

Chapter 13 WFC Control Development

6. In Project Explorer, expand the project node.

A file with the default name Controll.java is added to your project.

7. To rename the control source file to GroupCheck.java, right-click the file name in
Project Explorer, and then click Rename.

Note Renaming this file does not rename the associated class in the source code
and vice versa. You must manually change all instances of the old name. (You can
create an empty project and then add a control class to the project. You can then
name the control before it is created.)

The next step is to design the layout of your control.

Designing the Layout of the Control
Use the Forms Designer to design the layout of a composite control. This process is
identical to designing the layout of a form. You can add controls from the Toolbox, move
and size controls on the surface of the UserControl, specify properties, and create event
handlers.

This scenario demonstrates how to create a composite control that contains a GroupBox
control and a CheckBox control in the upper-left comer of the GroupBox control. When
the composite control is placed on a form, you can add controls within the GroupBox
portion of the control. When the CheckBox control is unchecked, the controls within the
composite control are disabled; when the CheckBox control is checked, the controls within
the composite control are enabled.

To add controls to the UserControl

1. To open your control in the Forms Designer, double-click GroupCheck.java in
Project Explorer.

2. In the Toolbox, select the WFC Controls tab.

If the Toolbox is not displayed, click Toolbox on the View menu.

3. To add a GroupBox control to the UserControl, click the GroupBox control in the
Toolbox, and then click the UserControl design surface.

A GroupBox control is added with the default name of groupBoxl.

4. To add a CheckBox control to the UserControl, click the CheckBox control in the
Toolbox, and then drag the control over the upper-left comer of the Group13ox control
you added previously.

A CheckBox control is added with the default name of checkBox!. Ensure that the
CheckBox control is contained within the GroupBox control.

To save screen space, it is important that you resize the UserControl. Because the
UserControl can be resized, it is also important for the controls within the UserControl
to resize when the dimensions of the U serControl change.

Programmer's Guide 243

Part 2 Programming with Visual J++

To set the size of the controls

1. Resize the UserControl's design surface around the GroupBox and CheckBox controls
to eliminate extra space. (To resize the design surface, select it and drag the resize
handles.)

The size of the U serControl' s design surface is the default size of the control when it is
added to a form.

2. To allow the GroupBox control to be resized when the UserControl is resized, select
the GroupBox control in the Forms Designer and set the anchor property to Top, Left,
Right, Bottom.

The GroupBox control is now anchored to the borders of the UserControl.

3. To provide the user of the GroupCheck control with a correct display, modify the
properties of the GroupBox and CheckBox controls that were added to the
UserControl.

To set the properties of the controls

1. To remove the default caption of the GroupBox control, in the Properties window,
select the tcxt property and clear its contents.

2. To set the default state of the CheckBox control to be checked, select the control in the
Forms Designer, and set the chccl{cd property in the Properties window to true.

The next step is to add a property to your control.

Adding a Custom Property with the
WFC Component Builder

Use the WFC Component Builder to add and delete custom properties from your controls.
By using the WFC Component Builder, you can get a head start in defining properties for
your controls.

To add a property using the WFC Component Builder

1. In Project Explorer, right-click your control's source file, and then click View Codc.

The Text editor opens and displays the source for your control.

2. In Class Outline, right-click your control's class name and click WFC Componcnt
Builder. (To display Class Outline, on the Vicw menu, point to Other Windows,
and then click Document Outlinc.)

3. In the Properties section of the WFC Component Builder, click Add.

4. In the Add WFC Property dialog box, define the checked property for the
GroupCheck control according to the following table, and then click OK.

244 Programmer's Guide

Chapter 13 WFC Control Development

Field Value

Name checked

Data Type Boolean

Category Behavior

Description

Read-only Property

Declare Member Variable

Determines whether the control's check box is checked.

unchecked

unchecked

5. In the WFC Component Builder, click OK.

The WFC Component Builder adds the getChecked and setChecked methods to the
code and a property definition to the control's ClassInfo class.

The next step is to add code to the getChecked and setChecked methods.

Adding Code to Property Methods
The WFC Component Builder creates the methods and fields needed to define and
implement your custom properties. Typically, you modify this code to provide your
own implementation.

To add code to your property methods

1. For the getChecked method to return the checked state of the CheckBox control,
replace the code that was added by the WFC Component Builder with the following
line of code:

return checkBoxl.getChecked():

2. For the setChecked method to set the checked state of the CheckBox control, as well
as call other methods that this scenario needs, replace the code that was added by the
WFC Component Builder with the following lines of code:

checkBoxl.setChecked(value):
onCheckedChanged(Event.EMPTY):
enablcControls(this. value):

This code sets the checked state of the CheckBox control based on the value that is
passed to the property's method. The code also calls the onCheckedChangcd method
and makes a call to the enabl eControl 5 method. The call to the onCheckChanged
method triggers a custom event, checkedChanged, which will be added later in this
scenario.

Programmer's Guide 245

Part 2 Programming with Visual J++

The Event. EMPTY value passed to onCheckedChanged defines an empty Event object
to be assigned to the checkedChanged event. The call to the enabl eControl s method
is used to enable or disable controls that are added to the GroupCheck control. This
method will also be added later in this scenario.

The next step is to add an event to your control.

Adding Events with the WFC Component Builder
Use the WFC Component Builder to add and delete custom events from your controls.
You can then avoid manually defining events in your control's ClassInfo class.

To add an event using the WFC Component Builder

1. In Class Outline, right-click your control's class name, and then click WFC
Component Builder. (To display Class Outline, on the View menu, point to
Other Windows and then click Document Outline.)

2. In the Events section of the WFC Component Builder, click Add.

3. In the Add WFC Event dialog box, define the checked Changed event for the
GroupCheck control according to the following table, and then click OK.

Field

Name

Type

Category

Description

Value

checked Changed

Event

Action

Occurs when the control's check box check state is changed.

4. In the WFC Component Builder, click OK.

The WFC Component Builder adds the addOnCheckedChangcd.
removeOnCheckedChanged, and onCheckedChanged methods to the code and adds
an event definition in the control's ClassInfo class. The WFC Component Builder
also adds an instance of the EventHandler delegate, which is lIsed by the event.

The next step is to override inherited methods.

246 Programmer's Guide

Chapter 13 WFC Control Development

Overriding the UserControl's Methods
Use Class Outline to easily override methods in your control's inherited classes.
The overridden method code that is created by Class Outline provides a head start in
implementing the method in your control's class. You can use the comments provided
by Class Outline in your overridden method code to quickly determine where to add
your own code.

To override a method using Class Outline

1. In Class Outline, expand the class node.

2. Expand the Inherited members node, and right-click the method name that you want
to override.

If the method can be overridden, the shortcut menu displays Override Method.

3. Click Override Method.

Class Outline adds a method definition for the specified method to your source code.

4. For the GroupCheck control, create overridden methods for the add, getControl,
getControl Count, getControl 5, remove, and setText methods.

The next step is to add code to the overridden methods.

Adding Code to Overridden Methods
After you have created overridden methods using Class Outline, you provide your
implementation code to the method definitions. Depending on how you implement the
overridden method, you can either retain or remove the call to the superclass version of
the method.

Adding Code to the add Method
To add controls to the GroupCheck control's GroupBox control, you add codl.: to the
GroupCheck's add method that calls the GroupBox's add method. This causes the
GroupBox control, instead of the GroupCheck control, to parent the control being added.

Programmer's Guide 247

Part 2 Programming with Visual J++

To add code to the add method

1. Before adding code to the add method, you add a private member variable to the
GroupCheck class to determine whether controls can be added. Add the following line
of code to the GroupCheck class:

private boolean m_bReady = false;

2. Inside the definition of the add method, add the following code:

if (m_bReady){

}

control. setEnabl ed (checkBoxl. getChecked ()) ;
groupBoxl.add(control);

else
super.add(control) ;

This code determines whether the m_bReady member variable is set to true. This check
is made to prevent the control's GroupBox control from being added to itself. If the
value of m_bReady is true, the code calls the setEnabl ed method of the control passed
as a parameter to the method. The setEnabl ed method is passed the checked state of
the GroupCheck control's CheckBox control. Because controls can be added to the
GroupChcck control when it is unchecked, it is important that controls be enabled or
disabled properly when added.

The code then ca]]s the GroupBox control's add method and passes the control
parameter to have the control added to the GroupBox control instead of the
User-Control. If the m_bReady member variable is set to false, a call is made to
the superc1ass version of the add method with the control passed as a parameter.

Adding Code to Control-Related Methods
So that the user can access the controls within the GroupBox control, you provide code in
the getControl, getControl Count, and getControl s methods that calls the GroupBox
control's implementation of these methods.

To add code to control-related methods

1. Inside the definition of the getControl method, type the following code to replace the
code that was added by Class Outline:

return groupBoxl.getControl(index);

2. Inside the definition of the getCont ro 1 Count method, type the following code to
replace the code that was added by Class Outline:

return groupBoxl.getControlCount();

3. Inside the definition of the getControl s method, type the following code to replace
the code that was added by Class Outline:

return groupBoxl.getControls();

248 Programmer's Guide

Chapter 13 WFC Control Development

Adding Code to the remove Method
So that controls can be deleted from the GroupCheck control, you provide code in the remove
method for the GroupCheck control that calls the GroupBox control's remove method.

To add code to the remove method

• Inside the definition of the remove method, type the following code to replace the code
that was added by Class Outline:

if(m_bReady) {
groupBoxl.remove(c):

}

else {
super.remove(c):

}

This code determines whether the m_bReady variable is true. If it is, the code calls the
GroupBox control's version of the remove method with the control that is passed to the
method as a parameter. The check for m_bReady being true is performed to prevent the
CheckBox or GroupBox controls from being removed. If m_bReady is false, the code
calls the superclass version of the method to ensure that the control being removed is
handled properly.

Adding Code to the setText Method
The GroupBox control does not provide a way to autosize the text portion of the control
to the amount of text being displayed. For the GroupCheck control to display its text
properly, override the setText method to determine the correct width of the control based
on the size of the text to display.

To add code to the setText method

o Inside the definition of the setText method, type the following code to replace the
code that \Vas added by Class Outline:

Graphics g - checkBoxl.createGraphics():
checkBoxl.setWidth(g.getTextSize(value).x + 20):
g.dispose():
checkBoxl.setText(value):
super.setText(value):

This code uses the Graphics class methods to determine the size of the text that is being
specified. When the size of the text is determined, it is increased by a value of 20 to
compensate for the size of the check box and the space between the check box and the
text portion of the CheckBox control. The code then calls the di spose method of the
Graphics class to free any resources that were allocated, sets the text property of the
CheckBox control, and calls the superclass version of the setText method.

The next step is to add a new method to the control.

Programmer's Guidl! 249

Part 2 Programming with Visual J++

Adding Methods to the Control
When you are developing a control, you must often provide methods to perform actions
in your control. For the GroupCheck control, you add a method that disables or enables
the controls contained within the GroupBox control based on the checked state of the
CheckBox control. The method is called from the setChecked method.

To add a method to a control

• Add the following method definition to the GroupCheck control's source code:

public void enableControls(Control start, boolean enable)

}

for(int i = 0; i < start.getControlCount(); i++) {

}

Control c - start.getControl(i);
if(c -= groupBox! I I c -= checkBox!) {

continue;
}

c.setEnabled(enable);
enableControls (c, enable);

The enabl eControl s method accepts a control and a Boolean value that determines
whether the contained controls should be enabled or disabled. When this method
is called by the setChecked method, it is passed the current instance of the
GroupCheck control.

The enabl eControl s method begins by looping through all the controls that are
contained in the s ta rt control parameter. Within the for loop, the code obtains a
contained control using the getControl method with the for loop's current index.
If the control is not the GroupCheck control's GroupBox or CheckBox controls,
the code enables or disables the specified control based on the value of the enable
parameter. Any controls that are contained within this control arc then enabled or
disabled through a recursive call to enabl eControl s.

The next step is to add code to the constructor.

250 Programmer's Guide

Chapter 13 WFC Control Development

Adding Code to the Constructor
To provide initial settings for your control, you add code to the constructor. For the
GroupCheck control, you add code that sets the control properly when it is added
to a form.

To add code to the constructor

• Replace the code in the constructor for the GroupCheck control with the following
lines of code:

super() :

initForm():

setStyle(this.STYLE_ACCEPTSCHILDREN, true):
m_bReady = true:

This code sets the style of the GroupCheck control to one that accepts child
controls. The code also sets the private member variable m_bReady to true so that
the GroupCheck control's add method knows that the control is finished initializing
and can accept controls to be added to the GroupBox control.

The next step is to build the control.

Building the Control
To use your control, you must build it. When the control has been built, you can then
add it to the Toolbox.

To build the control

1. On the Build menu, click Build.

Any compilation errors or messages appear in the Task List. (Double-clicking an error
in the Task List moves the insertion point in the Text editor to the code that caused
the error.)

2. Correct the errors and rebuild your control.

The final step is to debug the control.

Programmer's Guide 251

Part 2 Programming with Visual J++

Debugging the Control
After you have built your control, you test and debug the control to ensure that it operates
as you designed it. To do this, add your control to the Toolbox, add a fonn to the project,
and then add the control to the fonn. For the GroupCheck scenario, you also add controls
to the GroupCheck control, add an event handler for the control's custom events, and then
build and run the control.

Adding the Control to the Toolbox
After you have built your control, you add it to the Toolbox in order to use it.

To add the control to the Toolbox

1. Right-click the ToolBox, and click Customize Toolbox.

2. Click the WFC Controls tab, and select the name of your control.

For this scenario, click the GroupCheck control.

3. Click OK.

Adding a Form to the Project
To test and debug your control, you add a fonn to your project.

To add a form to your project

1. In Project Explorer, right-click the name of your project, point to Add, and then click
Add Form.

2. Click thc Form icon.

3. In the Name box, type a name for the form.

Ensure that the name of the form is not GroupCheck so that the form's source file
does not conflict with the namc of your control.

4. Click Open.

A form is added to your project with the name that you specified and is opened in the
Fonns Designer.

252 Programmer's Guide

Chapter 13 WFC Control Development

Adding the Control to the Form
To test the control, you add the control to a form.

To add your control to a form

1. Select the form.

2. In the Toolbox, double-click your control.

The control is added to the center of the form.

Adding Controls to the GroupCheck Control
To ensure that the GroupCheck control is properly parenting controls that are added to it,
you add other WFC controls to the GroupCheck control.

To add other controls to the GroupCheck control

1. On the form, select the GroupCheck control.

2. In the Toolbox, double-click a control to add the specified control to the center of the
GroupCheck control.

Creating Event Handlers
The GroupCheck control contains a custom event called checkedChanged. This event is
triggered when the CheckBox control that is contained in the GroupCheck control is either
checked or unchecked. To determine whether the event is being triggered properly, you
add an event handler for the checked Changed event to your form.

To add an event handler for the checkedChange event

1. In the Properties window, click the Events toolbar button.

2. To display the events of the GroupCheck control, select either the GroupCheck control
on the form or the name of the control in the Properties window.

3. Double-click the checkedChangcd event to create an event handler with the default
method name.

The Text editor opens to an empty event handler.

To determine whether the checkedChanged event is being triggered, add code to the event
handler for the form that displays a message box each time the event is triggered.

To add code for the event handler

• Inside the definition for the event handler, add the following line of code:

MessageBox.show("The checkedChanged event was triggered."):

Programmer's Guide 253

Part 2 Programming with Visual J++

Building and Testing the Control
After you have added the control to a form, added controls to the GroupCheck control,
and added an event handler for the control's checkedChanged event, you build and run
the project.

To build and run the form

1. On the Build menu, click Build. (If you receive any compilation errors or messages,
correct the errors and rebuild your project.)

2. To run the form, click Start on the Debug menu.

Because you are running your project for the first time and because your project
contains two .java files, the Project Properties dialog box is displayed.

3. On the Launch tab, select the Default option button.

4. Specify that Form! should load when the project runs, and click OK.

For more information about project properties, see "Setting Project Options" in
Chapter 1, "Creating Projects."

While the project is running, you can manipulate the control to determine whether it
operates properly.

To test the control at run time

• Click the check box in the GroupCheck control.

A message box is displayed notifying you that the checkedChanged event was
triggered. This event occurs each time the check box's checked state changes.
The controls contained in the GroupCheck control are either enabled or disabled
depending on the checked state of the control.

For information on exporting a WFC control as an ActiveX control see "Building
ActiveX Controls" in Chapter 16 "Building and Importing ActivcX Controls."

254 Programmer's Guide

C HAP T E R 1 4

Programming
Dynamic HTML in Java

With Microsoft Internet Explorer 4.0, Microsoft introduced its implementation of a
revolutionary HTML object model that content providers can use to effectively manipulate
HTML properties on the fly. Until now, this object model has primarily been accessed
using script technology. The com.ms.wfc.html package of the Windows Foundation
Classes for Java (WFC) framework now lets you access the power of Dynamic HTML
(DHTML) on a Web page directly from a Java class.

The following subjects are covered in this section:

• Introduction to the com.ms.wfc.html Package

• U sing the initForm Method

• Understanding the DhElement Class

• Working with Containers

• Handling Events

• U sing Dynamic Styles

• Working with Dynamic Tables

• Using the com.ms.wfc.html Package on the Server

Programmer's Guide 255

Part 2 Programming with Visual J++

Quick Start
To help you get up and running using the com.ms.wfc.htmI package to implement Java and
DHTML, here are the basic steps you can perform to create a simple DHTML project and
add your own dynamic behavior to it. While this is by no means the entire story, it sets the
stage for the rest of this subject and for the samples. There are five basic steps when using
the com.ms. wfc.htmI package:

1. Create a new project by choosing New Project from the File menu and selecting
Code-behind HTML from the Web Pages category.

This generates a project containing a class called Class!, which extends DhDocument.
This class represents the dynamic HTML document. You add initialization code to its
initForm method to control the document's contents and behavior.

You can now extend the behavior of your document by doing the following:

2. Create new elements (such as DhButton) or create element objects that represent
existing elements in the document (on the HTML page).

3. Hook event handlers into some of your elements.

4. In your Classl.initForm method, add the new elements using the setNewElements
method, and bind any existing clements using the setBoundElements method.

5. Write the event handler methods you hooked up in step 3.

Your document class will look something like this:

import com.ms.wfc.html .*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;

public class Classl extends DhDocument
{

public Classl()
{

initForm();
}

II Step 2: create objects to represent a new elements_
DhButton newElem = new DhButton();
II _ as well as elements that already exist in the HTML page.
DhText existElem = new DhText();

private void initForm(
{

II Set properties to existing elements and newly added elements.
newElem.setText("hello world");
existElem.setBackColor(Color.BLUE);

256 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

II Step 3: hook up an event handler to your object
newElem.addOnClick(new EventHandler(this.onClickButton»;

II Step 2: create an object to represent an existing element
existElem ~ new DhText();

II Step 4: call setNewElements with an array of new elements
setNewElements(new Component[] { newElem });

II Step 4: call bindNewElements with an array of existing elements
setBoundElements(new DhElement[]{ eXistElem.setBindID("Sample") });

II Step 5: implement your event handler
private void onClickButton(Object sender. Event e) {

existElem.setText("Hello. world");

The Java portion of the exercise is complete. The other part is the HTML code. The
following example shows a simplified version of the HTML document generated by the
Code-behind HTML project template. There are two HTML elements that connect this
HTML to the code in your project:

o The <OBJECT> tag loads the com.ms.wfc.html.DhModule class, which is instantiated
by the Virtual Machine for Java.

o The <OBJECT> tag has a parameter called CODECLASS. The value of this parameter
is the name of the user class that extends DhDocument (for example, Class!).

<HTML>
<BODY>
<OBJECT classid="java:com.ms.wfc.html .DhModule"

height=0 width=0 ... VIEWASTEXT>
<PARAM NAME-CABBASE VALUE=MyProject>
<PARAM NAME-CODECLASS VALUE-Class!>
<IOBJECT>

<!-- Insert your own HTML here --)

</BODY>
</HTML>

Open Internet Explorer 4.0, point it at your HTML file, and you can see your
application run.

Programmer's Guide 257

Part 2 Programming with Visual J++

U sing the initForm Method
The initForm method plays a central role in the programming model for all user interface
programming in WFC. When using the Visual J++ Forms Designer for Win32-based
applications, initForm is found in the Form-derived class that represents your main form.
In the com.ms.wfc.html package, this method is found in your DhDocument-derived class
(for example, Class! in the code-behind HTML template provided by Visual J++) and is
called from the constructor of the class.

You should use the initForm method to initialize the Java components that represent
the HTML elements you want to access and code to. As with the initForm method in
Form-derived classes, there are certain restrictions when calling WFC methods from
initForm in DhDocument. As a rule, you should call only methods in initForm that set
properties. Moreover, you should bind only to elements on the HTML page using the
setBoundElements method.

Specifically, this means that calling any method that resets or removes a property or
element is strictly not supported in initForm. This also applies to any methods that attempt
to locate clements on the existing HTML page (such as DhDocument.findElement).

The reason for this is that the document on the existing HTML page is not merged with
your DhDocument-derived class until the DhDocument.onDocumentLoad method is
called. You can usc the onDocumentLoad method to retrieve properties and manipulate
or locate elemcnts in the existing HTML document. For information on using the initForm
and onDocumcntLoad methods on server-side classes, see "Using the com.ms.wfc.html
Package on a Server," later in this chapter.

Understanding the DhElement Class
Elements are objects derived from DhElement, which is the supcrclass of all user interface
elements in the com.ms.wfc.html package. There is a certain consistency you can count on
when using any object derived from DhElement:

• Every element has an empty constructor. Therefore, you can instantiate any element
with a new statement and then set properties, hook event handlcrs, and call methods
consistent! y.

• Elements are modeless. Setting properties or calling methods always works in any
order and is not conditional on some external state or circumstance.

• Every container has an add method that takes the type-safe clement that is appropriate
for it.

• In the browser environment, an element does not become visible to the end user
until you add it (or the topmost container element in its parentage) to the document.
However, this is merely an artifact and not part of the programming model. You don't
have to change the way you program to elements because they work the same way
whether they are visible or not.

258 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

If an element is already on the page when the DhDocument.onDocumentLoad method
is called, you can call the document's findElement method and start programming to that
element. You can also call setBoundElements from initForm to merge known elements
on the page with elements in your DhDocument-derived class. (The findElement method
has better performance but specifically requires that onDocumentLoad is called first.)

The searching routine used by findElement and setBoundElements assumes that
the element you want to bind to has an ID attribute set to a particular name. Using
findElement, you can also enumerate all the elements in the document until you find
the one you are interested in.

Working with Containers
Containers are elements that can hold other elements. A basic example is the <DIV>
element, which can contain any other HTML item. More complex examples include table
cells and, of course, the document itself. In most cases, containers can be arbitrarily nested,
such as having a table inside a cell of another table.

Containers are like other elements. They are created with a new statement, and many can
be positioned and sized on the page. You can position and size elements within a container
and set up their z-order relationships. One of the powerful features of DHTML is that you
can then change any of these attributes in your code.

Of course, you can also allow elements within a container to be positioned using the
normal HTML layout rules. Call either the setLocation or setBounds method of an element
to set its absolute position, or call resetLocation to let the HTML layout engine position it
(immediately after the last element in the HTML flow layout).

Once you have created a container element, you can add elements to it using either the
setNewElements or add method. This mechanism follows the regular pattern of parent­
child relationships: the elements, which can also be other containers, added to the container
become its children. None is actually attached to the document until the topmost container,
which is not a part of any other container, is added to the document.

You can position and size a container using its setBounds method. For example, to create
a container, type:

DhForm myForm - new DhForm();

You can then set various attributes on the container, including the ToolTip that is shown
when the mouse hovers over the panel:

myForm.setToolTip("This text appears when the mouse hovers");
myForm.setFont("Arial". 10);
myForm.setBackColor(Color.RED);
myForm.setBounds(5. 5. 100. 100);

Programmer's Guide 259

Part 2 Programming with Visual J++

Finally, you can add the container you've just created to the document in your
DhDocument-derived class (such as Classl.java):

this.add(myForm);

When adding elements to the container, you can specify where they go in the z-order using
one of a set of constants provided by the com.ms. wfc.html package. Elements are added
with a default size and position. You can call setBounds on the elements to specify a
different size.

DhForm myOverLay1 = new DhForm();
DhForm myOverLay2 - new DhForm();
myOverLay1.setBackColor(Color.BLACK);
myOverLay1.setBounds(10, 10, 50, 50);
myOverLay2.setBackColor(Color.BLUE);
myOverLay2.setBounds(20,25, 50. 50);
myForm.add(myOverLay1. null, DhlnsertOptions.BEGINNING);
II Black on top of blue
myForm.add(myOverLay2, myOverLay1, DhlnsertOptions.BEFORE);
II Blue on top of black (uncomment below and comment above)
II myForm.add(myOverLay2, myOverLay1, DhlnsertOptions.AFTER);

You can also usc the setZlndex method after the elements are added to move the elements
around in the z-order. For example, the following syntax does not explicitly set a z-order
on the added clement but uses the default z-order (that is, on top of all other elements):

myForm.add(myText);

You can set this explicitly as follows, where num is an integer representing the relative
z-order of the clement within its container:

myText.setZlndex(num);

The element with the lowest number is at the bottom of the z-order (that is, everything
else covers it). The element with the highest number is at the top (that is, it covers
everything else).

260 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

Handling Events
Many elements in a DHTML program can trigger events. The com.ms.wfc.html package uses
the same event model as the com.ms.wfc.ui package. If you are familiar with that mechanism,
you'll find little difference between the two. A button is a good example. Suppose you want
to handle the event that occurs when a user clicks a button on a page. Here's how:

public class Class! extends DhDocument
(

ClassIC) (initForm();}
DhButton myButton = new DhButton();
private void initForm()
(

add(myButton);
myButton.addOnClick(new EventHandler(this.myButtonClick»;

}

void myButtonClick(Object sender, Event e)
(

«DhButton) sender).setText("I've been clicked");
}

In this code, whenever the button triggers the onClick event (that is, when it is clicked), the
myButtonClick event handler is called. The code inside the myButtonClick event handler
does very little in this example. It just sets the caption on the button to new text.

Most events propagate all the way up a containment tree; this means that the click event
is seen by the button's container and by the button itself. Although typically programmers
handle events in the container closest to the event, this event bubbling model can be useful
in special cases. It provides the prograllllller with the flexibility to decide the best place to
code the event handlers.

Many different events can be triggered hy clements in DHTML, and you can catch them
all in the same way. For example, to determine when the mouse is over a button, try the
following code, which catches mouseEntcr and mouseLeave events for the button:

public class Class! extends DhDocument
(

DhButton button = new DhButton():
private void initForm()
(

}

button.addOnMouseEnter(new MouseEventHandler(this.buttonEnter»:
button.addOnMouseLeave(new ~touseEventHandler(this.buttonExit):
setNewElements(new DhElement[] { button});

void buttonEnter(Object sender, MouseEvent e)
(

button.setText("I can feel that mouse");
}

Programmer's Guide 261

Part 2 Programming with Visual J++

}

void buttonExit(Object sender, MouseEvent e)
{

button.setText("button");
}

All events that can be triggered (and caught) are defined in the event classes, based on
com.ms. wfc.core.Event.

Using Dynamic Styles
You can think of a Style object as a freestanding collection of properties. The term style is
borrowed from the word processing world where the editing of a style sheet is independent
of the documents to which you apply it. The same is true for using and applying Style
objects in this library.

As an example, your boss tells you that the new corporate color is red and you need to
change the color of elements in your HTML pages. You can, of course, set properties
directly on elements, which is the traditional model for aUI framework programming:

II old way of doing things ...
DhText tl - new DhText();
DhText t2 - new DhText();
tl.setColor(Color.RED);
t1.setFont("arial");
t2.setColor(Color.RED);
t2.setFont("arial");

You could, of course, use derivation to save yourself time. For example, you might
consider improving this with the following code:

II old way of doing things a little better ...
public class MyText extends DhText
{

public MyText(}
{

setColor(Color.RED);
setFont("arial");

This works fine until you decide you also want those settings for buttons, labels, tabs,
documents, and so on. And you'll find yourself with even more work when you apply
these to another part of your program or to another program.

The answer to this problem is a Style object. While using this library, you can instantiate
a Style object and set its properties at any point:

262 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

II STEP 1: Create style objects.

DhStyle myStyle - new DhStyle();

II STEP 2: Set properties on style objects

myStyle.setColor(Color.RED);
myStyle.setFont("arial");

Then at any other time in the code, you can apply that style to any number of elements:

DhText t1 = new DhText();
DhText t2 - new DhText();

II STEP 3: Apply styles using the setStyle method.

t1.setStyle(myStyle);
t2.setStyle(myStyle);

When it's time to keep up with the dynamic nature of high-level policy setting at your
corporation, the following line sets all instances of all elements with myStyle set on them
to change color:

myStyle.setColor(Color.BLUE);

Here is the really powerful part: all this is available during run time. Every time you make
a change to the Style object, the DHTML run time dynamically reaches back and updates
all elements to which that Style object is applied.

For more information, see the next section, "Understanding Style Inheritance."

Understanding Style Inheritance
The HTML rendering engine can determine the style to use if conflicting styles are
set on an element. For example, if an clement has the color property set directly on it
(DhElement.setColor), the color defined by the color property is used. However, if an
element has a Style object on it (DhElement.setStyle) and that object has the color property
set, that value is used. Failing to find a color or a style, the same process is used with the
element's container (DhElement.getParent), and failing that, with the container of that
container and so on.

The process continues up to the document. If the document doesn't have a color property
set on it, the environment (either browser settings or some other environment settings)
determines the color to use.

This process is called cascading styles because the properties cascade down the
containment hierarchy. The underlying mechanism for DhStyle objects is called Cascading
Style Sheets (CSS) by the W3C.

Programmer's Guide 263

Part 2 Programming with Visual J++

Working with Dynamic Tables
Working with tables is actually no different from any other part of the library; the
principles and programming model apply to tables as they do to any other type of element.
A table, however, is such a powerful and popular element that it is worth discussing.

To use a table, you create a DhTable object, add DhRow objects to that, and then add
DhCell objects to the rows. The following are the rules for table usage:

• You can add only DhRow objects to a DhTable object.

• You can add only DhCell objects to a DhRow object.

• You can add any kind of element to a DhCell object.

While this may seem restrictive, you can easily create a simple container that emulates a
gridbag with the following code:

import com.ms.wfc.html .*;

public class GridBag extends DhTable
{

int cols;
i nt currCol;
DhRow currRow;

public GridBag(int cols)
(

this.cols - cols;
this.currCol - cols;

public void add(DhElement e)
{

}

if(++this.currCol)= cols
{

this.currRow = new DhRow();
super.add(currRow);
this.currCol = 0;

DhCell c .. new DhCell();
c.add(e);
this.currRow.add(c);

264 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

To use this GridBag class, you just set the number of rows and columns (they must be
the same with this implementation) and then assign elements to cells. The following is
an example of the code in your DhDocument-derived class that uses this GridBag:

protected void initForm()
{

GridBag myTable ~ new GridBag(5):
for (int i - 0: i < 25: ++i){

myTable.add(new DhText("" + i»:
setNewElements(new DhElement[] { myTable }):
}

One of the most powerful uses of the library is the combination of tables and Style objects.
This combination enables you to create custom report generators that are powerful,
professional looking, and easy to code.

Data Binding to Tables
Tables also have data binding capabilities. Using a com.ms.wfc.data.ui.DataSource object,
you can bind data to your table, as shown in the following sample code.

import com.ms.wfc.data.*;
import com.ms.wfc.data.ui .*:

void private initForm(){

DhTable dataTable ~ new DhTable();
dataTable.setBorder(1):
dataTable.setAutoHeader(true):

DataSource dataSource = new DataSource();
dataSource.setConnectionString("DSN=Northwind"):
dataSource.setCommandText("SELECT * FROM Products"):

Programmer's Guide 265

Part 2 Programming with Visual J++

}

II if you would like to use the table on the server.
II call dataSource.getRecordset() to force the DataSource
II to synchronously create the recordset; otherwise.
II call dataSource.begin(). and the table will be populated
II when the recordset is ready. asynchronously.
if (! getServerMode()){

dataSource.begin();
dataTable.setDataSource(dataSource);

} else
dataTable.setDataSource(dataSource.getRecordset());

setNewElements(new DhElement[] { dataTable });

If you know the format of the data that is going to be returned, you can also specify
a template (repeater) row that the table will use to format the data that is returned.
The steps to do this are as follows:

1. Create your DhTable element:

DhTable dataTable = new DhTable();

2. Create your template row and set it into the table; you can also optionally create a
header row. For each item in the template cell that you would like to receive data
from the recordset, create a DataBinding for it.

DhRow repeaterRow - new DhRow();
RepeaterRow.setBackColor(Color.LIGHTGRAY);
RepeaterRow.setForeColor(Color.BLACK);
DataBinding[] bindings - new DataBinding[3];
DhCell cell - new DhCell();
DataBi ndi ng[0] - new DataBi ndi ng(cell. "text". "ProductID");
repeaterRow.add(cell);
cell = new DhCell();.
DataBinding[1] = new DataBinding(cell. "text". "ProductName");
cell = new DhCell();.
cell.setForeColor(Color.RED);
cell. add(new DhText("$"));

DhText price - new DhText();
price.setFont(Font.ANSI_FIXED);
DataBinding[2] = new DataBinding(price. "text". "UnitPrice");
cell.add(price);
repeaterRow. add (cell);

II set up the table repeater row and bindings
table.setRepeaterRow(repeaterRow);
table.setDataBindings(bindings);

266 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

II create and set the header row
DhRow headerRow = new DhRow();
headerRow. add(new DhCell ("ProductID"));
headerRow.add(new DhCell("Product Name"));
headerRow.add(new DhCell("Unit Price"));
table.setHeaderRow(headerRow);

3. Create a DataSource object, and set it to retrieve data in the format you expect.

DataSource ds = new DataSource();
ds.setConnectionString("DSN=Northwind");
ds.setCommandText("SELECT ProductID. ProductName.

UnitPrice FROM Products WHERE UnitPrice < 10");

4. Set the DataSource into the DhTable object.

table.setDataSource(ds);
ds.begin();

5. Add the DhTable to the document.

setNewElements(new DhElement[] { table});
II alternately: add(table);

Your table is now populated with the data from the recordset and formatted like the
template row.

Using the com.ms. wfc.htrnl
Package on a Server

The com.ms. wfc.html package can also be used on the server to provide a programmatic
model for generating HTML and sending it to the client page. Unlike the client-side Dynamic
HTML model, the server-side model is static because the server Java class has no interaction
with the client document. Instead, the server composes HTML elements and sends them off
sequentially to the client as they are encountered in the HTML template if one is specified.

Although not fully dynamic, this is still a powerful server feature. For example, you
can apply DhStyle attributes to all parts of some template HTML code and then generate
vastly different looking pages by just changing the DhStyle attributes. You do not have
to programmatically generate all the individual style changes. Another advantage is that
you can use the same model for generating dynamic HTML for both client and server
applications, thereby making the HTML generation easier to learn and remember.

There are currently two modes of generating HTML on the server. Both use Active Server
Pages (ASP) scripting and a class based on the com.ms. wfc.html classes. The first is the
"bare-bones" approach that relies more on the ASP script. The second uses a class derived
from DhDocument and is very similar to the model that you use on the client because it
places more control inside the class than in the script.

Programmer's Guide 267

Part 2 Programming with Visual J++

ASP-Based Approach
This approach uses two ASP methods on the server page: getObject and Response.Write.
The getObject method is used to instantiate a class based on the WFC com.ms.wfc.html
classes; the Response.Write method writes the generated HTML string to the client. The
com.ms.wfc.html.DhElement class provides a getHTML method that creates the HTML
string; this string is then sent to the client page using the ASP Response.Write method.

For example, you have a class called MyServer that extends DhForm and incorporates
some HTML elements. In your ASP script, you first call getObject("java:MyServer") to
create a DHTML object. You can then perform whatever actions you want on the object
from your ASP script, such as setting properties on the object. When you have finished,
you call the object's getHTML method to generate the string and pass that result to the
ASP Response.Write method, which sends the HTML to the client. The following code
fragments show the relevant ASP script and Java code for creating a DhEdit control in
HTML and sending it to the client.

ASP SCRIPT

Dim f.x
set f - getObject("java:dhFactory"
set x- f.createEdit
x.setText("I'm an edit!")
Response.Write(x.getHTML()
Response.Write(f.createBreak().getHTML()

JAVA CODE

public class dhFactory {
public dhFactory(){ }

}

public DhBreak createBreak()
return new DhBreak():

}

public DhEdit createEdit(){
return new DhEdit():

}

268 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

HTML-Based Approach
This approach is slightly more sophisticated and closer to the client model. It still uses
an ASP script to site the DhDocument class, but the rest of the operational code is in Java.
As in the client model, the DhModule class is instantiated as the Java component on the
Web page and automatically calls the initForm method in your project class that derives
from DhDocument.

As in the client model, you can do all your binding setup in your initForm call. The
onDocumentLoad function is also called for your server-side class. In this method, you
can access the IIS Response and Request objects (using the DhModule getResponse and
getRequest methods) and also append new DhElement items to your document stream.
However, it is important to understand that you cannot use document-level functions,
such as findElement, or use enumeration operations on a server-side document, except
on items that you have explicitly added to your DhDocument-derived class.

To use the HTML-based approach, follow these steps:

1. Create your server Java class (extending from DhDocument).

2. In that class, implement the initForm method as you would with a client application.

3. From ASP, call the Server.CreateObject method, passing it "DhModule" to create a
DhModule object.

4. Call DhModule.setCodeClass method, passing it the name of your DhDocument­
derived class.

5. Call the DhModule.setHTMLDocument method, passing it the full local file name path
of your server Web page as a template if you have one.

If you call setHTMLDocument with an empty string (" "), your DhDocument class
runs and outputs the HTML for any clements you have added at the location in your
ASP where setHTMLDocument is called. You can then generate sections of HTML
code inline.

If you do not call setHTMLDocument, the DhDocument class outputs full HTML for
the page, including the <HTML>, <I-lEAD>, and <BODY> tags.

The following sample shows an ASP page that uses a template:

<% Set mod - Server.CreateObject("com.ms.wfc.html.DhModule"
mod.setCodeClass("Class!")
mod.setHTMLDocument("c:\inetpub\wwwroot\Page!.htm")

%)

Programmer's Guide 269

Part 2 Programming with Visual J++

At run time, the framework recognizes that your class is running on a server and acts
accordingly.

Once instantiated, you can add elements or text to your DhDocument-derived class.
Those items will be appended to any template specified just before the </BODY> tag.

The following sample demonstrates a class that works on either the client or the server.

import com.ms.wfc.ui .*:
import com.ms.wfc.html.*:

public class Class1 extends DhDocument {
public Class1(){

}

i nitForm():
}

DhText txt1 - new DhText():
DhForm sect ~ new DhForm():

private void initForm() {

}

II call getServerMode() to check
II if this object is running on the server
if (getServerMode())(

txt1.setText("Hello from the server!"):
}else(

txt1.setText("Hello from the client!"):

II size the section. set its background color
II and add the txt1 element to it
sect.setSize(100. 100):
sect.setBackColor(Color.RED);
sect.add(txt1):
add(sect):
setNewElements(new DhElement[] { sect}):

If you want to bind to an existing HTML document on the page, use the
DhDocument.setBoundElements method, just as you would on the client. For example,
if your HTML template contains the following HTML:

<P>
The time is:

<INPUT type=text id=edit1 value-"">
</P>

270 Programmer's Guide

Chapter 14 Programming Dynamic HTML in Java

Your initForm method looks like this:

DhText txtl = new DhText();
DhEdit edit - new DhEdit();
DhComboBox cb = new DhComboBox();

private void initForm(){
txtl.setText(com.ms.wfc.app.Time().formatShortTime(»;

edit.setText("Hello, world!");
edit.setBackColor(Color.RED);

setBoundElements(new DhElement[]{ txtl.setBindID("txtl")
edit.setBindID("editl" });

II Create a combo box to be added after the bound items
cb.addltem("One");
cb. addItem("Two");

II Add the items to the end of document.
setNewElements(new DhElement[]{ cb });

There are very few differences between the interpretation of server and client
HTML classes. However, there is one important difference. Once elements are written
(sent to the client), they cannot be modified as they can on a client document. The
DhCantModifyElement exception, which is relevant only for server applications, is
thrown after a write has been performed on an element if an attempt is made to modify
that element again. (This underscores the fact that there is no real interoperation between
the server Java class and the client document as there is on the client between the Java
class and the document: from the server's standpoint, once written, the element is
essentially gone.)

One advantage of using the DhDocument-derived method is that you can implement
an HTML template that is embedded with attributes recognized by the com.ms.wfc.html
classes. By first decorating the HTML clements in the file with ID attributes and then
setting the corresponding IDs in the source code using the DhElement.setBindlD method,
you can bind to these HTML elements, set properties on the elements, add your own
inline HTML code, and so forth. This essentially allows you to code and design separate
templates ahead of time and populate the template with dynamic data when the doclllllent
is requested from the server.

Programmer's Guide 271

C HAP T E R 1 5

Graphical Services

The display of graphical objects in Microsoft Windows occurs through the graphics device
interface (GDI), a device-independent graphics output model that processes graphical
function calls from a Windows-based application and passes those calls to the appropriate
device driver. The driver performs the hardware-specific functions that generate output.
By acting as a buffer between applications and output devices, the GDI presents a
device-independent view for the application while interacting in a device-dependent
format with the device.

Application developers use the functionality of the GDI to display images, to draw
controls, shapes, and text, and to create and use pens, brushes, and fonts. The Windows
Foundation Classes (WFC) Graphics object coordinates with other WFC objects, such as
the Pen, Font, and Brush objects, to encapsulate these capabilities as Java-based objects.

In the WFC environment, graphical output occurs through the Graphics object. After
creating or retrieving a Graphics object, you associate other graphics-based objects, such
as fonts, pens, and brushes with the object, and then use the object's numerous drawing
methods to render output to the display. For example, to draw lines with a specific
appearance, you use the Graphics object's setPen method to specify the pen that the
object will use for drawing, then use the object's drawLine method to render the lines.
You can modify these associations as often as you want.

Creating a Graphics Object
The Windows Foundation Classes (WFC) provide several ways in which to create a
Graphics object.

Explicit object creation. You can create a Graphics object explicitly by calling the
createGraphics method on any object that extends the Control class.

Implicit object creation. The Bitmap and Metafile objects support implicit Graphics
object creation through a getGraphics method.

Programmer's Guide 273

