Environment and Tools

Microsoft

Environment and Tools

Microsoft. MASM

Assembly-Language Development System
Version 6.1

For MS-DOS e and Windows ™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1992 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, XENIX, CodeView, and QuickC are registered trademarks and Windows
and Windows NT are trademarks of Microsoft Corporation in the USA and other countries.

U.S. Patent No. 4955066

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

UNIX is a registered trademark of American Telephone and Telegraph Company.
BRIEF is a registered trademark of SDC Software Partners II L.P.

Printed in the United States of America.

Document No. DB35751-1292

Contents iii

Contents Overview

Introductiont e e e Xxi

Part1 The Programmer’s WorkBench

Chapter 1 Introducing the Programmer’s WorkBench. 3
Chapter2 Quick Start. 7
Chapter 3 Managing Multimodule Programs 35
Chapter4 UserInterface Details. 57
Chapter 5 Advanced PWB Techniques. 77
Chapter 6 Customizing PWB. 109
Chapter 7 Programmer’s WorkBench Reference 131
Part2 The CodeView Debugger

Chapter 8 Getting Started with CodeView 293
Chapter 9 The CodeView Environment. 319
Chapter 10 Special TOPICS.ottt 351
Chapter 11 Using Expressions in CodeView 375
Chapter 12 CodeView Reference 393
Part3 Compiling and Linking

Chapter 13 Linking Object Files with LINK 457
Chapter 14 Creating Module-Definition Files 491
Chapter 15 UsingEXEHDR i i, 513
Part4 Utilities

Chapter 16 Managing Projects with NMAKE 527
Chapter 17 Managing Librarieswith LIB. 581
Chapter 18 Creating Help Files with HELPMAKE. 593
Chapter 19 Browser Utilities. oo, 615
Chapter 20 Using Other Utilities. oo o.. 631
Part5 Using Help

Chapter21 UsingHelp......... . .. 663
Appendixes

Appendix A Error Messagest 685

Appendix B Regular Expressions, 845

iv Contents

61 (0T

Contents v

Contents

Introduction o Xxi
Scope and Organization of ThisBook xxii
Microsoft Support Services.t xxiii
Support Services Within the United States. xxiil
Support Services Worldwide. XXVi
Document Conventionso vutn ittt Xxxiii

Part1 The Programmer’s WorkBench

Chapter 1 Introducing the Programmer’s WorkBench. 3
What’sinPart 1. 4
Using the Tutorial e 4
Conventions inthe Tutorial i 5
Chapter2 QuickStart........... ... i e 7
The PWB Environment.ttt 7
The Microsoft AdVISOL.ottt e e 8
Entering TexXtt 9
SavingaFile. 10
Indenting Textwith PWB 11
Opening an Existing File. 14
Copying, Pasting, and Deleting Text. 16
Single-Module Builds 18
Setting Build Options. 18
Setting Other OPtioNSttt e i 21
Building the Program. 22
Fixing Build Errors e 23
Running the Program. 25
Debugging the Program. i 26
Using CodeView to Isolate an Error. 26
Working Through a Program to Debugit.............................. 29
Examining Memory in the Memory Window. 33
WheretoGofromHere. 34
Chapter 3 Managing Multimodule Programs 35

Multimodule Program Example i i 35

vi

Contents

Opening the Project i 36
Contentsof a Project 38
DependenciesinaProject 39
Building a Multimodule Program 40
Running the Program 40
Project Maintenance. i 41
Using Existing Projects i 42
Adding and Deletinga ProjectFile. 44
Changing Assembler and Linker Options 46
Changing Options for Individual Modules 49
The Program Build Process. i i 51
ExtendingaPWB Project 52
UsingaNon-PWB Makefile................. 55
WheretoGofromHere. i 56
Chapter4 UseriInterfaceDetails....................t 57
Starting PWB. 57
From the CommandLine i, 57
Using the Windows Operating System Program Manager. 58
Using the Windows Operating System File Manager 59
The PWB Screeno 59
PWBMENUS. e 64
File .. 64
Bdit . .. 64
Search 65
Project. . .o 66
RUN .. 66
OPtIONIS . . .t 67
Browse 68
WiINdow. . .. 69
Help. . ..o 70
Executing Commands i 70
Choosing Menu Commands.t 70
Shortcut Keys 71
Buttons 72
Dialog BOXES 72
Chapter 5 Advanced PWB TeChniquUes.ovvvnieireeennnnnns. 77
Searching with PWB 77

Searching by Visual Inspection., 78

Contents vii

Usingthe FindCommando.... 79
Using Regular EXpressionsttt 82
Using the Source Browser. i, 88
Advanced Browser Database Information 93
Executing Functionsand Macroscoiiiiiinneennan. 96
Executing Functions and Macrosby Name 98
Writing PWB Macrost e e e 98
WhenIsaMacroUseful?o i, 99
Recording Macrosttt e 99
Flow Control Statements ittt 102
User Input Statementsttt iiieeenn.. 104
Chapter6 CustomizingPWB............. i, 109
Changing Key AsSignmentsiiiiiiiiinnannenii, 109
Changing Settings 112
Customizing ColOrS.t 114
Adding Commandstothe RunMenu 115
How PWB Handles Tabscooiiiiniiiiii i, 118
PWB Configuration.ooiiiit it 120
Autoloading Extensions. 121
The TOOLS.INIFile...... e 122
TOOLS.INI Statement Syntaxc.coiniiiiineeennnennnn... 124
Environment Variables 127
Current Status File CURRENT.STS.oouuiriiiinnananan. .. 128
Project Status Files. i 129
Chapter 7 Programmer’s WorkBench Reference......................... 131
PWB CommandLine. i 131
PWB Menusand Keys i 132
PWB Default Key Assignments, 135
Noteon Available Keys. 139
PWBERUNCHONS 140
Cursor-Movement Commands.uuieeririnnnrrnnnennn.. 144
Predefined PWB Macros.ttt 207
PWB SWitches. 244
Extension Switches 246
Filename-Parts Syntax.t 247
Boolean Switch Syntax 248
Browser Switches e 286

Help Switches 287

viii

Contents

Part2 The CodeView Debugger

Chapter 8 Getting Started with CodeView.cooiit, 293
Preparing Programs for Debugging 293
General Programming Considerations.covineen. .. 294
Compilingand Linking. oo i 295
Debugging Strategies.ttt 297
Identifyingthe Bug. o 297
Locatingthe Bug 298
Settingup CodeView. 299
CodeView Fileso 300
Configuring CodeView with TOOLS.INI 301
CodeView TOOLS.INIEntries.oovitnttiin i 302
Memory Management and CodeView 308
The CodeView Command Line. it 308
Leaving CodeVIew. i e 309
Command-Line Options.t 310
The CURRENT.STS State File. i 316
Chapter9 The CodeView Environment...................., 319
The CodeView Display 319
TheMenuBar. 320
The Window Area i 320
The Status Bar e 321
CodeView Windows i 321
How to Use CodeView Windows, 321
The Source Windows. e 324
The WatchWindow i 324
The Command Window i 326
The Local Window.t e 328
The Register Window i 329
The 8087 WINdOW oot 330
The Memory Windows.t 330
TheHelpWindow 332
CodeView MENUS.ttt 332
The File Menu e e e 332
The EAitMenu e 334
The SearchMenu........ i 335
TheRunMenu P 336

The Data Menu.ot 338

Contents ix

TheOptions Menu. i, 342
The Calls Menu e 346
The Windows Menu. i, 347
TheHelpMenu e 349
Chapter 10 Special TOPiCSot e e e 351
Debugging in the Windows Operating System 351
Comparing CVW withCV 351
Preparing to Run CVW 352
Starting a Debugging Session i 353
CVW Commands.t e 357
CVW Debugging Techniques i, 360
Debugging P-Code 363
Requirements 364
Preparing Programs 365
P-Code Debugging Techniques. 365
P-Code Debugging Limitations. 367
Remote Debugging 367
Requirementso o i e 368
Remote Monitor Command-Line Syntax 370
Starting a Remote Debugging Session 371
Chapter 11 Using ExpressionsinCodeViewoout. 375
Common Elements. 375
Line Numbers. 376
Registers. 377
Addresses 378
Address Ranges o 379
Choosing an Expression Evaluator. 380
Using the C and C++ Expression Evaluators. 381
Additional Operators i 381
Unsupported Operatorsouutrtetit it 381
Restrictions and Special Considerations. 382
The Context OPeratoroiiiiit ittt 382
Numeric Constants.ttt e 384
String Literals. 385
Symbol Formats. i e 385
Using C++ EXpPressions. 386
Access Control.o 386

X

Contents

Inheritance it 386
Constructors, Destructors, and Conversions.ccovvun..o... 387
Overloadingt e 388
Operator Functions. i i 388
Debugging Assembly Languagec. i 389
Memory OPEratorS.o v vttt et e ettt 389
Register Indirection 390
Register Indirection with Displacement 391
Addressof a Variable 391
PTR OPErator.ottt e e e 391
SHANES. . o oo 392
Array and Structure Elements i 392
Chapter 12 CodeView Reference. ..., 393
CodeView Command OVerviewt 398
CodeView Command Reference. 400

Part3 Compiling and Linking

Chapter 13 Linking Object FileswithLINK. 457
New Features vi ittt e 457
OV IVIBW . o ettt 458
LINKOutput Files. s 459
LINK Syntaxand Input. i 460
Theobjfiles Field 461
Theexefile Field. i 462
Themapfile Field 463
The libraries Field 463
Thedeffile Field. 466
Examplest e 467
Running LINKo o 468
Specifying Input with LINK Prompts 469
Specifying InputinaResponse File, 469
LINK OpPtONSo oo [471
Specifying Options.o 471
The /ALIGN Option.t e 472
The BATCHOPHONottt 472
The [COOPLON e 473
The /CPARMOption. e 473

The /DOSSEG Optiont 474

Contents Xi

The /[DSALLOC Optionooiiti ittt 475
The /IDYNAMIC Optionttt 475
The [EXEPACK Optioniniiiiii i 475
The /FARCALL Option.ottt 476
The /HELP Option.ttt i e 477
The HIGH OpPton.ttt e 477
The INFOOPLOno e 477
The [LINEOPLONo e 478
The IMAP OPLION.t e 478
The /NOD Optiont e 479
The INOE Option. oot 479
The NOFARCALL Option. 479
The /NOGROUP Option.ottt e 480
The /NOLOPHONt e e 480
The INOLOGO Optionttt 480
The NONULLS OPton vvviiee e e e e e e iieeeee e 480
The /NOPACKC Optionot 481
The /NOPACKF Optionottt 481
The /JOLDOVERLAY Option.t 481
The /ONERROR Option. . ..ot 481
The OV OPLionot e 482
The [/PACKC Optionot i 482
The [PACKD Optiono e 483
The [PACKF OPtionttt 484
The [/PAUSEOption e 484
The /PCODE Optionottt e i 485
The PMOPHON 485
The JQOPLON o 485
The rOpton 486
The [SEGOPtion e 486
The [STACK Optiono 487
The /TINY OPtOnottt e e i i 487
The /WOPLON 488
The /20ptono 488
Setting Options with the LINK Environment Variable 4388
Setting the LINK Environment Variable 488
Behavior of the LINK Environment Variable 489

Clearing the LINK Environment Variable 489

Xii

Contents

LINK Temporary Files o 489
LINKEXitCodes. e 490
Chapter 14 Creating Module-DefinitionFiles 491
New Features. e e 491

MS-DOS Programsvii ettt 491

StAtCIMENLS. e 492

OVeTIaYS . . . oo 492
OVeIVIEW .« . o 492
Module Statements.t e 493

Syntax Rules. 494
The NAME Statement.o e 495
The LIBRARY Statement 496
The DESCRIPTION Statement.ttt 496
The STUB Statement.ttt it 497
The APPLOADER Statement. 498
The EXETYPE Statement. i 498
The PROTMODE Statement.ourt et e e 499
The REALMODE Statementt . 500
The STACKSIZE Statementco ittt 500
The HEAPSIZE Statementt 500
The CODE Statement ittt 501
The DATA Statement ittt et 501
The SEGMENTS Statementttt 502
CODE, DATA, and SEGMENTS Attributes. 503
The OLD Statement. e e e 505
The EXPORTS Statement.ttt 505
The IMPORTS Statementt 506
The FUNCTIONS Statementttt 508
The INCLUDE Statement.ttt iaen. 510
Reserved Words. oo 510
Chapter15 UsingEXEHDR i 513
Running EXEHDR e 513

The EXEHDR Command Line 513

EXEHDR Optionsot 514
Executable-File Format. 515
EXEHDR Output: MS-DOS Executable File 516
EXEHDR Output: Segmented-Executable File. 518

DLL Header Differences.t 519

Contents Xiii

Part4 Utilities

SegmentTable i 520
Exports Table. 520
EXEHDR Output: Verbose Qutput 521
MS-DOS Header Information. 0ttt 521
New .EXE Header Information., 521
Tables. . ..o 523
Relocations.o e 523
Chapter 16 Managing Projects with NMAKE.0. 527
New Features.ot e e e 527
OVEIVIEW . . .o 528
Running NMAKE e 529
Command-Line Options.o e 529
NMAKE Command File i 533
The TOOLS.INIFile. i 534
Contentsof aMakefile 535
Using Special Characters as Literals c..... 535
Wildeards o e 536
COMMENES. . .\ttt et e e e e e e e e e 536
Long Filenames it e 537
Description Blocks 537
Dependency Line 538
Targets . .o 538
Dependents. 542
Commands 543
Command SYNEAXo v ettt et e e e 543
Command Modifiers i 544
Exit Codes from Commands, 545
Filename-Parts Syntax.covueitnn e 546
InlineFiles 547
MACIOS . . . oo 550
User-Defined Macroscc. it e 551
USING MaCIOS. . . .ottt et et e e e e e e 554
Special MacCros.ot e 554
Substitution Within Macros. i 560
Substitution Within Predefined Macros 561
Environment-Variable Macros i, 561

Inherited MACTOS oot e 563

Xiv

Contents

Precedence Among Macro Definitions 563
Inference Rules 563
Inference Rule Syntax i 564
Inference Rule Search Paths 565
User-Defined Inference Ruleso .. 566
Predefined Inference Rules, 567
Inferred Dependents.ttt 569
Precedence Among Inference Rules 570
DIIECHVES . . o oottt e e 570
Dot DIrectivest 570
Preprocessing Directivest 572
Sequence of NMAKE Operations. 576
A Sample NMAKE Makefile 0o i, 578
NMAKE EXit Codes e 580
Chapter 17 Managing LibrarieswithLIB. 581
OV CIVIBW . o ot ettt e e e e e e 581
Running LIB. o 582
The LIBCommand Line i, 582
LIB Command Promptsot 582
The LIBResponse File. i 583
Specifying LIBFields 583
The Library File. e 584
LIBOPHONS . ..ottt et ettt e 584
LIB Commands.t e 586
The Cross-reference Listing. 590
TheOutput Library 590
BXampIes ©.o 591
LIBEXIt Codesttt e e e e e 592
Chapter 18 Creating Help Files with HELPMAKE 593
OVRIVIEW . . o oottt et 594
Running HELPMAKE. i 595
Encoding.o 595
Decoding.t 597
Getting Help. 598
Other Options. oottt 599
Source File Formats. 599
Elements ofaHelp Source File. 600

Defining aTOPiC.ttt 600

Contents Xv

Creating Links to Other Topics.t 601
Formatting Topic TexXt. e 604
Dot and Colon Commands.ttt 605
Other Help Text Formats i, 609
Rich Text Format. 609
Minimally Formatted ASCIL. i i 612
Context Prefixes i 613
Chapter 19 Browser Utilities., 615
Overview of Database Building 616
Preparing to Build aDatabase. 616
How BSCMAKE BuildsaDatabasecoooooa... 616
Methods for Increasing Efficiency 617
BSCMAKE . . o 618
System Requirements for BSCMAKE 618
The BSCMAKE Command Line. 619
BSCMAKE OpPtionsttt 620
UsingaResponse File i, 622
BSCMAKE Exit Codes.ooiiiiti i 623
SBRPACKo 623
Overview of SBRPACKo 624
The SBRPACK Command Linecooviiinen ... 624
SBRPACK EXit Codesouiiiiiiiiiiiiia s 626
CREF . . . 626
Using CREF. e 626
Difference from Previous Releases. 629
Chapter 20 Using Other Utilities.cooiiaL. e 631
CVPACK . . 631
Overview of CVPACK e 632
The CVPACK Command Lineo, 632
CVPACKEXIt Codesouvitiiiit e 633
H2INC . 633
Basic HZINC Operationcooiiuiiiiieiiie i, 634
H2INC Syntax and Options.ttt inn s 635
Converting Data and Data Structurescoovvveeniinn.... 638
Converting Function Prototypes 648
Summary of H2INC-Recognized Keywords and Pragmas 651
IMPLIB . . . 652

Xvi Contents

Part5 Using Help

Appendixes

The IMPLIB Command Line. i, 653
OPHIONS . . .t e 653
RM,UNDEL,and EXP. i 654
Overview of the Backup Utilities 654
The RMULility.o e 654
The UNDEL Utility e 655
The EXPUtIlityo 656
WX/WXSEIVET . ..o 657
Running WX/WXServer. 657
Chapter21 UsingHelp......... ... e 663
Structure of the Microsoft Advisor............ 663
Navigating Through the Microsoft Advisor................ 664
Usingthe HelpMenu. i 665
Using the Mouse andthe F1Key 666
Using Hyperlinks e e 666
Using Help Windows and Dialog Boxes. 667
Accessing Different Types of Information 669
Using Different Help Screens i in... 672
Using Helpin PWB. 673
OpeningaHelpFile....... 673
Global Search. 674
Using QuickHelp........... .. 675
Using the /Help OPtONt 676
Usingthe QHCommandcoiiiiiiiiiiann ... 676
Managing Help Files. i 679
Managing Many Help Files. o ... 680
Appendix A ErrorMessages............coviiiiiiiiiiiiii i 685
Error Message Lists.t 685
BSCMAKE Error MesSages. oo 688
CodeView C/C++ Expression EvaluatorErrors 692
CodeView Error Messagesottt 700
CVPACK Error MeSSages vttt et ettt it 716
EXEHDR Error MeSSages o vttt et 720

Math Coprocessor Error Messages.oooiiiiiin e, 722

Contents Xvii

H2INC Error Messages.ottt et e 724
HELPMAKE Error Messagescovviiie it 761
IMPLIB Error Messages.ottt et e ieiie e eeee e eenns 767
LIB Error MESSagesottt ettt et et 769
LINK Error MeSSages.o ottt ettt et e et e 775
ML Error MESSAZES. . . . v vttt e e e e e e e e e 798
NMAKE Error MESSaES . . . o oo vvv et ettt ettt et 828
PWB Error MESSagES coii ettt ettt 840
SBRPACK EfTOr MESSAZES o voeveee e et e ettt e et e e 842
Appendix B Regular EXpressions.c.oiiiiiiiiiiiieni 845
Regular-Expression Summaries 845
UNIX Regular-Expression Syntax., 848
Tagged Regular Expressions. i, 850
Tagged Expressions in Build:Messagec.o0. 852
Justifying Tagged EXpressionst iinn i, 852
Predefined Regular Expressions., 853
Non-UNIX Regular-Expression Syntax., 854
Non-UNIX Matching Method. 855
... 857

xviii Contents

Figures and Tables

Figures

Figure 2.1 PWBDisplay e 8
Figure 3.1 The SHOW Project. 36
Figure 3.2 The PWB Build Process.o, 51
Figure 4.1 UserInterfaceElements............... 60
Figure 4.2 Window Elements.ot 61
Figure 4.3 StatusBarElements.............. 62
Figure 44 PWBMenuElements........... 63
Figure 4.5 DialogBoxElements............. ciiiiiiiiiinninn.. 73
Figure 4.6 KeyBoxand CheckBox 74
Figure 5.1 Regular Expression Example. 83
Figure 5.2 Complex Regular Expression Example........................ 84
Figure 6.1 How PWB Displays Tabs ooiiiin. 119
Figure 7.1 Arranged Windows. i i 213
Figure 7.2 Vertical Tiling. i 278
Figure 7.3 Horizontal Tilingt 278
Figure 9.1 CodeView Display, 320
Figure 15.1 Format for a Segmented-Executable File P 516
Figure 16.1 NMAKE DescriptionBlock. 537
Figure 21.1 Microsoft Advisor Global Contents Screen 664
Tables

Table 7.1 FileMenuandKeys......... i, 132
Table 7.2 EditMenuandKeys i, 133
Table 7.3 SearchMenuandKeys 133
Table 7.4 Project MenuandKeys..................., 134
Table 7.5 RunMenuandKeys 134
Table 7.6 Browse MenuandKeys.......................... 134
Table 7.7 Window MenuandKeys.............. 135
Table 7.8 HelpMenuandKeys............ 135
Table 7.9 PWB Default Key Assignments 136
Table 7.10 PWBFunctionsciiiiiiiiiiniininea., 140
Table 7.11 Cursor-Movement Commands. 145
Table 7.12 PWB Macrost 208
Table 7.13 PWB Color Namesoouuuuiiiiniinnennnnnn... 252
Table 7.14 PWB ColorValueso i, 254

Contents Xix

Table 8.1 CodeView TOOLS.INIEntries.c..coon... 302
Table 8.2 CodeView Command-Line Options 310
Table 9.1 Moving Around with the Keyboard 323
Table 11.1 Registers.ttt 377
Table 12.1 Register Namescouiiiiiineteiiieeinaannnn, 395
Table 12.2 CodeView Command Summary 398
Table 14.1 Module Statementsccouunieeiinneennnnen.. 493
Table 16.1 Predefined InferenceRules. 567
Table 16.2 Binary Operators for Preprocessing. 574
Table 18.1 Formatting Attributes 605
Table 18.2 Dotand Colon Commands, 606
Table 18.3 RTF FormattingCodes oo, 610
Table 18.4 Microsoft Product Context Prefixes......................... 613
Table 18.5 Standardh.Contexts.................. 614
Table A.1 Error Codes Listed by Utility. 686
Table A.2 Error Codes Listed by Error Code Range 687
Table B.1 UNIX Regular-Expression Summary 845
Table B.2 UNIX Predefined Expressions. 846
Table B.3 CodeView Regular Expressions. 847
Table B.4 Non-UNIX Regular-Expression Summary 847
Table B.5 Non-UNIX Predefined Expressions. 848
Table B.6 UNIX Regular-Expression Syntax. 848
Table B.7 Predefined Regular Expressions and Definitions 853

Table B.8 Non-UNIX Regular Expression Syntax. 854

XXi

Introduction

Microsoft ® Macro Assembler (MASM) includes a full set of development tools —
editor, compiler, linker, debugger, and browser — for writing, compiling, and
debugging your programs. You can work within the Microsoft Programmer’s
WorkBench (PWB) integrated environment, or you can use the tools separately to
develop your programs.

Environment and Tools describes the following development tools:

The Programmer’s WorkBench (PWB). PWB is a comprehensive tool for
application development. Within its environment is everything you need to
create, build, browse, and debug your programs. Its macro language gives you
control over not only editing but also build operations and other PWB functions.

The Microsoft ® CodeView ™ debugger. This is a diagnostic tool for finding
errors in your programs. Two versions of CodeView are described: one for
MS-DOS e and one for Microsoft Windows ™. Each CodeView version has
specialized commands for its operating environment, as well as other commands
for examining code and data, setting breakpoints, and controlling your
program’s execution.

LINK, the Microsoft Segmented-Executable Linker. The linker combines object
files and libraries into an executable file, either an application or a dynamic-link
library (DLL).

EXEHDR, the Microsoft EXE File Header Utility. EXEHDR displays and
modifies the contents of an executable-file header.

NMAKE, the Microsoft Program Maintenance Utility. NMAKE simplifies
project maintenance. Once you specify which project files depend on others, you
can use NMAKE to automatically execute the commands that will update your
project when any file has changed.

LIB, the Microsoft Library Manager. LIB creates and maintains standard
libraries. With LIB, you can create a library file and add, delete, and replace
modules.

XXii

Environment and Tools

» HELPMAKE, the Microsoft Help File Maintenance Utility. HELPMAKE
creates and maintains Help files. You can use HELPMAKE to create a Help file
or to customize the Microsoft Help files.

= BSCMAKE, the Microsoft Browser Database Maintenance Utility, and
SBRPACK, the Microsoft Browse Information Compactor. BSCMAKE creates
browser files for use with the PWB Source Browser. SBRPACK compresses the
files that are used by BSCMAKE.

Environment and Tools also describes these special-purpose utilities:

» H2INC, the Microsoft C Header Translation Utility. H2INC translates C header
files into MASM-compatible include files.

» CVPACK, the Microsoft Debugging Information Compactor. CVPACK
compresses the size of debugging information in an executable file,

= IMPLIB, the Microsoft Import Library Manager. IMPLIB creates an import
library that resolves external references from a Windows-based application to a
DLL.

= RM, the Microsoft File Removal Utility; UNDEL, the Microsoft File Undelete
Utility; and EXP, the Microsoft File Expunge Utility. These utilities manage,
delete, and recover backup files.

Scope and Organization of This Book

This book has five parts and five appendixes to give you complete information
about PWB, CodeView, and the utilities included with MASM.

Part 1 is a brief PWB tutorial and comprehensive reference. The first three chapters
introduce PWB and provide a tutorial that describes the features of the integrated
environment and how to use them. Chapters 4, 5, and 6 contain detailed information
on the interface, advanced PWB techniques, and customization. Chapter 7 contains
a complete reference to PWB’s default keys and all functions, predefined macros,
and switches.

Part 2 provides full information on the Microsoft CodeView debugger. Chapter 8
tells how to prepare programs for debugging, how to start CodeView, and how to
customize CodeView’s interface and memory usage. Chapter 9 describes the
environment, including the CodeView menu commands and the format and use of
each CodeView window. Chapter 10 explains how to use expressions, including the
C and C++ expression evaluators. Chapter 11 describes techniques for debugging
Windows-based programs. Chapter 12 contains a complete reference to CodeView
commands.

The chapters in Parts 3 and 4 describe the utilities. These chapters are principally
for command-line users. Even if you’re using PWB, however, you may find the

Introduction XXiii

detailed information in Parts 3 and 4 helpful for a better understanding of how each
tool contributes to the program development process.

Part 3 provides information about compiling and linking your program. LINK
command-line syntax and options are covered in Chapter 13. The contents and use
of module-definition files are explained in Chapter 14. Chapter 15 describes how to
use EXEHDR to examine the file header of a program.

Part 4 presents the other utilities. NMAKE, the utility for automating project
management, is described in Chapter 16. Chapter 17 covers LIB, used in managing
standard libraries. Procedures for using HELPMAKE to create and maintain Help
files are in Chapter 18. The tools for creating a browser database are discussed in
Chapter 19. Finally, Chapter 20 describes how to use the following special-purpose
utilities: H2INC, CVPACK, IMPLIB, RM, UNDEL, and EXP.

Part 5 presents the Microsoft Advisor Help system and the QuickHelp program. It
describes the structure of the Help files, how to navigate through the Help system,
and how to manage Help files.

The appendixes provide supplementary information. Appendix A describes error
messages. Appendix B describes regular expressions for use in PWB and
CodeView.

Microsoft Support Services

Microsoft offers a variety of no-charge and fee-based support options to help you
get the most from your Microsoft product. For an explanation of these options,
please see one of the following sections:

= If you are in the United States, see “Support Services Within the United States.”

= If you are outside the United States, see “Support Services Worldwide.”

Support Services Within the United States
If you have a question about Microsoft Macro Assembler (MASM), one of the
following resources may help you find an answer:
= The index in the product documentation and other printed product
documentation.

» Context-sensitive online Help available from the Help menu.

XXiv Environment and Tools

= The README files that come with your product disks. These files provide
general information that became available after the books in the product
package were published.

= Electronic options such as CompuServe forums or bulletin board systems, if
available.

If you cannot find the information you need, you can obtain product support through
several methods. In addition, you can locate training and consultation services in
your area.

For information about Microsoft incremental fee-based support service options, call
Microsoft Inside Sales at (800) 227-4679, Monday through Friday, between 6:30
a.m. and 5:30 p.m. Pacific time.

Note Microsoft’s support services are subject to Microsoft’s prices, terms, and
conditions in place in each country at the time the services are used.

Microsoft Forums on CompuServe

Microsoft Product Support Services are available on several CompuServe forums.
For an introductory CompuServe membership kit specifically for Microsoft users,
dial (800) 848-8199 and ask for operator 230. If you are already a CompuServe
member, type go microsoft atany ! prompt.

Microsoft Product Support Services

You can reach Microsoft Product Support Services Monday through Friday
between 6:00 a.m. and 6:00 p.m. Pacific time.

» For assistance with Microsoft MASM, dial (206) 646-5109.

When you call, you should be at your computer with Microsoft MASM running and
the product documentation at hand. Have your file open and be prepared to give the
following information:

= The version of Microsoft MASM you are using.

= The type of hardware you are using, including network hardware, if applicable.
= The operating system you are using.

» The exact wording of any messages that appeared on your screen.

= A description of what happened and what you were trying to do when the
problem occurred.

= A description of how you tried to solve the problem.

Introduction XXV

Microsoft Product Support for the Deaf and
Hard-of-Hearing

Microsoft Product Support Services are available for the deaf and hard-of-hearing
Monday through Friday between 6:00 a.m. and 6:00 p.m. Pacific time.

Using a special TDD/TT modem, dial (206) 635-4948.

Product Training and Consultation Services

Within the United States, Microsoft offers the following services for training and
consultation:

Authorized Training Centers
Microsoft Authorized Training Centers offer several services for Microsoft product

users. These include:
= Customized training for users and trainers.
» Training material development.

= Consulting services.

For information about the training center nearest you, call Microsoft Consumer
Sales at (800) 426-9400 Monday through Friday between 6:30 a.m. and 5:30 p.m.
Pacific time.

Consultant Referral Service
Microsoft’s Consultant Relations Program can refer you to an independent

consultant in your area. These consultants are skilled in:
= Macro development and translation.
= Database development.

= Custom interface design.

For information about the consultants in your area, call the Microsoft Consultant
Relations Program at (800) 227-4679, extension 56042, Monday through Friday
between 6:30 a.m. and 5:30 p.m. Pacific time.

Xxvi Environment and Tools

Support Services Worldwide

If you are outside the United States and have a question about Microsoft MASM,
Microsoft offers a variety of no-charge and fee-based support options. To solve
your problem, you can:

» Consult the index in the product documentation and other printed product
documentation.

= Check context-sensitive online Help available from the Help menu.

» Check the README files that come with your product disks. These files
provide general information that became available after the books in the product
package were published.

= Consult electronic options such as CompuServe forums or bulletin board
systems, if available.

If you cannot find a solution, you can receive information on how to obtain product
support by contacting the Microsoft subsidiary office that serves your country.

Note Microsoft’s support services are subject to Microsoft’s prices, terms, and
conditions in place in each country at the time the services are used.

Calling a Microsoft Subsidiary Office

When you call, you should be at your computer with Microsoft MASM running and
the product documentation at hand. Have your file open and be prepared to give the
following information:

» The version of Microsoft MASM you are using.

= The type of hardware you are using, including network hardware, if applicable.
» The operating system you are using.

= The exact wording of any messages that appeared on your screen.

® A description of what happened and what you were trying to do when the
problem occurred.

= A description of how you tried to solve the problem.

Introduction

XXvii

Microsoft subsidiary offices and the countries they serve are listed below.

Area Telephone Numbers
Argentina Microsoft de Argentina S.A.
Phone: (54) (1) 814-0356
Fax: (54) (1) 814-0372
Australia Microsoft Pty. Ltd.
Phone: (61) (02) 870-2200
Fax: (02) 805-1108
Bulletin Board Service: (612) 870-2348
Technical Support: (61) (02) 870-2131
Sales Information Centre: (02) 870-2100
Austria Microsoft Ges.m.b.H.
Phone: 0222 - 68 76 07
Fax: 0222 -68 16 2710
Information: 060 - 89 - 247 11 101
Prices, updates, etc.: 060 - 89 - 3176 1199
CompuServe: msce (Microsoft Central Europe)
Technical support:
Windows, Windows for Workgroups, Microsoft Mail: 0660 - 65 - 10
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for
Windows: 0660 - 65 - 11
Word for MS-DOS, Windows Write: 0660 65 - 12
Word for Windows, Word for OS/2: 0660 - 65 - 13
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,
WorksText: 0660 - 65 - 14
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for
Windows, QuickPascal, QuickAssembler, Profiler: 0660 - 65 - 15
COBOL PDS, Basic PDS, QuickBASIC, Visual Basic: 0660 - 65 - 16
MS-DOS: 0660 - 65 - 17
Macintosh Software: 0660 - 65 - 18
Project for Windows, Project for MS-DOS, Multiplan, Mouse, Flight Simulator,
Paintbrush, Chart: 0660 - 67 - 38
FoxPro: 0660 - 67 - 61
Baltic States See Germany
Belgium Microsoft NV
Phone: 02-7322590
Fax: 02-7351609
Technical Support Bulletin Board Service: 02-7350045 (1200/2400/9600 baud, 8 bits, no
parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: 02-5133274
(English speaking) Technical Support: 02-5023432
(French speaking) Technical Support: 02-5132268
Technical Support Fax: (31) 2503-24304
Bermuda See Venezuela
Bolivia See Argentina

Xxviii Environment and Tools

Area

Telephone Numbers

Brazil

Canada

Caribbean
Countries

Central America
Chile
Colombia

Denmark

Ecuador

England

Finland

France

Microsoft Informatica Ltda.

Phone: (55) (11) 530-4455

Fax: (55) (11) 240-2205

Technical Support Phone: (55) (11) 533-2922

Technical Support Fax: (55) (11) 241-1157

Technical Support Bulletin Board Service: (55) (11) 543-9257

Microsoft Canada Inc.

Phone: 1 (416) 568-0434

Fax: 1 (416) 568-4689

Technical Support Phone: 1 (416) 568-3503

Technical Support Facsimile: 1 (416) 568-4689

Technical Support Bulletin Board Service: 1 (416) 507-3022

See Venezuela

See Venezuela
See Argentina
See Venezuela

Microsoft Denmark AS
Phone: (45) (44) 89 01 00
Fax: (45) (44) 68 55 10

See Venezuela

Microsoft Limited

Phone: (44) (734) 270000

Fax: (44) (734) 270002

Upgrades: (44) (81) 893-8000

Technical Support:
Main Line (All Products): (44) (734) 271000
Windows Direct Support Line: (44) (734) 271001
Database Direct Support Line: (44) (734) 271126
MS-DOS 5 Warranty Support: (44) (734) 271900
MS-DOS 5 Fee Support Line: (44) (891) 315500
OnLine Service Assistance: (44) (734) 270374
Bulletin Board Service: (44) (734) 270065 (2400 Baud)
Fax Information Service: (44) (734) 270080

Microsoft OY
Phone: (358) (0) 525 501
Fax: (358) (0) 522 955

Microsoft France

Phone: (33) (1) 69-86-46-46

Telex: MSPARIS 604322F

Fax: (33) (1) 64-46-06-60

Technical Support Phone: (33) (1) 69-86-10-20
Technical Support Fax: (33) (1) 69-28-00-28

Introduction XXix

Area

Telephone Numbers

French Polynesia

Germany

Hong Kong

Ireland

Israel

Italy

See France

Microsoft GmbH
Phone: 089 - 3176-0
Telex: (17) 89 83 28 MS GMBH D
Fax: 089 - 3176-1000
Information: 0130 - 5099
Prices, updates, etc.: 089 - 3176 1199
Bulletin board, device drivers, tech notes : BTX: microsoft# or *610808000#
CompuServe: msce (Microsoft Central Europe)
Technical support:
Windows, Windows for Workgroups, Microsoft Mail: 089 - 3176 - 1110
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for
Windows: 089 - 3176 - 1120
Word for MS-DOS, Windows Write: 089 - 3176 - 1130
Word for Windows, Word for OS/2: 089 - 3176 - 1131
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,
WorksText: 089 - 3176 - 1140
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for
Windows, QuickPascal, QuickAssembler, Profiler: 089 - 3176 - 1150
COBOL PDS, Basic PDS, QuickBASIC, Visual Basic: 089 - 3176 - 1151
MS-DOS: 089 - 3176 - 1152
Macintosh Software: 089 - 3176 - 1160
Project for Windows, Project for MS-DOS, Multiplan, Mouse, Flight Simulator,
Paintbrush, Chart: 089 - 3176 - 1170
FoxPro: 089 - 3176 - 1180

Microsoft Hong Kong Limited
Technical Support: (852) 804-4222

See England

Microsoft Israel Ltd.
Phone: 972-3-752-7915
Fax: 972-3-752-7919

Microsoft SpA
Phone: (39) (2) 269121
Telex: 3403211
Fax: (39) (2) 21072020
Technical Support:
Microsoft Excel for Windows, Project for Windows, Works for
Windows: (39) (2) 26901361
Word, Works for MS-DOS: (39) (2) 26901362
Windows, PowerPoint, Publisher, Windows for Workgroups,
Works : (39) (2) 26901363
Basic, COBOL, Visual Basic, MS-DOS-based, Fox Products: (39) (2) 26901364
C, FORTRAN, Pascal, Macro Assembler (MASM), and SDKs: (39) (2) 26901354
LAN Manager, SQL Server, Microsoft Mail, Microsoft Mail
Gateways: (39) (2) 26901356

XXX Environment and Tools

Area

Telephone Numbers

Japan

Korea

Liechtenstein

Luxemburg

México

Netherlands

New Zealand

Northern Ireland

Microsoft Company Ltd.
Phone: (81) (3) 3363-1200
Fax: (81) (3) 3363-1281
Technical Support:
MS-DOS-based Applications: (§81) (3) 3363-0160
Windows-based Applications: (81) (3) 3363-5040
Language Products (Microsoft C, Macro Assembler [MASM],
QuickC): (81) (3) 3363-7610
Language Products (Basic, FORTRAN, Visual Basic, Quick
Basic): (81) (3) 3363-0170
All Products Technical Support Fax: (81) (3) 3363-9901

Microsoft CH

Phone: (82) (2) 552-9505

Fax: (82) (2) 555-1724

Technical Support: (82) (2) 563-9230

See Switzerland (German speaking)

Microsoft NV

Phone: (32) 2-7322590

Fax: (32) 2-7351609

Technical Support Bulletin Board Service: (31) 2503-34221 (1200/2400/9600 baud,
8 bits, No parity, 1 stop bit, ANSI terminal emulation)

(Dutch speaking) Technical Support: (31) 2503-77877

(English speaking) Technical Support: (31) 2503-77853

(French speaking) Technical Support: (32) 2-5132268

Technical Support Fax: (31) 2503-24304

Microsoft México, S.A. de C.V.
Phone: (52) (5) 325-0910

Fax: (52) (5) 280-0198

Technical Support: (52) (5) 325-0912
Sales: (52) (5) 325-0911

Microsoft BV

Phone: 02503-13181

Fax: 02503-37761

Technical Support Bulletin Board Service: 02503-34221 (1200/2400/9600 baud, 8 bits,
No parity, 1 stop bit, ANSI terminal emulation)

(Dutch speaking) Technical Support: 02503-77877

(English speaking) Technical Support: 02503-77853

Technical Support Fax: 02503-24304

Technology Link Centre

Phone: 64 (9) 358-3724

Fax: 64 (9) 358-3726

Technical Support Applications: 64 (9) 357-5575

See England

Introduction

Xxxi

Area

Telephone Numbers

Norway

Papua New Guinea
Paraguay

Peru

Portugal

Puerto Rico
Republic of China

Republic of Ireland
Scotland
Spain

Sweden

Microsoft Norway AS

Phone: (47) (2) 95 06 65

Fax: (47) (2) 95 06 64

Technical Support: (47) (2) 18 35 00

See Australia
See Argentina
See Venezuela

MSFT, Lda.
Phone: (351) 1 4412205
Fax: (351) 1 4412101

See Venezuela

Microsoft Taiwan Corp.
Phone: (886) (2) 504-3122
Fax: (886) (2) 504-3121

See England
See England

Microsoft Iberica SRL

Phone: (34) (1) 804-0000

Fax: (34) (1) 803-8310

Technical Support: (34) (1) 803-9960

Microsoft AB

Phone: (46) (8) 752 56 00

Fax: (46) (8) 750 51 58

Technical Support:
Applications: (46) (8) 752 68 50
Development and Network products: (46) (8) 752 60 50
MS-DOS: (46) (071) 21 05 15 (SEK 4.55/min)

Sales Support: (46) (8) 752 56 30

Bulletin Board Service: (46) (8) 750 47 42

Fax Information Service: (46) (8) 752 29 00

Xxxii

Environment and Tools

Area

Telephone Numbers

Switzerland

Uruguay

Venezuela

Wales

Venezuela

(German speaking)
Microsoft AG
Phone: 01 - 839 61 11
Fax: 01 - 831 08 69
Infomation: 0049 - 89 - 247 11 101
Prices, updates, etc.: 0049 - 89 - 3176 1199
CompuServe: msce (Microsoft Central Europe)
Technical support:
Windows, Windows for Workgroups, Microsoft Mail: 01 - 342 - 4085
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for
Windows: 01 - 342 - 4082
Word for MS-DOS, Windows Write: 01 - 342 - 4083
Word for Windows, Word for OS/2: 01 - 342 - 4087
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,
WorksText: 01 - 342 - 4084
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for
Windows, QuickPascal, QuickAssembler, Profiler: 01 - 342 - 4036
COBOL PDS, Basic PDS, QuickBASIC, Visual Basic: 01 - 342 - 4086
MS-DOS: 01 - 342 - 2152
Macintosh Software: 01 - 342 - 4081
Project for Windows, Project for MS-DOS, Multiplan, Mouse, Flight Simulator,
Paintbrush, Chart : 01 - 342 - 0322
FoxPro: 01 /342 - 4121

(French speaking)

Microsoft SA, office Nyon

Phone: 022 - 363 68 11

Fax: 022-36369 11

Technical support: 022 - 738 96 88

See Argentina

Corporation MS 90 de Venezuela S.A.
Phone: 0058.2.914739
Fax: 0058.2.923835

See England

Phone: 0058.2.914739
Fax: 0058.2.923835

Introduction XXXiii

Document Conventions

This book uses the following typographic conventions:

Examples Description

README.TXT, COPY, Uppercase (capital) letters indicate filenames, MS-DOS

LINK, /CO commands, and the commands to run the tools.
Uppercase is also used for command-line options, unless
the option must be lowercase.

printf, IMPORT Bold letters indicate keywords, library functions,
reserved words, and CodeView commands. Keywords
are required unless enclosed in double brackets as
explained below.

expression Words in italic are placeholders for information that you
must supply (for example, a function argument).

[[option]] Items inside double square brackets are optional.

{choicel | choice2}

CL ONE.C TWO.C
Repeating elements...

while()
{

}
F1, ALT+A

Braces and a vertical bar indicate a choice between two
or more items. You must choose one of the items unless
all the items are also enclosed in double square brackets.

This font is used for program examples, user input,
program output, and error messages within the text.

Three horizontal dots following an item indicate that
more items having the same form may follow.

Three vertical dots following a line of code indicate that
part of the example program has intentionally been
omitted.

Small capital letters indicate the names of keys and key
sequences, such as ENTER and CTRL+C. A plus (+)
indicates a combination of keys. For example, CTRL+E
means to hold down the CTRL key while pressing the

E key.

The cursor-movement keys on the numeric keypad are
called ARROW keys. Individual ARROW keys are referred
to by the direction of the arrow on the top of the key
(LEFT, RIGHT, UP, DOWN). Other keys are referred to by
the name on the top of the key (PGUP, PGDN).

XXXiv Environment and Tools

Examples Description
Arg Meta Delete A bold series of names followed by a series of keys
(ALT+A ALT+A SHIFT+DEL) indicates a sequence of PWB functions that you can use

“defined term”

dynamic-link library (DLL)

in a macro definition, type in a dialog box, or execute
directly by pressing the sequence of keys. In this book,
these keys are the default keys for the corresponding
functions. Some functions are not assigned to a key, and
the word “Unassigned” appears in the place of a key. In
PWB Help, the current key that is assigned to the
function is shown.

Quotation marks usually indicate a new term defined in
the text.

Acronyms are usually spelled out the first time they are
used.

PART 1

The Programmer’s
WorkBench

Chapter 1 Introducing the Programmer’s WorkBench
Chapter2 Quick Start. 7

Chapter 3 Managing Multimodule Programs
Chapter 4 User Interface Details
Chapter 5 Advanced PWB Techniques
Chapter 6 Customizing PWB
Chapter 7 Programmer’s WorkBench Reference

CHAPTER 1

Introducing the Programmer’s
WorkBench

The Microsoft Programmer’s WorkBench (PWB) is a powerful tool for application
development. PWB combines the following features:

» A full-featured programmer’s text editor.

= An extensible “build engine”” which allows you to assemble and link your
programs using the PWB environment. The build engine can be extended to
support any programming tool.

= Error-message browsing. Once a build completes, you can step through the build
messages, fixing errors in your source programs.

= A Source Browser. When working with large systems, it is often difficult to
remember where program symbols are accessed and defined. The Source
Browser maintains a database that allows you to go quickly to where a given
variable, function, type, class, or macro is defined or referenced.

= An extensible Help system. The Microsoft Advisor Help system provides a
complete reference on using PWB and MASM. You can also write new Help
files and seamlessly integrate them into the Help system to document your own
library routines or naming conventions.

= A macro language that can control editing functions, program builds, and other
PWB operations.

For increased flexibility, you can write extensions to PWB. These extensions can
perform tasks that are inconvenient in the PWB macro language. For example, you
can write extensions to perform file translations, source-code formatting, text
justification, and so on. As with the macro language, PWB extensions have full
access to most PWB capabilities. For information about how to write PWB
extensions, see the Microsoft Advisor Help system (choose “PWB Extensions”
from the main Help table of contents).

PWB comes with extensions for C/C++, Basic, and Fortran, in addition to assembly
language, to facilitate mixed-language programming. To install one of these

4 Environment and Tools

extensions, simply rename its corresponding .XXT file to a .MXT file in the \BIN
subdirectory where you installed MASM, as described in Getting Started. Also,
because an increasing number of programmers are using C++, the PWB Browser
extension supports classes.

What’s in Part 1

This part of the book introduces you to the fundamentals of PWB. Chapter 2,
“Quick Start,” shows you how to use the PWB editor and build a simple single-
module program from PWB. Chapter 3, “Managing Multimodule Programs,”
expands upon the information you learned in Chapter 2. It teaches you how to build
a more complicated program that consists of several modules. You should be able to
work through these two chapters in less than three hours.

As you work through these chapters, you may want to refer to Chapter 4, “User
Interface Details,” which explains options for starting PWB, briefly describes all of
the menu commands, and summarizes how menus and dialog boxes work. The user
interface information is presented in one chapter for easy access.

Chapter 5, “Advanced PWB Techniques,” shows how to use the PWB search
facilities (including searching with regular expressions), how to use the Source
Browser, how to execute functions and macros, and how to write PWB macros.

Chapter 6, “Customizing PWB,” describes how to redefine key assignments,
change PWB settings, add commands to the PWB menu, and use the TOOLS.INI
initialization file to store startup and configuration information for PWB.

Chapter 7, “PWB Reference,” contains an alphabetical reference to PWB menus,
keys, functions, predefined macros, and switches. It contains the essential
information you need to know to take the greatest advantage of PWB’s richly
customizable environment.

Using the Tutorial

You probably want to get right to work with MASM. The tutorial chapters 2 and 3
can help you become productive very quickly. To get the most out of this material,
here are a few recommendations:

= Follow the steps presented in the tutorial. It is always tempting to explore the
system and find out more about the product through independent research.
However, just as programming requires an orderly sequence of steps, some
aspects of PWB also require sequenced actions.

= If you complete a step and something seems wrong—for example, if your screen
doesn’t match what is in the book—back up and try to find out what’s wrong.
Troubleshooting tips will help you take corrective actions.

Chapter 1 Introducing the Programmer’s Workbench 5

= When working through this tutorial, consider how you might use these
techniques in your own work. PWB is like a full tool chest. You probably won’t
learn (or even want to learn) all of PWB’s capabilities right away. But as time
goes on, you’ll have uses for many of the tools you don’t use immediately.

Conventions in the Tutorial

Procedures described in the course of the tutorial are introduced with headings
designated by a triangular symbol. A list of the steps making up the procedure then
follows. For example:

» To open a file:
1. From the File menu, choose Open.
PWB displays the Open File dialog box.
2. Inthe File List list box, select the file that you want to open.
3. Choose OK.

In procedures, the heading gives you a capsule summary of what the steps will
accomplish. Each numbered step is an action you take to complete the procedure.
Some steps are followed by an explanation, an illustration, or both.

CHAPTER 2

Quick Start

This chapter gets you started with PWB. You’ll learn the basics by building and
debugging a C-callable routine that generates a 2-byte pseudo-random number.

Some of the source code that you will be using is included with the sample
programs shipped with MASM 6.1. If you chose not to install the sample code when
you set up MASM, run SETUP to install it (see Getting Started for more
information).

To start PWB in the Windows operating system for this tutorial, double-click the
PWB icon in the MASM group.

In MS-DOS, type
PWB
at the prompt.

» Toleave PWB at any time:
¢ From the File menu, choose Exit, or press ALT+F4.

The PWB Environment

If this is the first time you have used PWB, you see the menu bar, the status bar,
and an empty desktop (assuming a standard installation). If you have used PWB
before, it opens the file you last worked with.

PWB uses a windowed environment to present information, get information from
you, and allow you to edit programs. The environment has the following
components:

= An editor for writing and revising programs

w A “build engine”—the part of PWB that helps you assemble, link, and execute
your programs from within the environment

8 Environment and Tools

= A source-code browser
= Commands for program execution and debugging
= The Microsoft Advisor Help system

The browser and the Help system are dynamically loaded extensions to the PWB
platform. Microsoft languages and the utilities are also supported in PWB by
extensions. Other extensions are available, such as the Microsoft Source Profiler.
PWB presents all of these components through menus and dialog boxes.

The following figure shows some parts of the PWB interface.

File Edit Search Project Run Options Brouse Help

New
Close Ctrl+F4
A T A — Close All

Move Ctrl+F7?
Size Ctrl+F8
Restore Ctrl+F5
Mininize Ctr1+F9
Maxinize Ctrl+F18
Cascade F5
Tile Shift+F5
Arrange Alt+FS

Search Results

Print Results |@] Untitled.BB1 Alt+l

Record A Untitled 882 Alt+2

Clipboard

IEI Brouser Output
Help
ntitled.B82
Build Results : P N A8AA1.001

Figure 2.1 PWB Display

Chapter 4, “User Interface Details,” contains a thorough description of these
elements and the rest of the PWB environment. Refer to this chapter when you need
specific information about an unfamiliar interface element.

The Microsoft Advisor

PWB makes programming easier by providing the Microsoft Advisor Help system,
which contains comprehensive information about:

= PWB editing functions
= PWB advanced features
= PWB menus and dialog boxes

Chapter 2 QuickStart 9

a CodeView debugger

= Intel 80x86 assembly language

= MASM 6.1 assembler options

= Microsoft utilities (such as NMAKE, LINK, and so on)

The Advisor provides context-sensitive Help and general Help. Context-sensitive
Help provides information about the menu, dialog box, or language element at the
cursor. To see context-sensitive Help, you can simply point to an item on the screen
and press either the right mouse button or the F1 key. PWB displays a Help window
showing the requested information. You can also get context-sensitive Help and
more general Help by using the Help menu.

To answer questions of a less specific nature, you can access the Contents screen by
choosing Contents from the Help menu or by pressing SHIFT+F1. From the Advisor
contents, you can access Help on any other subject in the database.

» To get started using the Microsoft Advisor:

e From the Help menu, choose the Help on Help command.

Help on Help teaches you how to use the Microsoft Advisor Help system. For more
information on using Help, see Chapter 21.

» To close the Help window:

e C(Click the upper-left corner of the Help window (the Close box), press ESC,
choose Close from the File menu, or press CTRL+F4.

Note Click the Close box, choose Close from the File menu, or press CTRL+F4 to
close any open window in PWB.

The following sections explain basic editing procedures. If you’re already familiar
with these, you can skip to “Opening an Existing File” on page 14.

Entering Text

In this section, you’ll learn basic PWB procedures by entering a simple C-callable
assembly-language routine.

» To start a new file:

1. Move the mouse cursor (“point”) to the File menu on the menu bar and click the
left button, or press ALT+F from the keyboard.

PWB opens the File menu.

2. Point to the New command and click the left button, or press N to choose New.

10 Environment and Tools

Saving a File

>

PWB opens a window with the title Untitled.001.

Pressing the ALT key from the keyboard changes focus to the menu bar, and
pressing the highlighted key in a menu name opens that menu. Similarly, within a
menu, pressing a key highlighted in one of the commands causes that command to
be carried out. Using the keyboard, you can also easily move to the beginning of a
file by typing CTRL+HOME, or to the end of a file by typing CTRL+END.

Starting with your cursor in the upper-left comer of the edit window, type the
following comment line:

; C-CALLABLE PSEUDO-RANDOM NUMBER GENERATOR ROUTINE

Your screen should appear as follows:

File Edit Search TProject Run Options Brouse Window Help
I S ———— P T P T T
; C-CALLABLE PSEUDO-RANDOM NUMBER GENERATOR ROUTINE

Now that you’ve started entering your program, save your work before proceeding.

To save a file:
¢ From the File menu, choose Save, or press SHIFT+F2.
PWB displays the Save As dialog box.

Chapter2 QuickStart 11

JERT IR A int it led . 00 1 PP 1
D:\MASM\SAMPLES\PUBTUTOR

File List: Drives / Dirs:

{ OK > <Cancel> < Help >

This dialog box has several options that you use to pass information to PWB. PWB
indicates the active option —in this case, the File Name text box—Dby highlighting
the area in which you can enter text. For more information about dialog boxes, see

Chapter 4, “User Interface Details.”

Because you have not yet saved the file, it still has the name Untitled.801. Type
ONEQF . ASM in the File Name text box. Then click OK or press ENTER to save the
file (if you want, you can first select the directory where the file will be saved,
using the Drives / Dirs list box).

Note Now that you have named your file, choosing Save from the File menu does
not bring up a dialog box. Your file is immediately saved to disk.

Indenting Text with PWB

Most assembly-language programmers format their code in several text columns
(for example, a label column, an instruction column, a parameter column, and a
comment column). You can create these columns differently in PWB than in other
text editors. In PWB, you can move the cursor (“point”) to any position on the
screen and start typing text. PWB will take care of inserting whatever new lines,
spaces, or tabs are necessary to place the text in the position you are typing. By
setting options, you can determine whether PWB will use spaces or tab characters
to create the necessary white space (see “How PWB Handles Tabs” on page 118).

12

Environment and Tools

Type the following comment lines to document the routine:

; unsigned int OneOf (unsigned int range)

H Routine uses a linear congruential method to calculate
H a pseudo-random number, treats the number as a fraction
: between @ and 1, multiplies it times the range,

H truncates the result to an integer, and returns it.

; Algorithm: alil = ¢ (a[i-11 * b) + 1) mod m
H where b = 4961 and m = 2716

One0Of PROC NEAR C PUBLIC USES bx dx, range:WORD
OneOf ENDP

When you enter assembly-language code, you will often be adding a line indented
to the same column as the line above. PWB saves you time by automatically
indenting new lines when you press the ENTER key.

» If there is no line or a blank line immediately below the new line, PWB matches
the indentation of the line above it.

= [f there is a line immediately below the new line, PWB matches the indentation
of the line below it.

You’ll now type some text after the line containing the PROC NEAR directive.

To insert space for a new line using a mouse:

1. Position the cursor anywhere past the end of the line containing PROC NEAR.
Precise positioning of the cursor is not critical because (by default) PWB trims
trailing spaces from the end of your lines.

2. Click the left mouse button.
3. Press ENTER to make a new line.

If you are in overtype mode, change to insert mode by pressing the INS key.
Otherwise, pressing ENTER simply moves the cursor to the beginning of the next
line. PWB displays the letter O on the status bar and shows the cursor as an
underscore to signal that you are in overtype mode.

To insert the new line using the keyboard:

1. Move the cursor to the line containing the PROC NEAR directive by pressing
the UP ARROW key.

2. Press END to move the cursor to the end of the line.
3. Press ENTER to make a new line.

Chapter2 QuickStart 13

Now type the following lines, using the TAB key to indent and space the
instructions:

mov ax, 4961 ; Load the constant into AX and multiply
mul rndPrev it by the previous value in the series

“e we we

inc ax add one to the product

mov rndPrev, ax and save it, mod 2716

mov bx, range ; Now load the range argument,

mul bx ; multiply it times the new number,
mov ax, dx ; and return the high 16 bits

Your program now looks like this:

Edit Search Project Run Options Brouse Window Help
C :\MASM\SAMPLES\PWUBTUTOR\ONEOF . ASH
unsigned int One0f (unsigned int range)

File
1

Routine uses a linear congruential method to calculate
a do-randon ber, treats the number as a fraction
betueen B and 1, nultiplies it times the range,
truncates the result to an integer, and returns it.

Algorithm: alil = ¢ C ali-11 * b) + 1) mod n
where b = 4961 and n = 2°16

TR ETETED ||

One0f PROC NEAR C PUBLIC USES bx dx, range:WORD

mov ax, 4961 ; Load the constant into AX and nultlply
nul rndPrev : it by the previous value in the series
inc ax ; add one to the product

nov rndPrev, ax ; and save it, mod 2"16

nov bx, range ; Now load the range argument

mul bx > and multiply it times the new number,
mnov ax, dx ; and return the high 16 bits

Now that you have finished entering the code for the routine, save the file. From the
File menu, choose Save, or press SHIFT+F2, Because you have already named and
saved the file once before, PWB simply saves it, without bringing up the Save As
dialog box.

Note You can turn on automatic file saving by setting the Autosave switch to yes
with the Editor Settings command on the Options menu. When Autosave is turned
on, PWB automatically saves your file before executing certain commands such as
running your program or switching to another file. For example, if you run a
program that is not yet stabilized, PWB ensures that your file is stored safely in
case you have to reboot.

14 Environment and Tools

Opening an Existing File

The remainder of this chapter uses a different file, RND.ASM, which you can now
open in PWB. This file contains code to let you test the routine you just entered. It
has several errors you will correct as you follow the tutorial.

> To open RND.ASM:
1. From the File menu, choose Open (press ALT+F, O).
PWB displays the Open File dialog box.

Open File
File Name: [0« - oo 1
D :\HASM
File List: Drives / Dirs:
README. TXT .

BIN

HELP

INCLUDE

INIT

[1 Pseudofile
[X1 New Window

{ OK > <Cancel> < Help >

PWB uses *.* as the default filename in the File Name text box. This causes
PWB to display all files in the current directory in the File List box. If you know
the name of the file you want to open, you can replace the * . * by typing the
filename into the File Name text box.

2. If you are not in the directory or drive where the sample programs are located,
press TAB twice to move to the Drives/Dirs box, or click inside it. The example
file, RND.ASM, is located in the \SAMPLES\PWBTUTOR subdirectory of
your main MASM directory, if you accepted the default directory suggested by
SETUP.

The current directory is shown directly beneath the File Name text box.
Subdirectories of the current directory are listed in the Drives/Dir box, followed
by the available disk drives. Although the box is only large enough to display
five entries at a time, you can scroll through the subdirectories or drives to find
the one you want by using the DOWN ARROW or PAGE DOWN key, or by using the
scroll bar to the right of the box.

A directory entry consisting of two periods (. .) indicates the “parent directory”
of the one you are currently in. Selecting the .. directory causes you to move
one level up your directory tree to the directory immediately above the current

Chapter2 QuickStart 15

directory. For example, if you are in the directory, C\MASM\SAMPLES, then
the .. directory would be CNMASM. Using the .. entry helps you walk one
step at a time along directory “paths.”

You’ll notice that the cursor is a blinking underline. That means that although
you have selected the list box, you haven’t yet chosen an item.

. Use the arrow keys to move to the \SAMPLES\PWBTUTOR subdirectory of
your main MASM directory.

As you press the arrow keys, you’ll notice that the cursor changes to a bar that
highlights the whole selection. This is called the “selection cursor.” The text of
the selected item also appears in the File Name box.

. When you have highlighted the drive or diréctory you want, press ENTER to
move there. Using the mouse, you can simply double-click on a directory or
drive entry to move to it, without having to go through an intermediate selection
step.

. Use the TAB key or mouse to move to the File List box.

6. Use the arrow keys to move to RND . ASM, or click on it with the left mouse

button.

. When you have highlighted RND . ASM, press ENTER or choose the OK button to
accept your selection and open the file. Just as with the directory or drive
entries, you can simply double-click on the filename to open it, bypassing the
selection step.

PWB opens RND.ASM for editing.

File Edit Search Project Run Options Browse Window Help
D \MASMNSANPLES\PUBTUTORNONEOQF . ASH
D {\HASH\SAMPLES\PUBTUTOR\RND . ASY ————
.NOLIST
; This source file contains a C-callable routine designed to generate
; unsigned pseudo—randon numbers between @ and any number up to 65,535
; (up to 16 bits long). It takes an argument specifying the upper end
; of the desired range. The rest of the file contains code used to
; test the routine by writing its output to the standard output device.
.LIST

PAGE 55,132

TITLE Random number routine: OneOf (range), with test code
.MODEL =mall, c

.DOSSEG

.186

PROTO0 range:WORD
PROTO
PROTO
PROTO

F1=Help> <Alt=Menuw> <F6=Window> CN 86881.601)

16

Environment and Tools

Copying, Pasting, and Deleting Text

The RND.ASM code contains a placeholder routine named OneOf, which returns O.
You can now delete it and replace it with the random number routine that you
created in the previous section of this tutorial.

You have already typed in and saved the OneOf routine in a different file. Rather
than type it over again, you can copy and paste it using PWB’s clipboard (a
temporary storage place for text). To do this, open the Window menu and choose
the ONEOF . ASM window (if you no longer have it open, you will need to go back to
the directory in which you saved it and open it using the Open command on the File
menu).

Next, to copy the routine most conveniently, you will change the way text is
selected. Three selection modes are available on the Edit menu:

= Stream mode— by default, the editor starts in stream selection mode, which
allows selection to begin at any point, and selects all characters in a stream
between the beginning and end positions of the cursor.

= Line mode—selects complete lines of text, starting with the entire line on which
the cursor begins, and ending with the entire line on which it ends.

= Box mode—allows you to select a rectangular section of text, one corner of
which is the starting position of the cursor, and the opposite corner of which is
the ending position of the cursor.

The currently active selection mode is marked with a dot on the Edit menu. Clicking
on a mode selects it. You can also change modes while selecting text. Just select
text by clicking the left mouse button and dragging the mouse. Then, without
releasing the left mouse button, press the right mouse button to toggle among the
selection modes.

In this case, line selection mode is the most convenient.

To change the selection mode:
e From the Edit menu, choose Line Mode.

Next, place the cursor on the top line of text for the routine:

unsigned int OneOf (unsigned int range)

» To select lines of text using the keyboard:

e Press SHIFT+DOWN ARROW until the cursor is on the line containing ENDP.

Chapter 2 QuickStart 17

» To select lines of text using the mouse:

Hold down the left mouse button and drag the cursor to the line containing
ENDP.

» To copy and paste the text that has been selected:

1.

From the Edit menu, choose Copy. This action places the section of text that has
been selected into the clipboard. You can also invoke the copy command using
the shortcut key combination CTRL+INS.

From the Window menu, choose the RND . ASM window.

. Go to the place where you want to insert the routine (line 51). Press ALT+A, type

51, then press CTRL+M to jump to line 51.

This sequence of keystrokes is pronounced “Arg 51 Mark.” The PWB function
Arg begins an argument (51) that is passed to the Mark function. When you
pass a number to Mark, PWB moves the cursor to that line.

You can also do this from the menu by typing the line number in the Goto Mark
dialog box from the Search menu.

The cursor is at the beginning of line 51, exactly where you want to insert the
new routine.

From the Edit menu, choose Paste, or use the SHIFT+INS shortcut keystroke to
paste the contents of the clipboard into that location.

» To delete the old placeholder routine:

1.

Use the PAGE DOWN key and arrow keys or mouse to move to the first line of the
placeholder routine, just below the ENDP line of the inserted routine.

Select the six lines of the old routine, using SHIFT+DOWN ARROW or by selecting
with the mouse.

. From the Edit menu, choose Delete, or press DEL.

The selected section is deleted.

Important If you select an area of text and then type something or otherwise insert
text, PWB replaces the selected text (deletes it and substitutes what you are typing
or inserting), without saving it on the clipboard. You can recover the text by
choosing Undo at once from the Edit menu. In the example above, if you had
selected the six lines of old routine before pasting in the new routine, those lines
would have been deleted and replaced by the paste operation.

You have inserted the new routine into RND.ASM. Save the file by choosing Save
from the File menu.

18

Environment and Tools

Single-Module Builds

The next step is to assemble and link the RND program to see if it works.
Assembling and linking the source files is called “building the project.” It results in
an executable file. A project build can also:

Create and update the browser database.
Create a Windows-based dynamic-link library (DLL).

= Build a library of routines.

Setting Build Options

Before you build a program, you must tell PWB what kind of file to create by using
the commands on the Options menu. Use the commands from the Options menu to
specify:

s The run-time support for your program. This is important for mixed-language

program development, where you have some source files in assembler and some
in another language. With Basic, for example, the run-time support must be
Basic’s run-time support.

The run-time support you choose determines the run-time libraries that are used
and the types of target environments that can be supported.

Project template. The template describes in detail how PWB is to build a project
for a specific type of file (EXE, .COM, .DLL, .LIB) and the operating
environment for the target file (MS-DOS, the Windows operating system, and
S0 on).

Either a debug or release build. Debug options normally specify the inclusion of
CodeView debugging information, where release options do not. You may want
to generate a different listing file for a debug build than for a release build, or
you may not want any listing file for one type of build or the other.

A build directory. PWB builds your object and executable files in your current
directory unless you specify otherwise. (This option is reserved for projects that
use explicit project files, which are described in Chapter 3.)

P> To set the project template for RND.ASM:

1. From the Options menu, choose Set Project Template from the Project

Templates cascaded menu.

Chapter 2 QuickStart 19

Environnent Variables...
Key Assignnents...
Editor Settings...
Colors. ..

ild Options...

_Set Project Template... .

oject Templates |

Custonize Project Template...

Hse Options...

Save Custom Project Template...
Remove Custon Project Templates... Optiomns...
AUE Options...

iew Options...

Language Options

Note that the actual order of the menu items may differ from the illustration
because PWB’s extensions can be loaded in any order.

2. PWB displays the Set Project Template dialog box.

Set Project Template
Runtine Support:

1
t
Assenbler

i
]

Project Templates with Runtine Support for: None

Generic Options
DOS EXE

DOS Overlaid EXE
DOS p-code EXE
DOS COM

None
Generic Options

Current Runtime Support:
Current Project Template:

{ OK > <Cancel> < Help >

This dialog box typically has the entries None and Assemb1er in the Runtime
Support list box. If you have installed other languages, their names appear as
well.

Since the RND program does not require run-time support, leave None selected.

Move to the Project Templates list box by clicking in the box, pressing the TAB
key the appropriate number of times, or by pressing ALT+T.
4. Select DOS EXE.

5. Choose the OK button to set the new project template.

20 Environment and Tools

» To set the build options for RND.ASM:

1.

7.

From the Options menu, choose Build Options.
PWB displays the Build Options dialog box.

Build Options

() Use Debug Options
(+) Use Release Options

[1 Build Directory: [---ceremrreeemamemcnameennanns 1

{ Ok > <Cancel> < Help >

. Turn on Use Debug Options by choosing the Option button or by pressing

ALT+D.

This option tells PWB that you are building a debugging version of the program.
PWB uses debug options when you build or rebuild until you use the Build
Options dialog box to choose Use Release Options.

Choose the OK button.

. From the Options menu, choose Languages Options, then choose MASM

options from the secondary menu.
PWB displays the Macro Assembler Global Options dialog box.

. Choose Set Debug Options.

PWB displays the Macro Assembler Debug Options dialog box.

In the Debug Information box, CodeView should already be selected, indicating
that the assembler will generate the information that CodeView needs to
correlate assembled code with source code.

Select Generate Listing File and Include Instruction Timings. This causes the
assembler to create a listing file showing you exactly how it assembled your
program, and to include in the listing how many clock cycles each instruction
will take to execute.

Choose the OK button twice.

PWB saves all the options that you specify. You don’t have to respecify them each
time you work on your project.

The following illustration shows the three sets of options that PWB maintains for
each project. Global options are used for every build. Debug options are used when
Use Debug Options is turned on in the Build Options dialog box. Release options
are used when Use Release Options is turned on.

21

Options Menu
Project Options Language Options
Link Options

Global Debug Release
Options Options Options

gsg IL=JIS;9 Build 0

ebug elease ui ptions
Options |, S%Iﬁﬁhed <«— Options
Options
y
— Current Build Options

You can set assembler and linker options for both types of builds (debug and
release) by using the Language Options commands and the LINK Options
command. The Build Options command then determines which type of build, using
which set of options, is actually performed when you assemble a file or rebuild the
project.

Global options, on the other hand, typically include settings for warning level,
memory model, and language variant. These are options that do not change between
debug and release versions of a project.

Setting Other Options

The Options menu also contains commands that allow you to describe the desired
project build more completely. You don’t need to change most of these options to
build RND.ASM because the default values supplied by the template will work
well.

The Options menu contains the following commands:

= MASM Options in the Language Options cascaded menu. These commands let
you specify assembler options specific to debug and release builds, and general
options common to both types of builds. Using the MASM Global Options
dialog box, you can specify memory model, warning level, and so on.

If you have more languages installed, their Compiler Options commands also
appear in the Languages Options cascaded menu.

22 Environment and Tools

LINK Options. This command parallels the Compiler Options commands. You
can specify options specific to debug or release builds and general options
common to both debug and release builds.

Use LINK Options to specify items such as stack size and additional libraries.
You can also select different libraries for debug and release builds. This is
handy if you have special libraries for debugging and fast libraries for release
builds.

NMAKE Options. This command lets you specify NMAKE command-line
options for all builds. This option is particularly useful if you have an existing
makefile that was not created by PWB or if you have modified your PWB
project makefile. For more information about these subjects, see “Using a Non-
PWB Makefile” on page 55.

CodeView Options. This command allows you to set options for the CodeView
debugger.

Building the Program

Now that you’ve set your options, you can build the program. Note that the sample
program contains intentional errors that you will correct.

P> To start the project build:

1.

2.

From the Project menu, choose Build.

PWB tells you that your build options have changed and asks if you want to
Rebuild AT1.

Choose Yes to rebuild your entire project.

After the build is completed, PWB displays the following dialog box:

Build Operation Complete
Rebuild all

? Errors/Warnings

View Results> <Run Program> <{Debug Program> <Cancel> < Help >

You can choose one of several actions in this dialog box:

View the complete results of the build by opening the Build Results window.

Run the program if building in MS-DOS. You can run an MS-DOS program
right away if the build succeeds. If the build fails, you should fix the errors
before you attempt to run the program.

Chapter2 QuickStart 23

To run a successfully built Windows-based program, you must be running under
the Windows operating system, and have started the WXServer program before
you start PWB.

= Debug the program if building in MS-DOS. If the build succeeds but you
already know the program is not producing the intended results, you can debug
your MS-DOS program using CodeView.

To debug a Windows-based program, you should be running under the Windows
operating system, and already have the WXServer running when you start PWB
or CodeView.

= Get Help by choosing the Help button or by pressing F1 (as in every PWB
dialog box).

= Cancel the dialog box. This returns you to normal editing.

Choose View Results to close the dialog box (press ENTER). PWB displays the
results of the build so that you can review the build messages or step through them
to view the location of each error. The next section describes how to do this.

Fixing Build Errors

For each build, PWB keeps a complete list of build errors and messages in the
Build Results window. The RND.ASM program that you just built contains several
errors that you’ll identify and fix in this section.

If you want to examine build errors in a specific order, you can do so in the Build
Results window by placing the cursor on whatever error you wish to examine, and
selecting Goto Error from the Project menu. PWB opens a window onto the
appropriate source file and places the cursor on the line at which that error was
recognized. When you are finished with each error, selecting the Build Results
window from the Window menu will return you to the Build Results window.

In many cases, however, you will want to work through the errors one after another.
This is the easiest method for fixing the build errors in RND.ASM.

» To fix errors one after another:
1. From the Project menu, choose Next Error, or press SHIFT+F3.

PWB positions the cursor on the location of the first error or warning in your
program, In this case, a comma is missing after the 10 at the end of the first line
of the banr?2 data declaration.

24 Environment and Tools

File Edit Search Project Run Options Brouwse Window Help
— ————— Build Results
D :\MASH61\CODE\RND . ASH

EQU SIZEOF banr

BYTE 13, 18
" (88 numbers in each series)"
SIZEOF banr2

prompt BYTE 13, 18, 13, 18,
“Please enter a range (@ - 65,535): "
Ipronpt EQU SIZEOF pronpt

BYTE 13, 18,
"1s:12345678 the correct range? If so, press 'Y’
SIZEOF isrng

13, 18,
"Press "Esc"” to quit, any other key to continue ", 13, 18
SIZEOF again

2. Correct the first error by inserting a comma immediately after the 10.

6.

. Fix the error by changing the double quotes (

. From the Project menu, choose Next Error, or press SHIFT+F3.

PWB moves the cursor to the location of the second error. Here, "Esc" in the
string on the line below the cursor is enclosed in double quotes, and the string
itself is also enclosed in double quotes. As a result, the assembler interprets the
first set of quotes around Esc as the end of the string, and then does not
recognize Esc as a valid instruction or directive. This can be fixed by
substituting a pair of single quotes for the pair of double quotes either around
the string or around Esc.

) around Esc to single quotes
"

Because of this error, the data symbol again was not defined during the first
assembly pass, which also meant that the constant lagain could not be
evaluated. As a result, two more errors were generated, which can now be
ignored.

. From the Project menu, choose Next Error, or press SHIFT+F3.

PWB positions the cursor on the location of the third error, a simple
typographical error where the mov instruction was spelled “mob.”

Correct the third error by replacing the “b” in mob with a “v.”

Now that all the build errors in RND.ASM have been corrected, save the file by
choosing Save from the File menu or by pressing SHIFT+F2.

Chapter2 QuickStart 25

Running the Program

The next step is to build and run the program.

» To run the program:

1. From the Run menu, choose Execute (be sure that you have saved RND.ASM
first).

PWB detects that you’ve changed the source and displays a dialog box with the
following options:

Dependent file(s) have changed!

Do you want to Build/Rebuild current target?

{Build Target> <Rebuild All> <Run Program> <Cancel> < Help >

2. Choose Build Target to build the program.
When the build completes, PWB displays the following dialog box:

Build Operation Conplete
Build all

@ Errors/Warnings

{Vieuw Results> <Run Program> <Debug Program> <{Cancel> < Help >

3. Choose Run Program to run the finished program.

When you run it, the RND program will start by asking you to supply a range value
between 1 and 65,535. Type 1234 and press ENTER. The program will then ask you
to confirm that 1,234 is indeed the correct range. When you type y, the program is
supposed to display a list of random numbers within that range. Instead, however,
the program restarts when you type y. Something is wrong.

To get out of the program and back to PWB, press CTRL+C (in the case of this
particular program, you can also use the ESC key to exit when the program asks for
confirmation of a range value). Before blanking your program’s output, PWB will
display the message, “Strike any key to continue...” so that you can examine the
final state of the screen.

The following sections describe the process of debugging using the Microsoft
CodeView debugger. If you're already familiar with CodeView, skip to Chapter 3,
“Managing a Multimodule Program.”

26

Environment and Tools

Debugging the Program

PWB integrates several Microsoft tools to produce a complete development
environment. Among those tools are NMAKE, a program maintenance utility, and
CodeView, a symbolic debugger. Whenever you build programs using PWB, PWB
in turn invokes NMAKE to manage the build process. In the same way, PWB can
serve as a gateway to CodeView when you need to debug a program you have built.

Earlier, you chose Use Debug Options in the Build Options dialog box. A debug
build typically includes the assembler options that generate CodeView information.
Therefore, the program is ready to debug with the CodeView debugger.

Using CodeView to Isolate an Error

In addition to the typographical errors that you just corrected, RND.ASM contains
a logical error which will prevent it from running properly. You can use CodeView
to isolate this error.

To start CodeView:
e From the Run menu, choose Debug.

If anything in your program is out of date, PWB asks if you want to build or
rebuild the current target. If you modified the source file in any way, PWB
considers it out of date relative to the executable file that you built earlier. If this
happens, build the program and choose Debug from the Run menu.

CodeView now starts, displaying three windows on its main debugging screen.

File Edit Searph

Run Data Options Calls Windows Help
T11- T ET—"

————Jocals

sourcel CS:IP RND.ASM

72: OneOf ENDP
73:
74: .STARTUP
76: ; Seed the random number generator with a "randon" value
77 call seedr
78:
79: ; Display 1st Banner line
8a: nov ah, 846h ; DOS function: Urite to file or device
81: nov bx, 1 ; Handle = Standard Output
' mov cx, lbanr ; Number of bytes to write

<F8=Trace> <F1@=Step) <F5=Go> <F3=81 Fmt)

Chapter 2 QuickStart 27

The first thing to do is set up the CodeView screen so that it best suits your way of
working. When you leave CodeView, your setup will be saved in CURRENT.STS.
The next time you use CodeView, that setup will be restored when the program
starts.

The right screen layout depends a lot on your work style, and on the project you are
working on. In this case, many of CodeView’s more advanced features will not be
necessary, so we will set up a simple screen.

LT3

By default, three windows are initially displayed: “locals,” “sourcel,” and
“command.” Close the locals window, since it will not be needed in debugging
RND, open a register window and a memory window, and arrange the windows in
the screen.

File Edit Search Run Data Options Calls Ulndous Help
[6)—————— - _inemoryl b DS:B ———— - —[7]reg
[37AB:0080 CD 28 FF 9F 00 9A F@ FE 1D F@ 96 82 2F = f.u:l»:ua/

37AB:08BD 2A 97 B3 2F 20 60 OB 12 22 C1 2B 81 A1 s=iw/='§3"L+@3 BX = #0068
3793 Bﬁlﬂ [} 83 81 81 FF FF FF FF FF FF FF FF FF B&. - =
l—[3]m sourcel CS:IP RND.ASH 18] =
74t .STARTUP 1} Bp =
75! =
37BB:8028 B8D237.~ . . 0 AXa3PD2 =
37BB:00828 SEDS MOV DS, AX =
37BB:0862D 8CD3 MoV BX, S8 =
37BB:@B2F 2BD8 SUB BX,AX =
37BB:8031 CiE384 SHL BX,084 =
37BB:8834 BEDO MOV SS,AX =
37BB:8036 B3E3 ADD SP,BX =
76: ; Seed the random number gemerator with a “randon" value

e

<F8=Trace> <F1B=Step> <F5-=Goy <F3=S1 Fnty (Sh+F3-M1 Fnt T DEC

» To close a window using the mouse:

e Click the upper left corner of the window.

» To close a window using the keyboard:

e Use the F6 key to move into the window that you want to close. Choose Close
from the Windows menu, or press CTRL+F4.

» To open the Register and Memory windows:
1. From the Windows menu, choose Register, or press ALT+7.

The Register window displays the contents of the processor’s registers, either in
“Native” (8086) mode, or in “32-bit” (80386-80486) mode.

28 Environment and Tools

2. At the bottom of the Options menu, click Native if it is not already selected.
3. Choose Memory 1 from the Windows menu, or press ALT+F5.

Memory windows display the contents of a specified block of memory, so that
you can watch changes as your program runs.

» To move and size a window using the mouse:

1. To move a window, place the cursor on its top line, not in a corner. Then drag
the window to a new location.

2. To size a window, move the cursor to the lower right corner of the window.
Then drag the comer to change the window’s size.

» To move and size a window using the keyboard:
1. Using the F6 key, shift focus to the window you want to size.
2. Choose Move or Size from the Windows menu.
3. Use the arrow keys to move or size the window.
4. Press ENTER when you are finished.

‘When you have positioned and sized the windows to your satisfaction, set the
source window to show both your source text and the actual instructions assembled
by MASM, and set the memory window to stay fully up to date as the program
executes.

» To display mixed source and assembler output:
1. From the Options menu, choose Sourcel Window.

CodeView displays the Sourcel Window Options dialog box.

2. In the Display box, choose Mixed Source and Assembly.
3. Choose OK.

» To set the Memoryl window to be updated frequently:
1. From the Options menu, choose Memoryl Window.
CodeView displays the Memory1 Window Options dialog box.

2. Select the “Re-evaluate expression always (live)” check box.
3. Choose the OK button.

Working Through a Program to Debug it

CodeView has placed you at the program’s starting point. The registers are as they
would be at that point, and the memory window shows whatever the DS register is

Chapter2 QuickStart 29

pointing to. The instructions that appear at the top of the source window have been
created by the .STARTUP directive, as you can see if you scroll up a few lines.

CodeView provides various ways to control and examine the execution of a
program. The “Step” command (F10 key) executes the next instruction in the
program, and if that instruction is a call, executes the entire called code up through
the return. “Trace” (F8 key), on the other hand, jumps to the called code and traces
through it too, one instruction at a time. You can also run the program up to a given
point, or set breakpoints at several points. With RND, we will only need to use a
few of the possible debugging tools.

To Step through the program:

o Use the F10 key to step through the first couple of instructions of the .STARTUP
code.

You will notice that as each instruction is executed, CodeView briefly displays the
program output screen, and updates the Register window to show changes in the
registers. As the DS register is loaded, the Memory window displays the data
segment of the RND program.

Stepping is a slow way to move through the program. In many cases, as with RND,
you will want to move quickly to the point where the program failed, to see what
the matter was. In RND, everything seemed to be working correctly until you
entered y to confirm the range.

To run a program up to a given place:
1. Scroll through the code to the comment line:

H Read in a character from the keyboard
Three lines below the comment is a cmp instruction.

2. Place the cursor on the line containing the cmp instruction, either by using the
arrow keys or the mouse.

30 Environment and Tools

File Edit Search Run Data Options Calls Windows Help
[5]————— memoryl b DS:0

37D2:0088 75 F8 61 C9 C3 B8 6A BA @D B4 BD BA 52 uap}. jl[Fdreh
37D2:808D 61 6E 64 6F 6D 28 4E 75 6D 62 65 72 28 andon Number

37D2:881A 47 65 6E 65 72 61 74 6F 72 20 53 61 6D Generator San

n=[31] sourcel CS:IP RND.ASH
123:
124: ; Read in a character from the keyboard
125: nov ah, 1 ; DOS function: Read charac
37BB:6088 B4A1 MoV AH,81
126: int 821h ; issue DOS function interr
37BB:888A CD21 INT 21
127: chp al, 27 ; Is this an 'Esc’ keystrok
[37BB:888C 3C1B CHP AL, 1B
128: Jz quit ;= if so, quit
37BB:BACE 7457 JZ [12) g
129
L&
[9
>
V1817 Error: syntax error
D>

{F8=Trace> <F1B=Step> {F5=Go> {F3=S1 Fnt)> <Sh+F3=M1 Fmt)>

3. Press the F7 key, or by clicking on that line with the right mouse button.

CodeView procedes to execute the program up to (but not including) that line.
The display switches to the output screen where the program shows its
introductory message, then requests a range value.

» To work through the RND program and find the bug:
1. Type in a range value smaller than 65,535 and press ENTER.

The program redisplays the range value and asks for confirmation.

2. Pressy.
CodeView returns you to the source window in the debugging screen.
The succeeding instructions are designed to recognize an ESC or a y, and are
presumably failing in some way, causing the program to start from the
beginning.

3. Using the F10 key, step through the various cmp instructions.

You will find that the code works as expected, recognizes the y, and proceeds.

4. Go on to the next the next jump or branch.

The next possible branch in program execution occurs at the call to OneOf.
Although this seems unlikely to be causing the program to start over, it is the
next thing to test.

5. Position the cursor on the call instruction, and press either F7 or the right mouse
button to execute the program up to that call.

Chapter2 QuickStart 31

So far, so good: the program continues to run as expected.

6. Now press F10 to execute the call itself.

File Edit Search Run Data Options Calls UWindows Help
[§]——————— menoryl b DS:Bxed
37D6:88E4 8D 8A 33 34 35 6D BA 00 0 6A B8 98 68 10 AR
37D6:06F1 098 60 00 00 BP 6V B0 B0 60 0@ AA BB BB
37D6:0BFE 90 00 00 00 NP 6O B0 60 00 0@ BB BB BB
37D6:018B 08 6O 0P 00 0O 0B 6B 0P 0D 00 B0 BB BB

1=[3]=———————— sourcel CS:IP RND.ASH

37BF :868AA BFEDAA MOV DI,B8ED

141:

142: prtNun: push si ; Use the OneOf routivne to
37BF:86AD 56 PUSH SI

143: call One0f 5 number in the range saved
[37BF :08AE EBSFFF CALL 2018

144: add sp,2 ; and adjust the stack poin
37BF:00B1 8304682 ADD 8p,02

145: push di ; Push the 2nd argument 1st
37BF:08B4 57 PUSH DI

146: push ax ; use INVOKE, you dow’t hav
37BF :08B5 58 PUSH Ax

147: . .

L&

{F8=Trace> <F1B=Step> <{F5=Go> {F3=81 Fnt> <Sh+F3=M1 Fnt)

The program now erroneously starts over. We now know that the problem must
be located in the OneOf routine.

7. Press CTRL+C, then ENTER to get out of the program.

8. Choose Restart from the Run menu to return to the beginning of the program.

9. As you did before, scroll down to where OneOf is called and execute the

10.

11.

12.

program up to just before the call.

This time, use F8 to trace through the call.

You will notice that CodeView now shifts into the called routine, allowing you
to step through the OneOf code instruction by instruction.

Step or trace through the OneOf routine, using F10 or F8, and look for the
problem.

You will discover a simple error of omission: the routine has no ret instruction
at the end. As a result, execution continues into the succeeding code, which
happens to be the .STARTUP code.

Having found the problem, you can leave CodeView and return to PWB.

From the File menu, select Exit.

CodeView closes, saving your settings for next session.

32

Environment and Tools

13. From PWB, insert a new line in the RND.ASM file just before the ENDP line of
the OneOf routine.

14. Type a ret instruction there.

File Edit Search Project Run Options Browse Window Help
D :\MASM\SAMPLESN\NPUBTUTOR\RND . ASM
argument, truncates the resulting product to an integer,
and returns it.

; Algorithn: alil = (Cali-11*b) +1)nmodn
; vhere b = 4961 and n = 2*16

PROC NEAR C PUBLIC USES bx dx, range:WORD

nov ax, rndPrev ; Load the previous value in the series
mnov bx, 4961 ; and multiply it by the constant

nul bx

inc ax : add one to the product

nov rndPrev, ax ; and save it, mod 2*16

nov bx, range ; Nou load the range argument,

nul ; multiply it times the neu number

nov ; and return the high 16 bits of the product
ret

ENDP

.STARTUP

General Help) <Fi=Help> {Alt=Menu> N #80872.81

15. Save the corrected file by choosing Save from the File menu, or by pressing
SHIFT+F2.

16. Select Execute from the Run menu to rebuild the program and try it again.

This time, it should work without problems.

Examining Memory in the Memory Window

In addition to being able to watch the register contents change as your code runs,
CodeView lets you see what happens to locations in memory. For example, you
may have noticed that OFFSET 1nBuf was assembled as hex E4. By setting the
memory window at that address, you can watch what happens in the InBuf buffer as
the program formats a line of output. One way to reach that address, since it is
fairly close, is to scroll in the memory window until you get to it. However, this is
often impractical.

» To set the address in the Memory Window:
1. From the Options menu, select Memory1 Window.

2. In place of DS: 0 in the Address Expression field of the Memory1 Window
Options dialog box, type DS : 0x00e4.

Chapter2 QuickStart 33

Now, you can step through cycles of a formatting loop and watch the buffer change.

» To step through a formatting loop in RND.EXE:

1. In the source window, scroll to the instruction dec b1 around line 150, which
completes a formatting cycle for a random number. '

2. Press F7 or click in that line with the right mouse button.

If you know for sure that dec b1 is on line 150, you can move to the Command
window and type g @150 followed by the ENTER key. This instructs CodeView
to execute the program up through line 150 in the source file.

File Edit Search Run Data Options Calls Windows Help
nemoryl b DS :Bxed

sourcel CS:IP RND.ASM 41
158: dec bl ; Decrement the number count
BL , -
151: Jnz prtNun ; and go on until finished
37BB:@AC1 7SEA JINZ B8BAD
152:
153: push bx 3 If it’s time to print a
37BB:ABC3 53 PUSH BX
154: nov ah, 848h ; DOS function: Urite to f
37BB:0AC4 B440 MoV AH, 40
155: nov bx, 1
37BB:AAC6 BBRA1AA Hou BX, 0001
Lé

[9]————————— comnand

>y 0158 ‘ o ‘
>

{FB8=Trace> {F1B8=8tep> <F5=Go> <F3=81 Fnt> {Sh+F3:=M1 Fnt>

3. While watching the memory window, press F7 again, or click the dec b1
instruction again with the right mouse button.

As the loop executes again, you can see the memory area change to reflect the
new value being formatted into InBuf.

» To switch from CodeView back to PWB:
e Choose Exit from the CodeView File menu.

Where to Go from Here

Now that you’ve created, built, and debugged a simple program, you’ve begun to
discover the power of PWB. Chapter 3, “Managing Multimodule Programs,”
describes how to create and manage projects with more than one source file.

35

CHAPTER 3

Managing Multimodule Programs

This chapter expands on the work you did in Chapter 2 and explains how to build
and maintain multimodule programs using PWB’s integrated project-management
facilities. PWB offers an efficient way to manage complex projects. You organize
and build your project entirely within PWB, using convenient menus and dialog
boxes instead of makefiles or batch files.

PWB stores the information needed to build and manage your program in two files,
the project makefile and the project status file. These are called the “project.” When
you open the project, PWB automatically configures itself to build your program.
To move from one project to another, you close one project and open another.

Multimodule Program Example

In this chapter, you’ll learn to set up a multimodule project in PWB by building
SHOW.EXE, a three-module program. The SHOW program displays text files on
character-based screens with MS-DOS.

The following modules make up SHOW.EXE:

Module Function

SHOW.ASM Program driver; contains .STARTUP entry point, and calls all
other procedures.

PAGER.ASM Contains procedures for paging through a file and writing text to
the screen buffer

SHOWUTIL.ASM Contains miscellaneous procedures.

The program also contains a common header file SHOW.INC in addition to these
three source modules. Figure 3.1 shows the components of SHOW and how they
combine to build the executable file.

36 Environment and Tools

SHOWUTIL ASM
e

C SHOW.0BJ) @owum.o@ CPAGER.OBJ)
L |

_SiowE

Figure 3.1 The SHOW Project

To build SHOW.EXE, you need to assemble the three source files and link them
together, having specified the assembler and link options that will produce the kind
of file you are trying to make. All this build information is stored in the SHOW
project make and status files.

Opening the Project

Start by opening the SHOW project. (If you have not started PWB, do so now.)

» To create a project:
1. From the Project menu, choose New Project.
PWB displays the New Project dialog box.

New Project
Project Name: [D:\MASM\SAMPLES\SHOWNshow-------vnvvmvneannnannonn, 1

Current Runtime Support: None
Current Project Template: DOS EXE

{Set Project Template...>

< 0] > <Cancel> < Help >

2. Type show in the Project Name text box.
3. Choose Set Project Template.
PWAB displays the Set Project Template dialog box.

4, Select the following options:

Chapter 3 Managing Multimodule Programs 37

= Runtime Support: None.
» Project Template: DOS EXE.
At this point, the Set Project Template dialog box should appear as follows:

Set Project Template
Runtine Support:

1
T

Assenbler
1

Project Templates with Runtime Support for: None

—

Generic Options
D0S EXE

DOS Overlaid EXE
DOS p-code EXE
DOS COM

Current Runtime Support: None
Current Project Template: DOS EXE

< OK P <(Cancel> < Help >

This initial specification tells PWB what kind of executable file you intend to
build, and is saved as part of the project.

5. Choose OK to return to the New Project dialog box.

In this case, a project makefile, SHOW.MAK, already exists. Since PWB would
ordinarily create and save a new makefile at this point, you are now asked
whether you want to overwrite the existing file.

——— File exists. Reurite?

D :\MASM\SAMPLES\SHOW\shouw .nak

{Yes > < No > < Help>

6. Choose Yes to overwrite the existing file.
PWB saves the new SHOW.MAK and returns to the New Project dialog box.

7. Choose OK.

PWB now displays the Edit Project dialog box so that you can add files to your
new project.

The next section describes the types of files that can be added to the project. The
tutorial then continues by listing the example files to add to the list.

38 Environment and Tools

Contents of a Project

A project file list can contain the following files:

Source code files (ASM).

Object files (.OBJ) in special cases.

Library files (.LIB) for libraries that change.

Module-definition files (.DEF) for DLLs.

Resource-assembler source files (RC) for Microsoft Windows-based programs.

These file types are all that are needed to create most MS-DOS and Windows-
based applications. Include files, such as SHOW.INC, need not be listed because
PWB automatically adds them when it scans your source files for dependencies.

When you select assembler run-time support with a Windows-based project
template in the Set Project Template dialog box, PWB automatically specifies
standard library files such as LIBW.LIB. Therefore, you need not add standard
library files to the project list.

» To add the SHOW files to your project:

1.

Choose the files you want to add to the project from the File List box. In this
case, you’ll add SHOW.ASM, PAGER.ASM, and SHOWUTIL.ASM. These
files are located in the \MASM\SAMPLES\SHOW directory. If you installed
Microsoft MASM 6.1 in a directory other than MASM, adjust the path
accordingly.

Edit Project

File Name: [SHOWUTIL.ASH- - - onnonnenne oo 1
File List: D:\MASM\SAMPLES\SHOY Drives / Dirs:

1

PAGER.ASH IS . 1

SHOW . ASH [-A-] 1

SHOW. INC [-B-1

8 [-C-1 1

Project: D:\MASHN\SAMPLES\SHOW\shou.nak

SHOU . ASH { Add / Delete >
PAGER .ASH < To Top of List >
SHOWUTIL.ASH ¢ Clear List >

¢ Add All >

[X]1 Set Include Dependencies [1 Ignore System Include Files

<SaveffList> <Cancel> < Help >

Chapter 3 | Managing Multimodule Programs 39

You can scroll the File List box by clicking the scroll bars or by pressing the
arrow keys.

2. For each file, select it and choose Add / Delete to add the file to the Project list
box. Or, you can double-click a file to add or remove it from the list. To add all
three files at once, you can type * . ASM in the File Name field, press ENTER, and
then choose Add All.

3. Choose Save List when you have added all three files.

PWB uses the rules in the project template along with the list of files that you
just specified to scan the sources for include dependencies and to create the
project makefile. This process is described in the next section.

Now your project completely describes what you want to build (the project
template), the component source files, and the commands used to build the project.

Dependencies in a Project

When you save the project, PWB generates a makefile from the project template,
files, and options you specified. This file also contains a list of instructions that are
interpreted by NMAKE. In addition, PWB generates the project status file, which
saves the project template, the editor state, and the build environment for the
project. For more information on the project status file, see “Project Status Files”
on page 129.

When you build the project, NMAKE examines the build rules in the project
makefile. These are rules that specify targets (such as an object or an executable
file) and the commands required to build them. For example, a rule for making an
.OBJ file from an .ASM file can be expressed as follows:

.asm.obj:
ML /c $<

To reduce the amount of time builds take, NMAKE assembles or links only the
targets that are out-of-date with respect to their corresponding source file. This
process is simple if there is a one-to-one correspondence between sources and
targets. However, many programs use the INCLUDE directive to include files
containing common equates, macros, and other program text. The object files must
be made dependent not only on the source file but also on the files that are used by
the source file.

You don’t need to add include (.INC) files to your project. When you save the
project, PWB scans your source files looking for INCLUDE directives and builds
dependencies on these files. NMAKE will thereafter recompile a source file if you
change a file that it includes.

40

Environment and Tools

Building a Multimodule Program

Now that the project files are complete, you can build the program in the same way
you built the single-module program.

To build a multimodule program:

1. You are starting a new project, so you should use debug options for the initial
builds. Choose the Use Debug Options button in the Build Options dialog box.

2. From the Project menu, choose Build.
PWB displays a dialog box to inform you that build information has changed
because you altered the build options.

3. Choose Yes to rebuild your entire project.

As the program is built, PWB shows status messages about the progress of the
build. When the build completes, a dialog box displays a summary of any errors
encountered during the build process.

Note The Next Error command on the Project menu works the same for a
multimodule build as for a single-module build. Because errors in a multimodule
build can occur in different files, PWB automatically switches to the file that
contains the error.

In some cases, you will want to force a complete rebuild of your project by
choosing Rebuild All from the Project menu. The difference between Build and
Rebuild All is that Build compiles and links only out-of-date targets and Rebuild
All compiles all targets, regardless of whether they are current.

Running the Program

Now that your program is built, you can test it from PWB.

To run SHOW:
1. From the Run menu, choose Program Arguments.

2. Type the name of a text file to pass to the SHOW program. The SHOW.ASM
source file is a good file to use.

3. Choose OK to set the program arguments. PWB saves the arguments so that you
can run or debug the program many times with the same command line.

4. From the Run menu, choose Execute.

SHOW will display the first screen of text in the file you passed to it. You can use
the arrow keys and PAGE UP and PAGE DOWN to move around in the text file.

Chapter 3 Managing Multimodule Programs 4

Press Q and then any key to return to PWB.

You have successfully created a muitimodule project, built the program, and run it,
all from within the Programmer’s WorkBench. You can now leave PWB.

» Toleave PWB:
e From the File menu, choose Exit or press ALT+F4.

PWB saves your project and returns to the operating-system prompt. If you
started PWB from within the Windows operating system, you will return to the
Windows operating system.

Creating a PWB project is an important first step. However, most of the time you
will be maintaining projects. The next section provides an overview of project
maintenance. The tutorial then continues with the SHOW project.

Project Maintenance

Once you have created a project, you may have to change it to reflect the changes in
your project organization. You can:

» Add new file-inclusion directives to your source files.

= Add new source, object, or library files.

= Delete obsolete files.

= Move modules within the list.

» Change assembler and linker options.

= Change options for individual modules.

When you add a new INCLUDE directive to a source file, you add a new
dependency between files. For the most accurate builds, you need to regenerate
include dependencies for the project.

» To regenerate include dependencies:
1. From the Project menu, choose Edit Project.
2. Select the Set Include Dependencies check box.
3. Choose Save List.

PWB regenerates the include dependencies for the entire project and rewrites the
project makefile.

» To add new files to an existing project:
1. From the Project menu, choose Edit Project.
2. For each file that you want to add to the project:

42

Environment and Tools

= Select the file from the File List box, or type the name of the file in the File
Name text box.

» Choose the Add / Delete button to add the file.

3. Choose Save List to rewrite the project makefile, set up the dependencies, and
add the commands for the new files.

» To delete files from a project:

1. From the Project menu, choose Edit Project.
2. For each file that you want to remove from the project:

» Select the file from the File List box, or type the name of the file in the File
Name text box.

= Choose the Add / Delete button to remove the file from the list.
3. Choose Save List.

With most programming languages, you won’t need to move modules within a
project. However, some languages or custom projects require files to be in a
specific order. If you’re programming in Basic, for example, you must place the
main module of your program at the top of the list. Unlike other languages, Basic
does not define an explicit name where execution begins. Entry to a Basic program
is defined by the first file in the list.

» To move a file to the top of the project file list:

1. From the Project menu, choose Edit Project.
2. Select the file you want to move to the top of the list.
3. Choose the To Top of List button.

Using Existing Projects

You'’ll now make modifications to the SHOW project that you just created. During
a PWB session, the project you open remains open unless you explicitly change it.
If you have not already started PWB, you should do so now. In the Windows
operating system, double-click the PWB icon in the MASM program group.

If you are not compiling from within the Windows operating system, you can start
PWB and open the SHOW project from the operating-system command line by
typing the command:

PWB /PP SHOW

If the SHOW project is the last project you had open in PWB, type the following
command:

PWB /PL

Chapter 3 Managing Multimodule Programs 43

You can set up PWB to reopen the last project automatically at startup by choosing
Editor Settings from the Options menu, and then by setting the Boolean switch
Lastproject to Yes.

If you have already started PWB, open the project now.

To open the project from within PWB:
1. From the Project menu, choose Open Project.

2. Choose SHOW.MAK from the File List box or type show in the Project Name
text box.

Open Project
Project Name: [SHOW.MAK - -« -« ccmnremmmmneene i 1

D :\MASH\SAMPLES\SHOW
File List:

[1 Use as a Non-PUB Makefile
[X] Restore Window Layout

< 0K > <Cancel> < Help >

3. Choose OK.

‘When you open the project, PWB restores the project’s environment, including;:

= The window layout with the window style, size, and position for each window.

= The file history—a list of open files for each window and the last cursor position
in each file.

= The last find string.
= The last replace string.

= The options that you used for the last find or find-and-replace operation, such as
regular expressions. See “Using Regular Expressions” on page 82 for more
information about regular expressions.

= The project template (for example, DOS EXE) and any customizations you have
made to the template such as changing the build type or an assembler or linker
option.

» The command-line arguments for your program.

44 Environment and Tools

Note PWB can save all environment variables, including PATH, INCLUDE, LIB,
and HELPFILES, depending on how the envcursave and envprojsave switches are
set. For more information, see “Environment Variables” on page 127.

Also, if you turn the restorelayout switch off, PWB does not restore the window
layout, the find strings and options, or the file history of a project. Instead, PWB
keeps the current editor state when opening a project.

Adding and Deleting a Project File

As you develop a project, you will occasionally add new modules. The following
example presents the steps needed to add a library file to the SHOW project. Note
that this procedure is only an example, and in fact, SHOW does not use or require
any library support.

» To add a file to your project:
1. From the Project menu, choose Edit Project.
The file and directory navigation lists in this dialog box work in exactly the
same way as those in the Open File dialog box.
2. Choose the parent directory symbol (. .) in the Drives / Dirs list box to move up
the directory tree to the SAMPLES directory. ,

3. Choose the parent directory symbol (. .) again to move up the directory tree to
the MASM directory.

4. Choose the LIB directory in the Drives / Dirs list box to move down the tree into
the LIB directory.

Chapter 3 Managing Multimodule Programs 45

Edit Project
File Name: [LIBU.LIB---ccuueenmomneiimieanaanaeananeannns 1

File List: D:\NASM\LIB Drives / Dirs:

APPENTRY.ASM MNOCRTDW.LIB .. t
DLLENTRY.ASM SNOCRTDW.LIB [-a-1 !
l

LIBY.LIB [-B-1

LNOCRTDW.LIB [-C-1

Project: D:\MASM\SAMPLES\SHOUNSHOW.MAK

SHOW.ASH < hdd q Delete >
PAGER.ASH { To Top of List >
SHOWUTIL.ASH { Clear List >

< Add All >

[X]1 Set Include Dependencies [1 Ignore System Include Files

{Save List> <Cancel> < Help >

Notice that the directory displayed after the label FiTe List reflects the
directory change.

. Make sure the File Name text box contains *.* or *. LIB.

6. Select LIBW.LIB in the File List box.

9.

Choose the Add / Delete button to add the file to the project.

LIBW.LIB is being used here as an example of how to add a file to your project.
In practice, because it is a system library that will not change, there is no reason
to add it. However, if you have a library of your own that is being used by your
project, you would add it to the project in this way.

Since LIBW.LIB is not a source file and cannot have include dependencies, you
can clear the Set Include Dependencies check box. If this check box is selected,
PWB regenerates the dependencies for all the files in the project.

Choose Save List.

LIBW.LIB is now part of the project. Since SHOW is not a program designed to
run under Microsoft Windows, you should now delete this library from the project
again.

To delete a file from your project:

1.
2.

From the Project menu, choose Edit Project.

In the Edit Project dialog box, you can either select LIBW.LIB in the Project list
box and then select Add / Delete, or simply double-click on LIBW.LIB in the
Project list box to delete it.

46 Environment and Tools

Changing Assembler and Linker Options

Up to this point, you have used PWB’s default build options for all the examples.
These options are sufficient for most cases, but in special cases, you will want to
adjust them.

When you are debugging a program, you should choose the debug build type. When
producing a debug build, the assembler and linker include a good deal of extra
information in the program for CodeView to use in debugging. When you are ready
to use the program, choose the release build type, so that the extra debugging
information is no longer incorporated into the program.

» To specify whether a build should be for release or debug:
1. From the Options menu, choose Build Options.

2. Choose Use Debug Options or Use Release Options in the Build Options dialog
box.

3. Choose OK.

‘When you specity a release build, PWB does not change your debug options. For
more information on global options, debug options, and release options, see
“Setting Build Options™ on page 18.

» To change assembler options:

1. From the Language Options cascaded menu on the Options menu, choose
MASM Options.

The Macro Assembler Global Options dialog box contains a number of options
that are common to both the release and debug builds.

Macro Assembler Global Options

Case Sensitivity Warn Level
(+) Preserve Case of Names in Object File () Level B
() Preserve Case of All User Identifiers () Level 1
() Map All Identifiers to Uppercase (¢) Level 2

() Level 3

[X] Warnings Treated as Errors

[1 Tiny Memory Model

[1 MASH 5.1 Compatibility

[1 Enulator Fixups for Floating Point

Def ines 1
Include Paths S 1
Additional Options [-- v ecnrrerrmnmrmenaaataaeiaiaeaaans 1
< Set Debug Options... > < Show Debug Options... >

{ Set Release Options... > { Show Release Options... >

{ 0K > <Cancel> < Help >

Chapter 3 Managing Multimodule Programs 47

At the bottom of the dialog box are buttons that set options that are specific to
the current type of build (debug or release), and that show the assembler flags
corresponding to those options. Default settings were determined when you
chose the project template.

Note You can choose the Set Debug Options button to view and set the options
for debug builds. However, this does not change the type of build that is
performed when you build the project. To set the type of build, choose Build
Options from the Options menu.

2. Choose Set Debug Options.
PWB displays a dialog box in which you can specify debug options.

Macro Assembler Debug Options
——————— Listing ———— Debug Information
[1 Generate Listing File () None
() Line Numbers Only
1 Generate First-Pass Listing (+) CodeView
] List Generated Instructions
1 List False Conditionals
1
]
1

Generate Synbol Table [1 Make All Synbols Public
Include All Source Lines
Include Instruction Timings

[
L
[
[X
[
[

Def ines 1
Additional Options [« - c-ceemmmemmmennena e aiaaieeaaiaeans 1
< Show Options... >

{ OK > <Cancel> < Help >

If you had chosen Set Release Options, PWB would have displayed the same
dialog box, so that you could select options for release builds.

3. Choose OK to return to the Macro Assembler Global Options dialog box.

4. Choose OK to save the new assembly options and return to the main PWB
screen.

» To change the linker options:

1. From the Options menu, choose LINK Options.

PWB displays the LINK Options dialog box.

48 Environment and Tools

LINK Options

Global Options

[1 8tack Size [------- 1 bytes
[1 No Default Library Search <{ Additional Global Options... >

Additional Global Libraries [-------v-vvevrvrnnninenieinennnn 1
Global Options: /NOI /BATCH

(+) Debug Options () Release Options

[X1 CodeVieuw
[1 Incremental Link { Additional Debug Options... >

Additional Debug Libraries R R L ECREREEREERLR LR 1
Debug Options : /CO /FAR

< OK > <Cancel> < Help >

2. Choose Additional Global Options to review and select additional global link
options.
PWB displays the Additional Global Link Options dialog box.

Additional Global LINK Options

[X]1 No Ignore Case
[1 No Extended Dictionary in Library

Additional Global Options [/BATCH----------cuuioenenentn 1

< OK > <Cancel> < Help >

3. Choose OK when you are finished to return to the LINK Options dialog box.

4. Choose Additional Debug Options to review and select additional debug link
options.
PWB displays the Additional Debug Options dialog box.

Chapter 3 Managing Multimodule Programs

49

5. Choose OK when you are finished to return to the LINK Options dialog box.

Additional Debug Options

[1 Pack Executable File Map File
[X] Translate Intrasegment Far Calls (+) None

() Standard
[1 Pack Code Segments Limit: [------] () Full
[1 Pack Data Segments Limit: [------ 1

[X] Remove Unreferenced Functions
[1 Generate Overlays: Linit of Interoverlay Calls [----.-]

Additional Debug Options P

{ 0K > <Cancel> < Help >

6. Choose OK to close the LINK Options dialog box and use any new options you

might have set.

You are now ready to build your project with any new options you have selected.

» To build a modified project:

e From the Project menu, choose Rebuild All.

Changing Options for Individual Modules

Most of the modules in a program can generally be built using the same options.
However, you may occasionally want to modify the options for a single module.

The example that follows shows how to customize your project to change the
assembler options for PAGER.ASM only. To do this, you manually edit the
instructions in the project makefile for compiling PAGER.ASM.

» To open SHOW.MAK for editing:

1.

If the SHOW project is open, choose Close Project from the Project menu.

This step is important because you cannot edit a PWB makefile for a project that

is currently open.

Choose the Open command from the File menu and open the SHOW .MAK file

in the editor.

» To customize the assembly of PAGER.ASM:

1.

Find the rule for compiling PAGER.ASM:

50 Environment and Tools

PAGER.obj : PAGER.ASM show.inc
IIF $(DEBUG)

$(ASM) /c $(AFLAGS_G) $(AFLAGS_D) /FoPAGER.obj PAGER. ASM
VELSE -

$(ASM) /c $(AFLAGS_G) $(AFLAGS_R) /FoPAGER.obj PAGER. ASM
LENDIF

This rule contains a conditional statement with two commands. The first
command is for debug builds, and the second command is for release builds.
You can edit either one of these commands, or both. They contain the following
macros defined earlier in the makefile:

Macro Definition

ASM The name of the MASM assembler
AFLAGS_G Global options for assembly
AFLAGS_D Debug options for assembly
AFLAGS_R Release options for assembly

As an example, suppose that PAGER.ASM contained data structures which you
want to pack on 32-bit boundaries for the release build only. The /Zp4 flag tells
the ML program to pack data structures on 4-byte boundaries.

2. Edit the release build command as follows.
$(ASM) /c $(AFLAGS_G) $(AFLAGS_R) /Zp4 /FoSHOWUTIL.obj SHOWUTIL.ASM
Because it is hard to be sure what options the flags macros will invoke, the new

option should be placed agfter them, so that it will supersede any instructions
they may contain.

Note that both the assembler options, such as /Zp, and NMAKE macros, such
as AFLAGS_G, are case sensitive and must appear exactly as shown.

Warning After this modification, PWB still recognizes this makefile as a PWB
makefile. However, if you make changes beyond adding options to individual
command lines, PWB may no longer recognize the file as a PWB makefile. If this
happens, you can delete the makefile and re-create it, or you can use it as a non-
PWB makefile. For more information on using non-PWB makefiles, see “Using a
Non-PWB Makefile” on page 55.

You could save your changes to the makefile by choosing Save from the File menu,
then reopen the project and rebuild SHOW with the custom option you just
installed. Because PAGER.ASM does not contain any data declarations, however,
the new options have no real purpose or effect.

Chapter 3 Managing Multimodule Programs

51

The Program Build Process

This section explains the correspondence between projects and makefiles.
Normally, the build process is automatic, but you may encounter situations that

require customized build options. Read this section to learn how the utilities work

with PWB. The following diagram illustrates the PWB build process.

mwe | T
S, ~—-—-+- MASM Extension
. | |
. DR—
: Project Template |:_ ------- 17 Utilities Extension
| ! T —l
|
R it fe e - -1 Browse Extension
A A A
1
(Run Debug) CRun Execute) Project Build
PROJECT.STS arguments PROJECT.MAK Environment Build Results
V} A\ l \/
- CodeView || ProjectEXE NMAKE
Source
<«——— Copy Files
A
- Compiler
| I
Object Browse Information
 LNK || BSCMAKE
\ 4 v
Project.EXE Browser Database

Figure 3.2 The PWB Build Process

52

Environment and Tools

When you save your project by choosing the Save button in the Edit Project dialog
box, PWB uses the list of files along with the rules in the selected project template
to scan for dependencies and write the project makefile.

When you choose the Build or Rebuild All command from the Project menu, PWB
releases as much memory as possible and passes the makefile to NMAKE, which
builds the project.

NMAKE stops at the end of the first build step that produces an error (as opposed
to a warning) or at the end of a successful build. In either case, NMAKE returns the
results of the build to PWB along with a log of any errors and warnings. For more
information about NMAKE, see Chapter 16, “Managing Projects with NMAKE.”

PWB saves the output of the build for you to view in the Build Results window

or to step through when you choose the Next Error (SHIFT+F3), Previous Error
(SHIFT+F4), and Goto Error commands on the Project menu. You can run the
program, set program arguments, and debug the program by choosing commands in
the Run menu.

If you have turned on the generation of browser information, PWB builds the
browser database when you build the program. Once you have a browser database,
you can use the commands in the Browse menu to navigate your program’s source
files and examine the structure of your program. For more information, see “Using
the Source Browser” on page 88.

Extending a PWB Project

Makefiles that are not written by PWB often contain utility targets that are not used
in the process of building the project itself. These targets are used to clean

up intermediate files, perform backups, process documentation, or automate other
tasks related to the project. You can extend a PWB makefile to perform these kinds
of tasks by adding new rules. These additional rules must be placed in a special
section of the project makefile.

In the following example you will add a section that creates a file with information
about the project. This file has the same base name as the project and the extension
LST. It lists the files in the project and the major options used for the build. This
example section can be used with any assembly-language PWB project.

Use the SHOW project to see how to add a custom section. If you have been
following the tutorial, you have already made one custom edit to the SHOW.MAK
file.

Chapter 3 Managing Multimodule Programs 53

» To add a custom section to the PWB makefile:
1. If the project is open, choose Close Project from the Project menu.

This step is crucial because PWB disables modification of the project makefile
until the project is closed or a different project is opened. (This restriction does
not apply to non-PWB project makefiles.)

2. From the File menu, choose the Open command and open the SHOW.MAK file
in the editor.

3. Press CTRL+END to move the cursor to the end of the makefile.
4. Type the following new comment line exactly as shown:
f# << User_supplied_information >>

You must put the number sign (#) in column one and type the contents of the line
exactly as shown, including capitalization. Failing to type this line accurately
will make the project unrecognizable to PWB or will cause PWB to change your
custom build information in unexpected ways.

You can copy this line from Help rather than typing it in, if you wish. Press
ALT+A, type USI, press F1, and then copy the line. Move back to the make file,
and paste the line in at the end.

NMAKE requires space between rules. Therefore, you should separate this line
from the lines above it by one blank line. Similarly, you should leave at least
one line between the separator and your custom build rules. For more
information about NMAKE and the syntax of makefiles, see Chapter 16,
“Managing Projects with NMAKE.”

This comment line is used by PWB as a separator. Anything above this
comment is regarded as belonging to PWB, and you should not edit the
information there. The exception is to add options to individual command lines,
as described in “Changing Options for Individual Modules” on page 49.
Anything in the makefile after the separator is your information, and PWB
ignores it. NMAKE, however, processes the entire file.

Now that you have a separator to show PWB where your custom information starts,
you can add the custom information. The separator and custom section is included
in the following text, and can also be found in the EXTRA.TXT file in the
SAMPLES directory:

54 Environment and Tools

<< User_supplied_information >>

Example 'user section' for PWB project makefiles,
used in the PWB Tutorial.

#

NOTE: This is not a standalone makefile.

Append this file to makefiles created by PWB.
#

This user section adds a new target to build a project
1isting that shows the build type, options, and a list
of files in the project.

#

IIFNDEF PROJ

'ERROR Not a standalone makefile.
TENDIF

I'TF $(DEBUG)

BUILD_TYPE = debug

lELSE

BUILD_TYPE = release

TENDIF

Project files and information-Tist target
#
$(PR0OJ).b1d : $(PROJFILE)
@echo <<$(PR0OJ).b1d : Project Build Information
Build Type: $(BUILD_TYPE)
Program Arguments: $(RUNFLAGS)
Project Files
$(FILES: =~
)
Assembler Options
Global: $(AFLAGS_G)
Debug: $ (AFLAGS_D)
Release: $(AFLAGS_R)
Link Options
Global: $(LFLAGS_G)
Debug: $ (LFLAGS_D)
Release: $(LFLAGS_R)
<<KEEP

The custom section of a PWB makefile can use any of the information defined by
PWB. This example takes advantage of many macros defined by PWB. For
example, the PROJFILE macro, which contains the name of the project makefile, is
used as the dependent of the listing file so that the listing is rebuilt whenever the
project makefile changes.

In addition, this custom section uses many features of NMAKE, including macros,
macro substitution, preprocessing directives, and inline files. For more information

Chapter 3 Managing Multimodule Programs 55

about NMAKE and makefiles, see Chapter 16, “Managing Projects with
NMAKE.”

» To rebuild using the custom options:
1. Choose Open Project from the Project menu and reopen the SHOW project.
2. From the Project menu, choose Build Target.

3. Type the name of the new target SHOW.BLD in the Target text box, and then
choose OK.

PWB informs you that the build options have changed and asks if you want to
rebuild everything.
4. Choose Yes to confirm that you want to rebuild everything.

The project information file that is created shows the project name, indicates
whether the build is a debug or release build, lists the files in the project, and lists
the assembler and linker options used for the build.

Using a Non-PWB iMakefile

PWB makefiles are highly structured and stylized makefiles that are generated from
the rules in the project template and a list of files that you supply. Many projects
have existing makefiles that PWB can’t read because they do not have this stylized
structure. These makefiles are called non-PWB or “foreign” makefiles.

You can still take advantage of many of PWB'’s project features with non-PWB
makefiles. The features that cannot be used are shown as unavailable menu items.
Note that a PWB makefile is not required to use the Source Browser—all you need
to have is a browser database. For information on building a browser database, see
“Building Databases for Non-PWB Projects” on page 94.

» To use a non-PWB make file:
1. From the Project menu, choose Open Project.
2. Select the non-PWB make file to open.
3. Select the Use as a Non-PWB Makefile check box.
The Open Project dialog box appears.

4. Choose OK.

Note A PWB makefile cannot be edited or modified when it is the open project.
However, PWB does not disable modification of non-PWB makefiles. You can edit
a non-PWB makefile, even when it belongs to the currently open project.

56

Environment and Tools

You can now use the Build, Rebuild All, and Build Target commands from the
Project menu. The Build and Rebuild All commands work as they do with a PWB
makefile by building the first target. However, the Language Options commands
and the LINK Options command on the Options menu are unavailable. You set
these kinds of options by editing the makefile.

When you close a non-PWB project, PWB saves the environment, window layout,
and file history just as it does for a PWB project.

Where to Go from Here

This concludes the PWB tutorial section of this manual. If you wish, you can leave
PWB by choosing Exit from the File menu (or by pressing ALT+F4).

Chapter 4, “User Interface Details,” explains how to start PWB, describes the
elements of the user interface, and gives you an overview of the menus.

Chapter 5, “Advanced PWB Techniques,” explains search techniques (including
regular-expression searching), describes how to use the browser, and shows how to
write PWB macros.

Chapter 6, “Customizing PWB,” describes how to change the behavior of PWB to
suit your needs.

Chapter 7, “PWB Reference,” contains an alphabetical reference to PWB menus,
keys, functions, predefined macros, and switches.

57

CHAPTER 4

User Interface Details

This chapter summarizes the PWB user interface. It contains:

= General information on starting PWB.

= Instructions on how to use elements of the PWB screen.
= A description of the indicators on the status bar.

= A s