bl /
sizee

E | | Micresoft Press

Windows NT®
Windows™98

The Quick and Easy Way to Learn Microsoft Visual C++ 6.0

Learn

Microsoft

VisualC++60
" Now

Chuck Sphar

Learn

Microsoft

Visual C++6.0
Now

Chuck Sphar

icoft Press

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1999 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ 6.0 Deluxe Learning Edition / Microsoft
Corporation.
p. cm.
ISBN 0-7356-0636-6 .
1. C++ (Computer program language) 2. Microsoft Visual C++.
I. Microsoft Corporation.
QA76.73.C153M4978 1999
005.26'8--dc21 ‘ 99-13360
CIP

Printed and bound in the United States of America.

123456789 QMQM 432109

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.
A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of Intel Cor-
poration. ActiveX, IntelliMouse, Microsoft, Microsoft Press, MSDN, MS-DOS, Visual Basic,

Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Win-
dows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious.
No association with any real company, organization, product, person, or event is intended or should
be inferred.

.Acquisitions Editor: Eric Stroo
Project Editor: Holly Thomas
Technical Editor: Michael Hochberg

Part No. 097-0002203

For Pam, always.

pART 1

PART 2

PART 3

Acknowledgments xxi
Introduction xxiii
Getting to Know Visual C++
Chapter 1 The Visual C++ Environment 3
Chapter 2 C++ Basics 47
Chapter 3 C++ Scope, Pointers, and References 89
Chapter 4 C++ Classes 123
Chapter 5 Object-Oriented Programming 161
Chapter 6 Windows and the Win32 API 209
Chapter 7 The MFC AppWizard: Code for Free 231
Chapter 8 Inside MFC ' 249
Fundamental MFC Skills
Chapter 9 On the Menu 295
Chapter 10 Drawing Commands 311
Chapter 11 Power to the User 329
Chapter 12 Shapes in Color 363
Chapter 13 Debugging Your Mistakes 377
Chapter 14 Data, Documents, and Views 409
Rounding Out Your MFC Skills
Chapter 15 Scrolling 447
Chapter 16 Storing Data in a File 477
Chapter 17 Printing the Document 505
Chapter 18 Toolbars and Selections 537
Chapter 19 Dialog Boxes and Controls 567
Chapter 20 Multiple Views 605
Chapter 21 Stepping Out from Here 619
Appendix: The MFC Source Code 627
Index 639

| ABLE OF CONTENTS

Acknowledgments xxi
Introduction xxiii
What Visual C++ and MFC Are xxiii
Who This Book Is For XXiv
Charting Your Course XXiv
Learning By Doing XXV
What This Book Covers XXVi
A Few Conventions Xxviii
Using the Companion CD-ROM XXix

Installing the Samples on Your Computer XXiX

installing Visual C++ on Your Computer XXX

Viewing Documents in the Companion Code XXXi
What You'll Need to Use This Book XXXi
Support XXXii

PART 1 Getting to Know Visual C++

Chapter 1 The Visual C++ Environment 3
Running Visual C++ 4
Getting Help in Visual C++ 5

Help Fundamentals 7
Narrowing Your Searches 9
Lost in the Woods 13
Loose Ends , 16
Projects and Workspaces 16
Projects 16
Workspaces 17
Working with Your Project 17
Creating a Project 18
Using the Workspace Window 21

Adding and Removing Project Files 25

TasLE oF CONTENTS

Editing Source Code and Resources 27
Specifying the Project Configuration 29
Building Your Project 29
Correcting Build Errors 3
Running Your Program 32
Debugging Your Program 33
Profiling and Optimizing Programs 33
Using Wizards and Other Visual C++ Tools 34
Working with Your Workspace Windows 35
Document Windows 36
Docking Windows 37
Toolbars and Menus 39
Searching in Visual C++ 40
Search and Replace 41

The Find Drop-Down List Control 41

The Find In Files Command 42
Bookmarking in Source Code Files 42
Microsoft on the Web and MSDN Online 42
Tips and Tricks 43
Try It Yourself 45
What's Next? 45
Chapter 2 C++ Basics 47
Hello in C++ 49
Creating the Program 49
Building and Running the Program 52

The C++ in Hello 52
C++ Comments 53
Preprocessor Directives 54

C++ Constants 55

C++ Keywords 56

TasLe oF CONTENTS

Literals 56
Statements 57
Variables and Data Types 58
Allocating Memory for Variables 67
Functions and Parameters 7
Returning a Result from a Function 73

The C/C++ Run-Time Library 74

The main Function 76
Expressions and Operators 78

C++ Control Statements 82

C++ Input/Output via lostreams 85

Try It Yourself 87
What's Next 88
Chapter 3 C++ Scope, Pointers, and References 89
Scope, Part 1 89
Pointers 94
Pointer Basics 95
Pointers and Arrays 99
Pointers and Strings 102
Pointers as Function Parameters and Function Results 103
References 108
Pass by Reference 110
Pointer and Reference Guidelines and Cautions 12
Guidelines for Passing Parameters and Returning Results 112
Returning Results: Caution Required 114
Header and Implementation Files 118
Preventing Multiple Inclusion 120
Precompiled Headers 121

Try It Yourself 121

What's Next? 122

TasLE oF CONTENTS ’

Chapter 4 C++ Classes 123
Objects and Classes 124
Creating a Class from Scratch 126

The Shapel Program 127
The C++ in the Shape1 Program 133

The structs in the Shape1 Program 135
Run-Time Functions in the Shape1 Program 137

The main Function in the Shape1 Program 139
What's Wrong with the Shape1 Program? 140

The Shape2 Program 141
The C++ in the Shape2 Program 147
Static Variables 155
What's Still Wrong with the Shape2 Program? 156

The Friend Program 157
Try It Yourself 159
What's Next? 160
Chapter 5 Object-Oriented Programming 161
The Shape3 Program 162
The C++ in the Shape3 Program 169
Deriving One Class from Another 169
Designing Your Class Hierarchy 177
Access Specifiers in Class Hierarchies 181
Destructors 183

Static Class Members 185

More About Constructors and Destructors 186
Operator Overloading 196
Scope, Part 2 198
Object-Oriented Programming 200
How Much OOP? 201

What's Missing from Our C++ Coverage? 203

TasLe oF CONTENTS

Try It Yourself 204
Answers to Try It Yourself Exercises 206
What's Next? 207
Chapter 6 Windows and the Win32 APl 209
The Flavors of Windows 209
The Windows API 210
Win32, the SDK, and Windows.h 210
Central Windows Concepts 21
Programming for Different Win32 Platforms 21
Multitasking and Multithreading 21

The Least You Need to Know About Windows 212
Events 213
Messages 213
Drawing 217

The Device Context 219
Coordinates 222

Life Cycle of an Application for Windows 227
Try It Yourself 229
What's Next? 229
Chapter 7 The MFC AppWizard: Code for Free 231
MFC, the Win32 API, and the Learning Curve 231
The Class Library 232

The Application Framework 233
AppWizard: Code for Free 235
Working Along with Me 235
Following the Build Process 239
Running MyDraw.exe 242
What AppWizard Gives You for Free 242

Let's Write Some Code 244
Try It Yourself 247

What's Next? 248

TaBLE oF CONTENTS

Chapter 8 Inside MFC 249
Exploring MFC Through the AppWizard Files 249
Touring the Code 250
The Application Object 253
The Main Frame Window Object 263
The Document Object 271
Document/View Architecture 272
The View Object 276
Where Is the Windows Stuff? 284
Life Cycle of an MFC Application 285
I've Run AppWizard—Now What? 287
MFC and Windows 288
Finding and Using the Hooks in MFC 290
Try It Yourself 291
What's Next? 292
PART 2 Fundamental MFC Skills
Chapter 9 On the Menu 295
Introducing MyDraw 295
Menus 297
Menu Resources 298
Windows Resources 299
Adding a Tools Menu to MyDraw 303
Adding the Top-Level Menu 304
Adding the Submenus 306
Adding the Accelerators for MyDraw 307
Menus and Commands 309
Try It Yourself 309

What's Next? 310

Taste oF CONTENTS

Chapter 10 Drawing Commands 311
The MyDraw Application, Step 1, Continued 31

Adding the Command Handlers 312

Testing OnDraw’s Menus and Shape Drawing 322

Disappearing Shapes 323

Redrawing Shapes on Update 323

Keeping Track of Shape Types 324

How Good Is It? 326

Future Versions of MyDraw 326

What Have You Learned? 327

Try It Yourself 328

What's Next? 328

Chapter 11 Power to the User 329
Drawing with the Mouse 330

Mouse-Related Messages 330

Mouse Message Handlers 332

Adding the Mouse Message Handlers 333

Testing the Handlers with AfxMessageBox 336

The MyDraw Application 338

Bringing MyDraw Up-To-Date 339

Drawing in the Mouse Message Handlers 347

Checkmarking the Selected Drawing Tool: Updating Menus 353

Making the Shapes Transparent 356

Try It Yourself 361

What's Next? 362

Chapter 12 Shapes in Color 363
The RGB Color System 363

Creating a Color with the RGB Macro 364

Working with Color 364

TasLe ofF CONTENTS

Adding the Hierarchical Color Menu 365
Writing an Efficient Handler for the Color Menu Commands 367
Putting a Check Mark on the Color Menu 369
Drawing Shapes in Color 370
Managing the Currently Selected Color 370
Translating Color Command IDs to RGB Colors 371
Selecting a Pen of the Current Color 372
Setting the Color of a New Shape 375

Try It Yourself 376
What's Next? 376
Chapter 13 Debugging Your Mistakes 377
Visual C++ Debugger Overview 378
Debug Builds vs. Release Builds 380
Example: Using the Debugger 381
Finding the Bug 382
Analyzing the Bug 383
Examining Variables 386
Breakpoints 389
Stepping Through Code 392
Looking for Shape Eleven 396
Damage Report 404
Fixing the Bug 404
Display Bugs 407

MFC Diagnostic Facilities 407
Try It Yourself 408
What's Next? 408
Chapter 14 Data, Documents, and Views 409
Designing the Document 410
The Document/View Architecture Again 410

Choosing an Appropriate Data Structure 412

TaBLE oF CONTENTS

MyDraw’s Document Interface 414
Cleaning Up the Document 426

The CShape Class 427
Defining Class CShape 428
Deriving from CObject 430
CShape as a Base Class 433

A Derived Class: CShpRectangle 434
CShape Implementation 436
CShpRectangle and CShpEllipse Implementations 437
Fixing Up MyDraw’s Header Structure 439
Summary of Data Class Design Considerations 440

Try It Yourself a4
What's Next? 443

PART 3 Rounding Out Your MFC Skills

Chapter 15 Scrolling 447
Why We Need Scroll Bars 447
Some Scrolling Theory 449
Scrolling: The Basic Technique 452
Scrolling Lines of Text 453
Drawing Text 455
Setting Scroll Sizes 460
Adding Scrolling to MyText 460

Back to MyDraw 464
Where to Call SetScrollSizes 464
Having the Document Compute Its Own Sizes 465
Adding Scrolling to MyDraw 466
Coordinate Conversion Rears Its Ugly Head 468
Parting Thoughts 473
Try It Yourself 475

What's Next 476

TaBLE oF CONTENTS

Chapter 16 Storing Data in a File 477
Serialization and Deserialization 478
Implementing Serialization in MyDraw 480

Serialization Requirements in Data Classes 480
Serializing One Shape 482
Serializing All Shapes in the Document 483
CShape's Serialize Member Function 484
CMyDrawDoc's Serialize Member Function 488
Calling Serialize vs. Using CArchive Operators 490
Application Version Control with MFC Schemas 494
How Serialization Works 495
The DECLARE_SERIAL and IMPLEMENT_SERIAL Macros 495
Creating Objects from Thin Air 496
How Serialize Is Called 497
CArchive and CFile 499
Sidestepping Serialization 501
File 1/0 with Document/View 502
File 1/0 Without Document/View 503
Try It Yourself 503
What's Next? 504

Chapter 17 Printing the Document 505
Planning for Printing 506
The MFC Printing Architecture 506

Printing in Windows 507
Printing with MFC 508
Changing the Mapping Mode: The Size Problem 510
Consequences of Changing the Mapping Mode 511
Paginating the Document 516
Calculating the Printable Area 516

Telling MFC Where to Break the Pages 520

TasLe oF CONTENTS

The Portrait vs. Landscape Problem 526
Adding a Header and a Footer 528
Adding Calls to PrintHeader and PrintFooter Functions 530
Adding the Header 530
Adding the Footer 532
Wrapping Up 535
Printing Topics Not Covered 535

Try It Yourself 536
What's Next? 536
Chapter 18 Toolbars and Selections 537
Adding a Toolbar 537
The Toolbar Classes 537
Creating the New Toolbar Resource 538
Writing the Toolbar Code 541
Implementing Selection Mode 548
How Selection Mode Works 549

The Selection Button 550
Selection Code in the Shapes 553

Hit Testing 557
Drawing the Selection Handles 560

Try it Yourself 565
What's Next? 566
Chapter 19 Dialog Boxes and Controls 567
About Dialog Boxes and Controls 568
A Simple Modal Dialog Box 570
Creating and Editing the Dialog Resource 570
Creating the Dialog Class 573

Displaying the Dialog Box and Retrieving Its Contents 575

TaBLE oF CONTENTS

A Windows Common Dialog Box 578
About the Common Dialog Boxes 579
Adding the Color Dialog Box to MyDraw 580

A More Complex Property Sheet Dialog Box 582
Property Sheets and Property Pages 583
Displaying the Settings Dialog Box 586
Creating Dialog Resources for the Settings Dialog Box 587
Creating Dialog Classes for the Settings Dialog Box 592
Adding Class Data Members Mapped to the Controls 593
Implementing the Shape Page 594
Implementing the Line Page 596

Controls as Windows 601

What's Missing? 602

Try It Yourself 603

What's Next? 603

Chapter' 20 Multiple Views 605

Splitter Windows 606
When to Use Dynamic and Static Splitter Windows 607
Combining Static and Dynamic Splitter Windows 608

Adding a Dynamic Splitter Window to MyDraw 608

Creating a Static Splitter Window 611

What Can You Do with Views? 613
Views for User Interaction 613
Views as Windows 613
MFC Views as Bases for Your Own Views 614
Combining Views 615

Communicating Among MFC Objects 616

Congratulations! 616

Try It Yourself 617

What's Next? 617

TasLe oF CONTENTS

Chapter 21 Stepping Out from Here 619
Books on C++, Visual C++, and MFC 619

What | Haven't Covered 621

Microsoft on the Web and MSDN Online 623

One Last MyDraw Feature 623

The Final Version of MyDraw 625

Appendix The MFC Source Code Files 627
Where to Find the MFC Source Code Files 628

The Include Subdirectory 628

The Lib Subdirectory 629

The Src Subdirectory 629

Finding What You Need in the MFC Source Code Files 630

Using the Visual C++ Find In Files Command 631

Using the Visual C++ Source Browser Command for MFC 633

Source Files Other than MFC 635

MFC Coding and Commenting Conventions 635

Reading the AppWizard Files 636

Index 639

Acknowledgments

This book has been fun to write, but I couldn’t have done it alone. The
greatest thanks of all go to my wife, Pam, who backs me all the way. I
also had quite a bit of help from Buji-san, Striper, Tippy, and Sydney,
keyboard walkers extraordinaire who probably sneaked in a meow
here and there.

I want to thank some great folks at Microsoft Press: Eric Stroo, acquisi-
tions editor; John Pierce, managing editor; Holly Thomas, project editor
and principal manuscript editor; Michael Hochberg, principal technical
editor; Linda Ebenstein, technical editor; Ina Chang, manuscript editor;
Cheryl Penner, principal proofreader; Karen Lenburg, proofreader, and
the whole host of proofreaders who worked on this project; Rob Nance,
interior graphic artist; Elizabeth Hansford, principal desktop publisher;
desktop publishers Dan Latimer, Dick Carter, Elizabeth Sanders, Gina
Cassill, and Stuart Greenman; Bill Teel, computer wizard; and Julie
Kawabata, indexer. Thanks also to many others I can’t name here.

Thanks as well to my agent Claudette Moore, at Moore Literary Agency,
and her assistant, Debbie McKenna.

Although I spent six years documenting Visual C++ and MFC at Microsoft,
I needed someone looking over my shoulder to catch the worst mistakes.
My gratitude to Gonzalo Isaza, the MFC quality assurance lead, who care-
fully read the entire manuscript in his spare time, and to Mike Blaszczak,
the MFC development lead, who answered many questions. Thanks also
to Walter Sullivan, Kathleen Thompson, Jocelyn Garner, and the members
of the Visual C++ documentation team. Any mistakes that remain are mine.

A final thanks to the designers of Visual C++ and MFC, especially Mark
Walsen, Scott Randell, and Dean McCrory, who spent a lot of time teach-
ing me over the years. I hope I caught what they were pitching.

Introduction

Welcome to Learn Microsoft Visual C++ 6.0 Now. You’re about to begin
learning the most powerful, flexible way to program for Microsoft Win-
dows. This book is designed to help you climb three challenging learning
curves at once: Windows programming, the C++ programming language,
and the Microsoft Foundation Class Library.

Microsoft Press publishes an impressive line of books about Microsoft Vi-
sual C++. However, most of them are aimed at experienced C++ program-
mers who may already understand programming for Windows, and there
is a need for a book that begins with fewer assumptions about what you
already know. Consider Learn Microsoft Visual C++ 6.0 Now that book—
your on-ramp to Visual G++ 6.0 and the Microsoft Foundation Class Li-
brary 6.0 (hereafter simply MFC or the MFC library), as well as to more
advanced books about them. The bonus is that this book includes a full
working copy of Visual C++ 6.0.

What Visual C++ and MFC Are

Visual C++ is a visually oriented software development environment,
geared specifically to writing programs for the Windows operating system
in C++. With Visual C++, you can write any kind of program that it’s

Xxiii

.. Introduction

P T I A e R B CTOTEd e T i TR > 4 1

possible to write in either the C++ language or the C language. C++ is a
superset of C. MFC is the preferred way to write Windows applications
in Visual C++. MFC is a set of C++ classes that comprise a functioning
generic Windows application that’s ready for you to customize. You begin
with the MFC AppWizard, which generates a set of starter files. Then you
add code to implement the features that make your application unique.
This book teaches the MFC fundamentals that help make Visual C++ so
versatile.

Who This Book Is For

Learn Microsoft Visual C++ 6.0 Now makes the following assumptions
about your skill and knowledge levels:

W First of all, you know how to program in some language. Perhaps
it’s C or even C++, but it might be Basic or Pascal or some other
programming language. By “know how to program,” I mean that
you understand basic program flow, looping, branching, function or
subroutine calls, parameter passing, and compiling a program. If
you don’t fit this description, I recommend that you find a good
course or book on programming fundamentals before you attempt
C++, Windows, or this book.

B Second, you want to program for Windows, and you want to do so
with C++, but you might have little or no Windows programming
experience.

B And third, even if you do have some Windows or C++ program-
ming experience, you haven’t programmed with Visual C++.

Charting Your Course

XXiv

The following list suggests where and how you might concentrate within
this book, depending on your expertise and priorities.

m If you already know some Windows programming—perhaps you've
programmed in Microsoft Visual Basic or C—you’ll most likely
read Chapter 1, carefully study Chapters 2 through 5 to learn C++

Introduction

e BN ¢ AR £ B R R A NP e 5 -

fundamentals, skim Chapter 6, and then read the rest of the book,
which puts C++ to practical use for programming Windows. There
isn’t room to cover the entire language in detail, but this will be a
good introduction.

m If you've heard about the MFC library and object-oriented program-
ming (usually abbreviated OOP), consider skimming Chapters 1
through 4, and then read Chapter 5, skim Chapter 6, and read the
rest of the book closely. You’ll learn the basics of OOP and quite a
bit of MFC.

m If you know only basic programming techniques but want to grow
into a versatile modern language such as C++ and want to begin
learning Windows programming, take this book a step at a time and
pay particular attention to all the hands-on examples. The online
documentation for Visual C++ is a good supplement for C++ lan-
guage and Windows details. I'll point out useful Help topics as we
go. Exercises with solutions will let you test your skills.

m If you have used some other C++ programming product and now
want to learn Visual C++, read Chapter 1, skim Chapters 2 through 5,
and dig into the remaining chapters.

Learning By Doing
Nearly all readers will find it valuable to work through the book’s many
hands-on examples. Most of the examples are small enough that you can
painlessly type in the code and try them out. If you’re a beginner you’ll
discover that doing is learning, and more advanced readers will find that
fluency grows out of the fingers. The more you actually work with the
code, the more you’ll carry away from this book.

" You’ll encounter the code for the examples in “Try it now” sections.
These detail the steps you should take if you’re working through the ex-
amples. It’s important to do all of the “Try it now” sections in a chapter
if you do any of them. Occasionally, I’ll also mention a technique in pass-
ing and suggest that you go to Visual C++ on the spot and “try it.” Then,

XXV

Introduction

at the end of each chapter, you’ll find several exercises in a “Try It Your-
self” section. Work through them. Answers are supplied either with the
exercises or as implementations in the companion cdde. I'll tell you
where to find this code for each exercise. '

N

The book’s principal example is MyDraw, a simple vector drawing pro-
gram with many interesting features. Along with many smaller examples,
we'll develop MyDraw step by step throughout most of the book. Table 10-2
in Chapter 10 describes the 11 steps in MyDraw’s development.

OTE In some cases, I'll show you code examples with the less pertinent
comments and code omitted in order to clarify a point I'm trying to make.

B OTE If you decide to skip some steps in the MyDraw example and then

ﬂ«‘ jump in, you can begin with my code for the appropriate step. For each of
the 11 steps of MyDraw, you'll find a numbered version of the source code,
complete up to that point, in the companion code. For example, the code
for step 0 is in the MyDrawO directory (C++ programmers start counting
from 0, not 1), and code for step 1 is in the MyDraw?1 directory. Each chap-
ter announces which step it's for. The section “Installing the Samples on
Your Computer” later in this introduction will show you how to install the
sample programs onto your hard drive. To start with a particular step, look
in the appropriate directory for that step on your hard drive. Then follow
directions to add new code.

What This Book Covers

XXVi

Although Visual C++ lets you write any code that can be written in C or

C++, Learn Microsoft Visual C++ 6.0 Now focuses on the central purpose
of Visual C++: programming Windows in C++, using MFC. In the book’s

three parts—“Getting to Know Visual C++,” “Fundamental MFC Skills,”
and “Rounding Out Your MFC Skills”—TI'll teach you how to do each of

the following:

® Work within the Visual C++ programming environment, using its -
wizards to generate a set of starter files that get you going quickly,
its source code and resource editors to write your code, its build

Introduction

ST+ bt bbb ETETET N6 4 d Qe KOS TFRTTTOOR R 40 & A S9f 2L TP TTF VT 4 i ol SIS e € TP

system to compile and link your code, and its Help system to answer
your questions. Chapter 1 walks you through the Visual C++ envi-
ronment and gets you started with your first Visual C++ program.

Use the most common elements of the C++ language, including

classes and object-oriented programming techniques. Chapters 2

through 5 cover C++ syntax, pointers and references, classes, and
object-oriented programming.

Understand the Win32 Application Programming Interface (API)
and the fundamental concepts of Windows programming, including
windows, device contexts, coordinate systems, drawing with the
Windows Graphical Device Interface (GDI), scrolling, printing, dia-
log boxes, and controls. Chapter 6 introduces the Win32 API and
Windows from a programmer’s perspective.

Build your program atop MFC, which provides the framework of a
working Windows application. You’ll see in Chapter 7 that you can
run the MFC AppWizard to generate code for the foundation of
your program, compile that code, and immediately have a rather
impressive generic Windows program—although still with many
blanks to fill in before it becomes your program. This is where we
will begin the evolution of the MyDraw application. In Chapter 8,
we’ll examine the AppWizard-generated code, relating it to the fun-
damental Windows concepts from Chapter 6 and to the structure
and functionality of MFC. Then, following Chapter 8, we’ll write
several MFC Windows applications and continue with MyDraw.

Take advantage of additional AppWizard and MFC components that
help you develop sophisticated features in your program that you
might otherwise never even attempt. For example, Chapters 16
through 20 show you how to save your program’s data to a file,
print the data on multiple pages with headers and footers, add
toolbars that can dock to a window edge or float free, add dialog
boxes full of powerful controls, and give the program a split per-
sonality by supplying two ways to view your data in a splitter

XXvii

Introduction

window—such as viewing spreadsheet cells or a chart in Microsoft
Excel. Without MFC, a good number of these features are so diffi-
cult that many small applications simply don’t implement them.
MFC makes adding these features easy.

B Use a variety of Windows graphics techniques. Chapter 11 shows
how to let your users draw with the mouse. Chapter 12 introduces
drawing in color. Chapter 15 explains scrolling. Chapter 17 shows
you how to print a multipage document with headers and footers.
Chapter 18 teaches you to manage user selection of objects in a
window, including providing visual feedback by drawing selection
handles on the object. And Chapter 20 shows how to split your
program’s window into multiple panes, each of which displays a
different view of your data.

Visual C++ is a large, complex product. In addition to writing Windows
applications with MFC, you can use Visual C++ for many other purposes.
Most of those purposes require advanced programming skills and knowl-
edge of advanced technologies such as Object Linking and Embedding
(OLE), Microsoft ActiveX controls, database programming, and the
Internet. This is an introductory book aimed at a less seasoned audience,
so I leave advanced topics to other books. I’ll describe some of those ad-
vanced topics and tell you where to go to learn them in Chapter 21.

A Few Conventions

I use a few housekeeping conventions that will help you understand what
to do as you move through the book. Code lines that you are to type in or
modify appear in boldface type. In some cases, I’ll show you code ex-
amples with the less pertinent comments and code omitted in order to
clarify a point I'm trying to make. I'll also use the ellipsis character (...)
when I leave out part of a line of code, and the vertical ellipsis character
(:) when I leave out several lines of code. New terms appear in italics the
first time I use and define them. Many technical elements (class names,
functions, and so on) are italicized throughout. References to the sample
code take the form “...can be found in the \learnven\ChapXX folder in
the companion code.” When you see this, look in the appropriate folder

XXVili

Introduction

T R T TR G UL RTTE (et = b X RO e e SEMHRTHATO0E

on your hard drive, assuming you have already installed the files. (See the
section “Installing the Samples on Your Computer” later in this introduc-
tion.) Boxed tips, warnings, notes, and sidebars set off information that
you might want to bookmark for future reference. And, as I've noted, the
“Try it now” sections take you through every step. Don’t skip over them if
you really want to understand this material.

Each of the books I mention in the book is cited again in Chapter 21. And
finally, in the Appendix, you’ll find valuable background material on un-
derstanding the MFC source code files that accompany Visual C++ and
how to find classes and functions in them. The files can teach you a great
deal about how MFC works and, sometimes, about why your own code
fails to work.

Using the Companion CD-ROM

A CD-ROM is included in the back of this book. It includes all of the
sample code found in this book. The executable program files are not pro-
vided, so you have to build them in order to run a project. You can use
the sample projects to help you learn about Visual C++. As you work
through the Try It Yourself exercises in the book, follow along in the pro-
vided code.

Installing the Samples on Your Computer

The install program copies the sample project folders and files to a folder
named learnven on your hard disk. To install the samples, follow these
four steps (these steps are also in the file readme.txt on the companion CD):

1. Close any currently running programs.

2. With the Learn Microsoft Visual C++ 6.0 Now compact disc in your
CD-ROM drive, click Start on the Windows taskbar and then click
Run. The Run dialog box appears.

3. In the Open box, type D:\Examples\setup.exe. (If your CD-ROM
drive is associated with a different drive letter, such as E, type it
instead.) '

4. Click OK and then follow the directions on the screen.

XXiX

_Introduction

XXX

S B S U S PT A ES E 8 N OP T T e RSP e A RTINS Sk T AR & 8 e

OTE The examples in the book are geared to Windows 95 or 98, but because

m they don't do anything exotic, they should work as well on Windows NT. If
you have Windows 3.1 or 3.11, you must upgrade to at least Windows 95
before attempting to use this book.

Installing Visual C++ on Your Computer

The Learn Microsoft Visual C++ 6.0 Now CD also includes the Introduc-
tory Edition of Microsoft Visual C++ 6.0. You can create, build, run, de-
bug, and edit your C++ programs with the included version of Visual C++.

’W ARNING If you already have any of the Microsoft Visual Studio programming

products—such as Visual Basic, Visual J++, or an earlier version of Visual C++
than version 6.0—Setup warns you of possible conflicts. Proceed with instal-
lation unless you have a version of Visual C++ already installed on your sys-
tem. | recommend you uninstall any earlier version of Visual C++ before
installing the Introductory Edition. If you already have another version of
Visual C++ 6.0 installed, you do not need to install the Introductory Edition.

"IP One limitation of the Introductory Edition of Visual C++ 6.0 is that each
time you run your program inside Visual C++ you must respond to a dialog
box that reminds you of the terms of your Visual C++ license agreement. After
you read the license agreement, just click OK in the dialog box and proceed.

N

Visual C++ requires Microsoft Internet Explorer 4.01 Service Pack 1a
(supplied on the companion CD). Microsoft Visual Studio 6.0 Service
Pack 1 is optional, and can be obtained at the following website:
http://msdn/microsoft.com/vstudio/sp/. Or you can contact Microsoft at
the address in the section “Support,” at the end of the introduction.

Install Visual C++ (this will also install Internet Explorer if you do not
have the correct version on your system already, as well as a pile of Vi-
sual C++ documentation and some development tools). Then install Vi-
sual Studio 6.0 Service Pack 1.

To install Visual C++ 6.0, follow these steps (also in the readme.txt file on
the companion CD):

1. Close any currently running programs.

2. Insert the Learn Microsoft Visual C++ 6.0 Now compact disc into
your CD-ROM drive.

Introduction

3. On the taskbar, click the Start button and then click Run. The Run
dialog box appears.

4. In the Open box, type D:\VCIntEd\Disk1\setup.exe. (If your CD-
ROM drive is associated with a different drive letter, such as E, type
it instead.)

5. Click OK, and then follow the directions on the screen.

Viewing Documents in the Companion Code

Sometimes I will refer you to a text document in the companion code.
These documents are in Microsoft Word format, but if you do not have
Microsoft Word, they can be opened in the WordPad accessory supplied
with Windows. WordPad can be found in the Accessories subfolder of the
Programs folder on the Start menu.

What You'll Need to Use This Book

Learn Microsoft Visual C++ 6.0 Now includes a complete copy of Microsoft
Visual C++ version 6.0, Introductory Edition, released in 1998. You can
install this version or buy the Standard Professional or Enterprise Edition.
The Standard Edition is similar to the Intoductory Edition, but does not
have the same license restrictions. The Professional Edition includes ev-
erything in the Introductory Edition and more. The Enterprise Edition is
geared to advanced database programming in large corporations.

4| MPORTANT The license agreement for Visual C++ 6.0 Introductory Edition
doesn’t allow you to redistribute programs that you write with Visual C++.

Visual C++ 6.0 Introductory Edition requires the following hardware and

software:
Computer/Processor PC with a Pentium-class processor
Pentium 90 or higher recommended
Memory (RAM) 24 MB for Windows 95 or later

32 MB for Windows NT 4.0 or later
48 MB recommended on all platforms

XXXi

..Introduction

XXXii

Support

Hard disk Typical installation: 225 MB
' Maximum installation: 305 MB
IE 4.01 Service Pack 1a: 43 MB (typical)
These installation figures include docu-

mentation
Drive CD-ROM drive
Display VGA or higher resolution
v Super VGA recommended
Operating system Windows 95 or later, or Windows NT 4.0

with NT Service Pack 3 or later

Peripheral/Miscellaneous = Microsoft Mouse or compatible pointing
device ’

Every effort has been made to ensure the accuracy of this book and the
contents of the companion disc. Microsoft Press provides corrections for
books through the World Wide Web at:

http://mspress.microsoft.com/mspress/support/

If you have comments, questions, or ideas regarding this book or the
companion disc, please send them to Microsoft Press using postal mail or
e-mail to:

Microsoft Press

Attn: Learn Microsoft Visual C++ 6.0 Now Editor
One Microsoft Way

Redmond, WA 98052-6399
msinput@microsoft.com

PART

Getting to

Know Visual C++

Chapter

,. ’Thé'VisuaI C++ Environment

C++ Basics

C++ Pointers and References

- C++ Classes

gbjecth‘r*iented Programming

Windows and the Win32 API

The MFC AppWizard: Code for Free
Inside MFC "

47
89
123
161
209
231
249

. - <7 T
. - - . ; ¢ RIS
« N T . o b
, e A
[P N L P
N e oo < L .

N\ Chapter

The Visual C++ Environment

You can use Microsoft Visual C++ 6.0 to write any sort of program that
can be written in either C or C++. The chances are, however, that you
bought Visual C++ to program Microsoft Windows applications in C++.
If so, you have the right tools: the C++ language, which is an object-
oriented superset of C; the Microsoft Foundation Class Library 6.0
(MFC, or the MFC library, for short), which greatly amplifies your ability
to write for Windows and the Visual C++ development environment; and
last but by no means least, this book.

The Visual C++ integrated development environment (IDE) provides fa-
cilities for managing every stage of your program, from creating source
code, to building (compiling and linking) the code, to testing, debugging,
and optimizing the code. In this chapter, I'll prepare you for the hands-on
work that comes in later chapters with a tour of the Visual C++ develop-
ment environment, emphasizing practical techniques that make your pro-
gramming easier.

This chapter focuses on the following components of the Visual C++ IDE:
B The online Help system, which you use to find information about

the IDE, the C and C++ languages, and the classes and functions
available in code libraries, such as the MFC library

Getting to Know Visual C++

T SR e TR s e X VTS AR STV TRl U FETRALS £5% 2 AR R 1)

B Projects and workspaces, which help you manage large programs
that have multiple source code files

B The build system, with which you compile and link the appropri-
ate files to create your executable program

B Wizards and other tools that simplify creating and editing your
source code files and resources

We’ll cover a lot of ground quickly in this chapter, so keep two things in
~mind: First, you’ll see most of these topics again, in more detail. Second,
this is a hands-on book. I strongly urge you to try things out for yourself
as you read. Just as the best way to learn French is to live in France, the

best way to learn Visual C++ is to use it.

Running Visual C++

Once you’ve installed Visual C++ by following the instructions in the In-
troduction of this book, you can run it from the Windows Start menu.

‘% Try it now

Follow these steps to run Visual C++:

1. Click Start on the Windows taskbar.
2. On the Start menu, click Programs.

3. Click Microsoft Visual C++ 6.0. (If you install Visual C++ as a
standalone product, it will appear as Microsoft Visual C++ 6.0 on
the Programs menu. If you install it as part of Microsoft Visual Stu-
dio, Visual C++ will be listed under Visual Studio 6.0 in the Pro-
grams menu.)

4. Figure 1-1 shows the Visual C++ window open with a program be-
ing displayed. Your window will not have a program in it yet, be-
cause we have not specified a program, but I thought I'd show you
the Visual C++ window in all its glory.

1: The Visual C++ Environment

e AT BT Ty A LT b ISTRITS 6 T Vel F™ Y 770 AT L5

PN s LI

Figure 1-1.

S\

&N

"IP When Visual C++ opens, a Tip Of The Day window displays a handy tip.
You can use the Next Tip button to view more tips, or you can click Close

and go to work. If you don‘t want to see the tips each time you start Visual
C++, clear the Show Tips At Startup check box before you close the Tip Of -
The Day window. You can always view tips again by selecting Tip Of The
Day on the Visual C++ Help menu. It's useful to leave Tip Of The Day on
autopilot while you're new to Visual C++.

ello - Mu:ms‘ult Visual C++ - [Hello_cpp]

(Globals)
K .t

ol

* E\Mmkspace ‘Hello' 1 project(s)
3 1E Hello files
& =¥ Source Files
¢ 'ﬂ Hello.cpp
» 1] StdAfx.cpp
> @ 3 Header Files
(1 Resource Files
] ReadMe.tst

DA S

#include "stdafx.h"
#include <iostream.h>

/7 Function prototypes

bool SayHello{char* szTo, int nCalc):
void SayGoodbye():

4/ Constants

#define NUMERO_UNO 1

const char* OLD_FRIEND = "old friend. for nc
int main(int argc. char* argvi])

char® szCpp = "C++!", / Declare = va:sz
»

T g, Cd 13T e

The Visual C++ environment with a program displayed.

Once you've run Visual C++, you either need to create a new project or
load an existing one. I'll discuss projects after a brief tour of the online

Help system.

Getting Help in Visual C++

It’s customary to tack this section on at the end of a book’s first chapter—
or even to exile it to an appendix. But Visual C++ is a big product, and its
Help system is positively huge—orders of magnitude larger than the
Windows 95 Help system, for example. You will use Help all the time, so
it is paramount that you learn how to narrow your searches, and how to
leave a trail of breadcrumbs and locate your place on the map. (See
“Lost in the Woods” later in this chapter.)

Getting to Know Visual C++

T S B AP S At PR ™ B LTI G PR T AT e P TS T P PFS et 575 » IS MR L 55

First, let’s see how to control which components of Help are installed on
your hard disk and briefly look at how the Help system is organized.
Then we’ll zero in on how to use it effectively.

Big Help, Little Help

If you’re using the Introductory Edition of Visual C++ that comes
with this book, Help consists only of Visual C++ topics—as you
would expect. But if you’re using another version of Visual C++ (the
version included in the Microsoft Visual Studio products, or the
stand-alone Standard, Professional, or Enterprise editions), the Help
system contains topics for all of the Visual Studio products, includ-
ing Visual Basic, Visual InterDev, Visual J++, Visual FoxPro, Visual
SourceSafe, the Windows Application Programming Interface (API),
and more. All of this Help is tied together with one table of con-
tents, one index, and one search system. This means that any given
attempt to find information specific to Visual C++ can turn up topics
that have nothing whatsoever to do with Visual C++. So, if you're us-
ing one of these other versions of Visual C++, you’ll need some Help
strategies that go beyond what works for the Introductory Edition.

First, when you install Visual C++, you can specify which Help com-
ponents you want loaded onto your hard disk, for fastest access, and
which ones you want left on the CD, for slower access but less con-
sumption of precious hard disk space. For the Introductory Edition
that accompanies this book, Help simply installs when you install
Visual C++, but for other editions you have a choice:

B The Typical option in Visual C++ Setup installs a minimal
number of files on your hard disk, leaving the Microsoft Devel-
oper Network (MSDN) library on the CD. You’ll need to keep
the CD in your drive while you’re programming.

B The Custom option in Setup lets you specify which portions of
MSDN Help to install on your hard disk. You'll still see the
full table of contents, and if you select a topic still on the CD,
you’ll be prompted to insert the CD.

TN TR Rt TR AT

1: The Visual C++ Environment

I TRALTE IR

Second, you’ll need to be able to spot an inapplicable topic, such as
one for Visual Basic instead of Visual C++. You can usually tell the
difference, but not always. Examine Help topics carefully for refer-
ences to specific products, or for topic presentation styles that
you’ve come to recognize. It’s worth exploring Help just to get a feel-
ing for this problem.

Third, you’ll want to weed out the parts of Help that won’t help. You
can focus your Help searches with documentation subsets. In the
advanced versions of Visual C++, you can define a subset to contain
designated portions of the documentation. When you select a subset,
subsequent searches are confined to the documents in the subset.
The subset applies to the Contents, Index, and Search tabs. To learn
more about subsets, search Help (in the Professional or Enterprise
Editions of Visual C++) for subset. Select the first topic in the list:
“Creating and Using Subsets.”

Help Fundamentals

There are four ways to get help while you’re programming with
Visual C++. Each of the following approaches (except F1 Help) is repre-
sented in the Help window as a tab that you can click.

B F1 Help. This is the quickest way is to obtain help. Simply click a
word, highlight a phrase, or click an error message, and press F1. If
the keyword or phrase is in the Help index, this will open a topic
for it in most cases. You can use F1 Help in a Source Code editor
window, a Help window, or the Output window.

B The Help index. Like a good book, Help has a large index. It’s not
perfect. Not everything you might look for is there, but a lot is. Use
the Index tab in the Visual C++ Introductory Edition window (here-
after known as the Help window) before you try other search ap-
proaches—except for F1 Help.

B The full-text search mechanism. Help is online, so you can search
every nook and cranny of the text in the Help system. Whereas the
index allows you to take careful aim, search is more like a shotgun.

Getting to Know Visual C++

s

It may turn up 1000 irrelevant topics as well as the ones you need,
but sometimes it’s the only method that works, especially if the in-
dex fails you. Fortunately, you can fine-tune your search in a vari-
ety of ways, as we’ll see later in the chapter.

B The table of contents. Again like a book, Help has an elaborate
table of contents. Use the Contents tab in the Help window when
you want to read everything about a subject. It’s like reading or
skimming a book when the subject is new to you or you're really
rusty. Finding where to start in the table of contents can be tricky, so
sometimes you need a combination of the index, search, and con-
tents mechanisms to get going.

Opening the Help window

Click Contents, Search, or Index on the Visual C++ Help menu. This
opens the Help window with the selected tab open.

WL Tl TS AT TR Ak T ¢

',&QJ OTE The Help window is no longer an integral window within the main
1] Visual C++ window for version 6.0, as it was for the past several versions.
Now Help runs as a separate program and uses its own window.

Navigating in the Help window

Microsoft uses Internet Explorer Web-browsing technology to display
Help topics as Hypertext Markup Language (HTML) documents—giving
Help the look of the World Wide Web.

B Use the Contents, Index, and Search tabs in the navigation pane on
the left side of the window to locate topics.

m Click the hypertext links (also called hyperlinks, blue and under-
lined by default) in the topic display pane on the right to explore
related topics. Links you’ve followed turn purple (by default).

& Use the row of hyperlinks that appears below the title in many top-
ics: links to overviews, how-to topics, frequently asked questions, a
local home page for the subject area, and, possibly, code samples
and other useful topics. ’

B Use the Back and Forward arrows on the Help toolbar to retrace
your path through a series of topics.

1: The Visual C++ Environment

B If you get lost, use the Home button on the toolbar to get to a known
starting place: the home page for the Help system. From there you
can get to various places within the Visual C++ documentation.

B Click the Home button, then other links to trace the chairi of docu-
mentation down through Visual C++ Help.

To connect to a site on the Web, do one of the following:

B Click a URL {Web address).
B Select URL on the Go menu, and type a URL in the URL dialog box
that appears.

B Go back to the Visual C++ window, select Microsoft On The Web on
the Help menu, and select one of the options that appears on the
submenu. Web topics are displayed in Internet Explorer.

Try it now

Explore Help. Click the Index, Search, and Contents tabs. Examine a few
subjects by using these tabs. Follow some links. Go home. Climb down
the hierarchy of start pages. Go online.

<" IP Visual C++ includes both the MFC and Active Template Library (ATL)

ﬂl code libraries. You'll often get topics on one when you look for topics on
the other. That’s unfortunate, because the two libraries have many similarly
named elements, and you normally don’t use them together. Caution is re-
quired. ATL class names don't begin with the letter C as MFC class names
do. Don't worry if this does not make sense to you right now. It will.

Narrowing Your Searches

It’s easy to be too general in Visual C++ Help, on both the Index tab and
the Search tab. With a little patience, you can significantly narrow your
search.

Zeroing in with the index

The Index tab is like the index in a book, and you search it the same way,
using keywords and phrases. As with any book index, you can just scroll
through the Index tab and hope to stumble over something useful. But
the Visual C++ index is huge, with many thousands of entries, so you

Getting to Know Visual C++

10

=

normally check the Help index by guessing keywords, typing them into
the Type In The Keyword To Find box, and exploring the results. If your
keyword is in the index, it appears at the top of the lower pane on the In-

dex tab. The topic or topics it leads to may be relevant and useful, or

not. Here are several ways to improve your chances of zeroing in on the
relevant topics:

m Use more specific keywords or phrases, for example, “creatin
y

ActiveX controls” (five topics found) instead of “ActiveX controls”
(seven topics, two of them irrelevant). There’s a movement in the
Visual C++ documentation team toward indexing general topics
with general keywords and more specific topics with specific key-
words or longer phrases. This trend is gradually improving the
index, and you can take advantage of it by tailoring your keywords
appropriately.

B If you're after more general information, think accordingly. Just as

highly specific information isn’t likely to reside in a general topic,
specific topics don’t offer the larger picture. For example, the topic
“Using database classes in ActiveX Controls” does not give an
overview of database classes. (Check the Help index for activex
controls, scroll down, and double-click “database classes in.”) You
would have to look in the topic “Databases: Overview” for the more
general information. (On the Contents tab, look up Overviews by
double-clicking Visual C++ 6.0 Introductory Edition, and then Wel-
come To The Visual C++ 6.0 Introductory Edition, and then Using
Visual C++. Then double-click Visual C++ Programmer’s Guide, and
then Adding Program Functionality, and then Overviews, and fi-
nally, Databases: Overview.)

N OTE Hereafter, if | instruct you to search the Help index for something,
S

y and something is in italics, that’s what you should enter in the Type In The
Keyword To Find box. | put quotation marks around the titles of Help topics
the keywords lead you to. Note that keywords in the topics index are case-
sensitive. This means that topic keywords with identical wording but differ-
ent capitalization may take you to two very different places in Help. Be
sure to follow my wording and carefully check the way topics appear. If |
say “check the Help index for x,” use the Index tab in Help. If | say “search
Help for x,” use the Search tab.

KA TS BOEDNIAD TR LA 0B 55 TS A SN T Lk 1 T3y 5 ADTDAIATLS

o s

1: The Visual C++ Environment

AR A e 2 AR iR h T TCH T RICA LT o b KTI T NNR, DT 000 T S LL IS 65 A TTTEE B ORI AR ETE p1255 €7 Pl VI U003 LT

B When you get to the right neighborhood in the index, look around.
There might be a dozen entries related to files, for example, some
more relevant than others. It’s no accident that the Index tab lets
you see twenty or so entries at a time with the default Help window
size. You can also maximize the Help window to see even more
listings at once.

B Try synonyms or other closely related words: serialization, files,
storing data, storing objects, writing to a file, persistence. If one
doesn’t work, another might. Good indexers try to think of all the
possible words you might use to find a topic, so most topics are in-
dexed to five or ten different keywords.

B Try variations of your search words: use, using, working with,
work, creating, create.

Nobody can create the perfect index, but with a little thought you can
make better use of what’s available.

. \ "IP. The Index tab is your best bet for narrowing your search, so make it
your first search strategy, before you resort to the Search tab or the Con-
~tents tab.

Tl

Narrowing with the Search tab

The Search tab in Help is designed to find, anywhere in the documenta-
tion, every occurrence of the word or words you enter in the box labeled
Type In The Words To Search For. Thus it’s called a full-text search.
Usually, the Search tab returns a large number of topics—often hundreds
or thousands of topics—unless you work at narrowing your search.

\ "IP. The best way to narrow a search is to use the Search tab only after
" you've tried the Index tab.

When you do resort to the Search tab, try some of the following tech-
niques to zero in on the desired topic:

B Search the results of a previous search. To do this, you search
once, then set the Search Previous Results option to limit the next

1"

Getting to Know Visual C++

12

) RTINS AT LS VRS TTEALAE $% TEAA AN T2 AT R & KT T P 5 E LA P4 AP ST i M5 20 ST sy

search to those topics already found. You can continue narrowing
the search this way for several rounds.

B Search topic titles only. Instead of searching the entire text of all

‘ available topics, you search only within their titles by setting the

Search Titles Only option. This approach tends to turn up more
pertinent topics.

m Formulate your search queries carefully. Use quotation marks to
search for an exact phrase. A search for double quotes uncovers any
topic that contains either word—double or quotes—whereas a
search for “double quotes” (including the quotation marks) finds
topics that contain those two words together in that order. Enclos-
ing the phrase in quotation marks reduces the number of topics
found from 59 to 39. (In this search, I did not have any of the three
options at the bottom of the Search tab selected.) Try it.

B Use wildcards. » matches any characters and ? matches a single
character, just as in MS-DOS.

B Use the Boolean operators AND, OR, NOT, and NEAR. The query
CFile NEAR close searches for the word CFile within eight words
of the word close. Boolean operators let you construct very pre-
cise search criteria. The query CFile AND (close OR open) NOT
serialization, for example, looks for CFile in the same topic with
either close or open as long as the topic doesn’t include the word
serialization. This query finds 42 topics. In this case, parentheses
around the OR clause make your intentions absolutely clear.

B Use a subset if you’re using Help for Visual C++ 6.0 Professional or
Enterprise Edition. Subsets aren’t available in the Introductory
edition. Subsets limit the search to a portion of the documenta-
tion. (See the earlier sidebar “Big Help, Little Help” for more
information.)

You can combine many of these techniques. Detailed information on re-
fining queries is available on the Contents tab in Help, under Welcome To
The MSDN Viewer Help. Look under MSDN Library Help.

1: The Visual C++ Environment

ot > et on 32203 ek T

| !? Try it now

Try the following full-text search, using the Search tab. Type CFile AND
(close OR open) NOT serialization. Then narrow the search further by
checking the Search Previous Results box on the Search tab and searching
for “close member function” (with the quotation marks).

How many topics turn up? Start over with the first search and turn off
Search Previous Results. From the initial search results, search for close
member function again with Search Previous Results turned on, but
without the quotation marks. How many topics show up this time?

Lost in the Woods

Because Help is so vast, covering thousands of pages of documentation
(and many more if you have a version other than the Visual C++ 6.0 Intro-
ductory Edition), you can get lost. Furthermore, you might find just the
right topic today, yet be unable to find your way back to that topic tomor-
row. Here are some strategies for coping with these problems.

You are here: the Locate button

Lost? Click the Locate button on the Help toolbar. This opens the Con-
tents tab in the Help window and shows you where the currently dis-
played topic is located within the whole documentation set. This is like
seeing the phrase “You Are Here” on a shopping mall map.

Going home

I've already described the Home button on the toolbar and the page full of
links it takes you to. You can use those links as another way to navigate
the documentation set. Try it.

Leaving a trail of bread crumbs: the Favorites tab

When you’ve found a topic that you know you’ll want to revisit, save it as
a favorite—just as you would on the Web. When it’s no longer a favorite,
you can delete it from the Favorites tab in the Help window.

B To add the current topic to the Favorites tab, click Add on the Fa-
vorites tab.

13

Getting to Know Visual C++

Figure 1-2,

14

S L e B L e L T SO R

\‘]‘ IP You can give the topic a more useful title before you click Add to add it
") to your favorites. Just edit the title in the Current Topic box. You can use
your own words to give the topic a handy title on the Favorites tab without
altering its original title in the Help system.

B To go to a favorite topic, click the Favorites tab and double-click
the topic you want.

Additional information about the Favorites tab is available on the Con-
tents tab in Help, under Welcome To The MSDN Viewer Help. Look under
MSDN Library Help.

Studying the terrain

The more you know about how Help is organized, the easier and more
fruitful your searches will be. Spend time browsing through the Contents
tab to see what'’s there and how it’s arranged.

The Visual C++ documentation is divided into the major sections and
subsections shown in Figure 1-2.

B? Visual C++ 6.0 Introductory Edition

: R N IR A
coe'e L . B B
X L D Bagk NP e
1 Zonterte [lmﬁxi sratrh]Fa'm@esl S e 3 iyl
Ao Qvsuat Gas 53 stanictay Eeuun
1 {L]) Welcome to the Visugl C++ 6 0 Introchuctory Edtion

[£] Visual C++ Start Page]
L] Visual C++ Documentation Map]
|
i

Getting Started
Find the appropriate place to

i1 Visual C+4 | start vith visual G+,

=]
\E] Visual C++ Documentation Map
5 @ What's New in Visual C++ 6.0

@ @ Gettng Started with Visuel C++ 60

What's New
& () Using Visual C++ Welcome to New features in Visual C++
Microsoft Visual 6.0,

& @ Visual C++ Tedorials |

++ i .01
‘] §Visual C++ Programmer's Guide | C++ version 6,0

Visual C++ is Explore the Samples

’ 8 Visual Cos User's Guite available in three | Sample programs for MFC,
- aditions: ATL, the SDKs, and others.
- i Pe;‘:ff:'y aditions: L, the SDKs, and oth
o NI Standard,
o O Somles Professional, and
4 @ Accessibity Information and Technicsl Support Entormrise. | Instaifation 1ssues,
i+ Welcome to the MSON Viewer Help P :
Ed Data access Tools and Technologies Documsntation Map
B Become raore familiar with
@ Platform SDK The the Visual C++
documentation for | decumentation,
Visual C++
includes: the Visual €4+ 6.0 on the Web
Visual C++
e — |

Major sections and subsections of the Visual C++ documentation.

Here’s a brief description of the main items:

B The Visual C++ Tutorials teach key MFC programming techniques.
The main tutorial, called Scribble, is like a shorter version of this

1: The Visual C++ Environment

AL TT oo LTI T Tt d LTS B LT Pt AL P T TR LS B LI B LT PILT

book and doesn’t cover nearly as many topics. It does, however,
cover some advanced subjects that I don't, 1nclud1ng Object Linking
and Embedding (OLE) and databases

The Visual C++ Programmer’s Guide covers programming topics—
primarily using MFC. It is mainly organized around the general
phases of developing an application, so think about where you are
in the development process as a guide to where to look for rel-
evant information. Among the headings under the Visual C++
Programmer’s Guide, you’ll see things like Porting And Upgrading,
Beginning Your Program, Compiling And Linking, and Debugging.
Two sections of the Programmer’s Guide entitled “Adding User In-
terface Features” and “Adding Program Functionality” divide up
the bulk of your programming tasks into those that implement vis-
ible user-interface features such as toolbars, windows, and controls,
and those that involve programming the engine of your application
under the hood.

The Visual C++ User’s Guide covers topics on using the develop-
ment environment’s editors, wizards, and other tools.

The Glossary defines hundreds of terms to help you understand all
the jargon and special lingo of programming with Visual C++.

The Reference is really a collection of several separate references
for MFC, ATL, the C and C++ languages, the iostream input/output
facilities, and the Standard C++ Library. Each reference documents
all of the classes, functions, macros, and other elements that make
up the code libraries available with Visual C++. References for the
C/C++ run-time library, the C/C++ preprocessor, and the Build
Errors (error message reference) are all part of the Visual C++
Programmer’s Guide rather than the Reference.

The Samples are a collection of programs that you can build and
run. They illustrate a variety of basic and advanced programming
techniques. You can locate an appropriate sample and load it onto
your hard disk via Help. See the topic Retrieving Samples under
MSDN Library Help, found under Welcome To The MSDN Library
on the Contents tab.

15

Getting to Know Visual C++

16

Loose Ends

Additional information about using Visual C++ Help is available on the
Contents tab in Help, under Welcome To The MSDN Viewer Help. Look
under MSDN Library Help. Besides the topics we’ve already touched on,
you’ll also find guidance on:

® Copying or printing Help topics
B Customizing the Help viewer (the MSDN Library window)

Projects and Workspaces

At the heart of every Visual C++ program under development is a project,

- which is housed in a workspace. It’s possible in Visual C++ to house mul-

tiple projects in one workspace. For example, if you’re writing a dynamic-
link library (DLL), you might have a workspace with one project for the
DLL and another project for the small program you write to test the DLL.
We won’t use multiple-project workspaces in this book, but if you’d like
to know more about them, you can check the Help index for projects.
Double click the first appearance of “projects” in the list of topics. In the
Topics Found window that appears, double-click “Overview: Working
with Projects.”

Projects

When you begin a new program, the first thing you do is create a project
for it by selecting the New command on the File menu. For example, a
project might be for a game program you’re writing, or a small utility pro-
gram you have in mind. The name you specify for your project is used as
the basis for naming a variety of other files in the project, starting with
the project file, projname.dsp. (The .dsp extension means Developer Stu-
dio project. Developer Studio is an old name for the integrated develop-
ment environment, or IDE, used by Microsoft Visual Studio applications,
including Visual C++.)

The project file maintains information about which source code files and
resource files your program uses and about any settings you have speci-
fied for controlling how Visual C++ builds your program. The Visual C++
build system uses this information when it compiles and links your files
to create an executable program.

Throughout this book, you’ll create just two kinds of projects, both using
wizards available through the New dialog box. In Chapters 2 through 5,
you’ll use the wizard for Win32 Console Application projects. In later
chapters, you’ll use the MFC AppWizard (for .exe files). However, there
are many other kinds of projects available through the New dialog box. As
you gain some fluency with Visual C++, you may want to investigate
these other options further.

Workspaces

When you create a project, you also by default create a workspace. Your
workspace file, projname.dsw (dsw for Developer Studio workspace),
maintains information about which Visual C++ windows are open and
where they are located, as well as any settings you have specified for your
workspace.

When you create a project, Visual C++ uses default settings for the project
and the workspace, but you can alter these as you work:

B To change build settings for the project, select Settings on the
Project menu.

B To change workspace settings, select either Options or Customize
on the Tools menu.

The Workspace tab in the Options dialog box lets you specify various
options for your windows, status bar, and other components of the
workspace. The Editor tab in the Options dialog box lets you specity
settings for the Source Code editor. The Customize dialog box lets you
rearrange, add, or delete toolbar buttons, menu commands, keyboard
shortcuts, and the tools on the Visual C++ Tools menu. For more informa-
tion, check the Help index for customizing.

Working with Your Project

You will usually work through the following stages to develop your appli-
cations. This section describes each stage in turn.

W Create a project. This creates the initial files on which your work
will be based.

1: The Visual C++ Environment

17

Getting to Know Visual C++

B Use the Workspace window and its ClassView, FileView, and
ResourceView tabs to work with the C++ classes, files, and re-
sources in your project.

Add files to the project, or remove files from the project.
Edit source code and resources in the project.

Specify a build configuration for the project (Debug or Release
build). ~

Build the project (compile and link its code).
Correct any compiler or linker errors.
Execute and test the resulting executable file.

Debug the project.

Profile and optimize the code (optional).

Creating a Project

Projects come in some 16 varieties. I'll show you how to create a Win32
Console Application, the simplest project type, which we’ll be using in
Chapters 2 through 5. After Chapter 5, we’ll use another other project
type, an MFC application. The sequence of steps involved in creating
each of the 16 types is generally similar, although the wizards used to
create some project types are more detailed than others. For some
project types, Visual C++ creates many files to help you get started. For
other project types, Visual C++ creates no starter files. For more informa-
tion about each variety, check the Help index for project types.

A console application uses a set of Console API functions to display its
output in a character-mode window, like an MS-DOS window. Because
writing console applications requires no more overhead than writing a
main function, we’ll use them to test simple C++ programs. To create a
Win32 Console Application project, follow these steps, and refer to
Figure 1-3 as needed:

1. Click New on the File menu.
2. In the New dialog box click the Projects tab.
3. Click Win32 Console Application.

18

e

1: The Visual C++ Environment

Figure 1-3.

In the Project Name box, type the project name. We’ll name this
first project First.

. Use the Location box to specify a location for the project’s files. You

can browse for the right directory by clicking the Browse button
next to the Location box.

Select the Create New Workspace option.
Make sure Win32 is checked in the Platforms box.
Click OK.

That’s just the first step in creating project First. Stay tuned.

) [+15]
¥ ' Ol Documents i
Vi y * Priect name
N]F-rsl
IY)S % DevStudio Add-in Wizard Logaten q
4 1 E tended Stored Proc Wizard [E\PROGRAM FILESWICROS The Browse
> IRISAP! Extension Wizard . button
& H Makefile
%3 MFC ActiveX Controlw/izard & Ceate new worksparw
5 | #IMFC AppWizard (dl) O e o Lot epirg
- SRMFC AppWizard (exe) ™ Legrapt-ory :
'+ Tk Uiy Project T
IR Wina2 Application
%
FAI 18 Win32 Dynamic-Link Library §
& [wina2 static Library E:'ji:j"g
:]L_t, n
N Carcel_|

The Projects tab in the New dialog box.

Next, follow the instructions in the wizard dialog boxes that follow the
New dialog box. For a Win32 Console Application there’s only one such
box:

1.

In the Step 1 Of 1 dialog box (see Figure 1-4 on the next page),
select A “Hello, World!” Application.

Click Finish.

In the New Project Information dialog box, examine the information
presented to make sure it’s what you wanted. Then click OK.

19

Gettmg to Know Visual C++

20

Figure 1-4.

S

o N TAE IS PEUBE A IIr T IR TR bR § Tonke b TR AN 2T 5 KX,

f Win32 Console Appllcalmn Step T of 1

P what ind of ComdaApphcahondbyw

! “want!ocreale’? N R

- s Ah,ﬁwyMDBct

LT Aok abplogion L

EU T R e, ek mtmmriet— 1. Select this.
C Anappkceltomhat supwlsﬁFC N

2. Click this.

The AppWizard dialog box for a Win32 Console Application.

The directories and files created

Visual C++ creates a project directory in the location you specified in the
Location Edit box of the New dialog box. The directory contains one or
more files. For a Win32 Console Application, the directory will contain
three source code files (two .cpp files and one .h file), a project file (.dsp),
a workspace file (.dsw), and a ReadMe file (.txt). Visual C++ also creates
a few support files that it uses, but we don’t need to worry about those.
The ReadMe file explains the purposes of the other files in the directory.
Other project types result in additional files.

In addition to these files, your project directory contains one
subdirectory—Debug. For projects that have Windows resources, there’s
also a Res subdirectory that contains resource-related files (see “Using
ResourceView” later in this chapter). The Debug subdirectory contains
intermediate files created by building your project. Later, when you create
a Release build (see “Specifying the Project Configuration”), Visual C++
also creates a Release subdirectory for use in that build.

This scheme neatly manages the two kinds of project builds (Debug and
Release). The project’s source code files are stored in the project directory.
Intermediate files created by the builds are stored in subdirectories.

1: The Visual C++ Environment

Sk e LRIT AT vt ST Fhth, PP ADLETNT b N

!% Try it now

Follow the directions just presented to create a new Win32 Console Ap-
plication project called First. We’ll build the program shortly.

Using the Workspace Window

When you create a new project, it becomes the current project in
Visual C++. You'll see the Workspace window (not titled) on the left side
of the Visual C++ main window unless you have rearranged your win-
dows. Figure 1-5 shows the ClassView tab of the Workspace window with
our application project First open. The Workspace window has several
downward-facing tabs. For our console application, the tabs are labeled
ClassView and FileView. For an application that has Windows resources,
there’s also a ResourceView tab.

S o

£— Right-click an
41 item to see the
i context menu.

= First classes
(3 Globals

Click to expand.

Click to
collapse.

Tab name

Figure 1-5. The ClassView tab of the Workspace window.
Here’s how you can control the Workspace window:
B To open the Workspace window if it is not visible, click Workspace
on the View menu.

B To close the Workspace window and gain a little more space in the
Visual C++ main window, click the close button (marked by an X)
on the Workspace window.

B There’s also a Workspace button on the Visual C++ Standard
toolbar—it shows a folder over a window. Use this button to toggle
the visibility of the Workspace window.

21

JEOEE

Getting to Know Visual C++

T b RS ¥ S £

22

I I S e N

M Per v ST LB LA IS P 2 A, TR A T T D 2N A Tk M B Do BT BN S

st 7923

? Try it now

Get used to working with the Workspace window by hiding it, then dis-

playing it. Use both the Workspace command on the View menu and the

Workspace button on the toolbar.

Using ClassView

Click the ClassView tab in the Workspace window to see a list of any C++
classes in your project. I’ll discuss classes in Chapters 4 and 5. The
project we just created lists only a Globals folder, for global variables and
functions; it has no classes yet.

Although I'll explain many of the terms mentioned in the following

guidelines in subsequent chapters, it’s worth taking a few moments now

just to learn your way around.

To view the members of a class in ClassView, click the plus sign in
front of the class name. This expands the members listed under the
class name, much as you expand a title in Help.

To open the header file (.h) for a class, double-click the class name.
I'll talk about header and implementation files in Chapter 3.

To open the implementation file and scroll it to the definition of a
class member function, expand the list of members for the class in
ClassView, then double-click the member function name.

To add a new class via ClassView, right-click the topmost heading
(click it with the right mouse button) in ClassView. On the context
menu that appears, select New Class. In the New Class dialog box,
specify a class type and fill in the class information. Click OK. For
more information, check the Help index for New Classes. If you
need to delete a class, open the source code files that define it, then
select and delete the code.

To add a new member to a class, right-click the class name and
choose one of the Add commands on the context menu that pops
up. I'll give examples of all of these operations later in this chapter.

£ ST A AT A (EPTI 7T T AT bk €0

Figure 1-6.

1: The Visual C++ Environment

TP 44X NGt S L 8

B To delete a class member, right-click it in ClassView. On the context
menu that appears, click Delete. ClassView deletes the member’s
prototype but it only comments out the member’s definition. (I’l1
make these terms clear in Chapters 2 through 5.)

For more information, check the Help index for ClassView. We’ll practice

these techniques in Chapters 2 through 5.

\- "IP Throughout Visual C++, it's worth right-clicking windows, toolbars, and
N 1 other objects, such as filenames or class names. Many of them have context
menus with useful commands. Try it.

Using FileView

Click the FileView tab (see Figure 1-6) in the Workspace window to see
a set of folders containing source files (with the .cpp extension), header
files (with the .h extension), and resource files (with the .rc extension). In
the MFC programming you’ll do while reading this book, ClassView will
be a more natural and useful way to view and access your files. But while
classes are the more natural entity for working in Visual C++, FileView
has its uses too. Here are some common FileView tasks:

B To open a file from FileView, double-click the filename.

B For other actions you can take on a file in FileView, right-click on a
filename and choose from the context menu that pops up.

For more information, check the Help index for FileView.

i e o

1= & First files
= 4“3 Source Files

[*] Stdafx.cpp
2 43 Header Files

...J Resource Files
E] ReadMe.txt

‘41 ‘ﬂ'

[R T p—

B stdamh ——

2 ClassVi "F;rtf\:’ie-if_i

' @Workspace ‘Fust’ 1 project(s)

NI

-
T e

The FileView tab of the Workspace window.

i Double-click the

filename to open.

— Right-click the

filename to see
the context menu.

Tab name

23

Getting to Know Visual C++

TS 19 1 R A AR A KR LAY P SEOLA TR o T T § 7T~ W9 Renab B 0%

>

Figure 1-7.

24

T X B L AL BT AT LS LRt T 207

Try it now

In your project First, open a file from the FileView tab. To close the file,
click its close button (the X) or click Close on the Visual C++ File menu.

Using ResourceView

At this point you will not see a ResourceView tab (we’ll talk about that in
a moment), but if you did, it would look like Figure 1-7. The ResourceView

~ tab in the Workspace window shows a set of folders containing resources

of various types. Windows uses compiled resources to store the text and
images that make up the Windows user interface: menus, dialog boxes,
toolbars, icons, and others. A resource specifies the appearance of such
an object. Using Windows resources saves you from having to draw
menus, buttons, and other visual objects yourself—the prefabricated im-
ages available through Visual C++ save time and promote consistency
among Windows programs. Since the wizard for a Win32 Console Appli-
cation doesn’t generate a resource file, you won'’t see a ResourceView tab
in the Workspace window for the First project. (But you could add a re-
source file to the First project. Win32 Console Applications can use Win-
dows resources, such as dialog boxes, and they can also use MFC classes.)
Because program First doesn’t use resources, Figure 1-7 shows the

ResourceView tab for a generic MFC application.

Cienen S o)
3} & 7 MyDrawD resources

() Accelerator

@] Dialog

@ (Jlcon

B 2y Menu

k 2 IDR_MAINFRAME ——
. {+] Stung Table

B & [_J Toolbar

5 @ 7 Version

P Ik

- Tab name

The ResourceView tab of the Workspace window.

| waCesy) $9Resou] 2 Fiovew]

~—— Resource types

+— D for a Menu

resource

Double-click the ID
to open the
Resource editor.

Right-click an item
1o see the context
menu.

1: The Visual C++ Environment

You can use ResourceView not only to view existing resources but also
to edit them. Use the Resource command on the Insert menu to create
new ones.

m To edit an existing resource, open the appropriate folder in
ResourceView, for example, Menus. Double-click the ID of the re-
source you want to edit, such as IDR_MAINFRAME. In the Resource
editor that opens up, edit the resource. For information on editing
resources, check the Help index for resource editors and double-
click “overview.”

B To create a new resource (in an application that uses resources), se-
lect Resource on the Insert menu. In the Insert Resource dialog box,
double-click the type of resource you want to create, such as a
menu resource. Edit the new resource in the Resource editor win-
dow that opens. If the application already uses resources, our
newly added resource will be saved to the existing resource (.rc)
file. If the application doesn’t already have a resource file (meaning
it does not use resources), you're prompted to save newly created
resources in an .rc file. You need to supply a name for the .rc file,
and then you need to add the .rc file to your project; at that point,
the ResourceView tab appears. For more information, check the Help
index for resource editors, and double-click “creating new resources.”
I'll introduce you to most of the resource editors as we proceed.

m To delete a resource, select it in ResourceView. Press the Delete key.

For information on copying resources, check the Help index for Resources
and double-click “copying.” I'll cover more resource topics in later chap-
ters. I'll also give you some practice with resource creation and deletion
in the next section.

Adding and Removing Project Files

Projects typically contain the following kinds of source files:

B Header files, also known as include files, with the .h file extension

B Implementation, or source, files, with the .cpp extension for C++,
or the .c extension for C

25

Getting to Know Visual C++

€ oeade W

26

T A K T3 6 AT 3 kS I SRR B OCTETE St e FFTFE s AT VAL A ST R M VITELS T 2 ™ s

B Resource files, with the .rc extension; also files with the extensions
.bmp and .ico and other files that contain graphical elements such
as toolbar button images or icons

These are the files that the build system compiles for binary resources .
such as menus, toolbars, dialog boxes, and icons, and for C or C++ code.

From time to time, you’ll need to add new header and implementation
files to your project: ‘

® To create new .h, .cpp, or .c files and add them to your project, se-
lect New on the File menu. In the New dialog box, click the Files
tab. Click C/C++ Header File or C++ Source File. Make sure the
Add To Project option is selected. Type a filename (using a .cpp ex-
tension for C++, a .c extension for C, or a .h extension for a header
file). Specify the location for the new file if it’s different from the
current project directory, and click OK. ‘

® To add an existing .cpp, .c, or .rc file, select Add To Project on the
Project menu. On the submenu, click Files. In the Insert Files Into
Project dialog box, click any files you want to add, then click OK.
(To select multiple files, hold down the Shift or Ctrl key while
selecting.)

® To add an existing .h file to your project, just refer to the header
filename in an #include statement in a .cpp or .h file that is already
in the project. You don’t need to manually add the file to the
project.

m To delete a file from the project, open FileView, select the filename,
and press the Delete key. This removes the file from the project but
does not delete the file from your hard disk.

Try it now

Create a new .h file and a new .cpp file in the First project. Then delete
them from the project. (You can even delete these particular files, if you
like, in Windows Explorer—we don’t need them any more.)

R N N PP N T WP N N S NGO S R V0 PO VT A)

1: The Visual C++ Environment

e BT Ey Sl bobe e 2R R FE G YRS Y RSO LI TN KM e S Kb B IS TN E b

!%? Try it now

Figure 1-8.

Let’s practice creating a resource. We’ll delete it from program First after-
ward. With the First project open in Visual C++, use the Insert menu to
create a new dialog resource. Save the dialog resource in a file called
First.rc by clicking Save As on the File menu. Close the Dialog editor
window by clicking Close on the File menu. Add the file First.rc to the
project. To remove the practice resource from the project, click the new
dialog resource (called IDD_DIALOGI by default) in ResourceView
(which is now available), and press the Delete key. Now we’re back where
we started.

Editing Source Code and Resources

Now that you know how to create a Visual C++ project and manage its
files, classes, and resources, let’s turn to writing and editing the source
code and resources that constitute your program. We’ll look at the Source
Code editor and the Resource editors, and then move on to compllmg and
linking what you’ve created.

Editing C/C++ source code

You’ll use the Visual C++ Source Code editor, shown in Figure 1-8, to
write and edit your code. To start the Source Code editor, either create a
new .h or .cpp file or open an existing file.

MlClUSO“ Vlsual Ca+ - [Fllst cpp]

HD File ’-dﬂ YIew]rsevl Pne-. Buld Tools’ Wmdﬂw Hdp 4 ,i;,-’ ‘ i;’:(i”\‘ B] q
ch snalx BRI DB Gl —
h Biobats) o Jl [Allglobalmembers] _jir an) R4 g -

Cymalaa Y a [T T B e e s

)‘]1*; nw;"* . o A(»L*»~ R ~>‘I~“h v |
| I Fll‘St cpp Detines the entry point f.:xr-;—j
s

~4

. Workspace Fust’ 1 prqecl[l
»‘) . £ First files
=~ Source Files

;_ﬂ int main{int argc, char* argv[])}
*) Fustrc B printf("Hello World! n"):
4] Stdafx.cpp , return 0;

#include "stdafx. h”

-

@ (] Header Files
L Resource Files
|5 ReadMe.tut

g 12

¢ P
T aneso“] o JBRen S
Ready . - N S T N G s

The Visual C++ Source Code editor with the file First.cpp open.
27

Getting to Know Visual C++

G Sy f

At e vy

28

PR AR 5 2 : EREoE

The Source Code editor automatically color codes various syntax elements
in the program, which makes the source files easier to read. Check the
Help index for syntax coloring. The editor can also emulate two popular
source code editors: Brief and Epsilon. Check the Help index for editor
emulation. Visual C++ provides various ways to locate classes, functions,
and other items in your source code files, including ClassView. We’ll
meet others, including WizardBar and the Find commands, later. I'll get
you started with the Source Code editor in Chapter 2, but this is a good
place to talk briefly about indenting, or pretty-printing, your source
code files.

Most of us have our own preferences for the appearance of our source
code—what’s indented, how much it’s indented, and where the curly
braces go. For example, here are two commonly used ways to declare a
function:

void functionA() { // Opening brace here

// Lines of code
}

void functionB()
{ // Opening brace here

// Lines of code
}
Both of these coding styles are popular, and programmers sometimes de-
fend their favorite with religious zeal. You can control the style of your
code in the O‘ptions dialog box (select Options on the Tools menu). Use
the Tabs tab in the dialog box to specify settings for different types of
files, such as C/C++ source code files, Visual Basic Scripting (VBScript)
macros, and so on. Select the file type in the drop-down list. Specify the
number of spaces each press of the Tab key represents, how much to in-
dent, and whether to insert actual tab characters or spaces. You can also
specify several options for the behavior of indents, including whether to
indent the curly braces around a function body or not. If you use the
Smart Indent option, you can have Visual C++ imitate the style used in
the previous n lines of code (default is 100 lines). Check the Help index
for pretty-print code.

1: The Visual C++ Environment

PR Ca— 2 SO T SNV PP T S N

Editing resources

Edit the menus, dialog boxes, and other resources in your program using
the Visual C++ resource editors. There’s a different editor for each resource
type. I'll illustrate the use of most of these during the course of the book.
Go back to the section “Using ResourceView” for introductory informa-
tion about opening, editing, and creating resources.

Specifying the Project Configuration

While you're developing your program, you’ll usually work in a Debug
build configuration. In a Debug build, the compiler includes debugging
information that the Visual C++ debugger can use if you encounter logic
errors. When you’re ready to release the program for general use (and oc-
casionally during development for testing), you switch to a Release build.
Debug and release are the two main types of project configurations. Ad-
vanced programmers can add specialized configurations of their own.

In order to switch between Debug and Release builds, you’ll need to change
the active configuration for your project. To do so, click Set Active Con-
figuration on the Build menu. In the Set Active Project Configuration dia-
log box, click either Win32 Debug (the default) or Win32 Release. Then
click OK.

Since developing a program always requires debugging, the default con-
figuration is a Debug build. This is set for you initially, so you only have
to change the active configuration when you're ready to do a Release
build, or when you’ve finished a Release build and need to revert to Debug
build again.

Building Your Project

After you have edited the code and resources for your project, it’s time to
build it. Visual C++ includes a build system that lets you compile and
link your program with a single command. ‘

N OTE To build the project, click Build projname.exe on the Build menu, or
S\l press F7.

The build process invokes the appropriate resource and language com-
pilers, the linker, and other tools. It produces intermediate files in the

-~ 29

Getting to Know Visual C++

appropriate subdirectory (based on the active configuration) and, if there
are no build errors (compiler or linker errors), generates the final execut-
able (.exe) file.

During the build, you’ll see messages in the Visual C++ Output window
marking the build’s progress and listing any errors or problems found.
The Output window opens during a build if it wasn’t open before. The
Output window has several tabs. Build output appears on the Build tab.
Figure 1-9 shows the Output window and the messages generated during
an error-free build.

Compiling. ..
Stdif=.cpp

Compiling. ..
First.cpp ol
Linking. .. 3

il
ix
i

}

First.exe - 0 error(s). 0 warning(s)

o] Buid {Debug h FndinFles1 % FindinFles? » Resats 7 4l %[

Figure 1-9. The Visual C++ Output window during an error-free build.

? Try it now

) Build the First program that we created earlier by following the steps I
just described. Take a look at the output in the Output window. What do
you see when the build finishes?

=T~ IP The build system creates a Build Log that you can examine later. The

:!I- Build Log is a handy record of past builds and the errors you made and cor-
rected. The log is stored in your project directory in an HTML file named
Projname.plg, which you can examine in your Web browser. The file is not
visible in FileView, so open it outside Visual C++.

30

Figure 1-10.

Correcting Build Errors

Build errors are errors of syntax, file problems, and the like, as opposed to
logic errors. To correct logic errors, use the debugger (see Chapter 13). To

correct build errors, follow these steps:

1. Double-click an error message in the Visual C++ Output window.
This opens the source code to where the error occurred and points
to the line that contains the error. (Sometimes the error has oc-
curred somewhat before this line, so if you do not see the error in
the line being pointed to, examine the preceding few lines.) Fig-
ure 1-10 shows the Output window and the messages generated

1: The Visual C++ Environment

during a build in which errors have occurred.

2. Click on the error message number in the error message line in the
Output window and press the F1 key to get information about the

eITor.

3. Correct the code and rebuild.

st in32 Debu

n g

Error executing cl.exe.

dFirst.exe — 2 error(s), 1 warning(s)

T\ euia {DeFug s Frdm Fies 1w Findm Fies2 & Resdts 7 - 14| I

P i —
Compiling. ..

First.cpp

C:\Visual C++ Programs\First\First.cpp{8) : error C2001: newlin
C:\Visual C4++ Programs‘\First\First.cpp(9) : error C2143: syntax

C:\Visual C++ Programs\First\First.cpp{10) : warning C4508: ‘na

|

et
-l
v

The Visual C++ Output window during a build in which errors occurred.

Errors often occur in cascades—one or two legitimate errors result in ad-
ditional (sometimes several) error messages in successive lines of code.
It’s usually a good strategy to correct the first few errors listed, then build
again without examining the later errors. If there was an error cascade in
the first build, it often disappears in subsequent builds. For relatively
small programs, it’s practical to fix a few errors, build again, fix more,

build again, and so on.

31

Getting to Know Visual C++

32

¥

Figure 1-11.

J

Correcting errors often requires a good bit of detective work and lots of
reading in the documentation. You can find the error message documenta-
tion by checking the Help index for build errors. Double-click “fixing.”
I'll supply an exercise to try the error mechanism after the next section.

Running Your Program

After a successful build with no build errors, you can run your program
within the Visual C++ environment.

4

Try it now

OTE To run the program, select Execute projname.exe on the Build menu,
or press Ctrl+F5.

Run the First program. Note that after it prints “Hello, World!” in the win-
dow, Visual C++ prints the sentence “Press any key to continue.” Only
the first line is part of program First’s output. Figure 1-11 shows the out-
put of the First program.

The First program’s output.

Try it now

In program First, use FileView to open the file First.cpp. In that file, intro-
duce an intentional error: in the printfline, delete the concluding double
quotation mark. The line should now look like this:

printf("Hello World!\n);

1: The Visual C++ Environment

Build the program. You'll get two errors and one warning. Double-click
the first error message in the Output window, the one that says “newline
in constant.” A small blue arrow points to the offending line of code in
the Source Code editor window. In the Output window, click directly on
the error number, 2001, then press the F1 key. Visual C++ Help opens the
topic for that error number. The compiler apparently takes the erroneous
line to be an improperly formed constant. We know it’s caused by a miss-
ing double quotation mark. The second error and the warning apparently
occur as a cascade from the first error.

The warning shows up because the warning level is set to 3 (by default)
in the Project Settings dialog box. Select Settings on the Project menu,
click the C/C++ tab, make sure the Category drop-down list says “General,”
and examine the Warning Level box. A warning level set this high causes
the compiler to be picky in the potential problems it points out as warn-
ings. This can be valuable, so it’s good to leave the level set fairly high.

Try it now

The trick to diagnosing the real problem with program First is to recog-
nize that a character string was intended, which should lead you to note
the missing double quotation mark. Restore the double quotation mark
and build again. This time there should be no errors or warnings.

Debugging Your Program

If you encounter logic errors while the program is running, use the
debugger to find and fix them. Chapter 13 includes a tour of the debugger.

Profiling and Optimizing Programs

Profiling uses the profiler tool to help locate bottlenecks and inefficien-
cies in your code. Optimizing increases the speed of your code or re-
duces the amount of space the program requires. Since these relatively
advanced abilities are not supported in the Introductory Edition of

Visual C++, I won’t cover them, but you can check the Help index for pro-
filing and optimizing (double-click “code”) to learn more about them.

33

Getting to Know Visual C++

Using Wizards and Other Visual C++ Tools

Visual C++ gives you lots of help with your programming, primarily
through its extensive set of wizards. A wizard is a tool that looks like a
sequence of dialog boxes. It guides you through a complicated process of
making choices. I'll very briefly summarize the key wizards and tools
here, but you’ll meet them in more detail later in the book:

B Use AppWizard to create a set of starter files at the beginning of a
project. Most of the project types listed in the New dialog box in-
voke AppWizard to create the projects and their files. You already
encountered AppWizard when you created the project for program
First.

B Use ClassWizard as you program to add C++ classes and class mem-
bers, manipulate MFC message maps, work with automation prop-
erties and methods, operate on ActiveX events, and perform many
other tasks.

B Use WizardBar as a shortcut to ClassWizard’s functionality and as
a navigation tool for finding classes and functions in your source
code files. WizardBar is a toolbar. We’ll use WizardBar extensively.

Besides the wizards, you can use the commands on the Tools menu. For
example:

B Use the Source Browser command to invoke the Visual C++
source browser. (See the Appendix for information about the
source browser.)

B The Error Lookup command helps you look up an error message
when you know the error number.

The Spy++ tool lets you spy on Windows messages in real time.
The MFC Tracer tool enables MFC’s TRACE macro for printing di-

agnostic output strings.

You can also add your own tools to the Tools menu: Select Customize. In
the Customize dialog box, click the Tools tab. For more information,
check the Help index for customizing, and double-click “ Tools menu.”

34

1: The Visual C++ Environment

Working with Your Workspace Windows

As you develop your program, you’ll use a variety of different windows

in Visual C++: Source Code and Resource editor windows, the Workspace

and Output windows, and various debugger windows. You'll need a few
basic window-handling techniques. In the next two sections, I'll discuss
the two kinds of windows found in Visual C++, document windows and
docking windows. I'll offer practical guidelines that make your program-
ming with Visual C++ easier and more productive, and that make the

most of the available work area.
<3 MPORTANT Keeping all of Visual C++'s windows where you want them as
1 you move from task to task can be difficult. Sometimes the windows will
seem to misbehave, and you can have a frustrating time straightening them
" out. It's worth the time it takes to read the next few pages and try the
techniques | describe.

To see the distinction between document windows and dockable win-
dows, try the following experiment.

Try it now

With the First project open, and the First.cpp file displayed in the code
editor window, close the Workspace window and the Output window.
You can close each of them by clicking the Close button. Any windows
left open—besides the menu bar and several toolbars—are document

- windows. In this case, there’s one document window, titled First.cpp. The

Workspace and Output windows (and the menu bar and toolbars) are
dockable windows. ‘

Document windows contain and are used to edit your code and resources.
Dockable windows are part of the machinery of Visual C++. They display,
and often allow you to manipulate, information about your project and its

files and classes. Dockable windows also display output during builds,

searches, and debugging sessions, and information about the current state
of your computer’s memory and the code you're running or debugging in

Visual C++.

35

Getting to Know Visual C++

g i g o b o [At PP £ L TN . 2 an St Nk 2 oxz. e RO Y b Nt aTe s % PR g

Document Windows

Document windows are normal framed windows that contain documents,
such as Source Code editor documents (.h and .cpp files) or Resource edi-
tor documents (for example, dialog editor and menu editor documents).
These windows have frames with Minimize, Maximize, and Close but-
tons, system menus, and borders you can drag to resize the windows—
just like the windows you’ve used in other Windows applications.

Managing document windows

Manage your document windows with the File and Window menus. File
menu commands open, close, save, and print document window con-
tents. Window menu commands let you switch back and forth among
open document windows as well as arrange them. You can cascade, tile,
and split them.

To open recently-used source code files or workspaces, click a filename
in the list of most recently used files on the File menu. To expose open
document windows that are buried, use the list of open documents on the
Window menu.

Getting the most available work space

Use one or more of the following methods to gain maximum work space
in the Visual C++ main window:

® Close unneeded windows, especially docking windows, such as
the Output window. You might also close the Workspace window
while you’re really writing code—you can always reopen the
Workspace or Output windows by clicking their toggle buttons on
the Standard toolbar. You can also pop open a list of all open win-
dows from that toolbar. See Figure 1-13 for the button locations.

‘W Maximize the document window you’re currently working in. This
hides all other document windows, but they remain available from
the Window menu. The Minimize, Maximize, and Close buttons
for a maximized document window appear just under those for
Visual C++ itself. See Figure 1-8 for the button locations.

m Use the Split command on the Window menu to work in more than
one part of the document at the same time.

36

1: The Visual C++ Environment

L O s e I e R e e - T T S

m Consider using the Full Screen command on the View menu. This
removes menus, toolbars, and everything else but your current
document window and a tiny toolbar that lets you end the full
screen mode. (If the toolbar isn’t there, press the Escape key.)

Using a document window'’s context menu

Right-click a document window to pop up a context menu (also known as
a shortcut menu). For document windows, the context menu includes
such commands as Cut, Copy, Paste, and Insert/Remove Breakpoint, as
well as commands for obtaining information about the C++ class or func-
tion under the cursor. If the document is a Resource editor document, the
commands change to those appropriate for the resource type you're editing.

Docking Windows

A docking window can be attached to any edge of the main window in
Visual C++. This feature lets you position such windows most usefully
for the way you work. Docking windows can also be floated in the middle
of the main window rather than docked. Figure 1-12 shows one docked
window (Workspace) and one floating window (Output). Docking win-
dows élways stay on top of other windows, so Visual C++ adjusts docu-
ment windows to make room for newly opened docking windows.

"IP If your main Visual C++ window becomes too crowded, try closing some
l windows and adjusting others with the Cascade and Tile commands as well
as the Minimize, Restore, and Maximize commands.

-:::’Lx‘_.‘}_! | ss Firat ens . Datines the eutry p;jln“:“i
=] @Ensl classes { | g Cona; Bl
‘ = 23 Globals | *mcllconpiling. .. s) 1
Docked - $™ | SRR O =[] o
o e[TP N suild (Db WL¥ 1 27
F /

1
TETTIITTYT v
l 4« >

VX TR TR TR)

Figure 1-12. A docked docking window and a floating docking window (with toolbars hidden).

37

Getting to Know Visual C++

B L e e e PSPPI

38

Figure 1-13.

Manipulating docking windows

To manipulate a docking window, click on the raised knurls (knobs) along
one edge of the window (Figure 1-12 shows these knurls). Drag the win-
dow by its knurls to redock it to a different side of the main window.
Double-click the knurls to turn off docking and float the window.
(Double-click the title bar of a floating window to redock it to the last
docking position it occupied. Double-click a docked window to float it.)

Try it now

Redock the Workspace window in turn to the top, right, and bottom edges
of the main window. Double-click the knurls on the window to float it.
Double-click the title bar to redock it. I prefer to keep the Workspace win-
dow docked on the left and the Output window, when open, docked on
the bottom. Your preferences might differ from mine, so experiment.

Docking windows outside the debugger

Unless you count the menu bar and any open toolbars, which are also
docking windows, most of the time you’ll see only two docking windows
in Visual C++: the Workspace and Output windows. I usually like to keep
the Workspace window open, but I sometimes close it to free up more
space. I prefer to hide the Output window most of the time. It reappears
automatically if you start a build, search, or some other action that sends
its output to that window. The Workspace and Output buttons on the
Standard toolbar (Figure 1-13) are handy for managing both windows.

2EEE Ve[0T OEE Rkn T

Workspace window-| L lWindow list toggle button

toggle button Output window toggle button

The Workspace, Output, and Window list buttons on the Standard toolbar.

Docking windows in the debugger

If you run your program in the debugger, you’ll encounter several other
docking windows: Watch, Call Stack, Memory, Variables, Registers, and
Disassembly. I'll cover the use of those windows in Chapter 13. For now,

G e T TITCR L 2T aBe 200 VRS T T L T ROkt b v © R 15000 T 1 ST RSt e 8 1 AR (Y E b w8 o S5y i K P TECTRE L. A ke Aok W BRI (5 1)

1: The Visual C++ Environment

just be aware that manipulating the windows themselves is very much
like manipulating the nondebug docking windows.

Context menus in docking windows

The context or shortcut menus you get by right-clicking in a window vary
widely from one docking window to another. The menus also vary based
on which object you click inside the window. For example, on the
ClassView tab in the Workspace window the menu changes as you click a
class name, a class member name, the topmost title of the class list, or
empty space within the window. Try it. You’ll see differences in the other
windows too, so experiment.

' Managing docking windows

Unlike document windows, you don’t manage docking windows from the
Window menu or the File menu. Instead, you use the View menu’s com-
mands to open the Workspace or Output window or any of the docking
windows in the debugger. The debugger windows open from the Debug
Windows command on the View menu. Click a docking window’s Close
button to close the window.

You can also opeh and close any of the docking windows from toolbars.
The Standard toolbar contains Workspace and Output buttons. The Debug
toolbar contains buttons for the debug windows.

Toolbars and Menus

Visual C++ also uses menus and toolbars extensively. Instead of describ-

ing the menus or toolbars in detail here, I'll introduce them as they come
up in the chapters ahead. The following general comments will suffice

for now.

m To display a Visual C++ toolbar, right-click anywhere in the toolbar
area below the menu bar—but not in a toolbar that’s already open.
On the context menu that pops up, click the toolbar whose visibility
you want to toggle on. Close toolbars in the same way. You’ll prob-
ably always want the Standard toolbar on display, along with
WizardBar. The Build toolbar is also handy. Many of the other
toolbars, such as the Debug toolbar, come and go as needed.

39

Getting to Know Visual C++

AT G AR e 4 A TN A4 S RO TN oS 1 S

M You can customize toolbars and menus by adding, removing, and
moving command buttons. Click Customize on the Tools menu,
then click the Commands tab for menu commands, or the Toolbars
tab for toolbars. Try it. Check the Help index for customizing and
double-click “toolbar buttons” and “toolbars.” You can also create
new toolbars of your own; these can contain existing commands or
buttons for commands that you create yourself by writing VBScript
macros or by recording sequences of actions in Visual C++. I'll say
just a bit more about macros near the end of the chapter, under
“Tips and Tricks.”

B The menu bar and the toolbars are dockable windows, so you can
dock them to any side of the main Visual C++ window or float them
in the center. Try it.

Searching in Visual C++

Visual C++ provides versatile search tools, both for searching the contents
of open files and for searching files on disk. In addition to commands on
the Edit menu, Visual C++ puts the following search-related controls on
the Standard toolbar (Figure 1-14):

B A Search button (binoculars with a question mark). This button
opens the Search tab in Visual C++ Help. It’s for finding informa-
tion rather than text strings in your files. '

B A Find drop-down list. This is a shortcut for the Find command on
the Edit menu.

B A Find In Files button (binoculars and a folder). This is a powerful
disk-file search tool. See the Appendix for a description and an
example.

2 @@ % ey Q- DEF, l:ilgmaln
Find in files I I-Search in Help
Find any text string

Figure 1-14. The Find controls on the Standard toolbar.

40

T BOTANIRE SV PN

N

1: The Visual C++ Environment

Search and Replace

To do a standard search or replace operation in the current source code
file, select Find or Replace on the Edit menu. Use Find to search the file
for a particular text string. Use Replace to find occurrences of a string and
replace them with another string.

Both Find and Replace allow you to customize the search in various
ways:

You can match only whole words—thin matches thin but not think.

You can require that cases match—back matches back and backed
but not Back or BACK. Otherwise, back matches both Back and
BACK. '

B You can use regular expressions like those used with Unix-style
Grep command. The Find and Replace dialog boxes give extensive
assistance in formulating regular expressions.

You can limit searches to the selected text or search the whole file.

You can use the Find command option, Mark All, to put a book-
mark on each found instance in the file. This lets you examine each
find later by stepping through the bookmarks. I'll discuss book-
marks shortly.

\ T IP Before you give either a Find or Replace command, you can click in a
N\ I text string in your source code file. The string appears in the Find What box
when you open either the Find or Replace dialog box.

'The Find Drop-Down List Control

The Find drop-down list on the Standard toolbar is a handy shortcut to
search the current file. Just click the control, type the string you’d like to
find in the drop-down box, and press the Enter key. Try it. Like the Find
What and Replace With boxes in the Find and Replace dialog boxes, the
drop-down list in the Find control stores all recent searches, even across
Visual C++ sessions. To search for a string you recently searched for, open
the drop-down list box and click the desired string.

41

ES

Getting to Know Visual C++

42

The Find In Files Command

The Find In Files command, found either on the Standard toolbar or on
the Edit menu, is a powerful search facility that can search files on disk
as well as files that are currently open. This command is like the well-
known Grep command available on Unix and MS-DOS-based systems. I
cover the Find In Files command in some detail in the Appendix.

Bookmarking in Source Code Files

Especially in large programs, you’ll often find yourself working with code
in several files and in several locations within a file. It’s sometimes handy
to bookmark these locations so you can find them later.

B To bookmark a spot in a source code file, click the spot you want to
bookmark. Click Bookmarks on the Edit menu. In the Bookmark
dialog box, type a name for the bookmark—make it something
you’ll remember later. Then click Add and close the dialog.

B To find a bookmark later, click Go To on the Edit menu. In the Go
To dialog box, click Bookmark in the Go To What box. Then either
type a bookmark name in the Enter Bookmark Name box, or click
the drop-down list arrow to display all of the bookmarks. Click the
one you want, and then click Go To.

B To remove a bookmark, select it and click Delete in the Bookmark
dialog box.

Bookmarks in code files are similar to Favorites in Help, but the two are
completely separate systems.

Microsoft on the Web and MSDN Online

Visual C++ comes to you on a set of compact discs. However, in addition
to what’s on those discs, you can use the Internet to access a wealth of in-
formation, product news, answers to frequently asked questions (FAQs),
online support, Web information, and free downloads. In addition to the
MSDN library and Visual C++’s Help system, there’s more at Microsoft’s
Web site, reached by way of MSDN Online. Some of it is free, and some

1: The Visual C++ Environment |

B T S U U T T O R N e R T L I TUNPIS S P VP

requires a subscription fee. I'll discuss these online services more in
Chapter 21, but here are your routes to them:

B In Visual C++, click the Microsoft On The Web command on the
Help menu.

B You can access Internet addresses from the URL command on the
Visual C++ Introductory Edition Go menu.

Microsoft On The Web lets you access additional extensive documenta-
tion, including numerous technical articles and a number of books, such
as The Windows Interface Guidelines for Software Design and Inside OLE.
On the Visual C++ Help menu, select Microsoft On The Web and then
MSDN Online. After your browser connects to the MSDN Online website,
follow the link in the left-hand pane to MSDN Library Online. On that
web page, you can explore the MSDN Library contents by expanding
topic headings, or you can search for specific text strings. Also note the
Advanced search button.

Tips and Tricks
To close out this chapter, I'll pass along a few tips for using Visual C++
that you should know about before we really get to work.

B Use the Advanced command on the Edit menu. This command
opens a hierarchical menu with several useful commands. To learn
more about these commands, check the Help index for untabify
command, which opens the topic “How Do I Replace Tabs With
Spaces?” Near the top of that topic, click the link to FAQ. Explore
the links in the topic “Frequently Asked Questions: Text Editor.”

m Use the new IntelliSense options. As in applications like Microsoft
Word and Microsoft Excel, Visual C++ includes IntelliSense, or
autocomplete, technology that completes parameter lists, provides '
type information, helps you select the right class member to invoke,
and more. You can either use IntelliSense in automatic mode—
IntelliSense tries to anticipate where you’re going as you type—or

43

Getting to Know Visual C++

44

T,

AL A TR i 2 HE 5 e s KOS PPRUTL S h kGt SR B ham 06K 0 67 Bk Ak TR SHORET D M th R T

you can control how IntelliSense works for you via the Editor tab in
the Options dialog box (Tools menu). If you choose to turn off the
automatic functioning of IntelliSense, you can still get its function-
ality via the following commands on the Edit menu: List Members,
Type Info, Parameter Info, and Complete Word. Check the Help in-
dex for IntelliSense and choose the “About Automatic Statement
Completion” topic.

Use the Gallery to insert prefabricated components into your pro-
gram. You can add Microsoft ActiveX controls (provided you’ve
selected the right option in the AppWizard tool) or other Visual C++
components. For example, you can add the Microsoft FlexGrid
(MSFlexGrid) ActiveX control and use it in one of your windows
or dialog boxes to manage tabular data. Or you can add system
information to your program’s About dialog box—this option lets
your users examine information about their systems from the
About dialog box, all with minimal coding on your part. I'll illus-
trate this using the Gallery later in the book. Meanwhile, you can
check the Help index for gallery, double-click “Gallery” (capital-
ized), and choose the topic “Reusing Code: Overview.”

Customize your working environment in Visual C++ with your own
macros written in the VBScript macro language. Macros are small
routines that do useful things in the environment; such as automat-
ing complex or repetitive sequences of commands. There are two
ways to create them. First, you can simply record a sequence of
commands. The recorded commands form a named macro that you
can then associate with a menu command, toolbar button, or key
combination. When you give the command, you run the macro.
Second, you can create a macro file (via the New dialog box on the
File menu) and write your own code in the VBScript macro lan-
guage. For information about macros, including recorded macros,
check the Help index for macro, double-click it, and choose the
topic “Overview: Macros.” Several books are available about the
VBScript, or Visual Basic, Scripting Edition, language.

1: The Visual C++ Environment

X €20 SETIRIRE B 7l el b £ VTN 2 el BT TIPS S b TIPS ALY SIS ST oy i BT T e e

Try It Yourself

Here are your first extra-credit exercises. See what you can do.

1. Spend some time trying things in the Visual C++ menus.

I haven'’t covered all of the menus, so it’s well worth your while to see
what they do. Of course, some will require that special conditions exist
before they can be used. By the end of the book, we’ll have used and dis-
cussed nearly all of the menu commands.

2. Take the time to browse the Visual C++ documentation. .

Use the Contents tab in the Help window to become familiar with the
overall layout and contents of the Visual C++ documentation. The more
familiar it is, the easier it will be to locate the answers to your questions.
In parﬁcular, on the Contents tab, go to Welcome To The Visual C++ 6.0
Introductory Edition and check out the topics under Visual C++ Docu-
mentation Map.

What's Next?

Now that you have a pretty good idea about using the features of the Vi-
sual C++ environment, or IDE, it’s time to start programming.

m If you don’t know the C++ language yet, read Chapters 2 through 5.
Those chapters contain numerous C++ programming exercises.

Bm If you do know C++, you might want to skim Chapters 2 through 5,
then dig into Chapter 6 on Windows programming and Chapters 7
and 8 on programming with the MFC library. If you’re already a
Windows veteran, you can skim Chapter 6. Chapter 7 starts the
MFC sequence, which spans the rest of the book.

45

Chapter

C++ Basics

This chapter covers the most commonly used elements of the C++
programming language. Chapter 3 continues the story by covering C++
pointers, references, header files, and scope. In Chapters 4 and 5, we get
into C++ classes and object-oriented programming. You’ll need all of
this when you move on to programming for Microsoft Windows with the
Microsoft Foundation Class Library 6.0 (MFC) in Part 2.

I make an important assumption here: that you have done at least some
programming—preferably in C, but possibly in Basic, Pascal, or some
other procedural programming language. I don’t expect a great deal—just
that you understand a few essential concepts, including the basic flow of
control in a program, looping and branching structures, functions (also
known as procedures or subroutines), parameters, basic data types, input
and output, and compiling a program. If you’re puzzled by any of those
terms, I strongly recommend that you take a beginning programming
course or study a beginning programming text before you jump into
C++, Windows, MFC, and this book. The water really is too deep for non-
swimmers. |

CH++ is a complex programming language, many of whose elements are ar-
cane and abstract. It’s also a big language, designed and intended for pro-
fessional use, and that means I can’t possibly present more than the
basics here. The emphasis in this book is on using Visual C++ for its

47

i

Getting to Know Visual C++

48

primary purpose, which is programming Windows, using MFC. I’ll be as
clear and practical as possible, but I'm sure you’ll want to supplement
this introductory course with deeper study of C++.

MFC is an application framework constructed out of the raw materials of
C++, primarily classes. MFC provides, in essence, a working Windows
application—a framework into which you can fit your own code to define
what this application does. The framework supplies much of the look of
Windows—things such as menus, toolbars, dialog boxes, controls, and
scroll bars. It also supplies mechanisms that make things like saving your
data to a file or printing it relatively easy. The framework’s parts are C++
classes that represent application components, such as the application’s
main window, its dialog boxes, character strings, graphical objects like
rectangles and points, and even the application itself, as objects. So, in
order to use Visual C++ for its primary purpose, you need to know
enough C++ to work within MFC.

We're fortunate that the developers of MFC stuck with a solid core of C++
fundamentals—features that aren’t prone to problems. For the good of all,
they have avoided some of the more challenging C++ features and tech-
niques, such as multiple inheritance. Still, you need a good grasp of the
fundamentals if you're to understand how MFC is written and how it
works, and especially if you’re going to program with MFC. One
resource that many of the MFC developers rely on is the C++ Primer,

3™ edition, by Stanley B. Lippman and Josee Lajoie, (Addison-Wesley
1998), but there are many other suitable books. If you become really seri-
ous about C++, you'll also want The Annotated C++ Reference Manual
(affectionately known as the “ARM”) by Margaret A. Ellis and Bjarne
Stroustrup (Addison-Wesley 1990). Stroustrup is the original architect of
C++ and chairs the American National Standards Institute (ANSI) com-
mittee on C++ language extensions.

The most important thing you’ll get from this book is a good grasp of
C++ classes, along with the object-oriented design and programming
concepts that underlie classes. Along the way, though, we’ll look at a
good many elements of C++ syntax and usage. Where there’s more to the
story than I have room to tell, I'll point you to appropriate topics in the
Visual C++ documentation. And at the end of Chapter 5, I’ll tell you

The T kT U SU e A VR T SR TN s D AT o LR Bat S

2: C++ Ba5|cs

LA S N kBT CUTALE ™ £ XY AR A LTV LY 6L D ST Rk TS SR Ao LI raSTT LT PLITH RE T T T PP Sk F b P

which elements I'm intentionally excluding. You can do your postgradu-
ate work on them later.

Hello in C++

Table 2-1.

Let’s begin traditionally and practically, by writing a small C++ program—a
slightly souped-up version of the infamous “Hello, World!” program
that kicks off most efforts to learn a new programming language. This
will be a bit more complicated than the program First, which we created
in Chapter 1, because Hello is designed to illustrate a number of C++
fundamentals.

Creating the Program

Follow along as I take you on a tour through the basics of C++.

Try it now

First, in Visual C++, take the steps described in the next five sections to
write and save your code.

Creating a new project

Create a new Win32 Console Application named Hello. (The process is
much like the one you followed in Chapter 1.) On the File menu, open
the New dialog box. On the Projects tab, specify the options shown in
Table 2-1. Use the location box to choose a directory to place your applica-
tion in. Then click OK, which opens AppWizard. The AppWizard dialog
title will be Win32 Console Apphcatmn because that is the type of appli-
cation we are developing.

Option Settihg

Project Type Win32 Console Application
Project Name Hello

Create New Workspace Selected

Platforms Win32 checkmarked

Options to set on the Projects tab of the New dialog box.

49

Getting to Know Vlsual C++

50

o 13 4AS,

Figure 2-1.

- gt

et ~ EE Y

B e ¥ S B S

Using AppWizard to specify project options and generate files

1. In AppWizard, click the option A Simple Application. (Refer to Fig-
ure 1-5.)

2. Click Finish to open the New Project Information dialog box. Exam-
ine what the wizard is creating for you, then click OK.

The program’s main function is in the file Hello.cpp. The project is also
set up for precompiled headers in the files Stdafx.h and Stdafx.cpp. (I'll
describe precompiled headers in Chapter 3.)

Opening the Hello.cpp file for editing

1. In the Workspace window, click the FileView tab. Figure 2-1
shows Visual C++ with the Workspace window open and the next
three steps already completed.

2. Click the plus sign (+) in front of Hello Files.
3. Click the plus sign in front of the Source Files folder.
4. Double-click the Hello.cpp file icon to open the file. Figure 2-1

shows Hello.cpp open for editing in the Source Code editor win-
dow at the right of the Workspace window.

«: Hello - Microsoft V|sua| (4+ - [Helln cpp]

1@ ble Eot Yees Insat Plopscl Buid, Tao-s \A(mdow He!p

gcx ’@Eﬂ 3B @iy {{nu{“@@,* Wou«vaw L
' ﬁGIobaIs] Ji (] global members] __H Vet))

- ..u..,m:u. M_;,A,“, . ‘L V. Hello cpp Defines the sutiy ﬁn:unt for
- o " I

b

Workspace ‘Hello' 1 project(s:

= 3 Hello files #include "stdafx.h"

ST | Source Files B
L%] Stfx B int main{int argc. char* argv[]) " Source COde
.CPP . : :
] :_’j Header Files return 0; N EdltOI’ WlndOW

__1 Resource Files

g "1 ReadMe kit L]:J
- ‘CI-sssV«e« ! 11 Fﬂe\/]:wl . .L!_Li

::Lu'

ik P 1\Butd (Debug), FrdmBles 1) FodmPiesZiell
Peady K ST C e Tniedi

i

The file Hello.cpp open for editing.

amts.

2: C++ Basics

e - N B oA T Y hha S ¥ e T L I TS A R b e

Adding code to the Hello.cpp file
Type the boldface lines shown in the following program listing into the

Hello.cpp code—and don’t forget the semicolon (;) at the end of most
lines:

// Hello.cpp : Defines the entry point for the console application.
1/

ffinclude "stdafx.h"
#include <iostream.h>

// Function prototypes
bool SayHello(char* szTo, int nCalc);
void SayGoodbye();

// Constants
fidefine NUMERO_UNO 1
const char* OLD_FRIEND = "old friend, for now. ";

int main(int argc, char#* argv[])

{
char* szCpp = "C++!"; // Declare a variable
// Call a function with a Boolean result.
if(SayHello(szCpp, 2))
{ .
// Call a function with no result.
SayGoodbye();
}
return 0;
}

THITITEETIE i i iriiiineirirgriiilili
// Global function definitions

// SayHello takes two parameters and returns a result.
bool SayHello(char* szTo, int nCalc)

{
// Use an iostream object for output.
cout << "Hello, " << szTo << ™ You're Number " << NUMERO_ UNO
< w \n"'
return (nCalc + (nCalc * 2)) < (24/nCa1c).
}

// SayGoodbye takes no parameters and returns no result.

void SayGoodbye()

{
" cout << "Bye, " << OLD_FRIEND << endl;

} .

51

Getting to Know Visual C++

T ATt X AN B TS A TRY S T2 S T AT B CUadd L ATIadn ¥ ke TR Doy 5o e ST L ATRAAT e oo 38T

Saving your work

Click the Save command on the File menu to save your work.

"IP When you build your program, Visual C++ automatically saves any un-
saved files.

Ty
B\

Building and Running the Program

Next you need to compile or build the program, and run it. I described
compiling and building in Chapter 1. Correct any build errors you en-
counter. Figure 2-2 shows the output of the Hello program just after it
has run.

Figure 2-2, Output of the Hello application.

The C++ in Hello

The Hello application is very simple, but it introduces the following ele-
ments of C++:

C++ comments
Preprocessor directives used to include header files and libraries

C++ constants

C++ keywords

52

LT e PR TTR I A SR AT TR ST P

2: C++ Basics

e

Literals

Statements

Variables and data types

Strings

Allocating memory for variables
Functions and parameters
Function prototypes

Returning a result {from a function
'The C/C++ run-time library

The main function
Expressions and operators

C++ control statements

C++ input/output via iostreams
That’s quite a bit of territory to describe, so let’s get started.

C++ Comments

The Hello program contains several comments. C++ uses two forward
slashes (//) to begin a comment line:

// This is a comment in C++

Everything on the same line after the two slashes is part of the comment.
If you want to extend a comment to more than one line, each line should
begin with the comment slashes. You can also start a comment after a C++
statement, like this: ‘

char* szCpp = "C++!"; // Declare a variable
You can also use C-style comment delimiters:

/* comment
on two lines #*/

Unlike the C++-style comments, these can extend over multiple lines. For
“an excellent guide to commenting styles and thousands of other things

53

Getting to Know Visual C++

ST T s ST 1% 3 FHI OIS 2N Y T Sah a0t e Ko, AT RS TN S AT B P VIS e RIS B8 AT T Ao E)) Aon AT B T RSV o 4 F e 09675 > S

54

any programmer should know, I recommend Steve McConnell, Code
Complete: A Practical Handbook of Software Construction (Microsoft
Press, 1993).

Preprocessor Directives

Following the comment at the beginning of program Hello is an #include
directive. Like the C language, C++ uses a preprocessor. The preprocessor
is a program that runs before the compiler. It looks for preprocessor direc-
tives such as

#include <iostream.h>

fidefine NUMERO_UNO 1

The preprocessor replaces an #include directive with the entire contents
of the file named after the directive. In Hello, two files are included,
Stdafx.h and iostream.h. I'll say more about the contents of iostream.h
shortly. The purpose of including a file is to allow you to use the func-
tions, classes, variables, and other code elements defined there. The
wizard adds an #include directive for Stdafx.h as a convenience—there is
nothing of any importance in that file. It’s provided in case you want to
include any of the MFC code.

"IP | recommend that if you're going to use MFC you use the MFC
N ’ AppWizard (.exe) option in the New dialog box rather than create a con-
sole application, which runs in an MS-DOS window. Some applications do
make sense as console applications, even with MFC, but MFC is primarily for
writing Windows applications, and that's the focus of this book. Leaving
the #include in place for Stdafx.h hurts nothing, though, so we’ll simply
ignore it.

The angle brackets around the filename iostream.h indicate that it’s a file
that comes with your Visual C++ system. The preprocessor knows where
to look for such files. Hello also shows an #include directive that encloses
a filename with double quotes. They tell the preprocessoi‘ that the file is
part of your program. The preprocessor looks first in the current direc-
tory, and then it looks in a path that you can define in Visual C++ using
the Directories tab in the Options dialog box. You open the Options dia-
log box with the Options command on the Tools menu.

2: C++ Basics

R A TIGAZIN I D ¢ AL S PR AT VG2 WL PP RALL P TS ek TR R

Each preprocessor directive always appears on a line by itself, starting at
the far left margin, and unlike a C++ statements, it doesn’t end with a
semicolon. I'll explain #define directives in the next section.

C++ Constants

A #define directive tells the preprocessor to replace a symbol with its
value everywhere in the program file. Here, the symbol is NUMERO_
UNO, and the value is 1:

j#define NUMERO_UNO 1 ‘ //#define symbol value

A #define directive lets you define a meaningful name so that your code
isn’t full of cryptic numbers. This makes your code more readable. You
can also define a constant in one place, so that if you must change it later,
you don’t have to search the whole program for multiple instances of that
constant. ‘

But C++ also provides a better way to declare constants, the const decla-
ration. Here are some examples:

const int NUMERO_UNO

const chars OLD_FRIEND =

"old friend, for now.";

The const approach is usually better than #define because it is type-safe.
C++ checks to ensure that the data with which the symbol is initialized is
consistent with the type declared after the const keyword. You should
normally use const rather than #define unless you're creating a C++ pre-
processor macro, an advanced topic that this book doesn’t cover. (For an
introduction to macros, check the Help index for preprocessor, and
choose the subtopic “macros.”) C/C++ language macros are not to be con-
fused with the VBScript macros that you can write in Visual C++ to auto-
mate common tasks. (Check the Help index for macro.) ’

The const keyword has many uses in C++. Besides declaring constants
with it, you can cause function parameters and function results to be
read-only values, thereby protecting them from unwanted alteration.
I'll give you a few pointers about the const keyword in “Passing a const
Pointer,” in Chapter 3. You can also check the Help index for const and
choose the topic “const” in the Visual C++ Programmer’s Guide.

- 55

Getting to Know Visual C++

56

L Gad!

You’ll encounter other preprocessor directives later in the book. Mean-
while, to learn more about the preprocessor, check the Help index for pre-
processor, and choose the subtopic “overview” and also the subtopic
“directives.”

/N OTE C++ is case sensitive—in other words, the identifier BIG.is not the
< same as Big or big. Capitalizing constant names is just a convention that
many programmers use.

C++ Keywords

C++ reserves a number of identifiers for its own use. For example, for, if,
and int are keywords. You can’t use the keyw