RPL 1.3
REFERENCE
MANUAL

SECTION

NN ol
s o o o o o

o o

N =

& WN

wnN -

[wwww
L] L] []

w N -

Ol W N -

e @ e o o o

O OO Q0 OO CO0 CO 00 CO O NNNNd o\ O OV OV O (SN N N KO,)|
AU W -

L] [] []
=

N =

TABLE OF CONTENTS

INTRODUCTION L] Ll L] L3 L] . L] L - Ll _. L]

BUFFERS AND WORK AREAS
PRIMARY AND SECONDARY INPUT BUFFERS
PRIMARY INPUT BUFFER e e e s s e
SECONDARY INPUT BUFFER e e o o o o
PRIMARY AND SECONDARY OUTPUT BUFFERS
FILE BUFFERS e e s e o e o s s e e
SELECT REGISTERS e o o o s s s s

EXPLANATION STANDARDS o o e e
SYMBOLS USED IN ILLUSTRATIONS
BUFFER DISPLAYS . « « & o o
INDIRECT REFERENCE e s o e e

INITIALIZATION AND COMMENTS
PQ statement e o s o o o s
C statement . . « + ¢ o o .
Other Comments e e o s o @

e o o o
L] L] . L[]
L] L] L] .

INPUT BUFFER OPERATIONS
RI command e e o o o »
S command . . ¢« ¢ o o o
F (forward) command . .
B command . « « ¢ ¢ o o
IH command e o o o e o s

. e e o o

e e o o o
e e o o

o o e o o o
* o » e o o
e o e o o o

OUTPUT BUFFER OPERATIONS
STON, STOFF commands
RO command « o o o o
BO command « o o o o
H command . « « « o o

DATA MOVE OPERATIONS
A command . . . o
MV command .« .
MVA command . .
MVD command . .

TERMINAL AND TAPE INPUT
IP command e o o o @
IN command
IT command
EI Command
E* Command
E Command e o s o o s o o 8 o o

L] o o o

L] L] .]

. * o @

e o @ .

L] L] L] L]

L[] . L) L] L)

. L] s o o o
L[] . L] L[] . L[]
s ® o o o o
» o o o @ o
L] L] L] . L] L]
o o . e o o

JUMPS AND BRANCHES . .« ¢« « ¢ « o
Intra-Program Jumps and Branches
LABELS e s o & o s o e 8 e e e
MARK statement e o o o o o e o

. . o e o o
e o o e o o o
e o o e o o o
s e @ s o o e

e o e o
L] L] L] L
. L] . L]
e e o o
e o o o

L]

o o

o e o e o o
.

. e e o o
e o o ® o
e o o ® o
® o o o o
- . . L) L]

o e e o o o
e o o o o o
e o * o o o
e o o o o o
* & ¢ o o o

[] L] L] L] o o []

NN
e o L]

w N = AN W

HiEEEE-e O W WOWOWOVOO O
L] L] * (]
> wWN -

S a
¢« ¢ o o o o

O e e

=
—
L]

et

11.2
11.3
11.4
11.5
11.6
11.7

12
12.1
12.2

13

13.1
13.2
13.3
13.4
13.5

14
14.1
14.2
14.3
14.3.1

15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

16
16.1

GO command o« .
GOSUB command .
RSUB command .
KSUB command .« e .

Inter-Program Transfers
() Inter-program jump
[1 Inter-program branch

RTN command+ « =« &

L] L] L]

. L] L] L]

L] L] L] L) . .

L[] L] L[] L] . L) . L[]
e o @ e o o o .
L[] . L] L] L] L] . .
e & o o & o o .

CONDITIONAL OPERATIONS
IF command
IF statement with mask . .
Multivalued IF comparisons
Multivalue stubs e o o o
Compound IF statements . .
IFN statement« « « &

DISK FILE I/0 .
F-OPEN command
F-INPUT command
F-READ command
F-WRITE command
F-DELETE command
F-CLEAR command .
F-FREE command .

L] L] L] . .
. .] ¢ o o
o e ¢« o & o o o
. L] L] . L] L] L L]
e o . e e o o o
s o * o o e o o
e o] e e & o o
. o . * o o o o

ARITHMETIC CALCULATIONS e« s s s
F; (function) command
+, - Commands

ENGLISH LANGUAGE PROCESSING WITHIN PROCS

P command .« ¢ ¢ ¢ o « o o o o o«
PH command e o o e
PP command e e & e
PQ-SELECT verb « o o
PQ-RESELECT verb o o

TERMINAL AND LINE PRINTER OUTPUT
T command . . « « o & o o o o
O command . . .« + « o
L statements e o o »
L HDR command

MISCELLANEOQOUS COMMANDS .
X command « « o o o ¢ o .
U commands (user exits) .
D command ¢« .« « ¢ o o o .
TR command e o o o o .
TROFF command« = .
Conversions e e o o o

s

Indirect Parenthetlcal Expression
Compound Command Statements . .

OPTIMIZING PROCS . . .« ¢ o ¢ o o &
PQ_COMP Verb -

e o e o * e o e o o e o o o .

. o ® o o e

L] . L] . . L] L] * .

e e o o o o

RPL REFERENCE MANUAL

CHAPTER 1

INTRODUCTION

The MICRODATA REALITY computer has been supplied with a
powerful interpretive language called REAL-TIME PROCESSING
LANGUAGE (RPL). Programs coded in this language are called
PROC's (for stored procedures) and may be executed
individually, chained, or called as subroutines by other
PROCs. Functions have been provided to allow execution of
ENGLISH statements within a PROC just as they would be
executed from TCL. '

This manual has been written for the experienced programmer
and no attempt has been made to provide detailed definition of
computer functions except as required to present the workings
of RPL. 1In some cases the explanations used differ from the
actual machine level operations. These deviations are used to
simplify the explanations and all functions may be assumed to
operate as described. Every attempt has been made to provide
precise and unambiguous explanations and examples.

Each PROC being executed from a terminal is allotted a
complete set of resources, unique to itself, as described
herein. Data areas in use by one terminal are unique and will
not be interfered with by operations performed at any other
terminal. The only shared resources which will affect PROC
operations are disk files which may be accessed by many
processes at one time.

Page 1

RPL REFERENCE MANUAL

CHAPTER 2

BUFFERS AND WORK AREAS

PRIMARY AND SECONDARY INPUT BUFFERS

There are two input buffers used for obtaining input from
external devices, the primary and secondary input buffers.
Access may be made to only one input buffer at a time. This
buffer is designated the current input buffer and is
determined by the current condition of the input buffer stack
pointer. When off, the input buffer stack pointer will cause
all general input buffer references to use the primary input
buffer; and, when on, the same commands will access the
secondary input buffer. The input buffer stack pointer may
not be manipulated directly, but will be set on and off
automatically as part of the execution of certain commands.

Because the operation and access of the two buffers is
substantially different, they are explained separately.

PRIMARY INPUT BUFFER

The primary input buffer is used for input of data from all
external devices, although many of its characteristics make it
desirable as working storage if space is available.
Attributes within the primary input buffer are separated by
attribute marks and are referenced by use of a percent sign
(%) and a numeric value designating which attribute is to be
used (%9 is the reference for attribute 9 of the primary input
buffer). Attributes within the primary input buffer are
numbered consecutively starting with 1.

Attributes in the primary input buffer may be any size with
a minimum of no characters (a null attribute) and a
theoretically unlimited maximum. The primary input buffer may
contain virtually any number of attributes of any size and
access to any field in the buffer is random.

Associated with the primary input buffer is a buffer
pointer which may indicate any attribute or character within
an attribute. This pointer is used to conditionally direct
the operation of various commands (as will be discussed
later).

Additionally, a further characteristic of the primary input
buffer is that it retains all keyboard input entered in TCL at
the time a PROC was initiated. This means that additional
parameters may be keyed in which will supply data to the PROC
at program initialization time. All characters keyed in will
be loaded into the primary input buffer starting at attribute

Page 2

2.1.2

2.2

RPL REFERENCE MANUAL

1. All spaces will be converted to attribute marks, and the
end of the buffer will be established when new-line is keyed
or at a maximum input of 148 characters.

SECONDARY INPUT BUFFER

The secondary input buffer is limited in scope and function
and is affected by few commands. As with the primary input
buffer, attributes within the secondary input buffer are
separated by attribute marks and are numbered consecutively
starting with 1. There is no limit on the size of fields in
the secondary input buffer or on the total size of the buffer.
Direct access of attributes within the secondary input buffer
is through the use of the A command. The secondary input
buffer has a buffer pointer which functions the same way the
primary input buffer pointer does.

When any command that turns the input buffer stack pointer
off is executed, the secondary input buffer is effectively
cleared. No further access may be made of those items
remaining in it.

PRIMARY AND SECONDARY OUTPUT BUFFERS

The output buffers are used for executing ENGLISH
statements within a PROC, they also may be used for storage of
working parameters on a temporary or permanent basis.
Attributes within the output buffers are separated by
attribute marks and are referenced by use of the pound or
number sign (#) and a numeric value for the attribute (#5 is
the reference to the fifth attribute of the current output
buffer). Attribute numbers within the output buffers start
with item 1 and continue consecutively.

There are two output buffers, the primary and secondary
output buffers, only one of which may be referenced at a time.
The one currently available is designated by the output buffer
stack pointer which may be set on or off. When off, the stack
pointer will cause all commands using the output buffer to
reference only items in the primary output buffer, and when on
all references will access the secondary output buffer. A
field within either output buffer may have any quantity of
characters within the limits of size of the buffer with a
minimum of none (a null attribute).

The number of characters which may be loaded into the
primary output buffer is equal to the LOGON work space
allotted for the account. The maximum number of characters
which may be loaded into the secondary output buffer is
constant at 2K.

Associated with each output buffer is a buffer pointer

Page 3

2.4

RPL REFERENCE MANUAL

which is used to indicate the end of the buffer. This pointer
is used in the execution of certain commands which will be
explained later.

FILE BUFFERS

File buffers are normally used for reading and writing
records from files but may be used for working storage if
available. Attributes within a file buffer are separated by
attribute marks which are transparent to the programmer but
are constructed automatically by the processor as needed.
Reference to an attribute beyond those already established
will result in construction of enough null attributes to reach
the item referenced.

There are nine file buffers, numbered 1 through 9. Direct
references to items within a file buffer are by use of an
ampersand (&), the file buffer number, a period as a
separator, and a numeric value representing the attribute
within the buffer which is being referenced (&3.2 references
attribute 2 of file buffer 3). Attribute numbers within a
file buffer start with #, which is used as the key to read and
write a record from a file, and continue with 1, 2, 3, etc to
a virtually unlimited size.

An attribute in a file buffer may have any number of
characters with a minimum of none (a null attribute). A file
buffer may have any number of attributes and may extend to any
length though they will be truncated to a maximum length of
32,267 bytes when written to a file.

SELECT REGISTERS

Select registers are used for holding the results of an
ENGLISH 'SELECT' or 'SSELECT' statement within a program.
They may also be used as a vehicle to split multivalued
attributes into their component parts. A select register may
contain any quantity of values at a time with no limit on the
size.

There are five select registers available, numbered 1
through 5. Values within a multivalued attribute in a select
register are available only sequentially, one value at a time.
Direct reference to the next value in a select register is by
use of an exclamation point and a numeric value representing
the register being referenced (!3 references the next value in
select register 3). Use of a direct reference bumps the
select register pointer to the next attribute mark in the
multivalued chain and makes the next item available. This is
true reguardless of the use of the direct reference and if a
value is to be used more than once, it should be moved to a
hold area and referenced from there.

Page 4

RPL REFERENCE MANUAL

Additional values added to a select register by any means
will delete all previously existing values and replace them
entirely with the new list. No portion of the previous list
which had been unused will remain.

Page 5

3.1

RPL REFERENCE MANUAL

CHAPTER 3

EXPLANATION STANDARDS

SYMBOLS USED IN ILLUSTRATIONS

The symbols explained below are used when illustrating the
contents of a buffer since these are the same symbols which
will appear on the terminal when the buffer is displayed.
These symbols should not be confused with the normal
characters used to represent them. To avoid confusion the
normal characters will not be used in any buffer illustrations
except as specifically noted within the accompanying text (see
exception in sub-value mark explanation). Anyplace these
symbols appear where the illustration is not of a buffer,
these definitions do not hold unless specifically defined.

[Beginning of buffer, used to designate the start point of
a buffer. This symbol is not part of the buffer itself
and does not contribute to the length of the buffer.

Attribute mark (N[cs]), used to separate different
attributes within a buffer. This symbol actually
occupies a byte within the buffer and indicates the end
of a field. It is not part of the field but is used only
as a separator.

] Value mark (M[cs]), used to separate different values
within a vultivalued field. This symbol occupies a byte
within the attribute and indicates the end of a value
within a multivalued field. It is part of an attribute
and will be moved with the field when the entire field is
moved.

\ Sub-value mark (L[cs]), used to separate different
subvalues within one value of a multivalued field.
Functionally, the subvalue mark operates the same way the
value mark explained above does. (Note: because the
backslash must be used for many explanations, this symbol
will be specifically defined in the text when used. All
other occurances may be assumed to be a normal backslash
L[s])

Below is a series of examples which will serve to
illustrate the use of these symbols.

Page 6

RPL REFERENCE MANUAL

File buffer 1
[M3182"SMI, INC"203]1257]1385]1511"DESPLAINES, ILL"

where &1.0 = M3182
&1.1 = SMI, INC
&1.2 = multivalued with values of 2863, 257, 385,
and 511
&1.3 = DESPLAINES, ILL

(end of buffer)

Primary input buffer

["ABC"285.7371@]11"
where %1 = (null value)
%2 ABC .
%3 285.73 (in external format)

$4 = multivalued with values of 10 and 11
f buffer)

file buffer 4
[A

This sequence of symbols designates a null buffer cleared
of all items. The only attribute that could be said to exist
in this buffer is &4.0 and it is a null item.

In cases where a buffer pointer is required to illustrate
the functioning of certain commands, the pointer location will
be illustrated by an up arrow below the line showing the
contents of the buffer. As an example, when showing the input
buffer pointer at %3, the display would be:

[ABC"DEF]GHI " JKL "MNO"

Since clear recognition of single or multiple spaces which
are not readily apparent may sometimes be essential to the
understanding of an explanation, individual underlines or
dashes below the line will serve to delineate the location and
quantity of spaces on the line above. These definitions will
be used only where an uncertainty may exist, and, where not
used, any space perceived may be assumed to be a single blank
character. As shown below:

~

[ABC™ DEF] GHI]J K L

The space immediately prior to the D may be assumed to be a
single blank character, and the quantity of blanks in the
remaining significant gaps is indicated by the dashes below
the buffer display line (two blanks between the value mark and
the G, one between the J and K, and three between the K and
L).

Page 7

3.3

RPL REFERENCE MANUAL

BUFFER DISPLAYS

Buffers will be displayed in examples as described above.
Where the text discussion pertains to only one buffer, all
displays may be assumed to be of that buffer only. Where any
ambiguity may arise concerning which buffer is being shown, a
direct reference immediately preceeding the display will
indicate the first attribute shown. If the input or output
buffers are shown and it is significant that it is the primary
or secondary buffer, a P or S will preceed the reference.

All such references and the buffers to which they pertain
are outlined in the table below:

DIRECT REFERENCE BUFFER DISPLAYED
%1 Either Input Buffer
Pl Primary Input Buffer
S%$1 Secondary Input Buffer
$#1 Either Output Buffer
P#1 Primary Output Buffer
S#l Secondary Output Buffer
&1.0 ' File Buffer 1
&2.0 File Buffer 2
&3.0 File Buffer 3
&4.0 File Buffer 4
&5.0 File Buffer 5
&6.0 File Buffer 6
&7.0 File Buffer 7
&8.0 File Buffer 8
&9.0 File Buffer 9
'l Select Register 1
12 Select Register 2
13 Select Register 3
14 Select Register 4
15 Select Register 5

For example, the following is the display of the sécondary
output buffer:

S#1l [ABC"DEF"GHI "JKL"MNO"

INDIRECT REFERENCE

Reference may be made to any attribute of any buffer by
specifying the buffer and using a value in the primary input
or primary or secondary output buffers to designate which
attribute is required. To do so, make the normal first half
of the direct reference (%, #, &N.) and without any
intervening spaces, follow it with the direct reference to the
attribute in the input or output buffer which contains the
attribute number desired. For example, using only the primary

Page 8

RPL REFERENCE MANUAL

input buffer containing:
[3747"7°1°8"B"10"°ABC"2"

The use of %%2 would be an indirect reference to %4 since
the value of %2 is 4. Any such reference would make the value
1 available from the fourth attribute of the primary input
buffer. Similarly, using the same input buffer contents, the
references in the two columns below are equivalent:

Indirect Direct
$3%5 %8
&3.%1 &3.3
&7.%7 &7.10
#33 #7
&1.%6 &1.0

Note: as in the last example above, the value of the item
used in the second half of the indirect reference must be
numeric. If not numeric, zero will be assumed.

All the above examples use the primary input buffer to
supply the indirect reference parameter, however, the current
output buffer may be used in the same manner. No other
buffers may be used to supply the indirect parameter, although
attributes in all buffers may be accessed by an indirect
reference as shown above.

Page 9

4.1

RPL REFERENCE MANUAL

CHAPTER 4

INITIALIZATION AND COMMENTS

A PROC program will be executed by the interpreter starting
with the first command and proceeding with the second, third,
etc. Execution may be directed to other than the next command
by use of the jumps and branches provided. 1If execution is
proceeding normally and the next line of the program to be
executed turns out to be the end of the program, control will
drop out of the processor and be returned to TCL.

Many incorrectly coded instructions will cause the program
to terminate or continue after outputting an error message.
These errors are outlined in the text accompanying the
instruction explanation, however, other errors not outlined
may also occur. It is up to the individual programmer to
decide the proper steps to be taken in case of any abnormal
ending to a program.

PQ statement
-Format- PQ

The first statement of any PROC must be the literal value
PQ which indicates to the interpreter that the item is a RPL
interpretive program that must be run by the rules of the PROC
processor. Any item stored in any file on the computer is
capable of being executed as a PROC if it contains a PQ as the
first attribute. Conversely, any item not having a PQ in the
first statement will not be executed as a PROC.

C statement
~-Format- Cliteral-string

The C statement is used for inserting comments into the
body of a program for explanations of how the program works,
etc. All such statements may contain a literal string behind
the C which may contain any characters at all. It is
generally recommended that enough comments be included in a
program to allow another programmer who is unfamiliar with the
PROC to understand how the program functions. This will also
insure that the person who coded the program in the first
place will be able to go back and understand the functioning
later.

Comment statements may be inserted anywhere in the program
but care should be taken not to place them between any
multiple line statements such as L or T statement which
continue on the next line. Some examples of valid C

Page 10

RPL REFERENCE MANUAL

statements are included below:
C THIS PROGRAM WILL CALCULATE THE NEXT PRIME NUMBER

C *** INPUT BUFFER USAGE

C $1 - NEXT AVAILABLE FILE BUFFER 1 LOCATION
C $2 - NUMBER TO TEST
C $3 - NEXT DIVISOR

CALCULATE TAX FOR SALE WITH HALF ROUNDING TO NEAREST CENT

In the last example, the C is contained within the text of
the comment. This is valid as long as the first character on
the line is a C.

Other Comments

Comments may be included in a program other than those in a
comment statement. Any command which does not load a literal
string may be terminated with a space after the last required
operand. Any subsequent characters are skipped by the
processor in finding the next command to execute. Therefore,
a comment may be placed at the end of any such command and not
disturb the execution of the program. This function is not
available on such commands as IH or H since these load the
entire following string as a literal.

Use of this capability for loading comments should be
minimized. These comments will not be cleared when a program
is optimized and will result in a longer program than
necessary being stored. Additionally, execution of .a program
will be slowed since the processor must take time to scan the
characters, even if they are not executed as a command.

Page 11

5.1

RPL REFERENCE MANUAL

CHAPTER 5

INPUT BUFFER OPERATIONS

RI command
-Format- RIparameter

The RI command is used to reset the primary input buffer.
It will clear the buffer and reset the pointer to the new end
of the buffer. The RI command will set the input buffer stack
pointer to the primary input buffer and perform the clear
operation designated. When used alone, RI will clear the
entire primary input buffer. When used with a numeric value
following the RI, it will clear all the input buffer from the
attribute designated and place the end of buffer after the
preceeding attribute. The following will illustrate the
function of the RI command:

'Before Command After
[ABc:DEF]GHI*JKL‘MNo‘ RI3 [ABCADEF]GHI:
[ABC"DEF]GHI “JKL "MNO~ RI [~

The RI command may also use a direct or indirect reference
to provide the attribute from which the buffer is to be
cleared. This may be coded as:

RIindirect-reference
For example:

RI%3
RI&3.2
RI&3.%5
RI#1

The RI command may also be used to clear the input buffer
from a given column position. By coding RI(n), where n is a
numeric literal, the command will clear the input buffer from
the n'th character to the end. If the end of the first
attribute occurs before the n'th character, all attributes
other than %1 will be cleared and the end of buffer
established at %2.

Page 12

RPL REFERENCE MANUAL

5.2 S command
-Format- Snumeric-literal

The S statement will set the input buffer stack pointer to
the primary input buffer and will set the primary input buffer
pointer to the attribute mark immediately before the item
specified by the numeric value in the second half of the
command. For example, S17 will set the pointer to the first
character of the seventeenth item in the primary input buffer.
All operations dealing with the current location of the input
buffer will then reference the seventeenth item. If, however,
the sixteenth item has not been established, the primary input
buffer pointer will reference the current end of the buffer.
The results of execution of an S5 statement with two different
buffer contents is shown below with the arrow below the line
designating the resultant position of the primary input buffer
pointer:

[ABC"DEF"GHI JKL"MNO"PQR"STU"

[ABC"DEF”

The contents of any attribute may be substituted for the
numeric literal in the S command by coding the command with a
direct or indirect reference. This form will cause the input
buffer pointer to be turned off and the primary input buffer
pointer to be moved to the attribute designated by the value
of the attribute used. For example:

Before: &4.0 [ABC"DEF"3"GHI"
P%l [ABC"DEF"GHI JKL "MNO"PQR"

Command : S&4.2
After: Pl [ABC"DEF"GHI "JKL “MNO"PQR"

The input buffer pointer may be set to a character within
the first attribute by coding S(n). This will set the input
buffer stack pointer to the primary input buffer and will move
the input buffer pointer to the n'th column of the first
attribute. If the first attribute of the primary input buffer
contains less than n characters, the pointer will move to the
attribute mark between %1 and %2. As shown below:

Before: P%l [ABCDEFGHIJKL "MNO“PQR"

Command: S(7) . R
After: P%l [ABCDEFQHIJKL“MNO POR

Page 13

RPL REFERENCE MANUAL

Before: P%1 [ABCDEFGHIJKLAMNO:PQR“

Command: S(23)
After: P%l [ABCDEFGHIJKL:MNOAPQR“

5.3 F (forward) command
-Format- F

The F command will move the current input buffer pointer
forward to the next attribute mark. If the input buffer
pointer is already at the end of the buffer, a new null field
will be created. For example:

Before After
[ABC"DEF]GHI"JKL"MNO" [ABC"DEF]GHI JKL"MNO"
[ABC"DEF” [ABC"DEF~
[AgC*DEF]GHI‘ [ABC"DEF]GHI"
5.4 B command
-Format- B

The B command will move the current input buffer pointer
back to the previous attribute mark. If the pointer is
already at the beginning of the buffer, this command will not
have any effect. For example:

Before ’ After
[ABC"DEF]GHI “JKL"MNO" [ABC"DEF]GHI"JKL"MNO"
[ABC"DEF” [ABC DEF~
[ABc‘DEF]QHI‘ [ABCZDEF]GHI”

5.5 1IH command
-Format- IHliteral-string

This command will input a string of characters or the
contents of a direct or indirect reference following the IH
into the current input buffer at the location specified by the -
input buffer pointer. The value entered will replace the
attribute immediately after the pointer. For literals only,
multiple blanks are considered as one blank, leading or
trailing blanks are ignored, single backslashes become null

Page 14

RPL REFERENCE MANUAL

fields, and multiple or imbedded backslashes become blanks. A
space appearing within the literal string being input will be
converted to an attribute mark. Use of the IH command with
only a backslash following (as IH\) will be used to null an
attribute and all appearances of a space~-backslash-space
sequence within the literal string will establish a null
attribute.

Certain special characters may not appear in an IH
statement literal string. Among these are the value mark
(M[cs]) and the sub-value mark (L[cs]). If any invalid
characters do appear in this statement, it will cause the
resultant values loaded in the buffer to be truncated.

The operation of the IH command is illustrated below:

‘Before: [ABC"DEF]GHI "JKL"MNO"
Command: IH\
After: [ABC"DEF]GHI " "MNO"

Note that %3 is now a null attribute and the backslash was
not loaded.

Before: [ABC"DEF]GHI "JKL "MNO"
Command: IH12345

After: [ABC"DEF]GHI"12345"MNO"
Before: [ABC"DEF]GHI “JKL "MNO"
Command: IH12

After: [ABc:lz“JKL“MNo‘

As illustrated above, the input value replaces the entire
contents of the next attribute in the current input buffer.

Before: [ABC“DEF]GHI:JKL“MNO“

Command : IH123 456 7\9 \ @
After: [ABC"DEF]GHI"1237456"7 9" "¢ "MNO"

This example shows that the entire new value loaded
replaces only the previous contents of one attribute. Because
five new attributes replaced the one previously existing as
%3, the former value of %4 (MNO) now appears as %$8. Had there
been subsequent values in %5, %6, etc., they would also be
bumped up to %9, %16, etc., respectively. Notice also that
the backslash within the 7\9 field was converted to a space
when loaded.

Page 15

RPL REFERENCE MANUAL

Before: [ABC"DEF]GHI JKL "MNO"

Command: IH123 456 789 \ @
After: : [ABC‘DEF]GHI‘JKL“MN0“123“456‘789‘fﬂ‘

In the case where the pointer is at the end of the buffer,
no attribute is replaced but additional attributes are built
as needed to load the values specified in the command.

Backslashes which appear with other characters will be
converted to spaces before being loaded into the input buffer
and will appear in the same attribute with the other
characters:

Before: [ABC"DEF]GHI"JKL"MNO"

Command: IH12 34\\56 70\\\ \3B
After: [ABC“DEF]GHI:12“34 56°70Q ~ 3B"MNO"

Multiple contiguous spaces appearing within an IH statement
will have no more significance than one space appearing alone.
All such contiguous strings of spaces will generate only one
attribute mark each.

Before: [ABC"DEF]GHI "JKL"MNO"
Command: IH123 456 789
After: [ABc:l23“456‘789‘JKL‘MN0‘

The second function performed by an IH statement is loading
the contents of a direct or indirect reference location into
the attribute of the input buffer indicated by the current
input buffer pointer. This function will only be intepreted
by the processor if the reference immediately follows the IH
without any intervening characters. Any other buffer or the
select registers may provide the source item. If the select
registers are used as the source item, the current value of
the multivalued field will be moved to the input buffer, and
the pointer will move to the next value. The operation of
this function is illustrated below:

Before: %1 [ABC“DEF:GHI‘JKL‘MNO
&2.8 [111722273337444°555"

Command: IH&2.3

After: $1 [ABC‘DEF:444“JKL‘MN0‘

Page 16

RPL REFERENCE MANUAL

Before: %1 [ﬂ‘1:2“3“4‘5“6‘7‘8‘
&3.0 [ABC"DEF"GHI"JK L"MNO"

Command : IH&3. %4

After: %1 (671" JK L"374°576" 7 8"

Before: %1 [ABc‘DEF‘GHIfJKL“Mno“
11 [0OQQ"RRR"MMM~SSSS”T"

Command : IH!1

After: %1 [ABC“DEF:MMM“JKL“MNO“
11 [QQQ"RRR"MMM"SSSS”T"

The last example above shows the movement of the select
register pointer after transfering the current value. All
other examples illustrate that the input buffer pointer does
not move during one of the IH command operations.

Before: %1 <[ABC“DEF:GHI“JKL"MNO“
&§1.0 [1237456""""5557666"
Command : IH&1.3 _
After: $1 [ABC"DEF~ "JKL"MNO"
Before: %l [ABC"DEF"GHI “JKL "MNO"
Command: IHCHANGE&1.3
After: %1 [ABC"DEF"CHANGE&1.3 " JKL"MNO~

When a direct (or indirect) reference appears within other
characters of a literal string of an IH command, it will load
as a literal and will not call the referenced value.

Items being loaded into the input buffer via the IH command
may be converted from internal to external format or
vice-versa. This is accomplished by appending the conversion
code immediately behind the direct or indirect reference of
the item to be moved into the current attribute of the input
buffer as shown below:

IH&3.2:D: Will convert the date to external format
IH%3;MD2; Will remove decimal and leave two
decimal digits

Further description of conversions may be obtained by
referring to the section on conversions in Chapter 15.

Page 17

6.1

6.2

- RPL REFERENCE MANUAL

CHAPTER 6

OUTPUT BUFFER OPERATIONS

STON, STOFF commands

-Format- STON
-format- STOFF

The stack on and stack off commands affect only the output
buffer stack pointer and will not affect either buffer's data
pointer or the contents of the buffers. The STOFF command
will place the stack pointer to the primary output buffer and
the STON command will point it at the secondary output buffer.
In the text accompanying explanations of commands dealing with
the output buffer the term 'current output buffer' will refer
to the output buffer which the stack pointer is designating
since the other buffer may not be manipulated until the stack
pointer is changed to point to it.

RO command
-Format- RO

The RO command is used to clear the current output buffer
and reset the pointer to the beginning of the buffer. The
buffer cleared may be either the primary or secondary output
buffer depending on the setting of the stack pointer. The
stack pointer and the contents of the other output buffer will
not be affected by the RO command. The following table and
examples will illustrate the function of the RO command:

Stack Clears
OFF Primary Output Buffer
ON Secondary Output Buffer
Before: P#1 [ABC“DEF“GHI“JKLAMNO:
S#1 [11“22“33‘44“55:

With the stack pointer on, RO will result in:
After: P#1 [ABC"DEF"GHI "JKL"MNO"

S#1 [

Page 18

6.3

6.4

RPL REFERENCE MANUAL

BO command
-Format- BO

The BO command will move the current output buffer pointer
back over one parameter to the previous attribute mark. If
the pointer is already at the beginning of the buffer this
command will have no effect. Since the output buffer pointer
also designates the end of the buffer, this command has the
effect of deleting the last attribute from the end of the
current output buffer. For example, illustrating only the
current output buffer:

Before After
[ABC"DEF]GHI "JKL" [ABC"DEF]GHI"
[[
H command
-Format- Hliteral-string

The H command will input a literal string following the H
into the current output buffer starting at the location
specified by the output buffer stack pointer. The string
loaded will extend the length of the buffer as required to
accomodate the input. All spaces will be replaced by one
attribute mark each. After completion, the buffer pointer
will be directed to the attribute mark immediately follow1ng
the last character loaded.

The operation of the H command is illustrated below with
only the current buffer being shown; therefore, the example
may represent operation within the primary or secondary output
buffers, depending on the setting of the stack pointer.

Befpre: [ABC"DEF”
Command: HNEXT

After: [ABC"DEFNEXT"
Before: [ABC"DEF”

Command : H NEXT
After: [ABC"DEF“NEXT:

Note as illustrated in the -above two examples, the H
command does not automatically construct a new attribute mark
upon starting as does the IH statement, but appends the string
entered immediately at the position of the buffer pointer.

Page 19

RPL REFERENCE MANUAL

Before: [ABC"DEF"
Command: H NEW INPUT
After: [ABC"DEF"~""NEW"""""INPUT """

~

As previously stated, all spaces will'produce one attribute
mark per space coded in the literal.

Attributes located elsewhere in any buffer may be moved
into the output buffers by using the H statement followed by a
direct or indirect reference which designates what attribute
to move. Any internal buffer may be used to provide the
source value including another attribute of the current output
buffer. The only buffer which cannot be used to provide the
source value is the other output buffer since there is no way
of referencing both buffers in one statement. The following
is a series of valid moves using the H statement:

Before: #1 [ABC"DEF "GHI™"
&3.0 [111722273337444"

Command: H&3.2

After: $#1 [ABC‘DEF*GHI‘333:

Before: #1 [ABC‘DEF“GHI:
&3.0 [111722273337444"

Command : H&3.2

After: #1 [ABC“DEF‘GHI333:

Page 20

RPL REFERENCE MANUAL

CHAPTER 7

DATA MOVE OPERATIONS

7.1 A command
-Format- Ac(m,n)

The A command is used to move selected data from the input
buffers to the current output buffer. The source location may
be either the primary or secondary input buffer depending on
the setting of the input buffer stack pointer or the form of
the command used. The object location will be the current
location of the current output buffer. There are ten possible
forms of the A command using four optional parameters. The A
command will move all or part of one attribute in the input
buffers to the output buffers depending on the form of the
statement used. The valid forms of the A command are listed
below with symbolic parameters:

A Ac

Ap Acp
A(m) Ac(m)
A(,n) Ac(,n)
A(m,n) Ac(m,n)

The symbolic parameters used above are defined below with a
short description of the function which they perform.

P - A numeric literal designating the attribute of the
current input buffer from which to obtain the source
string. When used, the entire attribute will be moved.

M A numeric literal designating a starting character
position in the first attribute of the primary input
buffer. If less than m characters exist in the first
attribute when this parameter is specified, no move will
occur.

N A numeric literal designating a number of characters to
be extracted from the source item for the move. 1If not
specified, the command will move all characters until the
next attribute mark is encountered. If less than n
characters follow in the source attribute, only they will
be moved.

C Any non-numeric character which will be used to surround
the string to be moved into the output buffer. If not
specified, an attribute mark will be used. When the
destination of the move is the secondary output buffer,
this parameter will be ignored.

Page 21

RPL REFERENCE MANUAL

The general function of the A command will be to move a
string of characters from the input buffers to the current
output buffer. The first character moved will be the current
position of the input buffer pointer, or the location to which
that pointer is moved by a p or m parameter specified in the
command. The characters which will be moved will be to the
next attribute mark or the quantity specified in the n
parameter if used. The resultant position of the current
input buffer pointer will be the next character after the last
one moved.

The destination of the character string moved may be either
the primary or secondary output buffer, depending only on the
output buffer stack pointer. The resultant string that will
be moved to the destination will vary depending on whether the
destination is the primary or secondary output buffer. If
directed to the primary output buffer, the resultant string
will be surrounded by the character c or by attribute marks if
c is not specified. 1If the character defaults to attribute
marks, one attribute mark will appear at the front of the
string which is loaded, but none will be placed at the end of
the string. If the destination is the secondary output
buffer, the source string will be moved intact into the
current position of the buffer and any surround characters
will be ignored.

The following series of examples will illustrate the
functioning of the A command. 1In most cases, the resultant
contents of both output buffers will be shown to highlight the
difference in operation of the command, though any operation
will affect only the current output buffer. The input buffer
may be either the secondary or primary input buffer unless
specifically designated in the buffer description by P or S.

Before: 31 [ABC DEF"GHI"JKL"MNO"
#1 [PREVIOUS "INPUT

Command: A |

After: %l [ABC"DEF GHI"JKL"MNO”
P4l [PREVIOUS INPUT"DEF’
S#1 [PREVIOUS " INPUTDEF

Page 22

RPL REFERENCE MANUAL

Before: $1 [ABC‘DEgGHI“JKL“MNO“
#1 [SSELECT" FILENAME" "

Command: A

After: %1 [ABC“DEFGHI:JKL‘MNO‘
P#1 [SSELECT“FILENAME“FGHI:
S#l [SSELECT"FILENAME FGHI

In the two examples above, the move from the source item
ended when an attribute mark was encountered, the input buffer
pointer was replaced to the end of the source attribute, and a
new attribute mark was constructed in the output buffer before
the data was moved into its new location. Either the primary
or secondary input buffer could be used here to supply the
source item and the functioning would be the same.

Before: %1 [ABC‘DEF‘GHI:JKL‘MNO“
#1 [SSELECT" FILENAME™ "

Command: A2

After: %1 [ABC‘DEF:GHI“JKL“MNO‘

| P#1 [SSELECT" FILENAME "DEF" _
S#l [SSELECT” FILENAME "DEF

‘ Despite the prior positioning of the input buffer pointer

in the above example, the move came from attribute 2 of the
input buffer since it was explicitly stated in the command.
The resultant positioning of the input buffer pointer is
immediately after the last character moved.

Before: 81 [ABCADEEGHI“JKL“MNO“
#1 [SSELECT” FILENAME”
Command: A"
After: 31 [ABC"DEFGHI JKL"MNO~
P#1 | [SSELECT" FILENAME"FGHI" "
S#1 [SSELECT” FILENAMEFGHI "

Page 23

RPL REFERENCE MANUAL

Before: 31 [ABC‘DEF“GHI:JKL‘MNO‘
#1 [SSELECT” FILENAME™ "

Command: A"2

After: %1 [ABC"DEF GHI"JKL"MNO"
P#1 [SSELECT“FILENAﬁEf"DEF“:
S#1 [SSELECT” FILENAME DEF

The two examples above illustrate the use of the character
surround capability of the A command. As shown in both cases
no additional attribute mark was constructed in the output
buffer as in the other previous examples. Despite the
exclusive use of the double quote for the illustrations, any
non-numeric character may be used for this function.

Before: 31 [ABc‘DEFgﬂlJKL“MNo“éQR“
#1 [SSELECT*FILENAME:

Command: JA(,2)

After: %1 [ABC"DEFGHIJKL"MNO“PQR"
P#l [SSELECT"FILENAME“GH:
S#l [SSELECT” FILENAMEGH"

This operation moved from the current position of the input
buffer pointer for a length of two characters. The input
buffer pointer may have been left where it was by another
similar command executed sometime before the operation shown
above. :

Before: P31l [ABCDEFGHIJKL "MNOPQR” STUVWX "
$#1 | [SSELECT“FILENAME:
Command: A(3,5)
After: P%l [ABCDEFGHIJKL " MNOPQR” STUVWX "
| P#1 ‘[SSELECT“FILENAME“CDEFG:
S#l [SSELECT“FILENAMECDEFG:

Page 24

RPL REFERENCE MANUAL

Before: P$1 [ABCDEF "GHI"JKL"MNO"
#1 [SSELECT" FILENAME”
Command: A(3,7) ‘
After: P%1 [ABCDEF GHI"JKL"MNO”
P#1 l[SSELECT“FILENAMﬁ“CDEF:
S#1 [SSELECT" FILENAMECDEF "

In all A(m,n) operations the source item will come from the
first attribute of the primary input buffer. The second
example above shows the operation when the end of the
attribute is encountered before the number of characters
specified in the n parameter have been moved. 1In this case
the operation terminates at the attribute mark and the primary
input buffer pointer is set at the %2 attribute mark.

MV command

-Format- MV object-item source-iteml,source-item2,...

A move statement may be used to move data into any buffer
area (a file buffer, a select register, or the input or output

buffers). A move statement must have two operands, the second
of which may be a complex string. The first of the two

~operands will be the object of the move, where the values are

to be moved. The first operand may consist of any valid
direct or indirect reference. The second operand may contain
one value or a string of values separated by commas. Each
value will be moved into successive locations in the first
operand location, and may individually be a literal, a direct
reference, an indirect reference, or a built up combination of
any of the preceeding, constructed according to syntax
explained later.)

The simplest form of the move statement contains only one
value as the second operand. This may be any valid direct or
indirect reference:

MV &3.1 &5.2
MV &3.2 %17
MV !1 &7.%3
MV %1 12

Note: the above is the only valid form which may be used
with a select register in the first operand. All other forms
are valid for any reference in the first operand.

The second operand may also contain a literal which must be

- surrounded by double quotes:

Page 25

RPL REFERENCE MANUAL

MV &9.0 "BEN FRANKLIN"

If the literal is simply two double gquotes without any
intervening literal string, the attribute specified as the
object of the move will be cleared to a null item:

Before: &4.0 [ABC"DEF"GHI"JKL"MNO"
Command: MV &4.3 "" _ :
After: &4.0 - [ABC"DEF"GHI""MNO"

The second operand may contain a string of values,
separated by commas, which will be loaded into consecutive
attributes of the file buffer, starting at the location
specified in the first operand. The statements on the left
below and the series of statements on the right are logically
equivalent:

MV &2.1 &5.2,%3,15 MV &2.1 &5.2
MV &2.2 %3
MV &2.3 !5

MV &1.5 "FIRST",&3.1 MV &1.5 "FIRST"

MV &1.6 &3.1

A string of references used as the second operand will all
be filled with the values which existed before the move
statement was executed, even if one or more of those
references is an attribute which was changed elsewhere in the
same move statement. The following:

MV &5.2 &3.1,85.2,&5.3

Will move the 0ld values of &5.2 and &5.3 into &5.3 and
&5.4 respectively and will not fill all three attributes with
the previous contents of &3.1. Therefore, the previous
statement is logically equivalent to (note order of move):

MV &5.4 &5.3
MV &5.3 &5.2
MV &5.2 &3.1

If the object of the MV statement (the first operand) does
not have items defined to the point where the first item will
be loaded, the processor will construct enough null attributes
to load the source items in the locations they were directed
to by the statement. The current end of buffer will then be
established at the last item loaded.

Before: &l.0 [ABC"DEF”
Command: MV &1.5 "GHI","JKL"
After: &l.0 [ABC"DEF""""GHI"JKL"

If the object of the move statement is the input buffer,
the input buffer stack pointer will be directed to the primary

Page 26

RPL REFERENCE MANUAL

input buffer (turned off) and the primary input buffer pointer
will be redirected to the first item loaded by the statement.

Before: 21 [ABC‘DEF‘GHI“JKL‘MNO“PQR“STU:VWX“

Command : MV %3 "12","34","56"
After: %1 [ABc‘DEF:12“34“56“pQR*STU“vwx“

Additionally, should any spaces be included in literals or
direct reference item, they will be loaded in one item and
will not cause extra attribute marks to be formed as in the IH
and IP statements, nor are backslashes converted to blanks by
this command.

Before: 31 [ABC"DEF"GHI "JKL"

Command: MV %2 "12 34 56\\"

After: %1 [ABC"12 34 56\\"GHI"JKL"

If the object of the move statement is the output buffer,
the current output buffer pointer will not move unless the
quantity of attributes is changed by the move statement. It
will always point to the end of the buffer.

Before: #1 [ABC"DEF"GHI “JKL"MNO"
Command: MV #3 "12","34","56"

After: #1 [ABC‘DEF“12“34“56:
Before: $#1 [ABC"DEF "GHI "JKL"

Command: MV #7 "12","34","56"
After: #1 [ABC‘DEF“GHI“JKL““12”34“56:

When used alone as the last item in a string of the second
operand, an asterisk (*) will move all remaining items of the
buffer referenced in the previous item of the string (which
must be a direct or indirect reference) as if they were
individually referenced. The asterisk so used may not follow
any item other than a buffer reference (may not follow a
literal, etc) and must be the last item in the string.

MV &5.2 &7.1,"SAME" ,&4.7,%
Will operate the same as:
MV §5.2 &7.1,"SAME",54.7,54.8,&4.9,84.10,........

The move will stop when the previously established last

Page 27

RPL REFERENCE MANUAL

attribute of file buffer 4 is reached and the end of buffer 5
will be created at that point. All previous attributes
existing beyond that point in file buffer 5 will be lost.

When used in conjunction with a numeric value the *n item
in the second operand of the MV statement will move n
additional items from the just referenced buffer into the n
contiguous locations in the first operand location. If the
end of the source buffer is reached, the move will continue
filling the object buffer with null attributes until the
quantity of items specified has been loaded. The source
buffer will not be changed.

Before: &1.0 [ABC"DEF"GHI "JKL "MNO "PQR"STU"VWX"
: &2.0 [1727374"°5"76"77879"¢g"

Command: MV &1.2 &2.1,%*3

After: &1.0 [ABC"DEF"2737475°STU VWX~

Before: &1.0 [ABC"DEF"GHI “JKL"MNO "PQR"STU VWX~

&2.0 [172737475"7
Command: MV &1.2 &2.2,%*4
After: &1.0 [ABC"DEF"37475"""VWx"

Any item in the second operand may be a built up
combination of other attributes or literals by appending them
together with an imbedded asterisk. This asterisk will not
appear in the built up string but is used only as a means of
combining other items.

MV &5.2 &4.7*%3

Assuming the previous values of &4.7 and %3 were '413a 7'
and '7A1\B' respectively, the resulting contents of &5.2, due
to the above instruction, would be '413A 77A1\B'. These itenms
may be as complex as desired. For example:

MV &5.2 &4.7*"*"*g3,"73"*§l.0*"SAME"

The source items in the MV statement may also contain
'A(m,n)' items constructed as defined in the corresponding
section devoted to discussion of that command. 1In this case
the source is always the primary input buffer and no change
will occur in the contents of the output buffer unless
otherwise used as the object of the MV command. A facility
has been added to the MV command to allow efficient conversion
and storage of numeric items being loaded from card image
records. This is the N(m,n) type of extraction which will
function similarly to the A(m,n) command except that it will
drop all leading insignificant leading zeros when moving the
field to the object buffer. These functions could be used as
shown below:

Page 28

RPL REFERENCE MANUAL

Before: %1 [ABCﬂﬂﬂ1234 3152 MM1”

&1.0 [AAA"BBB"CCC"DDD"EEE"FFF"
Command: MV &l.1 A(1,3), N(4,6) A(8 6)
After: &1.0 [AAA ABCGG 123 234 317 EEE FFF~

An end of buffer may be forced on the object buffer by
using a back arrow (¢, O[s]) in the last item in the second
operand of the move command. The object buffer will then be
truncated to the last item loaded in the move statement and
all remaining attributes previously existing will be lost.

Before: &4.0 [AA"BB"CC DD "EE"FF GG "HH"II"JJ"KK"
Command : MV &4.2 "START",&4.5,%*2,*
After: &4.0 [AA"BB"START"FF GG "HH"

If divergent attributes must be changed without disturbing
intervening items, a series of commas in the second operand
will skip the number of attributes in the object buffer which
were skipped with the commas. With this function, the
previous contents of the skipped attributes of the object
buffer will remain unchanged.

Before: &8.0 [ABC"DEF"GHI "JKL"MNO"PQR"STU"VW"
Command: MV &8.2 "START",,,,"END"
After: &8.0 [ABC"DEF”START JKL "MNO“PQR"END"VW"

If the skip function is used and the next attribute after
the skip falls beyond the current end of the buffer, null
attributes will be constructed to fill the. gap up to the item
at which the next load is to take place.

‘Before: $1 [ABC"DEF”
Command: MV %2 "START",,,,,,"END"
After: %1 [ABC"START""""""END"

All of the functions available in the move statement may be
combined in one MV statement in any order desired, except the
back arrow, which must be the last item in the second operand.
Mixing of complex built up items, skipped items, multiple
moves by *N, literals, and direct and indirect references may
be accomplished by following the syntax rules for each item
individually. For example an *N may be used as long as it
follows a reference to an item in a file buffer and not a
literal or a built up string. The following is a series of
examples of complex mixed operands which may be constructed
when using the MV statement.

MV %3 §&5.2,*%3,"THEN*"*&3.%5*%3,,,&7.1,*3,

MV &7.1 #1,#2,43,#4,*3,"UNUSED" ,g1*" "*g2*" "xg3 umn uu
MV $]l e

Page 29

7.3

RPL REFERENCE MANUAL

MVA command
-Format- MVA object-item source-item

The MVA command is used to move items into a multivalued
string in an attribute of the buffer areas. The source item
(second operand) and object item (first operand) must be
single direct or indirect references (literals, etc are not
valid) . The source item will be placed into the object item
string intact, separated by value marks, and placed in
collating sequence. If the source item itself is a
multivalued string, it will not be split into component parts
but will be placed, as is, into the object item.

Before: £1.0 [ABC"DEF [GHI "JKL "MNO"
Command: MVA &l1.1 &1.3
After: &1.0 [ABC"DEF]GHI]MNO"JKL "MNO"

Before: &1.0 [ABC"DEF]GHI "JKL "FOR"
Command: MVA &l1.1 &1.3
After: &1.0 [ABC"DEF]FOR]GHI "JKL"FOR"

In both of the above cases the source item was moved into
the object string in collating sequence and an extra value
mark was constructed to separate it from the rest of the data.

Before: &1.0 [ABC"DEF]GHI"JKL"MNO"

&3.0 [AAA"BBB EXTRA]MONEY]WAGE "END"
Command: MVA &1.1 &3.2
After: &1.0 [ABC"DEF]EXTRA]MONEY]WAGE]GHI “JKL "MNO~

The multivaiued string in &3.2 was placed intact into the
string in &1.1 without splitting the individual values and
placing them in collating order.

Before: &1.0 [ABC”"""DEF]GHI "JKL "MNO"

%1 [1237456778971117222"333"
Command: MVA &1.2 %3 .
After: &1.6 [ABC""789""DEF]GHI "JKL "MNO”"

In the case where the object item is null, the MVA command
will function like a MV command and will simply move the
source item to the new location.

Before: &1.0 [ABC"DEF]GHI]JKL]MNO"PQR"
&7.0 [1237456"GHI"789"

Command: MVA &l.1 &7.2

After: &1.0 [ABC"DEF]GHI]JKL]MNO"PQR"

Where the source item already exists in the object string
in the proper collating order, the item will not be reloaded.
Duplicates will not exist in a multivalued field loaded value
by value with an MVA statement.

Page 30

7.4

RPL REFERENCE MANUAL

Before: &1.0 [ABC"DEF]GHI]JKL]MNO"PQR"
&7.0 [1237456"GHI]JKL"789"
Command: MVA &l.1 &7.2
After: &1.0 [ABC DEF]GHI]GHI]JKL]JKL]MNO "PQR"

When the source value contains a value mark, it cannot
compare equal to any value in the the object field since
comparison in the object field will restart every time a value
mark is encountered. For this reason, as shown above,
duplicates may appear in the the multivalued string despite
the fact that an identical string already exists in the object
field. '

Before: &1.0 [ABC"DEF]GHI]JKL]MNO “PQR"
, &7.0 [1237456"PQR]GHI"789"
Command: MVA &l.1 &7.2
After: &l1.0 [ABC DEF]GHI]JKL]MNO]PQR]GHI"PQR"

Duplicates may also be caused, out of collating order,
anytime the source item contains a multivalued field, since no
comparison is possible between values in the source and object
field.

MVD command
-Format- MVD object-item source-item

The MVD command will cause a value to be deleted from a
multivalued field. The value of the source field, designated
by a direct or indirect reference in the second operand, will
be deleted from the multivalued string of the object field,
designated by a direct or indirect reference in the first
operand. If the value exists more than once in the first
operand field, only the first occurance will be deleted. If
the value does not exist at all in the first operand field,
there will be no change to it. If the source item is a
multivalued field, nothing will be changed in the first
operand field since no match will ever be found. When the
object item is the input buffer, the buffer pointer will be
moved to point to the beginning of the object attribute.

The operation of the MVD command is illustrated below. For
simplicity of the displays, the source item will always be in
the same buffer as the object item though this is not a
restriction of the command.

Before: &1.0 [ABC"DEF]GHI]JKL]MNO"GHI"
Command: MVD &l.1 &l1.2
After: &1.0 [ABC"DEF]JKL]MNO"GHI"

Page 31

RPL REFERENCE MANUAL

Before: &1.0 [ABC"DEF]GHI]JKL]GHI"GHI"
Command: MVD &1.1 &1.2 .
After: &1.0 [ABC"DEF]JKL]GHI "GHI"
Before: 31 [ABC"DEF]GHI]JKL"GHI]JKL"
Command : MVD %2 %3

After: %1 [ABc:DEF]GHI]JKLfGHI]JKL“

The last example illustrates the action when the source
item is a multivalued filed. Nothing can be deleted despite
the exact match since the comparison in the object field
restarts when a value mark is encountered. This prohibits a
match to a field which has a value mark in it.

Page 32

8.1

RPL REFERENCE MANUAL

CHAPTER 8

TERMINAL AND TAPE INPUT

IP command
-Format- IPoptions/prompt-character/object-item

The IP statement will input a value from the terminal into
an internal buffer. The actual value loaded and the location
to which it is loaded will vary depending on the format of the
input statement. Associated with any input statement is a
prompt character which will appear at the current location on
the terminal to show that the program is ready to accept
input. The default value for this prompt character is the
colon (:), as used in prompting TCL input.

The simplest form of the input statement is using IP only
on a line. This form uses the current prompt character and
inputs the actual value entered on the terminal keyboard into
the current location of the current input buffer. If no value
is entered at the keyboard (a new-line is entered), the
previous contents of the current location of the input buffer
will remain unchanged. If a value is entered, it will replace
entirely the previous contents of that location in the input
buffer.

Given the sequence of instructions:

S3
IPp

The contents of %3 will be affected as follows:

$3 before input input value $3 after input
ABC (CR) (no input) ABC
ABC 123 123
ABC X X
ABC 37ACD 37ACD

If spaces are entered at the keyboard, any space or string
of spaces will create one attribute mark in the input buffer.
The entire string entered at the keyboard will nevertheless
replace only one attribute in the input buffer as shown below:

Before: [ABc:DEF]GHI“JKL“MNo‘
Input: 123 456 789
After: [ABC:123‘456‘789“JKL‘MN0"

Page 33

RPL REFERENCE MANUAL

Because three new items replaced the previous one, the
values which were %3 and %4 (JKL and MNO) must now be
referenced as %5 and %6 respectively. If a single backslash
is entered at the keyboard, it will load a null field.
However, a string of backslashes surrounded by spaces will
generate the same quantity of spaces in an attribute as the
gquantity of backslashes entered. Backslashes otherwise
entered as part of another item will be converted to spaces.

Before: - [ABC"DEF]GHI "JKL"MNO"
Input: 12 \ 34 \\\ 3\M
After: [ABC"127734" “3 M"JKL"MNO"

A space or series of spaces entered alone at the keyboard
will load a null attribute.

Before: [ABC“DEF]GHI:JKL‘MNO“
Input: (space)
After: [ABC“DEF]GHI:“MNO“

By changing the format of the statement to IPB, all spaces
entered will not be converted to attribute marks but will be
loaded as literal spaces into the one attribute designated by
the input buffer pointer and all backslashed entered will load
without conversion. For example, assuming an IPB statement
doing the input:

Before: [ABC"DEF”GHI JKL"MNO”
Input: 12 34\M \
After: [ABC"DEF"12 34\M \"JKL"MNO"

Either of the two above formats, IP or IPB, will use the
current prompt character which defaults to the colon (:), used
also to prompt TCL input. Any other character may be
specified as the prompt character by appending it immediately
behind the IP or IPB statement (an IP? Will use the question
mark as the prompt character). Any character so specified in
an input statement will become the current prompt character
and will be used to prompt input until another character is
appended to an IP or IPB statement. Obviously a B cannot be
used as a prompt character in an IP statement since this would
be interpreted by the processor as an IPB statement. Use of
an N for the prompt character, as IPN will indicate no prompt,
and in this case the cursor will not move when the IPN command
is executed. One of the common prompts which may be used is a
blank character, in which case a space should be entered

Page 34

RPL REFERENCE MANUAL

behind the IP or IPB statements. The following are a series
of examples of input statement with prompt characters:

Input statement Prompt character
1P (space)
IPN (no prompt)
IPBX , X
IP? ?

In cases where it is necessary to clear the object
attribute if no data is entered at the terminal during the IP
command, an F may be appended to' force input. This will cause
the attribute to which the input would be loaded to be cleared
if no input is made. The forced input function may be
combined with the blank conversion by coding either IPBF or
IPFB. Any prompt character will follow the options.

The input entered at the keyboard may be directed to areas
other than the input buffer. Alternate input areas may be the
output buffers or any of the file buffers. Input will be
directed to the attribute specified in a direct or indirect
reference appended to the IP statement (IP&3.2 will place the
input into attribute 2 of file buffer 3). The primary input
buffer may also be specified as the object of the input
statement by using a reference to the attribute in which the
input is to be placed. Any input made by using this format
will be loaded into one attribute, regardless of spaces
entered, and all backslashes will remain as entered. Because
of this functioning there is no difference between the
operation of the IP and the IPB statements when used in this
format. Prompt characters may be included by coding the 1IP,
prompt character, and object attribute in order into one
statement. For example, to obtain a prompt character of a
gquestion mark and place the input into attribute 4 of file
buffer 7, use an IP?&7.4 statement. This function may also be
executed with either or both of the options as IPB, IPF, or
IPBF. .

If, when using the directed form of the input statement,
the object attribute falls beyond the current end of the
buffer, null attributes will be automatically constructed to
£ill the area up to the attribute into which the item is to be
loaded. Following is a series of examples of the use of the
directed input statement. 1In all cases, the buffer shown is
the buffer into which the input is placed and will be
designated by a direct reference preceeding the display.

Page 35

RPL REFERENCE MANUAL

Before: &6.0 [ABC"DEF"GHI "JKL "MNO"

Command : IP&6.3

Input: 12 34M\ X

After: &6.0 [ABC"DEF"GHI 12 34M X “MNO”
Before: $1 [ABC"DEF”

Command: IPS%7

Input: 385.72

After: $1 [ABC"DEF"""""385.72"

Before: #1 [ABC"DEF"GHI “JKL "MNO"

Command: IPBX#1

Input:: DES PLAINES, ILL

After: $#1 [DES PLAINES, ILL"DEF"GHI JKL"MNO"
Before: #1 [ABC"DEF”

Command: IP?45

Input: NEXT

After: $#1 [ABC“DEF““NEXT:

Since the output buffer pointer always points to the end of
the buffer, this input has caused the pointer to move.

Before: &1.0 [ABC"DEF”
Command: IP&l.5

Input: (new-line, no input)
After: &1.0 [ABC"DEF"""""

In this case, even where no input was made, the buffer was
still expanded to the point specified in the input command.

IN command
-Format- INprompt~character

The IN command is included only for the purpose of
compability with previous versions of the processor.
Capability to perform all functions performed by this command
have been provided by other operations. See previous issues
of documentation of the PROC processor for operation of this
command. ' ‘

Page 36

8.3

RPL REFERENCE MANUAL

IT command
-Format- IToptions

The IT command is used to input data from a magnetic tape
to the input buffer. A full block of data, up to a maximum
length of 500 bytes, is read from the.tape and placed into
attribute 1 of the primary input buffer. The input buffer
stack pointer is turned off and the primary input buffer
pointer is redirected to point at attribute 1. No other
attributes within the input buffer will be affected. One
exception to the previous rule is if attribute marks (X'FE')
or segment marks (X'FF') appear within the block of data being
loaded. If they do appear, attribute marks or segment marks
will respectively cause extra attributes or end of buffer to
be created, either moving or deleting other items within the
buffer.

Two options are provided to allow loading of tapes which
have other than 7-bit ASCII codes on them. The first is the
ITA command which will mask out the first bit of all 8-bit
ASCII characters to present 7-bit ASCII characters. The
second is the ITC command which will convert 8-bit EBCDIC to
7-bit ASCII characters.

EI Command
-Format- EIRPp(x,y) ,object-item,edit

The EI statement will input a value from the terminal,
check it for compliance with the editing required, and, if
acceptable, place it into an internal buffer. The EI command
incorporates most functions required to input and edit a value
that could be included in a single statement. Operation of
the EI command is substantially faster than the equivalent
statement string coded otherwise, and considerably more
efficient in its use of system resources.

The EI statement consists of five separate parts
designating how the command will operate and what it will do.
The sections must appear in the order shown in the format and
will perform as outlined below:

R (optional) designates a required field. If entered in
the EI statement, an entry must be made in this field if
it was blank originally.

Pp (optional) designates a prompt character. If not
designated the default prompt character will be used.
If designated, the character 'p' (which may be any
character) will be used to prompt input and will become
the prompt character. An N is a special prompt
character that will cause no prompt character to be

Page 37

RPL REFERENCE MANUAL

output.

(x,y) (required) designates a column and row for input on
the terminal screen. Both parameters must be supplied
and either or both may be any valid direct or indirect
reference. The location specified will be the first
input character, and any prompt will appear in the
position to the left of this location. Specifying
column @ will cause the prompt character to appear in
the last location of the previous row.

Object-item (required) designates the field to be changed.
This field must be a valid direct or indirect reference
to any internal buffer.

Edit (required) designates the input and display editing to
be applied to the field. Previous contents of a field
are not checked for validity under the edit
specifications. Valid edit specifications are listed in
the table below.

Xnn an alpha-numeric field with maximum length
specified by the numeric literal nn

Nn.m an unsigned numeric field of length n (including
decimal) containing m decimal digits. Decimal
digits are optional and this format may appear as Nn

Sn.m a signed numeric field of length n (including
decimal and sign) with m decimal digits. Decimal
digits are optional and this format may appear as Sn

D8 a date field

Specifications for numeric fields are different from those
used elsewhere in RPL. The major difference is that the
length n includes not only the numeric characters to the left
of the decimal, but all other characters in the field as well.
The signed numeric specification for -12.34 would then be
S6.2. This would allow no more than two places to the left of
the decimal, even if the negative sign was not entered.

The command will function so as to replace the normal
sequence of statements used when loading or updating an item
on a file. 1Initially the instruction will move the cursor to
the position (x,y) on the terminal screen and output a mask
depending on the edit specifications. If the edit requires
alpha-numeric input (Xnn), a string of X's equal to the length
will be displayed on the terminal screen. For example, the
edit specifications below will result in the masks shown in
the table:

Page 38

RPL REFERENCE MANUAL

Edit Specification Mask Displayed
X23 XXXXXXXXXXXXXXXXXXXXXXX
X2 XX
X110 XXXXXXXXXX

If the field is numeric, no mask will be displayed unless
the original field was null, then a ‘zero field, right
justified, will be output. The mask displayed for all date
format input will be MM/DD/YY.

The next step in the command will be to display the
existing contents of the field, if any, starting at (x,y).
The display will be edited to external format if numeric or
date editing is specified. The 01d contents of the object
field will not be checked for validity under the specified
edit format. This may cause the display values to be other
than expected. Dates will be displayed in mm/dd/yy format and
numeric fields will be displavyed in nnnn.nn with actual
display depending on the edit specifications. The following
table shows the total display, including masks, of typical
items with various edit specifications:

EDIT SPECIFICATION FIELD CONTENTS DISPLAY
X15 ABCDE ABCDEXXXXXXXXXX
X4 ABCDEF ABCDEF
X5 (null) XXXXX
N7.2 . 45 g.45
S5 271 271
S5.1 ABC AB.C
S7.2 (null) 6.00
D8 3311 83/31/77
D8 (null) MM/DD/YY

Next, a prompt character will be displayed unless a null
prompt was specified. The prompt character will appear to the
left of the position specified in the command for input. If
no prompt specification appears in the EI command, the default
prompt will be used. If a prompt is specified, it will become
the default prompt character.

The processor will then wait for input at the first
position of the input field. Certain special characters
entered at this point will have special meaning, see below:

Null will not change the o0ld field contents. Will not be
accepted if the old contents was null and the command
specifies this field is required. 1In this case, the
error message "FIELD REQUIRED" will be displayed and the
command will re-prompt the field for input.

« Null out the o0ld field. The 0ld contents of the field
will be cleared. This input will not be accepted for a

Page 39

RPL REFERENCE MANUAL

required field.

* Transfer to previously defined abort location (see E¥*
command specification). If no transfer specified, the *
will be accepted as a normal character input which must
pass the edit.

" or END transfer to previously defined post location (see
E” command specification). 1If no transfer specified,
the " will be accepted as a normal character input which
must pass the edit.

Other entry accepted as characters. Certain special
characters, such as value mark, attribute mark, etc,
will not be accepted and will disappear from any input
string.

After input any error message is cleared and the input
value is checked for validity against the edit specifications.
If the edit is alpha-numeric, any characters are valid and the
length test is all that is required. If the length of the
entered field exceeds the length specified in the edit, an
error message "FIELD EXCEEDS MAX LENGTH" will be displayed and
input will be requeued.

Numeric fields require a more complex test. First, two
types of input are valid for most fields. Either a number
with the specified quantity of decimal places or a number
without a decimal is acceptable. The input processor will
convert a number entered without a decimal as if it had been
entered with the number of places specified in the edit rule.
"All other characters except for the optional minus sign must
be numeric to pass the edit test. A minus sign will only be
accepted if the Sn.m edit is specified.

If an input fails the numeric input test for any reason,
the error message "FIELD MUST BE NUMERIC IN FORMAT ..." will
be displayed. The actual format shown at the end of this
message will be different from the edit specification in the
command. The displayed format will be 'SaN.bN'. The S will
be displayed only if signed editing is specified, and the .bN
only if .m is in the edit specification. 1In this case b and m
will be the same value unless m was specified as zero, then
.bN will not be displayed. The aN parameter will be the
quantity of digits allowed to the left of the decimal point.
The following table will illustrate the relationship between
edit specifications, input, and results in the object field or
any error message displayed.

Page 40

RPL REFERENCE MANUAL

EDIT ORIGINAL DISPLAY INPUT RESULT/ERROR

S5.2 10 '90.10° 123 123

55.2 10 ''@.10" -1.35 -135

S5.2 ABC ' A.BC' null ABC v

55.2 -38 ' -.38" ABC «+s FORMAT S1IN.2N
N8.2 14583 ' 145.83' -123. ... FORMAT 5N.2N
S8.2 14583 ' 145.83' -123 -123

If the edit requires date formating, any of four inputs are
acceptable. The input may be in the form MM/DD/YY or MMDDYY.
However, if the first digit of the month is zero, the input
may omit it and input as M/DD/YY or MDDYY. Input is checked
for numerics in the proper locations and for roughly valid
dates. That is, the month is checked for a value between 1
and 12, and the day is checked for a value between 1 and 31.
No check is made for 31 Feb, etc. If the date input is
invalid, the error message "FIELD MUST BE DATE FORMAT" will be
displayed and the input will be requeued.

A total of four different messages may be displayed in case
of invalid input. All will be displayed at screen location
9,23 and will be cleared automatically immediately after the
next input is made. Each output of an error message will be
preceeded by an audible signal from the terminal, and, when
cleared, the first 608 locations of line 23 will be spaced
over. The four error messages output by the processor for
this command are listed below:

FIELD REQUIRED

FIELD MUST BE DATE FORMAT

FIELD MUST BE NUMERIC IN FORMAT SaN.bN
FIELD EXCEEDS MAX LENGTH

After an acceptable input has been entered it will be
converted to internal format (if numeric or date edit), stored
in the object field location, and the processor will proceed
with the next line of the program. At this time, it may be
possible that further edits other than those provided in the
"EI command are required. For example, a payment on an invoice
may not exceed the invoice amount. In any such case, a
facility has been provided to allow the processor to put out
any error message and clear it after the next input has been
received. This command is coded as follows:

EEerror message

The command coded as above will output the literal error
message following the EE command and flag the processor so any
further input through the EI command will clear the message
automatically. A sample program sequence using this function
is shown below:

Page 41

RPL REFERENCE MANUAL

350 EIRP?(30,10),%7,N7.2
IFN %7 [%5 GO 368
EEPAYMENT GREATER THAN AMOUNT DUE
GO 359

360 ...

The EI command will therefore perform most functions

required in normal screen input. For example, the following
command:

EIRP?(5,14),&3.7,X15

performs all functions shown in the following sequence of
instructions:

MV %3 "ll,llll'llll
106 T (5,14) ,"XXXXXXXXXXXXXXX",(5,14),&3.7,(4,14)

IPB?%3
IF 84 T (9,23),5640
IF %3 = -]* GO 110]GO nn

IF # %3 IF &3.7 GO 1490
IF %3 GO 1240
116 T (#,23),"FIELD REQUIRED"
MV %4 "E"
GO 100
120 s5
Ulla4
%3
IFN %5 [15 GO 1390
T (4,23),"FIELD EXCEEDS MAX LENGTH"
MV %4 "E"
T (5,14),S%5
GO 146
130 MV &3.7 %3
146 T (5,14),515,(5,14) ,&3.7

While the above example shows use of three input buffer
fields as scratch locations, the EI instruction uses no fields
other than the one to be updated.

E* Command
-Format- E*] stub-statement

The E* command is a utility function of the EI command to
designate what action to take if an asterisk is entered in
response to an EI command input. This statement should be
executed before any EI commands which must utilize the * exit
function. Then when an asterisk is input into a field in an
EI command, control is passed to the stub statement of the E*
command. Only one stub statement will be active at any one
time, the last one executed. If it is required that this
function be deleted, an E*K command may be executed. From

Page 42

RPL REFERENCE MANUAL

that point on, all asterisks entered into a terminal for an EI
command will be considered only a character without any
special significance.

Function of an E* command will be cancelled automatically
if an inter program tranfer is accomplished, and will not be
restored even if the program is reentered via a RTN statement.

E” Command
-Format- E"]stub-statement

The E” command is a utility function of the EI command to
designate what action to take if an up arrow is entered in
response to an EI command input. This statement should be
executed before any EI commands which must utilize the " exit
function. Then when an up arrow is input into a field in an
EI command, control is passed to the stub statement of the E”
command. Only one stub statement will be active at any one
time, the last one executed. 1If the stub statement is not a
GO, the next statement in line will be executed after the
stub. If it is required that this function be deleted, an E"K
command may be executed. From that point on, all up arrows
entered into a terminal for an EI command will be considered
only a character without any special significance.

Function of an E” command will be cancelled automatically

if an inter program tranfer is accomplished, and will not be
restored even if the program is reentered via a RTN statement.

Page 43

RPL REFERENCE MANUAL

CHAPTER 9

JUMPS AND BRANCHES

Jumps within or between PROCS may be accomplished by
several commands available to the programmer. The jumps may
be made unconditionally, or may be .coded into the stubs of an
IF statement and executed conditional upon a comparison being
true. Additionally it is possible to perform subroutine jumps
which will store a location to be returned to later so that a
section of code which must be executed several times within a
PROC may be coded only once and accessed from several places
during execution. The commands which make these functions
possible are outlined in this chapter.

Two levels of subroutine return stacks are provided which
will separate the local intra-program subroutines from the
inter-program subroutines.

Intra-Program Jumps and Branches

Local jumps and branches are performed without regard to
the relationship to other programs which may be called as
subroutines or which may call the current program. Any local
jump or branch which is attempted will only transfer to
locations within the same program or will cause a program
execution abort. Each individual program will create its own
subroutine return stack which is not available to other
programs. Intra-program jumps and branches will not transfer
control to another program in any operation. :

LABELS

Numeric labels may be provided in the program to allow
jumping or branching operations to other locations in the
program. All locations which must be accessed from within the
program must have a numeric label as the first item of the
line. These labels may be any integer numeric value up to
2147483647 and must be followed on the line by a blank before
the normal statement starts. Leading zeros do not change a
label so label 021 is interchangeable with 21. Any number of
labels may be used in a program.

Any label may contain any statement following it on the

same line as long as a space follows the label. The following
is a series of examples of statements with labels on them:

Page 44

9.1.2

9.1.3

RPL REFERENCE MANUAL

135 F;&3.2;&1.5;-;2%33

#3115 C SUBROUTINE TO CALCULATE NEXT SAVE VALUE
1T (2,1),"ENTER COMPANY NAME",S25, (20)

@@B23 IF %25 = END GO 3825 _
10 L HDR, (3),&3.15,(50) ,"MONTHLY STATUS REPORT"

It is generally recommended that label numbers be assigned
in ascending numerical order from the front of the program for
ease of reading, though this is not a requirement of the
processor. Duplicate labels may exist in an unoptimized
program but only the first one encountered from the front of
the program will be used (see GO statement explanation).
Duplicate labels are considered a fatal error by the
optimizer.

MARK statement
-Format- MARK

A MARK is an alternate label form which is used as an
access point for a jump. A MARK statement must appear on a
line by itself or may be executed conditionally if coded in
the stub portion of an IF statement. When executed, the mark
command stores the current instruction counter for later
reference. Only the last mark executed is remembered. See
the GO command explanation for actual operation of the MARK
function.

GO command
-Format- GO label

The GO command is used for a jump to another location in a
PROC. The location to which the execution will proceed is
specified by the operand in the GO command which may be a
label number, a FORWARD or a BACK. The functions performed by
each of these forms is dissimilar and will be discussed
separately below.

GO (label number) The execution will proceed to the first
occurance of the label in the PROC. This is accomplished
by scanning the program from the front to the back until
a statement is found starting with a label number equal
to the one appended to the GO statement. Execution then
continues with that statement. If that label does not
exist in the PROC, the program execution will terminate
with an error statement. GO statements may be coded as
shown below: '

GO 381335
GO 00135

GO FORWARD The execution will proceed to the next MARK

statement occuring as the first item of a statement.

Page 45

9.1.4

RPL REFERENCE MANUAL

This is accomplished by scanning the program from the
next statement until a MARK statement is found.
Execution then continues with the following statement.
If there is no further MARK in the program, an error will
occur during execution.

GO BACK The execution will proceed to the last MARK
actually executed by the PROC. This may or may not be
the last previous MARK physically occuring in the
program. If no previous MARK has been executed in the
program, an error will occur during execution of the GO
statement.

GOSUB command
-Format- GOSUB label

The GOSUB statement is used as a branch to a subroutine
from which a return is desired. Execution of the GOSUB
command will result in transfer of control to the label number
specified in the command and the creation of a return location
on the top of the local subroutine return stack. There is no
limit to the number of return locations which may be placed on
the return stack.

RSUB command
-Format- RSUB n

The RSUB command transfers program execution to the
location specified in the top entry on the subroutine return
stack and that entry is deleted from the stack making the next
entry avaliable for a subsequent RSUB. If there are no return
locations on the subroutine return stack, the RSUB will not
function but will fall through to the next statement in the
program.)

An alternate form of the command is to append a space and a
numeric value to the statement as 'RSUB n'. This will
transfer execution to the n'th statement after the GOSUB which
created the return stack address.

For example, if the following series of statements appear
in a program:

GOSUB 100

GO 308

MV &3.0 &7.1,8&7.2
T (6,5),"ADDRESS "

the following return statements executed from the subroutine
at label 100 will return to the statements shown:

Page 46

9.2

RPL REFERENCE MANUAL

Return Next command executed
RSUB GO 309

RSUB 1 GO 300

RSUB 2 MV &3.0 &7.1,87.2
RSUB 3 T (4,5),"ADDRESS "

KSUB command
-Format- KSUB n

The KSUB command will delete a variable number of return
locations from the local subroutine return stack. When used
by itself the KSUB command will delete the entire return stack
listing. If used with an optional numeric value preceeded by
a space as 'KSUB n', it will delete the number of return
locations specified by the numeric value. If fewer locations
appear on the stack than the number required to delete, the
entire stack will be deleted. For example:

Command Returns Deleted From Stack
KSUB All

KSUB 1 One

KSUB 2 Two

KSUB 15 Fifteen

Inter-Program Transfers

The RPL language allows two or more programs to be
logically linked together. This function serves an important
purpose in that it releases the programmer from the
restriction of a maximum of 32,267 bytes in a program. Two
different operations are provided to allow the secondary
program to be called as a returnable subroutine or simply used
as an extension of the primary program. Use of the subroutine
capability to branch to another program and return should be
minimized since it takes much longer to execute than an
internal subroutine branch and return.

All data elements will remain intact during an
inter-program transfer and will be passed to the called
program with the exception of the local subroutine return
stack and MARK save counters. Any data element may be
modified and passed on to another program or back to the
calling program.

Page 47

9.2.1

9.2.2

RPL REFERENCE MANUAL

() Inter-program jump
-Format- (file-name item-name)

The inter-program jump will kill the entire local
subroutine stack and transfer control to the first command of
the designated program. If the item designated is not a
program or is not on file, program execution will terminate
with an error message. Valid examples of the transfer command
are presented below:

(USER PRGM1)
(M/DICT IN3A)
(DICT VENDOR UPDATE)

If the file to which the transfer is to be made is a
dictionary only file the form (dict file-name item-name) is
much more efficient than the form (file-name item-name),
though both are acceptable.

[] Inter-program branch
-Format- [file—name item-namel]

The inter-program branch will stack a return location to
the next instruction and transfer control to the first command
of the designated program. Additionally, any local subroutine
returns will be saved in a hold area and the local subroutine
return stack will be cleared. If the item designated is not a
program or is not on file, program execution will terminate
with an error message. Some valid forms of the inter-program
branch are:

[M/DICT PROGRAM-3]
[MASTER SCREEN]
[DICT PROGRAMS ENTRY]

If the file is a dictionary only file, the form [DICT
file-name item-name] is much more efficient than the form
[file-name item-name], though both are acceptable.

RTN command
-Format- RTN n

The RTN command will cause an inter-program return to the
next instruction after the branch command which created the
stack location. Optionally a numeric value n may be loaded
after the RTN (as RTN n), and, if used, will cause return to
the n'th line following the branch. The local subroutine
stack will be cleared and the local stack for the program to
which control will be passed is restored. If there is no

Page 48

RPL REFERENCE MANUAL

return location on the inter-program return stack, the program
will be exited and control will be passed to TCL.

For example, if the command sequence in the calling program
is:

[MASTER PRGM1]

GO 3855

MV &2.0 &7.2

IF &3.2 # END GO 190

then the following table will illustrate the returns for the
RTN command given in PRGMl. ‘

Command Next Command Executed
RTN GO 3855

RTN 1 GO 3855

RTN 2 MV &2.08 &7.2

RTN 3 IF &3.2 # END GO 14

Page 49

10.1

RPL REFERENCE MANUAL

CHAPTER 10

CONDITIONAL OPERATIONS

The conditional execution commands provided for the PROC
processor are extremely powerful. The coding of the commands
is simple and interpretation is easy. The number of
combinations of operations which may be performed with one
statement is very large. The operations include two types of
commands with up to seven different formats and six different
operators that may be used in each. Since full explanation of
all possible cases would take a volume in itself, many
variations are left to inference where one of such a type of
operation has already been covered. Such extensions of logic
are only used where the average programmer will have no
trouble deducing the operation of a particular statement from
one which is described in full.

The IF statement processor provided in the PROC language
allows conditional operations to be performed depending on the
outcome of an alphabetic ASCII or numeric integer comparison.
The results of these statements may be conditional execution
of any other PROC statements including GO or GOSUB operations.
Compound IF statements may be constructed or conditional
multivalued IFs which can become so complex that they will be
hard to follow later. It is recommended that the multivalued
IF capability be used sparingly so as not to unduly complicate
the jobs of other programmers who will have to review or
correct the programs later.

IF command
-Format- IF operandl operator operand2 stub-statement

The IF command is used to perform an ASCII comparison of
two operands according to an equality operator supplied and to
execute an appended stub statement if the comparison is true.
The first of the two operands may be any direct or indirect
reference of the form A, IN, %N, #N, or &M.N. The second of
the operands may be any direct or indirect reference of the
form IN, %N, #N, &M.N or a literal string. The value of the
first operand is compared to the value of the second operand,
and, if they compare as specified by the operator, the stub
will be executed. If they do not compare as specified, the
next statement in line in the program will be executed. The
six operators are described below:

Page 50

RPL REFERENCE MANUAL

Operator Statement TRUE if:
= Operand 1 equals Operand 2
Operand 1 not equal to Operand 2
> Operand 1 greater than Operand 2
< Operand 1 less than Operand 2
] Operand 1 greater than or equal Operand 2
[Operand 1 less than or equal to Operand 2

The shorter of the two operands is logically extended to
the same length as the longer by appending Hex #8's on the
right. The operands are then compared left to right until the
first unequal character is encountered or until the end of the
values is reached. The condition is then set 'GREATER THAN',
'LESS THAN' or 'EQUAL' depending on the conclusion reached and
this condition is then compared to the operator. If the
condition satisfies the operator, the result of the IF
statement is TRUE and the stub is executed; if not, the
result is FALSE and the stub is skipped and the next statement
is executed.

The following table of examples will illustrate the results
of the IF statement comparison:

OPR1 OPR2 OPERATOR

= # > <] |
ABC ABC TRUE FALSE FALSE FALSE TRUE TRUE
ABCD ABC FALSE TRUE TRUE FALSE TRUE FALSE
123 ABC FALSE TRUE FALSE TRUE FALSE TRUE
‘123 0123 FALSE TRUE TRUE FALSE TRUE FALSE
3 138 FALSE TRUE TRUE FALSE TRUE FALSE

The last two cases show that numeric values are not
considered since this is only an ASCII comparison. Two
numerically equal values are unequal due to the presence of a
leading zero on one, and the smaller of two numeric values
shows greater than the other since it is compared with the
most significant digit of the other instead of being aligned
numerically first. Such results should be expected in an
ASCII compare.

Valid forms of the basic IF statement are shown below with
their stubs.

IF &3.1 = ABC GO 788
IF %#3 > AAA MV &l1.2 %#3
IF #5 # #1 L (3),&l1.5

The pound sign (#) will not be confused when used as a 'NOT
EQUAL' or as an output buffer reference if all items in the
statement are properly separated by spaces as shown in the
third example above.

Page 51

RPL REFERENCE MANUAL

Attributes may be compared to a null value by using "" in
the second operand in place of a literal string. For example,
the following statements will each compare the first operand
to a null value:

IF &3.1 = "" GO 788

IF %#3 = "" MV &l.2 #3 :
IF #5 = "" T (8,23),"NOT ON FILE",B
IF %15 # "" XPROGRAM FINISHED

As previously stated, an A function can be used to provide
the value for the first operand. This means that any valid
form of an A statement may appear excepting those using the
surround character. Valid forms are A, An, A(n), A(,m), or
A(n,m). When used in this context in the IF statement, no
value is moved to the output buffer (as when the A command is
used alone). The format supplied is merely used to extract
the value to be compared from the input buffers and the buffer
pointers are not moved as a result of the reference. For
example:

IF A = END GO 999

IF A(3,2) > 99 A(3,2)
IF A2 [99 MV %2 §l.5
IF A = A IHNEXT

In the last statement the A in the second operand is
interpreted as a literal value since the A for input buffer
extraction is not valid in the second operand.

The two special cases of the basic IF statement exist which
will compare an attribute to a null value not specified in the
command. The first of these is coded without an operator and
only one operand, which may be any direct or indirect
reference. 1In this case, the statement will be TRUE if the
referenced attribute is anything other than a null. These
statements may be coded as follows:

IF A GO 385
IF &3.%2 IHC

These commands are equivalent to a 'NOT EQUAL' comparison
to a null literal as 'IF A # "" ...'.

The second special case is coded with a 'NOT EQUAL'
operator and a second operand only, which in this case may be
an A statement to extract items from the input buffer. The
statement will be TRUE if the referenced value is null. For
example:

IF # A GO 385
IF # &3.%2 IHC

The last commands are equivalent to a 'EQUAL' comparison to

Page 52

190.1.1

RPL REFERENCE MANUAL

a null literal as '"IF A = "" _..'.

If the second operand in any IF statement is to be a
literal which must contain either a single or double quote ('
or "), it may be surrounded by the other gquote item as a
delimiter. For example:

IF &3.%4 = "PROGRAMMER'S" ...

IF statement with mask

‘The second form of the IF statement will compare the wvalue
of an attribute in the first attribute to a mask in the second
operand. Masks may specify character type and length or
specific non-numeric characters which must appear in a given
position. Numeric characters may not be specifically defined
since they signal the start of a mask length. Masks must be
surrounded by parentheses in the second operand of the IF
statement and may contain any implicit characters in any
position by having that character coded into the mask. For
example:

IF %3 = (ABC) e o 0

In order for the statement to compare TRUE, attribute 3 of
the primary input buffer must contain an A in the first
position, a B in the second position, a C in the third
position, and no other characters in the attribute. Of course
in this simplified version the statement is equivalent to:

IF %3 = ABC ...

The unique capability of the mask statement occurs when a
numeric in the mask is followed by an A, an N, or an X. In
this case the combination of numeric and characters A, N, or X
specifies that a given number of Alphabetic, Numeric, or
Alphameric characters must occur in that position. A numeric
literal may not otherwise appear in a mask. For example, the
statement

IF %3 = (ABC3Aa) ...

will be TRUE only if the first three positions of %3 are ABC
and are followed immediately by exactly three other alphabetic
characters. The results of the test on several values is
shown below:

Condition Values
TRUE ABCDEF ABCXRQ ABCAAA ABCUZB
FALSE ABC123 ABCAA ABCDEFG UBCABC

Page 53

RPL REFERENCE MANUAL

The function of this statement, therefore, could not be
duplicated by any less than 17,576 individual IF statements
specifying ABCAAA through ABCZZZ as the second operand.
Additional valid masks which may be coded into a PROC include:

IF &3.2 = (AB-4N) ...
IF #31 # (4N) ...

IF %5 (4A-23) ...

IF %7 (3N-2N-4N) ...

The last statement could be used to test for valid input of
a social security number.

A numeric zero preceeding a type character will allow any
quantity of the character type specified to be accepted and
break when a different character is encountered. This
function has particular significance in cases such as numeric
input with a decimal point as in: '

IF %3 = (ON.2N) ...

This comparison will test TRUE if %3 has any quantity of
numerics, a decimal point, and two numerics. Values such as
123,45 or 175137.15 or .89 will satisfy this test.

Care must be exercised in the use of the #X type comparison
in a mask. Any further specifications within the mask after
the 0X will cause the compare to always be FALSE. This will
occur since the 00X comparison will use up the entire remaining
source field regardless of the contents and leave nothing for
the following portion of the mask to compare against. The
following examples will, therefore, always compare FALSE,
regardless of the contents of Operand 1.

IF A = (BPX.2N) ...

A special case occurs when numerics are specified in the
mask since optional plus or minus signs may be accepted even
when not coded in the statement. When numerics are specified
in the mask without a sign immediately preceeding the numeric
mask, the statement will compare TRUE if the specified number
of numerics appear alone or if they are preceeded by a plus or
minus sign. If the mask specifies a plus sign and numerics,
the numeric value in the argument may appear alone or may be
preceeded by a plus sign. If the mask is a minus sign and
numerics, the argument must be preceeded by a minus sign. 1In
all of these cases, the sign will not be counted in the length
of numeric characters specified. The following table will
show the results of numeric mask comparisons in the statement:

IF A = (mask) ...

Page 54

10.1.2

RPL REFERENCE MANUAL

Value Mask
(4N) (+4N) (-4N)
1234 TRUE TRUE FALSE
+1234 TRUE TRUE FALSE
-1234 TRUE FALSE TRUE
-123 FALSE FALSE FALSE
241234 FALSE FALSE FALSE
1234A FALSE FALSE FALSE

Use of a mask with other than an EQUAL or NOT EQUAL
operator is more complex than usual. The comparison is made
initially only on the type of characters specified and the
result is compared to the operator to determine if the
statement is TRUE or FALSE. A null field will compare LESS
THAN any mask value. For example, with the following
statement:

IF %3 > (3N) ...

the contents of %3 must contain three numeric characters
(preceeded by an optional sign) and at least one other
character of any type for the statement to compare TRUE. The
following table will illustrate the function of the general
statement:

IF %3 operator (mask) ...
%3 Operator (mask)

> (2N) < (2N) [(2N) > (2n) < (24)

+12 FALSE FALSE TRUE FALSE TRUE
123 TRUE FALSE FALSE FALSE TRUE
-1BC FALSE TRUE TRUE FALSE TRUE
ABC FALSE TRUE TRUE TRUE FALSE
ABl12 FALSE TRUE TRUE - TRUE FALSE
Al2 FALSE TRUE TRUE FALSE TRUE
128 TRUE FALSE FALSE FALSE TRUE
AA FALSE TRUE TRUE FALSE FALSE
(null) FALSE TRUE TRUE FALSE TRUE

Multivalued IF comparisons

The second operand of an IF statement may be a literal
multivalued field or a direct or indirect reference to an
attribute in a buffer which is a multivalued field. 1In this
case, a comparison is made between the first operand and each
value of the second operand. The statement is TRUE if any of
the comparisons are TRUE, except in a NOT EQUAL comparison. A
NOT EQUAL comparison will only execute the stub if all values
in the second operand compare not equal to the first operand.

Page 55

1@.1.3

RPL REFERENCE MANUAL

The multivalued second operand may contain anything in a
value which is valid as a second operand by itself; i.e.,
literals, masks, direct or indirect references, etc. The
examples below are valid:

IF %3 = &7.11""] (4N)]ABC GO 385
IF &7.%2 > AA]&5.1]1&7.22](2A) X OFF
IF !1 [&1.2]&7.15]AAA]9999 MV &5.2 &7.25,&5.8

The comparison of multivalued fields will stop when a space
not within quotes is encountered. The remainder of the
statement will be considered the stub by the processor. If
the contents of &7.1 were multivalued in the first example
above, the first operand would be compared to each value of
the field before proceeding to the next value in the second
operand. If contents of the second operand were contained in
an attribute within a buffer and a reference was made within
the statement to that attribute, it would execute the same as
above. The next statement is equivalent to the first example
above:

Command: IF %3 = &1.2 GO 385
Where: &1.0 [ABC"DEF"&7.1]""] (4N)]ABC"123"

Multivalue stubs

If the second operand of the IF statement is a multivalued
field, the stub may contain a series of multivalued
statements. When this case occurs, the first stub statement
will be executed when the first value of the second operand
compares TRUE; the second stub statement when the second
value compares TRUE; etc. Each value in the stub must be a
complete statement by itself without any value marks in it.
If more than one value in the first operand compares TRUE, the
stub associated with the first one will be executed. TIf the
values in the second operand are exhausted before the last
stub statement, the remaining stub statements will be skipped
and the next statement in the program will be executed. If
the stub statements are exhausted before the values in the
second operand, the last stub statement will be executed 1f
any of the remaining values compare TRUE.

The following table will illustrate the operation of this
statement:

IF %3 = ABC]""](2N) GO 11@])IHCIMV &1.2 %3
(next statement)

Page 56

16.1.4

1.2

RPL REFERENCE MANUAL

%3 Next execution
ABC GO 114
(null) IHC (then next statement)
43 MV &1.2 %3 (then next statement)
PB (next statement)

If a direct or indirect reference within a multivalued
second operand contains a multivalued field, the same stub
will be executed if any of the values compare TRUE. Each
value within the referenced field will not access a different
stub statement as they would if they were coded into the
second operand. ‘

Compound IF statements

An IF statement may appear in the stub of another IF
statement. 1In this case, the final stub will be executed if
both IF statements compare TRUE. Any quantity of IF
statements may be appended together in this manner and the
final stub of the last IF will only be executed if all
comparisons are TRUE. For example:

IF %3 IF &3.2 =1 IF %4 > (2N) GO 748

The stub will be executed if %3 is not null, and &3.2 is a
literal 1, and %4 starts with two numerics and has at least
one other character.

Should one of the IF statements in the compound structure
be a multivalued IF, any TRUE comparison will satisfy that
statement and allow the stub to be executed. Only the last of
the IF statement in a compound IF statement may contain a
multivalued stub in order for it to operate as if it were
coded alone.

IFN statement
-Format- IFN operandl operator operand2 stub-statement

The IFN statement will algebraically compare numeric values
within the two operands according to an equality operator and
execute an appended stub statement if the comparison is TRUE.
The first of the two operands may be any direct or indirect
reference of the form A, !N, %N, #N, or &M.N. (The form
A(M,N) will only work if the remainder of the field is
specified.) the second operand may be any direct or indirect
reference of the form IN, %N, #N, &M.N, or a literal string.
The value of the first operand is compared to the value of the
second operand, and, if they compare as specified by the
operator, the statement is TRUE, and the stub statement is
executed. If they do not compare as specified, the statement

Page 57

RPL REFERENCE MANUAL

is FALSE, the stub is skipped, and the next statement in the
program is executed. The six operators that may be used are:

Operator Statement TRUE if:
= Operand 1 equals Operand 2
Operand 1 not equal to Operand 2
> Operand 1 greater than Operand 2
< Operand 1 less than Operand 2
] Operand 1 greater than or equal Operand 2
[Operand 1 less than or equal to Operand 2

The value of each operand up to the first non-numeric
character is converted to internal binary integer format, and
the first is compared algebraically to the second. The result
of the comparison will show operand 1 greater than, less than,
or equal to the second operand. 1If the resultant of the
comparison satisfies the operator supplied, then the statement
is TRUE and the stub statement is executed; else the
statement is FALSE, the stub is skipped, and the next
statement in the program is executed.

The following table of examples will illustrate the
functioning of the IFN statement: _

OPR1 OPR2 OPERATOR
= # > <] [

123 34 FALSE TRUE TRUE FALSE TRUE FALSE
123 2123 TRUE FALSE FALSE FALSE TRUE TRUE
123 -123 FALSE TRUE TRUE FALSE TRUE FALSE
123 +123 TRUE FALSE FALSE FALSE TRUE TRUE
123 12.3 TRUE FALSE FALSE FALSE TRUE TRUE
123 123A TRUE FALSE FALSE FALSE TRUE TRUE
123 ABC FALSE TRUE TRUE FALSE TRUE FALSE
123 (NULL) FALSE TRUE TRUE FALSE TRUE FALSE

The last three cases above show that each operand is
considered ended when a non-numeric character is encountered
(one plus or minus sign preceeding any numerics is allowed).
In case no numerics appear before a non-numeric, or for a null
field, the value of zero is used for that operand. A special
case of an acceptable non-numeric is the decimal point; it
will be skipped, as shown in example five above, and the
remaining value compared as if it were not present.

The IFN statement may use multivalued fields in the second
operand and multivalued stub statements. These functions will
operate the same as in the IF statement allowing for the
numeric comparisons outlined above. Refer to the
corresponding sections in the IF statement for coding and
operation of these functions.

Page 58

11.1

RPL REFERENCE MANUAL

CHAPTER 11

DISK FILE I/0

The RPL language is provided with a full complement of disk
file input/output instructions for standard REALITY files.
Input/output from a disk file is accomplished by using one of
nine file buffers provided specifically for this function.
The programmer is therefore limited to access from a maximum
of nine files at one time. File buffers not required for file
input/output may be used for working storage.

Records which are read from or written to a file will use
attribute zero of the file buffers as a key, and the first
data attribute of the record will be in attribute one.

F-OPEN command
-Format- F-OPEN file-nbr file-name

The F-OPEN command will open a file buffer to a designated
file and allow read, write, or delete operations to be
performed with records in the file. Files specified in the
F-OPEN command may be data files, dictionaries, or the account
Master Dictionary (M/DICT). If an open is attempted on an
item which is not a file, an error message will result and
program execution will be terminated. File buffers will
remain open until an exit is made to TCL or until a particular
buffer is opened to another file. An open command does not
change the content of any of the buffers.

Examples of valid commands of this type are:

F-OPEN 1 M/DICT
F-OPEN 7 VENDOR
F-OPEN 4 DICT CUSTOMER

F-OPEN commands may also be executed using the contents of
any attribute of an internal buffer to provide the name of the
file. For example:

F-OPEN 1 %3

F-OPEN 7 &4.%2
F-OPEN 4 &4.2
F-OPEN 4 DICT &4.3

Where: $1 [ABC"1"M/DICT"DEF"
&4.0 [ABC"VENDOR"DICT CUSTOMER"CUSTOMER"

The examples above are all equivalent to the previous
illustrations which named the files in the statements.

Page 59

11.2

11.3

RPL REFERENCE MANUAL

F-INPUT command
-Format- F-INPUT file-nbr file-name

The F-INPUT command operates identically to the F-OPEN
command in all respects except it will allow only read
operations to take place on the file. Writes or deletes are
illegal from a file buffer that has been opened with the
F-INPUT command and will cause program termination with an
error message if attempted.

F-READ command
-Format-. F-READ file-nbr item-name

The F-READ command will read a record from a file and place
it in the file buffer specified. The file from which the
record will be read is the one to which the buffer has been
opened by an F-OPEN or F-INPUT command. If the buffer has not
been opened to a file an error message will occur. The record
which will be read may be specified by a literal in the
command or may be a direct or indirect reference to an
attribute in a buffer or select register containing the record
key. The file buffer will be cleared and an attempt will be
made to read the record specified. If the record is found, it
is placed in the file buffer and program execution will
proceed with the second instruction following the read. If
the record is not found, the next instruction after the read
will be executed. An attempt to read a record with a null key
will result in an unsuccessful read and the return will be to
the following statement. No previous attributes in the buffer
will remain in any case. For example:

F-READ 1 1035-01
GO 25
MV &3.1 &1.0

If the item 1¢35-01 is found on file, it will be placed in
the file buffer and the MV instruction will be executed next.
If the item is not found, the buffer will be cleared and the
GO instruction will be executed.

If the read is successful and the buffer to which the item
was read was opened with an F-OPEN command, a record lock will
be placed on the item within the file. This will prohibit
another buffer opened with an F-OPEN command in this, or any
other program, from reading the same item. If an attempt is
made to read an item which has a record lock from an F-OPEN'ed
file, the program will stall and an audible signal will be
heard at the terminal at about 10 second intervals. When the
record is freed by the process which locked it, it will be
read by the waiting program and execution will proceed
normally.

Page 60

11.4

11.5

RPL REFERENCE MANUAL

A file which has been opened with an F-INPUT command will
be able to read any record, even if it has been locked by
another process. A record read from a file opened with an
F-INPUT command will not have a record lock place on it,
thereby leaving it available to all other processes.

F-WRITE command
-Format- F-WRITE file-nbr

The F-WRITE command will write a record from a file buffer
to a disk file. The file to which the record will be written
is the one to which the buffer was opened with an F-OPEN
command. No record key need be named in the command since the
key of the record written will be the value of attribute zero.
Any record existing in the file with the same key will be
deleted before writing the new record. If the buffer was not
opened to a file or was opened with an F-INPUT command, an
error message will be displayed and program execution will
terminate. Writing a record to a file opened with an F-OPEN
command will free any record locks which have been set for
that file. The contents of the file buffer will not be
changed by the F-WRITE command.

Valid examples of the command are:

F-WRITE 1
F-WRITE 8
F-WRITE 7

If an attempt is made to write a record with a null
attribute for the key, no item will be written and program
execution will continue normally.

F-DELETE command
-Format- F-DELETE file-nbr

The F-DELETE command will delete the record specified in
attribute zero of the file buffer from the file to which the
buffer has been opened by an F-OPEN command. If the buffer
has not been opened to a file or has been opened with an
F-INPUT command, an error message will occur and program

- execution will stop. If the item does not exist on the file,

no change will occur. Execution of an F-DELETE command will
release any record locks held by this file buffer. The
contents of the file buffer will not be changed by execution
of this command.

Examples of valid commands are:

Page 61

11.6

11.7

RPL REFERENCE MANUAL

F-DELETE 1
F-DELETE 3
F-DELETE 8

F-CLEAR command

-Format- F-CLEAR n

The F-CLEAR command will clear the entire contents of the
file buffer designated by the numeric literal n. Execution of
the command has no effect on file access of a file and any
opened files need not be reopened after clearing the buffer.
F-FREE command

-Format- F-FREE

The F-FREE command will release all record locks held by
all file buffers within the process. Since this is not a

selective command, the programmer should only use it
sparingly.

Page 62

12.1

RPL REFERENCE MANUAL

CHAPTER 12

ARITHMETIC CALCULATIONS

F; (function) command
-Format- F;operandl;operand2;operand3;...;?destination

The F; statement is used for performing arithmetic
functions such as add, subtract, multiply, and divide. All
functions assume fixed point integer arithmetic. Calculations
are performed in a stack architecture with twenty-three
entries in the stack. The calculations specified in the
statement are performed using only the last two entries in the
stack. When a calculation completes, it deletes the two
entries used and places the results in the bottom of the
stack. The stack architecture and the available arithmetic
functions are explained below:

Stack Architecture
Stack 1
Stack 2
Stack 3
Stack 4
Etc. Through Stack 23

The operations which may be performed by the function
statement are described below. Each must be coded
individually into the statement and separated by a semicolon
from the surrounding operators. The last operator, and only
the last operator, must be a '?' operation placing the results
in a storage location. Results which must be placed in two
locations or intermediate results which must be saved must be
moved later or split into two calculations.

DIRECT OR INDIRECT REFERENCE if the item contains a numeric
value, move item to stack 1 and bump stack 1 to stack 2,
stack 2 to stack 3, etc. Stack 23 item will disappear.
If the item contains a valid operator as described below,
the operation designated by the contents will be
performed as if that operator were coded into the
statement. If the item does not contain either of the
above, a numeric zero will be loaded into stack 1, stack
1 will be bumped down to stack 2, etc.

+ ADD stack 1 to stack 2 and place results in stack 1.

Bump stack 3 down to stack 2, stack 4 to stack 3, and so
to stack 23. Loads an unknown value into stack 23.

Page 63

RPL REFERENCE MANUAL

- SUBTRACTS stack 1 from stack 2 and places results in
stack 1. Bump stack 3 down to stack 2, etc.

* MULTIPLY stack 1 by stack 2 and place results in stack 1.
Bump stack 3 down to stack 2, etc.

/ DIVIDE stack 2 by stack 1 and place quotient in stack 1.
Any remainder will be dropped and stack 3 will be bumped
down to stack 2, etc.

R REMAINDER, divide stack 2 by stack 1 and place the
remainder in stack 1. Bump stack 3 down to stack 2, etc.

/H DIVIDE AND HALF-ROUND, divide stack 2 by stack 1 and
half round the last digit if the remainder exceeds half
the divisor. Place the results in stack 1 and bump stack
3 down to stack 2, etc

/R DIVIDE WITH QUOTIENT AND REMAINDER, divide stack 2 by
stack 1 and place the remainder in stack 1 and the
gquotient in stack 2. The remaining items in the stack do
not move.

¢« FLIP, exhanges the contents of stack 1 and stack 2. The
remaining items of the stack remain unchanged.

? PLACE RESULTS, when coded as the last item in a function
statement, places the contents of stack 1 into the
location specified in the appended direct or indirect
reference. If the destination is the input buffer, the
input buffer stack pointer will be turned off and the
primary input buffer pointer will be directed to the
attribute loaded.

?P PLACE IN INPUT BUFFER, the item in stack one is placed
into the primary or secondary input buffer at the
location specified by the current input buffer pointer.

?Pn PLACE FIXED LENGTH RESULTS, the item in stack one is
placed in the input buffer at the location specified by
the current input buffer pointer. If the result is less
than n digits it will be expanded with leading zeros to
the length specified. If the result has more than the
quantity of digits specified, it will be placed intact
into the attribute.

CONSTANT constants may be loaded into stack 1 by coding the
literal numeric value of the item to be loaded. Stack 1
will be bumped to stack 2, etc.

The F; (function) statement will allow any combination of
add, subtract, multiply, and divide operations to be executed
in sequence as long as the restrictions of the stack
architecture are followed. For example:

Page 64

12.2

RPL REFERENCE MANUAL

F;&3.22;%3;7;#5;-;+;&3.21;/;9
F;%1;%2;+;%3;%4;-:;2;/;+;%3;%4
F;%l:;%2:+;%3;%4;-;/H;:?2%5

The second and third examples above are equivalent with the
function of the half round, assuming positive figures, being
performed in example two. The automatic half rounding
function executed in the third example is the same as the
second example. If negative figures appear, the second
example would have to test if a subtraction would be more
appropriate, however, the third example would function
correctly regardless of the data supplied.

The following series of examples will illustrate the
operation of the F; statement in detail to show the actual
functions performed as each item in the statement is executed.

For the following statement:
F;83.%2;%5;%6;%7;%8;%9;-;/;*;R;?2&7.2

the operations will proceed as follows:

operation stackl stack2 stack3 stack4 stack5
e % s

&3.%2 123 *

%5 73 123 * * *
36 7 73 123 * *
37 58 7 73 123 *
38 17 58 7 73 123
%9 5 17 58 7 73
- 12 58 7 73 123
/ 4 7 73 123 *
* 28 73 123 * *
R 17 123 * * *

The results of 27 now located in stack 1 will be loaded
into &7.2. Note that in this example a value was left in the
stack because it was not used or moved to stack 1. The
asterisks appearing in the example designate an unknown value
since any item which has not been established by the F;
command may contain any unknown characters. Care should be
exercised in using the F; function statement due to this
fact.

+, - Commands

-Format- +numeric-literal
-format- -numeric-literal

The + (-) command will add (subtract) an appended numeric
literal to the attribute of the current input buffer
designated by the current input buffer pointer. The result of
the add will be placed into the buffer starting at the first

Page 65

RPL REFERENCE MANUAL

character of the current attribute. If the result is a
numeric value that requires fewer characters than the
original, it will be expanded by leading zeros until it is the
same length and then it will be placed in the buffer. If the
results is larger than the original, it will overlay
characters beyond the end of the current attribute until it is
loaded. This action may cause the field to merge into the
next field if the attribute mark is overlayed. If the
original field is not numeric, it will be assumed as zero and
the actual value added will replace the original contents
following the replacement rules outlined above. Since this
command does not expand or contract the input buffer when
executed it will complete faster than the F; function
command .

Before: [ABC"1237456"789"
Command: +28

After: [ABC:151“456“789A
Before: [ABc:93“27“

Command : +15
After: [ABc:lﬂ827“

As illustrated above, the last character of the results
extended beyond the original field, so it had to overlay the
attribute mark creating an erroneous results in %2, and also
creating a problem when addressing %3, %4, etc.

Before: [ABC"-2"15"

Command: +5
After: [aBC"@#3715"

The use of a plus or minus sign in the original field will
cause the results to become the algebraic results of the sum
since the + or - will be processed correctly by the addition.

Before: [ABC"122715"

Command: +-3
After: [ABc:122‘15‘

Appearance of any non-numeric (such as the minus in this
example) will cause the value to be interpreted as only the
numer ics appearing before the non-numerics, and the addition
will proceed accordingly. 1In this case, since there were no
numerics before the minus sign, the value of zero was added to
the intitial value in the source attribute.

Page 66

RPL REFERENCE MANUAL

Before: [ABC“123:\"456“
Command: +1

After: [ABC"12371"456"
Before: EABC“123“

Command: +1
After: (6171237

Both of the examples above show operations with the
starting value in the buffer attribute being non-numeric. As
stated before, the original value is assumed zero and the
command proceeds accordingly.

Before: [ABc:ﬂﬂﬂﬂ“123“
Command: +15
After: [ABC"@0157123"

If the result of the addition is too small for the original
field, the value will be expanded with leading zeros until it
fits the field size.

Before: [ABc:-158‘123“
Command: +150
After: [ABC"-00#8"123"

If a minus sign must appear in the results to make the
correct algebraic results, it will appear before any digits
loaded.

Before: [ABc:123*ﬁl7*
Command: +090001
After: [ABC2124”ﬂ17‘

Any unnecessary leading zeros will be dropped from the
numeric value before it is returned to the input buffer.

Page 67

13.1

RPL REFERENCE MANUAL

CHAPTER 13

ENGLISH LANGUAGE PROCESSING WITHIN PROCS

ENGLISH language statements may be processed in PROCs by
loading them in the primary and secondary output buffers and
using the P commands to process them through the ENGLISH
processor. When executed this way the primary output buffer
is executed first as one ENGLISH statement, with the secondary
output buffer supplying additional parameters which may be
used for designating additional operations that would normally
be performed from TCL after the primary function was complete.

P command
-Format- P

The P command will convert all attribute marks in the
primary and secondary output buffers to spaces and cause them
to be executed as a TCL statement. The contents of the
primary output buffer will be executed as an ENGLISH, TCLl1l, or
TCL2 verb, and the secondary output buffer will provide
additional parameters for the operation. All system output
would be displayed on the terminal just as if the function
were being executed from TCL. Before returning to the next
step in the program, both output buffers are cleared and the
output buffer stack pointer is turned off. For example, to
perform the program equivalent of the TCL operation:

COPY VENDOR @001
TO: (SAVE)

it would be necessary to code:

STOFF

RO

HCOPY VENDOR 00061
STON

RO

H (SAVE)

P

This coding would cause the COPY statement to be executed
from the primary output buffer and would provide the
additional response required by the processor from the
secondary output buffer.

An additonal function which could be performed would be to

provide a series of select record keys to be used by a
processing loop for updating records such as:

Page 68

13.2

13.3

RPL REFERENCE MANUAL

STOFF

RO

HSSELECT INVOICE WITH DATE <= "16/13/75"
H BY CUSTOMER

STON

RO

HPQ-SELECT 3

P

This series of commands would perform the sort select as
specified and place the string of keys of the items selected
in Select Register 3, as required by the secondary output
buffer contents. When this series of statements is executed,
the number of items selected would be displayed just as it
would if the SSELECT were done from TCL.

PH command
-Format- PH

The operation of the PH command is identical to the
operation of the P command with only one exception: the PH
command will suppress any system output to the terminal
running the program. For example, if a SELECT statement is
processed by the PH command, the operation will proceed
normally, but the system output of the number of items
selected will not occur.

PP command
-Format- PP

The PP command is a programmer's debugging tool which will
not normally be included in an operational program. Generally
it performs the same functions as the P command, however, it
displays the contents of the output buffers prior to execution
and stops to allow selective override action of the operation.

The primary output buffer is displayed on the terminal
starting at the current cursor location and continues on the
next line if line overflow occurs. The secondary output
buffer starts on the left margin of the line following the
last word of the primary output buffer and is followed
immediately by a back arrow designating the end of buffer.
The system will then prompt with a question mark on the
following line and wait for the operator to enter an option
(followed by new-line) for processing the output buffers. The
options available are:

N Kill the process and return immediately to TCL.

Page 69

13.4

RPL REFERENCE MANUAL

S Supress processing of the output buffers, clear both
buffers, and return to the next step in the program.

(No ihput) Process the output buffers as an ENGLISH
statement, then proceed to the next statement in the
program.

PQ-SELECT verb
-Format- PQ-SELECT n

The PQ-SELECT auxiliary verb has been added to allow the
results of an ENGLISH SELECT or SSELECT verb to be directed to
the select register specified by the numeric value n. When
processing from a program, the select statement should be
loaded into the primary output buffer, and the PQ-SELECT
should be loaded into the secondary output buffer. When
executed together as a TCL statement, the select will be
performed as directed, and resultant string of keys generated
will be loaded into the select register designated in the
PQ-SELECT statement. The previous contents of the select
register will be cleared even if no items are selected. For
example, the following series of statements within a program:

STOFF

RO

HSSELECT CUSTOMER WITH BALANCE > "@" BY ZIP
STON

RO

HPQ-SELECT 4

P

Will cause the select statement to generate a string of keys
to items in the CUSTOMER file and will load them into select
register 4. The select register pointer will be set to the
first value in the select register after the operation.

A caution must be noted with this instruction. TIf the
selection processor does not find any items on the file to
return, the PQ-SELECT verb will not be executed. In this
case, the contents of the select register designated will not
be changed from the previous contents, and could result in
items being returned in the select register when none are
expected. Proper operation of this facility therefore
requires that the select register be cleared before executing
the P statement.

Page 70

13.5

RPL REFERENCE MANUAL

PQ-RESELECT verb
-Format- PQ-RESELECT n

The PQ-RESELECT verb will reset the pointer of any select
register to the first value in the register. Use of values in
a select register does not destroy the ones used, but merely
moves the pointer down the string of values. Therefore, this

verb was provided to allow any select register pointer to be

reset to the front of the string without regenerating it. The
program statements:

STOFF

RO
HPQ-RESELECT 4
P

will re-establish the string of values in select register 4 by
moving the pointer back to the first value in the string.
This function may be used anytime, even if the pointer has not
yet been advanced to the end of the select register string.

Page 71

14.1

RPL REFERENCE MANUAL

CHAPTER 14

TERMINAL AND LINE PRINTER OUTPUT

Formatted terminal and line printer output is provided to
allow displaying or printing items which are necessary for

operator information. Line printer capabilities include the

use of the spooler header capability to eliminate line
counting to determine the end of page. If necessary, other
spooler functions may be performed for the program by
execution of the SP-ASSIGN and other spooler verbs as provided
in the ENGLISH processing capability.

T command
-Format- T oprl,opr2,0pr3,...

The T statement provides the programmer with the capability
of controlling output to the CRT terminal. The statement
itself is a string of terminal commands, separated by commas,
which allow cursor control and data output items to be
appended together to any length. Generally a T statement is
one line long; however, if the last character of the
statement is a comma which would normally be used as a
separator, the statement will be continued on the next line of
coding. The individual commands which may be used are
outlined below.

(M,n) Position Cursor, where m and n are numeric literals.
Will position the cursor to column m, line n on the
screen.

(M) Position Cursor, where m is a numeric literal less than
79, will position the cursor to column m on the current
line.

(,N) Position Cursor, where n is a numeric literal less than
24, will position the cursor to line n in the current
column.

"Literal" Display Literal, will display the literal
surrounded by double guotes on the screen starting at the
current cursor location.

REFERENCE, will display the contents of the attribute
specified by a direct or indirect reference starting at
the current cursor position. May contain an appended
ENGLISH conversion code as described in Chapter 15.

B Bell, used to sound the audible signal at the terminal.
Cursor does not move

Page 72

RPL REFERENCE MANUAL

Sn Spaces, outputs n spaces to the terminal starting at the
current cursor location. The maximum value which may be
used for n is 99. The cursor is positioned after the
last space output. A direct or indirect reference to any
attribute may be used to supply the number of spaces to
generate (as S&3.%2).

*Cn Character Repeat, outputs the literal character c, n
times, starting at the current cursor location. The
maximum value which may be used for n is 99. The cursor
is positioned after the last character output. The
number of characters to output may be supplied by coding
any direct or indirect reference in place of the numeric
literal N.

C Clear, clears the entire screen and moves the cursor to
'home' position at column @, line @.

U Up, moves the cursor up one line on the screen. Column
position does not change.

Xnn Hex Output, outputs the single byte character
represented by the hexadecimal equivalent nn to the
terminal. 1If this is a displayable character or cursor
control character, the cursor will move accordingly. The
character which will be displayed may be provided by
coding any direct or indirect reference in place of the
literal nn. See Appendix A for hex character
representation.

Inn Integer Output, outputs the single byte character
represented by the integer equivalent nn to the terminal.
If this is a displayable character or cursor control
character, the cursor will move accordingly. The
character which will be displayed may be provided by
coding any direct or indirect reference in place of the
literal nn. See Appendix A for integer character
conversion.

T Tag, creates a location for internal command looping and
sounds the audible signal at the terminal.

D Delay, causes a short delay in processing before the next
command in the string is executed.

L Loop, moves statement parsing back to the last tag command
executed and causes all commands except other L commands
to be executed again. Upon completing execution,
proceeds to the next command in the string. If there is
no previous tag in the T statement command string, no
loop will occur and the next command in the string will
be executed.

The function of the last three commands is to provide the

Page 73

14.2

RPL REFERENCE MANUAL

facility of flashing a message on the CRT screen without
creating an unnecessarily long string of coding. For example,
the following statement will cause the message INVALID to be
flashed on the screen three times before proceeding to the
next statement. '

T (0,7),T,(0),"INVALID",B,D,(O),S7,L,L,L

The equivalent statement without the internal looping would
have to code the message, bell, delay, spacing, and
positioning three times.

Since the double quote character (") is used as a field
delimiter for a literal value which must be displayed, it
cannot itself be displayed from a coded literal field. This
restriction may be circumvented by coding the double quote as
either the hex equivalent (X22) or the integer equivalent
(I34) as shown below:

T (4,15),"USE ",X22," FOR DUPLICATES"
The above line will display the message:
USE " FOR DUPLICATES

The ENGLISH conversion utility may be called to allow
display of any value as provided by the ENGLISH processor.
This function will allow date, numeric, or hexadecimal
conversion as items are displayed and will not change the
internal value of the attribute. For example:

T (5,8),512,(5),&3.2:MD2,12 :
T (76,0),%1:D2/:

See Chapter 15 for further details on conversions.

O command
-Format- Oliteral-string

The O command will output a literal string following the O
to the terminal starting from the current location of the
cursor. If the string runs beyond the end of a line, the next
character will continue at the beginning of the next line. At
the end of the literal string the O command will move the
cursor to the beginning of the next line unless the last
character is a +. This will cause the cursor to remain
positioned after the last character output (output of the +
will be suppressed when it is the last character). Valid
forms of this command are:

Page 74

14.3

RPL REFERENCE MANUAL

OTRANSFER TO MS18
O INPUT YOUR AGE +

L statements
-Format- L oprl,opr2,o0pr3,....

The L statement is provided to give the programmer the
capability of controlling data output to the system printer.
The statement is a string of printer control and data output
operations separated by commas. While the statement is coded
on one line in the program, it may be continued in the next
statement by placing an operation separating comma as the last
character of the line. Lines of any length up to 148 bytes
may be output to the printer, though the coded line which
performs the list may be of any length. An attempt to output
a single line longer than 140 bytes will cause the program to
abort during execution.

The operations which may be performed in the L statement
are outlined below:

(n) Column, will set the output position to the column
designated by the numeric value n.

"Literal"” Output Literal, will output the literal value
contained within the double quotes starting at the
current column position.

REFERENCE Attribute Reference, will output the contents of
the attribute specified by a direct or indirect reference
starting at the current column position. May contain an
appended ENGLISH conversion code as described in Chapter
15.

T Top of Form, will cause the printer to advance to the next
top of form position on the printer. Must appear as the
first function on an L statement.

N Space Lines, a numeric value coded as the first function
of an L statement will cause the printer to space the
quantity of extra lines specified before printing the
following data. Use of a 1 will cause double spacing.

Lnn New Line, will cause the subsequent printing to appear
on a new line after spacing nn lines. The number of line
to advance before continuing printing may be specified by
using any direct or indirect reference in place of the
literal nn.

Page 75

14.3.1

RPL REFERENCE MANUAL

+ Continue, when used as the last command in the string will
cause output to be held in a work area and merged with
the next L statement in the program. The first command
in the next line must begin with a column positioning
(n). The hold area for this function is volatile so use
should be restricted to small areas of the program.

The L statement may be used as shown in the following
listings:

L (5),"ACCOUNT",&4.2,(30),&7.2:MD2,12 :
L (3),"SAVE FOR NEXT LINE",

(27) ,&7.1:02/:,(52), ‘

"FOR STORE",&7.3

The second example above, which consists of the last three
lines, shows how one L statement may be continued on
succeeding lines by making a comma the last character on the
previous lines. Any number of continuation lines may be used
this way.

Special L Command Operations

The following commands must appear on a line by themselves
in an L statement. They must not appear imbedded within a L
statement with other operations. The only valid forms of
these commands is:

LC
L N

C Close, will close the printer (it is automatically opened
on the first L statement). Causes completion of a
spooler file and places the file in the print queue.

N No Printing, used to send L statement output to the
terminal when used alone in a command (as 'L N'). May be
used to provide controlled output to a printing terminal
or as a debugging tool. Will be reset to system printer
output when a printer close statement is executed.

L HDR command
-Format- L HDR,oprl,opr2,o0opr3,...

The header statement allows the processor to perform line
and page counting based on the terminal characteristics set
for the line printer. The header may consist of any quantity
of lines which will print automatically at the top of a new
page when the previous page is filled. The functions
available for the header statement are separated by commas,
and are listed below:

Page 76

RPL REFERENCE MANUAL

(n) Column, will set the output position to the column
designated by the numeric value n.

"Literal" Output Literal, will output the literal value
contained within the double quotes starting at the
current column position.

REFERENCE Attribute Reference, will output the contents of
the attribute specified by a direct or indirect reference
starting at the current column position. May contain an
appended ENGLISH conversion code as described in Chapter
15.

T Time & Date, outputs the system time and date at the time
the header is executed. Format is HH:MM:SS DD MMM YY.

P Page Number, increments the page number by one and outputs
it at the current column position. The page counter is
set to zero upon program initialization and will count up
to 9999. The output is left justified and zero
supressed.

% Zero Page Counter, when executed within a header
statement, will cause the page counter to be set to zero.
(Execution of a second header statement does not
otherwise change the page counter)

L Line Feed, causes a line feed within the header statement
but does not terminate the header function.

The header statement, like the L statement may be continued
on the next line in the program by coding a comma as the last
character of the line.

Headers are held in a hold area which will not be altered
except by executing another L HDR statement. Since attributes
named in the header statement are loaded into this hold area
at the time the statement is executed, subsequent changes made
to the attributes in the internal buffers will not change the
values displayed in the header. Use of the top of form
operation in an L statement should be eliminated when using
the header statement since this will cause the line counter
and page counter to lose track of where the printer is
processing. As a substitute for this function, another header
statement should be executed to get to the top of the next
form.

Page 77

15.1

15.2

15.3

RPL REFERENCE MANUAL

CHAPTER 15

MISCELLANEOUS COMMANDS

X command
-Format- Xliteral-string

The X command is used for exiting from a PROC to TCL.
Execution of an X command will output a literal string
appended to it to the current position of the terminal and
return control to TCL. This is a non-returnable function
which should be used only when no other PROC instructions need
to be executed. Following are some examples of X statements
with appended messages to be output to the terminal before
exiting the PROC:

Command Terminal Output
XEND OF PROCESSING END OF PROCESSING
X : (no output)
XINVALID RECORD ABORT INVALID RECORD ABORT
XBYE SEE YA LATER BYE SEE YA LATER

U commands (user exits)

-Format- Unnnn
(see additional information published locally)

The commands beginning with a U are user exits to other
routines written in other languages, usually in assembler, to
perform functions which would be too complex or would take too
much time in RPL. User exits will vary from site to site with
some being used at only one location while others are
universally used. Consult your local system programmer for
operation of these commands.

D command
-Format- Ditem-reference

The D command is generally a programmers' tool for
displaying the contents of an internal buffer at the terminal
during program execution. The display will be the entire
contents of the buffer from the referenced item to the end of
the buffer. If the item referenced in the command is a
numeric value only, the display will be the primary input
buffer from the attribute specified by the numeric value; ie,
a D3 will display %3 to end of buffer. If the reference is a
direct or indirect reference to any internal buffer (primary
input, either output, or file buffers) that attribute

Page 78

15.4

RPL REFERENCE MANUAL

referenced and the rest of the buffer will be displayed. 1If
the reference is to one of the select registers, the contents
of the register from the current value on will be displayed
and the pointer will be incremented to the next value.

Where attribute zero is specified for a buffer that does
not have an attribute zero, the entire buffer will be
displayed. All buffer pointers other than the select
registers will not be affected by any D command. If an
attribute is referenced in the D command which is beyond the
current end of the buffer, null attributes will be constructed
up to that point and a null attribute will be displayed.

As an example of the type of display which can be expected,
if the following buffer contents represented all buffers, the
next table will illustrate what is displayed by the D
commands.

[3"DEF]GHI"JKL""MNO"
Command Buffer Display
D@ Pg$l [3"DEF]GHI"JKL""MNO"
D&l.1l &l.1 "DEF]GHI"JKL""MNO"
D%%1 P33 “JKL""MNO"
D!1 11 [3"DEF"GHI"JKL""MNO"
next D!1 11 "DEF"GHI"JKL" "MNO"

TR command
-Format- TR

The TR command is a programmers' tool used to initialize a
trace utility built into the RPL language processor.
Execution of the TR command will cause all succeeding
instructions to be displayed on the terminal before they are
executed. Statements which are scanned more than once by the
processor, such as the IF command if TRUE, will be displayed
one time for each parsing, with secondary displays omitting
the portion of the statement which has already been processed.
If the trace facility is already on, the command will not
perform any function.

The trace function slows execution of a program
significantly so it may be advantageous to execute the command
as the stub of an IF statement which will only execute when

‘the process in question occurs.

Page 79

15.5

15.6

15.7

RPL REFERENCE MANUAL

TROFF command
-Format- TROFF

The TROFF command will turn off a tracing utility which was
previously initiated with the TR command. The TROFF command
will not perform any function if trace.is not operational at
the time of execution. :

Conversions

ENGLISH conversions may be performed in IH, L, and T
statements. The IH command provides the programmer with the
capability of converting attributes from internal to external
formats in storage. The T and L statement conversions will
allow display of data in either format without changing the
stored value. For all statements, the conversion code should
immediately follow the attribute reference providing the value
to be converted. If the conversion code is surrounded by
colons (as in :MD2:), the conversion will be from internal to
external format. If the conversion code is surrounded by
semicolons (as in ;MD2;) the conversion will be from external
to internal format. The following series of examples will
illustrate the function of the conversion operations:

Input Value Conversion Output Value
12345 :MD2: 123,45
12345 ;MD2; 1234500
3079 :D2/: 06/95/76
30839 :D2/; 3839
53 tMX: 3533

Indirect Parenthetical Expressions

Anyplace in the program where a parenthetical expression is
used to provide values to the processor, a direct or indirect
reference may be substituted which will use the value in the
attribute as if it were coded directly into the statement.
This allows incrementing an expression without coding many
different statements into the program. Examples of statements
which may use this function are coded below:

A(%5) A(,&3.2) A(l,%%3)
A(%3,4) A(&2.#3) A(&3.2,#%1)
MV &3.2 A(%5,3) ,N(&3.2,&7.%9) ,A(,%3)

T (%3,%4),"LITERAL", (#8),&3.%2,(&7.2),%3:MD2,12 :
L (1),&%4.2,(&1.5),&4.4:MD2,10 :

S(%3)

IF &3.2 = (%4) GO 385

(MASTER %5)

Page 80

15.8

RPL REFERENCE MANUAL

Compound Command Statements

Several commands may be included in one statement by
separating them with subvalue marks. This facility is
primarily provided to allow multiple commands in one line
where an error return is involved, or to allow multiple
commands to be executed in one value of a multivalued stub for
an IF command. Where this ability 'is involved, any subroutine
return functions will be to the next command in the subvalue
string unless a statement skip function is used such as the
F-READ statement. Then the return will count only attribute
marks in figuring where the return will be.

The following series of statements will illustrate the use
of the compound statement.

IF &3.2 = A]""] (ON) GO 3@]MV &7.3 "SAVE"\GO 15]GO 38

F-READ 1 &3.2
T (5,23),&3.2," NOT ON FILE"\ GO 300
MVA &3.3 &1.0

IF # &5.1 MV &7.1 &3.2\GOSUB 30@0\IF %3 GO 500
T (3),"REPEAT INPUT"\C GO BACK TO BEGINNING\GO 10

In the third example above, the return from the GOSUB
statement will be to the following IF unless a RSUB n format
is used. In that case, the return will be to the n'th
statement following in the program, and never to the last
subvalue statement of the stub.

The C command, when executed, will always comment out that
line through the next attribute mark. This means that
comments can not normally be used as imbedded commands in
lines with value marks or sub-value marks. The purpose of
this definition of a comment is to allow code to be
temporarily dropped from programs through the use of a comment
statement at the front of the line. Therefore, the GO
statement in the last example will never be executed.

Page 81

16.1

RPL REFERENCE MANUAL

CHAPTER 16

OPTIMIZING PROCS

PQ-COMP verb

-Format- PQ-COMP filename item—name
(executed from TCL)

The PQ-COMP verb will perform an abbreviated compilation on
an RPL program to increase its efficiency. In so doing it
will save both the source and object programs to allow later
changes to be added without any difficulty. The actual
compilation of the program consists of deleting all comment
statements, changing all intra-program transfers to direct
jumps, and converting all IH and H statements to direct load
format. These changes could speed up program execution time
for a large program by a factor of ten or more. Additionally,
the compiler provides a system time and date stamp in the
first attribute of the program (multivalued with the PQ
statement).

The compiler will place the compiled version of the program
in the same file and under the same name as the uncompiled
version. The source version will have a dollar sign placed in
front of the name and it will be stored back in the same file.
If the source version already has a dollar sign, the
compilation will proceed as if it did not.

For example:

Source Compiled New Source
MS3 MS3 $MS3
$CHG CHG SCHG

This arrangement allows the source item or the compiled
program to be run without the need to change inter-program
transfer routines in other programs. Also, should further
changes be needed to a previously compiled program, the source
version may be edited and recompiled without having to copy it
back over the o0ld compiled program.

A source item which contains 5080 or less bytes will not be
processed by the PQ-COMP verb since it will occupy only one
frame in storage. The execution of these programs should not
be abnormally long, however, an override capability is
provided as outlined in the options below.

Options are provided for the PQ-COMP verb which will allow
processing of short programs, listing on the printer,
compilation suppression, etc. These options must be enclosed
in parentheses, separated by commas, and included after the

Page 82

RPL REFERENCE MANUAL
last item in the list of items to be processed. The options
are:
L List the program
P Send compiler output to the system printer.

Do not generate a compiled program. If used the compile
will not change any item ID's.

o

(Numeric) A numeric value designating the smallest item to
be processed by the compiler (defaults to 500 if not
specified). Generally used to obtain listing of programs
smaller than 508 bytes.

As an example:

PQ-COMP PRGM GL2Cl1l (L,P,F)
PQ-COMP USER * (L,P)

The asterisk in the last example signifies that the
compiler is to perform the requested operations on all items
in file USER. Use of the asterisk in a file in which no
programs have been compiled is inefficient since some programs
may be compiled twice. This is due to the new source program
being stored in a group that may not have already been
compiled. The best solution where all programs need to be
compiled is to perform a SELECT prior to the PQ-COMP and use
the generated item list to provide the source items to the
compiler.

Page 83

APPENDIX A
CHARACTER SET

Decimal Hex EBCDIC ASCII Prism Entered
])] 60 NUL none © Ples]
1 g1 g1 SOH none Alc]
2 g2 a2 STX . none Blc]
3 g3 g3 ETX none Clcl
4 g4 37 EOT none D[c]
5 @35 2D ENQ none Efc]
6 g6 2E ACK none Flc]
7 a7 2F " BEL none Glc]
8 08 16 BS none Hc]
9 g9 85 HT none Ilc]

10 gA 25 LF none J(ec]
11 gB g8 VT none Klc]
12 ac ac FF none L[c]
13 ao (/1] CR none M[c]
14 gE OE SO none Nic]
15 ar oF SI none Olcl
16 10 19 DLE none Plc]
17 11 11 DC1 none Qlcl
18 12 12 DC2 none Ric]
19 13 3A DC3 none Scl]
20 14 3C DC4 none Tlc]
21 15 3D NAK none Ulc]
22 16 32 SYN none Vicl]
23 17 26 ETB none Wlcl
24 18 18 CAN none X[cl]
25 19 19 EM none Yic]
26 1a 3F SUB none Z[c]
27 1B 27 ESC none

28 1C 1C FS none

29 1D 1D GS none

30 1E 1E RS none

31 1F 1F Us none

32 20 40 space blank space
33 21 5a ! ! Afcs]
34 22 7F " " Blcs]
35 23 7B # # Clcs]
36 24 5B $ $ D[cs]
37 25 6C % 3 E[cs]
38 26 50 & & F[cs]
39 27 7D ' ! Glcs]

RPL REFERENCE MANUAL APPENDIX A

APPENDIX A
CHARACTER SET

Decimal Hex EBCDIC ASCII Prism Entered
49 28 4D ((H[cs]
41 29 5D)) I[cs]
42 24 5C * * J[cs]
43 2B 4E + + K[cs]
44 2C 6B ’ ’ Llcs]
45 2D 60 - - M[cs]
46 2E 4B . . Nics]
47 2F 61 / / O[cs]
48 30 FO /]] P[cs]
49 ‘ 31 Fl 1 1 Qlcsl]
50 32 F2 2 2 R[cs]
51 33 F3 3 3 S(cs]
52 34 F4 4 4 T [cs]
53 35 F5 5 5 Ulcs]
54 36 F6 6 6 Vics]
55 37 F7 7 7 Wlcs]
56 38 F8 8 8 X[csl
57 39 F9 9 9 Y[cs]
58 3a 7A : : Z [cs]
59 3B 5E : :

60 3C 4C < <
61 3D 7E = =
62 3E 6E > >
63 3F 6F ? ?
64 49 7C @ @
65 41 Cl a A
66 42 Cc2 B B
67 43 C3 C C
68 44 (of! D D
69 45 C5 E E
70 46 C6 F F
71 47 Cc7 G G
72 48 Cc8 H H
73 49 Cc9 I I
74 4a D1 J J
75 4B D2 K K
76 4C D3 L L
77 4D D4 M M
78 4E D5 N N
79 4F D6 0 0

RPL REFERENCE MANUAL APPENDIX A

APPENDIX A
CHARACTER SET

Decimal Hex EBCDIC ASCII Prism Entered
80 50 D7 P o

81 51 D8 Q Q

82 52 D9 R R

83 53 E2] S

84 54 E3 T T

85 55 E4 U U

86 56 E5 \' \'

87 57 E6 W W

88 58 E7 X X

89 ‘ 59 E8 Y Y

90 5A E9 2 V4

91 5B 80 [{

92 5C EQ / /

93 5D 94] |

94 5E 5F ° °

95 5F 6D - -

96 60 79 none B [cs]
97 61 81 none 1l{cs]
98 62 82 none 2[cs]
99 63 83 none 3[ecs]
100 64 84 none 4 [cs]
191 65 85 none 5[csl
102 66 86 none 6 [cs]
163 67 87 none 7icsl]
104 68 88 none 8 [cs]
105 69 89 none 9 [cs]
106 6A 91 none

107 6B 92 none

148 6C 93 none

109 6D 94 none

110 6E 95 none

111 6F 96 none

112 70 97 none Bc]
113 71 98 none 1[c]
114 72 99 .none 2[c]
115 73 A2 none 3[cl
116 74 A3 none 4[c]
117 75 A4 none 5[cl
118 76 AS none 6[cl]
119 77 A6 none 7[c]

RPL REFERENCE MANUAL APPENDIX A

APPENDIX A
CHARACTER SET

Decimal Hex EBCDIC ASCII Prism Entered
120 78 A7 none ’ 8 [c]
121 79 A8 none 9[c]
122 7A A9 . none
123 7B ca . none
124 7C 6A none
125 7D DO none
126 7E Al none
127 TF 07 * DEL none
128 80 04 none
129 81 g6 none
130 82 08 none
131 83 a9 none
132 84)N none
133 85 13 none
134 86 14 none
135 87 15 none
136 88 17 none
137 89 1A none
138 8A 1B none
139 8B 20 none
140 8C 21 none
141 8D 22 none
142 8E 23 none
143 8F 24 none
144 90 28 none
145 91 29 none
146 92 2A none
147 93 2B none
148 94 2C none
149 95 30 none
150 96 31 none
151 97 33 none
152 98 34 none
153 99 35 none
154 9A 36 none
155 9B 38 none
156 9C 39 none
157 9D 3B none
158 9E 3E none
159 OF 41 none

RPL REFERENCE MANUAL APPENDIX A

APPENDIX A
CHARACTER SET

Decimal Hex EBCDIC ASCII Prism Entered
N AQ 42 none
161 al 43 none
162 A2 44) none
163 a3 45 _ none
164 Ad 46 none
165 a5 47 none
166 A6 48 none
167 A7 49 ' none
168 A8 4A none
169 ‘ A9 4F none
170 AA 51 none
171 AB 52 none
172 AC 53 none
173 AD 54 none
174 AE 55 none
175 AF 56 none
176 BO 57 none
177 Bl 58 none
178 B2 59 none
179 B3 62 none
180 B4 63 none
181 B5 64 none
182 B6 65 none
183 B7 66 none
184 B8 67 none
185 B9 68 none
186 BA 69 none
187 BB 70 none
188 BC 71 none
189 BD 72 none
199 BE 73 none
191 BF 74 space none
192 ca 75 Q @
193 Cl 76 A A
194 c2 77 B B
195 C3 78 C C
196 Cc4 8A D D
197 C5 8B E E
198 (of) 8C F F
199 Cc7 8D G G

RPL REFERENCE MANUAL APPENDIX A

APPENDIX A
CHARACTER SET

Decimal Hex EBCDIC ASCII Prism Entered
200 C8 8E H H
201 C9 8F I I
202 CA 9a J J
203 CB 9B K K
204 CcC 9C L L
205 CD 9D M M
206 CE 9E N N
207 CF 9fF 0] 0]
208 D@ A0 P P
209 - D1 AA Q Q
2180 D2 AB R R
211 D3 AC S S
212 D4 AD T T
213 D5 AE U U
214 D6 AF v \"
215 D7 BO W W
216 D8 Bl X X
217 D9 B2 Y Y
218 DA B3 Z 7
219 DB B4 [{
2240 DC B5 / /
221 DD B6]]
222 DE B7 ° "
223 DF B8 - -
224 EQ B9 Q @
225 El BA a A
226 E2 BB b B
227 E3 BC c C
228 E4 BD d D
229 ES BE e E
230 E6 BF f F
231 E7 CA g G
232 ES8 CB h H
233 E9 CcC i I
234 EA CD | J
235 EB CE k K
236 EC CF 1 L
237 ED DA m M
238 EE DB n N
239 EF DC (o] (0]

RPL REFERENCE MANUAL APPENDIX A

APPENDIX A
CHARACTER SET

Decimal Hex EBCDIC ASCII Prism Entered
240 FO DD P P

241 Fl DE q Q

242 F2 DF r R

243 F3 El s S

244 F4 EA t T

245 F5 EB u 8)

246 F6 EC \4 v

247 F7 ED w W

248 F8 EE X X

249 . EF y Y

259 FA FA VA Z

251 FB FB SB [Klcs]
252 FC FC SVM / L[cs]
253 FD FD M] M[cs]
254 FE FE AM ~ Nlcs]
255 FF FF SM - O[cs]

RPL REFERENCE MANUAL APPENDIX A

RPL REFERENCE MANUAL APPENDIX B
APPENDIX B

ALPHABETICAL LISTING OF INSTRUCTIONS
WITH ALTERNATE FORMS
Command Alternate Format
+ +numeric-literal

- -numeric-literal

A A Ac
‘ Ap Acp
A(m) Ac (m)
A(,n) Ac(,n)
A(m,n) Ac(m,n)
B BACK B
BO BO
D Dnumeric-literal
Dreference
E* E*] stub-statement
E® E"]stub-statement
EE EEerror message
EI EIRPp(column,row),referénce,edit
F FORWARD F
F-CLEAR F-C F-CLEAR filenbr
F-DELETE F-D F-DELETE filenbr
F-FREE F-F F-FREE
F-INPUT F-I F-INPUT filenbr filename
F-OPEN F-0 F-OPEN filenbr filename
F-READ F-R F-READ filenbr itemname
F-WRITE F-W F-WRITE filenbr
F; F;oprl;opr2;...;?destination
GO G GO label
GOSUB GS GOSUB label

RPL REFERENCE MANUAL APPENDIX B

IF
IFN
IH
IN

IP

IT

KSUB

L HDR
MARK
MV
MVA

MVD

PH
PP
PQ
RI
RO
RSUB

RTN

RPL REFERENCE MANUAL APPENDIX B

GSUB

KS

RS

RT

Hliteral-string

IF oprl operator opr2 stub
IFN oprl operator opr2 stub
IHliteral-string

INprompt
IPprompt-destination
IPBprompt-destination
IPFprompt-destination

IT

ITA

ITC

KSUB n

L oprl,opr2,o0pr3,...

L HDR,o0prl,opr2,0pr3,...
MARK

MV destination sourcel,source2,...
MVA destination source

MVD destination source
Oliteral-string

P

PH

PP

PQ

RInumeric-literal

RO

RSUB n

RTN n

Snumeric-literal

Sreference
S (numeric~literal)

RPL REFERENCE MANUAL APPENDIX B

STOFF

STON

TR

TROFF

RPL REFERENCE MANUAL APPENDIX B

STOF
ST OFF
ST OF

ST ON

TRON

TROF

STOFF

STON

T oprl,opr2,opr3,...
TR

TROFF

Unnnn

Xliteral-string

RPL REFERENCE MANUAL APPENDIX B

TABLE OF CONTENTS

SECTION PAGE
1 Resource Locks e |
2 Inhibit Break Key Operation 1
3 Obtain terminal line number 2
4 System Time . . . ¢ ¢ ¢ ¢ o o« ¢ o o o o o« o« o 2
5 G and S Correlative Extraction « o e o o e . 2
6 System Date 4 ¢ ¢ ¢ 4 ¢ ¢ 4 e o o « « 3
7 Date Format Verification e e s s s o e« o s o 4
8 Insert Character (ENGLISH conversion) e o o« o 4
9 Load Attribute Length . . . ¢« . « ¢ ¢« ¢ ¢« « « 5
10 Unique Key Generator e ¢« o s e o o o s e s+« 5
11 Multivalued Field Search c e e o e s e e« o« . b

12 Duplicates in Multivalued Fields c « +« « . . b

RPL REFERENCE MANUAL

APPENDIX C
Resource Locks
Ugl9l locks a resource
Ull91 unlocks a resource)
U3191 unlocks all resources for this line

A resource represented by a numeric value in the following
line is locked to inhibit a similar instruction from
completing in another program until that resource is unlocked.
This instruction may be used to inhibit operation of two
programs which will interfere with each other, or one program
that may not be executed from two terminals at once.

The 'resource' which will be locked is an intangible
represented by a numeric literal on the following line. If an
attempt is made to execute a resource lock, and that resource
is already locked, program execution will be suspended. The
locked terminal will display a pound sign (#) at intervals
until the resource is unlocked, then execution will proceed
normally.

Execution of:

Ug191
N

Will lock resource 'N' until released by:

Ul191
N

The execution of U3191 at any time in a program will unlock
all resources which have been locked by this process. A
numeric value does not need to follow this user exit.

'N' may be any numeric literal, however, to insure future
compability, it should be limited to the range of @ to 7.

Inhibit Break Key Operation

U4191 Inhibit break key
U5191 Allow break key

These two user exits will allow the programmer to
selectively inhibit the operation of the break key on the
terminal keyboard. After use of the inhibit user exit (U4191)
the break key will not operate. Depression of the break key
will bring no results until U5191 is executed to allow the
break key to be functional again.

Page 1

RPL REFERENCE MANUAL

3 Obtain terminal line number

4

5

U019%4 obtain terminal line number
The line number of the terminal and the account name which
the executing terminal is logged on to will be placed into the
current position of the output buffer.. The data loaded is the
same as that in response to the WHO verb.
For example:
Before: $#1 ABC"187""

Command : Ug194
After: #1 ABC"187°5°BCP""

System Time
U@19F Get System Time
This function will place the current system time in the
current position of the input buffer in the form HH:MM:SS.
The time is based on a twenty four hour clock and 1:00 PM
would be loaded as 13:00:00.

For example:

Before: %1 [ABC"DEF"GHI"JKL "MNO"
Command : UOG19F :
After: %1 [ABC"08:43:21"GHI "JKL "MNO”"

G and S Correlative Extraction
Ugla4 Extract G or S Correlative Field

The user exit will extract the value specified in the
second statement following from the field specified by the
first statement following and place the results in the current
position of the input buffer. The sequence of instructions:

Ufg1Aa4
attribute reference
:Gncm:

Will place the separated value into the current position of
the input buffer where:

Page 2

RPL REFERENCE MANUAL

n = the number of separator characters to advance before

starting
c = the separator character (not numeric)
m = the number of separator characters to advance before

stopping (the number of fields.to extract).

For example:

Before: &1.0 [ABC"DEF "GHI*JKL*MNO*PQR"STU"
$1 [111:222“333“444‘555“
Command: Udla4
' &1.2
:tGl*2:
After: $1 [111:JKL*MN0‘333‘444“555‘

Any non-numeric character may be used for the separator,
despite the exclusive use of the asterisk here.

If a @ or a null is used for the start point (n in the
definition), the extraction will start from the beginning of
the attribute.

Use of an S in place of the G will cause the string of
characters extracted to be split into their individual fields
and placed into successive attributes of the input buffer.
For example:

Before: &1.0 [ABC"DEF"GHI*JKL*MNO*PQR"STU"
$1 [111:222“333‘444‘555“

Command : Ugd1Aa4
&l.2
:S1%*2:

After: %1 [111:JKL“MNO‘444‘555‘

Note that in this case the extracted fields were split
further by the S correlative function, and the two fields
extracted were placed into two different attributes.

System Date
Ul19F Get System Date

The current system date is placed in the current position
of the input buffer in the form DD MMM YYYY.

For example:

Page 3

RPL REFERENCE MANUAL

Before: %l [ABC"DEF"GHI JKL"MNO"
Command : Ul1l9F
After: %1 [ABC"DEF"13 NOV 1976"JKL"MNO"

Date Format Verification

U419F MM/DD/YY Editing
U519F YYMMDD Editing
U619F MMDDYY Editing

The current location of the input buffer is checked for a
valid date in the format specified by that user exit. The two
digits of the month are checked for a value between @1 and 12,
the two digits of the day are checked for a value between 01
and 31, and the two digits of the year are checked for
numerics. No checking is done for such invalid dates as 30
FEB or 31 NOV, or 29 FEB on the wrong year. If the
verification of the date shows a valid entry, the next command
executed is the third statement following the user exit.
Otherwise, the error return is the next instruction after the
user exit.

For example:

U419F

T (6,5),"INVALID DATE INPUT",D, (8),S18,L,L
GO 506

IH%3;D;

If the input to the user exit did not match the date format
specified, the T statement would be executed, then the GO
statement. If the date was valid, the IH conversion would be
executed next.

Insert Character (ENGLISH conversion)
U719Fc Insert Character into Attribute
The character following the user exit (c above) is inserted
between the second and third, and the fourth and fifth
characters of the field. This user exit is valid anyplace an
ENGLISH conversion may be used and will truncate any values to
six characters if they are longer.

For example:

Page 4

RPL REFERENCE MANUAL

Before: %1 [ABc:DEF‘GHI“MMDDYYGGG“JKL‘
Command: IH%4:U719F/:
After: %1 [ABC”MM/DD/YY "GHI "MMDDYYGGG "JKL"

NOTE: execution of this user exit on attributes which are
shorter than six characters will give unpredictable results
which will vary depending on the location of the source field.

9 Load Attribute Length
U11A4_ Count an Attribute Length

The length of the attribute specified in the direct or
indirect reference in the following statement is placed in the
current position of the input buffer.

For example:

Before: &1.0 [ABC"DEFGHI "JKL "MNO"
%1 [AAA"BBB"CCC"DDD"
Command : Ulla4
&l.1
After: %1 [AAA"BBB"6"DDD"

184 Unique Key Generator
U21A4 Load Unique Key
A unique five character hexadecimal key will be placed in
the current location of the input buffer. Each successive use
of this user exit will result in the key being incremented by
one resulting in over a million keys before a repetition.

For example:

Before: 81 [ABC"DEF GHI"JKL"MNO"
Command: U21a4

After: g1 [ABC"DEF"@1B4F " JKL"MNO"
Next Use: %1 [ABC“DEFZ@lBSﬂ‘JKL“MNo‘

Page 5

11

12

RPL REFERENCE MANUAL

Multivalued Field Search
U51ES8 Scan Multivalued Field for Match

This function will scan a multivalued field until a match
is found for the arguement. The arguement shall be the
contents of the current location of the input buffer and the
multivalued field shall be designated by a direct or indirect
reference in the statement immediately following the user
exit.

The contents of the arguement will be compared character by
character (up to the length of the arguement) to the first
characters of each value of the string until a match is found.
The entire value at which the match is found will then overlay
the arguement in the input buffer. If no match is found, or
if a value is encountered which collates higher than the
arguement, then a null field is loaded over the arguement.
For example:

Before: &1.0 [ABC"AB]ABCD]ABDE]M]AC 012"
Command: US1ES8
&1.1

Assuming the input buffer pointer is at %3,

%3 Before: A ABD AC M RS
%3 After: AB ABDE (NULL) M (NULL)

If the argument contains a value mark, only those
characters occuring before the value mark will be used in
scanning for a comparison, all other characters will be
compared as characters only. This function was intended for
use on sorted multivalued fields only, but will work as
described above for fields in any order.

Duplicates in Multivalued Fields

U1llE9 Place Duplicates in Multivalued Field

When used immediately before an MVA instruction in a
program, this user exit will place the subject into the object
field again, even if that value already exists in the
multivalued string.

For example:

Before: &1.0 [ABC"DEF"ABC]DEF]GHI "JKL"
Command: Ul1lES

MVA &1.2 &l1.1
After: &1.0 [ABC"DEF"ABC]DEF]DEF]GHI"JKL"

Page 6

RPL REFERENCE MANUAL

A similar MVA command in the above example executed without
the user exit would result in no change to any fields.

Page 7

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07

