| REALITY w
- Computer System
Reference Manual

HQM]M!H Microdata

iy
&
o
U

REALITY

Revised
August 1974
Revision 2
g PROPRIETARY INFORMATION
The information contained herein is proprietary to
and considered a trade secret of Microdata
Corporation and shall not be reproduced in whole or
part without the written authorization of Microdata
Corporation.
™ -
: Microdata
~ Microdata Corporation
. . icrodata Corporati
©1974 Microdata Corporation 17481 Red_Hiur_j\venue
TM Trademark of Microdata Corporation el cas 114 Sa0-6730

Printed in U.S.A.

TWX 910-595-1764

| Microdata

Microdata Corporation

17481 Red Hill Avenue

Irvine, California 92714

(714) 540-6730 TWX: 910-595-1764

The Microdata REALITY Computer System Reference
Manual will be revised periodically. If you desire

to receive revisions to this manual, you must complete
the following data request card with the name of the
person you want to receive the revision data. Return

the card to Microdata.

T e e e et e ! o2t o A et e . o T A B A T T I LT TR 1 0 S, S S A, e 5 S S et e % o S o o e S Y S S O Gt o o e e e 0 20 e e e

i A & o ot vy vidy G rodas ot S

Please Return This Card To Microdata Corporation

Title

State Zip

Telephone (

) Ext .

Microdata REALITY Computer System Reference Manual Copy Number # #'07353

REV, 2

First Class
Permit No. 1972
Santa Ana
California 92711

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN UNITED STATES

Postage Will be Paid by:

Microdata Corporation

17481 Red Hill Avenue
Irvine, California 92714

TABLE OF CONTENTS

INTRODUCTION ¢ « ¢ o v o o o 6 = o o o6 0 6 6 o0

Reality - Central Processing Unit ...
Operating System ¢ o c o oo
Instruction Set00
ENGLISH . & ¢t v v v o o o o o 06 00 00600
Software « « « ¢ v ¢ e v 6o vt et 00 000 e

DATA STRUCTURES ¢ ¢ ¢ ¢ « ¢ ¢ ¢ o o o 0o 6 o o o o

Introduction « « ¢« ¢ ¢ ¢ o 0 o 0 0 o 0 0 0.
Executable Frames . . « o ¢ ¢ o ¢ ¢ 6 o o o
Process Work Space « « ¢ ¢ ¢ o o ¢ ¢ ¢ o o
Disk Space Assignment . « ¢ ¢ ¢ ¢ o ¢ 0 4
File Space .« ¢ ¢ ¢ ¢ ¢ o v o o v v o o o o o
Overflow Space Management. . . « + « + « &
File Definition . . . ¢« s ¢ v v v v v oo v
Hashing Algorithm
Ttem StOTALZE « ¢ ¢ o ¢ o « o o o o o o o o o
Item Format - Physical

Dump of Sample File 0. co o

Example of File with 3 Groups and 2 Frames/Group

Item Format - Logical4 ¢4 4.
Selecting Modulo and Separation. o e s e
Density Versus Overflow
REALITY System Modes « ¢« « ¢ ¢ ¢ ¢ o « o o
Core Map ¢ ¢ ¢ ¢ v o v ¢ o v 6 6 0 o 0 0 o oo
Table of Prime Numbers Less Than 1000.

DICTIONARIES & & o ¢ v v o v o o 0 6 o 0 o o o o o

Introduction « « « o ¢ ¢ ¢ ¢ o ¢ 0 s o 0 o o
File StYUuCtUre o « o ¢ + o ¢ 6 o o o o s o o o
Dictionary Interrelationships
Dictionary Item Definitions
File Definition Items « « ¢ ¢ ¢ ¢ o o « o &
File Synonym Definition Items . . . « . &
Attribute Definition Items . « « « « « & &
Attribute Synonym Definition Items. . .
Dictionaries « ¢ ¢ ¢ ¢ ¢ o ¢« o 0o 0 6 6 6 o o s
The System Dictionary (SYSTEM)
The Master Dictionary (M/DICT)
Initial System Files ¢« « « ¢ ¢ ¢ o v ¢ o o« o
The Account File« ¢ oo oo s o0 oo
The SYSPROG Account « ¢ o« ¢ ¢ ¢ o ¢ ¢ o o o
The ERRMSG File o « ¢ o ¢ o v 0 6o v o s o o &
The NEWAC F1le ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ 0 0 0 06 0 0«
Summary of Dictionary Item Definitions

iii

.

TABLE OF CONTENTS (Continued)

Page

TERMINALCONTROLLANGUAGE.......,.......,,,.,.... Iv_l

Introduction , e e v v v v o oeoeeeeeeoesoeses IV-1
Input StatementsS . . . ¢« ¢ ¢ « o o s o 6 6 6 6 06 0 s 00000 seese IV-1
TCL Processing , .., v evveoeeeeooooessasss IV-3
Standard Reality Verbs ¢ ¢ oo oo o0 eoaceseses IV=4
TCL Statement Parsingo e oo o006 o0coeeeees IV=-6-1
Statement Formats ¢« .. Gt e e e s e e e e aeeas IV-6-1
ENGLISH VerbsS ¢ v ¢« ¢ ¢« v ¢ o ¢ o o ¢ e s 6 o oo o oo ooveeses IV=6=-1
TCL-II Verbs . ¢ ¢ v ¢ o ¢ e o 0 6 6 o 6 s 0o s o s oesoeeeses IV-6-1
Interaction of TCL-II Verbs with the SELECT Verb IV-7
TCL-I Verbs . + ¢ o ¢ ¢ ¢ ¢ ¢ o o o » e A
Interrupting Processing . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o 00 s 0 00000 IV=7
Processing AbOTES . . v ¢ v v ¢ o ¢t ¢ ¢ s 0 0 s oo ooseesses IV-9
TCL Verb Definition . . « « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ e s 0006 00eeeas IV=9

STOREDPROCEDURES(PROC)--.-..-o.otaootoottooo.o- V—l

Introduction ¢ ¢ o e oo oo oo seeeoeesoseecess V-1
PROC Execution . ¢« ¢ o ¢ ¢ ¢ ¢ ¢« o 0 e 00 o600 s0eoseeessses V=1
PROC Link Command . . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ 06 66 60 s 0 oooeoees V=3-1
Summary of PROC Commands ¢ e o oo eoveeeeoesees V-4
Input/Output Buffer Operation ¢ oo oo e o eeeese V=5
PROC COmMANAS & ¢ o s o o ¢ o 6 ¢ ¢ 06 ¢ 60 s s 60 soeeeeeees V=8
PROC Command FOYMAL o v e o « ¢ ¢« ¢ ¢ v o 6 0 s 0 s 0 s o o ooeease V-8

LOGON/LOGOFF.--....----oooo-o.oo-ooooooooooo- VI—l

Introduction vo o v v v oo oo o osseoeosecsssss VI-1
Logging On to the System ¢ . ¢ oo 000000 eeeees VI-1
The Logon PROC . . . ¢ v v v vt o+ e 0o oo oo ooessoeseess VI=2
General System MESSAZE .« o o o o ¢ ¢ o ¢ 0 6 06 o 000 sesses VI-3
Logging Off the System 0000000 eesoeeess VI-3
Clearing the ACCOUNT File . . .4 ¢ s o000 c00so0ese. VI-4
User Identification Items0000000000000qs VI-5
System Privileges . o ¢« ¢ ¢ ¢« o o e ¢ 6 60 o e oooeosssees VI-5
Additional Work-Space Assignment . ..+ o0 ¢ 60 0e0os00.. VI-6
Updating System Dictionary Entries. ¢ oo oo oo . VI-7
The Accounting History Flle , ., . . . v v ¢ e ¢ o o0 oeoeeo VI-9
Active Users ENtYY . o o o o v o o o 0 o s s 0 s s s o o oo eess VI-9
Accounting History Entry e o e 0o 00 ec0e00000. VI-10

FILE MANAGEMENT PROCESSORS . ¢ ¢ ¢ v o o ¢ o o o e o6 oo e s oosee VII-1

CREATE-FILE 4 4 ¢ o s o o o 6 ¢ 0 6 0 s s s s o s oo seseessss VII-1
CLEAR-FILE . 4 4o vt v o o o o o o 0 o o s e s o ooeosoeoesess VII-2
DELETE FILE . ¢ v ¢ o 6 ¢ o ¢ s o o 0o 0 oo s o oo voeseseess VII-3
COPY & v v o s e o s o s v o oo s s s oo oo onosoesoseseess VII-3
Copying to the Magnetic Tape, Line Printer or Terminal . VII-6

iv

TABLE

Options « ¢ ¢ ¢ o 6 v o o
File Management Verbs

SEL-RESTORE Verb

EDITOR ¢ ¢ ¢ ¢ ¢ o o ¢ ¢ o ¢ o o o @

Introduction

OF

CONTENTS

(Continued)

Edit Command Structure. e e s e 6 0 e 0 s o .
"String' FOYMAte « « « v o o o o o o o o s 0 o o o s oo o
Editor Error Messages « « « « « « o & o oo e e e e e
The Input Environment e s e e e s e s s e e s e s e e e e e
Edit Commands « ¢ « o o « o ¢ o & e o s s 0 s 6 o 6 s s o .
SYSTEM COMMANDS ¢ + « o o ¢ o o o s o o o s o s

Introduction =« ¢ ¢« ¢« o ¢ ¢ ¢ o ¢ o o o o o o o e o e e e
Arithmetic Commands - « . .« . o oo . .
Card Reader Commands - - . e e e e e o o e e
Tape Commands o « ¢ o o o o ¢ o o o 0 o 6 o o o o o o o o o o s oo
Tape Labels + « ¢ ¢ ¢ o 0 o o o o 0 6 0 0 0 6 o T
Multiple Reel Tape Files . ¢ . v o o o v 6 o o o o o o 0 o oo
Output Spooler Commands « « « ¢ ¢« « ¢ o ¢ o ¢ o ¢ o o o o s oo

Summary of Spooler Error Messages . . .

Miscellaneous Commands

BLOCK=PRINT &+ « o « « o »+ &
Debug o ¢ o s o 0 0o o s
DUMP . &+ ¢ ¢ ¢ ¢ o 0 6 o ¢«
MESSAGE « ¢« « « ¢« ¢ o o « o s
TERM ¢ o ¢ o v 0 0 6 o 0 o

TIME ® 6 8 o o o o o 0 o o o o

WHO ¢ ¢ ¢ ¢ o 0 o o o 0 0 o o
ENGLISH LANGUAGE « ¢ « ¢ ¢ & « &
Introduction « ¢ ¢ ¢ o o &

ENGLISH Input Rules =« .
ENGLISH Verbs « ¢ « « ¢ « &

LIST and SORT Verbs .«

COUNT Verb e o o 8 o o o o
SUM and STAT Verbs . . .
SELECT Verb ¢ ¢« ¢ ¢ ¢ ¢ « &

SSELECT Verb « « ¢« ¢ ¢ ¢ o ¢ &

File-Name Specification . .
ItemLiStooooo e o o o o o o o o o o o

Selection Criteria . . .
Output Specification . -

o o o o

. o o o o
o o .
« o o o o
. o o
ooooo .
o o o o
o o o o o o

. . o o
o o o o o
. o o

Modifiers, Relational Operators and

o o o o o o o o o
. o o o o o o o o o
o o o o o o o o o o
. o o o o o L] .
o o o o o . .
o o o o o o o o o o o
» o 8 o o o o . .
. o o e o o o o o o
» LI o o o o o o o
o o o o o o o o o o
. o o @« o o o s o o .
. e o o o o o
e o o o o o o . .
o o o o o o o .
. o o o o o o o . .
o o . o o .
ooooo . o o

. o o o o o o
e » o s o o o o o o o
ooooo o o o . .

Connectives « « ¢« « . .

Page

VII-6
VII-7
VII-8

VIII-1

VIII-1
VITI-2
VIII-3
VIII-3
VIII-4
VIII-4

IX-1

IX-1
IX-1
IX-2
IX-2
IX-6
IX-6
IX-7
IX-15
IX-17
IX-17
IX~-18
IX-20
IX-20
IX-21
IX-22
IX-22

X~6-1
X-6-2
X-6-2
X-7
X-8
X-10
X-13

TABLE OF CONTENTS (Continued)

Page
CONVERSION @ O 0 5 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0o 0 0 o 0 0 0 o XI_l

Introduction .« « ¢ ¢ ¢ ¢ o ¢ o ¢ o o o 6 0 00 06060006000 eeas. XI-1
D Conversion (Date) .« ¢ o o o ¢ ¢ o o 0 66 s o a0 oo soeess XI-1
MD Conversion (Mask Decimal) « + ¢« o ¢ o ¢ ¢ ¢ o 0 ¢ 6o o 0 oo o o XI=2
MT Conversion (Time) « . « « « - . . . et e e e b s e e e e e e XI-3
MX Conversion (Hexadecimal) =« ¢ ¢ ¢ o ¢ o o o o 0o 0o s 60606000 XI-3
T Conversion (Translate) « ¢ « o o ¢ o o s 6 s 6 06 0 0 0600000 XI-3
U Conversion (USEr) « ¢ ¢ « o o o e s s o 6 6 6 6o s s o o osss XI=5

CORRELATIVES ® & ¢ 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 XII-l

INtroduction « o ¢ ¢ o o ¢ o o o o 06 o 0606 06 0606006000000 0e XII-1
D-Correlative (Associative) .« ¢ ¢ ¢ o o o 6 o 00 0 00 00000 XII-1
F-Correlative (Function) =« ¢ « ¢ ¢ ¢ o o o 0 6 6 06060600000 XII-3
G-Correlative (Group Retrieved) « ¢« ¢ ¢ ¢ ¢ ¢ ¢ 6 ¢ o 0 6o o s o » XII-7
T—-Correlative (TeXt)s ¢ ¢« o o o « s o o ¢ 6 06 s 6 66 6 06000000 XII-8

SECIIRITYoo.oo.onoonoooo.ooocoooooc‘ocoooooo XIII"'l

INtroduction « o o v o v v o oo e v e st oo e e a0 es .. XIII-1
L-RET and L/UPD « « o o o o o s s o s s 0o oo s sooseeeses XIII-1
User Assigned Codes « « ¢ ¢ ¢ o o ¢ ¢ o o s 6 0600600000000 XIII-2
Security Code Comparison « ¢ ¢« ¢ ¢ ¢ o ¢« o o o ¢ 66 6000000 XIII-2

BATCHPROCESSOR ® 0 0 0 0 0 0 0 0 0 0 0 0 0 0 > b 0 0 0 0 0 0 0 0 0 0 0 0 0 XIV-l

Introduction « « ¢ ¢ ¢ o ¢ o ¢ o ¢ o 6 6 6 06 0660606006000 000. XIV-1
Evoking Batch « ¢ ¢ ¢ e o o o o o o e o v o000 0oeeesesss XIV-1
BATCH-string Format e « ¢ s ¢ ¢ o o ¢ ¢ o ¢ 06 6 ¢ 0 6 0 06000000 XIV-2
Input Data Conventions e ¢ ¢ ¢ ¢ o o ¢ o o o o 0 o 06 06000+ XIV-3
BATCH-string File-defining Element . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o « o XIV-4
BATCH-sring Attribute-defining Elements e o oo o0 e e oo XIV=5
Additional BATCH-string Elements « « ¢ ¢« s ¢ ¢ ¢ ¢ o o o o o o » XIV=7
Additional Sub-elements =+ ¢ ¢ ¢ ¢ o o s 06 60 0000000000 XIV-7

MICRODATA REALITY REFERENCE MANUAL v ¢ ¢ o o o o 000 oo oo XV-1

INtroduction « ¢ o o ¢ ¢ o ¢ ¢ o o 0 0 o 6 0 00 000 00 e XVU-1
System StYuCtUYe « ¢ ¢ o o o o o s ¢ o o 0 2 060 06000000000 XVU-1
Information FOYMAtsS o o o ¢ ¢ ¢ ¢ o 6 6 6 o 6 6 06 066 60600000 XV-1
Addressing « ¢ ¢ ¢ o ¢ o o v 0 0 6 0 0 6o 0 s s e 0 s e 00 s 00 XV-2
Virtual Memory Management « « « « ¢ ¢ ¢ ¢ o o o o o .o . XV-3
Buffer StatusS o o ¢ ¢ ¢ ¢ ¢ ¢ o o 6 0 6 06 0606 060000 e oo+ XV-3
Buffer Status Byte « « « o o ¢ ¢ ¢ 6 ¢ ¢ e 0 s 0 0 00 00eeese XVU=3
Buffer Map =« o ¢ ¢ o e o ¢ e o o 00 000 0000000 e oo XV-4
Buffer QUEUE « o« ¢ ¢ ¢ ¢ ¢ o ¢ o o o 6 6 6 s s s s s s o ooeosees XV-4
ProCeSS + o ¢ o ¢ ¢ 6 ¢ o 06 06 060606 060 sa000eoseoeseseses XV=5
Process Identification Block =« ¢ ¢ ¢ ¢ o ¢ o ¢ o ¢ o0 0o 0o o0 XV=5

vi

TABLE OF CONTENTS

PIB Status Bytes

Primary Control Block o+ e o

Address Registers
Address Register Attachment
Address Register Zero

Address Register One . . . «

Frame FormatS « ¢ ¢« ¢ ¢ o s o o
Monitor ¢ ¢ ¢ ¢ 6o o 0 0 o 0o o
Monitor PCB

Initial Condition of Monitor PCB
Initial Condition of Monitor PCB

Monitor Register Assignment

Interrupts and Monitor Calls « « ¢« o ¢ ¢ o ¢ o o ¢ o &

Traps o o o ¢ o o 0 0 ¢t 0 0 00 o

Trace Mode « « ¢ ¢ ¢ o o ¢ o

Monitor Disc Scheduling Tables

TheIOQTable.oooooooooo-

I0Q Table Format « « « « « « .

o & o o 0 0 o0

Registers

(Continued)

Selection of a Process to be Placed on the IOQ. s 0o 0 0 00

IOQ Setup =« o ¢ o o o o ¢ o .
Disc Address Computation. .

Disc Address Format .«

Device Control Table
DCT Table Entry .« « « « « «

Disc Interrupt Handling e e e e

Selection and Setup of Next I/0

Starting I/0 « « ¢ ¢ ¢ o o o

Disc ETYOrS o ¢ ¢« o ¢« v o « o o @
Select Next User Routine . .
Programming Notes « « ¢« ¢« ¢« « « .
Instruction Descriptions . . .
Definitions of Terms Used in the
Effective Address Computation
Arithmetic Operations « . « « . &

Data Transmission Operations
Address Modification Operations

.

Bit Manipulating Instructions .

Control Instructions

Logical Operations . . « . . .

Shift Operation ¢ « ¢ « . . .
String Operations « « « ¢ «
Conversion Operations . . .
Input-Output Operations . .
Monitor Operations .«
Instruction Summary
Core Map « ¢« ¢ ¢ ¢ o o 0 0 0 o

Peripheral I/0: Device Orders

Descriptions « &

vii

5 o o o o o o o

ooooooooo

Page

Xv-5
Xv-8
Xv-9
XvV-9
XvV-10
Xv-10
Xv-10
Xv-11
Xv-12
Xv-13
XV-13
XV-14
XV-14
Xv-15
XV-16-1
Xv-16-1
Xv-16-1
XV-16-2
TV-16-4
XV-16-4
XV-16-5
XvV-16-5
XV-16-5
XV-16-5
XV-16-6
XV-16-6
Xv-16-7
XV-16-7
Xv-16-7
Xv-16-8
XV-16-9
XV-16-10
XV-16-10
Xv-16-11
Xv-17
Xv-20
Xv-22
Xv-22
Xv-30
Xv-31
Xv-31
Xv-33
XvV-34
Xv-35
Xv-37
XV-43
XV-44

TABLE OF CONTENTS (Continued)

REALITY ASSEMBLY LANGUAGE (REAL)

Introduction e s s 0 0 6 6 0 s e 0 6 s 0 0 s e e
Source Language o+ c ¢ ¢ o o 0 0o o 0 0 0 0 0 0 0 o
Label Field o « ¢ o o v o ¢ 6 000 06660000
Operation Field o+ ¢ ¢ ¢ e o s 0 o 0 0 0 0 0 0 o
Operand Field « ¢ ¢ o ¢ oo oo 0o o0 0 000 o
Operand Field Expressions =« ¢« -« ¢ ¢ o o oo
Comment Field .+ ¢ ¢ ¢ ¢ o v o ¢ e 0o 0 0 0 00 0
"Argument" Field « ¢ ¢ ¢ ¢ ¢ o 0 o 0 v o 0o n .
Calling the Assembler « « « ¢ ¢ ¢ o o ¢ o o o &
Listing Output « ¢ ¢ o o s o ¢ o 0 6 0 0 0 0 0 o o
Loading « ¢ « o o o 6o o s s o0 0 o0 0 s 0 0 0
TCL-II Cross Reference Capability « « « «
Cross=Index Verb . o « « o ¢ ¢ o o 0 6 066 s 6 o
X-REF Vexrb =« « ¢ ¢ ¢ ¢ ¢ o 0 ¢ 0 6 060 0060000

XREFPROCOoboaoocnoao;onnllco'o

Operand Conventions =« « « ¢ ¢ ¢ o o ¢ ¢ ¢ o o o
Character Instructions (Moves)
Character Instruction (Tests) o « « ¢ ¢ o o &
Bit Instructions e« ¢ ¢ ¢ ¢ ¢ ¢« 0o 6 0 0 06 0 0 0 &
Data Movement and Arithmetic Instructions

Register Instructions e o o s 0 6 o 0 s s e o o

Data Comparison Instructions.« . ¢« « « « o o &

Translate Instructions =« ¢ ¢ o ¢ o o o o o ¢ o o

Execution Transfer Instructions
I/0 and Control Instruction « « ¢ ¢ o o o ¢
Assembler Directives =« ¢ ¢ o ¢ o ¢ o o 0 0 oo
Address Register Usage =« « ¢ ¢ ¢ ¢ ¢ o oo o
REAL Instruction Side Effects « ¢ ¢ ¢ o ¢
Examples of REAL Instructions =« ¢« « o o .
Assembler Tables « o o ¢ o o 6 ¢ 06 6 0 060004
TSYM/PSYM Table Entry Formats « « « ¢ o o &
Symbol-Codes « ¢ ¢ ¢ o ¢ ¢ ¢ 0 ¢ 0o 00000000
OSYM Table-Lookup Technique « « « o o ¢ o o &
TSYM Table Entry Setup =« o ¢ o o oo 0o o0
OSYM Table Entry Format « « « « ¢ « o o o o 4 &
Macro Definition Format « ¢ « ¢ ¢ ¢ o ¢ ¢ o o o
"Primitive" Definition Formats « « « « o +
Exit Format e o 6 o ¢ 06 s 0 6 0 s 0 0 8 0 0 0 s e
Gen FOrmat ¢ ¢ ¢ ¢ o ¢ s o ¢ « 06 6 6 06 06 06 06 6 0 0
Reset FoOrmat e« ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ 06 06 06 06 6 0 0 o
Assembler OQULPUL ¢ ¢ « o ¢ o o o o 0 o o o o o o
Literal Generation « ¢ ¢ ¢ ¢ ¢ ¢ 6o 0 6o 0o o o o o
Reassembly in Pass IT « ¢ o ¢ ¢ o o o s o o o
Assembler Error Messages * * * * * ¢
Example of REAL Macro Expansion =« ¢ ¢ ¢ ¢ ¢

viii

ooooooo

Page
XVI-1

XVI-1
XVI-1
XVI-1
XVI-1
XVI-2
XVI-2
XVI-2
XVI-2
XVI-2
XVI-3
XVIi-3
XVI-5
XVI-5
XVI-6
XVI-8
XVI-10
XVI-11
XVI-14
XVI-15
XVI-15
XVI-17
XVI-19
XVI-20
XVI-22
XVI-23
XVI-26
XVI-28
XVI-29
XVI-30
XVI-54
XVI-54
XVI-54
XVI-55
XVI-55
XVI-56
XVI-56
XVI-57
XVI-57
XVI-57
XVI-58
XVI-58
XVI-59
XVI-60
XVI-60
XVI-61

TABLE OF CONTENTS

THE INTERACTIVE DEBUGGER . .« « ¢ ¢ o ¢ o o &
Introduction ...« . ¢ . .
DEBUG SYyNtax .« « o ¢« o o o ¢ o o 0 6 ¢ o
General DEBUG Statement Format . . .
DEBUG Commands « « « o« s o ¢ ¢ o o ¢ o s &
Data Display Commands
Replacing Information

(Continued)

Tables Provided for Debugging

Break MesSSages « ¢ o o o ¢ v 0 ¢ 0 o o o o
Hardware Trap Conditions « « « + « . &

SYSTEM MAINTENANCE ¢ ¢ ¢ ¢ ¢ o o o o o o o o
Introduction « « o ¢ o o ¢ o o 6 6 o o o o
Halting the CPU While in Execution

Restarting After STEP/INT Halts . .
Bootstrap and Cold-Start Procedure .
Using Preset Configuration

Reconfiguring Software at Cold Start Time
Programming NOLteS « ¢+ o o o ¢ ¢ o ¢ o o o 0 « o &
Further Explanation of Configuration Parameters . .
File-ReStore ProCeSS « o o o ¢ o ¢ 6 ¢ o 6 6 6 6 6 o 0 0 o o

File Restore Frame Limits
Output From a File-Restore Process

Initial System Setup « « ¢ ¢ o ¢ o ¢ o
SYSPROG Account PROCs and Verbs. . .
COLD-START PROC ¢ ¢ o 6 ¢ 6 o o o o o o o
CREATE~-ACCOUNT PROC
USage + o ¢ s o ¢ o 0 o 0o 0 0 0 0 0000 0
FILE-RESTORE PROC ¢ ¢ ¢ ¢ o o o o ¢ » o o
FILE-SAVE PROC
Method of Operation
Output from the File-Save Process. .
Operator Use of FILE-SAVE PROC . . .
RE-GEN PROC ¢ ¢ ¢ o o s 0 o s s 0 o o 00
SETUP-ASSY PROC ¢ ¢ o ¢ o o 6 6 6 6 0 o o
SETUP-RPG PROC . 4 ¢ ¢ ¢ ¢ o ¢ 6 6 6 6 o &
START-SPOOLER PROC =+ ¢ ¢ ¢ ¢ o s ¢ s o &
SYS=GEN PROC ¢ s o ¢ o o o 0 6 o 6 0 00
SYS—LOAD PROC + ¢ o o o o o o o o 6 s o o &
SYS-UPDATE PROC ¢ - ¢ ¢ o ¢ ¢ + o o o o
UPDATE-ACCOUNT PROC . - ¢ ¢ ¢ ¢ o o « &«
VERIFY-SYSTEM PROC « ¢ ¢ ¢ ¢ o o o o o &
Special SYSPROG Verbs « .+« . o .o ..
Standard SYSPROG PROCs «» « + &+ = ¢ « &« &

SYSTEM MESSAGES

o & o 8 & o 6 o o 0 ¢ 0 o s o o

ix

® » & ¢ & o o 0 o o o o o s s o

Page

XVII-1

XVII-1
XVII-1
XVII-2
XVII-2
XVII-3
XVII-4
XVII-4
XVII-4
XVII-5

XVIII-1

XVIII-1
XVIII-1
XVIII-1
XVIII-1
XVIII-2
XVIII-2
XVIII-3
XVIII-4
XVIII-5
XVIII-6
XVIII-6
XVIII-8
XVIII-8
XVIII-10
XVIII-10
XVIII-11
XVIII-12
XVIII-12
XVIII-13
XVIII-14
XVIII-16
XVIII-16
XVIII-17
XVIII-17
XVIII-18
XVIII-18
XVIII-18
XVIII-19
XVIII-19
XVIII-19
XVIII-19
XVIII-22

XIX-1

TABLE OF CONTENTS (Continued)

SYSTEM SOFTWARE ¢ & « ¢ ¢ ¢ ¢ ¢ o o o S

Introductionooo-ooaoooooooooonnoa-o
AddreSSRegiSterSooooooaooooooooooooo

Attachment and Detachment of A/R'S ¢ ¢ ¢ ¢ ¢ o o

Attachment and Detachment of Address Registers .

Re-’entrancy-a-ooooaoaoo-.o-ooooooo

Work Spaces or Buffers « « ¢ ¢ o oo 000000
Defining a Separate Buffer Area =« ¢« ¢ ¢ ¢ ¢ ¢ oo
Usage of mODE L] e o e o o . o o . e o o o o o o o o o o o

Initial Conditions « ¢ « o o o o o o 6 0 6 0 0 o o o o
Special PSYM Elements o« ¢ o ¢ ¢ ¢ o ¢ o 0o ¢ 0 o o oo
Program Documentation Conventionse ¢ ¢ ¢ ¢ ¢ ¢ ¢ &
Primary Control Block e o 6 0 0 0 0 0 0 s 0 e e e
Secondary Control Block « ¢ ¢ o ¢ oo o e o0 o e
Debug Control Block « ¢ ¢ e o o o o 0o 0 0 60 000

PSYM.....D/COde ® © 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0

TCL-1 & TCL-II PROCESSORS AND PROC INTERFACE =« + « -

TCL—II @ O o 0 06 0 0 0 0 0 0 6 0 0o 0 0 0 0 o 0 o o " o o
WRAPUP Processor -
UPDITM (WRAPUP II)

3
.
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.

PRTEER(WRAPUPIII)oooooooooooooooaooo

DISCFILEI/O ® o o © 0 0 o 0 0 06 0 0 o o 0 0 0 0 8 0 0 0 o o

RETIX AND RETI e 0 0 06 06 0 06 0 0 0 0 2 0 0 0 0 0 0 0 0 0 o
GETITM ® 0 06 0 0 & 0 0 0 0 0 6 & 0 0 o 0 06 0 0 0 0 0 o 0 o o0
UPDITM ® 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 o o0

GBMS ® 06 06 0 0 0 0 o 0 0 0 T 6 0 0 0 0 0 0 0 0 0 0 8 0 o o

GDLID @ o 0 0 6 o 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0

TERMINALI/O ® @ & 0 0 6 06 0 0 0 0 0 0 0 2 0 0 s 0 0 0 0 0 0 o0

GETIB AND GETIBX ¢ ¢ ¢ ¢ ¢ o 6 o 0o 0 0 0 00060 00c0
GETBUF ¢ ¢ ¢ ¢ ¢ ¢ e o 0 0 600 0e 00 s 0eess0000
WRTLIN AND WRITOB ¢ ¢ ¢ ¢ ¢ o 6 o s 0o 0 0 0 000000
PRNTHDR AND NEWPAGE ¢ ¢ ¢ o ¢ o o e o 0 0 0 0 06 0600
PRINT AND CRLFPRINT o ¢ ¢ ¢ o ¢ o o 0 0 0 e 6 066 0.0

VIRTUALMEMORYI/O @ 6 0 0 0 0 0 0 & 0 0 06 0 0 0 0 0 0 0 o 0

RDREC0000000noooloccooolouocc.co

RDLINKANDWTLINKoouoooocococoooccoao

LINK ® 6 06 0 0 o 6 0 0 0 0 0 0 0 0 o 0 06 0 0 0 0 0 0 0 0 0

.
.
3
.
.
.
.
.
.
.
.
.
Y
.
.
.
.
.
.

Page

XX-1
XX-1

-XX-2

XX-3
XX-3

XX-7
XX-8
XX-9
XX-9
XX-11
XX-13
XX-14
XX-15
XX-16

XX-21

XX-26
XX-31
XX-34
XX-34

XX-38

XX-39
XX-41
XX-43
XX-46
XX-48

XX-49

XX-50
XX-52
XX-53
XX-55
XX-57

XX-58
XX-59

XX-60
XX-61

TABLE OF CONTENTS

OVERFLOW SPACE MANAGEMENT . . . ¢ s 6 o o o &

GETOVF b] GETBLK . . * . L L] L] L) . .

RELOVF, RELCHN AND RELBLK
ATTOVF: ¢ ¢ o ¢ 4 ¢ ¢ ¢ ¢ ot o 0 6 0 0o oo
NEXTIR AND NEXTOVF ¢ ¢ ¢ ¢ ¢ 6o ¢ o 6 o &

WORK SPACE INITIALIZATION . .. ¢+ o ¢ o . .
wS INIT L] . L] - . . L . . . L L . . . L] . L] L

TSINIT ® o 6 o o 0 ¢ o 6 0 6 0 0 s 0 0 0+ 0 @
ISINIT @ 6 s 4 s o 0 s+ 0 06 2 0 0 6 0 0 o o o

PERIPHERAL I/0 4 v v v o v oo 0 o oo oo s oo

Tape Control Subroutines
INIT and TPSTAT. « o « « + o ¢ o s o o o
WEOF & e v o o v o 6ot oo 00000 0o o
BCKSP & . i v v vt e i b et oo s a0 o0

REWIND...--......----..---

FRWSP & v v v 0 00 6 v a0 o 000 00000
Tape I/0 Routines
Blocked Tape 1/0 Operations
SEGMNT (3,TAPEIO-TII) . v ¢ o ¢ o 0 o + &

LABELED TAPE I/0O ROUTINES .+ v v 0 0 v o « »
RDLABEL (2,TAPEIO-II) =« ¢ v o o v o »

RDLABELX (S,TAPEIO_II) ® o ¢ 0 0 o 0 o o
WTLABLE (2,TAPEIO-III)

WTLABELX (4,TAPEIO-III)

CREADoouooonoooc..--ooouaootl

MISCELLANEOUS « ¢ ¢ ¢ ¢ ¢ 0 o ¢ 0 6o ¢ 0 0 0 0 0
TIMDATE, TIME AND DATE .+ ¢« ¢ ¢« ¢ 4 ¢ & &«

ASCII- Character to Binary Conversion .

Binary to ASCII - Character Conversion
MBDSUB AND MBDNSUB . . ¢ ¢ 6 6 6 s o & &

EBCDIC to ASCII Conversion ¢ o

File Initjalization « « ¢ o o o ¢ ¢ o 6 o 0 o

DLINIT(6,DLOAD).....-......-
DLINIT1 (7,DLOAD) &+ v v v v o 0 s o ¢ s s

x1i

(Continued)

® o o o o o e o . o »
e o o6 & » 0 0 o o o e o o
o o . . . e o o o
o o o o o e o o o o .
o & 2 & & s o o o o o o »
e o s o o . . o o

e o o o . o o
e o o o e o o o o .
e o o 0 + 0 0 o s o0 o o »
. o o e » o o @ o o
e o o o e o o o o e o o

® s o 5 o+ o o o o o
o o . o o . . .
. o o o o e o o & o o
o o o o o o s o o o .
e o . o o .
® o o & o o o o & o o e & o
o & o o e o o o o o
© & 0 o6 06 6 0 0 o o ¢ o o .

o o o o . . o o o o
e o 0 o 2 o o o o o o .

® o o o 0 0 o o e o o
o o o o . e o o o o o »
o o o o o o o o o o 0
o o o o o 0 o o o o o o o
e o o o s 6 0 s o o
o o o o & o o o o o o » @

Page

XX-62

XX-63
XX~-64
XX-65
XX-66

XX-67
XX-68

XX~-69
XX-69

XX-71
XX-71
XX-71
XX-72
XX-72
XX-72
XX-73
XX-74
XX-75

XX-77
XX-77
XX-77
XX-78
XX-78
XX-79
XX-81
XX-81
XX-82
XX-83
XX-83
XX-84
XX-85

XX-~85
XX-85

TABLE OF

GPCBO (4,ABSL) . . .
SETPIB (4,LOGON) . .
SETPIBF (3,ABSL) . .

GMMS e » o 0 0 0 o o
GACBMS (1,LOGOFF) .

GETOPT (10,SYSTEM-SUBS-II)

GETUPD o o o o o 0 o o o 0 o 0 0

SORT ¢ o o o o ¢ o o o &

e 0o o o o

BLOCK LETTERS « « « . .

ENGLISH INTERFACES

e o o o o o o o

CONTENTS

o o o
o o o
o o o
e o o
o o o
o o o
e o o
o o o
o o

o o o

xii

(Continued)

Page

XX-86
XX-86
XX-87
XX-88
XX-88
XX-89
XX-89
XX-91
XX-93

XX-94

SECTION I

INTRODUCTION

Reality is a completely new system of computer hardware and software,
specifically oriented to provide a vehicle for the implementation of cost-
effective information management. Information management systems
implemented in Reality afford two major benefits; they are: (1) providing
accurate and timely information to form the basis for significantly improv-
ing the decision making process, and (2) substantially reducing the clerical
and administrative effort associated with the collection, the storage, and
dissemination of the information pertaining to an organization.

Reality is a completely new computer system combining both proprietary
hardware and proprietary software to create an effective tool for on-line
information management. Through the use of Microprogramming, Microdata

has implemented a truly revolutionary on-line transaction processing system.
Three major components of the system have been implemented directly in
firmware. They are, (1) virtual memory operating system; (2) the software
level architecture; (3) the terminal input-output routines. The virtual
memory operating system which has long been used in large computer systems
has been impractical for minicomputers due to the large amount of overhead
needed for the operating system itself. In Reality,.the operating system
has been directly implemented in highspeed, read-only memory (we called it
firmware) which executes many times faster than would a comparable system
normally implemented in software. Since the firmware is really an exten-
sion of the hardware of the computer hardware itself, this implementation
is more precisely referred to as a virtual machine operating system. With
the operating system directly implemented in read-only memory, only a small
amount of main memory (core memory) is needed to run Reality.

Slightly over 4,000 bytes of core memory need be allocated for the operating
system monitor. Everything else, system software, user software, and data,
is transferred automatically into main memory from the disc drive by the
virtual machine operating system in a demand-paged environment. Everything
in the Reality computer system is organized into 512 byte pages, or frames,
which are stored on the disc. The virtual concept allows the user to have
access to a programming area not constrained by a main (core) memory, but

as large as the entire available disc storage on the system.

The second feature implemented directly in firmware by Reality is the
software level architecture of the machine itself. Through Micro-
programming, Microdata has implemented a machine architecture expressly
designed and optimized for information management. The assembly language
architecture of Reality has very powerful instructions expressly designed
for character moves, searches, compares, and all supporting operations
germane to managing variable length fields and records. In addition, this
software architecture has in existence a very large field proven software
base written for information management. The information management soft-
ware available on the Reality computer system equals or exceeds the software
available for medium scale data processing systems costing several times
the price of Microdata Reality.

The third major item implemented in Microcode is the input-output routines
designed to handle communication with the terminals. In all minicomputer
on-line applications, one of the main problems is that of managing the
input and output from on-line interactive terminals. As these terminals
increase in number, the load on the CPU becomes overwhelming and conse-
quently the response to the terminals degrades dramatically. Microdata,

in Reality, has implemented the transactions with the on-line terminals

in high-speed microcode. The Microprogram implemented in read-only memory
directly controls the communications from and to all of the on-line
terminals connected to the Reality computer system. This means that the
process execution need not be interrupted to handle a character coming in
or going out to each and every terminal. The firmware handles or buffers
all these transactions and only interrupts the software at the completion
of a block. As a result, a very large number of terminals may be connected
to the Microdata Reality System before any significant degradation in
response time is detected. The response time is, of course, dependent upon
the specific application and the activity level of all terminals. However,
implementations of 10, 20, 30, or more terminals is not impractical. 1In
fact, with the virtual machine operating system, which automatically
manages the available resources of the computer, and the architecture
itself, custom designed for data base management and all the terminal

input and output handled directly by high-speed microcode, the Microdata
Reality System excels as the number of terminals increases.

What does this mean to the user?

1. Due to the structure of Reality a large number of terminals can
be accommodated with excellent termiral response times.

2. Due to the virtual machine impiementation the user need not be
concerned directly with the amount of main memory (core storage).

3. A large number of terminals (in excess of 32) may efficiently
be on~-line to the system.

4. All users (terminals) can share the Input/Output resources of
the system. An Input/Output spooling subsystem permits any
terminal to use the optional Magnetic Tape Drive and Line
Printer.

5. All files can be interrogated and manipulated using the ENGLISH
retrieval language, even those files built and maintained with
RPG-II programs.

REALITY - CENTRAL PROCESSING UNIT

The Reality CPU, although physically small in size and priced in the
minicomputer category, has the architecture of a medium scale computer.

Its main memory is core and is expandable from 8,192 bytes to 65,536 bytes
in increments of 8,192 bytes. Its full cycle operation is 1 microsecond
per byte. The virtual memory is disc which is oriented into 512 byte

frames expandable from 4,871 frames (2.5 million bytes) to 12,192,320 frames
(6.4 billion bytes). That is the virtual memory addressing range of the

CPU itself. However, in standard configurations, the Microdata Reality
system is currently configured from 5 million bytes to 80 million bytes of
disc storage. The CPU is capable of handling a large number of asynchro-
nous processes, each associated with an input-output device. The Reality
CPU will support in excess of 32 terminals (or asynchronous processes).
The CPU has 16 addressing registers and one extended accumulator for each
terminal. A variable return stack accommodating up to 31 recursive sub-
routine calls for each terminal is also provided; however, current soft-
ware convention allows only 11 entries in the stack. By indirect address-—
ing through any one of the 16 registers, any byte in the virtual memory
can be accessed. Relative addressing is also possible using an off-set
displacement plus one of the 16 registers to any bit, byte, word (16 bits),
double word (32 bit) or triple word (48 bits) in the entire virtual memory.

OPERATING SYSTEM

The operating system of the Microdata Reality is unique in that it is
implemented directly in firmware and as such is an extension of the hard-
ware., The features of the Microdata Reality operating system are summar-
ized below:

Operating System (Hardware) features include:

Selection of process for execution and determination of length of
execution.

Management of the allocation of core memory buffers containing disc
frames.

Processing of implicit and explicit frame faults (requests for core/
disc transfers).

Processing of logically linked frames and presenting them as physically
sequential.

Processing of inter-module linkage and maintenance of return stacks.
Recognize process defined breakpoints and generate software traps.
Minimum core resident overhead per defined process (32 bytes).

Full duplex byte (character) I/0, to buffer transfers between a
process and its associlated device, echo input bytes, process parity
bits, and test input bytes for process activation.

Generation of software traps on abnormal conditions, illegal op-codes,
return stack overflow/underflow, disc memory protect violation, arith-
metic overflow/underflow and device interrupts.

Disc I/0 with overlapped seeks using block multiplexed channels

providing an average access time of 35 ms and a maximum through-put
of one thousand 512 byte disc frame transfers per second.

I-3

One to four IBM compatible 9-track 800 bpi magnetic tapes for file
back-up, historical files and communication with other computer
systems.

Virtual memory read/write protection, to selectively lock critical
areas of memory from access.

Power fail-safe for automatic, safe shutdown in event of power
failure.

Real time clock and console settable user execution quantities.

Bootstrap program (hardware) to re-boot the system from disc, tape or
any byte I/0 device.

INSTRUCTION SET

The Reality System has an extensive instruction set, including:
Bit, Byte, word, double-word, and triple word operations.

Memory to memory operation using relative addressing on bytes, words,
double-words, and triple-words; for the movement, addition or subtrac-
tion of the first operand to the second operand.

Bit operations permitting the setting, resetting, and branching on
condition of a specific bit.

Branch instructions which permit the comparison of two relative
memory operands and branching as a result of the compare.

Addressing register operations for incrementing, decrementing, saving
and restoring addressing registers.

Byte string operations for the moving of arbitrarily long byte strings
from one place to another; movement may be stopped on a count runout,

addressing register reaching a specified value, or encountering up to

any one of seven specified delimiters.

Operations for the conversion of binary numbers to printable ASCII
characters and vice versa.

Arithmetic instructions for loading, storing, adding, subtracting,
multiplying, and dividing the extended accumulator and a memory
operand.

Control instructions for branching, subroutine calls, and program
linkage.

ENGLISH

ENGLISH is a generalized information management data retrieval language.
ENGLISH is a freeform order-independent language used to retrieve informa-
tion from the data files of the Reality computer system. The language
consists of verbs, nouns, connectives, and values. All information in the
system is stored in self-describing data bases and retrieved through the
use of dictionaries or tables.

The verbs of ENGLISH are action oriented words such as list, sort, select,
sum, etc. which evoke one of the ENGLISH processors.

Nouns are either the names of files or the names of attributes. They are
assigned by the user and can have as many synonyms as the user finds
necessary.

Connectives are provided to modify and qualify ENGLISH statements.
Modifiers are nouned or phrased limiters whose impact is to limit the depth
of action initiated by the verb.

Qualifiers are value limiters which logically qualify values such as equal
to, not equal to, greater than, less than.

Not only does ENGLISH provide an ability to selectively or conditionally
retrieve information, it also provides an automatic report generate capa-
bility. The report which normally appears on the terminal but optionally
can be transmitted to the line printer for hard copy output 1is automatically
formatted for the user by the Reality computer system. Listing output will
be processed through a formatter which will create a colummnar list, if
possible; otherwise vertical output will be created. The output may be
sorted into any sequence defined by the user and attributes may be totaled
based on user specified control breaks.

The update capability permits the adding, changing or deleting items or
attribute values for a specific item or items. As with the retrieval capa-
bility, updates may also be performed selectively on only those items
meeting defined conditionals.

Correlative codes, stored in the dictionaries, permit the user to define
certain processing relationships for specific attributes. Using correla-—
tions, the user can define arbitrarily complex file inter-relationships
and maintain these inter-relationships automatically. Correlations fall
into three basic groups.

Horizontal associations permit the chaining from an item in one data
list to an item in another data list. These lists may be used to
maintain inverted and cross indexed files and redundantly store data
in multiple locations. Similarly they may trigger the automatic
retrieval of data from secondary files, eliminating the need for
redundantly stored data.

Vertical associations permit the construction and maintenance of
hierarchial data structures. Previous and next links are maintained
automatically, permitting insertions and deletion of items into
indentured lists automatically.

Internal associations permit definition of relationships within a
single item. These relationships include repeating, groups and non-
stored attributes defined as a function of other stored attributes.

Data Audits provide definition of permissible characteristics for
attribute values. Audits include size, type, pattern, table-look-up,
and range checking.

Data conversion provides for automatic conversion of values on input
and output. Conversion includes data conversion, table look-up con-
version and data encoding.

Storage method of wvalues for attributes may be specified as: single value;
multiple value/non-redundant store; multiple-value/redundant store; positive
post; negative post.

Every file and their individual attributes may be secured for either update
or retrieval by the assignment of security codes. At log on time, each
user gets a list of pre-defined security codes which are then matched to
codes on requested files and attributes. Only those with matches are
retrieved or updated.

SOFTWARE

The software available on the Reality computer system is the most extensive
data base management software available on any minicomputer. A summary of
some of the processors available to all terminal users is presented below:

A high level two pass symbolic assembly language and macroprocessor
translates REAL source statements, and can be used to implement cross-

assemblers for other computers.

On-line editor - an interactive editor designed for creating, displaying,
searching, and altering source programs and other bodies of text.

COPY, a file management processor, provides for data movement between disc
files, tapes, line printers and terminals.

A file save and restore processor providing tape back-up for disc files.

ON/OFF processor to validate users wishing to gain access to the system
and also to update accounting information.

MESSAGE, a message processor permitting the storing and forwarding of
messages to other users whether currently on the system or not.

PROC, a facility allowing a user to define procedures "PROC's'". A PROC can
be used to define complex procedures involving multiple processor entry and
conditional branching.
System subroutines are provided for use by user written programs, including:
An n-way polyphase disc sort/merge subroutine.
Routines for reading the standard input/output device (terminal).

Routines for retrieving and updating items in ENGLISH defined files.

A message formatter accepting value strings and formatting them into
a message or report using a predefined format string.

Input/Output Spooling System which permits any terminal to use system
peripherals such as the line printers or magnetic tape unit.

Numerous utility processors providing capability to:
Examine and alter physical frames.
Load assembled source programs.
List assembled source programs.
Define terminal characteristics.
On-Line Debug facilitates program debugging by:

Examining, Inserting and modifying the program elements such as
instructions and data.

Controlling execution by setting breakpoints at specific
locations, and breaking on branches or external calls.

Single stepping execution.

Tracing execution by displaying information at designated points
in a program.

Conventions regarding data typed in at the terminal.

The following conventions apply uniformly through this manual:

Where the format of a command to the system is described, upper-case
characters or words are literal, that is, they represent the actual occur-
rence of that character or word; lower-case characters or words represent
variables, that is, in actual use they are replaced by a specific value.
For example, if the format is:

EDIT DICT file-name item-name (X,Q)

"EDIT", "DICT" and "(X,Q)" are literals and are to be entered exactly as
shown; "file-name" and "item-name'" are to be replaced in actual use by a
specific value representing, respectively, the file-name and the item-name
to be used. Thus, if '"'SYS-FILE" is a valid file-name, and "ABCD" is a
valid item~name, the data:

EDIT DICT SYSGEN-FILE ABCD (X,Q)
is actually typed in.

In examples shown in this manual, data typed in at the computer terminal
is underlined; computer-generated output is not.

The symbol (:) represents the entry of a carriage return or a line
feed at the terminal.

Control characters are represented by the upper-case letter

" n,

corresponding to the key used, with a superscript of a "¢"; thus PC repre-
sents '"'control-P"; further, PCS represents 'control-shift-P".

SECTION II

DATA STRUCTURES

INTRODUCTION

Reality is a virtual machine with all of the virtual memory (typically
disc) being directly addressable as if it were in real memory (typically
core). The virtual memory consists of a set of 512-byte frames, address-
able by a positive integer called a Frame ID (FID). The entire set of
data associated with a Reality system, including executable programs,
process work spaces and all system and user files reside in virtual
memory.

Executable Frames

Starting with frame one (FID=1), and continuing upward sequentially, are
the executable frames. The extent of these frames (i.e., how high they go)
is a system generation parameter. However, a minimum of 511 frames must
be reserved: furthermore, not more than 4095 frames may be reserved.

This initial area of the virtual memory contains every executable program
or subroutine available with the Reality system. These frames are shared
among all users. For example, the TCL processor is solely contained on
frames 2, 4, and 5; a user executing in TCL uses these three frames
simultaneously with all other users executing in TCL. Frames 1 to 399 are
reserved for current and future Reality software. Frames 400 to 511 are
available for user-developed software. The appendix to this section
describes the frame locations for the Reality operating system software
(not including ENGLISH software). Following the space reserved for the
executable frames, beginning at frame number 512, is the process work
space.

Process Work Space

A user interacts with the Reality system via an interactive terminal
attached to a communications port on the Reality CPU. The on-going dialog
with any port is called a process. Additionally certain processes not
actually connected with a communications port may be defined at system
generation time. These background processes can be used for such things
as spooling data to a line-printer. Uniquely associated with each process
is a primary control block (PCB) which is a one-frame block that defines
the state of the process at any instant. The PCB contains the addressing
registers for its process as well as the accumulator, condition flags,
return stack and scan delimiters, all required by the hardware during
execution by the process. Each PCB is followed by a 31-frame work space
that is associated with it; thus 32 frames are reserved for each defined
process and the first frame of each block is the PCB. Following the process
work space is the file space, from which each process can get and release
work space as required.

II-1

The 32 frames of process work space associated with each process are as

follows:

to

to

to

to

to

Frame

PCB + 0

PCB

PCB

PCB

PCB

PCB

PCB
PCB

PCB
PCB

PCB
PCB

PCB
PCB

PCB

+

+

+

1

O N

10
15

16
21

22
27

28

PCB + 29
PCB + 31

Description and Symbolic Name

Primary Control Block (PCB)

Second any Control Block (SCB)

DEBUG Control Block (DCB)

Unassigned and unavailable

BMS/50, AF/50, CS/100, IB/140, OB/140

TS - one frame unlinked scratch area (TSBEG)
Four frame PROC work area & stacks

HS - six frame linked HS work area

(HSBEG)

IS - six frame linked IS work area (ISBEG)

0S - six frame linked 0S work area (OSBEG)

UPD - one frame unlinked work area (UPDBEG)
set up only when GETUPD is called from a
user written program. Also used by RPG.

Unassigned and unused, available for
user programs.

It should be noted that the above work space assignments for HS, IS, and OS
may be increased by the establishment of an appropriate entry in the LOGON
item; however, the additional space is obtained from the common pool of
For a discussion of frame formats, refer to Section XV.

overflow space.

II-2

Disk Space Assignment

The map below describes the assignment of the disk space; the "highest
available disk frame" number is dependent on the disk configuration for a
particular system; several other FID's are also configuration-dependent;
examples shown below (FID's in parentheses), are for a system with 32K
bytes of core-memory and with one five megabyte (5 MB) disk, and sixteen
processes.

0
1 Coredump area. Shared by both RPG
199 computer object code and the core dump
200 area. Refer to Section XVIII for
further details.
397 Operating system and ENGLISH software;
328 executable program area.
399
400
- Available for user—-generated software;
executable program area.
511
512
Work-space area for processes
0 through 7
767
768
Work-space area for processes
8 through 15
1023
AT 3=
(Work-space area for processes
it o o S T ey 16 thrOUgh 63) *
(1024)
Start of file (data) space
File (data) space available to the
k_" system.

(9743)
Last available data frame.

Highest available
disk frame.

II-3

In general, the configuration-dependent FID's may be computed using the
rules below:

Start of file space (fl) = 512 4+ u * 32 u = number of processes.

Highest available disk
frame
FIDm = 9,743 One 5 MB disk
19,487 Two 5 MB disks, or one 10 MB disk.
38,975 Four 5 MB disks, or two 10 MB disks.
77,951 Four 10 MB disks.

End of file space (fj) = FIDmax

File Space

Beginning after the process work space, the remainder of the virtual
memory is available for the storage of data in files. The beginning of
this area is a system generation parameter. A direct access file technique
1s used and employs a hashing technique. All data is stored as items
within files., Dictionaries, which are also files, are used to decode the
formats of the data stored in an item.

Overflow Space Management

The areas of the disk that are not allocated to the files are maintained

as a pool of overflow space that is available to the Reality system file
management routines as additional data space, as well as to other processors
as scratch work space. The Reality system maintains a table of pointers
that define the available overflow space, which may be either in a '"linked"
form, or in a "contiguous" form. Contiguous overflow space, as the name
implies, consists of blocks of contiguous frmmes defined by a set of 2
pointers that are all available, and can be taken out of the pool either
singly or as a block. Linked overflow space can only be taken a frame-at-—
a-time. Conversely, space may be released by processors to the linked
overflow pool a frame-at-a—-time, or to the contiguous pool as a block.

At the conclusion of a file-restoration process on the Reality system,

an initial condition may be said to exist; there is no linked overflow
space, and only one block of contiguous overflow space, extending from the
end of the current data space through the last available data frame. As
the system obtains and releases overflow space, and as files are created
and deleted, the overflow space gets fragmented, and at any particular
time there may be several blocks of contiguous overflow space, and a

II-4

chain of linked overflow space. Representative examples of these two states
are shown below; shaded areas indicate use of file space:

0 0
Executable program
1024 ""‘ space; 1024
Process work space
Total 4000
. 4020
File 48004500
pace
. //S 5800
6000 6500
Contiguous ! 31007200
Overflow ! 90008150
Space 9250
97699743
9743
Start of Linked . 0 8000 (400 frames in
Overflow space : linked set)
Contiguous space : 6000 4000 first set
pointer sets. 9743 4020
6000 second set
(end of table) 6500
8150 third set
9000
9250 fourth set
9743

(end of table)

I1-5

File Definition

A file is a mechanism for maintaining a set of like items logically

together so that one can access these items for both retrieval and update.
For the Reality system, this mechanism functions by operating on a specified
item~id which uniquely identifies the item. A computational hashing
technique is used which operates on the item—-id, using several variables
unique to the file, to produce a virtual memory address where the item is
stored.

Terms used in defining and accessing files:

Item A string of data associated with and including an
item-id. Items are stored in files.

Ltem—id A unique datum (key) within a file with which all of
the data in an associated item is identified or
referenced.

File A set of items.

Group An area (a set of linked frames) where items may

be sequentiallv stored. It consists of one or
more linked frames and can vary in size from file
to file. (Usually 10 to 25 items per group.)

Base The first FID of the first group in a given file.
Modulo The number of groups allocated for a given file.

Separation The number of frames initially allocated for each
group in a file.

Hashing Algorithm

The "hashing" technique is used to distribute items within the physical
structure of the file.

FID = BASE + [Remainder (Item-id/MODULO)]J* SEPARATION

The item-id is treated as a variable length string of binary digits;
dividing this value by the positive integer MODULO yields an unsigned
integer remainder in the range:

0 < remainder < MODULO.
This is then the group number (i.e., 0, 1, 2, up to MODULO-1) where

the item is to be stored. Multiplying by the SEPARATION and adding the
BASE yields the actual FID of the first frame in the group.

I1-6

Item Storage

After computing an FID to locate the specific group in which the item
resides, each item's item-id in the group must be compared for a match.

The frames comprising a group are linked both forward and backwards. This
Reality system facility makes the group appear to be a physically sequen-
tial string where items are stored one immediately after another. In fact,
any portion of an item may spill across a physically non-contiguous frame
boundary. An example is included on the next page.

When a file is created it is allocated a primary area of (MODULO *
SEPARATION) frames. Thus this amount of contiguous disk-space is perman-
ently allocated to the file. As the file grows, individual groups may
fill up. When this happens, an additional frame is added to the group
from a pool of available space. This frame is linked into the group to
increase the length of the logically sequential group. Additionally, if
a delete or update causes the group to shrink, any unused frames outside
the primary area are returned to the pool of available space.

Item Format—Physical

Character Count - The first four characters of an item are a hexadecimal
character character count which specifies the total number of characters
in the item, including the count field; the maximum size of an item is
32267 bytes (X'7EOB'). This character count is used to locate the
beginning of the next item within a group.

Attribute Separation - After the character count is the beginning of the
data in the item., The first datum is the Item~id identifying that item.
Following, and marking the end of the Item-id is an attribute mark (X'FE'),
which prints as "4" or "', Following the attribute mark are the attribute
values, which may be of variable length, separated by additional attribute
marks. An item is always terminated with an attribute mark.

Absense of Values - The absence of a value for an attribute is specified

by an attribute mark (to maintain the proper attribute sequence) immediately
following the attribute mark indicating the end of the previous value. The
"space'" between two adjacent attribute marks can be thought of as repre-
senting the absent value. If the last attributes within an item have no
stored values, the item terminates with the Attribute Mark following the
last value present. However, all items must terminate with an attribute
mark. The minimum Item consists of only an Item-id followed by a single
attribute mark.

Multiple Values - Between any two attribute marks (i.e. any one attribute
value) multiple values may exist. These are separated by a value mark
(X'FD') which prints as "]", in exactly the same manner an attribute mark
separates attributes.

End of Group - An attribute mark immediately following an item signifies

the end of a group. If a group is empty the first character of the group
will be an attribute mark.

I1-7

Dump of Sample File

The following "print out" was generated using the DUMP processor. It shows
a sample file with BASE=1248, MODULO=3 and SEPAR=2, The DUMP processor
assumes frames in a linked format as follows:

Byte 1 - unused

Byte 2 - number of next contiguous frames
Byte 3-6 - next linked frame

Byte 7-10 - previous linked frame

Byte 11 - number of previous contiguous frames
Byte 12 - unused

Byte 13-512 data portion

For each frame the first line shows the frame number (FID) and links fields
in the above sequence. Subsequent lines display all non-blank data. The
sample file contains one large item and all the linked frames including
those outside the primary item are dumped. Attribute marks print as the
character A.

Example of File with 3 Groups and 2 Frames/Group

BASE = 1248, MODULO = 3, SEPAR = 2.

1st group (FID 1248) has 3 icems

2nd group (FID

1250) has no items

3rd group (FID

1252) has 2 items

:DUMP G 1248@

l///,//Count field = X'002E' = 46, bytes
ink fields

;;“//tTN’///7::::——‘—‘kiffiEE’EHEQgI—L

FID : 1248 KS :"1 1249 0 0

001: 002ETTEMOALINE 17SMITH, JOHN”1234 MAIN STREET~0033
051: ITEM3"THIS IS AN ITEM WHOSE ITEM-ID IS CITEM3)"003
101: 3ITEM6"THIS IS AN ITEM WHOSE ITEM-ID IS (ITEMsiiSX

FID : 1249 LINKS : 0 0 1248 1 Group data
terminating
attribute mark.

Item—-id: ITEMO = X'4954454D30' End of first item.—
Hashing algorithm:
FID = Remainder(X'4954454D30' / 3) * 2 + 1248
=0 *% 2 4+ 1248
= 1248

I1-8

REALITY 2.0 UPDATE

No. of next contiguous
frames.

Next frame.

Previous frame.

:DUMP G 1250 \E) No. of previous
contiguous frames.

DISK 1250
Group data terminating
FID : 1250 LINKS : 1 1251 0 O attribute mark; null
001: \\\ // group since it is
at beginning of
FID : 1251 LINKS : 0 0 1250 1 group.
001

The third group has a large item (size = X'74F' = 1871) causing
the group to link out of the primary area into the overflow space.

‘DUMP G 1252 @

DISK 1252

FID : 1252 LINKS : 1 1253 0 0

001: O7LFITEM2°THIS IS AN ITEM WHOSE ITEM-ID IS (ITEM2)
051: ~“"THE PREVIOUS ATTRIBUTE IS NULL"THIS IS THE FIRST
101: VALUE OF A MULTI VALUED ATTRIBUTE]JTHIS IS THE SEC
151: OND VALUE OF A MULTI VALUED ATTRIBUTE~1234567890AB
201: CDEFGHIJUKLMNOPQRSTUVWXYZ!'"'#$%8'()*:=—_+;/["]<>2/..
251: "ATTRIBUTE VALUES MAY CONTAIN ANY COMBINATION OF L
301: EGAL CHARACTERS, AND ONLY THE NUMBER OF CHARACTERS
351: ACTUALLY IN THE VALUE WILL BE STORED. ADDITIONAL
401: Y THE VALUE MAY BE UP TO 32,760 CHARACTERS LONG."V
451: ALUE FOR ATTRIBUTE 6" VALUE FOR ATTRIBUTE 7"VALUE F

< R B K g

FID : 1253 LINKS : 0 9327 1252 1

501: OR ATTRIBUTE 8"VALUE FOR ATTRIBUTE 9°VALUE FOR ATT
551: RIBUTE 10"VALUE FOR ATTRIBUTE 11"VALUE FOR ATTRIBU
601: TE 12°"VALUE FOR ATTRIBUTE 13"VALUE FOR ATTRIBUTE 1
651: 4 VALUE FOR ATTRIBUTE 15°VALUE FOR ATTRIBUTE 16°VA
701: LUE FOR ATTRIBUTE 17"VALUE FOR ATTRIBUTE 18"VALUE
751: FOR ATTRIBUTE 19°VALUE FOR ATTRIBUTE 20°VALUE FOR
801: ATTRIBUTE 21°VALUE FOR ATTRIBUTE 22°VALUE FOR ATTR
851: IBUTE 23"VALUE FOR ATTRIBUTE 24"VALUE FOR ATTRIBUT
901: E 25°VALUE FOR ATTRIBUTE 26°VALUE FOR ATTRIBUTE 27
951: "VALUE FOR ATTRIBUTE 28°VALUE FOR ATTRIBUTE 29°VAL

o0 T n

I1-9

REALITY 2.0 UPDATE

FID : 9327 LINKS : 0 9331 1253 0

1001: UE FOR ATTRIBUTE 30°VALUE FOR ATTRIBUTE 31"VALUE F

1051: OR ATTRIBUTE 32"VALUE FOR ATTRIBUTE 33"VALUE FOR A\\\\\7
1101: TTRIBUTE 34"VALUE FOR ATTRIBUTE 35°VALUE FOR ATTRI
1151: BUTE 36"VALUE FOR ATTRIBUTE 37°VALUE FOR ATTRIBUTE
1201: 38"VALUE FOR ATTRIBUTE 39"VALUE FOR ATTRIBUTE 40~
1251: VALUE FOR ATTRIBUTE 41°VALUE FOR ATTRIBUTE 42°VALU
1301: E FOR ATTRIBUTE 43"VALUE FOR ATTRIBUTE 44"VALUE FO
1351: R ATTRIBUTE 45"VALUE FOR ATTRIBUTE 46"VALUE FOR AT
1401: TRIBUTE 47°VALUE FOR ATTRIBUTE 48"VALUE FOR ATTRIB
1451: UTE 49°VALUE FOR ATTRIBUTE 50°VALUE FOR ATTRIBUTE

End of first item.

£ 0O HHMHR OO

FID : 9331 LINKS : 0 0 9327
1501: 51°VALUE FOR ATTRIBUTE §2"VALUE FOR ATTRIBUTE 53"V
1551: ALUE FOR ATTRIBUTE 54"VALUE FOR ATTRIBUTE 55" VALUE
1601: FOR ATTRIBUTE 56"VALUE FOR ATTRIBUTE 57"VALUE FOR
1651: ATTRIBUTE 58"VALUE FOR ATTRIBUTE 59°VALUE FOR ATT
1701: RIBUTE 60"VALUE FOR ATTRIBUTE 61"VALUE FOR ATTRIBU
1751: TE 62°VALUE FOR ATTRIBUTE 63"VALUE FOR ATTRIBUTE 6
1801: 4"VALUE FOR ATTRIBUTE 65°VALUE FOR ATTRIBUTE 66"VA
1851: LUE FOR ATTRIBUTE 67°0033ITEM5"THIS IS AN ITEM WHO
1901: SE ITEM-ID IS (ITEM5)""

o 0oPYwn

Item Format - Logical

While it is important to understand the item format as described in the
Previous section, in normal system usage items are always accessed at a
more abstract or higher level. Files are identified by a File-name.
Within a File, items are referenced by an Item-id. For example, the
following statement shows an item in the file 'SAMPLE-FILE' whose item-
id is 'ITEMO'. Furthermore, this item has three attributes or lines
each with sample data.

:COPY SAMPLE-FILE ITEMO (T) (:)

ITEMO Item-id
001 LINE 1
002 SMITH, JOHN
003 1234 MAIN STREET

Utility processors like COPY and EDIT deal at the file - item - line
level. They make no logical distinction in definition between various
"lines" in an item other than their implied line numbers. ENGLISH
processors, however, add an additional dimension through the use of
the dictionary. This dictionary informs them as to the nature of

the information stored for each of the attributes. The logical item
format is identical for ENGLISH and non-ENGLISH processors as in the
case of COPY above. It is the

IT-10

responsibility of the user to ascertain the further qualifications, if
any, of the various attributes. For example, the following is a listing
of the item shown above using the ENGLISH List Processor.

:LIST SAMPLE-FILE “ITEMO” ATTRIBUTE-1 NAME ADDRESS (%)

PAGE 1 16:40 23 OCT 1973

SAMPLE-FILE ATTRIBUTE-1 NAME.....c.co.. ADDRESS......vvvunn

ITEMO LINE 1 SMITH, JOHN 1234 MAIN STREET

In this example the dictionary defines the second attribute (or line) as
'NAME'. This permits the user to reference his data symbolically, when
in fact, the actual data stored on file is the same regardless of

the Processor accessing it.

Selecting Modulo and Separation

These are general guidelines in selecting values for the modulo and
separation parameters when using the CREATE-FILE processor. The guidelines
are derived from the density versus overflow table explained in the next
section.

Modulo: is the number of groups in the file. It should be selected
with regard to the total number of items that the file is to store. For
optimal hashing (the pseudo-random technique of distributing items among
the groups), the modulo should be a prime number. As a trade-off between
saving storage space and minimizing search-time in a group, the modulo
should be such that there will be 10-20 items per group (fewer for large
items).

Therefore, m =~ [(Average expected number of items)/15]
m prime

Separation: is the size (in frames) per group. It should be selected
with regard to the average size of items that the file is to store. A
value should be selected such that 807 of the data in a group is in the
"prime" space.
Therefore, s = [(Average number of bytes per group)/(.8%500)]
where the average number of bytes per group can be computed from the
average item size, and the number of items per group. Separation should
be selected after the modulo.

II-11

EXAMPLE--

The new NEWAC file (prototype M/DICT) has about 160 items, average item
size 30 bytes. Therefore,

m = (160/15) = 10.67

Selecting m = 11 as a prime number, 160
average number of bytes per group = 11 * 30 = 436, and

s = 436/(.8%500) = 1 (500 bytes per frame)
Therefore the selected modulo = 11, separation = 1.
Other considerations include the frequency of usage of the file--relatively

"static" files can have more items per group; '"dynamic" files should have
fewer items per group.

Density Versus Overflow

The table overleaf shows the relationship between density and overflow
access, where density is the percentage of primary space used, and over-
flow access occurs when an item is partially or wholly in overflow space.

When an item is updated, it moves to the end of the group. Thus items
that are most frequenly updated occur towards the end of the group data.
This accounts for the difference in the probability figures for update and
retrieval.

II-12

REALITY 2.0 UPDATE

it of updates to
overflow area
per 1000
of updates
retrievals
from overflow
area per 1000
retrievals
of UTILIZATION
Items
per Group 10% 20% 30% 40% 50% 60% 70% 807 907 100%
1 95 181 259 330 393 451 503 551 593 632
2 132 48 65 84 104 125 147
2 18 62 122 191 264 337 408 475 537 592
- 17 30 47 66 88 112 138
3 4 23 63 121 191 269 350 430 506 577
- 10 20 34 52 74 100 128
4 1 9 34 79 143 221 208 397 485 567
- 6 13 25 42 64 90 119
5 - 4 19 53 109 185 275 371 468 560
- 3 9 19 35 56 82 <1112
6 - 1 10 36 84 156 247 349 454 554
- 2 6 14 29 49 75 106
7 - 1 6 24 65 133 223 330 442 550
- 1 5 12 25 44 69 101
8 - - 3 17 51 113 203 313 431 547
- 1 3 10 21 39 65 97
9 - - 2 12 40 97 185 297 421 544
- 1 2 8 18 36 61 93
10 - - 1 8 32 84 169 283 413 542
- - 2 6 16 33 57 90
15 - - - 2 13 48 121 238 383 536
- - - 2 8 22 44 77
20 - - - - 4 24 82 195 354 530
- - - 1 5 15 36 69
25 - - - - 1 13 57 162 330 527
- - - - 3 11 162 64
15 - . B - - 4 28 116 293 523
- ~ - ~ 1 7 23 56
50 - - - - - 1 10 72 249 519
- - - - - 3 16 48

Probability of Overflow Using Modulo Addressing

I1-13

:

wo~NOTBM LN

MODE
DB1
TCL-II
DISKFIO-II
TCL-INIT
TCL-I
TERMIO
DISKFIO-1

SYSTEM-SUBS-I
SYSTEM-SUBS-11I

WRAPUP-I
WRAPUP-II
WRAPUP-III
EDIT-I
EDIT-II
EDIT-III
EDIT-IV
DB2

DB3

DB4

DB5

DB6

GAF
PASS1
ASTAT
MACRO
GEN
ALIGN
PASS2
GETOP
ADDLAB
LOADER
MLIST
OF2

OF1
TAPEIO-I
TAPEIO-II
T-LOAD
EBCDIC
SORT
PROC-III
DUMP-TII
DUMP-I
LOGON
PROC-I
PROC-II
DLOAD
ABSL
DDUMP
ABSD

FRAME

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

I1-14

REALITY 2.0 UPDATE

MODE

LOGOFF
SYSTEM~-SUBS-III
MSG

REALITY 2.0 UPDATE

FRAME MODE FRAME MODE

99 148 CARDIO
100 149

101 150 PROC-IV
102 151 PROC-V
103 152 INPUT
104 153 TAPEIO-III
105 154

106 155

107 156

108 157

109 158

110 159

111 160 ARITH
112 161

113 162

114 163 OPNPF
115 164 PQUEUE
116 165 PFILE
117 166 PQEXT-1I
118 167 PQEXT-1I
119 168 PQEXT-III
120 169 XLOADER
121 170 COREDUMP
122 171 PQEXT-IV
123 172 WSPACES
124 173

125 174

126 175 PQEXT-V
127 176

128 177

129 178

130 179

131 DISC-DIAG 180

132 DISC-MSG 181

133 182

134 183

135 184

136 185

137 186

138 187 MSETUP
139 188 MSETUPQ
140 COPY-I 189 MSETUP1
141 COPY-II 190 MBOOT
142 COPY-III 191 MBUFFERS
143 COPY-IV 192 MMONITOR
144 DISK-CHARGES 193 MMONITORX
145 XREF 194 PIBO

146 CROSS 195 PIBl

147 SEL-RESTORE 196 MONITORY

II-15

FRAME

197
198
199
200

290

399

MODE
PCBO

MMONITORZ
MMONITORY/N2

BLOCK-LETTERS

II-16

REALITY 2.0 UPDATE

CORE-MAP

REALITY 2.0 UPDATE

This table describes the core-map of the system as it is initialized
A minimum of 16K of core is required; any
additional core in the particular hardware configuration is not

by the cold-start process:

initialized.

The "STATUS" column has one of the following entries:

X'80' -- LOCKED IN CORE; X'EF' WRITE TO DISK; X'FF' AVAILABLE.

BUFFER # ADDRESS FID(U)..(L) FID

HEX DEC HEX STAT HEX HEX DEC DESCRIPTION AND PROGRAM-NAME
00 00 0000 - - - - MONITOR PCB MBOOT

01 o1 0200 80 - - - BUFFER TABLES MBUFFERS

02 02 0400 80 - - - MONITOR OBJECT MMONITOR

03 03 0600 80 - - - MONITOR OBJECT MMONITORX

04 04 0800 80 FFFF FC PIBS, DEV. 18/19 PIBO

05 05 0AD0 80 FFFF FB PIBS, DEV. 1A/1B PIBl

06 06 0Co00 80 FFFF FA MONITOR OBJECT MMONITORY/N1
07 07 OE00 - FFFF F9 - MONITOR OBJECT MMONITORZ

- - 1000 - - - - CONFIGURATOR MSETUPO

- - 1200 - - - - LITERALS MSETUP1

- - 1400 - FFFF FA MONITOR OBJECT MMONITORY/N2
- - 1600 - - - - DISC DIAGNOSTIC DISC-DIAG
- - 1800 - - - - LITERALS DISC-MSG
08 08 1000 EF 0002 00 512 PCB, CHANNEL O PCBO

09 09 1200 EF 0000 2F 47 TFILE RESTORE ABSL

0A 10 1400 EF 0000 23 35 TAPE I/0 TAPEIO-I

0B 11 1600 EF 0000 24 36 TAPE I/0 TAPEIO-II

oc 12 1800 80 0000 04 4 INITIALIZATION TCL-INIT

0D 13 1A00 80 0000 06 6 TERMINAL I/0 TERMIO

OE 14 1C00 80 0000 07 7 FILE 1/0 DISKFIO-I

OF 15 1E00 80 0000 08 8 SYSTEM SUBS SYSTEM-SUBS-1
10 16 2000 EF 0000 01 1 DEBUGGER DB1

11 17 2200 EF 0000 02 2 TCL TCL-II

12 18 2400 EF 0000 03 3 FILE I/0 DISKFIO-II
13 19 2600 EF 0000 05 5 TCL TCL-I

14 20 2800 EF 0000 09 9 SYSTEM SUBS SYSTEM-SUBS~IT
15 21 2A00 EF 0000 0A 10 WRAPUP PROCESSOR WRAPUP-I

16 22 2C00 80 0000 OB 11 WRAPUP PROCESSOR WRAPUP-II
17 23 2E00 EF 0000 OC 12 WRAPUP PROCESSOR WRAPUP-III
18 24 3000 EF 0000 11 17 DEBUG PROCESSOR DB2

19 25 3200 EF 0000 12 18 DEBUG PROCESSOR DB3

1A 26 3400 EF 0000 13 19 DEBUG PROCESSOR DB4

1B 27 3600 EF 0000 14 20 DEBUG PROCESSOR DB5

1c 28 3800 EF 0000 15 21 DEBUG PROCESSOR DB6

1D 29 3A00 FF 0000 - ~ AVAILABLE

1E 30 3C00 FF 0000 - - AVAILABLE

1F 31 3E00 FF 0000 - - AVAILABLE

I1-17

REALITY 2.0 UPDATE

The first three buffers are not accessed by the firmware in the virtual
mode of operation; thus there is absolute memory protection of core
locations 0-X'07FF'. The status fields for these buffers must be set
to X'80' (core-locked). There are two buffers containing the PIB's
(process identification blocks) that follow the above; their status
must also be set to X'80'. Buffers 6 and 7 have additional monitor
object code, and must be locked in core. The dummy FID's assigned to
buffers 4, 5, 6 and 7 allow software to access these buffers, but
provide some measure of access protection.

I1-18

11

13

17

19

23

29

31

37

41

43

47

53

59

61

67

71

79

83

89

97

101

103

107

109

113

127

131

137

139

149

151

157

163

167

173

179

181

191

193

197

199

TABLE OF PRIME NUMBERS LESS THAN 1000

211
223
227
229
233
239
241
251
257
263
269
271
277
281
283

293

307

311

313

317

331

337

347

349

353

359

367

373

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

491

499

503

509

521

523

541

547

557

563

569

571

577

587

593

599

II-19

601
607
613
617
619
631
641
643
647
653
659
661
673
677
683

691

701

709

719

727

733

739

743

751

757

761

769

773

787

797

809

811

821

823

827

829

839

853

857

859

863

877

881

883

887

907

911

919

929

937

941

947

953

967

971

977

983

991

997

SECTION III

DICTIONARIES

INTRODUCT ION

Dictionaries define and describe data within their associated file. Dic-
tionaries exist at several levels within the Reality system; the highest
level dictionary is called the System Dictionary (SYSTEM). This dictionary
1s used for system control, and contains only a pointer to the Accounting
file and the names of users who may logon to the Reality system. The next
level dictionary is called the Master Dictionary (M/DICT); each user's
account has a Master Dictionary associated with it. The Master Dictionary
points to (or defines) lower level dictionaries within the user's account.

File Structure

The term "file" as used in the context of the Reality system, refers to a
mechanism for maintaining a set of like items logically together. The

data in a file is normally accessed via the dictionary associated with it.
Since the dictionary is itself a file, the mechanism for accessing items in
a dictionary is identical to that for a file.

At the user M/DICT level, a file-definition item (the file name) is a pointer
to the dictionary. The dictionary may contain pointers to one or more lower-
level data files; thus a two-level stiucture 1s usually implied by a file
definition item at the M/DICT level. A special item in a dictionary, whose
item-id is DL/ID, serves as the file pointer to the data.

If there is no data section corresponding to the dictionary entry in the
M/DICT, the DL/ID item may be absent in the dictionary, or it may be present
and may point to the dictionary itself; in the latter case the 'data" sec-
tion overlays the dictionary.

User M/DICT

(FILE‘NAME)——7 This diagram shows the two-stage rela-

tionship of the file-name in the master
dictionary to the data section. The
User Dictionary file-name is a file-definition item
(see next section) that points to the
dictionary; one of the items in the
(Dictionary definitions) dictionary is the DL/ID, which again is
a file-definition item that points to
(DL/ID)'_7 the data section of the file. Items

at each level thus serve to define the

structure at the next lower level: the
Data SectionJ/ M/DICT describes the user-dictionaries,
and each user-dictionary describes its
(Data Items) corresponding data section.

III-1

Dictionary Inter-relationships

The table on the next page describes the four-~level file structure, and
dictionary inter-relationships of the Reality system. In addition to the
required system dictionaries and data-files, one user account is shown for
illustration.

The boxes represent the dictionaries "containing" items; shown are file-
definition and file synonym definition items (defined in the next two
sections). The full lines from items to boxes represent the '"file pointer"
nature of file-definition items; the dashed lines represent the linkage
between file synonym definitions and their equivalent files.

DICTIONARY ITEM DEFINITIONS

File Definition Items

Each item in a dictionary is classified according to a single character
dictionary code (D/CODE) in attribute one of the item. A file-definition
item has a D/CODE of "D", and is a pointer to the actual physical location
of the file in the virtual (disc) memory. File-definition items are set up
during the system File-restore process, and by the CREATE-FILE processor.
Values in these items that define the physical file extents should not be
altered by the user. There may be more than one file-defining item in a
dictionary that points to the same file; but there should not be any such
items in other dictionaries that point to the same file-~these should be
file synonym definitions (see below). If duplicate "D" items exist in other
dictionaries, duplicate copies of the file will result on a filesave and
restore.

Attributes two through four define the physical extents of the file:

Attribute two: Contains the BASE FID of the file.
Attribute three: Contains the MODULO of the file.
Attribute four: Contains the SEPARATION of the file.

The values for BASE, MODULO and SEPARATION are stored as decimal numerics;
the meaning of these fields is described under Data Structures.

Attributes 5 through 12 of a file~definition item are identical to those
described for attribute definition items (see later).

Attribute 13 is an optional Reallocation specification, which allows the
reallocation of the physical extents of a file during a system File-restore
process. This is the only way in which the physical extents of a file can
be altered. The format of this specification is as follows:

(m,s) Where "m" and "s" are decimal numerics specifying the new
modulo and new separation parameters of the file. Restric-
tions on the values of '"m" and "s'" are as follows:

0O <m
0 < s < 128

ITI-2

€-II1

Dictionary Inter-relationships in the Reality System.

System Dictionary (SYSTEM)

e sesso.Minimum system,>4.‘.....additional user acCountsS ceeeecccecccecomm

Level 0
N\ <N\ !
\(SYSTEM) \ (DL/1D) | (USER-1) (USER-2) — (USER-3)
- — — -{ — — —(ACCOUNT) (SYSPROG) : ,'
\ (ACC) | / -
\ A | /

Accounting history

dictionary

System Prégrammefﬁq\

<\

\

User~1 j
\
Y\ < N\

/
Y >\ T\

\ N1/pict) (oL/10)/ /)| (ERRMSG) N\@/DICT) (oL/10)/” \MD) \(PROC)
! (SYSTEM)” - |/
Level 1\ | (DL/ID) < 1-(ACC) om/prcty |
\ (USER-FILE-1) (USER-FILE-2) (USER—FILE-3)-——7
\ -(ERRMSG) _ (NEWAC)—| / ,
\
i\ \ L / / /
\ System messages Prototype M/DICT /~ Dictionary of Dictionary of Dictionary of
\ /,—" user-file-1 user~file- user-file~
\ AN #"/ N
Level 2 | Accounting (DL/ID)> (DL/1ID) (DL/ID
History 7
Data ofgaser-file-l
(no data section)
Level 3

Entries in parentheses represent file-definition items in the appropriate master-dictionary or

dictionary.
the former has a DL/ID pointing to the dictionary.

in the M/DICT of USER-1, are file synonym definitions.

Note that USER-FILE-2 and USER-FILE-3 both have no data sectors defined, but that
The entry USER~2 in the SYSTEM, and ERRMSG

File Synonym Definition Items

A file synonym definition item is distinguished by its having a D/CODE of
"Q", and it allows access to files in another user's account. Attribute two
of a file synonym definition item contains the name of the account in which
the actual file definition is to be found (the account name is an entry

in the System Dictionary, SYSTEM); attribute three contains the file-
definition item~id to which the synonym equates. If this attribute is

null, it is implied that the synonym file is the user's M/DICT. Examples
are shown below:

SYSTEM
(USER-1) ,(USER—?‘/ /V(USER—:B)\
b < — -
M/DICT 1 ~ M/DiCT 2 M/DICT 3
yd]
(SYNONYM-1) PR
- /
Line 1 Q P / -
Line 2 USER-27
Line 3 FILEX. / (FILEX)
N / 7
~N / -
(SYNONYM-2)[N, -
\ -
Line 1 Q PN
Line 2 USER-3-"| _ — X
Line 3 - T \\\

The entry SYNONYM-1 in user-1's M/DICT is equivalent to the file-definition
item FILEX in user-2's M/DICT; the entry SYNONYM-2 is equivalent to user-3's
M/DICT itself, since it has a null value in attribute 3.

Attributes four through twelve are as defined under Attribute Definition
Items (see below).

Attribute Definition Items

These items define the meaning of the various attributes, or fields, in the
data items. Each attribute definition item has a value, called the attri-
bute mark count (AMC), which acts as a pointer to the data field defined
by it. The AMC indicates the number of attribute marks which precede the
value(s) for the attribute being defined by the item. Recalling that the

ITI-4

physical item format consists of the count field immediately followed by
the item-id field, followed by an attribute mark, and then the attribute
values, each delimited by another attribute mark, it will be seen that the
item—id itself may be referenced as having an AMC = 0, the first attribute
as having an AMC = 1, and so on:

xxxx item-id A value for A value for A ... %

_//ﬂ /f attri}ute-l attr?}ute—Z
count AMC=0 AMC=1 AMC=2

field

An attribute-defining item in the dictionary has a D/CODE of "A"; attribute
two contains the decimal AMC value described above; attributes three and
four are not defined for these items.

The values for attributes five through twelve are as follows; values are
optional except where specified:

Attribute 5: Retrieval security lock; used to restrict
the retrieval access to this attribute.

Attribute 6: Update security lock; used to restrict
the update access to this attribute. These
two fields are described in the section
under Security.

Attribute 7: Conversion specification; used to perform
table look-ups, masking functions, etc.
Described under Conversion.

Attribute 8: Correlative specification; used to describe
inter-file, and intra-file data relationships.
Described under Correlatives.

Attribute 9: Type and Justification; describes the type
(alphabetic or numeric), and justification
(left or right) for output. A value is man-
datory, and may be one of the following:

L Left justified, no specified type.
LA Left justified, alphabetic.
LN Left justified, numeric.
R Right justified, no specific type.
RA Right justified, alphabetic.
RN Right justified, numeric.
Attribute 10: Maximum length; describes the maximum length of

values for the attribute; an entry is a decimal
numeric, and is mandatory.

III-5

Attribute 11: Minimum length; describes the minimum length
of input values acceptable on updates to
this attribute.

Attribute 12: Pattern edit; describes a pattern editing mask

that input values must check against, on updates
to this attribute.

Attribute Synonym Definition Items

These items have specific meaning to the ENGLISH processors; they'are more
fully described in those sections. A synonym definition has a D/CODE of
either an "S" or an "X"; attribute two is not used, but normally contains
the AMC value of the attribute being defined (mainly to allow sorting by
AMC of items in a dictionary). Attribute three contains a "synonym name",
a value which lists as a header on ENGLISH LIST or SORT statements;
attribute four contains the AMC. Attributes five through twelve are as
described above for attribute definition items.

DICTIONARIES

The System Dictionary (SYSTEM)

There is one and only one SYSTEM Dictionary for each Reality system. Other
than a pointer to the Accounting file, the SYSTEM should contain only '"D"
code items, representing user accounts. The LOGON processors use these
D" code items to verify users attempting to logon to the system. Only
one "D" code item should be present for each account; if more than one
user-name is to be established for the same user-account, the additional
names should be file synonym definition ("Q" type) items. The meaning of
attributes five through eight is different for both "Q" and "D" Code
entries in the SYSTEM; these are described under LOGON/LOGOFF. Entries in
this dictionary also completely control the file-save process, whereby

the data base is saved on a secondary storage medium.

The Master Dictionary (M/DICT)

There is one M/DICT for each account. The M/DICT, like any other file or
dictionary, is made of up items. Some of these items define the attribute
format for all dictionaries (D/CODE = "A") and their formats are identical
to those for file-dictionaries. The file defining items (D/CODE = '"D")
point to (or define) the various dictionaries defined for the account.

In addition to those elements in the M/DICT identical to a file dictiomnary,
there are entries which define VERBS, PROCS and various ENGLISH language
elements (connectives and BATCH STRINGS). Each of these entries has a
coding structure which uniquely identifies it. Please refer to the chapters
on TCL, PROC and ENGLISH language for their respective definitions.

III-6

All names used as item-id's in the M/DICT must be unique not only within
the M/DICT, but also among all file dictionaries.

INITIAL SYSTEM FILES

Certain files are essential to the operation and maintenance of the
Reality System. These files are described below.

The Account File

This file contains the accounting history for the system, as well as the
entries that describe currently active (logged-on) users. The formats of
these entries are described under the LOGON/LOGOFF section. The Accounting
file should be cleared periodically to prevent overflow of the file (refer
to LOGON/LOGOFF).

The SYSPROG Account

The SYSPROG (System Programmer) account is the only account needed to
maintain the Reality System. The system message file (ERRMSG) and the
prototype M/DICT (NEWAC) are defined from this account; the former is
accessed by all users of Reality to obtain error and informative messages,
while the latter is used to create new user M/DICT's.

Also contained in the SYSPROG account are the system-level PROC's which
perform the File-save and File-restore functions, the initialization of the
accounting file on a cold-start, etc. For this reason, the following two
file synonym definition items must be present in the SYSPROG M/DICT.
MM/DICT synonym to the SYSTEM dictionary.
ACC : synonym to the accounting history file.

See System Maintenance for a full description of entries in this account.

The ERRMSG File

This dictionary defined from the SYSPROG account, contains the system mes-
sages. It is mandatory that every user account have a "Q" type entry called
ERRMSG which points to the ERRMSG file in the SYSPROG account. (This is
accomplished by the CREATE-ACCOUNT PROC.)

Entries in the ERRMSG file are listed in the System Messages section; they
consist of both error messages as well as informative messages.

The NEWAC File

This dictionary is defined from the SYSPROG account, and is a prototype
M/DICT that is used as a model from which a new user's M/DICT is created.

I11-7

It contains the standard set of VERBS, PROCS, and ENGLISH language elements.
Entries are listed in the System Maintenance section.

Summary of Dictionary Item Definitions

Synonym to Synonym to
Attribute M/DICT File a File- Attribute Attribute
_Number = _Name Definition Definition Definition Definition
1 D/CODE D Q A S or X
2 F/BASE Base FID Account- AMC [AamMC]
or of file name
A/AMC
3 F/MOD Modulo of Synonym Not used Synonym
or file file-name name
S/NAME
4 F/SEP Separation Not used Not used AMC
or of file
S/AMC
5 L/RET - - Retrieval lock code(s) = - - = - = = = = = =
6 L/UPD - - Update lock code(s) - = = = = = = = = = = = -
7 V/CONV - - Conversion specification(s) - - - - = - - - -
8 V/CORR - - Correlative specification(s) = - - = = = = =
9 V/TYPE - - Justification & type-code - - - - - - - - -
10 V/MAX - - Maximum field length - - - - - = - = = = - -
11 V/MIN - - Minimum field length - - - - - - - - - - - -
12 V/EDIT - - Pattern edit for updating values - - - - - -
13 F/REALLOC Reallocation - - - - - Not Used @ - - - - -

Specification

ITI-8

EXAMPLES~--

:COPY DICT M/DICT M/DICT MURTHI PREMIUM 16 (P) (¥

001
002
003
0oL
005
006
007
008
009
010
011
012
013

001
002
003
ook
005
006
007
008
009
010
011

001
002
003
00k
005
006
007
008
009
010
011

001
002
003
00k
005
006
007
008
009
010

M/DICT

D

14933

13

1

/;P123
UPDATE*LOCK !

L
13
1

(11,1

MURTHI

Q
CHANDRASHEKAR

L
8
1

PREMIUM
A
99

16
S
16
AGENCY NAME....
16

TAGENT-NO;V; ;2

LA
4

III-9

Item—-id (file-name).

D/CODE = '"D"; File Definition Item.
Base FID of file.

Modulo of file.

Separation of file.

File access protect code; retrieval
Update lock-code. lock=-code
Conversion (null).

Correlatives (null).

Left justified dictionary items.
Maximum field length.

Minimum field length.

Pattern edit mask (null).
Reallocation parameters.

Item~id (file-name).

File Synonym Definition Item.
User name in MM/DICT.

Null file-name; therefore M/DICT.

Item-id (attribute name).
Attribute Definition Item.
Attribute Mark Count (99-th. field).

Conversion specification.
Correlative specification.
Right justified field.

Item-id (attribute synonym).
Attribute Synonym Definition Item.
For sorting purposes only.
Synonym name (header name),
Attribute Mark Count.

Conversion specification,

Left justified; alphabetic field.

0T-I11

:SORT DICT AGENCY-NO D/CODE A/AMC S/NAME S/AMC V/CONV V/CORR V/TYPE V/MAX V/MIN V/EDIT F/REALLOC BY
D/CODE BY A/AMC DBL-SPC (:)

AGENCY-NO. D/CODE.. A/AMC S/NAME.......... S/AMC V/CONV........ V/CORR.... V/TYPE V/MAX V/MIN V/EDIT F/REALLOC

RATE A 01 MDL4 R 7 7
DESC A 02 L 50 1
DESCRIPTIONA 02 L 50 L
TAX A 03 MD23 R 9 1
DL/ID D 03259 0001 020 L b L
1 S 01 RATE 1 MD4L L 7 7
2 S 02 DESCRIPTION 2 L 50 L
3 S 03 TAX 3 MD2 3 R 11 1

The above is a listing of the AGENCY-NO dictionary; the fields L/RET and L/UPD have been suppressed.
Note that the Attribute Definition Items 'DESC' and 'DESCRIPTION' reference the same field (both
have an A/AMC of two); thus they can be said to be "synonyms" to each other. Though the items DESC
and DESCRIPTION are identical, they may have different entries under, say, the V/MAX for formatting
or other purposes; there is no restriction on the number of such synonyms in the dictionary. The
values under the columns A/AMC, S/NAME and S/AMC for the File Definition Item 'DL/ID', are actually
the values of the base FID, modulo and separation of the data-file referenced by this dictionary.
Leading zeroes in numeric fields are not necessary; they are present mainly for formatting purposes.

SECTION IV

TERMINAL CONTROL LANGUAGE

INTRODUCTION

The Terminal Control Language (TCL) 1s the primary interface between the
terminal user and the various Reality processors. Most processors are
evoked directly from TCL by a single statement, and return to TCL after
completion of processing. Some processors, the EDITOR for example, retain
control of the terminal until explicitly exited, at which point they return
control to TCL. TCL prompis the user by typing a colon(:). This is
referred to as the "TCL prompt character'. Statements are constructed by
typing a character at a time from the terminal until the "CARRIAGE-RETURN"
or "LINE-FEED" key is depressed. At that time the entire line is

processed by TCL,

EXAMPLE--

:COUNT EVERY ITEM IN THE ACCOUNT FILE C)

Input Statements

TCL works on one statement at a time. A statement may be comprised of
multiple lines. However this statement must begin with a verb and may
contain only one verb per statement. Reality operates in the full-duplex
mode of communication with each user's terminal. Full-duplex means that
data is being transmitted in both directions simultaneously between the
terminal and the computer. Additionally, Reality operates in what is

known as an "Echo-Plex'" environment. This means that each data character
input by the terminal is echoed back to the terminal by the computer. The
user is assured therefore that the data character displayed on the terminal
is identical to the data character stored by the computer. TCL passes only
complete input lines to be processed by the software. The user fully
composes his input statement with no action being taken until TCL detects
either a Carriage-Return or a Line-Feed. If no Carriage-Return (or Line-
Feed) 1s detected data characters will be assembled into a statement in

the user's input buffer up to 140 characters at which time TCL will auto-
matically generate a Carriage-Return. In addition to the standard

ASCII (96) character set recognized by TCL, special operations are per-
formed when control characters are detected. The control characters listed
below perform editing functions; all other control characters are deleted
from the input line that is passed to lower level processors, but remain in
the original input line.

IV-1

OVERALL VIEW OF SYSTEM SOFTWARE TINKAGE

PROC
PROCESSOR
TCL
PROCESSOR
TCL VERBS A

TIME, DUMP, ETC.

v

TCL
PROCESSOR

ENGLISH VERBS
LIST, SORT, ETC.

e

ENGLISH
PRE-PROCESSOR

'

ENGLISH
SELECTION
PROCESSOR

¢

ENGLISH
PROCESSORS

) 4

OFF
VERB

FROM

COLD-START

LOGOFF
PROCESSOR

1

v

PROCESS
INITIALIZATION

l
|
|
—

f

v

LOGON
PROCESSOR

LOGON
TCL-Il VERBS
EDIT, COPY, ETC.
FROM ANY OFF
TCL- PROCESSOR
PROCESSOR DEBUG
PROCESSOR
< 30
END
TCL-
PROCESSORS

h 4

WRAPUP PROCESSOR

IV-2

REALITY 2.0 UPDATE

Control Character Function

Carriage Return Terminates the input statement and

or Line Feed initiates processing.

Backspace (Control H) Deletes the last character typed from

the input buffer.

Cancel (Control X) Deletes the entire line currently being
typed from the input buffer.

Retype (Control R) Causes the entire line currently being
built in the input buffer to be retyped.

Continuation Permits continuation to a second input

(Control~-Shift 0) line; must be immediately followed by

a carriage return or line feed.
Note: The continuation character is only effective from TCL; all

other characters may be used at any time for any processor
requesting input.

TCL Processing

The TCL expects the first parameter of a statement to be a verb. There
are three types of verbs in Reality:

° ENGLISH verbs

e TCL-II verbs

® TCL-I verbs
A summary of standard Reality verbs is provided below. One of the
powerful features of Reality is the ability to customize the vocabulary
for each user. Since verbs reside in the individual user's Master
Dictionary (M/DICT) the vocabulary may be added to or deleted from

without affecting the other users. (In addition to adding or deleting
verbs, an unlimited number of synonyms may be created for each verb.)

Iv-3

REALITY 2.0 UPDATE

Verb Type Function

ADDD TCL-I Add decimal.

ADDX TCL-I Add Hexadecimal.

AS TCL~-II Assembles source code.

ASSIGN TCL-I Assign print spooler device.

B/ADD TCL~II File update via batch-string.

B/DEL TCL-II File delete via batch-string.

BLOCK~-PRINT TCL~-I Send block characters to spooler.

BLOCK-TERM TCL-I Print block characters on terminal.

C-READ TCL-1I Read cards and append them to an existing file
item.

CLEAR-FILE TCL-I Remove all file items from a file or
dictiomnary.

COPY TCL-I11 Copy data files and dictionaries.

COREDUMP TCL-I Produce formatted output from a binary dump
of core.

COUNT ENGLISH Count occurrences of file items.

CREATE-FILE TCL-I Create a new file.

CROSS-INDEX TCL-II Create a cross index of assembly language
programs.

DELETE-FILE TCL~-I1 Delete an entire file.

DIVD TCL-I Divide decimal.

DIVX TCL-I Divide Hexadecimal.

DTX TCL-I Convert from decimal to hexadecimal.

DUMP TCL-1 Dump virtual frames to terminal.

EBTPRD TCL-11 Read records from tape into file items.

ED TCL-1I Same as EDIT.

EDIT TCL~1I Evoke the editor processor.

EJECT TCL-I Eject line printer pages.

IV-4

REALITY 2.0 UPDATE

Verb Type Function

FORM TCL-I Set form alignment for print spooler.

GROUP TCL-II Provide file usage statistics on groups.

I-DUMP ENGLISH Dump to terminal in T-DUMP format.

ISTAT ENGLISH Histogram file hashing.

ITEM TCL-II Provide usage statistics on file items.

KILL TCL-I Abort current spooler output.

LIST ENGLISH Print selective report output.

MESSAGE TCL-I Inter-user communication.

MLIST TCL-II List assembly source code.

MLOAD TCL-II Load assembly object code.

MSG TCL-1 Same as MESSAGE.

MULD TCL-I Multiply decimal.

MULX TCL-I Multiply hexadecimal.

MVERIFY TCL-II Verify assembled program against loaded
program.

OFF TCL-I Terminate session-logoff the system.

P TCL-I Inhibit printing at terminal.

P-ATT TCL-I Attach line printer.

P-ATT-KILL TCL-I Unconditionally detach line printer from any
line.

P-DET TCL-I Detach line printer.

P-STAT TCL-I Print line printer status.

POVF TCL-I Print overflow parameters.

PRINT-HOLD TCL-I Send hold file to line printer.

PRINT-QUE TCL-I Print hold file queues.

SEL-RESTORE TCL-II Selective restore from save tape.

SELECT ENGLISH Select file items for subsequent command.

IvV-5-1

REALITY 2.0 UPDATE

Verb " Type Function

SORT ENGLISH Print ordered report output.

SSELECT ENGLISH Select and sort file items for subsequent
command .

STAT ENGLISH Print attribute statistics.

SUBD TCL~-I Subtract decimal.

SUBX TCL-I Subtract Hexadecimal.

SUM ENGLISH Total attribute values.

T-ATT TCL-1 Attach magnetic tape unit.

T-BCK TCL-I Backspace tape.

T-DET TCL~-I Detach magnetic tape unit.

T-DUMP ENGLISH Dump file items to tape.

T-FWD TCL-I Forward-space tape.

T-RDLBL TCL-I Read tape Label.

T-LOAD TCL-II Load file items from tape.

T-READ TCL-I Read one record from tape.

T-REW TCL~-1 Rewind magnetic tape.

T-WEQF TCL-I Write EOF on tape.

TERM TCL-I Set terminal characteristics.

TIME TCL-I Print time and date.

WHO TCL-I Print the line number and account name to
which the terminal is logged on.

X-REF TCL-I Create a cross-reference of assembly programs.

XTD TCL-I Convert from hexadecimal to decimal.

IV-5-2

REALITY 2.0 UPDATE

TCL Statement Parsing

TCL copies characters from the terminal into a second buffer performing
the following processing:

° The first word is assumed as the VERB and looked-up in the
user's Master Dictionary (M/DICT), but not copied.

® Redundant blanks surrounding all words in the statement are
deleted.

® Character strings surrounded by single or double quotes (' ')
are identified and copied verbatim, including redundant
blanks.

Statement Formats

All statements processed by TCL must begin with a verb. The syntax of
the statement is dependent on the type of verb used.

ENGLISH Verbs

Statements are free-form and may use any combination of conditional
constraints such as relational and Boolean operators. The form is:

Verb file-name item-list selection-criteria output-specification
In ENGLISH the words after the verb may be arranged in any sequence

that makes sense to the user. (See ENGLISH section for further
details.)

TCL-II Verbs

Statements are more restricted. Selection-criteria and output-
specification are not allowed by TCL-II verbs. The file name (or DICT
file-name) must immediately follow the verb. Item selection is
restricted, since each item-id must be uniquely named in the state-
ment, or, alternately all items may be specified (by use of the
asterisk*). The advantage gained by this restricted format is an
-enhancement in processing speed since statement parsing is quicker.

TCL-II verbs use the following formats:
verb file-name item-list (option parameter string)

verb DICT file-name item-list (option parameter string)

Iv-6-1

REALITY 2.0 UPDATE

Item-list format: The item-list is made up of one or more
item-ids, separated by one or more blanks. If an item-id
contains embedded blanks or parentheses it must be surrounded
by single quotes. All items in a file may be specified by
using an asterisk (*) as the item-list.

IV-6-2

Option-string format: The option parameter string is enclosed in
parentheses. This string is passed to the TCL-II processor and
its contents are a function of the particular verb.

Option parameters are either single characters, A through Z, or
the numeric option n-m; multiple options are separated by commas.

Interaction of TCL-II Verbs with the SELECT Verb

The full ENGLISH selection criteria may be used in conjunction with TCL-II
verbs. This may be done by using the "SELECT" verb to select items from a
file (refer to ENGLISH section); when the message indicating the number of
items selected is returned, the TCL-II statement may be entered, omitting

the item-list. The previously selected list of items will then be used by
the TCL-II verb. This capability permits, for instance, selective editing
or copying of a file.

EXAMPLE-~-

*SELECT SYSTEM-MODES WITH CLASS = '""*SYSTEM MODE" (:)

18 ITEMS SELECTED.
:MLIST SYSTEM-MODES (P,M) (T) (Note item-list missing)

TCL~1 Verbs

Verbs which have a code of other than "2" or "35" in line two of their
M/DICT entry are known simply as TCL-I verbs. When TCL identifies a verb
it exits immediately to the entry point specified in line two of the verb
defining item.

Interrupting Processing

The CPU processing can be interrupted at any time by depressing the BREAK
key on the terminal (INT on <ome terminals). This causes an interrupt in
the current processing, and an entry to the DEBUG state. This entry is
signalled by the message "I x.d" where "x" and ''d" describe the location

of the point of interruption (refer to DEBUG documentation for details); and
input is then requested by the DEBUG prompt character, the exclamation
point (!).

For users with system privileges level zero and one, the following are the
only DEBUG facilities available.

Iv-7

OFF

Print on/Print Off;

Each entry of P switches from print suppression to print
non-suppression and back; the message OFF is returned if output
is now suppressed; ON if it is now resumed. Useful to limit
output at the terminal., (Also refer to P verb in TCL).

Go; causes resumption of process execution from the point of
interruption.

Note: G cannot be used 1f a process ABORT condition caused the
entry to DEBUG,

Terminates current process and causes an immediate return to TCL.

Terminates current process and causes the user to be logged off
the system,

Note that depressing the BREAK key when in the terminal input or in the
output mode will cause a loss of up to 16 characters., If in the input

mode, the retype-line character (control-R) should be used to check the loss
of data after returning from DEBUG via the G command,

‘LIST SYSTEM-MODES FRAME HDR~-SUPP C) ENGLISH LIST - statement.

SYSTEM-MODES..veees.. FRAME,........ Listing output from system

WSPACES FRAME 172

EDIT-I FRAME 013

PQUEUE/ 1200 FRAME 164

WRAPUP-T11 BREAK key depressed

I 6.1A3 Interrupt message

'P OFF Turn Print off

G 8 Go (resume execution without
printing) BREAK key pressed

1 3.FB BREAK key pressed

p ON Turn Print back on

G Go

DB3 FRAME 018

DBL FRAME 019

TAPEIO-II FRAME 036 BREAK key pressed

DB5 Terminate execution

1 6.137

'END g]

Back to TCL

Processing Aborts

On encountering one of the hardware abnormal conditions, the system will
trap to the DEBUG state with a message indicating the nature and location
of the abort. If the user has system privileges, level zero or one, he
must type END or OFF to exit from the DEBUG state. The hardware abnormal
conditions are described in the section DEBUG.

TCL Verb Definition

All verbs are defined as an item in the M/DICT. These items have as their
item-1d the name of the verb. The second attribute in the item defines the
processor entry point to which TCL passes control. The attributes used and
their meanings are given below.

Attribute Description
0 item-id (verb name)
1 "pe" where "P'" identifies the M/DICT item as a verb.

re_n

The single character '"c" is passed to the defined
processor. (Note: if ¢ = "Q" the item is a PROC
and not a verb)

2 Transfer control prngram identification (mode-id or
address)
2 = TCL-II verb
35 = ENGLISH verb
XXXX = TCL verb

3 Secondary transfer point (address)
4 (Tertiary transfer point (address)
5 TCL-II parameter string. These parameters govern

treatment of the items retrieval by TCL-II to be
passed to the processor whose entry point is defined
in attribute three. Parameter meanings are:

C-copy item to a work area

P-print item-id if item string = "*" (all items)

U~items will be updated by processor

N-okay if item is not on file

Z-final entry required on eof

F-pick up file parameters only (ignore item-list)

Iv-9

EXAMPLES—-—

ENGLISH Verb

LIST
001 PA
002 35
003 4D

TCL-ITI Verb

MLIST
001 PY
002 2
003 20
oo4
005 CP

TCL Verb
TIME

001 PZ
002 3033

Iv-10

REALITY 2.0 UPDATE

Section V

STORED PROCEDURES (PROC)

INTRODUCTION

An integral part of the Reality Computer System is an ability to
define stored procedures called PROCs. A PROC provides the applica-
tions programmer a means to catalog a highly complex sequence of
operations which can be evoked from the terminal by a one word
command. Any operation that can be executed by the Terminal Control
Language (TCL) can be performed in a PROC. This usage of a PROC is
quite similar to the use of a Job-Control-Language (JCL) in some
large-scale computer systems. The PROC language in Reality is more
powerful however since it has 'conditional' capabilities and can be
used to inter-actively prompt the terminal user. A PROC can test

and verify input data as they are entered from the terminal keyboard.
These input data are stored in a stack which is ultimately passed to
some other processor such as the EDITOR or the BATCH-STRING processor.

A PROC is stored as an item in a dictionary or data file. The first
attribute value (first line) of a PROC is always the literal PQ. This
specifies to the system that what follows is to be executed by the PROC
processor. All subsequent attribute values contain PROC statements
that serve to generate TCL commands or insert parameters into the stack
for the interactive processors. PROC statements consist of an optional
numeric label, a one or two character command and optional command
arguments. PROC statements are executed interpretively by the PROC
processor.

PROC Execution

A PROC stored as an item in the user's Master Dictionary (M/DICT) is
executed or evoked in the TCL environment by typing: the item-id of
the PROC, any optional parameters and a carriage return.

REALITY 2.0 UPDATE

CHANNEL PCB-FID NAME...... DATE....... TIME..
THREE 0260 KARDEX 14 FEB 1974 12:38
ELEVEN 0360 EARL 14 FEB 1974 14:01
TWO 0240 EARL 14 FEB 1974 14:02
ZERO 0200 SYSPROG 14 FEB 1974 14:15

PROCs also have the ability to pass arguments to the TCL level process.

EXAMPLE~--

:LISTDICTS POLICY (:)

POLICY. . .veurenennsn D/CODE.. A/AMC V/CORR.... V/CONV......... V/TYP V/MAX
AUDIT-PERIOD A 01 L 4
POLICY-PERIOD-FROM A 02 D L 10
POLICY-PERIOD-TO A 03 D L 11
EXPIRES A 03 D L 12

Where "LISTDICTS" is the name of a PROC and "POLICY" is the argument.

PROCs can be used to interactively prompt data entry and to verify the
format of the data.

EXAMPLE--

: ENTER-DATA @

PART-NUMBER ?

3215-19! :!

TRANS ISTOR @

FIFTY (x)

ERROR-NUMERIC DATA ONLY!!

50 (¥)
®

DESCRIPTION ?

QUANTITY ?

QUANTITY ?

BIN-LOCATION ?

REALITY 2.0 UPDATE

In the previous example the input data is stored in a stack which will
be passed to the BATCH-STRING processor to update the file.

Once a PROC is evoked, it remains in control until it is exited. When
the PROC temporarily relinquishes control to a processor such as the
EDITOR or a user supplied subroutine, it functionally remains in control
since an exit from the called processor returns control to the PROC.

TCL only regains control when the PROC is exited explicitly, or when

all of the lines in the PROC have been exhausted.

PROC Link Command

One PROC can evoke another PROC with the PROC link command. Control is
passed to the first statement of the requested PROC, which may be in
any dictionary or data file. This allows the storage of PROC (except
the LOGON PROC) outside the M/DICT. Also, large PROCs can be broken
into smaller PROCs to minimize processing time.

The format of the PROC link command is:

([DICT] filename [item~id])
where the filename and item-id indicate the PROC to be evoked. If the
item-id is null, the item-id is taken from the current position of the
current input buffer.

EXAMPLE--

Assume that the PROC 'LISTU' has been moved to a file called PROCLIB;
then the LISTU PROC in each user's M/DICT can be:

LISTU

001 PQ
002 (DICT PROCLIB LISTU)

and 'LISTU' in the file PROCLIB is exactly as it used to be originally
in the M/DICT.

EXAMPLE--

Assume that a PROC called 'EXECUTE' will be used to execute any one of
a series of PROCs in a file called PF, as specified by the user typing
in a single-character alphabetic code:

EXECUTE

001 PQ
002 OPLEASE INPUT CODE +
003 IN?

004 IF A = (1A (PF)
005 XILLEGAL RESPONSE.

V-3-1

REALITY 2.0 UPDATE

If for example, the user's response to line 3 is "D", Line 4 will
transfer control to the item 'D' in the file PF.

All input and output buffers remain unchanged when the linkage takes
place. Note that line one of the linked-to item is always skipped,
even if the item is not in the M/DICT, to maintain compatibiiity with

M/DICT PROCs.

V-3-2

THIS PAGE INTENTIONALLY LEFT BLANK

REALITY 2.0 UPDATE

Summary of PROC Commands

INPUT COMMANDS

IN Input from terminal to secondary input buffer.

IP Input parameters from terminal to either input
buffer.

IT Input from tape to primary input buffer.

OUTPUT COMMANDS

D Display parameters from either input buffer to
terminal.
0 Output string to terminal.

BRANCHING COMMANDS
IF Conditional statement.
GO,G Unconditional branch.

BUFFER COMMANDS

A Move argument from input buffer to output buffer.
B Back up the pointer of the input buffer.

BO Back up the pointer of the output buffer.

F Forward space the pointer of the input buffer.

H Move a Hollerith string to the output buffer.

IH Move a Hollerith string to the input buffer.

RI Clear input buffer.

S Position the Input Buffer pointer and optionally

select the primary input buffer.
STON,ST ON Stack-on selects secondarz output buffer
STOFF,ST OFF Stack-off selects primary output buffer.
+ Add decimal number to parameter in input buffer.

- Subtract decimal number from parameter in input
buffer.

REALITY 2.0 UPDATE

EXIT COMMANDS
U Exit to user supplied subroutine.
X Exit back to TCL level.
PROCESS COMMANDS
P Process the primary and output buffer.

PP Print the primary and secondary output buffers to the
terminal before processing.

COMMENT COMMAND

C Comment, statement is not executed by the PROC
Processor.

Input/Output Buffer Operation

The operation within a PROC is essentially a process of moving data
from either of two input buffers to one of two output buffers.

INPUT BUFFERS OUTPUT BUFFERS

””””” -
M |
I PRIMARY | Stack PRIMARY
| < Z
[| T~ L
| SECONDARY Stack —=| SECONDARY
l On
- __ |

The primary input buffer holds the data which evoked the PROC. These
data are the PROC name and any optional arguments.

REALITY 2.0 UPDATE

EXAMPLE--

:DISPLAY INVENTORY (ED

PRIMARY INPUT BUFFER PRIMARY OUTPUT BUFFER
DISPLAY

001 PQ [DISPLAY INVENTORY" | -

002 HLIST LIST"

003 A2 l LIST INVENTORY™

004 P LIST INVENTORY"

UNCHANGED

The primary output buffer stores the command which is ultimately passed
to the TCL processor for execution. Consequently, any operation which
can be performed at the TCL level from the terminal can be performed
inside a PROC.

The primary input buffer contains the PROC name and any optional
parameters, exactly as they were entered when the PROC was evoked.
The contents remain the same throughout execution of the PROC unless
explicitly modified using one of the following commands: IP, IT,
IH, RI, +, -.

The secondary input buffer is used to hold input from the terminal as

a result of the "IN" command. The data in this buffer is volatile and
is not available after an "S(m)" or subsequent "IN" command. Usually
the data in this secondary input buffer will be checked for correctness
and moved to the secondary output buffer which is also known as the
"STACK'". Parameters will be placed in the stack until the data input
for the item is complete, at which time control will be passed to the
primary output buffer. The statement which resides in the primary out-
put buffer will be executed at the TCL level and the data in the secondary
output buffer (if any) will be used to feed processors such as BATCH-
STRING or EDITOR. The stack is used to store parameters for those
processors which explicitly request input. The stack may contain one
or more lines of data. When the process specified by the primary out-
put buffer is completed, control returns to the PROC at which time new
data may be removed to the output buffers.

V-6

REALITY 2.0 UPDATE

EXAMPLE--

:NEW-PART (D) PRIMARY INPUT BUFFER SECONDARY INPUT BUFFER
PART-NO.
233451 @ NEW-PART" -
VENDOR
?SMITH\CO. (@) 33451
BIN LOCATION
242777 @ | SMITH\CO." [
BAD BIN NUMBER
BIN LOCATION | A2777" j
2AA277 (®

UNCHANGED AA277"

PRIMARY OUTPUT BUFFER SECONDARY OUTPUT BUFFER
NEW-PART
[~ IR] 001 PQ
' 002 OPART-NO.
003 IN?
004 IF A = (5N) GO 21
005 X~BAD PART NUMBER-
006 21 ST ON
33451 007 A
33451 008 HB
009 22 OVENDOR
010 IN?
011 IF A GO 23
012 GO 22
33451 SMITH\CO." 013 23 A
33451 SMITH\CO. " 014 Hp
015 24 OBIN LOCATION
016 IN?
017 IF A = (2A3N) GO 25
018 OBAD BIN NUMBER
019 GO 24
33451 SMITH\CO. AA277" 020 25 A
33451 SMITH\CO. AA277<«" | 021 H<
33451 SMITH\CO. AA277«<"| 022 H<

023 ST OFF
B/ADD MD :ENT” 024 HB/ADD MD :ENT
B/ADD MD [ENT<" 025 P

REALITY 2.0 UPDATE

PROC Commands

Typically, PROCs are created using the EDITOR. PROCs are executed
interpretively and therefore require no compilation phase. Care
should be taken not to modify a PROC if another user is currently
executing that PROC, since his PROC instruction pointer will remain
the same, while the PROC itself may be in a different position after
it is filed, causing unpredictable results.

The first line of any PROC must contain the code "PQ'". The following
lines may contain any legitimate PROC commands. There is no limit to
the number of lines in a PROC. However, each line may contain only one
statement and must begin in column one. Statement labels are optional
and consist of a numeric string (leading zeros are ignored); for
example, 01,02 . . . 20,21,22 . . . 100,200,300,400 . . . 1050,1051 .
Any PROC statement may contain a label. This label serves to uniquely
identify its associated PROC command. Labels are used for branching
and looping within the PROC. The PROC command begins one blank beyond
the label identifier. Multiple label definitions cause no errors;
however, only the first definition will be used as the destination of
any control transfers.

PROC Command Format

[A
A
Ac Where
Ap or Acp p is parameter count
A(m,n) or Ac(m,n) ¢ 1s non-numeric character and
A(m) or Ac(m) not left parenthesis
A(,n) or Ac(,n) m is column number

n is character count

Parameter Insertion Command - This command picks up a parameter from
the input buffer and moves it to the output buffer. Either the primary
or secondary INPUT buffer may be the source and either the primary or
secondary OUTPUT buffer may be a destination. The buffers selected
depend on events prior to the occurrence of the "A'" command.

A single character '"c¢" immediately following the "A'" will be used to
surround the parameter if the stack is off (primary output buffer
selected). This is useful for picking up item-id's which require
single quotes and values which required double quotes for processing
by the ENGLISH Language Processor.

EXAMPLE—-
Al '1242-L0" '5996-4' ' JONES '
A" "250. 00" 100" s "1999. 99"

However, the character '"c" may not be a left parenthesis, or a numeric.
s y

V-8

REALITY 2.0 UPDATE

If the parenthetical specification "(m,n)" is not present, the
parameter is obtained from the current position of the input buffer
pointer. Leading blanks are deleted from the parameter in the input
buffer and the insertion terminates on the first blank it encounters.

If the optional "(m,n)" is specified, the parameter is always

obtained from the primary input buffer. If the secondary input buffer
was selected, use of this option causes a switch back to the primary
input buffer. The m parameter positions the input buffer pointer to
be set to the m'th column in the primary input buffer. 'm" may be
used by itself using the form A(m). In this case the parameter is
obtained from the m'th column and continues until the first blank is
encountered. If the "n" parameter is specified, exactly '"n'" characters
are used in the parameter including any embedded blanks.

"n" may be used by itself. Using the form A(,n) the next '"n"
characters are taken starting at the current position of the input
pointer.

Using the form "Ap" the data is obtained from the p'th field, where
the fields are separated by blanks.

Multiple data parameters may be moved into the primary output buffer
with a single "A" command if these data are separated by semi-colons.
This implicit loop can be used only with the primary output buffer
(not the stack).

EXAMPLE--
Al
Either input buffer Primary output buffer
351;427;926;852 ... '351"'427''926"''852'
All
Either input buffer Primary output buffer
2503;1.95329.95;1000.50;1 "250'""1,95""29.95"""1000.50""1"
° B

Causes the input pointer for the currently active input buffer to be
spaced backward over one parameter. If the input buffer pointer is
currently at the beginning of the buffer, this command has no effect.

) BO
Causes the output pointer for the current output buffer pointer to
be moved backward over one parameter. If the output buffer pointer

is currently at the beginning of the buffer, this command has no
effect.

V-9

REALITY 2.0 UPDATE

° C

Comment - The remainder of the statement following the "C" is ignored
by the PROC. This provides a means of placing comments within the
body of the PROC.

) D
D(m)
Dp

"D" displays the field from the current buffer pointer to the next

blank on the terminal, "D(m)" displays the field starting at the mth
column of the current input buffer. '"Dp" displays the pth parameter.

DO displays the entire contents of the buffer. The buffer pointer is
not changed. A plus sign (+) may be appended to the command to suppress
a carriage-return/line-feed.

) F

Causes the input pointer for the currently active input buffer to be
spaced forward over the next parameter. If the input buffer pointer
is currently at the end of the buffer, this command has no effect.

) GO n
G n

Provides the facility for transferring control within the PROC to a
different PROC line. The transfer is to the statement referenced by
the label.

° H

Causes the body of text immediately following the "H" to be placed in
either the primary or the secondary output buffer, depending upon
whether the stack is currently on or off. When the last parameter
has been moved to the secondary output buffer, an end-of-line must be
Placed in the stack. The form is "H ...<" This pertains only to the
stack, not the primary output buffer.

) IF

The "IF" command provides a facility for validating the parameters in
the input buffers prior to moving them to the output buffers with the
A command. There are three basic forms of the "IF" command. In each
form, when the test criteria is satisfied, the associated PROC state-
ment is executed. All forms of the "A" command are legal in the "IF"
command except the form using the character surround ("Ac"). The "IF"
command does not move or disturb data in the input buffer; however,

it does move the pointer just like the "S" command.

v-10

REALITY 2.0 UPDATE

Form 1: IF A proc-statement
IF #A proc-statement

The first form of the "IF" command simply tests for existence of data
in the input buffer.

EXAMPLE--

IF A GO 100
In the example, if there is data in the input buffer, control transfers
to the PROC statement labeled 100; otherwise the next line after the
"IF" will be interpreted.
Form 2: 1IF A op string proc-statement
The second form of the "IF'" command compares the contents of the input
buffer with a literal "string" according to one of the following

relational operators:

Relational operators (op) in the "IF" command

IFA=.... Test for equal values

IFA# Test for unequal values

IF A< Test if parameter is less than value

IF A > Test if parameter is greater than value

IFAT[.... Test if parameter is less than or equal
to value

IFA] Test if parameter is greater than or

equal to value
In the case of <, [, >,], the test is on a left-to-right
character basis only; thus leading zeroes in numeric fields
may not compare correctly (003 will test as less than 2, for
instance).
EXAMPLE--
IF A = YES GO 15

In the example, should the data in the input buffer match the string
"YES", the PROC will continue executing at statement 15.

Form 3: 1IF A op (format) proc-statement

v-11

REALITY 2.0 UPDATE

The third form of the "IF" command allows a pattern match for numeric
alpha, alpha-numeric characters and literals. The "format" is any
combination of:

nN Test for '"n" numeric characters.
nA Test for "n" alpha characters.
nX Test for "n" alpha-numeric characters.

Any other characters in the "format'" test for the literal character
specified. If n=0, then data will be skipped until a non-matching
character type is encountered.

EXAMPLE--
IF A = (2N/2N/2N) ODATE OK
IF A = (BN-2N-4N) F
IF A - (PT7N3X) GO 10

The second example "IF'" could be used to validate a social security
number. The third could be used to test for input such as: PT5550301AX9.
The following command will test the input parameter to see if it is in
the range 10 through 19, and go to label 99 if it is:

IF A= (2N) IFA] 10 IF A [19 GO 99
Error condition here
) IH

Causes the line of text (including blanks) immediately following the
"IH" to replace the current parameter in the currently active input
buffer.

° IN
INc

The "IN" command causes input to prompted at the terminal. Unless
specified, the TCL prompt character (colon :) will be displayed on the
terminal. The second form prompts with a user defined prompt character,
which will remain in effect till changed.

EXAMPLE--
Prompt
IN?

IN=
IN

Hno o

(if specified after the preceding IN=)

REALITY 2.0 UPDATE

Data input from the "IN" statement is placed into the secondary input
buffer. Subsequently, this data may be read from the secondary input
buffer by using the "A" statement. However, when the primary input
buffer is specified through the "A'" statement or if the "S(m)" statement
is used, the data in the secondary input buffer is lost. Also, any time
the "IN" statement is executed, input from the terminal will overwrite
any previous data in the secondary input buffer.

° IP

IP may be used like IN to accept input from the terminal. Data input
with the IP command replaces the current parameter of the current

input buffer (a parameter is a string of characters up to a blank, or

a string of characters enclosed in quotes). If the input buffer pointer
is at the end of the current buffer, the data is appended to the current
buffer. IP does not move the input buffer pointer. Note that several
parameters will rEﬁIace one parameter. The normal A,Ap,A(m,n),Sp,S(m)F,
and B may be used to position and copy the arguments to the appropriate
output buffers. It should be noted the arguments remain in the primary
input buffer after the P command has been executed for "re-use'". Input
buffer overflow is defined as the sum of the bytes in the current
primary and secondary input buffers exceeding 280 bytes. If this
condition occurs, IP will return error 269: INPUT BUFFER OVERFLOW AT
PROC STATEMENT: statement.

Additional forms:
IPc where c is the prompt character
IPB where embedded blanks will be replaced with \
IPBc

) IT
ITA
ITCA

Input from magnetic tape. One record (max. size 140 characters) is
read from the magnetic tape unit, and the data is stored in the primary
input buffer. (The original primary input buffer is lost.) If the
letter "C" follows the "T" in this specification, an EBCDIC to ASCII
conversion is performed on the tape record. The letter "A" masks the

8 bit ASCII character to 7 bits (MSB=0).

A null record constitutes an end-of-file condition; an all-blank record
will also give this same condition.

] 0
Causes the entire body of the text following the "0" to be output to

the terminal. If the last character of this message is a plus sign (+),
the carriage will not be returned at the end of the message.

REALITY 2.0 UPDATE

EXAMPLE~~
OPART-NUMBER =+
IN?

° P

The "P" command allows the PROC to proceed via TCL. A single letter

"P" submits the primary output buffer to TCL for processing. Optionally,
the P may be followed by a mode-ID and in this case, control is trans-
ferred to the specified modal entry point. After execution in TCL or

the user's defined program or processor, the PROC regains control at

the statement immediately following the P command.

° PP

Same as in the "P" command, except that the data in both the PROC

output buffers are printed on the terminal, and terminal input requested
using a question mark (?) as a prompt character. If the input is
anything other than an "N", the generated statement is passed to TCL;

if an '"N" is entered, PROC execution is aborted, and an exit taken to
TCL.

® RI
RI(m)
RIp

"RI" resets both input buffers to an empty or null condition. "RI(m)"
clears data from the primary input buffer from column '"m" to the end
of the buffer. '"RIp" clears data from the primary input buffer from

the pth parameter to the end of the buffer.
EXAMPLE--

If the input buffer was:
(start) 11020 D 'JOHN SMITH' XX(end)

and the command "RI3" is executed, the result and buffer is:
(start) 11020 D (end)

The buffer pointer is always at the end of the truncated buffer.

° S(m)
Sp

Used to both set the position of the input pointer and/or to select the
primary input buffer as the current input buffer. The "m" parameter

is used to determine at what column to set the input pointer. S(m)
moves the pointer to the mth column of the primary input buffer. Sp
moves the pointer to the pth field of the currently active input
buffer, where the fields are separated by blanks. Subsequent refer-
ences via the parameter insertion code "A" will extract parameters

from the current position of the input buffer set by the "S'" command.

V-14

REALITY 2.0 UPDATE

] ST ON, STON
ST OFF, STOFF

Used to turn the stack on or off. The stack is the secondary output
buffer. When the stack is on, all data picked up by the "A"™ command
moves to the secondary output buffer. When the stack is off, these
data move to the primary output buffer. The stack may be turned on
and off at any point in time during the processing of a PROC. As it
is turned on and off, output is then routed to either the primary or
the secondary output buffer.

® U

Used to provide an exit to a user defined subroutine. The format for
this statement is identical to the second format of the P command;
however, the U command is meant to be used for a simple subroutine
call. TCL is not involved and assuming the user does not modify his
buffers they will remain unchanged during this exit. Upon return from
the subroutine, control is passed to the statement immediately follow-
ing the U command. (Refer to program documentation, 'User exits from
PROC", Section XX).

EXAMPLE-—-
Un§§£

t"—————— ENTRY POINT n
(HEXD xxx

[X

The "X" command is used to exit from the PROC. Normally, a PROC
control is terminated with execution of the final PROC statement. The
X command may be used at intermediate points in the coding to cause
termination of the PROC. Any characters following the X will be out-
put as a message, prior to termination of the PROC.

EXAMPLE--

X-EXIT TO TCL-
IF A = END X-HURRY BACK-

) +n

-n
The decimal number '"n'" is added to or subtracted from the parameter
at the current input buffer position. If the input buffer pointer
is currently at the end of the buffer, this command has no effect.

The updated parameter is written back in place; therefore, care must
be taken to ensure that the updated value is the same length as the
previous parameter, since no check for this is made. Also, it is
assumed that the parameter is numeric.

V-15

EXAMPLE--

(loop control within a PROC)
IF Al #(2N) XERROR
100 C START LOOP HERE

body of loop

S1

-1

C TEST END OF LOOP
IF A 4 00 GO 100

(note test for "00", not "0'")

XT_1&4

REALITY 2.0 UPDATE

Section VI

LOGON/LOGOFF

INTRODUCTION

The LOGON processor provides a facility for initiating a user's session by
identifying valid users and their associated passwords. The LOGOFF
processor is used to terminate the session and should always be evoked via
the verb OFF when the user wishes to terminate. These processors accum-
ulate accounting statistics for billing purposes and also associate the
user with his privileges and security codes.

Logging On to the System

The user may log on to the Reality system when the message:
LOGON PLEASE:

is received. The user then enters the name, or identification, established
for him in the system. If a password has also been established, he may
follow his identification with a comma, and then his password. If the pass-
word is not entered as a response to the LOGON PLEASE: message, the system
will then output the message:

PASSWORD:
RRRR

The blacked-out area allows the user to enter his password and not have it
readily observable (on a printing terminal, for example). Reality validates
the user's identification against the entries in the Master Master Diction-
ary; if the identification is illegal, the message:

USER-ID?

is returned, and the LOGON PLEASE: message repeated. If the user identifi-
cation is valid, but the password is not acceptable, the message:

PASSWORD?
is returned, and the LOGON PLEASE: message repeated. Assuming that both
the user identification and the password are accepted, the user has
successfully logged on to the system. The message:

*%% WELCOME TO MICRODATA REALITY %%

*%% Time RELEASE 1.X Date #¥%%

VI-1

will be returned; the user is then prompted for input with a colon (:),
the TCL prompt character.

The terminal characteristics (see System Commands) are set to an initial
condition by LOGON; these initial values are:

Page width : 110 characters

Page body : 44 lines

Page skip : 7 lines

Line-feed delay : 0

Form-feed delay : 0

Backspace echo : X'08' (ASCII backspace)

These correspond to an 8-1/2" x 11" page size.

The Logon PROC

When the user has logged on to his account, Reality permits the automatic
execution of a PROC whose item-id is the same as the user identification.
That is, the Master Dictionary of the account will be searched for a PROC
matching the user identification which was used to log on to the account,
and, if it is found, it will be executed. Typically, this is used to per-
form standard functions that are always associated with the particular
user's needs, resetting terminal characteristics as an instance.

EXAMPLE--

Assume that a PROC called REF-MAN has been established on the M/DICT of
Ref-man's account; a dump of the PROC is as below:

:COPY M/DICT REF-MAN (T) (%)

REF-MAN
001 PQ
002 HTERM 118,44,7,6
003 P
004 X** TERMINAL CHARACTERISTICS ARE SET. **

VI-2

The Logon sequence is shown below:

LOGON PLEASE: REF-MAN (:) (user name entered)
PASSWORD:
XX X££> (password obscured)

*%% \E COME TO MICRODATA REALITY *f*
*%% 15.3) RELEASE 1.0 24 OCT 1973 ***

%% TERMINAL CHARACTERISTICS ARE SET, *%* (message from PROC
REF-MAN)
(ICL prompt character)

(User is now logged on
to the system)

General System Message

There is the facility to send the same message to each user as he logs on
to the system. The item-id 'LOGON' in the ERRMSG file, may define such a
message, which is typically used to transmit information pertaining to
system up—-time, and the like. It should be noted that the LOGON message
item must be present in the ERRMSG file even if no general system message
is to be sent; in this case, the item should have no attribute values
(i.e., an item—-id only). The format of the LOGON message item is the same
as any other message item in the ERRMSG file; see System Maintenance.

Logging Off the System

Logoff is achieved by entering the word OFF, either at the ICL level, or at
the DEBUG level. A message indicating the connect time (number of minutes
that the user was logged on), and the charge-units used, will be returned,
before the system re-enters the LOGON state and waits for the next user
session to be initiated.

The charge-units represent usage of the CPU. It is normally in tenths of

a CPU second, though this can be changed since it is a monitor software
convention.

EXAMPLE--

:0FF (%)

% CONNECT TIME = 16 MINS.; CHARGE-UNITS = 295 ***
**% LOGGED OFF AT 15:33 ON 24 OCT 1973. fla

LOGON PLEASE:

VI-3

Clearing the ACCOUNT File

To avoid overflowing the entry in the ACCOUNT file for a specific account-
name, the file should be cleared periodically by the following procedure:

IOGON to SYSPROG
Type: LIST ACC 'account-name' LPTR
DELETE ACC account=-name

The point of overflow is determined by the activity of the account; however,
approximately 200 LOGON/LOGOFFs are allowed. This point can be calculated
by the following procedure:

Type: CT SYSTEM account=-name
Attribute 8 gives the System Level Privileges and the amount of
work space; if no number is specified, 6 is assumed, Multiply

this number by 500 and subtract 100 for the approximately maximum
size,

To determine the actual size, type:
STAT ACC ACC-SIZE 'account-name'
This will produce a message in the following format:

STATISTICS OF ACC-SIZE :
TOTAL = 52 AVERAGE = 52.§@ COUNT = 1

If the value for TOTAL approaches the size calculated above,
the account is approaching the overflow point.

If the ACCOUNT file does overflow, the response to OFF will not be the
standard message described in the previous section, but will be in the
following format:

FORW LNK ZERO; REG = 0.E
ABORT @ 50.16D

Subsequent OFFs will produce the same result, To recover from this
situation, follow this procedure:

IOGON to SYSPROG on another terminal

Type: LIST ACC 'account-name' LPTR (to save the ACCOUNT history)
DELETE ACC account-name

VI-4

User Identification Items

All User Identification Items are stored in the System Dictionary
(SYSTEM), and are either file definition items or file synonym definition
items.,

The items in the System Dictionary therefore define the set of users who can
log on to the system. Attributes two through four of these items are identical
to the corresponding attributes in file definition or file synonym definition
items; attributes five through eight contain data associated with the

user's lock (security) codes, password, and system privileges as under:

Attribute 5: Contains the set of retrieval lock-codes
associated with the user. Multiple values
(separated by value marks) are allowable; there
is no restriction as to the format of individual
lock-codes. This attribute may be null, indicat-
ing no lock-codes. Lock-code usage is described
under Security.

Attribute 6: Contains the set of update lock=codes associated
with the user. As for retrieval lock-codes.

Attribute 7: Contains the user's password, which is a single
value; this attribute may be null; there is no
restriction as to the format of the password.

Attribute 8: Contains a code which indicates the level of
"system privileges' (see below) assigned to the
user. Also contains a code which indicates
additional work-space requirements for this
user (see below).

Attributes nine through thirteen are as defined for file definition or
file synonym definition items.

System Privileges

Three levels of system privileges are available; they are referred to as
zero (lowest), one, and two (highest) respectively. Lower levels of
system privileges restrict usage of certain facilities of the system:

Facility Lowest Privilege Level Required
Updating of M/DICT One
Use of magnetic tape One
Use of DEBUG (other than P, Two

OFF, END and G commands)

Dump Processor Two

VI-5

Facility Lowest Privilege Level Required

Use of ASSEMBLER & LOADER Two
Use of verbs : SET-TIME; Two
SET-DATE; :INIT-LINES; File

save and restore processors

System privileges are assigned by the code in attribute eight of the user
identification item in the System Dictionary; the following codes are used:

SYS2 : assigns level twc privileges.
SYS1 : assigns level one privileges.
Anything else : assigns level zero privileges.
These codes may be immediately followed by the additional work-space

assignment parameter, described below.

Additional Work-Space Assignment

As noted under Data Structures, there are three ''linked" work-spaces, sym-
bolically named the HS, the IS and the 0S, that are set to an initial size
of six frames (3000 bytes) each at logon time, It is possible that particu=-
lar users require additional work-space (principally for assembling source
programs); this requirement may be specified in attribute eight of the user
identification item, immediately following the system privileges code.

The format of this parameter is:

(n) where "n" is a decimal numeric; 6 < n < 128

"n" specifies the work-space requirement, in number of frames, for each of
the three linked work-spaces HS, IS and 0S. '"n" must be greater than six,
since six frames are initially made available by the system.

The additional space is obtained from the pool of contiguous overflow
space; if such space is not available, the message:

[334] REQUESTED NUMBER OF ADDITIONAL WORK-SPACE FRAMES: XXXX
IS NOT AVAILABLE.
ADDITIONAL WORK SPACE HAS NOT BEEN ASSIGNED.

will be returned after the "WELCOME etc' message (XXXX represents the

actual attribute value from attribute eight of the user identification
item).

VIi-6

If the format of the work-space parameter is illegal, ('"n" out of range,

missing right parenthesis, non-numeric "n'" field), the message:

[333] THE FORMAT OF THE ADDITIONAL WORK-SPACE PARAMETER: XXXX
IS ILLEGAL.
ADDITIONAL WORK-SPACE HAS NOT BEEN ASSIGNED.
will be returned after the "WELCOME etc'" message.

EXAMPLE on the next page.

Updating System Dictionary Entries

Entries in the System Dictionary should only be updated, from the SYSPROG
account, when no other users are logged on to the system., This is because
the system software maintains pointers to data in the System Dictionary
when users log on, and updating the System Dictionary will invalidate the
pointers. An exception to this rule is when creating a new account, or a
synonym to an existing account, which can be done at any time, since new
items are added to the end of the existing System Dictionary data, and
thus do not disturb any pointers to it.

Vi-7

EXAMPLE -~

The entry in the eighth attribute is

SYS1(10)

This gives the user system privileges, level one, and ten frames of work=-

space per linked set.
contiguous overflow space.

Thus 12 additional frames have to be obtained from
It is assumed that the user logs in on process

one (communications channel one on device address X'18'), which corres-

ponds to a PCB FID of X'220',

Symbolic name

54410.

Additional work-
space obtained;

of work-space FID(s) 32-frame work-space (total 12 frames)
PCB 544— ™
SCB 545
DCB 546
- 547
BMS, etc. 548
TS 549
PROC work area 550-553
Original HS 554—559\
Original IS 560-56
Original OS 566-571
90244
/
Original HS /,/ HS extension
, 902%’
/
/ IS extension
9032
/
/
Original IS / / 0S extension
/
/
/
/
Dashed lines are
Original OS to represent
frame linkages
setup after logon.
unassigned 572-575
(576)

VI-8

The Accounting History File

This is one of the mandatory files in the Reality system; the file definition
item, or file synonym definition item, 'ACCOUNT', must be present in the

SYSTEM.

It is treated as a dictionary-level file by the LOGON/LOGOFF

processor; that is, it updates directly into the file defined by the ACCOUNT
entry, not going one level further down as for a data file.

SYSTEM
Item: (ACC) (ACCOUNT)+ -
Line 1: D Q
Line 2: base ACC
Line 3: modulo DL/ID
Line 4: separ

ACC Dictionary

(dictionary items)

(DL/ID)~7

Account|dictionary/file

N
Nt oom e e o e e ey ot o G o dmm - m— e -

Accounting history items

Active Users Entry

The actual file linkages set up
for the ACCOUNT file and ACC
dictionary are as shown on the
left. The ACC dictionary is set
up for convenience in examining
and listing data in the Account
file.

There are two types of entries
in the ACCOUNT file--those that
represent active (logged-on)
users, and those that keep
track of accounting history.

The item—-id of an active user entry is a four character, hexadecimal FID
Recalling that the PCB's start at

FID = 512, and proceed in steps of 32 frames from there on, a user logged
on to process zero will have an entry with an item-id '0200' (5123g); on tu
process one with an item-id '0220' (5441(), etc. Attribute one contains the
name of the user (user identification item-id); attribute three the date
logged on; and four the time.
logs on, and deleted when he logs off.

of the PCB of the user's process.

VI-9

Active user entries are created when a user

Accounting History Entry

The item-id of an accounting history entry is the name of the user;
attributes one, two, and three are not used. The remainder of the
attributes are described below:

Attribute

Attribute

Attribute

Attribute

4:

.

Date(s) logged on - each unique date is stored;
value marks are tagged on to the value in this
attribute if multiple logoffs on the same date,
for LIST alignment purposes. Date is stored in
Reality date format.

Time(s) logged on- an entry is made on each log-
off, representing the time at which the user had
logged on. Time in seconds past midnight, 24-hour
clock.

Connect time(s) - an entry representing the time
in seconds between the logon and the logoff.

Charge~units — a number representing the CPU
usage is added on each logoff.

The accounting history entry is updated every time a user logs off the
system; thus the entry stores the history of every session (logon to

logoff).

VI-10

ACCOUNT File Attribute Description

Attribute ACC dictiomary Active User Accounting History
Number Name Entry Entry
0 (item-id) Four~-character User name
hexadecimal PCB-FID
1 Al User name. Not used
2 A2 Date logged on Not used
3 A3 or Time logged on Not used
DISK-SPACE
4 DATE Dates logged on
5 TIME Times logged on
6 CONN Connect time
7 UNITS Charge—units
8* CHARGES Computed charges
9% TOT-CONN Computed charges
connect time
10%* TOT-UN Computed total
charge—units
11% TOT-CHRGS Computed total

*Functional relationships; no data stored in these attributes.

charges

shown for these attributes in the examples are for illustration only.

VI-11

Data values

EXAMPLES-~
The statement below is a sorted listing of active users (users "WITH Al").

:SORT ACC WITH Al Al A2 A3 HDR-SUPP ()

ACC......... Al.onoonoo A2.nooo.noo A3.'l.

//, User name

Time logged on
0240 PICK 24 OCT 1973 15:16=—""_ Date logged on
0280 MVC 24 OCT 1973 11:22
02A0 REF-MAN 24 OCT 1973 15:01 PCB-FID = X'0240';
020 ROCS 24 OCT 1973 14:Vcrxanne1 two (578,)
02E0 E 24 OCT 1973 14:19

The example below is a listing of the user REF-MAN's accounting history
item:

:LIST ACC “REF-MAN” HDR-SUPP @

ACCieseeeaes DATE,...... TIME. CONN. UNITS CHARGES TOT-CONN TOT-UN TOT-CHRGS

REF-MAN 13 OCT 1973 19:11 0:21 2335 5.80 1:22 4111 12.73
20:00 0:54 987 4.89
15 OCT 1973 10:55 0:02 452 1.05
24 OCT 1973 11:51 0:03 308 0.81
12:49 0:02 29 0.18

Below is the same item dumped so as to show its internal storage format:

:1-DUMP ACC _ “REF-MAN” (T) Dates
Times logged on

REF-MAN"~~+2113]]2115]2124]"69079]72000]139330]42693]146184"1266]3245]

169]224]14 “2335]987]&{?]308]29“ Connect timesf///ﬂr
[:fi:;ibute mark Charge-units

Value mark

VI-12

Section VII

FILE MANAGEMENT PROCESSORS

OCREATE-FILE

The CREATE-FILE Processor provides the capability for generating files
and dictionaries in the Reality system. This processor is used to create
file dictionaries which exist as "D'" entries in a users Master Dictionary
(M/DICT). The CREATE-FILE processor is also used to reserve disk space
for the data portion of the new file and automatically puts a DL/ID (Data-
List/Identifier) entry in the file dictionary, which points to the data.
CREATE-FILE will automatically locate and reserve a contiguous block of
disk frames from the available space pool. The user therefore needs only
to specify the modulo and the separation of both the file dictionary and
the data. Refer to the Data Structures section for the definition of
modulo and separation.

® Modulo - Must be a non-zero integer
o< m

® Separation - Must be a non-zero integer less than 128.
o< s< 128

For users with no system level privileges or with Level One system level
privileges the following restriction applies:

® The product of modulo times separation may not exceed 512
m* s £ 512
Note: A user with SYS2 privileges is limited only by his disc space.

Refer to notes in the Data Structures section regarding the selection of
values for modulo and separation.

The dictionary (DICT) of the file must always be created first and the
name given to this new file must not exist in the users M/DICT. The
general form for creating a file dictionary is:

CREATE-FILE (DICT file-name m,s)

EXAMPLE -~

:CREATE-FILE (DICT SAMPLE 1,1) ()

(417) FILE 'SAMPLE' CREATED; BASE = 14946, MODULO = 1. SEPAR = 1,

VII-1

Once the DICT has been created the disk space for the data area of the file
can be reserved. The general form is:

CREATE-FILE (DATA file=-name m,s)

EXAMPLE--

:CREATE-FILE (DATA SAMPLE 11,3) (@)

(417) FILE 'DL/ID' CREATED; BASE = 14947, MODULO = 11, SEPAR = 3.
An alternate form of the CREATE-FILE processor is shown below. This enables
the creation of both the DICT and the DATA areas with one statement. The
general form is:

CREATE-FILE (file name ml,sl,mz,sz)

where m = DICT MODULO
§1 < DICT SEPARATION
m2 = DATA MODULO
s, = DATA SEPARATION

EXAMPLE--

:CREATE-FILE (SAMPLE 1,1 11,3) (@

—
.

(417) FILE 'SAMPLE' CREATED; BASE = 14980, MODULO = 1, SEPAR
(417) FILE 'DL/ID' CREATED; BASE = 15132, MODULO = 11, SEPAR

CLEAR~FILE

The CLEAR-FILE Processor clears the data from a file; that is, it sets the
file "empty" by placing an attribute mark in the first data position of each
group of the file. '"Overflow" frames that may be linked to the primary
frame space of the file will be released to the System's overflow space
pool. -

Either the DATA section or the DICT section of a file may be cleared using
the CLEAR-FILE command. If the DICT section is cleared, and a DATA section
exists (as implied by the presence of the DL/ID item in the dictionary),
the DL/ID will be maintained in the dictionmary.

To clear the DATA section of a file, the following command is used:

CLEAR-FIIE (DATA file-name)

VII-2

To clear the DICT section of a file, the following command is used:
CLEAR-FILE (DICT file-name)

Files that are defined by file-synoym definition items in the user's
M/DICT cannot be specified in a CLEAR-FILE command.

DELETE-FILE

The DELETE-FILE Processor allows the deletion of a file, either the DATA
section, or both the DATA and the DICT section. The DICT section of a file
which has a DATA section cannot be deleted. The formats of the DELETE-
FILE commands are exactly as those for the CREATE-FILE commands.

To delete the DATA section of a file, the following command is used:
DELETE-FILE (DATA file-name)

which will delete the DATA section, and also delete the DL/ID entry from
the DICT section,

To delete the DICT section of a file, the following command is used:
DELETE~-FILE (DICT file-name)
To delete both the DATA and DICT sections, use DELETE-FILE (file=-name).

In both the above cases, the file-definition item in the M/DICT (the
file-name) is also deleted.

Files that are defined by file-synonym definitions in the user's M/DICT
cannot be specified in a DELETE-FILE statement,

COPY

The COPY processor allows the user to copy items from a file to the terminal,
line printer, or to another file, either in his account, or in some other
users account, However, in order to COPY to another users account, a file
synonym definition ("Q" entry in D/CODE) which points to that specific
account and file, must already exist. (Refer to the section on Dictionaries.)

The COPY processor is a TCL-II verb and consequently has the same general
form as a TCL-II verb. (Refer to the section on TCL-II Processing.) The
general form of the COPY command is:

item-id's
COPY [DICT| file-name or (options)

y.

®

VII-3

The format for copying existing items in a dictionary to new dictionary
items within the same file:

COPY DICT file-name dict-item=-name(s)

EXAMPLE -~

:COPY DICT SAMPLE COST (¥)
TO :WORTH (Y)

1 ITEMS COPIED
In this example the COPY processor creates a new attribute called "WORTH"
for the file '"SAMPLE'", by copying the existing attribute '"'COST" from the
file named ''SAMPLE".

The format for copying data from one item to another item within the same
file is:

COPY file-name item=-id

EXAMPLE -~

:COPY SAMPLE 1242-01 (¥)
TO :1242-99 (T)

1 ITEMS COPIED

In using the COPY verb, multiple items may be specified as the source and
as the destination. They must be separated by blanks.

A one-to-one correspondence between source~file and destination-file item
lists is not mandatory. If the source-file list is exhausted first the
COPY terminates. If the destination-file list is exhausted first, the
remainder of the items are copied with no change in item-id.

EXAMPLE -~

:COPY FLAVORS RED WHITE BLUE (¥)
TO: _:ALPHA BETA GAMMA (T)

3 ITEMS COPIED

This example copies data items RED, WHITE and BIUE back into the file
called FLAVORS but gives them item-ids of "ALPHA" "BETA" '"GAMMA'",

VII-4

If it is desired to copy all existing items, this is done by using an
asterisk (*) following the file name.
EXAMPLE =~

:COPY DICT SAMPLE * (1)
TO :(DICT FLAVORS) ()

2 ITEMS COPIED
DL/ID NOT COPIED

This will copy all the attribute definition items from the file name
"SAMPLE" to the file name '"FLAVORS'". Note that when a destination of
other than the source file is desired, the destination file must be
enclosed in parentheses. If the parentheses are not used, the items
will be copied into the original file.

When copying from one file to another the COPY processor does not bring
dictionary entries which have a D/CODE of "D", such as the DL/ID entry. If
this restriction is not in effect, a "FILE-SAVE" operation will save the data
in the file more than once and a subsequent file restore will cause multiple
copies of the data to exist on the disk. DL/ID entries must be only created
by the CREATE-FILE processor.

To recreate both the dictionary and the data of one file in a new file, the
following sequence of COPY commands may be used:

*CREATE-FILE (NEW-SAMPLE 1,1 3,1) (©

[417) FILE 'NEW-SAMPLE' CREATED; BASE = 15417, MODULO = 1, SEPAR = 1.

[417] FILE 'DL/ID' CREATED; BASE = 15418, MODULO = 3, SEPAR = 1.

A new file called NEW-SAMPLE has now been created.

:COPY DICT SAMPLE ¥ (%) This copies all the dictionary
TO :(DICT NEW-SAMPLE) () items from SAMPLE to NEW-SAMPLE
except the DL/ID

3 ITEMS COPIED

:COPY SAMPLE ¥ () This copies all the data items
TO :(NEW-SAMPLE) @) from SAMPLE to NEW-SAMPLE.

2 ITEMS COPIED

VII-5

Copying to the Magnetic Tape, Line Printer or Terminal

Items can be copied to the tape if, when the TO: message appears, the
response is "(TAPE)", Note that file definition items (D/CODE = "D") will
not be copied. The tape so created can be read using the T=-LOAD verb.

EXAMPLE -~
:COPY M/DICT ¥ (o)
TO: (TAPE) (@

157 ITEMS COPIED.

Items can also be copied to the terminal or to the line-printer either in
character format, or as a hexadecimal dump; see options below.

Options

Several options are available for use with the COPY processor. The desired
options are specified by one or more single characters which are separated
by commas. The entire options list must be enclosed in parentheses, and must
follow the item-id list (or *).

Options are described below:

Option Description
D Deletes items from the source-file after they are

copied to the destination file.

0 Overwrites destination file items with source file
items.

P Copies items to the line-printer.

T Copies items to the user's terminal.

X Specifies a hexadecimal dump (to the terminal or line

printer), when used with P or T option.
L Suppresses line-numbers (on a copy to the terminal or
line printer), when used with the P or T option.
EXAMPLE--

:COPY FLAVORS ALPHA BETA (D,0) (®
TO :BLUE YELLOW (O

2 ITEMS COPIED

VII-6

REALITY 2.0 UPDATE

The above example copies two items from the file named FLAVORS back
into FLAVORS changing the item~ids from ALPHA to BLUE and from BETA
to YELLOW.

The items ALPHA and BETA are deleted. 1If either item previously existed
(BLUE or YELLOW), it is overwritten.

Note: Not all combinations of option characters are meaningful. D and
O options only apply on a file-to-file copy. X and L options apply
only on a copy to the terminal or to the line printer. None of the
options apply on a copy to the tape.

Note: If a null line (carriage return) is supplied to the destination
prompt "TO:" the copy will be sent to the terminal.

EXAMPLE--
:COPY M/DICT LISTACC C) Copies the PROC "LISTACC"
TO 1:2 from the Master Dictionary
to the terminal.
LISTACC
001 PQ
002 HLIST ACC WITH NO Al
003 F
004 10 IF A GO 11
005 P
006 X

007 11 IF A = LPTR GO 12
008 IF A = PAGE GO 12
009 A'

010 GO 10

011 12 A

012 P

File Management Verbs

ITEM filename item-id [(options)]

Displays the base FID of the group into which the item-id hashes. If
the item is not already on file, the message: ITEM NOT FOUND is printed
on your screen. In addition every item-id in that group is listed along
with a character count of the item in hex. At the end of the list the
following message is printed: n ITEMS m BYTES p/q FRAMES

where:

n 1is the number of items in the group

m 1is the total number of bytes used in the group

VII-7

REALITY 2.0 UPDATE

P is the number of full frames in the group

q 1s the number of bytes used in the last frame of the group.
Valid options are

P direct output to lineprinter.

S suppress item list.
GROUP filename [(options)]

Same as ITEM except each group in the file is used and no specific
item can be tested.

POVF [x]

POVF displays the number of frames in each contiguous block. There
are two ways to use POVF. If POVF x C) is keyed in where x is any
character, the linked chain is not counted. In this case the first
line of output will contain only the FID of the first frame in the
chain. If POVF C) is keyed in, the linked chain is counted and the
number of frames in the chain is displayed in parenthesis on the first
line of output. Regardless of which way POVF is used, every line of
output after the first is of the format m n (p) where m is the first
frame of a contiguous block, n is the last frame of that block and p
is the number of frames in the block.

SEL-RESTORE Verb

The SEL-RESTORE verb may be used to selectively restore a file, or
specific item within a file, from a file-save tape. Only one file
at a time can be restored. SEL-RESTORE may be run from any account,
not necessarily from the account whose file is to be restored, as
long as the file is defined in the M/DICT of the account from which
the restoration is done.

The general form of the SEL-RESTORE statement is as follows:
SEL-RESTORE file-name account-name 'item-id-list'
where
file-name is the name of the file to be restored; it must match
the name on the file-save tape. It may be preceded by
"DICT" specifying dictionary.
"DICT" must be used when restoring an M/DICT.
account-name is the name of the account from which the file was

defined (as a D-CODE item) when the file-save tape was
created.

VII-8

REALITY 2.0 UPDATE

item-id-list is optional; if omitted, all items are restored;
otherwise, specific item-ids may be entered, each enclosed
in single quotes.

Each item-id restored will be listed, and a message indicating the
total number of items restored will be returned.

Note: SEL-RESTORE will exit to LOGON if end of tape is reached due

to (1) account-name not found, or (2) the very last file on the tape
is restored.

VII-9

REALITY 2.0 UPDATE

Section VIII

EDITOR

INTRODUCTION

The EDITOR is a processor which permits on-line interactive modification
of data and file dictionaries of the Reality Computer System. This
means that PROC's and assembly source can also be modified by the EDITOR.
The EDITOR allows line-at-a-time modification of any item in the data
base. When the EDITOR is entered the item being edited is copied to

one of two temporary buffers. The item is permanently updated on the
disk file only after a file command.

TEMPORARY TEMPORARY
BUFFER 1 BUFFER 2
Line 1 ABC Line 1 ABC
2 XYZ 2 XYZ
3 555 3 555
4 XXX 4 New Line 1
5 LMNOP 5 New Line 2
6 New Line 3
7 XXX
8 Note: Both buf-
—-___J fers are
’—\\\\\\\5___ variable
EOF length
EQF

The EDITOR uses the current line concept; that is, at any time, there is
a current line that can be listed, altered, deleted, etc. As one moves
through the item from TOP to EOF (end-of-file), the current line pointer
changes accordingly. If the current line pointer is at EOF, an '"L"
command will place the pointer at the top before processing. Initially,
the item is in Buffer 1. As an edit is performed the modified line

and all previous lines are copied to Buffer 2. The editing process
continues working on Buffer 1. As lines in the item are changed, or

new lines inserted the EDITOR builds a new, updated item in Buffer 2.
Updating must be done in ascending line-number sequence, until the F
command is used to merge updated with the previously existing item;

and automatic resequencing of the item then takes place. Updated lines
cannot be listed until such a merge has taken place., Functionally, the
EDITOR stores the updates, and only applies them to the item when the

F command is entered. An F command does not permanently file an item.
It completes the copy to the alternate buffer causing all lines to be
resequenced and the EOF marker to be repositioned. It then switches

VIII-1

REALITY 2.0 UPDATE

the function of the buffers. Editing occurs in Buffer 2 with the new
modification assembled in Buffer 1. This toggling of buffers can go
on indefinitely until the item is permanently filed away with an "FI"
or "FS" command.
Entering The Editor
1. EDIT file-name item-id [(options)] (¥
2. EDIT DICT file-name item-id [(options)] (©

Example 1. Edits the data referenced by item-id, in the
reference file

Example 2. Edits the item in the dictionary of the referenced
file

Multiple items may be specified and are delimited by blanks or all
items may be specified by the use of an asterisk (*). In the latter
case, each item-id lists on the terminal as the EDITOR is entered.
If the item exists on the file, the message:

TOP
will be returned; the current line pointer is set to zero, the INPUT
environment is entered, and an EDIT command is requested with the
EDIT prompt character (.).
If the item does not exist on the file, the message:

NEW ITEM
will precede the TOP message; the EDIT environment is entered as before.

Valid options are:

A Suppress the TOP message the first time. This feature is
useful when EDIT is called at the PROC level.

Edit Command Structure

EDIT commands are one or two letter mnemonics which must appear as the
first non-blank input character. Command parameters, or operands,
follow the command; blanks may be inserted between parameters for
clarity if desired; embedded blanks in parameters are not permitted.
Any EDIT command may be optionally preceded by a period (.), which
will suppress all output.

VIII-2

except error messages, resulting from the command. EDIT commands cannot be
continued to a second line.

"String' Format

Where EDIT commands require one or more character strings as parameters, the
"string" may be delimited by any non-numeric character (except a blank or a
minus sign), that does not appear within the body of the string itself.

The colon (:) is a reserved delimiter; if used, it indicates that a column-
dependent correspondence between characters in the string and characters in
the line is necessary for a match. The up-arrow (4 ora) is a reserved charac-
ter within the body of the "string'; if used, it indicates that any charac-
ter in the corresponding position in the line is acceptable as a match.

The terminal delimiter of the string(s) is necessary only if further
parameters follow the string specification, or trailing blanks are to be
included as part of the string.

Two consecutive delimiters define a '"null" string.

Editor Error Messages

Message Description

CMND? Illegal EDIT command.

STRING? Illegal string specification, or missing string.
e.g.: Required string missing for ME; Second string

missing for R; double null string specified for R.
This message may also occur as a result of an illegal
numeric parameter specification, which causes a part
of the numeric to appear as if it were a string.

COL#? Illegal characters follow the recognized end of the
command, or illegal format for the column-number
limit specification.

SEQN? Out-of-sequence update; updating must be done in an
ascending sequence until an F command is entered.

EOF:m End-of-item reached at line-number m; this message
may appear with a number of commands, and is not

usually an error.

TOP Top-of-item reached; informative message that is not
usually an error.

VIII-3

The Input Environment

The INPUT environment, used for data entry, is entered when lines are to be
added to the item, or existing lines are to be replaced. This environment
is entered by the "I'" or "R'" commands. The EDITOR requests data by prompt-
ing with the line-number to which data is being entered. The continuation
character (0€S) may be used to continue data input to the same line. All
characters input, including trailing blanks, will be stored without change.

A null input (carriage return or line feed only) will terminate the data
request, and cause a return to the EDIT environment for the next EDIT com-

mand.

If null lines are required, it is necessary to create these lines

with a fill character such as "&" then prior to permanently filing the item
replace with a null using the replace operator such as R99/&//.

Edit Commands

Parameters in brackets are optional.

Command

A

DE [n] "string"

Description

AGAIN, Repeats the last LOCATE com-
mand that had a "string"
specification.

BOTTOM of item - the current line
pointer is set to the last line
in the item.

(p [-q]]

DELETE. This command causes a
search for characters matching the
"string'; the search is not
column-dependent unless the
delimiter used in the ''string" is
a colon (see comment under "string"
format). The search is restricted
to column p, or columns p through
q, 1f specified. If q< p, gq=p is
assumed. If n is specified, n
lines, starting from the current
line plus one, will be scanned for
a matching "string", and every
line with a match is deleted.

Lines that are deleted are listed.

The current line pointer is
unchanged.

VIII-4

Message

CMND?

if no such command

had been previously
issued.

EOF:m

if EOF is reached.

EOF:m
"m" is the last line

of the item.

EOF:m
if EOF is
encountered.

Command

DE [n]

EX

FD

FI

FS

Description

DELETE. n lines, (one if n is
not specified) are deleted from
the item, starting from the
current line. The current line
pointer is not changed.

EXIT. The EDIT is terminated;
the item is not updated to the
diskfile; control is returned

to TCL.

Updates are merged with the pre-
viously existing item, and the
current line pointer is set to
zero.

FILE-DELETE. The item is
deleted from the disk-file;
the EDIT is terminated, and
control returned to TCL.

ITEM-NAME-SAVE. The item is
updated to the disk-file, and
control is returned to TCL.

FILE-SAVE. The item is updated
to the disk-file, and EDIT is
re-entered.

GO TO. The current line pointer
is set to n, and that line is
listed.

INPUT. The input environment
is entered. All subsequent
lines are considered as data
input lines to the item, and are
inserted following the current
line. (If the current line
pointer is at zero (TOP), lines
are inserted before the first
line of the item). Input is
prompted with the current line-
number and a plus sign (+). A
null input terminates the data
request, and the EDIT environ-
ment is re-enterd.

VIII-5

REALITY 2.0 UPDATE

Message

EOF:m
if EOF is reached

EXIT

TOP

'item—name'
DELETED

'item-name' .
FILED

TOP

EOF:m
if n > m TOP

Command

I data

L [n]

Description

INSERT. One line may be
inserted following the current
line, by entering I, one blank,
and the data to be inserted.
Note that the data is separ-
ated from the I by one blank
only: all other blanks will be
considered as part of the line
that is inserted. The line-
continuation character cannot
be used to continue data beyond
one physical line.

LIST. n lines (one if n is
omitted), starting from the
current line plus one, will
be listed. The current line
pointer is set to the last
line that is listed on the
terminal.

L[n]"string" [p[-q]]JLOCATE. This command causes a

search for characters matching
the "string'"; the search is not
column-dependent unless the
delimiter used in the "string"
is a colon (see comment under
"string'" format). The search
is restricted to column p, or
columns p through q, if speci-
fied. If q<p, q=p is assumed.

If n is not specified, the next
occurrence of "string" is
located, and that line is
listed; the current line pointer
is set at the line that is
listed.

If n is specified, n lines,
starting from the current line
plus one, are scanned for the
occurrence of "string'"; all
lines in which the "string"

is found, are listed. The
current line pointer is incre-
mented by n, and may not be

at the last line listed.

Note that the scan always begins
from the current line plus one.

VIII-6

REALITY 2.0 UPDATE

Message

EOF:m
if EOF is
encountered.

EOF:m
if EOF is
encountered.

Command

ME[n]"string"[p]

N[n]

P data

Description

MERGE. n lines (one if n is
omitted), starting from line-
number p (one if omitted) of
the item specified in "string"
are merged into the item
being edited. Lines are
inserted following the cur-
rent line. The item speci-
fied in "string' must be the
same file as the item being
edited. If "string" is null,
lines are merged from the item
being edited itself.

NEXT. The current line pointer
is incremented by n (one if

n is omitted), and that line is
listed.

PRE-STORED command call. The
EDIT command that has been
pre-stored is called into
effect (see below).

Note:Pre-stored item will
remain through successive
innovations of the EDITOR.

PRE-STORE command. Any EDIT
command can be pre-stored by
entering P, one blank, and the
EDIT command. This pre-stored
command can then be called into
effect by entering P only (the
pre-stored command call). Only
one command can be pre-stored.

R[n]"stringl"stringz"[p[—q]]

REPLACE. The first occurrence
of '"stringi" is replaced by
"stringy'" in n lines (one if

n omitted), starting from the
current line. The search is
restricted to column p, or col-
umns p through q, if specified.
If q < p, q=p is assumed.

The format of "string;" and
"string,'" is as described under

"string" formats; note that only

one delimiter separates the
strings.

VIII-7

REALITY 2,0 UPDATE

Message

NOT ON FILE

If the item from
which lines are to
be merged is not
on file.

EOF;m

If EOF is
encountered in the
item from which the
merge is taking
place.

EOF:m
If EOF is
encountered.

CMND?

If no command had
been pre-stored;
any EDIT error
message may be
caused by error in
the format of the
pre-stored command.

EOF:m
If EOF is
encountered.

REALITY 2.0 UPDATE

Command Description Message

R[n]"stringl"stringz"[p[-q]]

(Continued) Lines that are changed are
listed in their updated form.
The current line pointer is
unchanged.

R[n] REPLACE. The INPUT environment EOF:m
is entered, and input requested If EOF is
for data to replace n lines (one encountered.
if n is omitted), starting from
the current line. The EDIT
environment is re-entered when
either: 1) data for the speci-
fied number of lines has been
entered, or 2) a null line is
entered. In the latter case,
the remainder of the lines
remain unchanged. The current
line printer is unchanged.

S SUPPRESS line numbers on/off.
Each entry of S acts as an
alternate-action switch to
either suppress or list line-
numbers when lines are listed.
On initial entry to EDIT, line-
numbers are listed.

T TOP. The current line pointer TOP
is set to zero.

TB TABS. This command can be
followed by up to 16 tab set-
tings in ascending order. For
example, TB 15 20 31 40 would
set four tab stops.

Tabbing is invoked whenever the
EDITOR is in the INPUT envi-
ronment and a control-I (I€),

or on some terminals a tab

key, is hit. The I®¢ will cause
a series of blanks to be output,
moving the cursor to the next
specified tab stop. A back-
space (HC) and cancel (X¢) will
backspace over tabs.

VIII-8

Command

U[n]

Z[n[-m]]

null

Description

UP. The current line pointer
is decremented by n (zero if
omitted), and that line is
listed. Note that, if n is

omitted or is zero, the current

line is listed. :

X deletes the effects of the
last update command (DE,I,R)
that had been entered. Only
one update, the last, can be
deleted. This is useful when
an erroneous update command
has been used, since, in order
to repeat the command without
the X, an F is needed.

ZONE. Sets print column limits

for listing output of lines.
(Does not affect the search in
LOCATE/REPLACE commands). If
no parameters are used, the
zone is reset so that the
entire line will be listed on
output. If m<n, m=n is
assumed.

Interrogates the current
line-number.

A null line (carriage return
or line feed only) lists the
next line. This is equivalent
to an L command with no
parameters.

VIII-9

REALITY 2.0 UPDATE

Message

TOP
If top-of-file is
reached.

L:n
n is the last
update line-number.

L:n
n is the current
line-number.

EOF:m
if EOF is
encountered.

REALITY 2.0 UPDATE

Section IX

SYSTEM COMMANDS

INTRODUCTION

A set of standard commands are available to the user which provide
system capabilities. These commands include tape handling, output
spooling, card reading, interuser communication and other miscellaneous
system utilities.

Arithmetic Commands

The following is a list of commands which provide simple arithmetic
capabilities.

Command Function
ADDD n, mn, Add n, and n, in decimal.
ADDX hl h2 Add hl and h2 in hex.
SUBD n, n, Subtract n, from n, in decimal.
SUBX h1 h2 Subtract hz from hl in hex.
MULD n; n, Multiply n, by n, in decimal.
MULX hl h2 Multiply hl by h2 in hex.
DIVD n, n, Divide n, by n, in decimal.
DIVX hl h2 Divide hl by h2 in hex.
DTX n, Convert n, from decimal to hex.
XTD h Convert h from hex to decimal.

Negative numbers are designated by appending a minus sign immediately
prior to the first digit of decimal numbers. Hexadecimal numbers are
considered negative when in a range from FFFFFFFF to 80000000. (Note:
if fewer than 8 hex characters are keyed in, high order zeroes are
assumed.) The largest positive number which can be handled is
2,147,483,647 in decimal or 7FFFFFFF in hexadecimal.

REALITY 2.0 UPDATE

Card Reader Command

C-READ file-name itemid [(options)]
This verb reads cards and adds them to the end of the existing item
(new items are also acceptable). Each card becomes a new attribute
at the end of the item. The item is filed away in the event that the
hopper becomes empty, an EBCDIC error occurs, a mechanical error
occurs, or the item becomes greater than 32,000 bytes. Appropriate
messages accompany each of these terminating conditions. The normal
termination is hopper empty, implying end of card deck. If the card
reader is taken out of ready manually, the message '"'CRD RDR NOT RDY"
is output to the terminal once every ten seconds until the card reader
is readied.

If an item becomes larger than 32,000 bytes, the command must be
repeated using a different item—id. Linkage between the items must

be supplied by the user. A maximum size of 32,000 was chosen to allow
room in the item to add such linkage.

Valid options are:

n-m to limit the use of card columns n through m for data
to the item.

L to remove leading blanks.
T to remove trailing blanks.

If either the L or T option is used, a blank card is stored as a null
attribute.

Note that an item larger than 3,000 bytes will cause a forward link
zero unless additional work frames are requested in the LOGON item
in the SYSTEM Dictionary. If items as large as 32,000 bytes are
expected, your LOGON item should request 66 frames.

It is the user's responsibility to make certain that the card reader
is not used from two or more terminals simultaneously. If this should
occur, the most common result will be that the second terminal
attempting to use the card reader will be told that the card reader

is not ready. The least common result is that the first terminal may
lose activation and not regain activation until after a boot load.

Tape Commands

The following is a list of commands which provide basic capabilities
with the magnetic tape unit. Each is described in more detail below.

IX-2

REALITY 2.0 UPDATE

Command Function
EBTPRD Read records from tape into file items.
T-ATT Attach magnetic tape unit.
T-BCK Backspace tape.

T-DET Detach magnetic tape unit.
T-DUMP Dump file items to tape.
T-FWD Forward space tape.

T-LOAD Load file items from tape.
T-RDLBL Read tape label.

T-READ Read one record from tape.
T-REW Rewind tape.

T-WEOF Write end-of-file on tape.

EBTPRD File-name

This command reads sequential records from tape, converts each record
from EBCDIC to ASCII, creates a sequentially numbered item-id for each
record converted and stores it in the new file item.

The user is prompted for the record length in bytes. The maximum
allowable record length is 32,000 bytes.

T-ATT

This command causes the processor to allocate the magnetic tape unit
to the terminal issuing the command. It must be issued before tape is
used. Other users are locked out. If the tape is attached to some
other use, the message IN USE will be returned. Logging off the
system (OFF command) automatically detaches the magnetic tape umnit.

T-BCK Inl

This command causes the processor to back the tape n records. If n

is not specified, default is a backspace to the position immediately
preceding the previous EOF mark, or to the load point. Before reading
the next record, a T-FWD must be issued to position the tape after the
EOF mark.

IX-3

REALITY 2.0 UPDATE

T-DET

This command causes the processor to make the magnetic tape unit
available to the system. The unit is automatically detached when
the user logs off.

T-DUMP file-name ('item—list') (selection-criteria)

Allows the user to selectively dump his dictionaries or data files to
the magnetic tape. (ENGLISH verb).

The 'item-list' and ''selection-criteria’ are described under the
ENGLISH section, and cause a selected sub-set of the items or the file
to be dumped. Absence of both causes all items to be dumped. The
file name may be preceded by the DICT modifier to dump dictionary data.
File definition items (D/CODE=D) will not be dumped, an EOF mark is
written to the tape after the dump.

Note: As in other ENGLISH statements, each item—-id must be enclosed
in single quotes.

T-FWD n

This command causes the processor to move the tape forward n records

(maximum value for n = 32,767). If n is not specified, the tape
forward spaces to the position immediately beyond the next EOF mark.

T-LOAD file-name [(N)]

This command allows the user to load dictionaries or data saved by the
T-DUMP verb. The data from the tape is loaded to the file "file-name'.
Items on the file with item-id's corresponding to those on the tape
will be over-written. The file name may be preceded by the DICT
modifier to load dictionary data. The tape is positioned at the EOF
mark at the conclusion of the load. If the (N) is present, item—id's
will not be listed as they are loaded.

T-RDLBL n

This command will read and store the label from tape reel number '"n"

("n" in hexadecimal), if the tape is at load point. This verb must
be used to initialize the internal label storage area, and is needed
under either of the following conditions:

a) Data is to be written to a tape (T-DUMP, etc.) starting
at other than the load point of reel number one.

b) Data is to be read from a tape (T-LOAD, SEL-RESTORE, etc.)
starting at other than the load point of reel number one.

IX-4

REALITY 2.Q UPDATE

The label data is maintained during a logon session, and therefore,
T-RDLBL need be used only once when working on any particular multi-reel
tape set. As an example, suppose there is a three-reel file-save, and
it is desired to start a SEL-RESTORE from reel #2 (since SEL-RESTORE

can be started in the middle of the file~save):

Reel 1 Reel 2 Reel 3
BOT . . «.EOTBOTEOT BOT.EOF
start

If tape #2 reaches EOT, the system must be able to prompt for real #3;
therefore, it is imperative that prior to the SEL-RESTORE, reel #2 is
mounted at load point, and the command T-RDLBL 2 (%) is used to initial-
ize the label save buffer.

T-READ koptionsﬂ

This command dumps tape to terminal, or to the line printer. The
T-READ command terminates when the specified number of records are
read, or when an EOF mark is detected.

Valid options are listed below; multiple options are separated by
commas.

X dump in hexadecimal instead of character format.

P dump to the line printer

n,-n dump only specified tape records, counting from the

172 e

current position of the tape. If n; > 1, n,-1 records
are bypassed before displaying the Ny record. The
tape stops positioned at record n2+l.
1f n, is omitted, n,=n, is assumed.
If (nl—nz) is omitted, tape records 1 through EOF
(or EOT) are displayed.

EXAMPLE--

T-READ (4-6) bypasses 3 records, displays the 4th, 5th, and
6th records, and the tape is positioned at the beginning of
the 7th record.

T-REW

A rewind command is issued to the tape unit and control returns
immediately to TCL.

IX-5

REALITY 2.0 UPDATE

T-WEOF

Write and end-of-file (EOF) on the tape.

Tape Labels

A tape label may be written at the beginning of each tape reel; the
label may consist of up to sixteen characters, and the system adds
the time, date, and the reel number. Labels are specified when
invoking either the FILE-SAVE or T-DUMP processor; in the case of a
FILE-SAVE, the label is written after the cold-start section of the
tape, if specified, is written. T-DUMP will cause the label to be
written only if the tape is at the load point; it will be ignored
otherwise.

Labeled tapes are created as follows:
1) T-DUMP
T-DUMP HEADER "xxxxxx" (D

The data enclosed in double-quotes following the 'HEADER'
connective is used as the label. Omitting the 'HEADER' .
connective causes unlabeled tapes to be generated.

2) FILE-SAVE
:DDUMP xxxxx (T)

The data following the :DDUMP verb is used as the label.
If no data appears, unlabeled tapes are generated.
Notes: The characters ' " “]l:\\should not appear as part
of the label. Labels can only be up to 16 characters; data
beyond 16 characters will be truncated.

Tape labels are read as follows:

The tape label is read by the FILE-RESTORE, T-LOAD and T-RDLBL
processors. The first will always read the first record presented to
it (when an 'A', 'AF', or 'F' option is entered); the latter two will
attempt to read the label only if the tape is at the load point. 1In
the case of unlabeled tapes, the processor will read the first tape
record, determine that the tape is unlabeled, and backspace the tape
by one record before continuing.

Multiple Reel Tape Files

When a reel reaches the end-of-tape marker, the system will issue a
'tape rewind' command, and print a message requesting the next reel of
tape. An asterisk is printed as a prompt for input. When the next

IX-6

REALITY 2.0 UPDATE

reel has been mounted, the process may be continued by entering a
control-ghift-0 character; all other entries will be ignored. (The
process is roadblocked on a READ instruction, and will therefore echo
up to eleven non-control characters before re-issuing the asterisk
prompt; any control character other than the 0¢S will cause an asterisk
prompt immediately). If the tape unit is not ready or not on-line, the
asterisk will be re-issued, and another 0C¢8 character should be entered
when the tape is ready. The prompts cannot be suppressed, and the
input to the asterisk prompt cannot be 'stacked" by a PROC.

Messages Relating to Multiple-Reel Files:
1. MOUNT REEL # xx; LABEL = label time date%*
The requested tape is to be mounted, and a control-shift-0
character typed when the tape unit is ready. If unlabeled
tapes are in use, the "LABEL =" etc. part of the message
will be suppressed. 'xx" is the two-digit hexadecimal reel
number required.

2. INCORRECT REEL# *

This message 1s returned when the reel number on the labeled
tape does not match the requested reel number (or if the
first tape mounted is not reel #1). Mount the correct tape
and type an 0°S., This message cannot appear if unlabeled
tapes are in use.

3. INCORRECT LABEL*
Self-evident; action as above

4, REEL #1 WAS UNLABELED *

A labeled tape has been mounted, when the first tape reel
was unlabeled. Action as above.

5. REEL #1 WAS LABELED *

Converse of (4); action as above.

Output Spooler Commands

The following is a list of commands which provide output spooling
capabilities. Each is described in more detail below.

Command , Function
ASSIGN Assign output spooler device.
EJECT Eject line printer pages.

IX-7

REALITY 2.0 UPDATE

Command Function

FORM

KILL

Set form alignment for output spooler.

Abort current spooler output.

LOAD-SPOOLER Load spooler from SYSTEM-MODES.

P-ATT Attach line printer.

P-ATT-KILL Unconditionally detach line printer from any line.
P-DET Detach line printer.

P-STAT Display line printer status.

PRINT-HOLD Print hold file on line printer.

PRINT-QUE Display hold file queues.

PRINT-TAPE Print tape file on line printer.

DEVICE ASSIGNMENT Verb

ASSIGN options

The default device is always the line printer. Device assignment is
on a user line-by-line basis. Each user can issue an ASSIGN verb at
any time, which will remain in effect until a new ASSIGN verb has been
issued for that line or until LOGON resets it.

The spooler can spool to multiple devices simultaneously. The options
for ASSIGN are summarized below:

c

=Output to the terminal connected to the communication line
on which the spooler is running.

-Hold the file on disc. The device is the disc and the file
is retained for future printing.

-No spooling to disc. Output is line-at-a-time directly to
the line printer. If N is set, all other options are
ignored.

-Suppress line printer printout.
-Output to tape from wherever the tape is currently

positioned. Write an end-of~File (EOF) mark when a close
command is received (TCL-II closes all files).

The ASSIGN options are input in free form format. Blanks and
unrecognizable characters are ignored.

IX-8

REALITY 2.0 UPDATE

EXAMPLE--
ASSIGN

(Resets all the option flag bits the same as LOGON does. Output
is spooled to the line printer only and is not held.)

EXAMPLE--

ASSIGN N T C
(Output line-by-line to line printer. Ignore T and C).
EXAMPLE--

ASSIGNH T S C
(Hold the file on disc, output to tape, suppress line printer
printout, and output to console connected to the communication
line on which the spooler is running).
EXAMPLE--

ASSIGN S

(Any file will be deleted when it is next "printed").

Each of these options is explained in more detail below.

CONSOLE OUTPUT (C)

The spooler can spool output to a hard-copy terminal or CRT connected
to the communication line assigned to the spooler. The "C" option will
enable console output. The spooler will output the data regardless of
whether a console is actually connected. The line printer parameters
(lines per page, etc.) will apply to the console.

Note that the spooler will hang permanently if the '"C" option is used
and an asynchronous communications channel (2613 or 2614) does not
exist for the spooler line. The first character output will cause the
spooler to wait forever for an interrupt.

HOLD FILE OPTION (H)

The spooler has two main queues. The first is a 32 entry queue which
contains information on each currently open print file. An open file
is one that has not been closed and is still having frames of print
output added to it.

IX-9

REALITY 2.0 UPDATE

The second queue contains entries for up to 32 closed files; i.e.,
those files that are ready for printing. After a file has started
Printing it is normally purged from the second queue unless it is
flagged as a Hold file. A Hold file will occupy one of the 32 queue
entries until it is printed without the hold option being set by
ASSIGN. When a Hold file is entered in the print queue it is assigned
a decimal entry number which is printed as follows:

ENTRY NO. 7

A Hold file is kept on the disc until released. A verb to interrogate
and edit the hold queue entries is the PRINT-QUE verb. The verb is
input without any parameters. A series of messages will then be
output, requiring a response. They are as follows:

ENTRY 5 (Queue entry flagged as hold)

LIST FRAME (Y/N) ("Y" reply will list first Frame of the file
on your terminal)

PRINT (Y/N) ("Y" reply will print the file according to
the presently set ASSIGN parameters. If H
is not set the file will be released as it
is printed. If only the parameter S is set
then the file will be deleted.)

ENTRY 7 (Next queue entry flagged as hold).
After the entire queue has been searched for hold entries the message
[283] END OF PRINT QUEUE

is output to the user.

NO SPOOL OPTION (N)

The "N" option specifies no spooling. The tape test, etc., will be
bypassed. The data is output a line-at-a-time directly to the line
printer. All other options are ignored. This option should normally
only be used when the disc is getting full and space is a problem or
for forms alignment.

The "ASSIGN N" causes an automatic attachment to the line printer the
first time WRTLIN is called. The user must use the P-DET verb to
detach the line printer when finished. The line-at-a-time mode is a
special mode where the user usually wants to gain exclusive control
of the printer for a time in order to print several files or do forms
alignment.

IX-10

REALITY 2.0 UPDATE

If the line printer is attached to another line the first time
WRTLIN is called, the following message will be output to the user
console over and over until the other line is detached:

LPTR ATTACHED TO ANOTHER LINE

The line-at-a-time mode and the normal spooler mode will blank out

the user buffer from OBBEG through OB each time WRTLIN is called
unless the NOBLNK option is used when calling WRTLIN.

SUPPRESS LINE PRINTER OPTION (S)

The "S" option on an ASSIGN will suppress line printer output.
Normally, the ''S" is used in conjunction with "T" and/or "C" options.
However, if the "S'" appears alone, the file will be effectively deleted
since the output device is null and the frames of the file are
released.

TAPE FILES OPTION (T)

If the "T" option is used on an ASSIGN, then the file spooled will be
written to magnetic tape in 500 byte records, starting wherever the
tape is positioned. After the last record is written, an end-of-file
(EOF) mark is written.

The magnetic tape is never automatically rewound because files may be
"stacked" on the tape.

The user must mount the tape (with write-ring), attach the tape unit,
and rewind or position the tape where the file is to be written. The
tape must be left attached because the spooler will automatically
write on the tape without attaching. This means that the spooler will
use the tape in this situation even if another process is currently
using it. It is the user's responsibility to see that this does not
occur.

EJECT Verb
EJECT n

The line printer will be attached, n pages ejected and the line printer
detached. The number n cannot exceed 10 or else the message [286}

NO. OF PAGE EJECTS GREATER THAN 10 will be output to the console and

an exit taken to TCL.

IX-11

REALITY 2.0 UPDATE

FORM Verb
FORM n m

FORM is a verb which is used for forms alignment on a Hold File queue
entry n. The first m lines are output to the line printer. The
message

AGAIN? (Y/N)-

is output after each m lines. The response "Y" will output the m lines
again. The only restriction is that the m lines must be on the first
frame of the file.

The forms alignment uses the line-at—-a-time feature of the spooler.
The present ASSIGN bits are saved before the alignment and restored
afterwards. The spooler routine PPUT is called to output each line.

The PPUT routine will attach the line printer when it is available.
The FORM routine detaches from the line printer after "N" is typed in
response to AGAIN?

Four error messages can be output with FORM:

284] INPUT ENTRY MUST BE 1-32

285] ENTRY IS NOT A HOLD FILE

-

286] NO. OF LINES MISSING

287] FILE BUSY BEING PRINTED
-

KILL Verb
KILL

This verb unconditionally aborts the current spooler job in execution
or the next one to be executed. A Hold file will be preserved while
a normal print file will have its frames released.

LOAD-SPOOLER PROC

LOAD-SPOOLER

This PROC loads eight frames of the spooler from SYSTEM-MODES. This
usually followed by a START-SPOOLER PROC. The LOAD-SPOOLER does not
destroy the print queue containing Hold files. However, the START-
SPOOLER PROC will clear the Hold file queue if the reply is 'Y' to the
reset question. The disc space will not be released in this case.

IX-12

REALITY 2.0 UPDATE

P-ATT Verb

P-ATT
The P-ATT is a verb which attaches the user to the line printer.
If the user is attached, only the TCL prompt comes back. If the
printer was already attached to another communication line, the
following message is returned:

[289] LINE PRINTER ATTACHED TO LINE X

P-ATT-KILL Verb

P-ATT-KILL

The P-ATT-KILL verb unconditionally detaches the line printer from
whatever line is currently attached to it. The spooler attaches and
detaches from the line printer at the beginning and end of each print
file. Thus, a user can normally get attached between spooler print
files.

The spooler assumes that it remains attached to the printer once it
becomes attached. The spooler unconditionally outputs to the line
printer each frame without testing to see if it is still attached.

P-ATT-KILL should only be used under the SYSPROG account and only'when
a line has inadvertantly remained attached to the line printer.

P-DET Verb

P-DET

The P-DET detaches the user from the line printer if the line is
presently attached and an exit taken to TCL.

The LOGOFF routine will automatically detach a line from the line
printer if it is attached. A user can cause the spooler to wait if
he attaches to the line printer and never detaches or logs off.

P-STAT Verb

P-STAT

P-STAT performs a printer status. One of four messages will be
output:

1) *PRINTER READY*
2) *LPTR OFF-LINE*
3) *LPTR PRINTING*

4) *LPTR CABLE OFF%*

IX-13

REALITY 2.0 UPDATE

PRINT-HOLD Verb
PRINT-HOLD n ["string"]

The Hold file queue entry n will print according to the current
ASSIGN options. The Hold file will be deleted unless the H option
is set. For example, to copy a Hold file to magnetic tape without
releasing the Hold file, use ASSIGN T H followed by PRINT-HOLD.
Three error messages can be output at this point:

[284] INPUT ENTRY NO. MUST BE 1-32

P8S] ENTRY IS NOT A HOLD FILE

[287] FILE BUSY BEING PRINTED
If the option string is used, a search for the string will be made
and the output started at the beginning of the string. If the string
is not found, the following error message is printed:

290 STRING NOT FOUND IN HOLD FILE

Thus, a Hold file can be reprinted starting at any point.

PRINT-QUE Verb

PRINT-QUE

Used to interrogate and print hold file queues (see ATTACH HOLD FILE
option).

IX-14

REALITY 2.0 UPDATE

PRINT-TAPE PROC
PRINT-TAPE ["string"]

This PROC does the following:
1 Attaches to the tape unit.
2) Rewinds the tape.
3) Attaches to the line printer

4) Prints one tape file. An optional string can be specified
as a starting point.

5) Detach the line printer.
6) Detach the tape unit.

The rewind command can be removed from the PROC if a manual rewind is
used. Thus, a user could print multiple files stacked on the tape.

An assembly language routine is called to print the tape. It also
attaches to the line printer unit and will spin until attached. The
attach in the PROC will give a message if another user is presently
attached to the line printer or mag tape.

Summary of Spooler Error Messages

SPOOLING TO LPTR:

XLPTR ATT. TO ANOTHER LINE*
The line printer is attached to another line. The spooler will wait
until the printer is free before printing. This message is output

when the print file has been closed and is ready for printing.

®LPTR CABLE OFF%*

IX-15

REALITY 2.0 UPDATE

The line printer connector is loose or the cable is bad. The spooler
will spin and wait for good status.

XLPTR OFF-L INE¥®

Line printer is powered off, the off-line switch is in the off-line
position, or the paper has broken. The message is printed just as the
file is queued for printing. The spooler will process the file as
normal, then it will spin and wait for the line printer to go ready.

¥LPTR PRINTING*

The line printer was busy at the time of status. Another spooled file
is being printed. This message does not come out every time because
its timing is dependent on line printer state. Thus, the line printer
may be printing without getting the message.

SPOOLING TO MAG TAPE:

MAG TAPE ATTACHED TO ANOTHER LINE TYPE (A) TO ABORT OR (G) TO
TRY AGAIN (A/G)

The user should go to another terminal and detach the tape unit (or
hit break and detach by using debugger) and type 'G' to try again. -

The 'A' response will release all the spooled frames and exit to TCL.

MOUNT WRITE RING ON MAG TAPE AND TYPE C/R TO GO

This message allows the user to put a write ring on the tape without
aborting the job and losing spooled output. Merely, mount the write
ring, put the tape at load point and type carriage return to try
again.

MISC ERROR MESSAGES:

“OPEN FILE PRINT QUE FULL¥
The 32 entry queue of open print files is full. These are files that
have not been closed and are not ready for printing. Exiting to TCL
will close all the files for a line. Loading the program OPNPF from
SYSTEM-MODES will clear the queue.

This should only be done when loading the spooler. The LOAD-SPOOLER
proc will re-load OPNPF.

#PRINT QUE FULL*
The 32 entry queue of closed print files is full. The spooler will do
a release-quantum for 40 times, then try to put an entry in the queue

again. Consequently, the message will be repeated until the entry is
made.

IX-16

REALITY 2.0 UPDATE

This queue also holds all of the hold files. Some of the hold files

may have to be deleted. It is not recommended to leave hold files on
the disc for any long periods of time. Five hundred print characters
(including blanks) occupy one frame on the disc.

Miscellaneous Commands

BLOCK-PRINT, BLOCK-TERM

These verbs will print characters in a 9 by n block form on either the
line printer or the user's terminal respectively. Any ASCII character
may be printed. Each word in the input line will cause a carriage
return and three line feeds prior to printing the word in block form.
Any word containing single quotes (') must be contained within double
quotes ("), and vice versa. The surrounding quotes will not appear in
the output.

The program uses a file named BLOCK-CONVERT to create the blocked
characters. A BLOCK-CONVERT file already exists which contains the
conversion specifications for all printable ASCII characters (no lower
case alphas, however). With this file characters will be printed as

9 by 12 to 9 by 20 blocks. If it is desired to change the way any
character is printed, it is necessary to change the corresponding item
in the BLOCK-CONVERT file. The item-id of the item is the character
to be converted. Each item in the file must consist of exactly

ten (10) attributes; the first must specify in decimal the number of
horizontal bytes in the blocked character to be output, (i.e., n of the
9 by n block mentioned above). The second and subsequent attributes
provide the conversion specification. These attributes contain one or
more values; each value except the last is separated from the preceding by
a value mark (VM), hex "FD". The first character of the first value

in each attribute must be "C" or "B". These signal that the output
matrix line of the blocked character begins with a character or a blank
respectively. Immediately following must be the number of characters
or blanks in decimal. The presence of a value mark indicates a switch
from character to blank status or vice versa and must be followed by
the number of bytes to be output. The process continues until the
attribute mark at the end of the current line.

For example an "X" might be specified as follows:

001 7 blocked character is 7 bytes wide

002 ci]s]1 output 1 char, 5 blanks, and 1 char

003 B1]1]3]1]1 output 1 blank, 1 char, 3 blanks, 1 char,
1 blank

004 B2]1]1]1]2 output 2 blanks, 1 char, 1 blank, 1 char,
2 blanks

IX—J.7

REALITY 2.0 UPDATE

005 B3]1] 3 output 3 blanks, 1 char, 3 blanks

006 B2]1]1]1]2 output 2 blanks, 1 char, 1 blank, 1 char,
2 blanks

007 81]1]3]1]1 output 1 blank, 1 char, 3 blanks, 1 char,
1 blank

008 Cl]S]l output 1 char, 5 blanks, 1 char

009 B7 output 7 blanks

010 B7 output 7 blanks

Words to be blocked cannot have more than nine (9) characters, and in
addition, the total number of bytes (including three (3) blanks
separating each blocked character in a word cannot exceed the current
line length set by the last TERM verb.)

The following error message will be produced if the corresponding
error occurs.

[520] NO DATA FOR BLOCK OUTPUT (A string of characters to be
blocked did not follow the verb)

[521] TOO MANY CHARACTERS IN WORD TO BLOCK (more than nine
characters specified in a word)

[522] BLOCK CONVERT FILE MISSING OR IMPROPERLY DEFINED

[523] BLOCK OUTPUT WOULD EXCEED PAGE WIDTH (see discussion
above)

[524] INPUT CHARACTER 'x' IS NOT IN BLOCK CONVERT FILE

[525] INPUT CHARACTER 'x' IS IMPROPERLY FORMATTED IN BLOCK
CONVERT FILE

An example of BLOCK-PRINT appears on the next page.

Debug
The user can always terminate execution by depressing the break-key.
This interrupts the process and enters the debug package. The
following alternatives are available:

G Resume processing

END Discontinue processing return to TCL

OFF Discontinue processing exit to log-off

P Disable printing (normally followed by G)

IX-18

REALITY 2.0 UPDATE

TITTTTTTTTTT HHHH HHHH TIITIIIIIIIII $SS555555S
TTTTTTTTTTTIT HHHH HHHH IIIITIIIIIIII SSSSSSSSSSSS
TTTT HHHH HHHH II11 $SSS
TTTT HHHHHHHHHHHH 1111 SSSS
TTTT HHHHHHHHHHHH 1111 $S55555555S
TTTT HHHH HHHH 1111 $SSS55555SS
TTTT HHHH HHHH 1111 $SSS
TTTT HHHH ~ HHHH IIITIIIIIIII SSSSSSSSSSSS
TTTT HHHH HHHH TIIIIIIIIIII $SSS5555SS
ITIIIIIIITII SSSSSSSSSS AAAA NNNN NNAN
ITITITIIIIIIT SSSSSSSSSSSS AAAAAA NNNAN NNNN
1111 S$SSS AAAAAAAA NNNNNN - NNNN
1111 $SSS AAAA AAAA NNNNNNN NNNN
1111 $SS555555SS AAAA AAAA NNNNNNNNANNN
1111 $55555555SS AAAAAAAAAAAA NNNN NNNNNNN
1111 SSSS AAAAAAAAAAAA NNNN NNNNNN
ITITIIIIIIII SSSSSSSSSSSS AAAA AAAA NNAN NNINAN
ITITIIIIIIII SSSSSSSSSS AAAA AAAA NNNN NNNN
EEEEEEEEEEEE XXXX XXXX
EEEEEEEEEEEE ~ XXXX XXXX
EEEE XXXXXXXX
EEEEEEEEEE XXXXXX
EEEEEEEEEE XXXX
EEEE XXXKXXX mmmmmmmmm o
EEEE T TS0 G
EEEEEEEEEEEE XXXX XXXX
EEEEEEEEEEEE XXXX XXXX
AAAA MMMM MMMM PPPPPPPPPPP LLLL EEEEEEEEEEEE
AAAAAA MMMMM MMMMM PPPPPPPPPPPP LLLL EEEEEEEEEEEE
AAAAAAAA MMMMMM MMMMMM PPPP PPPP LLLL EEEE
AAAA AAAA MMMMMMM MMMMMMM PPPP PPPP LLLL EEEEEEEEEE
AAAA AAAA MMMM MMMMM MMMM PPPPPPPPPPPP LLLL EEEEEEEEEE
AAAAAAAAAAAA MMMM MMM MMMM PPPPPPPPPPP LLLL EEEE
AAAAAAAAAAAA MMMM MMMM PPPP LLLL EEEE
AAAA AAAA MMMM MMM PPPP LLLLLLLLLLLL EEEEEEEEEEEE
AAAA AAAA MMMM MMMM PPPP LLLLLLLLLLLL EEEEEEEEEEEE

IX-19

REALITY 2.0 UPDATE

At the TCL level, the session is terminated by typing the command OFF.

DUMP

Reality provides a means of examining the virtual memory frames from
the disc via the dump command. The user types the verb DUMP plus a
beginning and an ending FID. The appropriate frames are displayed on
the terminal.

The dump command has the following format:

DUMP fidl, fid2 (options)
Valid options are listed below; multiple options are separated by
commas :

P Dump to the line printer instead of the terminal
n-m Character count to restrict dump to characters '"n"
through "m'"; only valid if "L" option is not specified

L Dumps "1link" fields only (no data dump)

G Dumps "'group' data - all data for the beginning of a
linked frame set through the last frame in the group.
Only fid1 is valid if G is present.

If the optional G parameter is not specified the data in frames Fid
through fid, will be dumped; preceding each 500 bytes of data dumped
for each frame, the links are displayed. Specifying the L option
inhibits the data dump and dumps only the links. If only the first

fid1 is specified, fidl onward will be dumped.

MESSAGE, MSG

All Reality system users may communicate with the other users on the
system. To transmit a message to another user, type the verb MESSAGE,
or MSG, followed by the user's account name, then the text of the
message. The maximum message is 108 characters long. Anyone
currently active on the account referenced will receive the message.
If the user is not presently logged on, the system will respond with
"USER NOT LOGGED ON". Users with systems privileges level-two may
broadcast to all active users by typing MESSAGE * followed by the
message text.

EXAMPLE--

MESSAGE * GOOD MORNING

IX-20

REALITY 2.0 UPDATE

TERM

Different terminal characteristics may be accommodated through the use
of the TERM command. The format of the command is as follows:

:TERM pl,p2,p3,p4,pP5,p6

Individual parameters may be null and, if null, the previously defined
parameter remains in force. (Refer to LOGON/LOGOFF section). The
parameter definitions are:

pl terminal line length (characters/line) 16<pl<140
P2 number of print lines per page

p3 number of blank lines per page (sum of p2 and p3 equals
page length)

p4 number of delay or idle characters following each carriage
return/line feed; this is used for terminals that require
a pause after a CR/LF.

P5 number of delay characters following each top-of-form;
if non-zero, a form—feed (X'OC') character is also output
before each page.)

pb backspace character; an ASCII backspace (control-H) is
always input to backspace over, or erase, the last
character that was input; however, the user may set the
actual character echoed to his terminal. This accomodates
terminals that cannot physically backspace, or that have
a backspace character other than the ASCII backspace.

EXAMPLE (for standard Microdata (Adds) terminal)--

:TERM 79,23,1,3,1,21

This example performs the following functions:
Carriage width set to 79 characters
Number of print lines per page = 23
Blank lines after top-of-page = 1
Idle characters after carriage return = 3
Idle characters after top-of-form =1

Character echoed to a "Control-H' input = 21 = X'15"'

IX-21

REALITY 2.0 UPDATE

TIME

System time and date can be displayed on the terminal by typing the
verb TIME. Time is printed in the form hh:mm:ss, as on a 24-hour
clock.

WHO

WHO is a TCL-I verb which returns the line number and the account

name to which you are logged on. The line number is computed by
subtracting the PCB FID of line zero from your PCB FID and dividing by
32. The account name is obtained by looking your PCB FID up in the ACC
file and returning attribute one. If not found "UNKNOWN'" is returned as

account name.

IX-22

REALITY 2.0 UPDATE

Section X

ENGLISH LANGUAGE

INTRODUCTION

ENGLISH is a user oriented language used for accessing files within
the system. An input sentence is constructed and terminated by a
carriage return (:) . This sentence directs the appropriate ENGLISH
processor to perform some specific retrieval function. The language
is limited natural English and the formats for an input sentence are
both simple and very general. The ENGLISH processors, together with
the use of dictionaries, permit inputs to be stated directly in the
technical terminology natural to each application area. The ENGLISH
language uses the lineal format natural to prose text, accepts any
number of variable length words, and permits a limited freedom of word
order and syntax. An extension of descriptive error messages are used
to inform the user of illegal constructs.

The general form of an ENGLISH sentence is as follows:
VERB file-name 'item-list' selection-criteria output-specification

The item-list specifies those items eligible for consideration, the
absence of an item—list implies all items. An item—list consists of
specifically enumerated item-ids, each enclosed within single quotes,
additionally constrained by relational operators and logic connectives.
A selection-criteria is optional and further limits the items for
output to those meeting the specified conditionals. An output-
specification enumerates those attributes desired for output; absence
of an output-specification implies all attributes as defined with an

S or X code in the file dicticnary.

EXAMPLE--

:SORT_ACCOUNT '10000' WITH CURR-BALNC ''19.75'" NAME ADDRESS
CURR-BALNC (T)

PAGE 1 13.45 25 OCT 1974
ACCOUNT... NAME........00vtnn ADDRESS......evvne CURR-BALNC
22030 F E CABRON 101 BEGONIA 20.50
22070 A A ALTHOFF 119 BAY STREET 22.60
23090 W J HIRSCHFIELD 230 BEGONIA 20.45
END OF LIST

REALITY 2.0 UPDATE

ENGLISH Input Rules

The following rules apply to the use of ENGLISH language input
sentences.

1. The first word of any input sentence must be a verb defined
in the Master Dictionary (M/DICT).

2. gxactly one file-name defined in the M/DICT must appear in
each sentence.

3. A sentence is terminated by a carriage return. A sentence
may be continued to another line by typing a shift-control-0

4. File-names may consist of any sequence of non-blank
characters and must be unique within the M/DICT and within
all file dictionaries.

5. Any number of attribute-names may be used in a sentence.

6. Attribute-names may consist of any sequence of non-blank
characters and must be unique within their associated
dictionary and the Master Dictionary (M/DICT).

7. Any number of modifiers, connectives, and relational opera;
tors may be used which have been pre-defined in the Master
Dictionary (M/DICT).

8. Verbs, file-names, attribute names, modifiers, connectives
and relational operators must be immediately followed by a
blank or language delimiter (i.e., single quote, double
quote or carriage return).

9. Specified item-ids are enclosed within single quotes (e.g.
'XYZ') and may appear anywhere within the sentence.

10. Specified values are enclosed within double quotes (e.g.
"ABC") and are attributed to the previous attribute-name.

ENGLISH Verbs

Verbs are action oriented words which evoke a specific processor. One
and only one verb must begin each ENGLISH sentence. Verbs are defined
in the Master Dictionary (M/DICT) as described in the chapter on
Terminal Control Language (TCL). A set of verbs are provided, but the
user may define any number of additional synonyms by copying the verb
definition into a M/DICT item with the desired synonym name as the
item-id.

REALITY 2.0 UPDATE

LIST and SORT Verbs

The verbs LIST and SORT are used to generate a formatted output. The
only difference is the LIST verb orders the output in the sequence
specified and SORT orders the output in some specified sorted order.
SORT always sequences on the item—-ids and optionally by any number of
specified attributes using the modifier BY. LIST will sequence on the
order in which the item-ids have been specified in the input sentence.
If no item-ids have been specified in an input sentence, all item-ids
are implied and LIST will present these items in the hash sequence in
which they are stored on the file. Generated output will be formatted
into a columnar output if possible taking into account the maximum
defined size of the specified attributes and their associated names
along with the width of the terminal platen as defined by the TCL verb
TERM. If more attributes have been specified than will fit across the
page, a non-columnar output will be generated with the attribute names
down the side and the associated attribute values to the right.

EXAMPLE--

:LIST ACCOUNT NAME ADDRESS (%)

PAGE 1 14:31 25 OCT 1974
ACCOUNT... NAME.....cetevenneennn ADDRESS . ¢ivvvanenns '
11080 E M AWAD 107 BAY STREET
23070 L R MARCHANT 219 COVE STREET
23095 W E ZUMSTEIN 224 BEGONIA
35060 J A SCHWARTA 331 DOCK WAY
35085 J F SITAR 301 DOCK WAY
11025 R S MARCUS 107 BEGONIA
11105 C C GREEN 112 AVACADO
23000 H T LEE 200 BAY STREET
23025 D C BINGAMAN 230 BAY STREET
35015 W F GRUNBAUM 318 COVE
11050 J R MARSHECK 125 R
11075 T F LINDSEY 11
23040 P B SCIPMA
23065 J WOSK
23110 J L VANGOTHEN
35030 F M HUGO
J W ROMEY
R

X-3

REALITY 2.0 UPDATE

EXAMPLE--

:SORT ACCOUNT NAME ADDRESS Ca

PAGE 1 14:31 25 OCT 1974
ACCOUNT... NAME......eeeeee..0e ADDRESS.....cuveen .
11000 M +H KEENER 100 ANCHOR PL
11015 L K HARMAN 118 ANCHOR PL
11020 J T O'BRIEN 124 ANCHOR PL
11025 P R BAGLEY 130 ANCHOR PL
11030 F E CABRON 101 BEGONIA
11035 R S MARCUS 107 BEGONIA
11040 E G MCCARTHY 113 BEGONIA
11045 F AZ-DRESCH 119 BEGONIA
11050 J R MARSHECK 125 BEGONIA
11055 W H KOONS 131 BEGONIA
11060 F T NATORI 131 BAY STREET
11065 C V RANDALL 125 BAY STREET
11070 A A ALTHOFF 119 BAY STREET
11075 T F LINDSEY 113 BAY STREET
11080 E M AWAD 107 BAY STREET
11085 A B SEGUR 101 BAY ST
11090 J W JENKINS 130
11095 J B STEINER
11100 E F CHALMERS
105 C C GREEN
0 D L WEISBRO
D R MAS

The SORT verb interacts with both the Function Correlative processor

and the Conversion processor. Before the sort-key is built, the "F'",
"G" or "T" correlative functions will be performed, and the "T" and

"U" conversions. Note that the "M" and '"D" conversions are not per-
formed, as they do not affect the results of sorting, and not performing
those conversions will save processing time.

Multiple ascending and descending sort-keys may be intermixed at will.
If the descending sort is required on the item-id alone, a descending
sort-key with an attribute synonymous to the item—-id must be specified.

An attribute with an AMC of 9999 will cause the size of the item (as
defined in the count-field of the item) to be retrieved and used as
the value referenced. Previously such an attribute with an AMC of
9999 may also be used as a selection criterion, thus allowing one to
LIST or SORT items conditionally on their size. For example, the
attribute MODE-SIZE is defined in the dictionary of SYSTEM-MODES as
below

REALITY 2.0 UPDATE

EXAMPLE--

MODE-S 1 ZE
001 A
002 9999
003

004

005

006

007 MDO,
008

009 R
010 9

An example of a SORT statement using MODE-SIZE is:

SORT SYSTEM-MODES MODE-SIZE WITH MODE-SIZE<'7000Q"
COUNT Verb
The COUNT verb counts the number of items meeting the conditions as
specified by the combination of item~list and selection criteria.
The output generated by this verb is simply the number of items
counted.
Up to 231-1 (2147483647) items can be counted.

EXAMPLE~-~-

:COUNT ACCOWINT (3)

67 ITEMS COUNTED.

:COUNT ACCOUNT WITH BILL-RATE '.3Q" @

23 ITEMS COUNTED.

:COUNT_ACCOUNT >'10000' WITH CURR-BALNC AND WITH BILL-
RATE ".30" (1)

6 ITEMS COUNTED

SUM and STAT Verbs

The SUM and STAT verbs provide a facility for summing one specified
attribute. In addition to the sum, the STAT verb provides a count and
average for the specified attribute. If no attribute is specified
then STAT and SUM operate on the entire item, providing a facility for
summing the number of bytes in an item or set of items. The output
generated by these verbs are the derived statistics.

REALITY 2.0 UPDATE

:SUM ACCOUNT CURR-BALNC @

TOTAL OF CURR-BALNC IS : 169.40

:STAT ACCOUNT CURR-BALNC @

STATISTICS OF CURR-BALNC :
TOTAL = 169.40 AVERAGE = 15.400 COUNT = 11

SELECT Verb

The SELECT verb provides a facility to select a set of items using the
item-list and the selection-criteria. These selected items are
available one at a time to TCL-II processors. The output from the
SELECT verb is a message signaling the number of items extracted or
selected. The user then responds by typing in a single TCL-II
sentence. In the processing of the sentence, all items will be
processed from the previously selected item-list.

The following paragraph describes the use of SELECT with the TCL-II
verbs B/ADD and B/DEL. This use differs from the use of SELECT with
all other TCL-II verbs, described in Section IV.

When using the BATCH Processor after a SELECT, the item-id currently
being processed is available to the BATCH-string. This must be
specified in the (only) input line to BATCH after a SELECT; which must
now contain at least one item-id substitution code, an asterisk (¥).
More than one asterisk is permitted; each will be replaced by the
item—id currently being processed.

EXAMPLE 1--

'SELECT ACCOUNT WITH SEWER-ASMT C)

10 ITEMS EXTRACTED.
:B/ADD M/DICT UPDATE-ACCOUNT

>% 2,00

'23070' UPDATED
'35025' UPDATED
'23065' UPDATED
'23080' UPDATED
'35000"' UPDATED
'35025' UPDATED
'23075' UPDATED
'35020"' UPDATED
'23060' UPDATED
'35005' UPDATED

X-6-1

THIS PAGE INTENTIONALLY LEFT BLANK

REALITY 2.0 UPDATE

EXAMPLE 2--

:SELECT DICT MD WITH D/CODE "'D" C)

12 ITEMS SELECTED.
:B/ADD DICT BS JUNK
>* DATA * ABCDEF C)

'TSYM' UPDATED.
ETC.

ERROR MESSAGE 282 :DATA INPUT L.KE TO BATCH AFTER A SELECT

MUST CONTAIN AT LEAST ONE ITEM-ID SUBSTITUTION CODE
(ASTERISK *). WILL BE RETURNED IF NO ASTERISKS ARE FQOUND.

SSELECT Verb

The SSELECT verb combines the ENGLISH SORTing capability with the
SELECTion capability. SSELECT allows the same selection criteria as
SELECT and allows the selected items to be sorted, just like with SORT.

File-Name Specification

Each ENGLISH sentence must contain one and only one file-name. The
file-name defines the primary file on which the sentence operates and
must be appropriately defined in the Master Dictionary (M/DICT). The
modifier "DICT" may be included anywhere in the sentence (normally
just preceding the file-name) to specify operation on the file
dictionary rather than the file.

EXAMPLE--

:COUNT DICT ACCOUTNT (%)

79 ITEMS COUNTED.

X-6-2

Item List

An item list defines those items desired for processing. Absence of an
item-list implies all items on the file. An item-list consists of any
number of specified item-ids surrounded by single quotes (e.g. 'XYZ').
These item—ids may be interspersed at will throughout the ENGLISH sentence.
Complex item—lists may be constructed using relational operators and
logical connectives. For example, the item-list:

'ABC' OR > = 'DEF' AND < 'GHI'

selects item 'ABC' as well as all items greater than or equal to 'DEF' and
also less than 'GHI'., The hierarchy of the logical connectives in an item-
list is left to right. For example, the following item-list shows the left
to right hierarchy, using explicit parentheses to show the implicit
grouping.

(CC<'A'D) OR > 'B' AND <'C') OR >'D' AND <'E")
The OR connective is always implied and may be left out., Therefore, the
list: <'A' > 'B' and <'C' > 'D' AND <'E' is equivalent to the preceding

one,

The left to right hierarchy is shown in the following table:

|
Result :
Connection True False
AND Continue Stop comparison;
Comparison list false
OR Stop comparison; Continue
list true comparison

:SORT ONLY EACH ACCOUNT >='11000"' AND<='11020"' OR >='11040"
AND <='11050' (©)

PAGE 1 21:09 25 OCT 1973
ACCOUNT. ..

11000
11015
11020
11040
11045
11050

END OF LIST

:SORT ONLY EACH ACCOUNT >='11040" AND <='11050"'" OR >="11000"
AND <='11020"' ()

g

PAGE 1 21:10 25 OCT 1973

ACCOUNT. ..
11040
11045
11050

END OF LIST

Selection Criteria

The selection-criteria specifies a set of conditions which must be met by
an item before it is eligible for output. The selection-criteria is made
up of one or more selection-criterion. Each selection-criterion must begin
with the connective WITH followed by a single attribute-name. The
attribute-name may be followed by a value-list. The rules for value-lists
and the usage of relational operators is identical to that for item-lists
except that double quotes surround the actual values. For example, the
following selection-criterion is met by those items which have at least -
one value for the attribute DESCRIPTION which is either equal to "ABC" or
is both greater than "DEF" and less than "GHI".

WITH DESCRIPTION "ABC" OR > "DEF" AND <« "GHI"

If a selection-criterion has no value-list then it is true for those items
which have at least one value for the specified attribute-name. The
selection-criterion may be further modified by using either or both of the
modifiers EVERY or NO immediately following the WITH. The modifier EVERY
requires that every value for the attribute meet the specified conditional
while the modifier NO reverses the sense of the entire conditional.

:LIST ACCOUNT TRNS-DATE TRNS-CODE WITH EVERY TRNS-DATE
BEFORE ''3/18/72" (Y)

PAGE 1 18:22 25 OCT 1973
ACCOUNT... TRNS-DATE.. TRNS-CODE

11075 17 MAR 1972
17 MAR 1972
17 MAR 1972
13 MAR 1972
15 JAN 1972
14 JAN 1972
10 JAN 1972

A—-AOT0VT-AHT

END OF LIST

:COUNT ACCOUNT WITH EVERY TRNS-CODE NOT "P" (¥)

7 ITEMS COWUNTED.

Selection-criterion may be used at any point within an ENGLISH sentence;
however they are all logically grouped together (in fact the ENGLISH pre-
processor reorganizes the input sentence, grouping the selection-criterion
together). This logically grouped s2t of selection-criterion constitute
the selection-criteria. A selection-criteria may consist of up to nine AND
clauses. An AND clause is made up of any number of selection-criterion
bound by AND connectives. The AND clause is terminated when an OR connec-
tive is found in the left to right scan (note: the absence of an AND
connective implies an OR connective). For an item to pass the selection-
criteria the conditions specified by any one of the AND clauses must be
met. An example of the logical hierarchy of AND clauses is shown below,
the parentheses have been included for clarity but do not appear in an
actual ENGLISH input sentence.

(WITH DESC '"ABC" AND WITH VALUE "1000") OR (WITH DESC ''ABC"
AND WITH NO VALUE)

:LIST ACCOUNT AVG-USAGE SEWER-ASMT BILL-RATE. (@
:WITH AVG-USAGE "'20" OR ''25" AND WITH SEWER-ASMT ''150'"_ (@
:OR WITH AVG-USAGE ''20'"' OR '"'25' AND WITH BILL-RATE ".30'" (©

PAGE 1 17:36 25 OCT 1973

ACCOUNT. .. AVG-USAGE SEWER-ASMT BILL-RATE

11050 20 0.30
23080 20 150 0.35
11020 20 0.30
11085 25 0.30
END OF LIST

:COUNT ACCOUNT WITH CURR-BALNC AND WITH BILL-RATE >"'".25" AND <'.45'_
:AND WITH DEPOSIT AND WITH AVG-USAGE > "10" (@

11 ITEMS COUNTED.

An ASCII up-arrow or circumflex (shift N) may be used as an ignore character
in any value or item-id. All comparisons made against the file ignore the
characters in the corresponding position.

EXAMPLE --

SORT ACCOUNT NAME ADDRESS WITH ADDRESS """~ BEGONIA" SORT-ON
ADDRESS (T)
PAGE 1 16:43 25 OCT 1973
ACCOUNT... NAME................ ADDRESS.............
11030 F E CABRON 101 BEGONIA
11035 R S MARCUS 107 BEGONIA
11040 E G MCCARTHY 113 BEGONIA
11050 J R MARSHECK 125 BEGONIA
11055 W H KOONS 131 BEGONIA
23115 T F PIATKOSK! 200 BEGONIA
23110 J L VANGOTHEN 206 BEGONIA
23105 B G PAUL 212 BEGONIA
23100 G J PACE 218 BEGONIA
23095 W E ZUMSTEIN 224 BEGONIA
23090 W J HIRSCHFIELD 230 BEGONIA

Comparison are performed in the following manner:

If the fields are specified as left-justified, the comparison will
be alpha. For example, sorted items:

09
3
31
A
AA
z

If the fields are specified as right-justified and the items are all
numeric, it will be a true numeric compare,

If the fields are right-justified and the items are mixed, the com-
parison will be alpha-numeric., For example:

9

7z
AAA
0000
1234
QWIZ

Output Specification

All attribute~names not a part of a selection-criterion (i.e. preceded by
the modifier WITH) or not modified by certain control modifiers (e.g.
EVERY, BY) are part of the output-specification, Attribute-values from

X-10

those items passing both the item-list and the selection-criteria will be
displayed in an automatically generated system format. This format will
include a heading line displaying the date, time and page number (unless
suppressed) at the beginning of each new page. The page size is set through
the use of the TERM verb (see System Commands). The LIST processor will
attempt to format the output into a columnar format with the attribute name
as a column heading. This column-format is attempted using as a column
width for each specified attribute either the attribute max-size from the
dictionary or the attribute-name whichever is larger. If the sum of the
column widths, adding one blank separator for each specified attribute-
name, does not exceed the page width as set by the TERM verb; a columnar-
format will be generated. 1In a columnar-format the attribute-names, as
specified, are displayed in a single line header across the top of the
page. The values for each of the items are then displayed in their respec-
tive columns. The attribute-name header is repeated at the top of each new
page. If the requested output exceeds the page width, the attribute-names
are listed down the side of the output with their respective values
immediately to the right. A significant difference between the formats is
that for the columnar-format all headings are listed only once for each
page whether or not values exist for the columns; while in the non-columnar-
format headings are displayed over for each item only if there are values
for the associated attributes,

:LIST ACCOUNT '11000' '11015' NAME ADDRESS START-DATE (¥)

PAGE 1 15:43 25 OCT 1973
ACCOUNT... NAME........ovviunnn ADDRESS............. START-DATE..
11000 M H KEENER 100 ANCHOR PL 25 OCT 1971
11015 L K HARMAN 118 ANCHOR PL 01 JAN 1968
END OF LIST

: TERM 60 g:z

:LIST ACCOUNT '11000' '11015' NAME ADDRESS START-DATE (¥)

PAGE 1 15:43 25 OCT 1973

ACCOUNT : 11000

NAME M H KEENER
ADDRESS 100 ANCHOR PL
START-DATE 25 OCT 1971

ACCOUNT : 11015

NAME L K HARMAN
ADDRESS 118 ANCHOR PL
START-DATE 01 JAN 1968

X-11

If no attribute-names are specified all are assumed and are generated by

successively retrieving the attributes 1,2,3 ... from the file dictionary
until no more can be found. These special attributes must have either an
S or X for their dictionary code. These special synonyms have a special

format (see below) specifying the heading-name to be used for output.

*LIST ACCOUNT '11000' (D

PAGE 1 15:35 25 OCT 1973

ACCOUNT : 11000
NEXT-ACCNT 11010
CSTMR-NAME M H KEENER
SERVC-ADDR 100 ANCHOR PL
MAIL-CITY. THE CITY
MAIL-STATE CA
ACCNT-STAT A
DEPOSIT-=. 10.00
START-DATE 25 OCT 1971
BILL-RATE. 0.30
TRASH-CHGS 2.00
AVG-USAGE. 27

END OF LIST

The item—id as specified by file defining item in either the file dictionary
or the M/DICT is always included in output-specification unless the

modifier ID-SUPP is used. If an output is to be restricted to only the
item~ids the modifier ONLY must precede the file-name to inhibit the
appending of the special synonyms.

The following table summarizes the various dictionary attributes as they
apply to the formatting of an output specification.

Name A/AMC Value Meaning
D/CODE 1 A attribute defining item
S special synonym
X special synonym to maintain order, but

ignore for output

A/AMC 2 attribute-no for A-code attributes, defines
attribute number.

S/NAME 3 text-name for S-code attributes, use this name
for heading (note: these names may be
padded with blanks to align non-
columnar output)

X-12

Name A/ANC Value Meaning

S/AMC 4 attribute-no for S-code attributes, defines
attribute number.

V/TYPE 9 L for columnar-output only, left justify
output in column, value size greater
than column width, value is folded

R for columnar-output only, right justify
output in column., If value size
greater than column width value
overlay previous columns,

V/MAX 10 n for columnar-output only, number of
characters to reserve for the column
width., Column width will be increased
if attribute-name is larger than
V/MAX

Ln for non-columnar output, left justify
output and reserve characters for each
repetition of a multi value., Multi-
values will fold at end of line and
repeat aligned with the start of the
first value,

Rn for non-columnar output, as for L but
right justify in the reserved value
area

Modifiers, Relational Operators and Connectives

Modifiers, connectives and relational operators may be used to further
modify the meaning of an ENGLISH sentence or to add naturalness. These
special words are defined as items in the Master Dictionary (M/DICT) and
to that extent are reserved words. However, (with the exception of DICT)
a user may define any number of synonyms for these words and even remove
the system defined entries thereby creating his own semantics for the
language.

MODIFIERS

BREAK-ON. Defines a control break as any change in value for the
immediately following attribute. Up to four control breaks are permitted
and the left-most defined control break is the highest level. On the
occurrence of a specified control break the attribute causing the break
displays asterisks ** in its corresponding column. Also the current sub-
totals (see TOTAL) are printed and the totals are rolled to the next level.

X-13

:SORT ACCOUNT WITH CURR-BALNC TOTAL CURR-BALNC TOTAL DEPOSIT- (¥)
*BREAK-ON BILL-RATE BY BILL-PATE (T)

PAGE 1 16:33 25 OCT 1973

ACCOUNT... BILL-RATE CURR-BALNC DEPOSIT.

11015 0.30 8.60 10.00
11030 0.30 20.50 10.00
11075 0.30 13.10 10.00
11115 0.30 9.20 10.00
23030 0.30 11.80 10.00

nux 63.20 50.00
11070 0.35 22.60 10.00
23025 0.35 18.70 10.00
23090 0.35 20.45 10.00
35095 0.35 19.25 10.00

nux 81.00 40.00
11100 0.40 17.50 10.00
35075 0.40 7.70 10.00

RER 25.20 20.00
s 169.40 110.00

PAGE, Halts list at end of each page when output is to terminal. Listing
is resumed when C) is entered,

DBL-SPC. Sets double spacing for output list,

DICT, Modifies the file-name so that the ENGLISH sentence references the
file dictionary instead of the file,

EVERY, EACH., Modifies a selection-criterion so that every value for the
attribute must meet the specified conditional for the selection criterion
to be true. This modifier follows the modifier WITH.

HDR-SUPP, SUPP, Suppresses the automatic time and date heading at the
top of each new page. Also suppresses the end-of-list message.

:LIST ACCOUNT '11015''11020''11074' HDR-SUPP NAME ADDRESS Ca

ACCOUNT... NME................ ADDRESS.............

11015 L K HARMAN 118 ANCHOR PL
11020 F E CABRON 101 BEGONIA
11075 T F LINDSEY 113 BAY STREET

X-14

REALITY 2.0 UPDATE

COL-HDR-SUPP. Suppresses column headings, as well as the time and date
headings and the "END OF LIST" message.

ID-SUPP. Suppresses the file-name and the item-id on LIST or SORT
statements.

LPTR, (P). Routes the output to the line-printer attached to the

ONLY. Used preceding the file-name, inhibits the appending of the
special synonyms when a null output-specification is encountered.
Used in the same sense as EACH, except that ONLY may not follow WITH.

BY. Designates the following attribute-name as a sort-key. The
item-id is always a sort-key and additional sort-keys may be specified
using this modifier. The left most specified sort-key is the most
significant. Sequencing is in ascending order comparing the ASCII
value of the characters left to right. Sort keys are generated in such
fashion that numeric portions of the key are logically padded with
leading zeros so that numeric fields sort correctly.

BY-DSND. Same as BY, but sequencing is done in descending order.
SORT ACCOUNT CURR-BALNC AVG-USAGE BILL-RATE SEWER-ASMT 0° (3

BY CURR-BALNC BY AVG-USAGE BY BILL-RATE Q€ !g)

:SEWER-ASMT_ITEM-1D).

PAGE 1 16:52 25 OCT 1973

ACCOUNT... CURR-BALNC AVG-USAGE BILL-RATE SEWER-ASMT

35000 13 0.35 150
35040 16 0.35

35005 17 0.35 150
23000 19 0.35

23055 19 0.35

11020 20 0.30

11050 20 0.30

23080 20 0.35 150
11060 21 0.30

9999 21 0.30

35090 21 0.35

11040 22 0.30

35070 22 0.35

23060 23 0.35 150
23065 23 0.35 150
23115 24 0.35

35100 24 0.35

35025 24

11085 25

23040

23050

X-15

REALITY 2.0 UPDATE

_TOTAL. Causes totals for the following attribute to be accumulated.
Up to four levels of totals will be stored. These totals are printed
and rolled forward in conjunction with a control break (see BREAK-ON)
at the associated level.

WITH, IF. Designates a selection-criterion. The following attribute-
name and associated value-list constitute a conditional limitation
which must be satisfied for the selection-criterion to be met.

RELATIONAL OPERATORS

Relational Operators; are used to conditionally limit the attribute-
values and item—-ids which they immediately precede.

=. EQ, null limits to an equal relationship (e.g. DESC = "ABC" implies
a value of "ABC" must be found for the attribute DESC for the specified
relation to be satisfied). The absence of any relational operator
implies an equality.

>, GT, AFTER the retrieved datum must be greater than the specified
datum.

<, LT, BEFORE the retrieved datum must be less than the specified
datum.

>=, GE The retrieved datum must be greater than or equal to the
specified datum.

<=, LE The retrieved datum must be less than or equal to the specified
datum.

#, NE, NOT, NO (e.g. LIST ACCOUNT WITH CURR-BALNC NOT "10.00") Or
may be used to select items with a null attribute value. (e.g. LIST
ACCOUNT WITH NO SEWER-ASMT). The retrieved datum must be not equal
to the specified datum.

CONNECTIVES

AND. Logical connective specifying that both the connected parts must
be true. This connective may bind selection-criterion into AND
clauses, and logically AND item and value-lists. 1In all cases where
AND is not specified, OR is assumed.

A, AN, ARE, ANY, FILE, FOR, IN, ITEMS, OF, OR, THE. These connectives

are ignored by the ENGLISH preprocessor (throwaway). They are included
to provide a degree of naturalness.

X-16

REALITY 2.0 UPDATE

HEADING. A heading can be specified in the ENGLISH LIST or SORT
statement, which will be printed at the top of every page. The normal
page number, time and date, and column heading will be suppressed, as
will the END OF LIST message. The heading is entered, enclosed in
double-quote signs, immediately following the 'HEADING' connective
(D/CODE=CL); it may appear anywhere in the LIST or SORT statement.

All characters enclosed in the double quote signs are literal, except
the following:

A

4 specifies insertion of current page number
specifies start of a new line (carriage-return/line
feed insertion)

: specifies insertion of system time and date in the

standard format.

*e o»

or
]
\

The HEADING connective and its associated heading data are recognized
in the ENGLISH pre-processor (MD3), and the formatted heading stored
in the history string; the text is preceded by an "H"; the heading
text follows as it is, except for the following conversions: to AM,
to VM; to SVM. The text is terminated by a SM and a "Z'", HSEND
points to the SM. If the heading text enclosed in double-quotes does
not follow, error message 7 (HEADING TEXT MUST FOLLOW THE "HEADING"
CONNECTIVE) will be returned.

X-17

Section XI
CONVERSION

INTRODUCTION

Conversions may be defined for attributes which will apply special
conversion processing on the associated attribute-value just prior to out-
putting. The same conversions are also applied to values on input. The
purpose of the conversion facility is to provide a means whereby attribute-
values may be stored in some un-converted form on the file but be referenced
and displayed in a converted form. Conversions are stored as values for
the V/CONV attribute (AMC = 7) in the file-dictionary. Conversion process-
ing is invoked automatically by referencing an attribute-name with defined
conversion specifications. Multiple conversions may be defined for the
same attribute by storing multiple-values for V/CONV. Values in selection-
criterion will be converted by the pre-processor prior to comparison,
therefore it is important to remember that all comparisons are made with
converted values.

D Conversion (Date)

The date conversion allows a date to be input in a variety of formats and
will convert the date to a compact internal format suitable for arithmetic
processing. The formats for the date conversion are:

D

Dn

Dn*m

D - Date conversion code

=]
I

Number of digits to print in year for output; if null, 4 is
assumed (e.g., 1974)

*
[

Concatenated segment specification

=]
I

Number of concatenated segments to skip prior to
performing conversion (for both input and output).

The date conversion processor will accept a variety of input formats
including the following:

6/26/72 MM/DD/YY
6/26/1972 MM/DD/YYYY
26 June 72 DD MM.. YY

XI-1

These dates will be converted to any input format which is a signed integer
equal to the number of days plus or minus from December 31, 1967. Using
this technique the date 6/26/72 would be stored internally as the integer
1639, The following table shows a list of converted dates and their
associated internal formats.,

DATE.......- RAW‘DATE....

14 AUG 1940 -10000
05 APR 1965 -1000
22 SEP 1967 ~100
21 DEC 1967 -10
30 DEC 1967 -1
31 DEC 1967 0
01 JAN 1968 1
10 JAN 1968 10
09 APR 1968 100
26 SEP 1970 1000
18 MAY 1995 10000

On output the date is always converted to the form "DD MM YYYY" as shown in

the preceding list.

The year may be reduced in size or eliminated altogether

through the use of the "n'" option following the D-code.

MD Conversion (Mask Decimal)

The MD conversion provides a facility for converting and scaling numbers
with decimal points, commas and dollar signs to or from an internal format
of strictly a signed integer. The format for the MD conversion is:

MDnm , $

MD - Mask decimal conversion code

n - Single numeric digit defining the number of digits to
print following the decimal point. If n = 0, the
decimal point will not be ouput following the value,

m - Single numeric digit defining the number of implied
decimal digits for the integer on the file, If this
parameter is omitted, m = n is assumed.,

’ Optional parameter for output which causes commas
to be inserted appropriately,

$ Optional parameter for output which causes a dollar
sign to be appended preceding the converted output value.

XI-2

Examples:

V/CONV File-value Output-value
MD2 1234 12.34
MD23 1234 1.23
MD32 1234 12.340
MD2, -123456 -1,234.56
MD23,$ 1234567 $1,234,57

MT Conversion (Time)

The MT conversion provides a facility for converting a time shown as
hour:minute to or from internal format. The internal format is the num-
ber of seconds from midnight (24:00). The external format uses the

24 hour military format. The format for the MT conversion is:

MT

MX Conversion (Hexadecimal)

The MX conversion will convert any string of characters stored on the
file to or from its corresponding hexadecimal equivalent. One byte on
the file will convert to two hexadecimal digits. The format for the MX
conversion is:

MX

T Conversion (Translate)

The T conversion provides a facility for converting a value by translating
through a file. The value to be translated is used as an item-id for
retrieving an item from the defined translation file. The input value is
then converted by replacing it with a defined attribute-value from the
translation item. The format for the T conversion is:

T file name; c; input—amc; output—-amc
T - translate conversion code
file name - The file-name through which the translation takes

place. It may be preceded by the single
character "*" to indicate a dictionary.

XI-3

- separator

c - translate Sub-code, must be one of the following:

V - verify; conversion item must exist on file, and
specified attribute must have value for conversion,

C - convert; if conversion item does not exist, or
if specified attribute has no value use original
value; otherwise perform conversion,

I - input verify only; functions like a V for input
and a C for output,

0 - output verify only; functions like a V for
output and a C for input

X - convert; if conversion item does not exist, or

if specified attribute has no value, use null value;
otherwise perform conversion.

input-amc - attribute mark count for input translation, After
locating the translation item using the input value
as the item—id the attribute-value for the defined:
amc, if any, will replace (convert) the original

value, If this parameter is null to input translation
takes place,

output—amc -~ attribute mark count for output translation.
Functions similarly to input-amc but is invoked

for output translation, If this parameter is null
no output translation takes place,

Example:
Conversion Code: T sample-file; C;1;1

Sample-File items: Programmer

100
100
Programmer
Unconverted Converted
Value Value
Programmer 100
Engineer Engineer
100 Programmer

X1-4

U Conversion (User)

User conversion permits a user defined special purpose subroutine to be
evoked for special converson. The format is:

Unxxx
U - user conversion code

nxxx - Mode~ID (refer to Section XVI Operand Conventions)

At the point where conversion normally occurs for both input and output the
user program is entered with the value to be converted in a work area. For

the exact nature of the programming interface please consult the programming
documentation,

XI-5

Section XII
CORRELATIVES

INTRODUCTION

Correlatives may be used to define special processing interrelationships
(correlations) to be applied to attribute values. Correlatives are stored
as values for the V/CORR attribute (AMC=8) in the file-dictionary items.
Correlative processing is invoked automatically when referencing an
attribute-name with a defined correlative. Correlative processing for out-
put occurs as the values are retrieved from the file, and prior to being
output or used in a selection-criterion. Multiple correlatives may be
defined for the same attribute, with each defined correlative being a
multi-value.

D Correlative (Associative)

The D correlative 1s used to identify primary and secondary associative
attributes within the same item. There are two correlatives involved; D1
and D2. The form of the correlatives are:)

Dlj;amcl;amec2;amc3;...

D1 Correlative code identifying a primary associative
attribute

3 Separator

amc numeric attribute mark count of each of the defined

secondary association attributes in the file. Each amc
in the correlative must be numerically greater than the
primary D1 amc.

D2;amc
D2 Correlative code identifying a secondary association
attribute
H separator
amc numeric attribute mark count of the defined primary

associative attribute in the file.

The purpose of the D correlative is to provide a facility whereby a set of
attributes, the secondary D2's, can be logically grouped with a single
master attribute, the primary D1. This type of relationship is useful in
describing, for example, a list of purchase order numbers in a part-file

XII-1

where the purchase order number is the D1 and the set of related attributes-
values, like quantity-on-order, quantity-received, etc. are D2's, and each

relates back to and is grouped with, the primary D1 value.

The D1 attribute may have multi-values each separated by a value-mark.
D2 attribute should have a corresponding number of multi-values, however

Each

each of these multi-values may be multi-valued themselves; each sub multi-

value is separated by a secondary-value-mark (X'FC').

In the following

example both a columnar and non-columnar output is shown for a D1 attribute

and three associated D2 attributes.

items are also listed.

:LIST ACCOUNT '11080' DATE CODE UNITS DOLLARS ()

PAGE 1

ACCOUNT... DATE

11080 07
18
17
13
05
15
14
10

END OF LIST

:LIST ACCOUNT

APR
MAR
MAR
MAR
FEB
JAN
JAN
JAN

1972
1972
1972
1972
1972
1972
1972
1972

CODE

AW VOO

UNITS

15:24 29 OCT 1973

DOLLARS

2721

2696

'11080"' DATE CODE UNITS DOLLARS (@)

PAGE 1
ACCOUNT : 11080
DATE 07 APR 1972
13 MAR 1972
14 JAN 1972
CODE P
R
T
UNITS
2721
DOLLARS 9.50
7.50
2.00
END OF LIST

18 MAR 1972
05 FEB 1972
10 JAN 1972
B
P
R

2696
9.50
9.20
7.20

XII-2

15:24 29 OCT 1973

17 MAR 1972
15 JAN 1972

T
B

NN OO N NOO

The attribute defining dictionary

.50
.50
.00
.50
.20
.20
.00
.20

:LIST DICT ACCOUNT (@ATE' "CODE' '"UNITS' 'DOLLARS' (@

PAGE 1 15:27 29 OCT 1973

ACCOUNT... D/CODE. A/AMC S/NAME... S/AMC V/CONV... V/CORR...... V/TYP V/MAX
DATE S 20 DATE 20 D D1;21;22;23 R R11
CODE S 21 CODE 21 D2;20 R R11
UNITS S 22 UNITS 22 D2;20 R R11
DOLLARS S 23 DOLLARS 23 MD2 D2;20 R R11
END OF LIST

Function correlatives defined for attribiutes which also have D1, D2
correlatives ignore the D1, D2 correlative., A print-limiter on the D1
attribute causes all corresponding D2 values to be suppressed.

F Correlative (Function)

The F correlative is used to compute a value as a mathematical function on
a defined set of attributes within one item. All arithmetic operations
operate on the last two entries in a push-down stack. This push-down
stack has a maximum capacity of three entries. A function correlative is
comprised of any number of operands or operators separated by semi-colons,
When the function processor encounters an operand specification (i.e., a
numeric attribute-mark-count or constant) it "pushes" the corresponding
value into the stack. When the function processor encounters an arith-
metic operator it performs the corresponding operation on the last two
entries in the stack. The general form of the F correlative is as follows:

Fi;el;e2;e3;...

F correlative code
H separator
e element codes

a numeric amc specifying the value from the attribute
specified.

If a single valued attribute is to be repetitively added,
subtracted, etc., with a multivalued attribute the single
letter R should follow the amc entry in the F correlative,

Cn where n is a numeric constant to be used in the
computation,

D uses today's date in computation.

T uses current time in computation.

XII-3

an operator as below:
* multiplication of the last two entries in the stack.

/ division of the last entry in the stack by the second-
last entry.

+ addition of the last two entries in the stack.

- subtraction of the second-last entry in the stack from
the last entry.

S specifies that a Sum is needed of all previous compu-
tations; therefore only one value is returned if Sum
is specified. The S operator can only occur as the
last entry in the F-correlative.

= equal
< less than
> greater than

not equal
[equal to or greater than
] equal to or less than

Attribute operands may be multi-valued, When arithmetic operations are
performed on two multi-values lists (vectors) the answer will also be
multi-valued and will have as many values as the longer of the two lists.
Zeros will be substituted for the null values in the shorter list. In the
following example this concept is demonstrated.

Stack 1 5 10 15 (no value)
+

Stack 2 20 30 40 50

Stack 1 25 40 55 50

Stack 2 is compared to Stack 1; Stack 1 contains either a "1" or a "O"
depending on the result. A "1" indicates a positive or yes result; a
"0" indicates a negative or no result.

EXAMPLE --

F;C3;C3; = Stack 1 would contain a "1"

XII-4

By following with a data and a multiply operator, the attribute can be
conditionally set,

EXAMPLE --
F;C3;C3;=;C5,% Stack 1 now contains a "5"
FUNCTION PROCESSING
Element Description Action

amc attribute push corresponding attribute values into
push-down stack maximum three levels.
STACK 2 » STACK 3
STACK 1 » STACK 2
attribute values » STACK 1

Cn constant push numeric constant "n" into stack
STACK 2 » STACK 3
STACK 1 » STACK 2
n » STACK 1

+ ADD STACK 1 + STACK 2 —» STACK 1
STACK 3 » STACK 2

- SUBTRACT STACK 1 ~ STACK 2 » STACK 1
STACK 3 - STACK 2

* MULTIPLY STACK 1 * STACK 2 » STACK 1
STACK 3 » STACK 2

/ DIVIDE STACK 1/STACK 2 » STACK 1
STACK 3 —» STACK 2

S SuM Zﬁ STACK 1 —» STACK 1

prior to this operation STACK 1 may be
multi-valued, this operator sums all
those multi-values into a single value.

XII-5

Element Description Action

D DATE push numeric value representing current
system date into stack,

STACK 2 » STACK 3

STACK 1— -————— STACK 2

date —-- » STACK 1
T TIME push numeric value representing current

system time into stack.

STACK 2 » STACK 3
STACK 1 » STACK 2
time > STACK 1
= EQUAL 1) if STACK 1 = STACK 2, 1——» STACK 1
STACK 3 » STACK 2

2) if STACK 1 # STACK 2, 0—— STACK 1

STACK 3 - STACK 2
NOT EQUAL 1) 4if STACK 1 # STACK 2, 1——» STACK 1
STACK 3 » STACK 2

2) 4if STACK 1 STACK 2, 0——>» STACK 1

STACK 3 » STACK 2
< LESS THAN 1) if STACK 1 < STACK 2, 1—— STACK 1
STACK 3 » STACK 2

2) 4if STACK 1 NOT < STACK 2,0— STACK 1

STACK 3 » STACK 2

[EQUAL TO 1) 4if STACK 1 [STACK 2, 1——» STACK 1
OR GREATER

THAN STACK 3 » STACK 2

2) 4if STACK 1 NOT [STACK 2,0 —» STACK 1

STACK 3 » STACK 2

XI1-6

Element Description Action

> GREATER 1) if STACK 1 > STACK 2, 1—» STACK 1
THAN

STACK 3 » STACK 2

2) if STACK 1 NOT > STACK 2, O0—» STACK 1

STACK 3 -» STACK 2

] EQUAL TO 1) 4if STACK 1] STACK 2, 1— STACK 1
OR LESS

THAN STACK 3 » STACK 2

2) if STACK 1 NOT] STACK 2, O—% STACK 1

STACK 3 » STACK 2

G Correlative (Group Retrieved)

The G correlative 1s used to select one or more contiguous segments of a
concatenated attribute value from an item for retrieval. An attribute-value
in an item may consist of any number of concatenated segments with each
segment separated by an asterisk "*", The form of the correlative is:

Gm*n
G correlative code
m number of the first selected segment., If omitted, one is
assumed and retrieval begins with the first concatenated
value segment,
* concatenated segment separator
n number of contiguous concatenated segments to be selected.

The following diagram shows an example of the use of the G correlative,

Correlative Stored-value Retrieved-value
G*1 » ABC
G1*2 l _i_ J__ » DEF*GHI
G2*1 ABC*DEF*GHI*JKL GHI
Gl*1 ! —» DEF

G*2 » ABC*DEF

XII-7

T Correlative (Text)

The T correlative 1s used to extract a fixed number of characters from a
stored value. The form of the correlative is:

Tn

where n is the number of characters to extract. If the stored value is less
than '"n" characters long, only the actual number of characters stored will
be retrieved., Extraction takes place beginning with the first character
from left to right or right to left depending on whether type L or R is
specified for V/TYPE.

XII1-8

Section XIII
SECURITY

INTRODUCTION

Security codes may be optionally stored in the L/RET and L/UPD attributes
of a dictionary item to restrict access., Access may be denied at both the
file and attribute level, additionally separate codes may be assigned for
both retrieval and update. At LOGON, each user is assigned the set of
security codes which are in his logon-item. During the session whenever
an L/RET or L/UPD code is encountered, a search is made of the user-
assigned codes for a match; if no match is found, the user is denied
access. A security code may consist of any combination of legal ASCII
characters.

L/RET and L/UPD

Both file-definition ("D" code) and attribute-definition ("A" "S" code)
items have L/RET (retrieval lock) and L/UPD (update lock) defined as attri-
butes. When these attributes have values stored, they are known as
security codes. Although there is no prohibition against multiple values
for these attributes, only the first attribute-value is used for matching
against the user-assigned codes. Since each file and/or attribute may be
individually locked for both update and retrieval, a user must be assigned
multiple codes to that set of data he is allowed to access. Using this
feature, a complex '"mask' can be constructed for each user, giving each
user a different sub-set of files and attributes which he may access.

Security at the file level is invoked at the processor level. The follow-
ing processors are assumed to be updating processors and therefore require
a match on the L/UPD attribute in the file-definition item:

AS

BATCH (files referenced by the BATCH-string)

COPY

EDIT
All of the other processors are assumed to be retrieval processors and
require a match on the L/RET attribute in the file-definition item. Failure
to match one of the user security codes with either the L/RET or L/UPD
attribute value will generate the message:

210 FILE file-name IS ACCESS PROTECTED

and control will return to TCL,

XIII-1

Security at the attribute level is available only through ENGLISH.
Requesting of an attribute without the matching security code causes an
error message, reference to the attribute is deleted from the input sentence
and processing continues on the remainder of the sentence.

User Assigned Codes

The logon-item (refer to LOGON) contains the list of security codes assigned
for that particular user. These codes are values for the dictionary attri-
butes L/RET and L/UPD in the particular logon-item. There is a one to one
correspondence between the L/RET and L/UPD attribute values in the logon-
item and in the particular attribute entry for which the codes are being
verified. In other words an L/RET code in an attribute definition item
must be verified against one of the values stored in the L/RET attribute in.
the logon-item.

Security codes may be assigned initially when an account is created using
the CREATE-ACCOUNT Proc. Security codes may be added or deleted by
updating the appropriate logon-item using the EDITOR (assuming one has the
appropriate security codes); however updates to the logon-item should only
be performed when no one else is logged onto the system.

Security Code Comparison

Security codes are verified comparing the value in the file dictiomnary vs.
the corresponding string of values in the logon-item. An equal or verified
compare occurs when the value in the file dictionary is exhaisted and all
characters match up to that point.

EXAMPLE--
file dictionary logon-item
code code result
123 123 match
12 123 match
123 12 no match

When referencing a file using a Q synonym (refer to DICTIONARIES) a security
code match is made at all levels (i.e., SYSTEM, M/DICT, file dictionary)

and therefore a correspondence must be maintained at all levels in order

to process the Q synonym files. Since the logon-item for the account con-
taining the primary file is verified for security codes, the user referenc-
ing the Q synonym must have a code defined in this logon-item which will
verify with the first code in the equated accounts logon-item. Therefore

in a logon—item only the first code 1s used to protect the account from

Q synonym accesses while all the codes in logon-item are assigned to the
user when he logs on,

XITI-2

Section XIV
BATCH PROCESSOR

INTRODUCTION

The BATCH processor (BATCH) provides a facility for inputting, updating and
deleting items or data within items. BATCH operates using a predefined
"BATCH-string", and an input line, to update one or more items in multiple
files simultaneously. The BATCH-string is stored as an item in a file and
provides the dictionary function for the subsequent update. In other words,
the BATCH process ignores the attribute defining items defined for the
designated files and instead relies on the BATCH-string to define the
updating algorithm.

Evoking BATCH

BATCH is evoked using the format:

B/ADD file-name item-id
or
B/DEL

the file-name and item-id define the specified BATCH-string. B/ADD in
general defines an updating function and may be used to delete items.

B/DEL provides a reversing update function in that using B/DEL on the
identical BATCH-string and input line will in general negate or reverse

the effects of a previous B/ADD operation. After BATCH gains control it
will prompt the terminal for input using the character '">" as the prompt.
Each input line entered will be processed separately by BATCH and will
generate a file update. BATCH will continue to prompt for more inputs
until the user exits by entering a null line (a carriage-return immediately)
following the BATCH prompt character).

Many users store BATCH strings in the Master Dictionary (M/DICT) but this
is not required; in fact the recommended procedure is to define a separate
file or files which are used exclusively to store BATCH-strings. Addi-
tionally, these files should be single-level (i.e., Dictionaries) to save
an additional file access in retrieving the BATCH-string. Also, most com-
mon usage of the BATCH processor is from a PROC where the input lines to
BATCH have been stored in the PROC's secondary output buffer (stack). For
this reason one must examine both the BATCH-string and its associated PROC
to fully comprehend the resulting processing.

The B/DEL verb allows the user to delete specific values from attributes
in an item. In general, it should be used to delete specified values

from one or more single or multi-valued attributes, or to delete implied
values (not specified) in single-valued attributes. In addition, such
implied values may also be accessed by the "secondary file" section(s) of
the BATCH-string. Thus it is possible to delete a value from an attribute

XIv-1

in the primary file without knowing what the value on file is, and to use
this same value as implied inputs to attribute updating elements in
secondary files, ?

As a specific example, suppose that attribute five of file ACCOUNT con-
tains a value that is to be zeroed at the end of a month, and that value
is to be added in to attribute six of the file HISTORY. A representative
BATCH~string would be as follows:

ACCOUNT, I
4N

A,Y31 ®
Z
HISTORY, Il
5N
A2,3(5),Y32 (b
If the value to be deleted in known, the input to this string would be:

>account-id value ()

which would subtract the value, using element C), in the ACCOUNT file,
and add in the same value, using element C), in the HISTORY file,
(Note reversal of the Y31/Y32 actions). In this case the "J(5)" sub-
element in GD is not used,

If, however, the value to be deleted is not known, or if the user does
not wish to enter the value, and the input is:

>account-id (T) (or) >account—id\\(§)

element C) causes the deletion of the value in attribute 5 of ACCOUNT,
as before; and the "J(5)" sub-element is used to "link" back to the
primary file (ACCOUNT) and to add in the value to the HISTORY file.

Note that the same effect could have been achieved, at significantly
greater processing cost, by a suitable BATCH-string employing Translate
conversions to pick up the values to be deleted. However, if the primary
attribute is multi-valued and one of the values is deleted, the "J" sub-
element must be used to delete the corresponding value in a secondary
file.

" If the primary item itself is deleted (using the ",X" option in the file-

defining element), the "J" sub-elements can be used to add or delete
values into secondary file attributes,

BATCH-string Format

The BATCH-string is an item in a file and is the definition of the updating
algorithm to be performed. The BATCH-string consists of a set of elements,
one element per attribute or line., In general, for each file-item accessed

XIV-2

REALITY 2.0 UPDATE

there will be: a file-defining element, one attribute-defining

element for each attribute in the defined file and an end-of-file
element. This sequence is repeated for each file-item to be updated

by the BATCH-string. Each element in the string begins with a mnemonic
code identifying the element type (the sole exception is the file
defining element which has no code and appears as the first item in the
string and immediately following each Z-code, end-of-file, element)
followed by modifier and sub—elements delimited by commas. The entire
update resulting from a BATCH-string is accumulated and processed in

a single step. Any errors encountered during the processing of the
string aborts the process and none of the updates occur. Additionally
multiple updates to the same file-items will not work from the same
BATCH-string; the last file-item update will override any previously
generated updates by the string to the same file-item.

There is a one-to-one correspondence between attribute-defining
elements in the BATCH-string and the attributes themselves. In other
words, the attribute-mark-count (AMC) is not explicitly specified in
the element, but is implied by the sequence of attribute-defining
elements. The following example illustrates this principle by showing
the effect of BATCH-string and input-line updating on items.

PREVIOUS-ITEM 1234 ~ ABC ~ DEF ~ GHI
BATCH-STRING file-name, I " N "~ N ~ A,Y21"
INPUT-LINE 1234 JKLM (@)

UPDATED-ITEM 1234 ~ ABC ~ DEF "~ JKLM "

The 1234 in the input-line "feeds" the BATCH-string and provides the
item-id to go with the file defining element (file-name, I). The two
N elements in the string direct BATCH to ignore (nop) the next two
attributes (whose previous values were ABC and DEF respectively).

The JKLM in the input-line ''feed" the attribute-defining element
(A,Y21) and directs BATCH to replace the previous value (GHI) in that
attribute with the new value (JKLM) from the input-line.

Input Data Conventions

BATCH-string elements reference fields in the input-line that the
BATCH processor requests. When BATCH is evoked, data is requested
from the terminal. Each input-line from the terminal is processed
against the BATCH-string; a null input-line terminates BATCH process-
ing, and causes a return to TCL. The first input-line from the
terminal may be in one of the special formats below, specifying to
BATCH that may be in one of the special formats below, specifying to
BATCH that the actual data input is to be obtained from a disk-file
item, or from the attached mag-tape unit.

(file-name item~id) instructs BATCH to use the
(DICT file-name item-id) specified items as the input

XIvV-3

REALITY 2.0 UPDATE

data stream. Each attribute
value (line) in the item is
treated as one input-line, lines
may be up to 511 bytes in
length. The optional DICT
specifies a reference to the
dictionary instead of the

data-file.
(TAPE) instructs BATCH to read data
(TAPE C) from the tape unit. Each fixed
(TAPE A) length (max 511 chars.)

unblocked tape record is treated
as one input-line. The optional
C parameter causes EBCDIC
conversion; A causes masking to
7 bit ASCII.

Values from the input-line may be used by BATCH in either a free field
or fixed field format. BATCH uses an input-line pointer to reference
data from the input-line. Each file-defining or attribute defining
BATCH-string element uses one value from the input-line; at the con-
clusion of this usage the input-line pointer points to the character
immediately following the previously used value. Special BATCH-string
elements are available which permit movement of this pointer so that
the same value from the input-line may be used repetitively. A free
form input-line value starts with the first non-blank character from
the current position of the input pointer and continues up to but not
including the next blank. Values with imbedded blanks may be created
by surrounding the entire value with a single quotes or by replacing
the imbedded blank with a backslash" ". A backslash surrounded by
blanks represents a null missing value. Fixed field input-line

values may be defined by specifying a starting column number and a
field width. Fixed field values always contain the number of charac-
ters specified and may contain embedded blanks. All leading and
trailing blanks are deleted. Two or more contiguous blanks will be
condensed to only one blank.

BATCH-string File-defining Element

The first element in a BATCH string is a file-defining element. This
element generates an itemid in a file which will be updated. A
BATCH-string may contain additional file-defining elements immediately
following a "Z" element; the first file specified is referred to as
the "primary file"; other files are referred to as 'secondary files.'

file-name , d [(m,n)] [,C(m,n)} [, conversion spec]
file name : if the file containing the item to be

updated. If prefixed by the word DICT,
the dictionary will be updated.

X1vV-4

REALITY 2.0 UPDATE

d : I update existing item.
N overwrite existing item.
v verify that item exists
X delete existing item.
A ensure item does not exist.
[(m,n)] represents the location in the input-line
[n of the value to be used as the item-id.
[(m)] m points to the column of the field to be
[(n)] processed. n is the number of characters
to be processed. Either m or n or the
entire parenthetical specification may be
missing. If m is missing, free field
format is assumed with the field beginning
at the next non-blank input-line
character.
[,Cc(m,)) is optional, specifying concatenation with
[,Cp] another value. If the m and n are missing,
[,C(m)] value will concatenate with next free
[,c(,n)] field value in input-line. There may be
multiple C specificationms.
[,conversion spec] is optional, and is used to specify. input

data conversions. All conversions as
defined in the chapter CONVERSIONS may be
used for the conversion specification.

In addition, for "secondary files" only, the following sub-element is
defined:

.++,BC(n),...
BV(n),

which specifies that item-ID's are to be created (BC) or verified (BV)
from the primary item AMC "n'" (in new item image). B subelements may
be repeated to specify concatenated ID's, or may be combined with I,
J, K, or C subelements as needed.

Notes: If the attribute is multi-valued, it can only be used as the

first element of a concatenated specification. D2 attributes should
not be used with a bridge sub-element, i.e., BC(n) or BV(nm).

BATCH~string Attribute-defining Elements

Following the file-defining element there must be one and only one for
each attribute to be updated. The BATCH-string elements and the file
attribute have a one-to-one positional relationship. Attributes not
updated beyond the last updated attribute need not be represented in
the BATCH-string. The mnemonics for the attribute—defining elements
are: A, Dn’ N, T and X.

XIV-5

REALITY 2.0 UPDATE

A[@o] [C(m,n)] E, conversion spec] , ¥n

Update attribute. The A statement in a
BATCH-string describes what is to be done
to the consecutive ‘attributes in the item.

A(m,n) same as file-defining element.
,C(m,n) same as file-defining element.
,conversion spec gsame as file-defining element.
Yn must be part of the A command and is used

to control how the input data is stored.

n must be

11 to store non-redundantly (unique
multiple values)

12 to store redundantly (non-unique
multiple values)

21 to replace a single value

22 to reject a single value if value
already present (prints error
message)

23 to ignore a single value if value
already present

31 to add to the existent value

32 to subtract from the existent value

33 to add one to the existent value

41 store multiple values in ascending

sequence; sequencing is done on the
ASCII collating sequence only.
Only unique values are stored. May
not be used for D1 attributes

42 as above; redundant values are also
stored.

Additionally a 4 may be suffixed to the arithmetic value to place a
"negative balance not permitted" restriction on the result. An
example: Y324.

If the attribute to be modified is a co-related attribute (see D1, D2
CORRELATIVES) the A command takes the form:

D1;x [(m,n)] [,C(m,n)] [, conversion spec] , ¥n

D2;x [(m,n)] [,C(m,n)] [, conversion spec] , In
where D1;x or D2;x replaces A. Three sets of co-related attributes
may be processed by BATCH. The primary co-related attribute is
identified with D1. Subsequent secondary attributes related to this

primary attribute use the letter D2. x is 1, 2 or 3 providing for
the three sets.

XIV-6

REALITY 2.0 UPDATE

If co-related attributes (D1,D2) are to be deleted, using B/DEL, the
A command takes the form:

D1;x,Y1X
D2;x,Y1X

The above attribute-defining element used with B/ADD will have the
same effect as:

D1;x,Y11
D2;x,Y11

The following attribute-~defining elements may also be used:

N - ignore the corresponding attribute

nN - ignore n attributes

T - add one to the corresponding attribute
X - delete the corresponding attribute.

Additional BATCH-string Elements

In addition to file-~defining and attribute-defining elements the
following elements may also be used:

F Move input pointer forward to the next
field

B Move input pointer back to the prior field

S(n) Set input pointer to the nth column in the
input

Z Terminate a file-item update section.

Must be immediately followed by another
file-item update section.

EXAMPLE~~
In the example on the following page, an item '99-A' in the

file PO-NUMBER is updated using a BATCH-string. Additionally
an item in a secondary file, TRANS is created.

Additional Sub-elements

The following sub-elements may be used (unless otherwise noted) in
both file-defining and attribute defining BATCH-string elements.

X1v-7

[, Fop (mm)]

[,Um]
[.sp]
C,sul

J(n)

REALITY 2.0 UPDATE

is used to specify arithmetic operations
on the input data.

op must be

* multiplication. Following * must
be a positive scaling factor. If
specified, the product will be
divided by 10 to the power of the
scaling factor.

/ division
+ addition
- subtraction

The (m,n) maintains its meaning. It
isolates an input field from which numeric
information can be extracted. Several F
options can be appended to an A command.

is used to exit to a user defined program.

store system data Note: no input
data field is
store system time necessary 1if these

two immediately
follow the A, D1 or
D2.

This sub-element should only occur in
secondary file attributes, and is ignored
if (a) the update is B/ADD or (b) the
update is B/DEL with some specific data
input to the field used by this element.
If no data is input (meaning delete the
entire value in the attribute), the nth
primary file attribute is referenced,
and the value that was deleted there is
also deleted from the second file
attribute. Only the first value used in
the delete processing is used. Conse-
quently, multi-valued primary attributes
will in general be processed incorrectly.
The 'J' sub-element must be specified if
the primary item itself is to be deleted.

XIV-8

6-AIX

ITEM BEFORE BATCH-UPDATE

PO-NUMBER : 99-A

AL. ABC
A2. 10 ' 1TEM AFTER BATCH UPDATE
A3. 11
Ak, 22
A5. 29 OCT 1974 »PO-NUMBER : 99-A
A6. 5 0.33 C
A7. bk 11
A8. 1 11 12
A3. 9 34 22
Al0 3334 02 NOV 1974
All 44 $ 0.89
Al2 31 OCT 1974 -122
2
UPD-PO -7 10
001 PO-NUMBER, I A10 7 #56%78
007°N A1L” 78
003 T Al2 / 31 OCT 1974
00L_A,Y11
A, Y12
EXECUTION OF BATCH A,D,Y21 ////
STRING A,Y31
A,Y32
A,Y33
Al, T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>