 
idea to embed this object in the document. 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

2. Call the Open member function for the CDatabase object. Depend­
ing on the parameters you supply, the function can prompt the 
user to select the data source. 

3. Construct a CTables object, using the CDatabase pointer as a con­
structor parameter. Open this recordset to obtain a list of table 
names. Let the user choose a table. 

4. Construct the main recordset object, passing a pointer to the 
CDatabase object as a parameter to the constructor. You can store 
a pointer to this recordset in a document data member. Because 
you passed in a database pointer, the virtual CRecordset functions 
GetDefaultConnect and GetDefaultSQL won't be called. 

5. Construct a CColumns object, again using the CDatabase pointer 
as a constructor parameter. Set the CColumns data member 
m_strTableNameParam to the table name. Open this recordset 
to get each column's name. Also, obtain each column's data type 
and allocate storage for the data transfer that will occur later 
under the control of DoFieldExchange. 

6. Finally, open the main recordset, passing the table name (from 
step 3) as a parameter. This works if you have written a Do Field­
Exchange function that references the names and storage loca­
tions that were set up in step 5. 

To clean up, you must first delete the main recordset (which closes it) and 
then close or delete the database. The table and column recordsets take care 
of themselves if you declare them on the stack. 

Counting the Rows in a Recordset 
The ODBC library doesn't provide an accurate count of the rows in a 
recordset until you've read past the end. Until that time, the count returned 
from the CRecordset::GetRecordCount member function is a "high-water mark" 
only. It returns only the last row read. The GetStatus member function 
returns a CRecordsetStatus object, which has a data member m_bRecordCount­
Final indicating whether the count is final. 

531 



PAR T I V: ADVANCED TOPICS 

The EX24B Example 

532 

N ow we'll put everything together and build another working program-an 
MDI application that connects to any ODBC data source. The application 
dynamically displays tables in scrolling view windows, and it allows the user to 
enter filter and sort strings, which are stored in the document along with 
data source and table information. AppWizard generates the usual MDI 
main frame, document, application, and view classes, and we change the 
view class base to CRowView and add the ODBC-specific code. Figure 24-4 
shows the EX24B program in operation. 

Figure 24-4. 
The EX24B program in operation. 

The document's File menu has the commands ODBC Connect and 
ODBC Disconnect. The user must choose ODBC Connect to attach a 
recordset to an empty document and ~hen choose ODBC Disconnect prior 
to closing the document or attaching another recordset. 

You can learn a lot about this application by looking at the three view 
windows. The two views on the top are tied to the same document, 
STUDENT.QRY, and the bottom view is tied to another document, 
INSTRUCT.QRY The dialog bar shows the SQL statement that's associated 
with the active view window. 

The EX24B example is presented with source code listings and re­
source requirements. Here's a table of the files and classes: 



T WEN T Y - F 0 U R: Database Management with Microsoft ODSC 

Header File Source Code File Class Description 

EX24B.H EX24B.CPP CEx24bApp Main application 

MAINFRM.H MAINFRM.CPP CMainFrame MDI main frame 

EX24BDOC.H EX24BDOC.CPP CEx24bDoc EX24B document 

EX24BVW.H EX24BVW.CPP CEx24bView Scrolling database view 
class 

EX24BSET.H EX24BSET.CPP CEx24bSet Recordset class 

ROWVIEW.H ROWVIEW.CPP CRow View Row view base class 

COLUMNST.H COLUMNST.CPP CColumns Column rowset class from 
CATALOG 

TABLESET.H TABLESET.CPP CTables Table rowset class from 
CATALOG 

TABLESEL.H TABLESEL.CPP CTableSelect Table selection dialog class 

STDAFX.H STDAFX.CPP Precompiled headers 

Now we'll go through the application's classes one at a time, excluding 
CRow View and the classes borrowed from CATALOG. You'll see the impor­
tant data members and the principal member functions. 

CEx24bApp 
The application class is the unmodified output from App Wizard. 

CMainFrame 
This class is the standard output from AppWizard except for the addition of 
the dialog bar, which is created in the OnCreate member function. 

CEx24bDoc 
The document class manages the database connections and recordsets. Each 
document object can support one main recordset attached to one data 
source. A document object can have several views attached. Data sources 
(represented by CDa ta base objects) are not shared among document objects; 
each document has its own. 

533 



PAR T I V: ADVANCED TOPICS 

Data Members 
The important CEx24bDoc data members are as follows: 

m_pEx24bSet 

m_database 

m_strTableName 

m_strConnect 

m_strSort 

m_bConnected 

A pointer to the document's recordset object 

The document's embedded CDatabase object 

The name of the selected table 

The connection string that identifies the ODBC data 
source 

The filter string (example: GradYear > 95) that becomes 
part of an SQL statement 

The sort string (example: GradYear, StudentID) 

A flag that is TRUE when the document is connected to 
a recordset 

The sort and filter strings are also data members of the recordset class, 
but they're duplicated in the document class so that we can serialize them. 

OnNewDocument 
This overridden CDocument function sets the default database connection 
string. 

OnFileConnect 

534 

This function is called in response to the ODBC Connect command on the 
File menu. It creates the recordset and allocates storage for the recordset's 
DoFieldExchange function according to the steps listed above. Notice the 
use of the TRY/CATCH block to detect SQL processing errors. Notice also 
that OnFileConnect, together with OnFileDisconnect and OnQueryRequery, calls 
UpdateAllViews. 

void CEx24bDoc::OnFileConnect() 
{ 



T WEN T Y • F 0 U R: Database Management with Microsoft DOSe 

GTable.Select tableOl.g(&m..;..database): 
tabl eDlg;m..;..s·trSelectlon= m;....strTable:Name; 
if (toPleDlg.DoModal() 1=. lOOK) { 

m.;...;database.CloseO: 1/ escape route 
EndWaltCursor() : 
return; 

m.....,strtab leName = ta.bl eOl 9 ~ rn_strSel ectl on: 
'I, '.: ':':.\', '< 

Ill,;PEx2,~~~'et= new CEX24bSet(&m_databas~); 
'~. 'lll,;pEi<24b S et-> Ini t tali ~E! (11l_S t r Tab liN alTl~'):; 
"~FEXc24bSet ~ >~_strfil, t,~r .. ~ll1-strn It.~rT· 

~f'\ 'mL~EX24bset->rrLstrSort\ =:;m:..strSort;y .' . 
\~~ " , ····p:u .. ·t·'F '"'1 t e'r··.·S 0'" r' .. t·· (. )'; . ~~\ ' ." .'. • 

,\,,\ .. ,.'(\ 

',\I ,,\~ TRY{<: . ". <, ,,, .:, .. ' 
m_p.~x24bSet- )Open{CReGordset :;s;na P~ry.~,~. 

''(:~,ecQrqsE!t ;/,:reaqQ!\lY) : 

,cept;on. ef;{ 
rrorMs g~<ilQ{j[B~%$.~'. 

a~eBox( e.r.rorMs9J; 

~/}' 

(C~~~t 

Views (NlJLLr: 
m ..... l'Ji!';OlltlectE!<l = FcA,'t'st: ' 

U, 

} 

OnFileDisconnect 
This function is called in response to the ODBC Disconnect command on 
the File menu. 

void CEx24bDoc::OnFileDisconnect() 
{ 

} 

535 



PAR T I V: ADVANCED TOPICS 

On QueryRequery 
This message handler is called in response to the Requery button on the dia­
log bar. It reads the sort arid filter string values and regenerates the 
recordset. Note that the CRecordset::Requery function doesn't process the sort 
and filter strings, so we close and reopen the recordset instead. 

void CEx24bDoc::OnQueryRequery() 

PutFilterSort, GetFilterSort 
These utility functions move the document's sort and filter strings to and 
from the edit controls on the dialog bar. 

SaveModified 
This virtual function, called by the application framework when the user 
tries to close a document, checks to see whether the document's database 
connection is open. If it is, the document is not closed, and the program 
warns the user with a message box. 

Serialize 

536 

The Serialize function reads and writes the data members m_strConnect, 
m-,strTableName, m_strFilter, and m_strSort. 



T WEN T Y - F 0 U R: Database Management with Microsoft ODSe 

CEx24bView 
This class is derived from CRowView and thus implements the necessary vir­
tual functions. 

Data Members 
The view class uses the integer variable m_ nSelectedRow to track the currently 
selected row. The recordset pointer is held in m_pSet. 

On Update 
This virtual CView function is called through the application framework 
when the document's contents change in response to a new connection, a 
requery, or a disconnect. If several views are active for a given document, all 
views reflect the current query, but each can maintain its own current row 
and scroll position. OnUpdate also sets the value of the m_pSet data member. 
This can't be done in OnlnitialUpdate because the recordset is not open at 
that point. 

GetRowWidthHeight, GetActiveRow, 
ChangeSeiectionNextRow, ChangeSeiectionToRow 

These functions are implementations of the CRowView class pure virtual 
functions. They take care of drawing a specified query result row, and they 
track the current selection. 

GetRowCount 
Remember that the recordset doesn't know the record count until you've 
read past the end of the data. This overridden virtual function sets the view's 
count value to a large number (J\.1AX_ROWS) until it can determine the true 
recordset row count. 

int CEx24bView::GetRowCount() 
{ 

CRecords~t;Statu's't:'Status : 

~nt~Ro~S,~ 0;"", " ;'. ;'. . ....•.. ;.: .' .... • 
if. ('m~p~et.' ~3.NUtL .&&.'m:"pSet ->:TsOp~Yr(;)) 

. m:..:.p$et">GetStatus( rStatus:) 
i f;(r$tatU$.m~t>Reco;~~coYn~.FrY:lil;f) ,{ ••. ' 

:=:'~4(int) m_p.sfJt';>~:e~Re~9r:qCotint ( ) 
,\e,' ;~ ~~:-,,~c o~:~7~ - - -; 

(continued) 

537 



PAR T I V: ADVANCED TOPICS 

OnDrawRow, DrawDataRow 

538 

TheOnDrawRow virtual function is called from CRowView member functions 
to do the actual work of drawing a designated row. OnDrawRow reads the 
recordset's current row and then calls the CRecordset::Move function to posi­
tion the cursor and read the data. The TRY/CATCH block detects cata­
strophic errors resulting from unreadable data. The DrawDataRow helper 
function steps through the columns and prints the values from the memory 
that was allocated when the recordset was initialized. 

void CEx24bView::OnOrawRow(COC* pOC, int nRow, int y, BOOl bSelected) 

j 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

II Figur~ out some way to escape from here. 

void CEx24bView::OrawOataRow(COC* pOC, int y) 
{ 

int x = 0; 
char temp[101]: 
CStri ng strTi me; 
int nFields = (int) m_pSet->m_nFields; 

for (int ; = 0; i < nFields; i++) { 
swi tch (m_pSet- >m_nOatType[ i]) { 

case SOl_Bn: 
>1« (BOOl*) m_pSet ->m_a rrayVa 1 ue[ 1]) ? 

pDC~>TextOut(x. y. "T") : pDC->TextOut{x, y, "F"); 
break; 

case SQl_TINYINT: 
sprfritf(temp. "%d". 

(;nt) *«BYTE*) m~pSet;.>m_arrayValue[i]»: 
pDC"">TextOut(x. y, temp); 
break: 

case SOL_SMAllINT: 
spr;ntf(temp, "%d", 

*( (i nt*) m_pSet-)Ill....;.arrayValue[i]»; 
pOC-)TextOutlx, y, temp}i 
break: 

case SOL_INTEGER: 
sprintf(temp. "%ld", 

*«long*) lll_pSet->m_arrayValue[i]»); 
pDC->TextOut(X, y, temp); 
break; 

case SOL_REAL: 
sprintf(temp, U%10.2f", 

(double) *«float*) m_pSet->m_arrayValue[i]»; 
pOC~>TextOut(x, y, temp); 
break; 

case SOL_FLOAT: 
case SOL_DOUBLE: 

sprintfCtemp, "%10.2f". 
* « doubl e*) m_pSet .. >m_a rrayVa rue[;])); 

pDC->TextOuto(x. y. temp); 
break; 

case $OL:..:..DATE: 

(continued) 

539 



PAR T I V: ADVANCED TOPICS 

This recordset class does most of the work for dynamic database access and 
thus could serve as a building block in your own applications. 

Data Members 

540 

The hnportant CEx24bSet data members are as follows: 

m_arrayName 

rrLarray Value 

m_ nColWidth 

m_nDatType 

A dynamic string array that holds the column names 

A dynamic void pointer array that holds the current 
row's values 

An integer array of column widths (depends on 
column name lengths) 

An integer array of ODBC data types (SQL_CHAR, 
SQL_INTEGER, and so on) 



T WEN T Y - F 0 U R: Database Management with Microsoft ODSe 

Initialize 
The code in this member function could have been put in the constructor, 
but it's better to put it in a separate function because the database access 
might fail. The Initialize function allocates memory for each column accord­
ing to the data type. The DoFieldExchange function uses this memory when it 
binds the columns. 

void CEx24bSet::lnitialize(const char* pchTableName) 
,{ 

cpnstruct;on ph.ase ' 

(continued) 

541 



PAR T I V: ADVANCED TOPICS 

542 

This function binds the allocated rneIHo:ry to the colUlnns. Remember that 
the Open member function calls DoFieldExchange, so the memory .must have 
been allocated before the recordset's Open function is called. 

void CEx24bSet::DoFieldExchange(CFieldExchange* pFX) 
{ 



} 

Destructor 

T WEN T Y ~ F 0 U R: Database Management with Microsoft ODSC 

*«;nt*) m;",..arrayValue[i]»; 
break: 

case SOL_INTEGER: 
RFX~Long(pFX, m_arrayName[i], 

*«long*) m_arrayValue[i]»; 
break: 

case SOL_REAL: 
RFX_SingleCpFX, m_arrayName[i]. 

* «float*) .m_a rrayValue[il» ; 
break; 

c'ase SOL_flOAT: 
cas~SOL __ DOUBLE: 

. RFX_Double(pF~,. m_arrayName[iJ, 
* « doub 1 e*) 

break; 
cas'e SO L .. .,DATE : 
case SOL ..... J·IME: 

SOL,2f;IMESTAMJ? : 
RFX"'79;~·te(pFx.';Y~_a rr~Y~'~me[i.l • 

. *«CT;:m~*.) m_arr'ayVal 
"bre.ak.:\ 

SOl_S.tNARY: 
SO L..;:,VARB I NARY ... : 

RFX_Binary(pFXC. m_arrayName[i], 
*«C{3yteArray*) LarrayYalue[i]»; 

r raYNameti J;, 
narY*~rl11:-arrayva lue[i]») ; 

The CEx24bSet destructor frees the memory allocated by the Initialize nlcnl­
her function, as shown on the following page. 

543 



PAR T I V: ADVANCED TOPICS 

CEx24bSet::-CEx24bSet() 

} 

CTableSelect 
This is a ClassWizard-generated dialog class that contains a list box used for 
selecting the table. 

Data Members 
The important CTableSelect data members are as follows: 

m_ pDatabase 

m_strSelection 

A pointer to the recordset's CDatabase object 

The ClassWizard-generated variable that corresponds 
to the list-box selection 

Constructor 

544 

The constructor takes a database pointer parameter, which it uses to set the 
m_pDatabase data member. 

CTableSelect::CTableSelect(CDatabase* pDatabase, 



T WEN T Y - F 0 U R: Database Management with Microsoft ODBC 

IlllAFX_DATA_INIT 
m_pDatabase = pDatabase; 

OnlnitDialog 
This self-contained function creates, opens, and reads the data source's list 
of tables, and it puts the table name strings in the dialog's list box. 

BOOl CTableSelect::OnlnitDialog() 
{ 

1 

CL i stBox* pLB = (CLi stBox*) GetDl gItem(I DC_PSTl) ; 
CTabl es tab 1 es(m_pDatabase) ; II db passed vi a constructor 
tables.Open(): II closed on table's 

II destruction 
while (!tables.IsEOF(» { 

1 

TRACE("table name = %s\n", tables.m-:",strName); 
if (tables.m_strName.left(4) != "MSYSU) { 

pLB->AddString(tables.m_strName); 
} 

return' CDi al og:: OnlnitDi al og(); 

OnDblclkList1 
It's handy for the user to choose a list-box entry with a double-click. This 
function is mapped to the appropriate list-box notification message. 

void CTableSelect::OnDblclklistl() 
{ 

OnOK(); /1 double-click on list-box item exits dialog 

The EX24B Resource File 
This application uses a dialog bar, so you'll need a dialog resource for it. Fig­
ure 24-4 on page 532 shows the dialog bar. The dialog resource ID is 
IDD_QUERY_BAR. The controls are listed here: 

Control 

Button 

Edit 

Edit 

ID 

IDC_REQUERY 

IDC_FILTER 

IDC_SORT 

545 



PAR T I V: ADVANCED TOPICS 

The dialog resource ID is IDD_QUERY_BAR, and the following styles 
are set: 

Style = Child 
Border = None 
Visible = unchecked 

There's also a table selection dialog resource, IDD_TABLE_SELECT, 
which has a list-box control with ID IDC_LIST1. That dialog is shown here: 

COURSE 
DYNABIND SECTI 
ENROlltdE-NT 
INSTRUCTOR 
SECTION 

The File menu has two added items: 

Menu Item 

ODBC Connect 

ODBC Disconnect 

Command 10 

ID_FlLE_CONNECT 

ID_FlLE_DISCONNECT 

Running the EX24B Program 

546 

You can run the EX24B program with any ODBC data source, including SQL 
Server databases. Be careful, though, with Microsoft Access version 2.0. The 
Access 2.0 Setup program installs something that looks like an ODBC 
driver-its name shows up in the ODBC data source list. This driver is in­
tended onlyfor use within the Microsoft Office suite of programs. It will not 
work with the MFC 1.5 ODBC classes. If you need to read and write Access 
2.0 files, you'll have to get a real ODBC driver from Microsoft or from a 
third-party supplier. 



T WEN T V - F 0 U R: Database Management with Microsoft ODSC 

Going Further with OOBC 
You'll find the CRecordset and CDatabase classes adequate for most ODBC 
work. There are member functions for adding and deleting records and for 
setting up database transactions. The CRecordset::Open function is flexible 
enough to accommodate general SQL SELECT statements and calls to 
stored procedures. The CDatabase::ExecuteSQL function allows you to bypass 
the recordset entirely when you execute an SQL statement. This works only 
if the SQL statement is not a query, because you need access to the ODBC 
statement handle for query processing. If you want to do your own queries 
without recordsets, you'll have to work directly at the ODBC SDK level. 

547 





C HAP T E R TWENTY-FIVE 

OLE AND OLE AUTOMATION 

OLE is a much bigger subject than one chapter in a Visual C++ book can 
cover. The Microsoft Foundation Class (MFC) libraries do make OLE pro­
gramming easier, but you need to understand the underlying OLE architec­
ture-particularly the Common Object Model (COM)-before you can use 
the MFC library effectively. This chapter focuses on two things: 

• COM theory in the context of the MFC application framework. 

• OLE Automation (an OLE feature). This OLE feature is important 
because it's the bridge between C++, Visual Basic for Applications 
(VBA) , and other languages. 

Learning COM theory and OLE Automation will give you a head start 
in understanding the inner workings of other OLE features, such as Visual 
Editing, drag-and-drop, structured storage, and OLE Controls. 

Learning OLE 
OLE stands for Object Linking and Embedding, but that now-insufficient 
title is left over from a previous incarnation, OLE version 1.0. OLE version 
2.0 is a whole lot more. It's the beginning of Microsoft's new object-oriented 
operating system-a brand-new application programming interface (API) 
for Windows applications. Sounds pretty grandiose, doesn't it? If you found 
this book in a bookstore, you might have noticed other OLE books on the 
shelf, particularly Kraig Brockschmidt's 1000-page Inside OLE 2 and the two 
volumes of the OLE 2 Programmer's Reference. (Both titles were published by 
Microsoft Press. The two reference volumes are supplied as WINHELP files 
in Visual C++.) Did you get the feeling that maybe you didn't know as much 
as you thought you did? You should have! 

549 



PAR T I V: ADVANCED TOPICS 

Let me tell you my experience. I was feeling pretty good about myself 
because I had mastered the C++ language, Windows programming, and 
MFC. I thought I really was ahead of the game-but then there was this ob­
scure API for linking and embedding that had undergone a version change. 
No problem, I thought, because the MFC developers had promised that 
their OLE classes wouldn't change much. Then I started digging in. Pretty 
soon I began to see references to "interfaces," and I had no clue what an in­
terface was. Shortly thereafter, I attended some OLE seminars at a confer­
ence, and I saw dozens of incomprehensible APls on Microsoft PowerPoint 
slides. Suddenly it dawned on me that I was at the very bottom of yet another 
learning curve! 

Kraig Brockschmidt, a true Microsoft insider who's a very bright guy, re­
fers to "six months of mental fog." He's not kidding. Perhaps it won't be as 
bad for you. You've got Brockschmidt's book, this chapter, and the MFC OLE 
classes to help you. But if your boss or client has asked for an OLE applica­
tion by the middle of next week, you could be in trouble. Don't make the 
same mistake I did. Don't depend on the MFC OLE classes to shield you 
from the underlying OLE architecture. That would be like using MFC to pro­
gram Windows applications with no understanding of Windows messages 
and device contexts. 

A few other words of advice: 

• Know the C++ language cold . 

• Read Brockschmidt's book. 

In this chapter, I'll try to rephrase (in abbreviated form) Brock­
schmidt's "Component Object Model" tutorial in terms of the application 
framework. Brockschmidt's book addresses all the important OLE features 
that I ignore, but it doesn't cover OLE Automation. As I was writing this 
chapter, I was not aware of any books specifically about OLE Automation. 

The Common Object Model (COM) 

550 

As far as I'm concerned, the Common Object Model (COM) is what OLE is 
really about. OLE is a superset of COM that has some nice features, such as 
Visual Editing, drag-and-drop, and automation, but COM encompasses a 
new modular software architecture. You really need to learn COM before 
you can master the OLE features that build on it. 

COM used to stand for "Component Object Model," but as this book 
was in the final editing stages, Microsoft Corporation and Digital Equipment 



T WEN T Y - F I V E: OLE and OLE Automation 

Corporation announced a deal allowing the COM standard to be supported 
by both companies. Watch for COM, which now includes structured storage, 
to appear on the Windows, Macintosh, and UNIX platforms. 

The Problem That COM Solves 
The "problem" is that there isn't a standard way for Windows program mod­
ules to communicate with one another. "But," you say, "there's the DLL inter­
face, the VBX standard, Dynamic Data Exchange (DDE) , the clipboard, the 
old OLE 1, and the Windows API itself. Aren't they good enough?" Well, no. 
You can't build an object-oriented operating system for the future out of 
these ad hoc, unrelated standards. With the OLE Common Object Model, 
however, you can, and that's precisely what Microsoft is doing. 

The Essence of COM 
What's wrong with the old standards? Lots. The Windows API has too large a 
programming "surface area"-350 separate functions. VBXs don't work in 
the 32-bit world. With DDE, there's a complicated system of applications, 
topics, and items. How you call a DLL is totally application-specific, and your 
approach depends on whether client and DLL are both 32-bit, both 16-bit, 
or one of each. COM provides a unified, expandable, object-oriented Win­
dows communications protocol that already supports 

• A standard way for a client EXE to call a DLL 

• A general-purpose way for one EXE to control another EXE on 
the same computer (the DDE replacement) 

• A replacement for the VBX control, called an OLE Control 

• A language-independent binary standard for linking 16-bit and 
32-bit applications 

In the immediate future, Microsoft Corporation will expand COM to 
handle communications between programs running on separate processors 
and even different processor types. 

So what is COM? That's an easier question to ask than to answer. COM 
is a protocol that connects one software module with another, and then 
drops out of the picture. Mter the connection is made, the two modules can 
communicate through a mechanism called an "interface." Interfaces require 
no statically or dynamically linked entry points or hard-coded addresses 
other than the few general-purpose COM functions that get the communica­
tion process started. An interface (more precisely, a COM interface) is an 

551 



PAR T I V: ADVANCED TOPICS 

OLE term that you'll be seeing a lot of. Follow along, and you'll begin to 
understand what an interface really is. 

What Is a COM Interface? 

552 

Appendix A of this book uses a planetary-motion simulation (suitable for 
NASA or Nintendo) to illustrate C++ inheritance and polymorphism. I'll 
stick with that same example here, because it's useful to show what COM 
adds to the plain-vanilla C++ approach used in the appendix. The example 
here, however, is independent of Appendix A. 

Imagine a spaceship that travels through our solar system under the in­
fluence of the sun's gravity. In ordinary C++, you could declare a CSpaceship 
class and write a constructor that sets the spaceship's initial position and ac­
celeration. Then you could write a member function named Fly that obeyed 
Kepler's laws in order to move the spaceship from one position to the next­
say, over a period of 0.1 second. Fly would be an ordinary nonvirtual member 
function. You could also write a Display function that painted an image of the 
spaceship in a window. 

Now, if we move to COM, the spaceship code lives in a separate EXE or 
DLL (the "server"), which is a COM module. A "client" program can't call Fly 
or any CSpaceship constructor because COM provides a standard global func­
tion call to gain access to the spaceship. Before we tackle real COM, let's do a 
"COM simulation" in which both the server and the client code are statically 
linked in the same EXE file. For our standard global function, we'll invent a 
function named GetClassObject, with three parameters: 

BOOl GetClassObject(const long& lClsid, const long& lRid, 
void** ppvObj); 

NOT E : Real COM functions return a special error code struc­
ture of type HRESULT. For tutorial purposes, I'll show an ordinary 
Boolean return instead. Assume the return value is TRUE if a func­
tion was successful. 

The first Get Class Object parameter, lClsid, is a 32-bit number (real COM 
uses 128 bits) that uniquely identifies the CSPaceship class. The second pa­
rameter, lRid, is the unique identifier of the interface that we want. Now let's 
back up to the design of CSpaceship. We haven't talked about spaceship inter­
faces yet. A COM interface is a C++ base class (actually, a C++ struct) that de­
clares a group of pure virtual functions. These functions completely control 
some aspect of derived class behavior. For CSpaceship, let's choose an inter­
face named IMotion, which controls the spaceship object's position. For 
simplicity's sake, we'll declare just two functions, Fly and GetPosition, and we'll 



T WEN T Y - F I V E: OLE and OLE Automation 

make the position value an integer. The Fly function moves the spaceship, 
and the GetPosition function returns a reference to the current position. 
Here are the declarations: 

struct IMotion 
{ 

virtual void Fly() = 0; 
virtual int& GetPosition() 0; 

} ; 

class CSpaceship public IMotion 
{ 

protected: 
int m_nPosition; 

public: 

} ; 

CSpaceship() {m_nPosition 0;} 
void Fly(); 
int& GetPosition(); 

The actual code for the spaceship-related functions, including 
GetClassObject, is in the server part of the program. The client part calls the 
GetClassObject function to construct the spaceship and to obtain an IMotion 
pointer. Both parts have access to the class declarations at compile time. 
Here's how the client calls GetClassObject: 

IMotion* pMot; 
GetClassObject(CLSID_CSpaceship, IID_IMotion, (void**) &pMot); 

Assume for now that COM can use the unique identifiers CLSID_G 
Spaceship and IID_IMotion to find the specific GetClassObject function for space­
ships. If the call is successful, pMot points to a CSpaceship object that Get­
ClassObject somehow constructs. As you can see, the CSpaceship class imple­
ments the Fly and GetPosition functions, and our main program can call them 
for the one particular spaceship object: 

int nPos = 50; 
pMot->GetPosition() = nPos; 
pMot->Fly() ; 
nPos = pMot->GetPosition(); 
TRACE("new position = %d\n", nPos); 

Now the spaceship is off and flying, and we're controlling it entirely 
through the pMot pointer. Notice that pMot is not technically a pointer to a 
CSpaceship object, but in this case, a CSpaceship pointer and an IMotion 
pointer are the same because CSpaceship is derived from IMotion. You can see 
how the virtual functions work here: it's classic C++ polymorphism. 

553 



PAR T I V: ADVANCED TOPICS 

554 

Let's make things a little more complex by adding a second interface, 
!Visual, that handles the spaceship's visual representation. One function is 
enough-Display. Here's the whole base class: 

struct IVisual 
{ 

virtual void Display() = 0; 
} ; 

Are you getting the idea that COM wants you to associate functions in 
groups? (You're not imagining it.) But why? Well, in your space simulation, 
you probably want other kinds of objects in addition to spaceships. Imagine 
that the lMotion and lVisual interfaces are being used for other classes. Per­
haps the CSun class has an implementation of lVisual but does not have an 
implementation of lMotion, and perhaps the CSpaceStation class has other in­
terfaces as well. If you "published" your lMotion and lVisual interfaces, per­
haps other space simulation software companies would adopt them. Or 
perhaps they wouldn't. 

Think of an interface as a contract between two software modules. The 
idea is that interface declarations never change. If you want to upgrade your 
spaceship code, you don't change the lMotion or the lVisual interface; rather, 
you add a new interface, such as lCrew. The existing spaceship clients can 
continue to run with the old interfaces, and new client programs can use the 
new lCrew interface as well. These client programs can find out, at run time, 
which interfaces a particular spaceship software version supports. 

Consider the GetClassObject function as a more powerful alternative to 
the C++ constructor. With the ordinary constructor, you obtain one object 
with one batch of member functions. With the GetClassObject function, you 
obtain the object plus your choice of interfaces. As you'll see later, you start 
with one interface, and then you use that interface to get other interfaces to 
the same object. 

So how do you program two interfaces for CSpaceship? You could use 
C++ multiple inheritance, but that isn't the preferred way. With MFC, you 
would use "nested classes" instead. Not all C++ programmers are familiar 
with nested classes, so I'll offer a little help. Here's a first cut at nesting inter­
faces within the CSpaceship class: 

class CSpaceship 
{ 

protected: 
i n t m_n Po sit ion; 

public: 
CSpaceship() {m_nPosition 0;} 



} ; 

T WEN T Y - F I V E: OLE and OLE Automation 

class XMotion public IMotion 
{ 

private: 
int m_nAcceleration; 

public: 
XMotion() {m_nAcceleration 101;} 
virtual void Fly(); 
virtual int& GetPosition(); 

m_xMotion; 

class XVisual 
{ 

private: 

public IVisual 

int m_nColor; 
public: 

XVisual() { m_nColor = 102; 
virtual void Display(); 

friend class XVisual; 
friend class XMotion; 

NOT E : The MFC library provides a series of macros that make 
it easy to declare and implement nested classes that support inter­
faces. These macros, described in Technical Note #38 in the 
MFCNOTES.HLP file, generate code that is similar to the code 
above. In the MFC universe, the CSpaceship class declaration might 
look something like this: 

BEGIN_INTERFACE_PART(CMotion, IMotion) 
STDMETHOD_(void, Fly) (); 
STDMETHOD_(int&, GetPosition) (); 

END_INTERFACE_PART(CMotion) 
BEGIN_INTERFACE_PART(CVisual, IVisual) 

STDMETHOD_(void, Display) (); 
END_INTERFACE_PART(CVisual) 

DECLARE_INTERFACE_MAP() 

The BEGIN_INTERFACE_PART macro also generates proto­
types for certain other functions, namely QueryInterface, AddRef, 
and Release, which are described later in this chapter. In the 
CSpaceshipimplementation file, you would use other macros in the 
manner shown at the top of the following page: 

555 



PAR T I V: ADVANCED TOPICS 

556 

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget) 
INTERFACE_PART(CSpaceship, IID_IMotion, Motion) 
INTERFACE_PART(CSpaceship, IID_IVisual, Visual) 

END_INTERFACE_MAP() 

Notice that the implementations of IMotion and IVisual are contained 
within the "parent" CSpaceship class. Be aware that m_xMotion and m_xVisual 
are really embedded data members of CSpaceship. Indeed, you could have 
implemented CSpaceship strictly with embedding. Nesting, however, brings 
two things to the party: First, nested class member functions can access par­
ent class data members without the need for separate CSpaceship* data mem­
bers; second, the nested classes are neatly packaged along with the parent 
and are invisible outside the parent. Look at the code for the GetPosition 
member function: 

int& CSpaceship::XMotion::GetPosition() 
{ 

METHOD_PROLOGUE(CSpaceship, Motion) II makes pThis 
return pThis->m_nPosition; 

Notice also the double scope resolution operators that are necessary 
for nested class member functions. METHOD_PROLOGUE is an MFC macro 
that uses the C offsetof operator to generate a this pointer to the parent class, 
pThis. The compiler always knows the offset from the beginning of parent 
class data to the beginning of nested class data. GetPosition can thus access 
the CSpaceship data member m_ nPosition. 

Now, suppose you have two interface pointers, pMot and pVis, for a par­
ticular CSpaceship object. (Don't worry yet about how you got the pointers.) 
You can call interface member functions in the following manner: 

pMot->Fly(); 
pVis->Display(); 

What's happening under the hood? In C++, each class (at least a class 
that has virtual functions and is not an abstract base class) has a virtual 
function table, aka vtbl. In this example, that means there are vtbls 
for CSpaceship::XMotion and CSpaceship::XVisual. For each object, there's a 
pointer to the object's data, the first element of which is a pointer to the 
class's vtbl. The pointer relationships are shown in the illustration at the top 
of the facing page: 



pMot 

pVis 

T WEN TV - F I V E: OLE and OLE Automation 

CSpaceship object 

XMotion object CSpaceship::XMotion class vtbl 

- ........ Fly function pointer , 

private data members GetPosition function pointer 
for Flyand GetPosition 

XVisualobject CSpaceship::XVisual class vtbl 

- ........ Display function pointer 

private data members 
for Display 

NOT E : Theoretically, it's possible to program OLE in C. If you 
look at the OLE header files, you'll see code such as this: 

#ifdef __ cplusplus 
II C++-specific headers 
fie 1 se 
1* C-specific headers *1 
flendi f 

In C++, interfaces are declared as C++ structs, often with inherit­
ance; in C, they're declared as C typedef structs with no inheritance. 
In C++, coding vtbls in your derived classes is easy; in C, you must 
"roll your own" vtbls, and that gets tedious. It's important to real­
ize, however, that in neither language do the interface declara­
tions have data members, constructors, or destructors. Therefore, 
you can't rely on the interface having a virtual destructor, but 
that's not a problem because you never invoke a destructor for 
an interface. 

The IUnknown Interface and the Querylnterface Member Function 
Let's get back to the problem of obtaining your interface pointers in the first 
place. OLE declares a very special interface named IUnknown for this pur­
pose. As a matter of fact, all interfaces are derived from IUnknown, which has 
a member function, Querylnterface, that returns an interface pointer based 
on the interface ID you feed it. All this assumes that you have one interface 
pointer to start with, either an IUnknown pointer or a pointer to a derived 
interface such as IMotion. Let's enhance CSpaceship to add a public data 

557 



PAR T I V: ADVANCED TOPICS 

558 

member of type IUnknown *, which provides a back door for obtaining the 
first interface pointer. Here's the next iteration of our spaceship classes: 

struct IUnknown 
{ 

virtual BOOl Querylnterface(const long& lRid, void** ppvObj) 0; 
} ; 

struct IMotion : public IUnknown 
{ 

virtual void Fl y ( ) = 0; 
virtual int& GetPosition() 

} ; 

struct IVisual : public IUnknown 
{ 

vi rtua 1 void Display() = 0; 
} ; 

class CSpaceship 
{ 

public: 
IUnknown* m_pUnknown; 

protected: 
i nt m_nPositi on; 

public: 
CSpaceshi p() { 

m_nPosition = 0; 
m_pUnknown = &m_xMotion; 

0; 

class XMotion public IMotion 
{ 

private: 
int m_nAcceleration; 

public: 
XMotion() {m_nAcceleration 101;} 
virtual void Fly(); 
virtual int& GetPosition(); 
virtual BOOl Querylnterface(const long& lRid, void** ppvObj); 

m_xMotion; 

class XVisual 
{ 

private: 

public IVisual 

int m_nColor; 



T WEN T Y • F I V E: OLE and OLE Automation 

} ; 

public: 
XVisual() { m_nColor = 102; } 
virtual void Display(); 
virtual BOOl QueryInterface(const long& lRid. 

voi d** ppvObj); 

friend class XVisual; 
friend class XMotion; 

What do the vtbls'look like now? For each derived class, the compiler 
builds a vtbl with the base class function pointers on top, as shown here: 

CSpaceship::XMotion vtbl 

Querylnterface function pOinter 

Fly function pointer 

GetPosition function pointer 

CSpaceship::XVisual vtbl 

Querylnterface function pointer 

Display function pointer 

Notice that the CSpaceship constructor sets m_pUnknown. Now there's a 
way for GetClassObject to get the IUnknown pointer for a given CSpaceship ob­
ject. Here's the code for the XMotion Querylnterface function: 

BOOl CSpaceship::XMotion::QueryInterface(const long& lRid. 
void** ppvObj) 

} 

switch (lRid) { 
case IID_IUnknown: 
case IID_IMotion: 

*ppvObj = &m_xMotion; 
break; 

case IID_IVisual: 
*ppvObj = &m_xVisual; 
break; 

default : 
*ppvObj = NUll; 
return FALSE; 

return TRUE; 

Because IMotion is derived from' IUnknown, an IMotion pointer will be 
OK if the caller asks for an IUnknown pointer. At the top of the following 
page is a GetClassObject function that uses m_pUnknown to obtain the first in­
terface pointer for the newly constructed CSpaceship object: 

559 



PAR T I V: ADVANCED TOPICS 

560 

BOOl GetClassObject(const long& lClsid. const long& lRid. 
void** ppvObj) 

} 

ASSERT(lClsid ClSID_CSpaceship); 
CSpaceship* pObj = new CSpaceship(); 
IUnknown* pUnk = pObj->m_pUnknown; 
return pUnk->Querylnterface(lRid. ppvObj); 

Now your client program can call Querylnterface to obtain an IVisual 
pointer: 

IMotion* pMot; 
IVisual* pVis; 
GetClassObject(ClSID_CSpaceship. IID_IMotion. (void**) &pMot); 
pMot->Fly(); 
pMot->Querylnterface(IID_IVisual. (void**) &pVis); 
pVis->Display(); 

Notice that the client uses a CSpaceship object, but it never has an actual 
CSpaceship pointer. Thus the client cannot directly access CSpaceship data 
members, even if they're public. 

NOTE: In the MFC library, the INTERFACE macros shown in 
the note beginning on page 555 work together to build a table 
that Querylnterface uses to obtain the interface pointers. If a client 
requests an IUnknown pointer, MFC retrieves the first interface 
pointer in the table. Thus, MFC doesn't need an m_pUnknown 
pointer like the one we've put in the CSpaceship class. 

OLE has its own graphic representation for interfaces and COM 
classes. Interfaces are shown as small circles (or jacks) with lines attached to 
their class. The IUnknown interface, which every COM class supports, is at 
the top, and the others are on the left. The CSpaceship class can be repre­
sented like this: 

IUnknown 

I Visual 

IMotion 



T WEN T Y - F I V E: OLE and OLE Automation 

Reference Counting: The AddRef and Release Functions 
COM interfaces don't have virtual destructors, so it isn't cool to write a state­
men t such as this: 

delete pMot; II Don't do this. 

OLE has a strict protocol for deleting objects, and the IUnknown virtual 
functions AddRef and Release are the key. Each COM class has a data mem­
ber-m_dwRef, for example-that keeps count of how many "users" an ob­
ject has. Each time the server program returns a new interface pointer (as in 
Querylnterface), the program calls AddRef, which increments m_dwRef. When 
the client program is finished with the pointer, it calls Release. When m_dwRef 
goes to 0, the object destroys itself. Here's an example of a Release function 
for the CSpaceship::XMotion class: 

DWORD CSpaceship::XMotion: :Release() 
{ 

} 

METHOD_PROlOGUE(CSpaceship, Motion) II makes pThis 
if (pThis->m_dwRef == 0) 

return 0; 
if (--pThis->m_dwRef == 0l) 

delete pThis; II the spaceship object 
return 0; 

return pThis->m_dwRef; 

In MFC OLE programs, the object's constructor sets m_dwRefto l. This 
means it isn't necessary to call AddRef after the object is first constructed. 

Class Factories 
Object-oriented terminology gets a little fuzzy sometimes. Smalltalk pro­
grammers, for example, talk about "objects" the way that C++ programmers 
talk about "classes." The OLE reference documentation often uses the term 
"component object" when it really should use "component class." What OLE 
calls a "class factory" is really an "object factory." A class factory is a class that 
supports a special OLE interface named IClassFactory. This interface, like all 
interfaces, is derived from IUnknown. IClassFactory's principal member func­
tion is CreateInstance, which is declared like this: 

virtual BOOl Createlnstance(const long& lRid, void** ppvObj) = 0; 

561 



PAR T I V: ADVANCED TOPICS 

562 

What does all this mean? It means that we screwed up when we let 
GetClassObject construct the CSpaceship object directly. We were supposed to 
construct a class factory object and then call CreateInstance to cause the class 
factory (object factory) to construct the actual spaceship object. 

Why use a class factory? We've already seen that we can't call the target 
class constructor directly; we have to let the server decide how to construct 
objects. The server provides the class factory for this purpose and thus en­
capsulates the creation step, as it should. Locating and launching server 
modules, and thus establishing the class factory, is expensive, but construct­
ing objects with CreateInstance is cheap. We can, therefore, allow a single class 
factory to create multiple objects. 

Now let's do things the right way. First, we declare a new class, 
CSpaceshipFactory. To keep things simple, we'll derive the class from IClass­
Factory so that we don't have to deal with nested classes, and in addition, we'll 
add the code that tracks references: 

struct IClassFactory : public IUnknown 
{ 

virtual BOOl Createlnstance(const long& lRid, void** ppvObj) 0; 
} ; 

class CSpaceshipFactory public IClassFactory 

private: 
DWORD m_dwRef; 

public: 

} ; 

CSpaceshipFactory() 
m_dwRef = 1; 
m_pObj = NUll; 

II IUnknown functions 
virtual BOOl Querylnterface(const long& lRid, 

void** ppvObj); 
vi rtual DWORD AddRef(); 
virtual DWORD Release(); 
II IClassFactory function 
virtual BOOl Createlnstance(const long& lRid, 

voi d**ppvObj) ; 

Next, we write the CreateInstance member function: 



T WEN T Y - F I V E: OLE and OLE Automation 

BOOl CSpaceshipFactory::Createlnstance(const long& lRid, void** ppvObj) 
{ 

CSpaceship* pObj = new CSpaceship(); 
IUnknown* pUnk = pObj->m_pUnknown; 
return pUnk->OueryInterface(lRid, ppvObj); 

Finally, here's the new GetClassObject function, which constructs a class 
factory object and returns an IClassFactory interface pointer: 

BOOl GetClassObject(const long& lClsid, const long& lRid, 
voi d** ppvObj) 

ASSERT(lClsid == ClSID_CSpaceship && lRid == IID_IClassFactory); 
CSpaceshipFactory* pObj = new CSpaceshipFactory(); 
*ppObj = pObj; 

The CSpaceship and CSpaceshipFactory classes work together and share 
the same class ID. Now the client code looks like this (without error check­
ing logic): 

IMotion* pMot; 
IVisual* pVis; 
IClassFactory* pFac; 
GetClassObject(ClSID_CSpaceship, IID_IClassFactory, (void**) &pFac); 
pFac->CreateInstance(IID_IMotion, &pMot); 
pMot->OueryInterface(IID_IVisual, (void**) &pVis); 
pMot->Fly(); 
pVis->Display(); 

Notice that the CSpaceshipFactory class implements the AddRef and Release 
functions. It must do this because AddRef and Release are pure virtual func­
tions in the IClassFactory base class. We'll start using these functions in the 
next iteration of the program. 

NOT E : The MFC library uses one class, aptly named COleObject­
Factory, for all class factory objects. Each factory object contains a 
CRuntimeClasspointer for the target class so that CreateInstance can 
dynamically construct an object of that class. 

COM and MFC-The CCmdTarget Class 
The last batch of code was getting pretty close to the real thing, but we've got 
one more step to take. As you can guess, there's some code and data that 
can be "factored out" of our spaceship COM classes into a base class. That's 

563 



PAR T I V: ADVANCED TOPICS 

exactly what MFC does, and the base class is CCmdTarget, the standard base 
class for document and window classes. CCmdTarget, in turn, is derived from 
CObject. We won't put too much in CCmdTarget-only the reference counting 
logic and the pointer to IUnknown. The CCmdTarget functions InternalAddRef 
and InternalRelease can be called in derived COM classes. Because we're using 
CCmdTarget, we'll bring CSpaceshipFactory in line with CSpaceship, and we'll 
use a nested class for the IClassFactory interface. 

We can also do some factoring inside our CSpaceship class. The 
QueryInterface function can be "delegated" from the nested classes to the par­
ent class helper function InternalQueryInterface, which calls InternalAddRef 
Each QueryInterface function calls AddRef, but CreateInstance calls Internal­
QueryInterface, followed by a call to InternalRelease. Now, when the first in­
terface pointer is returned by CreateInstance, the spaceship object has a 
reference count of 1. A subsequent QueryInterface call increments the count 
to 2, and in this case, the client must call Release twice to destroy the space­
ship object. 

One last thing-we'll make the class factory object a global object. That 
way we won't have to call its constructor. When the client calls Release, there is 
no problem because the class factory's reference count is 2 by the time the 
client receives it. (The CSpaceshipFactory constructor set the reference count 
to 1, and QueryInterface, called by Get Class Object, set the count to 2.) 

NOTE: The MFC macro IMPLEMENT_OLECREATE takes care 
of defining a global class factory object of the class COleObject­
Factory. 

A Working COM Example 

564 

Figures 25-1, 25-2, and 25-3 show code for a working "simulated OLE" pro­
gram, EX25A. This is a QuickWin program that uses a class factory to con­
struct an object of class CSpaceship, calls its interface functions, and then 
releases the spaceship. The SHIP.H header file, shown in Figure 25-1, con­
tains all the class declarations that are used in the "client" and "server" pro­
grams. SHIP.CPP, shown in Figure 25-2 (beginning on page 569), is the 
client, which calls Get Class Object; and CLIENT.CPP, shown in Figure 25-3 (be­
ginning on page 573), is the server, which implements GetClassObject. What's 
phony here is that both client and server code are linked within the same 
EX25A.EXE program. Thus OLE is not required to make the connection at 
run time. (You'll see how that's done later in this chapter.) 



SHIP.H 

Figure 25-1. 
The SHIP.H file. 

TW E N TV - F I V E: OLE and OLE Automation 

(continued) 

565 



PAR T I V: ADVANCED TOPICS 

Figure 25-1. continued 

(continued) 

566 



T WEN T Y • F I V E: OLE and OLE Automation 

Figure 25-1. continued 

(continued) 

567 



PAR T I V: ADVANCED TOPICS 

Figure 25-1. continued 

568 



TW E N TV - F I V E: OLE and OLE Automation 

SHIP.CPP 

Figure 25-2. (continued) 

The SHIP. CPP file. 

569 



PAR T I V: ADVANCED TOPICS 

Figure 25-2. continued 

(continued) 

570 



TW E N TV - F I V E: OLE and OLE Automation 

Figure 25-2. continued 

(continued) 

571 



PAR T I V: ADVANCED TOPICS 

Figure 25-2. continued 

(continued) 

572 



T WEN T Y - F I V E: OLE and OLE Automation 

Figure 25-2. continued 

CLlENT.CPP 

Figure 25-3. 
T,he CLIENT. CPP file. 

573 



PAR T I V: ADVANCED TOPICS 

NOT E : You can ignore the warning Visual C++ gives when you 
build EX25A. 

OLE and the Windows Registration Database 

574 

In the EX25A example, the server was statically linked to the client, a clearly 
bogus circumstance. In real OLE, the server is either a DLL or a separate 
EXE. When the client calls the real OLE equivalent of GetClassObject, OLE 
steps in and finds the correct server, which might already be in memory or 
might be on disk. How does OLE make the connection? It looks up the 
class's unique 128-bit class ID number in the Windows registration database, 
the file REG.DAT in the \WINDOWS directory. Thus, the class must be regis­
tered permanently on your computer. 

If you run the Windows REGEDIT program with the Iv parameter, you 
will see a screen similar to the one shown in Figure 25-4. This figure shows 
three class IDs, two that are associated with EXEs and one that is associated 
with a DLL. Now we'll switch over to the "real" OLE function, CoGetClass­
Object. (Co stands for "common object.") It has the same parameters as the tu- A 

torial Get Class Object, but instead of calling the server directly, it looks up the 
class ID in the registration database and then figures out what to do. 

Eile .Edit 
Full Path: 

Value: 

CLSID = OLE (Part 1 of 5) 
{OBA4D 7E 0-2494-1 01 B-AC24-0OM003E6F9B} = Ex25d Document 
~ localServer = C:WCPP\EX25D\EX25D.EXE 
L ProglD = Ex25d.Document 
{97EF7FEl-26D6-101 b-AC24-0OM003E6F9B} = Ex25c Automation 
L InprocServer = c:\vcpp\ex25c\ex25c.dll 
{M41 DDBO-419A-1 01 B-AC24-0OM003E6F9B} = EX25B.MARKET 
~ localServer = C:WCPP\EX25B\EX25B.EXE 
L D = EX25B.MARKET 

Figure 25-4. 
Three class IDs in thq registration database. 

What if you don't want to track those ugly class ID numbers in your cli­
ent program? No problem. OLE supports another type of registration data­
base entry, which translates a human-readable class name into the cor­
responding class ID. Figure 25-5 shows the REG.DAT entries. The OLE func­
tion CLSIDFromProgID reads the database and performs the transiation. 



T WEN TV - F I V E: OLE and OLE Automation 

Eile fdit .search Jjelp 
Full Path: 

CLS I 0 = {OBA4D 7E 0-2494-101 B -AC24-0OM003E 6F98} 
Ex25c.auto = Ex25c Automation 
L CLSID = {97EF7FEl-26D6-101 b-AC24-0OM003E6F98} 
EX25B.MARKET = EX25B.MARKET 
L CLSID = {M41DD80-419A-101 B-AC24-0OM003E6F98} 

Figure 25-5. 
Three "human-readable" class names in the registration database. 

As you'll see later in this chapter, when you get to OLE Automation, 
MFC provides some easy-to-call functions that do the work of the OLE func­
tions CLSIDFromProgID and Co Get Class Object. 

How does the registration information get into REG.DAT? In two ways. 
First, REGEDIT has an ASCII file import facility that accepts data in a REG 
file such as this one: 

REGEDIT 
HKEY_CLASSES_ROOT\Ex25b.Document = Ex25b Document 
HKEY_CLASSES_ROOT\Ex25b.Document\CLSID = 

{0BA4D7E0-2494-101B-AC24-00AA003E6F98} 
HKEY_CLASSES_ROOT\CLSID\{0BA4D7E0-2494-101B-AC24-00AA003E6F98} 

Ex25b Document 
HKEY_CLASSES_ROOT\CLSID\{0BA4D7E0-2494-101B-AC24-00AA003E6F98}\LocalServer 
= C;\OLE2\EX25B\EX25B.EXE 

HKEY_CLASSES_ROOT\CLSID\{0BA4D7E0-2494-101B-AC24-00AA003E6F98}\ProgID = 
Ex25b.Document 

Notice that REG.DAT is organized as a hierarchical database with a root 
node and branches. REGEDIT can load a REG file in batch mode, or you can 
load such a file through the REGEDIT File menu. 

Second, instead of using REGEDIT, you can program your client applica­
tion to call OLE functions that update REG.DAT directly. MFC conveniently 
wraps these functions with the function COleObjectFactory::UpdateRegistryAll, 
which finds all your program's global class factory objects and registers their 
names and class IDs. 

Run-Time Object Registration 
You've just seen how the REG.DAT file registers OLE classes. Class factory 
objects also must be registered, and it's a shame that the same word, 

575 



PAR T I V: ADVANCED TOPICS 

"register," is used in both contexts. Objects are registered at run time, and 
the registration information is maintained in memory by the OLE DLLs. 
MFC provides the COleObjectFactory member functions Register and RegisterAll 
for this purpose. (You'll see how these are used later.) 

How a COM Client Calls a DLL Server 
We're beginning with a DLL server instead of an EXE server because the 
program interactions are simpler. I'll show pseudo-code here because you're 
going to be using the MFC library classes, which hide much of the detail. If 
you want to see actual COM code, refer to Chapter 4 of Inside OLE 2 by Kraig 
Brockschmidt (Microsoft Press) . 

Different levels of indentation show code for the client, COM, and the 
DLL server. 

DLL Server 

CLSID lcisid; 
IClassFactory* pClf; 
IUnknown* pUnk; 
CoInitialize (NULL); / / initialize COM 
CLSID FromProgID ( "servername", &1 Clsid) ; 

COM uses REG.DAT to look up the class ID from "servername" 
CoGetClassObject(IClsid, IID_IClassFactory, (void* *) &pClf); 

COM uses the class ID to look for a server in memory 
if (server DLL is not loaded already) { 

COM gets DLL filename from REG.DAT 
Loads the server DLL into memory 

if (server just loaded) { 
Global factory objects are constructed 
InitInstance called (MFC only) 

COM calls DLL's global exported DllGetClassObject 
DllGetClassObject returns IClassFactory* 

COM returns IClassFactory* to client 
pClf->CreateInstance (IIDJ:U nknown, (void * *) &p U nk) ; 

pClf->Release (); 
pUnk->ReleaseO; 

576 

class factory's Createlnstance function called 
(called directly-through the server's vtbl) 
constructs object of "servername" class 
returns requested interface pointer 

"servername" Release is called through vtbl 
if (refcount == 0) { 

object destroys itself 
} 



T WEN T Y - F I V E: OLE and OLE Automation 

CoFree U n usedLi braries 0 ; 
COM calls DLL's global exported DllCanUnloadNow 

DllCanUnloadNow called 
if (all DLL's objects destroyed) { 
Exit DLL 

} 
COMUninitializeO; / / just prior to exit 

client exits 
COM releases resources 

Windows unloads the DLL if it is still loaded and 
no other programs are using it 

Some important points are worth noting. First, the DLL's exported 
DllGetClassObject function is called in response to the client's CoGetClassObject . 
call. Second, the class factory interface address returned is the actual physi­
cal address of the class factory vtbl pointer in the DLL. And third, when the 
client calls Createlnstance, or any other interface function, the call is direct 
(through the server's vtbl). 

The COM linkage between a client EXE and a server DLL is quite effi­
cient. It's just as efficient as the linkage to any C++ virtual function in a large­
model application, plus there's full C++ parameter and return type checking 
at compile time. The only penalty for using ordinary DLL linkage is the extra 
step of looking up the class ID in REG.DAT when the DLL is first loaded. 

NOTE: The MFC library version 2.5 contains the exported func­
tions DllGetClassObject and DllCanUnloadNow. If you're using MFC, 
you don't have to write these functions in your COM server DLL. 
All you do is include the function names in your server project's 
DEF file. 

How a COM Client Calls an EXE Server 
The COM linkage to a separate EXE file is more complicated than the link­
age to a DLL server. The EXE server is in a different operating system pro­
cess, and a 16-bit/32-bit mismatch is possible. In the future, the server might 
be on a different computer, in which case the client wouldn't be able to di­
rectly access any interfaces in the server. Don't worry, though. Write your 
programs as though a direct connection exists. COM takes care of the details 
through a process called "marshaling." 

With marshaling, Windows messages are invisibly exchanged, and data 
is transferred through shared memory blocks. Someone, however, has to 
write the marshaling code for each interface. If you use standard interfaces 
such as IUnknown and IClassFactory, the marshaling code is provided by 
COM. If you invent your own interfaces, such as IMotion and IVisual, you're 

577 



PAR T I V: ADVANCED TOPICS 

stuck with the tedious job of writing the marshaling code. That's why few 
software firms develop their own interfaces but rather rely on existing COM 
interfaces, such as IDispatch (which you'll see later). 

Here's the pseudo-code interaction between an EXE client and an EXE 
server. Compare it to the DLL version on pages 576 and 577. Notice that the 
clien t side calls are exactly the same. 

Client COM EXE Server 
CLSID IClsid; 
IClassFactory* pClf; 
IUnknown* pUnk; 
CoInitialize(NULL); / / initialize COM 
CLSID FromProgID ( "servername", &1 Clsid) ; 

COM uses REG.DAT to look up the class ID from "servername" 
CoGetClassObject(lClsid, IIDJClassFactory, (void * *) &pClf); 

COM uses the class ID to look for a server in memory 
if (server EXE is not loaded already, or if we need another instance) { 

COM gets EXE filename from REG.DAT 
Loads the server EXE into memory 

if (just loaded) { 
Global factory objects are constructed 
InitInstance called (MFC only) 

CoInitialize (NULL); 
for each factory object { 

CoRegisterClassObject( ... ) ; 

} 
} 

returns IClassFactory* to COM 

COM returns the requested interface pointer to the client 
(client's pointer is a "proxy" for server's interface pointer) 

pClf->CreateInstance (IID_IU nknown, (void * *) &p U nk); 

pClf->ReJease (); 
pUnk->Release(); 

578 

class factory's Createlnstance function called 
(called indirectly through marshaling) 
constructs object of "servername" class 
returns requested interface pointer indirectly 

"servername" Release is called indirectly 
if (refcount == 0) { 
object destroys itself 

} 
if (all objects released) { 
server exi ts gracefully 
} 



T WEN T Y - F I V E: OLE and OLE Automation 

CoUninitialize 0; / / just prior to exit 

client exits 

COM calls Release for any objects this client has failed to release 
server exits if this causes all objects to be released 

COM releases resources 

As you can see, COM plays an important role in the communication be­
tween the client and the server. COM keeps a global list of class factory ob­
jects that contains the name of the EXE or DLL in which they're located. 
COM does not, however, keep track of individual COM objects such as the 
CSpaceship object. Those objects are responsible for destroying themselves 
through the AddRef/Release mechanism. COM does step in when a client 
exits. If that client is using an EXE server, COM "listens in" on the communi­
cation and keeps track of the reference count on each object. COM dis­
connects from server objects when the client exits, and, under certain 
circumstances, this causes those objects to be released. Don't depend on this 
behavior, however. Make sure that your client program releases all its inter­
face pointers prior to exit. 

MFC and OLE 
We've been talking about the lowest level of OLE up to this point-COM. 
MFC provides some COM support, including 

• Macros for nesting interface implementations 

• IUnknown support in CCmdTarget 

• The COleObjectFactory class 

• Special versions of OLE initialization and uninitialization 
functions 

• Library-based DLL export functions 

If you wrote general-purpose COM client and server programs, however, 
you'd write them pretty much as you see them written in the pseudo-code 
shown in the previous two sections. 

When you start using the other OLE features, such as compound docu­
ments, in-place editing, and drag-and-drop, MFC will do a lot more for you. 
Beginning on page 580, the rest of the chapter shows how MFC helps you 
write OLE Automation clients and servers. 

579 



PAR T I V: ADVANCED TOPICS 

Containment vs. Inheritance 
In normal C++ programming, you frequently use inheritance to factor com­
mon behavior into a reusable base class. The CPersistentF'rame class (discussed 
in Chapter 14) and the Orbiter base class (discussed in Appendix A) are ex­
amples of reusability through inheritance. 

COM uses "containment" instead of inheritance. If the planetary­
motion simulation example from Appendix A were to be translated to OLE, 
there would be "outer" Spaceship and Planet classes plus an "inner" Orbiter 
class. The outer classes would implement the IVisual interface directly, but 
those outer classes would "delegate" their IMotion interfaces to the inner 
class. The result would look something like this: 

IUnknown IUnknown 

I Visual I Visual 

IMotion IMotion 

An alternative to containment is "aggregation," in which, in this ex­
ample, the orbiter's IMotion interface pointer would be exposed directly to 
the client. Aggregation is more complex because the outer class's IUnknown 
interface needs to be connected with the inner class's. See Brockschmidt's 
Inside OLE 2 for a detailed discussion of aggregation, and see Technical Note 
#38 in the MFCNOTES.HLP file for a description of MFC aggregation 
support. 

OLE Automation 
Mter reading the first part of this chapter, you know what an interface is, and 
you've already seen two standard OLE interfaces, IUnknown and IClass­
Factory. Now you're ready for "applied" OLE, or at least one aspect of it, OLE 
Automation. Later in this chapter, you'll learn how to use the IDispatch inter­
face for communication between C++ programs and Visual Basic for Applica­
tions programs. 

Connecting C++ with Visual Basic for Applications (VBA) 

580 

Not all programmers for Windows are going to be C++ programmers, espe­
cially if they have to learn the intricacies of OLE. There's talk of a program­
ming "division of labor," in which C++ programmers will produce reusable 



T WEN T Y - F I V E: OLE and OLE Automation 

modules and VBA programmers will consume those modules by integrating 
them into applications. You can prepare for this eventuality now by learning 
how to make your software ''VBA-friendly.'' OLE Automation is one tool 
that's available now and supported by MFC. Another tool, the OLE Control, 
is on the way. OLE Controls use the IDispatch interface, so you can apply 
what you learn here to this upcoming technology. 

Two factors are working on behalf of OLE Automation's success. First, 
Visual Basic for Applications (VBA) is now the programming standard in 
most Microsoft applications, including Word, Excel, and Access, not to men­
tion Visual Basic itself. All these applications support OLE Automation, 
which means they can be linked to other OLE Automation-compatible com­
ponents, including those written in C++ and VBA. For example, you can 
write a C++ program that uses the text processing capability of Word, or you 
can write a C++ matrix inversion program that can be called from a VBA 
macro in an Excel worksheet. 

Second, dozens of software companies are providing OLE Automation 
interfaces for their applications, mostly for the benefit ofVBA programmers. 
With a little extra effort you can use these interfaces from C++. You can, for 
example, write an MFC program that controls Shapeware's Visio drawing 
program. 

OLE Automation isn't just for C++ and VBA. Software-tools companies 
are already announcing OLE-compatible Basic-like languages that you can 
license for your own programmable applications. There's even a version of 
Small talk that supports OLE Automation! 

Automation Controllers and Automation Servers 
A clearly defined master-slave relationship is always present in an OLE Auto­
mation communication dialog. The master is the automation controller (or 
client), and the slave is the automation server. The controller initiates the 
interaction by constructing a server object (it might have to load the server 
program) or by attaching to an existing object in a server program that is al­
ready running. The controller then calls interface functions in the server 
and releases those interfaces when it's finished. Here are some interaction 
scenarios: 

• A C++ automation controller uses a Microsoft or third-party appli­
cation as a server. The interaction could trigger the execution of 
VBA code in the server. 

581 



PAR T I V: ADVANCED TOPICS 

• A C++ automation server is used from inside a Microsoft applica­
tion (or a Visual Basic application), which acts as the automation 
controller. Thus, VBA code can construct and use C++ objects. 

• A C++ automation server is used by a C++ automation controller. 

• A Visual Basic program can use an Automation-aware application 
such as Excel. In this case, VB is the controller, and Excel is the 
server. 

Microsoft Excel-A Better Visual Basic Than Visual Basic 

582 

Some of the examples in this chapter depend on VBA. Microsoft Visual Basic 
serves well as an automation controller, but you can't use VB as an automa­
tion server. Microsoft Excel, on the other hand, works as either a controller 
or a server. You can, therefore, adapt the Excel controller examples to work 
with VB, but you need Excel if you want to see how OLE Automation applica­
tions can be controlled from a C++ program. 

I strongly recommend, however, that you get a copy of Excel 5.0 (or 
later), but not just because it runs as both an automation controller and a 
server. This product contains a version ofVBA that's more up-to-date than 
the version in Visual Basic 3.0. What's really interesting is that the old Lotus­
style macro systemhas been superseded by VBA. (Old macros are still sup­
ported, of course.) You don't have to wedge code inside worksheet cells 
anymore. Instead, you write VBA code that accesses worksheet cells in an 
object-oriented manner. It's easy to add visual programming elements such 
as pushbuttons. 

This chapter isn't meant to be an Excel tutorial, but I have included a 
simple Excel workbook. (A workbook is a file that can contain multiple 
worksheets plus separate VBA code.) This workbook demonstrates a VBA 
macro that executes from a pushbutton. You can use Excel to load 
EX25A.XLS from the \VCPP\EX25A subdirectory, or you can key in the ex­
ample from scratch. Figure 25-6 shows the actual spreadsheet with the but­
ton and sample data. You highlight cell A4 and click the Process Col button. 
A VBA program iterates down the column and draws a hatched pattern on 
cells that have numeric values greater than 10. Figure 25-7 shows the macro 
code itself, which is stored in a separate section of the workbook, which I've 
named Macros. 



T WEN TV - F I V E: OLE and OLE Automation 

Figure 25-6. 
A n Excel spreadsheet that uses VBA code. 

Do Until ActiveCell. Value = "" 
If ActiveCell.Value > 10 Then 

Selection. Interior.Pattern = xlCrissCross 
Else 

Selection. Interior.Pattern = xlNone 
End If 
Selection. Offset (1, 0). Range ("AP') . Select 

Loop 
Sub 

Figure 25-7. 
The VBA code for the Excel spreadsheet. 

583 



PAR T I V: ADVANCED TOPICS 

584 

If you want to create the example yourself, follow these steps: 

1. Start Excel with a new workbook, choose Macro from the Insert 
menu, and choose Module. 

2. Type in the macro code shown in Figure 25-7. 

3. Double-click the word Module 1 at the bottom of the screen, and 
change the name to Macros. 

4. Click the Sheet! tab, and choose Toolbars from the View menu. 
Check the Forms check box to display the Forms toolbar. Click OK. 

5. Click the Create Button control, and drag in the upper left corner 
of the worksheet to create a pushbutton. Assign the button to the 
ProcessColumn macro. 

6. Size the pushbutton, and type the caption shown in Figure 25-6. 

7. Type some numbers in the column starting at cell A4; then select 
A4, and click the button to test the program. 

Pretty easy, isn't it? 
Let's look at one Excel VBA statement from the macro above and 

analyze it: 

Selection;Offset(l, 0).Range("Al").Select 

The first element, Selection, is a "property" of an implied "object," the Excel 
Application. The Selection property in this case is assumed to be a Range ob­
ject that represents a rectangular array of cells. The second element, Offset, is 
a "method" of the Range object that returns another Range object based on 
the two parameters. In this case, the returned Range object is the one-cell 
range that begins one row down from the original range. The third element, 
Range, is a method of the Range object that returns yet another range. This 
time it's the upper left cell in the second range. Finally, the Select method 
causes Excel to highlight the selected cell and makes it the new Selection 
property of the Application. 

As the program iterates through the loop, the statement above moves 
the selected cell down the worksheet one row at a time. This style of pro­
gramming takes some getting used to, but you can't afford to ignore it. The 
real value here is that you now have all the capabilities of the Excel spread­
sheet and graphics engine available to you in a seamless programming envi­
ronment. 



T WEN T Y - F I V E: OLE and OLE Automation 

Properties, Methods, and Collections 
The distinction between a property and a method is somewhat artificial. Ba­
sically, a property is a value that can be both set and retrieved. You can, for 
example, set and get the Selection property for an Excel Application. An­
other example is Excel's Width property, which applies to many object types. 
Some Excel properties are read-only; most are read-write. Properties don't 
officially have parameters, but some properties are "indexed." The property 
index acts a lot like a parameter. It doesn't have to be an integer, and there 
can be more than one element in the index (row and column, for example). 
You won't find indexed properties in Excel, but Excel VBA can handle in­
dexed properties in OLE Automation servers. 

Methods are more flexible than properties. They can have zero or 
many parameters, they can either set or retrieve object data, or they can per­
form some action, such as showing a window. Excel's Select method is an ex­
ample of an action method. The Offset method returns an object based on 
two parameters. 

Excel supports collection objects. An example is the Worksheets object, 
which is returned by the Worksheets method of the Workbook object. The 
Worksheets method has an index parameter that specifies the individual 
Worksheets object you want. What's the difference between a collection and 
an indexed property? With an indexed property, the controller can't delete 
or insert elements; with a collection, it can. 

The Problem That OLE Automation Solves 
You've already learned that an OLE interface is the ideal way for Windows 
programs to communicate with one another, but you've learned that it's 
mostly impractical to design your own OLE interfaces. OLE Automation pro­
vides a general-purpose interface, IDispatch, that serves the needs of both 
c++ and VBA programmers. As you might guess from your glimpse of Excel 
VBA, this interface involves objects, methods, and properties. 

You can write OLE interfaces that have functions with any parameter 
types and return values you specify. IMotion and Nisual are examples. If 
you're going to let VBA programmers in, however, you can't be fast and loose 
anymore. You can solve the communication problem with one interface that 
has only a single member function that's smart enough to accommodate 
methods and properties as defined by VBA. Needless to say, IDispatch has 
such a function, and it's named Invoke. You use IDispatch::Invokefor COM ob­
jects that can be constructed and used in either C++ or VBA programs. 

585 



PAR T I V: ADVANCED TOPICS 

Now you're beginning to see what OLE Automation does. It funnels all 
intermodule communication through the IDispatch::Invoke function. How 
does a controller first connect to its server? Because IDispatch is merely an­
other OLE interface, all the registration logic supported by COM comes into 
play. Automation servers can be DLLs or EXEs, and they can be accessed 
over a network as soon as OLE supports that feature. 

The IDispatch Interface 
IDispatch is the heart of OLE Automation. It's fully supported by OLE mar­
shaling, as are IUnknown and IClassFactory, and it's very well supported by the 
MFC library. At the server end, you need a COM class with an IDispatch inter­
face (plus the prerequisite class factory, of course). At the controller end, 
you use standard OLE techniques to obtain an IDispatch pointer. (As you'll 
see, MFC and the Wizards take care of a lot of these details for you.) 

Remember that Invoke is the principal member function of IDispatch. If 
you looked up IDispatch::Invoke in OLESDKV2.HLP, you'd see a really ugly 
set of parameters. Don't worry about those now. MFC steps in on both sides 
of the Invoke call, using a data-driven scheme to call server functions based 
on dispatch map parameters you define with macros. 

Invoke isn't the only IDispatch member function. Another function your 
controller might call is GetIDsOfNames. From the VBA programmer's point of 
view, properties and methods have ASCII names, but C++ programmers pre­
fer more efficient integer indexes. Invoke uses integers to specify properties 
and methods, so GetIDsOfNames is useful at the start of a program to convert 
each name to a number if you don't know the index numbers at compile 
time. You've already seen that IDispatch supports ASCII names for methods. 
In addition, the interface supports ASCII names for a method's parameters. 
The GetIDsOfNames function returns those parameter names along with the 
method name. Unfortunately, the MFC IDispatch implementation doesn't 
support named parameters. 

OLE Automation Programming 

586 

Suppose you're writing an automation server in C++. You've got some 
choices to make. Do you want a DLL server or an EXE server? What kind of 
user interface do you want? Does the server need a user interface at all? Can 
users run your server EXE as a stand-alone application? If the server is an 
EXE, will it be SDI or MDI? Can the user shut down the server directly? 

If your server is a DLL, OLE linkage will be more efficient than with an 
EXE server because no marshaling is required. With a DLL, however, your 



T WEN T Y - F I V E: OLE and OLE Automation 

user interface options are limited. A modal dialog is about your only op­
tion-no frame window. Be aware that DLL automation servers can connect 
quite happily to VBA controllers. As with any DLL, only one copy of the DLL 
is in memory, and that DLL can support multiple OLE Automation server 
objects controlled by one or many automation controller programs. 

With an EXE server, you must be careful to distinguish between a server 
program and a server object. When a controller calls IClassFactory::Create­
Instance to construct a server object, the server's class factory constructs the 
object, but OLE might or might not need to start the server program. Here 
are some scenarios: 

• The server class is programmed to require a new instance of the 
program for each object constructed. Assuming the server program 
is able to run in multi-instance mode, OLE will start a new instance 
in response to the second and following CreateInstance calls, each of 
which returns an IDispatch pointer. 

• A special case of the scenario above, specific to MFC applications: 
The server class is an MFC document class in an SDI application. 
Each time a controller calls CreateInstance, a new instance of the 
server application starts, complete with a document object, a view 
object, and an SDI main frame window. 

• The server class is programmed to allow multiple objects in a single 
program instance. Each time a controller calls CreateInstance, a new 
server object is constructed. There is only one instance of the 
server program, however. 

• A special case of the scenario above, specific to MFC applications: 
The server class is an MFC document class in an MDI application. 
There is a single instance of the server application with one MDI 
main frame window. Each time a controller calls CreateInstance, a 
new document object is constructed, along with a view object and 
an MDI child frame window. 

There's one more interesting case. Suppose a server EXE is running 
before the controller needs it. Then the controller decides to access a server 
object that already exists. You'll see this case with Excel. The user might have 
Excel already on the desktop, and the controller needs access to Excel's one 
and only Application object. Here the controller calls the OLE function 
GetActiveObject, which provides an interface pointer for an existing server ob-
ject. If the call fails, the controller can create the object with CoCreateInstance. 

587 



PAR T I V: ADVANCED TOPICS 

For server object deletion, the normal COM rules apply. Automation 
objects have reference counts, and they delete themselves when the control­
ler calls Release and the reference count goes to O. In an MDI server, if the 
automation object is an MFC document, its destruction causes the corre­
sponding MDI child window to close. In an SDI server, the destruction of the 
document object causes the server to exit. The controller is responsible for 
calling Release for each 1Dispatch interface before exit. For EXE servers, OLE 
will intervene if the controller exits without releasing an interface, thus al­
lowing the server to exit. You can't always depend on this intervention, how­
ever, so make sure your controller cleans up its interfaces! 

With generic OLE, a client application often obtains multiple interface 
pointers for a single server object. Look back at the spaceship example, in 
which the simulated OLE server class had both an 1Motion pointer and an 
1Visual pointer. With OLE Automation, however, there's usually only a single 
(I Dispatch) pointer per object. As in all OLE programming, you must be care­
ful to release all your interface pointers. In Excel, for example, many meth­
ods return an 1Dispatch pointer to new or existing objects. If you fail to 
release a pointer, the Debug version of MFC alerts you with a memory leak 
dump when the controller program exits. 

The MFC IDispatch Implementation 
If you read the OLE 2 Programmer's Reference, Volume 2, you'll notice that OLE 
provides an implementation for the 1Dispatch interface, which you can acti­
vate by calling the function CreateStandardDispatch. This built-in implementa­
tion uses an OLE Automation feature called a "type library." A type library is 
a table, optionally bound into the server's resources, that allows a controller 
to query the server for the ASCII names of objects, methods, and properties. 
A controller could, for example, contain a browser that allows the user to 
explore the server's capabilities. 

The OLE type library is not directly supported by MFC. MFC imple­
ments its own version of 1Dispatch that is driven by a dispatch map rather 
than by a type library. MFC programs don't call CreateStandardDispatch at all. 
Consequently, it isn't possible to write browsers for automation servers that 
were written with MFC (unless you make the extra effort to create your own 
type library and use the 1TypeLib interface). 

An MFC OLE Automation Server 

588 

Let's look at what happens in an MFC automation server, in this case a sim­
plified version of the EX25D alarm clock program that is discussed later in 



T WEN T V - F I V E: OLE and OLE Automation 

this chapter. In MFC, the IDispatch implementation is part of the CCmdTarget 
.class. You write an automation server class, CClockServ, for example, that is 
derived from CCmdTarget, and this class's CPP file contains a dispatch map: 

BEGIN_DISPATCH_MAP(CClockServ. CCmdTarget) 
11{{AFX_DISPATCH_MAP(CClockServ) 
DISP_PROPERTY(CClockServ, "Time". m_time, VT_VARIANT) 
DISP_PROPERTY_PARAM(CClockServ, "Figure", GetFigure, 

SetFigure. VT_VARIANT, VTS_I2) 
DISP_FUNCTION(CClockServ, "RefreshWin", Refresh, 

VT_EMPTY. VTS_NONE) 
DISP_FUNCTION(CClockServ, "ShowWin", ShowWin, VT_BOOl. 

VTS_I2) 
II}}AFX_DISPATCH_MAP 

END_DISPATCH_MAP() 

Looks a little like an MFC message map, doesn't it? The CClockServ class 
header file contains related code: 

public: 
11{{AFX_DISPATCH(CClockServ) 
VARIANT m_time; 
afx_msg VARIANT GetFigure(short n); 
afx_msg void SetFigure(short n. 

const VARIANT FAR& vNew); 
afx_msg void Refresh(); 
afx_msg BOOl ShowWin(short n); 
II}}AFX_DISPATCH 
DEClARE_DISPATCH_MAP() 

What's all this stuff mean? It means that the CClockServ class has the fol­
lowing properties and methods: 

Name 

Time 

Figure 

Refresh Win 

ShowWin 

Type 

Property 

Property 

Method 

Method 

Description 

Linked directly to class data member m_time. 

Indexed property, accessed through member 
functions Get Figure and Set Figure; first parameter 
is the index, second (for SetFigure) is the string 
value. (The figures are the "12," "3," "6," and "9" 
that appear on the clock face.) 

Linked to class member function Refresh-no 
parameters or return value. 

Linked to class member function ShowWin­
short integer parameter, Boolean return value. 

589 



PAR T I V: ADVANCED TOPICS 

How does the MFC dispatch map relate to IDispatch and the Invoke 
member function? The dispatch map macros generate internal data tables 
that MFC's Invoke implementation can read. A controller gets an IDispatch 
pointer for CClockServ (connected through the CCmdTarget base class), and it 
calls Invoke with some obscure sequence of parameters. MFC's implementa­
tion of Invoke, buried somewhere inside CCmdTarget, uses the dispatch map 
to decode the supplied parameters and either calls one of your member 
functions or accesses m_time directly. 

As you'll see when you get to the examples, ClassWizard can generate 
the automation server class for you, and it can help you code the dispatch 
map. 

An MFC OLE Automation Controller 

590 

Let's move on to the controller's end of the automation dialog. How does an 
MFC automation controller program call Invoke? MFC provides a base class 
COleDispatchDriver for this purpose. To shield you from the complexities of 
the OLE Invoke parameter sequence, COleDispatchDriver has three member 
functions-InvokeHelper, GetProperty, and SetProperty. Each of these functions 
calls Invoke for an IDispatch pointer that links to the server. The COle­
DispatchDriver object incorporates the IDispatch pointer. 

Let's suppose our controller program has a class CClockControl, derived 
from COleDispatchDriver, that controls CClockServ objects in an automation 
server. Here are the functions that get and set the Time property: 

VARIANT CClockControl ::GetTime() 
{ 

} 

VARIANT result; 
GetProperty(l. VT_VARIANT. (void*)&result); 
return result; 

void CClockControl ::SetTime(const VARIANT& propVal) 
{ 

SetProperty(l. VT_VARIANT. &propVal); 

Here are the functions for the indexed Figure property: 



T WEN T Y - F I V E: OLE and OLE Automation 

VARIANT CClockControl ::GetFigure(short i) 
{ 

VARIANT result; 
static BYTE BASED_CODE parms[] = VTS_I2; 
InvokeHelper(2. DISPATCH_PROPERTYGET. VT_VARIANT. 

(void*)&result. parms. i); 
return result; 

void CClockControl ::SetFigure(short i. const VARIANT& propVal) 
{ 

static BYTE BASED_CODE parms[] = VTS_I2 VTS_VARIANT; 
InvokeHelper(2. DISPATCH_PROPERTYPUT. VT_EMPTY. NULL. 

parms. i. &propVal); 

And finally, here are the functions that access the server's methods: 

void CClockControl ::RefreshWin() 
{ 

InvokeHelper(3. DISPATCH_METHOD. VT_EMPTY. NULL. NUll); 

BOOl CClockControl ::ShowWin(short i) 
{ 

BOOl result; 
static BYTE BASED~CODE parms[] = VTS_I2; 
InvokeHelper(4. DISPATCH_METHOD. VT_BOOl. 

(void*)&result. parms. i); 
return result; 

The function parameters identify the property or method, its return 
value, and its parameters. You'll learn more about dispatch function param­
eters later, but for now take special note of the first parameter for the 
InvokeHelper, GetProperty, and SetProperty functions. This is the unique integer 
index, or dispatch ID, for the property or method. Because you're using 
compiled C++, you can establish these IDs at compile time. If you're using an 
MFC automation server with a dispatch map, the indexes are determined by 
the map sequence, beginning with 1. If you don't know a server's dispatch 
indexes, you can call the IDispatch member function GetIDsOfNames to con­
vert the ASCII property or method names to integers. 

The illustration at the top of the following page shows the interactions 
between the controller and the server: 

591 



PAR T I V: ADVANCED TOPICS 

Automation Controller 

COleDispatchDriver 

GetProperty --+--- lDispatch::lnvoke -
SetProperty 

InvokeHelper 

CClockControl 

GetTime - - - - - --

Automation Server 

CCmdTarget 

CClockServ 

DISPATCH MAP 

SetTime ------- -------------------------- ::::::",,--- m_time 

GetFigure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GetFigure 

SetFigure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SetFigure 

RefreshWin - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Refresh 

ShowWin - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Show Win 

The solid lines show the actual connections through the MFC base classes 
and the Invoke function. The dotted lines represent the resulting logical con­
nections between controller class members and server class members. 

Some automation servers, including Excel, use a type library. This type 
library is bound into the EXE file, but the information is also included in a 
separate type library file with a TLB or an ODL extension. ClassWizard can 
access this type library file to generate a class derived from COle Dispatch­
Driver. This generated class contains member functions for all the server's 
methods and properties with hard-coded dispatch IDs. Sometimes you need 
to do some surgery on this generated code, but that's better than writing the 
functions from scratch. 

The VARIANT Type 

592 

No doubt you've noticed the VARIANT type used in both automation con­
troller and server functions in the previous example. VARIANT is an all-pur­
pose data type that IDispatch::Invoke uses to transmit parameters and return 
values. The VARIANT type is the natural type to use when exchanging data 
with VBA. Let's look at a simplified version of the VARIANT definition in the 
VARIANT.H header file: 



T WEN T Y - F I V E: OLE and OLE Automation 

struct tagVARIANT { 
VARTYPE vt; II unsigned short integer type code 
unsigned short wReservedl; 
unsigned short wReserved2; 
unsigned short wReserved3; 
union { 

short i Val ; II VT_I2 short integer 
long 1 Val ; II VT_I4 long integer 
float fltVal; II VT_R4 4-byte float 
double dblVal; II VT_RB B-byte IEEE float 
DATE date; II VT_DATE stored as dbl 

II date.time 
BSTR bstrVal; II VT_BSTR 
IUnknown FAR* punkVal; II VT_UNKNOWN 
IDispatch FAR* pdispVal; II VT_DISPATCH 
short FAR* piVal; II VT_BYREF VT_I2 
long FAR* p 1 Va 1 ; II VT_BYREF VT_I4 
float FAR* pfltVal; II VT_BYREF VT_R4 
double FAR* pdblVal; II VT_BYREF VT_RB 
DATE FAR* pdate; II VT_BYREF VT_DATE 
BSTR FAR* pbstrVal; II VT_BYREF VT_BSTR 
IUnknown FAR* FAR* ppunkVal; II VT_BYREF VT_UNKNOWN 
IDispatch FAR* FAR* ppdispVal II VT_BYREF VT_DISPATCH 

} ; 

typedef struct tagVARIANT VARIANT; 

As you can see, the VARlANT type is a C structure that contains a type 
code vt, some filler bytes, and a big union of types that you already know 
about. If vt is VT_I2, for example, we can read the VARlANT's value from 
iVal. If vt is VT_R8, we want dblVal. 

A VARlANT object can contain actual data or a pointer to data. If vt has 
the VT_BYREF bit set, you must access a pointer in piVal, plVal, and so on. 
Note that a VARlANTobject can contain an IUnknown or IDispatch pointer. 
This means that you can pass a complete COM object via an OLE Automa­
tion call, but if you want VBA to process that object, its class should have an 
IDispatch interface. 

Strings are special. The BSTR type is yet another way to represent char­
acter strings. A BSTR variable is a far pointer to a O-terminated character ar­
ray with a character count in front. A BSTR variable could, therefore, contain 
binary characters, including Os. If you had a VARlANT object with vt = 

VT j3STR, memory would look like this: 

593 



PAR T I V: ADVANCED TOPICS 

VARIANT object Allocated memory 

vt = VT _BSTR pointer Integer character count 

~ 
String character data 

bstrVal (4-byte pointer) ./' 

O-terminating byte 

Because the string has a terminating 0, you can use bstrVal as though it were 
an ordinary char pointer, but you have to be very, very careful about memory 
cleanup. You can't simply delete the string pointer because the allocated 
memory begins with the character count. OLE provides the SysAllocString 
and SysFreeString functions for allocating and deleting BSTR objects. 

OLE supplies some useful functions for VARIANTs, including Variant­
Init, VariantClear, VariantCopy, Varian t Copylnd, and VariantChangeType. If a 
VARIANT object contains a BSTR, these functions ensure that memory is al­
located and cleared properly. The Variant/nit and VariantClear functions set 
vt to VT _EMPTY All the variant functions are global functions and take a 
VARIANT* parameter. 

The CVariant Class 

594 

It makes a lot of sense to write a C++ class to wrap the VARIANT structure. 
Constructors call Variant/nit, and the destructor calls VariantClear. The class 
can have a constructor for each standard type, and it can have a copy con­
structor and assignment operator that call VariantCopy. When a VARIANT 
object goes out of scope, its destructor is called, and memory is cleaned up 
au tomatically. 

Let's go ahead and write a variant class named, naturally, CVariant. 
Here's the declaration: 

class CVariant : public tagVARIANT 
{ 

public: 
CVariant(); 
CVariant(const CVariant FAR& rv); 
CVariant(const tagVARIANT FAR& rv); 
CVariant(const char*); 
CVariant(int nYr. int nMo. int nDa. int nHr. 

int nMn. int n$c); 
CVariant(double); 
CVariant(short); 



T WEN T Y - F I V E: OLE and OLE Automation 

} ; 

CVariant(long); 
~CVariant(); 

void GetYMD(int& nYr, int& nMo, int& nDa) const; 
void GetHMS(int& nHr, int& nMn, int& nSc) const; 
BOOl ChangeType(VARTYPE vtDest, tagVARIANT FAR& vDest); 
const CVariant& operator=(const CVariant FAR& rv); 
const CVariant& operator=(const tagVARIANT FAR& rv); 

And here are some selected member function implementations: 

CVari ant: : CVari ant() 
{ 

::Variantlnit(this); 

CVariant::CVariant(const CVariant FAR& rv) II copy constructor 
{ 

::Variantlnit(this); 
::VariantCopylnd(this, (CVariant FAR*) &rv); 
II ensures that destination is not a pointer 

CVariant::CVariant(const char* pchArg) 
{ 

::Variantlnit(this); 
vt = VT_BSTR; 
bstrVal = ::SysAllocString(pchArg); II allocates BSTR 

CVariant::CVariant(long lArg) 
{ 

::Variantlnit(this); 
vt = VT_I4; 
lVal = lArg; 

CVariant::~CVariant() 

{ 

::VariantClear(this); 
} 

const CVariant& CVariant::operator=(const CVariant FAR& rv) II assignment 
II operator 

::VariantCopylnd(this, (CVariant FAR*) &rv); 

return *this; 

II releases destination 
II first 

595 



PAR T I V: ADVANCED TOPICS 

596 

The complete source for the CVariant class is in CVARIANT.H and 
CVARIANT.CPP in the EX25C subdirectory. 

Now let's see how the CVariant class helps us write the server's GetFigure 
function that you saw referenced previously in the sample dispatch map. 
Assume that the server stores strings for four figures in a class data member 
like this: 

private: 
CString m_figure[4]; 

Here's what we'd have to do if we used the VARIANT structure directly: 

VARIANT CClockServ::GetFigure(short n) 
{ 

VARIANT vResult; 
::VariantInit(&vResult); 
vResult.vt = VT_BSTR; 
vResult.bstrVal = ::SysAllocString(m_figure[n]); 
return vResult; II copies vResult without copying BSTR 

II BSTR still must be freed later 

Here's the equivalent, with a CVariant return value: 

CVariant CClockServ::GetFigure(short n) 
{ 

return CVariant(m_figure[n]); 
} 

Here the function is constructing a temporary CVariant object with an 
explicit constructor. The compiler invokes the copy constructor to construct 
a second object that is passed back to the calling program-all in one state­
ment. Isn't C++ wonderful? The only problem is that the CVariant class trips 
up ClassWizard. If you change VARIANT return types to CVariant types in the 
AFX_DISPATCH section of the server's dispatch class header, ClassWizard 
can no longer maintain the dispatch map. You can solve the problem by 
moving the CVariant-related functions outside the / /}} brackets. It's OK to 
leave the server dispatch function parameters as const VARIANT FAR&, how­
ever, because you can always cast a VARIANT pointer to a CVariant pointer 
inside the function. Here's the SetFigure function: 

void CClockServ::SetFigure(short n. const VARIANT FAR& vNew) 
{ 

CVariant vTemp; 
if «(CVariant*) &vNew)->ChangeType(VT_BSTR, vTemp» { 

m_figure[n] = vTemp.bstrVal; 



T WEN TV - F I V E: OLE and OLE Automation 

Leave your controller dispatch function variant parameters typed as 
const VARIANT&, because that allows you to call those functions either a 
VARIANT object or a CVariant object. Here's an example of a call to the 
CClockControl::SetFigure function shown on the previous page: 

pClockControl-)SetFigure(0. CVariant("XII"»; 

Parameter and Return Type Conversions for Invoke 
All IDispatch::Invoke parameters and return values are processed internally as 
VARIANT objects. Remember that. The MFC implementation of Invoke is 
smart enough to convert between a VARIANT and whatever type you supply 
(where possible), so you have some flexibility in declaring parameter and 
return types. Suppose, for example, that your controller's GetFigure function 
specifies a return type of BSTR. If a server returns an int or a long, all is OK: 
OLE and MFC convert the number to a string. Suppose your server declares 
a long parameter and the controller supplies an into Again, no problem. Even 
though, theoretically, OLE and MFC can handle BSTR parameters and re­
turn values, your life will be easier if you use VARIANT parameters and re­
turn values instead. 

NOTE: An MFC automation controller specifies the expected 
return type as a VT _ parameter to the COleDispatchDriver functions 
GetProperty, SetProperty, and InvokeHelper. An MFC automation 
server specifies the expected parameter types as VTS_ parameters 
in the DISP_PROPERTY and DISP JUNCTION macros. 

Unlike C++, VBA is not a strongly typed language. VBA variables are of­
ten stored internally as VARIANTs. Take an Excel spreadsheet cell value, for 
example. A spreadsheet user can type a text string, an integer, a floating­
point number, or a date/time into the cell. VBA treats the cell value as a 
VARIANTand returns a VARIANT object to an automation controller. If your 
controller function declares a VARIANT return value, it can test vt and pro­
cess the data accordingly. 

VBA uses yet another date/time format. Variables of type DATE hold 
both the date and the time in one double value. The fractional part represents 
time (.25 is 6:00 AM), and the whole part represents the date (number of 
days since December 30, 1899). I recommend using VARIANTs instead of 
DATEs for dispatch function return values and parameters. The CVariant 
class has a constructor that takes integer time and date values as parameters, 
its GetTime and GetDate member functions extract numerical values, and the 

597 



PAR T I V: ADVANCED TOPICS 

598 

ChangeType member function can convert a date to an ASCII string. Be aware 
that Excel sometimes returns a date in a VARIANTwith vt set to Vf_RS in­
stead ofVf_DATE. 

What if you specified VARIANT for all your controller's return values 
and all your server's parameters? That would work, but then you'd be doing 
unnecessary conversions. If you know a function returns a short integer, you 
should declare a short integer return value. 

Here's a useful table of dispatch function return types: 

Server Controller Controller Function 
Returns Declares Return Type 

void VT~MPTY N/A 

indeterminate (VBA) VT_VARIANT CVariant 

short integer VTJ2 short 

long integer VTJ4 long 

BSTR VT_VARIANT CVariant 

float VT~4 float 

double VT~8 double 

date/time VT_VARIANT CVariant 

IDispatch* VT_DISPATCH LPDISPATCH 

And here's a table of dispatch function parameter types: 

Controller Controller Server Server Function 
Passes Parameter Type Dispatch Map Parameter Type 

indeterminate N/A VTS_ VARIANT const VARIANT FAR& 
(VBA) 

short integer short VTSJ2 short 

long integer long VTSJ4 long 

BSTR VARIANT* VTS_ VARIANT const VARIANT FAR& 

float float VTS~4 float 

double double VTS~8 double 

date/time VARIANT* VTS_ VARIANT const VARIANT FAR& 

IDispatch* LPDISPATCH VTSJ)ISPATCH LPDISPATCH 



T WEN T Y - F I V E: OLE and OLE Automation 

One last item concerning Invoke parameters: A dispatch function can 
have optional parameters. If the server declares trailing parameters as 
VARIANTs, the controller doesn't have to supply them. If the controller calls 
the function without supplying an optional parameter, the VARIANT object's 
vt value on the server end is VT_ERROR. 

NOT E : Some dispatch functions pass a legitimate OLE error 
code in a VARIANT parameter. If you don't know whether a pa­
rameter is omitted or represents a real error, test the value of 
vt.scode for DISP_E_PARAMNOTFOUND. 

OLE Automation Examples 
The remainder of this chapter presents four sample programs. The first 
three programs are OLE Automation servers-an EXE server with no user 
interface, a DLL server, and a multi-instance SDI EXE server. Each of these 
programs comes with a Microsoft Excel driver workbook. The last sample 
program is an MFC OLE Automation controller program that drives the 
three servers and also runs Excel. 

The EX25B Automation Server EXE-No User Interface 
The AUTOCLIK example is a good demonstration of an MDI framework ap­
plication with the document object as the automation server. (To find the 
AUTOCLIK example, click on Books Online, OLE Classes, Tutorial, and 
Chapters 6-9.) The EX25B example is different because it has no user inter­
face. There is one automation-aware class, and in the first version of the pro­
gram a single instance of the server supports the construction of multiple 
automation objects. In the second version, a new instance starts up each time 
an automation controller creates an object. 

The EX25B application is an answer to a real need in the financial mar­
ketplace. There are already countless programs that analyze the past behav­
ior of the stock market, but what an investor really wants is the future prices 
of stocks. My original version of the program downloaded all the world's po­
litical and economic data from the information superhighway to produce 
very accurate predictions, but Microsoft Press said there wasn't room on the 
companion disc for all the source code. So I was forced to abbreviate the pro­
gram and reduce its accuracy. Sorry. 

The example is tied to an automation server named EX25B.MARKET. 
This server has a single method, GetIndustrialsAverage (the same name as the 

599 



PAR T I V: ADVANCED TOPICS 

600 

c++ CMarket member function), that takes a date parameter and returns an 
integer value. You supply the date, and the program tells you the closing Dow 
Jones industrials average for that day. You can use Excel to control the server, 
as shown in Figure 25-8. A macro reads the dates from column C and then 
calls GetlndustnalsAverage to put values in column D. 

Figure 25-8. 
This Excel workbook is controlling the EX25B server. 

Here are the steps for creating the program from scratch: 

1. Run AppWizard to create the EX25B project in the \VCPP\EX25B 
directory. Turn off all general options, and check the Automation 
Support check box in the OLE Options dialog. The options and the 
default class names are shown here: 

Classes to be created: 
Application: CEx25bApp in EX25B.H and EX25B.CPP 
Frame: ChtainFrame in htAINFRht.H and htAINFRht.CPP 
Document: CEx25bDoc in EX25BDOC.H and EX25BDOC.CPP 
View: CEx25bView in EX25BVW.H and EX25BVW.CPP 

Features: 
+ Supports the Single Document Interface (SOl) 
+ htSVC Compatible project file (EX25B.htAKJ 
+ OLE 2.0 Automation support enabled 
+ Uses medium memory model 



T WEN TV - F I V E: OLE and OLE Automation 

NOT E : App Wizard generates an SDI application with 
an automation-aware document class. All the necessary 
OLE initialization calls, #includes, and resources are 
present. You'll be chopping out the document, view, and 
frame classes, and then you'll be using ClassWizard to add 
a new automation-aware class named CMarket. The final 
result, less the CMarket files, could serve as a prototype for 
your own automation servers that don't have a user inter­
face. You could further reduce the EXE file size by elimi­
nating unused resources. 

2. From MS-DOS or from Windows' File Manager, delete the following 
files from the EX25B project: 

EX25B.CLW 
EX25BDOC.CPP 
EX25BDOC.H 
EX25BVW.CPP 
EX25BVW.H 
MAINFRM.CPP 
MAINFRM.H 

and then choose Edit from the Visual Workbench's Project menu to 
remove the three CPP files from the project. 

3. Edit the EX25B.CPP file, as follows. Remove the following #include 
lines: 

/!include "mainfrm.h" 
/!include "ex25bdac.h" 
/!include "ex25bvw.h" 

Take out all references to the About dialog, and then remove the 
following statement: 

static canst ClSID BASED_CODE clsid = 
{ 0xba4d7e0. 0x2494. 0x101b. { 0xac. 0x24. 0x0. 0xaa. 

0x0. 0x3e. 0x6f. 0x98 } }; 

Replace the Initlnstance member function with the following code: 

BOOl CEx25bApp::lnitlnstance() 
{ 

(continued) 

601 



PAR T I V: ADVANCED TOPICS 

602 

Add the following Exitlnstance function for diagnostic purposes: 

4. Edit the EX2SB.H file, as follows. Add the Exitlnstance prototype: 

Remove the following lines: 

COleTemplateServer m_server; 
afx_msg void OnAppAbout(); 

5. Run ClassWizard from App Studio, and then let ClassWizard 
rebuild its database. 

6. Click the OLE Automation tab, and use the Add Class dialog to 
add the CMarket class, as shown here: 

Be sure to check the OLE Automation and OLE Createable check boxes. 

7. Use the Add Method dialog to add the GetlndustrialsAverage 
method, as shown here: 



T WEN T Y - F I V E: OLE and OLE Automation 

Close the MFC Class Wizard dialog and exit App Studio. 

8. Add TRACE statements to the CMarket constructor and destruc­
tor. 

9. Edit the GetindustriaisA verage member function in MARKET.CPP 
as follows: 

short CMarket::GetIndustrialsAverage(const VARIANT FAR& Date) 
{ 

TRACE( "CMa rket: :GetIndustri al sAverag.e ~ %p 1 Date =% of \n" • 

} 

thi.s, Date ~ dblVa 1) ; 
long 1 Rand: = randO; 
return (short) (Oate.dbl~a] ~ 39600.0) + 

(short) ORand * 49./RANO-.MAX) - 2:9; 

10. Build the EX25B program, and run it once to register the server in 
REG.OAT. 

11. Set up three Excel macros in a new workbook file, EX25B.XLS, as 
follows: 

Dim Market As Qbject 

(continued) 

603 



PAR T I V: ADVANCED TOPICS 

604 

12. Arrange an Excel worksheet as shown here: 

Attach the macros to the pushbuttons (use the right mouse button). 
Enter your list of dates, starting at cell A4. 

13. Click the Load Market Program button, select cell A4, and then 
click the Get Industrials Averages button. Click the Unload Market 
Program button. Watch the debug window while the EX25B program 
executes. Observe, from the TRACE statements, the sequence of the 
Initlnstance, Exitlnstance, constructor, and destructor calls. 

NOT E : Sometimes you need to click the buttons twice. 
The first click switches the focus to the worksheet, and the 
second click runs the macro. The hourglass cursor tells 
you the macro is working. 

14. Phone your stockbroker, and then send me 10 percent of your 
profits. 



T WEN T Y - F I V E: OLE and OLE Automation 

What's happening in this program? Look closely at the CEx25bApp­
::InitInstance function. When you run the program directly from Windows' 
Program Manager or File Manager, it displays a message box and then quits, 
but not before it updates the REG.DAT file. The COleObjectFactory::Update­
RegistryAll function hunts for global class factory objects, and the CMarket 
class's IMPLEMENT_OLECREATE macro invocation defines such an object. 
(The IMPLEMENT_OLECREATE line was generated because you checked 
ClassWizard's Ole Createable box for CMarket.) The unique class ID and the 
server name, EX25B.MARKET, are added to the registration database. 

When Excel now calls CreateObject, OLE loads the EX25B program, 
which contains the global factory for CMarket objects; OLE then calls the fac­
tory object's CreateInstance function to construct the CMarket object and 
return an IDispatch pointer. Here's the CMarket class that ClassWizard gen­
erated, with unnecessary detail (and the GetIndustrialsAverage function) 
omitted: 

class CMarket : public CCmdTarget 
{ 

DECLARE_DYNCREATE(CMarket) 
protected: 

CMarket(); II protected constructor used by 
II dynamic creation 

public: 
virtual ~CMarket(); 
virtual void OnFinalRelease(); 

protected: 

} ; 

DECLARE_OLECREATE(CMarket) 
II Generated OLE dispatch map functions 
11{{AFX_DISPATCH(CMarket) 
afx_msg short GetIndustrialsAverage(const VARIANT FAR& Date); 
II}}AFX_DISPATCH 
DECLARE_DISPATCH_MAP() 

IMPLEMENT_DYNCREATE(CMarket. CCmdTarget) 

CMarket::CMarket() 
{ 

EnableAutomation(); 

II To keep the application running as long as an OLE Automation 
II object is active. the constructor calls AfxOleLockApp. 

AfxOleLockApp(); 

(continued) 

605 



PAR T I V: ADVANCED TOPICS 

606 

CMarket::~CMarket() 

{ 

II To terminate the application when all objects are created 
II with OLE Automation, the destructor calls AfxOleUnlockApp. 

AfxOleUnlockApp(); 

void CMarket::OnFinalRelease() 
{ 

II When the last reference for an automation object is released, 
II OnFinalRelease is called. This implementation deletes the 
II object. Add additional cleanup required for your object before 
II deleting it from memory. 

delete this; 

BEGIN_DISPATCH_MAP(CMarket, CCmdTarget) 
11{{AFX_DISPATCH_MAP(CMarket) 
DISP_FUNCTION(CMarket, "GetlndustrialsAverage", 

GetIndustrialsAverage, VT_I2, VTS_VARIANT) 
II}}AFX_DISPATCH_MAP 

END_DISPATCH_MAP() 

IMPLEMENT_OLECREATE(CMarket, "EX25B.MARKET", 0xaa41dd80, 0x419a, 
0x101b, 0xac, 0x24, 0x0, 0xaa, 0x0, 0x3e, 
0x6f, 0x98) 

This first version of the program runs in single-instance mode, as does 
the AUTOCLIK program. If a second automation controller asks for a new 
CMarket object, OLE calls the class factory Createlnstance function again, and 
the existing instance constructs another CMarket object on the heap. You can 
verify this by making a copy of the EX25B.XLS workbook (under a different 
name) and loading both the original and the copy. Click the Load Market 
Program button in each workbook and watch the debug window. InitInstance 
should be called only once. 

A small change in the EX25B program makes it behave differently. To 
have a new instance of EX25B start up each time a new server object is re­
quested, follow these steps: 

1. Add the following macro in MARKET.H: 



T WEN T Y - F I V E: OLE and OLE Automation 

stat; c const char BASED_CODE ..:.szProgIDj#fda~s~nam~{j;,external_name; \ 
COl eObj ectFactory NEAR cl ass.,..name: :factorYJ~J;a<s,s~na!ll~:HJui'd. \ 

RUNTlMLCLASS( cl ass_name). TRUE. ":sZPr:ogID ... J/Ac:tas.s ... Jlame); \ 
const GUID CDECL BASED_CODE class~name::Qu,id=\ 

{ 1, wI. w2. {bI. b2. b3. b4. 'b5, b6. b7 .• ,b.8 J}; 

This macro is the same as the standard MFC IMPLEMENT_OLECREATE 
macro, except the original FALSE parameter (after the RUNTIME_CLASS 
parameter) has been changed to TRUE. 

2. In MARKET.CPP, change the IMPLEMENT_OLECREATE macro 
invocation to IMPLEMENT_OLECREATE2. 

3. Restart Windows. This step is necessary because OLE "remembers" 
that EX25B is a single-instance program even after the program exits. 

4. Build and test the program from Excel. Vse the same two workbooks 
and note that InitInstance gets called each time you click the Load 
Market Program button. 

NOT E : The EX25B program on the companion disc 
uses the IMPLEMENT_OLECREATE2 macro. 

The EX25C Automation Server Dll 
You could easily convert EX25B from an EXE to a DLL. The CMarket class 
would be exactly the same, and the Excel driver would be similar. It's more 
interesting, though, to write a new application, this time with a minimal user 
interface (VI). We'll use a modal dialog because it's about the most complex 
VI we can use in an automation server DLL. 

AppWizard isn't much help here. We need a program that's specifically 
designed to be an automation-server DLL. The EX25C program on the com­
panion disc (bound into this book) is a starting point for your own DLL pro­
grams; simply copy it and modify it for your own needs. 

The EX25C program is fairly simple. An automation server class, identi­
fied by the registered name EX25C.AVTO, has the following properties and 
method: 

LongData 

TextData 

DisplayDialog 

Long integer property 

String property 

Method-no parameters, Boolean return 

DisplayDialog displays the EX25C OLE Data Gathering dialog shown ~n 
Figure 25-9 on the following page. An Excel macro passes two cell values to 
the DLL and then updates the same cells with the updated values. 

607 



PAR T I V: ADVANCED TOPICS 

608 

Figure 25-9. 
The EX25C OLE Data Gathering dialog in action. 

Here are the steps for building and testing the EX25C server DLL: 

1. From the Visual Workbench, open the project in the \VCPP\EX25C 
directory. Build the project to produce the EX25C.DLL file in the 
project directory. 

2. Use REGEOIT to load the data in EX25C.REG. (Because EX25C is a 
DLL, you can't run it directly to update the registration database.) If 
you haven't already done so, add a Program Manager icon that runs 
\WINDOWS\REGEDIT.EXE with the Iv parameter. Start REGEDIT, 
choose Merge Registration File from the File menu, and specify 
\VCPP\EX25C\EX25C.REG. 

3. Load the Excel workbook file \VCPP\EX25C\EX25C.XLS. Type an 
integer in cell C3, and type some text in cell D3, as shown here: 

Click the Load DLL button, and then click the Gather Data button. Edit 
the data, click OK, and watch the new values appear in the spreadsheet. 

4. Click the Unload OLL button and watch the debug window to be 
sure the OLL's Exitlnstance function is called. 

Now let's look at the EX25C code. Like an MFC EXE, an MFC DLL has 
an application class (derived from CWinApp) and a global application object. 
The overridden Initlnstance member function in EX25C.CPP looks like this: 



T WEN T Y - F I V E: OLE and OLE Automation 

BOOL CEx25cDLL::lnitlnstance() 
{ 

II any DLL initialization goes here 
TRACE("EX25C.DLL CEx25cDLL::lnitlnstance\n"); 
SetDialogBkColor(); II gray dialogs in the DLL as well 
II do not call AfxOlelnit or ::Olelnitialize 
II OLE is already initialized by the client app 
COleTemplateServer::RegisterAll(); 
return TRUE; 

There's also an ExitInstance function for diagnostic purposes only. The 
EX25C.CPP file also contains code for the CPromptDlg class, but that class is 
a standard class derived from CDialog. The file PROMPT.H contains the 
CPromptDlg class header. 

The CEx25cAuto class, the automation server class initially generated by 
ClassWizard (with the OLE Createable option), is more interesting. This 
class is exposed to OLE under the name EX25C.AUTO. Figure 25-10 shows 
the header file EX25CAUT.H. 

EX25CAUT.H 

II ex25caut.h : header file 
1/ 
iii nol ude "eva r'i ant. h" 

)1111 j IIi I I llli/lIl II II I i/ 11111; II I I I I I I 1111/1111 rlll/I;I /11 Ifllill III 
'/XC[x25cAuto . comma ndta rget 

c las,S.: CEx25cAlIto: ·.:pUbn c 'CCmu;rarget 

{ ;'. OE~LARE ... DYNCREA~E (~EX2SCAutO) 

Implem'entaM 6n: . 
;i:,p;uDl'ic~ '. 

v;rtua , ..... c ~X2.scAUto ():, 
voj~O~F1n~lRelease{): 

p r Qte:cte;g! '. . . ' 
:;Jl;Gen:e,ratedm~ss·agemap.funct ions 

., &. ' :tj,i{~A:f:x...:.MSG(CE·X'25cA'uto) 
.;:; :;,:~':';'~1:{:r :fi0T:E;'~,the .. CTas~Wi:t~:r~wJl1add 

Il.ftmctfons here. 

Figure 25-10. 
The EX25CAUT.H file. 

(continued) 

609 



PAR T I V: ADVANCED TOPICS 

Figure 25-10. continued 

Figure 25-11 shows the implementation file EX25CAUT.CPP. 

EX25CAUT.CPP 

Figure 25-11. (continued) 

The EX25CAUF. CPP file. 

610 



T WEN T Y - F I V E: OLE and OLE Automation 

Figure 25-11. continued 

(continued) 

611 



PAR T I V: ADVANCED TOPICS 

612 

Figure 25-11. continued 

The two properties, LongData and TextData, are represented by class 
data members m_longData and m_textData. Because we've changed m_text­
Data from a VARIANT to a CVariant object, we must move its declaration out 
of ClassWizard's sight. The DisplayDialog member function, which is the 
DisplayDialog method, is ordinary except for two things. First, the dialog's 
parent window must be set to the client application's main window. The 
static CWnd::GetActiveWindow function provides this window to the dialog's 
constructor. Second, the AfxLockTempMaps and AfxUnlockTempMaps func-



TW E N TV - F I V E: OLE and OLE Automation 

tions are necessary for cleaning up temporary object pointers that would 
normally be deleted in an EXE program's idle loop. 

The registration file EX25C.REG, in case you were wondering, was writ­
ten manually using the class ID that ClassWizard generated in the IMPLE­
MENT_OLECREATE macro invocation. Here's the file: 

REGEDIT 
HKEY_CLASSES_ROOT\Ex25c.auto = Ex25c Automation 
HKEY_CLASSES_ROOT\Ex25c.auto\CLSID = 

{97EF7FEl-26D6-101b-AC24-00AA003E6F98} 
HKEY_CLASSES_ROOT\CLSID\{97EF7FEl-26D6-101b-AC24-00AA003E6F98} 

Ex25c Automation 
HKEY_CLASSES_ROOT\CLSID\{97EF7FEl-26D6-101b-AC24-
00AA003E6F98}\InprocServer = c:\vcpp\ex25c\ex25c.dll 

What about the Excel code? Here are the three macros and the global 
declarations: 

Dim Dllserv As Object 
Declare Sub CoFreeUnusedLibraries Lib "COMPOBJ" () 

Sub LoadDllServ() 
Set Dllserv = CreateObject("ex25c.auto") 
Range("C3").Select 
Dllserv.LongData = Selection.Value 
Range("D3").Select 
Dllserv.TextData Selection.Value 

End Sub 

Sub RefreshDllServ() 'Gather Data button 
Range("C3").Select 
Dllserv.LongData = Selection.Value 
Range("D3").Select 
Dllserv.TextData = Selection.Value 
Dllserv.DisplayDialog 
Range("C3").Select 
Selection.Value = Dllserv.LongData 
Range("D3").Select 
Selection.Value = Dllserv.TextData 

End Sub 

Sub UnloadDllServ() 
Set Dllserv = Nothing 

'Excel should do this, but it doesn't 
Call CoFreeUnusedLibraries 

End Sub 

613 



PAR T I V: ADVANCED TOPICS 

The first line in LoadDLLServ creates a seryer object as identified by the 
registered name ex25c.auto. The RefreshDllSerr. macro accesses the server 
object's LongData and TextData properties.' !e first time you run Load­
DLLServ, it loads the DLL and constructs an e:A.: '5c.auto object. The second 
time you run LoadDLLServ, something curious happens: A second object is 
constructed, and the original one is destroyed. (You'll learn why later.) If you 
run LoadDLLServ from another copy of the workbook, you get two separate 
ex25c.auto objects. Of course, there's only one copy of the EX25C DLL in 
memory at any time. 

Notice the call to the OLE function CoFreeUnusedLibraries. This is neces­
sary because Excel doesn't try to unload the DLLs that it isn't using. You'll 
see later that MFC controller programs have better manners; they call 
CoFreeUnusedLibraries in their idle loops, so you don't have to. 

The EX250 SOl Automation Server EXE 

614 

This last OLE server example illustrates the use of a document server class in 
a muiti-instance SDI application. This server demonstrates an indexed prop­
erty plus a method that constructs a new OLE object. 

The first automation server you saw, EX25B, didn't have a user inter­
face. The global class factory constructed a CMarket object that did the 
server's work. What if you want your EXE server to have a window? If you've 
bought into the MFC document-view architecture, you'll want the docu­
ment, view, and frame with all the benefits they provide. 

Suppose you made a regular MFC application and then added an OLE 
createable class such as CMarket. How do you attach the CMarket object to the 
document and view? From a CMarket class member function, you could navi­
gate through the application object and main frame to the current docu­
ment or view, but you'd have a tough time in an MDI application if you 
encountered several server objects and several documents. There is a better 
way. You make the document class itself the OLE createable class, and you 
have the full support of AppWizard for this task, and that's true both in MDI 
and in SDI applications. 

The MDI AUTOCLIK example demonstrates how OLE triggers the 
construction of new document, view, and child frame objects each time an 
automation controller creates a new server object. Because the EX25D ex­
ample is an SDI program, OLE starts a new instance each time the controller 
creates an object. Immediately after it starts the program, OLE constructs 
not only the automation-aware document, but also the view and the main 
frame window. 



T WEN T Y - F I V E: OLE and OLE Automation 

Now's a good time to experiment with the EX25D application, which 
was first generated by AppWizard with the OLE Automation Support option 
checked. It's a Windows alarm-clock program that's designed to be manipu­
lated from an automation controller such as Excel. It has properties and 
methods as shown in this table: 

Time Date Property 

Refresh Win Method that invalidates the view window and brings the main 
frame window to the top 

Method that shows the application's main window ShowWin 

Crea teA larm Method that creates a CAlarmobject and returns its IDispatch 
pointer 

Figure Indexed property for the four figures on the clock face 

Here are the steps for building and running EX25D: 

1. From the Visual Workbench, open the project in the \VCPP\EX250 
directory. Build the project to produce the EX25D.EXE file in the 
project directory. 

2. Run the program once to register it in REG.OAT. The program is 
designed to be executed only as an OLE Automation server. When you 
run it from Program Manager or the Visual Workbench, it updates the 
registration database and exits. 

3. Load the Excel workbook file \VCPP\EX250\EX250.XLS. The 
worksheet should look like the one shown here: 

Click the Load Clock button, and then click the Set Alarm button. 
(There is a long delay after you click each button.) The clock should 
appear as shown on the following page, with the "A" indicating the 
alarm setting: 

615 



PAR T I V: ADVANCED TOPICS 

616 

llptions tlelp 

Watch the debug window to see when InitInstance is called and when 
the document object is constructed. 

4. Click the Unload Clock button, and watch the debug window to be 
sure the Exitinstance function is called. 

App Wizard did most of the work of setting up the document as an auto­
mation server. In the derived application class CEx25dApp, it generated a 
data member for the server: 

public: 
COleTemplateServer m_server; 

and in the InitInstance function (in EX25D.CPP), it generated the following 
code that connects the server object (the document) to the application's 
document template: 

CSingleOocTemplate* pOocTemplate; 
pOocTemplate = new CSingleOocTemplate( 

lOR_MAINFRAME. 
RUNTIME_CLASS(CEx25dOoc). 
RUNTIME_CLASS(CMainFrame). II main SOl frame window 
RUNTIME_CLASS(CEx25dView»; 

AddOocTemplate(pOocTemplate); 
m_server.ConnectTemplate(clsid. pOocTemplate. TRUE); 

Now all the plumbing is in place for OLE to construct the document, 
together with the view and frame. When the objects are constructed, how­
ever, the main window is not made visible. That's your job. You must write a 
method that shows the window. 



T WEN T V - F I V E: OLE and OLE Automation 

The following UpdateRegistry call updates REG.DAT with contents of 
the IDR_MAINFRAME string resource: 

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT); 

The following dispatch map shows the properties and methods for the 
CEx25dDoc class. Notice that the m_time data member (for the Time prop­
erty) is out of ClassWizard's view because its type was changed from VARI­
ANT to CVariant. Also, the Figure property is an indexed property and thus 
inaccessible to ClassWizard. 

BEGIN_DISPATCH_MAP(CEx25dDoc, CDocument) 
DISP_PROPERTY(CEx25dDoc, "Time", m_time, VT_VARIANT) 
11{{AFX_DISPATCH_MAP(CEx25dDoc) 
DISP_FUNCTION(CEx25dDoc, "RefreshWin", Refresh, 

VT_EMPTY, VTS_NONE) 
DISP_FUNCTION(CEx25dDoc, "ShowWin", ShowWin, 

VT_EMPTY, VTS_NONE) 
DISP_FUNCTION(CEx25dDoc, "CreateAlarm", CreateAlarm, 

VT_DISPATCH, VTS_VARIANT) 
II}}AFX_DISPATCH_MAP 
DISP_PROPERTY_PARAM(CEx25dDoc, "Figure", GetFigure, 

SetFigure, VT_VARIANT, VTS_I2) 
END_DISPATCH_MAP() 

The RefreshWin and ShowWin methods aren't very interesting, but the 
CreateAlarm method is worth a close look. Here's the corresponding Create­
Alarm member function: 

LPDISPATCH CEx25dDoc::CreateAlarm(const VARIANT FAR& time) 
{ 

} 

m_pAlarm = new CAlarm(time); II m_pAlarm is a CAlarm* 
II data member 

return m_pAlarm->GetIDispatch(FALSE); 

We've chosen to have the server create an alarm object when a control­
ler calls CreateAlarm. CAlarm is an automation server class that we've gener­
ated with ClassWizard. It is not OLE createable, and that means there's no 
IMPLEMENT_OLECREATEmacro and no class factory. The CreateAlarm func­
tion constructs a CAlarm object and returns an IDispatch pointer. (The FALSE 
parameter for CCmdTarget::GetlDispatch means that the reference count is 
not incremented; the CAlarm object already has a reference count of 1 when 
it is constructed.) 

The CAlarm class is declared in ALARM.H as follows: 

617 



PAR T I V: ADVANCED TOPICS 

618 

4/include "cvariant.h" 

class CAl arm : public CCmdTarget 
{ 

public: 
CAlarm(const VARIANT FAR& time); 

public: 
virtual ~CAlarm(); 
virtual void OnFinalRelease(); 

protected: 
II Generated message map functions 
11{{AFX_MSG(CAlarm) 
II NOTE - the ClassWizard will add and remove 
II member functions here. 
I/} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

public: 

} ; 

CVariant m_time; II ClassWizard wants a VARIANT 
II Generated OLE dispatch map functions 
11{{AFX_DISPATCH(CAlarm) 
II}}AFX_DISPATCH 
DECLARE_DISPATCH_MAP() 

Notice the absence of the DECLARE_DYNCREATE macro. 
ALARM.CPP contains a dispatch map, as follows: 

BEGIN_DISPATCH_MAP(CAlarm, CCmdTarget) 
11{{AFX_DISPATCH_MAP(CAlarm) 
DISP_PROPERTY(CAlarm, "Time", m_time, VT_VARIANT) 
II}}AFX_DISPATCH_MAP 

END_DISPATCH_MAP() 

Why do we have a CAlarm class? We could have added an "Alarm Time" 
property in the CEx25dDoc class instead, but then we would have needed an­
other property or method to turn the alarm on and off. By using the CAlarm 
class, what we're really doing is setting ourselves up to support multiple 
alarms-a "collection" of alarms. 

To implement an OLE Automation collection, we would write another 
class, CAlarms, which would contain the methods Add, Remove, and Item. Add 
and Remove are self-explanatory;· Item returns an IDispatch pointer for a col­
lection element identified by an index, numeric or otherwise. We would also 
implement a read-only Count property that returned· the number of ele­
ments. The document class (which owns the collection) would have an 
Alarms method with an optional VARIANT parameter. If the parameter were 



T WEN T Y • F I V E: OLE and OLE Automation 

omitted, the method would return the IDispatch pointer for the collection. If 
the parameter specified an index, the method would return an IDispatch 
pointer for the selected alarm. 

Ifwe wanted our collection to support the VBA "For Each" syntax, we'd 
have some more work to do. We'd add an IEnumVARIANTinterface to the 
CAlarms class and implement the Next member function to step through the 
collection. Finally, we'd add a CAlarms method called _NewEnum that re­
turned an IEnum VARIANT interface pointer. If we wanted the collection 
to be really general, we'd allow separate enumerator objects (with an 
IEnumVARIANT interface) and we'd implement the other IEnumVARIANT 
functions-Skip, Reset, and Clone. 

The Figures property is an indexed property, and that makes it interest­
ing. The Figures property represents the four figures on the clock face­
twelve, three, six, and nine. It's a CString array, so we can use Roman 
numerals. Here's the declaration in the EX25DDOC.H: 

public: 
CString m_figure[4]: 

and here are the GetFigure and SetFigure functions in EX25DDOC.CPP: 

CVariant CEx25dDoc: :GetFigure(short n) 
{ 

return CVariant(m_figure[n]): 
} 

void CEx25dDoc::SetFigure(short n, const VARIANT FAR& vNew) 
{ 

CVariant vTemp: 
if «(CVariant*) &vNew)-)ChangeType(VT_BSTR, vTemp» { 

m_figure[n] = vTemp.bstrVal: 

These functions tie back to the DISP_PROPERTY_PARAM macro in the 
CEx25dDoc dispatch map. The first parameter is the index number, specified 
as a short integer by the last macro parameter. Property indexes don't have 
to be integers, and the index can have several components (row and column 
number, for example). The ChangeType call in SetFigure is necessary because 
the controller might otherwise pass numbers instead of strings. 

You've just seen collection properties and indexed properties. What's 
the difference? A controller can't add or delete elements of an indexed 
property, but it can add elements to a collection, and it can delete elements. 

What draws the clock face? As you might expect, it's the OnDraw mem­
ber function of view class. This function uses GetDocument to get a pointer to 

619 



PAR T I V: ADVANCED TOPICS 

620 

the document object, and then it accesses the document's property data 
members and method member functions. 

Finally, here's the Excel macro code: 

Dim Clock As Object 
Dim Alarm As Object 

Sub LoadClock() 
Set Clock = CreateObject("ex25d.document") 
Range("A3").Select 
n = 0 
Do Until n = 4 

Clock.figure(n) = Selection.Value 
Selection.Offset(0. l).Range("Al").Select 
n = n + 1 

Loop 
RefreshClock 
Clock.ShowWin 

End Sub 

Sub RefreshClock() 
Clock.Time = Now() 
Clock.RefreshWin 

End Sub 

Sub CreateAlarm() 
Range("E3").Select 
Set Alarm = Clock.CreateAlarm(Selection.Value) 
RefreshClock 

End Sub 

Sub UnloadClock() 
Set Clock = Nothing 

End Sub 

Notice the Set Alarm statement in the CreateAlarm macro. It calls the 
CreateAlarm method to return an IDispatch pointer, which is stored in an ob­
ject variable. If the macro is run a second time, a new alarm is created, but 
the original one is destroyed because its reference count goes to O. 

WARN I NG: You've seen a modal dialog in a DLL (EX25C), 
and you've seen a main frame window in an EXE (EX25D). Be 
careful with modal dialogs in EXEs. It's OK to have an About dia­
log that is invoked directly by the server program, but it isn't a 
good idea to invoke a modal dialog in a server method function. 



T WEN T Y - F I V E: OLE and OLE Automation 

The problem is that, once the modal dialog is on the screen, the 
user can switch back to the controller program. MFC controllers 
handle this situation with a special "Server Busy" message box, 
which appears right away. Excel does something similar, but 
it waits 30 seconds, and this could confuse the user. If you want 
to see this effect, uncomment the OnAppAbout line in CEx25dDoc­
::CreateAlarm. 

The EX25E Automation Controller Program 
So far, you've seen C++ OLE Automation server programs. Now you'll see a 
C++ Automation controller program that runs all the previous servers and 
also controls Microsoft Excel. The EX25E program was originally generated 
by AppWizard, but without any OLE options. It was marginally easier to add 
the OLE code than it would have been to rip out the server-specific code. If 
you do use AppWizard to build such an automation controller, follow these 
steps to make it OLE-aware: 

1. Choose Project from Visual Workbench's Options menu, and then 
add the following library names to the Input section of the Linker 
dialog: compobj, storage, ole2, ole2disp, ole2nls, and mfcoleui. 

2. Add the following line at the end of STDAFX.H: 

#include <afxdisp.h> 

3. In the project's resource file, add the following string, with ID 
equal to IDP_OLE_INIT_FAlLED: 

OLE initialization failed. Make sure that the OLE 
libraries are the correct version. 

4. Add the following code at the beginning of the application class's 
InitInstance function: 

if (!AfxOlelnit(» 
AfxMessageBox(IDP_OLE_INIT_FAILED); 
return FALSE; 

To prepare EX25E, open the project in \VCPP\EX25E and do the build. 
When you run the application, you'll see a standard SDI application with a 
menu structure such as the one shown in Figure 25-12 on the following page: 

621 



PAR T I V: ADVANCED TOPICS 

622 

!:oad !:oad !:oad !:oad 

~et Average ~et Data greate Alarm !;xecute 

!:Jnload !:Jnload Befresh Time 

!:Jnload 

Figure 25-12. 
A sample menu structure for a standard SDI application. 

If you have built and registered all the servers, you can test them from 
EX25E. Notice that the DLL doesn't have to be in the \WINDOWS\SYSTEM 
directory because OLE finds it through the registration database. For some 
servers, you'll have to watch the debug window to verify that the test results 
are correct. The program is "reasonably modular. Menu commands and up­
date command UI events are mapped to the view class. Each server object 
has its own C++ controller class and an embedded data member in EX25E­
VW.H. We'll look at each part separately. 

The Market Controller Class for EX2SB.EXE 
The CMarketControl class is designed to interact with the EX25B automation 
server. That server, as you'll remember, has one method, Getlndustrials­
Average, and no properties. We'll use the method name for our controller 
class's member funCtion, although this isn't necessary. Like the server's 
method, this function takes a date in a VARIANT parameter and returns a 
short integer. 

There's one trick we'll use here and in all the automation controllers 
that aren't generated by ClassWizard. We'll use a class enum to make dispatch 
IDs that match the server's. In the EX25B server, the one and only dispatch 
map entry has an ID of 1 because 1 is the starting number. DID_GET­
AVERAGE, then, is equal to 1, and thus the server's GetindustrialsAverage 
method is linked to the controller's GetindustrialsAverage member function 
through the IDispatch::Invoke function. Here's the CMarketControl header, 
which is contained in MARKETC.H: 

class CMarketControl : public COleDispatchDriver 
{ 

II Attributes 
public: 

enum { DID_ZERO, DID_GETAVERAGE }; 
short GetlndustrialsAverage(const VARIANT& propVal); 

} ; 



T WEN T Y - F I V E: OLE and OLE Automation 

The class implementation file, MARKETC.CPP, is shown next. The 
parms variable contains a list of codes, each of which corresponds to a param­
eter; in this case, it contains a list of only one item-a VARIANT. The param­
eters themselves are supplied as trailing arguments to InvokeHelper, which can 
process a variable number of arguments as printf does. 

Iii n c 1 u de" s t d a f x . h" 
I/include "marketc.h" 

short CMarketControl ::GetIndustrialsAverage(const VARIANT& vTime) 
{ 

short result; 
static BYTE BASED_CODE parms[] = VTS_VARIANT; 
InvokeHelper(DID_GETAVERAGE, DISPATCH_METHOD, VT_I2, 

(void*)&result, parms, &vTime); 
return result; 

The CEx25eView class has a data member m_marketc of class CMarket­
Control. The CEx25eView member functions for the Market server are listed 
here: 

void CEx25eView::OnMarketGetAverage() 
{ 

BeginWaitCursor(); 
int nAvg = m_marketc.GetIndustrialsAverage( 

CVariant(1994, 8, I, 0, 0, 0)); 
TRACE("CEx25eView::OnMarketGetAverage -- nAvg %d\n", 

nAvg); 
EndWaitCursor() ; 

void CEx25eView::OnUpdateMarketGetAverage(CCmdUI* pCmdUI) 
{ 

pCmdUI->Enable(m_marketc.m_lpDispatch 1= NULL); 

void CEx25eView::OnMarketLoad() 
{ 

BeginWaitCursor(); 
VERIFY(m_marketc.CreateDispatch("ex25b.market") 
EndWaitCursor() ; 

void CEx25eView::OnUpdateMarketLoad(CCmdUI* pCmdUI) 

pCmdUI->Enable(m_marketc.m_lpDispatch == NULL); 
} 

TRUE) ; 

(continued) 

623 



PAR T I V: ADVANCED TOPICS 

624 

void CEx25eView::OnMarketUnload() 
{ 

BeginWaitCursor(); 
m_marketc.ReleaseDispatch(); 
EndWaitCursor() ; 

void CEx25eView::OnUpdateMarketUnload(CCmdUI* pCmdUI) 
{ 

pCmdUI->Enable(m_marketc.m_lpDispatch != NULL); 

Notice the use of the base class CreateDispatch and ReleaseDispatch func­
tions for loading and unloading the server program. In the second version of 
EX25B, ReleaseDispatch always causes the instance to exit. The COle Dispatch­
Driver::m_lpDispatch data member is useful for enabling and disabling menu 
choices. (See the note on page 633.) 

The Controller Class for EX2SC.DLL 
We'll use the CDLLControl class to represent the EX25C.AUTO server. This 
class was not generated by AppWizard or ClassWizard; you must write your 
own controller classes for MFC automation servers. Here's the class header 
file (DLLCONT.H): 

#include "cvariant.h" 

class CDLLControl : public COleDispatchDriver 
{ 

II Attributes 
public: 

enum { DID_ZERO. DID_LONGDATA. DID_TEXTDATA. DID_DISPDIALOG }; 
CVariant GetTextData(); 
void SetTextData(const VARIANT& propVal); 
long GetLongData(); 
void SetlongData(long propVal); 
BOOl DisplayDialog(); 

II Operations 
public: 

} ; 

void ShowWin(); 
void RefreshWin(); 

And here are the member functions from DLLCONT.CPP: 

CVariant CDLlControl ::GetTextData() 
{ 

CVariant result; 
GetProperty(DID_TEXTDATA. VT_VARIANT. (void*)&result); 



T WEN T Y • F I V E: OLE and OLE Automation 

return result; 

void CDLLControl::SetTextData(const VARIANT& propVal) 
{ 

SetProperty(DID_TEXTDATA, VT_VARIANT, &propVal); 

long CDLLControl ::GetLongData() 
{ 

long resul t; 
GetProperty(DID_LONGDATA, VT_I4, (void*)&result); 
return result; 

void CDLLControl ::SetLongData(long propVal) 
{ 

SetProperty(DID_LONGDATA, VT_I4, propVal); 

BOOL CDLLControl::DisplayDialog() 
{ 

BOOL result; 
InvokeHelper(DID_DISPDIALOG, DISPATCH_METHOD, VT_BOOL, 

NULL, NULl); 
return result; 

Notice that each property requires separate Get and Set functions, even 
though the property is represented by a data member in the server. Also no­
tice that CDLLControl uses an enum for dispatch IDs. Be careful here when 
you modify the server: ClassWizard sometimes changes the server's dispatch 
map sequence, thus requiring you to update the enum in the controller. 

The view class header has a data member m_dllControl of class 
CDLLControl. Here are two DLL-related command handler member func­
tions from EX25EVW.CPP: 

void CEx25eView::OnDllLoad() 
{ 

} 

BeginWaitCursor(); 
VERIFY(m_dllControl.CreateDispatch("ex25c.auto") == TRUE); 
m_dllControl.SetTextData(CVariant("test"»; II testing 
m_dllControl.SetLongData(79L); II testing 
EndWaitCursor() ; 

void CEx25eView::OnDllGetData() 

(continued) 

625 



PAR T I V: ADVANCED TOPICS 

626 

m_dll Control. Di spl ayDi al og(); 
CVariant vData = m_dllControl .GetTextData(); 
ASSERT(vData.vt == VT_BSTR); 
long 1 Data = m_dll Control. GetLongData (); 
TRACE ("C Ex25eVi ew: : On 011 Get Data - - long = %1 d. text = %s \n" • 

lData. (const char FAR*) vData.bstrVal); 

The Controller Class for EX2SD.EXE 
The file CLOCKC.H contains the header for the CClockControl class, which 
controls the EX25D automation server. 

#include "cvariant.h" 

class CClockControl 
{ 

public COleDispatchDriver 

II Attributes 
public: 

I I These need to be in t.he same sequence as the server's 
II dispatch map. If the server changes. update these. 
enum { DID_ZERO. DID_TIME. DID_REFRESH. 

DID_SHOW. DID_CREATEALARM. DID_FIGURE }; 
CVariant GetFigure(short i); 
void SetFigure(short i. const VARIANT&); 
CVariant GetTime(); 
void SetTime(const VARIANT&); 

II Operations 
public: 

} ; 

void ShowWin(); 
void RefreshWin(); 
LPDISPATCH CreateAlarm(const VARIANT& time); 

The code for the GetFigure and SetFigure functions is shown on page 
619. Here's the CClockControl::CreateAlarm member function: 

LPDISPATCH CClockControl ::CreateAlarm(const VARIANT& vTime) 
{ 

LPDISPATCH result; 
static BYTE BASED_CODE parms[] = VTS_VARIANT; 
InvokeHelper(DID_CREATEALARM. DISPATCH_METHOD. VT_DISPATCH. 

(void*)&result. parms. &vTime); 
return result; 

There's a class for the alarm controller as well, and it's declared in 
ALARMC.H: 



T WEN TV - F I V E: OLE and OLE Automation 

/Ii ncl ude "cvari ant. h" 

class CAlarmControl 
{ 

II Attributes 
public: 

public COleDispatchDriver 

II These need to be in the same sequence as the server's 
II dispatch map. If the server changes, update these. 
enum { DID_ZERO, DID_TIME }; 
CVariant GetTime(); 
void SetTime(const VARIANT&); 

} ; 

The view class has data members m_alarmc and m_clockc. Here's the 
view command handler that calls CClock::CreateAlarm: 

void CEx25eView::OnClockCreateAlarm() 
{ 

} 

TRACE("Entering CEx25eView::OnClockCreateAlarm\n"); 

II the following code demonstrates use of 
II GetIDsOfNames -- not required 
char FAR* szMember = "CreateAlarm"; 
DISPID dispid; 
VERIFY(m_clockc.m_lpDispatch->GetIDsOfNames(IID_NULL, 

&szMember, I, 0, &dispid) == S_OK); 
TRACE("GetIDsOfNames: dispid = %d\n", dispid); 

CAlarmDialog dlg; 
if (dlg.DoModal() == IDOK) { 

} 

LPDISPATCH pAl arm = m_clockc.CreateAlarm(CVariant(0, 0, 
0, dlg.m_hours, dlg.m_minutes, dlg.m_seconds»; 

m_alarmc.AttachDispatch(pAlarm); II releases prior 
II object! 

m_clockc.RefreshWin(); 

CVariant vTime = m_alarmc.GetTime(); II test property 
I I access if 

CVariant vStringTime; 
vTime.ChangeType(VT_BSTR, vStringTime); 

The CClockControl::CreateAlarm function causes the server to construct a 
clock object and return an IDispatch pointer with a reference count of 1. The 
COleDispatchDriver::AttachDispatch function connects that pointer to the 
m_alarmc object, but if that object already has a dispatch pointer, the old 
pointer is released. That's why, if you watch the debug window, you'll see that 
the old EX25D instance exits immediately after you ask for a new instance. 

627 



PAR T I V: ADVANCED TOPICS 

628 

You'll have to test this behavior with the Excel driver because EX25E disables 
the Load menu choice when the clock is running. 

Controlling Microsof~ Excel 
The EX25E program contains code that loads Excel, creates a workbook, 
and reads and writes cells from the active worksheet. Controlling Excel is 
exactly like controlling an MFC automation server, but you need to know 
about a few Excel peculiarities. 

If you study Excel VBA, you'll notice that there are over 100 "objects" 
you can use in your programs. All of these objects are accessible through 
OLE Automation, but if you write an MFC automation controller program, 
you'll need to know about the objects' properties and methods. Ideally, 
you'd like a C++ class for each object, complete with member functions 
coded to the proper dispatch IDs. 

Because Excel uses a type library, there's a binary file named 
XLEN50.0LB in the EXCEL directory that contains all the information you 
need for writing your classes. ClassWizard can read this file to automatically 
create C++ classes for individual Excel objects. If you click the Read Type 
Library button in the ClassWizard OLE Automation page and you select 
XLEN50.0LB, you'll see the objects listed, as shown in Figure 25-13. You 
select an object and specify a class name and filenames. 

Figure 25-13. 
Class Wizard can create C++ classes for the Excel objects listed in 
XlEN50.0LB. 



T WEN T Y - F I V E: OLE and OLE Automation 

CAUTION: Visual C++ version 1.5 requires you to use the ob­
ject name as the class name. If you type CRange in place of Range, 
ClassWizard generates code for all the Excel objects. Perhaps this 
problem will be fixed in a later version. 

You might need to edit the generated code to suit your needs. Let's 
look at an example. If you use ClassWizard to generate a controller class for 
the Worksheet object, you get a Range member function: 

VARIANT Worksheet::Range(const VARIANT& Cell!, 
const VARIANT& Cel12) 

} 

VARIANT result; 
static BYTE BASED_CODE parms[] = VTS_VARIANT VTS_VARIANT; 
InvokeHelper(0xc5, DISPATCH_METHOD, VT_VARIANT, 

(void*)&result, parms, &Cell!, &Cel12); 
return result; 

The trouble is that you know (from the documentation) that the Range 
method returns a dispatch pointer, not a VARIANT, and that you can call the 
method with either a single cell (1 parameter) or a rectangular area speci­
fied by two cells (2 parameters). Remember: You can omit optional param­
eters in a call to InvokeHelper. Now it makes sense to replace the generated 
Range function with two overloaded functions: 

LPDISPATCH Worksheet::Range(const VARIANT& Cell!, 
const VARIANT& Cel12) 

} 

TRACE("Entering Worksheet::Range(Ce11l, Ce112)\n"); 
LPDISPATCH result; 
static BYTE BASED_CODE parms[] = VTS_VARIANT VTS_VARIANT; 
InvokeHelper(0xc5, DISPATCH_METHOD, VT_DISPATCH, 

(void*)&result, parms, &Cell!, &Cel12); 
return result; 

LPDISPATCH Worksheet::Range(const VARIANT& Cell!) 
{ 

} 

T RA C E ( " En t e r i n 9 W 0 r k she e t: : Ran 9 e ( Cell 1) \ n " ) ; 
LPDISPATCH result; 
static BYTE BASED_CODE parms[] = VTS_VARIANT; 
InvokeHelper(0xc5, DISPATCH_METHOD, VT_DISPATCH, 

(void*)&result, parms, &Cell!); 
return result; 

629 



PAR T I V: ADVANCED TOPICS 

630 

How do you know which functions to fix up? They're the functions you 
decide to use in your program. You'll have to read the Excel VBA ref­
erence manual to figure out the required parameters and return values. 
Perhaps someday soon someone will write a set of Excel controller classes. 

The EX25E program uses the following Excel objects and thus contains 
corresponding classes, as shown in this table: 

View Class Header Implementation 
Object/Class Data Member File File 

Application m_excel app.h app.cpp 

Range m_mnge[5] range.h range.cpp 

Worksheet m_worksheet wksheet.h wksheet.cpp 

Workbooks m_workbooks wkbooks.h wkbooks.cpp 

The following view member function, OnExcelLoad, handles the Excel 
OLE Load menu command. This function must work if the user already has 
Excel running on the desktop. The OLE GetActiveObject function tries to re­
turn an IUnknown pointer for Excel. GetActiveObject requires a class ID, so we 
must first call CLSIDFromProgID. If GetActiveObject is successful, we call Query­
Interface to get an IDispatch pointer, and we attach it to the view's m_excel con­
troller object of class Application. If GetActiveObject is unsuccessful, we call 
COleDispatchDriver::CreateDispatch, as we did for the other servers. 

void CEx25eView::OnExcelLoad() 
{ II if Excel is already running. attach to it. 

II otherwise start it 
LPDISPATCH pDisp; 
LPUNKNOWN pUnk; 
CLSID clsid; 
TRACE("Entering CEx25eView::OnExcelLoad\n"); 
BeginWaitCursor(); 
: :CLSIDFromProgID("excel.application.5". &clsid); 
II from REG.DAT 
if (::GetActiveObject(clsid. NULL. &pUnk) == S_OK) 

TRACE("attaching\n"); 
VERIFY(pUnk->Querylnterface(IID_IDispatch. 

} 

(void FAR* FAR*) &pDisp) == S_OK); 
m_excel.AttachDispatch(pDisp); 
pUnk->Release(); 

else '{ 
TRACE("creating\n"); 



T WEN T Y - F I V E: OLE and OLE Automation 

VERIFY(m_excel.CreateDispatch("excel.application.5") 
==TRUE); 

EndWaitCursor() ; 

OnExcelExecute is the command handler for Excel OLE Execute. Its first 
task is to find the Excel main window and bring it to the top. W~ must write 
some Windows code here because the Excel developers weren't kind enough 
to supply a method for this purpose. We must also create a workbook if no 
workbook is currently open. 

We have to watch our method return values closely. The Workbooks Add 
method, for example, returns an IDispatch pointer for a Workbook object 
and, of course, increments the reference count. If we generated a class for 
Workbook, we could call AttachDispatch so that Release would be caned when 
the Workbook object was destroyed. Because we don't need a Workbook 
class, we'll simply release the pointer ourselves at the end of the function. If 
we don't clean up our pointers properly, we'll get memory leak messages 
from the De bug version of MFC. 

The rest of the OnExcelExecute function accesses the cells in the work­
sheet. You can see how easy it is to get and set numbers, dates, strings, and 
formulas. The C++ code is similar to the VBA code you would write to do the 
samejob. 

void CEx25eView::OnExcelExecute() 
{ 

TRACE("Entering CEx25eView: :OnExcelExecute\n"); 
LPDISPATCH pRange, pWorkbooks; 

CWnd* pWnd = CWnd:: Fi ndWi ndow( "X LMAI N", NU Ll) ; 
if (pWnd 1= NULL) { 

TRACE("Excel window found\n"); 
pWnd-)ShowWindow(SW_SHOWNORMAL); 
pWnd-)UpdateWindow(); 
pWnd-)BringWindowToTop(); 

m_excel.SetSheetslnNewWorkbook(l); 

VERIFY(pWorkbooks = m_excel.Workbooks(»; 
m_workbooks.AttachDispatch(pWorkbooks); 

LPDISPATCH pWorkbook = NULL; 
if (m_workbooks.GetCount() == 0) { 

(continued) 

631 



PAR T I V: ADVANCED TOPICS 

632 

} 

II Add returns a Workbook pointer, but we don't 
II have a Workbook class 
pWorkbook = m_workbooks.Add(); II save pointer for later release 

LPDISPATCH pWorksheet = m_excel.Worksheets(CVariant("sheetl"»; 
VERIFY(pWorksheet 1= NULL); 

m_worksheet.AttachDispatch(pWorksheet); 
m_worksheet.Select(); 

VERIFY(pRange = m_worksheet.Range(CVariant("A1"»); 
m_range[0].AttachDispatch(pRange); 

VERIFY(pRange = m_worksheet.Range(CVariant("A2"»); 
m_range[l].AttachDispatch(pRange); 

VERIFY(pRange = m_worksheet.Range(CVariant("A3"»); 
m_range[2].AttachDispatch(pRange); 

VERIFY(pRange = m_worksheet.Range(CVariant("A3"), 
CVariant("C5"»); 

m_range[3].AttachDispatch(pRange); 

VERIFY(pRange = m_worksheet.Range(CVariant("A6"»); 
m_range[4].AttachDispatch(pRange); 

m_range[4].SetValue(CVariant(1994, 4, 24, IS, 47, 8»; 
CVariant timeDate = m_range[4].GetValue(); 
CVariant varDate, stringDate; 
if (timeDate.ChangeType(VT_DATE, varDate» 

II allows for returned R8 date 
if (varDate.ChangeType(VT_BSTR, stringDate» 

TRACE("string date = %s\n", stringDate.bstrVal); 
} 

m_range[0].SetValue(CVariant("test string"»; 

CVariant vResult0 = m_range[0].GetValue(); 
if (vResult0.vt == VT_BSTR) { 

TRACE("vResult0 = %s\n", vResult0.bstrVal); 

m_range[1].SetValue(CVariant(3.14159»; 

CVariant vResultl = m_range[l].GetValue(); 
if (vResult1.vt == VT_R8) { 

TRACE("vResultl = %f\n", vResult1.dblVal); 



T WEN T Y - F I V E: OLE and OLE Automation 

m_range[2].SetFormula(CVariant("=$A2*2.0"»; 

CVariant vResult2 = m_range[2].GetValue(); 
if (vResult2.vt == VT_RS) { 

TRACE("vResult2 = %f\n", vResult2.dblVal); 

CVariant vResult2a = m_range[2].GetFormula(); 
if (vResult2a.vt == VT_BSTR) { 

TRACE("vResult2a = %s\n", vResult2a.bstrVal); 
} 

m_range[3].FillRight(); 
m_range[3].FillDown(); 

II cleanup 
if (pWorkbook != NULL) { 

pWorkbook->Release(); 
} 

WAR N I N G : If you compile EX25E with the Debug build op­
tion, you'll get an ASSERT dialog box at OLEDISP2.CPP line 352. 
This is an MFC 2.5 bug. This statement should be commented out 
and the library should be rebuilt. 

NOT E : EX25E is a C++ automation controller program that 
runs EX25B, a C++ automation server, via the Get Averages com­
mand on the Market OLE menu. A TRACE statement in EX25E 
prints in the Debug Messages window the value that EX25B calcu­
lates. Earlier we used Microsoft Excel as the controller, which put 
the calculated value in a cell. 

OLE and the Future 
At the time this book went to press, OLE was still very new, yet a number of 
"early adopter" companies had jumped into it. I interviewed only two devel­
opers, but, interestingly, both of them were building complex modular 
systems and were using the Common Object Model as the underlying archi­
tecture. To this end, they had developed their own interfaces. Neither was 
very interested in connecting to outside applications, but both were consid­
ering OLE Automation for a VBA interface. One developer was looking 
closely at OLE Structured Storage. What are you going to do with OLE? 
Please tell me. I'd like to know. 

633 



PAR T I V: ADVANCED TOPICS 

634 

You've probably heard of Microsoft's Cairo. I was a little fuzzy about 
what Cairo was, thinking first that it was a new operating system. Mter talking 
to the experts, I discovered that it's a "shell" that will run inside new versions 
of Windows. Think of the Cairo shell as a Visual Basic form. Instead of being 
populated by VBXs, it contains "Cairo-aware apps" that might end up being 
similar to OLE Controls. These applications must implement specified OLE 
interfaces, and they can use other interfaces supported by Cairo. The short 
story is this: If you want to write applications for Cairo, you'd better learn 
OLE now. Good luck! 



C HAP T E R TWENTY-SIX 

DYNAMIC LINK 
LIBRARIES (DLLs) 

The dynamic link library (DLL) has always been an important part of Win­
dows-based programming. Now Microsoft Foundation Class (MFC) Library 
version 2.5 programmers can take advantage of this powerful programming 
technique. You'll find that a class library DLL is somewhat different from the 
normal C-Ianguage API DLLs you might have worked with before. This chap­
ter points out the differences and shows you how to build and use a class li­
brary DLL. You'll start by using MFC250.DLL, which packages the entire 
MFC library. Then you'll extend this ready-made DLL by writing your own 
custom DLL. 

Why Use a DLL? 
DLLs are Windows-based program modules that can be loaded and linked at 
run time. Many applications can benefit by being split into a series of main 
programs and DLLs. Suppose you are developing a large integrated account­
ing system. This job is too big for a single executable program. You might 
have separate programs, or modules, for Payroll, Accounts Receivable, and 
so forth, but these programs have a lot of functionality in common. All mod­
ules might share the same list management and database access classes, for 
example. If you put the shared code in one or more DLLs, the individual 
modules will be smaller on disk and therefore quicker to load. If the user has . 
both the Payroll and the Accounts Receivable program loaded at the same 
time, only one copy of the DLL code will be in memory, shared by the two 
client applications. 

Another use for DLLs is national language support. If you isolate lan­
guage-dependent functions and resources into DLLs for, say, the English, 

635 



PAR T I V: ADVANCED TOPICS 

French, or Spanish language, the user can choose the proper DLL during 
the installation process or at run time. You'll probably think of other uses for 
DLLs in your own applications. 

Conventional DLLs 

636 

Even if you haven't written your own Windows DLLs, you've probably used 
the DLLs that come with Windows or those that other software vendors pro­
duce. File dialog and drag-and-drop support, for instance, are in the Win­
dows DLLs COMMDLG.DLL and SHELL.DLG. The EX24A example used 
ODBC.DLL, which, in turn, loaded another DLL for the selected DBMS. Us­
ing a C-Ianguage API DLL is no big deal. You simply ensure that your make 
file includes a reference to the DLL's import library, and you ensure that the 
DLL file is available on disk at run time. You call a DLL C function the same 
way you call a function that's in your own project. 

Conventional C-Ianguage API DLLs have one important characteristic: 
They can be used with any C compiler and with other languages and pro­
gramming environments. A database DLL written in Borland C, for ex­
ample, can be called from a Microsoft C program, from a Microsoft Visual 
Basic program, or from a Toolbook script. 

You can think of a conventional DLL as an independent program with 
its own instance handle, its own global memory, its own heap, and its own 
resources. The DLL shares the client's stack, however. DLLs do not have 
their own Windows message loops. The DLL is loaded at startup or when 
needed, and it is unloaded after the last client application terminates. If the 
conventional DLL allocates memory, that memory is released when the DLL 
terminates, not when a client terminates. Often a DLL's API will require the 
client to allocate memory. The client passes a buffer address to the DLL, the 
DLL operates on the buffer, and then the client frees the memory. With 
ODBC, for example, the client allocates a buffer for column data, and the 
DLL writes in the buffer. 

There are several DLL linkage options. The import library is the most 
common option for compiled C programs. The client uses a symbolic name 
to call a DLL function, and Windows matches calls to DLL function ad­
dresses when the DLL is loaded. The functions can be matched symbolically 
or through ordinal numbers. The ordinal method, in which each DLL func­
tion is assigned a unique integer, is more efficient. Interpreted-language 
Windows environments often use DLLs in a more dynamic manner. They 
can select and load DLLs at run time, and they can call DLL functions with­
out prior address resolution. 



T WEN TV· S I X: Dynamic Link Libraries (DLLs) 

A DLL can be updated witq.out client recompilation if the existing func­
tion prototypes remain exactly the same. If you change a function name, re­
turn data type, or parameter data type, you should count on recompiling the 
clien t applications. 

Visual C++ supports the creation of conventional DLLs written with the 
MFC library classes but with a C-Ianguage external interface. Technical Note 
#11 in the MFCNOTES.HLP file describes the process of writing what is 
known as a user DLL (_USRDLL). The sample program in the \MSVC­
\MFC\SAMPLES\DLLTRACE subdirectory illustrates such a DLL. This chap­
ter focuses on a different kind of DLL-the MFC library DLL that's 
compatible with the C++ language. 

The MFC Library DLL 
An MFC library DLL can accommodate entire C++ classes. You can use these 
DLL-resident classes the same way you use statically linked classes. You can 
construct objects of DLL-resident classes, and you can use them as base 
classes. There are some major differences between conventional DLLs and 
class library DLLs, however. 

MFC Library DLL Usage Restricted to Microsoft C++ Compilers 
Unlike conventional DLLs, MFC library DLLs can be used only in Microsoft 
MFC library applications. Why the restriction? The Microsoft C++ compiler 
uses special internal function names that combine the class name, function 
name, return data type, parameter data types, and public/protected/private 
access. With the Microsoft C++ compiler, for example, the function 

CWnd* GetDescendantWindow(int nID) const 

is assigned the mangled (or decorated) name 

?GetDescendantWindow@CWnd@@RFCPEV1@H@Z 

Other compilers use different name-mangling algorithms, so if a Borland 
C++ client program contained a GetDescendantWindow call, the Borland 
mangled name wouldn't match the Microsoft mangled name. 

The MFC Library Classes as a DLL 
The easiest way to use the MFC library DLL technology in your application is 
to use the MFC250 and MFC250D DLLs included with Visual C++. These 
DLLs contain all the MFC library functionality, with some minor exceptions 

637 



PAR T I V: ADVANCED TOPICS 

such as time formatting. MFC200.DLL is the release version, and 
MFC250D.DLL is the debugging equivalent. Converting a statically linked 
class library application to a DLL-based application is easy. You simply 
change some Visual Workbench options (or change some switches in your 
make file for NMAKE), as shown later in this chapter. 

Do you want your MFC library applications to be DLL-based? Your an­
swer depends on your needs. You should develop your applications first with 
static linking for easier debugging. If you're distributing a large suite of pro­
grams that each use many MFC library features, using MFC250.DLL will con­
serve your users' disk space and memory. If, on the other hand, you have a 
few small programs, using MFC250.DLL might lead to a larger net program 
size because the MFC library DLL approach forces you to use the large 
memory model and because MFC250.DLL contains all the MFC library 
classes and functions. 

Here are some actual numbers for you. The size of the MFC250.DLL 
file is 298 KB. The medium-model statically linked MATPLAN.EXE example 
program from Chapter 21 is about 124 KB, and the large-model equivalent is 
about 148 KB. With the DLL, the MATPLAN.EXE file's size is 43 KB. It's 
obviously not worth using the DLL if you're distributing only a single 
MATPLAN-type application. 

Using MFC250D.DLL in an Application 

638 

Now it's time to turn on the computer. It's so easy to switch an application 
from using the static MFC library to using the dynamic library that we don't 
need a separate project for it. Simply choose any project from an earlier 
chapter. The MATPLAN example from Chapter 21 is fine. If you want to 
double-check on the option settings, look at the EX26B project, which uses 
MFC250D.DLL plus an extension DLL. 



T WEN T Y - S I X: Dynamic Link Libraries (DLLs) 

Here are the steps for converting a statically linked project to a dynami­
cally linked one: 

l. In Visual Workbench's Project Options dialog, uncheck the Use 
Microsoft Foundation Classes check box. 

2. In the C/C++ Compiler Options dialog, change the following 
Common To Both build options: 

o Memory Model: Set "Model" to "Large." 

o Preprocessor: Add "_AFXDLL" to "Symbols and Macros to 
Define." 

o Windows Prolog/Epilog: Check the "Generate for __ far Func­
tions" check box. 

3. In the Project's Linker Options dialog, add MFC250 at the head of 
the Input Library list for the Release Specific build option. 

4. In the Project's Linker Options dialog, add MFC250D at the head of 
the Input Library list for the Debug Specific build option. 

If you want to reduce the size of your client EXE file, eliminate redun­
dant resources from your resource script. To do so, start App Studio and 
choose Set Includes from App Studio's File menu. Delete the references to 
the standard AFX resources from the Compile-Time Directives list box in the 
Set Includes dialog box that appears, and then click OK. Remember that 
the application framework searches the client resources before it searches 
the MFC250.DLL resources, so you can override standard AFX resources if 
necessary. 

You must select Rebuild All from the Visual Workbench Project menu 
after you make the changes listed above. 

MFC library Extension Dlls 
If you want to add new classes to the MFC library DLL, you should not re­
build MFC250.DLL but rather write your own MFC library extension DLL 
that client programs can load along with MFC250.DLL. When you write your 
extension DLL, you must follow some clearly defined conventions, which are 
highlighted in this chapter's first example. 

WAR N I N G : If you modify MFC250.DLL, you could create 
problems for other applications that depend on Microsoft's ver­
sion of the DLL. 

639 



PAR T I V: ADVANCED TOPICS 

MFC Library DLL Memory Usage 
In an MFC library extension DLL, memory is managed by the client applica­
tion-which means that if you use the new operator in the MFC library DLL 
(new and delete are specially overloaded for DLLs) , client application 
memory will be allocated. When the client application terminates, all its allo­
cated memory is released, including memory allocated in DLL functions. 
Now the DLL is starting to look less like an independent program and more 
like part of the client application! As in conventional DLLs, the DLL and the 
client application share the stack. The DLL owns the global variables. 

NOT E : A statically linked MFC library application references 
global variables, defined inside the class library, that identify per­
application elements such as the current application object, the 
current instance handle, and the current resource handle. A class 
library DLL moves these global variables to a fixed location in the 
client application's stack segment. 

Required Code for Extension DLLs 

640 

Each class library extension DLL you write must contain boilerplate code 
similar to the following code. The LibMain function is the DLL equivalent of 
WinMain, and Windows calls it when the DLL is loaded. The DLL initializa­
tion function, named InitMyDLL here, is optionally called from your client 
application. You'll see why later. ' 

#include <afxdllx.h> II prior #include <afxwin.h> assumed 

extern AFX_EXTENSION_MODULE NEAR extensionDLL = {NULL, NULL}; 

extern "C" int CALLBACK LibMain(HINSTANCE hlnstance, WORD, WORD, LPSTR) 

II do not allocate memory or use TRACE, ASSERT, or MessageBox here 

AfxlnitExtensionModule(extensionDLL, hlnstance); 

return 1; II OK 

II following DLL initialization function is called from the client app 

extern "C" extern void WINAPI InitMyDLL() 

new CDynLinkLibrary(extensionDLL); 



T WEN T Y - S I X: Dynamic Link Libraries (DLLs) 

Searching for Resources 
Both a DLL and a client application can have their own resources. Suppose a 
program contains the following code: 

CString strError; 

strError.LoadString(IDS_ERROR1) ; 

Where does the application framework search for the string identified 
by IDS_ERROR1-in the class library client application's resources or in the 
DLL's? The default behavior (assuming that you've written the DLL initiali­
zation function discussed in the previous section) is to search for resources. 
in this sequence: 

1. Client application resources 

2. Your extension DLL resources 

3. MFC250 standard AFX resources 

NOTE: Because MFC250.DLL contains the standard AFX re­
sources, your project's App Wizard-generated RC file need not du­
plicate them. You can choose Set Includes from App Studio's File 
menu and then remove the following lines from your resource 
script file: 

#include "afxres.rc" 

#include "afxprint.rc" 

and you can use the Visual Workbench editor to remove many of 
the string resource definitions (such as the file and edit menu 
prompts). Because the application framework searches the client 
resources before it searches the MFC250.DLL resources, you can 
override standard AFX resources if you need to. 

You can change the default search behavior by forcing a DLL to search 
its own resources first. The following code switches the application 
framework's instance handle from the client application to a DLL, accessing 
the resource, and then it switches the instance handle back to the client ap­
plication: 

HINSTANCE hlnstResourceClient = AfxGetResourceHandle(); 

AfxSetResourceHandle(extensionDLL.hModule); II uses DLL's instance 

II handle 

strError.LoadString(IDS_ERROR1) ; 

AfxSetResourceHandle(hlnstResourceClient) ; II restores client's 

II instance handle 

641 



PAR T I V: ADVANCED TOPICS 

Inline Constructors 
Do not use in line constructors for DLL-resident classes. Inline constructors 
complicate the process of exporting class member functions. 

Extension Dll Exports 

642 

You must specifically "export" selected extension DLL functions and vari­
ables. Which ones do you export? That depends on whether you are 
constructing objects from a DLL-resident class or deriving classes from a 
DLL-resident class. Here are some rules: 

A Dll-Resident Class Used Directly 

II Export all nonvirtual member functions that your client program 
calls directly. 

II You don't need to export virtual functions that are declared in a 
base class. (Note: This rule applies to classes that do not have inline 
constructors. You should not use inline constructors for classes you 
intend to use in a DLL.) 

II If the class has a message map, export the static messageMap entry, 
as shown on the facing page. 

NOT E : The use of the RUNTlME_ CLASS macro is restricted. In 
a client application, you cannot dynamically create objects of 
DLL-resident classes. This means, for example, that you can't 
place a view class in a DLL and then use it in your client 
application's AddDocTemplate call. You can place the AddDoc­
Template call in the DLL's initialization function, however, as the 
example program in the \MSVC\MFC\SAMPLES\DLLHUSK sub­
directory illustrates. 

A Dll-Resident Class Used for Derivation 

II Export all public nonvirtual member functions that your client 
program calls directly. 

II Export all nonvirtual member functions that a derived class 
might want to call. 

II Export all virtual member functions (except pure virtual 
functions) . 



T WEN T V - S I X: Dynamic Link Libraries (DLLs) 

• Export the CRuntimeClass entry, as shown below . 

• If the class has a message map, export the static messageMap entry, 
as shown below. . 

You export a DLL function by listing its mangled name, together with 
an ordinal number, in the EXPORTS section of the DLL's DEF file. If your 
DLL contained a view class CMyBaseView with an (i)verridden OnDraw func­
tion, for example, you would export the OnDraw function with a line such as 
this: 

?OnDraw@CMyBaseViewl@@VECXPEVCDC@@@Z @101 NONAME 

The function's arbitrary (but unique) ordinal number is 10l. 
The CRuntimeClass entry is exported like this: 

?classCMyBaseView@CMyBaseView@@2UCRuntimeClass@@A @114 NONAME 

and the messageMap entry is exported as follows: 

?messageMap@CMyBaseView@@lUAFX_MSGMAP@@A @115 NONAME 

The project's MAP file is the source for these exported mangled names. 
In Visual Workbench, click on the Miscellaneous category in the Linker Op­
tions dialog, and then set Other Options to /MAP:FULL. For each exported 
function, search the MAP file for the function name, and then extract the 
mangled name on the previous line. For the run time class and message map 
entries, use the lines shown above, with your own class name substituted for 
CMyBase View. 

NOT E: The DLL project switch settings ensure that all far func­
tions have the proper prolog and epilog code for export. Do not 
use the _export keyword in your DLL source. This option has unde­
sirable side effects in the class library environment. In particular, 
it precludes the use of space-saving ordinals in the executable 
program. 

Static Class Data Members 
You can define static data members for your DLL classes, but be careful that 
the definitions don't allocate memory. You can, for example, define a static 
CRect object like this: 

canst CRect NEAR CMyView::rect(10, 10, 500, 400); 

but you cannot define a CString object like this: 

canst CString NEAR CMYView::string(ltest"); II don't do this in a DLL 

643 



PAR T I V: ADVANCED TOPICS 

The latter definition causes major problems because the new operator is 
called before the application framework has had a chance to install the cor­
rect new implementation. 

Extension DLL Run -Time Class Identification 
As mentioned in the note on page 642, the RUNTIME_CLASS macro, when 
used in a client program, ~oesn't work for a class that is resident in a class li­
brary extension DLL. The GetRuntimeClass function does work, however, if 
you have declared the class to be dynamic. 

Creating the DLL 
Visual Workbench has a specific project type for Windows-based DLLs. When 
you select this option, the linker produces a DLL file, and the compiler and 
linker switches are set accordingly. Be sure the DLL file is available to its cli­
ent applications at run time. Windows version 3.1 first searches for DLLs in 
the subdirectories specified in the PATH environment variable, and then it 
searches the \WINDOWS and \WINDOWS\SYSTEM subdirectories. If you 
install the necessary extension DLLs in the client project's own subdirectory, 
you will eliminate the chance of conflict with other DLLs with the same 
names. If you install the DLLs in the \WINDOWS\SYSTEM subdirectory, all 
applications can share them. 

Creating the Import Library 
You must create an import library for your class library extension DLL. Even 
though Visual Workbench generates an import library, that library does not 
correspond to your DEF file and is therefore useless. Use the Visual C++ 
IMPLIB utility from the command line as follows (substituting your appli­
cation's name for myapp): 

implib myapp.lib myapp.def 

Once the import library is created, be sure that the linker can find it 
when you are building a client project. Copy the import library to the 
\MSVC\MFC\LIB subdirectory or choose Options Directory from the Visual 
Workbench menu to modify the library search path. 

Debug and Release DLL Versions 

644 

Mter you have switched from static linking to dynamic linking, you might 
still need to debug your extension DLLs and client applications. It's good 
practice to maintain both a debug and a release version of your extension 



T WEN T Y • S I X: Dynamic Link Libraries (DLLs) 

DLLs. By convention, the debug version name ends with a D. You'll need 
separate DEF files too because the DEF file contains the name of the DLL. 
Also, you'll want separate import libraries that follow the DLL naming con­
vention. 

EX2SA-Writing Your Own 
Class Library Extension DLL 

The EX26A example project combines the CStudent class (from Chapter 15), 
the CPersistentFrame class (from Chapter 14), and the CRowView class (from 
Chapter 24) into a single dynamic link library, EX26AD.DLL. (EX26A.DLL 
is the companion release version.) The CRow View and CPersistentFrame classes 
are included because they are typical class library base classes. The CStudent 
class is included to demonstrate that the objects of a DLL-resident class can 
be serialized in a client application. 

The EX26A classes have mostly the same source code as their statically 
linked counterparts, except for some added code that demonstrates re­
source searching and runtime class access. This chapter's second example, 
EX26B, is a client application that uses the EX26A DLL. 

The EX26A subdirectory actually contains two projects-EX26A.MAK 
for the release DLL and EX26AD.MAK for the debugging DLL. It also con­
tains two separate DEF files-EX26A.DEF and EX26AD.DEF. The source 
code is split into the following source code files, which the two projects 
share: 

Header File Source Code File Class Description 

STDAFX.H EX26A.CPP LibMain function and 
DLL initializer 

PERSIST.H PERSIST.CPP CPersistentFrame SDI persistent frame 
base class 

ROWVIEW.H ROWVIEW.CPP CRow View Row view base class 

STUDENT.H STUDENT.CPP CStudent Student record class 

A resource file, EX26A.RC, contains the CRow View IDS_TOO_MANY_ROWS 
error message string. 

You've seen the CStudent, CPersistentFrame, and CRowView code before. 
The CStudent class was modified to eliminate the in line constructor and to 
add the constructor, as shown at the top of the following page: 

645 



PAR T I V: ADVANCED TOPICS 

CStudent: :CStudent(const char* szName, long lGrade): m_name(szName) 

m_1Grade = lGrade; 

The code in EX26A.CPP is almost identical to the DLL boilerplate code 
listed previously. For this application, the DLL initializer function is named 
InitEx26aDLL. 

The EX26AD.DEF File 

646 

Figure 26-1 shows the complete DEF file for the project (debugging ver­
sion).Only those functions used in the EX26B example are exported. The 
EX26A.DEF file is identical except for the library name; You can use this file 
as a prototype for your own extension DLL DEF files. 

LIBRARY EX26AD 
DESCRIPTION 'ROWVIEW/PERSISTENTVIEW DLL' 
EXETYPE WINDOWS 
CODE LOADONCALL MOVEABLE DISCARDABLE 

DATA PRELOAD MOVEABLE SINGLE 

SEGMENTS 
_TEXT PRELOAD MOVEABLE DISCARDABLE 
WEP_TEXT PRELOAD MOVEABLE DISCARDABLE 

HEAPSIZE 1024 

EXPORTS 
WEP @1 RESIDENTNAME PRIVATE ;; required WEP entry point (uses library WEP) 

; Explicitly exported initialization routine 
INITEX26ADLL 

CRowView 
; Constructor and Destructor 
??OCRowView@@JEC@XZ 
??lCRowView@@NEC@XZ 
; operations/attributes 
?RowToWndRect@CRowView@@NEC?EVCRect@@PEVCDC@@H@Z 
?LastViewableRow@CRowView@@NECHXZ 
?RowToYPos@CRowView@@NECHH@Z 
?RectLPtoRowRange@CRowView@@NECXAFVCRect@@AEH1H@Z 
?UpdateRow@CRowView@@NECXH@Z 

Figure 26-1. 
The EX26AD.DEF file listing. 

@2 NONAME; 

@100 NONAME 
@101 NONAME 

@102 NONAME 
@103 NONAME 

@104 NONAME 
@105 NONAME 
@106 NONAME 

(continued) 



T WEN T Y - S I X: Dynamic Link Libraries (DLLs) 

Figure 26-1. continued 

i Virtual overrides (called by framework) 
?OnPreparePrinting@CRowView@@NECHPEUCPrintlnfo@@@Z 
?OnBeginPrinting@CRowView@@NECXPEVCDC@@PEUCPrintlnfo@@@Z 
?OnDraw@CRowView@@NECXPEVCDC@@@Z 
?OnlnitialUpdate@CRowView@@NECXXZ 
?OnPrepareDC@CRowView@@NECXPEVCDC@@PEUCPrintlnfo@@@Z 
?OnPrint@CRowView@@NECXPEVCDC@@PEUCPrintlnfo@@@Z 
?UpdateScrollSizes@CRowView@@NECXXZ 

i runtime class & message map 
?classCRowView@CRowView@@2UCRuntimeClass@@A 
?messageMap@CRowView@@lUAFX_MSGMAP@@A 

CPersistentFrame 
i Constructor and Destructor 
??OCPersistentFrame@@JEC@XZ 
??lCPersistentFrame@@NEC@XZ 

?ActivateFrame@CPersistentFrame@@NECXH@Z 
i runtime class & message map 
?classCPersistentFrame@CPersistentFrame@@2UCRuntimeClass@@A 
?messageMap@CPersistentFrame@@lUAFX_MSGMAP@@A 

CStudent 
i Constructors 
??OCStudent@@REC@XZ 
??OCStudent@@REC@PFDJ@Z 

@lO7 NONAME 
@lO8 NONAME 
@lO9 NONAME 
@110 NONAME 
@111 NONAME 
@112 NONAME 
@113 NONAME 

@114 NONAME 
@115 NONAME 

@200 NONAME 
@201 NONAME 

@202 NONAME 

@203 NONAME 
@204 NONAME 

@300 NONAME 
@301 NONAME 

(Note: The CRowView member functions GetRowWidthHeight, GetActiveRow, 
Get Row Coun t, OnDrawRow, ChangeSelectionNextRow, and ChangeSelection ToRow 
don't need to be exported because they are pure virtual functions and there­
fore must be overridden in derived classes.) 

Visual Workbench Options for the EX26AD Project 
Following are the Visual Workbench options for the EX26AD class library 
extension DLL. The instructions assume you are starting a new project. 
(AppWizard doesn't generate MAKfiles for DLL projects.) 

1. In Visual Workbench's Project Options dialog, set Project Type to 
"Windows dynamic link library (DLL)." 

2. While still in the Project Options dialog, uncheck the "Use 
Microsoft Foundation Classes" check box. 

647 



PAR T I V: ADVANCED TOPICS 

3. In the C/C++ Compiler Options dialog, change the following 
Debug Specific build options for the categories shown: 

o Memory Model: Set "Model" to "Large." 

o Preprocessor: Add "_AFXDLL" to "Symbols and Macros to 
Define." . 

o Windows Prolog/Epilog: Check the "Generate for __ far Func­
tions" check box. 

o Precompiled Headers: Precompile through Header-"STDAFX.H" 
Precompile with Source-"EX26A.CPP" 

4. In the Linker Options dialog, add MFC250D at the head of the 
Input Libraries list for the Debug Specific build option. 

Creating the Import library and Copying the Dll 
Mter you have successfully built the EX26AD project, use the command line 

implib \msvc\mfc\lib\ex26ad.lib ex26ad.def 

to create a debug import library that is accessible to the client project link 
step. You might want to make a batch file for this job. Next, copy the new 
extension DLL to the \WINDOWS\SYSTEM directory. 

EX26B-Using an MFC Library Extension DLL 

648 

The EX26B project consists of an SDI MFC library application that uses the 
EX26AD DLL that you built in the previous section. The EX26B program 
also relies on MFC250D.DLL, as do all MFC library DLL client applications. 
You can us.e the new DLL with the EXl4A, EX15B, and EX24A examples, but 
it's more fun to build a new program that uses all three EX26A classes. The 
new program is yet another student list variation. 

Here are the source code files involved in the EX26B project: 

Header File Source Code File Class Description 

EX26B.H EX26B.CPP CEx26bApp Main application class 

PERSIST.H CPersistentFrame SDI persistent frame 
base class 

MAINFRM.H MAINFRM.CPP CMainFrame Main frame class 
(derived from 
CPersistentFrame) 

(continued) 



T WEN T Y - S I X: Dynamic Link Libraries (DLLs) 

Header File Source Code File Class Description 

EX26BDOC.H EX26BDOC.CPP CEx26bDoc Document class 

ROWVIEW.H ROWVIEW.CPP CRow View Row view base class 

EX26BVW.H EX26BVW.CPP CEx26bView View class (derived 
from CRow View) 

STUDENT.H CStudent Studen t record class 

STUDLG.H STUDLG.CPP CStudentDialog Studen t modal dialog 
class 

STDAFX.H STDAFX.CPP Precompiled headers 

Following are descriptions of the new classes for EX26B. 

CEx26bApp 
This class is the standard AppWizard-generated SDI application class, except 
for the call to the DLL initialization routine at the beginning of InitInstance. 

EX26B.H 

extern "e" extern void WINAPI InitEx26aDLL(); 

EX26B.CPP 

#ifdef_AFXDLL 

InitEx26aDLL(); II necessary for DLL resource access and IsKindOf 

#endif 

CEx26bDoc 
The document class contains an embedded object pointer array that is called 
m_studentArray. This array is emptied in the DeleteContents member function. 

CEx26bView 
The CEx26bView class is derived from CRowView and is similar to the 
CEx24bView class from the ODBC example. The OnDrawRow function is per­
haps the most interesting overridden pure virtual function. 

(continued) 

649 



PAR T I V:' ADVANCED TOPICS 

650 

The OnLButtonDblClk message handler brings up the student dialog for 
the row that has been selected. 

void CEx26bView::OnLButtonDblClk(UINT, CPoint point) 



T WEN TV - S I X: Dynamic Link Libraries (DLLs) 

} 

. break;· 
default: 

ASSERT(0}; 
br-ea/<; 

};. 

NOT E : This is an example of the use of "hints" to optimize the 
repainting of the view data. When OnUpdate is called from On­
InitialUpdate, the lHint parameter is 0, which causes existing lines 
to be erased. If the user modifies or inserts a line, lHint is set to 1 
and the old data is not erased, thereby reducing screen flicker. If 
the user deletes a line, lHint is set to O. 

CStudentDialog 
The code for this class is compatible with ClassWizard. The behavior is simi­
lar to that of the CMatplanDialog class from Chapter 21. The DoModal return 
value indicates which button the user clicked. 

Building and Testing the EX26B Program 
Building the EX26B class library DLL extension client application is similar 
to building an MFC250D.DLL client application: You compile with the large 
memory model, and you specify MFC250D.DLL and EX26AD.DLL to the 
linker. Don't forget to untheck the Use Microsoft Foundation Classes option 
in the Project Options dialog and to define _AFXDLL. The Input category of 
the Linker Options dialog is shown in Figure 26-2 on the following page. 

651 



PAR T I V: ADVANCED TOPICS 

652 

Figure 26-2. 
The Linker Options dialog showing libraries. 

If you did everything right when you built the EX26A example, the 
EX26AD import library and DLL will be available. You should be able to 
build and run the EX26B client application. The output should look some­
thing like that shown in Figure 26-3. 

If you double-click in an empty frame or on a student record in the row 
view, an editing dialog pops up as shown. Document file I/O and printing 
are implemented. 

Figure 26-3. 
The EX26B screen with student list. 



T WEN T Y - S I X: Dynamic Link Libraries (DLLs) 

NOT E: If you look in the debug window after EX26B exits, 
you'll notice some messages regarding undeleted GDI objects. 
These messages result from a DLL-related bug in the Windows 
Debug Kernel. Ignore them. 

Accessing Resources 
The EX26A DLL and the EX26B client each contain diagnostic code that al­
lows you to see how the application framework finds resources. A string re­
source, IDS_TOO_MANY_ROWS (with value 3), is defined in both the DLL 
resource script and the client resource script. The string values are a little 
different, however, as shown here: 

Resource Script 

EX26A.RC EX26A: You have exceeded the storage capacity of the 
scrolling view 

EX26B.RC EX26B: You have exceeded the storage capacity of the 
scrolling view 

This difference allows you to see which resources were accessed. 
The CRow View constructor (located in \VCPP\EX26A \ROWVIEW. CPP) 

contains the following code: 

CString strReSi 

strRes.LoadString(IDS_TOO_MANY_ROWS) i 

TRACE(" r esource string = %s\n", (const char*) strRes)i 

#ifdef _AFXDLL 

HINSTANCE hInstResourceClient = AfxGetResourceHandle() i 

AfxSetResourceHandle(extensionDLL.hModule) i II uses client's 

II instance handle 

strRes. LoadString (IDS_TOO_MANY_ROWS) i 

TRACE("resource string = %s\n", (const char*) strRes)i 

AfxSetResourceHandle(hInstResourceClient) i II restores client's 

II instance handle 

#endif 

The first LoadStringcall exercises the class library resource search capability. 
Because the InitInstance function, in the client file EX26B.CPP, contains the 
following code: 

#ifdef _AFXDLL 

InitEx26aDLL(); 

#endif 

653 



PAR T I V: ADVANCED TOPICS 

654 

the first LoadString call uses the client's resource. If you remove the Init­
Ex26aDLL call, LoadStringfails, returning a null string. 

The second LoadString call above uses the DLL's resource. 
The CEx26bView constructor (located in \VCPP\EX26B\EX26BVW.CPP) 

contains the following code: 

CString strReSi 

strRes.LoadString(IDS_TOO_MANY_ROWS)i 

TRACE("resource string = %s\n", (const char*) strRes) i 

The LoadString call here always uses the client's resource, whether or not the 
InitEx26aDLL call is present. 



PAR T V 

APPENDIXES 





APPENDIX A 

A CRASH COURSE 
IN THE C++ LANGUAGE 

Have you ever started reading a C++ textbook and given up because there 
was too much detail and you weren't motivated? If so, this appendix is for 
you. It's based on an example that I used when I taught myself C++, but it's 
flavored by my experience learning the classes of Microsoft Foundation 
Class (MFC) Library version 2.5. It's not meant to be comprehensive, and 
each C++ expert will find something to complain about, but I think it serves 
well as a C++ crash course. 

As you read this appendix, you'll be hit straightaway by the essence of 
C++-classes and objects-and then you'll learn how to "wire" objects to­
gether to build an application. Important details are introduced as you need 
them, but I recommend that you keep a C++ textbook close at hand. The 
more you already know about C programming, the better. 

An Introduction to Classes and Objects 
The class is the language element that C++ programmers use to write modu­
lar, maintainable programs. This section teaches you how the class encapsu­
lates code and data. Later sections introduce two other C++ features you 
might have heard about: inheritance and polymorphism. 

Because classes and objects are such important C++ concepts, you must 
understand them thoroughly before proceeding. Understanding C's struct 
and typedef syntax will help you get started. 

User-Defined Types in C 
A C++ class declaration is an outgrowth of the C structure declaration. In C, 
the following code declares a structure with the name xy, but the compiler 
allocates no storage: 

657 



PAR TV: APPENDIXES 

struct xy { 
double x; 
double y; 

} ; 

Mter you declare the structure, you can use xy instances in your C code this 
way: 

struct xy top Left = { 0.0, 0.0 }; 
structxy bottomRight = { 1.0, 1.0 }; 
printf("topLeft = (%f, %f)\n", topLeft.x, topLeft.y); 
pri ntf ("bottomRi ght = (%f, %f) \n", bottomRi ght. x, bottomRi ght.y) ; 

If you use the C typedefsyntax, the code becomes a little cleaner: 

typedef struct xy { 
double x; 
double y; 

XV; 

The type definition XY now substitutes for the more awkward struct xy: 

XY top Left = { 0.0, 0.0 }; 
XY bottomRight = { 1.0, 1.0 }; 
printf("topLeft = (%f, %f)\n", topLeft.x, topLeft.y); 
pri ntf ("bottomRi ght = (%f, %f) \n", bottomRi ght. x, bottomRi ght.y) ; 

Instances of XY, such as topLeft and bottomRight, correspond to C++ ob­
jects. Each occupies storage on the stack, and you can get away with writing 
simple assignment statements such as 

bottomRight = topLeft; 

However, the C compiler doesn't understand statements such as 

bottomRight = topLeft + 1; 

Moving to C++ 

658 

Now let's recode the previous example in C++, using real classes and objects. 
Here's the simplest form of the class declaration: 

class XY { 
public: 

} ; 

double x; 
double y; 

The public keyword allows direct access to x and y, as though x and y were 
structure members. 



A P PEN D I X A: A Crash Course in the C++ Language 

Here's the code to make an XYobject: 

xv bottomRight; II an uninitialized object 
bottomRight.x = 1.0; 
bottomRight.y = 1.0; 
printf("bottomRight = (%f, %f)\n", bottomRight.x, bottomRight.y); 

The class elements x and y, called data members, were individually as­
signed values because, for most classes, the C++ compiler won't accept a 
statement such as 

xv bottomRight = { 1.0, 1.0 }; 

NOTE: The compiler does indeed accept the statement above 
for the simple XY class, but it won't accept it after you add the 
class's constructor, described in the following section. 

C++ has structures too, but I was well into my C++ career before I real­
ized that C++ structures were different from C structures. Instead of declar­
ing an XY class, you could declare a C++ XY structure like this: 

struct xv { 

} ; 

double x; 
double y; 

In C++ the only difference between a class and a structure is that structure 
members are, by default, public ally accessible. C++ structures can have mem­
ber functions (which you'll see later), and they can participate in C++ inheri­
tance (which you'll also see later). 

Constructors 
You've seen how awkward it is to initialize the data members of an XY object 
with assignment statements. As you'll see later, C++ classes, unlike C struc­
tures, can contain "member functions" as well as data members. Member 
functions have full access to all data members of the class. All C++ classes 
have one or more special member functions, called "constructors," that are 
called to initialize objects. If you don't specify a constructor function in your 
class definition, the compiler generates a "default" constructor with no argu­
ments. This default constructor calls the constructors for any C++ objects 
that are data members of the class. When the compiler generates a call to the 
default constructor, the compiler assigns storage for an object of the class 
but does not initialize values of built-in ~. Indeed, in the previous ex­
ample, the XY default constructor is <:alled in the function shown at the top 
of the following page: 

659 



PAR TV: APPENDIXES 

660 

void func() 
{ 

XY bottomRight; II XY object bottomRight constructed on the stack 
II x and y values are uninitialized 

NOT E : Many beginning C++ programmers try to call default 
constructors by writing code in this way: 

XY bottomRight(); II don't do this! 

The compiler interprets the statement as a forward declaration 
of a function named bottomRight that returns an object of type 
XV-clearly not the intended result. 

A reasonable "explicit" constructor for the XY class would take two 
double-precision arguments. Here is a newXY class declaration with this 
constructor added: 

class XY { 
public: 

double x, y; 
XY(double xarg, double yarg) {x = xarg; y = yarg; } 

} ; 

The constructor function name is always the same as the class name, 
and the constructor always returns nothing. In this example, the constructor 
is defined "inline," which means that the compiler directly substitutes the 
two assignment statements wherever the constructor is called. Now the previ­
ous example code becomes 

XY bottomRight(1.0, 1.0); II object named bottomRight of class XY 
printf("bottomRight = (%f, %f)\n", bottomRight.x, bottomRight.y); 

Yes, it's a little weird to write a function named XY and then to call it by the 
name bottomRight, but that'sjust the way C++ works. It makes sense if you con­
sider that, for the default constructor, the statement 

XY top Left ; 

is analogous to 

double x; 

Both result in the creation of an entity on the stack-a C++ object of class 
XY or standard type double. Now, with the two-argument constructor, the 
statement 

XY bottomRight(1.0, 1.0); 



A P PEN 0 I X A: A Crash Course in the C++ Language 

is a logical extension of 

XY bottomRight; 

Because you have written your own constructor, the compiler does not gener­
ate a default constructor. The compiler now rejects the statement 

XY bottomRight; 

If you write your own default (empty argument list) constructor that 
sets the data members to 0, the class declaration, with two constructors, looks 
like this: 

class XY 
public: 

} ; 

double x. y; 
XY() { x = 0.0; y = 0.0; } 
XY(double xarg. double yarg) {x = xarg; y = yarg;} 

Now two functions are called XY, a situation clearly not generally al­
lowed in C. The C++ compiler does permit multiple declarations and, fur­
thermore, can tell from the function call statement which version of XYO you 
want. Therefore, both of the following statements are legal in the same pro­
gram: 

XY topLeft; 
XY bottomRight(1.0. 1.0); 

Destructors 
No discussion of constructors would be complete without a companion dis­
cussion of "destructors." A destructor is another special C++ member func­
tion; its name is the class name preceded by a tilde (,..,). Each class has one 
and only one destructor function, and that function takes no arguments and 
returns nothing. The destructor is automatically called for any stack or glo­
bal object when that object goes out of scope. 

Even though we have no need for an explicit XY destructor, we'll write 
one anyway. This time, neither the constructors nor the destructor will be 
inline, so we can show off some new C++ notation. 

class XY { 
public: 

} ; 

double x. y; 
XY(); II default constructor 
XY(double xarg. double yarg); 
~XY(); II destructor 

(continued) 

661 



PAR TV: APPENDIXES 

XV: :XY() 
{ 

printf("XY default constructor called\n"); 
x = y = 0.0; 

XY::XY(double xarg, double yarg) 
{ 

printf("XY explicit constructor called\n"); 
x = xarg; 
y = yarg; 

XY: :-XY ( ) 
{ 

printf("XY destructor called\n"); 

Now for an explanation of the new notation: The tilde character preced­
ing the class name identifies the destructor and is part of the function name. 
The Xy.,: prefix, used for both the constructor and the destructor definitions, 
tells the compiler that a function is a member function of the XY class. 

If you made the following function call 

void func() { 
XY bottomRight(l.0, 1.0); 
printf("the x coordinate is: %5.1f\n", bottomRight.x); 

the output would be 

XY explicit constructor called 
the x coordinate is: 1.0 
XY destructor called 

Notice that the destructor is called automatically when the bottomRight object 
goes out of scope at the end of June's execution. 

If you don't write a destructor, the compiler generates a default destruc­
tor for you. For data members that are C++ objects, the default constructor 
calls those objects' destructors. When the compiler generates a call to a de­
structor for an object, the compiler generates code that releases storage oc-
cupied by that object. . 

Other Member Functions 

662 

You've seen the constructor and destructor .member functions, and you 
know that they're always present, even if the compiler has to generate them 
for you. You can also write your own special-purpose class member functions. 



A P PEN D I X A: A Crash Course in the C++ Language 

Suppose you need member functions that retrieve the x and y values of 
an XYobject. Here is the class declaration that includes the inline member 
functions Getx and Gety: 

class XY { 
public: 

} ; 

double x. y; 
XY ( ) ; 
XY(double xarg. double yarg); 
double Getx() const { return x; 
double Gety() const { return y; 

Getx and Gety can directly access all data members of their class functions, as 
can other member functions (including constructors and destructors). 

NOT E : The const modifier used with Getx and Gety indicates that 
these functions do not modify class data members. This means 
that the compiler rejects any statements inside these functions 
that write to data members. 

In the application code, assert is a CjC++ diagnostic macro that tests 
the given condition: 

XY bottomRight(1.0. 1.0); 
assert(bottomRight.Getx() == 1.0); 

The notation bottomRight. Getx() means "Call the Getx member function for 
the object bottomRight." That's all there is to it. 

NOTE: In Microsoft Foundation Class (MFC) Library version 
2.5 code, you'll see the MFC library ASSERT macro used instead of 
the CjC++ assert macro. 

Private vs. Public Class Members 
up to now, the x and y data members in our XY class have been "public" and 
thus accessible throughout the program, as they are in a C structure. C++ al­
lows a class's data to be hidden. If you designate a data member as "private," 
it is inaccessible outside the class; only class member functions can get at it. 

Now that the XY class has member functions that return the coordinate 
values, we can write a useful program that doesn't require direct access to 
any data members. Here is the new class declaration: 

class XY { 
private: 

double x. y; 

(continued) 

663 



PAR TV: APPENDIXES 

public: 

} ; 

XY(); 
XY(double xarg, double yarg); 
double Getx() const; 
double Gety() const; 

Class members are private by default, so technically we could eliminate the 
private keyword. The program is easier to read, however, if we leave it in. 

Now the same application code still works: 

XY bottomRight(1.0, 1.0); 
assert(bottomRight.Getx() == 1.0); 

But, outside the class, the compiler no longer accepts statements such as 

bottomRight.x = 1.0; 

The x data member is now private and accessible only through the Getx mem­
ber function. This clearly illustrates C++'s encapsulation feature. Encapsula­
tion is particularly useful in more complex classes, where a need exists for 
tight control over internal data access. 

Member functions can also be private. A private member function, 
sometimes called a "helper" function, isn't callable outside the class, but it is 
accessible to other member functions of the same class. As with any member 
function, a private member function can be named anything you want, even 
something like sqrt, because you know it won't conflict with other like-named 
functions, even global ones. 

Global Functions 

664 

Sometimes you need to write new class-related functions without changing 
the class declaration or writing a derived class. If, for example, you need a 
function Show that displays the values of the XY data members, you could 
write a global function such as this: 

void Show(XY xy) 
{ 

printf("x = %f, y = %f\n", xy.Getx(), xy.Gety(»; 

This technique works only when the existing class member functions 
provide all the necessary access to the data members (or if the data members 
are public). An alternative method is the friend function, described later, 
which does require a change to the XY class declaration. 

Even though Show is global, it won't conflict with other Show functions 
because the compiler matches the calls according to parameter types. 



A P PEN D I X A: A Crash Course in the C++ Language 

c++ Encapsulation-A Recap 
You've just learned about one of the big three C++ features: encapsulation. 
The data elements in the XY class example, x and y, are encapsulated with a 
set of useful functions that operate on them. The resulting XY class is a 
modular programming unit that, as you will see, you can use as a building 
block in an application. 

Inheritance and Polymorphism-An Example 
You're probably bored with the XY class by now, so let's move on to some­
thing out of this world. We'll create a two-dimensional simulation of the so­
lar system, adaptable to both video games and StarWars defense projects. 
This exercise in object-oriented design lets you relate C++ objects to physical 
entities. 

We want a computer program containing objects that represent heav­
enly bodies (such as planets and moons) and spaceships, that move in the 
sun's gravitational field. Ultimately we'd like to display the moving planets 
and spaceships on the screen, but we'll leave that as an exercise for the 
reader. 

The Orbiter Base Class and Virtual Functions 
An important step in object-oriented design, after initially identifying 
classes, is arranging the classes into a hierarchy with common functionality 
factored out to a "base class." In the solar system example, we define a base 
class Orbiter that has functionality common to both planets and spaceships. 
An orbiter is aware of Kepler's laws and thus knows how to move in the sun's 
gravitational field. 

Here's the first try at an Orbiter class declaration: 

cl ass Orbiter { 
private: II data members 

double m_mass; II 'm_' is the prefix convention for data members 
XY m_current, m_prior, m_thrust; 

public: II member functions 

} ; 

Orbiter(XY current, XY prior, double mass); II constructor 
XY GetPosition() const; 
void Fly(); 

Notice your old friend the XY class. Objects of class XY represent sun­
based position coordinates that are "embedded" within an Orbiter object, as is 
the standard type m_mass. 

665 



PAR TV: APPENDIXES 

666 

The GetPosition member function returns an object of class XY that cor­
responds to the orbiter's current position. (Later you'll learn how references 
make this process more efficient.) The Fly member function (not shown) 
applies a formula to the current and prior coordinate values, thus moving 
the orbiter through space. On the next iteration, the new prior coordinates 
are set to this iteration's current coordinates. 

The m_thrust data member is included in the Orbiter class, even though 
planets don't have thrust, because the Fly member function needs thrust 
for its calculations, and we want a single general Fly function. For planets, 
m_thrust is always (0, 0). 

Before we can "derive" the planet and spaceship classes from Orbiter, we 
must fix a few things. First, if the Orbiter data members are all private, they 
will be totally inaccessible to the derived classes. The C++ protected keyword 
allows a derived class to access base-class data members. 

Next we need a member function that displays an orbiter. This Display 
function must be implemented differently for each derived Orbiter class be­
cause, for example, spaceships look different from planets. The C++ keyword 
virtual in the base-class declaration identifies Display as a function of this spe­
cial category. Here is the new class declaration: 

cl ass Orbiter { 
protected: 

double m_mass; 
XY m_current, m_prior, m_thrust; 

public: 

} ; 

Orbiter(XY current, XY prior, double mass) { 
m_current = current; 
m_prior = prior; 
m_mass = mass; 

XY GetPosition() const; 
void Fly(); 
virtual void Display() const; 

Now, if you have an array of orbiters, including planets, spaceships, and 
other space junk, you call the Fly function to update positions, and you call 
Display to show the objects on the screen. You call the same Fly function for 
each object, but which Display function you call depends on the object's 
class. The use of the virtual Display function illustrates the C++ polymor­
phism feature. 

The following example assumes that orbiter Array contains pointers to a 
mixture of objects of classes derived from Orbiter: 



A P PEN D I X A: A Crash Course in the C++ Language 

extern Orbiter* orbiterArray[]: 
for(int i = 0: i < MAX: i++) { 

orbiterArray[i]-)Fly(): 
orbiterArray[i]-)Display(); 

} 

This example uses pointers to Orbiter objects rather than the objects them­
selves. You'll see more object pointer usage later. 

Pure Virtual Functions 
In the example above, a program could construct objects of class Orbiter, but 
that doesn't make sense because an orbiter is an abstract concept. You can 
prevent construction of Orbiter base-class objects by declaring one or more 
functions as "pure virtual" with this syntax: 

virtual void Display() const = 0: II '= 0' means pure virtual 

N ow Orbiter is officially an "abstract base class," and the compiler forces all 
derived classes (which are used for constructing objects) to provide imple­
mentations of the Display member function. 

Derived Classes 
We'll be writing two classes derived from Orbiter: Planet and Spaceship. The 
Planet derived class isn't very interesting. Perhaps all it needs is its own Display 
function and, of course, a constructor. Here's the declaration: 

class Planet: public Orbiter { 
public: 

} : 

Planet(XY current, XY prior, double mass) 
Orbiter(current, prior, mass) {} 

void Display() const: 

The first line says that the Planet class is publicly derived from the Orbiter 
class. Any derived class inherits all the data members and member functions 
(except constructors and destructors) of its base class. For a publicly derived 
class, inherited public base-class members are public, and inherited pro­
tected base-class members are protected. All the derived classes in this book 
are publicly derived. 

The colon (:) notation in the Planet class constructor declaration 
means that the base-class (Orbiter) constructor is called first to make the Or­
biter component of the Planet object. Any Planet-specific code (nothing, in 
this case) is then executed. Actually, all the memory for both the base-class 
and the derived-class data members is allocated prior to execution of any 
constructor code. 

667 



PAR TV: APPENDIXES 

NOT E : If you had not included the Orbiter constructor as part of 
the Planet constructor, the compiler would have rejected the state­
ment. Why? The compiler would have tried to use a default Orbiter 
constructor, but, because you had declared only an explicit three­
argument Orbiter constructor, the compiler would have given up. 

The Spaceship class is more complex than the Planet class because it has 
its own data members and a new member function: 

class Spaceship: public Orbiter { 
private: 

double m_fuel; 
XY m_orientation; 

public: 

} ; 

Spaceship(XY current. XY prior. XY thrust. double mass. 
double fuel. XY orientation) 

Orbiter(current. prior. mass) { 
m_fuel = fuel; 
m_orientation = orientation; 
m_thrust = thrust; II m_thrust is an Orbiter data member 

void Display() const; 
void FireThrusters(); 

Now you must provide constructor code to initialize the spaceship-specific 
data members. 

Virtual Functions Called in Base Classes 
You've seen the virtual Display function called for elements of an Orbiter ob­
ject array. Virtual functions can be called in a base class as well as from out­
side the class. Suppose that the Orbiter::Fly function needs to compute 
angular momentum and that this computation is specific to the derived 
class. If the Orbiter class contains the following declaration 

protected: 
virtual XY GetAngularMomentum() const = 0; 

then derived classes are obliged to provide override functions. 

Embedded Objects 

668 

What about the XY objects embedded in the Planet and Spaceship objects? 
When are they constructed? Here things get complicated, but you must un­
derstand the process to prepare yourself for the more complex C++ class 



A P PEN D I X A: A Crash Course in the C++ Language 

interrelationships you'll see in MFC library programming. Before you go any 
further, however, you need to know about copy constructors and assignment 
operators. 

Copy Constructors 
Like the default constructor, the copy constructor is a class member function 
that the compiler often generates. Indeed, the compiler frequently gener­
ates invisible calls to the copy constructor, sometimes where you least expect 
them. 

The purpose of the copy constructor is to make a new object of the 
same class from an existing object that is passed as an argument. An in line 
copy constructor for the XY class looks like this: 

XY(const XY& xy) { 
x = xy.x; 
y = xy.y; 

NOT E : The const modifier indicates that the function does not 
modify the values referenced by the xy parameter. The absence of 
const would alert you to the possibility that the function might in­
deed modify the values. 

If you don't define a copy constructor for a class, the compiler gener­
ates one for you that simply does a memberwise copy of all the object's data. 
(The compiler can safely optimize this to a bitwise copy when appropriate.) 
Because the XY class is so simple, the default copy constructor is sufficient. 
For more complex classes, such as those that require memory allocation or 
other special processing, the default copy constructor isn't sufficient. It's 
good practice to write copy constructors for all but the most trivial classes. 

The notation const XY& that you saw earlier in the Orbiter class declara­
tion is a C++ reference, and its use is required in copy constructors. The com­
piler passes the address of the XY object as an argument to the XY copy 
constructor rather than passing a copy of the object itself. It's like passing a 
pointer, but the notation is cleaner. You'll see references again, and you'll 
learn why they're more than a pointer substitute. 

An obvious use for a compiler-generated copy constructor call is in 
code such as the following example: 

XY alpha(l.0, 2.0); 
XY beta = alpha; 
XY gamma(alpha); II same result as preceding statement 

669 



PAR TV: APPENDIXES 

Here two new XY objects, beta and gamma, are constructed from the existing 
object alpha. 

Less obvious is the copy constructor call in the following sequence: 

void func(XY xy); 
XY alpha(2.0. 3.0); 
func(alpha); 

Here the alpha object is constructed on the calling program's stack using the 
explicit constructor, and then the copy constructor is called to copy the alpha 
object to the argument list for Junc. 

Assignment Operators 

670 

The assignment operator is a lot like a copy constructor except that it oper­
ates on an existing object rather than creating a new object. The compiler 
generates default assignment operators, and it generates calls to them. The 
assignment operator is an example of a C++ overloaded operator, which 
you'll learn more about later in this appendix. You need to understand the 
use of assignment operators now, however. 

If you were to write your own inline assignment operator for the XY 
class, it would look like this: 

const XY& operator=(const XY& xy) { II uses references 
x = xy. x ; 1/ cop i est h e val u e s 
y = xy.y; 
return *this; 

NOT E: The returned XY reference permits assignment opera­
tors to be "chained," as in the statement 

xyl = xy2 = XY(0.0. 0.0); 

The first const modifier indicates that the result of the assign­
ment can be used only where a const parameter is specified. If 
ClearContents is declared as a non-const XY member function, the 
compiler rejects this statement: 

(xyl = xy2).ClearContents(); 

. but the compiler accepts the statement 

(xyl = xy2).Getx(); 

because Getx is declared a const function. (See also the section 
titled "Use of the this Pointer," later in this appendix.) 



A P PEN D I X A: A Crash Course in the C++ Language 

This code illustrates an obvious use of the assignment operator: 

XY alpha(l.0. 2.0); 
XY beta(3.0. 4.0); 
beta = alpha; 

Here the contents of alpha are copied to beta, overwriting the latter's previ­
ous contents. 

Here's another example: 

class Container 
private: 

XY m_point; 
public: 

Container(XY pOint) { m_point = point; } 
} ; 

When an object of class Container is constructed, the XY default con­
structor is called to make an m_point object before the body of the Container 
constructor is executed. The assignment statement 

m_point = point; 

triggers a call to the XY assignment operator. 
The compiler-generated default assignment operator does a member­

wise copy of all the object's data, and that's sufficient for the XY class. Plan to 
write your own assignment operators for more complex classes. 

Reference Parameters: const vs. non-const 
Remember that reference parameters are just disguised pointer parameters. 
If you see a reference parameter in a function declaration, you can assume 
the programmer used it for one of two reasons. Perhaps the function uses 
the parameter to change a variable in the calling program, or possibly the 
programmer wanted to avoid copying a large object onto the function's call 
stack. Fortunately, there's an easy way to determine the real reason. In the 
first case, the reference will be non-const, and in the second case, the refer­
ence will be const. 

Consider the following global function: 

void TimesTwo(XY& xy) { xy.x *= 2.0; xy.y *= 2.0; }-

and its usage: 

XY pos(l.0. 2.0); 
TimesTwo(pos); 
assert{pos.x == 2.0 && pos.y 4.0) ; 

671 



PAR TV: APPENDIXES 

Here the function TimesTwo definitely changes the value of its non-const pa­
rameter. Some would argue that this parameter usage violates C++ encapsu­
lation-a member function would be more correct. Naturally, the x and y 
data members must be public, or TimesTwo must be a friend of the class. 

Now let's see the usage of a const reference parameter. We'll revisit the 
global Show function and make it more efficient: 

void Show(const XY& xy) 
printf("x = %f, y = %f\n", xy.Getx(), xy.Gety()); 

Show now cannot change the value of the XY object in the calling program. 
Not only does a statement (inside Show) such as 

xy.x = 5.0; 

generate a compile error, the statement also causes any calls to non-const XY 
member functions to generate errors. Calling Getx and Gety would be illegal 
unless we had the foresight to declare Getx and Gety as const functions (which 
we did). Getx and Gety promise not to change the object, so it's OK to call 
them for a const XY reference. 

c++ References At Work 

672 

The following application code constructs our home planet: 

XY current(100.0, 200.0); II constructs current XY coordinate pair 
XY prior(100.1, 200.1); II constructs prior XY coordinate pair 
Planet earth(current, prior, 1.0E+10); II constructs Earth object 

If you use the following versions of the class declarations that you've al­
ready seen: 

class XY { 
public: 

double x, y; 
XY() { x = 0.0; Y = 0.0; } 
XY(double xarg, double yarg) 

{ x = xarg; y = yarg; } 
XY(const XY& xy) 

x = xy.x; 
y = xy.y; 

II default constructor 
II explicit constructor 

II copy constructor 

const XY& operator=(const XY& xy) { II assignment operator 
x = xy.x; 
y = xy.y; 



A P PEN 0 I X A: A Crash Course in the C++ Language 

return *this: 

} : 

cl ass Orbiter { 
protected: 

double m_mass: 
XY m_current. m_prior. m_thrust: 

public: 

} : 

Orbiter(XY current. XY prior. double mass) { 
m_current = current; 
m_prior = prior: 
m_mass = mass: 

XY GetPosition() const: 
void Fly(): 
virtual void Display() = 0: 

class Planet: public Orbiter { 
public: 

} : 

Planet(XY current. XY prior. double mass) 
: Orbiter(current. prior. mass) { } 

void Display(): 

the following sequence of XY constructor calls is necessary to make an object 
named earth: 

1. The explicit XY constructor creates current and prior objects on the 
stack. 

2. The XY copy constructor copies the current and prior objects to the 
Planet constructor's argument list. 

3. The XY copy constructor copies the current and prior objects from 
the Planet constructor's argument list to the Orbiter constructor's 
argument list. 

4. The XY default constructor (required) creates m_current and 
m_prior members and initializes them to (0,0). 

5. The XYassignment operator copies the current and prior objects 
from the Orbiter constructor's argument list to the corresponding 
data members. 

673 



PA R TV: APPENDIXES 

674 

Wow! That's a lot of construction! For efficiency's sake, we'll rearrange 
the Orbiter and Planet code, particularly that of the constructors: 

class Orbiter { 
protected: 

double m_mass: 
XY m_current. m_prior. m_thrust: 

public: 

} : 

Orbiter(XY& current. XY& prior. double mass) 
: m_current(current). m_prior(prior). m_mass(mass) { } 

const XY& GetPosition() const: 
void Fly(): 
virtual void Display() = 0: 

class Planet: public Orbiter { 
public: 

} : 

II copy constructor and assignment operator not shown 
Planet(XY& current. XY& prior. double mass) 

: Orbiter(current. prior. mass) { } 
void Display(): 

You'll notice that the Orbiter and Planet constructors use XY references now. 
Also, the Orbiter constructor is quite different. We've dropped the statements 

m_current = current: 
m_prior = prior: 
m_mass = mass: 

and substituted the clause 

m_current(current). m_prior(prior). m_mass(mass) { } 

NOTE: C++ allows the function syntax m_mass(mass) even 
though m_mass is a data member of a built-in data type (double). 

Now, instead of generating two calls to the XY default constructor and 
two calls to the assignment operator, the compiler simply generates two calls 
to the XY copy constructor ahead of the mass assignment (in the Orbiter con­
structor body). This should give you some insight into the real meaning of 
the constructor colon syntax: The statements after the colon, including (but 
not limited to) calls to the base class and contained object constructors, are 
executed before the constructor body. 

For variety's sake, we'll rewrite the "create Earth" code as follows: 

Planet earth(XY(100.00. 200.00). XY(100.01. 200.01). 1.0E+10): 



A P PEN D I X A: A Crash Course in the C++ Language 

Here you see another variation of constructor call syntax for the two XYob­
jects. Now the XY constructor calls for planet Earth are as follows: 

1. Temporary current and prior objects are constructed in the 
constructor's argument list with the explicit XY constructor. 

2. The m_current and m_prior objects are constructed, with the XY 
copy constructor, from the objects from step 1. Those objects were 
passed all the way down to the Orbiter constructor as references, 
thereby avoiding extra copy operations. 

Returning References 
A function can return a reference, which is equivalent to returning a pointer, 
and these references can be const or non-const. Here's a new version of Getx 
that returns a const reference to an XY object: 

const double& XY::GetConstRefx() const { return x; } 

The GetConstRefx function can be used on the right side of an assignment 
statement but, because the reference is const, not on the left side. Thus the 
statement 

topLeft.GetConstRefx() = 3.0; II top Left is an object of class XY 

causes a compiler error. If you removed the const keyword from the refer­
ence, the statement would be allowed, and you could use the function to 
modify the state of the topLeft object. 

In both cases, the m_thrust embedded object is constructed with the de-
fault XY constructor, which sets both the x and y components to O. 

NOT E: If you write a C++ function that returns a reference, you 
could end up making the same mistake that beginning C pro­
grammers often make. Here's the classic C example: 

double *GetNumber() 
{ 

double result = (double) rand() I (double) RAND_MAX; 
return &result; 1* don't do this *1 

The function returns a pointer to stack memory that will be 
used for something else after the function returns. 

675 



PAR TV: APPENDIXES 

Here's the C++ equivalent with a reference: 

double& GetNumber() 
{ 

double result = (double) rand() I (double) RAND_MAX; 
return result; II don't do this either 

It's just as wrong as the C example because the compiler is 
still returning a pointer to a temporary variable. 

Construction of Embedded Objects-A Summary 
You've seen the construction sequence for a Planet object. The Spaceship class is 
more interesting because both the Orbiter and Spaceship classes have their own 
embedded objects. Here's the construction sequence for a Spaceship object: 

1. The compiler already knows how much total memory a Spaceship 
object (including all embedded objects) requires, so that amount 
of memory is allocated. 

2. The m_current, m_prior, and m_thrust embedded objects are 
constructed. 

3. The Orbiter constructor function is called. 

4. The m_orientation embedded object is constructed. 

5. The Spaceship constructor function is called. 

The class design and initial Spaceship constructor call determine exactly 
which constructors (default, explicit, or copy) are called, but the list above is 
an accurate summary. 

Destruction of Embedded Objects 

676 

Consider what happens when an object of class Spaceship is destroyed. The 
Spaceship class is interesting because it's a derived class with embedded ob­
jects defined both in the base class and in the derived class. Here's the se­
quence of events: 

1. The compiler-generated Spaceship destructor is called. 

2. The m_orientation embedded object is destroyed. 

3. The compiler-generated Orbiter destructor is called. 



A P PEN 0 I X A: A Crash Course in the C++ Language 

4. The m_current, m_prior, and m_thrust embedded objects are destroyed. 

5. The memory allocated for the Spaceship object is freed. 

Notice that this destruction sequence is the exact opposite of the construc­
tion sequence. 

Allocation of Objects on the Heap 
So far, all objects have been allocated on the stack, and, except for the virtual 
Display function, the objects have been referenced directly. You'll recall that 
stack objects are destroyed when they go out of scope. As you do in C with 
the help of the run-time library, when you program in c++ you allocate ob­
jects on the heap so that their memory remains in use until you specifically 
free it. You keep track of heap objects with pointers. 

The C++ new and delete Operators 
The operators new and delete are roughly equivalent to the C malloc and free 
functions. You can use new to allocate raw storage this way: 

char* pCommBuffer = new char[4096]; 

More often, however, you'll use new to construct objects on the heap 
this way: 

Planet* pEarth = new Planet(XY(100.0, 200.0), XY(100.1, 200.1), 
1.0E+10); 

The variable pEarth contains the address of an object of class Planet and is 
thus a pointer. Note that the constructor syntax for heap allocation is differ­
ent from the syntax for stack allocation. 

To get rid of pEarth, simply call the Planet destructor this way: 

delete pEarth; 

All the contained objects are destroyed, as they are when a stack-allocated 
Planet object goes out of scope. 

Referring to Objects Through Pointers 
You can see that pointers go hand in hand with heap-allocated objects. You 
could use pointers to stack objects, but then you'd be vulnerable to a com­
mon programming error-the use of a pointer to an object that has gone 
out of scope. 

677 



PAR TV: APPENDIXES 

678 



A P PEN 0 I X A: A Crash Course in the C++ Language 

Once you have a pointer to an object, you can call its class member 
functions using this convenient notation: 

pEarth-)Fly() ; 

Pointers are necessary if you want to reference objects polymorphically. For 
example, you could construct an object of class Planet, but you would store its 
pointer as an Orbiter pointer this way: 

Orbiter* pAny = new Planet(XY(100.0. 200.0). XY(100.1. 200.1). 1.0E+10); 

C++ allows this conversion because the Planet class is derived from Orbiter. 
You could not convert an Orbiter pointer to a Planet pointer without a specific 
(and dangerous) cast operator. 

Now you can call Orbiter virtual functions this way: 

pAny-)Display(); 

At run time, the Display function of the Planet class is called because a com­
piler-generated structure (called a ''vtbl'') maps pAny to the correct function 
in the Planet class. 

Virtual Destructors 
Be aware that destructors are not inherited, that the compiler generates a 
default destructor for each class if you do not explicitly write one, and that a 
derived-class destructor always calls its base-class destructor. What if you had 
a pointer to an object of an unknown class derived from Orbiter and you 
wanted to destroy that object? If you called the Orbiter default destructor, it 
would destroy only those object elements specified by the Orbiter class itself. 
Suppose you constructed a Spaceship object on the heap, assigned its address 
to an Orbiter pointer, and then deleted the pointer like this: 

Orbiter* pAny = new Spaceship(current. prior. thrust. mass. 
fuel. orientation); 

delete pAny; 

The Spaceship object's deletion would be incomplete. In particular, the de­
structor for the XY object m_orientation would not be called. 

How do you solve this problem? You declare a "virtual destructor" for 
the Orbiter class: 

virtual ~Orbiter() { } 

You don't need any code or declarations for derived-class destructors unless 
you're not satisfied with the compiler-generated defaults. 

If you repeat the previous example now, the statement 

delete pAny; 

679 



PAR TV: APPENDIXES 

calls the proper derived-class destructor, in this case the destructor for class 
Spaceship, which first destroys all elements particular to spaceships, including 
m_orientation, and then calls the Orbiter destructor. 

Allocation of Global Objects 
You've seen stack objects, heap objects, and objects contained in other ob­
jects. Global objects are constructed before your main program is called, and 
they are destroyed after the main program exits. Like global variables, global 
objects are accessible to all functions in your program. 

Suppose you have encapsulated all the Microsoft non-Windows graph­
ics functions (declared in GRAPH.H) in a C++ class called GraphScreen. The 
program skeleton would look like this: 

class GraphScreen 
private: 

II misc. data 
public: 

members 

GraphScreen(); II constructor that initializes the display for 
II graphics 

} ; 

~GraphScreen(); II destructor that resets the screen back to 
II text mode 

void MoveTo(int x, int y); 
void LineTo(int x. int y); 
II more member'functions 

GraphScreen screen; II a single global screen object 

v 0 i d rna in () { 
screen.MoveTo(100, 200); 
screen.LineTo(200, 200); II draws a line from (100, 200) to 

I I (200, 200) 

Because the GraphScreen constructor is called before main, it can do any nec­
essary video mode initialization. Because the destructor is called automati­
cally after main exits, it can reset the video. 

Object Interrelationships-Pointer Data Members 

680 

You'll recall that the Planet class provided for several embedded XY objects. 
Because an XY object is only 16 bytes long, and because these objects are 
not shared among Planet objects, it's reasonable to make them embedded 



A P PEN 0 I X A: A Crash Course in the C++ Language 

objects. A benefit of this arrangement is the automatic destruction of all 
XY objects when the Planet object is destroyed. A restriction is that the com­
piler must see the XY class declaration before the Planet class declaration. 

What if you want to establish a relationship between two existing ob­
jects? Suppose your universe contains moqns, in addition to planets and 
spaceships, and you want to associate each ~~on to its planet. Our moon has 
little effect on the motion of the Earth around the sun, but the Earth pro­
foundly affects the moon's motion. The Earth has only one moon, but other 
planets have several moons. It makes sense, then, for the Moon class to have a 
Planet pointer data member, as shown below: 

class Planet; 

class Moon: public Orbiter { 
private: 

Planet* m_pPlanet; II pointer to associated Planet object 
public: 

Moon(XY& current, XY& prior, double mass, Planet* pPlanet) 
: Orbiter(current, prior, mass), m_pPlanet(pPlanet) { } 

void Display() const { } II necessary because Display is pure 
vi rtua 1 

Planet* GetPlanet() const { return m_pPlanet; } 
void SetPlanet(const Planet* pPlanet) {m_pPlanet pPlanet;} 

} ; 

The Moon constructor takes a Planet pointer as an argument. The 
GetPlanet and SetPlanet member functions allow access to the pointer. Notice 
that the compiler doesn't have to see the complete Planet class declaration 
prior to the Moon declaration. The forward declaration 

class Planet; 

is sufficient because the compiler merely has to reserve space for a pointer, 
and all object pointers are the same size. The size of the Moon object itself is 
of no consequence. 

Now, when you construct a Moon object, you must include a Planet ob­
ject pointer in the constructor call: 

Planet* pEarth = new Planet(XY(100.00, 200.00), 
XY(100.01, 200.01), 1.0E+10); 

Moon* pMoon = new Moon(XY(100.10, 200.10), 
XY(100.11, 200.11), 1.0E+10, pEarth); 

Please be careful when deleting interrelated objects. If, in this example, 
you deleted the earth object, your program would crash ifit continued to use 
the dependent Moon object. 

681 



PAR TV: APPENDIXES 

NOT E : The addition of moons to the solar system seriously 
complicates the Orbiter::Fly function. Now an Orbiter object's state 
is no longer solely dependent on current and prior sun-based co­
ordinates. We must make Fly a virtual function with a special ver­
sion for moons, of we must rewrite Fly to process gravitational 
in teractions amo~g all heavenly bodies. 

Use of the this Pointer 
The C++ language provides a self-reference syntax that allows a program to 
obtain a pointer to the current object. This pointer, denoted by the keyword 
this, can be used as a function call parameter, and it can be returned by a 
member function or an overloaded operator. In the following example, a 
Planet class member function connects to a specified Moon object: 

void Planet::ConnectToMoon(Moon* pMoon) { 
pMoon-)SetPlanet(this); II this planet object 

References to Pointers 

682 

Most C++ textbooks explain references and illustrate pointer usage. Few, 
however, give good examples of references to pointers, a feature used in 
some MFC library classes. You've already seen the separate Moon class mem­
ber functions SetPlanet and GetPlanet. You can combine these two functions 
into one easy-to-use function like this: 

Planet*& Moon::GetPlanet() { return m_pPlanet; } 

The returned reference to a pointer is, in effect, a double pointer; there­
fore, you can place GetPlanet on either the right or the left of an assignment 
statement: 

XV xyII, xy12, xy2I, xy22, xy3I, xy32; 
double massI, mass2, mass3; 

Planet* pEarth = new Planet(xyll, xy12, massI); 
Planet* pMars = new Planet(xy21, xy22, mass2); 
Moon* pMoon = new Moon(xy31, xy32, mass3. pEarth); 
assert(pMoon->GetPlanet() == pEarth); II rvalue 
pMoon-)GetPlanet() = pMars; II lvalue 
assert(pMoon-)GetPlanet() == pMars); II rvalue 



A P PEN 0 I X A: A Crash Course in the C++ Language 

If you're confused, consider the more C-like equivalent notation: 

Planet** Moon::GetPlanetC) { return &m_pPlanet; } 

*CpMoon->GetPlanetC» = pMars; 

Does that make it any better? 
In the MFC library classes, the declaration 

Planet~& Moon::GetPlanetC); 

is often paired with the declaration 

Planet* Moon::GetPlanetC) const; 

This second overloaded variation allows GetPlanet to be used (on the right 
side of an assignment statement) with const pointers to Planet objects. The 
following example shows use of the const variation of GetPlanet: 

const Moon* cpMoon = new MoonCxyl. xy2. mass. pEarth); 
Planet* pPlanet = cpMoon->GetPlanetC); 

The compiler will not accept the second statement unless the second 
GetPlanet declaration is present. For more information on const pointers, re­
fer to a C++ textbook. 

Friend Classes and Friend Functions 
Sometimes two classes are closely related, and the C++ "friendship" feature 
can formalize this relationship. Class friendship is similar to human friend­
ship. For example, you are free to declare yourself a friend to the president 
of the United States, but that doesn't give you the right to show up at the 
White House for dinner. If, on the other hand, the president declares you a 
friend, chances are you can drop by any time, as long as you bring a cam­
paign contribution. 

Friend Classes 
Moving from Washington, D.C., out to space for a minute, it would be handy 
if Moon objects could directly access Planet data members, particularly the 
planet'S mass and current position. This is possible only if the Planet class is 
declared a friend to class Moon like this: 

class Planet: public Orbiter { 
friend class Moon; II no prior declaration required 

public: 
II constructors and other member functions 

} ; 

683 



PAR TV: APPENDIXES 

N ow the following code is allowed in all Moon class member functions: 

double Moon::MassProduct() { 
return GetPlanet()->m_mass * m_mass; II planet's mass * moon's mass 

You could restrict friendship to the MassProduct member function like this: 

class Planet: public Orbiter { 
friend double Moon::MassProduct(); 

public: 
II constructors and other member functions 

} ; 

Global Friend Functions 

684 

Suppose, in a particular application, that the XY class represents a vector and 
that you need the tangent of the vector's angle. You could write an ordinary 
tan member function as follows: 

double XY::tan() { 
if (y != 0.0) { 

return x I y; 

else { 
return 0.0; 

} 

You could then call tan as you would any class member function: 

XY vector(I.0, 1.0); 
double result = vector.tan(); 

If you want a more familiar calling syntax, however, you can declare tan 
as a global friend function to class XYas follows: 

class XY { 
friend double tan(const XY& xy); 

private: 
double x, y; 

public: 
II constructors, etc. 

} ; 

double tan(const XY& xy) { 
if (xy.y != 0.0) { 

return xy.x I xy.y; 



A P PEN D I X A: A Crash Course in the C++ Language 

else { 
return 0.0; 

You now call the new tan function like this: 

XY vector(I.0. 1.0); 
double result = tan(vector); 

There won't be a conflict with the standard library tan functions because the 
compiler selects the proper function by looking at the parameter types. 

Static Class Members 
What if you needed a count of all currently active space orbiters? You could 
define a global variable, but that would compromise encapsulation. C++ pro­
vides static data members and static member functions that are associated 
with a class rather than with any specific object. 

Static Data Members 
Here's the Orbiter class declaration with a static integer data member, nCount: 

class Orbiter { 
protected: 

double m_mass; 
XY m_current. m_prior. m_thrust; 

public: 

} ; 

static int nCount; 
Orbiter(XY& current. XY& prior. double mass); 
const XY& GetPosition() const; 
void Fly(); 
virtual void Display() const = 0; 

There will be only one copy of nCount, no matter how many orbiter ob­
jects there are. The class declaration above declares the class, but it doesn't 
reserve memory for nCount. You must write your own global definition code, 
to appear only once in the link, similar to the following: 

int Orbiter::nCount = 0; II initialization is optional 

Because the variable is declared public, you can use it in your program like 
this: 

Orbiter::nCount++; 

685 



., 
PAR TV: APPENDIXES 

Of course, if you access nCount inside an Orbiter member function, such as a 
constructor, you can omit Orbiter::. 

If you declare a constant static data member like this: 

static const int nMaxCount; 

you can still initialize it globally like this: 

const int Orbiter::nMaxCount = 256; 

Enumerated Types-A Static Data Member Shortcut 
If your class needs a constant static integer, you can use a shortcut that avoids 
a separate initialization statement. You simply place an enum statement in 
your class declaration like this: 

enum { nMaxCount = 256 }; 

Static Member Functions 

686 

If the static Orbiter data member nCount were private, you would need a static 
member function to access it. If you define a public function Count that re­
turns a reference to an integer, you can use it on either side of an assignment 
statement: 

public: 
static int& Count() { return nCount; } 

Here's some code that uses the new Count function: 

int nOldCount = Orbiter::Count()++; 
int nNewCount = Orbiter::Count(); 
assert(nNewCount == nOldCount + 1); 

A more interesting use of static class member functions is the construc­
tion of objects. Suppose you need to construct a new orbiting object but you 
don't know until run time which derived Orbiter class you want. Here's a static 
construction function that uses a switch statement to choose the object class: 

static Orbiter* Orbiter::MakeNew(int selection. XY& current. XY& pri~r. 

switch (selection) { 
case 0: 

double mass. XY& thrust. double fuel. 
XY& orientation. Planet* pPlanet) 

return new Planet(current. prior. mass); 
case 1: 

return new Spaceship(current. prior. thrust. mass. fuel. 
orientation); 



A P PEN D I X A: A Crash Course in the C++ Language 

case 2: 
return new Moon(current, prior, mass, pPlanet): 

default: 
return NULL: 

Now you can fill up an array of Orbiter pointers: 

Orbiter* pOrbiterArray[MAX] 
XY current, prior, thrust, orientation: 
double mass, fuel: 
Planet* pPlanet: 

for (int i = 0: i < MAX: i++) { 

} 

pOrbiterArray[i] = Orbiter::MakeNew(i % 3, current, prior, mass, 
thrust, fuel, orientation, 
pPlanet): 

Once you stuff the Planet, Spaceship, and Moon pointers into the Orbiter 
pointer array, how do you ever sort out which is which? Of course, you don't 
need to know the class if you simply call Fly and Display and then destroy the 
objects. If you do need to know the class, C++ doesn't help much. You could, 
of course, add an Orbiter data member and associated access functions that 
indicate the class. As you'll see in MFC code, the MFC library's run-time class 
mechanism lets you determine an object's class at run time. 

Overloaded Operators 
You might not write many overloaded operators in the early stages of class li­
brary programming, but you will certainly use the ones that class libraries 
provide. The more you know about writing overloaded operators, though, 
the easier it will be to use them. 

Overloaded operators are useful because they can make C++ applica­
tion code easier to write and read, but some programmers get carried away. 
Use overloaded operators only when their meanings are intuitive and natu­
ral. After all, they are nothing but substitutes for member function calls, and 
sometimes member function calls make more sense. 

Member Function Operators 
Many overloaded operators are implemented as class member functions. In 
this appendix's examples, XY objects are mostly xy-coordinate pairs, and the 
obvious thing to do with coordinate pairs is to add and subtract them. At the 
top of the following page is the code for the add and subtract operators: 

687 



PAR TV: APPENDIXES 

688 

XY XY::operator +(const XY& xy) const { II add 
return XY(x + xy.x, y + xy.y); 

XY XY::operator -(const XY& xy) const { II subtract 
return XY(x - xy.x, y - xy.y); 

(The declarations are shown in the section titled "Separating Class Declara­
tions from Code," later in this chapter.) 

Notice the use of references. For the XY class, with its small-size objects, 
you could get away without the references, but you've already seen how refer­
ences make the code more efficient, and you've seen that they're required 
for assignment operators. 

N ow you use the + operator like this: 

XY xy1(1.0, 2.0), xy2(3.0, 4.0); 
XY xy3 = xy1 + xy2; II should be (4.0, 6.0) 

That was easy. What about some more operators? The unary minus is 
another useful one; Notice that it doesn't have an argument. 

XY XY::operator -() const II unary minus 
return XY( -x, -y); 

What about the multiply operator? It doesn't make sense to multiply 
one coordinate pair by another, but you can multiply a coordinate pair by a 
scalar. Here's the code for the * and *= operators: 

XY operator *(double mult) { II scalar multiply 
return XY(x * mult, y * mult); 

const XY& operator *=(const double mult) { 
x *= mult; 
y *= mult; 
return *this; 

And here's the application code: 

XY xy1(1.0, 2.0); 
XY xy2 = xy1 * 3.0; II should be (3.0, 6.0) 
xy2 *= 2.0; II should be (6.0, 12.0) 

And now for something a little more difficult. In the Spaceship class, you 
might have noticed an XY data member called m_orientation. This isn't really 
a coordinate pair but a representation of an angle. (There's a possible case 



A P PEN D I X A: A Crash Course in the C++ Language 

for a derived XY class here.) You could, of course, represent an angle by a 
scalar radian or a degree value, but subsequent math is easier if you store the 
angle as a cosine/sine pair. We'll now expropriate the C++ right-shift and left­
shift operators and make them rotation operators for XY objects: 

XY operator »(const XY& xy) const II rotate coslsin pair plus 
return XY(x * xy.x - y * xy.y, y * xy.x + x * xy.y); 

XY operator «(const XY& xy) const { II rotate coslsin pair minus 
return XY(x * xy.x + Y * xy.y, Y * xy.x - x * xy.y); 

The formulas are standard trigonometric identities that require no use of 
the sin or cos function. 

Here are the new rotation operators in use: 

XY angle1(0.707, 0.707); II 45 degrees 
XY rotation(0.0, 1.0); II 90 degrees 
XY angle2 = angle1 » rotation; II should be (-.707, .070), 135 degrees 

In a video game application I designed, the player controlled the 
spaceship's master rotation angle from the keyboard. The spaceship outline 
points were stored in an array of polar coordinates consisting of an XY angle 
and a scalar distance from the center of the ship. For each point, the XY 
value was rotated by the current angle and then multiplied by the scalar 
value, yielding a new xy-coordinate pair for the display. 

Conversion Operators 
Both C and C++ allow extensive automatic conversion among built-in types. 
Consider these statements: 

int radians = 2; 
double result = atan(radians); 

The function atan expects a double argument, so the compiler converts the 
integer radians to a double before passing it to the function. 

What about conversions for your own classes? You must write them 
yourself, of course. Suppose you have a String class that contains a character 
array m_pch. The following operator function returns a constant pointer to 
an object's internal array: 

String::operator const char*() const 
{ 

return (const char*) m_pch; 
} 

689 



PAR TV: APPENDIXES 

You can now use a String argument anywhere the compiler expects a const 
char* argument-for example: 

String sl("test"); 
String s2; 
char c1[20]; 

II construct S1 from character array 

int n = strlen(s1); II OK 
strcpy(s2, s1); II won't compile because first parameter is not 

II const 
strcpy(c1, s1); II OK 

We purposely didn't declare a (non-const) chat* operator because getting 
data into a String object isn't as easy as extracting it. 

The class library provides a useful string class called CString that has this 
same overloaded const char* conversion operator. You'll use this operator 
quite frequently when you write class library programs. 

Global Operators 

690 

The operators you've seen so far are class member functions. Suppose you 
need a new operator but you don't want to derive a new class. If your class 
has public data members and member functions sufficient to access the re­
quired data, you can write stand-alone global operators for your class. 

Because we "forgot" to write a divide member function operator for the 
XY class, we'll write one now, but the code is a little differe,nt from the over­
loaded multiply operator you've seen already: 

XY operator I (const XY& xy, const double div) II scalar divide helper 
{ 

return XY(xy.x I diy, yx.y I div); 

Notice that the data members x and y must be public, or if they are not, you 
must write XY member functions that access them. 

Global operators can enhance the arithmetic capabilities of a class. The 
XY multiply member function operator that you've already seen is called by 
this expression: 

XY xy2 = xy1 * 3.0; 

But it won't work for this expression: 

XY xy2 = 3.0 * xy1; 

For the second case, you need a multiply helper operator such as this one: 

XY operator *(const double mult, const XY& xy) II scalar multiply 
{ 

return XY(xy.x * mult, xy.y * mult); 



A P PEN D I X A: A Crash Course in the C++ Language 

Separating Class Declarations from Code 
In the previous examples, class declarations have been mixed with code. The 
modularity of C++ depends, however, on the separation of the class imple­
mentation code from the class declaration. Class "users" need only the decla­
rations; class "authors" write the code and might choose to deliver it in 
compiled, linkable form only. 

Often, as in the case of the class library, all the class declarations are 
combined into one or several H files, and the code, broken into small, inde­
pendently linkable modules, is stored in a LIB file. Application program­
mers include the H file in their C++ source code, and then they link with the 
corresponding library. 

Below is a view of what the solar system header might look like (minus 
the moon): 

II SOLAR.H class declaration file 

class XY { II all member functions are inline 
private: 

double x. y; 
public: 

} ; 

XY(); 
XY(double xarg. double yarg); 
XY(const XY& xy); 
const XY& operator =(const XY& xy) ; 
XY operator +(const XY& xy) const; 
XY operator -(const XY& xy) const; 
XY operator *(const XY& xy) const; 
XY operator I(const XY& xy) const; 
XY operator -C) const; 

class Orbiter 

protected: 
double m_mass; 
XY m_current. m_prior. m_thrust; 

public: 

} ; 

static int nCount; 
Orbiter(XY& current. XY& prior. double mass); II inline 
const XY& GetPosition() const; 
void Fly(); 
virtual void Display() canst = 0; 

(continued) 

691 



PAR r v: APPENDIXES 

692 

class Planet: public Orbiter { 
public: 

} ; 

II copy constructor and assignment operator not shown 
Planet(XY& current, XY& prior, double mass) 

Orbiter(current, prior, mass) { } 
void Display(); 

class Spaceship: public Orbiter { 
private: 

double m_fuel; 
XY m_orientation; 

public: 

} ; 

II copy constructor and assignment operator not shown 
Spaceship(XY& current, XY& prior, XY& thrust, 

double mass, double fuel, XY& orientation); II inline 
void Display(); 
void FireThrusters(); 

II **** all XY class inline functions here **** 

Some programmers choose to nest #include files, but this requires that 
code not be inadvertently included more than once, and it complicates 
make file dependencies. Class library programs, by convention, don't gener­
ally nest their #include files. Your class library CPP files will always show you 
exactly which header files are included. 

Notice that all the in line functions are grouped at the bottom of the 
header. This isn't necessary for the solar system example, but it makes the 
declaration more readable, and it allows the inline functions to be moved to 
a separate #include file. Some applications require the separation because 
inline code might depend on prior declarations. 

The non-inline functions-Orbiter:.~ly, Orbiter:: GetPosition, Planet::Dis­
play, Spaceship::Display, and Spaceship::FireThrusters-are kept in CPP files. You 
choose how to split them up. If you put them all in one file, they are all 
linked even if only one is used (unless you set the compiler's function-level 
linking option). Often you'll separate member functions by class. A class 
code file is a good place for static data member definitions. 



APPENDIX B 

MESSAGE MAP FUNCTIONS 
IN THE MICROSOFT 
FOUNDATION CLASS LIBRARY 

HANDLERS FOR WM_COMMAND MESSAGES 

Map Entry Function Prototype 

ON_COMMAND( dd>, <memberFxn» afx_msg void memberFxn( ); 

ON_COMMAND_EX(dd>, <memberFxn» afx_msg BOOL memberFxn( UINT); 

HANDLERS FOR CHILD WINDOW NOTIFICATION MESSAGES 

Map Entry Function Prototype 

Generic Control Notification Codes 

ON_CONTROL( <wNotifyCode>, <id>, <memberFxn> ) afx_msg void memberFxn( ); 

User Button Notification Codes 

ON_BN_CLICKED( <id>, <memberFxn> ) 

ON_BN_DISABLE( dd>, <memberFxn» 

ON_BN_DOUBLECLICKED( dd>, <memberFxn> ) 

ON_BN_HILITE( dd>, <memberFxn> ) 

afx_msg void memberFxn( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn( ); 

(continued) 

693 



PAR TV: APPENDIXES 

HANDLERS FOR CHILD WINDOW NOTIFICATION MESSAGES continued 

Map Entry 

User Button Notification Codes, continued 

ON_BN_PAINT( <id>, <memberFxn> ) 

ON_BN_UNHILITE( <id>, <memberFxn» 

Combo Box Notification Codes 

ON_CBN_CLOSEUP( <id>, <memberFxn> ) 

ON_CBN_DBLCLK( <id>, <memberFxn> ) 

ON_CBN_DROPDOWN( <id>, <memberFxn» 

ON_CBN_EDITCHANGE( <id>, <memberFxn> ) 

ON_CBN_EDITUPDATE( <id>, <memberFxn> ) 

ON_CBN_ERRSPACE( <id>, <memberFxn> ) 

ON_CBN_KILLFOCUS( <id>, <memberFxn> ) 

ON_CBN_SELCHANGE( <id>, <memberFxn> ) 

ON_CBN_SELENDCANCEL( <id>, <memberFxn> ) 

ON_CBN_SELENDOK( <id>, <memberFxn> ) 

ON_CBN_SETFOCUS( <id>, <memberFxn> ) 

Edit Control Notification Codes 

ON_EN_CHANGE( <id>, <memberFxn> ) 

ON~EN_ERRSPACE( <id>, <memberFxn> ) 

ON_EN_HSCROLL( <id>, <memberFxn> ) 

ON_EN_KILLFOCUS( <id>, <memberFxn> ) 

ON_EN_MAXTEXT( <id>, <memberFxn> ) 

ON_EN_SETFOCUS( <id>, <memberFxn> ) 

ON_EN_UPDATE( <id>, <memberFxn> ) 

ON_EN_VSCROLL( <id>, <memberFxn> ) 

List Box Notification Codes 

ON_LBN_DBLCLK( <id>, <memberFxn> ) 

ON_LBN_ERRSPACE( <id>, <memberFxn> ) 

ON_LBN_KILLFOCUS( <id>, <memberFxn> ) 

ON_LBN_SELCHANGE( <id>, <memberFxn» 

ON_LBN_SETFOCUS( <id>, <memberFxn> ) 

tFor Windows 3.1 only. 

694 

Function Prototype 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); t 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn ( ); t 

afx_msg void memberFxn ( ); t 

afx_msg void memberFxn ( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 

afx_msg void memberFxn( ); 



A P PEN D I X B: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR WINDOWS NOTIFICATION MESSAGES 

Map Entry 

ON_WM_ACTIVATE( ) 

ON_WM_ACTIVATEAPP( ) 

ON_WM_ASKCBFORMATNAME( ) 

ON_WM_CANCELMODE( ) 

ON_WM_CHANGECBCHAIN( ) 

ON_WM_CHAR( ) 

ON_WM_CHARTOITEM( ) 

ON_WM_CHILDACTIVATE( ) 

ON_WM_CLOSE( ) 

ON_WM_COMPACTING( ) 

ON_WM_COMPAREITEM( ) 

ON_WM_CREATE( ) 

ON_WM_CTLCOLOR( ) 

ON_WM_DEADCHAR( ) 

ON_WM_DELETEITEM( ) 

ON_WM_DESTROY( ) 

ON_WM_DESTROYCLIPBOARD( ) 

ON_WM_DEVMODECHANGE( ) 

ON_WM_DRAWCLIPBOARD( ) 

ON_WM_DRAWITEM( ) 

ON_WM_DROPFILES() 

ON_WM_ENABLE( ) 

ON_WM_ENDSESSION ( ) 

ON_WM_ENTERIDLE( ) 

ON_WM_ERASEBKGND( ) 

ON_WM_FONTCHANGE( ) 

ON_WM_GETDLGCODE( ) 

ON_WM_GETMINMAXINFO( ) 

ON_WM_HSCROLL( ) 

ON_WM_HSCROLLCLIPBOARD( ) 

ON_WM_ICONERASEBKGND( ) 

ON_WM_INITMEND( ) 

ON_WM_INITMENDPOPDP( ) 

tFor Windows 3.1 only. 

Function Prototype 

afx_ffisg void OnActivate( DINT, CWnd*, BOOL); 

afx_ffisg void OnActivateApp( BOOL, HANDLE ); 

afx_ffisg void OnAskCbForffiatNaffie( DINT, LPSTR); 

afx_ffisg void OnCancelMode ( ); 

afx_ffisg void OnChangeCbChain( HWND, HWND ); 

afx_ffisg void OnChar( DINT, DINT, DINT ); 

afx_ffisg int OnCharToIteffi( DINT, CWnd*, DINT); 

afx_ffiSg void OnChildActivate ( ); 

afx_ffisg void OnClose ( ); 

afx_ffisg void OnCoffipacting( DINT ); 

afx_ffisg int OnCoffipareIteffi( LPCOMPAREITEMSTRDCT); 

afx_ffisg int OnCreate( LPCREATESTRDCT ); 

afx_ffisg HBRDSH OnCtlColor( CDC*, CWnd*, DINT); 

afx_ffisg void OnDeadChar( DINT, DINT, DINT); 

afx_ffisg void OnDeleteIteffi( LPDELETEITEMSTRDCT ); 

afx_ffisg void OnDestroy( ); 

afx_ffisg void OnDestroyClipboard( ); 

afx_ffisg void OnDevModeChange ( LPSTR ); 

afx_ffisg void OnDrawClipboard( ); 

afx_ffisg void OnDrawIteffi( LPDRAWITEMSTRDCT); 

afx_ffisg void OnDropFiles( HANDLE); t 

afx_ffisg void OnEnable ( BOOL ); 

afx_ffisg void OnEndSession ( BOOL ); 

afx_ffisg void OnEnterIdle( DINT, CWnd* ); 

afx_ffisg BOOL OnEraseBkgnd( CDC* ); 

afx_ffisg void OnFon tChange ( ); 

afx_ffisg DINT OnGetDlgCode( ); 

afx_ffisg void OnGetMinMaxInfo( LPPOINT ); 

afx_ffisg void OnHScroll( DINT, DINT, CWnd* ); 

afx_ffisg void OnHScrollClipboard(CWnd*, DINT, DINT); 

afx_ffisg void OnIconEraseBkgnd ( CDC* ); 

afx_ffisg void OnInitMenu( CMenu* ); 

afx_ffisg void OnInitMenuPopup( CMenu*, DINT, BOOL ); 

(continued) 

695 



PAR TV: APPENDIXES 

HANDLERS FOR WINDOWS NOTIFICATION MESSAGES continued 

Map Entry 

ON_WM_KEYDOWN ( ) 

ON_WM_KEYUP( ) 

ON_WM_KILLFOCUS( ) 

ON_WM_LBUTTONDBLCLK( ) 

ON_WM_LBUTTONDOWN ( ) 

ON_WM_LBUTTONUP( ) 

ON_WM_MBUTTONDBLCLK( ) 

ON_WM_MBUTTONDOWN() 

ON_WM_MBUTTONUP( ) 

ON_WM_MDIACTIVATE( ) 

ON_WM_MEASUREITEM( ) 

ON_WM_MENUCHAR( ) 

ON_WM_MENUSELECT( ) 

. ON_WM_MOUSEACTIVATE( ) 

ON_WM_MOUSEMOVE( ) 

ON_WM_MOVE( ) 

ON_WM_NCACTIVATE( ) 

ON_WM_NCCALCSIZE( ) 

ON_WM_NCCREATE( ) 

ON_WM_NCDESTROY( ) 

ON_WM_NCHITTEST( ) 

ON_WM_NCLBUTTONDBLCLK( ) 

ON_WM_NCLBUTTONDOWN( ) 

ON_WM_NCLBUTTONUP( ) 

ON_WM_NCMBUTTONDBLCLK( ) 

ON_WM_NCMBUTTONDOWN() 

ON_WM_NCMBUTTONUP( ) 

ON_WM_NCMOUSEMOVE( ) 

ON_WM_NCPAINT( ) 

ON_WM_NCRBUTTONDBLCLK( ) 

ON_WM_NCRBUTTONDOWN( ) 

ON_WM_NCRBUTTONUP( ) 

ON_WM_PAINT( ) 

696 

Function Prototype 

afx_ffisg void OnKeyDown ( UINT, UINT, UINT ); 

afx_ffisg void OnKeyUp( UINT, UINT, UINT); 

afx_ffisg void OnKillFocus( CWnd* ); 

afx_ffisg void OnLButtonDblClk( UINT, CPoint ); 

afx_ffisg void OnLButtonDown( UINT, CPoint ); 

afx_ffisg void OnLButtonUp( UINT, CPoint ); 

afx_ffisg void OnMButtonDblClk( UINT, CPoint ); 

afx_ffisg void OnMButtonDown( UINT, CPoint); 

afx_ffisg void OnMButtonUp( UINT, CPoint); 

afx_ffisg void OnMDIActivate( BOOL, CWnd*, CWnd* ); 

afx_ffisg void OnMeasureIteffi ( LPMEASUREITEMSTRUCT ); 

afx_ffisg LONG OnMenuChar( UINT, UINT,CMenu* ); 

afx_ffisg void OnMenuSelect( DINT, DINT, HMEND); 

afx_ffisg int OnMouseActivate( CWnd*, UINT, DINT ); 

afx_ffisg void OnMouseMove( UINT, CPoint); 

afx_ffisg void OnMove ( int, int ); 

afx_ffisg BOOL OnNcActivate( BOOL); 

afx_ffisg void OnN cCalcSize ( LPRECT ); 

afx_ffisg BOOL OnNcCreate( LPCREATESTRUCT); 

afx_ffisg void OnNcDestroy( ); 

afx_ffisg DINT OnNcHitTest( CPoint ); 

afx_ffisg void OnNcLButtonDblClk( UINT, CPoint ); 

afx_ffisg void OnNcLButtonDown( UINT, CPoint); 

afx_ffisg void OnNcLButtonUp( UINT, CPoint ); 

afx_ffisg void OnNcMButtonDblClk( UINT, CPoint); 

afx_ffisg void OnNcMButtonDown( UINT, CPoint ); 

afx_ffisg void OnNcMButtonUp( UINT, CPoint); 

afx_ffisg void OnNcMouseMove( UINT, CPoint); 

afx_ffisg void OnNcPaint(); 

afx_ffisg void OnNcRButtonDblClk( UINT, CPoint ); 

afx_ffisg void OnNcRButtonDown( UINT, CPoint ); 

afx_ffisg void OnNcRButtonUp( UINT, CPoint); 

afx_ffisg void OnPaint( ); 

(continued) 



A P PEN 0 I X B: Message Map Functions in the Microsoft Foundation Class Library 

HANDLERS FOR WINDOWS NOTIFICATION MESSAGES continued 

Map Entry 

ON_WM_PAINTCLIPBOARD( ) 

ON_WM_PALETTECHANGED( ) 

ON_WM_PALETTEISCHANGING( ) 

ON_WM_PARENTNOTIFY( ) 

ON_WM_QUERYDRAGICON ( ) 

ON_WM_QUERYENDSESSION ( ) 

ON_WM_QUERYNEWPALETTE( ) 

ON_WM_QUERYOPEN ( ) 

ON_WM_RBUTTONDBLCLK( ) 

ON_WM_RBUTTONDOWN ( ) 

ON_WM_RBUTTONUP( ) 

ON_WM_RENDERALLFORMATS ( ) 

ON_WM_RENDERFORMAT ( ) 

ON_WM_SETCURSOR( ) 

ON_WM_SETFOCUS( ) 

ON_WM_SHOWWINDOW( ) 

ON_WM_SIZE( ) 

ON_WM_SIZECLIPBOARD( ) 

ON_WM_SPOOLERSTATUS( ) 

ON_WM_SYSCHAR( ) 

ON_WM_SYSCOLORCHANGE( ) 

ON_WM_SYSCOMMAND( ) 

ON_WM_SYSDEADCHAR( ) 

ON_WM_SYSKEYDOWN( ) 

ON_WM_SYSKEYUP( ) 

ON_WM_TIMECHANGE ( ) 

ON_WM_TIMER( ) 

ON_WM_VKEYTOITEM( ) 

ON_WM_VSCROLL( ) 

ON_WM_VSCROLLCLIPBOARD ( ) 

ON_WM_WINDOWPOSCHANGED( ) 

ON_WM_WINDOWPOSCHANGING( ) 

ON_WM_WININICHANGE( ) 

tFor Windows 3.1 only. 

Function Prototype 

afx_ffisg void OnPaintClipboard( CWnd*, HANDLE); 

afx_ffisg void OnPaletteChanged ( CWnd * ); 

afx_ffisg void OnPaletteIsChanging ( CWnd * ); 

afx_ffisg void OnParentNotify( UINT, LONG); 

afx_ffisg HCURSOR OnQueryDragIcon ( ); 

afx_ffisg BOOL OnQueryEndSession( ); 

afx_ffisg BOOL OnQueryNewPalette( ); 

afx_ffisg BOOL OnQueryOpen( ); 

afx_ffisg void OnRButtonDblClk( UINT, CPoint ); 

afx_ffisg void OnRButtonDown( UINT, CPoint); 

afx_ffisg void OnRButtonUp( UINT, CPoint ); 

afx_ffisg void OnRenderAllForffiats( ); 

afx_ffisg void OnRenderForffiat( UINT ); 

afx_ffisg BOOL OnSetCursor( CWnd*, UINT, UINT ); 

afx_ffisg void OnSetFocus( CWnd* ); 

afx_ffisg void OnShowWindow( BOOL, UINT ); 

afx_ffisg void OnSize( UINT, int, int); 

afx_ffisg void OnSizeClipboard( CWnd*, HANDLE); 

afx_ffisg void OnSpoolerStatus( UINT, UINT ); 

afx_ffisg void OnSysChar( UINT, UINT, UINT ); 

afx_ffisg void OnSysColorChange ( ); 

afx_ffisg void OnSysCoffiffiand( UINT, LONG); 

afx_ffisg void OnSysDeadChar( UINT, UINT, UINT ); 

afx_ffisg void OnSysKeyDown( UINT, UINT, UINT); 

afx_ffisg void OnSysKeyUp( UINT, UINT, UINT ); 

afx_ffisg void OnTiffieChange ( ); 

afx_ffisg void OnTiffier( UINT ); 

afx_ffisg int OnVKeyToIteffi( UINT, CWnd*, UINT); 

afx_ffisg void OnVScroll( UINT, UINT, CWnd* ); 

afx_ffisg void OnVScrollClipboard( CWnd*, UINT, UINT); 

afx_ffisg void OnWindowPosChanged( WINDOWPOS FAR* );t 

afx_ffisg void OnWindowPosChanging( WINDOWPOS FAR* );t 

afx_ffisg void On WinIniChange ( LPSTR ); 

697 



PAR TV: APPENDIXES 

USER-DEFINED MESSAGE CODES 

Map Entry Function Prototype 

ON_MESSAGE( <message>, <memberFxn» afx_msg LONGmemberFxn( UINT, LONG); 

ON_REGISTERED_MESSAGE( <nMessageVariable>, afx_msg LONG memberFxn( UINT, LONG); 
<memberFxn> ) 

698 



A P PEN D x c 

MICROSOFT WINDOWS 
FUNCTIONS USED 
IN THIS BOOK 

The Visual C++ printed documentation (and online help) covers all the 
Microsoft Foundation Class (MFC) Library classes and functions. The MFC 
library wraps a significant number of Windows Software Development Kit 
(SDK) functions, but at times you must call Windows SDK functions directly. 
The Windows SDK functions are documented in the Visual C++ online help 
and in printed manuals that are available separately. This appendix summa­
rizes those Windows SDK functions that are used in this book's examples. 
This is by no means a complete list of unwrapped Windows functions. Refer 
to the Windows 3.1 SDK online help for details. 

Windows SDK Function 

Close Clipboard 

CreateDIBitmap 

CreateSolidBrush 

DeleteObject 

DispatchMessage 

Empty Clipboard 

Purpose 

Closes the Windows clipboard. The CWnd::OpenClipboard 
member function opens the clipboard. 

Creates a CDI bitmap from a device-independent bitmap 
and optionally sets bits in the bitmap. 

Creates a brush that has a specified solid color. Returns an 
HBRUSH handle. 

Deletes a CDI object from Windows memory. The CGdiObject­
::DeleteObject function requires an object pointer, but you'll 
need this DeleteObject function if you have an HCDIOB] 
handle instead. 

Dispatches a Windows message that was retrieved by the 
GetMessage and PeekMessage functions. 

Empties the Windows clipboard. 

(continued) 

699 



PAR TV: APPENDIXES 

continued 

Windows SDK Function 

EnumClipboardFormats 

GetClipboardData 

GetDIBits 

GetKeyState 

GetSys Co lor 

GetSystemMetrics 

IsClipboardFormatAvailable 

LoadCursor 

PeekMessage 

RegCloseKey 

RegCreateKey 

RegSetVa lue 

SetClipboardData 

Set Cursor 

SetDIBitsToDevice 

StretchDIBits 

TranslateMessage 

700 

Purpose 

Retrieves the currently available clipboard formats. Should 
be called in a loop. 

Retrieves a handle to the clipboard data as specified by the 
format parameter. 

Converts a device-independent bitmap to a GDI bitmap. 

Gets the state of a specified virtual key. 

Gets the color of a specified display element such as the 
window background or the title bar. 

Retrieves the widths and heights of various Windows display 
elements such as windows, borders, and fonts. Also indicates 
whether the current version of Windows is a debugging 
version and whether a mouse is present. 

Tests whether the clipboard contains a specified format. 

Loads a specified mouse cursor from a resource or loads a 
standard Windows mouse cursor. Used with SetCursor. 

Retrieves a message from the application's message queue 
and, except for WM_PAINT messages, removes it from the 
queue. The function does not wait for a message to become 
available but returns 0 if the queue is empty. PeekMessage is 
often used with DispatchMessage and TranslateMessage to yield 
control during a long compute process. 

Releases a key in the Windows registration database. When 
all keys are released, the database is updated. 

Creates or opens a Windows registration database key. 

Sets the value of an open key to a text string. 

Transfers data to the clipboard. The clipboard must have 
been previously opened. 

Changes the Windows mouse cursor as specified by the 
cursor resource created by LoadCursor. 

Displays a device-independent bitmap without scaling. 

Displays a device-independent bitmap with scaling. 

Translates a virtual key code to a character. Used with 
PeekMessage and DispatchMessage. 



APPENDIX D 

VISUAL C++, VERSION 2.0 
FOR WINDOWS NT 

As this book was going to press, Microsoft was introducing Visual C++ 2.0, 
which includes the Microsoft Foundation Class (MFC) Library version 3.0. 
This new product runs only under Windows NT and under the beta version 
of Chicago (the new 32-bit successor to Windows 3.1). Visual C++ 2.0 gener­
ates 32-bit applications only; the CD-ROM, however, contains a maintenance 
upgrade of the 16-bit Visual C++ l.5, which includes MFC version 2.5l. 

Visual C++ 2.0 contains many new features not found in version l.5, 
including: 

• Seamless integration between the Visual Workbench and App 
Studio 

• Compiler support for templates and exceptions 

• MFC support for NT features, such as threads and Bezier curves 

• MFC and DLL support for new user interface features, such as 
tabbed dialogs 

• Tools for creating OLE Controls (but without App Studio support) 

It should be obvious by now that you'll need to switch to 32-bit Windows if 
you want to keep up with Microsoft's new developments. The plan is for 
users to convert to Chicago as soon as possible after it is released, thus rel­
egating 16-bit Windows to pen computers and dishwasher controllers. It will 
be a fine day for developers when 16-bit programming finally fades away. 

Speaking of Chicago, there'll be another version of Visual C++ when 
Chicago is released. This new version will support all the Chicago user inter­
face features and fully integrate OLE Controls. Watch for a new edition of 
this book after that version is released. 

701 



PAR TV: APPENDIXES 

32-Bit Programming 

702 

Programs written for Windows NT use a flat 32-bit memory model. All point­
ers and integers are 32 bits wide. Th~ modifiers near and far have no mean­
ing, and there are no segments. This makes 32-bit programming easier than 
16-bit programming. Here's a list of common type sizes (in bits): 

Type Size in Windows 3.1 Size in 32-Bit Windows 

BYTE 8 8 

double 64 64 
DWORD 32 32 
float 32 32 
int 16 32 
long 32 32 
long double 80 64 
LONG (lParam) 32 32 
short 16 16 
SHORT 16 16 
UINT (wParam) 16 32 
WORD 16 16 

The application programming interface used in Windows NT is com­
monly referred to as the Win32 API. With Win32, all handles (including 
HWNDs and HDCs) for Windows NT are 32 bits wide, and GDI functions 
take 32-bit parameters. Some device coordinates are still returned as 16-bit 
values, however. For example, the WM_LBUTTONDOWN message returns 
the x and y cursor coordinates packed in the lParam parameter, which is still 
32 bits wide. 

Many Win32 functions look the same as their Windows 3.1 counter­
parts. Take the Set Pixel function, for example: 

DWORD SetPixel(HDC hDC. int X. int Y. COLORREF crColor); 

The declaration is the same for both Win32 and Windows 3.1. The widths of 
the hDC, X, and Y parameters are different, however. 

In the area of file input/output, the Win32 API is very different. For 
example, the old _lread and _lwrite functions have been replaced by the new 
functions ReadFile and WriteFile. There are hundreds of brand-new functions 
too, supporting features such as threads, multi byte characters, and Bezier 
curves. 



A P PEN 0 I X 0: Visual C++, Version 2.0 for Windows NT 

Porting 16-Bit MFC Library Applications 
to Windows NT 

Because the MFC library was designed for portability, it's easy to port most 
applications from Windows 3.1 to Windows NT. Simply recompile and relink. 
If your application uses the CFile class, for example, the MFC library con­
nects to the new Win32 file functions. The compiler will catch most incom­
patibilities, which usually involve direct calls to Windows-based functions 
rather than calls to MFC library functions. Here's an example of one change 
that was made in the CDib class from the Chapter 23 example EX23A: 

1/i fdef _W I N32 
HBITMAP hBitmap = ::CreateDIBitmap(pDC->GetSafeHdc(). m_lpBMIH. 

1Ielse 

CBM_INIT. (CONST BYTE*) (m_lpBuf + m_lpBMFH->bfOffBits). 
m_lpBMI. DIB_RGB_COLORS); 

HBITMAP hBitmap = ::CreateDIBitmap(pDC->GetSafeHdc(). m_lpBMIH. 

1Iendif 

CBM_INIT. (LPSTR) (m_lpBuf + m_lpBMFH->bfOffBits). 
m_lpBMI. DIB_RGB_COLORS); 

Notice that the fourth CreateD/Bitmap parameter has changed between Win­
dows NT and Windows 3.1. The preprocessor statements ensure that the 
code compiles in both environments. 

The above change was about the only change I made when I ported the 
examples in this book. Recompilation under Windows NT did expose a few 
bugs, however, but those were easy to fix. I couldn't port the examples that 
use Visual Basic controls or extension DLLs (EX08A, EXllC, EX26A, and 
EX26B). Why? Because with the Win32 API, the wParam message parameter 
is 32 bits wide, and this means that some messages pack the IParam and 
wParam parameters differently. Because the MFC library decodes message 
parameters for you, you're mostly insulated from these changes. If your 
program handles the WM_COMMAND message directly, for example, you 
must allow for the packing differences. The files WINDOWSX.H and 
WINDOWSX.H16 contain "message-cracker macros" that help you write 
portable code. 

H I NT: Applications generated by App Wizard under Windows 
3.1 often include the file VER.H. The equivalent Windows NT 
file is WINVER.H. If you copy WINVER.H to VER.H in the 
\MSVCNT\INCLUDE subdirectory, your ported applications will 
compile. 

703 



PAR TV: APPENDIXES 

Archive Portability Between Windows 3.1 and Win32 
As summarized in Chapter 16, the MFC library CArchive class supports built­
in types that are the same size in both Windows environments. Thus int is 
not supported, but LONG is. Most archive files written under Windows 3.1 
can be read under Windows NT. Notice that the sizes for CRect, CPoint, and 
CSize objects are different, so archive files that contain these items are not 
portable. 

Some MFC Library Features for Windows 3.1 
Not Supported Under Win32 

A few MFC library and tool features for Windows 3.1 are not supported un­
der Win32. These include: 

• Visual Basic controls-The Visual Basic control API is inherently 
a 16-bit API that uses pointers and data structures that are not 
compatible with Win32. The controls themselves are 16-bit DLLs 
and thus won't run with 32-bit applications. For the time being, 
Visual Basic con troIs are not supported by the MFC library, 
AppWizard, or App Studio. 

• Microsoft Windows for Pen Computing classes-You wouldn't 
expect to use Windows NT for pen computing applications, so the 
pen classes CHEdit and CBEdit aren't supported. 

• App Studio EXE, RES, and DLL editing capability-In the Windows 
NT environment, App Studio can edit only RC files. 

Enhanced MFC 3.0 Library Features 

704 

In addition to the new features listed earlier, MFC 3.0 includes the following 
improvements: 

• CTime class enhancements-The CTime class has been extended to 
support the system and file times offered by Windows NT. 

• Collection memory restrictions removed-Under Windows 3.1, 
array collection (CObArray, CStringArray, and so on) size was limited 
to 64 KB for small and medium memory models, and the number 
of array elements was limited to 32-KB elements for all models; 
under Win32, array size is limited only by available memory. 



A P PEN D I X D: Visual C++, Version 2.0 for Windows NT 

Windows NT Debugging Considerations 
Visual C++ 2.0 contains a Windows-hosted debugger similar to the one in­
cluded in Visual C++ 1.5, as well as a symbolic debugger, NTSD. Both these 
debuggers can display the output of TRACE and afxDump statements if 
you've built your application with the Debug build option. You don't have to 
set the compiler and linker debugging information options to get trace out­
put from the debugger. 

Windows NT has no equivalent of DB WIN, so you must use one of the 
debuggers to get trace output. Also, the Windows 3.1 Debug kernel has no 
equivalent, which means you can't determine which CDI objects are not de­
leted. Windows NT does release all CDI memory when an application termi­
nates, however. Once you've written a 32-bit class library application, it 
might be a good idea to port it back to Windows 3.1 to test it with the Debug 
kernel. 

The Win32s Subsystem 
When you buy Visual C++ 2.0, you get the Win32s Software Development Kit 
(SDK), which enables 32-bit applications to run under Windows 3.1. The 
Win32s SDK is a collection of DLLs plus a device driver that you can ship 
with your application. You can view Win32s as a mapping layer between the 
Win32 API and the underlying Windows 3.1 system. Many Windows NT func­
tions are not supported under Win32s-in particular, multiple threads and 
the advanced Windows NT file system calls. These functions are "stubbed 
out" to return error codes. 

Be aware that Windows NT can run many existing Windows 3.1 binary 
programs (including Visual C++ 1.5) using its Windows on Win32 (WOW) 
component. So why bother with Win32s, which requires use of a map­
ping layer and the distribution of extra DLLs? The answer is that 
32-bit programs run faster than-16-bit programs, particularly if they are 
compute-intensive. Some CAD programs run twice as fast in 32-bit mode, 
despite the inefficiencies of the mapping layer. 

Multiplatform Development Strategy 
Multiplatform development is easy if you're programming to the lowest com­
mon denominator of 32-bit and 16-bit platforms. Unfortunately, 16-bit Win­
dows is not a true subset of 32-bit Windows, and that complicates matters. 
You can't use VBXs, for example, in a 32-bit application. If you wrote a 16-bit 

705 



PAR TV: APPENDIXES 

706 

Windows application with MFC 2.5, and you didn't use VBXs or direct SDK 
calls, you could easily recompile and relink that application for Windows NT, 
using the same source code. 

What if you wanted to take advantage of new Windows NT features, 
such as threads and Bezier curves? What if your application uses Windows 
features not supported by MFC? Take serial communication, for instance. 
Suppose you want your application to download information from an online 
service. Windows 3.1 provides a set of communications functions (supported 
by the standard communications driver) that depend on the WM_COMM­
NOTIFY message. Windows NT doesn't use WM_COMMNOTIFYbut rather 
provides a new set of functions, including one called WaitCommEvent, that 
beg for multithread programming. Win32s supports neither communica­
tions interface but requires you to implement something called "universal 
thunks." 

How do you deal with platform incompatibilities? First you analyze the 
market to determine which platforms you need to support. If you determine 
that you must support several platforms, you begin the design process by iso­
lating the functionality that is common to all platforms. Most of this com­
mon functionality can be handled by the class library. 

Next you design the platform-dependent components to be as modular 
as possible. c++ classes can help you with this process. In the hypothetical 
serial communications example discussed above, Windows 3.1 might dictate 
that you write a CComm class that is derived from CWnd (to map the WM_­
COMMNOTIFYmessage). For Windows NT, your CComm class wouldn't use 
any MFC library elements; rather, it would encapsulate a separate communi­
cation thread that would handle the download task. The CComm class mem­
ber functions would be identical in both cases, however. 



INDEX 

Special Characters 
* (asterisk coding convention), 678 
& (dialog control accelerator operator), 118 
» (extraction operator), 321, 322 
« (insertion operator), 279, 321, 322 
& (keyboard accelerator operator), 218 
: (notation character), 667 
& (reference operator), 678 
:: (scope resolution operator), 64, 556 
- (tilde), 661 

Numbers 
4-bit color display boards, 83-84 
8-bit color display boards, 84 
16-bit memory models, 168-78 
24-bit color display boards, 85 
32-bit programming, 702 
80386/80486 virtual memory manager, 

177-78 

A 
About dialog window, 38, 40 
accelerators. See keyboard accelerators 
ActivateFrame function, 258-59, 270-71 
AddDocTemplatefunction, 325, 327-28, 351, 

355,642 
AddReffunction, 555, 561, 563 
AddTail function, 293 
AFXCORE.RTF file, 414 
afxDump object, 279 
AFXEXT.H file, 45 
AfxGetAppfunction, 241, 260, 353 
AFX_IDW_STATUS_BAR constant, 249 
AFX.lNI file, 43 
AfxMessageBox function, 261, 413 
AFX_MSG_MAPnotation, 57, 231 
afx.,-msg notation, 52, 219 
AFXOLE.H file, 45 
AFXPRINT.RTF FILE, 414 
AFXPRIV.H file, 45 

AfxRegisterVBEvent function, 152 
AfxRegisterWndClass function, 82 
AFXRES.H file, 38 
AFX resources, 641 
afxTraceEnabled variable, 278 
AFXWIN.H file, 45 
aggregation, 580 
allocation. See also memory management 

of global objects, 680 
of objects on heap, 677-80 

ampersand (&), 118, 218, 678 
animation, 187-92 
APIs. See application program interfaces 

(APIs) 
application frameworks, xxx, 7-9, 15-23. See 

also Microsoft Foundation Class (MFC) 
Library; Microsoft Windows Software 
Development Kit (SDK) 

application program interfaces (APIs) 
MFC library as C++, 16 
Windows NT, 6, 702-4 

applications 
adding ODBC capability to MFC, 513 
build process (see build process) 
class, 21-23, 324-25,351 
database management (see database 

management) 
without documents or views (see applica­

tions, example, without documents 
or views) 

example (see applications, example) 
MDI (see Microsoft Windows Software 

Development Kit (SDK); multiple 
document interface (MDI)) 

MS-DOS, and Visual C++, 7 
multi-instance, and memory management, 

170,325 
OLE (see Common Object Model (COM); 

OLE Automation) 
registration, 356 
SDI (see single document interface (SDI)) 
shutdown, 22, 516-17 

707 



INSIDE VISUAL C++ 

applications, continued 
size and speed of, 16 
startup, 21 
Windows NT 32-bit, 6 (see also Microsoft 

Windows NT) 
applications, example 

companion disc and, xxxi 
EX03A ("Do-Nothing"), 31-34, 36 
EX04A (sizing circle with mouse), 54-60 
EX04B (dragging circle with mouse), 

60-66 
EX04C (scrolling view with keystrokes), 

66-71 
EX05A (font display), 94-97 
EX05B (multiple font display), 98-102 
EX05C (scrolling view with mouse), 102-6 
EX06A (human resources modal dialog), 

110-30 
EX07A (modeless dialog), 134-41 
EX07B (user interface dialog), 143-48 
EX08A (Visual Basic control), 153-64 
EXI0A (resource-based bitmap), 184-87 
EXI0B (bitmap generation), 187-92 
EXIIA (bitmap buttons), 195-201 
EX11B (timer processing), 203-6 
EX11C (on-idle processing), 206-11 
EX12A (menu), 223-29 
EX12B (dynamically created menu), 

231-36 
EX13A (toolbar), 242-48 
EX13B (status bar), 250-55 
EXI4A (persistent frame window), 264-70 
EX15A (document-view interaction), 

282-90 
EX15B (collections), 296-316 
EX16A (SDI serialization), 331-45 
EX 17 A (MD I serialization), 358-67 
EX17B (SDI drag and drop), 367-70 
EX18A (wysiwyg printing), 377-83 
EX18B (multipage printing), 384-89 
EX19A (single-view SDI dynamic splitter 

window), 393-95 
EX19B (double-view SDI static splitter 

window), 395-97 
EX19C (multiview MDI), 398-401, 414-16 
EX20A (help file), 404-9 
EX20B (help command processing), 

419-23 

708 

applications, example, continued 
EX23A (serializing bitmaps), 482-99 
EX24A (database access), 508-15 
EX24B (dynamic recordset), 517-47 
EX25A (simulated OLE), 564-74 
EX25B (OLE Automation server EXE) , 

599-607,622-24 
EX25C (OLE Automation server DLL) , 

607-14,624-26 
EX25D (SDI Automation server EXE) , 

614-21,626-28 
EX25E (OLE Automation controller), 

621-33 
EX26A (extension DLL) , 645-48 
EX26B (using extension DLL) , 648-54 
MATPLAN (materi;;t.ls planning) (see 

MATPLAN application) 
MYAPP ("HelIn, world!"), 19-23 
requirements for, 30 
sample programs, xxix 
simplest document-view, 276 

applications, example, without documents or 
views 

EX22A (SDI "Hello, world!"), 454-58 
EX22B (dialog as calculator), 458-63 
EX22C (MDI), 463-71 
overview, 453 

App Studio resource editor 
custom DDX functions, 125 
editing example application resources, 

38-40 
form view dialog windows and, 277 
overview, 5, 9-10 
resource file contents, 37-38 
running, by opening resource file, 39 
running, from Visual Workbench, 38-39 
Visual Basic controls and, 164-65 

AppWizard code generator. See also App 
Studio resource editor 

context-sensitive help and, 409-10 
"Do-Nothing" application, 31-34, 36 
drawing in view windows with GDI, 35-36 
form view dialog windows and, 277 
generating SDI code with, 31-33 
MDI and SDI options, 30-31 
message handlers (see message handling 

functions) 



AppWizard code generator, continued 
OLE Automation-aware applications, 601, 

621 
options, 44, 47-49,170,238,514 
overview, 11, 28 
using, with ClassWizard, 58-60 (see also 

ClassWizard program) 
views and, 30 

archive files, 318, 321-22, 704 
ASSERT macro, 42, 43 
assignment operators, 670-71 
asterisk (*) coding convention, 678 
AUTOEXEC.BAT batch file, 43 
Automation. See OLE Automation 

B 
background color, dialog windows, 131 
bars. See control bars 
base classes 

abstract, 667 
COM, 563-64 
default window rectangles, 264 
difficulty of writing, 257-58 
example application using persistent frame 

window, 264-70 
frame window size, 258-59 
MDI applications and persistent frame 

windows, 270-71 
overview, 665 
position of maximized windows, 263 
SDI applications and persistent frame 

windows, 258 
static data members, 263-64 
string objects, 261-63 
virtual functions in, 668 
Windows INI file and, 259-60 

Basic. See Microsoft Visual Basic as OLE 
Automation server; Microsoft Visual 
Basic controls 

batCh files 
AUTOEXEC, 43 
MAKEHELP, 414, 416-17 
MSVCV ARS, 407 
N2D,42 

. BEGIN_INTERFACE_PART macro, 555-56 
BeginPaint function, 78 

Index 

beveled borders, 255 
binding process, 5 
bind mode, 10 
bit-blitting functions, 182 
BitBlt function, 182, 183-84, 193 
bitmap, toolbar, 238 
bitmap buttons, 195-201 
bitmaps, device-independent. See device­

independent bitmaps (DIBs) 
bitmaps, CDI 

class, 78-79, 181-82 
clipboard rules, 476-77 
color and monochrome, 182 
device-independent bitmaps vs., 181-82, 

473-74 (see also device-independent 
bitmaps (DIBs)) 

display mapping mode and, 184 
example application with generation of, 

187-92 
example application with stretching of, 

184-87 
generation of, 187-92 
loading, from resources, 183-84 
passing, via clipboard, 475-76 
printing, 183-84 
storing, in documents, 473-99 
stretching, 184-87 
using, 182, 192-93 

BMP file extension, 181-82 
BN_CLICKED notification, 121, 126 
borders, beveled, 255 
Borland Object Windows Library (OWL), 15, 

23 
breakpoints, 42 
browser. See Source Browser 
brushes 

class, 78 
dithered colors, 83-84 
pattern, 102 

BSC file extension, 49 
BSTR type, 593-94 
build process 

overview, 7-9 
speedup hints, 43-49 

button controls, 108, 114-15, 117. See also 
bitmap buttons; toolbars 

button states, 239 

709 



INSIDE VISUAL C++ 

c 
C, CPP, and CXX file extensions, 10 
C++ language, C language vs. 657-59. See also 

Microsoft Visual C++ 
Cairo, Microsoft, 633 
calculator application, 458-63 
CArchiveclass, 318, 320-21, 704 
CBitmapButton class, 195 
CBitmap class, 78, 181-82 
CBrush class, 78 
CClientDC class, 75, 76 
CCmdTarget class, 563-64 
CCmdUI class, 220 
CColorDialog class, 142 
CComboBox class, 132 
CControlBar class, 237-38 
CDatabase class, 506, 546-47 
CDatabase View class, 514 
CDC class, 35-36, 75-76, 374-75 
CDialogBar class, 515-16 
CDialog class, 107-8, 118-22, 133-34, 138 
CDocTemplate class, 325 
CDocument class, 24-25, 216, 273-74, 477 
CDumpContext class, 279 
CEdit class, 222-23 
CEditView class, 222-23, 229 
CFile class, 318 
CFileDialog class, 142 
CFindReplaceDialog class, 142 
CFont class, 79 
CFontDialog class, 142, 231 
CFormView class, 141, 277-78 
CFrameWnd class, 22, 216, 258-59, 264 
CGdiObject class, 78-82 
ChangeSelectionNextRow function, 530 
ChangeSelectionToRow function, 530 
character height, 93 
character pointers, converting strings to, 262 
check box buttons, 239, 240-41 
check boxes, 115 
child window notification messages, 693-94 
child windows, MDI, 30, 347-53, 470, 471 
circles 

example application dragging, 60-66 
example application sizing, 54-60 

classes. See also objects 
adding, to MFC library DLLs, 639 
base (see base classes) 
browsing, 34 

710 

classes, continued 
C language user-defined types vs. C++, 

657-59 
Class Wizard and, 11-12 (see also 

ClassWizard program) 
command message handling in 

derived,219 
constructor functions, 659-61 
data members (see data members) 
derived,667-68 
destructor functions, 661-62 
device context, 35-36, 75-78 
dynamic link libraries (DLLs), 637-38 (see 

also dynamic link libraries (DLLs), 
MFC library) 

Excel objects, 629 
factories (see class factories) 
friend, 683-84 
member functions (see member functions) 
naming conventions, 20 
nested, 554-57 
ODBC (see Microsoft Open Database 

Connectivity (ODBC)) 
private vs. public class members, 663-64 
relationships among, 324-28 
separating declarations of, from code, 

691-92 
Source Browser and, 12 (see also Source 

Browser) 
splitter, 393 
Visual Basic controls vs., 150-51 

class factories. See also Common Object Model 
(COM) 

COM and MFC base class, 563-64 
COM client calls to DLL servers, 576-77 
COM client calls to EXE servers, 577-79 
containment vs. inheritance, 580 
example application, 564-74 
MFC support, 579 
overview, 561-63 
run-time object registration, 575-76. 
Windows registration database and, 574-75 

class libraries, 19. See also Microsoft Founda­
tion Class (MFC) Library 

Class Library Reference, 7, 35 
Class Wizard program 

adding menu command message 
handlers, 278 



ClassWizard program, continued 
dialog class and, 118-22 
dialog controls and, 108-9 
example application using, 57-60 
Excel type library and, 628 
foreign object support, 435 
overview, 11-12 
using, with AppWizard, 58-60 (see also 

AppWizard code generator) 
Visual Basic controls and, 152 

client applications, COM. See also Common 
Object Model (COM) 

calls to DLL servers from, 576-77 
calls to EXE servers from, 577-79 
example simulation application, 564-74 
OLE Automation (see controller 

applications, OLE Automation; 
OLE Automation) 

client areas, 54, 76 
clipboard 

bitmap rules, 476-77 
passing images via, 475-76 

CListBox class, 132 
CloseClipboard function, 476 
CLSIDFromProgID function, 574-75 
CMDIChildWnd ,lass, 271, 349, 351-53, 

393,470 
CMDIFrameWnd class, 349, 351-53 
CMetaFileDC class, 75 
CModaLDialog class and macro, 107-8 
CMultiDocTemplate class, 351 
CNTR control, Visual Basic, 207-11 
CObArray class, 373 
CObjectclass, 278, 279-80, 318-19,564 
CObList class, 291-95, 322-23, 373 
CoCreatelnstance function, 587 
code generator. See AppWizard code 

generator 
code segments, 169-71 
Code View for Windows program, 11, 49 
CoGetClassObject function, 574-75 
COleDispatchDriver class, 590-92 
COleObjectFactory class, 563, 564, 576 
collections 

class, 291-95 
dump contexts and, 295 
example application using, 296-316 
Excel,585 

collections, continued 
first-in, first-out (FIFO) lists, 292-94 
iteration through elements, 294-95 
OLE Automation, 618-20 
printing, 373 
serializing, 322-23 

colon (:), 667 
color 

Index 

device-independent bitmaps, palettes, and, 
474-75 

dialog for selecting, 142 
dialog window background and 

controls, 131 
GDI bitmaps, 182 
mapping (see color mapping) 
palettes (see palettes, color) 

color mapping 
4-bit color display boards, 83-84 
24-bit color display boards, 85 
256-color display boards, 84 
standard VGA display boards, 83-84 

combo boxes, 108, 115-16, 132 
command handler functions, 218-21, 230-31 
command messages, 126, 218-19, 693 
command processing. See also message 

processing 
command handler functions, 218-21 
command messages, 126, 218-19 
example application with help commands, 

419-23 
extended command handler functions, 

230-31 
help commands, 417-19 
toolbar command messages, 239-41 

COMMDLG dialog windows 
adding dialog controls at run time, 142-43 
classes, 141-42 
deriving classes from, 143 
example application using, 143-48 
using CFileDialog class directly, 142 

Common Object Model (COM). See also OLE 
Automation 

advan tages of, 551 
base class, 563-64 
class factory interface, 561-80 
client calls to DLL servers, 576-77 
client calls to EXE servers, 577-79 
containment vs. inheritance, 580 

711 



INSIDE VISUAL C++ 

Common Object Model (COM), continued 
example application, 564-74 
interface for obtaining interface pointers, 

557-60 
interfaces, 552-57 
MFC support for, 579 
OLE and, 549 
overview, 549-52 
reference counting functions, 561 
run-time object registration, 575-76 
Windows registration database and, 574-75 

communications applications, 706 
compact memory model, 168, 171, 173-74 
companion disc, using, xxix 
compile mode, 10 
compiler 

directives, 171, 174 
switches, 44-45, 47-49, 171, 174 

compiling resources, 10 
CONFICSYS file, 44 
connections, ODBC, 504 
constants, static data members as, 263-64. See 

also #define constants 
const char* () operator, 261-63, 278 
const references, 671-72 
constructor functions 

copy, 669-70 
device contexts, 76-78 
CDI objects, 79 
inline, and DLLs, 642 
overview, 659-61 
viewwindows, 53, 59, 63 

containment, 580 
contexts. See device contexts 
context-sensitive help, 403-23 
control, yielding, 202 
control bars, 237-38. See also dialog bars; 

menu bars; scroll bar controls; status 
bars; toolbars 

controller applications, OLE Automation. See 
also OLE Automation 

example, 621-33 
Excel as, 582-84 
MFC, 590-92 
servers and, 581-82 

control notification messages, 126, 151, 223 
control palettes, 5, 113-17 

712 

controls 
adding, with control palette, 113-17 
aligning, 115 
color, 131 
#define constant names, 39, 108 
dialog windows, 108-9 (see also dialog 

windows; modal dialog windows) 
identifying, 130 
selecting group of, 116 
standard vs. ordinary custom, 150 
subclassing, 281-82 
Visual Basic (see Microsoft Visual Basic 

controls) 
conversion operators, 689-90 
coordinates. See also mapping modes 

brushes and, 106 
conversion between logical, device, and 

physical, 89-90 
device, 66, 71, 85 

copy constructor functions, 669-70 
cout object, 279 
CPaintDC class, 78 
CPalette class, 79, 84 
CPen class, 79 
CPersistentFrame class, 258, 264, 270-71 
CPoint class, 64 
Cpp implementation files, 20-21, 30 
CPreviewDC class, 375 
CPrintDialogclass, 142 
CPrintInfo structure, 375, 389 
CreateCompatibleBitmap function, 500 
CreateCompatibleDC function, 182 
CreateDIBitmap function, 481 
CreateFont function, 97 
Create function, 22, 72, 134,470 
CreateInstance function, 561-63, 587 
CreateStandardDispatch function, 588 
CRecordset class, 506-7, 514, 530-32, 546-47 
CRecordsetStatus class, 531-32 
CRecordView class, 506 
CRect class, 36, 64-66, 264 
CRgn class, 65, 79 
CRow View class, 433 
CRuntimeClass class, 563 
CScrollView class, 66-71, 102-6,374, 

375-76,529 
CSingleDocTemplate class, 325 
CSize class, 64 



CSplitterWnd class, 391-92 
CStatusBar class, 237-38 
CString class, 260-63 
CToolBar class, 237 
Ctrl-Ieft mouse click, 118 
cursors, mouse, 63-65 
CVBControl class, 152-53 
CView class, 25, 29, 30, 34-35, 51, 273-74 
CWinApp class, 21-23, 323-24, 351 
CWindowDC class, 75, 76 
CWnd class, 34-35, 51, 130 

D 
data. See database management; data mem­

bers; file formats; files; resources 
database management 

application shutdown, 516-17 
counting rows in recordsets, 531-32 
dialog bars, 515-16 
example database access application, 

508-15 
example dynamic recordset application, 

532-47 
example dynamic recordset class, 530-31 
example row-view class, 517-30 
ODBC and, 503-7 (see also Microsoft Open 

Database Connectivity (ODBC)) 
overview, 501 
serialization vs., 318, 502 (see also 

serialization) 
SQL and, 503 

data integrity, 502 
data members. See also variables 

dialog controls and, 119-21 
initializing, 53 
pointer, 680-82 (see also pointers) 
saving view states, 52-53 
static, 263-64, 685-86 
static, for DLLs, 643-44 
Visual Basic properties vs., 151 

data segments, 169-70, 173-74 
data types. See types 
DATE type, 597-98 
dBASE program, 501 
DBWIN program, 14,40-42,278 
DDE (dynamic data exchange), 358 

DDV (dialog data validation) functions, 
125,277 

DDX (dialog data exchange) functions, 
121-22,125,277,435 

debugging. See also diagnostic dumping; 
diagnostic macros 

Index 

bug in debugging version of Windows, 653 
Debug kernel and DBWIN program, 40-42 
dynamic link library for, 637-39 
eliminating debugging information, 47-49 
overview, 10-11 . 
printf statements and, 564 
stepping over code, 42 
using, 42-43 
versions of DLLs, 644-45 
Windows NT Edition of Visual C++ 

and,705 
Debug kernel, 40-42 
DEBUG_NEW constant, 178 
_DEBUG preprocessor constant, 49, 278 
DECLARE_DYNAMIC macro, 280, 295 
DECLARE_DYNCREATE macro, 280, 324, 326 
DECLARE_SERIAL macro, 280, 318, 322, 324 
DEF file extension, 33, 171 
#define constants 

for command messages, 218 
context-sensitive help and, 411-12 
for controls, 39 
as resources, 38 

DeleteContents function, 291, 323, 328-29, 
330,·355 

DeleteMenu function, 230 
delete operator, 677 
derived classes, 667-68 
DestroyWindow function, 138 
destructor functions 

device contexts; 78 
CDI objects, 79 
overview, 661-62 
virtual, 679-80 

Detach function, 476 
development environments. See application 

frameworks 
device contexts 

for bitmaps, 182 
classes, 35-36, 75-78 
constructing and destroying, 76-78 
display, 76 

713 



INSIDE VISUAL C++ 

device contexts, continued 
display-specific drawing code and, 78 
lifetime of, 81-82 
mapping modes and coordinates (see 

mapping modes) 
overview, 4 
permanent, 82 
preparing, 81, 87, 90,105-6,375-76 
printer, 374-75 
print preview, 374 
states of, 77-78 

device coordinates, 66, 71, 85, 89-90 
device drivers 

display and printer, 4 
RAM drives, 44-47 

device-independent bitmaps (DIBs) 
access functions, 481-82 
class, 477-80 
colors, palettes, and, 474-75 
in documents, 477 
example application serializing, 482-99 
format, 473-74 
GDI bitmaps vs., 181-82,473-74 (see also 

bitmaps, GDI) 
manipulation of, 500 
memory allocation, 484 
passing, via clipboard, 475-76 
printing with, 477, 481 
serialization of large, 484 

DGROUP segment, 170, 279 
diagnostic dumping 

afxDump objects and, 279 
automatic dump of undeleted objects, 281 
CObject class and, 278 
CObject class and dump context, 279-80 
TRACE macro, 278-79 

diagnostic macros 
without debugger, 47-49 
displaying output from, 42 
enabling, 43 
using TRACE, 22, 278-79 

diagnostic tools, 13-14 
dialog bars, 515-16 
dialog control accelerator operator (&), 118 
dialog data exchange (DDX) functions, 

121-22,125,277,435 
dialog data validation (DDV) functions, 125, 

277 

714 

Dialog Editor program, 39 
DIALOG program, 9 
dialog units (DLUs), 113 
dialog windows 

About, 38, 40 
adding bitmap buttons to, 195-201 
ClassWizard and, 118-22 
color of background and of controls, 131 
commands originating in, 220-21 
control accelerator operator (&), 118 
editing, 9 
example application without documents or 

views, 458-63 
modal vs. modeless, 107-8 (see also modal 

dialog windows; modeless dialog 
windows) 

resources and controls, 108-9 (see also 
controls) 

standard printer, 372 
system modal, 108 
user interface (see COMMDLG dialog 

windows) 
DIBLOOK program, 475 
DIBs. See device-independent bitmaps (DIBs) 
disc, companion, xxix 
disk caching, 43 
disk files, 318 
dispatch maps, 588, 589-90 
DispatchMessage function, 202 
DISP_FUNCTION macro, 597 
display boards, 83-85 
display device contexts, 75-78 
display drivers, 4 
display fonts, 91-92 
display pages vs. printed pages, 373-74 
DISP_PROPERTY macro, 597 
dithered colors, 83-84 
DLLs. See dynamic link libraries (DLLs) 
DLUs (dialog units), 113 
document association with File Manager, 

344-45 
documents. See also files; multiple document 

interface (MDI); single document 
interface (SDI) 

applications without (see applications, 
example, without documents or 
views) 

class, 24-25, 216, 273-74, 477 



documents, continued 
deleting contents of, 291 
File Manager document association, 

344-45 
frame windows, view windows, and, 215-16 
multiple document interface (MDI) vs. 

single document interface (SDI) , 
30-31 

serialization (see serialization) 
storing bitmaps in (see device-independent 

bitmaps (DIBs)) 
views and (see document-view architecture; 

view windows) 
document templates 

MDI, 351, 353 
multiple, 355 
SDI,325-28 

document-view architecture. See also docu­
ments; view windows 

applications without (see applications, 
example, without documents or 
views) 

CFormView class and, 277-78 
CObject class and, 278 
collections (see collections) 
deleting document contents, 291 
diagnostic dumping, 278-81 
example application with, 282-90 
example application with collections and, 

296-316 
interaction functions, 273-76 
for multiple views, 290-91 
overview, 23-25 
simplest application, 276 

DoDataExchange function, 124-25 
DoFieldExchangefunction, 515, 530-31 
DoModalfunction, 109, 124-25 
"Do-Nothing" application, 31-34, 36 
DPtoLPfunction, 89 
DragAcceptFiles function, 357 
drag and drop 

application registration, 356 
application startup parameters, 357-58 
enabling, 357 
enabling embedded launch, 357 
example MDI application, 358-67 
example SDI application, 367-70 
responding to DDE messages, 358 

Index 

drawing 
CDI bitmaps and, 182 
invalidating rectangles for, 53-54 
mapping modes and, 90 
OnPaint function, device contexts, and, 78 
printing and, 374-75 
in view windows with CDI, 35-36 

drivers, display and printer, 4 
Dump function, 280, 295 
dynamically linked projects, 638-39 
dynamic data exchange (DDE), 358 
dynamic link libraries (DLLs) 

advantages of, 635-36 
COM server applications, 551-52, 576-77 
conventional,636-37 
example OLE Automation server, 607-14 
MFC library (see dynamic link libraries 

(DLLs), MFC library) 
ODBC, 504 
OLE Automation server applications, 

586-88 
ordinary custom controls, 150 
overview, 5-6 
storing, in RAM drives, 47 

dynamic link libraries (DLLs), MFC library 
classes as, 637-38 
converting statically linked projects to 

dynamically linked projects, 638-39 
creating, 644 
creating import, 644 
debug and release versions of, 644-45 
example application using extension, 

648-54 
example extension, 645-48 
exported client callback functions, 638 
exports of extension, 642-43 
extension, 639 
inlihe constructors and, 642 
memory usage of, 640 
required code for extension, 640 
resources, 641 
run-time class identification of extension, 

644 
static class data members, 643-44 
usage restriction of, 637 

dynamic recordsets 
counting rows in, 531-32 
example application using, 532-47 
programming, 530-31 

715 



INSIDE VISUAL C++ 

dynamic splitter windows, 393 
dynasets, 506 

E 
-e parameter, 357 
edit controls, 108, 113-14 
edit control views, 222-23 
ellipses, 36, 87-89 
embedded launch procedure, 357 
embedded objects 

assignment operators and, 670-71 
construction of, 676 
copy constructors and, 669-70 
destruction of, 676-77 
overview, 668-69 
pointers vs., 321-22 
reference parameters and, 671-72 
references and, 672-75 
returning references, 675-76 

EmptyClipboard function, 476 
Enable function, 240 
EnableShellOpen function, 357 
EnableVBX function, 155 
encapsulation, 665 
EndDialogfunction, 125, 138 
EndPaint function, 78 
Enter key processing, 125-27, 138 
enumerated types, 686 
environments, development. See application 

frameworks 
environments, ODBC, 504 
environment variables, 44 
error codes, COM, 552 
error codes, OLE Automation, 599 
error messages, 42 
Esc key processing, 127, 138 
event handling 

example application processing keystrokes, 
66-71 

example applications processing mouse 
clicks, 54-60, 60-66 

user input and message map functions, 
51-54 

using ClassWizard, 57-60 
using ClassWizard and AppWizard to­

gether, 58-60 
Windows messages, 72-73 

716 

events and event registration, Visual Basic, 152 
EX03A application, 31-34, 36 
EX04A application, 54-60 
EX04B application, 60-66 
EX04C application, 66-71 
EX05A application, 94-97 
EX05B application, 98-102 
EX05C application, 102-6 
EX06A application, 110-30 
EX07A application, 134-41 
EX07B application, 143-48 
EX08A application, 153-64 
EX10A application, 184-87 
EX10B application, 187-92 
EX11A application, 195-201 
EX11B application, 203-6 
EX11 C application, 206-11 
EX12A application, 222-29 
EX12B application, 231-36 
EX13A application, 242-48 
EX13B application, 250-55 
EXl4A application, 264-70 
EX15A application, 282-90 
EX15B application, 296-316 
EX16A application, 331-45 
EX17A application, 358-67 
EX17B application, 367-70 
EX18A application, 377-83 
EX18B application, 384-89 
EX19A application, 393-95 
EX19B application, 395-97 
EX19C application, 398-401, 414-16 
EX20A application, 404-9 
EX20B application, 419-23 
EX22A application, 454-58 

. EX22B application, 458-63 
EX22C application, 463-71 
EX23A application, 482-99 
EX24A application, 508-15 
EX24B application, 517-47 
EX25A application, 564-74 
EX25B application, 599-607, 622-24 
EX25C application, 607-14, 624-26 
EX25D application, 614-21, 626-28 
EX25E application, 621-33 
EX26A application, 644-48 
EX26B application, 648-54 
Excel. See Microsoft Excel 



ExecuteSQL function, 547 
EXE files 

COM client applications, 577-79 
COM server applications, 551-52, 577-79 
example COM server and client, 564-74 
example OLE Automation server, 599-607 
example SDI Automation server, 614-21 
generating, 10 
OLE Automation server applications, 

586-88 
ExitInstance function, 325 
exports, DLL, 642-43 
extended command processing, 230;...31 
extension DLLs. See dynamic link libraries 

(DLLs), MFC library 
extensions. See file extensions 
extraction operator (»),321,322 

F 
Fl key, 13,410,411,412,417-19 
far function calls, 174 
_fheapwalk function, 177 
field exchange functions, 515 
FIFO (first-in, first-out) lists, 292-94 
file extensions 

BMP, 181-82 
BSC,49 
C, CPP, and CXX, 10,30 
TLB or ODL, 592 

file formats 
App Studio, 9-10 
database management, 502 
Rich Text Format (RTF), 403-4 

File Manager 
document association, 344-45 
drag-and-drop capability, 355-58 
registration database and, 367 

files. See also database management; docu-
ments; serialization 

created by App Wizard, 33 
dialog for opening, 142 
disk and archive, 318 
extensions (see file extensions) 
formats (see file formats) 
help, 404-9 

first-in, first-out (FIFO) lists, 292-94 
fixed scale mapping modes, 86-87 

Flush function, 484 
_fmalloc function, 175 
fonts 

choosing, 91 
class, 79 
computing character height, 93 
dialog for selecting, 142,231 
displaying, 91-92 

Index 

example applications using, 94-97, 98-102 
as GDI objects, 91 
logical twips mapping modes, 91, 92,382 
printing with, 91 
TrueType, 90-91 

foreign object support, 435 
formats. See file formats 
frame windows 

class, 22, 216, 258-59 
closing, 22 
creating, 21, 22 
interactions between view windows and, 

215-16 (see also view windows) 
locating, for control bars, 241 
MDI,351-53 
persistent (see base classes) 

frameworks, application. See application 
frameworks 

free function, 677 
friend classes, 683-84 
friend functions, global, 684-85 
FromHandle function, 476 
functions 

bit-blitting, 182 
callback,638 
clipboard, 476-77 
command handler, 218-21, 230-31 
constructor (see constructor functions) 
destructor (see destructor functions) 
dialog data exchange (DDX), 121-22, 125, 

277,435 
dialog data validation (DDV) , 125, 277 
DIB access, 481-82 
document-view interaction, 273-76 
exported, 642-43 
field exchange, 515 
global,664 
global friend, 684-85 
member (see member functions) 
message-handler (see message handling 

functions) 

717 



INSIDE VISUAL C++ 

functions, continued 

G 

message map, and user input, 51-54 
near function calls, 171-73 
prototype, 693-98 
Source Browser and, 12 
virtual (see virtual functions) 
Windows, 7,177,699-700 

CDI. See bitmaps, CDI; graphics device 
interface (CDI) 

generic help, 414 
GetActiveObject function, 587 
GetActiveRow function, 529 
GetAt function, 295 
GetBitmapBits function, 500 
GetBuffer function, 262 
GetClientRect function, 54, 88 
GetClipboardData function, 476 
GetDC function, 77 
GetDefaultConnect function, 514 
GetDefaultSQL function, 514 
GetDescendantWindow function, 249 
GetDIBits function, 481 
GetDlgCtrlID function, 130 
GetDlgltem function, 130, 277 
GetDocument function, 36, 274 
GetEditCtrl function, 222 
GetIDsOfNames function, 586 
GetMenu function, 229 
GetMenuString function, 230 
GetNext function, 294 
GetNextView function, 274 
GetObject function, 500 
GetParentFrame function, 241 
GetPathName function, 142 
GetPrivateProfileint function, 260 
GetPrivateProfileString function, 260 
GetProfilelnt function, 260 
GetProfileString function, 260 
GetProperty function, 590-91 
GetProplndex function, 165 
GetRecordCount funCtion, 531 
GetRowWidthHeight function, 529 
GetSafeHdc function, 81 
GetStatus function, 531-32 
GetSubMenu function, 230 

718 

GetSystemMetrics Windows function, 70 
GetTextExtent function, 92 
GetTextMetrics function, 93 
GetWindowPlacement function, 263 
GetWindowRect function, 263 
GlobaLAllocPtr macro, 17,484 
GlobaLAlloc Windows function, 175, 177 
GlobalFreePtr macro, 177, 484 
GlobalFree Windows function, 176 
global friend functions, 684-85 
global functions, 664 
global heap, 175-76, 179 
global objects, allocation of, 680 
global operators, 690 
GlobalReAllocPtr macro, 484 
GlobalReAlloc Windows function, 175 
global variables, 53, 640 
GotoDlgCtrl function, 277 
graphics device interface (CDI) 

bitmaps (see bitmaps, CDI) 
color mapping, 82-85 
constructing and destroying objects, 79-80 
device context classes, 75-78 (see also 

device contexts) 
drawing in view windows, 35-36 
example application processing mouse 

clicks in scrolling window, 102-6 
example applications using fonts, 94-97, 

98-102 
fonts, 90-93 (see also fonts) 
lifetime of selections, 81-82 
mapping modes, 85-90 
object classes, 78-79 
objects, 78-82 
overview, 4 
permanent device contexts, 82 
stock objects, 80 
tracking objects, 79-80 

CRID control, Visual Basic, 153-64 
group boxes, 114, 115 

H 
H (header) file extension, 20, 30 
handlers. See message handling functions 
handles 

device contexts and, 75-76 
ODBC, 504 
as permanent CDI identifiers, 81 



hardware requirements, xxix 
HC31 program, 13,416-17 
header (H) files, 20, 30 
headers, precompiled, 44-47 
heap 

allocation of objects on, 677-80 
local and global, 174-76, 179 

_heapmin function, 176 
HEAPW ALK program, 13 
"Hello, world!" application, 19-23 
help 

building help files, 416-17 
context-sensitive, 403-23 
example application with context-sensitive, 

414-16 
example application with help command 

processing, 419-23 
Fl key access, 412 
Fl key processing, 417-18 
generic, 414 
help command processing, 417-19 
help context aliases, 411 
help context determination, 411-12 
menu access, 412 
message box, 413 
online, 13 
Rich Text Format (RTF), 403-4 
Shift-Fl key combination access, 412-13 
Shift-Fl key combination processing, 

418-19 
using search strings, 411 
WINHELP program, 403-10 
writing help files, 404-9 

Help Compiler (HC31), 13,407,416-17 
helper (private) functions, 97, 664 
hints, 651 
HRESULTstructure, 552 
human resources application, 110-30 

I 
IClassFactory interface, 561-80 
icons, dialog window, 117 
IDC_SPECIAL constant, 121 
IDD_DIALOCJ constant, 111-12 
ID_INDICATOR_CAPS constant, 250 
ID_INDICATOR_NUM constant, 250 
ID_INDICATOR_SCRL constant, 250 

Index 

IDispatch interface, 581,585-99 
IDOK constant, 120 
IDR_ABOUTBOX constant, 38 
IDR_MAINFRAME constant, 38, 117, 229, 238, 

327,353 
IDR_MYDOCTYPE constant, 353 
ID_SEPARATORconstant, 240, 248 
images. See bitmaps, GDI; device-independent 

bitmaps (DIBs) 
implementation files (CPP), 20-21, 30 
IMPLEMENT_DYNAMIC macro, 280, 295 
IMPLEMENT_DYNCREATE macro, 280, 

324,326 
IMPLEMENT_OLECREATE macro, 564 
IMPLEMENT_SERIAL macro, 280, 319, 

322,324 
IMPLIB utility, 644, 648 
import libraries, 644, 648 
#include statement, 9 
incompatibility of platforms, 706 
indexed file access, 502 
indexed properties, 585, 619-20 
inheritance, 580, 665-68 
INI files, 43, 259-60, 504 
InitApplication function, 325 
initialization function, DLL, 640 
InitInstance function, 21-22, 325, 351 
inline constructors, DLL, 642 
input, message map functions and, 51-54. See 

also event handling 
insertion operator «<),279,321,322 
InsertMenu function, 230 
Inside OLE 2 (Brockschmidt), 549-50, 576, 580 
integrated development environments. See 

application frameworks 
integrity, data, 502 
INTERFACE macros, 560 
interfaces, COM 

overview, 551-57 
special, for obtaining pointers to, 557-60 

InternalAddRef function, 564 
InternalQueryInterface function, 564 
InternalRelease function, 564 
Invalidate function, 35, 132 
InvalidateRect function, 35, 53, 66 
Invoke function, 585-86, 597-99 
InvokeHelper function, 590-91 
IsBOF function, 514 

719 



INSIDE VISUAL C++ 

IsEOF function, 514 
IsModified function, 330-31 
IsPrinting function, 376 
IsStoring function, 321 
IUnknown interface, 557-60 

K 
keyboard accelerator operator (&), 218 
keyboard accelerators, 217-18, 239, 241 
keyboard state indicators, 249 
keystrokes 

Enter key, 125-27 
Esc key, 127 
example application processing, 66-71 
F1 key, 13,410,411,412,417-18 
messages, 4, 71 
Shift-F1 key combination, 412-13, 418-19 

Kill Timer function, 201 

L 
labels. See static text controls 
large memory model, 168, 171, 173-74 
LaserJet printer fonts, 91 
leaks, memory, 178-79 
learning curve, 18-19 
LibMain function, 640 
libraries 

class, 19 (see also Microsoft Foundation 
Class (MFC) Library) 

dynamic link (see dynamic link libraries 
(DLLs) ) 

storing, in RAM drives, 47 
linker, 10,48-49 
list boxes, 108, 116, 132 
lists. See collections 
LoadBitmap function, 183 
LoadCursor Windows function, 64 
LoadMenu function, 230 
LocalAlloc Windows function, 174-75 
local heap, 174-75, 179 
logical coordinates, 89-90 
logical twips mapping mode, 87,91,92, 382 
LPRECT operator, 66 
LPtoDP function, 89 
_lseek function, 318 

720 

M 
macros 

class factory, 564 
diagnostic (see diagnostic macros) 
dump context and, 280 
memory allocation, 484 
nested class, 555 
serialization and, 318-19, 324, 326 
virtual functions vs., 23 

MAFXCWD.LIB file, 47, 49 
main frame windows. See frame windows 
MAINFRM.H and MAINFRM.CPP files, 

216,237 
main function, 3 
make files, 8-9, 33, 50 
MAKEHELP batch file, 414, 416-17 
MAKEHM program, 416 
MakeProcInstance function, 638 
MAK file extension, 8-9, 33,50 
malloe function, 677 
MAP file extension, 174 
mapping. See color mapping; message map­

ping; Microsoft Foundation Class 
(MFC) Library 

mapping modes 
coordinate conversion, 89-90 
device coordinates, 66, 71, 85 
fixed scale, 86-87 
GDI bitmaps and, 184 
logical twips, 87,91,92,382 
MM_TEXT, 71, 85-86 
printing fonts and MM_TWIPS, 91 
setting, 90, 97 
variable scale, 87-89 

marshalling, 577 
materials planning. See MATPLAN application 
MATPLAN application 

anatomy of, 427-28 
application class, 428-29 
building and testing, 450 
child window class, 431 
document items class, 429-30 
elements, 425-26 
frame window class, 430 
header files, 450 
list view class, 436-41 
modal dialog class, 434-36 



MATPLAN application, continued 
overview, 426-27 
plan view class, 442-48 
resource file, 448-49 

maximized windows, 263 
MDI. See Microsoft Windows Software Devel­

opment Kit (SDK); multiple document 
interface (MDI) 

medium memory model, 168, 171, 173 
member functions. See also functions 

constructor (see constructor functions) 
copy constructor, 669-70 
destructor (see destructor functions) 
global,664 
operators, 687-89 
private (helper), 97, 664 
prototypes, 52, 693-98 
special purpose, 662-63 
static, 686-87 
views and, 30, 51 
virtual (see virtual functions) 
Visual Basic methods vs., 150-51 

memory management 
16-bit Windows, 168-78, 703-4 
32-bit Windows NT, 702 
allocation of global objects, 680 
allocation of objects on heap, 677-80 
delete operator and, 677 
DGROUP segment and multi-instance 

applications, 170 
DGROUP segment and TRACE macros, 279 
diagnostic tools, 13-14 
disk caching, 43 
environment variables, 44 
global heap, 175-76 
Intel segment architecture, 169-70 
local heap, 174-75 
memory allocation functions (Windows), 

177 
memory leaks, 178-79 
memory models, 168 
memory models and code segments, 171 
memory models and data segments, 173-74 
MFC library DLL memory usage, 640 
near function calls, 171-73 
new operator and, 167,677 
out-of-memory conditions, 179 
overview, 5 

Index 

memory management, continued 
pointers (see pointers) 
RAM drives, 44-47 
virtual memory manager (80386/80486), 

177-78 
vtbllocation, 176 

menu bars, 215-17 
menus. See also toolbars 

access to help, 412 
adding command message handlers with 

Class Wizard, 278 
built-in items, 221-22 
CEditView class and, 222-23 
CMenu class and, 229-30 
command message processing, 218-21 
enabling and disabling items, 222 
example application with, 222-29 
example application with dynamically 

created,231-36 
extended command processing, 230-31 
frame windows and, 215-16 
keyboard accelerators and, 217-18 
overview, 216-17 
view windows and, 215-16 
Windows menus, 216-17 

message boxes, 261, 413 
MessageBox function, 413 
message handling functions 

adding, to projects, 58-59, 62-63 
child window notification messages, 

693-94 
command messages, 693 
prototypes, 52 
requirements for, 23 
Special button, 121 
user-defined messages, 698 
Windows notification messages, 695-97 

message line pane of status bar, 248-49 
message mapping, 23-25. See also message 

handling functions; message processing; 
Microsoft Foundation Class (MFC) 
Library 

message processing. See also command 
processing 

command processing, 218-21 
diagnostic tools, 13-14 
message handlers (see message handling 

functions) 

721 



INSIDE VISUAL C++ 

message processing, continued 
message map entries, 57 
MFC library message mapping, 23-25 
user input and message map functions, 

51-54 
Windows, 3-4 
yielding control and, 201 

messages 
child window notification, 693-94 
command, 126,218-19,693 
control notification, 126, 151, 223 
DDE, 358 
error, 42 
keystroke, 4, 71 
mouse (see mouse messages) 
scrolling, 66-71 
toolbar command, 239-41 
update command user interface (UI), 

219-20, 240-41 
user-defined,4, 134,698 
Windows, 72-73, 695-97 

METHOD_PROLOGUE macro, 556 
methods 

VBA, 584, 585 
Visual Basic, 150-51 

MFC250D.DLL file, 638-39 
MFC250.DLL file, 635, 637-38 
MFC library. See Microsoft Foundation Class 

(MFC) Library 
MFCNOTES.HLP file, 73,81, 150, 164,292, 

555,580,637 
Microsoft Cairo, 633 
Microsoft Excel 

controlling, 628-33 
as OLE Automation server and controller, 

582-84 
Microsoft Foundation Class (MFC) Library 

adding ODBC capability to applications, 
513 

as application framework, 19-23 
applications (see applications) 
benefits, 15-18 
class factories, 563-64 (see also class 

factories) 
command processing (see command 

processing) 
database management and, 501, 506-7 (see 

also database management) 

722 

Microsoft Foundation Class (MFC) Library, 
continued 

dialog bars, 515-16 
document-view architecture, 23-25 (see 

also documents; document-view 
architecture; view windows) 

dynamic link libraries (see dynamic link 
libraries (DLLs), MFC library) 

features enhanced for MFC 3.0, 704 
features not supported under Win32, 704 
features ofWin32 not supported by, 704 
help, 13 (see also help) 
learning curve, 18-19 
memory management (see memory 

management) 
message mapping, 23-25 (see also message 

handling functions; message 
processing) 

multiplatform programming, 705-6 
MYAPP ("Hello, world!") application, 

19-23 
ODBC classes, 506-7 (see also Microsoft 

Open Database Connectivity 
(ODBC)) 

OLE, 549-50 (see also Common Object 
Model (COM); OLE Automation) 

porting 16-bit applications to Windows NT, 
703-4 

running 32-bit applications under Windows 
3.1,705-6 

Software Development Kit (SDK) vs. (see 
Microsoft Windows Software Devel­
opment Kit (SDK)) 

subclassing feature, 281-82 
versions, 14, 17-18 

Microsoft Guide to Managing Memory with MS­
DOS 6 (Gookin), 44 

Microsoft MS-DOS, Windows vs., 3-4 
Microsoft Open Database Connectivity 

(ODBC). See also database management 
adding ODBC capability to MFC applica-

tions, 513 
architecture, 504, 505 
MFC library and, 18,503,506-7 
SDK programming, 504-6 
as standard, 501, 503-4 

Microsoft Visual Basic as OLE Automation 
server, 582-84 



Microsoft Visual Basic controls. See also Visual 
Basic for Applications (VBA) 

advantages and disadvantages of using, 
164-65 

C++ classes vs., 150-51 
control events vs. control notifications, 151 
CVBControl class for, 152-53 
enabling, 155 
event registration, 152 
example application using CNTR control, 

206-11 
example application using GRID control, 

153-64 
methods vs. member functions, 150-51 
overview, 9, 164 
picture properties, 164 
porting of, to Windows NT, 149,703-4 
properties vs. data members, 151 
property index numbers, 165 
standard Windows controls vs. ordinary 

custom controls, 150 
Microsoft Visual C++ 

application framework (see Microsoft 
Foundation Class (MFC) Library) 

App Studio resource editor, 5, 9-10 (see 
also App Studio resource editor) 

AppWizard code generator, 11 (see also 
AppWizard code generator) 

C/C++ compiler, 10 
ClassWizard program, 11-12 (see also 

Class Wizard program) 
components, 6-14 
crash course, 657-92 
debugger, 10-11 (see also debugging) 
diagnostic tools, 13-14 
hardware requirements, xxix 
linker, 10 
online help, 13 (see also help) 
options, 47-49 
organization of this book on, xxvii-xxviii 
resource compiler, 10 
sample programs, xxxii (see also applica-

tions, example) 
Source Browser, 12,34,49 
Standard Edition vs. Professional Edition, 7 
technical notes, xxx 
using this book on, xxvi-xxvii 
version 1.5, xxx 

Index 

Microsoft Visual C++, continued 
Visual Workbench and application build 

process, 7-9 (see also Visual Work­
bench) 

Windows NT Edition, 7, 701-6 
Windows SDK and, xxviii (see also Microsoft 

Windows Software Development Kit 
(SDK) ) 

Microsoft Windows 
32-bit (see Microsoft Windows NT) 
C++ in terface (see Microsoft Visual C++) 
dynamic link libraries (DLLs), 5-6 (see also 

dynamic link libraries (DLLs» 
functions, 699-700 
graphics device interface (GDI), 4 (see also 

graphics device interface (GDI» 
INI files, 259-60 
memory management, 5 (see also memory 

management) 
message processing, 3-4 (see also message 

processing) 
notification messages, 695-97 
OLE,_549-50 (see also Common Object 

Model (COM); OLE Automation) 
programming model, 3-6 
registration database (REG.DAT), 574-76 
resource-based programming, 5 (see also 

resources) 
Microsoft Windows NT 

debugging considerations, 705 
memory management, 702-3 
overview, 6 
porting 16-bit applications to, 703-4 
programming, 701-2 
running applications for, under Windows 

3.1,705-6 
system modal dialogs and, 108 
Visual Basic controls and, 149 
Visual C++ version for, 7, 701-6 
Windows 3.1 vs., 703,705-6 

Microsoft Windows Software Development Kit 
(SDK) 

control notification messages, 126 
CPaintDC class constructors and destruc-

tors, 78 
DIB access functions, 481-82 
drawing in view windows, 37 
editing dialog boxes and resources, 39-40 

723 



INSIDE VISUAL C++ 

Microsoft Windows Software Development Kit 
(SDK), continued 

exporting client callback functions, 638 
functions, 7, 699-700 
help, 13 
INI file entries, 260 
learning curve, 18-19 
MDI child window creation, 470 
MDI support, 349 
menu item synchronization, 220 
Microsoft Foundation Class (MFC) Library 

vs., 7 
ODBC programming, 504-6 
print preview and printer support, 18 
state variables, 53 
window class registration, 60 

MLIBCEW.LIB file, 47 
MM_ANISOTROPIC mapping mode, 87-88 
MM_HIENGLISH mapping mode, 87 
MM_HlMETRIC mapping mode, 87 
MM_ISOTROPIC mapping mode, 86-89 
MM_LOENGLISH mapping mode, 85-87 
MM_LOMETRICmapping mode, 87 
MM_TEXTmapping mode, 71, 85-86 
MM_TWIPSmapping mode, 87, 91, 92, 382 
modal dialog windows 

color of background and of controls, 131 
example application using every kind of 

control in, 110-30 
example application using hand coding for 

extra features, 125-30 
extending controls, 132 
identifying controls, 130 
modeless vs., 107-8 
in OLE Automation EXE servers, 620-21 
painting inside, 131-32 
programming, 109 
resources and controls, 108-9 
system, 108 

modeless dialog windows 
CForm View class as alternative to, 141, 

277-78 
creating, 133-34 
example application with, 134-41 
modal vs., 107-8 
ownership, 134 
user-defined messages and, 134 

724 

ModifyMenu function, 230 
module definition files (DEF) , 33, 171 
monochrome bitmaps, 182 
Most Recently Used (MRU) file list, 329 
mouse cursors, 63-65 
mouse messages 

capturing and releasing, 64 
example applications processing, 54-60, 

60-66 
overview, 4 

MoveFirst function, 507, 514 
Move function, 507 
MoveLast function, 507 
MoveNext function, 507, 514 
MovePrev function, 507 
MS-DOS, Microsoft, Windows vs., 3-4 
MSVCVARS.BAT,407 
multiplatform development strategy, 705-6 
multiple document interface (MDI) 

application objects, 351 
creating additional views, 354-55 
creating empty documents, 353-54 
document templates, 351, 353,355 
drag and drop (see drag and drop) 
example application, 358-67 
example application for materials planning 

(see MATPLAN application) 
example application with database access, 

508-15 
example application with dynamic 

recordset, 517-47 
example application with multiview class, 

398-401 
example application without documents or 

views, 463-71 
frame windows and child windows, 351-53 
help command processing, 418-19 
loading and storing, 355 
locating main frame window, 241 
multiple view options, 392 
persistent frame windows in, 270-71 
SDI vs., 30-31 (see also single document 

interface (SDI)) 
typical MFC library application, 347-51 

multiuser access control, 502 
MYAPP ("Hello, world!") application, 19-23 



N 
N2D batch file, 42 
name-mangling algorithms, 637 
naming conventions 

classes, 20 
module definition files, 33 
nonstatic class data members, 53 

national language support, 635-36 
near function calls, 171-73 
nested classes, 554-57 
new operator, 167, 174, 178,640,644,677 
NextDlgCtrl function, 277 
NMAKE program, 14 
_nmallocfunction, 174 
notation character (:), 667 
notification messages, 126, 151, 223 

o 
object factories. See class factories 
object linking and embedding (OLE), 

549-50. See also Common Object Model 
(COM); OLE Automation 

object-oriented operating system, 549, 551, 
633 

objects. See also classes; names of specific objects 
allocation of, on heap, 677-80 
allocation of global, 680 
C language user-defined types vs., 657-59 
collection (see collections) 
embedded (see embedded objects) 
persistent (see base classes; database 

management; files; serialization) 
registration, 574-76 
relationships between, 680-82 

Objects Windows Library (OWL), 15,23 
ODBC. See database management; Microsoft 

Open Database Connectivity (ODBC) 
ODBC.DLL file, 504 
ODBC.lNI file, 504 
ODL extension, 592 
offsetof operator, 556 
OK buttons, 121, 125-27 
OLE, 549-50. See also Common Object Model 

(COM); OLE Automation 
OLE 2 Programmers Reference, 549, 588 
OLE Automation 

advan tages of, 585-86 

OLE Automation, continued 
all-purpose data structure, 592-94 
controllers and servers, 581-82 
example applications, 599-633 

Index 

example class containing all-purpose data 
structure, 594-97 

example controller application, 621-33 
example SDI server EXE application, 

614-21 
example server DLL application, 607-14 
example server EXE application without 

user interface, 599-607 
general-purpose interface, 585-99 
MFC controllers, 590-92 
MFC interface implementation, 588 
MFC servers, 588-90 
Microsoft Cairo and, 633 
Microsoft Excel and, 582-84 
overview, 18,549-50 
parameter and return type conversions, 

597-99 
programming considerations, 586-88 
properties, methods, collections, and, 585 
Visual Basic for Applications and, 580-81 

OLE Controls, 581 
OnBeginPrinting function, 376 
OnCancel function, 127, 138 
On Close function, 72 
ON_COMMAND_EX message map macro, 

230-31 
ON_COMMAND message map macro, 126, 219 
OnContextHelp function, 418 
On Create function, 72, 201 
OnDDECommand function, 358 
OnDestroy function, 73 
OnDraw function, 35-36, 53-54, 78, 90, 106, 

182,183-84,374-75,514-15 
OnDrawRow function, 530 
OnEndPrintingfunction, 376 
OnEnterfunction, 288 
OnFileNew function, 328-29, 330, 353-54 
OnFileOpen function, 329, 330 
OnFileSaveAs function, 330 
OnFileSave function, 330 
OnHelp function, 417-18 
OnHelpHitTest function, 418-19 
Onldlefunction, 206-7 
on-idle processing, 206-11 

725 



INSIDE VISUAL C++ 

OnlnitDialog function, 109, 121-22, 124, 143 
OnlnitialUpdate function, 68-69, 70, 72, 

275-76,514 
OnKeyDown function, 69, 71 
OnLButtonDown function, 52, 58-59, 103 
OnLButtonUp function, 62, 103 
online help, 13. See also help 
OnMouseMovefunction, 62,103,106 
OnNcDestroy function, 73 
OnNewDocument function, 329 
OnOKfunction, 109, 121, 125-27, 138 
OnOpenDocumentFile function, 329 
OnOpenDocument function, 329 
OnPaint function, 22, 37, 78, 131-32 
OnPrepareDC function, 81, 90, 97, 105-6, 

375-76 
OnPreparePrinting function, 376 
OnPrint function, 37, 375, 530 
OnQueryEndSession function, 72 
OnSaveDocument function, 330 
OnScroll function, 71 
OnSpecial function, 121 
On Update function, 275, 290-91, 651 
On WindowNew function, 354 
Open Clipboard function, 476 
Open Database Connectivity. See Microsoft 

Open Database Connectivity (ODBC) 
OpenDocumentFile function, 328, 354, 358 
OpenDocument function, 328, 329 
_open function, 318 
Open function, 506, 514, 547 
operating system, object-oriented, 549, 551, 

633 
operators 

assignment, 670-71 
const char* (), 261-63, 278 
conversion, 689-90 
delete, 677 
dialog control accelerator (&), 118 
extraction (»),321,322 
global,690 
insertion «<),279,321,322 
keyboard accelerator (&),218 
LPRECT, 66 
member function, 687-89 
new, 167, 174, 178,640,644,677 
offsetof, 556 
overloaded,687-90 

726 

operators, continued 
overloaded, for CRect, CPoint, and CSize 

objects, 64 
reference, 678 
scope resolution, 64, 556 

out-of-memory conditions, 179 
overloaded operators 

conversion operators, 689-90 
global operators, 690 
member function operators,687-89 

OWL (Objects Windows Library), 15,23 
ownership of dialogs, 134 

p 
page selection for printing, 372-73 
Paintbrush program, 182 
PALETTERGB macro, 84 
palettes, color. See also color mapping 

class, 79, 84 
device-independent bitmaps, colors, and, 

474-75 
palettes, control, 113-17 
parameters 

OLE Automation, 597-99 
program startup, 357-58 
reference, 671-72 

pattern brushes, 102 
PCH file extension, 45 
PeekMessage function, 202 
pens, class, 79 
persistent objects. See base classes; database 

management; files; serialization 
physical coordinates, 89-90 
picture properties, Visual Basic, 164 
pixels, 66, 71, 85. See also coordinates 
platforms, 705-6 
pointers 

collections class, 292 
converting strings to, 262 
data members as, 680-82 
declarations of, 678 
embedded objects vs., 321-22 
identifying dialog controls with, 130 
interface, 557-60 
object references and, 677-79 
reference parameters and, 671 
references to, 682-83 
this, 682 



points (type measurement), 87 
polymorphism, 665-68 
porting of 16-bit applications to Windows NT, 

703-4 
POSITION variable, 294-95 
PostMessage function, 134 
PostNcDestroy function, 73 
#prag;ma alloctext directive, 171 
#prag;ma codcsegdirective, 171 
#prag;ma data_seg directive, 174 
precompiled headers, 44-47 
PreCreateWindow function, 82 
printer device contexts, 374-76 
printer drivers, 4 
printj statement, 564 
printing 

with device-independent bitmaps (DIBs), 
477,481 

dialogs for, 142,371-73 
display pages vs. printed pages, 183-84, 

373-74 
example application with multipage, 

384-89 
example application with wysiwyg, 377-83 
with fonts, 91 
interactive print page selection, 372-73 
OnPrint function, 375 
preparing device contexts, 375-76 
printer device contexts, 374-75 
starting and ending print jobs, 376 
Windows SDK and, 18 

print preview 
device context, 375 
example applications with fonts, 94-102 
MFC library, 374 
Windows SDK and, 18 

private class members, 97, 663-64 
profiler program, 13 
programming 

32-bit vs. 16-bit, 702-4 
multi platform, 705-6 
Windows model for, 3-6 

Programming Windows 3.1 (Petzold), 6, 18, 
92,371 

programs. See applications 
project map files (MAP), 174 
projects, 9. See also applications; make files 

properties 
\nBA,584,585,619-20 
Visual Basic, 151 

PtInRect function, 65 
PtlnRgn function, 65 
public class members, 663-64 . 
pure virtual functions, 667. See also vIrtual 

functions 
pushbutton buttons, 239-40 
pushbutton controls, 117 

Q 
QueryInterface function, 555, 557-60 

R 
radio buttons, 114-15 
RAM drives, 44-47 
RAMDRIVE.SYS device driver, 44 
raster operation codes (Raps), 193 
RC.EXE (Resource Compiler), 40 
RC (resource) file extension, 10 
_read function, 318 
ReadHuge function, 484 

Index 

recordsets, 506-7. See also dynamic recordsets 
rectangles 

bounding, of windows, 76 
calculating minimum invalid, 65 
class, 36 
client area, 54 
default window, 264 
determining point position in, 65 
invalidating, 53 

BECT structures, 66 
reference operator (&),678 
references 

COM interfaces and, 561 
parameters, 671-76 
to pointers, 682-83 

REGEDIT utility, 356, 574-75 
regions, 65, 79 
RegisterAIl function, 576 
Register function, 576 
RegisterShellFileTypes function, 356 
registration database (REG.DAT), 356, 367, 

574-76 
ReleaseBuffer function, 262 

727 



INSIDE VISUAL C++ 

ReleaseCapture function, 64 
ReleaseDC function, 77 
Release function, 555, 561, 563, 588 
RemoveHead function, 293 
RES (resource) file extension, 10 
Resource Compiler (RC.EXE), 40 
RESOURCE.H file, 38, 39 
resources 

compiling, 10,40 
dialog windows, 108-9 (see also dialog 

windows) 
document template, 327-28, 351, 353,355 
dynamic link libraries, 641 
editing (see App Studio resource editor) 
icons, 117 
keyboard accelerators, 217-18, 239, 241 
loading GDI bitmaps from, 183-84 
menus (see menus) 
out-of-memory conditions and, 179 . 
programming with, 5 
resource file contents, 37-38 
strings (see strings) 
toolbars (see toolbars) 

resource script files, 39 
return types, OLE Automation, 597-99 
reusable base classes. See base classes 
RFX_ functions, 515 
RGB Windows macro, 83, 85 
Rich Text Format (RTF), 403-4 
RoboHELP (software), 404 
rowsets, 505-6. See also recordsets 
row-view example class, 517-30 
Run function, 22, 325 
run time 

adding dialog controls at, 142-43 
class identification at, 644 
object registration, 575-76 

RUNTIME_CLASS macro, 326, 642 

S 
sample programs, xxx. See also applications, 

example 
SaveModified function, 72, 517 
scales. See mapping modes 
scope resolution operator (::),64,556 
scroll bar controls, 117, 127-30 
scroll bars, 67 

728 

scrolling windows 
alternatives, 67 
example application with, using keystrokes, 

67-71 
example row-view class, 517-30 
scroll bars, 67 

ScrollToDevicePosition function, 448 
ScrollWindow function, 67 
SDI. See single document interface (SDI) 
SDK. See Microsoft Windows Software Devel-

opment Kit (SDK) 
SDK Paint program, 39 
Search dialog in Help, 409 
search strings for help, 411 
segments 

architecture, 169-70 
code, and memory models, 170 
data, and memory models, 173-74 
DGROUP, and multi-instance applications, 

170 
SelectObject function, 78, 79-80, 81-82 
SELECT statement, SQL, 506, 547 
SelectStockObject function, 36, 80 
SendMessage function, 134,218 
serialization 

of collections, 322-23 
database management vs., 318, 502 (see also 

database management) 
disk files and archives, 318 
example application with bitmaps, 482-99 
example MDI application, 358-67 
example SDI application, 331-45 
loading from archives, 321-22 
making classes serializable, 318-19 
making persistent object data portable, 320 
MDI and, 347-55 
MDI drag-and-drop features and, 355-58 
overview, 317-18 
SDI and, 324-31 
Serialize functions, 319-21, 323-24 

Serialize function, 317-18, 319-21, 323-24 
server applications, COM. See also Common 

Object Model (COM) 
calls from clients to DLL, 576-77 
calls from clients to EXE, 577-79 
example simulation application, 564-74 
OLE Automation (see OLE Automation; 

server applications, OLE 
Automation) 



server applications, OLE Automation. See also 
OLE Automation 

controllers and, 581-82 
example DLL, 607-14 
example EXE, 599-607 
example SDI EXE, 614-21 
Excel as, 582-84 
MFC, 588-90 
programming considerations, 586-88 

SetAtGrow function, 429 
SetBitmapBits function, 500 
SetBkColor function, 84, 182 
SetBrushOrg function, 106 
SetCapture function, 64 
SetCheck function, 240 
SetClipboardData function, 476 
SetCursor function, 64 
SetDialogBkColor function, 131 
SetDIBitsToDevice function, 481 
SetDlgltemText function, 132 
SetIndicators function, 248 
SetMapMode function, 375 
SetMaxPages function, 376 
SetMenu function, 230 
SetMinPages function, 376 
SetModifiedFlag function, 331, 516-17 
SetPaneText function, 248-49 
SetProperty function, 590-91 
SetScaleToFitSize function, 106 
SetScrollPos function, 128 
SetScrollSizes function, 71, 105-6 
SetSize function, 429 
SetTextColor function, 84, 182 
SetTimer function, 201 
SETUP program, 41 
SetViewportExt function, 87 
SetViewportOrg function, 67, 86, 88 
SetWindowExt function, 87 
SetWindowOrg function, 86 
SetWindowPlacement function, 259 
Shift-clicking, 115 
Shift-F1 key combination, 412-13, 418-19 
ShowWindow function, 22, 259, 270 
shutdown, application, 22, 516-17 
single document interface (SDI) 

application objects, 324-25 
creating empty documents, 328-29 

Index 

single document interface (SDI), continued 
deleting document contents, 330 
document templates for, 325-28 
example application with double view static 

splitter window, 395-97 
example application with extension DLL, 

648-54 
example application without documents or 

views, 454-58 
example application with serialization, 

331-45 
example application with single view 

dynamic splitter window, 393-95 
File Manager document association, 

344-45 
help command processing, 418 
initializing documents, 329 
locating main frame window, 241 
MFC library applications vs. other Windows 

applications, 331 
multiple document interface (MDI) vs., 

30-31 (see also multiple document 
interface (MDI» 

multiple view options, 392 
multiple views and, 328 
opening documents, 329-30 
saving documents, 330 
serialization, 323-31 
tracking document modifications, 330-31 

small memory model, 168, 171, 173 
SMARTDRV disk caching utility, 43 
snapshots, 506, 507 
Source Browser 

database, 49 
overview, 12 
using, 34 
source code, companion disc and, xxix. See 

also applications, example 
Special button, 121 
speedup hints for build process, 43-49 
splitter windows 

class, 391-92, 393 
dynamic and static, 393 
example application with double view SDI 

static, 395-97 
example application with multiple view 

class MDI and without, 398-401 

729 



INS IDE V I S U AL C++ 

splitter windows, continued 
example application with single view SDI 

dynamic, 393-95 
multiple view options, 392 

sprintf function, 262 
Spy program, 13 
SQL (Structured Query Language), 501, 503, 

504-6 
SQLExtendedFetch function, 505 
stack (memory), 170 
statements, ODBC, 504 
states 

of device contexts, 77-78 
of views, 52-53 

state variables, 53 
statically linked projects, 638-39 
static class members 

enumerated types, 686 
static data members (see static data 

members) 
static member functions, 686-87 

static data members 
for DLLs, 643-44 
example, 685-86 
overview, 263-64 

static member functions, 686-87 
static splitter windows, 393, 395-97 
static text controls, 108, 113 
status bars 

as control bars, 237-38 
controlling, 249-50 
definition, 248 
example application with, 250-55 
locating main frame window, 241 
message line, 248-49 
status indicator, 249 

status indicator pane of status bars, 249 
STDAFX.H and STDAFX.CPP files, 45-47 
stepping over code, 42 
stock GDI objects, 80 
STRESS program, 13 
StretchBlt function, 182, 184-87 
StretchDIBits function, 481 
strings 

class, 260-63 
dialog for finding and replacing, 142 
help search, 411 
OLE Automation, 593-94 
string table resource, 327-28 

730 

struct keyword, 557, 657-58 
Structured Query Language (SQL), 501, 503, 

504-6 
student records applications. See applications, 

example 
SubclassDlgltem function, 282 
subclassing, controls and, 281-82 
SysAllocString function, 594 
SysFreeString function, 594 
system fonts, 90-92 
SYSTEM.lNI file, 259-60 
system modal dialog windows, 108 

T 
tabbing order, 117-18 
technical notes, xxx 
templates. See document templates 
template tool (TEMPLDEF), 292 
text boxes. See edit controls 
text editor, 9 
TextOut function, 22, 36 
theApp global application object, 324-25 
this pointer, 682 
tilde (-),661 
timers, 201-6 
TLB extension, 592 
TMP and TEMP environment variables, 44 
TOOLBAR.BMP file, 238 
toolbars 

bitmap, 238 
button states, 239 
command messages and, 239-41 
as control bars, 237-38 
example application with, 242-48 
help buttons, 413 
locating main frame window, 241 
update command VI messages, 240-41 

toolbox, 5. See also control palettes 
TRACE macro, 22, 42, 43, 278-79 
TRACER utility, 43 
TranslateMessage function, 201 
TrueType fonts, 90-91 
twips, 87, 91, 92, 382 
typedefkeyword, 557, 657-58 
type libraries, 588, 592 
types 

all-purpose OLE Automation, 592-99 
archive data, 320 



types, continued 
enumerated,686 

U 

user-defined, C language, 657-58 
VBA date, 597-98 

UnrealizeObject function, 106 
UpdateAllViews function, 274-75, 290-91 
update command user interface (UI) mes-

sages, 219-20, 240-41 
UpdateData function, 125, 138 
UpdateReg;istryAll function, 575 
UpdateRow function, 530 
UpdateScrollSizes function, 530 
UpdateWindow function, 22, 132 
user-defined messages, 4, 134,698 
user-defined types, C language, 657-58 
USER.EXE file, 179 
user input, message map functions and, 

51-54. See also event handling 
user interface dialogs. See COMMDLG dialog 

windows 
user interface (UI) messages, 219-20, 240-41 

V 
variables. See also data members 

environment, 44 
global, 53, 640 

variable scale mapping modes, 87-89 
VariantChangeType function, 594 
VariantClearfunction, 594 
VariantCopy function, 594 
VariantCopylnd function, 594 
Variant/nit function, 594 
VARIAlVTtype, 592-99 
VBA. See Visual Basic for Applications (VBA) 
VBCHART application, 154 
VBX. See Microsoft Visual Basic controls 
VERIFY macro, 42, 43 
Video Graphics Array (VGA) display boards, 

83-85 
view windows 

applications without (see applications, 
example, without documents or 
views) 

class, 25, 29,30,34-35,51, 273-74 

view windows, continued 
connecting dialogs to, 122-24 
dialog windows vs., 108 (see also dialog 

windows) 

Index 

documents and (see documents; document-
view architecture) 

drawing in, with GDI, 35-36 
edit control, 222-29 
interactions between frame windows and, 

215-16 (see also frame windows) 
multiple (see splitter windows) 
overview, 30 
saving state of, with data members, 52-53 
scrolling, 66-71 
as viewports, 66 

virtual functions 
base classes and, 665-68 
destructors, 679-80 
macros vs., 23 
pure, 667 
virtual table (vtbl) data structures and, 23, 

176,556-57,559 
virtual memory manager (80386/80486), 

177-78 
virtual table (vtbl) structures, 23, 176, 556-57, 

559 
Visual Basic. See Microsoft Visual Basic as OLE 

Automation server; Microsoft Visual 
Basic controls 

Visual Basic for Applications (VBA). See also 
Microsoft Visual Basic controls 

Excel and, 582-85 
OLE Automation and, 580-81 
properties, methods, collections, and, 585 
types, 597-99 

Visual C++. See Microsoft Visual C++ 
Visual Workbench 

options, 10,30,43,44-47,647-48 
overview, 7-9 

VT _ and VTS_ parameters, 597 

W 
Win32 API, 702, 703-5. See also Microsoft 

Windows NT 
Win32 SDK, 6 
Win32s subsystem, 705 
Windows. See Microsoft Windows 

731 



INSIDE VISUAL C++ 

windows 
assigning special characteristics to, 82 . 
child, 30, 347-55 . 
class, 34-35, 51, 130 
class registration, 60 
client area of, 54 
closing, 4, 72 
creating, 4 
default rectangles, 264 
destroying, 73 
device contexts, 76 
dialog (see dialog windows) 
frame (see frame windows) 
interactions between, 215-16 
mapping modes and coordinates (see 

mapping modes) 
MDI client, 349 
position of maximized, 263 
splitter (see splitter windows) 
view (see view windows) 
viewports and, 66 

Windows Help Magician (software), 404 
WinHelp function, 410 
WlNHELP program 

calling, for context-sensitive help, 409-10 
OLE and, 549 
Rich Text Format (RTF), 403-4 
writing help files, 404-9 

WlN.lNI file, 42, 259-60, 356 
WinMain function, 3-4, 21, 37, 324-25 
WM_CHAR messages, 4, 71, 202 
WM_CLOSE messages, 4, 72 
WM_COMMANDHELP messages, 418 
WM_COMMAND messages, 126, 202, 693 
WM_COMMNOTIFY messages, 706 
WM_CREATE messages, 4, 72 
WM_CTLCOLOR messages, 131 
WM_DESTROY messages, 73 

732 

WM_ENTERIDLE messages, 207 
WM_GOODBYE messages, 138, 140 
WM_HELPHITTEST messages, 418-19 
WM_HSCROLL messages, 67, 71, 128 
WM_INITDIALOG messages, 121-22 
WM_KEYDOWN messages, 69, 71, 202 
WM_LBUTTONDOWN messages, 4, 52, 60, 

62, 103 
WM_LBUTTONUP messages, 61-62, 103 
WM_MOICREATE messages, 470 
WM_MOUSEMOVE messages, 61-62, 103 
WM_NCDESTROY messages, 73 
WM_PAINT messages, 37, 202 
WM_PALETTECHANGED messages, 475 
WM_QUERYENDSESSION messages, 72 
WM_QUERYNEWPALETTE messages, 475 
WM_TIMER messages, 201 
WM_VSCROLL messages, 67, 71, 128 
WNDCLASS structure, 53 
WndProcfunction, 37, 60 
workbooks, 582 
_write function, 318 
WriteHuge function, 484 
WritePrivateProfileString function, 260 
WriteProfilelnt function, 260 
WriteProfileString function, 260 
wsprintf function, 262 
wysiwyg (what you see is what you get), 5, 

377-83 

X 
XLEN50.0LB file, 628 

y 
yielding control, 201 



David Kruglinski 

David Kruglinski considers himself a programmer who writes rather than a 
writer who programs. He wrote his first program at Purdue University in 
1966 ("probably a game of some sort"), and he got started with microcom­
puters in 1976 after a friend fished an 8080 board out ofa garbage bin. 

Mter some accidental periods of gainful employment, David wrote four 
books on subjects ranging from microcomputer database management 
systems to PC communications. He also started a successful software tools 
company. 

When David isn't frantically trying to keep up with all the latest software de­
velopments, he is a consultant and also teaches Microsoft Visual C++ training 
classes. His Internet address is v-davidk@microsoft.com. 



T he manuscript for this book 
was prepared and submitted 

to Microsoft Press in electronic 
form. Text files were prepared 
using Microsoft Word 2.0 for 
Windows. Pages were composed 
by Microsoft Press using Aldus 
PageMaker 5.0 for Windows, with 
text in New Baskerville and display 
type in Helvetica Bold. Composed 
pages were delivered to the printer 
as electronic prepress files. 

Cover Designer 
Rebecca Johnson 

Interior Graphic Designer 
Kim Eggleston 

Interior Graphic Artist 
Lisa Sandburg 

Principal Typographer 
Ruth Pettis 

Principal Proofreader/Copy Editor 
Jennifer Harris 

Indexer 
Shane-Armstrong 

Information Systems 



Information-Direct from the Source 

IODBe 2.0 
Programmer's Reference 
and SDK Guide 
".,MbllI»ft(\p:l1 
f.fflmll .... St.IIt1w1t"" 
Mil-.-nWmlfuww 
and W-m&m~ NT" 

II 

KitMG BRQCKSCllM1IXf • 

Microsoft® ODBC 2.0 Programmer's Reference 
and SDK Guide 
For Microsoft WindowlM and Windows NTM 

Microsoft Corporation 
The Microsoft ODBC 2.0 SDK is a set of software components and tools 
designed to help you develop ODBC drivers and ODBC-enabled applications 
for the Windows 3.1 and Windows NT operating systems. The most complete, 
accurate, and up-to-date information on Microsoft ODBC available anywhere. 
832pages, softcover $24.95 ($32.95 Canada) ISBN 1-55615-658-8 

Inside OLE 2 
Kraig Brockschmidt 
Here's the inside scoop on how to build powerful object-oriented applications 
for Windows. Written by a leading OLE expert, this guide shows experienced 
programmers how to take advantage of OLE 2 to develop next-generation 
applications that will take Windows to a new level. Brockschmidt explains how 
to build OLE 2 applications from scratch as well as how to convert existing 
applications. The disks contain 44 source-code examples that demonstrate how 
to implement objects and how to integrate OLE 2 features in your applications. 
1008 pages, softcover with two 1.44-MB 3.5-inch disks 
$49.95 ($67.95 Canada) ISBN 1-55615-618-9 

Microsoft® Visual C++ ™ Run-Time Library Reference 
Microsoft Corporation 
This official runtime library reference covers version 1.0 of the 
Standard and Professional Editions of Visual C++, which is an up-to-date 
complement to the Visual C++ online reference. It provides detailed infor­
mation onmore than 550 ready-to-use functions and macros designed for use 
in C and C++ programs. The book also provides a superb introduction to 
using the runtime library and to the library'S variables and types. Coverage 
includes the important details for each function in the runtime library, 
syntax, meaning of each argument, include files, return value, cross­
references to related functions, and compatibility notes. 
704 pages, softcover $35.00 ($44.95 Canada) ISBN 1-55615-559-X 
Update available September 

Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP. 
Call1-800-MSPRESS for direct ordering information or for placing credit card orders. * 

Please refer to BBK when placing your order. Prices subject to change. 
*1n Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115. 

Outside the U.S. and Canada, write to International Sales, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399. 



Technical References 
from Microsoft Press 

OLE 2 OLE 2 Programmer's Reference Library, 
Volumes 1 and 2 
Microsoft Corporation 

II 
OLE 2 
Programmers 
Refc·rence 

II 

---I 
11.3.1 •. .-

Here, for progranimers experienced in developing Windows-based 
applications, are the two core volumes of OLE 2 documentation-the API 
reference for OLE 2 and a guide to OLE Automation, the revolutionary 
capability of OLE that makes it possible to manipulate an application's objects 
from outside the application. Volume 1 lays the groundwork for implementing 
OLE to create powerful Windows-based applications and provides a comprehen­
sive reference to OLE interfaces and functions. Volume 2 concentrates on 
OLE Automation, concluding with a reference to Automation interfaces 
and tools. Volumes available separately or as a two-volume set. 
Complete Set-Volumes 1 & 2 
$50.00 ($67.50 Canada) ISBN 1-55615-749-5 

Microsoft® Windows™ 3.1 
Programmer's Reference Library 
Microsoft Corporation 
This six-volume set is the official documentation included in the 
Microsoft Windows 3.1 Software Development Kit (SDK). Individual volumes 
are Guide to Programming; Overview; Functions; Messages, Structures, and 
Macros; Resources; and Programming Tools. This specially priced set is 
available for $147-a $175.70 value! Volumes also available separately. 
Complete Set-Volumes 1 through 6 
$147.00 ($198.00 Canada) ISBN 1-55615-473-2 

lVIicrosoftPress 
Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP. 

Call1-800-MSPRESS for direct ordering information or for placing credit card orders. * 
Please refer to BBK when placing your order. Prices subject to change. 

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-1115. 
Outside the U.S. and Canada, write to International Sales, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399. 



CODE 

Solid Programming Advice 

Debugging the Development Process 
Practical Strategies for Staying Focused, Hitting Ship Dates, 
and Building Solid Teams 

Steve Maguire 
From the author of the award-winning Writing Solid Code comes a 
compelling look at the people who develop the code and the group dynamics 
behind the scenes of the software development process. Steve Maguire draws on 
his real-world experiences at Microsoft for candid accounts of how he brought 
together and maintained efffective teams for d~velopment of timely, high-quality 
commercial applications. This book focuses on the unusual, sometimes contro­
versial, but always practical approaches to successful software development. 
225 pages, softcover $24.95 ($32.95 Canada) ISBN 1·55615·650·2 

Writing Solid Code 
MicrosoftID Techniques for Developing Bug-Free C Programs 
Steve Maguire 

Foreword by Dave Moore, 
Director of Development, Microsoft Corporation 
"I read it with great interest for hours at a stretch. It presents 
detailed solutions to real problems." IEEE Micro 

Written by a former Microsoft developer and troubleshooter, this book 
is an insider's view of the most important aspect of the development process: 
preventing and detecting bugs. Maguire identifies the places developers 
typically make mistakes, offers practical advice for detecting costly errors, 
and presents proven programming techniques for producing. clean code. 
288 pages, softcover $24.95 ($32.95 Canada) ISBN 1·55615·551·4 

Code Complete 
Steve McConnell 

COMPLETE "We were impressed .... A pleasure to read, either straight through or as a 
reference." PC Week 

This practical handbook of software construction covers the art and 
science of the entire development process, from design to testing. Examples 
are provided in C, Pascal, Basic, FORTRAN, and Ada-but the focus is on pro­
gramming techniques. Topics include up-front planning, applying good design 
techniques to construction, using data effectively, reviewing for errors, managing 
construction activities, and rdating personal character to superior software. 
880 pages, softcover $35.00 ($44.95 Canada) ISBN 1·55615·484·4 

MicmsoftPress 
Microsoft Press® books are available wherever quality books are sold and through CompuServe's Electronic Mall-GO MSP. 

Call1-800-MSPRESS for direct ordering information or for placing credit card orders. * 
Please refer to BBK when placing your order. Prices subject to change. 

*In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd., Agincourt, Ontario, Canada MIS 3C7, or call 1-800-667-11 IS. 
Outside the U.S. and Canada, write to International Sales, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399. 



IMPORTANT- READ CAREFULLY BEFORE OPENING SOFTWARE PACKET(S). By opening the sealed packet(s) containing the 
software, you indicate your acceptance of the following Microsoft License Agreement. 

MICROSOFT LICENSE AGREEMENT 
(Book Companion Disks) 

This is a legal agreement between you (either an individual or an entity) and Microsoft Corporation. By opening the sealed software packet(s) you 
are agreeing to be bound by the terms of this agreement. If you do not agree to the terms of this agreement, promptly return the unopened software 
packet(s) and any accompanying written materials to the place you obtained them for a full refund. 

MICROSOFT SOFTWARE LICENSE 
1. GRANT OF LICENSE. Microsoft grants to you the right to use one copy of the Microsoft software program included with this book (the 
"SOFTWARE") on a single terminal connected to a single computer. The SOFTWARE is in "use" on a computer when it is loaded into the temporary 
memory (i.e., RAM) or installed into the permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that computer. You may not 
network the SOFTWARE or otherwise use it on more than one computer or computer terminal at the same time. 
2. COPYRIGHT. The SOFTWARE is owned by Microsoft or its suppliers and is protected by United States copyright laws and international treaty 
provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material (e.g., a book or musical recording) except that you may 
either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the SOFTWARE to a single hard disk provided 
you keep the original solely for backup or: archival purposes. You may not copy the written materials accompanying the SOFTWARE. 
3. 'OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying written 
materials on a permanent basis provided you retain no copies and the recipient agrees to the terms of this Agreement. You may not reverse engineer, 
decompile, or disassemble the SOFTWARE. If the SOFTWARE is an update or has been updated, any transfer must include the most recent update 
and all prior versions. 
4. DUAL MEDIA SOFTWARE. If the SOFTWARE package contains both 3.5" and 5.25" disks, then you may use only the disks appropriate for 
your sjngle-user computer. You may not use the other disks on another computer or loan, rent, lease, or transfer them to another user except as part 
of the permanent transfer (as provided above) of all SOFTWARE and written materials. 
5. SAMPLE CODE. If the SOFTWARE includes Sample Code, then Microsoft grants you a royalty-free right to reproduce and distribute the sample 
code of the SOFTWARE provided that you: (a) distribute the sample code only in conjunction with and as a part of your software product; (b) do 
not use Microsoft's or its authors' names, logos, or trademarks to market your software product; (c) include the copyright notice that appears on the 
SOFTWARE on your product label and as a part of the sign-on message for your software product; and (d) agree to indemnify, hold harmless, and 
defend Microsoft and its authors from and against any claims or lawsuits, including attorneys' fees, that arise or result from the use or distribution 
of your software product. 

DISCLAIMER OF WARRANTY 
The SOFTWARE (including instructions for its use) is provided "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT 
FURTHER DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF 
MERCHANT ABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF THE USE OR 
PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU. 

IN NO EVENT SHALL MICROSOFT, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION, OR 
DELIVERY OF THE SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, 
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER 
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR DOCUMENT A TION, EVEN IF 
MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES/COUNTRIES DO NOT 
ALLOW THE EXCLUSION OR LIMIT A TION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE 
LIMITATION MAY NOT APPLY TO YOU. 

U.S. GOVERNMENT RESTRICTED RIGHTS 
The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject 
to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or 
subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights 48 CPR 52.227-19, as applicable. Manufacturer is 
Microsoft Corporation, One Microsoft Way, Redmond, W A 98052-6399. 
If you acquired this product in the United States, this Agreement is governed by the laws of the State of Washington. 
Should you have any questions concerning this Agreement, or if you desire to contact Microsoft Press for any reason, please write: Microsoft 
Press, One Microsoft Way, Redmond, WA 98052-6399. 

097 -000-680 



SECOND EDITION 

VERSION 1.5 

he Microsoft® Visual C++ development system offers 
an exciting new way to create Windows™-based appli­
cations. You can now combine the power of object­
oriented programming with the efficiency of the C 
language. By utilizing the application framework ap­
proach in Visual C++ version 1.5 - centering on the 
Microsoft F~undation Class Library version 2.5-

programmers can simplify and streamline the process of creating 
robust, professional applications. INSIDE VISUAL C++, written by 
a former member of the Visual C++ team, takes you inside the 
development process, showing you how to get the most from 
the richly integrated tools that constitute Visual C++. 

INSIDE VISUAL C++ takes you one step at a time through the 
process of creating real-world applications for Windows-the 
Visual C++ way. Using ample source code examples, this book 
explores MFC 2.5, App Studio, and the product's nifty "wizards"­
AppWizard and ClassWizard-in action. The book also provides 
a good dose of application framework theory, along with tips for 
exploiting hidden features of the MFC library. Topics include 
event handling, GDI, dialog boxes, memory· management, SDI 
and MDI, printing, and Help-all the fundamentals of Windows 
programming, but from a new perspective. You'll also find de­
tailed coverage of more advanced'tdpics, such as: 

to! OLE Automation 

to! DIBs (device-independent bitmaps) 

to! ODBC (the new Microsoft Open Database 
Connectivity standard) 

to! OLE 

to! DLLs (C++ dynamic link libraries) . 

Whether you are relatively new to programming for Windows or 
are an old dog ready for new tricks, Kruglinski's insider expertise 
makes INSIDE VISUAL C++ the fastest route to mastering this 
powerful development system. .• 

U.S.A. 
u.K. 
Canada 

$39.95 
£34.95 [VAT included] 
$53.95 

[Recommended] 

-'. ::-
.. .. : 
: :: -'. 

create the S~npJle 

book 

System req~emenlS: 


