
.

REAl.llY
Computer System_ · ..
Reference Manual

. • ''Microdata

IEALllY
Computer System
Reference Manual

Revised

August 1974

Revision 2

PROPRIETARY INFORMATION

The information contained herein is proprietary to
and considered a trade secret of Microdata
Corporation and shall not be reproduced in whole or
part without the written authorization of Microdata
Corporation.

©1974 Microdata Corporation
TM Trademark of Microdata Corporation
Printed in U.S.A.

™Microdata

••

Microdata Corporation
17481 Red Hill Avenue
Irvine, California 92705
Telephone (714) 540-6730
TWX 910-595-1764

_ \

Company

M icrodata Corporation
17481 Red Hill Avenue
Irvine, California 92714
(714) 540-6730 TWX: 910-595-1764

The Microdata REALITY Computer System Reference

Manual will be revised periodically. If you desire

to receive revisions to this manual, you must complete

the following data request card with the name of the

person you want to receive the revision data. Return

the card to Microdata.

Please Return This Card To Microdata Corporation

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Address 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

City State Zip
~~~~~~~~~~~~~~~~~~~~~-- ~~~~-~~~ 

Telephone Ext. 
~~~~~~~~~~~~~~~- -~~~~~~~~~~~~~~ 

Microdata REALITY Computer System Reference Manual Copy Number 11 __ #.J....L-_.fd:::i.->5..._...,j._1-.. __ _

REV. 2

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN UNITED STATES

Postage Will be Paid by:

Microdata Corporation
17481 Red Hill Avenue
Irvine, California 92714

First Class
Permit No. 1972

Santa Ana
California 92711

\

'\.

l ,_

TABLE OF CONTENTS

INTRODUCTION

Reality - Central
Operating System
Instruction Set
ENGLISH
Software

DATA STRUCTURES

Processing Unit

Introduction
Executable Frames
Process Work Space
Disk Space Assignment
File Space
Overflow Space Management.
File Definition
Hashing Algorithm •
Item Storage
Item Format - Physical
Dump of Sample File
Example of File with 3 Groups and 2 Frames/Group
Item Format - Logical ••••.
Selecting Modulo and Separation ••
Density Versus Overflow •
REALITY System Modes .••
Core Map .•..•
Table of Prime Numbers Less Than 1000.

DICTIONARIES

Introduction
File Structure ••
Dictionary Interrelationships •
Dictionary Item Definitions
File Definition Items •••.•.
File Synonym Definition Items •
Attribute Definition Items •.
Attribute Synonym Definition Items.
Dictionaries .•.•.•..••••.
The System Dictionary (SYSTEM)
The Master Dictionary (M/DICT)
Initial System Files
The Account File
The SYSPROG Account
The ERRMSG File
The NEWAC File • •
Summary of Dictionary Item Definitions •

iii

. . .

I-1

I-2
I-3
I-4
I-5
I-6

II-1

II-1
II-1
II-1
II-3
II-4
II-4
II-6
II-6
II-7
II-7
II-8
II-8
II-10
II-11
II-12
II-14
II-17
II-19

III-11

III-1
III-1
III-2
III-2
III-2
III-4
III-4
III-6
III-6
III-6
III-6

..• nI-7
. III-7
. III-7

•• III-7
• III-7

• •• III-8

TABLE OF CONTENTS (Continued)

TERMINAL CONTROL LANGUAGE • ti • • •

Introduction
Input Statements ••
TCL Processing ,
Standard Reality Verbs
TCL Statement Parsing
Statement Formats
ENGLISH Verbs •
TCL-II Verbs

.

Interaction of TCL-II Verbs with the SELECT Verb
TCL-I Verbs •.••.•••
Interrupting Processing
Processing Aborts •
TCL Verb Definition

STORED PROCEDURES (PROC) .
Introduction
PROC Execution •••
PROC Link Comm.and
Summary of PROC Commands
Input/Output Buffer Operation. .
PROC Comm.ands • • • ,
PROC Comm.and Format • .• • • . • •

LOGON/LOGOFF ••.•

Introduction
Logging On to the System
The Logon PROC • ,
General System Message
Logging Off the System
Clearing the ACCOUNT File
User Identification Items
System Privileges • • • • • • ••••
Additional Work-Space Assignment •••
Updating System Dictionary Entries •
The Accounting History File
Active Users Entry •••••
Accounting History Entry

FILE MANAGEMENT PROCESSORS .
CREATE-FILE
CLEAR-FILE
DELETE FILE
COPY ••

. . . .

Copying to the Magnetic Tape, Line Printer or Terminal

iv

IV-1

IV-1
IV-1
IV-3
IV-4
IV-6-1
IV-6-1
IV-6-1
IV-6-1
IV-7
IV-7
IV-7
IV-9
IV-9

V-1

V-1
V-1
V-3-1
V-4
V-5
V-8
V-8

VI-1

VI-1
VI-1
VI-2
VI-3
VI-3
VI-4
VI-5
VI-5
VI-6
VI-7
VI-9
VI-9
VI-10

VII-1

VII-1
VII-2
VII-3
VII-3
VII-6

TABLE OF CONTENTS (Continued)

Options ••••••.••
File Management Verbs
SEL-RESTORE Verb

. . VII-6
VII-7
VII-8

ED !TOR • VI I I-1

Introduction • • . • • •
Edit Command Structure
"String" Format. • • • • • •
Editor Error Messages
The Input Environment
Edit Commands • • • • • · • •

.

SYSTEM co~s .

Introduction
Arithmetic Commands
Card Reader Commands
Tape Commands

...

Tape Labels •••••
Multiple Reel Tape Files
Output Spooler Commands • • • • •
Summary of Spooler Error Messages
Miscellaneous Commands
BLOCK-PRINT
Debug
DUMP
MESSAGE
TERM
TIME
WHO

...

. .

VIII-1
VIII-2
VIII-3
VIII-3
VIII-4
VIII-4

IX-1

IX-1
IX-1
IX-2
IX-2
IX-6
IX-6
IX-7
IX-15
IX-17
IX-17
IX-18
IX-20
IX-20
IX-21
IX-22
IX-22

ENGLISH LANGUAGE • • • • • • · • · • • X-1

Introduction • • • • • •
ENGLISH Input Rules
ENGLISH Verbs • • • • •
LIST and SORT Verbs
COUNT Verb • • • • • • •
SUM and STAT Verbs • • • •
SELECT Verb • • • • • • • • • • •
SSELECT Verb
File-Name Specification
Item List • • • • • • • • • • •
Selection Criteria • • • • • • • •
Output Specification · • • • • •
Modifiers, Relational Operators and Connectives

.v

X-1
X-2
X-2
X-3
X-5
X-5
X-6-1
X-6-2
X-6-2
X-7
X-8
X-10
X-13

TABLE OF CONTENTS (Continued)

CONVERSION .
Introduction
D Conversion (Date)
MD Conversion (Mask Decimal) •
MT Conversion (Time)
MX Conversion (Hexadecimal)
T Conversion (Translate)
u Conversion (User)

CORRELATIVES .
Introduction
D-Correlative
F-Correlative
G-Correlative
T-Correlative

(Associative)
(Function) . . .
(Group Retrieved) •
(Text). • . • • • • • •

.

SECURITY .
Introduction
L-RET and L/UPD

.
User Assigned Codes
Security Code Comparison

.
BATCH PROCESSOR .

Introduction
Evoking Batch
BATCH-string Format•
Input Data Conventions

. . . .

BATCH-string File-defining Element •
BATCH-sring Attribute-defining Elements
Additional BATCH-string Elements
Additional Sub-elements

MICRODATA REALITY REFERENCE MANUAL •

Introduction
System Structure
Information Formats
Addressing
Virtual Memory Management
Buffer Status
Buffer Status
Buffer Map
Buffer Queue
Process

Byte

. .

.

. . .
Process Identification Block

vi

Xl-1

XI-1
XI-1
XI-2
XI-3
XI-3
XI-3
XI-5

XII-1

XII-1
XII-1
XII-3
XII-7
XII-8

XIII-1

XIII-i
XIII-1
XIII-2
XIII-2

XIV-1

XIV-1
XIV-1
XIV-2
XIV-3
XIV-4
XIV-5
XIV-7
XIV-7

XV-1

XV-1
XV-1
XV-1
XV-2
XV-3
XV-3
XV-3
XV-4
XV-4
XV-5
XV-5

TABLE OF CONTENTS (Continued)

PIB Status Bytes
Primary Control Block
Address Registers •••
Address Register Attachment
Address Register Zero
Address Register One
Frame Formats •••••••••••.
Monitor
Monitor PCB • . • • • • .
Initial Condition of Monitor PCB

. . . .
Initial Condition of Monitor PCB Registers
Monitor Register Assignment
Interrupts and Monitor Calls •
Traps
Trace Mode •••••••.
Monitor Disc Scheduling Tables
The IOQ Table . . • . . • . • • • •
IOQ Table Format • • • • . •••.
Selection of a Process to be Placed
IOQ Setup . • • • • • • • • •
Disc Address Computation.
Disc Address Format
Device Control Table •••
DCT Table Entry • • • • • .
Disc Interrupt Handling
Selection and Setup of Next I/O
Starting I/O •..•.•.
Disc Errors • . . • . . •

on the IOQ ••

Select Next User Routine
Programming Notes •••••
Instruction Descriptions
Definitions of Terms Used in the
Effective Address Computation
Arithmetic Operations • ••••••
Data Transmission Operations
Address Modification Operations

Descriptions

Bit Manipulating Instructions
Control Instructions
Logical Operations
Shift Operation
String Operations ••
Conversion Operations
Input-Output Operations
Monitor Operations
Instruction Sunnnary • • • .
Core Map . • • • • • • • • •
Peripheral I/O: Device Orders

. . . .

vii

XV-5
XV-8
XV-9
XV-9
XV-10
XV-10
XV-10
XV-11
XV-12
XV-13
XV-13
XV-14
XV-14
XV-15
XV-16-1
XV-16-1
XV-16-1
XV-16-2
TV-16-4
XV-16-4
XV_;l6-5
XV-16-5
XV-16-5
XV-16-5
XV-16-6
XV-16-6
XV-16-7
XV-16-7
XV-16-7
XV-16-8
XV-16-9
XV-16-10
XV-16-10
XV-16-11
XV-17
XV-20
XV-22
XV-22
XV-30
XV-31
XV-31
XV-33
XV-34
XV-35
XV-37
XV-43
XV-44

TABLE OF CONTENTS (Continued)

REALITY ASSEMBLY LANGUAGE (REAL) • • • • • ••••••••••• • • • XVI-1

Introduction
Source Language
Label Field
Operation Field • • •••••••

. . . .
.

Operand Field . . .
Operand Field Expressions
Comment Field · • • • •
"Argument" Field • • • ••
Calling the Assembler
Listing Output •••• •
Loading • • . • • • • • ••
TCL-II Cross Reference Capability
Cross-Index Verb ••
X-REF Verb
XREF PROC ••.•.
Operand Conventions
Character Instructions (Moves)
Character Instruction (Tests) • •
Bit Instructions ••• • •••

.

.

Data Movement and Arithmetic Instructions
Register Instructions
Data Comparison Instructions •••
Translate Instructions • • • • • • . .

. . .

Execution Transfer Instructions • •
I/O and Control Instruction
Assembler Directives

.
Address Register Usage
REAL Instruction Side Effects . . .

. . .

.

Examples of REAL Instructions
Assembler Tables •••••••••
TSYM/PSYM Table Entry Formats
Symbol-Codes • • • • • • • • • • •
OSYM Table-Lookup Technique
TSYM Table Entry Setup
OSYM Table Entry Format • • • •
Macro Definition Format • • •
"Primitive" Definition Formats
Exit Format
Gen Format
Reset Format
Assembler Output • • • • • •
Literal Generation • •
Reassembly in Pass II .••••• • •
Assembler Error Messages • • • • • • •
Example of REAL Macro Expansion

viii

XVI-1
XVI-1
XVI-1
XVI-1
XVI-2
XVI-2
XVI-2
XVI-2
XVI-2
XVI-3
XVI-3
XVI-5
XVI-5
XVI-6
XVI-8
XVI-10
XVI-11
XVI-14
XVI-15
XVI-15
XVI-17
XVI-19
XVI-20
XVI-22
XVI-23
XVI-26
XVI-28
XVI-29
XVI-30
XVI-54
XVI-54
XVI-54
XVI-55
XVI-55
XVI-56
XVI-56
XVI-57
XVI-57
XVI-57
XVI-58
XVI-58
XVI-59
XVI-60
XVI-60
XVI-61

• \._

TABLE OF CONTENTS (Continued)

THE INTERACTIVE DEBUGGER

Introduction •••••••
DEBUG Syntax • • • • • • •
General DEBUG Statement
DEBUG Commands • • • • .
Data Display Commands
Replacing Information

Format

Tables Provided for Debugging ••••
Break Messages • • • • • • . • • • • • •
Hardware Trap Conditions

SYSTEM MAINTENANCE .
Introduction •••••••••••••••
Halting the CPU While in Execution
Restarting After STEP/INT Halts
Bootstrap and Cold-Start Procedure•
Using Preset Configuration ••••••
Reconfiguring Software at Cold Start Time
Programming Notes • • • • • • • • . ••••••••
Further Explanation of Configuration Parameters
File-Restore Process • • •••••••
File Restore Frame Limits •.••••
Output From a File-Restore Process
Initial System Setup • • • • • •••
SYSPROG Account PROCs and Verbs •••••••••••••
COLD-START PROC • • • • •
CREATE-ACCOUNT PROC
Usage • • • • • • •••
FILE-RESTORE PROC • •
FILE-SAVE PROC
Method of Operation •••••

. . .

Output from the File-Save Process ••
Operator Use of FILE-SAVE PROC
RE-GEN PROC • • •
SETUP-ASSY PROC
SETUP-RPG PROC •
START-SPOOLER PROC
SYS-GEN PROC
SYS-LOAD PROC • • ••
SYS-UPDATE PROC
UPDATE-ACCOUNT PROC
VERIFY-SYSTEM PROC
Special SYSPROG Verbs
Standard SYSPROG PROCs

SYSTEM MESSAGES

ix

. . .

. . .

. .
. . . .

. . .

Page

XVII-1

XVII-1
XVII-1
XVII-2
XVII-2
XVII-3
XVII-4
XVII-4
XVII-4
XVII-5

XVIII-1

XVIII-1
XVIII-1
XVIII-1
XVIII-1
XVIII-2
XVIII-2
XVIlI-3
XVIII-4
XVIII-5
XVIII-6
XVIII-6
XVIII-8
XVIII-8
XVIII-10
XVIII-10
XVIII-11
XVIII-12
XVIII-12
XVIII-13
XVIII-14
XVIII-16
XVIII-16
XVIII-17
XVIII-17
XVIII-18
XVIII-18
XVIII-18
XVIII-19
XVIII-19
XVIII-19
XVIII-19
XVIII-22

XIX-1

TABLE OF CONTENTS (Continued)

Page

SYSTEM SOFTWARE XX-1

Introduction • •
Address Registers • • • • • •

XX-1
XX-1

Attachment and Detachment of A/R's
Attachment and Detachment of Address Registers •
Re-entrancy · • · • · · · • · • • · • • • • · • • • • •

• • -·XX-2
XX-3
XX-3
XX-4
XX-7
XX-8
XX-9
XX-9
XX-11
XX-13
XX-14
XX-15
XX-16

Work Spaces or Buffers
Defining a Separate Buffer Area
Usage of XMODE • • • • • • •
Initial Conditions •••••
Special PSYM Elements • • • • • • •
Program Documentation Conventions• •
Primary Control Block
Secondary Control Block • • • • • •
Debug Control Block • •
PSYM • • • • • D/Code • • • • • • •

TCL-1 & TCL-II PROCESSORS AND PROC INTERFACE • • • • • • • • XX-21

TCL-II • • • • • • • •
WRAPUP Processor
UPDITM (WRAPUP II)
PRTEER (WRAPUP II I) •

.
XX-26,
XX-31

• • • • • XX-34
• • • • XX-34

DISC FILE I/O • • • • • • • • • • • • · • • • • • • • • • • • • • • • • • • XX-38

RETIX AND RETI
GET I TM
UPDITM
GBMS
GD LID

.
. . . .

. . . .
• • • :XX-39

XX-41
• • • • • XX-43

• • • • XX-46
• • • • • XX-48

TERMINAL I/O . XX-49

GETIB AND GETIBX • • • • • • • • •
GETBUF • • • • • •
WRTLIN AND WRITOB
PRNTHDR AND NEWP AGE • • •
PRINT AND CRLFPRINT

. . .
.

.

:XX-50
XX-52
XX-53
XX-55
:XX-57

VIRTUAL MEMORY I/O • • • • • • • • • • • • • • • • · • • • • • • • • • • • XX-58

RDREC • XX-59
RDLINK AND WTLINK • • • • • • • • • • :XX-60

LINK • • • • • • • • XX-61

x

I -

TABLE OF CONTENTS (Continued)

OVERFLOW SPACE MANAGEMENT .
GETOVF,
RELOVF,
ATTOVF.

GETBLK ••••••.
RELCHN AND RELBLK

NEXTIR AND NEXTOVF

WORK SPACE INITIALIZATION .
WSINIT
TSINIT
ISINIT

PERIPHERAL I/O .
Tape Control Subroutines
INIT and TPSTAT.
WEOF . .
BCKSP
REWIND . .
FRWSP
Tape I/O Routines
Blocked Tape I/0 Operations
SEGMNT (3, TAPEIO-II)

LABELED TAPE I/O ROUTINES .

CREAD

RDLABEL (2,TAPEIO-II)
RDLABELX (5,TAPEIO-II)
WTLABLE (2, TAPEIO-III) •
WTLABELX (4,TAPEIO-III)

.

.
MISCELLANEOUS .

TIMDATE, TIME AND DATE • • • • • • • • • • • • • . • • • • • • • • •

XX-62

XX-63
XX-64
XX-65
XX-66

XX-67

XX-68
XX-69
XX-69

XX-71
XX-71
XX-71
XX-72
XX-72
XX-72
XX-73
XX-74
XX-75

XX-77

XX-77
XX-77
xx-78
XX-78

XX-79

XX-81

xx-81

ASCII- Character to Binary Conversion • • • • • • • • • • • • • • • • XX-82

Binary to ASCII - Character Conversion • . • • • • • • • • • • • • • XX-83

MBDSUB AND MBDNSUB .
EBCDIC to ASCII Conversion .
File Initialization • .

DLINIT (6.DLOAD) •
DLINITl (7,DLOAD)

xi

. . .

XX-83

XX-84

XX-85

XX-85
XX-85

TABLE OF CONTENTS (Continued)

GPCBO (4,ABSL)
SETPIB (4,LOGON)
SETPIBF (3,ABSL)
GMMBMS
GACBMS
GETOPT
GETUPD

(l,LOGOFF) • • • • • • • • • • • •
(10,SYSTEM-SUBS-II)

.

XX-86
XX-86
XX-87

XX-88
XX-88
XX-89
XX-89

SORT • • • • • • • . • . · • · • . • • • • . • • • • • • • • • • • • • • • XX-91

BLOCK LETTERS . XX-93

ENGLISH INTERFACES . XX-94

xii

' \
~.

\

SECTION I

INTRODUCTION

Reality is a completely new system of computer hardware and software,
specifically oriented to provide a vehicle for the implementation of cost­
effective information management. Information management systems
implemented in Reality afford two major benefits; they are: (1) providing
accurate and timely information to form the basis for significantly improv­
ing the decision making process, and (2) substantially reducing the clerical
and administrative effort associated with the collection, the storage, and
dissemination of the information pertaining to an organization.

Reality is a completely new computer system combining both proprietary
hardware and proprietary software to create an effective tool for on-line
information management. Through the use of Microprogramming, Microdata
has implemented a truly revolutionary on-line transaction processing system.
Three major components of the system have been implemented directly in
firmware. They are, (1) virtual memory operating system; (2) the software
level architecture; (3) the terminal input-output routines. The virtual
memory operating system which has long been used in large computer systems
has been impractical for minicomputers due to the large amount of overhead
needed for the operating system itself. In Reality,.the operating system
has been directly implemented in highspeed, read-only memory (we called it
firmware) which executes many times faster than would a comparable system
normally implemented in software. Since the firmware is really an exten­
sion of the hardware of the computer ha~dware itself, this implementation
is more precisely referred to as a virtual machine operating system. With
the operating system directly implemented in read-only memory, only a small
amount of main memory (core memory) is needed to run Reality.

Slightly over 4,000 bytes of core memory need be allocated for the operating
system monitor. Everything else, system software, user software, and data,
is transferred automatically into main memory from the disc drive by the
virtual machine operating system in a demand-paged environment. Everything
in the Reality computer system is organized into 512 byte pages, or frames,
which are stored on the disc. The virtual concept allows the user to have
access to a progrannning area not constrained by a main (core) memory, but
as large as the entire available disc storage on the system.

The second feature implemented directly in firmware by Reality is the
software level architecture of the machine itself. Through Micro­
programming, Microdata has implemented a machine architecture expressly
designed and optimized for information management. The assembly language
architecture of Reality has very powerful instructions expressly designed
for character moves, searches, compares, and all supporting operations
germane to managing variable length fields and records. In addition, this
software architecture has in existence a very large field proven software
base written for information management. The information management soft­
ware available on the Reality computer system equals or exceeds the software
available for medium scale data processing systems costing several times
the price of Microdata Reality.

I-1

The third major item implemented in Microcode is the input-output routines
designed to handle communication with the terminals. In all minicomputer
on-line applications, one of the main problems is that of managing the
input and output from on-line interactive terminals. As these terminals
increase in number, the load on the CPU becomes overwhelming and conse­
quently the response to the terminals degrades dramatically. Microdata,
in Reality, has implemented the transactions with the on-line terminals
in high-speed microcode. The Microprogram implemented in read-only memory
directly controls the communications from and to all of the on-line
terminals connected to the Reality computer system. This means that the
process execution need not be interrupted to handle a character coming in
or going out to each and every terminal. The firmware handles or buffers
all these transactions and only interrupts the software at the completion
of a block. As a result, a very large number of terminals may be connected
to the Microdata Reality System before any significant degradation in
response time is detected. The response time is, of course, dependent upon
the specific application and the activity level of all terminals. However,
implementations of 10, 20, 30, or more terminals is not impractical. In
fact, with the virtual machine operating system, which automatically
manages the available resources of the computer, and the architecture
itself, custom designed for data base management and all the terminal
input and output handled directly by high-speed microcode, the Microdata
Reality System excels as the number of terminals increases.

What does this mean to the user?

1. Due to the structure of Reality a large number of terminals can
be accommodated with excellent termi~al response times.

2. Due to the virtual machine implementation the user need not be
concerned directly with the amount of ma.in memory (core storage).

3. A large number of terminals (in excess of 32) may efficiently
be on-line to the system.

4. All users (terminals) can share the Input/Output resources of
the system. An Input/Output spooling subsystem permits any
terminal to use the optional Magnetic Tape Drive and Line
Printer.

5. All files can be interrogated and manipulated using the ENGLISH
retrieval language, even those files built and maintained with
RPG-II programs.

REALITY - CENTRAL PROCESSING UNIT

The Reality CPU, although physically small in size and priced in the
minicomputer category, has the architecture of a medium scale computer.
Its main memory is core and is expandable from 8,192 bytes to 65,536 bytes
in increments of 8,192 bytes. Its full cycle operation is 1 microsecond
per byte. The virtual memory is disc which is oriented into 512 byte
frames expandable from 4,871 frames (2.5 million bytes) to 12,192,320 frames
(6.4 billion bytes). That is the virtual memory addressing range of the

1-2

CPU itself. However, in standard configurations, the Microdata Reality
system is currently configured from 5 million bytes to 80 million bytes of
disc storage. The CPU is capable of handling a large number of asynchro­
nous processes, each associated with an input-output device. The Reality
CPU will support in excess of 32 terminals (or asynchronous processes).
The CPU has 16 addressing registers and one extended accumulator for each
terminal. A variable return stack accommodating up to 31 recursive sub­
routine calls for each terminal is also provided; however, current soft­
ware convention allows only 11 entTies in the stack. By indirect address­
ing through any one of the 16 registers. any byte in the virtual memory
can be accessed. Relative addressing is also possible using an off-set
displacement plus one of the 16 registers to any bit, byte, word (16 bits),
double word (32 bit) or triple word (48 bits) in the entire virtual memory.

OPERATING SYSTEM

The operating system of the Microdata Reality is unique in that it is
implemented directly in firmware and as such is an extension of the hard­
ware. The features of the Microdata Reality operating system are summar­
ized below:

Operating System (Hardware) features include:

Selection of process for execution and determination of length 9f
execution.

Management of the allocation of core memory buffers containing disc
frames.

Processing of implicit and explicit frame faults (requests for core/
disc transfers).

Processing of logically linked frames and presenting them as physically
sequential.

Processing of inter-module linkage and maintenance of return stacks.

Recognize process defined breakpoints and generate software traps.

Minimum core resident overhead per defined process (32 bytes).

Full duplex byte (character) I/O, to buffer transfers between a
process and its associated device, echo input bytes, process parity
bits, and test input bytes for process activation.

Generation of software traps on abnormal conditions, illegal op-codes,
return stack overflow/underflow, disc memory protect violation, arith­
metic overflow/underflow and device interrupts.

Disc I/O with overlapped seeks using block multiplexed channels
providing an average access time of 35 ms and a maximum through-put
of one thousand 512 byte disc frame transfers per second.

I-3

One to four IBM compatible 9-track 800 bpi magnetic tapes for file
back-up, historical files and communication with other computer
systems.

Virtual memory read/write protection, to selectively lock critical
areas of memory from access.

Power fail-safe for automatic, safe shutdown in event of power
failure.

Real time clock and console settable user execution quantities.

Bootstrap program (hardware) to re-boot the system from disc, tape or
any byte I/O device.

INSTRUCTION SET

The Reality System has an extensive instruction set, including:

Bit, Byte, word, double-word, and triple word operations.

Memory to memory operation using relative addressing on bytes, words,
double-words, and triple-words; for the movement, addition or subtrac­
tion of the first operand to the second operand.

Bit operations permitting the setting, resetting, and branching on
condition of a specific bit.

Branch instructions which perm~t the comparison of two relative
memory operands and branching as a result of the compare.

Addressing register operations for incrementing, decrementing, saving
and restoring addressing registers.

Byte string operations for the moving of arbitrarily long byte strings
from one place to another; movement may be stopped on a count runout,
addressing register reaching a specified value, or encountering up to
any one of seven specified delimiters.

Operations for the conversion of binary numbers to printable ASCII
characters and vice versa.

Arithmetic instructions for loading, storing, adding, subtracting,
multiplying, and dividing the extended accumulator and a memory
operand.

Control instructions for branching, subroutine calls, and program
linkage.

~4

I

~

ENGLISH

ENGLISH is a generalized information management data retrieval language.
ENGLISH is a freeform order-independent language used to retrieve informa­
tion from the data files of the Reality computer system. The language
consists of verbs, nouns, connectives, and values. All information in the
system is stored in self-describing data bases and retrieved through the
use of dictionaries or tables.

The verbs of ENGLISH are action oriented words such as list, sort, select,
sum, etc. which evoke one of the ENGLISH processors.

Nouns are either the names of files or the names of attributes. They are
assigned by the user and can have as many synonyms as the user finds
necessary.

Connectives are provided to modify and qualify ENGLISH statements.
Modifiers are nouned or phrased limiters whose impact is to limit the depth
of action initiated by the verb.

Qualifiers are value limiters which logically qualify values such as equal
to, not equal to, greater than, less than.

Not only does ENGLISH provide an ability to selectively or conditionally
retrieve information, it also provides an automatic report generate capa­
bility. The report which normally appears on the terminal but optionally
can be transmitted to the line printeT for hard copy output is automatically
formatted for the user by the Reality c0mputer system. Listing output will
be processed through a formatter which will create a columnar list, if
possible; otherwise vertical output will be created. The output may be
sorted into any sequence defined by the user and attributes may be totaled
based on user specified control breaks.

The update capability permits the adding, changing or deleting items or
attribute values for a specific item or items. As with the retrieval capa­
bility, updates may also be performed selectively on only those items
meeting defined conditionals.

Correlative codes, stored in the dictionaries, permit the user to define
certain processing relationships for specific attributes. Using correla­
tions, the user can define arbitrarily complex file inter-relationships
and maintain these inter-relationships automatically. Correlations fall
into three basic groups.

Horizontal associations permit the chaining from an item in one data
list to an item in another data list. These lists may be used to
maintain inverted and cross indexed files and redundantly store data
in multiple locations. Similarly they may trigger the automatic
retrieval of data from secondary files, eliminating the need for
redundantly stored data.

~5

Vertical associations permit the construction and maintenance of
hierarchial data structures. Previous and next links are maintained
automatically, permitting insertions and deletion of items into
indentured lists automatically.

Internal associations permit definition of relationships within a
single item. These relationships include repeating, groups and non­
stored attributes defined as a function of other stored attributes.

Data Audits provide definition of permissible characteristics for
attribute values. Audits include size, type, pattern, table-look-up,
and range checking.

Data conversion provides for automatic conversion of values on input
and output. Conversion includes data conversion, table look-up con­
version and data encoding.

Storage method of values for attributes may be specified as: single value;
multiple value/non-redundant store; multiple-value/redundant store; positive
post; negative post.

Every file and their individual attributes may be secured for either update
or retrieval by the assignment of security codes. At log on time, each
user gets a list of pre-defined security codes which are then matched to
codes on requested files and attributes. Only those with matches are
retrieved or updated.

SOFTWARE

The software available on the Reality computer system is the most extensive
data base management software available on any minicomputer. A summary of
some of the processors available to all terminal users is presented below:

A high level two pass symbolic assembly language and macroprocessor
translates REAL source statements, and can be used to implement cross­
assemblers for other computers.

On-line editor - an interactive editor designed for creating, displaying,
searching, and altering source programs and other bodies of text.

COPY, a file management processor, provides for data movement between disc
files, tapes, line printers and terminals.

A file save and restore processor providing tape back-up for disc files.

ON/OFF processor to validate users wishing to gain access to the system
and also to update accounting information.

MESSAGE, a message processor permitting the storing and forwarding of
messages to other users whether currently on the system or not.

1-6

'
_

PROC, a facility allowing a user to define procedures "PROC's". A PROC can
be used to define complex procedures involving multiple processor entry and
conditional branching.

System subroutines are provided for use by user written programs, including:

An n-way polyphase disc sort/merge subroutine.

Routines for reading the standard input/output device (terminal).

Routines for retrieving and updating items in ENGLISH defined files.

A message formatter accepting value strings and formatting them into
a message or report using a predefined format string.

Input/Output Spooling System which permits any terminal to use system
peripherals such as the line printers or magnetic tape unit.

Numerous utility processors providing capability to:

Examine and alter physical frames.

Load assembled source programs.

List assembled source programs.

Define terminal characteristics.

On-Line Debug facilitates program debugging by:

Examining, inserting and modifying the program elements such as
instructions and data.

Controlling execution by setting breakpoints at specific
locations, and breaking on branches or external calls.

Single stepping execution.

Tracing execution by displaying information at designated points
in a program.

Conventions regarding data typed in at the terminal.

The following conventions apply uniformly through this manual:

Where the format of a command to the system is described, upper-case
characters or words are literal, that is, they represent the actual occur­
rence of that character or word; lower-case characters or words represent
variables, that is, in actual use they are replaced by a specific value.
For example, if the format is:

EDIT DICT file-name item-name (X,Q)

I-7

"EDIT", "DICT" and "(X,Q)" are literals and are to be entered exactly as
shown; "file-name" and "item-name" are to be replaced in actual use by a
specific value representing, respectively, the file-name and the item-name
to be used. Thus, if "SYS-FILE" is a valid file-name, and "ABCD" is a
valid item-name, the data:

EDIT DICT SYSGEN-FILE ABCD (X,Q)

is actually typed in.

In examples shown in this manual, data typed in at the computer terminal
is underlined; computer-generated output is not.

The symbol (!) represents the entry of a carriage return or a line
feed at the terminal.

Control characters are represented by the upper-case letter
corresponding to the key used, with a superscript of a "c"; thus pc repre­
sents "control-P"; further, pcs represents "control-shift-P".

1-8

SECTION II

DATA STRUCTURES

INTRODUCTION

Reality is a virtual machine with all of the virtual memory (typically
disc) being directly addressable as if it were in real memory (typically
core). The virtual memory consists of a set of 512-byte frames, address­
able by a positive integer called a Frame ID (FID). The entire set of
data associated with a Reality system, including executable programs,
process work spaces and all system and user files reside in virtual
memory.

Executable Frames

Starting with frame one (FID=l), and continuing upward sequentially, are
the executable frames. The extent of these frames (i.e., how high they go)
is a system generation parameter. However, a minimum of 511 frames must
be reserved: furthermore, not more than 4095 frames may be reserved.
This initial area of the virtual memory contains every executable program
or subroutine available with the Reality system. These frames are shared
among all users. For example, the TCL processor is solely contained on
frames 2, 4, and 5; a user executing in TCL uses these three frames
simultaneously with all other users executing in TCL. Frames 1 to 399 are
reserved for current and future Reality software. Frames 400 to 511 are
available for user-developed software. The appendix to this section
describes the frame locations for the Reality operating system software
(not including ENGLISH software). Following the space reserved for the
executable frames, beginning at frame number 512, is the process work
space.

Process Work Space

A user interacts with the Reality system via an interactive terminal
attached to a communications port on the Reality CPU. The on-going dialog
with any port is called a process. Additionally certain processes not
actually connected with a communications port may be defined at system
generation time. These background processes can be used for such things
as spooling data to a line-printer. Uniquely associated with each process
is a primary control block (PCB) which is a one-frame block that defines
the state of the process at any instant. The PCB contains the addressing
registers for its process as well as the accumulator, condition flags,
return stack and scan delimiters, all required by the hardware during
execution by the process. Each PCB is followed bya 31-frame work space
that is associated with it; thus 32 frames are reserved for each defined
process and the first frame of each block is the PCB. Following the process
work space is the file space, from which each pro~s can get and release
work space as required.

II-1

The 32 frames of process work space associated with each process are as
follows:

Frame

PCB + 0

PCB + 1

PCB + 2

PCB + 3

PCB + 4

PCB + 5

PCB + 6
to PCB + 9

PCB + 10
to PCB + 15

PCB + 16
to PCB + 21

PCB + 22
to PCB + 27

PCB + 28

PCB + 29
to PCB + 31

Description and Symbolic Name

Primary Control Block (PCB)

Second any Control Block (SCB)

DEBUG Control Block (DCB)

Unassigned and unavailable

BMS/50, AF/50, CS/100, IB/140, OB/140

TS - one frame unlinked scratch area (TSBEG)

Four frame PROC work area & stacks

HS - six frame linked HS work area
(HSBEG)

IS - six frame linked IS work area (ISBEG)

OS - six frame linked OS work area (OSBEG)

UPD - one frame unlinked work area (UPDBEG)
set up only when GETUPD is called from a
user written program. Also used by RPG.

Unassigned and unused, available for
user programs.

It should be noted that the above work space assignments for HS, IS, and OS
may be increased by the establishment of an appropriate entry in the LOGON
item; however, the additional space is obtained from the common pool of
overflow space. For a discussion of frame formats, refer to Section X..V.

II-2

' \ ...
Disk Space Assignment

The map below describes the assignment of the disk space; the "highest
available disk frame" number is dependent on the disk configuration for a
particular system; several other FID's are also configuration-dependent;
examples shown below (FID's in parentheses), are for a system with 32K
bytes of core-memory and with one five megabyte (5 MB) disk, and sixteen
processes.

0
1

199
200

327
328

399
400

511
512

767
768

1023

___ ...,

Coredump area. Shared by both RPG
computer object code and the core dump
area. Refer to Section XVIII for
further details.

Operating system and ENGLISH software;
executable program area.

Available for user-generated software;
executable program area.

Work-space area for processes __ ...,
0 throul:,h 7

Work-space area for processes
---i 8 through 15

~(Work-space area for processes
....-..--z-c..-1"~..,,_..,___,1 I 16 through 63).

(1024)

(9743)

Highest available
disk frame.

,__ _ _,

Start of file (data) space

File (data) space available to the
system.

Last available data frame.

Il-3

In general, the configuration-dependent FID's may be computed using the
rules below:

Start of file space (f 1) = 512 + u * 32

Highest available disk
frame

FID = 9,743 One 5 MB
max 19 ,487 Two 5 MB

38,975 Four 5 MB
77 ,951 Four 10 MB

End of file space (f 2) = FID max

File Space

u = number of processes.

disk
disks, or one 10 MB disk.
disks, or two 10 MB disks.
disks.

Beginning after the process work space, the remainder of the virtual
memory is available for the storage of data in files. The beginning of
this area is a system generation parameter. A direct access file technique
is used and employs a hashing technique. All data is stored as items
within files. Dictionaries, which are also files, are used to decode the
formats of the data stored in an item.

Overflow Space Management

The areas of the disk that are not allocated to the files are maintained
as a pool of overflow space that is available to the Reality system file
management routines as additional data space, as well as to other processors
as scratch work space. The Reality system maintains a table of pointers
that define the available overflow space, which may be either in a "linked"
form, or in a "contiguous" form. Contiguous overflow space, as the name
implies, consists of blocks of contiguous frmmes defined by a set of 2
pointers that are all available, and can be taken out of the pool either
singly or as a block. Linked overflow space can only be taken a frame-at­
a-time. Conversely, space may be released by processors to the linked
overflow pool a frame-at-a-time, or to the contiguous pool as a block.

At the conclusion of a file-restoration process on the Reality system,
an initial condition may be said to exist; there is no linked overflow
space, and only one block of contiguous overflow space, extending from the
end of the current data space through the last available data frame. As
the system obtains and releases overflow space, and as files are created
and deleted, the overflow space gets fragmented, and at any particular
time there may be several blocks of contiguous overflow space, and a

II-4

chain of linked overflow space. Representative examples of these two states
are shown below; shaded areas indicate use of file space:

0

1024

6000

9743

Contiguous
Overflow
Space

Start of Linked
Overflow space

Contiguous space
pointer sets.

0

[6000]
9743

0
Executable program
space; 1024
Process work space

Total
File

40204000
48004500

5800

6500
81007200

8150
90009250
97699743

tt=111%=Jl~=~?N~=i~=i=~~m~fif(ft!f
l

•• z;:i.• •••••••• · •••••••••••.•••. · ••••. · ••••

l
J

.·:·.····"'·······~ •• - ••••••••• : .. -.: •• •.-.·:·:·:·:·.·:·:·.•:·:·.·.•;:;t

8000 (400 frames in
linked set)

(40001 first set
4020

second set

(end of table)
[6000)
6500

(8150) third set
9000

(92501 fourth set
9743

(end of table)

II-5

File Definition

A file is a mechanism for maintaining a set of like items logically
together so that one can access these items for both retrieval and update.
For the Reality system, this mechanism functions by operating on a specified
item-id which uniquely identifies the item. A computational hashing
technique is used which operates on the item-id, using several variables
unique to the file, to produce a virtual memory address where the item is
stored.

Terms used in defining and accessing files:

Item-id

Group

Base

Modulo

Separation

Hashing Algorithm

A string of data associated with and including an
item-id. Items are stored in files.

A unique datum (key) within a file with which all of
the data in an associated item is identified or
referenced.

A set of items.

An area (a set of linked frames) where items may
be sequentially stored. It consists of one or
more linked frames and can vary in size from file
to file. (Usually 10 to 25 items per group.)

The first FID of the first group in a given file.

The number of groups allocated for a given file.

The number of frames initially allocated for each
group in a file.

The "hashing" technique is used to distribute items within the physical
structure of the file.

FID =BASE+ [Remainder (Item-id/MODULO)]* SEPARATION

The item-id is treated as a variable length string of binary digits;
dividing this value by the positive integer MODULO yields an unsigned
integer remainder in the range:

0 ~ remainder < MODULO.

This is then the group number (i.e., O, 1, 2, ••• up to MODUL0-1) where
the item is to be stored. Multiplying by the SEPARATION and adding the
BASE yields the actual FID of the first frame in the group.

II-6

Item Storage

After computing an FID to locate the specific group in which the item
resides, each item's item-id in the group must be compared for a match.
The frames comprising a group are linked both forward and backwards. This
Reality system facility makes the group appear to be a physically sequen­
tial string where items are stored one immediately after another. In fact,
any portion of an item may spill across a physically non-contiguous frame
boundary. An example is included on the next page.

When a file is created it is allocated a primary~ of (MODULO *
SEPARATION) frames. Thus this amount of contiguous disk-space is perman­
ently allocated to the file. As the file grows, individual groups may
fill up. When this happens, an additional frame is added to the group
from a pool of available space. This frame is linked into the group to
increase the length of the logically sequential group. Additionally, if
a delete or update causes the group to shrink, any unused frames outside
the primary area are returned to the pool of available space.

Item Format-Physical

Character Count - The first four characters of an item are a hexadecimal
character character count which specifies the total number of characters
in the item, including the count field; the maximum size of an item is
32267 bytes (X'7EOB'). This character count is used to locate the
beginning of the next item within a group.

Attribute Separation - After the character count is the beginning of the
data in the item. The first datum is the Item-id identifying that item.
Following, and marking the end of the Item-id is an attribute mark (X'FE'),
which prints as "t" or ":,". Following the attribute mark are the attribute
values, which may be of variable length, separated by additional attribute
marks. An item is always terminated with an attribute mark.

Absense of Values - The absence of a value for an attribute is specified
by an attribute mark (to maintain the proper attribute sequence) immediately
following the attribute mark indicating the end of the previous value. The
"space" between two adjacent attribute marks can be thought of as repre­
senting the absent value. If the last attributes within an item have no
stored values, the item terminates with the Attribute Mark following the
last value present. However, all items must terminate with an attribute
mark. The.minimum Item consists of only an Item-id followed by a single
attribute mark.

Multiple Values - Between any two attribute marks (i.e. any one attribute
value) multiple values may exist. These are separated by a value mark
(X'FD') which prints as "]", in exactly the same manner an attribute mark
separates attributes.

End of Group - An attribute mark immediately following an item signifies
the end of a group. If a group is empty the first character of the group
will be an attribute mark.

II-7

Dump of Sample File

The following "print out" was generated using the DUMP processor. It shows
a sample file with BASE=l248, MODUL0=3 and SEPAR=2. The DUMP processor
assumes frames in a linked format as follows:

unused Byte 1
Byte 2
Byte 3-6
Byte 7-10 -
Byte 11
Byte 12
Byte 13-512

number of next contiguous frames
next linked frame
previous linked frame
number of previous contiguous frames
unused
data portion

For each frame the first line shows the frame number (FID) and links fields
in the above sequence, Subsequent lines display all non-blank data. The
sample file contains one large item and all the linked frames including
those outside the primary item are dumped. Attribute marks print as the
character I\.

Example of File with 3 Groups and 2 Frames/Group

BASE = 1248, MODULO = 3, SEPAR = 2.

!st group (FID = 1248) has 3 icems

2nd group (FID = 1250) has no items

3rd group (FID = 1252) has 2 items

: DLJ.1P G 1248 ©
field = X'002E' = 46 bytes

.---~~~~-;-~-:~-~-~-~----~-~-:..:::=:-:n~u=m~b,,__~ink fields lO

FID : 1248 KS : 1 1249 0 0
001: 002 TEMO/\LINE 11\SMITH, JOHN/\1234 MAIN STREET/\0033
051! ITEM.31\THIS IS AN ITEM WHOSE ITEM-ID IS (ITEM3)/\003
101: 3ITEM6/\THIS IS AN ITEM WHOSE ITEM-ID IS (ITEM6)/\~

FID : 1249 LINKS : 0 0 1248 1 Group data
terminating
attribute mark.

Item-id: ITEMO = X1 4954454D30' End of first item.
Hashing algorithm:

FID = Remainder(X'4954454D30 1 I 3) * 2 + 1248
= 0 * 2 + 1248
= 1248

II-8

REALITY 2.0 UPDATE

,.--- No. of next contiguous
frames.

:DUMP G 1250 ~

DISK 1250

FID : 1250 LINKS
001: A

FID : 1251 LINKS 0 0 1250 1
001

Next frame.

group.

The third group has a large item (size = X'74F' = 1871) causing
the group to link out of the primary area into the overflow space.

:DUMP G 1252 0
DISK 1252

FID : 1252 LINKS : 1 1253 0 0
001: 074FITEM2ATHIS IS AN ITEM WHOSE ITEM-ID IS (ITEM2)
051: AATHE PREVIOUS ATTRIBUTE rs NULLATHIS IS THE FIRST
101: VALUE OF A MULTI VALUED ATTRIBUTE]THIS IS THE SEC
151: OND VALUE OF A MULTI VALUED ATTRIBUTEA1234567890AB
201: CDEFGHIJKLMNOPQRSTUVWXYZ ! "#$%&Io:::=-_+; I [A]<>? I . .
251: AATTRIBUTE VALUES MAY CONTAIN ANY COMBINATION OF L
301: EGAL CHARACTERS~ AND ONLY THE NUMBER OF CHARACTERS
351: ACTUALLY IN THE VALUE WILL BE STORED. ADDITIONAL
401: Y THE VALUE MAY BE UP TO 32~760 CHARACTERS LONG.AV
451: ALUE FOR ATTRIBUTE 6" VALUE FOR ATTRIBUTE rvALUE F

FID : 1253 LINKS : 0 9327 1252 1
501: OR ATTRIBUTE 8AVALUE FOR ATTRIBUTE 9AVALUE FOR ATT
551: RIBUTE lOAVALUE FOR ATTRIBUTE llAVALUE FOR ATTRIBU
601: TE 12AVALUE FOR ATTRIBUTE 13AVALUE FOR ATTRIBUTE 1
651: 4 VALUE FOR ATTRIBUTE 15AVALUE FOR ATTRIBUTE 16AVA
701: LUE FOR ATTRIBUTE 17AVALUE FOR ATTRIBUTE 18AVALUE
751: FOR ATTRIBUTE 19AVALUE FOR ATTRIBUTE 20AVALUE FOR
801: ATTRIBUTE 21AVALUE FOR ATTRIBUTE 22"VALUE FOR ATTR
851: !BUTE 23AVALUE FOR ATTRIBUTE 24AVALUE FOR ATTRIBUT
901: E 25AVALUE FOR ATTRIBUTE 26AVALUE FOR ATTRIBUTE 27
951: AVALUE FOR ATTRIBUTE 28AVALUE FOR ATTRIBUTE 29AVAL

II-9

p

r
i
m
r
y

s
p
a
c
e

REALITY 2.0 UPDATE

FID : 9327 LINKS : 0 9331 1253 0
1001: UE FOR ATTRIBUTE 30AVALUE FOR ATTRIBUTE 31AVALUE F
1051: OR ATTRIBUTE 32AVALUE FOR ATTRIBUTE 33AVALUE FOR A
1101: TTRIBUTE 34AVALUE FOR ATTRIBUTE 35AVALUE FOR ATTRI
1151: BUTE 36AVALUE FOR ATTRIBUTE 37AVALUE FOR ATTRIBUTE
1201: 38AVALUE FOR ATTRIBUTE 39AVALUE FOR ATTRIBUTE 40A
1251: VALUE FOR ATTRIBUTE 41AVALUE FOR ATTRIBUTE 42AVALU 0
1301: E FOR ATTRIBUTE 43AVALUE FOR ATTRIBUTE 44AVALUE FO v
1351: R ATTRIBUTE 45AVALUE FOR ATTRIBUTE 46AVALUE FOR AT e
1401: TRIBUTE 47AVALUE FOR ATTRIBUTE 48AVALUE FOR ATTRIB r
1451: UTE 49AVALUE FOR ATTRIBUTE 50AVALUE FOR ATTRIBUTE f

1
End of first item. 0

w
FID : 9331 LINKS : 0 0 9327
1501: 51AVALUE FOR ATTRIBUTE 2AVALUE FOR ATTRIBUTE 53AV s
1551: ALUE FOR ATTRIBUTE 54AV LUE FOR ATTRIBUTE 55AVALUE p
1601: FOR ATTRIBUTE 56AVALU FOR ATTRIBUTE 57AVALUE FOR a
1651: ATTRIBUTE 58AVALUE FO ATTRIBUTE 59AVALUE FOR ATT c
1701: RIBUTE 60AVALUE FOR A RIBUTE 61AVALUE FOR ATTRIBU e
1751: TE 62AVALUE FOR ATTRI UTE 63AVALUE FOR ATTRIBUTE 6
1801: 4AVALUE FOR ATTRIBUT 65AVALUE FOR ATTRIBUTE 66AVA
1851: LUE FOR ATTRIBUTE 67A0033ITEM5ATHIS IS AN ITEM WHO
1901: SE ITEM-ID IS (ITEMS)AA

Item Format - Logical

While it is important to understand the item format as described in the
previous section, in normal system usage items are always accessed at a
more abstract or higher level. Files are identified by a File-name.
Within a File, items are referenced by an Item-id. For example, the
following statement shows an item in the file 'SAMPLE-FILE' whose item­
id is 'ITEMO'. Furthermore, this item has three attributes or lines
each with sample data.

:COPY SAMPLE-FILE ITEMO (T) ~

ITEMO --~~~~~~~~~~-~~~- Item-id
001 LINE 1
002 SMITH., JOHN
003 1234 MAIN STREET

Utility processors like COPY and EDIT deal at the file - item - line
level. They make no logical distinction in definition between various
"lines" in an item other than their implied line numbers. ENGLISH
processors, however, add an additional dimension through the use of
the dictionary. This dictionary informs them as to the nature of
the information stored for each of the attributes. The logical item
format is identical for ENGLISH and non-ENGLISH processors as in the
case of COPY above. It is the

II-10

responsibility of the user to ascertain the further qualifications, if
any, of the various attributes. For example, the following is a listing
of the item shown above using the ENGLISH List rrocessor.

:LIST SJ.IMPLE-FILE 'ITEMO' ATTRIBUTE-1 NJ.IME ADDRESS (r)
PAGE 1 16:40 23 OCT 1973

SJ.IMPLE-FILE ATTRIBUTE-1 N,AME ••••••••••• ADDRESS ••..•••••••••

ITEMO LINE 1 SMITH, JOHN 1234 MAIN STREET

In this example the dictionary defines the second attribute (or line) as
'NAME'. This permits the user to reference his data symbolically, when
in fact, the actual data stored on file is the same regardless of
the Processor accessing it.

Selecting Modulo and Separation

These are general guidelines in selecting values for the modulo and
separation Rarameters when using the CREATE-FILE processor. The gui~elines
are derived from the density versus overflow table explained in the next
section.

Modulo: is the number of groups in the file. It should be selected
with regard to the total number of items that the file is to store. For
optimal hashing (the pseudo-random technique of distributing items among
the groups), the modulo should be a prime number. As a trade-off between
saving storage space and minimizing search-time in a group, the modulo
should be such that there will be 10-20 items per group (fewer for large
i terns).
Therefore, m = [(Average expected number of items)/15]

m prime

Separation: is the size (in frames) per group. It should be selected
with regard to the average size of items that the file is to store. A
value should be selected such that 80% of the data in a group is in the
"prime" space.
Therefore, s = [(Average number of bytes per group)/(.8*500)]
where the average number of bytes per group can be computed from the
average item size, and the number of items per group. Separation should
be selected after the modulo.

II-11

EXAMPLE--

The new NEWAC file (prototype M/DICT) has about 160 items, average item
size 30 bytes. Therefore,

m = (160/15) = 10.67

Selecting m = 11 as a prime number, 160
average number of bytes per group = 11 * 30 = 436, and

s = 436/(.8*500) = l (500 bytes per frame)

Therefore the selected modulo = 11, separation = 1.

Other considerations include the frequency of usage of the file--relatively
"static" files can have more items per group; "dynamic" files should have
fewer items per group.

Density Versus Overflow

The table overleaf shows the relationship between density and overflow
access, where density is the percentage of primary space used, and over­
flow access occurs when an item is partially or wholly in overflow space·.

When an item is updated, it moves to the end of the group. Thus items
that are most frequenly updated occur towards the end of the group data.
This accounts for the difference in the probability figures for update and
retrieval.

II-12

I
'~

II of
Items

per Group 10% 20% 30%

1 95 181 259
2 9 9 Q_2

2
18 62 122

- 3 8 ~7
3

4 23 63
- 1 4 11.o

4 1 9 34
- - 2 6

5 - 4 19
- - 1 3

6 - 1 10
- - - 2

7 - 1 6
- - - 1

8 - - 3
- - - 1

9 - - 2
- - - 1

10 - - 1
- - - -

- - -15 - - - -
- - -20 - - - -
- - -25 - - - -
- - -35 - - - -
- - -50 - - - -

11 of
retrievals
from overflow
area per 1000
retrievals

ll of updates to
overflow area

per 1000
updates

UTILIZATION

40% 50% 60%

330 393 451
48 65 84

191 264 337
30 47 66

121 191 269
20 34 52

79 143 221
13 25 42

53 109 185
9 19 35

36 84 156
6 14 29

24 65 133
5 12 25

17 51 113
3 10 21

12 40 97
2 8 18

8 32 84
2 6 16

2 13 48
- 2 8

- 4 24
- 1 5

- 1 13
- - 3

- - 4
- - 1

- - 1
- - -

REALITY 2.0 UPDATE

70% 80% 90%

503 551 593
104 125

408 475 537
88 112

350 430 506
74 100

308 397 485
64 90

275 371 468
56 82

247 349 454
49 75

223 330 442
44 69

203 313 431
39 65

185 297 421
36 61

169 283 413
33 57

121 238 383
22 44

82 195 354
15 36

57 162 330
11 162

28 116 293
7 23

10 72 249
3 16

Probability of Overflow Using Modulo Addressing

II-13

100%

632
147

592
138

577
128

567
119

560
112

554
106

550
101

547
97

544
93

542
90

536
77

530
69

527
64

523
56

519
48

REALITY 2.0 UPDATE

FRAME MODE FRAME MODE

l DBl 50 LOGO FF
2 TCL-II 51 SYSTEM-SUBS-III
3 DISKFIO-II 52 MSG
4 TCL-INIT 53
5 TCL-I 54
6 TERMIO 55
7 DISKFIO-I 56
8 SYSTEM-SUBS-I 57
9 SYSTEM-SUBS-II 58

10 WRA.PUP-I 59
11 WRA.PUP-II 60
12 WRA.PUP-III 61
13 EDIT-I 62
14 EDIT-II 63
15 EDIT-III 64
16 EDIT-IV 65
17 DB2 66
18 DB3 67
19 DB4 68
20 DBS 69
21 DB6 70
22 GAF 71
23 PASSl 72
24 AS TAT 73
25 MACRO 74
26 GEN 75
27 ALIGN 76
28 PASS2 77
29 GETOP 78
30 ADD LAB 79
31 LOADER 80
32 ML I ST 81
33 OF2 82
34 OFl 83
35 TAPEIO-I 84
36 TAPEIO-II 85
37 T-LOAD 86
38 EBCDIC 87
39 SORT 88
40 PROC-III 89
41 DUMP-II 90
42 DUMP-I 91
43 LOGON 92
44 PROC-I 93
45 PROC-II 94
46 DLOAD 95
47 ABSL 96
48 DD UMP 97
49 ABSD 98

II-14

REALITY 2.0 UPDATE

FRAME MODE FRAME MODE

99 148 CARD IO
100 149
101 150 PROC-IV
102 151 PROC-V
103 152 INPUT
104 153 TAPEIO-III
105 154
106 155
107 156
108 157
109 158
110 159
111 160 AR ITH
112 161
113 162
114 163 OPNPF
115 164 PQUEUE
116 165 PF ILE
117 166 PQEXT-I
118 167 PQEXT-II
119 168 PQEXT-III
120 169 XLOADER
121 170 CORED UMP
122 171 PQEXT-IV
123 172 WSPACES

\. 124 173
125 174
126 175 PQEXT-V
127 176
128 177
129 178
130 179
131 DISC-DIAG 180
132 DISC-MSG 181
133 182
134 183
135 184
136 185
137 186
138 187 MSETUP
139 188 MSETUPO
140 COPY-I 189 MSETUPl
141 COPY-II 190 MBOOT
142 COPY-III 191 MBUFFERS
143 COPY-IV 192 MMONITOR
144 DISK-CHARGES 193 MMONITORX
145 XREF 194 PIBO
146 CROSS 195 PIBl
147 SEL-RESTORE 196 MONITORY

\ ..

II-15

REALITY 2.0 UPDATE

FRAME MODE

197 PCBO
198 MMONITORZ
199 MMONITORY/N2
200

290 BLOCK-LETTERS

399

II-16

REALITY 2.0 UPDATE

CORE-MAP
''"-·

This table describes the core-map of the system as it is initialized
by the cold-start process: A minimum of 16K of core is required; any
additional core in the particular hardware configuration is not
initialized. The "STATUS" column has one of the following entries:
X'80' -- LOCKED IN CORE; X'EF' WRITE TO DISK; X'FF' AVAILABLE.

BUFFER II ADDRESS FID(U) .. (L) FID
HEX DEC HEX STAT HEX HEX DEC DESCRIPTION AND PROGRAM-NAME

00 00 0000 MONITOR PCB MBOOT
01 01 0200 80 BUFFER TABLES MBUFFERS
02 02 0400 80 MONITOR OBJECT MMONITOR
03 03 0600 80 MONITOR OBJECT MMONITORX
04 04 0800 80 FFFF FC PIBS, DEV. 18/19 PIBO
05 05 OAOO 80 FFFF FB PIBS, DEV. lA/lB PIBl
06 06 ocoo 80 FFFF FA MONITOR OBJECT MMONITORY/Nl

07 07 OEOO FFFF F9 MONITOR OBJECT MMONITORZ
1000 CONFIGURATOR MSETUPO
1200 LITERALS MSETUPl
1400 FFFF FA MONITOR OBJECT MMONITORY/N2
1600 DISC DIAGNOSTIC DISC-DIAG
1800 LITERALS DISC-MSG

08 08 1000 EF 0002 00 512 PCB, CHANNEL 0 PCBO
09 09 1200 EF 0000 2F 47 FILE RESTORE ABSL
OA 10 1400 EF 0000 23 35 TAPE I/O TAPEIO-I
OB 11 1600 EF 0000 24 36 TAPE 1/0 TAPEIO-II
oc 12 1800 80 0000 04 4 INITIALIZATION TCL-INIT
OD 13 lAOO 80 0000 06 6 TERMINAL I/O TERMIO
OE 14 lCOO 80 0000 07 7 FILE I/O DISKFIO-I
OF 15 lEOO 80 0000 08 8 SYSTEM SUBS SYSTEM-SUBS-I
10 16 2000 EF 0000 01 1 DEBUGGER DBl
11 17 2200 EF 0000 02 2 TCL TCL-II
12 18 2400 EF 0000 03 3 FILE I/O DISKFIO-Il
13 19 2600 EF 0000 05 5 TCL TCL-I
14 20 2800 EF 0000 09 9 SYSTEM SUBS SYSTEM-SUBS-II
15 21 2AOO EF 0000 OA 10 WRAPUP PROCESSOR WRAPUP-I
16 22 2COO 80 0000 OB 11 WRAPUP PROCESSOR WRAPUP-II
17 23 2EOO EF 0000 oc 12 WRAPUP PROCESSOR WRAPUP-III
18 24 3000 EF 0000 11 17 DEBUG PROCESSOR DB2
19 25 3200 EF 0000 12 18 DEBUG PROCESSOR DB3
lA 26 3400 EF 0000 13 19 DEBUG PROCESSOR DB4
lB 27 3600 EF 0000 14 20 DEBUG PROCESSOR DBS
lC 28 3800 EF 0000 15 21 DEBUG PROCESSOR DB6
lD 29 3AOO FF 0000 AVAILABLE
lE 30 3COO FF 0000 AVAILABLE
lF 31 3EOO FF 0000 AVAILABLE

\. ...

Il-17

REALITY 2.0 UPDATE

The first three buffers are not accessed by the firmware in the virtual
mode of operation; thus there is absolute memory protection of core
locations 0-X'07FF'. The status fields for these buffers must be set
to X'80' (core-locked). There are two buffers containing the PIB's
(process identification blocks) that follow the above; their status
must also be set to X'80'. Buffers 6 and 7 have additional monitor
object code, and must be locked in core. The dummy FID's assigned to
buffers 4, 5, 6 and 7 allow software to access these buffers, but
provide some measure of access protection.

II-18

(

TABLE OF PRIME NUMBERS LESS THAN 1000
' '·

2 101 21;1. 307 401 503 601 701 809 907

3 103 223 311 409 509 607 709 811 911

5 107 227 313 419 521 613 719 821 919

7 109 229 317 421 523 617 727 823 929

11 113 233 331 431 541 619 733 827 937

13 127 239 337 433 547 631 739 829 941

17 131 241 347 439 557 641 743 839 947

19 137 251 349 443 563 643 751 853 953

23 139 257 353 449 569 647 757 857 967

29 149 263 359 457 571 653 761 859 971

31 151 269 367 461 577 659 769 863 . 977

37 157 271 373 463 .587 661 773 877 983

41 163 277 379 467 593 673 787 881 991

43 167 281 383 479 599 677 797 883 997

47 173 283 389 487 683 887

53 179 293 397 491 691

59 181 499

61 191

67 193

71 197

79 199

83

89

97

Il-19

_

--------------------- ---· - --------- --

SECTION III

DICTIONARIES

INTRODUCTION

Dictionaries define and describe data within their associated file. Dic­
tionaries exist at several levels within the Reality system; the highest
level dictionary is called the System Dictionary (SYSTEM). This dictionary
is used for system control, and contains only a pointer to the Accounting
file and the names of users who may logon to the Reality system. The next
level dictionary is called the Master Dictionary (M/DICT); each user's
account has a Master Dictionary associated with it. The Master Dictionary
points to (or defines) lower level dictionaries within the user's account.

File Structure

The term "file" as used in the context of the Reality system, refers to a
mechanism for maintaining a set of like items logically together. The
data in a file is normally accessed via the dictionary associated with it.
Since the dictionary is itself a file, the mechanism for accessing items in
a dictionary is identical to that for a file.

At the user M/DICT level, a file-definition item (the file name) is a pointer
to the dictionary. The dictionary may contain pointers to one or more lower­
level data files; thus a two-level structure is usually implied by a file
definition item at the M/DICT level. A special item in a dictionary, whose
item-id is DL/ID, serves as the file pointer to the data.

If there is no data section corresponding to the dictionary entry in the
M/DICT, the DL/ID item may be absent in the dictionary, or it may be present
and may point to the dictionary itself; in the latter case the "data" sec­
tion overlays the dictionary.

User M/DICT

(FILE-NAME)

User Dictionary

(Dictionary definitions)

(DL/ID)

Data Section

(Data Items)

This diagram shows the two-stage rela­
tionship of the file-name in the master
dictionary to the data section. The
file-name is a file-definition item
(see next section) that points to the
dictionary; one of the items in the
dictionary is the DL/ID, which again is
a file-definition item that points to
the data section of the file. Items
at each level thus serve to define the
structure at the next lower level: the
M/DICT describes the user-dictionaries,
and each user-dictionary describes its
corresponding data section.

III-1

Dictionary Inter-relationships

The table on the next page describes the four-level file structure, and
dictionary inter-relationships of the Reality system. In addition to the
required system dictionaries and data-files, one user account is shown for
illustration.

The boxes represent the dictionaries "containing" items; shown are file­
definition and file synonym definition items (defined in the next two
sections). The full lines from items to boxes represent the "file pointer"
nature of file-definition items; the dashed lines represent the linkage
between file synonym definitions and their equivalent files.

DICTIONARY ITEM DEFINITIONS

File Definition Items

Each item in a dictionary is classified according to a single character
dictionary code (D/CODE) in attribute one of the item. A file-definition
item has a D/CODE of "D", and is a pointer to the actual physical location
of the file in the virtual (disc) memory. File-definition items are set up
during the system File-restore process, and by the CREATE-FILE processor.
Values in these items that define the physical file extents should ~ b.e
altered by the user. There may be more than one file-defining item in a
dictionary that points to the same file; but there should not be any such
items in other dictionaries that point to the same file--these should be
file synonym definitions (see below). If duplicate "D" items exist in other
dictionaries, duplicate copies of the file will result on a filesave and
restore.

Attributes two through four define the physical extents of the file:

Attribute two: Contains the BASE FID of the file.

Contains the MODULO of the file.

Contains the SEPARATION of the file.

Attribute three:

Attribute four:

The values for BASE, MODULO and SEPARATION are stored as decimal numerics;
the meaning of these fields is described under Data Structures.

Attributes 5 through 12 of a file-definition item are identical to those
described for attribute definition items (see later).

Attribute 13 is an optional Reallocation specification, which allows the
reallocation of the physical extents of a file during a system File-restore
process. This is the only way in which the physical extents of a file can
be altered. The format of this specification is as follows:

(m,s) Where "m" and "s" are decimal numerics specifying the new
modulo and new separation parameters of the file. Restric­
tions on the values of "m" and "s" are as follows:

0 < m
0 < s < 128

III-2

H
H
H
I

w

{ ,I' r

Dictionary Inter-relationships in the Reality System.

System Dictionary (SYSTEM)
. . t I dd • . 1 ..-••••••• minimum sys em •••••••••••••••••]llP-f'41(•••••a 1t1ona user accounts

Level 0

(SYSTEM) '\ (DL/ID) i (USER-1)---, (USER-2)-1 (USER-3)

.-- - - ~ - - -(ACCOUNT) (SYSPROG)7
I

I
I

~ I I
I I \ (ACC)

\~ I \ I

Level

Accounting history System Programmer \\ User-1 / I

\ \dictionary \~\ ~~ f <\
\ (DL/ID I 'l(ERRMSG) "cM/1 0 ~ \(p I
\ (SYSTEM)1 .. , I
1\ (DL/ID) (MM/DICTf i .'

(USER-FtLE-3)
\ (NEWAC) /! __ ·--------J,____,_ ______

\ j (USER-FILE-1)1- (USER-FILE-2)

\ I
\ . ,

Dictionary of
user-f ile-1/

Syst;em messages \
\

--
of Dictionary of

Level 2 Accounting
History (DL/ID) c=r

Level 3

Data ; ·user-file-1

I I
(no data section)

Entries in parentheses represent file-definition items in the appropriate master-dictionary or
dictionary. Note that USER-FILE-2 and USER-FILE-3 both have no data sectors defined, but that
the former has a DL/ID pointing to the dictionary. The entry USER-2 in the SYSTEM, and ERRMSG
in the M/DICT of USER-1, are file synonym definitions.

File Synonym Definition Items

A file synonym definition item is distinguished by its having a D/CODE of
"_g_", and it allows access to files in another user's account. Attribute two
of a file synonym definition item contains the name of the account in which
the actual file definition is to be found (the account name is an entry
in the System Dictionary, SYSTEM); attribute three contains the file­
definition item-id to which the synonym equates. If this attribute is
null, it is implied that the synonym file is the user's M/DICT. Examples
are shown below:

M/DICT 1
--·-

(SYNONYM-1)

Line 1 Q /

Line 2 USER-2 /
jLine 3 FI LEX,

I : ' (SYNONYM-2)

Line 1 Q
/

Line 2 USER-3"'
Line 3

SYSTEM

(USER-1)

/ _..
/ -~ M/DICT 2

/Ir---------'--.

/ "" I
"" I

I

I
I

I ,, ,,, --- ..--
,,,, ' - ---',D

·-,...(USER-3

M/DICT 3

_.. ---

The entry SYNONYM-! in user-l's M/DICT is equivalent to the file-definition
item FILEX in user-2's M/DICT; the entry SYNONYM-2 is equivalent to user-3's
M/DICT itself, since it has a null value in attribute 3.

Attributes four through twelve are as defined under Attribute Definition
Items (see below).

Attribute Definition Items

These items define the meaning of the various attributes, or fields, in the
data items. Each attribute definition item has a value, called the attri­
bute mark count (AMC), which acts as a pointer to the data field defined
by it. The AMC indicates the number of attribute marks which precede the
value(s) for the attribute being defined by the item. Recalling that the

III-4

physical item format consists of the count field immediately followed by
the item-id field, followed by an attribute mark, and then the attribute
values, each delimited by another attribute mark, it will be seen that the
item-id itself may be referenced as having an AMC = O, the first attribute
as having an AMC = 1, and so on:

xxxx item-id A

count) AML
field

value for
attribute-!

t
AMC=l

A value for A

attribute-2

!
AMC=2

/I

An attribute-defining item in the dictionary has a D/CODE of "A"; attribute
two contains the decimal AMC value described above; attributes three and
four are not defined for these items.

The values for attributes five through twelve are as follows; values are
optional except where specified:

Attribute 5:

Attribute 6:

Attribute 7:

Attribute 8:

Attribute 9:

Attribute 10:

Retrieval security lock; used to restrict
the retrieval access to this attribute.

Update security lock; used to restrict
the update access to this attribute. These
two fields are described in the section ·
under Security.

Conversion specification; used to perform
table look-·ups, masking functions, etc.
Described under Conversion.

Correlative specification; used to describe
inter-file, and intra-file data relationships.
Described under Correlatives.

Type and Justification; describes the type
(alphabetic or numeric), and justification
(left or right) for output. A value is man­
datory, and may be one of the following:

L Left justified, no specified type.
LA Left justified, alphabetic.
LN Left justified, numeric.
R Right justified, no specific type.
RA Right justified, alphabetic.
RN Right justified, numeric.

Maximum length; describes the maximum length of
values for the attribute; an entry is a decimal
numeric, and is mandatory.

III-5

Attribute 11:

Attribute 12:

Minimum length; describes the minimum length
of input values acceptable on updates to
this attribute.

Pattern edit; describes a pattern editing mask
that input values must check against, on updates
to this attribute.

Attribute Synonym Definition Items
.

These items have specific meaning to the ENGLISH processors; they are more
fully described in those sections. A synonym definition has a D/CODE of
either an "S" or an "Xi'; attribute two is not used, but normally contains
the AMC value of the attribute being defined (mainly to allow sorting by
AMC of items in a dictionary). Attribute three contains a "synonym name",
a value which lists as a header on ENGLISH LIST or SORT statements;
attribute four contains the AMC. Attributes five through twelve are as
described above for attribute definition items.

DICTIONARIES

The System Dictionary (SYSTEM)

There is one and only one SYSTEM Dictionary for each Reality system. Other
than a pointer to the Accounting file, the SYSTEM should contain only "D"
code items, representing user accounts. The LOGON processors use these
"D" code items to verify users attempting to logon to the system. Only
one "D" code item should be present for each account; if more than one
user-name is to be established for the same user-account, the additional
names should be file synonym definition ("Q" type) items. The meaning of
attributes five through eight is different for both "Q" and "D" Code
entries in the SYSTEM; these are described under LOGON/LOGOFF. Entries in
this dictionary also completely control the file-save process, whereby
the data base is saved on a secondary storage medium.

The Master Dictionary (M/DICT)

There is one M/DICT for each account. The M/DICT, like any other file or
dictionary, is made of up items. Some of these items define the attribute
format for all dictionaries (D/CODE = "A") and their formats are identical
to those for file-dictionaries. The file defining items (D/CODE = "D")
point to (or define) the various dictionaries defined for the account.

In addition to those elements in the M/DICT identical to a file dictionary,
there are entries which define VERBS, PROCS and various ENGLISH language
elements (connectives and BATCH STRINGS). Each of these entries has a
coding structure which uniquely identifies it. Please refer to the chapters
on TCL, PROC and ENGLISH language for their respective definitions.

III-6

\ ..

All name.s used as item-id's in the M/DICT must be unique not only within
the M/DICT, but also among all file dictionaries.

INITIAL SYSTEM FILES

Certain files are essential to the operation and maintenance of the
Reality System. These files are described below.

The Account File

This file contains the accounting history for the system, as well as the
entries that describe currently active (logged-on) users. The formats of
these entries are described under the LOGON/LOGOFF section. The Accounting
file should be cleared periodically to prevent overflow of the file (refer
to LOGON/LOGOFF).

The SYSPROG Account

The SYSPROG (System Programmer) account is the only account needed to
maintain the Reality System. The system message file (ERRMSG) and the
prototype M/DICT (NEWAC) are defined from this account; the former is
accessed by all users of Reality to obtain error and informative messages,
while the latter is used to create new user M/DICT's.

Also contained in the SYSPROG account are the system-level PROC's which
perform the File-save and File-restore functions, the initialization of the
accounting file on a cold-start, etc. For this reason, the following two
file synonym definition items must be present in the SYSPROG M/DICT.

MM/DI CT synonym to the SYSTEM dictionary.

ACC synonym to the accounting history file.

See System Maintenance for a full description of entries in this account.

The ERRMSG File

This dictionary defined from the SYSPROG account, contains the system mes­
sages. It is mandatory that every user account have a "Q" type entry called
ERRMSG which points to the ERRMSG file in the SYSPROG account. (This is
accomplished by the CREATE-ACCOUNT PROC.)

Entries in the ERRMSG file are listed in the System Messages section; they
consist of both error messages as well as informative messages.

The NEWAC File

This dictionary is defined from the SYSPROG account, and is a prototype
M/DICT that is used as a model from which a new user's M/DICT is created.

III-7

It contains the standard set of VERBS, PROCS, and ENGLISH language elements.
Entries are listed in the System Maintenance section.

Attribute
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

Sununary of Dictionary Item Definitions

M/DICT
Name

D/CODE

F/BASE
or
A/AMC

F/MOD
or
S/NAME

F/SEP
or
S/AMC

L/RET

L/UPD

V/CONV

V/CORR

V/TYPE

V/MAX

V/MIN

V/EDIT

D

File
Definition

Base FID
of file

Modulo of
file

Separation
of file

Synonym to
a File­

Definition

Q

Account­
name

Synonym
file-name

Not used

Retrieval lock code(s)

Synonym to
Attribute Attribute
Definition Definition

A S or X

AMC [AMC]

Not used Synonym
name

Not used AMC

Update lock code(s) - - - -

Conversion specification(s)

Correlative specification(s)

- - Justification & type-code

- - Maximum field length

Minimum field length

- - Pattern edit for updating values

F/REALLOC Reallocation
Specification

Not Used

III-8

EXAMPLES--

:COPY DICT M/DICT M/DICT MJRTHI PREMIUM 16 (P) 6)

M/DICT
001 D
002 14933
003 13
004 1
005 /;P123
006 UPDATE*LOCK!
007
008
009 L
010 13
011 1
012
013 (11, 1)

MURTHI
001 Q
002 CH.A/'JDRASHEKAR
003
004
005
006
007
008
009 L
010 8
Oll 1

PREMIUM
001 A
002 99
003
004
005
006
007 fvD26
008 F;7;8;*
009 R
010 10
011 1

16
001 s
002 16
003 AGENCY NAME ••••
004 16
005
006
007 TAGENT-NO;V;;2
008
009 !Ji.
010 4

III-9

Item-id (file-name).
D/CODE = "D"; File Definition It em.
Base FID of file.
Modulo of file.
Separation of file.
File access protect code; retrieval
Update lock-code. lock-code
Conversion (null).
Correlatives (null).
Left justified dictionary items.
Maximum field length.
Minimum field length.
Pattern edit mask (null).
Reallocation parameters.

Item-id (file-name).
File Synonym Definition Item.
User name in .MM/DICT.
Null file-name; therefore M/DICT.

Item-id (attribute name).
Attribute Definition Item.
Attribute Mark Count (99-th. field).

Conversion specification.
Correlative specification.
Right justified field.

Item-id (attribute synonym).
Attribute Synonym Definition Item.
For sorting purposes only.
Synonym name (header name).
Attribute Mark Count.

Conversion specification.

Left justified; alphabetic field.

H
H
H
I

0

:SORT DICT AGENCY-t.IO D/CODE A/AMC S/NAME S/AMC V/COtf/ V/CORR V/TYPE V/MIV< V/MIN V/EDIT F/REALLOC BY
D/CODE BY A/AMC DBL-SPC (9

AGENCY-NO. D/CODE •• A//lMC SIN.AME •••••••••• S//lMC V/CONV •••••••• V/CORR •••• V/TYPE V/MAX. V/MIN V/EDIT F/REALLOC

RATE A 01 MD4 R 7 7

DESC A 02 L 50 1

DESCR I PTI ONA 02 L 50 L

TAX A 03 MD23 R 9 1

DL/ID D 03259 0001 020 L 4 4

1 s 01 RATE 1 MD4 L 7 7

2 s 02 DESCRIPTION 2 L 50 L

3 s 03 TAX 3 MD23 R 11 1

The above is a listing of the AGENCY-NO dictionary; the fields L/RET and L/UPD have been suppressed.
Note that the Attribute Definition Items 'DESC' and 'DESCRIPTION' reference the same field (both
have an A/AMC of two); thus they can be said to be "synonyms" to each other. Though the items DESC
and DESCRIPTION are identical, they may have different entries under, say, the V/MAX for formatting
or other purposes; there is no restriction on the number of such synonyms in the dictionary. The
values under the columns A/AMC, S/NAME and S/AMC for the File Definition Item 'DL/ID', are actually
the values of the base FID, modulo and separation of the data-file referenced by this dictionary.
Leading zeroes in numeric fields are not necessary; they are present mainly for formatting purposes.

\

"--

\

SECTION IV

TERMINAL CONTROL LANGUAGE

INTRODUCTION

The Terminal Control Language (TCL) is the primary interfac~ between the
terminal user and the various Reality processors. Most processors are
evoked directly from TCL by a single statement, and return to TCL after
completion of processing. Some processors, the EDITOR for example, retain
control of the terminal until explicitly exited, at which point they return
control to TCL. TCL prompts the user by typing a colon(:). This is
referred to as the "TCL prompt character". Statements are constructed by
typing a character at a time from the terminal until the "CARRIAGE-RETURN"
or "LINE-FEED" key is depressed. At that time the entire line is
processed by TCL.

EXAMPLE--

:COUNT EVERY ITEM IN THE ACCOUNT FILE {E)

Input Statements

TCL works on one statement at a time. A statement may be comprised of
multiple lines. However this statement ~begin with a verb and may
contain only one verb per statement. Reality operates in the full-duplex
mode of communication with each user's terminal. Full-duplex means that
data is being transmitted in both directions simultaneously between the
terminal and the computer. Additionally, Reality operates in what is
known as an "Echo-Plex" environment. This means that each data character
input by the terminal is echoed back to the terminal by the computer. The
user is assured therefore that the data character displayed on the terminal
is identical to the data character stored by the computer. TCL passes only
complete input lines to be processed by the software. The user fully
composes his input statement with no action being taken until TCL detects
either a Carriage-Return or a Line-Feed. If no Carriage-Return (or Line­
Feed) is detected data characters will be assembled into a statement in
the user's input buffer up to 140 characters at which time TCL will auto­
matically generate a Carriage-Return. In addition to the standard
ASCII (96) character set recognized by TCL, special operations are per­
formed when control characters are detected. The control characters listed
below perform editing functions; all other control characters are deleted
from the input line that is passed to lower level processors, but remain in
the original input line.

IV-1

r

PROC
PROCESSOR

TCL VERBS

OVERALL VIEW OF SYSTEM SOFTWARE ~JNKAGE

..

FROM
COLO.ST

LOGO FF I+-
I

PROCESSOR I
~ I

OF~ ... r+
VE~/l'--~~.--~._..,j

r------------------....1~

TCL
PROCESSOR

PROCESS l.._ j
INITIALIZATION__r- - -

~
LOGON
PROCESSOR

TIME, DUMP, ETC. J J
• • [

....
~

ENGLISH
PROCESSORS

TCL
PROCESSOR

ENG LISH VERBS
LIST, SORT, ETC.

ENGLISH
PRE-PROCESSOR t--

ENGLISH
SELECTION
PROCESSOR

LOG ON

TCL-11 VERBS
EDIT, COPY, ETC.

TCL-11
PROCESSOR

FROM ANY
PROCESSOR ---· OFF

DEBUG
PROCESSOR

END

TCL-11
PROCESSORS

"'

... .,,
WRAPUP PROCESSOR --

IV-2

ART

\

'--

Control Character

Carriage Return
or Line Feed

Backspace (Control H)

Cancel (Control X)

Retype (Control R)

Continuation
(Control-Shift O)

REALITY 2.0 UPDATE

Function

Terminates the input statement and
initiates processing.

Deletes the last character typed from
the input buffer.

Deletes the entire line currently being
typed from the input buffer.

Causes the entire line currently being
built in the input buffer to be retyped.

Permits continuation to a second input
line; must be immediately followed by
a carriage return or line feed.

Note: The continuation character is only effective from TCL; all
other characters may be used at any time for any processor
requesting input.

TCL Processing

The TCL expects the first parameter of a statement to be a verb. There
are three types of verbs in Reality:

e ENGLISH verbs

e TCL-II verbs

• TCL-I verbs

A summary of standard Reality verbs is provided below. One of the
powerful features of Reality is the ability to customize the vocabulary
for each user. Since verbs reside in the individual user's Master
Dictionary (M/DICT) the vocabulary may be added to or deleted from
Without affecting the other users. (In addition to adding or deleting
verbs, an unlimited number of synonyms may be created for each verb.)

IV-3

REALITY 2.0 UPDATE

Verb Type Function

ADDD TCL-I Add decimal.

ADDX TCL-I Add Hexadecimal.

AS TCL-II Assembles source code.

ASSIGN TCL-I Assign print spooler device.

B/ADD TCL-II File update via batch-string.

B/DEL TCL-II File delete via batch-string.

BLOCK-PRINT TCL-I Send block characters to spooler.

BLOCK-TERM TCL-I Print block characters on terminal.

C-READ TCL-II Read cards and append them to an existing file
item.

CLEAR-FILE TCL-I Remove all file items from a file or
dictionary.

COPY TCL-II Copy data files and dictionaries.

COREDUMP TCL-I Produce formatted output from a binary dump
of core.

COUNT ENGLISH Count occurrences of file items.

CREATE-FILE TCL-I Create a new file.

CROSS-INDEX TCL-II Create a cross index of assembly language
programs.

DELETE-FILE TCL-I Delete an entire file.

DIVD TCL-I Divide decimal.

DIVX TCL-I Divide Hexadecimal.

DTX TCL-I Convert from decimal to hexadecimal.

DUMP TCL-I Dump virtual frames to terminal.

EBTPRD TCL-II Read records from tape into file items.

ED TCL-II Same as EDIT.

EDIT TCL-II Evoke the editor processor.

EJECT TCL-I Eject line printer pages.

IV-4

Verb

FORM

GROUP

I-DID1P

I STAT

ITEM

KILL

LIST

MESSAGE

MLIST

MLOAD

MSG

MULD

MULX

MVERIFY

REALITY 2.0 UPDATE

Type Function

TCL-I Set form alignment for print spooler.

TCL-II Provide file usage statistics on groups.

ENGLISH Dump to terminal in T-DUMP format.

ENGLISH Histogram file hashing.

TCL-II Provide usage statistics on file items.

TCL-I Abort current spooler output.

ENGLISH Print selective report output.

TCL-I Inter-user connnunication.

TCL-II List assembly source code.

TCL-II Load assembly object code.

TCL-1 Same as MESSAGE.

TCL-I Multiply decimal.

TCL-I Multiply hexadecimal.

TCL-II Verify assembled program against loaded
program.

OFF TCL-I Terminate session-logoff the system.

P TCL-I Inhibit printing at terminal.

P-ATT TCL-I Attach line printer.

P-ATT-KILL TCL-I Unconditionally detach line printer from any
line.

P-DET TCL-I Detach line printer.

P-STAT TCL-I Print line printer status.

POVF TCL-I Print overflow parameters.

PRINT-HOLD TCL-I Send hold file to line printer.

PRINT-QUE TCL-1 Print hold file queues.

SEL-RESTORE TCL-II Selective restore from save tape.

SELECT ENGLISH Select file items for subsequent command.

IV-5-1

Verb

SORT

SSELECT

STAT

SUBD

SUBX

SUM

T-ATT

T-BCK

T-DET

T-DUMP

T-FWD

T-RDLBL

T-LOAD

T-READ

T-REW

T-WEOF

TERM

TIME

WHO

X-REF

XTD

REALITY 2.0 UPDATE

· Type Function

ENGLISH Print ordered report output.

ENGLISH Select and sort file items for subsequent
command.

ENGLISH Print attribute statistics.

TCL-I Subtract decimal.

TCL-I Subtract Hexadecimal.

ENGLISH Total attribute values.

TCL-I Attach magnetic tape unit.

TCL-I Backspace tape.

TCL-I Detach magnetic tape unit.

ENGLISH Dump file items to tape.

TCL-I Forward-space tape.

TCL-I Read tape Label.

TCL-II Load file items from tape.

TCL-I Read one record from tape.

TCL-I Rewind magnetic tape.

TCL-I Write EOF on tape.

TCL-I Set terminal characteristics.

TCL-I Print time and date.

TCL-I Print the line number and account name to
which the terminal is logged on.

TCL-I Create a cross-reference of assembly programs.

TCL-I Convert from hexadecimal to decimal.

IV-5-2

REALITY 2.0 UPDATE

TCL Statement Parsing

TCL copies characters from the terminal into a second buffer performing
the following processing:

• The first word is assumed as the VERB and looked-up in the
user's Master Dictionary (M/DICT), but not copied.

• Redundant blanks surrounding all words in the statement are
deleted.

• Character strings surrounded by single or double quotes (' ")
are identified and copied verbatim, including redundant
blanks.

Statement Formats

All statements processed by TCL must begin with a verb. The syntax of
the statement is dependent on the type of verb used.

ENGLISH Verbs

Statements are free-form and may use any combination of conditional
constraints such as relational and Boolean operators. The form is:

Verb file-name item-list selection-criteria output-specification

In ENGLISH the words after the verb may be arranged in any sequence
that makes sense to the user. (See ENGLISH section for further
details.)

TCL-II Verbs

Statements are more restricted. Selection-criteria and output­
specification are not allowed by TCL-II verbs. The file name (or DICT
file-name) must immediately follow the verb. Item selection is
restricted, since each item-id must be uniquely named in the state­
ment, or, alternately all items may be specified (by use of the
asterisk*). The advantage gained by this restricted format is an
·enhancement in processing speed since statement parsing is quicker.

TCL-II verbs use the following formats:

verb file-name item-list (option parameter string)

verb DICT file-name item-list (option parameter string)

IV-6-1

REALITY 2.0 UPDATE

Item-list format: The item-list is made up of one or more
item-ids, separated by one or more blanks. If an item-id
contains embedded blanks or parentheses it must be surrounded
by single quotes. All items in a file may be specified by
using an asterisk (*) as the item-list.

IV-6-2

Option-string format: The option parameter string is enclosed in
parentheses. This string is passed to the TCL-II processor and
its contents are a function of the particular verb.

Option parameters are either single characters, A through Z, or
the numeric option n-m; multiple options are separated by commas.

Interaction of TCL-II Verbs with the SELECT Verb

The full ENGLISH selection criteria may be used in conjunction with TCL-II
verbs. This may be done by using the "SELECT" verb to select items from a
file (refer to ENGLISH section); when the message indicating the number of
items selected is returned, the TCL-II statement may be entered, omitting
the item-list. The previously selected list of items will then be used by
the TCL-II verb. This capability permits, for instance, selective editing
or copying of a file.

EXAMPLE--

: SELECT SYSTEM-rvuoES WITH CLASS = "~~SYSTEM MODE" 0
18 ITEMS SELECTED.
:MUST SYSTEM-MODES (P,M) @ (Note item-list missing)

TCL-I Verbs

Verbs which have a code of other than "2" or "35" in line two of their
M/DICT entry are known simply as TCL-I verbs. When TCL identifies a verb
it exits immediately to the entry point specified in line two of the verb
defining item.

Interrupting Processing

The CPU processing can be interrupted at any time by depressing the BREAK
key on the terminal (INT on ,,ome terminals). This causes an interrupt in
the current processing, and an entry to the DEBUG state. This entry is
signalled by the message "I x.d" where "x" and "d" describe the location
of the point of interruption (refer to DEBUG documentation for details); and
input is then requested by the DEBUG prompt character, the exclamation
point (!).

For users with system privileges level zero and one, the following are the
only DEBUG facilities available.

IV-7

P Print on/Print Off;

Each entry of P switches from print suppression to print
non-suppression and back; the message OFF is returned if output
is now suppressed; ON if it is now resumed. Useful to limit
output at the terminal. (Also refer to P verb in TCL).

G Go; causes resumption of process execution from the point of
interruption.

Note: G cannot be used if a process ABORT condition caused the
entry to DEBUG.

END Terminates current process and causes an inunediate return to TCL.

OFF Terminates current process and causes the user to be logged off
the system.

Note that depressing the BREAK key when in the terminal input or in the
output mode will cause a loss of up to 16 characters. If in the input
mode, the retype-line character (control-R) should be used to check the loss
of data after returning from DEBUG via the G conunand.

: LI ST SYSTEM-MODES FRM1E HOR-SUPP @

SYSTEM-MODES. • • • • • • • • FRAME •••••••••

\'/SPACES FRAME 172
EDIT-I FRAME 013
PQUEUE/1200 FR.AME 164
WRAPUP-I I
I 6.1A3

!P IB OFF
!G ·r

l 3.FB

!~ON
!G r
DB3 FRAME 018
DB4 FRAME 019
TAPE IO-I I FRAME 036
DBS
I 6.137
!END ©

ENGLISH LIST - statement.

Listing output from system

BREAK key depressed
Interrupt message
Turn Print off
Go (resume execution without
printing) BREAK key pressed
BREAK key pressed
Turn Print back on
Go

BREAK key pressed
Terminate execution

Back to TCL

Processing Aborts

On encountering one of the hardware abnormal conditions, the system will
trap to the DEBUG state with a message indicating the nature and location
of the abort. If the user has system privileges, level zero or one, he
must type END or OFF to exit from the DEBUG state. The hardware abnormal
conditions are described in the section DEBUG.

TCL Verb Definition

All verbs are defined as an item in the M/DICT. These items have as their
item-id the name of the verb. The second attribute in the item defines the
processor entry point to which TCL passes control. The attributes used and
their meanings are given below.

Attribute

0

l

2

3

4

5

Description

item-id (verb name)

"Pc" where "P" identifies the M/DICT item as a verb.
The single character "c" is passed to the defined
processor. (Note: if c = "Q" the item is a PROC
and not a verb)

Transfer contr0l pr0~ram identification (mode-id or
address)

2 = TCL-II verb

35 = ENGLISH verb

XXXX = TCL verb

Secondary transfer point (address)

(Tertiary transfer point (address)

TCL-II parameter string. These parameters govern
treatment of the items retrieval by TCL-II to be
passed to the processor whose entry point is defined
in attribute three. Parameter meanings are:

C-copy item to a work area

P-print item-id if item string = "*" (all items)

U-items will be updated by processor

N-okay if item is not on file

Z-final entry required on eof

F-pick up file parameters only (ignore item-list)

IV-9

EXAMPLES--

ENGLISH Verb

LIST
001 PA
002 35
003 4D

TCL-II Verb

MUST
001 PY
002 2
003 20
004
005 CP

TCL Verb

TIME
001 PZ
002 3033

IV-10

REALITY 2.0 UPDATE

Section V

STORED PROCEDURES (PROC)

INTRODUCTION

An integral part of the Reality Computer System is an ability to
define stored procedures called PROCs. A PROC provides the applica­
tions programmer a means to catalog a highly complex sequence of
operations which can be evoked from the terminal by a one word
command. Any operation that can be executed by the Terminal Control
Language (TCL) can be performed in a PROC. This usage of a PROC is
quite similar to the use of a Job-Control-Language (JCL) in some
large-scale computer systems. The PROC language in Reality is more
powerful however since it has "conditional" capabilities and can be
used to inter-actively prompt the terminal user. A PROC can test
and verify input data as they are entered from the terminal keyboard.
These input data are stored in a stack which is ultimately passed to
some other processor such as the EDITOR or the BATCH-STRING processor.

A PROC is stored as an item in a dictionary or data file. The first
attribute value (first line) of a PROC is always the literal PQ. This
specifies to the system that what follows is to be executed by the PROC
processor. All subsequent attribute values contain PROC statements
that serve to generate TCL commands or insert parameters into the stack
for the interactive processors. PROC statements consist of an optional
numeric label, a one or two character command and optional command
arguments. PROC statements are executed interpretively by the PROC
processor.

PROC Execution

A PROC stored as an item in the user's Master Dictionary (M/DICT) is
executed or evoked in the TCL environment by typing: the item-id of
the PROC, any optional parameters and a carriage return.

V-1

REALITY 2.0 UPDATE

EXAMPLE--

: LIS TU 0
CHANNEL PCB-FID NAME •••••• DATE TIME .•

THREE 0260 KARDEX 14 FEB 1974 12:38

ELEVEN 0360 EARL 14 FEB 1974 14:01

TWO 0240 EARL 14 FEB 1974 14:02

ZERO 0200 SYSPROG 14 FEB 1974 14:15

PROCs also have the ability to pass arguments to the TCL level process.

EXAMPLE--

: LI STD I CTS POLICY 0
POLICY•... D/CODE .. A/AMC V/CORR ..•. V/COt-N V/TYP V/~

AUDIT-PERIOD A
POLICY-PERIOD-FROM A
POLICY-PERIOD-TO A
EXPIRES A

01
02
03
03

D
D
D

L
L
L
L

Where "LISTDICTS" is the name of a PROC and "POLICY" is the argument.

4
10
11
12

PROCs can be used to interactively prompt data entry and to verify the
format of the data.

EXAMPLE--

: ENT ER -DAT A 0
PART-NUMBER ? = 3215-19 0
DESCRIPTION ? = TRANSISTOR 0
QUANTITY ? = FIFTY 0
ERROR-NUMERIC DATA ONLY!!

QUANTITY ? = 50 0
BIN-LOCATION ? = 0

V-2

REALITY 2.0 UPDATE

In the previous example the input data is stored in a stack which will
be passed to the BATCH-STRING processor to update the file.

Once a PROC is evoked, it remains in control until it is exited. When
the PROC temporarily relinquishes control to a processor such as the
EDITOR or a user supplied subroutine, it functionally remains in control
since an exit from the called processor returns control to the PROC.
TCL only regains control when the PROC is exited explicitly, or when
all of the lines in the PROC have been exhausted.

PROC Link Command

One PROC can evoke another PROC with the PROC link command. Control is
passed to the first statement of the requested PROC, which may be in
any dictionary or data file. This allows the storage of PROC (except
the LOGON PROC) outside the M/DICT. Also, large PROCs can be broken
into smaller PROCs to minimize processing time.

The format of the PROC link command is:

([DICT] filename [item-idJ)

where the filename and item-id indicate the PROC to be evoked. if the
item-id is null, the item-id is taken from the current position of the
current input buffer.

EXAMPLE--

Assume that the PROC 'LISTU' has been moved to a file called PROCLIB;
then the LISTU PROC in each user's M/DICT can be:

LISTU

001 PQ
002 (DICT PROCLIB LISTU)

and 'LISTU' in the file PROCLIB is exactly as it used to be originally
in the M/DICT.

EXAMPLE--

Assume that a PROC called 'EXECUTE' will be used to execute any one of
a series of PROCs in a file called PF, as specified by the user typing
in a single-character alphabetic code:

EXECUTE

001 PQ
002 OPLEASE INPUT CODE +
003 IN?
004 IF A = (lA) (PF)
005 XILLEGAL RESPONSE.

V-3-1

REALITY 2.0 UPDATE

If for example, the user's response to line 3 is "D", Line 4 will
transfer control to the item 'D' in the file PF.

All input and output buffers remain unchanged when the linkage takes
place. Note that line one of the linked-to item is always skipped,
even if the item is not in the M/DICT, to maintain compatibility with
M/DICT PROCs.

V-3-2

THIS PAGE INTENTIONALLY LEFT BLANK

REALITY 2.0 UPDATE

Summary of PROC Commands

INPUT COMMANDS

IN Input from terminal to secondary input buffer.

IP Input parameters from terminal to either input
buffer.

IT Input from tape to primary input buffer.

OUTPUT COMMANDS

D Display parameters from either input buffer to
terminal.

0 Output string to terminal.

BRANCHING COMMANDS

IF Conditional statement.

GO,G Unconditional branch.

BUFFER COMMANDS

A Move argument from input buffer to output buffer.

B Back up the pointer of the input buffer.

BO Back up the pointer of the output buffer.

F Forward space the pointer of the input buffer.

H Move a Hollerith string to the output buffer.

IH Move a Hollerith string to the input buffer.

RI Clear input buffer.

S Position the Input Buffer pointer and optionally
select the primary input buffer.

STON,ST ON Stack-on selects secondary output buffer

STOFF,ST OFF Stack-off selects primary output buffer.

+ Add decimal number to parameter in input buffer.

Subtract decimal number from parameter in input
buffer.

V-4

\~

REALITY 2.0 UPDATE

EXIT COMMANDS

u Exit to user supplied subroutine.

X Exit back to TCL level.

PROCESS COMMANDS

P Process the primary and output buffer.

PP Print the primary and secondary output buffers to the
terminal before processing.

COMMENT COMMAND

C Connnent, statement is not executed by the PROC
Processor.

Input/Output Buffer Operation

The operation within a PROC is essentially a process of moving data
from either of two input buffers to one of two output buffers.

INPUT BUFFERS

:1
- - - - -.,

I

PRIMARY I

I

I
SECONDARY

L.: - - - - -'

< -
Stack
Off -

Stack
On

OUTPUT BUFFERS

---1 __ P_R_I_MAR_Y ___

-
- -[SECONDARY

The primary input buffer holds the data which evoked the PROC. These
data are the PROC name and any optional arguments.

V-5

EXAMPLE--

: DISPLAY INVENTORY G

DISPLAY
001 PQ
002 HLIST
003 A2
004 p

PRIMARY INPUT BUFFER

DISPLAY INVENTORYA

UNCHMX;ED

REALITY 2.0 UPDATE

PRIMARY OUTPUT BUFFER

usr
LIST INVENTORY~

The primary output buffer stores the command which is ultimately passed
to the TCL processor for execution. Consequently, any operation which
can be performed at the TCL level from the terminal can be performed
inside a PROC.

Tte primary input buffer contains the PROC name and any optional
parameters, exactly as they were entered when the PROC was evoked.
The contents remain the same throughout execution of the PROC unless
explicitly modified using one of the following commands: IP, IT,
IH, RI, +, -.

The secondary input buffer is used to hold input from the terminal as
a result of the "IN" command. The data in this buffer is volatile and
is not available after an "S(m)" or subsequent "IN" command. Usually
the data in this secondary input buffer will be checked for correctness
and moved to the secondary output buffer which is also known as the
"STACK". Parameters will be placed in the stack until the data input
for the item is complete, at which time control will be passed to the
primary output buffer. The statement which resides in the primary out­
put buffer will be executed at the TCL level and the data in the secondary
output buffer (if any) will be used to feed processors such as BATCH­
STRING or EDITOR. The stack is used to store parameters for those
processors which explicitly request input. The stack may contain one
or more lines of data. When the process specified by the primary out-
put buff er is completed, control returns to the PROC at which time new
data may be rem:>ved to the output buffers.

V-6

EXAMPLE--

: NEW-PART ©
PART-NO.
?33451. ©
VENDOR
?SMITH\CO. ©
BIN LOCATION
?A2777 <!)
BAD BIN NUMBER
BIN LOCATION
?AA277 @

PRIMARY INPUT BUFFER

NEW-PARr

UNCHANGED

PRIMARY OUTPUT BUFFER SECONDARY OUTPUT BUFFER

B/ ADD MD : ENr
B/ADD MD :ENT+A

33451 ·
33451

33451 SMITH\CO.'
33451 SMITH\CO. ~

33451 SMITH\CO. ftA277A
33451 SMITH°SCO. ftA277+A
33451 SMITH\CO. ftA277++A

V-7

REALITY 2.0 UPDATE

SECONDARY INPUT BUFFER

I A

I 33451A

SMITH\co. A

A277r

ftA27r

NEW-PART
001 PQ
002 OPART-NO.
003 IN?
004 IF A = (SN) GO 21
005 X-BA.D PART NUMBER-
006 21 ST ON
007 A
008 H)S
009 22 OVENJOR
010 IN?
Oll IF A GO 23
012 GO 22
013 23 A
014 H}S
015 24 OBIN LOCATION
016 IN?
017 IF A = (2A3N) GO 25
018 OBAD BIN NUMBER
019 GO 24
020 25 A
021 H<
022 H<
023 ST OFF
024 HB/ADD MD :ENT
025 p

REALITY 2.0 UPDATE

PROC Commands

Typically, PROCs are created using the EDITOR. PROCs are executed
interpretively and therefore require no compilation phase. Care
should be taken not to modify a PROC if another user is currently
executing that Pifc5C, since his PROC instruction pointer will remain
the same, while the PROC itself may be in a different position after
it is filed, causing unpredictable results.

The first line of any PROC must contain the code "PQ". The following
lines may contain any legitimate PROC commands. There is no limit to
the number of lines in a PROC. However, each line may contain only one
statement and must begin in column one. Statement labels are optional
and consist of a numeric string (leading zeros are ignored); for
example, 01,02 ... 20,21,22 ... 100,200,300,400 ... 1050,1051 ..
Any PROC statement may contain a label. This label serves to uniquely
identify its associated PROC command. Labels are used for branching
and looping within the PROC. The PROC command begins one blank beyond
the label identifier. Multiple label definitions cause no errors;
however, only the first definition will be used as the destination of
any control transfers.

PROC Command Format

• A

A
Ac
Ap or Acp
A(m,n) or Ac(m,n)
A(m) or Ac(m)
A(,n) or Ac(,n)

Where
p is parameter count
c is non-numeric character and

not left parenthesis
m is column number
n is character count

Parameter Insertion Command - This command picks up a parameter from
the input buffer and moves it to the output buffer. Either the primary
or secondary INPUT buff er may be the source and either the primary or
secondary OUTPUT buff er may be a destination. The buffers selected
depend on events prior to the occurrence of the "A" command.

A single character "c" immediately following the "A" will be used to
surround the parameter if the stack is off (primary output buffer
selected). This is useful for picking up item-id's which require
single quotes and values which required double quotes for processing
by the ENGLISH Language Processor.

EXAMPLE--

A' '1242-LO'

A" "250.00"

'5996-4'

"IOO" II 1511

'JONES'

"999.99"

However, the character "c" may not be a left parenthesis, or a numeric.

V-8

REALITY 2.0 UPDATE

If the parenthetical specification "(m,n)" is not present, the
parameter is obtained from the current position of the input buffer
pointer. Leading blanks are deleted from the parameter in the input
buffer and the insertion terminates on the first blank it encounters.

If the optional "(m,n)" is specified, the parameter is always
obtained from the primary input buffer. If the secondary input buffer
was selected, use of this option causes a switch back to the primary
input buffer. The m parameter positions the input buffer pointer to
be set to the m'th column in the primary input buffer. "m" may be
used by itself using the form A(m). In this case the parameter is
obtained from the m'th column and continues until the first blank is
encountered. If the "n" parameter is specified, exactly "n" characters
are used in the parameter including any embedded blanks.

"n" may be used by itself. Using the form A(,n) the next "n"
characters are taken starting at the current position of the input
pointer.

Using the form "Ap" the data is obtained from the p'th field, where
the fields are separated by blanks.

Multiple data parameters may be moved into the primary output buffer
with a single "A" command if these data are separated by semi-colons.
This implicit loop can be used only with the primary output buffer
(not the stack).

EXAMPLE--

A'

A"

e B

Either input buffer
351;427;926;852 •.•

Either input buffer
250;1.95;29.95;1000.50;1

Primary output buffer
'351''427''926''852'

Primary output buffer
"250""1, 95"" 29. 95"" 1000. SO'"' l"

Causes the input pointer for the currently active input buffer to be
spaced backward over one parameter. If the input buffer pointer is
currently at the beginning of the buffer, this command has no effect.

e BO

Causes the output pointer for the current output buffer pointer to
be moved back.ward over one parameter. If the output buffer pointer
is currently at the beginning of the buffer, this command has no
effect.

V-9

REALITY 2.0 UPDATE

• c

Comment - The remainder of the statement following the "C" is ignored
by the PROC. This provides a means of placing comments within the
body of the PROC.

• D
D(m)
Dp

"D" displays the field from the current buffer pointer to the next
blank on the terminal, "D(m)" displays the field starting at the mth
column of the current input buffer. "Dp" displays the pth parameter.
DO displays the entire contents of the buffer. The buffer pointer is
not changed. A plus sign (+) may be appended to the command to suppress
a carriage-return/line-feed.

• F

Causes the input pointer for the currently active input buffer to be
spaced forward over the next parameter. If the input buffer pointer
is currently at the end of the buffer, this command has no effect.

e GO n
G n

Provides the facility for transferring control within the PROC to a
different PROC line. The transfer is to the statement referenced by
the label.

• H

Causes the body of text immediately following the "H" to be placed in
either the primary or the secondary output buffer, depending upon
whether the stack is currently on or off. When the last parameter
has been moved to the secondary output buffer, an end-of-line must be
placed in the stack. The form is "H ... <" This pertains only to the
stack, not the primary output buffer.

e IF

The "IF" command provides a facility for validating the parameters in
the input buffers prior to moving them to the output buffers with the
A command. There are three basic forms of the "IF" command. In each
form, when the test criteria is satisfied, the associated PROC state­
ment is executed. All forms of the "A" command are legal in the "IF"
command except the form using the character surround ("Ac"). The "IF"
command does not move or disturb data in the input buffer; however,
it does move the pointer just like the "S" command.

V-10

'-

Form 1: IF A proc-statement
IF #A proc-statement

REALITY 2.0 UPDATE

The first form of the "IF" command simply tests for existence of data
in the input buffer.

EXAMPLE--

IF A GO 100

In the example, if there is data in the input buffer, control transfers
to the PROC statement labeled 100; otherwise the next line after the
"IF" will be interpreted.

Form 2: IF A op string proc-statement

The second form of the "IF" command compares the contents of the input
buffer with a literal "string" according to one of the following
relational operators:

Relational operators (op) in the "IF" command

EXAMPLE--

IF A = Test for equal values

IF A II Test for unequal values

IF A < Test if parameter is less than value

IF A > Test if parameter is greater than value

IF A Test if parameter is less than or equal
to value

IF A] Test if parameter is greater than or
equal to value

In the case of <, [, >,], the test is on a left-to-right
character basis only; thus leading zeroes in numeric fields
may not compare correctly (003 will test as less than 2, for
instance).

IF A = YES GO 15

In the example, should the data in the input buffer match the string
"YES", the PROC will continue executing at statement 15.

Form 3: IF A op (format) proc-staternent

V-11

REALITY 2.0 UPDATE

The third form of the "IF" command allows a pattern match for numeric
alpha, alpha-numeric characters and literals. The "format" is any
combination of:

nN Test for "n" numeric characters.
nA Test for "n" alpha characters.
n.X Test for "n" alpha-numeric characters.

Any other characters in the "format" test for the literal character
specified. If n=O, then data will be skipped until a non-matching
character type is encountered.

EXAMPLE--

IF A = (2N/2N/2N)
IF A - (3N-2N-4N)
IF A - (PT7N3X)

ODATE OK
F
GO 10

The second example "IF" could be used to validate a social security
number. The third could be used to test for input such as: PT5550301AX9.
The following command will test the input parameter to see if it is in
the range 10 through 19, and go to label 99 if it is:

IF A= (2N) IF A] 10 IF A [19 GO 99

Error condition here

• IH

Causes the line of text (including blanks) immediately following the
"IH" to replace the current parameter in the currently active input
buffer.

• IN
INc

The "IN" command causes input to prompted at the terminal. Unless
specified, the TCL prompt character (colon :) will be displayed on the
terminal. The second form prompts with a user defined prompt character,
which will remain in effect till changed.

EXAMPLE--

IN?
IN=
IN

Prompt

?

=
= (if specified after the preceding IN=)

V-12

REALITY 2.0 UPDATE

Data input from the "IN" statement is placed into the secondary input
buffer. Subsequently, this data may be read from the secondary input
buffer by using the "A" statement. However, when the primary input
buffer is specified through the "A" statement or if the "S(m)" statement
is used, the data in the secondarx input buffer is lost. Also, any time
the "IN" statement is executed, input from the terminal will overwrite
any previous data in the secondary input buffer.

• IP

IP may be used like IN to accept input from the terminal. Data input
with the IP command replaces the current parameter of the current
input buffer (a parameter is a string of characters up to a blank, or
a string of characters enclosed in quotes). If the input buffer pointer
is at the end of the current buffer, the data is appended to the current
buffer. IP does not move the input buffer pointer. Note that several
parameters will replace one parameter. The normal A,Ap,A(m,n),Sp,S(m)F,
and B may be used to position and copy the arguments to the appropriate
output buffers. It should be noted the arguments remain in the primary
input buffer after the P command has been executed for "re-use". Input
buffer overflow is defined as the sum of the bytes in the current
primary and secondary input buffers exceeding 280 bytes. If this
condition occurs, IP will return error 269: INPUT BUFFER OVERFLOW AT
PROC STATEMENT: statement.

Additional forms:

!Pc where c is the prompt character

IPB where embedded blanks will be replaced with \

IPBc

e IT
ITA
ITCA

Input from magnetic tape. One record (max. size 140 characters) is
read from the magnetic tape unit, and the data is stored in the primary
input buffer. (The original primary input buffer is lost.) If the
letter "C" follows the "T" in this specification, an EBCDIC to ASCII
conversion is performed on the tape record. The letter "A" masks the
8 bit ASCII character to 7 bits (MSB=-0).

A null record constitutes an end-of-file condition; an all-blank record
will also give this same condition.

• 0

Causes the entire body of the text following the "O" to be output to
the terminal. If the last character of this message is a plus sign (+),
the carriage will not be returned at the end of the message.

V-13

EXAMPLE--

OPART-NUMBER =+
IN?

0 p

REALITY 2.0 UPDATE

The "P" connnand allows the PROC to proceed via TCL. A single letter
"P" submits the primary output buffer to TCL for processing. Optionally,
the P may be followed by a mode-ID and in this case, control is trans­
ferred to the specified modal entry point. After execution in TCL or
the user's defined program or processor, the PROC regains control at
the statement immediately following the P command.

• pp

Same as in the "P" command, except that the data in both the PROC
output buffers are printed on the terminal, and terminal input requested
using a question mark (?) as a prompt character. If the input is
anything other than an "N", the generated statement is passed to TCL;
if an "N" is entered, PROC execution is aborted, and an exit taken to
TCL.

• RI
RI(m)
Rip

"RI" resets both input buffers to an empty or null condition. "RI(m)"
clears data from the primary input buffer from column "m" to the end
of the buffer. "Rip" clears data from the primary input buffer from
the pth parameter to the end of the buffer.

EXAMPLE--

If the input buffer was:
(start) 11020 D 'JOHN SMITH' XX(end)

and the command "RI3" is executed, the result and buffer is:
(start) 11020 D (end)

The buffer pointer is always at the end of the truncated buffer.

• S(m)
Sp

Used to both set the position of the input pointer and/or to select the
primary input buffer as the current input buffer. The "m" parameter
is used to determine at what column to set the input pointer. S(m)
moves the pointer to the mth column of the primary input buffer. Sp
moves the pointer to the pth field of the currently active input
buffer, where the fields are separated by blanks. Subsequent refer­
ences via the parameter insertion code "A" will extract parameters
from the current position of the input buffer set by the "S" command.

V-14

e ST ON, STON
ST OFF, STOFF

REALITY 2.0 UPDATE

Used to turn the stack on or off. The stack is the secondary output
buffer. When the stack is on, all data picked up by the 11A11 conunand
moves to the secondary output buffer. When the stack is off, these
data move to the primary output buffer. The stack may be turned on
and off at any point in time during the processing of a PROC. As it
is turned on and off, output is then routed to either the primary or
the secondary output buffer.

• u

Used to provide an exit to a user defined subroutine. The format for
this statement is identical to the second format of the P command;
however, the U conunand is meant to be used for a simple subroutine
call. TCL is not involved and assuming the user does not modify his
buffers they will remain unchanged during this exit. Upon return from
the subroutine, control is passed to the statement inunediately follow­
ing the U command. (Refer to program documentation, "User exits from
PROC", Section XX).

EXAMPLE--

Unxxx

t
• x

ENTRY POINT n
(HEX) xxx

The "X" command is used to exit from the PROC. Normally, a PROC
control is terminated with execution of the final PROC statement. The
X conunand may be used at intermediate points in the coding to cause
termination of the PROC. Any characters following the X will be out­
put as a message, prior to termination of the PROC.

EXAMPLE--

X-EXIT TO TCL-
IF A = END X-HURRY BACK-

• +n
-n

The decimal number "n" is added to or subtracted from the parameter
at the current input buffer position. If the input buffer pointer
is currently at the end of the buffer, this command has no effect.

The updated parameter is written back in place; therefore, care must
be taken to ensure that the updated value is the same length as the
previous parameter, since no check for this is made. Also, it is
assumed that the parameter is numeric.

V-15

EXAMPLE--

(loop control within a PROC)

IF Al #(2N) XERROR
100 C START LOOP HERE

body of loop

51
-1
C TEST END OF LOOP
IF A # 00 GO 100

(note test for "OO", not "O")

REALITY 2.0 UPDATE

n_ 1 &.

Section VI

LOGON/LOGOFF

INTRODUCTION

The LOGON processor provides a facility for initiating a user's session by
identifying valid users and their associated passwords. The LOGOFF
processor is used to terminate the session and should always be evoked via
the verb OFF when the user wishes to terminate. These processors accum­
ulate accounting statistics for billing purposes and also associate the
user with his privileges and security codes.

Logging On to the System

The user may log on to the Reality system when the message:

LOGON PLEASE:

is received. The user then enters the name, or identification, established
for him in the system. If a password has also been established, he may
follow his identification with a comma, and then his password. If the pass­
word is not entered as a response to the LOGON PLEASE: message, the system
will then output the message:

PASSWORD:
DU

The blacked-out area allows the user to enter his password and not have it
readily observable (on a printing terminal, for example). Reality validates
the user's identification against the entries in the Master Master Diction­
ary; if the identification is illegal, the message:

USER-ID?

is returned, and the LOGON PLEASE: message repeated. If the user identifi­
cation is valid, but the password is not acceptable, the message:

PASSWORD?

is returned, and the LOGON PLEASE: message repeated. Assuming that both
the user identification and the password are accepted, the user has
successfully logged on to the system. The message:

WELCOME TO MICRODATA REALITY ***
RELEASE l.X Date "'(**

VI-1

will be returned; the user is then prompted for input with a colon (:),
the TCL prompt character.

The terminal characteristics (see System Commands) are set to an initial
condition by LOGON; these initial values are:

Page width
Page body
Page skip
Line-feed delay
Form-feed delay
Backspace echo

110 characters
44 lines

7 lines
0
0

X'08' (ASCII backspace)

These correspond to an 8-1/ 2" x 11" page size.

The Logon PROC

When the user has logged on to his account, Reality permits the automatic
execution of a PROC whose item-id is the same as the user identification.
That is, the Master Dictionary of the account will be searched for a PROC
matching the user identification which was used to log on to the account,
and, if it is found, it will be executed. Typically, this is used to per­
form standard functions that are always associated with the particular
user's needs, resetting terminal characteristics as an instance.

EXAMPLE--

Assume that a PROC called REF-MAN has been established on the M/DICT of
Ref-man's account; a dump of the PROC is as below:

: COPY M/D I CT REF-MAN (T) @

REF-M.l\N
001 PQ
002 HTERM 118,44,7,6
003 p
004 X** TERMINAL CHARACTERISTICS ARE SET. **

VI-2

The Logan sequence is shown below:

LOGON PLEASE: REF-M.AN CE)
PASSWORD:
xx x0

*'~"' lt!ELCOME TO MICRODATA REALITY ***
*** 15:30 RELEASE 1.0 24 OCT 1973 ***

** TERMINAL CHARACTERISTICS ARE SET. **

General System Message

(user name entered)

(password obscured)

(message from PROC
REF-MAN)

(TCL prompt character)

(User is now logged on
to the system)

There is the facility to send the same message to each user as he logs on
to the system. The item-id 'LOGON' in the ERRMSG file, may define such a
message, which is typically used to transmit information pertaining to
system up-time, and the like. lt should be noted that the LOGON mess~ge
item must be present in the ERRMSG file even if no general system message
is to be sent; in this case, the item should have no attribute values
(i.e., an item-id only). The format of the LOGON message item is the same
as any other message item in the ERRMSG file; see System Maintenance.

Logging Off the System

Legoff is achieved by entering the word OFF, either at the TCL level, or at
the DEBUG level. A message indicating the connect time (number of minutes
that the user was logged on), and the charge-units used, will be returned,
before the system re-enters the LOGON state and waits for the next user
session to be initiated.

The charge-units represent usage of the CPU. It is normally in tenths of
a CPU second, though this can be cha~ged since it is a monitor software
convention.

EXAMPLE--

:OFF@

"'-1'-J' CONNECT TIME = 16 MINS.; CHARGE-UNITS = 295 ***
i<>'<'f: LOGGED OFF AT 15:33 ON 24 OCT 1973. ***
LOGCX\I PLEASE:

Vl-3

Clearing the ACCOUNT File

To avoid overflowing the entry in the ACCOUNT file for a specific account­
name, the file should be cleared periodically by the following procedure:

LOGON to SYSPROG
Type: LIST ACC 'account-name' LPTR

DELETE ACC account-name

The point of overflow is determined by the activity of the account; however,
approximately 200 LOGON/LOGOFFs are allowed. This point can be calculated
by the following procedure:

Type: CT SYSTEM account-name

Attribute 8 gives the System Level Privileges and the amount of
work space; if no number is specified, 6 is assumed. Multiply
this number by 500 and subtract 100 for the approximately maximum
size.

To determine the actual size, type:

STAT ACC ACC-SIZE 'account-name'

This will produce a message in the following format:

STATISTICS OF ACC-SIZE
TOTAL = 52 AVERAGE = 52.00 COUNT = 1

If the value for TOTAL approaches the size calculated above,
the account is approaching the overflow point.

If the ACCOUNT file does overflow, the response to OFF will not be the
standard message described in the previous section, but will be in the
following format:

FORW LNK ZERO; REG = O.E
ABORT @ 50.16D

Subsequent OFFs will produce the same result. To recover from this
situation, follow this procedure:

LOGON to SYSPROG on another terminal
Type: LIST ACC 'account-name' LPTR (to save the ACCOUNT history)

DELETE ACC account-name

VI-4

'-

User Identification Items

All User Identification Items are stored in the System Dictionary
(SYSTEM), and are either file definition items or file synonym definition
items.

The items in the System Dictionary therefore define the set of users who can
log on to the system. Attributes two through four of these items are identical
to the corresponding attributes in file definition or file synonym definition
items; attributes five through eight contain data associated with the
user's lock (security) codes, password, and system privileges as under:

Attribute 5: Contains the set of retrieval lock-codes
associated with the user. Multiple values
(separated by value marks) are allowable; there
is no restriction as to the format of individual
lock-codes. This attribute may be null, indicat­
ing no lock-codes. Lock-code usage is described
under Security.

Attribute 6: Contains the set of update lock-codes associated
with the user. As for retrieval lock-codes.

Attribute 7: Contains the user's password, which is a single
value; this attribute may be null; there is no
restriction as to the format of the password.

Attribute 8: Contains a code which indicates the level of
"system privileges" (see below) assigned to the
user. Also contains a code which indicates
additional work-space requirements for this
user (see below).

Attributes nine through thirteen are as defined for file definition or
file synonym definition items.

System Privileges

Three levels of system privileges are available; they are referred to as
zero (lowest), one, and two (highest) respectively. Lower levels of
system privileges restrict usage of certain facilities of the system:

Facility Lowest Privilege Level Required

Updating of M/DICT One

Use of magnetic tape One

Use of DEBUG (other than P, Two
OFF, END and G commands)

Dump Processor Two

VI-5

Facility

Use of ASSEMBLER & LOADER

Use of verbs : SET-TIME;
SET-DATE; :INIT-LINES; File
save and restore processors

Lowest Privilege Level Reguired

Two

Two

System privileges are assigned by the code in attribute eight of the user
identification item in the System Dictionary; the following codes are used:

SYS2 assigns level two privileges.

SYSl assigns level one privileges.

Anything else assigns level zero privileges.

These codes may be immediately followed by the additional work-space
assignment parameter, described below.

Additional Work-Space Assignment

As noted under Data Structures, there are three "linked" work-spaces, sym­
bolically named the HS, the IS and the OS, that are set to an initial size
of six frames (3000 bytes) each at logon time. It is possible that particu­
lar users require additional work-space (principally for assembling source
programs); this requirement may be specified in attribute eight of the user
identification item, immediately following the system privileges code.

The format of this parameter is:

(n) where "n" is a decimal numeric; 6 < n < 128

"n" specifies the work-space requirement, in number of frames, for each of
the three linked work-spaces HS, IS and OS. "n11 must be greater than six,
since six frames are initially made available by the system.

The additional space is obtained from the pool of contiguous overflow
space; if such space is not available, the message:

[334) REQUESTED NUMBER OF ADDITIONAL WORK-SPACE FRAMES: XX.XX
IS NOT AVAILABLE.
ADDITIONAL WORK SPACE HAS NOT BEEN ASSIGNED.

will be returned after the "WELCOME etc" message (XX.XX represents the
actual attribute value from attribute eight of the user identification
item).

VI-6

\

If the format of the work-space parameter is illegal, ("n" out of range,
missing right parenthesis, non-numeric "n" field), the message:

[333] THE FORMAT OF THE ADDITIONAL WORK-SPACE PARAMETER: XXXX
IS ILLEGAL.
ADDITIONAL WORK-SPACE HAS NOT BEEN ASSIGNED.

will be returned after the "WELCOME etc" message.

EXAMPLE on the next page.

Updating System Dictionary Entries

Entries in the System Dictionary should only be updated, from the SYSPROG
account, when no other users are logged on to the system. This is because
the system software maintains pointers to data in the System Dictionary
when users log on, and updating the System Dictionary will invalidate the
pointers. An exception to this rule is when creating a new account, or a
synonym to an existing account, which can be done at any time, since new
items are added to the end of the existing System Dictionary data, and
thus do not disturb any pointers to it.

VI-7

EXAMPLE--

The entry in the eighth attribute is SYSl(lO)

This gives the user system privileges, level one, and ten frames of work­
space per linked set. Thus 12 additional frames have to be obtained from
contiguous overflow space. It is assumed that the user logs in on process
one (cormnunications channel one on device address X1 18'), which corres­
ponds to a PCB FID of X1 220', 54410•

Symbolic name
of work-space

PCB
SCB
DCB

BMS, etc.
TS
PROC work area
Original HS
Original IS
Original OS

unassigned

FID(s) 32-frame work-space

544---.-i
1------------1

545
546
547
548
549
550-553
554-559
560-56
566-57!

572-575

(576)

Original HS

Original IS

Original OS

VI-8

I

/
/

I

I
I

I

Additional work­
space obtained;

(total 12 frames)

902
/

/ HS extension
/ /9028 ----------t

IS ex tension

I OS extension
I

I
I

I
Dashed lines are
to re present
frame linkages
setup after logon.

The Accounting History File

This is one of the mandatory files in the Reality system; the file definition
item, or file synonym definition item, 'ACCOUNT', must be present in the
SYSTEM. It is treated as a dictionary-level file by the LOGON/LOGOFF
processor; that is, it updates directly into the file defined by the ACCOUNT
entry, not going one level further down as for a data file.

SYSTEM

Item: (ACC) (ACCOUNT) -1

Line 1: D Q I

Line 2: base ACC I
Line 3: modulo DL/ID
Line 4: separ

ACC Die tionary

(dictionary items)

(DL/ID)

I

Account dictionary/file J ,,
;

Accounting history items

Active Users Entry

The actual file linkages set up
for the ACCOUNT file and ACC
dictionary are as shown on the
left. The ACC dictionary is set
up for convenience in examining
and listing data in the Account
file.

There are two types of entries
in the ACCOUNT file--those that
represent active (logged-on)
users, and those that keep
track of accounting history.

The item-id of an active user entry is a four character, hexadecimal FID
of the PCB of the user's process. Recalling that the PCB's start at
FID = 512, and proceed in steps of 32 frames from there on, a user logged
on to process zero will have an entry with an item-id 1 0200 1 (51210); on tu
process one with an item-id '0220 1 (54410), etc. Attribute one contains the
name of the user (user identification item-id) ; attribute three the date
logged on; and four the time. Active user entries are created when a user
logs on, and deleted when he logs off.

VI-9

Accounting History Entry

The item-id of an accounting history entry is the name of the user;
attributes one, two, and three are not used. The remainder of the
attributes are described below:

Attribute 4: Date(s) logged on - each unique date is stored;
value marks are tagged on to the value in this
attribute if multiple logoffs on the same date,
for LIST alignment purposes. Date is stored in
Reality date format.

Attribute 5: Time(s) logged on- an entry is made on each log­
off, representing the time at which the user had
logged on. Time in seconds past midnight, 24-hour
clock.

Attribute 6: Connect time(s) - an entry representing the time
in seconds between the logon and the logoff.

Attribute 7: Charge-units - a number representing the CPU
usage is added on each logoff.

The accounting history entry is updated every time a user logs off the
system; thus the entry stores the history of every session (logon to
logoff) .

VI-10

Attribute
Number

0

1

2

3

4

5

6

7

8*

9*

10*

11*

ACCOUNT File Attribute Description

ACC dictionary
Name

(item-id)

Al

A2

A3 or
DISK-SPACE

DATE

TIME

CONN

UNITS

CHARGES

TOT-CONN

TOT-UN

TOT-CHRGS

Active User
Entry

Four-character
hexadecimal PCB-FID

User name.

Date logged on

Time logged on

Accounting History
Entry

User name

Not used

Not used

Not used

Dates logged on

Times logged on

Connect time

Charge-units

Computed charges

Computed charges
connect time

Computed total
charge-units

Computed total
charges

*Functional relationships; no data stored in these attributes. Data values
shown for these attributes in the examples are for illustration only.

VI-11

EXAMPLES--

The statement below is a sorted listing of active users (users "WITH Al").

:SORT ACC WITH Al Al f>:l. A3 HOR-SUPP (E)
ACC ••••••••• Al A2.. • • • • • • • • A3 • •••

,....-------------- User name
Jf" Time logged on

PICK 24 OCT 1973,15:16---------Date logged on
MVC 24 OCT 1973 11:22

0240
0280
02AO
02CO
02EO

REF~ 24 OCT 1973 15:01
ROCS 24 OCT 1973 14:55
E 24 OCT 1973 14:19

PCB-FID = X'0240';
Channel two (57810)

The example below is a listing of the user REF-MAN 1 s accounting history
item:

:LIST ACC ~REF-MAN .. HOR-SUPP (5)
Acc ••.•••••• DATE ••••••• TIME. CONN. UNITS CHARGES TOT-CONN TOT-UN TOT-CHRGS

REF-MAN 13 OCT 1973 19:11 0:21 2335 5.80 1:22 4111 12.73
20:00 0:54 987 4.89

15 OCT 1973 10:55 0:02 452 1.05
24 OCT 1973 11:51 0:03 308 0.81

12:49 0:02 29 0.18

Below is the same item dumped so as to show its internal storage format:

: I-DUMP ACC ~REF~ .. 0 Dates
~Times logged on

REF-MANAAAA2113]]2115]2124]A69079]72000]39330]42693]46184Al266]3245]

~69]224]14 A2335]987]452]308]29A c t t" _.,., \ onnec 1mes,.............-
ribute mark Charge-units

Value mark

VI-12

Section VII

FILE MANAGEMENT PROCESSORS

•CREATE-FILE

The CREATE-FILE Processor provides the capability for generating files
and dictionaries in the Reality system. This processor is used to create
file dictionaries which exist as "D" entries in a users Master Dictionary
(M/DICT). The CREATE-FILE processor is also used to reserve disk space
for the data portion of the new file and automatically puts a DL/ID (Data­
List/Identifier) entry in the file dictionary, which points to the data.
CREATE-FILE will automatically locate and reserve a contiguous block of
disk frames from the available space pool. The user therefore needs only
to specify the modulo and the separation of both the file dictionary and
the data. Refer to the Data Structures section for the definition of
modulo and separation.

• Modulo - Must be a non-zero integer

o < m

• Separation - Must be a non-zero integer less than 128.

0 < s < 128

For users with no system level privilege& or with Level One system level
privileges the following restriction applies:

• The product of modulo times separation may not exceed 512

m * s ~ 512

Note: A user with SYS2 privileges is limited only by his disc space.

Refer to notes in the Data Structures section regarding the selection of
values for modulo and separation.

The dictionary (DICT) of the file must always be created first and the
name given to this new file must not exist in the users M/DICT. The
general form for creating a file dictionary is:

CREATE-FILE (DICT file-name m, s)

EXAMPLE--

:CREATE-FILE (DICT SAMPLE 1,1) (r)

(417) FILE 'SAMPLE' CREATED; BASE = 14946, IVODULO = 1. SEPAR = 1.

VII-1

Once the DICT has been created the disk space for the data area of the file
can be reserved. The general form is:

CREATE-FILE (DATA file-name m,s)

EXAMPLE--

:CREATE-FILE (DATA SAMPLE 11,3) (!}

(417) FILE 'DL/ID' CREATED; BASE= 14947, MJDULO = 11, SEPAR = 3.

An alternate form of the CREATE-FILE processor is shown below. This enables
the creation of both the DICT and the DATA areas with one statement. The
general form is:

EXAMPLE--

where m1 DICT MODULO

s 1 = DICT SEPARATION

m2 = DATA MODULO

s 2 = DATA SEPARATION

:CREATE-FILE (SAMPLE 1,1 11,3) G)

(417) FILE 'SAMPLE' CREATED; BASE = 14980, /vlODULO u 1, SEPAR = 1.
(417) FILE 'DL/ID' CREATED; BASE = 15132, MODULO = 11, SEPAR = 3.

CLEAR-FILE

The CLEAR-FILE Processor clears the data from a file; that is, it sets the
file "empty" by placing an attribute mark in the first data position of each
group of the file. "Overflow" frames that may be linked to the primary
frame space of the file will be released to the System's overflow space
pool.

Either the DATA section or the DICT section of a file may be cleared using
the CLEAR-FILE command. If the DICT section is cleared, and a DATA section
exists (as implied by the presence of the DL/ID item in the dictionary),
the DL/ID will be maintained in the dictionary.

To clear the DATA section of a file, the following coIIUiland is used:

CLEAR-FILE (DATA file-name)

VII-2

To clear the DICT section of a file, the following conunand is used:

CLEAR-FILE (DICT file-name)

Files that are defined by file-synoym definition items in the user's
M/DICT cannot be specified in a CLEAR-FILE cormnand.

DELETE-FILE

The DELETE-FILE Processor allows the deletion of a file, either the DATA
section, or both the DATA and the DICT section. The DICT section of a file
which has a DATA section cannot be deleted. The formats of the DELETE­
FILE commands are exactly as those for the CREATE-FILE commands.

To delete the DATA section of a file, the following cormnand is used:

DELETE-FILE (DATA file-name)

which will delete the DATA section, and also delete the DL/ID entry from
the DICT section.

To delete the DICT section of a file, the following conunand is used:

DELETE-FILE (DICT file-name)

To delete both the DATA and DICT sections, use DELETE-FILE (file-name).

In both the above cases, the file-definition item in the M/DICT (the
file-name) is also deleted.

Files that are defined by file-synonym definitions in the user's M/DICT
cannot be specified in a DELETE-FILE statement.

COPY

The COPY processor allows the user to copy items from a file to the terminal,
line printer, or to another file, either in his account, or in some other
users account. However, in order to COPY to another users account, a file
synonym definition ("Q" entry in D/CODE) which points to that specific
account and file, must already exist. (Refer to the section on Dictionaries.)

The COPY processor is a TCL-II verb and consequently has the same general
form as a TCL-II verb. (Refer to the section on TCL-II Processing.) The
general form of the COPY comm.and is:

COPY [DICTl file-name
item-id's

or

VII-3

(options)

The format for copying existing items in a dictionary to new dictionary
items within the same file:

COPY DICT file-name

EXAMPLE--

: COPY DICT SAMPLE COST~
TO :WORTH©

I ITEMS COPIED

dict-item-name(s)

In this example the COPY processor creates a new attribute called "WORTH"
for the file "SAMPLE", by copying the existing attribute "COST" from the
file named "SAMPLE".

The format for copying data from one item to another item within the same
file is:

COPY file-name item-id

EXAMPLE--

:COPY SAMPLE 1242-01 r
TO : 1242-99 r

1 ITEMS COP I ED

In using the COPY verb, multiple items may be specified as the source and
as the destination. They must be separated by blanks.

A one-to-one correspondence between source-file and destination-file item
lists is not mandatory. If the source-file list is exhausted first the
COPY terminates. If the destination-file list is exhausted first, the
remainder of the items are copied with no change in item-id.

EXAMPLE--

:COPY FLAVORS RED WHITE BLUE r
TO: : ALPHA BET A GAMMA r

3 ITEMS COPIED

This example copies data items RED, WHITE and BllJE back into the file
called FLAVORS but gives them item-ids of "ALPHA" "BETA" "GAMMA".

VII-4

If it is desired to copy all existing items, this is done by using an
asterisk (*) following the file name.

EXAMPLE--

:COPY DICT SAMPLE ::
TO :(DICT FLAVORS)

2 ITEMS COPIED
DL/ID NOT COPIED

This will copy all the attribute definition items from the file name
"SAMPLE" to the file name "FLAVORS". Note that when a destination of
other than the source file is desired, the destination file must be
enclosed in parentheses. If the parentheses are not used, the items
will be· copied into the original file.

When copying from one file to another the COPY processor does not bring
dictionary entries which have a D/CODE of "D", such as the DL/ID entry. If
this restriction is not in effect, a "FILE-SAVE" operation will save the data
in the file more than once and a subsequent file restore will cause multiple
copies of the data to exist on the disk. DL/ID entries must be only created
by the CREATE-FILE processor.

To recreate both the dictionary and the data of one file in a new file, the
following sequence of COPY commands may be used:

:CREATE-FILE (NEW-SAMPLE 1, 1 3, 1) @

(417] FILE 'NEW-SAMPLE' CREATED; BASE = 15417, MODULO= 1, SEPAR = 1.

[417] FILE 'DL/ID' CREATED; BASE = 15418, MODULO = 3, SEPAR = 1.

A new file called NEW-SAMPLE has now been created.

: COPY DI CT SAMPLE :: r
TO :(DICT NEW-SAMPLE)

3 ITEMS COP I ED

: COPY SAMPLE :: G)
TO : (NEW-SAMPLE) Ci;)

2 ITEMS COPIED

This copies all the dictionary
items from SAMPLE to NEW-SAMPLE
except the DL/ID

This copies all the data items
from SAMPLE to NEW-SAMPLE.

VII-5

Copying to the Magnetic Tape, Line Printer or Terminal

Items can be copied to the tape if, when the TO: message appears, the
response is "(TAPE)". Note that file definition items (D/CODE = "D") will
not be copied. The tape so created can be read using the T-LOAD verb.

EXAMPLE--

:COPY M/DICT :: @
TO: (TAPE) @

157 ITEMS COPIED.

Items can also be copied to the terminal or to the line-printer either in
character format, or as a hexadecimal dump; see options below.

Options

Several options are available for use with the COPY processor. The desired
options are specified by one or more single characters which are separated
by commas. The entire options list must be enclosed in parentheses, and_ must
follow the item-id list (or*).

Options are described below:

Option

D

0

p

T

x

L

EXAMPLE--

Description

Deletes items from the source-file after they are
copied to the destination file.

Overwrites destination file items with source file
items.

Copies items to the line-printer.

Copies items to the user's terminal.

Specifies a hexadecimal dump (to the terminal or line
printer), when used with P or T option.

Suppresses line-numbers (on a copy to the terminal or
line printer), when used with the P or T option.

:COPY FLAVORS ALPHA BETA (D 0) r
TO :BLUE YELLOW r

2 ITEMS COPIED

VII-6

"--

REALITY 2.0 UPDATE

The above example copies two items from the file named FLAVORS back
into FLAVORS changing the item-ids from ALPHA to BLUE and from BETA
to YELLOW.

The items ALPHA and BETA are deleted. If either item previously existed
(BLUE or YELLOW), it is overwritten.

Note: Not all combinations of option characters are meaningful. D and
0 options only apply on a file-to-file copy. X and L options apply
only on a copy to the terminal or to the line printer. None of the
options apply on a copy to the tape.

Note: If a null line (carriage return) is supplied to the destination
prompt "TO:" the copy will be sent to the terminal.

EXAMPLE--

:COPY M/DICT LISTACC ©
TO : J!2

LISTACC
001 PQ
002 HLIST ACC WITH NO Al
003 F
004 10 IF A GO 11
005 p
006 x
007 11 IF A = LPTR GO 12
008 IF A = PAGE GO 12
009 A'
010 GO 10
011 12 A
012 p

File Management Verbs

ITEM filename item-id [(options)]

Copies the PROC "LISTACC"
from the Master Dictionary
to the terminal.

Displays the base FID of the group into which the item-id hashes. If
the item is not already on file, the message: ITEM NOT FOUND is printed
on your screen. In addition every item-id in that group is listed along
with a character count of the item in hex. At the end of the list the
following message is printed: n ITEMS m BYTES p/q FRAMES

where:

n is the number of items in the group

m is the total number of bytes used in the group

VII-7

REALITY 2.Q UPDATE

p is the number of full frames in the group

q is the number of bytes used in the last frame of the group.

Valid options are

P direct output to lineprinter.

S suppress item list.

GROUP filename [(options)]

Same as ITEM except each group in the file is used and no specific
item can be tested.

POVF [x]

POVF displays the number of frames in each contiguous block. There
are two ways to use POVF. If POVF x © is keyed in where x is any
character, the linked chain is not counted. In this case the first
line of output will contain only the FID of the first frame in the
chain. If POVF © is keyed in, the linked chain is counted and the
number of frames in the chain is displayed in parenthesis on the first
line of output. Regardless of which way POVF is used, every line of
output after the first is of the format m n (p) where m is the first
frame of a contiguous block, n is the last frame of that block and p
is the number of frames in the block.

SEL-RESTORE Verb

The SEL-RE~TORE verb may be used to selectively restore a file, or
specific item within a file, from a file-save tape. Only one file
at a time can be restored. SEL-RESTORE may be run from any account,
not necessarily from the account whose file is to be restored, as
long as the file is defined in the M/DICT of the account from which
the restoration is done.

The general form of the SEL-RESTORE statement is as follows:

where

SEL-RESTORE file-name account-name 'item-id-list'

file-name is the name of the file to be restored; it must match
the name on the file-save tape. It may be preceded by
"DICT" specifying dictionary.
"DICT" must be used when restoring an M/DICT.

account-name is the name of the account from which the file was
defined (as a D-CODE item) when the file-save tape was
created.

VII-8

REALITY 2.0 UPDATE

item-id-list is optional; if omitted, all items are restored;
otherwise, specific item-ids may be entered, each enclosed
in single quotes.

Each item-id restored will be listed, and a message indicating the
total number of items restored will be returneq.

Note: SEL-RESTORE will exit to LOGON if end of tape is reached due
to (1) account-name not found, or (2) the very last file on the tape
is restored.

VII-9

'---

'·-

REALITY 2.0 UPDATE

Section VIII

EDITOR

INTRODUCTION

The EDITOR is a processor which permits on-line interactive modification
of data and file dictionaries of the Reality Computer System. This
means that PROC's and assembly source can also be modified by the EDITOR.
The EDITOR allows line-at-a-time modification of any item in the data
base. When the EDITOR is entered the item being edited is copied to
one of two temporary buffers. The item is permanently updated on the
disk file only after a file command.

Line 1
2
3
4
5

TEMPORARY
BUFFER 1

ABC
XYZ
555
xxx
LMNOP

EOF

Line 1
2
3
4
5
6
7
8

TEMPORARY
BUFFER 2

ABC
XYZ
555
New Line 1
New Line 2
New Line 3
xxx

Note: Both buf-
fers are
variable
length

EOF

The EDITOR uses the current line concept; that is, at any time, there is
a current line that can be listed, altered, deleted, etc. As one moves
through the item from TOP to EOF (end-of-file), the current line pointer
changes accordingly. If the current line pointer is at EOF, an "L"
command will place the pointer at the top before processing. Initially,
the item is in Buffer 1. As an edit is performed the modified line
and all previous lines are copied to Buffer 2. The editing process
continues working on Buffer 1. As lines in the item are changed, or
new lines inserted the EDITOR builds a new, updated item in Buffer 2.
Updating must be done in ascending line-number sequence, until the F
command is used to merge updated with the previously existing item;
and automatic resequencing of the item then takes place. Updated lines
cannot be listed until such a merge has taken place. Functionally, the
EDITOR stores the updates, and only applies them to the item when the
F command is entered. An F command does not permanently file an item.
It completes the copy to the alternate buffer causing all lines to be
resequenced and the EOF marker to be repositioned. It then switches

VIII-!

REALITY 2.0 UPDATE

the function of the buffers. Editing occurs in Buffer 2 with the new
modification assembled in Buffer 1. This toggling of buffers can go
on indefinitely until the item is permanently filed away with an "FI"
or "FS" command.

Entering The Editor

1. EDIT file-name item-id [(options)] (!)

2. ~ DICT file-name item-id [(options)] ©

Example 1. Edits the data referenced by item-id, in the
reference file

Example 2. Edits the item in the dictionary of the referenced
file

Multiple items may be specified and are delimited by blanks or all
items may be specified by the use of an asterisk (*). In the latter
case, each item-id lists on the terminal as the EDITOR is entered.

If the item exists on the file, the message:

TOP

will be returned; the current line pointer is set to zero, the INPUT
environment is entered, and an EDIT command is requested with the
EDIT prompt character (.).

If the item does not exist on the file, the message:

NEW ITEM

will precede the TOP message; the EDIT environment is entered as before.

Valid options are:

Z Suppress the TOP message the first time. This feature is
useful when EDIT is called at the PROC level.

Edit Command Structure

EDIT commands are one or two letter mnemonics which must appear as the
first non-blank input character. Command parameters, or operands,
follow the command; blanks may be inserted between parameters for
clarity if desired; embedded blanks in par~meters are not permitted.
Any EDIT command may be optionally preceded by a period (.), which
will suppress all output.

VIII-2

except error messages, resulting from the command. EDIT commands cannot be
continued to a second line.

"String" Format

Where EDIT commands require one or more character strings as parameters, the
"stringi: may be delimited by any non-numeric character (except a blank or a
minus sign), that does not appear within the body of the string itself.
The colon (:) is a reserved delimiter; if used, it indicates that a column­
dependent correspondence between characters in the string and characters in
the line is necessary for a match. The up-arrow {+ or A) is a reserved charac­
ter within the body of the "string"; if used, it indicates that any charac­
ter in the corresponding position in the line is acceptable as a match.
The terminal delimiter of the string(s) is necessary only if further
parameters follow the string specification, or trailing blanks are to be
included as part of the string.

Two consecutive delimiters define a "null" string.

Editor Error Messages

Message

CMND?

STRING?

COL/I?

SEQN?

EOF:m

TOP

Description

Illegal EDIT command.

Illegal string specification, or missing string.
e.g.: Required string missing for ME; Second string
missing for R; double null string specified for R.
This message may also occur as a result of an illegal
numeric parameter specification, which causes a part
of the numeric to appear as if it were a string.

Illegal characters follow the recognized end of the
command, or illegal format for the column-number
limit specification.

Out-of-sequence update; updating must be done in an
ascending sequence until an F command is entered.

End-of-item reached at line-number m; this message
may appear with a number of commands, and is not
usually an error.

Top-of-item reached; informative message that is not
usually an error.

VIII-3

The Input Environment

The INPUT environment, used for data entry, is entered when lines are to be
added to the item, or existing lines are to be replaced. This environment
is entered by the ''...r' or "R" commands. The EDITOR requests data by prompt­
ing with the line-number to which data is being entered. The continuation
character (QCS) may be used to continue data input to the same line. All
characters input, including trailing blanks, will be stored without change.
A null input (carriage return or line feed only) will terminate the data
request, and cause a return to the EDIT environment for the next EDIT com­
mand. If null lines are required, it is necessary to create these lines
with a fill character such as "&" then prior to permanently filing the item
replace with a null using the replace operator such as R99/&//.

Edit Commands

Parameters in brackets are optional.

Command

A

B

DE [n] "string"

Description

AGAIN, Repeats the last LOCATE com­
mand that had a "string"
specification.

BOTTOM of item - the current line
pointer is set to the last line
in the item.

[P [-q]J
DELETE. This command causes a
search for characters matching the
"string"; the search is not
column-dependent unless the
delimiter used in the "string" is
a colon (see comment under "string"
format). The search is restricted
to column p, or columns p through
q, if specified. If q < p, q=p is
assumed. If n is specified, n
lines, starting from the current
line plus one, will be scanned for
a matching "string", and every
line with a match is deleted.

Lines that are deleted are listed.
The current line pointer is
unchanged.

VIII-4

Message

CMND?
if no such connnand
had been previously
issued.
EOF:m
if EOF is reached.

EOF:m
"m" is the last line
of the item.

EOF:m
if EOF is
encountered.

Command

DE [n]

EX

F

FD

FI

FS

G n

I

Description

DELETE. n lines, (one if n is
not specified) are deleted from
the item, starting from the
current line. The current line
pointer is not changed.

EXIT. The EDIT is terminated;
the item is not updated to the
diskfile; control is returned
to TCL.

Updates are merged with the pre­
viously existing item, and the
current line pointer is set to
zero.

FILE-DELETE. The item is
deleted from the disk-file;
the EDIT is terminated, and
control returned to TCL.

ITEM-NAME-SAVE. The item is
updated to the disk-file, and
control is returned to TCL.

FILE-SAVE. The item is updated
to the disk-file, and EDIT is
re-entered.

REALITY 2.0 UPDATE

Message

EOF:m
if EOF is reached

EXIT

TOP

'item-name'
DELETED

'item-name' .
FILED

TOP

GO TO. The current line pointer EOF:m
is set to n, and that line is if n > m TOP
listed.

INPUT. The input environment
is entered. All subsequent
lines are considered as data
input lines to the item, and are
inserted following the current
line. (If the current line
pointer is at zero (TOP), lines
are inserted before the first
line of the item). Input is
prompted with the current line­
nurnber and a plus sign (+). A
null input terminates the data
request, and the EDIT environ­
ment is re-enterd.

VIII-5

Command

I data

L [n]

Description

INSERT. One line may be
inserted following the current
line, by entering I, one blank,
and the data to be inserted.
Note that the data is separ­
ated from the I by one blank
only: all other blanks will be
considered as part of the line
that is inserted. The line­
continuation character cannot
be used to continue data beyond
one physical line.

LIST. n lines (one if n is
omitted), starting from the
current line plus one, will
be listed. The current line
pointer is set to the last
line that is listed on the
terminal.

L[n]"string"[p[-q]]LOCATE. This command causes a
search for characters matching
the "string"; the search is not
column-dependent unless the
delimiter used in the "string"
is a colon (see comment under
"string" format). The search
is restricted to column p, or
columns p through q, if speci­
fied. If q<p, q=p is assumed.

If n is not specified, the next
occurrence of "string" is
located, and that line is
listed; the current line pointer
is set at the line that is
listed.

If n is specified, n lines,
starting from the current line
plus one, are scanned for the
occurrence of "string"; all
lines in which the "string"
is found, are listed. The
current line pointer is incre­
mented by n, and may not be
at the last line listed.

Note that the scan always begins
from the current line plus one.

VIII-6

REALITY 2.0 UPDATE

Message

EOF:m
if EOF is
encountered.

EOF:m
if EOF is
encountered.

Connnand

ME[n]"string"[p]

N[n]

p

P data

Description

MERGE. n lines (one if n is
omitted), starting from line­
number p (one if omitted) of
the item specified in "string"
are merged into the item
being edited. Lines are
inserted following the cur­
rent line. The item speci­
fied in "string" must be the
same file as the item being
edited. If "string" is null,
lines are merged from the item
being edited itself.

NEXT. The current line pointer
is incremented by n (one if
n is omitted), and that line is
listed.

PRE-STORED command call. The
EDIT command that has been
pre-stored is called into
effect (see below).

Note:Pre-stored item will
remain through successive
innovations of the EDITOR.

PRE-STORE command. Any EDIT
command can be pre-stored by
entering P, one blank, and the
EDIT command. This pre-stored
command can then be called into
effect by entering P only (the
pre-stored command call). Only
one command can be pre-stored.

R[n]"string1"string2"[p[-q]]
REPLACE. The first occurrence
of "string1" is replaced by
"string2" in n lines (one if
n omitted), starting from the
current line. The search is
restricted to column p, or col­
umns p through q, if specified.
If q < p, q=p is assumed.

The format of "string111 and
"stringh" is as described under
"string formats; note that only
one delimiter separates the
strings.

VIII-7

REALITY 2.0 UPDATE

Message

NOT ON FILE
If the item from
which lines are to
be merged is not
on file.

EOF;m
If EOF is
encountered in the
item from which the
merge is taking
place.

EOF:m
If EOF is
encountered.

CMND?
If no command had
been pre-stored;
any EDIT error
message may be
caused by error in
the format of the
pre-stored command.

EOF:m
If EOF is
encountered.

Command Description

R[n]"string1"string2"[p[-q]]

(Continued) Lines that are changed are
listed in their updated form.
The current line pointer is
unchanged.

R[n]

s

T

TB

REPLACE. The INPUT environment
is entered, and input requested
for data to replace n lines (one
if n is omitted), starting from
the current line. The EDIT
environment is re-entered when
either: 1) data for the speci­
fied number of lines has been
entered, or 2) a null line is
entered. In the latter case,
the remainder of the lines
remain unchanged. The current
line printer is unchanged.

SUPPRESS line numbers on/off.
Each entry of S acts as an
alternate-action switch to
either suppress or list line­
numbers when lines are listed.
On initial entry to EDIT, line­
numbers are listed.

TOP. The current line pointer
is set to zero.

TABS. This command can be
followed by up to 16 tab set­
tings in ascending order. For
example, TB 15 20 31 40 would
set four tab stops.

Tabbing is invoked whenever the
EDITOR is in the INPUT envi­
ronment and a control-I (IC),
or on some terminals a tab
key, is hit. The re will cause
a series of blanks to be output,
moving the cursor to the next
specified tab stop. A back­
space (HC) and cancel (Xe) will
backspace over tabs.

VIII-8

REALITY 2.0 UPDATE

Message

EOF:m
If EOF is
encountered.

TOP

' ''-

\
'--

Command

U[n]

x

Z [n [-m]]

?

null

Description

UP. The current line pointer
is decremented by n (zero if
omitted), and that line is
listed. Note that, if n is
omitted or is zero, the current
line is listed.

X deletes the effects of the
last update command (DE,I,R)
that had been entered. Only
one update, the last, can be
deleted. This is useful when
an erroneous update command
has been used, since, in order
to repeat the command without
the X, an F is needed.

ZONE. Sets print column limits
for listing output of lines.
(Does not affect the search in
LOCATE/REPLACE commands). If
no parameters are used, the
zone is reset so that the
entire line will be listed
output. If m<n, m=n is
assumed.

on

Interrogates the current
line-number.

A null line (carriage return
or line feed only) lists the
next line. This is equivalent
to an L command with no
parameters.

VIII-9

REALITY 2.0 UPDATE

Message

TOP
If top-of-file is
reached.

L:n
n is the last
update line-number.

L:n
n is the current
line-number.

EOF:m
if EOF is
encountered.

"--

REALITY 2.0 UPDATE

Section IX

SYSTEM COMMANDS

INTRODUCTION

A set of standard commands are available to the user which provide
system capabilities. These commands include tape handling, output
spooling, card reading, interuser communication and other miscellaneous
system utilities.

Arithmetic Commands

The following is a list
capabilities.

Command

ADDD nl n2

ADDX hl h2

SUBD nl n2

SUBX hl h2

MULD nl n2

MULX hl h2

DIVD nl n2

DIVX hl h2

DTX nl

XTD h

of commands which provide simple arithmetic

Function

Add n1 and n2 in decimal.

Add h1 and h2 in hex.

Subtract n2 from nl in decimal.

Subtract h2 from hl in hex.

Multiply n1 by n2 in decimal.

Multiply h1 by h2 in hex.

Divide n1 by n2 in decimal.

Divide h1 by h2 in hex.

Convert n1 from decimal to hex.

Convert h from hex to decimal.

Negative numbers are designated by appending a minus sign immediately
prior to the first digit of decimal numbers. Hexadecimal numbers are
considered negative when in a range from FFFFFFFF to 80000000. (Note:
if fewer than 8 hex characters are keyed in, high order zeroes are
assumed.} The largest positive number which can be handled is
2,147,483,647 in decimal or 7FFFFFFF in hexadecimal.

IX-1

REALITY 2.0 UPDATE

Card Reader Command

C-READ file-name item-id l(options)]
This verb reads cards and adds them to the end of the existing item
(new items are also acceptable). Each card becomes a new attribute
at the end of the item. The item is filed away in the event that the
hopper becomes empty, an EBCDIC error occurs, a mechanical error
occurs, or the item becomes greater than 32,000 bytes. Appropriate
messages accompany each of these terminating conditions. The normal
termination is hopper empty, implying end of card deck. If the card
reader is taken out of ready manually, the message "CRD RDR NOT RDY"
is output to the terminal once every ten seconds until the card reader
is readied.

If an item becomes larger than 32,000 bytes, the command must be
repeated using a different item-id. Linkage between the items must
be supplied by the user. A maximum size of 32,000 was chosen to allow
room in the item to add such linkage.

Valid options are:

n-m to limit the use of card colunms n through m for data
to the item.

L to remove leading blanks.

T to remove trailing blanks.

If either the L or T option is used, a blank card is stored as a null
attribute.

Note that an item larger than 3,000 bytes will cause a forward link
zero unless additional work frames are requested in the LOGON item
in the SYSTEM Dictionary. If items as large as 32,000 bytes are
expected, your LOGON item should request 66 frames.

It is the user's responsibility to make certain that the card reader
is not used from two or more terminals simultaneously. If this should
occur, the most connnon result will be that the second terminal
attempting to use the card reader will be told that the card reader
is not ready. The least common result is that the first terminal may
lose activation and not regain activation until after a boot load.

Tape Commands

The following is a list of commands which provide basic capabilities
with the magnetic tape unit. Each is described in more detail below.

IX-2

\ __

REALITY 2. 0 UPDATE

Command Function

EB'l'PRD Read records from tape into file items.

T-ATT Attach magnetic tape unit.

T-BCK Backspace tape.

T-DET Detach magnetic tape unit.

T-DUMP Dump file items to tape.

T-FWD Forward space tape.

T-LOAD Load file items from tape.

T-RDLBL Read tape label.

T-READ Read one record from tape.

T-REW Rewind tape.

T-WEOF Write end-of-file on tape.

EBTPRD File-name

This command reads sequential records f'rom tape, converts each record
from EBCDIC to ASCII, creates a sequentially numbered item-id for each
record converted and stores it in the new file item.

The user is prompted for the record length in bytes. The maximum
allowable record length is 32,000 bytes.

T-ATT

This command causes the processor to allocate the magnetic tape unit
to the terminal issuing the command. It must be issued before tape is
used. Other users are locked out. If the tape is attached to some
other use, the message IN USE will be returned. Logging off the
system (OFF command) automatically detaches the magnetic tape unit.

T-BCK (n]

This command causes the processor to back the tape n records. If n
is not specified, default is a backspace to the position immediately
preceding the previous EOF mark, or to the load point. Before reading
the next record, a T-FWD must be issued to position the tape after the
EOF mark.

IX-3

REALITY 2.0 UPDATE

T-DET

This connnand causes the processor to make the magnetic tape unit
available to the system. The unit is automatically detached when
the user logs off.

T-DUMP file-name ('item-list') (selection-criteria)

Allows the user to selectively dump his dictionaries or data files to
the magnetic tape. (ENGLISH verb).

The 'item-list' and 11selection-criteria" are described under the
ENGLISH section, and cause a selected sub-set of the items or the file
to be dumped. Absence of both causes all items to be dumped. The
file name may be preceded by the DICT modifier to dump dictionary data.
File definition items (D/CODE=D) will not be dumped, an EOF mark is
written to the tape after the dump.

Note: As in other ENGLISH statements, each item-id must be enclosed
in single quotes.

T-FWD n

This command causes the processor to move the tape forward n records
(maximum value for n = 32,767). If n is not specified, the tape
forward spaces to the position immediately beyond the next EOF mark.

T-LOAD file-name ((N)]

This command allows the user to load dictionaries or data saved by the
T-DUMP verb. The data from the tape is loaded to the file "file-name".
Items on the file with item-id's corresponding to those on the tape
will be over-written. The file name may be preceded by the DICT
modifier to load dictionary data. The tape is positioned at the EOF
mark at the conclusion of the load. If the (N) is present, item-id's
will not be listed as they are loaded.

T-RDLBL n

This command will read and store the label from tape reel number 11 n"
(1'n 11 in hexadecimal), if the tape is at load point. This verb must
be used to initialize the internal label storage area, and is needed
under either of the following conditions:

a) Data is to be written to a tape (T-DUMP, etc.) starting
at other than the load point of reel number one.

b) Data is to be read from a tape (T-LOAD, SEL-RESTORE, etc.)
starting at other than the load point of reel number one.

IX-4

\

REALITY 2.0 UPDATE

The label data is maintained during a logon session, and therefore,
T-RDLBL need be used only once when working on any particular multi-reel
tape set. As an example, suppose there is a three-reel file-save, and
it is desired to start a SEL-RESTORE from reel #2 (since SEL-RESTORE
can be started in the middle of the file-save) :

Reel 1 Reel 2 Reel 3
BOT •••••.• EOT BOT •.•. EQT BOT •.•... EOF

start

If tape #2 reaches EOT, the system must be able to prompt for real #3;
therefore, it is imperative that prior to the SEL-RESTORE, reel #2 is
mounted at load point, and the command T-RDLBL 2 (j) is used to initial­
ize the label save buffer.

T-READ ~options~

This command dumps tape to terminal, or to the line printer. The
T-READ command terminates when the specified number of records are
read, or when an EOF mark is detected.

Valid options are listed below; multiple options are separated by
commas.

T-REW

X dump in hexadecimal instead of character format.

p dump to the line printer

dump only specified tape records, counting from the
current position of the tape. If n1 > 1, n1-1 records
are bypassed before displaying the Ni record. The
tape stops positioned at record n2+1.

If n2 is omitted, n2=n1 is assumed.

If (n1-n2) is omitted, tape records 1 through EOF
(or EOT) are displayed.

EXAMPLE--

T-READ (4-6) bypasses 3 records, displays the 4th, 5th, and
6th records, and the tape is positioned at the beginning of
the 7th record.

A rewind command is issued to the tape unit and control returns
immediately to TCL.

IX-5

REALITY 2.0 UPDATE

T-WEOF

Write and end-of-file (EOF) on the tape.

Tape Labels

A tape label may be written at the beginning of each tape reel; the
label may consist of up to sixteen characters, and the system adds
the time, date, and the reel number. Labels are specified when
invoking either the FILE-SAVE or T-DUMP processor; in the case of a
FILE-SAVE, the label is written after the cold-start section of the
tape, if specified, is written. T-DUMP will cause the label to be
written only if the tape is at the load point; it will be ignored
otherwise.

Labeled tapes are created as follows:

1) T-DUMP

T-DUMP HEADER "xxxxxx" ©

The data enclosed in double-quotes following the 'HEADER'
connective is used as the label. Omitting the 'HEADER'
connective causes unlabeled tapes to be generated.

2) FILE-SAVE

: DDUMP xxxxx @

The data following the :DDUMP verb is used as the label.
If no data appears, unlabeled tapes are generated.

Notes:
of the
beyond

The characters ' " A] ['\should not appear as
label. Labels can only be up to 16 characters;
16 characters will be truncated.

Tape labels are read as follows:

part
data

The tape label is read by the FILE-RESTORE, T-LOAD and T-RDLBL
processors. The first will always read the first record presented to
it (when an 'A', 'AF', or 'F' option is entered); the latter two will
attempt to read the label only if the tape is at the load point. In
the case of unlabeled tapes, the processor will read the first tape
record, determine that the tape is unlabeled, and backspace the tape
by one record before continuing.

Multiple Reel Tape Files

When a reel reaches the end-of-tape marker, the system will issue a
'tape rewind' command, and print a message requesting the next reel of
tape. An asterisk is printed as a prompt for input. When the next

IX-6

REALITY 2.0 UPDATE

reel has been mounted, the process may be continued by entering a
control-shift-0 character; all other entries will be ignored. (The
process is roadblocked on a READ instruction, and will therefore echo
up to eleven non-control characters before re-issuing the asterisk
prompt; any control character other than the ocs will cause an asterisk
prompt immediately). If the tape unit is not ready or not on-line, the
asterisk will be re-issued, and another ocs character should be entered
when the tape is ready. The prompts cannot be suppressed, and the
input to the asterisk prompt cannot be "stacked" by a PROC.

Messages Relating to Multiple-Reel Files:

1. MOUNT REEL # xx; LABEL = label time date*

The requested tape is to be mounted, and a control-shift-0
character typed when the tape unit is ready. If unlabeled
tapes are in use, the 11LABEL =" etc. part of the message
will be suppressed. "xx" is the two-digit hexadecimal reel
number required.

2. INCORRECT REEL# *

This message is returned when the reel number on the labeled
tape does not match the requested reel number (or if the
first tape mounted is not reel #1). Mount the correct ·tape
and type an ocs. This message cannot appear if unlabeled
tapes are in use.

3. INCORRECT LABEL*

Self-evident; action as above

4. REEL Ill WAS UNLABELED *

A labeled tape has been mounted, when the first tape reel
was \IDlabeled. Action as above.

5 • REEL 111 WAS LABELED *

Converse of (4); action as above.

Output Spooler Commands

The following is a list of commands which provide output spooling
capabilities. Each is described in more detail below.

Command Function

ASSIGN Assign output spooler device.

EJECT Eject line printer pages.

IX-7

REALITY 2.0 UPDATE

Command Function

FORM Set form alignment for output spooler.

KILL Abort current spooler output.

LOAD-SPOOLER Load spooler from SYSTEM-MODES.

P-ATT Attach line printer.

P-ATT-KILL Unconditionally detach line printer from any line.

P-DET Detach line printer.

P-STAT Display line printer status.

PRINT-HOLD Print hold file on line printer.

PRINT-QUE Display hold file queues.

PRINT-TAPE Print tape file on line printer.

DEVICE ASSIGNMENT Verb
ASSIGN options

The default device is always the line printer. Device assignment is
on a user line-by-line basis. Each user can issue an ASSIGN verb at
any time> which will remain in effect tmtil a new ASSIGN verb has been
issued for that line or until LOGON resets it.

The spooler can spool to multiple devices simultaneously. The options
for ASSIGN are summarized below:

C -Output to the terminal connected to the communication line
on which the spooler is running.

H -Hold the file on disc. The device is the disc and the file
is retained for future printing.

N -No spooling to disc. Output is line-at-a-time directly to
the line printer. If N is set, all other options are
ignored.

S -Suppress line printer printout.

T -Output to tape from wherever the tape is currently
positioned. Write an end-of-File (EOF) mark when a close
command is received (TCL-II closes all files).

The ASSIGN options are input in free form format. Blanks and
unrecognizable characters are ignored.

IX-8

\

\ ,_

REALITY 2. 0 UPDATE

EXAMPLE--

ASSIGN

(Resets all the option flag bits the same as LOGON does. Output
is spooled to the line printer only and is not held.)

EXAMPLE--

ASSIGN N T C

(Output line-by-line to line printer. Ignore T and C).

EXAMPLE--

ASSIGN H T S C

(Hold the file on disc, output to tape, suppress line printer
printout, and output to console connected to the communication
line on which the spooler is running).

EXAMPLE--

ASSIGN S

(Any file will be deleted when it is next "printed").

Each of these options is explained in more detail below.

CONSOLE OUTPUT (C)

The spooler can spool output to a hard-copy terminal or CRT connected
to the communication line assigned to the spooler. The "C" option will
enable console output. The spooler will output the data regardless of
whether a console is actually connected. The line printer parameters
(lines per page, etc.) will apply to the console.

Note that the spooler will hang permanently if the "C" option is used
and an asynchronous communications channel (2613 or 2614) does not
exist for the spooler line. The first character output will cause the
spooler to wait forever for an interrupt.

HOLD FILE OPTION (H)

The spooler has two main queues. The first is a 32 entry queue which
contains information on each currently open print file. An open file
is one that has not been closed and is still having frames of print
output added to it.

IX-9

REALITY 2.0 UPDATE

The second queue contains entries for up to 32 closed files; i.e.,
those files that are ready for printing. After a file has started
printing it is normally purged from the second queue unless it is
flagged as a Hold file. A Hold file will occupy one of the 32 queue
entries until it is printed without the hold option being set by
ASSIGN. When a Hold file is entered in the print queue it is assigned
a decimal entry number which is printed as follows:

ENTRY NO. 7

A Hold file is kept on the disc until released. A verb to interrogate
and edit the hold queue entries is the PRINT-QUE verb. The verb is
input without any parameters. A series of messages will then be
output, requiring a response. They are as follows:

ENTRY 5

LIST FRAME (Y /N)

PRINT (Y /N)

ENTRY 7

(Queue entry flagged as hold)

("Y" reply will list first Frame of the file
on your terminal)

("Y" reply will print the file according to
the presently set ASSIGN parameters. If H
is not set the file will be released as it
is printed. If only the parameter S is set
then the file will be deleted.)

(Next queue entry flagged as hold).

After the entire queue has been searched for hold entries the message

[283] END OF PRINT QUEUE

is output to the user.

NO SPOOL OPTION (N)

The "N" option specifies no spooling. The tape test, etc., will be
bypassed. The data is output a line-at-a-time directly to the line
printer. All other options are ignored. This option should normally
only be used when the disc is getting full and space is a problem or
for forms alignment.

The "ASSIGN N" causes an automatic attachment to the line printer the
first time WRTLIN is called. The user must use the P-DET verb to
detach the line printer when finished. The line-at-a-time mode is a
special mode where the user usually wants to gain exclusive control
of the printer for a time in order to print several files or do forms
alignment.

IX-10

\.,._.

REALITY 2. 0 UPDATE

If the line printer is attached to another line the first time
WRTLIN is called, the following message will be output to the user
console over and over until the other line is detached:

LPTR ATTACHED TO ANOTHER LINE

The line-at-a-time mode and the normal spooler mode will blank out
the user buffer from OBBEG through OB each time WRTLIN is called
unless the NOBLNK option is used when calling WRTLIN.

SUPPRESS LINE PRINTER OPTION (S)

The "S" option on an ASSIGN will suppress line printer output.
Normally, the ils" is used in conjunction with "T" and/or "C" options.
However, if the "S" appears alone, the file will be effectively deleted
since the output device is null and the frames of the file are
released.

TAPE FILES OPTION (T)

If the "T" option is used on an ASSIGN, then the file spooled will be
written to magnetic tape in 500 byte records, starting wherever the
tape is positioned. After the last record is written, an end-of-file
(EOF) mark is written.

The magnetic tape is never automatically rewound because files may be
"stacked" on the tape.

The user must mount the tape (with write-ring), attach the tape unit,
and rewind or position the tape where the file is to be written. The
tape must be left attached because the spooler will automatically
write on the tape without attaching. This means that the spooler will
use the tape in this situation even if anot~er process is currently
using it. It is the user's responsibility to see that this does not
occur.

EJECT Verb
EJECT n

The line printer will be attached, n pages ejected and the line printer
detached. The number n cannot exceed 10 or else the message [286]
NO. OF PAGE EJECTS GREATER THAN 10 will be output to the console and
an exit taken to TCL.

IX-11

FORM Verb
FORM n m

REALITY 2.0 UPDATE

FORM is a verb which is used for forms alignment on a Hold File queue
entry n. The first m lines are output to the line printer. The
message

AGAIN? (Y/N)-

is output after each m lines. The response "Y" will output the m lines
again. The only restriction is that the m lines must be on the first
frame of the file.

The forms alignment uses the line-at-a-time feature of the spooler.
The present ASSIGN bits are saved before the alignment and restored
afte:rwards. The spooler routine PPUT is called to output each line.

The PPUT routine will attach the line printer when it is available.
The FORM routine detaches from the line printer after "N" is typed in
response to AGAIN?

Four error messages can be output with FORM:

[284] INPUT ENTRY MUST BE 1-32

(2ss] ENTRY IS NOT A HOLD FILE

[286 J NO. OF LINES MISSING

[2s1] FILE BUSY BEING PRINTED

KILL Verb
KILL

This verb unconditionally aborts the current spooler job in execution
or the next one to be executed. A Hold file will be preserved while
a normal print file will have its frames released.

LOAD-SPOOLER PROC
LOAD-SPOOLER

This PROC loads eight frames of the spooler from SYSTEM-MODES. This
usually followed by a START-SPOOLER PROC. The LOAD-SPOOLER does not
destroy the print queue containing Hold files. However, the START­
SPOOLER PROC will clear the Hold file queue if the reply is 'Y' to the
reset question. The disc space will not be released in this case.

IX-12

P-ATT Verb
P-ATT

REALITY 2.0 UPDATE

The P-ATT is a verb which attaches the user to the line printer.
If the user is attached, only the TCL prompt comes beck. If the
printer was already attached to another connnunication line, the
following message is returned:

[zsaj LINE PRINTER ATTACHED TO LINE X

P-ATT-KILL Verb
P-ATT-KILL

The P-ATT-KILL verb unconditionally detaches the line printer from
whatever line is currently attached to it. The spooler attaches and
detaches from the line printer at the beginning and end of each print
file. Thus, a user can normally get attached between spooler print
files.

The spooler assumes that it remains attached to the printer once it
becomes attached. The spooler unconditionally outputs to the line
printer each frame without testing to see if it is still attached.

P-ATT-KILL should only be used under the SYSPROG account and only when
a line has inadvertantly remained attached to the line printer.

P-DET Verb
P-DET

The P-DET detaches the user from the line printer if the line is
presently attached and an exit taken to TCL.

The LOGOFF routine will automatically detach a line from the line
printer if it is attached. A user can cause the spooler to wait if
he attaches to the line printer and never detaches or logs off.

P-STAT Verb
P-STAT

P-STAT performs a printer status. One of four messages will be
output:

1) *PRINTER READY*

2) *LPTR OFF-LINE*

3) *LPTR PRINTING*

4) *LPTR CABLE OFF*

IX-13

PRINT-HOLD Verb [l
PRINT-HOLD n "string"

REALITY 2.0 UPDATE

The Hold file queue entry n will print according to the current
ASSIGN options. The Hold file will be deleted unless the H option
is set. For example, to copy a Hold file to magnetic tape without
releasing the Hold file, use ASSIGN TH followed by PRINT-HOLD.

Three error messages can be output at this point:

[zs4] INPUT ENTRY NO. MUST BE 1-32

(zss] ENTRY IS NOT A HOLD FILE

[287 l FILE BUSY BEING PRINTED

If the option string is used, a search for the string will be made
and the output started at the beginning of the string. If the string
is not found, the following error message is printed:

290 STRING NOT FOUND IN HOLD FILE

Thus, a Hold file can be reprinted starting at any point.

PRINT-QUE Verb
PRINT-QUE

Used to interrogate and print hold file queues (see ATTACH HOLD FILE
option).

IX-14

REALITY 2. 0 UPDATE

PRINT-TAPE PROC
PRINT-TAPE ["st ring"]

This PROC does the following:

1) Attaches to the tape unit.

2) Rewinds the tape.

3) Attaches to the line printer

4) Prints one tape file. An optional string can be specified
as a starting point.

S) Detach the line printer.

6) Detach the tape unit.

The rewind conunand can be removed from the PROC if a manual rewind is
used. Thus, a user could print multiple files stacked on the tape.

An assembly language routine is called to print the tape. It also
attaches to the line printer unit and will spin until attached. The
attach in the PROC will give a message if another user is presently
attached to the line printer or mag tape.

Summary of Spooler Error Messages

SPOOLING TO LPTR:

;~LPTR ATT. TO ANOTHER LINE;~

The line printer is attached to another line. The spooler will wait
until the printer is free before printing. This message is output
when the print file has been closed and is ready for printing.

IX-15

REALITY 2.0 UPDATE

The line printer connector is loose or the cable is bad. The spooler
will spin and wait for good status.

~:LPTR OFF-LINE::

Line printer is powered off, the off-line switch is in the off-line
position, or the paper has broken. The message is printed just as the
file is queued for printing. The spooler will process the file as
normal, then it will spin and wait for the line printer to go ready.

:cLPTR PRINT ING::

The line printer was busy at the time of status. Another spooled file
is being printed. This message does not come out every time because
its timing is dependent on line printer state. Thus, the line printer
may be printing without getting the message.

SPOOLING TO MAG TAPE:

MAG TAPE ATTACHED TO .ANOTHER LINE TYPE (A) TO ABORT OR (G) TO
TRY AGAIN (A/G)

The user should go to another terminal and detach the tape unit (or
hit break and detach by using debugger) and type 'G' to try again. ·

The 'A' response will release all the spooled frames and exit to TCL.

MJUNT WRITE RING ON MAG TAPE .AND TYPE C/R TO GO

This message allows the user to put a write ring on the tape without
aborting the job and losing spooled output. Merely, mount the write
ring, put the tape at load point and type carriage return to try
again.

MISC ERROR MESSAGES:

::OPEN FILE PRINT QUE FULL::

The 32 entry queue of open print files is full. These are files that
have not been closed and are not ready for printing. Exiting to TCL
will close all the files for a line. Loading the program OPNPF from
SYSTEM-MODES will clear the queue.

This should only be done when loading the spooler. The LOAD-SPOOLER
proc will re-load OPNPF.

The 32 entry queue of closed print files is full. The spooler will do
a release-quantum for 40 times, then try to put an entry in the queue
again. Consequently, the message will be repeated until the entry is
made.

IX-16

\._

''-

REALITY 2.0 UPDATE

This queue also holds all of the hold files. Some of the hold files
may have to be deleted. It is not recommended to leave hold files on
the disc for any long periods of time. Five hundred print characters
(including blanks) occupy one frame on the disc.

Miscellaneous Commands

BLOCK-PRINT, BLOCK-TERM

These verbs will print characters in a 9 by n block form on either the
line printer or the user's terminal respectively. Any ASCII character
may be printed. Each word in the input line will cause a carriage
return and three line feeds prior to printing the word in block form.
Any word containing single quotes (') must be contained within double
quotes ("), and vice versa. The surrounding quotes will not appear in
the output.

The program uses a file named BLOCK-CONVERT to create the blocked
characters. A BLOCK-CONVERT file already exists which contains the
conversion specifications for all printable ASCII characters (no lower
case alphas, however). With this file characters will be printed as
9 by 12 to 9 by 20 blocks. If it is desired to change the way any
character is printed, it is necessary to change the corresponding- item
in the BLOCK-CONVERT file. The item-id of the item is the character
to be converted. Each item in the file must consist of exactly
ten (10) attributes; the first must specify in decimal the number of
horizontal bytes in the blocked character to be output, (i.e., n of the
9 by n block mentioned above). The second and subsequent attributes
provide the conversion specification. These attributes contain one or
more values; each value except the last is separated from the preceding bz
a value mark (VM), hex "FD". The first character of the first value
in each attribute must be "C" or "B". These signal that the output
matrix line of the blocked character begins with a character or a blank
respectively. Immediately following must be the number of characters
or blanks in decimal. The presence of a value mark indicates a switch
from character to blank status or vice versa and must be followed by
the number of bytes to be output. The process continues until the
attribute mark at the end of the current line.

For example an "X" might be specified as follows:

001 7 blocked character is 7 bytes wide

002 Cl] 5] 1· output 1 char, 5 blanks, and 1 char

003 Bl]l]3]1]1 output 1 blank, 1 char, 3 blanks, 1 char,
1 blank

004 82] 1] 1] 1]2 output 2 blanks, 1 char, .1 blank, 1 char,
2 blanks

IX-_.._7

REALITY 2. 0 UPDATE

005 B3)1) 3 output 3 blanks, 1 char, 3 blanks

006 B2)1] 1)1) 2 output 2 blanks, 1 char, 1 blank, 1 char,
2 blanks

007 81]1]3]1]1 output 1 blank, 1 char, 3 blanks, 1 char,
1 blank

008 C1]5]1 output 1 char, 5 blanks, 1 char

009 87 output 7 blanks

010 87 output 7 blanks

Words to be blocked cannot have more than nine (9) characters, and in
addition, the total number of bytes (including three (3) blanks
separating each blocked character in a word cannot exceed the current
line length set by the last TERM verb.)

The following error message will be produced if the corresponding
error occurs.

[szo]

[s21]

[522]

[523]

[524]

[szs]

NO DATA FOR BLOCK OUTPUT (A string of characters to be
blocked did not follow the verb)

TOO MANY CHARACTERS IN WORD TO BLOCK (more than nine
characters specified in a word)

BLOCK CONVERT FILE MISSING OR IMPROPERLY DEFINED

BLOCK OUTPUT WOULD EXCEED PAGE WIDTH (see discussion
above)

INPUT CHARACTER 'x' IS NOT IN BLOCK CONVERT FILE

INPUT CHARACTER 'x' IS IMPROPERLY FORMATTED IN BLOCK
CONVERT FILE

An example of BLOCK-PRINT appears on the next page.

Debug

The user can always terminate execution by depressing the break-key.
This interrupts the process and enters the debug package. The
following alternatives are available:

G Resume processing

END Discontinue processing return to TCL

OFF Discontinue processing exit to log-off

P Disable printing (normally followed by G)

IX-18

REALITY 2.0 UPDATE

TITTTITTTTTT HHHH HHHH IIIIIIIIIIII ssssssssss
TITTTTTTTTTT HHHH HHHH IIIllIIIllII ssssssssssss .,

TTTT HHHH HHHH II I I ssss
TTTT HHHHHHHHHHHH II I I ssss
TTTT HHHHHHHHHHHH II I I sssssssssss
TTIT HHHH HHHH II II sssssssssss
TTTT HHHH HHHH I II I ssss
TTIT HHHH HHHH IIIIIIIIIIII ssssssssssss
TTTT HHHH HHHH IIIIIIIIIIII ssssssssss

IIIIIIIIITII ssssssssss Af>.AA NNNN NNNN
IIIIIIIIIIII ssssssssssss AAAAAA NNNNN NNNN

II I I ssss AAAAAAAA NNNl\INN NNNN
I II I ssss Af>.AA AAAA NNNNNNN NNNN
II I I sssssssssss Af>.AA Af>.AA NNNNNNNNNNNN
I I I I sssssssssss AAAAAAAAAAAA NNNN NNl\INNNN
II I I ssss AAAAAAAAAAAA NNNN NNNNNN

IIIIIIIIIIII ssssssssssss Af>.AA AAAA NNNN NNNNN
IIIIIIIIIIII ssssssssss Af>.AA AAAA NNNN NNNN

EEEEEEEEEEEE xx xx xx xx
EEEEEEEEEEEE xxxx xxxx
EEEE xxxxxxxx
EEEEEEEEEE xxxxxx
EEEEEEEEEE xx xx
EEEE xxxxxx ------------
EEEE xxxxxxxx ------------
EEEEEEEEEEEE xxxx xxxx
EEEEEEEEEEEE xxxx xxxx

AAM fvMvVv1 MtvMM PPPPPPPPPPP LLLL EEEEEEEEEEEE
AAAAAA MMVMv\ ~ PPPPPPPPPPPP LLLL EEEEEEEEEEEE

AAAAAfaAA Mfv'MMv1M Mv1fvMv1M PPPP PPPP LLLL EEEE
AAAA AAAA fv1/"fvYv1M'vYv'l ~ PPPP PPPP LLLL EEEEEEEEEE

AAAA AAAA ~ MtvMMv1 /vMMv1 PPPPPPPPPPPP LLLL EEEEEEEEEE
AAAAAAAAAAAA ~ fvMM Mtvfv1M PPPPPPPPPPP LLLL EEEE
AAAAAAAAAAAA f'1'vVvVv1 M'-fvVv1 PPPP LLLL EEEE
AAAA AAAA M'1'1M MMv1M PPPP LLLLLLLLLLLL EEEEEEEEEEEE
AAAA AAM Mvfv'M f'vVv\t-1M PPPP LLLLLLLLLLLL EEEEEEEEEEEE

IX-19

REALITY 2.0 UPDATE

At the TCL level, the session is terminated by typing the command OFF.

DUMP

Reality provides a means of examining the virtual memory frames from
the disc via the dump command. The user types the verb DUMP plus a
beginning and an ending FID. The appropriate frames are displayed on
the terminal.

The dump command has the following format:

DUMP fid 1 , fid 2 (options)

Valid options are listed below; multiple options are separated by
commas:

P Dump to the line printer instead of the terminal

n-m Character count to restrict dump to characters "n"
through "m"; only valid if "L" option is not specified

L Dumps "link" fields only (no data dump)

G Dumps "group" data - all data for the beginning of a
linked frame set through the last frame in the group.
Only fid 1 is valid if G is present.

If the optional G parameter is not specified the data in frames Fid
through fid2 will be dumped; preceding each 500 bytes of data dumped
for each frame, the links are displayed. Specifying the L option
inhibits the data dump and dumps only the links. If only the first
fid1 is specified, fid1 onward will be dumped.

MESSAGE, MSG

All Reality system users may communicate with the other users on the
system. To transmit a message to another user, type the verb MESSAGE,
or MSG, followed by the user's account name, then the text of the
message. The maximum message is 108 characters long. Anyone
currently active on the account referenced will receive the message.
If the user is not presently logged on, the system will respond with
''USER NOT LOGGED ON". Users with systems privileges level-two may
broadcast to all active users by typing MESSAGE * followed by the
message text.

EXAMPLE--

MESSAGE ~: GOOD MORNING

IX-20

REALITY 2.0 UPDATE

TERM

Different terminal characteristics may be accommodated through the use
of the TERM command. The format of the command is as follows:

:TERM pl,p2,p3,p4,p5,p6

Individual parameters may be null and, if null, the previously defined
parameter remains in force. (Refer to LOGON/LOGOFF section). The
parameter definitions are:

pl terminal line length (characters/line) 16<pl<l40

p2 number of print lines per page

p3 number of blank lines per page (sum of p2 and p3 equals
page length)

p4 number of delay or idle characters following each carriage
return/line feed; this is used for terminals that require
a pause after a CR/LF.

p5 number of delay characters following each top-of-form;
if non-zero, a form-feed (X'OC') character is also output
before each page.

p6 backspace character; an ASCII backspace (control-H) is
always input to backspace over, or erase, the last
character that was input; however, the user may set the
actual character echoed to his terminal. This accomodates
terminals that cannot physically backspace, or that have
a backspace character other than the ASCII backspace.

EXAMPLE (for standard Microdata (Adds) terminal)--

:TERM 79,23,1,3,1,21

This example performs the following functions:

Carriage width set to 79 characters

Number of print lines per page = 23

Blank lines after top-of-page = 1

Idle characters after carriage return = 3

Idle characters after top-of-form = 1

Character echoed to a "Control-H' input = 21 X'lS'

IX-21

REALITY 2.0 UPDATE

TIME

System time and date can be displayed on the terminal by typing the
verb TIME. Time is printed in the form hh:mm:ss, as on a 24-hour
clock.

WHO

WHO is a TCL-I verb which returns the line number and the account
name to which you are logged on. The line number is computed by
subtracting the PCB FID of line zero from your PCB FID and dividing by
32. The account name is obtained by looking your PCB FID up in the ACC
file and returning attribute one. If not found "UNKNOWN" is returned as
account name.

IX-22

REALITY 2.0 UPDATE

Section X

ENGLISH LANGUAGE

INTRODUCTION

ENGLISH is a user oriented language used for accessing files within
the system. An input sentence is constructed and terminated by a
carriage return @ . This sentence directs the appropriate ENGLISH
processor to perform some specific retrieval function. The language
is limited natural English and the formats for an input sentence are
both simple and very general. The ENGLISH processors, together with
the use of dictionaries, permit inputs to be stated directly in the
technical terminology natural to each application area. The ENGLISH
language uses the lineal format natural to prose text, accepts any
number of variable length words, and permits a limited freedom of word
order and syntax. An extension of descriptive error messages are used
to inform the user of illegal constructs.

The general form of an ENGLISH sentence is as follows:

VERB file-name 'item-list' selection-criteria output-specification

The item-list specifies those items eligible for consideration, the
absence of an item-list implies all items. An item-list consists of
specifically enumerated item-ids, each enclosed within single quotes,
additionally constrained by relational operators and logic connectives.
A selection-criteria is optional and further limits the items for
output to those meeting the specified conditionals. An output­
specification enumerates those attributes desired for output; absence
of an output-specification implies all attributes as defined with an
S or X code in the file dictionary.

EXAMPLE--

:SORT ACCOUNT 1 10000 1 WITH CURR-BALNC "19.75" NAM: ADDRESS
CURR-BALNC @

PAGE 1

ACCOUNT ...

22030
22070
23090

t'1Af'vE ••••••••••••••

F E CABRON
A A ALTHOFF
W J HIRSCHFIELD

END OF LIST

X-1

13.45 25 OCT 1974

ADDRESS •...•.•.•.••

101 BEGONIA
119 BAY STREET
230 BEGONIA

CURR-:-BALNC

20.50
22.60
20.45

REALITY 2.0 UPDATE

ENGLISH Input Rules

The following rules apply to the use of ENGLISH language input
sentences.

1. Tile first word of any input sentence must be a verb defined
in the Master Dictionary (M/DICT).

2. £xactly ~file-name defined in the M/DICT must appear in
each sentence.

3. A sentence is terminated by a carriage return. A sentence
may be continued to another line by typing a shift-control-0

4. File-names may consist of any sequence of non-blank
characters and must be unique within the M/DICT and within
all file dictionaries.

5. Any number of attribute-names may be used in a sentence.

6. Attribute-names may consist of any sequence of non-blank
characters and must be unique within their associated
dictionary and the Master Dictionary (M/DICT).

7. Any number of modifiers, connectives, and relational opera­
tors may be used which have been pre-defined in the Master
Dictionary (M/DICT).

8. Verbs, file-names, attribute names, modifiers, connectives
and relational operators must be immediately followed by a
blank or language delimiter (i.e., single quote, double
quote or carriage return).

9. Specified item-ids are enclosed within single quotes (e.g.
'XYZ') and may appear anywhere within the sentence.

10. Specified values are enclosed within double quotes (e.g.
"ABC") and are attributed to the previous attribute-name.

ENGLISH Verbs

Verbs are action oriented words which evoke a specific processor. One
and only one verb must begin each ENGLISH sentence. Verbs are defined
in the Master Dictionary (M/DICT) as described in the chapter on
Tenninal Control Language (TCL). A set of verbs are provided, but the
user may define any number of additional synonyms by copying the verb
definition into a M/DICT item with the desired synonym name as the
item-id.

X-2

,_

REALITY 2.0 UPDATE

LIST and SORT Verbs

The verbs LIST and SORT are used to generate a formatted output. The
only difference is the LIST verb orders the output in the sequence
specified and SORT orders the output in some specified sorted order.
SORT always seq~ences on the item-ids and optionally by any number of
specified attributes using the modifier BY. LIST will sequence on the
order in which the item-ids have been specified in the input sentence.
If no item-ids have been specified in an input sentence, all item-ids
are implied and LIST will present these items in the hash sequence in
which they are stored on the file. Generated output will be formatted
into a columnar output if possible taking into account the maximum
defined size of the specified attributes and their associated names
along with the width of the terminal platen as defined by the TCL verb
TERM. If more attributes have been specified than will fit across the
page, a non-columnar output will be generated with the attribute names
down the side and the associated attribute values to the right.

EXAMPLE--

: LI ST ACCOUNT N.AJv1E ADDRESS (!)

PAGE 1

ACCOUNT ••.

11080
23070
23095
35060
35085
11025
lll05
23000
23025
35015
ll050
11075
23040
23065
23110
35030

lW1E. ••••••••••••••••••

E M AWAD
L R MARCH#JT
W E ZUMSTEIN
J A SCHWARTA
J F SITAR
R S MARCUS
C C GREEN
H T LEE
D C BINGAMAN
W F GRUNBAUM
J R MARSHECK
T F LINDSEY
P B SCIPMA
J WOSK
J L V.ANGOTHEN
f M HUGO
J W RO/V1EY
R

X-3

14:31 25 OCT 1974

ADDRESS .•.•.•.•...•.

107 BAY STREET
219 COVE STREET
224 BEGO"JIA
331 OOCK WAY
301 OOCK WAY
107 BEGONIA
112 AVACAOO
200 BAY STREET
230 BAY STREET
318 COVE
125 R
11

EXAMPLE--

: SORT ACCO~T -~ ADDRESS @

PAGE 1

ACCOUNT ...

11000
llOE>
11020
11025
11030
11035
11040
11045
11050
11055
11060
11065
11070
11075
11080
11085
11090
11095
11100

105
0

NAl'£. ••••••••••••••••

M H KEENER
L K HARMAN
J T O'BRIEN
P R BAGLEY
F E CABRCX'J
R S MARCUS
E G MCCARTHY
F AZ-DRESCH
J R MARSHECK
W H KOCX'JS
F T NATORI
C V RANDALL
A A ALTHOFF
T F LINDSEY
E M /:>WAD
A B SEGUR
J \'I JENKINS
J B STEINER
E F CHALMERS
C C GREEN
D L WEISBRO
D R MAS

REALITY 2.0 UPDATE

ADDRESS .••••••••••.•

100 .ANCHOR PL
118 .ANCHOR PL
124 .ANCHOR PL
130 .ANCHOR PL
101 BEGCX'JIA
107 BEGONIA
113 BEG~IA
119 BEG~IA
125 BEGa\IIA
131 BEGONIA
131 BAY STREET
125 BAY STREET
119 BAY STREET
113 BAY STREET
107 BAY STREET
101 BAY ST
130

The SORT verb interacts with both the Function Correlative processor
and the Conversion processor. Before the sort-key is built, the "F",
"G" or "T" correlative functions will be performed, and the "T" and
"U" conversions. Note that the "M'' and "D" conversions are not per­
formed, as they do not affect the results of sorting, and not performing
those conversions will save processing time.

Multiple ascending and descending sort-keys may be intermixed at will.
If the descending sort is required on the item-id alone, a descending
sort-key with an attribute synonymous to the item-id must be specified.

An attribute with an AMC of 9999 will cause the size of the item (as
defined in the count-field of the item) to be retrieved and used as
the value referenced. Previously such an attribute with an AMC of
9999 may also be used as a selection criterion, thus allowing one to
LIST or SORT items conditionally on their size. For example, the
attribute MODE-SIZE is defined in the dictionary of SYSTEM-MODES as
below

X-4

EXAMPLE--

f'-ODE-SIZE
001 A
002 9999
003
004
005
006
001 rvoo,
008
009 R
010 9

An example of a SORT statement using MODE-SIZE is:

REALITY 2. 0 UPDATE

SORT SYSTEM-MODES MODE-SIZE WITH MODE-SIZE<"7000n

COUNT Verb

The COUNT verb counts the number of items meeting the conditions as
specified by the combination of item-list and selection criteria.
The output generated by this verb is simply the number of items
counted.

Up to 231-1 (2147483647) items can be counted.

EXAMPLE--

: COUNT ACCOUNT @

67 ITEMS COUNTED.

:COUNT ACCOUNT WITH BILL-RATE 11 • 3on (!)

23 ITEMS COUNTED.

:COU~T ACCOUNT >'10000 1 WITH CURR-BALNC ft.l\JD WITH BILL­
RATE 11 • 3011 @

6 ITEMS COUNTED

SUM and STAT Verbs

The SUM and STAT verbs provide a facility for summing one specified
attribute. In addition to the sum, the STAT verb provides a count and
average for the specified attribute. If no attribute is specified
then STAT and SUM operate on the entire item, providing a facility for
summing the number of bytes in an item or set of items. The output
generated by these verbs are the derived statistics.

X-5

: SUM ACCOUNT CURR-BALNC @

TOTAL OF CURR-BALNC IS : 169.40

:STAT ACCOUNT CURR-BALNC ©
STATISTICS OF CURR-BALNC
TOTAL= 169.40 AVERAGE = 15.400 COUNT = 11

SELECT Verb

REALITY 2. 0 UPDATE

The SELECT verb provides a facility to select a set of items using the
item-list and the selection-criteria. These selected items are
available one at a time to TCL-II processors. The output from the
SELECT verb is a message signaling the number of items extracted or
selected. The user then responds by typing in a single TCL-II
sentence. In the processing of the sentence, all items will be
processed from the previously selected item-list.

The following paragraph describes the use of SELECT with the TCL-II
verbs B/ADD and B/DEL. This use differs from the use of SELECT with
all other TCL-II verbs, described in Section IV.

When using the BATCH Processor after a SELECT, the item-id currently
being processed is available to the BATCH-string. This must be
specified in the (only) input line to BATCH after a SELECT; which must
now contain at least one item-id substitution code, an asterisk(*).
More than one asterisk is permitted; each will be replaced by the
item-id currently being processed.

EXAMPLE 1--

:SELECT ACCOUNT WITH SEWER-ASMT @

10 ITEMS EXTRACTED.
:B/ADD M/DICT UPDATE-ACCOLNT

>~~ 2.00
'23070' UPDATED
I 35025 I UPDATED
'23065' UPDATED
1 23080 1 UPDATED
'35000 1 UPDATED
'35025 1 UPDATED
1 23075 1 UPDATED
'35020' UPDATED
1 23060 1 UPDATED
1 35005 1 UPDATED

X-6-1

THIS PAGE INTENTIONALLY LEFT BLANK

\.___

EXAMPLE 2--

:SELECT DICT M:> WITH D/CODE "D" @

12 ITEMS SELECTED.
:B/ADD DICT BS JUNK
>~: DATA ~: ABCDEF r

'TSYM' UPDATED.
ETC.

REALITY 2.0 UPDATE

ERROR MESSAGE 282 :DATA INPUT L ... KE TO BATCH AFTER A SELECT
MUST CONTAIN AT LEAST ONE ITEM-ID SUBSTITUTION CODE
(ASTERISK*). WILL BE RETURNED IF NO ASTERISKS ARE FOUND.

SSELECT Verb

The SSELECT verb combines the ENGLISH SORTing capability with the
SELECTion capability. SSELECT allows the same selection criteria as
SELECT and allows the selected items to be sorted, just like with SORT.

File-Name Specification

Each ENGLISH sentence must contain one and only one file-name. The
file-name defines the primary file on which the sentence operates and
must be appropriately defined in the Master Dictionary (M/DICT). The
modifier "DICT" may be included anywhere in the sentence (normally
just preceding the file-name) to specify operation on the file
dictionary rather than the file.

EXAMPLE--

:COUNT DICT ACCOUTNT (!)

79 ITEMS COUNTED.

X-6-2

Item List

An item list defines those items desired for processing. Absence of an
item-list implies all items on the file. An item-list consists of any
number of specified item-ids surrounded by single quotes (e.g. 'XYZ').
These item-ids may be interspersed at will throughout the ENGLISH sentence.
Complex item-lists may be constructed using relational operators and
logical connectives. For example, the item-list:

'ABC' OR> = 'DEF' AND< 'GHI'

selects item 'ABC' as well as all items greater than or equal to 'DEF' and
also less than 'GHI'. The hierarchy of the logical connectives in an item­
list is left to right. For example, the following item-list shows the left
to right hierarchy, using explicit parentheses to show the implicit
grouping.

(((<'A') OR> 'B' AND <'C') OR >'D' AND <'E')

The OR connective is always implied and may be left out. Therefore, the
list: <'A' > 'B' and <'C' > 'D' AND <'E' is equivalent to the preceding
one.

The left to right hierarchy is shown in the following table:

Result

Connection True False

AND Continue Stop comparison;
Comparison list false

OR Stop comparison; Continue
list true comparison

:SORT ONLY EACH ACCOUNT>='llOOO' AND<='l1020' OR >='11040'
AND<=' 11050' GI
PAGE 1

ACCOUNT •.•

11000
11015
11020
11040
11045
11050

END Of LIST

21:09 25 OCT 1973

X-7

~

i

: SORT ONLY EACH ACCOUNT>=' 11040' AND <=' 11050' OR>=' 11000'

AND < =' 110 2 0 ' @

PAGE 1

ACCOUNT •••

11040
11045
11050

Et\D OF LIST

Selection Criteria

21:10 25 OCT 1973

The selection-criteria specifies a set of conditions which must be met by
an item before it is eligible for output. The selection-criteria is made
up of one or more selection-criterion. Each selection-criterion must begin
with the connective WITH followed by a single attribute-name. Th-e~­
attribute-name may be followed by a value-list. The rules for value-lists
and the usage of relational operators is identical to that for item-lists
except that double quotes surround the actual values. For example, the
following selection-criterion is met by those items which have at least .
one value for the attribute DESCRIPTION which is either equal to "ABC" or
is both greater than "DEF" and less than "GHI".

WITH DESCRIPTION "ABC" OR > "DEF" AND < "GHI"

If a selection-criterion has no value-list then it is true for those items
which have at least one value for the specified attribute-name. The
selection-criterion may be further modified by using either or both of the
modifiers EVERY or NO iIIDllediately following the WITH. The modifier EVERY
requires that every value for the attribute meet the specified conditional
while the modifier NO reverses the sense of the entire conditional.

:LIST ACCOUNT TRNS-DATE TRNS-CODE WITH EVERY TRNS-DATE
BEFORE "3/ 18/72" @

PAGE 1 18:22 25 OCT 1973

ACCOUNT ••• TRNS-DATE •• TRNS-CODE

11075 17 fv\.!\R 1972 B
17 MAR 1972 T
17 MAR 1972 p

13 MAR 1972 R
15 JAN 1972 B
14 JAN 1972 T
10 JAN 1972 R

END OF LIST

X-8

: COUNT ACCOUNT WITH EVERY TRNS-CODE NOT "P" G)

7 ITEMS COLNTED.

Selection-criterion may be used at any point within an ENGLISH sentence;
however they are all logically grouped together (in fact the ENGLISH pre­
processor reorganizes the input sentence, grouping the selection-criterion
together). This logically grouped s~t of selection-criterion constitute
the selection-criteria. A selection-criteria may consist of up to nine AND
clauses. An AND clause is made up of any number of selection-criterion
bound by AND connectives. The AND clause is terminated when an OR connec­
tive is found in the left to right scan (note: the absence of an AND
connective implies an OR connective). For an item to pass the selection­
criteria the conditions specified by any one of the AND clauses must be
met. An example of the logical hierarchy of AND clauses is shown below,
the parentheses have been included for clarity but do not appear in an
actual ENGLISH input sentence.

(WITH DESC "ABC" AND WITH VALUE "1000") OR (WITH DESC "ABC"
AND WITH NO VALUE)

:LIST ACCOUNT AVG-USAGE SEWER-ASMT BILL-RATE_ CV
: WI TH AVG-USAGE "20 11 OR "25" AND WI TH SEWER-ASMT "150" (?)
:OR WITH AVG-USAGE 11 2011 OR 11 25" AND WITH BILL-RATE 11 • 30" @

PAGE 1

ACCOUNT ••• AVG-USAGE SEWER-ASMT BILL-RATE

11050
23080
11020
11085

END OF LIST

20
20
20
25

150
0.30
0.35
0. 30
0.30

17:36 25 OCT 1973

:COUNT ACCOUNT WITH CURR-BALNC AND WITH BILL-RATE > 11 .2511 AND <".4511 -

:AND WITH DEPOSIT AND WITH AVG-USAGE > "10" (!)

11 ITEMS COUNTED.

An ASCII up-arrow or circumflex (shift N) may be used as an ignore character
in any value or item-id. All comparisons made against the file ignore the
characters in the corresponding position.

X-9

EXAMPLE --

SORT ACCOUNT NAME ADDRESS WITH ADDRESS"'' BEGONIA" SORT-ON
ADDRESS ©

PAGE 1 1&:43 2~ OCT 1973

ACCOLl\IT. . . NAME. • . • . . • • • • • • ADDRESS

11030
11035
11040
!1050
11055
23115
23110
23105
23100
23095
23090

F E CABRON
R S MO.RUJ<l
E G f'I(CAR r rlY

J R MO.RSHECK
W H KOONS
T F PIATK.OSK!
J L VANGOTHEN
B G PAUL
G J PACE
W E ZUMSTEIN
W J HIRSCHFIELD

101 BEGONIA
107 BEGONIA
113 BEGONIA
125 BEGONIA
131 BEGONIA
200 BEGONIA
206 BEGONIA
212 BEGONIA
218 BEGONIA
224 BEGONIA
230 BEGONIA

Comparison are performed in the following manner:

If the fields are specified as left-justified, the comparison will
be alpha. For example, sorted items:

09
3
31
A
AA
z

If the fields are specified as right-justified and the items are all
numeric, it will be a true numeric compare.

If the fields are right-justified and the items are mixed, the com­
parison will be alpha-numeric. For example:

9
zz

AAA
0000
1234
QWIZ

Output Specification

All attribute-names not a part of a selection-criterion (i.e. preceded by
the modifier WITH) or not modified by certain control modifiers (e.g.
EVERY, BY) are part of the output-specification. Attribute-values from

X-10

'---

those items passing both the item-list and the selection-criteria will be
displayed in an automatically generated system format. This format will
include a heading line displaying the date, time and page number (unless
suppressed) at the beginning of each new page. The page size is set through
the use of the TERM verb (see System Commands). The LIST processor will
attempt to format the output into a columnar format with the attribute name
as a column heading. This column-format is attempted using as a column
width for each specified attribute either the attribute max-size from the
dictionary or the attribute-name whichever is larger. If the sum of the
column widths, adding one blank separator for each specified attribute­
name, does not exceed the page width as set by the TERM verb; a columnar­
format will be generated. In a columnar-format the attribute-names, as
specified, are displayed in a single line header across the top of the
page. The values for each of the items are then displayed in their respec­
tive columns. The attribute-name header is repeated at the top of each new
page. If the requested output exceeds the page width, the attribute-names
are listed down the side of the output with their respective values
inunediately to the right. A significant difference between the formats is
that for the columnar-format all headings are listed only once for each
page whether or not values exist for the columns; while in the non-columnar­
format headings are displayed over for each item only if there are values
for the associated attributes.

:LIST ACCOUNT 1 11000' 1 11015' NAME ADDRESS START-DATE G)

PAGE 1 15:43 25 OCT 1973

ACCOUNT ... NAME ADDRESS START-DATE ..

11000
11015

END OF LIST

M H KEENER
L K HARML\N

:TERM 60 @

100 ANCHOR PL
118 ANCHOR PL

25 OCT 1971
01 JAN 1968

:LIST ACCOUNT '11000' 1 11015 1 NAME ADDRESS START-DATE G)

PAGE 1

ACCOUNT : 110 0 0
NAME M H KEENER
ADDRESS 100 ANCHOR PL
START-DATE 25 OCT 1971

ACCOUNT : 110 15
NAME L K HARMAN
ADDRESS 118 ANCf-DR PL
START-DATE 01 JAN 1968

15:43 25 OCT 1973

X-11

If no attribute-names are specified all are assumed and are generated by
successively retrieving the attributes 1,2,3 ... from the file dictionary
until no more can be found. These special attributes must have either an
S or X for their dictionary code. These special synonyms have a special
format (see below) specifying the heading-name to be used for output.

:LIST ACCOUNT '11000' \!)

PAGE 1

ACCOUNT : 11000
NEXT-ACCNT 11010
CSTf'vR-NAME M H KEENER
SERVC-ADDR 100 ANCHOR PL
MAIL-CITY. THE CITY
MAIL-STATE CA
ACCNT-STAT A
DEPOSIT-:::. 10.00
START-DATE 25 OCT 1971
BILL-RATE. 0.30
TRASH-CHGS 2.00
AVG-USAGE. 27

END OF LIST

15:35 25 OCT 1973

The item-id as specified by file defining item in either the file dictionary
or the M/DICT is always included in output-specification unless the
modifier ID-SUPP is used. If an output is to be restricted to only the
item-ids the modifier ONLY must precede the file-name to inhibit the
appending of the special synonyms.

The following table sunnnarizes the various dictionary attributes as they
apply to the formatting of an output specification.

Name A/AM.C Value Meaning

D/CODE 1 A attribute defining item

A/AMC 2

S/NAME 3

s

x

special synonym

special synonym to maintain order, but
ignore for output

attribute-no for A-code attributes, defines
attribute number.

text-name for S-code attributes, use this name
for heading (note: these names may be
padded with blanks to align non­
columnar output)

X-12

........ _
Name A/ANC

S/AMC 4

V/TY.PE 9

V/MAX 10

Value Meaning

attribute-no for s-code attributes, defines
attribute number.

L for columnar-output only, left justify
output in column, value size greater
than column width, value is folded

R

n

Ln

Rn

for columnar-output only, right justify
output in column. If value size
greater than column width value
overlay previous columns.

for columnar-output only, number of
characters to reserve for the column
width. Column width will be increased
if attribute-name is larger than
V/MAX

for non-columnar output, left justify
output and reserve characters for each
repetition of a multi value. Multi­
values will fold at end of line and
repeat aligned with the start of the
first value.

for non-columnar output, as for L but
right justify in the reserved value
area

Modifiers, Relational Operators and Connectives

Modifiers, connectives and relational operators may be used to further
modify the meaning of an ENGLISH sentence or to add naturalness. These
special words are defined as items in the Master Dictionary (M/DICT) and
to that extent are reserved words. However, (with the exception of DICT)
a user may define any number of synonyms for these words and even remove
the system defined entries thereby creating his own semantics for the
language.

MODIFIERS

BREAK-ON. Defines a control break as any change in value for the
immediately following attribute. Up to four control breaks are permitted
and the left-most defined control break is the highest level. On the
occurrence of a specified control break the attribute causing the break
displays asterisks ** in its corresponding column. Also the current sub­
totals (see TOTAL) are printed and the totals are rolled to the next level.

X-13

:SORT ACCOUNT WITH CURR-BALNC TOTAL CURR-BALNC TOTAL DEPOSIT- @
:BREAK-ON BILL-RATE BY BILL-PATE ©
PAGE 1 16:33 25 OCT 1973

ACCOUNT ... BILL-RATE CURR-BALNC DEPOSIT.

11015 0.30 8.60 10.00
11030 0.30 20.50 10.00
11075 0.30 13. 10 10. 00
11115 0.30 9.20 10. 00
23030 0.30 11. 80 10. 00

.... ,,.,,.
63.20 50.00 ,,

11070 0.35 22.60 10.00
23025 0.35 18.70 10. 00
23090 0.35 20.45 10.00
35095 0.35 19.25 10. 00

'" 81. 00 40. 00

11100 0.40 17.50 10.00
35075 0.40 7.70 10.00

............... 25.20 20.00 ,,

.............. 169. 40 110.00 "'""'"'""'

PAGE. Halts list at end of each page when output is to terminal. Listing
~esumed when @ is entered.

DBL-SPC. Sets double spacing for output list.

DICT. Modifies the file-name so that the ENGLISH sentence references the
file dictionary instead of the file.

EVERY, EACH. Modifies a selection-criterion so that every value for the
attribute must meet the specified conditional for the selection criterion
to be true. This modifier follows the modifier WITH.

HDR-SUPP, SUPP. Suppresses the automatic time and date heading at the
top of each new page. Also suppresses the end-of-list message.

:LIST ACCOUNT 1 11015 11 11020 11 11074 1 HDR-SUPP NAME ADDRESS (!;)

ACCOUNT •••

11015
11020
11075

f\tAJ\r1.E • • • • • • • • • • • • • • • •

L K HARMAN
F E CABRON
T F LINDSEY

ADDRESS •••••••••••••

118 ANCHOR PL
101 BEGONIA
113 BAY STREET

X-14

\'--

\ ..._

REALITY 2.0 UPDATE

COL-HDR-SUPP. Suppresses column headings, as well as the time and date
headings and the "END OF LIST" message.

ID-SUPP. Suppresses the file-name and the item-id on LIST or SORT
statements.

~, (P). Routes the output to the line-printer attached to the
system •

.QN!J'. Used preceding the file-name, inhibits the appending of the
special synonyms when a null output-specification is encountered.
Used in the same sense as EACH, except that ONLY may not follow WITH.

BY. Designates the following attribute-name as a sort-key. The
item-id is always a sort-key and additional sort-keys may be specified
using this modifier. The left most specified sort-key is the most
significant. Sequencing is in ascending order comparing the ASCII
value of the characters left to right. Sort keys are generated in such
fashion that numeric portions of the key are logically padded with
leading zeros so that numeric fields sort correctly.

BY-DSND. Same as BY, but sequencing is done in descending order.

:SORT ACCOUNT CURR-BALNC AVG-USAGE BILL-RATE SEWER-ASMT Oc
:BY CURR- ALNC BY AVG-USAGE BY BIL -RATE oc
:SEWER-ASMT ITEM-ID (t)

r

PAGE 1 16:52 25 OCT 1973

ACCOUNT •.• CURR-BALNC AVG-USAGE BILL-RATE SEWER-ASMT

35000 13 0.35 150
35040 16 0.35
35005 17 0.35 150
23000 19 0.35
23055 19 0.35
11020 20 0.30
11050 20 0.30
23080 20 0.35 150
11060 21 0.30
9999 21 0.30
35090 21 0.35
11040 22 0.30
35070 22 0.35
23060 23 0.35 150
23065 23 0.35 150
23115 24 0.35
35100 24 0.35
35025 24
11085 25
23040
23050

X-15

REALITY 2.0 UPDATE

TOTAL. Causes totals for the following attribute to be accumulated.
Up to four levels of totals will be stored. These totals are printed
and rolled forward in conjunction with a control break (see BREAK-ON)
at the associated level.

WITH, IF. Designates a selection-criterion. The following attribute­
name and associated value-list constitute a conditional limitation
which must be satisfied for the selection-criterion to be met.

RELATIONAL OPERATORS

Relational Operators; are used to conditionally limit the attribute­
values and item-ids which they immediately precede.

"'• EQ, null limits to an equal relationship (e.g. DESC = "ABC" implies
a valueOf"ABC" must be found for the attribute DESC for the specified
relation to be satisfied). The absence of any relational operator
implies an equality.

>, GT, AFTER the retrieved datum must be greater than the specified
dat"i:ii •

.::_, LT, BEFORE the retrieved datum must be less than the specified
datum.

>=, GE The retrieved datum must be greater than or equal to the
specified datum.

<=, LE The retrieved datum must be less than or equal to the specified
datum.

II, NE, NOT, NO (e.g. LIST ACCOUNT WITH CURR-BAI.NC NOT "10.00") Or
may be used tc;° select items with a null attribute value. (e.g. LIST
ACCOUNT WITH NO SEWER-ASMT). The retrieved datum must be not equal
to the specified datum.

CONNECTIVES

AND. Logical connective specifying that both the connected parts must
be true. This connective may bind selection-criterion into AND
clauses, and logically AND item and value-lists. In all cases where
AND is not specified, OR is assumed.

A, AN, ARE, ANY, FILE, FOR, IN, ITEMS, OF, OR, THE.
are ignored by the ENGLISH preprocessor (throwaway).
to provide a degree of naturalness.

X-16

These connectives
They are included

REALITY 2.0 UPDATE

HEADING. A heading can be specified in the ENGLISH LIST or SORT
statement, which will be printed at the top of every page. The normal
page number, time and date, and column heading will be suppressed, as
will the END OF LIST message. The heading is entered, enclosed in
double-quote signs, immediately following the 'HEADING' connective
(D/CODE=CL); it may appear anywhere in the LIST or SORT statement.

All characters enclosed in the double quote signs are literal, except
the following:

" or t

J
\

specifies insertion of current page number
specifies start of a new line (carriage-return/line
feed insertion)
specifies insertion of system time and date in the
standard format.

The HEADING connective and its associated heading data are recognized
in the ENGLISH pre-processor (MD3), and the formatted heading stored
in the history string; the text is preceded by an "Hu; the heading
text follows as it is, except for the following conversions: to AM,
to VM; to SVM. The text is terminated by a SM and a 11 Z"; HSEND
points to the SM. If the heading text enclosed in double-quotes does
not follow, error message 7 (HEADING TEXT MUST FOLLOW THE "HEADING"
CONNECTIVE) will be returned.

X-17

Section XI

CONVERSION

INTRODUCTION

Conversions may be defined for attributes which will apply special
conversion processing on the associated attribute-value just prior to out­
putting. The same conversions are also applied to values on input. The
purpose of the conversion facility is to provide a means whereby attribute­
values may be stored in some un-converted form on the file but be referenced
and displayed in a converted form. Conversions are stored as values for
the V/CONV attribute (AMC = 7) in the file-dictionary. Conversion process­
ing is invoked automatically by referencing an attribute-name with defined
conversion specifications. Multiple conversions may be defined f~r the
same attribute by storing multiple-values for V/CONV. Values in selection­
criterion will be converted by the pre-processor prior to comparison,
therefore it is important to remember that all comparisons are made with
converted values.

D Conversion (Date)

The date conversion allows a date to be inout in a variety of formats and
will convert the date to a compact internal format suitable for arithmetic
processing. The formats for the date convarsion are:

D

Dn

Dn*m

D - Date conversion code

n - Number of digits to print in year for output; if null, 4 is
assumed (e.g., 1974)

* - Concatenated segment specification

m Number of concatenated segments to skip prior to
performing conversion (for both input and output).

The date conversion processor will accept a variety of input formats
including the following:

6/26/72 MM/DD/YY

6/26/1972 MM/DD/YYYY

26 June 72 DD MM •• YY

XI-1

These dates will be converted to any input format which is a signed integer
equal to the number of days plus or minus from December 31, 1967. Using
this technique the date 6/26/72 would be stored internally as the integer
1639. The following table shows a list of converted dates and their
associated internal formats.

DATE ••••••••

14 AUG 1940
05 APR 1965
22 SEP 1967
21 DEC 1967
30 DEC 1967
31 DEC 1967
01 JAN 1968
10 JAN 1968
09 APR 1968
26 SEP 1970
18 MAY 1995

RAW-DATE ••••

-10000
-1000

-100
-10
-1

0
1

10
100

1000
10000

On output the date is always converted to the form "DD MM YYYY" as shown in
the preceding list. The year may be reduced in size or eliminated altogether
through the use of the "n" option following the D-code.

MD Conversion (Mask Decimal)

The MD conversion provides a facility for converting and scaling numbers
with decimal points, commas and dollar signs to or from an internal format
of strictly a signed integer. The format for the MD conversion is:

MDrun ,$

MD - Mask decimal conversion code

n - Single numeric digit defining the number of digits to
print following the decimal point. If n = 0, the
decimal point will not be ouput following the value.

m - Single numeric digit defining the number of implied
decimal digits for the integer on the file. If this
parameter is omitted, m = n is assumed.

Optional parameter for output which causes connnas
to be inserted appropriately.

$ Optional parameter for output which causes a dollar
sign to be' appended preceding the converted output value.

XI-2

Examples:

V/CONV File-value Output-value

MD2 1234 12.34

MD23 1234 1.23

MD32 1234 12.340

MD2, -123456 -1,234.56

MD23,$ 1234567 $1,234.57

MT Conversion ~Time~

The MT conversion provides a facility for converting a time shown as
hour:minute to or from internal format. The internal format is the num­
ber of seconds from midnight (24:00). The external format uses the
24 hour military format. The format for the MT conversion is:

MT

MX Conversion (Hexadecimal)

The MX conversion will convert any string of characters stored on the
file to or from its corresponding hexadecimal equivalent. One byte on
the file will convert to two hexadecimal digits. The format for the MX
conversion is:

MX

T Conversion (Translate)

The T conversion provides a facility for converting a value by translating
through a file. The value to be translated is used as an item-id for
retrieving an item from the defined translation file. The input value is
then converted by replacing it with a defined attribute-value from the
translation item. The format for the T conversion is:

T file name; c; input-amc; output-amc

T - translate conversion code

file name - The file-name through which the translation takes
place. It may be preceded by the single
character "*" to indicate a dictionary.

XI-3

c

- separator

- translate Sub-code, must be one of the following:

V - verify; conversion item must exist on file, and
specified attribute must have value for conversion •

.£ - convert; if conversion item does not exist, or
if specified attribute has no value use original
value; otherwise perform conversion.

I - input verify only; functions like a V for input
and a _g_ for output.

0 - output verify only; functions like a V for
output and a .£ for input

X - convert; if conversion item does not exist, or
if specified attribute has no value, use null value;
otherwise perform conversion.

input-amc - attribute mark count for input translation. After
locating the translation item using the input value
as the item-id the attribute-value for the defined·
amc, if any, will replace (convert) the original
value. If this parameter is null to input translation
takes place.

output-amc - attribute mark count for output translation.

Example:

Functions similarly to input-amc but is invoked
for output translation. If this parameter is null
no output translation takes place.

Conversion Code: T sample-file; C;l;l

Sample-File items: Progrannner
100

100
Programmer

Unconverted Converted
Value Value

Programmer 100
Engineer Engineer
100 Programmer

XI-4

U Conversion (User)

User conversion permits a user defined special purpose subroutine to be
evoked for special converson. The format is:

Unxxx

U user conversion code

nxxx - Mode-ID (refer to Section XVI Operand Conventions)

At the point where conversion normally occurs for both input and output the
user program is entered with the value to be converted in a work area. For
the exact nature of the programming interface please consult the programming
documentation.

XI-5

Section XII

CORRELATIVES

INTRODUCTION

Correlatives may be used to define special processing interrelationships
(correlations) to be applied to attribute values. Correlatives are stored
as values for the V/CORR attribute (AMCm8) in the file-dictionary items.
Correlative processing is invoked automatically when referencing an
attribute-name with a defined correlative. Correlative processing for out­
put occurs as the values are retrieved from the file, and prior to being
output or used in a selection-criterion. Multiple correlatives may be
defined for the same attribute, with each defined correlative being a
multi-value.

D Correlative (Associative)

The D correlative is used to identify primary and secondary associative
attributes within the same item. There are two correlatives involved; Dl
and D2. The form of the correlatives are:

Dl;amcl;amc2;amc3; •••

Dl Correlative code identifying a primary associative
attribute

Separator

amc numeric attribute mark count of each of the defined
secondary association attributes in the file. Each amc
in the correlative must be numerically greater than the
primary Dl amc.

D2;amc

D2 Correlative code identifying a secondary association
attribute

separator

amc numeric attribute mark count of the defined primary
associative attribute in the file.

The purpose of the D correlative is to provide a facility whereby a set of
attributes, the secondary D2's, can be logically grouped with a single
master attribute, the primary Dl. This type of relationship is useful in
describing, for example, a list of purchase order numbers in a part-file

XII-1

where the purchase order number is the Dl and the set of related attributes­
values, like quantity-on-order, quantity-received, etc. are D2's, and each
relates back to and is grouped with, the primary Dl value.

The Dl attribute may have multi-values each separated by a value-mark. Each
D2 attribute should have a corresponding number of multi-values, however
each of these multi-values may be multi-valued themselves; each sub multi­
value is separated by a secondary-value-mark (X'FC'). In the following
example both a columnar and non-columnar output is shown for a Dl attribute
and three associated D2 attributes. The attribute defining dictionary
items are also listed.

:LIST ACCOUNT '11080' DATE CODE UNITS DOLLARS@

PAGE 1 15:24 29 OCT 1973

ACCOUNT ••• DATE CODE UNITS DOLLARS .. " ..
" " "

11080 07 APR 1972 p 9.50
18 MAR 1972 B 9.50
17 MAR 1972 T 2.00
13 MAR 1972 R 2721 7.50
05 FEB 1972 p 9.20
15 JAN 1972 B 9.20
14 JAN 1972 T 2.00
10 JAN 1972 R 2696 7.20

END OF LIST

: LIST ACCOUNT '11080' DATE CODE UNITS DOLLARS ©

PAGE 1 15:24 29 OCT 1973

ACCOUNT 11080
DATE 07 APR 1972 18 MAR 1972 17 Mf.\R 1972

13 MAR 1972 05 FEB 1972 15 JAN 1972
14 JAN 1972 10 JAN 1972

CODE p B T
R p B
T R

UNITS
2721

2696
COLLARS 9.50 9.50 2.00

7.50 9.20 9.20
2.00 7.20

END OF LIST

XII-2

:LIST DICT ACCOUNT '~TE' 'CODE' 'UNITS' 'DOLLARS' <?)

PAGE 1 15:27 29 OCT 1973

ACCOLJ-.JT ..• D/CODE. A/AMC S/NAME ..• S/Af'IC V/CONV .•. V/CORR .•.... V/TYP V/t-AAX

DATE s 20 DATE 20 D Dl;21;22;23 R Rll
CODE s 21 CODE 21 D2;20 R Rll
UNITS s 22 UNITS 22 02;20 R Rll
OOLLARS s 23 DOLLARS 23 MD2 D2;20 R Rll

END OF LIST

Function correlatives defined for attributes which also have Dl, D2
correlatives ignore the Dl, D2 correlative. A print-limiter on the Dl
attribute causes all corresponding D2 values to be suppressed.

F Correlative (Function)

The F correlative is used to compute a value as a mathematical function on
a defined set of attributes within one item. All arithmetic operations
operate on the last two entries in a push-down stack. This push-down
stack has a maximum capacity of three entries. A function correlativ.e is
comprised of any number of operands or operators separated by semi-colons.
When the function processor encounters an operand specification (i.e., a
numeric attribute-mark-count or constant) it "pushes" the corresponding
value into the stack. When the function processor encounters an arith­
metic operator it performs the corresponding operation on the last two
entries in the stack. The general form of the F correlative is as follows:

F;el;e2;e3; •••

F correlative code

separator

e element codes

a numeric amc specifying the value from the attribute
specified.

If a single valued attribute is to be repetitively added,
subtracted, etc., with a multivalued attribute the single
letter R should follow the amc entry in the F correlative.

Cn where n is a numeric constant to be used in the
computation.

D uses tod~'s date in computation.

T uses current time in computation.

XII-3

an operat~r as below:

* multiplication of the last two entries in the stack.

I division of the last entry in the stack by the second­
last entry.

+ addition of the last two entries in the stack.

subtraction of the second-last entry in the stack from
the last entry.

S specifies that a Sum is needed of all previous compu­
tations; therefore only one value is returned if Sum
is specified. The S operator can only occur as the
last entry in the F-correlative.

equal

< less than

> greater than

fl not equal

equal to or greater than

equal to or less than

Attribute operands may be multi-valued. When arithmetic operations are
performed on two multi-values lists (vectors) the answer will also be
multi-valued and will have as many values as the longer of the two lists.
Zeros will be substituted for the null values in the shorter list. In the
following example this concept is demonstrated.

Stack 1 5 10 15 (no value)

+

Stack 2 20 30 40 so

=

Stack 1 25 40 55 50

Stack 2 is compared to Stack l; Stack 1 contains either a "l" or a "O"
depending on the result. A "l" indicates a positive or yes result; a
"O" indicates a negative or no result.

EXAMPLE --

F;C3;C3; = Stack l would contain a "l"

XII-4

By following with a data and a multiply operator, the attribute can be
conditionally set.

EXAMPLE --

F;C3;C3;=;CS,* Stack 1 now contains a "5"

Element Description

amc attribute

Cn constant

+ ADD

SUBTRACT

* MULTIPLY

I DIVIDE

s SUM

FUNCTION PROCESSING

Action

push corresponding attribut~ values into
push-down stack maximum three levels.

STACK 2 STACK 3

STACK 1 STACK 2

attribute values STACK 1

push numeric constant "n" into stack

STACK 2 STACK 3

STACK 1 STACK 2

n STACK 1

STACT<. 1 + STACK 2 STACK 1

STACK 3 STACK 2

STACK 1 - STACK 2 STACK 1

STACK 3 STACK 2

STACK 1 * STACK 2 STACK 1

STACK 3 STACK 2

STACK l/STACK 2 STACK 1

STACK 3 STACK 2

~ STACK 1 STACK 1

prior to this operation STACK 1 may be
multi-valued, this operator sums all
those multi-values into a single value.

XII-5

Element Description Action

D DATE push numeric value representing current
system date into stack.

STACK 2 STACK 3

STACK 1- STACK 2

date---- _. STACK 1

T TIME push numeric value representing current
system time into stack.

STACK 2 STACK 3

STACK l STACK 2

time STACK 1

= EQUAL 1) if STACK 1 ... STACK 2, 1 ... STACK 1

STACK 3 STACK 2

2) if STACK 1 ::} STACK 2, 0 ... STACK 1

STACK 3 STACK 2

NOT EQUAL 1) if STACK 1 #: STACK 2, 1 ... STACK 1

STACK 3 STACK 2

2) if STACK 1 = STACK 2, 0 ... STACK 1

STACK 3 STACK 2

< LESS THAN 1) if STACK 1 < STACK 2, 1 .. STACK 1

STACK 3 STACK 2

2) if STACK 1 NOT < STACK 2, 0 __....,. STACK 1

STACK 3 STACK 2

EQUAL TO 1) if STACK 1 [STACK 2, 1 .. STACK 1
OR GREATER
THAN STACK 3 STACK 2

2) if STACK 1 NOT [STACK 2, 0 ---. STACK 1

STACK 3 STACK 2

XII-6

\..__

Element DescriEtion Action

> GREATER 1) if STACK 1 > STACK 2, 1 .. STACK 1
THAN

STACK 3 STACK 2

2) if STACK 1 NOT> STACK 2, Q-. STACK 1

STACK 3 STACK 2

EQUAL TO 1) if STACK 1] STACK 2, 1 ,.. STACK 1
OR LESS
THAN STACK 3 STACK 2

2) if STACK 1 NOT] STACK 2, 0-->- STACK 1

STACK 3 ----------- STACK 2

G Correlative (Group Retrieved)

The G correlative is used to select one or more contiguous segments of a
concatenated attribute value from an item for retrieval. An attribute-value
in an item may consist of any number of concatenated segments with eqch
segment separated by an asterisk "*"• The form of the correlative is:

The

Gm* n

G correlative code

m number of the first selected segment. If omitted, one is
assumed and retrieval begins with the first concatenated
value segment.

* concatenated segment separator

n number of contiguous concatenated segments to be selected.

following diagram shows an example of the use of the G correlative.

Correlative Stored-value Retrieved-value

G*l

J_rL
,... ABC

Gl*2 • DEF*GHI

G2*1 ABC*DEF*GHI*JKL .,...GHI

Gl*l Tf-c : DEF

G*2 ABC*DEF

XII-7

T Correlative (Text)

The T correlative is used to extract a fixed number of characters from a
stored value. The form of the correlative is:

Tn

where n is the number of characters to extract. If the stored value is less
than "n" characters long, only the actual number of characters stored will
be retrieved. Extraction takes place beginning with the first character
from left to right or right to left depending on whether type L or R is
specified for V/TY.PE.

XII-8

Section XIII

SECURITY

INTRODUCTION

Security codes may be optionally stored in the L/RET and L/UPD attributes
of a dictionary item to restrict access. Access may be denied at both the
file and attribute level, additionally separate codes may be assigned for
both retrieval and update. At LOGON, each user is assigned the set of
security codes which are in his logon-item. During the session whenever
an L/RET or L/UPD code is encountered, a search is made of the user­
assigned codes for a match; if no match is found, the user is denied
access. A security code may consist of any combination of legal ASCII
characters.

L/RET and L/UPD

Both file-definition ("D" code) and attribute-definition ("A" "S" code)
items have L/RET (retrieval lock) and L/UPD (update lock) defined as attri­
butes. When these attributes have values stored, they are known as
security codes. Although there is no prohibition against multiple values
for these attributes, only the first attribute-value is used for matching
against the user-assigned codes. Since each file and/or attribute may be
individually locked for both update and retrieval, a user must be assigned
multiple codes to that set of data he is allowed to access. Using this
feature, a complex "mask" can be constructed for each user, giving each
user a different sub-set of files and attributes which he may access.

Security at the file level is invoked at the processor level. The follow­
ing processors are assumed to be updating processors and therefore require
a match on the L/UPD attribute in the file-definition item:

AS

BATCH (files referenced by the BATCH-string)

COPY

EDIT

All of the other processors are assumed to be retrieval processors and
require a match on the L/RET attribute in the file-definition item. Failure
to match one of the user security codes with either the L/RET or L/UPD
attribute value will generate the message:

210 FILE file-name IS ACCESS PROTECTED

and control will return to TCL.

XIII-1

Security at the attribute level is available only through ENGLISH.
Requesting of an attribute without the matching security code causes an
error message, reference to the attribute is deleted from the input sentence
and processing continues on the remainder of the sentence.

User Assigned Codes

The logon-item (refer to LOGON) contains the list of security codes assigned
for that particular user. These codes are values for the dictionary attri­
butes L/RET and L/UPD in the particular logon-item. There is a one to one
correspondence between the L/RET and L/UPD attribute values in the logon­
item and in the particular attribute entry for which the codes are being
verified. In other words an L/RET code in an attribute definition item
must be verified against one of the values stored in the L/RET attribute in.
the logon-item.

Security codes may be assigned initiall¥ when an account is created using
the CREATE-ACCOUNT Proc. Security codes may be added or deleted by
updating the appropriate logon-item using the EDITOR (assuming one has the
appropriate security codes); however updates to the logon-item should only
be performed when no one else is logged onto the system.

Security Code Comparison

Security codes are verified comparing the value in the file dictionary vs.
the corresponding string of values in the logon-item. An equal or verified
compare occurs when the value in the file dictionary is exhaLsted and all
characters match up to that point.

EXAMPLE--

file dictionary logon-item
code code result

123 123 match

12 123 match

123 12 no match

When referencing a file using a Q synonym (refer to DICTIONARIES) a security
code match is made at all levels (i.e., SYSTEM, M/DICT, file dictionary)
and therefore a correspondence must be maintained at all levels in order
to process the Q synonym files. Since the logon-item for the account con­
taining the primary file is verified for security codes, the user referenc­
ine the Q synonym must have a code defined in this logon-item which will
verify with the first code in the equated accounts logon-item. Therefore
in a logon-item only the first code is used to protect the account from
Q synonym accesses while all the codes in logon-item are assigned to the
user when he logs on.

XIII-2

Section XIV

BATCH PROCESSOR

INTRODUCTION

The BATCH processor (BATCH) provides a facility for inputting, updating and
deleting items or data within items. BATCH operates using a predefined
"BATCH-string", and an input line, to update one or more items in multiple
files simultaneously. The BATCH-string is stored as an item in a file and
provides the dictionary function for the subsequent update. In other words,
the BATCH process ignores the attribute defining items defined for the
designated files and instead relies on the BATCH-string to define the
updating algorithm.

Evoking BATCH

BATCH is evoked using the format:

B/ADD
or

B/DEL

file-name item-id

the file-name and item-id define the specified BATCH-string. B/ADD in
general defines an updating function and may be used to delete items.
B/DEL provides a reversing update function in that using B/DEL on the
identical BATCH-string and input line will in general negate or reverse
the effects of a previous B/ADD operation. After BATCH gains control it
will prompt the terminal for input using the character ">" as the prompt.
Each input line entered will be processed separately by BATCH and will
generate a file update. BATCH will continue to prompt for more inputs
until the user exits by entering a null line (a carriage-return inunediately)
following the BATCH prompt character).

Many users store BATCH strings in the Master Dictionary (M/DICT) but this
is not required; in fact the recommended procedure is to define a separate
file or files which are used exclusively to store BATCH-strings. Addi­
tionally, these files should be single-level (i.e., Dictionaries) to save
an additional file access in retrieving the BATCH-string. Also, most com­
mon usage of the BATCH processor is from a PROC where the input lines to
BATCH have been stored in the PROC's secondary output buffer (stack). For
this reason one must examine both the BATCH-string and its associated PROC
to fully comprehend the resulting processing.

The B/DEL verb allows the user to delete specific values from attributes
in an item. In general, it should be used to delete specified values
from one or more single or multi-valued attributes, or to delete implied
values (not specified) in single-valued attributes. In addition, such
implied values may also be accessed by the "secondary file" section(s) of
the BATCH-string. Thus it is possible to delete a value from an attribute

XIV-1

in the primary file without knowing what the value on file is, and to use
this same value as implied inputs to attribute updating elements in
secondary files.

As a specific example, suppose that attribute five of file ACCOUNT con­
tains a value that is to be zeroed at the end of a month, and that value
is to be added in to attribute six of the file HISTORY. A representative
BATCH-string would be as follows:

ACCOUNT,!
4N
A,Y31 @
z
HISTORY,Il
SN
A2,J(5),Y32 @

If the value to be deleted in known, the input to this string would be:

>account-id value ©
which would subtract the value, using element<!), in the ACCOUNT file,
and add in the same value, using element @ , in the HISTORY file.
(Note reversal of the Y31/Y32 actions). In this case the "J(S)" sub­
element ii:l @ is not used.

If, however, the value to be deleted is not known, or if the user does
not wish to enter the value, and the input is:

>account-id @ (or) >account-id\ ©
element @ causes the deletion of the value in attribute 5 of ACCOUNT,
as before; and the "J(S)" sub-element is used to "link" back to the
primary file (ACCOUNT) and to add in the value to the HISTORY file.

Note that the same effect could have been achieved, at significantly
greater processing cost, by a suitable BATCH-string employing Translate
conversions to pick up the values to be deleted. However, if the primary
attribute is multi-valued and one of the values is deleted, the "J" sub­
element must be used to delete the corresponding value in a secondary
file.

' If the primary item itself is deleted (using the ",X" option in the file­
defining element), the "J" sub-elements can be used to add or delete
values into secondary file attributes.

BATCH-string Format

The BATCH-string is an item in a file and is the definition of the updating
algorithm to be performed. The BATCH-string consists of a set of elements,
one element per attribute or line. In general, for each file-item accessed

XIV-2

REALITY 2. 0 UPDATE

there will be: a file-defining element, one attribute-defining
element for each attribute in the defined file and an end-of-file
element. This sequence is repeated for each file-item to be updated
by the BATCH-string. Each element in the string begins with a mnemonic
code identifying the element type (the sole exception is the file
defining element which has no code and appears as the first item in the
string and immediately following each Z-code, end-of-file, element)
followed by modifier and sub-elements delimited by commas. The entire
update resulting from a BATCH-string is accumulated and processed in
a single step. Any errors encountered during the processing of the
string aborts the process and ~ of the updates occur. Additionally
multiple updates to the same file-items will not work from the same
BATCH-string; the last file-item update will override any previously
generated updates by the string to the same file-item.

There is a one-to-one correspondence between attribute-defining
elements in the BATCH-string and the attributes themselves. In other
words, the attribute-mark-count (AMC) is not explicitly specified in
the element, but is implied by the sequence of attribute-defining
elements. The following example illustrates this principle by showing
the effect of BATCH-string and input-line updating on items.

PREVIOUS-ITEM 1234 A ABC A DEF A GHI

BATCH-STRING file-name, I A N A i·~ A A, Y21 A

INPUT-LINE 1234 JKLM @

UPDATED-ITEM 1234 A ABC A DEF A JKLM A

The 1234 in the input-line "feeds" the BATCH-string and provides the
item-id to go with the file defining element (file-name, I). The two
N elements in the string direct BATCH to ignore (nop) the next two
attributes (whose previous values were ABC and DEF respectively).
The JKLM in the input-line "feed" the attribute-defining element
(A,Y21) and directs BATCH to replace the previous value (GHI) in that
attribute with the new value (JKLM) from the input-line.

Input Data Conventions

BATCH-string elements reference fields in the input-line that the
BATCH processor requests. When BATCH is evoked, data is requested
from the terminal. Each input-line from the terminal is processed
against the BATCH-string; a null input-line terminates BATCH process­
ing, and causes a return to TCL. The first input-line from the
terminal may be in one of the special formats below, specifying to
BATCH that may be in one of the special formats below, specifying to
BATCH that the actual data input is to be obtained from a disk-file
item, or from the attached mag-tape unit.

(file-name item-id)
(DICT file-name item-id)

instructs BATCH to use the
specified items as the input

XIV-3

(TAPE)
{TAPE C)
(TAPE A)

REALITY 2.0 UPDATE

data stream. Each attribute
value (line) in the item is
treated as one input-line, lines
may be up to 511 bytes in
length. The optional DICT
specifies a reference to the
dictionary instead of the
data-file.

instructs BATCH to read data
from the tape unit. Each fixed
length (max 511 chars.)
unblocked tape record is treated
as one input-line. The optional
C parameter causes EBCDIC
conversion; A causes masking to
7 bit ASCII.

Values from the input-line may be used by BATCH in either a free field
or fixed field format. BATCH uses an input-line pointer to reference
data from the input-line. Each file-defining or attribute defining
BATCH-string element uses one value from the input-line; at the con­
clusion of this usage the input-line pointer points to the character
immediately following the previously used value. Special BATCH-stri~g
elements are available which permit movement of this pointer so that
the same value from the input-line may be used repetitively. A free
form input-line value starts with the first non-blank character from
the current position of the input pointer and continues up to but not
including the next blank. Values with imbedded blanks may be created
by surrounding the entire value with a single quotes or by replacing
the imbedded blank with a backslash" ". A backslash surrounded h
blanks represents a null missing value. Fixed field input-line
values may be defined by specifying a starting column number and a
field width. Fixed field values always contain the number of charac­
ters specified and may contain embedded blanks. All leading and
trailing blanks are deleted. Two or more contiguous blanks will be
condensed to only one blank.

BATCH-string File-defining Element

The first element in a BATCH string is a file-defining element. This
element generates an item-id in a file which will be updated. A
BATCH-string may contain additional file-defining elements immediately
following a "Z" element; the first file specified is referred to as
the "primary file 11 ; other files are referred to as 11secondary files."

file-name , d [(m,n)]

file name

[,c(m,n>] [, conver~ion spec]

if the file containing the item to be
updated. If prefixed by the word DICT,
the dictionary will be updated.

XIV-4

"'--

d I
N
v
x
A

[(m,n)]
(n]
((m)]
[(,n)]

[, C(mn ,))
[,Cp]
[,C(m)]
(,C(,n)J

[,conversion spec}

REALITY 2.0 UPDATE

update existing item.
overwrite existing item.
verify that item exists
delete existing item.
ensure item does not exist.

represents the location in the input-line
of the value to be used as the item-id.
m points to the column of the field to be
processed. n is the number of characters
to be processed. Either m or n or the
entire parenthetical specification may be
missing. If m is missing, free field
format is assumed with the field beginning
at the next non-blank input-line
character.

is optional, specifying concatenation with
another value. If the m and n are missing,
value will concatenate with next free
field value in input-line. There may be
multiple C specifications.

is optional, and is used to specify. input
data conversions. All conversions as
defined in the chapter CONVERSIONS may be
used for the conversion specification.

In addition, for "secondary files" only, the following sub-element is
defined:

.•• ,BC(n), •••
BV(n),

which specifies that item-ID's are to be created (BC) or verified (BV)
from the primary item AMC "n" (in new item image) • B subelements may
be repeated to specify concatenated ID's, or may be combined with I,
J, K, or C subelements as needed.

Notes: If the attribute is multi-valued, it can only be used as the
first element of a concatenated specification. D2 attributes should
not be used with a bridge sub-element, i.e., BC(n) or BV(n).

BATCH-string Attribute-defining Elements

Following the file-defining element there must be one and only one for
each attribute to be updated. The BATCH-string elements and the file
attribute have a one-to-one positional relationship. Attributes not
updated beyond the last updated attribute need not be represented in
the BATCH-string. The mnemonics for the attribute-defining elements
are: A, D , N, T and X.

n

XIV-5

REALITY 2.0 UPDATE

A [(m,n)] [, C(m,n)] (, conversion spec] , Yn

A(m,n)

,C(m,n)

, conversion spec

Yn

n

Update attribute. The A statement in a
BATCH-string describes what is to be done
to the consecutive ·attributes in the item.

same as file-defining element.

same as file-defining element.

same as file-defining element.

must be part of the A command and is used
to control how the input data is stored.

must be
11

12

21
22

23

31
32
33
41

to store non-redundantly (unique
multiple values)
to store redundantly (non-unique
multiple values)
to replace a single value
to reject a single value if value
already present (prints error
message)
to ignore a single value if value·
already present
to add to the existent value
to subtract from the existent value
to add one to the existent value
store multiple values in ascending
sequence; sequencing is done on the
ASCII collating sequence only.
Only unique values are stored. May
not be used for Dl attributes

42 as above; redundant values are also
stored.

Additionally a 4 may be suffixed to the arithmetic value to place a
"negative balance not permitted" restriction on the result. An
example: Y324.

If the attribute to be modified is a co-related attribute (see Dl, D2
CORRELATIVES) the A command takes the form:

Dl;x [(m,n)] [,c(m,n)]

D2;x [(m,n)] [,C(m,n)]

[, conversion spec] Yn

[, conversion spec] , Yn

where Dl;x or D2;x replaces A. Three sets of co-related attributes
may be processed by BATCH. The primary co-related attribute is
identified with Dl. Subsequent secondary attributes related to this
primary attribute use the letter D2. x is 1, 2 or 3 providing for
the three sets.

XIV-6

\....

REALITY 2.0 UPDATE

If co-related attributes (Dl,D2) are to be deleted, using B/DEL, the
A command takes the form:

Dl;x,YlX
D2 ;x,YlX

The above attribute-defining element used with B/ADD will have the
same effect as:

Dl;x,Yll
D2;x,Yll

lb.e following attribute-defining elements may also be used:

N - ignore the corresponding attribute

nN - ignore n attributes

T - add one to the corresponding attribute

x - delete the corresponding attribute.

Additional BATCH-string Elements

In addition to file-defining and attribute-defining elements the
following elements may also be used:

F

B

S(n)

z

Move input pointer forward to the next
field

Move input pointer back to the prior field

Set input pointer to the nth column in the
input

Terminate a file-item update section.
Must be immediately followed by another
file-item update section.

EXAMPLE--

In the example on the following page, an item '99-A' in the
file PO-NUMBER is updated using a BATCH-string. Additionally
an item in a secondary file, TRANS is created.

Additional Sub-elements

The following sub-elements may pe used (unless otherwise noted) in
both file-defining and attribute defining BATCH-string elements.

XIV-7

[,Fop (m,n)]

[,um]

[,sn]

(,SH]

J(n)

REALITY 2.0 UPDATE

is used to specify arithmetic operations
on the input data.

op must be

* multiplication. Following * must
be a positive scaling factor. If
specified, the product will be
divided by 10 to the power of the
scaling factor.

I division

+ addition

subtraction

The (m,n) maintains its meaning. It
isolates an input field from which numeric
information can be extracted. Several F
options can be appended to an A command.

is used to exit to a user defined program.

store

store

system data]

system time

Note: no input
data field is
necessary if these
two immediately
follow the A, Dl or
D2.

'!his sub-element should only occur in
secondary file attributes, and is ignored
if (a) the update is B/ADD or (b) the
update is B/DEL with some specific data
input to the field used by this element.
If no data is input (meaning delete the
entire value in the attribute), the nth
primary file attribute is referenced,
and the value that was deleted there is
also deleted from the second file
attribute. Only the first value used in
the delete processing is used. Conse­
quently, multi-valued primary attributes
will in general be processed incorrectly.
The 'J' sub-element must be specified if
the primary item itself is to be deleted.

XIV-8

x
H
<:

ITEM BEFORE BATCH-UPDATE

PO-NUMBER : 99-A
AL. ABC
A2. 10
A3. 11
A4. 22
AS. 29 OCT 1974
'A6. $ 0.33
A7. -44
AS. 1
A9. 9
AlO 33::44
All 44
Al2 31 OCT 1974

.b, EXECUTION OF BATCH
STRING

ITEM AFTER BATCH UPOO..lE

PO-NLMBER : 99-A
A~. ~C

1 ~3~11 12

1974

46

t<1

~
t'"'
t"l
I
I

~
~
H

~
N

0

~
~
~

I
"-..

_

Section XV

MICRODATA REALITY REFERENCE MANUAL

INTRODUCTION

This section is a reference manual for the Microdata Reality CPU. It
provides a description of the system structure; of the arithmetic, logical,
branching, skipping, and input/output operations; and of the interrupt
and storage management system. Input/output devices are discussed in a
separate document.

SYSTEM STRUCTURE

The Reality system consists of a core storage unit, a disk storage device
used as a virtual storage unit, a central processing unit (CPU) and from
one to 64 input/output terminals. There is a one-to-one correspondence
between a terminal attached to the system and a process. Additionally,
input/output devices such as magnetic tape units, disk units, card
readers and printers may be attached to the system. Input/output devices,
other than the process terminal, may be accessed by any process. It
should be noted that the disk unit containing the virtual store cannot be
accessed as an input/output unit, except by the monitor.

Information Formats

The system transmits information between the CPU and core storage, and
between core storage and virtual storage in units of 8 bits or in
multiples of 8 bits at a time. Each 8 bit unit is called a byte.

Information may be a single byte, or may be grouped together in fields.
Fields of two, four, and six bytes are called words, double words and
triple words respectively. A field made up of an arbitrary number of
bytes is called a string. The location of any field is specified by the
address of the left most byte of the field. Addresses increase from
left to right.

Within any information format, the bits making up the format are
numbered from left to right starting with 0. The figure below shows
the information formats.

BYTE

11 1 o o o 1 1 ol
0 7

XV-1

WORD

111110001!01001011!

0 7 8

DOUBLE WORD

1
5

l111oooool10001111!00000000J10101011l

0 7 8 1 1 2 2 3
5 6 3 4 1

TRIPLE WORD

looooooo1loo100111loo111111l11110000loooo1001looooo111l

0

Addressing

7 8 1 1
5 6

2 2
3 4

3 3
1 2

3 4
9 0

4
7

Byte locations in main storage are consecutively numbered starting with
zero. Each number is the address of a byte. A group of bytes is
addressed by the leftmost byte of the group. The number of bytes in a
group is either implied or explicitly defined by the operation. The
addressing mechanism uses a 16 bit binary address giving a maximum of
65,536 addressable bytes. Main storage is available from 8,192 bytes to
65,536 bytes in 8,192 byte increments. Main storage is partitioned into
blocks of 512 bytes each. A main storage block is called a buffer.

Virtual storage is also partitioned into blocks of 512 bytes each. A
block of virtual storage is called a frame. Frames are numbered con­
secutively starting with zero. Each number is the address of a frame.
A frame address is also called a frame identification (FID). FID's are
24 bit binary numbers giving an addressing capacity of 16,777,216 frames
or 8,589,934,592 bytes. Virtual storage is available in 9,744 frame
(4,988,928 byte) increments.

All program references to information are references to virtual storage.
Fields in virtual storage are referenced via a frame number and a
displacement. If the field being referenced is a single byte or a string,
the displacement is the number of bytes relative to the first data byte
of the frame. If the reference is to a word, double word or triple word,
the displacement is the number of words relative to the first data byte
of the frame. References to instructions are via a 12-bit frame number.
Therefore, programs must be located in the first 4,096 frames.

XV-2

'

_

REALITY 2.0 UPDATE

VIRTUAL MEMORY MANAGEMENT

The CPU directly accesses information from buffers in main storage.
These buffers contain the contents of virtual storage frames. The
virtual frames are moved between the disk and main 'storage as required
by processes in progress. Two of the main storage buffers, 0 and Z,
contain the monitor program that performs the actual operation of
swapping frames in and out of main storage. Main storage buffers
1 and 3 contain information about each of the main storage buffers
and a map of the frames currently contained in each main storage
buffer.

Buffer Status

Main storage locations X'200' through X'27F' contain the statm:: of
each of the main storage buffers. One byte is used for the status of
each buffer. Location X'200' contains the status of buffer O, loca­
tion X'201' contains the status of buffer 1 and so forth. The
information contained in the buffer status byte is given below.

Buffer Status Byte

Bit

0

1

2

3

4

5

6

7

PSYM Name

I/O BUSY/

CORELOCKl/

CORELOCK

WRTREQD/

Bit Description

0 Zeroed whenever an 1/0 (disc or peripheral)
is in progress for this buffer; set when I/O
completes. Firtmiare prevents "attachment" by
a virtual process to a buffer with this bit
zero.

1 This bit is zeroed during cold-start tape
generation, along with bit 2, if a buffer is
to remain core-locked. ~- -

XV-3

PSYM Name

CO RELOCK/

WRTREQD/

Buffer Map

Bit

2

3

REALITY 2.0 UPDATE

Description

A zero indicates that this buff er may not be
selected for disc input.

A zero indicates that data in this buffer has
changed since it has been read from disc, and
must therefore be written back to disc.

4 Unused

5-7 These bits are used by the 'FAR' instruction
which changes the buffer status.

Main storage locations X'280' through X'2FF' and locations X'700'
through X'7FF' contain the addresses of the frames currently in the
main storage buffers. The map is divided into two sections. Loca­
tions X'280' through X'2FF' contain the least significant byte of
each of the frame addresses. Locations X'700' through X'7FF' contain
the most significant two bytes of each of the frame addresses. For
example, the virtual storage address of the frame in buffer 4 is
found by concatenating the contents of main storage bytes X'708',
X'709', X'204'. .

Buffer Queue

A buffer queue is maintained by the firmware in main storage locations
X'300' through X'3FF'. The buffer queue consists of a doubly linked
list of buffer numbers ordered according to their time of attachment
by the fir11111are. Each time a register is attached to a buffer, the
firmware moves the attached buffer to the head of the buffer queue.

When the contents of a buffer must be replaced because of a frame
fault, the buffer queue is used to identify the least recently
attached buffer for replacement. The buffer used is then moved to
the head of the buffer queue.

Each entry in the buffer queue consists of two bytes. The word (two
bytes) displacement of the entry from main storage location X'JOO'
corresponds to the buffer number. The two bytes forming each entry
in the buffer queue are the two pointers forming the doubly linked
list.

The first byte of each entry points to the next more recently attached
buffer entry in the queue. The second byte of each entry points to
the next less recently attached buffer entry. The first byte of the
most recently attached entry (i.e., head of the queue) contains X'FF'.
The second byte of the least recently attached entry (i.e., tail of
the queue) contains zero.

XV-4

REALITY 2.0 UPDATE

Bytes at locations X'300' and X'301' contain pointers to the head and
tail of the buffer queue respectively. The head of the queue identi­
fies the most recently attached buffer number. The tail of the queue
identifies the least recently attached buffer number.

PROCESS

The Reality CPU is designed as an interactive system capable of com­
municating with several users simultaneously. A user communicates
with the system via a cotmnunication terminal such as a Teletype or
CRT terminal. Associated with each terminal is a process. A process
is not an element of the system but rather a continuing operation on
a set of functional elements. Refer to table at end of Chapter XV
for peripheral I/O details.

Process Identification Block

For each process attached to the system, there is a Process Identifi­
cation BLOCK (PIB). Each PIB is 32 bytes long. The PIB for terminal
zero is in mafilS'torage locations X'800' through X'81F'; locations
X'820' through X'83F' contain the PIB for terminal one, and so forth.
The PIB contains information about the status of the process with
which it is associated. The following is a description of the PIB
contents. Bytes 0 through 6 are determined by firmware.

PIB Status Bytes

Byte

0

1

2

3

4

5

6

7 PIB-IOQ

8 Charge-units
9 counter

10
11

12

13

14

15

PCBFID

PIBFID

xv-s

Bit

ACTIVE 0

l

DIOBLK/ 2

PI BEND/ 3

DWAIT/ 4

OBYTEBLK/ 5

IBYTEBLK/ 6

CIOBLK/ 7

DWRITE 0

CIOOUT 1

LOPRIOBIT 2

DELAY 3

4

ERROR 5
CODE 6

7

PIB Status Bytes

Name Byte Bits

ACTIVE 0 0

0 1

DIOBLK/ 0 2

PIBEND/ 0 3

DWAIT/ 0 4

OBYTEBLK/ 0 5

IBYTEBLK/ 0 6

CIOBLK/ 0 7

DWRITE 1 0

CIOOUT 1 1

LOPRIOBIT 1 2

DELAY 1 3

REALITY 2.0 UPDATE

Meaning

One indicates that process may be activated
(candidate for Select Next User process).

Unused

Zero (zeroed by firmware on a frame fault)
indicates that process is roadblocked waiting
for referenced frame to be input from virtual
storage. Set to one when monitor accepts
request by moving FID onto IOQ.

Zero indicates the end of the PIBs.

Zeroed by monitor when frame fault request is
accepted (FID moved to IOQ}. Set to one when
disc transfer is complete.

Zeroed by firmware when process is roadblocked
waiting for terminal to complete output. Set
to one when output is complete.

Zeroed by firmware when process is roadblocked
waiting for terminal to complete input. Set
to one when input is complete.

Zeroed by monitor when process is roadblocked
waiting for concurrent I/O block transfer to
complete. Set to one when block transfer is
complete.

One indicates read request is roadblocked
waiting for buffer to be written out to disc.
Zeroed when output is complete and read request
has been replaced in IOQ.

One indicates process is roadblocked waiting
for concurrent output to complete. Zeroed
when output is complete.

Set to one on a Release Quantum entry to
monitor, if the process does not have either a
byte input or byte output roadblock. Also set
to one during concurrent block output.

One indicates a one-cycle delay to the Select
Next User process, on a Release Quantum entry
to monitor.

XV-6

Name Byte Bits

ERROR CODE 1 4-7

2 0-7

3 0-7

4 0-7

5 0-7

6 0-7

REALITY 2.0 UPDATE

Meaning

Software generated error trap codes:
08 - illegal FID
09 - disc error
OC - register zero detached
OE - charge-units counter overflow

Last byte address of PIB 1/0 buffer (bytes
16-31 of PIB).

Number of bytes in PIB I/O buffer less one
(X'FF' =no bytes).

Mask byte used by Communications controller.

"Unusual status" of Communications Control­
ler line associated with this PIB.

Data byte received from Communications
controller line associated with this PIB.

PIB--IOQ 7 0-7 Pointer connecting PIB to IOQ entry.

Charge-units 8-9
counter

0-15 Number of charge-units associated with
this process.

PCBFID

PIBFID

10-11 0-15 Frame-id of the Primary Control Block (PCB)
for this process.

12-15 0-31 When a process is roadblocked because of a
frame fault, the frame-id is placed in these
bytes. When the monitor is entered as a
result of a call operation, these bytes
contain parameters:

12 0-7

13 0-7

14 0-7

15 0-7

16-31

Frame I/O Request

Buffer number which
contains PCB.

High-order byte
of absent FID.

Middle byte of
absent FID,

Low-order byte
of absent FID.

Monitor Call

High-order address of
PCB frame

Mask byte from Call
instruction.

High-order byte of
address of register
referenced in Call.

Low-order byte of
address of register
referenced in Call.

Input/output buffer for the terminal associ­
ated with this process.

XV-7

REALITY 2.0 UPDATE

Primary Control Block

For each process there is a frame called the Primarx Control Block
{PCB). The PCB contains the accumulator, address registers, subrou­
tine return stack and string scan control characters associated with
the process. The location of the PCB is contained in the PIB of the
process. The following paragraphs describe the contents of the PCB.
The bytes that are not described are not accessed by the Firmware.
However, the remaining bytes of the PCB contain information used by
the operating system.

Bytes

0

1

3-5

6-7

8-X'OB'

X'OC'-X'OF'

X'lOO'-X'l7F'

X'l80'-X'l81'

X'l82'-X'l83'

X'184' and above

Description

This byte is reserved for a lock code used for
storage protection.

This byte contains the condition code resulting
from a previous arithmetic instruction execution.

These bytes are used for controlling the Move and
Scan through Delimiter instructions.

These bytes are used for controlling the debug
trace mode of operation.

These bytes contain the double word accumulator
extension. The accumulator extension contains
the most significant portion of a product after
a multiply operation. It contains the remainder
after a divide operation.

These bytes contain the double word accumulator.

These bytes contain the 16 address registers.
See the description of the address registers
below.

These bytes contain the address (relative to
byte zero of the PCB) of the limit of the sub­
routine stack.

These bytes contain the pointer to the current
top of the subroutine stack.

The bytes contain the subroutine return stack.
The number of bytes allocated for the stack is
determined by the contents of bytes X'l80' and
X'l81'.

XV-8

REALITY 2.0 UPDATE

Address Registers

All references to data, except immediate data, are made indirectly
through an address register. There are 16 address registers in each
PCB. Each address register contains 8 bytes. The following para­
graphs describe the address register format.

Bytes

0-1

2-3

4

Address
Register
Format

0 1

[ADDRESS

2 3

DISPLACEMENT

Description

4 5 6 7

LINK FID

These bytes contain the 16 bit main storage address of the
referenced data. If the address is less than X'SOO', the
frame containing the data may be absent from main storage.

These bytes contain the displacement of the referenced data
relative to the first data byte of the frame. The displace­
ment is a 16-bit signed number. Negative values are
represented in two's complement form. These bytes are
meaningful only when the register is detached. (See
Register Attachment below.)

Zero in bit zero of this byte indicates that the register
references data in the linked format. If bit zero is a
one, the register references the data in the unlinked
format.

One in bit one indicates that frame attachment is in
progress. Bit one can only be set during the execution
of instructions that increment addresses with data
movement.

5-7 These bytes contain the virtual storage frame number of
the byte being referenced.

Address Register Attachment

When a program loads ("restores") an address register, the first two
bytes of the register are set to zero. Bytes 2 through 7 of the
address contain a virtual frame number and displacement. A register
in this format is said to be detached. When a subsequent instruction
uses the detached register for a data reference, an attempt is made
to convert the address register to the attached format. The attach­
ing attempt is automatic and performed as follows. The buffer map
is scanned to determine if the referenced frame is located in main
storage. If the frame is in main storage, the location of the
required byte is computed by adding the buffer address from the map
to the displacement from the address register. The address is then

XV-9

REALITY 2.0 UPDATE

placed into bytes 0 and 1 of the address register, thus forming the
attached format. Once the register is attached, instruction execution
takes place.

If the referenced frame is not in main storage, the frame number is
placed into bytes 12 through 15 of the PIB. Byte 0, bit 2 of the
PIB is set to O, thus roadblocking the process. Next all of the
address registers in the PCB are converted to detached format and a
fault interrupt to the monitor is taken.

Address Register Zero

Register zero is used in a special way. This register always contains
the FID of the PCB. Register zero is attached when the process is
activated. The displacement field of this register is always assumed
to be zero.

Address Register One

When a process is ~ active, address register one contains the FID and
displacement (minus one) for the next instruction to be executed. When the
process is activated, the buffer address of the program frame (as
determined from the buffer map) is added to the displacement from
register one. This value is placed into a hardware instruction
counter. The register is then converted to the attached form with
the buffer address set to the base address (byte zero) of the program
frame. When the process is deactivated, the ma.in storage location
from the instruction counter is converted to the corresponding FID
and displacement and the register is detached with these values placed
into it.

Frame Formats

The Reality system recognizes two types of frame formats; linked and
unlinked. In both formats byte zero of the frame is reserved for a
frame lock.

Unlinked frames contain 511 data bytes. For unlinked frames the
displacement portion of an address is relative to byte 0 of the frame,
i.e., a displacement of 1 is a reference to the first data byte.
Displacements outside the range 0 through 511 are not valid for frames
in the unlinked format.

Linked frames contain 500 data bytes. For linked frames, the dis­
placement field in the address is relative to byte 11 of a frame.
However, a displacement of zero is a reference to byte 511 of the
frame to the left of the current frame. Displacements for linked

XV-10

REALITY 2.0 UPDATE

frames may be positive or negative so long as the displacement
references a logically linked item of data. The following paragraphs
describe the linked format.

0 1 2 3 4 5 6 7 8 9 10 11 12 .•.

FRAME NNCF FRMN FRMP NPCF Unused
LOCK (Next FID) (Previous FID) Data

Section
(500 bytes)

Linked Frame Format

By:.es

0

1

2-5

6-9

10

11

12-511

MONITOR

Description

This byte is reserved for a frame lock.

This byte contains a count of the number of next contiguous
frames to the right of this frame (NNCF). A zero in this
byte indicates that this frame is the rightmost frame in
a contiguously linked set of frames.

This field contains the frame number of the frame that is
logically to the right of this frame. If byte 1 contains
other than zero, the frame to the right is the next
higher numbered frame. If byte 1 contains a zero the
frame to the right may be any frame number. A zero in
this field indicates that this is the rightmost frame of
a linked set.

This field is similar to bytes 2 through 5 except that it
contains the number of the frame to the left of this frame.

This byte is similar to byte 1 except that it contains a
count of the number of previous contiguous frames to the
left of this frame (NPCF).

Unused.

Data section.

The monitor is a program that is an integral part of the Reality
system. The monitor process is the only one not associated with a
PIB. The PCB for the monitor is defined as buffer 0 of main storage.

The function of the monitor is to initiate the transmission of informa­
tion between main storage buffers and virtual storage and to schedule
each of the processes.

XV-11

REALITY 2.0 UPDATE

When the system is operating in monitor mode, address registers are
not checked for attachment. Instead all data references are assumed
by the firmware to be references to absolute core addresses. The
system is in monitor mode whenever the location of the PCB is at
core-address zero.

The monitor gives control to another process by executing either a
Resume Virtual Process or a Start Virtual Process instruction.

The multi-disc monitor may be used with one or two drives per control­
ler, and with one through four disc controllers. In any multi-disc
configuration, the capacity of every drive in the system must be the
same; i.e., either 5 megabyte or 10 megabytes/drive; also all
controllers must have the same number of drives attached to them.

Monitor PCB

The PCB associated with the monitor is at absolute core-address 0
through X'lFF'. Beside the functional elements that are described
in the section "Primary Control Block," the following locations are
used:

Bytes

2

3

6

7

X' 10' -X' lF'

X' 20'-X'' FF'

X'lAO'-X'lAl'

X'lA4'-X'lA7'

X' lCO 1-X' lDF'

X' lEO' -x I lFF'

Description

Contains the Interrupt Address code on an External
interrupt fault trap to the monitor.

Contains monitor status flags (bits).

Contains the hardware clock counter; a fault is
generated when this is incremented (every one
millisecond) to zero.

Extension of clock counter used by the monitor.

Exclusively a hardware save area.

Contains the bootstrap software executable code.

Contains the system date (days since 31 Dec 1967).

Contains the system time (seconds since midnight).

Contains PIB pointers for peripheral devices 0
through 15.

Contains address pointers for peripheral devices
0 through 15.

XV-12

REALITY 2.0 UPDATE

Initial Condition of Monitor PCB Registers

LOC

100 RO

108 Rl

110 R2

118 R3

120 R4

128 R5

130 R6

138 R7

140 R8

148 R9

150 RlO

158 Rll

160 Rl2

168 Rl3

170 Rl4

178 Rl5

180

oo T 00 03
r

05

04 00 01 co

06 00 14 80

oc 00 FF FF

PIBWA PIBST.tiRT

-- -- 07 EO

01 -- F6 --
01 60 -- --

IOQWAL IOQSTART IOQSIZE

06 -- * 10

DCTWAL

06 - -- 04

=H24

00 OB oc 18

-- -- -- --
OE -- -- --
-- -- -- --
-- -- -- --

-- -- -- --

-- -- -- --

--1 AO -- 84

Unused or scratch

* Preset by MSETUP Program.

XV-13

I
BifS

T

01 EO 02 7F

10 FO oc 84

20 AO 28 3F

PIBSIZE PFID

00 20 -- --
FE 64 06 3F

00 01 51 81

IOQMAX IOMAX IPQ(/ NUMCONT

* * 00 * -·
FinMAX

* -
02 00

-- -- -- --
-- -- -- --

-- -- -- --
-- -- -- --

-- -- -- --

-- -- -- --
FF FF FF FF

REALITY 2.0 UPDATE

Monitor Register Assignment

Register PSYM
No. Name Address Description of Usage

0 None X'OOOO' Addresses Monitor PCB.

1 None X'0400' Addresses MMONITOR.

2 None X'0600' Addresses MMONITORX.

3 None X'OCOO' Addresses MMONITORY/Nx.

4 PIB Variable Current PIB pointer.

5 None X'OlOO' Addresses Monitor PCB, lower half.

6 None X'Ol60' Addresses WA of Rl2.

7 IOQ X'06xx' Current IOQ entry pointer.

8 DCT X'06xx' Current DCT entry pointer.

9 None X'OOOB' Addresses H4 in Monitor accumulator.

10 None Scratch

11 None X'OEOO' Addresses MMONITORZ.

12-15 None Scratch

Interrupts and Monitor Calls

Once a virtual process gains control, it remains in control until the
occurrence of an interrupt or until the process executes a Monitor
Call instruction. The occurrence of a Monitor Call instruction will
cause all registers in the current PCB to be converted to the detached
form.

There are three types of interrupts to the monitor; external, internal
and fault.

An external interrupt is generated when a device (including the virtual
storage device) completes an operation. When an external interrupt
(excluding the virtual storage device) occurs, the status of the active
process is saved in the hardware. The process that was interrupted must
be resumed by executing a Resume Virtual Process instruction. After the
occurrence of an external interrupt, further external interrupts will be
inhibited until a Resume Virtual Process instruction has been executed by
the monitor. Refer to Disc Interrupt Handling in this chapter for an
explanation of external interrupts from the Virtual Storage Device.
Device addresses 0-X'F' are assumed to be non-virtual storage devices
and X'lO' - X'l7' are assumed to be virtual storage devices.

XV-14

,_

\
'-

REALITY 2.0 UPDATE

When an internal interrupt occurs with a dependent process active, all
registers in the PCB are converted to detached form and control passes
to the monitor. An internal interrupt ca~ be recognized with the
monitor active at any time except in the case of a real time clock runout
which can only be recognized after the execution of a Test Interrupt instruc­
tion (X'Ol').

A fault interrupt can occur only when a virtual process is active. A
fault interrupt causes all the registers in the PCB to be converted to
detached form.

The monitor must execute a Start Virtual Process instruction to start
a process that was interrupted by an internal or fault interrupt.

Interrupts cause entry to the monitor at predefined locations. The
table below shows the monitor entry point for each interrupt condition.

Entry Address

1

3

5

7

9

11

13

15

17 thru 31

Traps

Interrupt Condition

Reference to absent frame (fault)

Input/output operation complete (external)

Power fail console interrupt, or clock
runout (internal)

Terminal input/output with device not
ready, or attempt to attach a buffer
with input or output active in the buffer
(fault)

Attempt to attach register 0 when not in
the monitor (fault)

Power restored entry point (internal)

Hardware abnormal condition while in
Monitor mode

Not used

Monitor Call instruction entry points

Certain operations can cause a trap condition to be signaled. The
occurrence of a trap causes a Branch and Stack location instruction

XV-15

REALITY 2.0 UPDATE

to be executed to a predefined location in virtual storage frame one.
The table below shows the entry point and the cause for each trap.

Entry
Address

1

3

5

7

9

11

13

15

17

19

21

23

31

Cause

Illegal operation code encountered.

The return stack is empty. This occurs when a
Return instruction is executed with the current
stack position pointing to the beginning of the
return stack.

The return stack is full. This occurs when a stack
location type of operation is executed and the
current stack position is equal to the end of stack
location. The current stack location is reset.

Attempt to reference frame 0 when not in monitor
mode. The number of the address register that
contained the reference is placed into the condition
code byte of the PCB.

Attempt to cross a frame boundary for an unlinked
frame or a word, double word, or triple word not
entirely in one frame. The register number con­
taining the reference is placed into the condition
code byte of the PCB.

Attempt to link across a frame with a forward link
of zero. The register number containing the refer­
ence is placed into the condition code byte of
the PCB.

Attempt to link across a frame with a backward link
of zero. The register number containing the reference
is placed into the condition code of the PCB.

Attempt to execute a privileged opcode when not in
monitor mode.

Attempt to reference a non-existent frame.

Disk error.

Break key activated on the terminal.

Return stack format error. There are two conditions
that cause this error. Either the end of stack
location is less than the current stack position, or
the stack size is defined for less than 7 entries.

Debug trace mode. This is not an error condition.
Trace mode is controlled by bytes 6 and 7 of the PCB.

XV-16

\._

' '..__

REALITY 2,0 UPDATE

Trace Mode

The Reality CPU can operate in a special mode called trace mode. When
trace mode is in effe~t the hardware monitors the instruction execution
and traps to location 31 of frame 1 on the occurrence of certain condi­
tions. When a trap occurs, bits 0 through 3 of byte 6 of the PCB are
set to zero, inhibiting f•11.:t.her traps. The conditions that can cause
the trap are defined in bytes 6 and 7 of the PCB. The following
table shows the conditions.

Byte 6, Bit 1 - This bit indicates that a trace interrupt is to
occur on every BSL, ENT, BSL*, or ENT* instruction (modal trace).

Byte 6, Bit 3 - This hit inciicates that trace traps can occur
on every instruction.

Byte 6, Bit 5 - This bit is set by firmware when an instruction
trace trap h~s occurred.

Byte 6, Bit 6 - This bit is set by firmware when a RTN trace trap
has occurred.

Byte 6, Bit 7 - This bit is set by firmware when a BSL, ENT,
ENT* or BSL* trace trap has occurred.

Byte 7 - When the system is in the instruction trace mode,
this byte is incremented for every instruction executed.
A trace trap will not occur until this byte has been
incremented to zero.

Monitor Disc Scheduling Tables

There are two tabl~s 'hat control the disc 1/0 scheduling, the I/O
Queue (IOQ) and the uevice Control Table (DCT). The IOQ table may be
considered a subset of tht Proces~ Identification Block set (PIB); a
process that requires disc input must first be allotted a spot in the
IOQ before its request car1 be honor~d. Since the IOQ can be set to
any size between two and eight entries, the IOQ acts as a funnel
between the disc input requests from the processes, and the actual
disc I/O. By preventing the honoring of requests for too many
processes in rotation, the IOQ serves to control "thrashing".

The IOQ Table

Moving on and off the IOQ is controlled by the monitor in the following
manner: When a process requests disc input, and it is not on the IOQ,
it is moved on to an available IOQ entry if such an entry exists at
the time; if not, the process goes into a wait state until an entry

XV-16-1

REALITY 2.0 UPDATE

becomes available. A process moves off the IOQ ("deactivates") under
the following conditions:

1) The process executes a "Release Quantum", either explicitly
(via the RQM instruction) or implicitly due to:

a) Real Time Clock Interrupt

b) Terminal input or output roadblock

c) Concurrent I/O block transfer roadblock

2) The process executes the maximum number of disc input
requests, as specified by the monitor parameter IOMAX.

In any of the above cases, that process is taken off the IOQ; the
entire PIB table is then searched for other processes that are road­
blocked due to a disc input request, and one of them selected to be
moved to the IOQ, at which time the disc input request counter
(IOCTR) is set to the initial value specified in IOMAX.

IOQ TABLE FORMAT

0 1 2 3

co ,... co
Q) Q) ,... .µ ,...

cu § "Cl

1 "Cl
0 < (.)

z !XI
+.I H

.µ co p..
•1"4 cu
:5 ::I "Cl

tr QJ

~ 4.J «I
«I
(,) .µ (,)

..... ~ 0
00 i::i.. co
0 c::

~1 ...:i H

Byte PSYM Name

0 None

4 5 6 7 8 9 A B c D E F

,...
Q)

i::i..

& "Cl
"Cl i c::

I J
..

co i:::i
co 0

0 .µ cu co u u Cl) ,... (,) co QJ
"Cl co Q) "Cl ~ H
~

..... ,... 0 Q)
<II co i:::i "Cl QJ (.) Cl)

r-1 ::I ~ Cl)
..0 .µ ,... ..0 c:: r.:r..
«I «I Cl) «I ~

.µ
.... +.I \1-f 1-1
,... Cl) IM ,... .µ «I

l ~ ::I «I (,) 4.J I

l l l l ~ > < Cl) I

Description

Logical unit number; consists of the controller
device address, with the high-order bit specifying
the drive number:

Controller Address - 14 15 16 17

Drive Number 0 14 15 16 17

1 94 95 96 97

XV-16-2

Byte PSYM Name

0 None
(Continued)

1 IOCTR

2-3 IOQ--PIB

4 IOQCOMl

5 IOQBUF

6-7 IOQDA

8 None

9 IOQACT

A None

B

c

D-F

IOQFIDO I
IOQFID

REALITY 2.0 UPDATE

Description

This byte is set up when the disc address is
computed from the FID; is set to zero when the disc
request has been processed.

Disc input request counter; is set to value speci­
fied in IOMAX when a process is moved to the IOQ;
is decremented on every input request processed.

If zero specifies an available IOQ entry.

Link from IOQ to PIB; is set up when a process is
moved to the IOQ; is never zeroed.

Scratch location used to communicate with the disc
controller may store a RETURN command, a SELECT
and QUEUE SEEK command, or the major status.

Buffer address, (upper) to which disc I/O is
being done; the low-order bit is first zeroed to
output the "buffer start, upper" command, to
the disc controller, then set to output the
"buffer end, upper" command.

Disc address computed from the FID.

Used as a scratch location to output the "buffer
start, lower" and "buffer end, lower" bytes
(always X'OO' and X'FF' respectively).

Controller action code:

X'OO'

X'Ol'

X'02'

Read

Verify

Write

Controller command--always X'90' (start queued
seek(s), arm interrupt).

Unused

FID, uppermost byte is always X'80'.

XV-16-3

REALITY 2.0 UPDATE

Selection of a Process to be placed on the IOQ

The following rules are used to select a process to be placed on the
IOQ (if more than one process is roadblocked due to a disc input
request):

1) If the process had been
terminal I/O roadblock,
on the IOQ immediately.
LOPRIOBIT being zero in

taken off the IOQ due to a
it is selected to be placed
This is governed by bit

the PIB.

2) If none of the processes are so roadblocked, the
first process with LOPRIOBIT set (therefore lower
priority) is selected to be placed on the IOQ.

The effect of this selection criterion is that processes that had
moved off the IOQ due to terminal I/O will have a higher priority
than processes that do not do any I/O. In order that the latter type
of processes do not get into a state where they may never be selected
due to the existence of other processes that are in a heavy terminal
I/O state, LOPRIOBIT is zeroed during the search described above.

Note that in the event that only one process requires disc input, a
full search of the PIB table is completed, before the deactivated
process is moved back to the IOQ.

IOQ SetUJ,>

When a process is placed on the IOQ due to a disc input request, the
following sequence of events occurs:

1) The disc input roadblock (DIOBLK/) in the PIB status
is set, thereby indicating that this process is on the
IOQ, and is no longer a candidate for IOQ selection.

2) The "waiting for disc" flag (DWAIT/) is zeroed, thereby
preventing the Select Next User routine from selecting
that process for execution.

3) The requested FID is moved from the PIB to the IOQ, and
the disc address is computed.

4) a) If the addressed disc is busy, nothing further can
be done.

b) If not, the 'SETUP' routine in the disc interrupt
handler is entered.

XV-16-4

REALITY 2.0 UPDATE

Disc Address Computation

Subroutine SETIOQ takes the FID specified in the IOQ entry; checks
against a maximum FID as specified in the literal FIDMAX; converts
the FID to a 16-bit disG address and stores the latter at IOQDA.

Disc Address Format

0 1 2 3 4 5 6 7

p c c c c c c c

PLATTE~ J
CYLINDER I
0-202 (SMB Disc)
0-405 (lOHB Disc)

Device Control Table

8 9 10 11 12 13 14 15

c c h s s s s 0

HEAD~ \

SECTOR fl~
0-22; even values only

The DCT entry is uniquely associated with a disc drive; it contains a
flag indicating whether the device is busy or not, a link to the IOQ
associated with the drive, and in the case of two drives per control­
ler, a seek counter whicn keeps track of the number of seeks that
have been started on the controller.

The DCT location is mapped directly from the device address of the
controller, and the disk drive number; its main function is to pro­
vide an easy linkage from the interrupt address supplied by the CPU
at the time of an interrupt, to the IOQ.

DCT TABLE ENTRY C2er controller)

0 1 2 3 4 5 6 7 8 9 A B c D E F

ti) ~
ti) u
~ H

>

j ~ ~
~
Q

O' O' rx. 0 0
ti) ti) r:i::

~ >- H

~ >- ~
CJ) Q ti)

&3 E-t
:::i

~ ~ ~ ~ H llQ E-4
ti) en < 0

~ 1-1 ~ t-1 u
r:i:: u u r:i:: u u
~ t-1 0 ~ H 0 ~ &'i en > ti)
H en)=! ~ ~ ~
;::&: Q < ti)

DRIVE ZERO -r- DRIVE ONE --t
XV-16-5

Byte PSYM Name

1 None

2 DCTBSY

3 DCT--IOQ

REALITY 2.0 UPDATE

Description

Minor status from drive if an error has occurred;
is not reset if no errors.

High-order bit, if set, indicates drive is busy.
Reset on I/O completion.

Address link from DCT to associated IOQ Entry;
is setup when seek is started; is not reset.

Disc Interrupt Handling

On receiving an end-of-transfer interrupt, the firmware deactivates
the currently executing virtual process (if in virtual mode), and
traps to location X'403' in the monitor. The interrupt address of
interrupting device (device address times two) is stored at X'OF' -
the low-order byte of the monitor accumulator. A virtual process
cannot resume execution after completion of disc interrupt handling,
since its buffers may be replaced and attached registers may no longer
be valid.

The interrupt address is mapped into the DCT address, which leads to
the associated IOQ address, which in turn leads to the associated
buffer address, FID, and PIB address. The status of the drive is
obtained, and, if there are no errors, the controller is re-armed
(if another seek is pending it is also re-started). If the completed
operation was a write, a verify is now started, and interrupt handling
terminates.

Selection and setup of next I/O

Since the drive is now ready, the IOQ table is searched for a matching
device/drive number, or logical unit number. If a match is found,
the setup phase is entered (also entered from frame fault).

1) The FID is picked up from the IOQ, and a FAR instruction
executed; this is the only monitor-level instruction
that causes the firmware to attach an A/R. If the
requested FID is core-resident, the disc read roadblock
is removed from the associated PIB, and the IOQ table
searched for the next I/O.

2) If the FID is not core-resident, the execution of the FAR
instruction has automatically caused an attachment to the
"oldest" buffer in core. If this is core-locked, the FAR
is repeated. If not, and if the buffer has no write­
required flag on its status, an available spot has been
found for the disc read, and the read parameters are set up.

XV-16-6

\
'-..

3)

REALITY 2.0 UPDATE

If a write-required flag exists on the buffer status, that
data must be written out before the read request can be
processed; therefore, the IOQ entry is overwritten with
the FID to be written out, and the write parameters are
set up in the IOQ. Also, the flag DWRITE in the PIB status
is set, indicating that the read request from the process
is yet to be processed. Note that in this case a drive
other than the one that just completed a transfer may be
started.

Starting I/O

In the case of two drives per controller, a RETURN instruction is
issued to the controller if another seek is pending completion
(DSCSEEKS non-zero); if the controller status indicates that it did
not return, the start I/O sequence is aborted, and the associated
process arbitrarily reactivated by clearing its PIB roadblocks. This
is because the controller either

a) is transferring data at this time, in which case it
cannot be interrupted to queue another seek, or

b) it has completed a transfer, in which case an interrupt
is pending recognition and another seek cannot be queued.

When reading a frame, the buffer FID is set to zero till the read
completes; when writing a frame to the disc, the FID of the buffer
remains unchanged. In either case, the buffer status is set core­
locked and I/O busy for the duration of the I/O.

Disc Errors

If a disc error is detected at the completion of the transfer, the
minor status from the drive is stored in the DCT; the buffer is set
non-core-locked, not-1/0-busy, the associated process PIB roadblock
is cleared just as if the I/O had completed, and error #9 is set in
the PIB error byte. This causes a virtual software trap to the DEBUG
State, and an eventual re-stacking of the request. Note that the
buffer FID is maintained if the transfer was a write, and is left as
zero if the transfer was a read.

If an illegal FID is requested {as determined by comparing against
FIDMAX in the monitor PCB), as above, except that error #8 is flagged.
The DEBUGGER will abort the process in this case.

Select Next User Routine

The Select Next User routine (SNU) is entered whenever the monitor
has completed setting up a disc transfer; has completed processing
of a disc interrupt; or is in a "wait" state due to all virtual

XV-16-7

REALITY 2.0 Ut>DATE

processes being quiescent. While the monitor is in the SNU routine,
it cycles throug!\.t~e PIB's to see if any of the processes require
activation. At ·this time also, the monitor executes the Test Interrupt
instruction, which is the only monitor-executed instruction that
allows recognition of external interrupts.

A process may be selected under the following conditions:

1) All roadblocks clear; that is, if DIOBLK/, DWAIT/,
OBYTEBLK/, IBYTEBLK/, CIOBLK/ are set, and DELAY
and DWRITE are zero.

2) External activation and -disc roadblocks clear; that
is, if ACTIVE, ctoBLK/ and DWAIT/ are set. This
would happen if the process received a BREAK-key
interrupt, or if another process sent this one a
message via the MESSAGE processor.

In either case, the monitor sets up to activate the process by
loading the PCB-FID from the PIB into R4FID (of the monitor), and
executing a Start Virtual Process instruction.

If the process had been roadblocked due to a disc input request, and
the monitor had overwritten this request with a disc write, all status
bits are as in (1) above, except that DWRITE is set. In this case,
the monitor will cause the read request to be re-stacked, by
re-entering the Frame Fault entry point.

Programming Notes

The current IOQ entry is addressed by the address register "IOQ"
(R7); the current DCT entry by the A/R "DCT" (RS); in the case of
two discs per controller, R12 addresses byte zero of the DCT block
for the current controller.

Registers DCT and IOQ always work in the same 256-byte block (X'600 -
X'6FF') therefore, the upper bytes of their address words are preset
to X1 06' (as an initial condition when cold-starting the system), and
only their low order address bytes are altered. Also, the IOQ table
starting address pointer (IOQSTART) is a half-tally.

The DCT location is from X'640' through X'67F' (see formats later);
sixteen bytes are allocated to each of four possible controllers,
(with device addresses X'l4' through X'l7' respectively), with one or
two drives per controller.

The IOQ table has a fixed ending address--the last entry is X'6FO'
through X'6FF'; the starting address is variable, depending on the

XV-16-8

REALITY 2.0 UPDATE

number of entries allowable. The table beginning pointer (IOQSTART)
is 16 bytes before the first IOQ entry:

IOQSTART=X I 700 I - i5:: (IOQMAX+l)

where IOQMAX is in the range 2 through 8 inclusive.

INSTRUCTION DESCRIPTIONS

This section lists all computer instructions and describes their
execution. A diagram representing the format is given with each
instruction description. Preceding the diagram is the name of the
instruction. Enclosed in parentheses is the assembler code for
the instruction. It should be noted that the assembler codes are
not unique. That is several of the instructions have the same code.
The assembler uses both the code and the operand attributes to
determine a particular operation. Below is an example of an
instruction description:

Branch Byte Equal to Immediate (BCE)

[0100 Ra K ~ 10 I s I
4 4 8 4 2 10

The numerical operation code bits are shown as binary numbers. Note
that the operation code need not occupy consecutive bit positions of
an instruction. In the example above the operation code occupies the
first and fifth fields of the instruction. The numbers appearing
beneath the diagram indicate the number of bit positions occupied by
the particular field. The symbols appearing in the diagram indicate
the type of information in the field. Shading indicates that the
field is not used in the instruction. The table below defines the
symbols used in the instruction diagrams.

Symbol

R

D

FID

s

Meaning

The field contains an address register number.

The field contains a displacement relative to
the contents of an address register or relative
to the beginning of a frame.

The field contains a frame identification number.
If the field is less than 24 bits wide, high
order zeroes are assumed.

The field contains a signed magnitude skip
distance (in bytes) for conditional skipping.
A skip distance of zero means no bytes are to
be skipped.

XV-16-9

Symbol

L

K

REALITY 2.0 UPDATE

Meaning

The field contains an operand length L = 0 is a
1 byte operand. L = 1 is a 2 byte operand.
L = 2 is a 4 byte operand. L = 3 is a 6 byte
operand.

The contents of the field itself is an operand.

Definitions of Terms Used in the Descriptions

Ra or Rb means the contents of the addressing register named by the Ra
or Rb field of an instruction.

C(Ra) or C(Rb) means the contents of the location referenced by the
address contained in the named addressing register.

C(Ra,Da) or C(Rb,Db) means the contents of the storage frame location
referenced by adding the D field of the instruction to the contents
of the named storage register.

When a register or part of a register is cleared, the cleared part
contains zero bits.

When the word 'load' is used in a description it means the contents
of some frame location replaces the contents of a special register
(address register or accumulator).

When the word 'store' is used in a description it means the contents
of a special register or the contents of an instruction field replaces
the contents of some frame location.

When the word 'move' is used in a description it means that the con­
tents of a frame location replaces the contents of another frame
location, or the contents of a register replaces another register.

Effective Address Computation

Storage operands are always referenced through one of the 16 address­
ing registers. An addressing register contains the byte address of
the operand. For instructions with a D field, a displacement is
added to form an effective address. When the operand is a single byte
(L field= 0), the D field of the instruction is the displacement.
When the operand is a word, double word or triple word (L = 1, 2 or 3)
the D field is doubled to form the displacement.

XV-16-10

REALITY 2.0 UPDATE

ARITHMETIC OPERATIONS

The following operations perform arithmetic on binary integers.
Negative values are represented in two's complement form. The 1 1 1

field of the instruction specifies the length of the operand in
storage. For storage to accumulator operations, triple word operands
are not allowed (L field of 3); byte and word operands are sign
extended to form a double word value before the operation is performed.
The accumulator operand is always a double word. Storage operands
must lie entirely in a single frame. The condition codes resulting
from an arithmetic operation are placed in byte 1 of the PCB. The
condition codes are defined below.

Symbolic Name Bit Position Condition Indicated

ZROBIT 5 zero result

NEGBIT 6 negative result

OVFBIT 7 arithmetic overflow

Test and Set Arithmetic Condition Flags (TST)

1010 Ra Da L 000010

4 4 8 2 6

The contents of (ra,Da) is tested and the arithmetic condition flags
(i.e., ZROBIT and NEGBIT) are updated appropriately. The instruction
may be used with a half tally, a tally, or a double tally. L i.s '00' ,
'Ol', or '10' respectively depending upon the type of operand.

Add to Accumulator (ADD)

[1010 Ra Da L 010011 J

4 4 8 2 6

The C(Ra,Da) are added algebraically to the accumulator. The sum is
placed in the accumulator. The C(Ra,Da) are unchanged.

Add to Storage (INC)

[1111 Ra Da L 10 Rb Db J
4 4 8 2 2 4 8

The C(rb,Db) are added algebraically to the C(Ra,Da). The sum is
placed in the C(Ra,Da). The C(Rb,Db) are unchanged.

XV-16-11

REALITY 2.0 UPDATE

Add a One to Storage (INC)

1010 Ra Da L 000011

4 4 8 2 6

The C(Ra,Da) are algebraically increased by 1.

Subtract from Accumulator (SUB)

1010 Ra Da L 010101

4 4 8 2 6

The C(Ra,Da) are algebraically subtracted from the accumulator. The
difference is placed into the accumulator. The C(Ra,Da) are not
changed.

Subtract from Storage (DEC)

1111 Ra Da L 11 Rb Db

4 4 8 2 2 4 8

The C(Rb,Db) are algebraically subtracted from the C(Ra,Da). The
difference replaces the C(Ra,Da). The C(Rb,Db) are not changed.

Subtract One from Storage (DEC)

1010 Ra Da L 000101

4 4 8 2 6

The C(Ra,Da} are algebraically decreased by 1.

Multiply (MUL)

1010

4

Ra

4

Da

8

L 010000

2 6

XV-16-12

The contents of the accumulator are multiplied by the C(Ra,Da). A 64 bit
product replaces the contents of the accumulator and accumulator extension.
The sign of the product is determined by the rules of algebra. The
C(Ra,Da) are not changed.

Divide (DIV)

J101oj Ra

4 4

Da

8 2 6

The sign of the accumulator is replicated into the accumulator extension
to form a 64 bit dividend. The C(Ra,Da) are divided into the dividend
to form a 32 bit quotient and a 32 bit remainder. The quotient replaces
the contents of the accumulator and the remainder replaces the contents
of the accumulator extension. The sign of the quotient is determined by
the rules of algebra. The sign of the remainder is the sign of the
dividend. The C(Ra,Da) are not changed.

Negate (NEG)

!1010 I Ra Da

4 4 8 2 6

The sign of the C(Ra,Da) is changed.

DATA TRANSMISSION OPERATIONS

The following operations are concerned with the transmission of data
between storage locations, between registers, and between registers and
storage locations.

For instructions in this group, operands in storage must be within a
single frame.

Exchange Address Registers (XRR)

I OOOlOlllf Ra Rb

8 4 4

Ra and Rb are exchanged.

Move Address Register to Address Register (MOV)

loOOlOllOl Ra Rb

8 4 4

Ra replaces Rb. Ra is not changed.

XV-17

Load Accumulator (LOAD)

I 10101 Ra Da I ti 0110001

4 4 8 2 6

The C(Ra,Da) replace the contents of the accumulator. The C(Ra,Da) are
not changed. The accumulator is sign extended to form a double word
value.

Store Accumulator (STORE)

j 10101 Ra Da I ti 0110011

4 4 8 2 6

The contents of the accumulator replaces the C(Ra,Da). The contents of
the accumulator is not changed.

Store a Zero (ZERO)

11010(Ra Da I tjooooool
4 4 8 2 6

The C(Ra,Da) are replaced with zeros.

Store a One (ONE)

J 10101 Ra Da

4 4 8 2 6

The C(Ra,Da) are replaced with a 1.

Move (MOV)

I 11111 Ra Da I t(oo! Rb Db

4 4 8 2 2 4 8

The C(Rb,Db) replace the C(Ra,Da). The C(Rb,Db) are not changed.

Store Address Register (MOV)

I u1ol Ra Da (1101(Rb

4 4 8 4 4

The detached form of Rb is stored into the C(Ra,Da). A triple word is
stored. Rb is not changed. Da is doubled to form the effective address.

XV-18

\ __

"-

REALITY 2.0 UPDATE

Load Address Register (MOV)

j 1110 I Ra I Da 1110 Rb

4 4 8 8 4

The C(Ra,Da) replace the 6 low order bytes (displacement and FID) of
Rb. The high order byte of Rb (buffer location) is set to zero. The
C(Ra,Da) are not changed. Da is doubled to form the effective address.

Hove Immediate Character (MCC)

I 0100 J Ra K

4 4 8 4 4

The byte, K, replaces the C(Ra).

Increment and Move Immediate Character (MCI)

J 0100 I Ra K

4 4 8 4 4

Ra is incremented by 1 and then the byte, K, replaces the C(Ra).

Exchange Characters (XCC)

I 0100 I Ra Rb 0111

4 4 4 4

The single byte in C(Ra) is exchanged with the single byte in C(Rb).

Move Character (MCC)

{ 0110 I Ra Rb j 1001 J

4 4 4 4

The single byte in C(Rb) replaces the byte in C(Ra). The C(Rb) are not
changed.

Move Character to Relative Character (MCC)

[1101 I Ra Da 0000 I Rb I
4 4 8 4 4

The single byte at the C(Rb) replaces the byte at the C(Ra,Da). The
C(Rb) are not changed.

XV-19

REALITY 2.0 UPDATE

Move Relative Character to Character (MCC)

Da J 0001j Rb

4 4 8 4 4

The single byte at the C(Ra,Da) replaces the byte at the C(Rb). The
C(Ra,Da) are not changed.

Increment Source Register and Move Character (MIC)

I 0110 I Ra I Rb I 0001 l
4 4 4 4

Ra is incremented by 1 and then the single byte in C(Ra) replaces the
C(Rb). The C(Ra) are not changed.

Increment Destination Register and Move Character (MCI)

I 0110 I Ra I Rb I 1010 I
4 4 4 4

Ra is incremented by 1 and then the single byte at C(Rb) replaces the
C(Ra). The C(Rh) are not changed.

Increment Both Registers and Move Character (MII)

J 0110 I Ra I Rb I 0010 I
4 4 4 4

Ra and Rb are each incremented by 1 and then the single byte at C(Ra)
replaces the C(Rb). The C(Ra) are not changed.

ADDRESS MODIFICATION OPERATIONS

The following group of instructions are used to modify the displace­
ment portion of an addressing register.

XV-20

Load Absolute Address Difference (LAD)

Da

4 4 8 4 4

This operation treats the triple word in the C(Ra,Da) as a storage
address. The absolute value of the difference between this address and
the address in Rb is computed. The result is a two byte integer. The
result replaces the contents of the low-order accumulator.

NOTE: This instruction is valid for unlinked frames only if the frame
number in C(Ra,Da) is the same as the frame number in Rb. The
instruction is valid for unequal frame numbers only if both frames
are in the same group of contiguously linked frames and the
difference between the frame numbers is less than 32.

Increment Address Register (INC)

100111 Ra

4 4

The displacement portion of Ra is incremented by one.

Add to Address Register (INC)

Da

4 4 8 4 4

The two byte integer at the C(Ra,Da) is added to the displacement portion
of Rb. The C(Ra,Da) are not changed. The Da field is doubled to form
the effective address.

Decrement Address Register (DEC)

Joo1oj Ra

4 4

The displacement in Ra is decremented by 1.

Subtract from Address Register (DEC)

I 11101 Ra Da (0100(Rb

4 4 8 4 4

The 16 bit integer at the C(Ra,Da) is subtracted from the address portion
of Rb. The C(Ra,Da) are not changed. The Da field is doubled to form
the effective address.

xv-21

Load Effective Address (SRA)

Da

4 4 8 2 2 4

An effective address is computed using the contents of Ra and the Da
field. The Da field is doubled if the L field is not zero. The resulting
effective address replaces Rb. Ra is not changed.

BIT MANIPULATING INSTRUCTIONS

The following two instructions are used to manipulate individual bits.

Set Bit On (SB)

!10001 Ra Da

4 4 8

Da is a bit displacement relative to the byte address in Ra. The most
significant bit of the byte has a bit number of zero. The least signifi­
cant bit of the addressed byte has a displ~ement of seven. The bit in
the C(Ra,Da) is set to 1.

Set Bit Off (ZB)

!01111 Ra Da

4 4 8

Da is a bit displacement relative to the byte address in Ra. The most
significant bit of the byte has a bit number of zero. The least signifi­
cant bit of the addressed byte has a displacement of seven. The bit in
the C(R.a,Da) is set to O.

CONTROL INSTRUCTIONS

Instructions that govern the flow of a program, and in particular cause
an alteration of the process of taking instructions from sequential loca­
tions, are called control instructions.

Branch instructions specify the frame and word displacement relative to
the start of the frame from which the computer is to take the next
instruction.

XV-22

Skip instructions specify the number of bytes to be skipped in order to
reach the next instruction. The skip amount is relative to the first
byte of the instruction following the skip .instruction. The skip amount
is a 10 bit field represented in sign magnitude form. For skip instruc­
tions, a skip out of the current frame causes a fault trap to location 9
of frame 16.

No Operation (NOP)

looooooool
8

This instruction causes the computer to take the next instruction in
sequence.

External Branch (ENT)

Jooo1ooooj n FID

8 4 12

This instruction causes the computer to take its next instruction from
the location specified by the FID and D fields. The D field is doubled
to determine the branch location relative to byte 1 of the frame. Only
the first 16 words of a frame can be specified as branch locations. The
first 16 words of a procedure frame normally contain entry vectors.

External Branch Indirect (ENT!)

100010010 I
8

This instruction is similar to the Branch instruction except that the D
and FID fields are contained in the two low order bytes of the
accumulator.

Branch and Stack Location (BSL)

I 00010001 l D FID

8 4 12

The location following this instruction is stacked in the return stack.
The next instruction is taken from the location specified by the FID and
D fields. The D field is doubled to determine the location relative to
byte 1 of the frame. The location is stored as a two byte FID and a
two byte displacement.

XV-23

Branch and Stack Location Indirect (BSLI)

I 00010011 I
8

This instruction is similar to Branch and Stack Location except that the
D and FID fields are contained in the two low order bytes of the accumu­
lator. The location is stored as a two byte FID and a two byte
displacement.

Return (RTN)

jooo101ooj

8

The address stored in the top of the return stack replaces the instruction
counter and the return stack is popped. This causes the next instruction
executed to be the one following the most recently executed Branch and
Stack instruction.

Branch (B)

I 000111 I s

6 10

The number of bytes specified by S are skipped.

Branch and Stack Location (BSL)

I 000110 I s
6 10

The location following this instruction is stacked in the return stack.
Then the number of bytes specified by S are skipped. The location is
stored as a two byte zero field and a two byte displacement.

Branch Character Not Equal (BCU)

Rb joo I s
4 4 4 2 10

If the byte at the C(Ra) is not equal to the byte at the C(Rb), the
number of bytes specified by S are skipped.

XV-24

Branch Character Less Than (BCL)

I 0101 J Ra s
4 4 4 2 10

If the byte at the C(Ra) is less than the byte at the C(Rb), the number of
bytes specified by S are skipped.

Branch Character Equal (BCE)

101011 Ra Rb I 101 s
4 4 4 2 10

If the byte at the C(Ra) is equal to the byte at the C(Rb), the number of
bytes specified by S are skipped.

Branch Character Less Than or Equal (BCLE)

!0101! Ra Rb j 11! s
4 4 4 2 10

If the byte at the C(Ra) is less than or equal to the byte at the C(Rb),
the number of bytes specified by S are skipped.

Branch Character Not Equal to Immediate (BCU)

j 01001 Ra K jooooooJ s
4 4 8 6 10

If the byte, K, is not equal to the byte at the C(Ra), the number of bytes
specified by S are skipped.

Branch Character Less Than Immediate (BCL)

101001 Ra K 10000011 s
4 4 8 6 10

If the byte, K, is less than or equal to the byte at the C(Ra), the
number of bytes specified by S are skipped.

XV-25

Branch Character Equal to Immediate (BCE)

I 0100 I Ra K I 000010 I s
4 4 8 6 10

If the byte, K, is equal to the byte at the C(Ra), the number of bytes
specified by S are skipped.

Branch Character Less Than or Equal to Immediate (BCLE)

!0100J Ra K I 000011 J s
4 4 8 6 10

If the byte, K, is less than or equal to the byte at the C(Ra), the
number of bytes specified by S are skipped.

Branch Relative Character Not Equal (BCU)

Da s
4 4 8 4 2 10

If the byte at the C(Ra,Da) is not equal to the byte at the C(Rb), the
number of bytes specified by S are skipped.

Branch Relative Character Less Than (BCL)

I 10111 Ra Da s
4 4 8 4 2 10

If the byte at the C(Ra,Da) is less than the byte at the C(Rb), the
number of bytes specified by S are skipped.

Branch Relative Character Equal (BCE)

110111 Ra Da s
4 4 8 4 2 10

If the byte at the C(Ra,Da) is equal to the byte at the C(Rb), the
number of bytes specified by S are skipped.

XV-26

Branch Relative Character Less Than or Equal {BCLE)

!10111 Ra Da Rb I 11 I s
4 4 8 4 2 10

If the byte at the C{Ra,Da) is less than or equal to the byte at the
C{Rb), the number of bytes specified by S are skipped.

Compare and Branch Not Equal {BU)

I 11111 Ra Da Db 1010100 I s
4 4 8 2 2 4 8 6 10

If the C{Ra,Da) are not equal to the C{Rb,Db), the number of bytes
specified by S are skipped.

Compare and Branch Less Than {BL)

111111 Ra Da Db 1010101! s
4 4 8 2 2 4 8 6 10

If the C{Ra,Da) are less than the C(Rb,Db), the number of bytes
specified by S are skipped.

Compare and Branch Equal {BE)

Da Db)0101101 s
4 4 8 2 2 4 8 6 10

If the C(Ra,Da) are equal to the C{Rb,Db), the number of bytes
by S are skipped.

Compare and Branch Less Than or Equal (BLE)

I 11111 Ra Da I LI 01 j Rb Db 10101111 s
4 4 8 2 2 4 8 6 10

specified

If the C(Ra,Da) are less than or equal to the C(Rb,Db), the number of
bytes specified by S are skipped.

XV-27

Subtract and Branch Not Equal (BDNZ)

! 11111 Ra Da Db 10111001 s
4 4 8 2 2 4 8 6 10

The C(Rb,Db) are subtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If the original C(Ra,Da) are not equal to the C(Rb,Db),
the number of bytes specified by S are skipped. The condition codes
are set.

Subtract and Branch Less Than or Equal (BDLEZ)

I 11111 Ra Da Db 10111111

4 4 8 2 2 4 8 6 10

The C(Rb,Db) are subtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If the original C(Ra,Da) are less than or equal to the
C(Ra,Da) the number of bytes specified by S are skipped. The condition
codes are set.

Subtract and Branch Less Than (BDLZ)

111111 Ra Da Db !011101! s
4 4 8 2 2 4 8 6 10

The C(Rb,Db) are subtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If the original C(Ra,Da).are less than the C(Rb,Db), the
number of bytes specified by S are skipped. The condition codes are set.

Subtract and Branch Equal (BDZ)

[11111 Ra Da Db I 011110 I s
4 4 8 2 2 4 8 6 10

The C(Rb,Db) are subtracted from the C(Ra,Da). The difference replaces
the C(Ra,Da). If the original C(Ra,Da) are equal to the C(Rb,Db), the
number of bytes specified by S are skipped. The condition codes are set.

XV-28

REALITY 2.0 UPDATE

Branch Address Equal (BE)

j 1100} Ra I Da Rb I 10 I s
4 4 8 4 2 10

The 6 byte (C(Ra,Da) are compared with the address of Rb. If the
values are equal, the number of bytes specified by S are skipped. It
is possible for two addresses to compare not equal even though they
represent the same storage location. This can occur if the FID in the
C(Ra,Da) is not the same as the FID in Rb. See Note under LAD
instruction.

Branch Address Not Equal (BU)

Da Rb I 00 I s
4 4 8 4 2 10

The 6 byte C(Ra,Da) are compared with the address of Rb. If the
values are not equal, the number.of bytes specified by S are skipped.
It is possible for two addresses to compare not equal even though they
represent the same storage location. This can occur if the FID in the
C(Ra,Da) is not the same as the FID in Rb. See Note under LAD
instruction.

Branch Bit Set (BBS)

I 1001 I Ra Da l\~i=l%~:'.I S*f~~::?}f: 00 I s I
4 4 8 4 2 10

Da is a bit displacement relative to the byte address in Ra. The most
significant bit of the addressed byte has a displacement of zero. The
least significant bit of the addressed byte has a displacement of
seven. If the bit in the C(Ra,Da) is on (bit= 1), the number of
bytes specified by S are skipped.

Branch Bit Zero (BBZ)

I 1001 I Ra Da I l~~f i1~f f 1~jf ~~~I 10 I s
4 4 8 4 2 10

Da is a bit displacement relative to the byte address in Ra. The most
significant bit of the addressed byte has a displacement of zero. The
least significant bit of the addressed byte has a displacement of
seven. If the bit in the C(Ra,Da) is off (bit= O), the number of
bytes specified by S are skipped.

XV-29

REALITY 2.0 UPDATE

LOGICAL OPERATIONS

The following group of instructions perform logical operations between
a byte in storage and an inunediate operand. The logical operations
are AND, OR (sometimes called "inclusive or") and XOR ("exclusive or").

When two bytes are combined by an AND, they are matched bit for bit.
If the same bit position in each byte contains a 1, the result is a 1.
If a position of either byte (or both bytes) contains a 0, the result
is 0.

The following is an example of a logical AND operation:

10110001
00110110
00110000 resulting AND

When two bytes are combined by an OR they are matched bit for bit. If
the same bit position in each byte contains a O, the result is a O. If
a position of either byte (or both bytes) contain a 1, the result is
a 1. The following is an example of logical OR:

11011000
00010001
11011001 resulting OR

When two bytes are combined by an XOR they are matched bit for bit. lf
the corresponding bit positions in each byte are the same (both 0 or
both 1) the result is O. If the same bit position in each byte is
not the same (either contains a 1 while the other contains a 0) the
result is 1.

The following is an example of a logical XOR operation.

10011100
00011011
10000111 resulting XOR

AND Character (AND)

I 0100 j Ra I K

4 4 8 4 4

The byte in the C(Ra) and K are logically AND'ed. The result replaces
the C(Ra).

XV-30

\
·~

REALITY 2.0 UPDATE

OR Character (OR)

I 0100 I Ra I K

4 4 8 4 4

The byte in the C(Ra) and K are logically OR'ed. The result replaces
the C(Ra).

Exclusive OR Character (XOR)

[0100 I Ra K

4 4 8 4 4

The byte in the C(Ra) and K are logically exclusive OR'ed. The result
replaces the C(Ra).

SHIFT OPERATION

The following instruction allows a byte to be shifted one bit to the
right.

Shift Character Right (SHIFT)

0100 Ra K 1111 ~~i~~~~~~
4 4 8 4 4

K is shifted right one bit position. A zero bit is inserted on the
left and the bit shifted off the right is lost. The result replaces
the C(Ra). The value K in the instruction does not change.

STRING OPERATIONS

The following instructions operate on strings. A string is a logically
contiguous group of bytes. Strings may extend across frame boundaries
provided that the frames are linked.

Increment and Move String Under Count Control (MIIT)

I 0110 I Ra I Rb] 0100 I
4 4 4 4

The contents of the lower half of the accumulator (TO) is read into
internal hardware registers. Ra and Rb are each incremented by one
and then the byte at c(Ra) replaces the byte at c{Rb). Next the
internal hardware registers are decremented. If the resulting value
is not zero the increment and move is repeated. If, during the

XV-31

REALITY 2.0 UPDATE

execution of the instruction, an internal interrupt occurs or if the
move crosses the frame boundary of a linked frame, the current con­
tents of the internal hardware registers are stored in TO. For this
reason the contents of TO at the conclusion of the move are indeter­
minable. If TO is initially zero no operation is performed.

Increment and Move String Under Address Control (MIIR)

I 0110 I Ra l Rb l 0011

4 4 4 4

Ra and Rb are each incremented by one and then the byte at C(Ra)
replaces the byte at C(Rb). Next Ra is compared with the contents of
address register 15. If the values are not equal the operation is
repeated. If Ra is initially equal to the contents of address register
no operation is performed.

Increment and Move String Under Match Control (MIID)

I 0110 I Ra I Rb I 0000 I Match I
4 4 4 4 8

Ra and Rb are each incremented by one and then the byte at C(Ra)
replaces the byte at C(Rb). The byte that moved is then tested for a
match with one of 7 possible values as defined by the match field. If
the match is not successful, the operation is repeated.

The matching is performed as follows. For each of the bit positions
one through seven that is a 1, a match test is performed. If bit posi­
tion zero is a 1, the move stops on any equal match. If bit position
zero is a 0, the move stops if none of the bytes tested match. The
table below shows the test performed for each bit in the mask.

Bit in Match Field

0
1
2
3
4
5
6
7

Test Performed

1 = Stop on equal 0 = Stop if unequal
Compare with Hexadecimal "FF"
Compare with Hexadecimal "FE"
Compare with Hexadecimal "FD"
Compare with Hexadecimal "FC"
Compare with Byte at 003 in PCB
Compare with Byte at 004 in PCB
Compare with Byte at 005 in PCB

Note: byte 003 of the PCB may not contain a hexadecimal 00 or 01.

XV-32

Increment and Scan String Under Match Co~trol (SCD)

I 0110 I Match

4 4 4 4 8

Ra is incremented by one and then the byte at C(Ra) is tested for a match
as defined by the match field. If the match is not successful, the opera­
tion is repeated. See the description of the Increment and Move String
Under Match Control instruction for the matching rules.

CONVERSION OPERATIONS

Conversion operations are provided to convert decimal integers represented
by ASCII characters into binary values, and to convert hexadecimal integers
into binary values, and binary values to hexadecimal.

Decimal to Binary (MDB)

j 1101! Ra Da j L joo j Rh

4 4 8 2 2 4

The C(Ra,Da) are multiplied by ten. The binary value of the ASCII digit
in the C(Rb) is added to the product, and the result replaces the
C(Ra,Da). This instruction is not defined for a single byte at C(Ra,Da).
(A value of L = 0 represents a different operation.)

If the C(Ra,Da) are initially zero, repeated use of this instruction (with
incrementing of Rb) will convert an ASCII string representing a decimal
value into a binary integer.

Hexadecimal to Binary (MXB)

!11011 Ra Da l Llrnl Rb

4 4 8 2 2 4

The C(Ra,Da) are multiplied by sixteen. The binary value of the ASCII
hexadecimal digit in the C(Rb) is added to the product and the result
replaces the C(Ra,Da). If the C(Ra,Da) are initially set equal to zero,
repeated use of this instruction will convert an ASCII string representing
a hexadecimal value into a binary integer.

XV-33

Binary to Hexadecimal (MBX)

j 1101! Ra Da

4 4 8 2 2 4

The binary integer at the C(Ra,Da) is converted into an ASCII string
starting at the C(Rb) +l. Bits 28 through 31 of the accumulator contain
a count of the maximum number of ASCII bytes to be generated. If bit 24
of the accumulator is a zero, the leading zeros of the hexadecimal string
are suppressed and the C(Rb) +l will contain the most significant non­
zero hexadecimal digit. If bit 24 of the accumulator is a 1, zero
suppression will not take place. The contents of the accumulator is
unpredictable after this instruction is executed.

INPUT OUTPUT OPERATIONS

The input output operations provide for communication with the terminal
associated with a process and for input and output with peripheral
devices.

Input a Byte (IB)

jo1ooj Ra

4 4

K

8 4 4

The K field specifies a 3 bit function code and a 5 bit device address.
The byte from the selected device replaces the C(Ra). This instruction
can be executed only in monitor mode.

Output a Byte (OB)

[0100J Ra K

4 4 8 4 4

The K field specifies a 3 bit function code and a 5 bit device address.
The single byte in the C(Ra) is transmitted to the selected device. This
instruction can be executed only in monitor mode.

Read Input Queue (READ)

4 4 4 4

XJT-3-4

'·-

REALITY 2.0 UPDATE

The next character from the terminal input queue replaces the C(Ra).
If the input queue is empty the process is suspended until a character
is received from the terminal. Characters transmitted by the terminal
are automatically queued in the PIB for the terminal.

Write to Output Queue (WRITE)

0110 Ra 0110

4 4 4 4

The byte in the C(Ra) is placed into the terminal output queue. If the
queue is full, the process is suspended until the terminal has printed
all but four characters from the queue. If there are any characters in
the input queue before this instruction is executed, they are lost.

MONITOR OPERATIONS

The following operations are used to communicate with the monitor.

Monitor Call (MCAL)

K I 0111 I D

4 4 8 4 4

This operation generates an interrupt into the monitor. The four bits
of the D field are doubled to determine the location relative to byte 1
of the monitor frame for transfer of control.

The address contained in Ra, the address of the PCB of the current
process, and the K fiel~ from this instruction are all placed into the
PIB for the current process, and then control is passed to the monitor.

Resume Virtual Process (RVP)

I 00001010 I
8

This operation returns control to a process that has previously been
interrupted. The status of the interrupted process is restored and
execution of the process resumes from the point of the interrupt. This
instruction can be executed only in monitor mode.

XV-35

Start Virtual Process (SVP)

!00001001 J

8

REALITY 2.0 UPDATE

The FID portion of register 4 (of the monitor) is treated as the
location of the PCB for a dependent process. The buffer map is
searched for the PCB frame. If the PCB is present, registers 0 and 1
of the PCB are attached and execution of the process begins. If the
frame is not present, the referenced FID is placed into the PIB and
the monitor is reentered at the absent frame entry point (location 1).
This instruction can be executed only in monitor mode.

HALT

loooo1oool
8

The CPU is halted; this instruction can be executed only in monitor
mode.

Test Interrupts

looooooo1 j
8

This instruction has meaning only in the monitor mode; it is a NOP in
the virtual mode. Internal and External Interrupts are tested for,
and, if any are pending, a fault trap to the appropriate monitor
location is taken.

Halt and Display (HLD)

J 0100J Ra

4 4 8 4 2 2

Halts the CPU and gates the eight-bit literal addressed by register
RA to the A bus where it can be displayed in the eight least signifi­
cant indicator lamps of the system panel by depressing the Data select
switch. This instruction is restricted to Monitor level code.

Enter Console Command Switches (ECS)

I 0100 1 Ra ~rmmimnrnn~ 1010 ~itfi.i 11 1 . . t ... ~1~~.; J. ~ ·~ 1 ~ .
4 4 8 4 2 2

The status of the eight low-order console command switches is placed
in the eight bit byte addressed by register RA. If the switch is on,
the corresponding bit in the byte addressed by register RA is set to

XV-36

REALITY 2.0 UPDATE

one. This instruction is restricted to Monitor level code. If a
switch is not set, the corresponding bit will be set to zero.

4 4 8 4 2 2

The status of the four console sense switches is placed in the four
most significant bits of the eight bit byte addressed by register RA.
The status of a switch is one when the switch is set. The four low
order bits are set to one. This instruction is restricted to Monitor
level code.

INSTRUCTION SUMMARY

The following diagrams show the formats for each of the instructions.
The diagrams are listed in order of increasing primary operation code
(first four bits). The operation code is shown as a binary value.
The second and third portions of the operation code (if they appear)
are labeled 02 and 03 respectively.

I 0000 I 02

4 4

02
0000
0001
1000
1010
1011
1100
1101

INSTRUCTION
No Operation
Test Interrupts
Halt the CPU
Resume Virtual Process
Start Virtual Process
Branch to Absolute Address
Branch and Stack Location, to Absolute Address

100011 02 ·1.
4 4

02 INSTRUCTION
0010 Branch Indirect (External)
0011 Branch and Stack Location Indirect (External)
0100 Return
0101 Return without Trace

100011 02 D FID

4 4 4 12

02 INSTRUCTION
0000 Branch (External)
0001 Branch and Stack Location (External)

XV-17

I 0001 ! 02 I Ra l Rb I
4 4 4 4

02 INSTRUCTION

REALITY 2.0 UPDATE

0110 Move Address Register to Address Register
0111 Exchange Address Registers

I 0001 I 02 s
4 2 10

Q1 INSTRUCTION
10 Branch and Stack Location (Internal)
11 Branch (Internal)

J 0010 l Ra

4 4

INSTRUCTION
Decrement Address Register

I 0011 I Ra I
INSTRUCTION
Increment Address Register

I 0100 I Ra K 02 s
4 4 8 6 10

INSTRUCTION 02
000000
000001
000010
000011

Branch Character Not Equal to Immediate
Branch Character Less Than Immediate
Branch Character Equal to Immediate
Branch Character Less Than or Equal to Immediate

I 0100 I Ra K 02 r::;:,,,;,,~,,~~=~=~1;1~~11
~:~:~:~::~:f ::;:::::::::::::::

4 4 8 4 4

02 INSTRUCTION
0010 Move Imm.ediate Character
0100 Increment and Store Immediate Character
0110 Flag the Address Register
0000 Output Byte
1001 Input Byte
1100 Or
1101 Exclusive Or
1110 And
1111 Shift

XV-38

REALITY 2.0 UPDATE

l 0100 I Ra I K I 02 I D l
4 4 8 4 4

.Q1. INSTRUCTION
0111 Monitor Call

XV-38-1

THIS PAGE INTENTIONALLY LEFT BLANK

I 0101 I Ra Rb 102 I s
4 4 4 2 10

02 INSTRUCTION
00 Branch Character Not Equal
01 Branch Character Less Than
10 Branch Character Equal
11 Branch Character Less Than or Equal

I 0110 I Ra

4 4

02
0001
0010
0011
0100
0101
0111
1001
1010
1101

Rb 02

4 4

INSTRUCTION
Increment Source Register and Move Character
Increment Both Registers and Move Character
Increment and Move String Under Address Control
Increment and Move String Under Count Control
Read Terminal Queue
Exchange Bytes
Move Byte
Increment Destination Register and Move Character
Write Terminal Queue

l 01101 Ra Rb 02 Match

4

02
0000
1000

4

Jo111j Ra

4 4

4 4 8

INSTRUCTION
Increment and Move String Under Match Control
Increment and Scan String Under Match Control

Da

8

INSTRUCTION
Set Bit Off

XV-39

! 1000 I Ra Da

4 4 8

INSTRUCTION
Set Bit On

I 10011 Ra Da ~!!11~[11~[111° 2 I s
4 4 8 4 2 10

02 INSTRUCTION
00 Branch Bit On
01 Branch Bit Off

! 10101 Ra Da I LI 02

4 4 8 2 6

02 INSTRUCTION
000000 Store a Zero
000001 Store a One
000011 Add One to Storage
000101 Subtract One from Storage
001000 Negate Storage
010000 Multiply
010001 Divide
010011 Add to Accumulator
010101 Subtract from Accumulator
011000 Load Accumulator
011001 Store Accumulator

I 10111 Ra Da Rb jo2 j s
4 4 8 4 2 10

02 INSTRUCTION
00 Branch Relative Character Not Equal
01 Branch Relative Character Less Than
10 Branch Relative Character Equal
11 Branch Relative Character Less Than or Equal

XV-40

\
"--

!11001 Ra Da s
4 4 8 4 2 10

02 INSTRUCTION
00 Branch Addresses Equal
10 Branch Addresses Not Equal

11101 j Ra Da I Ljo2j Rb

4 4 8 2 2 4

02 INSTRUCTION
00 Move Byte to Relative Byte (L equal to zero)
00 Decimal to Binary (L not equal to zero)
01 Move Offset Byte to Byte
10 Hexadecimal to Binary
11 Binary to Hexadecimal

111101 Ra Da 02 Rb

4 4 8 4 4

02 INSTRUCTION
0011 Load Effective Address (half word)
0100 Subtract from Address Register
0101 Add to Address Register
0111 Load Effective Address (full word)
1011 Load Effective Address (double word)
1100 Load Absolute Address Difference
1101 Store Address Register
1110 Load Address Register
1111 Load Effective Address (triple word)

j1111 j Ra Da Db

4 4 8 2 2 4 8

02 INSTRUCTION
00 Move Storage to Storage
10 Add Storage to Storage
11 Subtract Storage from Storage

XV-41

!1111 Ra Da L 02 Rb Da 03 s
4 4 8 2 2 4 8 6 10

02 03 INSTRUCTION
01 010100 Compare and Branch Not Equal
01 010101 Compare and Branch Less Than
01 010110 Compare and Branch Equal
01 010111 Compare and Branch Less Than or Equal
01 011100 Subtract and Branch Not Equal
01 011111 Subtract and Branch Less Than Equal or Equal
01 011101 Subtract and Branch Less Than Equal
01 011110 Subtract and Branch Equal

XV-42

CORE MAP

' Core Address

0000

0100

0200

0300

0400

0600

0700

0800

OAOO

ocoo

OEOO

Monitor PCB

Bootstrap software

Monitor address registers and
Return stack area

Buffer Status table

Buffer Fid (low-order) table

Buffer Links (Queue)

Monitor Software

Hardware memory-protect to this
point

----PIB's (connnunication device
addresses X'l8' and X'l9')

14--- PIB' s (communication device

XV-43

addresses X'lA' and X'lB')

Software memory-protect to this point

Start of available core area

Order
Number

0

1

2

3

4

5

6

7

Peripheral I/O: Device Orders

Operation

Data Transfer

Status/Function

Block Input/INT

Arm Interrupt

Disconnect

Disarm Interrupt

Block Output/INT

Unassigned

Description

A data byte will be transferred between
the addressed device and the processor.
Direction of the transfer will depend on
whether the instruction is an input or an
output.

A status byte will be input from the
addressed device or a function byte will be
output to the addressed device, depending
on whether the instruction is an input or
an output.

The addressed device will start a concur­
rent block input to memory and will
generate an external interrupt at the con­
clusion of the transfer unless the interrupt
has been subsequently disarmed. This order
should be sentr by an output instruction.

Permits the addressed device to make an
external interrupt request upon the satis­
faction of an interrupt condition. This
order should be sent by an output instruction.

The block transfer in progress by the addres­
sed device is stop ed and end of block
interrupt will occur unless the interrupt
has been disarmed. This order should be
sent by an output instruction.

Inhibits the addressed device from marking
an external interrupt request under any
condition. This order should be sent by
an output instruction.

The addressed device will start a concur­
rent block output from memory and will
generate an external interrupt at the con­
clusion of the transfer unless the interrupt
has been subsequently disarmed. This order
should be sent by an output instruction.

This order, if assigned, may perform any
required function as interpreted by the
individual interface. If a byte transfer
is desired the order may be sent by an
input or an output instruction.

XV-44

Section XVI

REALITY ASSEMBLY LANGUAGE (REAL)

INTRODUCTION

The Reality Assembler (REAL) translates source statements into Reality CPU
machine language equivalent. The source file, or "mode" is an item in any
file defined on the database. The mode is assembled in place; that is, at
the conclusion of the assembly process, the item contains both the original
source statements, as well as the generated object code. The same mode can
then be used to generate a formatted listing (using the MLIST verb) or can
be loaded for execution (using the MLOAD verb).

Source Language

The source language accepted by the REAL assembler is a sequence of
symbolic statements, one statement per source-item line. Each statement
consists of a label field, an operation (or op-code) field, an operand
field, and a comment field.

Label Field

The label field begins in column one of the source statement, and is termi­
nated by the first blank or comma; there is no limit on its length. If the
character "*" appears in the first column, the entire statement is treated
as a comment, and is ignored by the assembler. The reserved characters
* + - ' = are the only ones that may not appear in the label field. An
entry in this field is optional for all except a few opcodes. A label may
not begin with a numeric character.

Operation Field

The operation field begins following the label field and consists of a legal
REAL op-code. Op-codes are pre-defined in the permanent op-code symbol file
OSYM and consist of one or more alpha characters. Op-codes may be nmemonics
for; Reality machine language instruction (eg. B for BRANCH) macros, which
may assemble into several Reality machine language instructions (eg. MBD
for MOVE BINARY to DECIMAL), or assembler pseudo-ops (eg. ORG for ORIGIN).
Additionally, users may define new mnemonics or "macros" which expand into
several Reality machine instructions. This may be done by creating new
entries in the OSYM file.

XVI-1

Operand Field

Operand field entries are optional, and vary in number according to the
needs of the associated REAL op-code. Entries are separated by commas and
cannot contain embedded blanks (except for character string literals
enclosed by single quotes). The operand field is terminated by the first
blank encountered. The characters + - ' * have special meaning in this
field.

Operand Field Expressions

Entries in the operand field may be a symbol, or a constant. A symbol is
a string of characters that is either defined by a single label-field entry
in the mode, or is an entry in the pre-defined pertnanent symbol file (PSYM).
A constant may be one of th~ following forms:

*
n

X'h'

C'text'

Defines current value of the assembler location counter.

(n decimal) - A decimal constant.

(h hexadecimal) - A hexadecimal constant.

Character string; any characters, including blanks and
commas, may appear as part of "text"; a sequence of two
single quotes (' ') is usr!d to represent one single quote
in the text.

Arithmetic operators (+,-) may be used to combine two or more constants.

Comment Field

Any commentary information preceded by a blank may follow the operand field
entries,

"Argument" Field

For the purposes of the remainder of this documentation, the label field
entry, op-code field entry, and operand field entries will be referred to
as "argument field" (AF) O, 1, 2, etc.

Calling the Assembler

The assembler is called by the statement:

AS file-name item-name (Q)

which will assemble the item in the file specified. The optional specifi­
cation "(Q)" specifies that error lines are not to be listed at the end
of the assembly.

XVI-2

As the assembler processes, it will output an asterisk (*) as every ten
source statements are assembled. At the end of pass-1 a new line is
started and an asterisk is printed for each ten statements reassembled.

Listing Output

The listing processor may be called by the statement:

MLIST file-name item-name (options)

Options are separated by commas:

P Routes output to the line-printer.

M Prints macro-expansions of source statements.

E Prints error lines only; also suppresses the pagination, and
enters EDIT at the end of the listing.

Z Inhibits EDIT entry when E option is specified.

n-m Restricts listing to line numbers n through m·inclusive.

The listing is output with a statement number, location counter, object
code and source code with the label, op-code, operand and comment fields
aligned. A page heading is output at the top of each new page.

Errors, if any, appear in the location counter/object code area; macro
expansions appear as source code if not suppressed, with the operation
codes prefixed by a plus sign (+).

Loading

The assembled mode may be loaded into the frame specified by the FRAME
op-code by using the statement:

MLOAD file-name item-name

If the load is successful, the message:

[216] 'item-name' LOADED ON FRAME # n
size= m (DEC), h (HEX)

is returned.

XVI-3

~
'i'
~

:ML!~I ~Y~Ut::N-r!Lt: Al:S~L ,1-~,,MJ r)

MODE: ABSL

001

002
003

001 7FF0002F

001 lC04
004

003 1C3C
005

005 1080
006
007
008
009 0.07 100031
010 OOA 0000002F
011 OOE 00000022
012
013 012 0000

014 80FFFFC
014
015
016 018 E062E4
017 OlB 111006
018 OlE 07

019

OlF 54415045
023 20464F52
027 40415420
028 4552524F
02F 52
030 FDFF

032 A05B58
035 64B4

020 037 112000
021 03A 08
022

03B FOCl 71E7
023

03F lCAC
024
025
EOF:

(/

FR.bME 047
+FRM: 047
+ORG 1

PAGE 1

*SYSTEM tlODE
B !ABSD

!ABSD
!ABSL
!ABSL
!SE~T
!SE~T
14,TAPEIO
3,WSPACES

DETAOi
GETWS
•
LASSO
ABSLFID
OFlFID
XUSER
PIBADDR

*

+B:
B
+B:
B
+B:
DEFM
DEFM

ENT
DTLY
DTLY
DEFT
ADDR

ABSD
47
34
15,USER
01 X"'80FFFFFC"'

* ERROR ENTRY POINT *
TPERR t'OV JSBAG,IS

BSL CRLFPRINT

17:26 26 OCT 1973

0

1

2

Fl D OF THIS PROGRAI+£
FID OF OFl PROGR.Al+1E
TALLY USER RELATIVE TO REGISTER 15

TEXT X"'07"'1 C"'TAPE FORMAT ERROR"'.X"'FDFF"'

*

Mil IS,OB,OBSIZE
+LOADT OBSIZE
-+MI ITRR IS ,OB
BSL WRTLIN
TEXT X"'08"'
DEC RSCWA,4
+DEC RSCWA,=T4
B NXTAB
+B: NXTAB

COPY TAPE DATA & PRINT

BUM-UP I-ERE
BACKUP STACK

Ca-.JTI NUE TO NEXT TAPE SEGMENT

**

\._

The mode will not load correctly if its size exceeds 512 bytes, or if a
FRAME statement is not the first statement assembled in the mode. In
either case, a message will be returned indicating the error.

Note: Ml.DAD can not load itself. It must be loaded by the XLOAD verb by
the following message:

XLOAD SYSTEM-MODES LOADER

TCL-II Cross Reference Capability

Cross-Index Verb

The TCL-II CROSS-INDEX Verb first clears the CSYM file then updates it by
item with the external references of that item. The CROSS-INDEX Verb
requires the following format:

CROSS-INDEX FILE-NAtvE: ITEM-LIST (OPTIONS)

EXAMPLE--

CROSS-INDEX MODES :c

Would cross index all items of the modes file. An example of what a por­
tion of the CSYM file might look like after using the CROSS-INDEX Verb
follows. Notice that the item called DLOAD has one external reference to
LISTFLAG, two external references to RMBIT, etc.

DLOAD
001 LISTFLAG 01 RMBIT 02
002 CH8 01
003 NNCF 02
004 CTRl 02 CTR2 01 MODULO 07 OBSIZE 01 RSCWA 01 SEPAR 10 T0 01 T4 03
005 BASE 08 00 01 OVRFLW 01 Rl5FID 01 RECORD 05
006 BMSBEG 01 CSBEG 01 ISBEG 02 OBBEG 01 S2 02
007 CS 06 IS 21 OB 05 R14 03 RlS 06 TS 01
008 ABSL 02 CRLFPRINT 01 CVDRlS 03 CVTNIS 02 GETBLK 01 LINK 01 MBDNSUB 03

UPDITM 01 WRTLIN 02
009 AM 02
010

WRAPUP-III
001 INHIBIT 04 RMBIT 04 S860 03 S861 06
002
003
004 CTR0 13 CTRl 03 El'IOD 01 t+'OD 01 MODULO 01 OBSIZE 02 T0 02 T6 03 USER 04
005 BASE 03 EBASE 03 MBASE 01
006 BMSBEG 03 OBBEG 02 OBEND 06 SR4 02 SYSRl 02
007 AF 08 BMS 04 IR 25 OB 30 Rl4 04 RlS 03 TS 14
008 DATE 01 GBMS 01 RETIX 02 TIME 01 WRITOB 01 WRTLIN 08
009 AM 05 Mv\00 01 SM 04
010

XVI-5

DLMP-I
fHH GBIT 06
002
003 NNCF 81 NPCF 81
004 Cl 08 C2 .tt2 Cf> '/J7 C7 RIG REJCTR Ill HI 211 Tit Ill
005 03 07 04 05 FRMP Sl LINQUE 07 RECORD 217
006 !REND 06 Sl 03 S3 08
007 IR 18 IS 15 OB 17 Rl5 14 IS SS
008 CVTNIS 04 DUMP-II 01 MBDNSUB 01 MBOSUB 07 MD99 01 MD999 01 RDREC 04

WRTLIN '/JS
009 LF 02
010

PROC-1
001 PQFLG 04 581 02 582 01 SBIT 07 STKFLG '/Jl
kl02 PRMPC 01
003
004 Cl 01 T0 02
2105
gJflG BM5BEG n IBBEG 01 !BEND n l5BEG 01 OSBEG fll PBUFBEG 04 PQBEG 02

PQCUR 02 PQEND 03 SR35 01 SR4 01 02
007 CS 02 TB 07 IR 81 IS 11 OB 05 OS 01 Rl4 12 TS 04 UPD 12
008 CVTHIR 01 GETIBX 01 MD18 01 MP995 01 MD999 01 PROC-II 04 PROC-III 04

WRAPUP-I Rll WRITOB 01 WRTLIN
009 AM 12 CR 01 SM 02 VM 01
,, lfJ

XREF Verb

The TCL-II XREF Verb uses the CSYM file as updated by the Cross-Index
Verb for input. XREF then updates the XSY}1 file in the opposite order of
the CSYH file. The XREF Verb requires the following format:

XREF FILE-NAME ITEM-LIST (OPTIONS)

EXAMPLE--

XREF CSYM ::

Would cross reference all items of the CSYM file. An example of what a
portion of the XSYM file might look like after using the XR.EF Verb fol­
lows. Notice that the item called T4 was externally referenced by
DLOAD, DUMP-I, and SYSTEM-SUBS-II.

MBIT
21'/Jl ASTAT

GEN
RlfH ASTAT

CVDR15
1101 DLOAD

XVI-6

_

I
'---

LFDLY
001 SYSTEM-SUBS-II

PAGSIZE
001 SYSTEM-SUBS-II

T4
001 DLOAD DLMP-I SYSTEM-SUBS-II

05
001 SYSTEM-SUBS-II

CTR2
001 DLOAD AIDl

UPDITM
001 XREF !LOAD T-LOAD DLOAD EDIT-IV/P&A

Cl
001 XREF !LOAD ASTAT T-LOAD DUMP-I PROC-I EDIT-IV/P&A EDIT-I

SR13
0'111 EDIT-I

SR?
001 EDIT-I

MBASE
001 XREF WRAPUP-111 TI WII

DBl
001 WII

BlS
001 tv10NITOR/2950,10M8

R7WA
001 DISK-DIAGNOSTIC/2314

TS

The sort verb may be used after performing X-REF to produce a sorted out­
put.

EXAMPLE--

SORT XSYM REFERENCES NONCOL (P)

Would produce an alphabetical non-columnar listing on the line printer.
References and noncol are attribute definitions in the XSYM dictionary.

The following is an example of a partial listing.

XVI-7

PAGE 1 16:41 2~ DEC 1973

XSYM : ABIT
REFERENCES EDIT-I

XSYM : ABSL
REFERENCES DLOAD

XSYM : ACF
REFERENCES WII

XSYM : ADDLAB
REFERENCES ASTAT

XSYM : AF
REFERENCES ASTAT

XSYM : AFBEG
REFERENCES ASTAT

XSYM : AFEND
REFERENCES ASTAT

XSYM : ALIGN
REFERENCES ASTAT

XSYM : AM
REFERENCES XREF

DLOAD
AIDl

XREF Proc

WRAP-III

EDIT-I

ASTAT
WRAPUP-III
TI

EDIT-I

T-LOAD
PROC-I
WII

The XREF Proc will perform the following functions:

1. Clear the XSYM file.

2. Use the XREF verb to update the XSYM file.

3. Alphabetically sort the XSYM file and output the results to
either the user's terminal or to the system line printer.

The XREF Proc requires the following format:

XREF FILE-NAME ITEM-LIST (OPTIONS)

EXAMPLE--

XREF CSYM :c (P)

would cross reference all items of the CSYM file and would list the
results in alphabetical order on the line printer.

XVI-8

The following is an example of a partial listing. ,_

11:2fJ 2fJ DEC 1973

XSYM •••••• REFERENCES ••••••••

ABIT EDIT-I

ABSL DLOAD

ACF WI I

ADD LAB ASTAT

AF ASTAT
WRAPUP-III
EDIT-I

AFBEG ASTAT
EDIT-I

A FEND ASTAT

ALIGN ASTAT

AM XREF
ASTAT
T-LOAD
DLOAD
WRAPUP-III
PROC-I
AIDl
TI
WI I

ATTOVF WII

815 ~ITOR/2950,10MB

84 t-nNITOR/2950,10MB

BASE XREF
I LOAD
ASTAT
T-LOAD
DLOAD
WRAPUP-III
TI
WI!

_

XVI-9

Operand Conventions

In defining the REAL op-codes the following set of symbolic operands are
used.

a ABS

b BIT

c CHARACTER

d DOUBLE-WORD

h HALF-WORD

1 LABEL

m MODE ID

An absolute core-address reference

A bit addressed relatively via a base address
register and a bit displacement.

A byte addressed relatively via a base address
register and an 8-bit byte displacement.

A 4-byte field addressed relatively via a base
register and a 16-bit word displacement.

A 1-byte field addressed relatively via a base
register and an 8-bit byte displacement.

A label definition local to the current
program frame.

A 16-bit modal identification, comprised of a
4-bit entry point and a 12-bit frame number.
The implied location is in the frame defined
by the low-order 12-bits of "m", offset from
the frame-beginning by twice the entry-point
value.

n LITERAL A literal or immediate value. The size of the
assembled literal or value is dependent on
the instruction in which the "n" is used.

r ADDRESS-REGISTER One of the sixteen Reality address registers
(A/R's).

s STORAGE-REGISTER A 6-byte field (usually a storage-register,
or S/R) relatively addressed via a base
register and a 16-bit word displacement.

t WORD A 2-byte field relatively addressed via a
base register and a 16-bit word displacement.

XVI-10

\ ..

_

\,_

Note: The parenthesized footnotes in the following section are defined
at the end of the section.

Character Instructions (Moves)

MCC

MCI

MCI

MIC

n,c
n,r
n,s
c,c
c,r
c,s
r,c
r,r
r,s
s,c
s,r
s,s

n,r
n,s
c,r
c,s
r,r
r,s
s,r
s,s

n,r,n
n,r,h
n,r,t
n,r,d

r,c
r,r
r,s
s,c
s,r
s,s

(1)

(1)

(1)

(1)
(2)
(3)
(2)

(1)

(1)

(3)
(2)

(4)
(4)
(4)
(4)

(1)
(2)
(3)
(2)

Mov.e Character to Character; the byte
(character) defined or addressed by
operand-1 is moved to the location addressed
by operand-2.

Move Character to Incrementing character;
the byte (character) pointer operand-2 is
incremented by one and the byte defined
or addressed by operand-1 is moved to the·
location then addressed by operand-2.

Move Character Incrementing; the byte
(character) pointer operand-2 is
incremented by one and the byte defined
by operand-! is moved to the location
then addressed by operand-2. This
process continues until the number of
bytes specified by operand-3 have been
moved. At least one byte is always
moved and if initially operand-3 = O,
65,536 bytes will be moved.

Move Incrementing character to Character;
the byte (character) pointer operand-! is
incremented by one and the byte then
addressed by operand-1 is moved to the
location addressed by operand-2.

XVI-11

MII

MI!

MII

MIID

r,r
r,s
s,r
s,s

r,r,n
r,r,h
r,r,t
r,r,d

r,r,r
r,r,s

r,r,n

(1)
(3)
(2)

(5)
(5)
(5)
(5)

(3)
(3)

Move Incrementing·character to Incrementing
character; both byte pointers are incremented
by one and the byte then addressed by
operand-1 is moved to the location addressed
by operand-2.

Mo~e Incrementing character to Incrementing
character; both byte pointers are incremented
by one and the byte addressed by operand-1
is. moved to the location addressed by
operand-2. This process is repeated until
the number of bytes specified by n,h,t or d
have been moved. h,t or d are not destroyed
and if initially zero, no bytes are moved,

Move Incrementing character to Incrementing
character; both addressing-registers
operand-1 and operand-2 are incremented by
one and the byte then addressed by operand-1
is moved to the location addressed by
operand-2. This process is repeated until
the first addressing-register operand-1
matches the byte-pointer operand-3. If
operand-1 = operand-3 on entry no movement
takes pl~<'e.

Both addressing-registers are incremented by
one, and the byte addressed by addressing­
register-1 is moved to the location
addressed by addressing-register-2. The byte
moved is then tested under the following
masking condition where "n" is an 8-bit
mask field:

Bit

0
1
2
3
4
5
6
7

Meaning

True/False
Match on: X'FF'

X'FE'
X'FD'
X'FC'
sco
SCl
SC2

Bit 0 is a true/false flag; is set, the
move stops on a "match" condition (as
defined by bits 1 through 7); if zero, the
move stops on a "non-match". Bits 1 through
7 represent one character each; if any bit
is set, the byte moved is compared to the

XVI-12

~ ..

SCD r,n

MIIT r,r

MIIR r,r

character represented by the bit for a
match. Bits 1 through 4 represent the
special system delimiters SM (X'FF),
AM (X'FE'), VM (X'FD'), and SVM (X'FC')
respectively. Bits 5, 6, and 7 represent
the contents of the scan character-registers
SCO, SCl, and SC2 respectively. (Thus only
three of the delimiters are variable.
NOTE: Character-register SCO may not con­
tain the hex patterns X'OO' or X'Ol'.

Scan characters to delimiter(s). The
addressing-register is incremented till
a "match" condition (see MIID instruction)
as defined by the 8-bit mask field "n"
is found.

This instruction assumes that the lower
half of the accumulator (TO) has an absolute
byte count (up to 65535) defining the
number of bytes to be moved (see MII op­
code). If TO is zero when the instruction
is exec~ted, no operation is performed. ·
Otherwise, the addressing-registers are
incremented by one, and the byte addressed
by addre~sing-register-1 is moved to the
location addressed by addressing-register-2,
and TO is decremented by one. This
sequence is repeated till TO reaches zero.

This instruction assumes that address register
RlS is setup to a location equal to or greater
than that of addressing-register-1. (See MII
op-code). If the addresses of addressing­
register-1 and register Rl5 are equal, no
operation is performed. Otherwise, the
addressing-registers are incremented by one,
and the byte addressed by addressing-register-!
is moved to the location addressed by
addressing-register-2. This sequence is
repeated till the addresses of addressing­
register-1 and register RlS are equal.

XVI-13

xcc

OR

XOR

AND

c,c
c,r
c,s
r·,C
r,r
r,s
s,c
s,r
s,s

c,n
r,n
s,n

c,n
r,n
s,n

c,n
r,n
s,n

(2)
(3)
(2)
(1)

(1)
(2)
(3)
(2)

(3)

(3)

(3)

(3)

(3)

(3)

Character Instruction (Tests)

BCE

BCU

BCL

BCLE

BCH

BCHE

n,c,1
n,r,1
c,n,l
c,c,l
c,r,1
r,n,1
r,c,l
r,r,1

(see BCE)

(see BCE)

(see BCE)

(1)

(3)

(ref er to BCE)

(ref er to BCE)

Exchange Character with Character; the byte
(addressed) by operand-1 is interchanged
with the ·byte defined by operand-2.

OR character; the byte (character) addressed
by operand-1 is logically or'd with the
8-bit inunediate operand-2.

Exclusive OR character; the byte (character)
addressed by operand-1 is exclusively or'd
with the 8-bit inunediate operand-2.

AND character; the byte (character)
addressed by operand-1 is logically and'd
with the 8-bit inunediate operand-2.

Branch Character Equal; the byte (character)
defined or addressed by operand-1 is compared
to the byte defined or addressed by operand-2.
If the two bytes are equal, instruction
execution branches to the location as defined
by operand-3. Neither operand-! nor
operand-2 are altered. The arithmetic
condition flag (ACF) is set on c,c,1 only.

Branch Character Unequal; branch if
characters are not equal.

Branch Character Low; branch if operand-!
is less than operand-2.

Branch Character Less than or Equal; branch
if operand-! is less than or equal to
operand-2.

Branch Character High; branch if
operand-1 is greater than operand-2.

Branch Character High or Equal; branch if
operand-! is greater than or equal to
operand-2.

XVI-14

l_

BCN r,1

BCX r,l

BCA r,l

Bit Instructions

SB b

ZB b

BBS b,l

BBZ b,l

REALITY 2.0 UPDATE

Branch if Charact~r is Numeric; branch
if the character addressed by the first
operand is in the range 0-9, inclusive.

Branch if Character is hexadecimal;
branch if the character addressed by
the first operand is in the range 0-9
or A-F, inclusive.

Branch if Character is Alphabetic;
branch if the character addressed by
the first operand is in the range A-Z,
inclusive.

Set Bit; the bit addressed by the
operand is set to an on condition (one).

Zero Bit; the bit addressed by the
operand is set to an of£ condition
(zero).

Branch Bit Set; the bit addressed by
operand-1 is tested and if set (one)
instruction execution branches to the
location defined by operand-2.

Branch Bit Zero; the bit addressed by
operand-1 is tested and if not set
(zero) instruction execution branches
to the location defined by operand-2.

Data Movement and Arithmetic Instructions

All arithmetic is done on two's complement binary integers. All
instructions in this section except the MOV set the arithmetic condi­
tion flag (ACF).

MOV n,h (6) MOVe word to word; integer defined or
n,t addressed by integer-1 is moved to the
n,d location addressed by operand-2.
h,h
h,t (6)
h,d (6)
t,h (6)
t,t
t,d (6)
d,h (6)
d,t (6)
d,d
b,b

XVI-15

REALITY 2.0 UPDATE

TST h Test the contents of the operand and
t set the arithmetic condition flags.
d

INC h INCrement by one; the integer defined
t by the operand is incremented by one
d
h,n (6) INCrement word by word; the integer
h,h defined or addressed by operand-2 is
h,t (6) added to the integer stored in the
h,d (6) location addressed by operand-1 and
t,n the result is stored in the latter
t,h (6) location.
t,t
t,d (6)
d,n
d,h (6)
d,t (6)
d,d

DEC h DECrement by one; the integer defined
t by the operand is decremented by one.
d
h,n (6) DECrement word by word; the integer
h,h defined or addressed by operand-2 is
h,t (6) subtracted from the integer stored in
h,d (6) the location addressed by operand-1
t,n and the result is stored in the latter
t,h (6) location.
t,t
t,d (6)
d,n
d,h (6)
d,t (6)
d,d

ZERO h ZERO word; a zero is moved to the
t operand location defined by operand-1.
d

ONE h Set word ONE; an integer value of one
t is moved to the operand location defined
d by operand-1.

NEG h NEGate word; the integer defined by
t operand-! is negated (two's complement).
d

LOAD n LOAD to accumulator; the integer
h addressed by operand-1 is loaded into
t the 32-bit accumulator (DO). For half-
d word and word operands, the sign bit is

extended.
'

XVI-16

STORE h
t
d

REALITY 2.0 UPDATE

STORE from accumulator; the contents of
the 32-bit accumulator (DO) are stored
into the location defined by operand-!.
For half-word and word operands, the
high order bits are lost.

XVI-16-1

THIS PAGE INTENTIONALLY LEFT BLANK

I
·'--

\ __

ADD

SUB

MUL

DIV

n
h
t
d

n
h
t
d

n
h
t
d

n
h
t
d

Register Instructions

MOV

XRR

INC

INC

r,r
r,s
s,r
s,s

r,r
r,s
s,r
s,s

r
s

r,n
r,h
r,t
r,d
s,n
s,h
s,t
s,d

(1)
(2)
(1)

ADD to accumulator; the integer addressed
by operand-I is added to the 32-bit
accumulator (DO) with sign extension.

SUB from accumulator; the integer addressed
by operand-I is subtracted from the 32-bit
accumulator (DO) with sign extension.

MULtiply to accumulator; the integer
addressed by operand-1 is multiplied by the
contents of the 32-bit accumulator (DO).
The resulting product is stored in the
64-bit accumulator extension (Dl,DO),
as a 63 bit number and a duplicated
sign bit.

DIVide into the accumulator; the integer
addressed by operand-I is divided into
the 32-bit accumulator (DO). The answer
is stored in DO and the integer
remainder is stored into the accumulator
extension (Dl).

MOVe register to register; the address or
storage register operand-1 is moved into
the address or storage register operand-2.

exchange Register with Register; the
address or storage register operand-1 is
exchanged with the address or storage
register operand-2.

INCrement register; the address or storage
register operand-1 is incremented by ~·

INCrement register by count; the address
or storage register operand-1 is incremented
by the integer stored at the location
addressed by operand-2.

XVI-17

DEC

DEC

LAD

SRA

FAR

r
s

r,n
r,h
r,t
r,d
s,n
s,h
s,t
s,d

r,r
r,s
s,r
s,s

r,c
r,h
r,t
r,d
r,s
r,1

r,n

(7)

(1)

DECrement register; the address or storage
register operand-1 is decremented by ~·

DECrement register by count; the address or
storage register operand-1 is decremented by
the integer stored at the location addressed
by operand-2.

Load Absolute Difference; the absolute
difference in bytes (characters) between
the byte pointer operand-! and the byte
pointer operand-2 is computed and stored
into the lower half of the accumulator (TO).
Please see special note following Branch
Register Equal/Unequal instructions.

Set Register to Address; the byte pointer
operand-1 is set pointing to the first
byte o? the functional element at the
location addressed by operand-2.

Flag and Attach Register; the address­
register operand-! is attached and
secondary processing as defined by the
8-bit literal n is performed:

0 0 - I/O busy for buffer
l not used
2 0 - buffer core-locked
3 0 - write-required
4 not used
5 Set-up R15 to 1st byte unlinked;

old buff er status in Rl5DSP
6 Change buffer FID
7 0 - OR n with status, 1 - AND n

with status

In normal execution only n2 is effective;
the remainder of the functions can only be
evoked in the "monitor mode."

XVI-18

_ BE

BU

BE
BU

r,r,l
r,s,l
s,r,l

s,s,l

(7)

Data Comparison Instructions

BE

BU

BL

BLE

n,h,l
n,t,l
n,d,l
h,n,l
h,h,l
h,t,l
h,d,l
t,n,l
t,h,l
t,t,l
t,d,l
d,n,l
d,h,l
d,t,l
d,d,l

(see BE)

(see BE)

(see BE)

(6)

(6)

(6)
(6)

(6)

(6)

(6)
(6)

Branch Register Equal/Unequal; the address
of the byte pointer operand-! is compared
to the address of the byte pointer
operand-2. The branch is taken appro­
priately. If the FID's of the registers are
unequal, it is assumed that the affected
frames are contiguously linked and the
address computation is made on that basis;
further, the difference in the FID's is
assumed to be less than or equal to
thirty-two (32); therefore the instruction
execution may prove incorrect if 1) The
FID's are unequal and not contiguously
linked or 2) One of the registers is in an
unlinked format, and the other is not.

Branch Register Equal/Unequal; the 6-byte
storage register operand-! is arithmetically
compared to the storage register operand-2
and the branch is made accordingly.

Branch word Equal; the integer stored in the
word addressed by operand-! is compared
arithmetic.ally (2 's complement) to the
integer stored in the word addressed by
operand-2. If an equal comparison is
made• instruction branches to the location
defined by operand-3.

Branch word Unequal; branch if words are
unequal.

Branch word Low; branch if operand-! is
less than operand-2.

Branch word Low or Equal; branch if
operand-1 is less than or equal to
operand-2.

XVI-19

BH

BHE

BDZ

BDNZ

BDLZ

BDLEZ

BDZ

BDNZ

BDLZ

BDLEZ

(see BE)

(see BE)

h,h,l
t,n,l
t,t,l
d,n,l
d,d,l

(see BDZ)

(see BDZ)

(see BDZ)

t,l
d,l

t,l
d,l

t,l
d,l

t,l
d,l

Branch word High; branch if operand-1 is
greater than operand-2.

Branch word High Equal; branch if operand-I
is greater than or equal to operand-2.

Branch on Decrementing word Zero; the word
at the location addressed by operand-! is
decremented by the integer at the location
addressed by operand-2. If the result is
zero, instruction branches to the location
defined by operand-3.

Branch on Decrementing word not Zero; same
as BDZ but branch on result not zero.

Branch on Decrementing word Less than Zero;
same as BDZ but branch on result less than
zero.

Branch on Decrementing word Less than or
Equal to Zero; same as BDZ but branch on
result less than or equal to zero.

Bran.ch on Decrementing word Zero; same as
BDZ above bet decrement by ~·

Branch on Decrementing word not Zero; same
as BDNZ above but decrement by ~·

Branch on Decrementing word Less than Zero;
same as BDLZ above but decrement by .£!!!·

Branch on Decrementing word Less than or
Equal to Zero; same as BDLEZ above but
decrement by .2!!.!:..·

All of the above data comparison instructions set the arithmetic condi­
tion flags.

Translate Instructions

MBD
MBDN

h,r
t,r
d,r
n,h,r
n,t,r
n,d,r

Move Binary word to Decimal characters;
This macro generates a call to the sub­
routine MBDSUB (MBD) or MBDNSUB (MBDN),
which converts from a binary integer at
the location addressed by operand-! to a
string of decimal ASCII characters, stored
beginning from the location addressed by
the byte-pointer operand-2 plus ~·

XVI-20

\

MOB

MBX

MBX
MBXN

r,t
r,d

h,r
t,r
d,r

n,h,r
n,t,r
n,d,r

(9)

The following elements are used by the sub­
routine and macro DO; Dl; D2; T4; TS; Rl4;
Rl5. A minus sign will precede the con­
verted value if it was negative; at the
conclusion of the instruction, the byte
pointer operand-2 addresses the last
converted byte. MBD deletes leading zeros,
but converts at least one character; MBDN
converts at least "n" characters, padded
with leading zeros if necessary.

Move Decimal character to Binary word;
ASCII decimal to binary conversion. The
word at the location addressed by operand-2
is multiplied by 10, and a value (as
defined above for the MXT instruction)
from the byte addressed by the addressing
register is added to it. The arithmetic
condition flags are ~ reset, and arithme­
tic overflow cannot be detected.

Move Binary word to heXadecimal characters;
Binary to ASCII hex conversion.
This instruction assumes that the least
significant byte of the accumulator (HO)
has a parameter (see MBX/MBXN macro). Bits
3-0 contain a digit count, specifying the
maximum number of ASCII digits to be
converted. As each digit is converted, the
addressing register is incremented by one,
and the converted ASCII character is stored
in the location addressed by the addressing
register. The for1at of HO at the con­
clusion of this instruction is unpredictable.
If the digit count in HO exceeds the field
defined by operand-1, no operation is
performed.

Move Binary word to hexadecimal characters;
This macro expands as a LOAD of the first
operand (MBX) or the first operand +X'80'
(MBXN), and an primitive. The MBX macro,
therefore, causes conversion from binary
to ASCII hex, with only significant digits
(to a maximum of "n") converted. The MBXN
macro causes conversion as above, but always
converts "n" digits, with leading zeros if
necessary. The addressing register defined
by the third operand is incremented before
each byte converted.

XVI-21

MXB r,h
r,t
r,d

Move heXadecimal characters to Binary word;
ASCII hex to binary conversion
The field defined by operand-2 is shifted
left 4 bits, and the value defined below,
from the byte addressed by the addressing
register, is added to the field: The
4-bit value from bits 3-0 of the byte (bits
numbered right to left), plus nine times
bit 5. The arithmetic condition flags are
.!!2f. reset by this instruction, and arithme­
tic overflow cannot be detected.

Execution Transfer Instructions

B

BSL

BSLI

1
a

1
m
a

Branch;
branch to location defined, in the current
frame, defined by label "l", or the absolute
core address "a". The branch to an absolute
core-address is a privileged instruction
executable only at the monitor-level.

Branch and Stack Location;
Subroutine call to mode defined by mode-ID
"m", loc.al label "l", or absolute core­
address "a". (The BSL to an absolute
cor.a-address is a privileged instruction
executable at the monitor-level only).
The location-! of the instruction follow­
ing the BSL is saved. in the return stack,
and the next instruction executed is that
defined by the operand. The return stack
level is increased by one; if the call
causes the return stack level to exceed
its maximum value, the stack pointers are
reset to the beginning and a trap to the
DEBUG mode is executed.

Branch and Stack Location-Indirect;
Subroutine call indirect; this instruction
assumes that the lower half of the
accumulator, TO contains a mode-ID (see
BSL* macro). The 16-bit mode-ID contained
in TO defines the location of the next
instruction that is to be executed, after
the location-1 of the instruction follow­
ing the TCI is saved in the return stack •

.XVI-22

RTN

ENT

ENTI

BSL*

ENT*

m

h
t
d

h
t
d

(8)

(8)

I/O and Control Instruction

IOI

REALITY 2.0 UPDATE

ReTurN;
Return to subroutine called. The last
entry in the return stack defines the
location of the next instruction to be
executed; the return stack level is
decremented by one. If the return
stack is empty, a trap to the DEBUG
mode is executed. A return instruction
from a subroutine called via a local
call, or an absolute core-address call,
will return within the current 512-byte
frame only.

ExterNal Transfer;
Branch to location defined by mode-ID"m".

ExterNal Transfer Indirect;
Enter mode indirect: this instruction
assumes that TO contains a 16-bit
mode-ID (see ENT* macro), which defines
the next instruction to be executed.

Branch and Stack Location indirect;
subroutine call to mode defined by the
mode-ID contained in the word addressed
by operand-!. The 16 bit mode-ID is
loaded into the accumulator, and a BSLI
instruction is executed.

ExterNal Transfer indirect; branch to
external location defined by the mode-ID
contained in the word addressed by
operand-1. The 16 bit mode-ID is loaded
into the accumulator, and an ENTI
instruction is executed.

I/O Instruction Input; this instruction
is used to control input from peripheral
devices whose device addresses are in
the range 0 through X'F' (15). This
instruction causes an MCAL instruction
to entry point 8 in the Monitor.
Register r points to the start of the
input buffer; n1 is a 3-bit order
code; n2 is a 4-bit device address.
Refer to Reality CPU, peripheral I/O
for details.

XVI-23

IOO

READ

WRITE

MCAL

RQM

IB
OB

r

r

r,n

REALITY 2.0 UPDATE

I/O instruction Output; as above this
instruction output to peripheral devices.

A byte from the byte-I/O buffer in the
PIB is stored at the location addressed
by the addressing register. If the
buffer is empty, or if there is data in
the byte I/0} buff er yet to be ou~put
to the byte I/O device, the process
executing the READ instruction will enter
a quiescent state till data from the
byte input device causes a re-activation.

The byte addressed by the addressing
register is moved into the byte I/O
buffer of the PIB. If the buffer is
empty, the byte is also output immedi­
ately to the byte I/O device. If the
buffer is full, the process executing
the write will enter a quiescent state
till the byte output device has accepted
the data from the buffer, and causes a
re-activation. Execution of this
instruction causes a loss of any input
data in the byte I/O buffer, and
inhibits any further data input from
the byte I/O device.

Monitor call to entry point "n2"
(7 < n2 < 16). The word address of the
addressing register; the 8-bit address
of the addressing register; the 8-bit
mask n1; and the location of the PCB
are passed, as parameters to the moni­
tor, in the PIB.

Process releases the remainder of its
time quantum to the monitor. Equivalent
to: MCAL 0,0,9.

Input/Output byte instruction. Ref er to
Reality CPU, peripheral I/O for details.
The byte defined by the mask "n" is
output as a control byte, and a data
byte is input (IB) and stored at the
location addressed by the addressing
register, or output (OB) from the loca­
tion addressed by the addressing regis­
ter. These instructions are allowable
in monitor mode only.

XVI-24

NOP

HALT

HLD r

TEXT X'Ol'

ECS r

ESS r

SVP

RVP

REALITY 2.0 UPDATE

No OPeration is performed by this
instruction.

This instruction halts the CPU and is
executable in the Monitor mode only.

Halts the CPU and gates the eight-bit
literal addressed by register r to the
A bus, where it can be displayed in the
least significant indicator lamps of the
system panel by depressing the Data
select switch. Executable in monitor
mode only.

Tests internal and external interrupts
and traps to the appropriate monitor
location if any interrupts are pending.
Executable in monitor mode only.

The status of the eight low-order
console command switches is placed in
the byte addressed by register r.
Executable in monitor mode only.

. .
The status of the four console sense
switches is placed in the four most
significant bits of the byte addressed
by register r.

Start -virtual Process (Monitor level
only) The 2-byte FID located at abso­
lute core address X'l27', X'128'
(R4-FID of monitor) is treated as a
PCB-FID, and the buffer-pool searched
for a match. If found, register zero
in the PCB is setup in an "attached"
format, and the attachment process for
register one (user program-mode regis­
ter) is started. If not found, a frame
fault request on the PCB-FID is stacked,
and the monitor is re-entered.

Return to Virtual Process (monitor
level only) should be executed when a
trap to the monitor due to an external
interrupt by devices 0-X'lS' has caused
a monitor trap. Selects primary file
registers of the 1600 computer and
resumes execution of the virtual
Process. If this instruction is exe­
cuted when the system is not in an
interrupt-handling mode, no operation
takes place.

XVI-25

Assembler Directives

l ADDR n,n

1 AR 1
r
n

1 CHR 1
HTLY n
TLY
DTLY
SR

CMNT

1 DEFA a

1 DEFM r,l
r,n
n,l
n,n

l DEFk r,l
r,n
n,l
n,n

r,*[string]
n,*[string]

REALITY 2.0 UPDATE

Defines the local symbol "l" as a storage
register in unlinked format. The displacement
is defined by the first operand. The FID is
defined by the second operand.

Defines the local symbol "1" as an address
register with a value.defined by the operand.

Defines the local symbol "l" (if present) as
a character (CHR) half-word (HTLY), word (TLY),
double-word (DTLY) or S/R (SR) respectively;
object code of the appropriate length and
value defined by the operand is assembled,
except for the SR op code, which ignores the
operand field.

Comment; the contents of this statement are
treated as conmentary, and ignored by the
assembler. Note: A label field entry is
allowable.

Defines the local symbol "1" to be of type a.

Defines the local symbol "1" to be of type m;
a mode-ID with entry point defined by the
first operand and FID defined by the second
operan .

Defines the local symbol "l" to be of type "k"
(where k•b,c,d,h,l,s,t), with base register
defined by the first operand and displacement
defined by the second operand.

When the assembler location counter "*" is
used as the second operand, an optional string
can be used, with the following format:

string• n2[±n3] or string• ±n3

If n2 is specified after the *, instructions
referencing 1 will obtain a displacement (D
field) appropriate for an operand length of
n2 bits. Values of n2 = 1,8, and 16 are valid,
with a default of n2 • 8.

If +nJ is specified after the *n, the effective
displacement will be adjusted n3 bits, bytes
or double-bytes, depending on whether n2 = 1,8
or 16.

XVI-26

\ . .,_

EXAMPLE --

ORG
LABEL! DEFT

STORE

EXAMPLE

LABEL2

1

ORG
DEFB
SB

EQU

10
1,*16
LABEL!

1
1,*1+7
LABEL2

c
h
t
d
s
1
n

FRAME n

ORG 1
n

SETAR r

REALITY 2.0 UPDATE

produces the object code Al0559
corresponding to the instruction:

opcode-1 register D L opcode-2

I 1010 I 0001 I 00000101 I 01 I 011001

with a displacement (D field) of 5 words
relative to the byte addressed by
register 1.

produces the object code 810F correspond­
ing to the instruction.

opcode register D

I 1000 I 0001 00001111

with a displacement of 15 bits relative
to the byte addressed by register 1.

Equates the local label "l" to the symbol
or literal value of the operand.

Must be the first assembled statement in
a mode that is to be loaded; "n" defines
the frame on which the object code is to
be loaded.

Resets the location counter to value
defined by the operand. This statement
may have a label field entry.

Causes all literals encountered from this
point in the assembly to be defined as a
displacement relative to register r. If no
SETAR occurs, SETAR 1 is assumed.

XVI-27

TEXT X' ••• I
C' •••I

Address Register Usage

REALITY 2.0 UPDATE

Assembles binary equivalent of character
strings (enclosed in quotes and preceded
by a •c1) or hexadecimal values. Any
number and combination of C and X literals
separated by commas is permitted.

A storage operand is always referenced through an address register
containing the byte address of the operand. For instructions with a
D field, a displacement is added to the contents of the address
register to form an effective address. The length of the operand is
encoded in the L field of the instruction (see INSTRUCTION DESCRIPTIONS
in Chapter XV).

For BEAL instructions allowing an address register r in the operand
field, the displacement relative to the register and the operand length
can be specified using the following formats:

Format

Rn

Rn;Bm

Rn;Cm
Rn;Hm

Rn;Tm

Rn;Dm

Rn;Sm

EXAMPLE --

MCC

EXAMPLE --

SB

EXAMPLE --

MOV

RO;Cl5,R15

RS;BO

Displacement Relative
to Address Register n

O·bytes

m bits

m bytes
m bytes

2*m bytes

4*m bytes

6*m bytes

Operand
Length

1 byte

1 bit

1 byte

2 bytes

4 bytes

6 bytes

Move low order byte of the Accumulator
to the byte addressed by RlS.

Set bit 0 of the byte addressed by RS.

MBASE,Rl0;D4 Move double-word MBASE to the double-word
starting 16 bytes past the byte addressed
by RlO.

XVI-28

REALITY 2.0 UPDATE

REAL Instruction Side Effects

Many of the REAL op-codes use functional elements not specified as
operands for execution. Those instructions are so footnoted in the
previous listing and the following explanation of the various footnotes
describes the state of these implied elements at the conclusion of
instruction execution.

(1) RlS points to byte addressed by operand-2.

(2) Rl4 points to byte addressed by operand-!, Rl5 points to
byte addressed by operand-2.

(3) RlS points to byte addressed by operand-1.

(4) Rl5 points one prior to last byte moved and TO contains
number of bytes moved into last frame.

(5) Contents of TO are unpredictable.

(6) DO contains the integer moved or compared.

(7) SYSRO contains the byte pointer operand-!.

(8) TO contains the 16-bit mode-ID; Tl is zero.

(9) HO contains the number of digits converted into the last
frame, if its high order bit (BO) is set; otherwise original
value.

•

XVI-29

~
I
w
0

t-ODE: REAL-INSTRUCTIONS PAGE 1 18:94:81 85 "'-Xi 1974

Hl
8'2
H3
884
H5
886
H7
008
889
011
811
n2
Sl3
IJ14
815
816
817
818
919
828
821
822
823
824
fJ25
826
827
828
829
838
831
fl32
833
034
035

* * REAL INSTRUCTION REPERTOIRE

* **
* * DEFINE SYMBOLIC OPERANDS USED IN DEFINITIONS

* Bl
82
Cl
C2
Hl
H2
Tl
T2
01
D2
51
52

*

DEFB
DEFB
DEFC
DEFC
DEFH
DEFH
DEFT
DEFT
DEFD
DEFD
DEFS
DEFS

l, 11
2,22
l, 11
2,22
l, 11
2,22
l, 11
2,22
l, 11
2,22
l, 11
2,22

* DEFINE FUNCTIONAL ELBENTS USED IN MACRO EXPANSIONS

* TO DEFT 8, 7
DI DEFD 8,6
Al DEFA X' 12341

Ml DEFM l, 2

*
*
* ***
* * O'ARACTER OPERATIONS
* ***

~
~
N .
0

~ e;
ti:I

(((

M:>DE: REAL-INSTRUCTI(X\15 PAGE 2 10:04:03 05 AUG 1974

036 * Jl.l)VE CHARACTER TO C~ACTER
037 Lf!fl EQU * 038 001 E2163F MCC C'A' ,C2 ONE CHARACTER Jl.l)VED

004 4F4120
039 007 424120 MCC C' A' ,R2
040 00A E216EF MCC C'A' ,52

f!flD 4F412'!l
041 * 042 01~ F216010B MCC Cl,C2
043 014 DH~Bl2 MCC Cl,R2
044 017 E216EF MCC Cl,52

01A D10Blf
045 * 046 f!lD 021601 MCC Rl,C2
047 028 6219 MCC Rl,R2
048 022 E216EF MCC Rl,52

':>< 025 6Fl9
l;:i 049 *
I 050 027 E2163E MCC Sl,C2

IW
~ 02A E10BEF

020 6EF9
051 02F ElBBEF MCC Sl,R2

032 62F9
052 034 E10BEE MCC 51,52

037 E216EF
03A 6F39

053 * :;,g

054 * MJVE o-tARACTER TO CHARACTER, INCREMENT!~ DESTINATION ~
055 83C 424140 MCI C'A' ,R2 ONE CHARACTER r-t>VED ~ 056 03F A21643 MCI C'A',52

042 E216EF N .
045 4F4120 0

057 * c::
058 048 32 MCI Cl,R2 ~

f!49 D10B12 1--'.!
t:rj

MODE: REAL-INSTRUCTI<:J.JS PAGE 3 18:04:04 85 AlXi 1974

"59 iJ4C E216EF MCI Cl,52
S4F 3F
fl5S Dl0Blf
053 E216DF

S61iJ * S61 fl56 621A MCI Rl,R2
062 858 E216EF MCI Rl,52

058 6F1A
050 E216DF

863 * fJ64 06t E18BEF MCI Sl,R2
063 62FA

065 t165 EUIBEE MCI Sl,52
068 E216EE
fl68 6FEA
060 E2160F

066 * ~ 067 * H
I fl56 070 162F MCI C'A' ,R2, 7 MOVE tt CHARACTERS IN OPERAt-1> 3 w

N 072 424140
075 A72E58
078 6F24

069 07A AUIB18 MCI C'A' ,R2,Hl
870 A80685
088 162F
882 424148
885 6F24 ~ 1170 887 Al8B58 MCI C'A',R2,Tl
8.8A A80685 H

1-i
880 162F ~

ft8F 424148 N .
092 6F24 0

071 094 A18B98 MCI C'A',R2,Dl ~
997 AfJ8685 t:::#

~ 89A 162F t:rJ

~
~
w
(JJ

((

MODE: REAL-INSTRUCTIONS PAGE 4 10:84:04 05 PJ.J(;, 1974

fJ9C 424140
89F 6F24

872
873
874 8Al 31

8A2 021681
875 8A5 6121
876 8A7 E216EF

f/JAA 61Fl
877
878 fJAC AUJB43

8AF E2163E
882 E18BEF
f/JB5 6EF9

079 8B7 El8BEF
8BA 6F21
8BC El8BDF

'188 f/JBF E18BEF
8C2 E216EE
8C5 6FE1
0C7 E18BOF

881
882
883 8CA 6122
884 ecc e216eF

0CF 61F2
f!Dl E216DF

085
086 804 El8BEF

807 6F22
fJD9 E lllBDF

887 eoc El8BEE
8DF E216EF
fJE2 6EF2
0E4 Elf/JBDE

* * r-DVE CHARACTER TO CHARACTER INCIID£NTING SOURCE

*

*

MIC Rl,C2 K>VE 1 CHARACTER

MIC Rl,R2
MIC Rl,52

MIC 51,C2

MIC 51,,R2

MIC 51,52

* K>VE CHARACTER TO OiARACTER, INC 50lRCE AND DESTINATION
Mil Rl,R2 fv()VE 1 CHARACTER
MII Rl,,52

* Mii 51,R2

Mii 51,52

(

~
a
N .
0

~

~
l"1

M:>DE: REAL-INSTRUCTICJ.!S PAGE 5 18:84:85 85 PUG 1974

8E7 E216DF
888 * 889 8EA A72F58 MII Rl,R2,8fJ ~VE # CHARACTERS IN OPERMD 3

0EO 6124
098 tEF AUJB18 MII Rl,R2,Hl

8F2 6124
091 IF4 A18B58 MII Rl,R2,Tl

8F7 6124
892 raF9 Al8B98 Mii Rl,R2,Dl

8FC 6124
893 * 094 IFE 163F Mil Rl,R2,R3 f'IOVE LNTIL 21'1> OPERAND = 3RD OPERAND

188 6123
e.195 182 E24FEF Mii Rl,R2,S3

105 6123
896 * e.197 * INSTRUCTIONS INCREMENTING 501.RCE & DESTINATICJ.! REPEATEDLY

~ 898 111J7 6128E8 MIID Rl,R2,X'E8' ~VE OiAR TO CHAR TiiROLGi DELIMITER
H e.199 * I w lH lfJA 6188A8 SCD Rl,X'A8' SCAN CHARACTERS TO DELIMETER ~

un * 182 lSD 6124 MIIT Rl,R2 ~VE NLM3ER OF CHARS. IN ACQJMULATOR
U'3 * 184 11/JF 6123 MIIR Rl,R2 ~VE ltiTIL Rl Nf:J R15 ARE EQUAL
U!5 * U.16 *EXOiANGE OiARACTER WITH CHARACTER
1'f7 111 ElfJB3E xcc Cl,C2 ~ 114 E2163F

117 6EF7 H

~ 188 119 Ele.IB3F xcc Cl,R2
llC 6F27 N .

189 llE E18B3E xcc Cl,52 0

c: 121 E216EF ~ 124 6EF7 >
lUJ * ~

/

~
H
I
w
Vt

(

M:>DE: REAL- INSTRU:TIONS PAGE 6

111 126 E2163F
129 6F17

112 128 6127
113 120 E216EF

138 61F7

XCC

xcc
xcc

Rl,C2

Rl,R2
Rl,52

114 *
115 132 ElSBEE

135 E2163F
138 6EF7

116 13A El8BEF
130 6F27

117 13F El8BEE
142 E216EF
145 6EF7

118
119
129 147 El.0B3F

14A 4FABC8
121 140 41ABC8
122 158 Ellr!BEF

153 4FABC8
123
124
125 156 EUJB3F

159 4FABD8
126 15C 41ABD8
127 15F E1"BEF

162 4FAB08
128
129
138 165 E18B3F

168 4FABE8
131 168 41ABE8
132 16E El8BEF

171 4FABE8

xcc Sl,C2

xcc Sl,R2

xcc 51,52

* *LOGICAL OR CHARACTER WITH MASK

*

OR Cl,X'AB'

OR IU,X'AB'
OR 51,X'AB'

*EXCLUSIVE OR WITH ~SK

*

XOR Cl,X'AB'

XOR Rl,X'AB'
XOR 51,X'AB'

*LOGICAL AtD OiARACTER WITH MASK
PM) Cl,X'AB'

PM) Rl,X'AB'
pt.I) 51,X'AB'

(r-

18:84:86 85 PUG 1974

~
~
N .
0

~
h;!
~
t".I

~
t-1
I
w
er-

tvODE: REAL- INSTRUCTIONS PAGE 7 18:84:07 85 AUG 1974

133 *
134 *
135 174 41FEF0 SHIFT X' FE' ,Rl
136 * 137 *
138 *
139 *
148 ***************************************
141 *
142 * CHARACTER INSTRUCTIONS (TESTS)
143 *
144 ***************************************
145 * 146 *
147 *BRANO; CHARACTER EQ~L
148 177 E2163F BCE C'A' ,C2,Ll

17A 4F410847
149 17E 42410843 BCE C'A' ,R2,Ll
150 *
151 182 E1SB3F

185 4F4UJ83C
152 189 F10B1216 BCE Cl,C2,Ll

180 5836
153 18F B1SB2832 BCE Cl,R2, L1
154 *
155 193 4141882E BCE 41,C'A' ,Ll
156 197 B216182A BCE Rl,C2,Ll
157 198 512827 BCE Rl,R2,Ll
158 *
159 *BRANCH CHARACTER UtlEQUAL
160 19E E2163F BCU C'A',C2,Ll

lAl 4F41H20
161 1A5 424UIUC BCU C'A', R2, L1
162 1A9 EUIB3F BCU Cl,C'A' ,Ll

lAC 4F4HHU5

/'

~
H

~
N .
0

~

~
l1:l

(- (('

t-'DOE: REAL- INSTRUCT! ONS PAGE 8 UJ:84: 147 05 AUG 1974

163 * 164 lBS FllB1216 6CU Cl,C2,Ll
164 581F

165 166 61862818 BCU Cl,R2,Ll
166 * 167 lBA 41411807 BCU Rl,C'A' ,Ll
168 lBE 82161183 BCU Rl,C2,Ll
169 1C2 512fJfJ8 BCU Rl,R2,Ll
17fJ *
171 *BRANCH CHARACTER LOW
172 Ll EQU *
173 105 E2163F BCL C'A' ,C2,Ll

1C8 4F410687
174 lCC 4241S60B BCL C'A' ,R2,Ll
175 108 El8B3F BCL Cl,C'A' ,Ll

103 4F41fJC82

~
107 1E14

176 109 FlfJB1216 BCL Cl,C2,Ll
H 100 561A I
w 177 lDF Bl0B261E BCL Cl,R2,Ll

178 1E3 41418Cl2 BCL Rl,C'A' ,Ll
1E7 1E24

179 1E9 B2161C19 BCL Rl,C2,Ll
lED 1E2A

181 lEF 512620 BCL Rl,R2,Ll
181 *
182 *BRANCH CHARACTER LOW CR EQUAL

~ 183 1F2 E2163F BCLE C'A' ,C2,Ll
IFS 4F41IE34 g

184 1F9 4241IE38 BCLE C'A' ,R2,Ll
185 lFD EllB3F BCLE Cl,C'A' ,Ll N .

2H 4F411412 0

214 1E41 c:::
"'d

186 216 FllB1216 6CLE Cl,C2,Ll t::;I

2i1A 5247 ~

~E: REAL-INSTRUCTI(Xl.JS PAGE 9 is:e4:ra8 85 tu; 1974

187 28C Bl8B2E4B BCLE Cl,R2,Ll
188 218 41418482 BCLE Rl,C'A' ,Ll

214 1E51
189 216 82161482 BCLE Rl,C2,Ll

21A 1E57
198 21C 512E5A BCLE Rl,R2,Ll
191 *
192 *BRANo-f CHARACTER GREATER
193 21F E2163F Bo-f C'A' ,C2,Ll

222 4F418C82
226 1E63

194 228 42418C82 SCH C'A' ,R2,Ll
22C 1E69

195 22E 318B3F BOi Cl,C'A' ,Ll
231 4F418678

196 235 F2161108 80i Cl,C2,Ll

~
239 5676

197 238 Bl882C16 8CH Cl,R2,Ll
H 23F 1E7C I
I,,.> 198 241 41418688 80i Rl,C'A' ,Ll 00

199 245 82161684 80i Rl,C2,Ll
2161J 249 521687 BOi Rl,R2,Ll
281 *
202 *8RANO-t CHARACTER GREATER OR EQUAL
283 24C E2163F BOiE C'A',C2,Ll

24F 4F418482
253 1E9i'I ~

284 255 42418402 BOiE C'A' ,R2,Ll i!=
259 1E96 H

205 258 El8B3F BCHE Cl,C'A' ,Ll ~
25E 4F418E90 N .

286 262 F216118B BOiE Cl,C2,Ll 0

266 5EA3 ~
287 268 81882482 80£ Cl,R2,Ll §;:!

26C 1EA9 t-3
ti::!

(~

~
~
w

'°

,r- (

t-tlDE: REAL-INSTRUCTIONS PAGE U1 10:04:09 05 AUG 1974

208 26E 41410EAD
209 272 B2161EB1
210 276 521EB4
211
212 279 413ASCS4

270 41300EBC
213 281 41478CSC

285 414UIEC4
289 413ASC84
280 41388ECC

214 291 415BSCS4
295 41418ED4

215
216
217
218
219
220
221
222
223
224
225
226 299 818B
227 298 7188
228 290 91888880
229 2Al 918B8AS4
238
231
232
233
234
235
236
237

Ba-tE Rl, C' A', L1
Ba-tE Rl, C2, Ll
Ba-tE Rl,R2,Ll

*a-iARACTER TYPE TESTS
BCN Rl,Ll

BCX Rl,Ll

BCA Rl,Ll

*

BRANCH OiARACTER NU'ERIC

BRANa-t CHARACTER HEXADECIMAL

BRANa-t a-tARACTER ALPHABETIC

* **
* * BIT INSTRUCTIONS
* **
*
*
*
*

L4

*

SB Bl
ZB Bl
BBS Bl,L4
BBZ Bl,L4

c:t-tJT *

SET BIT
ZERO BIT
BRANCH BIT SET
BRANCH BIT ZERO

SEE t"lJtl BIT TO BIT BELCM
**
* * DATA MOVEMENT AW ARITHMETIC INSTRUCTIONS

* **
*

r·-

~
~
N .
0

~
~
l'ZJ

~OE: REAL-INSTRUCTIONS PAGE 11 10:84: HJ 85 AUG 1974

238 *tlOVE DATA TO DATA BY AREA
239 2A5 A73058 f"OV 32,H2

2A8 A21619
24' 2AB F2164738 t'OV 32, T2
241 2AF F2168744 t'OV 32,02
242 *
243 263 F216810B "'°" Hl,H2
244 2B7 Al0B18 t'OV Hl, T2

2BA A21659
245 280 A18Bl8 tlfN Hl,02

2ce A21699
246 *
24 7 2C3 Al8B58 tlfN Tl,H2

2C6 A21619
248 2C9 F216418B "'°" Tl, T2
249 2CD AHTB58 "'°" Tl,02

~
208 A21699

258 *
H 251 203 A18B98 "'°" Dl,H2 I
.p.
0 206 A21619

252 209 AlSB98 f"OV Dl,T2
2DC A21659

253 2DF F216818B t'OV 01,02
254 *
255 2E3 7216 "'°" Bl,82 t'OVE BIT TO BIT

2E5 91888882
2E9 8216 ~ 256 *

257 *TEST AND SET ARITt+ETIC Fl.JIGS t-1
~

258 2EB Al8B82 TST Hl i<

259 2EE Al8B42 TST Tl ~ .
268 2Fl A1'882 TST Dl 0

261 * d
"'11

262 * $!
263 *INCREMENT INSTRUCTIONS ~

tt:I

I

(' (

MODE: REAL-INSTRUCTIONS PAGE 12 10:04:11 85 flJ.JG 1974

264 2F4 A10BfJ3 INC Hl INCREMENT DATA BY 1
265 2F7 A10B43 INC Tl
266 2FA AlfJB83 INC 01
267 * 268 2FD Al0Bl8 INC Hl,32 INCRE~ DATA AREA BY DATA

300 A73853
383 A18Bl9

269 386 F18B2216 INC Hl,H2
270 38A Al8Bl8 INC Hl, T2

380 A21653
318 A18Bl9

271 313 A18Bl8 INC Hl,02
316 A21693
319 A18Bl9

272 * 273 31C Fl0B6738 INC Tl,32

~
274 328 A21618 INC Tl,H2

H 323 F10B6007
I 275 327 Fl8B6216 INC Tl, T2 .s:-.... 276 328 A21698 INC Tl,02

32E FU,86087
277 * 278 332 FllBA744 INC 01,32
279 336 A21618 INC Ol,H2

339 Fl0BA086
288 330 A2A658 INC 01, T2

348 F18BA806
~ 281 344 F1SBA216 INC 01,02

282 * H

283 *DECREMENT INSTRUCTIONS ::a
284 348 AUIB85 DEC Hl DECREMENT DATA AREA BY 1 N .
285 348 A18B45 DEC Tl 0

286 34E A10B85 DEC Dl ~
287 t:;I

288 351 A18B18 DEC Hl,32 DECREMENT DATA AREA BY DATA ~
l::zj

r-t>DE: REAL-INSTRUCTIONS PAGE 13 10:84:12 85 AUG 1974

354 A73855
357 Al8B19

289 35A F10B3216 DEC Hl,H2
298 35E AUJB18 DEC Hl,T2

361 A21655
364 A18819

291 367 Al8B18 DEC Hl,D2
36A A21695
360 Al0Bl9

292 *
293 378 F18B7738 DEC Tl,32
294 374 A21618 DEC Tl,H2

377 Fl8B7H7
295 378 BUIB7216 DEC Tl,T2
296 37F A21698 DEC Tl,02

382 Fl8B7887

~
297 *
298 386 F18BB744 DEC Dl,32

H
I 299 38A A21618 DEC Dl,H2
~
N 380 Fl8BB806

388 391 A21658 DEC Dl, T2
394 Fl8BB886

3U 398 Fl8BB216 DEC Dl,D2
382 *
383 *ZERO OUT DATA AA.EA
384 39C AHB88 ZERO Hl
385 39F Al8B48 ZERO Tl ~ 386 3A2 A18B88 ZERO Dl
387 *REPLACE DATA AAEA WITH f\.JJMBER 1 H

3fJ8 3A5 Al8B81 ONE Hl ~

389 3A8 A1"B41 ONE Tl N .
318 3AB Al8B81 ~ 01 0

311 *NEGATE DATA AAEA c::
"d

312 3AE Al8B88 NEG Hl ~
313 381 AH,B48 NEG Tl ~

t,IJ

~
H
I
~
w

r- r r

{'()OE: REAL-INSTRUCTIONS PAGE 14 18:04:12 S5 AUG 1974

314 384 AIS888
315
316 387 A73C58
317 3BA A18B18
318 380 A18B58
319 3CS Al8898
320
321 3C3 AlfJB19
322 3C6 A1SB59
323 3C9 A1SB99
324
325 3CC A74653
326 3CF A1SB13
327 3D2 AlfJ853
328 305 AUl893
329
330 3D8 A74755
331 3DB AlSB15
332 3DE AlfJB55
333 3El Alf4895
334
335 3E4 A73A5fJ
336 3E7 AlfJ81S
337 3EA All858
338 3ED A18B9i'I
339
34i'I 3F8 A73151
341 3F3 AlfJBll
342 3F6 AlfJBSl
343 3F9 AlS891
344
345
346
347
~48

NEG Dl
*LOAD DATA INTO ACCUMULATOR

LOAD 876
LOAD Hl
LOAD Tl
LOAD Dl

*STORE ACCLMJLATOR INTO DATA AREA
STORE Hl
STORE Tl
STORE 01

*ADD DATA TO ACCUMULATOR
ADD 6547
ADD Hl
ADD Tl
ADD Dl

*SUBTRACT DATA FROM ACCUMULATCR
SUB 643
SUB Hl
SUB Tl
SUB Dl

*MJLTIPLY ACCUMJLATOR BY DATA
MUL 23
MJL Hl
MJL Tl
MJL 01

*DIVIDE ACCUt-t.JLATOR BY DATA
DIV 23
DIV Hl
DIV Tl
DIV Dl

*
**
* * REGISTER INSTRUCTIONS
*

~
~
N .
0

~
~
~

t-'ODE: REAL- INSTRUCTIONS PAGE 15 19:84:13 85 /lJJG 1974

349 **
350 *
351 *t'OV REGISTER TO REGISTER
352 3FC 1612 t'OV Rl,R2
353 3FE E216Dl t'OV Rl,52
354 481 E1SBE2 t'OV Sl,R2
355 484 f216C10B t'OV 51,52
356 *EXa-fAl\GE REGISTER CONT8'-JT5
357 488 1712 XRR Rl,R2
358 48A E18BEF XRR Rl,Sl

480 EUIBDl
418 16Fl

359 412 161F XRR Sl,Rl
414 El8BE1
417 EUBOF

368 41A E216EF XRR Sl,52

~ 410 F216Cl0B
H 421 ElfJBDF
I 361 *INCREMENT REGISTER ~
~ 362 424 31 INC Rl BY 1

363 R25 Al8B43 INC 51
36Lt. 428 E73251 INC Rl,28 BY 2ND OPERAND
365 428 Al8B18 INC Rl,Hl

42E E8S751
366 431 E1SB51 INC Rl, Tl
367 434 A10B98 INC Rl,Dl

437 E88751
~ 368 *

369 43A Fl0B6732 INC 51,28 ~ 370 43E A10B18 INC 51,Hl
441 F18B6H7 N .

371 445 FlrlJB610B INC Sl, Tl 0

372 449 Al0B98 INC 51,Dl fJ
44C FlrlJB6807 t:1

373 *DECREMENT REGISTER ~
tzJ

I

~
H
I
~
IJI

(--

t-t>DE: REAL-INSTRUCTia-!S PAGE 16

374 450 21
375 451 A18B45
376
377 454 E74841
378 457 A18Bl8

45A E88741
379 450 E18B41
388 460 A10B98

463 E80741
381 466 Fl8B7749
382 46A Al8Bl8

460 FlSB7911J7
383 471 F10B710B
384 475 A10B98

478 Fl8B7887
385
386
387
388 47C ESF6Dl

47F EflF6C2
389 482 E216Cl
3911.1 485 E18BC2
391 488 E216EF

488 E18BCF
392
393 48E E21631
394 491 E21631
395 494 E21671
396 497 E216Bl
397 49A E216Fl
398 490 E10131
399
408 4A8 423468
401
482

DEC Rl
DEC Sl

* DEC Rl,25
DEC Rl,Hl

DEC Rl, Tl
DEC Rl,Dl

DEC Sl, 1888
DEC 51,Hl

DEC Sl, Tl
DEC Sl,Dl

* *LOAD ABSOLUTE AOORESS DIFFERENCE
L2 EQU *

LAD Rl,R2

LAD Rl,S2
LAD Sl,R2
LAD Sl,S2

*SET REGISTER TO ADDRESS
SAA Rl,C2
SAA Rl,H2
SAA Rl,T2
SAA Rl,02
SAA Rl,52
SRA Rl,UIS

*FLAG AND ATTACH ADDRESS REGISTER
FAR R2,X'34'

*BRANCH REGISTER EQUAL (UNEQUAL)
L3 EQU *

(

10:84:14 SS AtX; 1974

BY 1

BY 2N:> OPER.AH)

,,,­
f

~
~
N .
0

c:::
>'ti

~
1-3
tzJ

~
H
I
~

°'

fvODE: REAL- INSTRUCT! ONS PAGE 17 10:04:14 05 AUG 1974

403 4A3 E0F9Dl
4A6 C0F92A07

404 4AA C216WB
405 4AE F216D10B

4B2 5All
406 4B4 E0F9Dl

4B7 C0F92218
407 4BB C216121C
408 4BF Cl0B2228
409 4C3 C10B2A24
418 4<:.7 F216D1"B

4CB 522A
411
412
413
414
415
416
417
418
419
420
421 4CD EUlB3F

408 4Fl90949
422 404 F73351SB

408 5943
423 4DA F7349lfJB

41E 5930
424
425 4E0 Al0Bl8

423 FS075736
4E7 5934

426 4E9 FlSBllfJB
4ED 592E

427 4EF Ali1B18

BE Rl,R2 1 L3

BE Rl,52, L3
BE Sl,52,L3

BU Rl,R2,L3

BU Rl,S2,L3
BU Sl,R2,L3
BE Sl,R2,L3
BU Sl,S2,L3

*
*
* **
* * DATA COMPARISON INSTRUCTIONS

* **
* *BRANCH lST OPER.AN) = 2ND OPERAND

BE 25,Hl,L6

BE 26,Tl,L6

BE 27 ,Dl, LG

* BE H 1, X' 2 5' , L6

BE Hl,Hl,L6

BE Hl, Tl,L6

~
H

~
N .
0

c::
"O

~
~

(- r r

t-()[)E: REAL-INSTRUCTIONS PAGE 18 19:04:15 85 AUG 1974

4F2 F8875UfB
4F6 5925

428 4F8 AUJB18 BE Hl,Dl,L6
4FB FSrlJ69 lSB
4FF 591C

429 *
430 581 F18B573D BE Tl, 12345, L6

585 5916
431 587 A1"818 BE Tl,Hl,L6

58A Fl0B5887
5SE 5980

432 518 F18B5216 BE Tl,T2,L6
514 5987

433 516 AlSB58 BE Tl,Dl,L6
519 F886910B
510 58FE

~ 434 *
H 435 51F FUJB974A BE 01,X' 1234' I LG
I
~ 523 58F8
.......

436 525 Al0Bl8 Ol,Hl,L6 BE
528 F18B9H6
52C 58EF

437 52E A10B58 BE Dl, 51,L6
531 Fl0B9886
535 58E6

438 537 FlftB9216 BE Dl,D2,L6
53B 58E8 ~ 439 *

448 *BRANCH lST OPER#D f'l)T EQUAL SEC~D OPERAND H

441 530 El0B3F BU 25,Hl, L6 ~
548 4F19HD9 N .

442 544 F733518B BU 26,Tl,L6 0

548 5803 c::
443 54A F734918B BU 27,Dl,L6 tg

>
54E 58CD ...,

tzJ

t-noe:: REAL-INSTRUCTIONS PAGE 19 HJ:fJ4: 16 05 AUG 1974

444 * 445 558 Al0Bl8 BU Hl,X'25' ,LG
553 F8075736
557 5fJC4

44G 559 F18Bll8B BU Hl,Hl,L6
550 50BE

447 55F A18Bl8 BU Hl, Tl,L6
562 F887518B
566 58B5

448 568 AlfJB18 BU Hl,Dl,LG
568 F886918B
56F 58AC

449 * 458 571 Fl8B573D BU Tl,12345,LG
575 51!'1A6

451 577 A18B18 BU Tl,Hl,L6
~ 57A Fl8B5887
H 57E 5890 I
~ 452 580 FUIB5216 BU Tl, T2,LG 00

584 5097
453 586 Al0B58 BU Tl,Ol,L6

589 5H69UIB
580 51!'18E

454 * 455 58F Fl8B974A BU 01,X' 1234' ,L6
593 51!'188

456 595 A18B18 BU 01,Hl, L6 ~ 598 Fllf'IB9886
59C 59J7F H

~

457 59E AlfJB58 BU 01, Tl, LG i<

5Al Fl8B9H6 "' .
5A5 5876 0

458 5A7 Fl8B921G BU Dl,02,L6 c=
"'t1

5AB 5878 ~
459 *

H
t>:I

/

./' ((

fv'ODE: REAL-INSTRUCTIONS PAGE 28 18:04: 17 0S AUG ig74

46f/J *BRANOi lST OPERAND LESS THAN 2ND OPERAND
461 SAD Elf/JB 3F BL 25,Hl, LG

SBS 4F19S469
462 5B4 F733510B BL 26, Tl,L6

568 5463
463 SBA F734910B BL 27,Dl,L6

4BE 54SD
464 * 465 5C0 Al8B18 BL Hl, x I 25 I, L6

5C3 Ff/Jf/J75736
SC7 S454

466 5C9 F10BlUlB BL Hl,Hl,L6
SCD 544E

467 5CF Alf/JB18 BL Hl, Tl,L6
5D2 Ff/Jf/J7Sl8B
506 5445

~
468 508 Alf/JB18 BL Hl,Dl,L6

508 Ff/J069lf/JB
H
1 SDF 543C
~
\0 469 * 471/J SEl F18B573D BL Tl,12345,LG

SES 5436
471 5E7 AUJB18 BL Tl,HI,L6

SEA Flf/JB5t1S7
SEE 542D

472 5F0 FlfJB5216 BL Tl,T2,L6
5F4 5427 ~

473 5F6 Alf/JB58 BL Tl1 Dl,L6 ~
5F9 Ff/J869 UlB H

t-3
SFD 541E ~

474 * N .
475 SFF FlSB974A BL Dl,X 1 1234 1 ,L6 0

603 5418 c::
I'd

476 61/JS Al8B18 BL Dl,Hl,L6 t:::;I
> 6f/J8 Fl0B91/Jf/J6 t-3
t"1

MOOE: REAL-INSTRUCTIONS PAGE 21 lf.1:04:18 fl5 Al.Xi 1974

6f.IC 54tlf
477 6tlE Alf)B58 BL Dl,Tl,L6

611 Flf)B9f)fJ6
615 54»6

478 617 F1089216 BL Dl,D2,L6
GIB 5400

479 *"
481) LG EQU * 481 *BRANCH lST OPERAND LESS OR EQUAL 2ND OPERAND
482 610 3ltlB3F 8LE 25,Hl,L6

620 4Fl90Efl7
483 624 F73351f.IB BLE 26,Tl,L6

628 5EflD
484 62A F7349lflB BLE 27 ,Dl, L6

62E 5El3
485 *

~
486 63fl A10B18 BLE Hl,X'25' ,L6

633 Ffttl75736
H
I 637 5ElC

\JI
487 639 FUJBl UIB BLE Hl,Hl,L6 0

630 5E22
488 63F A1"818 BLE Hl,Tl,LG

642 Ff.lf.175188
646 5E2B

489 648 Al8Bl8 BLE Hl,Dl,L6
648 F0069188
64F 5E34

~ 49fl *
491 651 F18B5730 BLE Tl,12345,LG

H
655 5E3A ~

492 657 Al0Bl8 BLE 51,Hl,LG
65A F1"B5887

N .
65E 5E43

0

d
493 650 Fl0B5216 BLE Tl,T2,L6 "ti

664 5E49 ~
tz:I

/

,- (' (

MODE: REAL-INSTRUCTIONS PAGE 22 HI: t.14: 19 05 AUG 1974

494 666 AUIB58 8LE Tl,Dl, L6
6G9 F.01)691t.IB
660 5E52

495 * 496 6GF Flf)B974A BLE Dl,X'l234' ,LG
G73 5E58

497 675 Alf)Bl8 BLE Dl,Hl, LG
G78 Flt.IB9f)f)6
G7C 5EG1

498 67E AUIB58 BLE Dl, Tl,L6
681 F10B9f)IJ6
G85 5E6A

499 687 Fl.089216 BLE Dl,02,LG
688 5E7tl

St.It.I *
5.01 *BRANCH lST OPERAND GREATER THAN 2ND OPERAND

~
502 680 AUlB18 BH 25,Hl, LG

69.0 F0.075748
H
I 694 5679

\J1
...... 5.f'3 697 Fl8B5733 BH 26,Tl,L6

G9A 567F
504 69C FUB9734 BH 27,Dl,L6

6A8 5685
505 * 50G 6A2 El0B3F BH Hl,X'25' ,L6

6A5 4F25fl68C
507 6A9 Flf)BllfJB BG Hl,Hl,L6 Ill'

6AD 5692 ~ 508 6AF AUJB18 BH Hl,Tl,L6
6B2 FUIB5fJfl7 ~
686 5696

N
509 688 AUB18 BH Hl,Dl,L6 .

0 6BB FUIB9HG c::
6BF 56A4 ""d

1)10 * ~
tS1

MODE: REAL-INSTRUCTIONS PAGE 23 10:04:21) 05 AtX, 1974

511 6Cl f73D51.0B BH Rl,12345,LG
6C5 566AA

512 6C7 AllJB18 BH Tl,Hl,L6
6CA FIJ.t'l 7 5 llJB
6CE 5683

513 6DIJ f21651.0B BH Tl,T2,L6
604 56V9

514 606 AUIB58 BH Rl,Dl, L6
609 fl0B9086
600 56C2

515 *
516 GDF F74A910B BH Dl,X' 1234' ,L6

6E3 56C8
517 6E5 AlfJB18 BH Dl,Hl,L6

6E8 F0869UJB
6EC 5601

~
518 6EE AU'B58 BH Dl,Tl,L6

6Fl F0fJ69UlB 1-1
I 6F5 56DA

V1
N 519 6F7 F216910B BH Dl,D2,L6

6FB 56E8
520 *
521 *BRANCH lST OPERAND GREATER OR EQUAL 2ND OPERAN:>
522 6FD A18B18 BHE 25,Hl, L6

708 F0875748
704 5EE9

523 706 FlfJB5733 BHE 26, Tl, L6

~ 7fJA 5EEF
524 78C FlfJB9734 SHE 27 ,Dl,L6

H
718 5EF5 ~

loo(

525 * N
526 712 ElfJB3F BHE Hl,X'25' ,L6 .

0
715 4F25fJEFC q

527 7L9 F18Bll8B BHE Hl,Hl,L6 >"d
t:I

710 5F02 ~
tr:!

/

(- (- r·

MODE: REAL-INSTRUCTIONS PAGE 24 lfJ:tJ4:21 f.15 AUG L974

528 71F Al.f)B18 BHE Hl, Tl, L6
722 Fl0B5il87
726 5FIJB

529 728 AltJB18 BHE Hl,Dl, L6
726 FltJ69f)l)6
72F 5F14

53.0 *
531 731 F73D511JB BHE Tl,12345,L6

735 5FlA
532 737 Al.0618 6HE Tl,Hl,L6

73A FtlfJ75UIB
73E 5F23

533 740 F2165lf)B BHE Tl,T2,L6
744 5F29

534 746 Al.&B58 BHE Tl,Dl, L6
749 F2fJB9fJfJ6
740 5F32

~ 535 *
H 536 74F F74A91f.IB BHE Dl,X' 1234', L6 I
1.11 753 5F38 w
I 537 755 AQf)618 BHE Dl,Hl,L6

758 F0869lf.IB
75C 5F41

538 75E Al.0B58 BHE Dl, Tl,L6
761 Fflf.1691.08
765 5F4A

539 767 F21691fJB BHE Dl,D2,L6
76B 5F5f.I lld

540 * ~
541 *DECREMENT OPERAND 1 BY OPERAND 2 At-ID BRANCH IF RESULT IS ZERO H

542 760 FlfJB1216 BDZ Hl,H2,L7 ~
771 7872 N .

543 773 Flf)B5737 BDZ Tl, 5, L7 0

777 786C c::
'ti

544 779 FlfJB5216 BDZ Tl, T2, L7 ~
~
~

~
H
I

U1
w
I

N

MODE: REAL-INSTRUCTIONS PAGE 25 lfl:fl4:22 05 AUG 1974

770 7866
545 77F FlflB973E

783 7868
546 785 FlflB9216

789 785A
547
548 78B FlflB1216

78F 7fl54
549 791 FlflB5737

795 7fl4E
55fl 797 FlflB5216

798 7fl48
551 790 FlflB973E

7Al 7fl42
552 7A3 FlflB9216

7A7 7fl3C
553
554 7A9 FlflB1216

7AD 7436
555 7/lJ! FlflB5738

783 743fl
556 7B5 Flt)B5216

789 742A
557 ?BB FlflB973E

7BF 7424
558 7Cl FlflB9216

7C5 741E
559
56fl 7C7 Flt)B1216

7CB 7C18
561 7CD Flt)B5737

701 7C12
562 703 Flt)B5216

707 7CflC
563 709 FlflB973E

(

BDZ Dl, 10,L7

BDZ Dl,02, L7

*DECREMENT OPERAND 1 BY OPERAN:> 2 AND BRANCH RESULT NOT ZERO
BDNZ Hl,H2,L7

BDNZ Tl,5,L7

BDNZ Tl,T2,L7

BDNZ Dl, lfl, L7

BDNZ Dl,D2,L7

*DECREMENT OPERAfll> 1 BY OPERAND 2 AND BRANCH RESULT NEGATIVE
BOLZ Hl,H2,L7

BOLZ Tl,5,L7

BOLZ Tl,T2,L7

BOLZ Dl, lfl, L7

BOLZ Dl,02, LG

*DECREMENT OPERAN:> 1 BY OPERAND 2 AND BRANCH RESULT ZERO OR NEGATIVE
BDLEZ Hl,H2,L7

BDLEZ Tl,5,L7

BDLEZ Tl, T2,L7

BDLEZ Dl, HI, L7

~
H

~
N .
0

~
t:='

~
t2j

~
H
I

I.A
w
I
w

(f

MODE: REAL-INSTRUCTIONS PAGE 26 lf):f)4:23 f)S AUG 1974

700 7Ct16
564 7DF Flt1B9216

7E3 7Ct1t1
565
566
567 6E5 Flt1B574C

7E9 7At16
568 7EB Flf)B974f)

7EF 7At1C
569
57t1 7Fl F10B574C

7F5 7212
571 7F7 F10B974f)

7FB 72A8
572
573 7FD F10B574C

881 761E
574 883 Fl0B9740

807 7624
575
576 809 F10B574C

800 7E2A
577 80F Flf)B9740

813 7E3f)
578
579
580
581
582
583
584
585
586
587 815 AUB18

818 162F

BDLEZ Dl,D2, L7

*DECREMENT OPERAND 1 BY ONE AND BRANCH RESULT ZERO
L7 EQU *

BDZ Tl,L7

BDZ Dl, L7

*DECREMENT OPERAND 1 BY ONE AND BRANCH RESULT l'()T ZERO
BDNZ Tl,L7

BDNZ Dl,L7

*DECREMENT OPERAND 1 BY ONE AND BRANCH RESULT NEGATIVE
BOLZ Tl,L7

BOLZ Dl,L7

*DECREMENT OPERAND 1 BY ONE AND BRANCH IF RESULT NEGATIVE OR ZERO
BDLEZ Tl,L7

BDLEZ Dl,L7

*
*
**
* * CONVERSION INSTRUCTIONS

* **
* *t-10VE BINARY TO DECIMAL

MBD Hl,R2

/ ...
!

~
H

~
N .
0

c::

~
tzj

MOOE: REAL-INSTRUCTIONS PAGE 27 U1:1J4:24 IJS AUG 1974

81A llfHltl8
810 16F2

588 81F AUIB58 MBD Tl,R2
822 162F
824 110.008
827 16F2

589 829 1A.0B98 MBD Dl,R2
82C 162F
82E ll.0fJf)8
831 16F2

59.0 833 FfJ144739 MBD 8,Hl,R2
837 AltlB18
83A 162F
83C lllfJIJ8
83F 16F2

591 841 Ftll44739 MBD 8, Tl,R2

~
845 All'B58
848 162F

H
I 84A 11 lf}fJ8

\J1
VJ 840 16F2
I
~ 592 84F FfJ144739 MBD 4,0l,R2

853 AlllB98
856 162F
858 111008
856 16F2

593 fv'OVE DEC !MAL TO B H~RY
594 850 021641 MOB Rl, T2

~
595 86f) 021681 MOB Rl,02 r:
596 MOVE BIW\RY TO t-EX ~

H
597 863 010832 MBX Hl,R2 '"i ...::
598 866 DliJB72 MBX Tl,R2 N
599 869 DUlBB2 MBX Dl,R2 .

0
600 q
601 86C A73A58 MBX 2,Hl,R2 MAXIMUVI DIGITS CONVERTED = OPERAf\O 1 "'d

86F 010832 §;
>-3
ti:I

!

<:
IH
I

1~

I -

(/'
i

MODE: REAL-INSTRUCTIONS PAGE 28 1~:04:2s as AUG 1974

6~2 872 A74D58
875 010872

6.03 878 A73958
878 Dl0BB2

6f)4
6f)S 87E A74258

881 DU1B32
6~6 884 A73B58

887 Dlt'872
6~7 88A A74358

880 010882
6f)8
6f)9 89f) 021621
610 893 021661
611 896 0216Al
612
613
614
615
616
617
618
619
62.el
621 899 1C03
622 898 f)C1234
623
624 89E 1Af)2
625 8A2 111002
626 8A3 001234
627
628 8A6 13
629
630 8A7 14
631 8A8 15

MBX 4, Tl,,R2

MBX 8,,Dl,R2

*
M8XN 2,Hl,R2 DIGITS CONVERTED = OPERAND 1

MBXN 4, Tl,R2

MBXN 8,Dl,R2

*
MXB Rl,H2 MOVE HEX TO BINARY
MXB RI, T2
MXB Rl,D2

*
*

* * EXECUTION TRANSFER INSTRUCTIONS

* ***
*
*

B LS BRANCH LOCAL
·B Al

*
LS BSL LS BRANCH AND STACK LOCATION LOCAL

BSL Ml BRANCH AND STACK LOCATION EXTERNAL
BSL Al BRANCH AND STACK LOCATION ABSOLUTE

* BSLI * BRANCH AND STACK LOCATION HDIRECT T~OUGH ACCU"lULAT

* RTN * RETURN
TEXT X'lS' RETURN WITHOUT TRACE

~

~
H
1-i
t<

N .
0

c:
"O
t:I
> ...,
t:i:j

~
H
I

\J1
w
I

°'

MODE: REAL-INSTRUCTIONS PAGE 29 18:.04:26 .05 AUG 1974

632
633 8A9 Ul1002
634
635 8AC 12
636
637 8PD A10Bl8

888 13
638 881 Al0858

884 13
639 8B5 AUIB98

8B8 13
64.0 889 AUIB18

BBC 12
641 880 AU)B58

8Cf) 12
642 8Cl AlfJB98

8C4 12
643
644
645
646
647
648
649
650
651
652 8C5 426778
653 8C8 413578
654
655 8CB 6115
656 8CD 6220
657
658 8CF 410274
659
66.0 802 40.0079

*
ENT

* ENTI
*

BSL*

BSL*

BSL*

ENT*

ENT*

ENT*

*
*

Ml

*
Hl

Tl

01

Hl

Tl

Dl

BRANCH EXTERNAL

BRANCH EXTERNAL INDIRECT THROUGH ACClMJLATOR

BRANCH AND STACK LOCATION THROUGH HALF TALLY

BRANCH AND STACK LOCATION 11\DIRECT THROUGH TALLY

BRANCH At{) STACK LOCATION If\DIRECT THROUGH DOUBLE TA

BRANCH EXTERNAL Il'DIRECT THROUGH HALF TALLY/TALLY/D

* * 1/0 AND CONTROL INSTRUCTIONS
*

*
*

IOI R2,3,7 CALL MONITOR TO INPUT A BYTE
100 Rl, l, 5 CALL f'«>NITOR TO OUTPUT A BYTE

*
READ Rl READ ONE BYTE FROM TERMINAL BUFFER
WRITE R2 WRITE ONE BYTE TO TERMINAL BUFFER

*
MCAL Rl,2,4 MONITOR CALL

*
Rcy-1 * RELEASE QUANTU'1

~

~
t-1
1-3
><
N .
0

c::
""' ~
1-3
l.'Z.I

((
r

(

MOOE: REAL-INSTRUCTIONS PAGE 31' 18:114: 27 115 AUG 1974

661 *
662 805 411291' IB Rl,X' 12' I/O INSTRUCTIONS
663 808 4134811 OB Rl,X'34 1

664 *
665 8DB 01) l\OP * NO OPERATION
666 *
667 8DC Rl8 HALT * HB.LT
668 8DD 4I0RIA0 HLD Rl HALT ANO DISPLAY
669 *
670 830 01 TEXT X'01' TEST INTERRUPTS
671 * 672 8El 4101lA3 ECS Rl ENTER CONSOLE Ca+1AND SWITCHES
673 8E4 4109JA1 ESS Rl ENTER SENSE SWITCHES
674 *
675 8E7 RIB SVP * START VIRTUAL PROCESS
676 8E8 M RVP * RETURN TO VIRTUAL PROCESS
677 *

~ 678 * H
I 679 *** VI

w 688 * I
-..J 681 * ASSEMBLER DIRECTIVES

682 *
683 ***
684 * 685 8E9 7FFf}f}f}64 FRAME ltJ0
686 * 687 LABEL! EQU * EQUATES

~ 688 LABEL2 EQU Cl ~ 689 LABEL3 EQU Hl
H

6921 LABEL4 EQU Tl ~ 691 LABELS EQU 01
I'.,)

692 LABEL6 EQJ Sl .
0 693 LABEL? EQU Rl c::: 694 LABELS EQU LABEL! "d
t:1 695 LABEL9 EQJ X'6i10' ~
t:t:I

MODE: REAL-INSTRUCTIONS PAGE 31 1IJ: 04: 28 05 AlXt 1974

696 * 697 LABELlO ffiG LfJIJ ORG'S
698 IJIJl 534FLt045 TEXT C'SOvtE CODE'

085 20434F44
fH'l9 45

699 ffiG 1
7fJ8 * 781 ABS DEFA X 'IJ81JD' DEFINE ABSOLUTE ADDRESS
7fJ2 *
7fJ3 SETAR 7 SET PROGRAM ADDRESS REGISTER
7fJ4 881 A74358 LOAD 1234
785 * 71J6 SPECl DEFB Rl,*1+7 SPECIAL DEF(K) FORMS
71J7 SPEC2 DEFB l,*1+11
7fJ8 fJfJ4 7128 tJOV SPEC1,SPEC2

886 91278802

~ 709
0tlA 8128

* H 7Hl SPEC3 DEFC Rl,*+3 I
VI 711 SPEC4 DEFC l,*+11 · w
I 712 fJ8C F117810F MCC SPEC3,SPEC4 00

713 * 714 SPECS DEFH 41,*+3
715 SPEC6 DEFH 1, *+11
716 IJUI F11B8113 tJOV SPEC5,SPEC6
717 * 718 SPEC? DEFT Rl,*16+3 :;.:I
719 SPECS DEFT 1,*16+11 ~ 728 014 F115418D 't-VJV SPEC7,SPEC8

H
721 * ~ 722 SPEC9 DEFD Rl,*16+3

N 723 SPECU DEFD 1, *16+11 .
0 724 818 F11781fJF 't-VJV SPEC9, SPEClfJ
~ 725 * >ti
t:i 726 SPECll DEFS Rl,*16+3 ~
tw:I

~
H
I

\J1
w
I
\0

(r r

MODE: REAL-INSTRUCTIONS PAGE 32 1~:04:28 fJ5 AUG 1974

727
728 fJlC F119Clll
729
73fJ
731
732 028 41
733 fJ21 19
734 fJ22 IJ281J
735 824 fJfJ01E240
736 fJ28 0fJ8fJfJfJ0fJ

02C H8fJ
737
738
739
748
741
742
743
744 02E 110040
745 031 lllfJ4D
746
747 fJ34 54484953

fJ38 20495320
fJ3C 41285445
fJ4fJ 585421140
044 45535341
048 4745

748

fJ4A 54484953
04E 28495320
052 534F4046
056 20404F52
05A 45
fJ5B FF

749 fl5C 0006

SPEC12 DEFS 1,*16+11
f'IOV SPEC11,SPEC12

* * PLEASE SEE APIJVE FOR DEF(K)
* LABEL12 Cl-R C'A'

* REGl
REG2
REG3

*

HTLY 25
TLY X'2fJfJ'
DTLY 123456
SR fJ

AR
AR
AR

Rl
2
HS

LABEL13 DEFM fJ,77
LABEL14 DEFM l,LABEL13

BSL LABEL13
SSL LABEL14

*

DEFINE TYPE ADDRESS REGISTER

DEFINE f'IODAL ENTRY

TEXT C'THIS IS A TEXT MESSAGE',C'THIS IS S0'-1E f'IORE',X'FF'

CMNT * THIS A~LOWS Ca.fYIENTS TO BE STARTED IN Tl-£ CQM\1ENTS
*

~
1-f,
i<

N .
0

c:::
"d

~,
tr.I

~
H
I

1.11
w
I

lo-'

0

MODE: REAL-INSTRUCTIONS

EOF:

.05E .0058

.06.0 .0.02fJ

.062 f).017
fJ64 f).014
.066 .8.01A
IJ68 llf}Sf)l)IJlB
f)6C 1Jfl25
l)6E 8.0.05
87.0 .0.0.05
.072 8888
.074 .0.0.02
fJ76 f)fJ84
.078 f)361J
fJ7A 3.039
fJ7C f)0.0fJf).0f)A
.08.0 .0f).0.0fJH 1
IJ84 IJIJ82
.086 f)IJ88
088 f)fJf)f)IJ.028
f)8C 1993
f)8E 1.1283
89f) fJ.019
IJ92 fl3F8
fJ94 f)f)IJ.01234
1.198 8.01J 1
IJ9A .001J4
.09C .0402

PAGE 33 18:.04:29 .05 AUG 1974

~
1-f

~
N .
0

~

~
t:rJ

'--

THIS PAGE INTENTIONALLY LEFT BLANK

\....

REALITY 2.0 UPDATE

Assembler Tables

~he REAL Assembler is completely table-driven and is therefore both
powerful and flexible in its definition of mnemonics. In addition,
the assembler accesses a permanent symbol table, which allows the
'f1t'edefinition of a set of symbols used by all assemblies. Symbols
defined in the source mode are placed in a temporary (local) symbol
table, and such entries override corresponding entries in the perma­
nent symbol file. It should be noted that forward references to
local symbols that match entries in the permanent symbol table will,
in general, cause assembly errors. Therefore, such overriding symbol
definitions must precede the first reference to them.

At the start of the assembly process, the assembler searches the
Master Dictionary (M/DICT) of the data-base for the following file
definitions:

PSYM Permanent symbol table.

TSYM Temporary symbol table.

OSYM Operation-code symbol table.

The assembly will abort if any of these file-definitions are missing,
with a message indicating the one that was not found. The temporary
symbol table is inititalized before the assembly starts. Since the
TSYM is actually a permanently defined file on a user's account
(M/DICT) it must be pre-defined and can be examined at the conclusion
of the assembly. Furthermore, only one person may be using the REAL
assembler per account.

TSYM/PSYM Table Entry Formats

The item format of the entries in the PSYM & TSYM files is as follows:
(Entries are in character form):

Item - id: Symbol-name

Line 1 Symbol-code (single character - see below)

Line 2 Symbol-value (hexadecimal location or displacement)

Line 3 Base-register value (single hexadecimal digit)

Symbol-Codes

The symbol code is a single character code that defines the type of the
symbol, it is used in the operation code lookup to determine legal
operands, and to flag undefined or multi-defined labels, etc.

XVl-54

---------- ----~--·----~------- ---------- ----~-------·----------·-------------~---- .. ·--···-·--·--- --- -----

\ ...

Code Description - Symbol Type Unit of Displacement

B Bit Bits

c Character Register Bytes

D Double-Word (4-byte) Words

H Half-Word (]-byte) Bytes

L Local Symbol, defined Bytes

M Mode - id Undefined

N Literal Value Bytes

R Address Register Undefined

s Storage Register (6 Bytes) Words

T Word (2 Bytes) Words

u Local Symbol, Undefined Value=O

OSYM Table-Lookup Technique

All REAL mnemonic operation codes are stored in the OSYM file. An entry
in this table may be either (1) the REAL mnemonic for the instruction
(basic op-code), or (2) the REAL mnemonic suffixed by the symbol type­
codes of all the operand field entries. The purpose of the suffixing is
(1) to provide for the separate handling of REAL mnemonics with variable
operand field entries; (2) to provide for a check on the number and type
of operand field entries. (As an example, the basic REAL mnemonic for
"move register to register" is MOV, but it has four different object
code expansions, depending on whether the registers involved are address-(R),
or storage-type (S). To allow for all cases, there are four entries in
the OSYM file: MOVRR, MOVRS, MOVSR and MOVSS. The assembler will attempt
to look up the basic op-code first, and, if it is not found, a second
attempt will be made with the basic op-code suffixed as described above.

TSYM Table Entry Setup

As the assem,bler goes through the "suffixing" technique described above, it
necessarily looks up each ~-literal operand in the TSYM and PSYM files,
in that order. If found, the type-code can be suffixed to the basic
op-code. If no entry is found in the TSYM & PSYM files, the assembler
then sets up an entry in the TSYM file with type "U" (undefined), and
location zero. This has an important ramification with regard to literal
generation.

XVI-55

OSYM Table Entry Format

Line one of the OSYM table entry may be one of the following:

M

p

Q

Defines a macro; all further lines are macro substitution
lines.

Defines "primitive" which calls one of the lower-level
assem-ler functions.

Equates this entry to another OSYM table entry specified
in the next line.

Macro Definition Format

Each substitution line in a macro definition will generate a new source
statement, to which parameters may be passed from the original source state­
ment. This newly generated source statement will, in turn, be asserrmled as
any other source statement. Thus a macro may cause the original statement
to expand into an unlimited set of new statements; however, if any gener­
ated statement calls another macro, control is passed immediately to the
new macro, and the previous one cannot regain control.

Data in a macro substitution line is transferred, as it is, to generate the
new source statement, except for the subRtitution codes, which cause a
specific parameter to be substituted. Substitution codes are enclosed by
parentheses:

CODE

AF Substitution: (n)

Label Substitution:
(L ± n)

ACTION

(n decimal) causes insertion of the n-th Argument­
field entry of the original source statement; if
such an entry is non-existene, no substitution
takes place.

(The +n is optional). Causes insertion of label
inter"ilal to the macro; the label is created using
the macro label counter (MLC), which is initial­
ized by the assembler at the start of an assembly.
If the label substitution is in the label-field
of the generated source statement, it is replaced
with a label of the form "=Lm" where m=MLC + 1,
and the MLC is incremented by one.

If the label substitution code is in the operand
field, it is replaced with a symbol of the form
"=Lm" where m=MLC ± n, the MLC being unaltered.
(See paragraph "Example of REAL Macro Expansion"
following).

XVI-56

"Primitive" Definition Formats

Each line in a primitive is an assembler-directive that calls a specific
assembler process. The first character in each line is a code defining
the process:

CODE PROCESS

A Align location counter on word boundary.

E Exit to explicitly defined process.

G Generate object-code (GEN)

R Reset entry in TSYM file (RESET)

Exit Format

E:mode-ID

Where "mode-ID" is the hexadecimal mode-ID of the processor which is to
be entered.

Gen Format

A-field B-field

(A & B-fields separated
by one blank)

The G-primitive causes the actual generation of object code. There should
be a one-to-one correspondence between entries in the A- & B- fields. Each
A-field entry is a decimal number, and specifies the number of bits of code
to be generated using the corresponding B-field entry. The sum of the
A-field values must be a multiple of 8, and must be less than or equal to
32.

ENTRY VALUE RETURNED

* Current location counter value, in bytes.

*n As above, modulo "n" bits (n decimal)

B Current base register value.

n Decimal literal.

X'h' Hexadecimal literal.

XVI-57

ENTRY

C'k'

An;m

Jn;k

Reset Format

VALUE RETURNED

Character literal (one character only).

Value returned is:
(1) AFn if AFn is a literal; or
(2) From line "m" of AFn if AFn is a symbol.

(Zero is symbol undefined).

Used to compute relative displacement from
current location (*), to the location defined
by AFn. Value returned is signed magnitude,
10-bits:
(Value (AFn)-*)=k +k if backward reference

-k if forward reference

Resets values in TSYM entry for AFn. B-field entries refer to lines 1
through m, and entries are as above. This is used to re-define TSYM table
entries: when the assembler finds a label-definition, it inserts the
entry in the TSYM as type 'L', location as current location in bytes,
and base register field from the current base register. To redefine the
entry, a R-primitive is used. For example, the opcode 'TLY' is used to
define a local tally, as in:

LABEL TLY 123

The OSYM entry for 'TLY' is:

Line 1 (type) P

Line 2 R,0 C'T' ,*16,B

Line 3 G,16 A2;2

Assembler Output

Redefines type as T;
location module 16.

Generates 2-byte object-code
value

The assembler output consists of (1) macro statement expansions; (2) error
messages and (3) generated object code, all appended to the original
source statement.

A user-input source statement is of the format:

Source Statement (AM)

XVI-58

On output, the format is as follows:

Source Statement (SVM) location object-code (AM)

where 'location' is a 3-digit hexadecimal field, and the 'object code' is
in hexadecimal.

Error messages are appended to the source statement as the assembler
encounters errors; the messages are appended in the format:

•• (VM)* message ••••

Messages may precede or follow the object code.

Macro expansions resemble source statements in terms of source statement,
errors and object code, and are of the format:

Source Statement (VM) macro statement (SVM) loc. obj. code (VM) •••
(AM).

Note that regardless of what the assembler appends to the original source
statement, the delimiters surrounding the entire statement remain
unchanged; this ensures proper source statement input on subsequent
assemblies.

Literal Generation

REAL statements that require assembly of literal should setup entries in
the TSYM of the following format:

Item-ID =k value S storage register

Symbol-type u k= D double word

Location 0 T word

This will be done simply by the reference of the symbol as an operand
in a source statement. However, the OSYM table entry that the source
statement references must be of the "suffixed" type rather than being
the basic op-code. For example, the statement:

MOV =T23,CTRI

which references the OSYM table entry 'MOVTT', and, in so doing, sets up
the TSYM entry '=T23' as type U to be assembled as a literal.

XVI-59

At the end of pass I, the assembler searches the TSYM file for undefined
entries; if they are of the format shown above, a dummy source statement
of the form:

LABEL OPCODE OPERAND

=k value :k value

is generated and assembled. Thus the entries ":S", ":D", ":T" in the
OSYM are reserved and cause generation of 6-byte (storage register, type S),
4-byte (double-word, type D) and 2-byte (word, type T) literals, respectively.

Reassembly in Pass II

During the assembly process, statements which have a forward reference are
flagged for re-assembly by prefixing the character "X" to the location
counter and object code data that are appended to the source statement.
The REAL assembler is not a true two-pass assembler; pass II consists of
scanning the mode for statements that have been flagged for re-assembly,
and re-assembling those statements exclusively. If they contain references
to undefined symbols, the object code output will still have the "reassemble"
flag stored with it, after pass II.

Assembler Error Messages

Message

*UNDEF: Symbol1 Symbol2 •.••

*LABEL TYPE

*MULTIDEF

*REF-UNDEF

*LABEL ?

*OPCODE ?

*OPERAND ?

*OPCD ILLGL:opcode

Explanation

Undefined symbols at end of pass I
(Message at end-of-mode).

Label-field format error.

Label-field entry was previously defined.

Reference to undefined symbol.

Required label-field missing.

Op-code-field entry missing.

Required operand-field entry missing.

Either the opcode was illegal, or the
operand types were illegal for the
opcode.

XVI-60

*OPRND TYPE

*RANGE ERR

*TRUNCATION

The operand-field entry was an illegal
type; eg: ORG statement with undefined
symbol, SETAR with non-numeric operand,
etc.

The range of the operand-field entry
is illegai; eg: SETAR with n not O"n<l.6.

Object code truncation may be due to:
branch out-of-range; TSYM/PSYM table entry
error; specification error in the GEN
primitive.

The following are errors in the OSYM-table entry specifications.

*A-FIELD ?
*B-FIELD ?

*OPCODE-TYPE ERR

*MACRO-SPEC ERR

Error in A- or B-field specification.

Opcode type not a P/Q/M, or primitive
type was illegal.

Error in the macro specification

Example of REAL Macro Expansion

Location Counter • X'Ol2'
MLC = 0

Source Statement

(Branch if character
addressed by R4 is
numeric)

PSYM table entry

TSYM table entry

OSYM table lookup

Line 1 (type)

Line 2

Line 3

Line 4

BCN R4,LABX

Symbol .'fl.e!. Displacement

R4 R 0004

LABX L 0024

BCNRL

M

BCL (2),X'30',(L + 1) If O, skip next

BCLE (2) ,X' 39' , (3) Branch is <9

(L) EQU * Define Internal
label

XVI-61

'

Generated Source Statements

From Line 1

From Line 2

From Line 3

OSYM table lookup

Line 1 (type)

Line 2

Object Code

BCL R4,X'30' ,=LOl

BCLE R4,X'39' ,LABX

=LOl EQU *
BCLERNL

p

G,4,4,8,4,2,10 ~,A3·2,0,3,J4·4

~up value
"4" from PSYM

.--~~~~~~~~-item 'R4'

--~~~~~~~-Pickup value~~~~

X' 30' (ASCII O)
from AF2

~~~~~~Pickup relative dis­

X'4430 0 COE' 

XVI-62 

placement from * to 
LABX: adjust by 
4 bytes 

. ...- , 
•• 



Section XVII 

THE INTERACTIVE DEBUGGER 

l"N'!';ROPUCTIQN 

The interactive debugger (DEBUG) provides a means for monitoring and 
controlling program execution. DEBUG is normally used in the check-out 
phase of assembly language programs. DEBUG also has the ability to turn 
the print off at the terminal, and to terminate program execution. 

To use the facilities of DEBUG other than )urning the terminal printing 
on and off, and terminating program execution, requires system privileges 
level two. If the user has such privileges, he may control execution by 
the insertion of break-points in his program, and by executing a specific 
number of instructions. He may trace execution by displaying data at 
specific locations. DEBUG also allows the user to display data throughout 
the virtual memory of the system. 

The prompt character of the debugger is the exclamation point (!). DEBUG 
is entered voluntarily by depressing the BREAK key on the terminal, or 
involuntarily when a hardware trap condition occurs. In the latter case, 
a message indicating the nature of the error causing the trap, and the 
location at which the trap occurred, is displayed prior to the DEBUG . 
prompt character. 

DEBUG Syntax 

This section defines the terms "address", "indirect address", "window", 
and "format", which are used in the command descriptions in the following 
sections. 

An Address (a) references a byte in the virtual memory, by specifying a 
frame-ID (FID), and an offset displacement within the frame. The FID 
and/or displacement may be in decimal or in hexadecimal; the general forms 
of an Address are as below: 

f ,d Fid in decimal, displacement in decimal. 
f.d Fid in decimal, displacement in hexadecimal • 
• f ,d Fid in hexadecimal, displacement in decimal • 
• f.d Fid in hexadecimal, displacement in hexadecimal. 

If the Fid is omitted, the PCB-Fid is used as a default value. The 
displacement must be in the range 0 s f < 512. 

For example, the following Fid and displacement specifications are 
equivalent: 12.3C = 12.60 = .C.3C = .C,60 

XVII-1 



An Indirect Address (i) references a byte in the virtual memory by 
specifying an Address Register which therefore indirectly references a 
particular byte. Address Registers zero and one cannot be used in this 
manner. The Indirect Address specification takes the forms: 

Rr 
R.r 

r in decimal 
r in hexadecimal; 

2 ~ r ~ 15 

Note that Indirect Addresses have an implied displacement within the Fid 
that the register is pointing to; this displacement depends on whether 
the register is in the "linked" or the "unlinked" format (described in 
the CPU section). 

A Window (w) specifies the number of bytes to display (m), and optionally 
the negative displacement (n) from the Address or Indirect Address, from 
which to start the display. If n is not specified, it is assumed to be 
zero. The forms of the window are: 

;m m in decimal 
;.m m in hexadecimal 
;n,m n and m in decimal 
;n.m n in decimal, m in hexadecimal 
;.n,m n in hexadecimal, m in decimal 
;.n.m n and m in hexadecimal. 

The default window is 0,4 (no negative displacement, display four bytes). 

A Format (c) indicates whether the data is to be displayed in hexadecimal, 
character, or integer format. The single characters X, C and I specify 
hexadecimal, character, or integer display respectively. On initial entry 
to DEBUG, the format is an X. 

General DEBUG Statement Format 

Instruction 
Mnemonic 

or 
Format 

Address 
or 

Indirect 
Address 

Window 

If format or window is not specified, the previously specified values will 
remain in effect. 

DEBUG Canmands 

Instruction 
Mnemonic 

Description 

B a Add address to Break Table 

D Display Break and Trace Tables 

XVII-2 



E n Set Execution Counter to n, where n is a positive 
integer <250. EO turns off the execution counter. 

END Terminate execution. Return to TCL. 

G Go. Starts program at current address, 
G a or branches to Address to start. 

Ka Kill break-point (Delete address from Break Table). 

M Reverse status of Modal Break Flag and print new 
status. 

N n Set Break-Point Counter to n. (Inhibit trap until 

OFF 

p 

"n" breaks have occurred.) 

Terminate Session (LOGOFF). 

Reverse status of Print List Flag and print new 
status. 

T a Add Address to Trace Table, or add register 
T i (Indirect Address to Indirect Trace Table.) 

U a Untrace. Delete Address from Trace Table, or 
U i delete register (Indirect Address) from Indirect 

Trace Table. 

Data Display Commands: 

Ca;w Display data in character format 

Ci;w 

Xa;w Display data in hexadecimal format 

Xi;w 

Ia;w Display data in integer format; if w 

Ii;w is not 1, 2 or 4, only one byte will be displayed. 

Immediately after the data at the specified address has been displayed, 
DEBUG prompts with an equal sign(•), and the user has the following 
options: 

© Carriage Return -- Terminate display mode; DEBUG will prompt 
with an l 

Line Feed -- Display data in the next "window" (that is, the 
previously specified Address or Indirect Address is updated 
according to the currently specified window). The data is 
displayed on the same line. 

XVII-3 



Nc Control-N -- Display data in the next window, preceded by the 
address being displayed, in the format f .d (f in decimal, 
din hexadecimal). 

Pc Control-P -- Display data in the previous window, preceded by 
the address being displayed. 

Note: On a display using the Indirect Address specification, the 
line-feed or control-N will cause an automatic crossing of linked 
frame boundaries if the register being used in the display is in 
the "linked" format. 

Replacing Information: 

Data may be altered by entering the new data in one of the following 
formats, before using one of the above control characters: 

• xxxxxxxxxx ••• 

I CCCCCCCCCCo o o 

n 

Replaces data with hexadecimal string 11xxxxxxx11 ; 

the string should contain an even number of 
hexadecimal digits, and can be up to 80 digits 
in length. 

Replaces data with character string data 
"ccccc", of up to 80 characters. 

Replaces data with integer value; in this case, 
the window must have been 1, 2 or 4. 

In the case of the hexadecimal or character string replace, the data 
actually replaced may extend beyond the currently defined 11window11 • 

Tables Provided for Debugging 

DEBUG maintains three tables of four elements each: the Break Table, the 
Trace Table and the Indirect Trace Table. If there are entries in the 
Break Table, the address of every instruction is compared with the address 
in the Break Table and a break occurs if there is a match. If there are 
entries in the Trace or Indirect Trace Tables, the data pointed at by 
the entries, is printed whenever a break message is printed. Up to four 
entries can be placed in each of these tables. 

Break Messages 

DEBUG has the facility to break on intermodal transfers (BSL or ENT 
instructions). The command acts as an alternate action switch, to change 
the status from ON to OFF. A break can also be initiated with the 

XVII-4 



\ .. 

command E, causing a break after executing a specified number of 
instructions. The following set of standard messages are output, when 
a break in execution occurs: 

Message 

B f.d 

E f.d 

I f.d 

M f.d 

R f.d 

Condition 

Break-point address encountered. (Break Table 
match). 

Execution runout (specified number of instructions 
have been executed). 

Interrupt (Break key depressed). 

Modal break (Inter-frame branch - ENT or BSL 
encountered). 

Return (RTN) encountered. 

where : "f" is the decimal FID and "d" the hexadecimal displacement, 
representing the location of the execution interruption point. 

Note: The execution break and address break facilities are mutually 
exclusive: When the execution counter is positive, Break Table entries.are 
ignoted. However, the Break Table of the Execution Break facility can be 
used with the Modal break facility .. 

Hardware Trap Conditions 

Certain error conditions cause the CPU to execute a trap to the DEBUG 
state; processing of the current program will be aborted, and a message 
indicating the nature of the trap, and the location at which it occurred, 
will be displayed. The table below shows these error conditions: 

Error No. Message 

0 ILLGL OPCODE 

1 RTN S TK EMPTY 

2 RTN STK FULL 

3 * FRM-ID ZERO 

Description 

An illegal (undefined) operation code 
has been found. 
A RTN (return) instruction was executed 
when the return-stack was empty 
(current pointer was at X'0184'). 
A BSL or BSLI (subroutine call) 
instruction was executed when the 
return-stack was full (current pointer 
was at X'OIBO'); the return-stack has 
been reset to an "empty" condition 
before the trap. 
An address register has an FID of 
zero. 

XVII-5 



4 * 

5 * 

6 * 

7 

8 

11 

12 

CROSSING FRM LIMIT 

FORW LNK ZERO 

BACKW LNK ZERO 

PRIV OPCODE 

ILLGL. FRAME-ID 

STK. FRMT ERR 

REGISTER ZERO 
DETACHED 

An address register in the "unlinked" 
format 1) has been incremented or 
decremented off the boundary of a 
frame, or 2) has been used in a rela­
tive address computation that causes 
the generated relative address to 
cross a frame boundary. 
An address register in the "linked" 
format has been incremented past the 
last frame in the linked frame set. 
An address register in the "linked" 
foramt has been decremented prior 
to the first frame in the linked 
frame set. 
A Privileged operation code (one 
executable only in the Monitor mode 
of operation), has been found while 
executing in the Virtual mode. 
An address register has an FID that 
exceeds the maximum value allowable 
in the current disc configuration. 
The Return-stack pointers are in an 
illegal format - either the ending 
address is less than X'Ol84', or the 
current address is less than X'Ol84'. 
The pointers have been reset to an 
initial condition of X'OlBO' and 
X1 0184' respectively. 
Register zero has been detached by a 
user-program. 

In the case of traps marked with an asterisk (*) in the table above, the 
following message will also be returned after the message shown: 

REG • O.X 

where "x" is the hexadecimal Address Register number of the register 
causing the trap condition. 

In all cases, the following message will also be returned: 

ABORT @ f.d 

where "f" is the decimal Fid of the frame, and "d" the hexadecimal dis­
placement within it, of the location where the trap occurred. This 
corresponds the location counter in the assembly listing of the correspond­
ing program. 

Note that the G (Go) connnand, without an address specification, cannot be 
used after a trap to the DEBUG state. 

XVII-6 



EXAMPLE --

I 6.87 
!X200 .12;6@ .1El327101881= .o 123456789ABCDEF NC 
200.18 .CDEF34567890=Nc 
200.1E .012coooooo64=~~ p< 
200.18 .CDEF34567890 1 4B4A4D4E0064=Nc 
200.24 .0004000AOOOO= r 

:HHHH(f) 

R 5.49 
512.40 = .000002060000 

R 0.4 : 528. = .004154545249 
M 7.3 

512.40 = .000002060000 
R 0.4 : 528. = .004154545249 
R 5. 78 
512.40 = .000020920000 

R 0.4 : 528. = .004154545249 
M 10.l 
512.40 = .000020920000 

R 0.4 : 528. = .004154545249 
M 8.1 

512.40 = .000020920000 
R 0.4 : 528. = .004154545249 
R 10.32 
512.40 = .000020920000 

R 0.4 : 528. = .004154545249 

!QG) 
BRK TBL: O. 0. 
TRC TBL: 512 .40 

:crRC TBL: 0. 4 0 • 
!END@ 

0. o. 
o. o. o. 
o. o. 

XVII-7 

BREAK key depressed 

Display and change data. 
Display next window, no 
change. 
Change data in character 
form. 

Set Modal Trace on. 
See delay counter. 
Trace location .40 in PCB 
Trace Register four. 
Go. 

TCL statement. 

RTN instruction 
Data from direct trace. 
Data from indirect trace. 

Display Break table entries. 

(Indirect trace table) 
Terminate Execution. 

Back to TCL. 



I ... ...,_ 

REALITY 2.0 UPDATE 

Section XVIII 

SYSTEM MAINTENANCE 

INTRODUCTION 

Tilis section describes the interaction with the front panel of the CPU, 
and the system maintenance procedures that are cataloged in the SYSPROG 
(system programmer's) account. The front panel sense switches are used 
when a bootstrap and cold-start sequence is to be initiated, as well as 
to halt the CPU. 

Halting the CPU While in Execution 

The CPU may be halted from the front panel by depressing either the 
STEP or the INT switch. Either switch causes the CPU to trap to the 
Monitor mode (if it was executing in Virtual mode), before halting. 

Restarting After STEP/INT Halts 

After an INT or STEP halt, the sequence RESET-INT is mandatory; the 
sense switches should be set appropriately before this sequence 
(numbered right to left): 

All switches up 

Switches 4 and 1 down 

Switches 4, 2 and 1 down 

Continue execution 

Bootstrap/Cold-start sequence with 
automatic configuration 

Bootstrap/Cold-start sequence with 
operator configuration. 

Continuing execution after an INT halt may cause terminals that were 
in the output mode at the time of the INT halt to wait for a break-key 
interrupt before resuming output. 

Operator Notes: 

Never depress either the CLOCK or RESET switch while the CPU Run Light 
is on since this will cause indeterminate errors. 

The RUN switch is used only after an address stop which is not covered 
in this manual and should only be used by a qualified Microdata 
Customer Engineer. 

Bootstrap and Cold-Start Procedure 

This section deals with bootstrapping the system from a cold-start 
magnetic tape. 

XVIII-1 



REALITY 2.0 UPDATE 

The process of starting up the system in~olves initializing core 
memory from the cold-start tape. The Reality system operates with 
the monitor software and certain virtual memory tables core-resident. 
This data, as well as an initial set of software object code is read 
in from the tape during the bootstrap process. 

The bootstrap process is controlled by the sense switches on the front 
panel of the CPU. Sense switches 4 and 1 control the reading of the 
bootstrap and the cold-start sections of the tape respectively. 

Sense switch 2 controls whether the software is reconfigured by the 
operator or not. (See below.) The bootstrap switch (1) causes the 
CPU to read 512 bytes (one tape record) from device 9 into locations 
0 through X'IFF'. The coldstart switch (4) causes the boot program to 
read the next 12 records into locations X'200' through X'18FF', after 
which the configuration of the system takes place. The boot program 
then gains control again and reads the next 24 records into locations 
X'lOOO' through X'3FFF'. At this time the cold-start process is com­
plete, and process zero, which is the terminal connected to channel 
zero of the communications device (address X'l8') is activated. The 
system will then output a message requesting the options that determine 
the next step. 

OPTIONS (X/A/AF/F) = 

Entering an X terminates the cold-start process; other options 
are described under File Restore Process. 

Using Preset Configuration 

To use the preset configuration on a coldstart tape, simply perform a 
bootstrap/coldstart sequence with sense switch 2 up. 

Reconfiguring Software at Coldstart Time 

To reconfigure software on a coldstart tape that was preset to any 
arbitrary configuration, it is necessary to put sense switch 2 down as 
well as 1 and 4. The first question is DO YOU WANT TO RUN THE DISC 
DIAGNOSTIC (Y/N). A response of Y gives control to the disc diagnostic 
covered in separate documentation. A response of N causes the conf igu­
ration questions to be asked. Any other response causes the same 
question to be repeated. The following questions are then asked: 

NUMBER OF DISC CONTROLLERS (only 1,2,3, or 4 is valid.) 

NUMBER OF DISCS PER CONTROLLER (only 1 or 2 is valid) 

CORE SIZE (only 16,24,32,40,48,56, or 64 is valid) 

MAXIMUM FID (only 9743 through 155903 is valid) 

XVIII-2 



REALITY 2.0 UPDATE 

NUMBER OF ENTRIES IN IOQ TABLE (only 2 through 8 is valid) 

NUMBER OF DISC READS BEFORE REMOVAL FROM IOQ (any value 4 through 
127 is valid) 

NUMBER OF COMMUNICATION LINES (only 1 through 32 is valid) 

The last question asked is IS CONFIGURATION CORRECT (Y/N). A response 
of Y will cause the rest of the coldstart tape to be read and the 
OPTIONS(X/A/AF/F)= message to appear. A response of N will cause all 
of the configuration questions to be asked again. 

It is important to note that all communication between the computer 
and the operator is done on the terminal on line zero. Also, since 
the communication is being handled entirely by the monitor and not by 
the much more sophisticated firmware/virtual software combination, the 
communication is handled in a much more simplistic manner. None of the 
normal control characters have their usual effect (i.e., control H does 
not backspace etc.) All responses are terminated with a non-numeric 
character which is not considered as part of the response unless it is 
the character "X". If the character "X" is used to terminate a response, 
the previous question is asked again. 

Programming Notes: 

The bootstrap program MBOOT, which is read in by the firmware, first 
reads in the twelve monitor frames which includes MSETUPO, MSETUPl, 
MMONITORY/N2, DISC-DIAG and DISC-MSG. Control is then transferred to 
MSETUPO. If sense switch 2 is down, the program first determines 
whether the disc diagnostic is to be executed. If it is, MMONITOR 
and MMONITORX are overlayed by DISC-DIAG and DISC-MSG and control is 
passed to DISC-DIAG. If the disc diagnostic is not to be executed, 
the table in MSETUPl is set up by communicating with the operator 
before the conf igurator is activated. If sense switch 2 is up, the 
table of configuration parameters is used as it comes in from the tape. 
Control is then passed back to MBOOT which reads the 24 virtual frames 
from the tape, overlaying MSETUPO, MSETUPl, MMONITORY/N2, DISC-DIAG 
and DISC-MSG so still only 16K of memory is needed for the coldstart 
even though there is 18.5K of data on the tape. 

MSETUPl contains a table which has the preset configuration parameters 
as well as all of the messages which are used to ask the operator ques­
tions concerning reconfiguration. MSETUPO contains the code which 
communicates with the operator and which actually does the configuration. 
The program uses the values in the table in MSETUPl to decide how to 
configure the system. The reconfiguration is just a matter of changing 
the values in the table before the configurator is activated. 
MMONITORY/N2l..s the same as MMONITORY/Nl except that it is set up to 
use two discs per controller instead of one disc per controller and 
is in a different frame. MMONITORY/Nl is overlayed by MMONITORY/N2 by 
the configurator if two discs per controller are selected. 

XVIIl-3 



REALITY 2.0 UPDATE 

Further Explanation of Configuration Parameters 

Most of the questions which concern the configuration parameters are 
self explanatory, but a few of them are not or have additional consid­
erations which may not be obvious. 

Maximum FID can be determined from the following table: 
(size of system is in megabytes) 

Size of S.z.stem 5 10 15 20 30 40 60 80 
Maximum FID 9743 19487 29231 38975 58463 77951 116927 155903 

If a number other than those above is entered, one of two things will 
happen. If the number is larger than that allowable for the size of 
the system, the monitor will later allow a virtual process to reference 
a FID which does not exist which will cause that process to go into an 
infinite loop trying to reference that FID. The break key will get you 
out of such a loop in most cases. The other possibility is that the 
number is smaller than allowable for the size of the system. In this 
case a virtual process may later break with an illegal FID error when 
referencing a perfectly good FID. The only way to cure either of 
these problems is to coldstart the system again and supply a valid 
maximum FID. 

The number of entries in the IOQ table can be 2 through 8. This is one 
of the parameters with which the user can tune his system. The IOQ 
table determines how many virtual processes can access the disc during 
the same time period. If a process does not have an entry in the table 
and the table is full, then that process must wait until another process 
has been removed from the table before he can be placed there in order 
to satisfy a frame fault. How many frame faults a process is allowed 
before he is removed from the table is covered on the next page. 

The number of entries should be determined by the number of discs and 
the amount of core in your system. The following table is meant to be 
used only as a guide in setting up the number of IOQ entries. Users 
may find that one entry more or less may give them better response time 
depending on the use of the system. 

Amount of Core in 1024 Byte Multip les 

16 24 32 40 48 56 64 

1 2 2 3 3 4 4 5 

2 2 3 4 4 5 5 6 
No. 

3 - 3 4 5 6 6 7 
of 

4 - - 5 6 6 7 8 
Discs 

6 - - - 7 7 8 8 

8 - - - - 8 8 8 

XVIII-4 



REALITY 2.0 UPDATE 

The dashes in the above table represent unbalanced systems for which 
no number exists that would be the correct number of entries in the 
IOQ. 

The number of disc reads before removal from the IOQ is synonymous with 
the number of frame faults that will be satisfied for a process before 
it is removed from contention for the disc. This number can range from 
4 to 127. It should be chosen based on the number and type of processes 
a user will be running. Higher numbers give the edge to processes 
requiring many frames such as sorts, RPG compile and execution, and 
assemblies. Lower numbers give the edge to processes requiring few 
frames such as data entry or inquiry. Numbers in the range of 16 to 
25 work quite well in a mixed process environment. 

The number of communication lines is determined by adding the number of 
communication ports to the number of phantom processes, such as the 
print spooler. For example, if you have an 8-way and a 4-way communi­
cation board, that is 12 communication ports. If you are going to use 
the print spooler but no user written phantom processes, that's 13 com­
munication lines all together. 

FILE-RESTORE PROCESS 

The File-Restore process consists of two sections: 

1. Restoring the "Abs", or absolute data image (data which is 
assigned to particular frames). The extent and number of 
frames that are restored are fixed, and depends on the Abs 
parameter that was used when the File-save tape was created. 

2. Restoring the files from the tape. All files on the tape 
will be restored; for a selective or partial restore see 
Selective Restore. 

The above two sections can be done separately or in conjunction, 
depending on the option entered in response to the OPTIONS message, 
below: 

x 

A 

No further action is needed; proceed to LOGON 

Restore Abs (absolute data image) from the File-Restore 
tape, except for the following frames: 

FID = 34 overflow space management routine is 
restored, but overflow space tables are 
preserved. 

FID = 47 Abs loader is not overwritten. 

XVIII-5 



REALITY 2.0 UPDATE 

F Initialize overflow space tables and restore files 
from the file-restore tape. 

AF Initialize: overflow space management routine, overflow 
space tables, and restore files from the file-restore 
tape. If the tape does not contain an Abs section, the 
files are restored with no indication of missing Abs. 

As the system restores files, a message will be returned for each file 
(dictionary or data file) that is restored, indicating the file-name, 
and its base, modulo and separation parameters. 

An example is shown on the following page. 

On a cold-start, all processes other than the one executing the cold­
start are set up to an initial execution address in the program 
TCL-INIT (Frame 4, displacement 1), which results in their going to 
the LOGON state when activated. 

The restoring of files also has the effect of initializing the over­
flow disc space of the system; at the conclusion of a file restore, 
all data is grouped together and there is one contiguous block of 
overflow space extending from the end of file-space to the end of the 
available disc space. 

FILE RESTORE FRAME LIMITS 

File restore frame limits may now be entered at the time of the file 
restore. Just prior to the files portion of the restore (i.e., after 
the abs portion has completed or skipped), the message, FRAME LIMITS=, 
will appear on the terminal on which the file restore is being done. 
A response of © will cause the prestored limits on the tape to be used. 
A response of n-m (!) will cause n to be used as the base of the SYSTEM 
dictionary and m to be used as the highest frame which can be allocated 
to files. Four audits are performed on these numbers: n must be greater 
than or equal to 32 plus the PCB FID of the last communication line set 
up for the system; m must be greater than n; there must be a "-" between 
n and m; and no other characters may be entered after the m. If any of 
these audits fail the message, FRAME LIMITS, is repeated. The prestored 
limits may be used after any number of audit failures by responding with 
@ to the repeated message. 

Output From a File-Restore Process 

OPTI °'15 (X/ A/ AF IF) = AF @ 
FR.AME LIMITS = @ 
SSYSTEMhDA01024AQ00lA011 
SDL/l[)l\DA01024A0001A011 

PACCA{)l\01035'-000lh001 
PDL/IIY-DA01037A0005A001 

PPICKADA01088A0007A001 

Response to OPTIONS? REQUEST. 
Response causing the limits stored 
on the tape to be used. 
System dictionary 
System dictionary 
ACC file dictionary 
ACCOUNT file 
First user MDICT 

XVIII-6 



SDL/10"0"01088"0007"001 
SM/DICTAD"01088A0007A001 
SMD"D" "0007"001 

PACCOUNT-N04 D"01173"0007A001 
PACCOlJNTA DAO 11731\ 0007" 001 

PDL/ID"DA01183A0011"001 
PBATQ-IADJ\01220A0003"001 
SDL/ICY-0"01220"0003"001 
PINVENTQRYADA01223A0003~001 

PDINV"0A01223AQ003A001 
PINVADAQ1223AOOQ3A001 

PDL/IDADAQ1226"0007AOQ1 
PTSY~OA01234"0003"001 
PS.AMP-FI LE" 0"01237" 0001" 001 

POL/ID"DA01238"000l"001 

REALITY 2.0 UPDATE 

First user dictionary 
Synonym to above 
User data-file 
Next user dictionary 
DL/ID pointing back to diet. 

User dictionary without DL/ID 

PDUM"IY"D"01239"0001A001 P element: file-name updated 
PTTTADA01240A0001"001 in previous dictionary 
PDL/I[)ADA01241"0001A001__..,...Base FID of file 

PDIJVMYIAOA01242AOOOl"JlO~---- Modulo of file 
PDL/ID"D"O!Z-4-3"lJOJl.1"--0~Separ. of file 

PTEMF" D-'01244"0001 "1101...,...---
PDL/ ID"D "01246'' 0001" 001 

PEMP" 0"01247" 0001"001 
PD I CK" 0"01237" 0001" 001 

PDL/IDAD"01248"0001~001 
PJUNK"D"01249"000I"001 
PSAMPLE-FILEAD/\01250"0001"001 

POL/ID" D"01251" 0003" 002 
PXPSYM"D"01259"0029"001 
PXTSYM"D"01294"0029"001 
PMC"DA01323"000111 001 

PDL"ID"D"Ol324"0003"001 
PfvlACHINE" D "01327" 00011\ 001 

PDICTA 0"013281\ 0007 11 001 
PDATA"D 11 0132811 0007AOQ1 
PMJRTI-IIA DAO 1328" 0007" 001 
PMJXhDA01328A0007A001 
SDL/IOAOA01328A0007A001 
$M)A0AQ1328A0QQ7A0Ql 
SM/DICT110A01328'\0007A001 

PCSYM110 1A01356A0001A001 
PDL/IDADA01357~0017A002 

Second user M/DICT 

S element; file-name updated 
into current file 

If the prestored limits are used, the lower limit is checked to be 
certain that it is greater than or equal to 32 plus the PCB FID of the 
last communication line set up for the system. If it isn't, then the 
default is used which is the number the lower limit was being checked 
against. 

X.VIII-7 



REALITY 2.0 UPDATE 

The following table shows the relationship between the number of 
conmunication lines set up for a system and the lowest legal base 
FID for the SYSTEM dictionary: 

No. of Lines Base FID No. of Lines Base FID 

1 544 17 1056 
2 576 18 1088 
3 608 19 1120 
4 640 20 1152 
5 672 21 1184 
6 704 22 1216 
7 736 23 1248 
8 768 24 1280 
9 800 25 1312 

10 832 26 1344 
11 864 27 1376 
12 896 28 1408 
13 928 29 1440 
14 960 30 1472 
15 992 31 1504 
16 1024 32 1536 

Initial System Setup 

At the conclusion of a Cold-Start or a file-restore process there are 
certain system parameters that~ be set to an initial condition. 
This is accomplished by executing the COLD-START PROC in the SYSPROG 
M/DICT. This is done by logging on to the SYSPROG: 

LOGON PLEASE: SYSPROG @ 

and keying 

COLD-START @ (See Cold-Start PROC, XVIII-10) 

SYSPROG Account PROCs and Verbs 

The following is a list of special PROCs and verbs that are in the 
SYSPROG account: 

PROCs: COLD-START - To be executed immediately after a cold-start 
or File-restore only. 

CREATE-ACCOUNT - Creates a new user account; places a Q entry 
in the SYSPROG account to allow access. 

XVIII-8 



Verbs: 

\ 

REALITY 2.0 UPDATE 

FILE-RESTORE - Initiates the file-restore process from a 
file-save tape. 

FILE-SAVE - Creates a file-save tape 

RE-GEN - Sets up the configuration parameters prior to 
creating a coldstart tape. 

SETUP-ASSY - Sets an account up to be able to assemble 
REAL programs. 

SETUP-RPG - Sets up an account to be able to compile and 
run RPG-II programs. 

START-SPOOLER - Starts the output spooler if that option was 
not exercised in the COLD-START proc. 

SYS-GEN - Generates a sys-gen tape. 

SYS-LOAD - Used only when updating the software system 
with a new system update tape. 

SYS-UPDATE - Used when updating to a new system release 
from a SYSGEN tape. 

UPDATE-ACCOUNT - Used to update an account to a new system 
release level. 

VERIFY-SYSTEM - Verifies the source programs against the 
object code of the system modes. 

:DDUMP - Evokes the file-save program. 

:DLOAD - Evokes the file-restore program 

:!NIT-LINES - Sets the number of active lines which the 
monitor will look at 

:!NIT-SPOOLER - Starts the output spooler operation and 
sets pointers. 

:MSETUP - Set configuration parameters before creation 
of a coldstart tape. 

SET-DATE - Reset system date 

SET-TIME - Reset system time 

XVIII-9 



REALITY 2.0 UPDATE 

:START-SPOOLER - Starts the output spooler operation. 

:SWD - Reverses the action of the :SWE verb. 

:SWE - Changes "D"D/CODE entries to "E"D/CODE 
entries. 

COLD-START PROC 

This PROC should be used immediately after bringing the system up with 
a cold start tape to set the system time and date, set up the number 
of active lines on the system, and to optionally start the output 
spooler. It begins by prompting the user with: 

THE CURRENT SYSTEM TIME AND DATE IS hh:nun:ss dd mmm yyy 
DO YOU WISH TO CHANGE THE TIME OR DATE: (Y/N) 

If neither "Y" or "N" is entered in response, the PROC warns of an 
illegal response and repeats the prompt. If "N" is entered, the PROC 
skips the prompts for time and date and skips deleting current entries 
from the accounting file and goes directly to the communication lines 
section. If "Y" is entered, the user is prompted with TIME. If only 
a © is given, the PROC goes on to the DATE prompt. Otherwise it 
passes any response given to the SET-TIME verb without auditing the 
response. Then the DATE prompt is given. If only a ©is given, the 
PROC bypasses setting the date. Otherwise it passes any response 
given to the SET-DATE verb without auditing the response. Next all 
current entries in the accounting file ACC are deleted. This is done 
to keep from charging any account an invalid amount of the time due to 
the change in date or time. 

Next the user is prompted with: 

HOW MANY Cor+1UNICATION LINES WILL BE ACTIVE? (1,2, ••• 32) 

If the user responds with an invalid reply, a warning message is given 
and the prompt is repeated. Otherwise the response is passed on to 
the :!NIT-LINES verb. This allows you to change the number of active 
lines within the range 1 through the maximum allowable with the value 
of the base FID of your system dictionary. Next the START-SPOOLER 
section is entered which is identical to the START-SPOOLER PROC. Finally 
the PROC logs the user off. This is done to force him to log back on 
thus putting an entry for him back into the ACC file. 

CREATE-ACCOUNT PROC 

This PROC creates a new account by performing the following steps: 

1. Creating a new file (dictionary) with the new user name as 
the file definition item-id; the file definition item is 
placed in the SYSTEM dictionary. 

XVIII-10 



REALITY 2.0 UPDATE 

2. Copying the contents of the NEWAC file, the prototype 
M/DICT, to the newly created user M/DICT. 

3. Adding a file synonym definition entry in the SYSPROG account 
equated to the new M/DICT, to allow access from SYSPROG. 

Usage 

The format of the CREATE-ACCOUNT parameter list is as follows: 

:CREATE-ACCOUNT user-name l/ret-code(s) l/upd-code(s) password 
privileges m,s 

where: 

user name 

l/ret-code(s) 

l/upd-code(s) 

password 

privileges 

m,s 

is the name of the new account; it cannot 
contain any commas, but all other characters 
are legal. 

is the set of retrieval lock-codes to be 
associated with the user; multiple values can 
be entered separated by the Control-Shift-N 
character (echoes as ] ) • Described in the 
sections LOGON and SECURITY. 

is the set of update lock codes associated with 
the user; as for 1/ret-codes. 

is the password associated with the user's 
LOGON item in the SYSTEM dictionary. 

is the code describing the user's privileges 
and workspace assignment; described in the 
LOGON section. 

are the module and separation parameters for 
the user M/DICT; numerics separated by a comma. 

All parameters except the user-name are optional; null values may be 
indicated by a backslash ('). Default values for module and separation 
are 13,l. 

XVIII-11 



REALITY 2.0 UPDATE 

EXAMPLE--

:CREATE-ACCOUNT SPENCER ABCD]LOCK2 © 

(417) FILE 'SPENCER' CREATED; BASE 
SEPAR = l. 

165 ITEMS COPIED 

'SPENCER' ADDED 

'SPENCER' UPDATED 

Multiple-valued l/ret 
Null l/upd codes.------" 
No m,s specified.~~~~~~---

The CREATE-ACCOUNT PROC should not be used to create a new synonym to 
an existent account; this should be done by using the Editor to create 
the file synonym definition entry in the SYSTEM dictionary. 

FILE-RESTORE PROC 

This PROC calls :DLOAD to do a file restore from a file-save tape. It 
first prompts the user with HAS EVERYONE LOGGED OFF? (Y/N) and will 
only accept either Y or N as a response to indicate yes or no. The 
reason for this is that :DLOAD will cause everyone to be logged off 
regardless of their current activity and any additional work space 
associated with those logons will be lost. For this reason it is 
advisab.le to always log on to a synonym of SYSPROG which requests no 
additional work space before using this PROC. The :DLOAD verb then 
enters the file restore process described earlier in this chapter. 

FILE-SAVE PROC 

The File-save PROC is called by the verb FILE-SAVE. This may be used 
to create a tape containing a dump of the executable object code in 
the system (Abs dump}, and the data from all files in the system, or 
optionally a coldstart tape or all three. 

The File-save processor uses the entry "MM/DICT" in the SYSPROG account 
to pick up a parameter associated with the Abs dump-portion of the tape, 
as well as to pick up the file pointers of the SYSTEM dictionary. For 
this reason, the MM/DICT entry in SYSPROG must be a file synonym 
definition item, which equates to the SYSTEM dictionary. Attribute 
seven of the entry contains a code described below: 

:J nl-n2,n3-n4' .... 

XVIII-12 



REALITY 2.0 UPDATE 

where C specifies that a Cold-start section is being dumped preceding 
the Abs dump; if A is specified, the cold-start section will not be 
dumped. The sets of numeric parameters following represent FID ranges 
which are to be dumped in the Abs section of the tape. If only one FID 
is to be dumped in any set, the "-n" may be omitted; if the entire set 
of numeric parameters is omitted (therefore the code is A or Conly), 
no Abs section is created. Attribute eight of the entry contains the 
code below: 

F 

x 

The F specifies a file dump section is to be created after the Abs 
sections. If X is used, the files are not dumped. 

The values f1 and £2 are FID limits for the FILE-RESTORE process; the 
table under FILE RESTORE FRAME LIMITS in this chapter may be consulted. 

Method of Operation 

The File-save processor uses entries in the SYSTEM dictionary to search 
for and dump data. At each of the levels O, 1 and 2 (see following 
map), the respective dictionary is searched for file defining items 
(D/CODE"D"), and the file at the ne~t lower level with the lowest base 
FID is dumped; then the one with the next lowest FID, and so on, until 
all files defined from that dictionary have been dumped. Then the 
process continues at the next higher dictionary level. Thus the con­
tents of a user's M/DICT (except for file definition items themselves) 
are dumped preceding the contents of each of his dictionary-file combi­
nations, in ascending base FID sequence. The sequence in which the user 
accounts (M/DICTs) were created determines the sequence of user accounts 
dumped. 

The dashed lines in the map represent the path taken by the File-save 
processor while dumping data from each file. Note that the process 
stays at each level till all files at the next level have been dumped 
before going up one level. Dots are intended to represent the dumping 
of data within the corresponding file. 

XVIII-13 



LEVEL 0 

LEVEL 1 

LEVEL 2 

LEVEL 3 

SYSTEM 

~ (User-1) 

M/DICT-1 

l~ t (File-1) 

I 
I 
t 
I 

(User-2) 
I\ 
I '\. 

I ' 
I ', 

REALITY 2.0 UPDATE 

t ' I 'M/DICT-2 

,, - ....... ,, .............. ,, -- ' ,, -........ _ ' 
\.' - '\ 

'user Dictionary-1 ' " User Dictionary-2! '-

I l ' f '-
~ (DL/ID) I I ~ (DL/ID) j 1 ' 

-4-------- I \ ) 
I I \ / 
I / 
t I • / 
I _ J \ // 
pa ta File-1 _ - - - - Data File-2 

,~- ;d:t: -- lk ~ata) 
Output From the File-Save Process 

:FILE-SAVE @ 
f91) ATTACHED 
94] END OF FILE 

TOP 
007 Cl-402,421,453 
008 F1024-18887 
-XIT-
ABS DUMP SPECS ? @ 
DISK INIT. SPECS ? @ 
9:41:24 16 AUG 1974 

XVIII-14 



REALITY 2/0 UPDATE 

TAPE LABEL IF DESIRED FILE-SAVE/032 CQ 
•••• START 01!.L.S:K~DUMP~~.:...:..:-------Level-O File (MM/DICT) 
DO" l 024" l" 11..i. 

SSYSTEM" 
SOL/ID" 
Dl "1035"1 "1:.. Account 
PACC" 

02"1037"5"1" 
POL/ID" 

file and ACC Dictionary 

01"1043"1:.3"~1:_:":'=========--------Level-l File (user M/DICT) 
PSYSPROG" 

SM/DI CT" 
SMD 
SOL/ID"" 
SPROC" 
02"1093"17"3" Level-2 File (user Dictionary) 
PERRM.5G ... ~.:.:_:::==::::====-----

SOL/ ID" 
02"1148 ... 13"1" 
PNEWAC" 
02"1172"1 "1" 
PSYSTEM-M::>DES" 

03"1173"37"5" 
POL/ID" 

02"2jJ20"1"1" 
PSYSGEN-FILE" 

03"2121 "17"5 ;, 
PDL/ ID" 

02"2386 "1 "1" 
P~-UPDATE" 

03"23a7"13"1" 
POL/ID" 

02"2420"2 "2-",__ _____ ___,=----- Level 2 File with DL/ID 
POSYM pointing back to dictionary 
. SDL/ID" 
02"21+ss"29"2" 
PPSYM" 

SDL/ID" 
02"'2516"1 "l" 

Output from' .the 1File-,save process is in the following formats 

(1) File Header format 

where n indicates the level (O through 3) of the file being processed; 
base is the base FID of the file (this is !!2!: used as the base FID when 
doing a File-Restore); modulo and separ are the actual values from the 
file definition item unless Reallocation has been specified, in which 
case they represent the reallocation values. 

XVIII-15 



REALITY 2.0 UPDATE 

(2} P and S Code Formats 

REMAIN::>ER OF ITEM ... 
Sfile-nameAOOOOOAOOOAOOOA ••• REMAINDER OF ITEM ... 

These indicate the file definition entries that are to be recreated on 
the File-Restore process; a P-code entry is to be created in the 
preceding file one level higher; an S-code entry is to be created in 
the current file itself, on the File-restore. For instance, preceding 
the dump of a user M/DICT, his user name will have a P-code entry (to 
be updated into the SYSTEM dictionary) and one or more S code entries 
(usually M/DICT and DL/ID, to be updated into his M/DICT itself). 

Operator Use of FILE-SAVE PROC 

When the FILE-SAVE PROC is activated, it first attaches to the magnetic 
tape unit, writes an EOF on the tape which is currently mounted, and 
then rewinds the tape to load point. It then displays lines 7 and 8 

"of the MM/DICT entry in the SYSPROG M/DICT. The significance of these 
lines was described earlier. The PROC will then prompt for ABS DUMP 
SPECS, whereupon the operator may change line 7 9f the MM/DICT entry 
by keying in the new value. A carriaqe return alone will leave line 7 of 
MM/DICT unchanged. Next the PROC will prompt for DISK INIT. SPECS which 
applies to line 8 of MM/DICT, which can be updated in the same fashion 
as described for line 7. The PROC now prints the system time and date 
and prompts for TAPE LAVEL IF DESIRED. Whatever is entered at this point 
is passed to :DLOAD as a tape label. If only a carriage return is 
entered, an unlabeled tape is created. 

RE-GEN PROC 

The RE-GEN PROC is used to preset the configuration parameters before 
creating a coldstart tape. This is necessary whenever an abs restore 
overlays the MSETUPl mode with parameters not consistent with your 
system. (i.e. an abs restore from a tape created on the same system 
would not necessitate running RE-GEN but an abs restore from a SYSGEN 
tape would.) 

The actual presetting operation is performed by the MSETUP program 
which is described elsewhere. The proc, RE-GEN, is used to call the 
MSETUP program so a user need not refer to documentation everytime the 
procedure is necessary. RE-GEN prompts the user for all of the 
information which is necessary to preset the configuration. To use 
the RE-GEN proc it is first necessary to log on to SYSPROG and then 
simply key in RE-GEN(?). The proc first prompts you with the question: 
ARE MONITOR MODES LOADED? (Y/N} only Y or N will be accepted as legal 
responses. If the response is N, the following modes are loaded from 
SYSTEM-MODES: MBOOT, MBUFFERS, MMONITOR, MMONITORX, MMONITORY/Nl, 
MMONITORY/N2,, MMONITORZ,, MSETUPO,, MSETUPl, PIBO,, PIBl, PCBO, ABSD, and 
MSETUP. The proc next prompts for all of the configuration parameters. 

XVIII-16 



An example follows: 

:RE-GEN © 
ARE MONITOR MODES LOADED (Y /N) ?Y © 
NUMBER OF DISC CONTROLLERS 1:.J!L: 
NUMBER OF DISCS PER CONTROLLER 1@ 
CORE SIZE 48@ 
MAXIMUM FID 19487 ~ 

REALITY 2.0 UPDATE 

NUMBER OF ENTRIES I IOQ TABLE l_(i) 
NUMBER OF DISC READS BEFORE REMOVAL FROM IOQ 25 GJ 
NUMBER OF COMMUNICATION LINES ~ 

SETUP-ASSY PROC 

:SETUP-ASSY account-name ~ 

This PROC sets an account up to be able to assemble REAL programs. If 
the account name is missing the PROC will exit. However, PROCs cannot 
verify the validity of an account name so whatever name is given to it 
will be used. First a file named TTSYM is created with the file def ini­
tion item in "SYSPROG M/DICT. This "D" item is converted to an "E" item 
by calling :SWE. The "E" item is copied to the user's M/DICT renaming 
it to TSYM and deleting it from the SYSPROG M/DICT. The TSYM entry in 
the user's M/DICT is then converted back to a "D" item by calling the 
editor with appropriate commands to the editor placed in the output stack. 
This PROC also copies the AS verb into the user's M/DICT and creates 
"Q" entries for OSYM and PSYM which point to the OSYM and PSYM defined 
in the SYSPROG M/DICT. The user's LOGON entry in the SYSTEM dictionary 
is then updated to have the same L/RET and L/UPD locks codes as SYSPROG, 
SYS2 privileges, and 25 frames of linked work space. For this reason, 
SETUP-ASSY should only be used when no one else is logged onto the 
system. 

SETUP-RPG PROC 

:SETUP-RPG Account-Name © 
This PROC sets an account up to be able to compile and run RPG-II pro­
grams. Further details on this PROC are available in the REALITY RPG-II 
manual. 

XVIII-17 



REALITY 2.0 UPDATE 

START-SPOOLER PROC 

This PROC is used to start the output spooler in case that option was 
not exercised in the COLD-START proc. It is identical to that portion 
of the COLD-START PROC which is dedicated to the output spooler. It 
prompts the user with: 

WHIOi CQVM. LINE IS DEDICATED TO THE PRINT-SPOOLER? (f'.DNE, 
0,1 ••• 31) HON MANY PAGES ARE TO BE EJECTED AT THE END OF A 
LISTING? (0,1,2,3,4,5) IS THE PRINT QUEUE STATUS TO BE 
RESET TO EMPTY? (Y/N) SEPARATE YOUR ANSWERS WITH BLANKS. 

If the user replies "NONE" the PROC exits immediately. If an invalid 
reply is given for anyone of the three necessary replies, the PROC 
admonishes .the user about the first invalid answer detected and repeats 
the prompt. Either :START-SPOOLER or ''INIT-SPOOLER is called depending 
on whether "N" or "Y" was the reply to the question concerning setting 
the print queue status to empty. See the discussion about "INIT-SPOOLER 
and :START-SPOOLER for further details and cautions. 

Hold file queue entries are destroyed if the answer "Y" is given to the 
START-SPOOLER PROC. 

SYS-GEN PROC 

Since this PROC changes with each release of the system it will not be 
described here in detail. Also, since it is completely self-explanatory 
and automatic no detailed instructions are necessary to run it. 

The SYS-GEN PROC is used to create a SYSGEN tape from which either an 
initial system load or a system update may be performed. The SYSGBN 
tape will always consist of a coldstart section, an abs section, a files 
sections, and a T-DUMP section of system files. The first EOF mark on 
the tape is immediately after the files section and an EOF occurs after 
each T-DUMP file. 

During the creation of the coldstart, abs, and files sections of the tape, 
the system cannot be used. This is due to the fact that most of the "D" 
D/CODE entries in the SYSTEM dictionary and the SYSPROG M/DICT have been 
changed to "E" D/CODEs so the associated files will not be saved in the 
files section. The "E" D/CODE entries will be saved, however. The 
SYS-LOAD PROC will remove them when an initial system load is performed. 
At the end of the files section the "E" D/CODEs are restored to ''D" 's 
and the system can then be used again. 

SYS-LOAD PROC 

This PROC must always be executed after the file restore from a SYSGEN 
tape to load the system files. Since its use and operation are peculiar 
to each release of the system, detailed instructions will not be given 
here. 

XVIII-18 



\~. 

REALITY 2.0 UPDATE 

SYS-UPDATE PROC 

This PROC must always be executed as part of an update to a new release 
of the system from a SYSGEN tape. It is used to update system files. 
Since its use and operation are peculiar to each release of the system, 
detailed instructions will not be given here. 

UPDATE-ACCOUNT PROC 

This PROC is used to update accounts after a SYS-UPDATE to reflect 
changes to verbs, PROCs, and other elements of a M/DICT. It should 
never be used in an attempt to update the SYSPROG account, which is 
always done separately as part of the system update procedure. Since 
the use and operation of this PROC is peculiar to each release of the 
system, detailed instructions will not be given here. 

VERIFY-SYSTEM PROC 

The PROC verifies the source programs against the object code of the 
system modes. Typically a few modes will have one or two bytes mis­
matched. This is usually nothing to be alarmed at. If in doubt, the 
mode can be MLOADed from the SYSTEM-MODES file and re-verified. 

Special SYSPROG Verbs 

:DDUMP Verb 

:DDUMP is a TCL-I verb which evokes the file-save program. This verb 
is used by the FILE-SAVE PROC after the MM/DICT entry has been verified 
and/or updated. It requires that the mag tape be attached and online. 
It uses the MM/DICT entry (attributes 7 and 8) in the SYSPROG M/DICT 
to determine what it is supposed to do. If the MM/DICT entry is invalid 
error message 990 or 991 is returned. Any characters keyed in with the 
verb will be used as a tape label, otherwise an unlabeled tape will be 
created. 

:DLOAD Verb 

:DLOAD is a TCL-I verb which evokes the file-restore program. This 
verb is used by the FILE-RESTORE PROC. It causes the OPTIONS message, 
etc. as after a coldstart from mag tape. It should be noted that 
any additional work space acquired at LOGON time is lost when this verb 
is used. 

XVIII-19 



REALITY 2.0 UPDATE 

:INIT-LINES Verb 

:INIT-LINES is a TCL-I verb which sets the number of active lines 
which the monitor will look at. Zero, negative numbers, and numbers 
which are too large for the system are refused with error message 330. 
The program determines whether the number is too large by the FID of 
the SYSTEM dictionary. It subtracts the PCB FID for line zero from the 
FID of the SYSTEM dictionary and divides by 32 (the number of work frames 
for each process) to determine the maximum number of lines acceptable. 
The stop bit in the PIB status of the appropriate line is then zeroed 
and all other stop bits in the status bytes of the PIBs of all lower 
lines are then set. This verb is called by the COLD-START PROC. 

:!NIT-SPOOLER Verb 

:!NIT-SPOOLER is a TCL-I verb which does all of the same things that 
:START-SPOOLER does plus it also sets the pointers to the beginning 
and end of the print queue to zero. This verb is called from the COLD­
START or the START-SPOOLER PROC when the user requests the print queue 
.to be set to the empty status. If the line number is not valid, error 
message 330: "ILLEGAL LINE NUMBER" is printed and control returns to 
TCL. 

:MSETUP Verb 

:MSETUP is a TCL-I verb which allows a user to preset the configuration 
parameters before the creation of a coldstart tape. This verb is called 
by the PROCs RE-GEN and SYS-GEN. It is called from TCL as follows: 

:MSETUP en, dn, cs, fmax, ioq, imax, ncl 

where the parameters are decimal numerics: 

en Number of disc controllers; must be 1 through 4 

dn Number of discs per controller; must be 1 or 2 

cs Core size in kilobytes; must be 16 through 64 and a 
multiple of 8 

fmax Maximwn FID; must be 9743 through 155903 

ioq Number of entries in IOQ table, must be 2 through 8 

imax Maximum number of disc reads before removal from IOQ 
table; must be 4 through 127 

ncl Number of communication lines; must be 1-32 

XVIII-20 



\_ 

REALITY 2.0 UPDATE 

Parameters that are to remain unchanged need not be specified (may be 
null). If a range error occurs, processing is terminated, and the 
message: 

(329] PARAMETER RANGE ERROR AT x:xx 

will be returned. 

:START-SPOOLER Verb 

:START-SPOOLER is a TCL-I verb which is called either by the COLD-START 
PROC or the START-SPOOLER PROC. Its function is to start the output 
spooler operating on some line defined by the user and to set the 
number of page ejects which will automatically occur whenever the output 
spooler finishes the last print file in its queue. 

Both this verb and the :!NIT-SPOOLER verb should be used with extreme 
caution. Never start the spooler on a different line than the one it 
is currently running on without doing a coldstart form tape first. 
Remember that the line numbers start from zero; therefore, if eight 
lines are active, the spooler cannot run on line eight (really the 
ninth line). Never start the spooler while it is actively printing 
since overflow frames will be lost by doing so. The spooler may only 
be started on lines 0 through 31. The general practice for systems with 
4, 8 or 12, etc., communication lines is to run the spooler on line 4, 
8, or 12, etc. (one line past the last available connnunication line). 
This cannot be done on a 32 line sy3tem. 

If the line number is not valid, error message 330: "ILLEGAL LINE 
NUMBER" is printed and control returns to TCL. 

Only accounts with SYS2 privileges are allowed to execute :!NIT-SPOOLER 
or :START-SPOOLER. 

:SWD Verb 

:SWD is an ENGLISH verb which is called by the SYS-GEN PROC. It is 
used to reverse the action of the :SWE verb after a :DDUMP has been 
executed. 

:SWE Verb 

:SWE is an ENGLISH verb which is called by the SYS-GEN proc. It is used 
to change "D" D/CODE entries in the SYSTEM dictionary and the SYSPROG 
M/DICT to "E" D/CODE entries except for a few selected entries. The 
change is performed in place. This is done to cause the file-save on 
the SYS-GEN tape to contain only the SYSTEM dictionary, the ACC file, 
and the SYSPROG M/DICT. :SWE is also called by the SETUP-ASSY PROC 
so that a D item may be copied from the SYSPROG M/DICT to a user 
M/DICT. 

XVIII-21 



REALITY 2.0 UPDATE 

Standard SYSPROG PROCs 

The following PROCs are standard, and are available to the user logged 
on to SYSPROG. 

ADDS 

This PROC sets the terminal characteristics for an ADDS 580 CRT 
terminal 79,23,1,3,1,21. 

CHOO-CHOO 

This PROC prints a picture of achoo choo train on your terminal ••• 
just for fun. 

COMPILE 

This PROC prints the starting and ending times of an RPG II compile 
. and invokes the compiler. 

CT 

Copies an item or items from the file specified to the terminal. 

DEL-OBJ 

Deletes RPG object text from object space by releasing the space and 
then writing an "E" entry in RPG-object-

DELETE 

Deletes an item from the file spec~f ied or if no item specified prompts 
for as many items as are desired to delete. 

EXEC 

This PROC invokes the RPG-II run time executive. 

FILE-RESTORE 

This PROC initiates a file restore process or an absolute load depend­
ing upon the options selected. 

FILE-SAVE 

Displays the ABS and file specs in the MM/DICT entry and allows them 
to be modified before saving the system on magnetic tape. 

XVIII-22 



REALITY 2.0 UPDATE 

FTC 

This PROC sets the tabs for RPG calculation specifications after calling 
the tab editor. 

FTE 

This PROC sets the tabs for RPG extension specifications after calling 
the tab editor. 

FTF 

This PROC sets the tabs for RPG file specifications after calling the 
tab editor. 

FTH 

This PROC sets the tabs for RPG header specif !cations after calling 
the tab editor. 

FTI 

This PROC sets the tabs for RPG input specifications after calling the 
tab editor. 

FTL 

This PROC sets the tabs for RPG line counter specif icat~ons after 
calling the tab editor. 

FTO 

This PROC sets the tabs for RPG output specifications after calling 
the tab editor. 

LISTACC 

List all accounting data or if account names are specified only data 
for those accounts (including total charges for services.) 

LISTCONN 

Sorts all connectives in any account dictionary and lists them on the 
terminal or the line printer if LPTR is specified. 

XVIII-23 



REALITY 2.0 UPDATE 

LISTDICTS 

Sort all attribute or synonym definitions in any dictionary and list 
them on the terminal or the lineprinter if LPTR specified. 

LISTFILES 

Sorts all "D" and "Q" items in any account dictionary and lists them 
on the terminal or on the lineprinter if LPTR is specified. 

LISTPROCS 

Sorts all PROCs in any account dictionary and lists them along with a 
brief abstract on the terminal or the lineprinter if LPTR is specified. 

LIS TU 

Lists the account name of all users currently active on the system 
with their logon time and channel number. 

LISTVERBS 

Sorts all verbs (not PROCs) in any account dictionary and lists them 
on the terminal or on the lineprinter if LPTR is specified. 

LP106 

Sets the terminal characteristics so listings will be formatted 
properly on data products lineprinter (106 columns wide). 

LP132 

Sets the terminal characteristics so listings will be formatted 
properly on data products lineprinter (132 columns wide). 

PRINT-TAPE 

Spools one file from mag tape to the line printer. 

RPG-CLEAN 

Prints the status of each frame of object text creates and deletes 
file 'RPGC' to hold the data 

XVIII-24 



REALITY 2.0 UPDATE 

RPG-DUMP 

Dumps formatted object text 

XREF 

Clears the XSYM file then cross references from file CSYM to XSYM then 
sorts XSYM. 

XVIII-25 



REALITY 2.0 UPDATE 

Section XIX 

SYSTEM MESSAGES 

MESSAGE 
NUMBER MESSAGE 

1 ILLEGAL USE OF DOUBLE-QUOTE IN ITEM-ID 

2 UNEVEN NUMBER OF SINGLE OR DOUBE QUOTE-SIGNS (' ") 

3 VERB? 

4 ILLEGAL RATE REQUEST 

5 VERB 'verb' IS ILLEGAL 

6 FILE NAME 'file-name' IS ILLEGAL 

7 A HEADING TEXT LINE MUST FOLLOW THE "HEADING" CONNECTIVE 

8 'DICT' MODIFIER MISSING 

10 FILE NAME MISSING 

13 'DL/ID' MISSING. 

15 THE FILE-NAME IS PRECED~D BY AN ILLEGAL CONNECTIVE 

16 "TO" VALID ONLY IN ADD STMNT 

17 "WITHIN" VALID ONLY IN COUNT/LIST STMNTS 

18 LAST WORD MAY NOT BE A CONNECTIVE. 

19 VALUE WITHOUT ATTRIBUTE NAME IS ILLEGAL. 

20 MEANINGLESS ITEM-ID IN STMNT. 

21 CONFLICT BETWEEN USER & SYSTEM NAMES. 

22 "TO" BEFORE ID VALID ONLY IN CHANGE STMNTS 

23 "TO" FOLLOWED BY ID MUST ALSO BE PRECEDED BY AN ID 

24 THE WORD "word" CANNOT BE IDENTIFIED. 

25 "WITH" MAY NOT IMMEDIATELY PRECEDE A VALUE. 

30 FORMAT ERROR IN M/DICT ENTRY DEFINING VERB. 

\ ,, 32 A REQUIRED ITEM-ID IS MISSING. 

XIX-1 



MESSAGE 
NUMBER 

42 

65 

71 

72 

75 

77 

78 

80 

81 

82 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

111 

117 

120 

136 

REALITY 2.0 UPDATE 

MESSAGE 

ILLEGAL MULTIPLE CONNECTIVES EXIST. 

THE WORD TO MAY NOT PRECEDE BOTH THE DATA LIST NAME AND 
ATTRIBUTE 

THE ATTRIBUTE "attribute-name" HAS AN ILLEGAL CONNECTIVE 

THE VALUE "value" IS MEANINGLESS 

'parameter' FAILS TO PASS ITS MAXIMUM SIZE RESTRICTIONS 

'parameter' FAILS TO PASS ITS TYPE RESTRICTIONS 

'parameter' FAILS TO PASS ITS PATTERN AUDIT 

A SYSTEM ERROR HAS OCCURRED IN MODE: mode-name 

SECURITY CODE VIOLATION 

YOUR SYSTEM PRIVILEGE LEVEL IS NOT SUFFICIENT FOR THIS 
STATEMENT 

DETACHED 

ATTACHED 

IN USE! 

ATTACH THE TAPE UNIT 

END OF FILE 

NOT ON-LINE 

BOT 

EOT 

PARITY ERROR! 

FILE PROTECTED! 

ITEM 'item-id' IS NOT ON FILE 

A DELETE STATEMENT MUST CONTAIN EITHER ITEM-IDS OR 
SELECTION CRITERIA. 

'value' NEGATIVE BALANCE NOT PERMITTED 

'value' DOES NOT MATCH THE G-CORRELATIVE SPECS 

XIX-2 



MESSAGE 
NUMBER 

158 

163 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

220 

221 

222 

230 

REALITY 2.0 UPDATE 

MESSAGE 

AN ILLEGAL CONNECTIVE OF THE FORM "Cx" MODIFIES "value" 

ATTRIBUTE FOR SORT-KEY MISSING 

FILE NAME? 

"file-name" IS NOT A FILE NAME 

'item-id' NOT ON FILE 

ITEM NAME? 

FILE DEFINITION 'file-name' IS MISSING 

NO STATEMENTS TO BE ASSEMBLED 

'item-id' ASSEMBLED 

UNDEFINED SYMBOLS 

ERROR IN- ITEM-ID LIST 

ERROR IN OPTION LIST 

FILE 'file-name' IS ACCESS PROTECTED 

NO ASSEMBLED CODE CAN BE FOUND 

"FRAME" STATEMENT MISSING 

LOCATION COUNTER SPECIFICATION ERROR AT STATEMENT NO. n 

THE MODE EXCEEDS THE MAXIMUM SIZE OF 512 BYTES AT 
STATEMENT NUMBER n 

ERROR IN HEX CODE DESIGNATION AT STATEMENT NO. n 

'item-id' LOADED ON FRAME #n SIZE= m (DEC), x(HEX) 

MODE 'item-id' VERIFIED 

MODE 'item-id' HAS n BYTES OBJECT CODE MIS-MATCHES 

-XIT-

'item-id' FILED 

'item-id' DELETED 

CARD READER NOT READY 

x1x.;.3 



MESSA.GE 
NUMBER 

231 

232 

233 

234 

240 

241 

242 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

REALITY 2.0 UPDATE 

MESSAGE 

CARD READER MECHANICAL ERROR 

CARD READER EBCDIC ERROR 

CARD READER HOPPER EMPTY 

ITEM SIZE EXCEEDS 32,000 BYTES 

SYSTEM OVERFLOW NOT IN INITIAL CONDITION; NO RPG FRAMES 
ASSIGNED 

TOO MANY RPG FRAMES REQUESTED; NONE ASSIGNED 

ILLEGAL RPG FRAME REQUEST FORMAT; NO FRAMES ASSIGNED 

THE DESTINATION OF THE PROC "GO" STATEMENT: 
'statement' 
CANNOT BE FOUND. 

INPUT BUFFER OVERFLOW AT PROC STATEMENT: 
'statement' 

FORMAT ERROR IN THE PROC STATEMENT: 
'statement' 

ONE PROC CANNOT CALL ANOTHER 

A VALUE EXISTS FOR THE ATTRIBUTE REFERENCED BY THE 
ELEMENT: 
'element' 

ERROR IN COLUMN-NUMBER/FIELD-WIDTH OR FORMAT SPECIFICA­
TION AT: 
'statement' 

UNRECOGNIZABLE BATCH-STRING element: 
'element' 

Y OR F SUB-ELEMENT ERROR AT BATCH-STRING ELEMENT: 
'element' 

D-2 UPDATE WITHOUT D-1 BEING SPECIFIED. AT BATCH-STRING 
ELEMENT: 
'element' 

J ELF.MENT MISSING AT BATCH-STRING ELEMENT: 
'element' 

ERROR IN PROCESSING SECONDARY BATCH-STRING ELEMENT: 
'element' 

XIX-4 



\._ 

MESSAGE 
NUMBER 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

298 

329 

330 

331 

333 

334 

335 

REALITY 2.0 UPDATE 

MESSAGE 

INCORRECT SCALING FACTOR IN F* BATCH-STRING ELEMENT: 
'element' 

FILE-DEFINITION BATCH ELEMENT ERROR AT: 
'element' 

Dl MUST HAVE Yl or Y4 STORAGE CORRELATIVE 
••• ERROR, AT: 
'element' 

DATA INPUT LINE TO BATCH AFrER A SELECT MUST CONTAIN 
AT LEAST ONE ITEM-ID SUBSTITUTION CODE (ASTERISK *) 

END OF PRINT QUEUE 

INPUT ENTRY NO. MUST BE 1-32 

ENTRY IS NOT A HOLD FILE 

NO. OF LINES MISSING 

FILE BUSY BEING PRINTED 

NO. OF PAGE EJECTS GREATEr THAN 10 

LINE PRINTER ALREADY ATTACHED TO LINE 
'line' 

STRING NOT FOUND IN HOLD FILE 

'file-name' FILE-DEFINITION IS MISSING 

FORMAT ERROR IN SPECIFICATIONS 

PARAMETER OR RANGE ERROR AT: address 

ILLEGAL LINE NUMBER 

THE ACCOUNT FILE IS MISSING 

THE FORMAT OF THE ADDITONAL WORK-SPACE PARAMETER: 
parameter IS ILLEGAL FOR THIS ACCOUNT NAME. ADDITIONAL 
WORK-SPACE HAS NOT BEEN ASSIGNED. 

REQUESTED NUMBER OF ADDITIONAL WORK-SPACE FRAMES: 
parameter IS NOT AVAILABLE: ADDITIONAL WORK-SPACE HAS 
NOT BEEN ASSIGNED. 

***WELCOME TO MICRODATA REALITY*** 

***time date*** 

XIX-5 



MESSAGE 
NUMBER 

336 

337 

339 

401 

403 

404 

405 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

REALITY 2.0 UPDATE 

MESSAGE 

CONNECT TIME = m CHARGE-UNITS = n LOGGED OFF AT 
time ON date 

USER IS NOT LOGGED ON 

IMPROPER OR UNDEFINED FORMAT FOR DATE CONVERSION 

NO ITEMS PRESENT 

END OF LIST 

n ITEMS SELECTED 

n ITEMS LISTED 

n ITEMS COUNTED 

ONE ITEM COUNTED 

OVERFLOW DISK SPACE IS INSUFFICIENT FOR THIS SORTED 
LISTING - NUMBER OF ITEMS EXTRACTED AT THIS POINT WAS n 

A SYNONYM (Q-TYPE) FILE CANNOT BE SPECIFIED IN THIS 
STATEMENT 

"DICT' OR 'DATA' MUST BE SPECIFIED IN A CLEAR-FILE 
STATEMENT 

INSUFFICIENT DISK SPACE AVAILABLE FOR THE FILE 

THE FILE NAME ALREADY EXISTS IN THE MASTER DICTIONARY 

ILLEGAL OR MISSING MODIFIER USED IN DEFINING THE FILE 
AREA(S) 

"item-id' EXISTS ON FILE 

RANGE ERROR IN MODULO OR SEPARATION PARAMETER 

FILE 'file-name' CREATED: BASE = base; MODULO = modulo; 
SEPAR • separation 

FILE-DEFINITION ITEM 'item' WAS NOT COPIED 

THE SPECIFIED FILE CANNOT BE CLEARED OR DELETED! 

DICTIONARY FILE DELETION CANNOT BE DONE WITHOUT 
DELETION OF DATA FIRST 

STATISTICS OF attribute-name: TOTAL = t; AVERAGE = a; 
COUNT = c. 

XIX-6 



MESSAGE 
NUMBER 

\ 423 

520 

521 

522 

523 

524 

525 

700 

701 

705 

706 

\._ 

707 

708 

709 

711 

780 

781 

782 

783 

785 

800 

802 

803 

REALITY 2.0 UPDATE 

MESSAGE 

TOTAL OF attribute-name IS: t 

NO DATA FOR BLOCK OUTPUT 

TOO MANY CHARACTERS IN WORD TO BLOCK 

BLOCK CONVERT FILE MISSING OR IMPROPERLY DEFINED 

BLOCK OUTPUT WOULD EXCEED PAGE WIDTH 

INPUT CHARACTER 'x' IS NOT IN BLOCK CONVERT FILE 

INPUT CHARACTER 'x' IS IMPROPERLY FORMATTED IN BLOCK 
CONVERT FILE 

THE FORMAT OF THE F-CORRELATIVE IS INCORRECT 

INVALID FUNCTION CORRELATIVE DEFINITION: function­
definition 

ILLEGAL CONVERSION CODE : conversion-code 

THE TRANSLATE CONVElSION CODE: 
'code' 
IS ILLEGAL 

DL/ID ENTRY FOR T-CONVERSION : conversion-code NOT FOUND 

'item-id' CANNOT BE CONVERTED 

CONFLICT IN T-CONV DEFINITION: REQUESTS VERIFY BUT 
THERE IS A NULL AMC 

VALUE value WAS NOT TRANSLATED BY T-CONVERSION 

'item-id' NOT ON FILE. 

'item-id' ADDED 

'item-id' UPDATED 

'item-id' DELETED 

'value' CHGD TO 'value' 

<n>ITEMS DUMPED 

n ITEMS DUMPED 

n ITEMS LOADED 

XIX-7 



MESSAGE 
NUMBER 

805 

810 

990 . 
991 

1004 

1006 

9999 

LOGON 

& 

REALITY 2.0 UPDATE 

MESSAGE 

n ITEMS COPIED 

'file-name' NOT ON HDR FILE 

ERROR IN ABSOLUTE DUMP SPECIFICATION IN MM/DICT ENTRY 

MM/DICT ENTRY MISSING. OR REQUIRED SPECIFICATION(S) 
MISSING 

ITEM 'item-id' IS NOT ON FILE 

ITEM 'item-ii' EXISTS ON FILE 

****** END OF OVERFLOW DISK SPACE ****** 
(variable) 

Disc Error (Available only with SYS2 privileges) 

XIX-8 



REALITY 2.0 UPDATE 

Section XX 

SYSTEM SOFTWARE 

INTRODUCTION 

Assembly level programming in the REALITY system is facilitated 
by a set of system subroutines that allow easy interaction with the 
disc file structure, terminal i/o, and other routines. These sub­
routines work with a standard set of addressing registers. storage 
registers, tallys, character registers, bits, and buffer pointers, 
collectively called functional elements. In order to use any of these 
routines, therefore, it is essential that the calling routine set up 
the appropriate functional elements as required by the called routine's 
Input Interface. 

The standard set of functional elements is pre-defined in the 
permanent symbol file (PSYM), and is therefore always available to the 
programmer. Included in the PSYM are all the mode-id's (program entry 
points) for the standard system subroutines. There is no reason that 
a symbol internal to an assembly program cannot have the same name 
as a PSYM-file symbol, if the PSYM-file symbol is not also referenced 
in that program; such symbolic usage cannot be a "forward" reference 
in the assembly program. To avoid confusion, however, it is best t-0 
treat the entire set of PSYM symbols as reserved symbols. 

Address Registers 

All data reference in the system is made indirectly through one 
of the sixteen address registers (A/R). Registers zero and one have 
special, firmware-defined meaning; the other fourteen may be considered 
general-purpose registers, with the limitation that system software 
conventions determine the usage of most A/R's. Registers zero and one 
should never be changed in any way by assembly programs. Register tw, 
always points to the SCB after the debugger has been entered. 

Register zero always addresses byte zero of the process' PCB; 
register one always addresses byte zero of the frame in which the 
process is currently executing. Thus all elements in the PCB may be 
relatively addressed using register zero as a base register; this 
includes the individual segments of the address registers themselves 
(e.g. Rl5WA, referencing the word-address segment of Rl5). Address 
registers can thus be setup explicitly by setting up their segments 
appropriately; the more conventional way of setting up an A/R is to 
move a S/R into it. For example, the sequences below are functionally 
identicaL 

XX-1 



REALITY 2.0 UPDATE 

FRMlOO ADDR O,X'lOO' DEFINE A LITERAL S/R 
REFERENCING FRAME X'lOO' 

tl()V FRMlOO,RlS 

and 

ZERO RlSWA 
ZERO R15DSP 
t/OV =DX'80000100',R15FID 

It is important to note that, in the first sequence, the address 
register is automatically set to the "detached" format when the "MOV" 
instruction executes; in the second sequence, the address register is 
explicitly set to the "detached" format by the "ZERO RlSWA" instruction. 
The word=address of an A/R must be zeroed before other segments of the 
A/R are modified. ~ ~ 

Attachment and Detachment of A/R's 

All instructions that reference data force "attachment" of the 
A/R(s) used in the reference. Not all instructions do the same; for 
example; the "increment A/R by tally" instruction will not cause a 
"detached" A/R to attach before execution. 

This point may lead to programming errors; consider the following 
sequence: 

Ll BCU AM,R6,NXT 
L2 INC R6, SIZE 
L3 t-IOV R6, SR4 

R6 "ATTACHED" AT THIS POINT" 
R6 MAY "DETACH'' DUE TO THIS INSTRUCTION 
SAVE R6 

The instruction at L2 may force R6 to "detach" (if the contents 
of SIZE are such that the resultant address is beyond the limits of 
the current frame); storing R6 in SR4 will then cause SR4 to have a 
large positive displacement, and a FID equal to that in R6 at the 
time of execution of the instruction at Ll. Subsequently, a register 
comparison instruction of the form: 

BE Rl5,SR4,L20 

XX-2 



REALITY 2.0 UPDATE 

may execute incorrectly due to the fact that if the FID's of Rl5 and 
SR4 are unequal at the time of execution, it is assumed that the two 
frames are contiguously linked (See Branch Register Equal/Unequal 
instructions in Section XVI). Therefore, it is best to force "attachment" 
of R6 before L3; a convenient way of doing so is to execute the 
instruction: 

L3A FAR R6,0 

though any data reference instruction would serve as well. 

The following table summarizes the attachment/detachment process: 

ATTACHMENT & DETACHMENT OF ADDRESS REGISTERS 

A/R is Attached 
when: 

0 1 

j 0 0 l-
Word 

Address 

(1) Any instruction 
that references 
data via the A/R 
is executed. 

(2) Execution of 
INC r 
DEC r 
instructions. 

(3) Execution of 
FAR r,n 
instruction. 

Re-entrancy 

2 3 4 5 
DI SP 

Flag F 

Flag F - -

6 7 
I D 

I D l 
AIR is Detached 
when: 

(1) Process is 
deactivated due 
to: terminal 
I/O; disk I/O; 
peripheral I/O; 
timer run-out; 
monitor call. 

(2) A S/R is moved 
to the A/R. 

(3) Execution of 
INC r,t 
DEC r,t 

if a frame 
boundary is 
crossed. 

In practically all cases, the system software is re-entrant, that 
is, the same copy of the object code may be used simultaneously by more 
than one process. For this reason, no storage internal to the program 

XX-3 



REALITY 2.0 UPDATE 

is utilized; instead the storage space directly associated with a 
process is used; this is part of the process' Primary, Secondary, 
Debug (or Tertiary) and Quadrenary Control blocks. The Primary Control 
Block (PCB) is addressed via address register zero; the SCB via 
register two. The Debug Control Block is used solely by the Debug 
Processor as a scratch area, and should not be used by any other 
programs. The Quadrenary Control Block has no register addressing it; 
it is used by some system software (magnetic tape routines, for example) 
which temporarily setup a register pointing to it; its use is reserved 
for future software extensions. 

A user program may utilize storage internal to the program if it 
is to beli'Sed in a non-re-entrant fashion; however in most cases it 
will be found that the functional elements defined in the PSYM will 
be sufficient. 

In some cases it may be required to setup a program to be 
executable by only one process at a time; that is, the code is "locked" 
while a process is using it, and any other process attempting to execute 
the same code waits for the first process to "unlock" it. The following 
sequence is typical: 

ORG 0 
TEXT X'Ol' INITIAL CONDITION FOR LOCK BYTE 
CMNT (NOTE USAGE OF STORAGE INTERNAL TO 
CMNT PROGRAM) 

LOCK MCC X' 00' ,R2 SET "LOCKED" CODE AT R2 
xcc R2,Rl EXCHANGE BYTES AT R2 AND Rl 
BCE R2,X'Ol',CONTINUE OK TO CONTINUE; PROGRAM IS NOW LOCKED 
RQM WAIT (RELEASE QUANTUM) 
B LOCK TRY AGAIN 

UNLOCK MCC X'Ol',Rl UNLOCK PROGRAM 

Work-spaces or buffers 

There is a set of work-spaces, or buffer areas, that is pre-defined 
and available to each process. If the system conventions with regard 
to these buffers are maintained, they should prove adequate for the 
majority of assembly programming. There are three "linked" buffers, 
or work-spaces, of equal size, symbolically called the IS, the OS, and 
the HS. These are at least 3000 bytes in length each; more space for 
each area can be assigned to a process at LOGON time. There are five 
other work-spaces, the BMS, CS, AF, IB and the OB which may vary between 
50 and 140 bytes in length, and are all in one frame. There is the TS, 
a one-frame unlinked work-space of 512 bytes, and the PROC work-space, 
2000 bytes in length which is used normally by the PROC processor alone; 

XX-4 



1..__ 

REALITY 2.0 UPDATE 

finally there are four additional frames (PCB+28 through PCB+31) that 
are unused by the system, and are freely available. PCB+28 is used 
internally by the RPG processor. 

Each work-space is defined by a beginning pointer and an ending 
pointer, both of which are storage registers (S/R's). When the process 
is at the TCL level, all these pointers have been set to an initial 
condition. At other levels of processing, the beginning pointers 
should normally be maintained; the ending pointers may be moved by 
system or user routines. The address registers (A/R's) that are named 
after these work-spaces (IS,OS,AF,etc.) need~ necessarily be main­
tained within their associated work-spaces; however, specific system 
routines may reset the A/R to its associated work-space. The table 
below discusses these points for each work space. Note that, conven­
tionally, a buffer beginning pointer addresses one byte before the 
actual location where the data starts. This is because data is usually 
moved into a buffer using one of the "move incrementing" type of 
instructions, which increment the A/R before the data movement. 

Work-
space 

BMS 

AF 

cs 

IB 

Location 
(offset 
from PCB) 

4 
(disp.=O) 

4 
(disp.=SO) 

4 
(disp.=100) 

Size 

so 

so 

100 

4 $140 
(disp.=200) 

Linked? 

No 

No 

No 

No 

XX-5 

Remarks 

Normally contains an item-id 
when connnunicating with the 
disc file i/o routines. Typi­
cally, the item-id is copied to 
the BMS area, starting at 
BMSBEG+l. BMSBEG may be moved 
to point within any scratch 
area. BMSEND normally points 
to the last byte of the item-id. 
BMS (A/R) is freely usable 
except when explicitly or 
implicitly calling a disc file 
i/o routine. 

This work-space is not used by 
any system subroutine, though 
the AF A/R is used as a scratch 
register. 

As above. 

Is used by the terminal input 
routines to read data. IBBEG 
may be moved to point within 
any scratch area before use. 
IBEND conventionally points to 
the logical end of data. 
IB A/R is freely usable except 
when explicitly or implicitly 
calling a terminal input routine. 



Location 
Work- (offset 

~ from PCB) Size Linked? 

OB 4 140 No 
(disp.=201 
+ IBSIZE) 

TS 5 511 No 

PROC 6-9 2000 Yes 

HS 10-15 300o+ Yes 

XX-6 

REALITY 2.0 UPDATE 

Remarks 

Is used by the terminal output 
routines to write data. 
OBBEG & OBEND should not be 
altered; they always point to 
the beginning and end of the 
OB area. OB A/R conventionally 
points one before the next 
available location in the 
OB buffer. 

This work-space is not used 
by the system subroutines, 
though the TS A/R is used as a 
scratch register. 

Used exclusively by the PROC 
Processor for working storage. 
User-exits from Proc's may 
change pointers in this area. 

Used as a means of passing 
messages to the WRAPUP processor 
at the conclusion of a TCL 
statement. May be used as a 
scratch area if there is no 
conflict with the WRAPUP 
history-string formats. 
HSBEG should not be altered; 
HSEND conventionally points one 
byte before the next available 
location in the buffer (initial 
condition is HSBEG=HSEND). 



Location 
Work- (off set 
space from PCB) 

IS 16-21 
OS 22-27 

Size Linked? 

3000+ Yes 

REALITY 2.0 UPDATE 

Remarks 

These work-spaces are used 
interchangeably by some system 
routines since they are of the 
same size (and are equal in 
size to the HS). Specific 
usage is noted under the various 
system routines. 

ISBEG and OSBEG should not be 
altered, but may be inter­
changed if necessary. 

Initial condition is that !SEND 
and OSEND point 3000 bytes past 
ISBEG & OSBEG respectively (not 
at the true end if additiona~ 
work-space is assigned at 
LOGON time). 

IS & OS A/R's are freely usable 
except when calling system sub­
routines that use them. 

Defining a separate buffer area 

If it is required to define a buff er area that is unique to a 
process, the unused frames PCB+28 through PCB+31 may be used (Note 
that PCB+28 is used by RPG). The following sequence of instructions 
is one way of setting up an A/R to a scratch buffer: 

~v 
ZERO 
ZERO 
INC 

RO,Rl5 
R3WA 
R3DSP 
R3FID,29 

SET R3 "DETACHED" 
INITIALIZE DISPLACEMENT FIELD 
SET Rl5 TO PCB+29 

Register 3 can now be used to reference buffer areas, or functional 
elements that are addressed relative to R3. None of the system 
subroutines use R3, so that a program has to setup R3 only once in 
the above manner. However, exit to TCL via WRAPUP will reset R3 
to PCB+3. 

XX-7 



REALITY 2.0 UPDATE 

Usage of XliiODE 

In several cases, the multiple-byte move instructions can be 
used (say, when building a table) even when it is not known whether 
there is enough room in the current linked frame set to hold the data. 
Normally, if the erid of a linked frame set is reached, DEBUG is 
entered with a "forward link. zero" abort condition. However, the tally 
XMODE may be setup to contain a mode-id of a user-written subroutine 
that will gain control under such a condition. This subroutine can 
then process the end-of-frame condition, and, by executing a 'RTN' 
instruction, normal processing will continue. Instructions then can 
be handled by this scheme are: INC register; MCI; MIC; MII; MIID; 
SCD; MIIR. Care should be taken in the case of MIIR to save register 
RlS in the subroutine. MIIT cannot be handled because DEBUG destroys 
the accumulator in the process of transferring control via XMODE. 

For example: 

rv'OV 
Ml I 
ZERO 

XXX,Xfv10DE 
R12, R13, SR4 
Xfv10DE 

!XXX EQU .. .. 

.. ,. 

OK 

WJV 
SRA 
BCE 
WJV 
ENT 
CMNT 

R15, SRl 
RlS, ACF 
X'OD' ,Rl5,0K 
O,Xfv()DE 
5,DBl 

~V 500,Rl3DSP 
CM\JT 

SETUP XWJDE FOR NEXT INSTRUCTION 
COPY FROM Rl2 TO Rl3, TILL Rl2=SR4 

ENTRY POINT FOR SUBROUTINE 
SAVE Rl5 
SET TO SAVE REGISTER NUMBER 
ENSURE TRAP WAS DUE TO Rl3 
PREVENT DEBUG RE-ENTRY 
NO! : REENTER DEBUG TO PRINT 
"FORWARD LINK ZERO" MESSAGE 

RESET DISPLACEMENT FIELD OF Rl3, SINCE 
FIRMWARE HAS LEFT IT IN A STRANGE STATE. 

:' HANDLE END-OF-FRAME CONDITION HERE 

WJV 
BSL 

~v 

RTN 

R 13F ID, RECORD 
ATTOVF 

SR1,Rl5 

SETUP INTERFACE FOR ATTOVF 
GET ANOTHER FRAME FROM OVERFLOW 

RESTORE Rl5 
RETURN TO CONTINUE EXECUTION OF 
Ml I INSTRUCTION. 

XX-8 



'IBALITY 2.0 UPDATE 

Initial Conditions 

At any level in the system, the following elements are assumed 
to be setup; they should not be altered by any programs: 

=~E ~T] 
MSEP 
USER T 

Special PSYM elements 

Contain base-FID, mcdulo and separation 
of the M/DICT associated with the process. 

Contains the low-order 16 bits of the base-FID 
of the M/DICT. 

Certain elements have a "global" significance to the system; 
in addition to those described above they are: 

Functional Element 

Arithmetic condition 
flags: 

ZROBIT 
NEGBIT 
OVFBIT 

HO through H7 

INHIBIT 

OVRFLCTR 

RSCWA 

RS END 

SYSPRIVl 

SYSPRIV2 

Description 

These are altered by any arithmetic instruction, 
as well as the branch instructions that compare 
two relatively addressed fields. 

Set if result of operation is zero (equal). 
Set if result of operation is negative. 
Set if arithmetic overflow resulted. 

Overlays accumulator and extension; H7 is 
high-order byte of Dl; HO is low-order byte 
of DO. 

If set, the "BREAK" key on the terminal is 
inhibited; used by processes that should not 
be interrupted. 

See WRAPUP for usage. 

Return-stack current word address; contains 
address one byte past current entry in stack; 
stack is null if RSCWA=X'l84'. 

Return-stack ending address; contains address 
one byte past last allowable entry in stack; 
for a stack depth of 11 entries, RSEND•X'lBO'. 

If set indicates system privileges, level one. 

If set in addition to SYSPRIVl, indicates 
system privileges, level two. 

XX-9 



Functional Element 

TO through T3 

XMODE 

REAL I TY 2 • 0 UPDATE 

Description 

Overlays accumulator and extension. 

This tally may be setup to a mode-id of a 
subroutine that is to gain control when a 
"forward link zero" condition occurs. 

XX-10 



REALITY 2.0 UPDATE 

Program Documentation Conventions 

In the following documentation, the functional description briefly 
describes the action taken by the routine. Unless otherwise specified, 
the program described is called as a subroutine, using the BSL 
instruction, and it returns to the calling program via a RTN (return) 
instruction. 

The Input Interface, Internal Usage, and Output Interface sections 
describe the elements used by the subroutine. The single letter 
following the element name describes its type (C=character, D=double 
word, H=half word, R=address register, S=storage register, T=word). 
Unless otherwise specified, it should be assumed that the following 
elements may be internally destroyed by the routine: 

Registers R14 and RlS. 

Storage Registers SYSRO, SYSRl, SYSR2. 

Tallies Accumulator (DO, Dl), D2 1 T4, TS. 

Bits Arithmetic condition flags, SB60, SB61. 

If no description follows the element name, it indicates that the 
element is used as a scratch element. 

The system delimiters are symbolically referred to as: 

Hex. value Name and description 

FF SM Segment Mark. 
FE AM Attribute Mark. 
FD VM Value Mark. 
FC SVM Secondary Value Mark. 
FB SB Start Buffer. 

XX-11 



PROC 
PROCESSOR 

TCL VERBS 

REALITY 2.0 UPDATE 

OVERALL VIEW OF SYSTEM SOFTWARE LINKAGE 

OFF 
VERB 

TCL 
PROCESSOR 

LOGO FF 
PROCESSOR 

PROCESS 
INITIALl­

ION 

LOGON 
PROCESSOR 

FROM 
COLD-S,ART 

I 
I 

__ J 

TIME, DUMP, ETC. 

ENGLISH 
PROCESSORS 

TCL 
PROCESSOR 

ENGLISH VERBS 
LIST,SORT,ETC. 

ENGLISH 
PRE­
PROCESSOR 

ENGLISH 
SELECTION 
PROCESSOR 

t 
! 

LOGON 

TCL-II VERBS 
EDIT,COPY,ETf. 

---"'"--FROM AN'f 
TCL-II 
PROCESSOR 

PROCESSOR ---
GO 

OFF 

DEBUG 
PROCESSOR 

END 

TCL-11 
PROCESSORS 

WRAPUP PROCESSOR 

XX-12 



0 

000 

010 ABIT 

020 CHO 

030 

040 

050 

060 

070 

080 LOCK 
BITS 

090 CTRO 

OAO CTR8 

ODO REJCTR 

oco HSEND 

ODO 

OEO 

OFO UPDEND 

100 ROWA 

110 

120 

130 

140 

150 

160 

170 

180 RS END 

190 

lAO 

lBO 

lCO 

100 IBEND 

lEO 

lFO 

' -

REALITY 2.0 UPDATE 

PRIMARY CONTROL BLOCK - Addressing-register RO set to PCB. 

1 

ACF 

Areas bordered by heavy lines are accessed by hardware. 
Shaded areas are reserved for future system software use. 

3 4 5 6 8 9 A B c 

PRMPC sco SCl SC2 DEBUG USE Dl 

D 

DO 

ETC BITS TAP STW !OBITS 

CHl CH2 CH3 CH4 CH8 CH9 SCP T4 TS T6 

DZ DJ D4 05 

RECORD FRMN/LlllQUE FR}IP NNCF NPCF 

DBASE D}!OD 

EBASE EXOD 

SB ASE SHOD 

RMODE MODEID3 Xl'!ODE 

CTRl CTR2 CTR3 CTR4 CTR5 CTR6 

CTR9 CTRlO CTRll CTR12 CTR13 CTR14 

REJO IBSl:ZE OBSIZE HSBEC 

JSBEC I SEND 

OS BEG OS END 

TS ENO UPDBEG 

BMSBEG llMSEND 

RODSP ROFID REGISTER ONE 

REGISTER TWO R2zSCB REGISTER THREE RJ•HS 

REGISTER FOUR R4#IS REGISTER FIVE Rs=OS 

REGISTER SIX R6alR REGISTER SEVEN R7=UPD 

REGISTER EIGHT R8aBMS REGISTER NINE Rg=AF 

REGISTER TEN R10aIB REGISTER ELEVEN R1=0B 

REGISTER TWELVE R1z•CS REGISTER THIRTEEN R13•TS 

REGISTER FOURTEEN R14 REGISTER FIFTEEN R15 

RSC\IA (FID) (DISP) 

AFBEG A FEND 

CS END IBBEG 

OB BEG OB END 

IRBEG !REND 

SYSRl R3SAVE 

XX-13 

E F 

DACF 

T7 

SIZE 

DSEP 

ESEP 

SSEP 

USER 

CTR7 

CTJl15 

TS BEG 

ADORE 
REGIS 

RE TUR 
STACK 
ENTRI 

CS BEG 
--j 

SYS RO 



REALITY 2.0 UPDATE 

SECONDARY CONTROL BLOCK - Adressing-register R2 set to SCB. 
SCB = PCB +1 

0 1 2 1 ) 4 J 5 6 t 1 8 1 9 A i B c t D E j F 

000 BSP Cl C2 CJ C4 C5 C6 C7 

010 cs C9 CTR16 CTRl 7 CTR18 CTR19 CTR20 CTR21 

CTR22 CTR23 CTR24 CTR25 CTR26 CTR27 CTR28 CTR29 

0 30 CTR30 CTR31 CTR32 CTR33 CTRJ4 CIRH CTR36 CTR37 

040 CIR38 CTR39 CTR40 CTR41 CrR42 

050 NEXT FPl FP2 

060 FPJ D6 07 D8 

070 09 REJl REJ2 

080 5Y5R2 NXTITM so 

090 Sl S2 J 
OAO S3 54 55 

OBO 56 S7 sa 

oco 59 SRO 

ODO SRl SR2 SRJ 

OF.O SR4 SR5 SR6 

OFO SR7 SR8 

100 SR9 SRlO SRll 

no SR12 SR13 SR14 

120 SR15 SR16 

130 SR17 SR18 SR19 

140 SR20 SR21 SR22 

150 SR23 SR24 

160 SR25 SR26 SR27 

170 SR28 SR29 PQBEG 

L 
PQCUR PQEND 1 180 

190 SI KINP STKBEG SR35 

lAO LOCK SR AS BEG ASE ND 

ASTR 11 1 l 
180 

lCO II DEG II END PBUFBEG 

lDO PBUF PBUFEND OVFLCIR 

lEO CHARIN CHA ROUT LINESOUT 

lFO PAG!Hr.-t PAGHEAD Ln:ctR PAGSIZE PAGSKlP 1 LFCTR 

XX-14 



0 

000 

010 

020 R4 

030 

040 

050 IU2 

060 

070 

080 

090 

OAO 

OBO 

oco 

ODO 

OEO 
\.__ 

OFO 

100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

lAO 

lBO 

lCO 

lDO 

lEO 

lFO 

DEBUG CONTROL BLOCK - (PCB save areas) 
DCB = PCB +2 

..1. ..1. ..1. ..1. ..1. _J. 

SCl J PRMPC] 
R2 l 

T R5 l 
R7 l R8 

RlO 1 
I RD l 

RlS J 
Dl l 

DO l 

I SY SRO I 
I T4 T5 I DZ 

XX-15 

REALITY 2.0 UPDATE 

A c D F 
_l ..1. _L I I 

R3 ] 
R6 

I R9 

RU 1 
R14 

SYS JU 

1 



REALITY 2.0 UPDATE 

PSYM •••••• D/COOE •• LINE 2 LINE 3 PSYM •••••• D/CODE •• LINE 2 LINE 3 

ABIT B 080 0 cs R ooc c 
ACF H 001 0 CSBEG s ODE 0 
AF R 009 9 CSDSP T 061 0 
AFBEG s 008 0 CS END s OEl 0 
AFDSP T OAS 0 CSFID D 062 0 
A FEND s ODB 0 CSWA T OBO 0 
AFFID D OA6 0 CTR T 048 0 
AM N OFE 0 CTRO T 048 0 
ASBEG s 003 2 CTR! T 049 0 
A SEND s 006 2 CTRlO T 052 0 
ASTR s OD9 2 CTRll T 053 0 
ATTACH B OF2 0 CTR12 T 054 0 
BO B 07F 0 CTR13 T 055 0 
813 6 072 0 CTR14 T 056 0 
815 6 070 0 CTR15 T 957 0 
B30 B 061 0 CTR16 T OOA 2 
631 8 060 0 CTR17 T 008 2 
84 B 07B 0 CTR18 T ooc 2 
BASE D 028 0 CTR19 T 000 2 
BBIT B 081 0 CTR2 T 04A 0 
BITS c 010 0 CTR20 T OOE 2 
BKBIT B 096 0 CTR21 T OOF 2 
BMS R 008 8 CTR22 T 010 2 
BMSBEG s 07A 0 CTR23 T 011 2 
8MSDSP T OA3 0 CTR24 T 012 2 
8MSEND s 070 0 CTR25 T 013 2 
BMSFID D OA2 0 CTR26 T 014 2 
BMSWA T OAO 0 CTR27 T 015 2 
8SPCH c 001 2 CTR28 T 016 2 
Cl T 001 2 CTR29 T 017 2 
C2 T 002 2 CTR3 T 048 0 
C3 T 003 2 CTR30 T 018 2 
C4 T 004 2 CTR31 T 019 2 
cs T 005 2 CTR32 T OlA 2 
C6 T 006 2 CTR33 T 018 2 
Cl T 007 2 CTR34 T OlC 2 
C8 T 008 2 CTR35 T 010 2 
C9 T 009 2 CTR36 T OlE 2 
CBBIT B ODO 0 CTR37 T OlF 2 
CBIT B 082 0 CTR38 T 020 2 
CCDEL B OEB 0 CTR39 T 021 2 
CHO c 020 0 CTR4 ·r 04C 0 
CHl c 021 0 CTR40 T 022 2 
CH2 c 022 0 CTR41 T 023 2, 
CH3 c 023 0 CTR42 T 021+ 2 
CH4 c 024 0 CTR5 T 040 0 
CHS c 025 0 CTR6 T 04E 0 
CH9 c 026 0 CTR? T 04F 0 
COLHDRSUPP B OCB 0 CTR8 T 050 0 
CR N 000 0 CTR9 T 051 0 

XX-16 



REALITY 2.0 UPDATE 

PSYM .•.•.• D/CODE •. LINE 2 LINE 3 PSYM .••••• D/CODE •• LINE 2 LINE 3 
\.._ 

DO D 006 0 H2 H DOD 0 
01 D 004 0 H3 H ooc 0 
02 D 018 0 H4 H OOB 0 
03 D OlA 0 HS H ODA 0 
04 D OlC 0 H6 H 009 0 
05 D OlE 0 H7 H 008 0 
06 D 033 2 HBIT B 087 0 
07 D 035 2 HOR SUPP B OC9 0 
08 0 037 2 HS R 003 3 
09 0 039 2 HS BEG s osc 0 
DACF H OlF 0 HS END s OSF 0 
DAFl B 001 0 H7 H 009 0 
DAFlO B OC7 0 IB R OOA B 
DAF2 B 002 0 IBBEG s OE4 0 
DAF3 B 003 0 I BEND s OE7 0 
DAF4 B 004 0 IBFID D OAA 0 
DAF5 B 005 0 !BIT B 088 0 
OAF6 B 006 0 IBSIZE T OSA 0 
DAf 7 B 007 0 IBWA T OA8 0 
OAF8 B 008 0 ID SUPP 8 OC6 0 
OAF9 B 009 0 II s ODC 2 
DATEQ T 040 0 II BEG s OOF 2 
DB ASE D 02C 0 IIEND s OE2 2 
OBIT B 083 0 INDEBUG B OF3 0 
DBLSPC B OCA 0 INHIBIT B OFO 0 

'·-- DEBUGS B 035 0 INHIBITSVl B ODA 0 
DEBUG6 B 036 0 INHIBITSV2 B OOB 0 
DEBUG? B 037 0 IOBIT14 B OF6 0 
DEBUGBYTE H 006 0 IOBIT2 B OEA 0 
DISKERR B OF6 0 IOBIT4 B OEC 0 
[)tlOO T 02F 0 IR R 006 6 
DSEP T 02F 0 IRBEG s OFO 0 
EBASE D 034 0 IRDSP T 099 0 
EBIT B 084 0 I REND s OF3 0 
ECONVBIT B OCF 0 IRFID D 09A 0 
EMOD T 036 0 IRWA T 098 0 
ENDBIT B 09A 0 IS R 004 4 
EOFBIT B 03A 0 ISBEG s 062 0 
EOTBIT B OEl 0 ISDSP T 091 0 
ESEP T 037 0 I SEND s 065 0 
FBIT B 085 0 I SF ID D 092 0 
FPl D 02A 2 ITAPEBIT B OCE 0 
FP2 D 020 2 JBIT B 089 0 
FP3 D 030 2 KBIT B 08A 0 
FRl+I 0 022 0 LBIT B 088 0 
FRMP D 024 0 LF N DOA 0 
GBIT B 086 0 LFCTR T OFF 2 
GMBIT B 09C 0 LFDLY T OFF 2 
HO H OOF 0 LINCTR T OFC 2 
Hl H ODE 0 LINESOUT D OF6 2 

\___ 

XX-17 



REALITY 2. 0 UPDAT! 

PSYM •••.•• D/CODE .• LINE 2 LINE 3 PSYM •••••• D/CODE .. LINE 2 LINE 3 

Lll\QUE D 022 0 PBUFEND 5 OEB 2 
LISTFLAG B OFl 0 PQBEG s OBE 2 
LOCK H 000 0 PQCUR s OCl 2 
LOCK SR s ODO 2 PQEND s OC4 2 
LPBIT B OCD 0 PQFLG B ODE 0 
MBA SE D 030 0 PRMPC c 002 0 
MBIT B 08C 0 PROTECT B OEO 0 
M"OD T 032 0 PTIME T 025 2 
MJDEID2 T 042 0 QBIT B 090 0 
MODEID3 T 045 0 QSTR s OE8 2 
MODULO T 02A 0 RO R 000 0 
MSEP T 033 0 ROD SP T 081 0 
NBIT B 080 B ROFID D 082 0 
NEGBIT B OOE 0 ROtJA T 080 0 

NEXT T 029 2 Rl R 001 1 
NNCF H 04C 0 RIO R OOA A 
NOB IT B 09A 0 RlOFID D OAA 0 
NOBLNK B OEE 0 RlOWA T OAS 0 
NPCF H 040 0 Rl 1 R OOB B 

NREC D 020 2 RllDSP T OAD 0 
NXTITM 2 043 2 RllFID D OA3 0 
OB R OOB B RllWA T OAC 0 
OB BEG 5 OEA 0 Rl2 R ooc c 
OBDSP T OAD 0 Rl2DSP T 081 0 
OBEND s OED 0 Rl2FID D 062 0 
OBFID D OAE 0 Rl2WA T 080 0 
OBIT B 08E 0 Rl3 R 000 D 
OBSIZE T 058 0 Rl3DSP T 085 0 
OBWA T OAC 0 Rl3FID D OB6 0 
OS R 005 5 Rl3WA T 084 0 
OS BEG s 068 0 R14 R OOE 3 
OSBEGF D 069 0 Rl4DSP T 089 0 
OSDSP T 095 0 Rl4FID D OBA 0 
OS END s 068 0 Rl4WA T OBC 0 
OSFID D 096 0 Rl5 R OOF F 
OSWA T 094 0 R15DSP T OBD 0 
OVFBIT B OOF 0 Rl5FID D OBE 0 
OVRFLCTR D OEE 2 Rl5WA T OBC 0 
OVRFLW D 038 0 R2 R 002 2 
OVRFLWO z 006 E R2DSP T 089 0 
PAGFRMT B occ 0 R2FID D 08A 0 
PAGHEAD s OF9 2 R2WA T 088 0 
PAGINATE B OF7 0 R3 R 003 3 
PAGNUM T OF8 2 R3DSP T 08D 0 
PAGSIZE T OFD 2 R3FID D 08E 0 
PAGSKIP T OFE 2 R3SAVE s OFC 0 
PARITY B OE4 0 R3WA T 08C 0 
PBIT B 08F 0 R4 R 004 4 
PBUF s OE8 2 R4DSP T 091 0 
PBUFBEG s OE5 2 R4FID D 092 0 

XX-18 



REALITY 2.0 UPDATE 

PSYM ••.••• D/CODE •. LINE 2 LINE 3 PSYM .••••• D/CODE •. LINE 2 LINE 3 
,,_ 

R4WA T 090 0 5811 B OAB 0 
RS R 005 4 5812 8 OAC 0 
RSDSP T 095 0 5813 8 OAD 0 
RSFID D 096 0 5814 B OAE 0 
RSWA T 094 0 5815 B OAF 0 
R6 R 006 6 SB16 8 OBO 0 
R6DSP T 099 0 S817 B 081 0 
R6FID D 09A 0 5818 B 082 0 
R6WA T 098 0 5819 8 063 0 
R7 R 007 0 582 8 OA2 0 
R7DSP T 090 0 5820 B 084 0 
R7FID D 09E 0 5821 B 085 0 
R7WA T 09C 0 S822 B 086 0 
R8 R 008 8 SB23 B 087 0 
R8DSP T OAl 0 5624 B OBS 0 
R8FID D OA2 0 5825 B 089 0 
R8WA T OAO 0 5826 B OBA 0 
R9 R 009 9 5827 B 086 0 
R9DSP T OAS 0 5628 B OBC 0 
R9FID D OA6 0 5829 B 080 0 
R9WA T OA4 0 583 B OAE 0 
RBIT B 091 0 5830 B OBE ·o 
RECORD D 020 0 5831 B OBF 0 
REJO T 059 0 5832 B oco 0 

\ REJl T 038 2 584 B OA4 0 
· ..... ~- REJ3 T 030 2 S85 B OAS 0 

REJ4 T 03E 2 SB6 B OA6 0 
REJ5 T 03F 2 S660 B ODC 0 
REJCTR T 058 0 SB61 B ODD 0 
RMB IT B 09E 0 SB7 B OA7 0 
RtvK>DE T 044 0 S88 8 OA8 0 
RNI8IT 8 033 0 589 B OA9 0 
RN I CTR H 007 0 SBASE D 03C 0 
RSCWA T OCl 0 SBIT B 092 0 
R5END T oco 0 sea c 003 0 
RTNSTK T OC2 0 SCl c 004 0 
so s 046 2 5C2 c 005 0 
51 s 049 2 SCP c 027 0 
52 s 04C 2 SEPAR T 028 0 
S3 s 04F 2 SIZE T 027 0 
54 s 052 2 SM N OFF 0 
S5 s 055 2 SMBIT 8 09F 0 
56 s 058 2 SMCONV B OED 0 
57 s 058 2 Sfv'OD T 03E 0 
58 s OSE 2 SRO s 064 2 
S9 s 061 2 SRI s 067 2 
SB N OF8 0 5R10 s 082 2 
580 B OAO 0 SRll 5 085 2 
581 8 OAl 0 5Rl2 s 088 2 
SBlO B OM 0 SR13 s 088 2 

XX-19 



REALITY 2.0 UPDATE 

PSYM ...... O/COOE .. LINE 2 LINE 3 PSYM ...... D/CODE .. LINE 2 LINE :s 

SR14 5 08E 2 TS ENO s 071 0 
SR15 c, 091 2 TSWA T OB4 0 
SR16 s 094 2 TTLY T 003 0 
SR17 s 097 2 TY"'10 T 022 2 
SR18 s 09A 2 UBIT B 094 0 
SR19 s 090 2 UPO R 007 7 
SR2 s OGA 2 UPOBEG s 074 0 
SR20 s OAO 2 UPDDSP T 090 0 
SR21 s OAO 2 UPOEND s 077 0 
SR22 c; OAG 2 UPOFID D 09E 0 
SR23 s OA9 2 LJPDWA T 09C 0 
SR24 s OAC 2 USER T 047 0 
SR25 s OAF 2 VBIT B 095 0 
SR26 s 082 2 VM N OFO 0 
SR27 s OBS 2 VOBIT B OOF <J 

SR28 s 068 2 VT N 008 0 
SR29 s OBS 2 WBJT B 096 0 
SR3 s 060 2 WMBIT B 090 0 
SR35 5 OCD 2 wr-DDE T 043 0 
SR4 s 070 2 XBIT B 097 0 
SRS s 073 2 xtvnDE T 046 0 
SR6 s 076 2 XNFID 0 001 I= 

SR7 s 079 2 XNLOCK H 000 F 
SR8 s 07C 2 XNNCF H 001 F 
SR9 s 07F 2 XNPCF H OOA F 

SSEP T 03F 0 XNRES H OOB F 
STKBEG s OCA 2 XPFID 0 003 F 
STKFLG B OE8 0 YBIT B 098 0 
STKFLGX B OE9 0 ZBIT B 099 0 
STKINP s OC7 2 ZEROBIT B DOD 0 
SVM N OFC 0 
SYSPRIVI B OF4 0 
SYSPRIV2 B OEF 0 
SYS RO s OF6 0 
SYSRl s OF9 0 
SYSR2 s 040 2 
TO T 007 0 
Tl T 006 0 
T2 T 005 0 
T3 T 004 0 
T4 T 0 llt 0 
TS T OlS 0 
T6 T 016 0 
T7 T 017 0 
TAPSTW c OlC 0 
TBIT B 093 0 
TPRDY B OE? 0 
TS R 000 0 
TS BEG s OGE 0 
TSDSP T OBS 0 

XX-20 



TCL-I & TCL-II 

PROCESSORS 

& 

PROC INTERFACE 

YY-?1 



REALITY 2.0 UPDATE 

VERB FORMAT 

General 

A verb is an entry in the master dictionary whose D/CODE begins with 
the character "P". The special sequenC'e "PQ" is reserved, and defines 
a PROC; otherwise the format of the verb is as defined below. The 
verb contains three mode-id's - hexadecimal character fields that 
specify the transfer of control from one processor to another. The 
first mode-id is mandatory and specifies the location to which TCL-1 
transfers control after editing the input statement; the second mode-id 
is also mandatory for TCL-Il and ENGLISH verbs, and specifies a secondary 
processor exit. The third mode-id is usually optional. In addition, an 
option string may be present for TCL-II verbs. 

Verb Format: 

Attribute 
Number 

1 

2 

3 

Description 

"Px"; x is a single character 
(not "Q") stored in the 
character register SCP. 
X may be null. 

Primary mode-id, to which 
TCL-I transfers control. 

Secondary mode-id; stored 
in the tally MODEID2 

4 Tertiary mode-id; stored 
in the tally MODEID3 

5 Option string, for TCL-II 
verbs (see TCL-II 
documentation) 

XX-22 

Examples 

LIST verb: PA 
COUNT verb: PB 

ALL ENGLISH verbs: 35 
ALL TCL-11 verbs: 2 

EDIT verb: D 
ASSEMBLE verb: 17 



REALITY 2.0 UPDATE 

TCL-I 

Functional Description 

TCL-I is the basic entry point (not a subroutine) for the terminal 
control language process. It is entered solely from the WRAPUP 
processor after WRAPUP has completed processing of the previous TCL 
statement. 

The primary functions of the TCL-I processor are as follows: 

1) Determine if a PROC is in control, and if it is, exit to 
the PROC processor for continuation of the PROC. 

2) If not, obtain a line of input from the terminal. 

3) Attempt to retrieve the verb (first set of contiguous 
non-blank data in the input buffer) from the master dictionary 
and validate it as such. 

4) Set up the parameters from the verb; edit and copy the 
remainder of the data in the input buff er to the work-space 
IS. 

5) Exit to the processor specified in the primary mode-id 
parameter of the verb. 

Editing Features 

1) All control characters, and system delimiters (SB, SM, AM, 
VM, SVM) in the input buffer are ignored. 

2) Redundant blanks (sequence of two or more blanks) are not 
copied, except in strings enclosed by single or double 
quote signs. 

3) Strings enclosed in single quote signs are copied as: 
(SM) I string (SB) 

4) Strings enclosed in double quote signs are copied as: 
(SM) V string (SB) 

S) End of data is marked with a: (SM) Z 

Output Interface 

IS BEG s Defines start of work space where edited 
input data has been copied. 

XX-23 



IS R 

IR R 

SR4 s 

IBBEG s 

IB R 

I BEND s 

SCP c 

sea c 

SCl c 

SC2 c 

MODEID2 T 

MODEID3 T 

IBIT B 

VBIT B 

PQFLG B 

REALITY 2.0 UPDATE 

=ISBEG 

Points to AM following attribute 4 of the verb, 
or to end-of-data AM of verb. 

Points to AM at end-of-data of verb. 

Points to start of last input line from terminal. 

Points to SM terminating input line. 

As above. 

Contains character following "P" in verb 
attribute one; blank if none specified. 

Contains a blank 

Contains a blank 

Contains a SB 

Contains secondary mode-id from verb; zero if 
none spec if ied. 

Contains tertiary mode-id from verb; zero if none 
specified. 

Set if any string enclosed by single-quote signs 
has been found. 

Set if any string enclosed by double-quote signs 
has been found. 

Set if a PROC is in control. 

BASE J 
MODULO 

Contains base-FID, modulo and separation of 
of master dictionary. 

SEP AR 

All other bits are zero (A through Z bit and SBO through SB32. All 
other process work-space pointers are set to their initial condition. 
(See WSINT documentation). 

Subroutines Used 

RETIX: CVTHIR 

XX-24 



REALITY 2.0 UPDATE 

Error Conditions 

The following cause an exit to the WRAPUP processor with the message 
indicated: 

271: One PROC cannot call another 

3: Verb cannot be identified in the M/DICT. 

30: Verb format error. (Premature end-of-data, non-hex 
character in mode-id's) 

2: Uneven number of single or double quote signs in input 
data. 

XX-25 



REALITY 2.0 UPDATE 

TCL-II 

Functional Description 

TCL-11 is entered from TCL-I by those verbs requiring access to a file, 
and to all, or explicitly specified items, from the file. TCL-11 exits 
to the processor whose mode-id is specified in MODEID2; typically 
processors such as the EDITOR, ASSEMBLER, LOADER, etc. use TCL-II to 
feed them the set of items which was specified in the input data 

On entry, TCL-II checks the verb definition for a set of option 
characters (in attribute 5 of the verb); verb options are single 
characters as below; any combination may be specified. 

Option Character 

c 

F 

N 

p 

u 

z 

Meaning 

Copy - the item retrieved is copied to 
the workspace IS. 

File access only - the item-list is 
ignored; only the file parameters are set 
up by TCL-II. If this option is present, 
any others are ignored. 

New item acceptable - if the item specified 
is not on file, the secondary processor 
still gets control (example: the EDITOR 
can process a new item). 

Prints item-id on a full-file retrieval, 
as each item is retrieved. 

Updating sequence flagged - if items are 
to be updated as retrieved, this option is 
mandatory. 

Final entry - the secondary processor will 
be entered once more after all items have 
been retrieved (example: COPY processor, 
to print a message). 

The input data string to TCL-II consists of the file-name (optionally 
preceded by the modifier DICT, which specifies access to the dictionary 
of the file), followed by a list of items, or an asterisk (*) specify­
ing retrieval of all items on the file. The item-list may be followed 
by an option list (options to the secondary processor) which must be 
enclosed in parentheses. These options must consist of a sequence of 
single characters, or a decimal number, or two decimal numbers separ­
ated by a minus sign (specifying a range of numbers). Multiple 
options are separated by commas. The option characters A through Z set 
the corresponding bits ABIT through ZBIT (A sets ABIT, etc.); the 
numbers are stored in tallies D4 and DS, and the bit NOBIT set if the 
numerical option is found. 

XX-26 



Output Interface 

DA Fl 

DAF2 

DAF3 

DAF4 

DAF5 

DAF6 

DAF8 

RMB IT 

BASE 
MODULO 
SEPAR 

SBA SE 
SMOD 
SSEP 

IS 

DBASE 
DMOD 
DSEP 

B 

B 

B 

B 

B 

B 

B 

B 

R 

REALITY 2.0 UPDATE 

Set if update option was found. 

Set if "C" otpion was found. 

Set if "P" option was found. 

Set if "N" option was found. 

Set if "Z" option was found. 

Set if "F" option was found. 

Set if accessing a dictionary-file (DICT 
in input). 

Set if item found and retrieved. 

First exit only: base FID, modulo and separation 
of file being accessed. 

Base FID, modulo and separation of file being 
accessed. 

Points to non-blank following file-name if "F" 
option specified. 

Contains base-FID, modulo and separation of 
dictionary of file being accessed if "F" option 
is spec if ied. 

Following specifications meaningful only if "F" option is not present: 

BMSBEG 

ABIT 
through 
ZBIT 

NO BIT 

D4 
D5 

SRO 

SIZE 

SR4 

s 

B 

B 

~] 
s 

T 

s 

Points one prior to area containing the item-id, 
which is terminated by a AM. 

Set according to option list (see 
description above). 

Set if numerical option found. 

Contains numerical option value(s). 

Points one prior to count field of item 
on file. 

Contains count field of item. 

Points to last AM of item on file. 

XX-27 



MODEID3 T 

ISBEG s 

IS R 

I SEND s 

IR R 

Internal Usage 

RMODE T 

REALITY 2.0 UPDATE 

Contains tertiary mode-id from verb. 

"C" Option in Verb 

Points one prior to 
beginning of copied 
item (including 
item-id, not 
including count 
field) 

Points to last AM 
of copied item. 

=IS 

Points to last AM 
of item on file. 

No "C" Option in Verb 

Points to end of string. 

Points to AM following 
item-id on file. 

Contains mode-id of entry-point within TCL-11 
that WRAPUP processor exits to; must be maintained 
by lower-level processors. 

All elements as used by GETITM (q.v.) 

Subroutines Used 

RETIX, GBMS, GDLID, GETITM, GETOPT, GETFILE. 

Error Conditions 

The following conditions cause an exit to the WRAPUP processor with 
the error number indicated: 

200 File-name not specified 

201 File name illegal or incorrectly defined in the M/DICT. 

202 Item not on file (will not abort processing). 

203 Item list missing. 

204 Error in format of option list. 

13 DL/ID item not found in dictionary-file. 

XX-28 



', , __ 

REALITY 2.0 UPDATE 

User Exits From PROC 

A user- program can gain control during execution of a PROC, by using 
the Uxxxx command in the Proc, (where xxxx is the hex. mode-id of the 
user-program). The user-program can perform special processing, and 
then return control to the PROC processor. Necessarily, certain 
elements used by PROC must be maintained by the user-program. These 
elements are marked with an asterisk in the table below: 

Input Interface 

*BASE fl *MODULO 
*SEP AR 

*PQBEG s 

*PQEND s 

PQCUR s 

IR R 

*PBUFBEG s 

*ISBEG s 

*STKBEG s 

*SBIT B 

IB R 

*SC2 c 

IS R 

UPD R 

Contains FID, modulo and separation of 
M/DICT. 

Points one prior to the first PROC statement. 

Points to terminal AM of the PROC. 

Points to AM following the Uxxxx element. 

=PQCUR 

Points to buff er containing primary and secondary 
(if any) input buffers. Format: 
(SB) ••• primary input ••• (SM) (SB) ••• secondary 
input • • • (SM) 

Points to buffer containing primary output line. 

Points to buffer containing "stacked input" 
(secondary output) 

Set if ST ON command is in effect. 

Current input buffer pointer (may be within 
primary or secondary input buffers). 

Contains a blank. 

SBIT on SBIT off 

Last byte moved into Last byte moved into 
secondary output primary output buffer. 
buffer. 

Last byte moved Last byte moved into 
into primary secondary output 
output buffer. buffer. 

XX-29 



Output Interface 

IR 

IS J UPD 
IB 

R 

R 
R 
R 

Exit Convention 

REALITY 2.0 UPDATE 

Points to AM preceding next PROC statement to 
be executed; may be altered to change location of 
continued PROC execution. 

May be altered as needed to alter data within 
input and output buffers; but formats described 
above must be maintained. 

The normal method of returning control to the PROC processor is to 
execute an external branch to 2, PROC-I. If it is necessary to abort 
PROC control and exit to WRAPUP, set PQFLG off, and execute an 
external branch to one of the WRAPUP entry points. 

Note that, when the PROC eventually transfers control to TCL, {via 
the P operator), certain elements are expected to be in an initial 
condition. Therefore, if the user-program uses these elements, they 
should be reset before returning to PROC, unless the elements are 
deliberately set up as a means of passing parameters to other processors. 
Specifically, the bits ABIT through ZBIT are expected to be zero by 
the TCL-II and ENGLISH Processors. !t is best to avoid usage of 
these bits in PROC user-exits. The scan character registers SCO, 
SCl and SC2 must also contain an SB. a blank and a blank respectively. 

XX-30 



REALITY 2.0 UPDATE 

WRAPUP PROCESSOR 

General 

The WRAPUP Processor is entered under the following conditions: 

1) Termination of a TCL statement, when it is required to 
"wrap-up" processing and to return to the TCL level. 

2) Intermediate stage in processing a statement, when it is 
required to print messages from the ERRMSG file, or to 
perform disc updates, and then return to the calling 
processor. 

3) User-initiated termination of processing, via the 'END' 
command in DEBUG. 

The WRAPUP Processor has several entry points, depending on the type 
of action required; several of these entry points are provided to 
simplify the interface requirements when an error message is required 
(Note, for instance, that MD995 may be entered immediately after 
return from a call to, say, RETIX, if the item is not found on file, 
by setting up Cl to the error message number). 

WRAPUP also performs the following functions before returning to 
TCL: 

1) Closes all open spool files, if LPBIT is set. 

2) Releases linked overflow space if OVRFLCTR ~ O. 

WRAPUP-I 

Functional Description 

1. Prints, or sets up for printing, messages that are stored 
in the file "ERRMSG" (must be catalogued in the process 
M/DICT. 

2. Performs disk updates as specified in the history 
string. 

3. Terminates processing of a TCL statement; re-initializes 
elements. 

Interface Requirements 

History String. The history string is from HSBEG through HSEND. If 
HSBEG=HSEND, the string is null; this is the initial condition on 

XX-31 



REALITY 2.0 UPDATE 

entry to TCL. If HSBEG ~ HSEND, elements in the string are processed 
by WRAPUP. There are three types of elements; all other element types 
are ignored. 

1. Qutput message. 

(SM) 0 (AM) Message-Id (AM) (Parameter (AM) ... ) (SM) 

where Message-Id is the item-id of an item in the ERRMSG 
file. (Normally a decimal numeric). 

Parameters are character string that is to be passed to 
the message formatter (PRTERR, WRAPUP-III). 

2. Qisk .!!J>date/Qelete string. 

(SM) DU (AM) base (VM) modulo (VM) separ (AM) item-id 
(AM) (item-body) (AM) (SM) 

(SM) DD (AM) base (VM) modulo (VM) separ (AM) item-id 
(AM) (SM) 

DU - Disk update; replaces entire item in the file 
specified by the decimal parameters base, modulo and separ. 

DD - Disk delete; deletes item from the file. 

3. End-of-string element 

(SM)Z 

Conventionally, a process wishing to add data to the history string 
begins at HSEND+l; when the entire additional element(s) has been 
added, the string is terminated with a (ZM) Z, and HSEND reset to the 
(SM). 

If WMODE is non-zero on any entry to WRAPUP, an indirect subroutine 
call (3SL*} via WMODE will be executed. This allows special processing 
to be done on every WRAPUP entry. 

WRAPUP may be called as if it is a subroutine by setting RMODE to the 
Mode-ID of the program to which WRAPUP returns control to; note how­
ever, that the return-stack is always set to a null or empty condition 
by WRAPUP. On the error-message setup entry points (MD99/MD993/ 
MD994/MD995), if VOBIT is set and RMODE non-zero, the appropriate 
messages are stored in the history string, for printing on a final 
entry with RMODE zero. 

If OVRFLCTR is non-zero, it is assumed that it contains the starting 
FID of a linked set of overflow frames that is to be released to the 
system overflow pool. This tally is used, for instance, by the SORT 
processor to store the beginning FID of the sorted table; the overflow 
space used by the Sort is thus always released to the system even if 
the sort is aborted by the debug 'END' command. 

XX-32 



Entry Points 

MD993 

MD994 

MD995 

MD99 

MD999 

TCL 

REALITY 2.0 UPDATE 

A message number is stored in Cl; a numeric 
parameter is stored in C2. Sets up the message in 
the history string and exits to MD99. 

A message number is stored in Cl; a character string 
parameter is stored for IS+l through an AM or SM. 
Sets up the message and exits to MD99. 

As above, except that the parameter is from BMSBEG+l 
through an AM or SM. 

Message numbers (without any parameters) may be stored 
in REJCTR, REJO and REJl (no action is taken if zero.) 
After setting up the messages in the history string, 
exits to MD999 (If VOBIT set, skips history string 
processing in MD999). 

Processes all elements in the history string. 
Reinitializes process work spaces; exits to TCL 
if RMODE = O; to calling program via RMODE if non-zero. 

Kills history string; PROC control; exits to TCL 
(Entry point of "END" command for DEBUG). 

Subroutines Called 

PRTEER 

UPDITM 

ISINIT 

WSINIT 

CVTNIS 

(WRAPUP-III) to print error messages. 

(WRAPUP-II) to perform disk updates. 

To re-initialize ISBEG/ISEND/OSBEG/OSEND. 

To re-initialize process work areas. (BMS/CS/AF/IB/ 
OB/TS) 

To convert a decimal character string, from the IS, 
to binary. 

External Branches 

LOGO FF If USER = 0 

Error Messages 

"DISK UPDATE STRING ERROR"; self explanatory. 

XX-33 



REALITY 2.0 UPDATE 

UPDITM (WRAPUP-II) 

Functional Description 

This subroutine performs updates to the disc files in the system. It 
is described in the next section (DISC FILE I/O). 

PRTEER (WRAPUP-III) 

Functional Description 

This subroutine is used primarily by the WRAPUP processor to retrieve 
and print error messages from the system file ERRMSG. A parameter 
string may be passed to the subroutine, which will format and insert 
the parameters as specified by the codes in the message item. System 
message item-ids are numeric; however, any item-id can be specified. 
See description of error messages for format of the codes. 

Input Interface 

TS R 

Output Interface 

TS R 

Internal Usage 

EBASE ] D 
EMOD T 
ESEP T 

Points one prior to the message item-id, which 
must be terminated by an AM. Parameters optionally 
follow, being delimited by AM's. The parameter 
string must terminate with a SM. 

Points to AM following message-id, or AM or SM 
following last parameter output. 

Set up by PRTERR to ERRMSG file, if EBASE • 0 
on entry; otherwise these elements are assumed 
to be already initialized. 

All elements are used by WRTLIN and RETIX. 

Error Message Formats 

A (dee-number) Parameter insertion code; the next parameter 
from the history string, if any, is placed 
in the output buffer. If "dee-number" is 
specified, the parameter is left-justified in 
a blank field of the specified length. 

XX-34 



\ 

'-

REALITY 2.0 UPDATE 

R (dee-number) As above; the parameter is right-justified in 
the blank field of the specified length. 

E (char-string) The message ID, surrounded by brackets, is 
placed in the OB, followed by the optional 
character string. 

H (char-string) The character string is placed in the OB. 

L (dee-number) The output buffer is printed, and the specified 
number of line feeds are output (one if 
"dee-number" not specified). 

X (dee-number) The OB is incremented by the number of spaces 
specified. If the end of the line is reached, 
the output buff er is printed and a new line is 
started. 

T 

D 

Adds system time in the format HH:MM:SS to 
the output buffer. 

Adds system date in the format DD MMM YYYY to 
the outnut buffer. 

On exit from this subroutine, the output buffer is printed and a new 
line started, unless the last character in the OB is an "+", which 
causes printing of the buffer only. 

Functional Element Usage By All WRAPUP Modes 

Bits 

VOBIT 

SB60 

SB61 

RMB IT 

Tallys 

REJCTR J 
REJO 
REJl 

Cl 

C2 

Description of Use 

Store/Print Flag; Store Messages 
if set 

Scratch 

Scratch 

As used by RETIX 

Input error messages 

Input error messages 

Input error messages 

XX-35 

Mode 

ALL 

Wrapup-III 

Wrapup-III 

II, III 

I (MD99) 

I (MD993/994/ 
995) 

I (MD993) 



Bits 

C3 

D2 

D3 

SIZE 

NEXT 

RECORD, 
LINK(S) 

OVRFLW 

D4 

T4 

BASE 
MODULO 
SEPAR 

EBASE 
EMOD 
ESEP 

RMODE 

WMODE 

Registers 

HS BEG 
HS END 

BMSBEG 
BM SEND 

CS BEG 
CS END 

IS BEG 
I SEND 

OS BEG 
OS END 

IBBEG 
IBEND 

Description of Use 

Scratch 

Scratch 

Scratch 

Scratch 

Scratch 

As used by disc-I/O subroutines 

Scratch 

Scratch 

Scratch 

Various 

Base-FID, modulo and separation 
of the ERRMSG file. 

Return mode-ID 

Special processtng exit mode-ID 

Beginning and end of history 
string 

Reinitialized on exit from MD999 

XX-36 

REALITY 2.0 UPDATE 

Mode 

II 

II 

I I 

II 

II 

II 

I• II 

II 

II 

I I 
I• II, III 

I II 

I 

I 



OBBEG J OBEND 

AF BEG 
A FEND 

UPD 
IR 
TS 

AF 

Return 
Stack 

Scratch 
Scratch 
Scratch 

Scratch 

Reset to null condition on exit 
from MD999 

XX-37 

REALITY 2.0 UPDATE 

I, II 

I, II, III 

III 



REALITY 2.0 UPDATE 

DISC FILE I/O 

XX-38 



REALITY 2.0 UPDATE 

RETIX AND RETI 

Functional Description 

Retrieves an item stored in a file. The item-id is explicitly 
specified to this routine, as are the file parameters base, modulo and 
separation. The subroutine performs a "hashing" algorithm (see HASH 
documentation) to determine the group within which the item may be 
present, and then searches sequentially down the data in the group for 
a matching item-id. If found, the subroutine returns pointers to the 
beginning and end of the item, and the item size (from the item count­
field). 

The item-id is specified in a buffer defined by the register BMSBEG; 
if the entry RETIX is used, the item-id must be terminated by an AM; 
if RETI is used, the register BMS must point to the last byte of the 
item-id. An AM will be appended to the item-id by RETI. 

Input Interface 

BMSBEG 

BMS 

BASE 

MODULO 

SEPAR 

Internal Usage 

XMODE 

Output Interface 

BMS 
BMSEND 

RECORD 

s 

R 

D 

T 

T 

T 

~] 

Points one prior to the item-id required. 

RETIX: 
RETI: 

not an input interface requirement. 
points to the last byte of the item-id. 

Contains the base FID of the file. 

Contains the modulo (number of groups) of the 
file. 

Contains the separation (number of frames per 
group) of the file. 

Used to exit to subroutine IROVF if a group 
format error occurs. 

Points to last character of item-id. 

Contains the beginning FID of the group to which 
the item-id hashes. 

XX-39 



NNCF 
FRMN 
FRMP 
NPCF 

XMODE 

RMB IT 

SIZE 

Rl4 

IR 

SR4 

] 

~ubroutine Usage 

RDREC, 
HASH, 
IROVF 

Error Conditions 

T 
D 
D 
T 

T 

B 

T 

R 

R 

s 

REALITY 2.0 UPDATE 

Contain the link fields of the frame above. 

Zero 

Item Found 

Set. 

Item count-field. 

One prior to item 
count field. 

Points to first 
AM of item 

Points to last 
AM of item 

Item Not Found 

Zero. 

Zero. 

Points to last AM of last 
item in group. 

Points to AM indicating 
end of group data 
(=Rl4 +l). 

=Rl4 

Requires one additional level of subroutine 
linkage; three if a group format error 
occurs. 

If the data in the group is bad - premature end of linked frames, or 
non-hexadecimal character encountered in the count field-the 
message: 

****GROUP FORMAT ERROR AT: .xxxxxx 

is returned (xxxxxx is six character hexadecimal FID indicating where 
the error was found), and the routine returns with an "item not 
found" condition. Data is not destroyed, and the group format error 
will remain. 

XX-40 



REALITY 2.0 UPDATE 

GET I TM 

Functional Description 

Sequentially retrieves all items in a file. This routine is called 
repetitively to obtain items from a file one at a time until all items 
have been retrieved. The order in which the items are returned is the 
same as the pseudo-random storage sequence. 

If the items retrieved are to be updated by the calling routine (using 
The routine UPDITM), this should be flagged to GETITM, which will then 
perform a two-stage retrieval process by first storing all item-id's 
(per group) in a table, then will use this table to actually retrieve 
the items on each call. This is necessary because, if the calling 
routine updates an item, the data within this group shifts around; 
GETITM cannot simply maintain a pointer to next item in the group, as 
it does if the "update" option is not flagged. 

An initial entry condition has also to be flagged to GETITM; it then 
sets up and maintains certain pointers which should not be altered by 
the calling routines until all the items in the file have been 
retrieved. 

Note the functional equivalence of the output interface elements with 
those of RETIX. 

Input Interface 

DAF7 

DAFl 

DBASE J 
DMOD 
DSEP 

BMSBEG 

Internal Usage 

RECORD 

NNCF, 
FRMN, 
FRMD, 
NPCF, 
XMODE, 
EOFBIT 

B 

B 

D 
T 
T 

s 

D 

Initial entry flag; must be zeroed on first 
call to GETITM. 

If set, "update" option is in effect. 

Contains base FID, modulo and separation of 
the file 

Points one prior to an area where the item-id 
of items retrieved may be copied. Must be at 
least 50 bytes in length. 

Used internally. 

XX-41 



REALITY 2.0 UPDATE 

These elements should not be altered by any other routine while 
GETITM is used. 

DAF7 
DAFl 

DBASE 
DMOD 
DSEP 

SBASE 
SMOD 
SSEP 

NXTITM 

:] 

s 

OVRFLCTR D 

Output Interface 

RMBIT B 

SIZE T 

Rl4 R 

SRO s 

IR R 

SR4 s 

XMODE T 

Subroutines Used 

See above 

Current group beginning FID. 
Number of groups left to be processed. 
Separation parameter of file (unchanged). 

Saved values of original base FID, modulo 
and separation. 

If DAFl set: Points one before next item-id 
in prestored table. 

If DAFl zero: Points to last AM of item 
previously returned. 

Overflow space table starting FID; used if 
DAFl set. 

Set if item found; zeroed if all items exhausted. 

Contains item count-field. 

Points one prior to count-field. 

=R14 

Points to first AM of item. 

Points to last AM of item. 

Zero 

RDREC, GNSEQI, GNTBLI (last two local); requires one additional level 
of subroutine linkage. 

Error Conditions 

As for RETIX (q.v.); except that the routine will continue retrieving 
items, if any more exist, after the error condition is reported. 

XX-ti? 



REALITY 2.0 UPDATE 

UPDITM 

Functional Description 

This routine performs updates to a disc file defined by its base FID, 
modulo and separation. If the item is to be deleted, the routine will 
compress the remainder of the data in the group in which the item 
resided; if the item is to be added, it will be added at the end of the 
current data in the group; if the item is to be replaced, functionally 
a deletion and then an addition takes place. UPDITM does not perform 
a merge into an already existent item. 

If the change of data in the group reaches an end of the linked frames, 
UPDITM will obtain another frame from the overflow space pool and link 
it to the previous linked set; as many frames as required will be added. 
If the deletion or replacement of an item causes an empty frame at the 
end of the linked frame set, and that frame is not in the "primary" 
area of the group (see Data Structure), it will be released to the 
overflow space pool. 

Once this routine is entered, the processing cannot be interrupted 
until completed. 

Input Interface 

BMSBEG s 

TS R 

CHS c 

BASE n MODULO 
SEP AR 

Internal Usage 

RMB IT B 

INHIBITSVl B 

CTRO T 

CTRl T 

Points one prior to the item-id to be updated; 
the item-id must be terminated by an AM. 

Points one prior to the item body; the data must 
be terminated by a SM. This is not an input 
interface element for item-deletes. 

Contains the character 'U I for an item-addition 
or replacement; 'D' for an item-delete. 

Contains the base FID, modulo and separation of 
the file being updated. 

Various 

Saves condition of INHIBIT 

XX-43 



REALITY 2.0 UPDATE 

02 D 

03 D 

XMODE T 

Output Interface 

TS R 

IR R 

UPD R 

cs R 

BMS R 

SIZE T 

Points to SM terminating item-body for item-add 
or replace. 

Points to AM terminating group data 

Points to last byte of last frame in group 

Points one prior to item-id on item-add or 
replace 

Points to AM following item-id 

Contains new item size on add or replace 

Subroutine_ Usage 

RETIX, RDREC, RDLINK, WTLINK, IROVF, BMSOVF, ATTOVF, RELOVF. Uses two 
additional levels of subroutine linkage. 

Error Conditions 

1. If the group data is bad, premature end of linked data set, 
or non-hexadecimal character found in a count field, the 
group data is terminated at the last good item, and the 
message: 

*** GROUP FORMAT ERROR AT: . xxxxxx 

i~ returned (xxxxxx is a six digit hexadecimal FFD indicating 
the location of the error), before the process continues. 

2. If the file being updated is the M/DICT (as indicated by 
BASE being equal to MBASE), and the system privilege level 
one tlag is not set, the routine aborts with the message: 

YOUR SYSTEM PRIVLLEGE LEVEL IS NOT SUFFICIENT FOR THIS 
STATEMENT 

The update is not performed. 

3. If the item-id is greater than 50 characters, the update is 
not perfonned; no indication is returned. 

XX-44 



4. 

REALITY 2.0 UPDATE 

If the item exceeds the maximum size (32767 bytes, X'7FFF'), 
the item is truncated to 32767 bytes; no indication is 
returned. 

XX-45 



REALITY 2.0 UPDATE 

GBMS 

Functional Description 

Sets up the base FID, modulo and separation parameters of a file from 
the file definition item that has been retrieved. Typi.cally this rou­
tine will be called after a call to RETIX which retrieves the file­
name from the master dictionary. 

The routine handles both 'D' and 'Q' code items; a 'D' code item is a 
direct file-pointer, and has the base FID, modulo and separation of the 
file in attributes 2, 3 and 4. A 'Q' code item is a synonvm pointer to 
a file defined in any account in the SYSTEM dictionary. This subroutine 
also performs the file access-protection checks. It is assumed that 
register LOCKSR points to the user's lock codes (in his logon entry in 
the SYSTEM dictionary; if the file has a lock code, a matching lock 
code is required for GBMS to return successfully. A non-match causes 
an exit to WRAPUP with message 210. 

Input Interface 

DAFl 

IR 

SR4 

LOCKSR 

Output Interface 

RMB IT 

BASE 
MODULO 
SEPAR 

IR 

Subroutine Usage 

B 

R 

s 

s 

B 

~] 
R 

If zero, uses retrieval lock-codes in LOGON 
entry for lock-code comparison; if set uses update · 
lock-codes. 

Points to, or one prior, 'D' or 'Q' code in 
attribute one of file-definition item. 

Points to AM at end of file-definition item. 

Points one prior to the user's lock-code field in 
his SYSTEM dictionary entry. 

Set if base, modulo, separation successfully 
converted; zero if error in format, 'Q' item not 
found, etc. 

Contain base FID~ modulo and separation of the 
file (if RMBIT set) 

Points to AM following attribute four of the 
file-definition item. 

CVDR15; recursive call to GBMS and RETIX if 'Q' code item; two further 
levels of subroutine linkage if 'D' Code; three if 'Q' code item. 

XX-46 



' 
\.... 

REALITY 2..0 UPDATE 

Errors 

On failing the lock code comparison test, an exit is taken to WRAPUP 
with message 210 (FILE IS ACCESS PROTECTED); to ensure termination of 
the curent process, RMODE is zeroed, PQFLG is set off and the history 
string set null before the exit. 

XX-47 



REALITY 2.0 UPDATE 

GDLID 

Functional Description 

This subroutine gets the base, modulo and separation parameters from 
the DL/ID item in a dictionary. Typically this routine is called 
immediately after the dictionary base, modulo and separation have 
been obtained by GBMS. 

GDLID retrieves the DL/ID item from the dictionary, and then enters 
GBMS to pick up its base modulo and separation. 

Input Interface 

BASE n Contains b, m, s of a file, MODULO 
SEPAR containing the DL/ID item. 

Output Interface 

RMB IT B Set if DL/ID found; zero otherwise. 

BASE n Contains base FID, modulo and separation of MODULO 
SEPAR the data-file (if RMBIT is set). 

Other elements as from GBMS and RETIX except that BMS/BMSBEG/BMSEND 
do not contain the DL/ID item-id. 

XX-48 



REALITY 2.0 UPDATE 

TERMINAL I/O 
\ 
'-

XX-49 



REALITY 2.0 UPDATE 

GETIB AND GETIBX 

Functional Description 

GETIB and GETIBX are the standard terminal input routines. Register 
IBBEG points to a buff er area where the routine will input the data. 
Input continues to this area until either a carriage return or line 
feed is encountered, or until a number of characters equal to the 
count stored in IBSIZE have been input. The carriage return or line 
feed terminating the input line is overwritten with a segment mark 
(SM) and register IBEND points to this character on return. If the 
input is terminated because the maximum number of characters have 
been input, a SM will be added at the end of the line. This sub­
routine calls the subroutine GETBUF to read input data from the ter­
minal. On return, GETIB then determines if the last character was 
a carriage return or a line feed which terminates the line, and causes 
a CR/LF echo to the terminal; if not, it either accepts or deletes the 
control character, depending upon the setting of the bit CCDEL, and 
calls GETBUF again. 

The entry GETIB also provides the facility for taking the input from a 
stack instead of directly from the terminal. The bit STKFLG, if set, 
indicates that stacked input is present and register STKINP points to 
the area where the stacked input is stored. Input is copied from the 
stack area to the buffer, through the delimiter AM. The delimiter SM 
is used to signal the end of stack input. When this is encountered, 
STKFLG is turned off to indicate no more stacked input, and the routine 
then goes to the terminal for further input. The entry GETIBX does not 
test for stacked input. The stacked input feature is used primarily 
by the processor PROC to store input lines, which are returned to 
requesting processors as if they originated the terminal. If the last 
character of a stacked line is a "<", it will be replaced with a SM. 

Input Interface 

IBBEG 

IBSIZE 

STKFLG 

STKINP 

PRMPC 

s 

T 

B 

s 

c 

Points one prior to buffer area where input is to 
be stored. Size of the buffer must be two 
characters greater than the value in IBSIZE. 

Contains maximum number of input characters to be 
accepted. 

If set, indicates that "stacked" input may exist; 
if it does, terminal input will not be requested 
until the stack is exhausted. 

Points to next "stacked" input line; lines are 
delimited by AM's; a SM indicates end of stack. 

Terminal "prompt" character; output before data 
is requested from the terminal. 

XX-50 



\..__ 

\...... 

LFDLY T 

CCDEL B 

Output Interfac~ 

IB R 

!BEND s 

STKFLG B 

STKINP s 

Subroutines Usage 

REALITY 2.0 UPDATE 

Low-order byte contains the number of "fill" 
characters (nulls) to be issued after a carriage­
return/line feed is output to the terminal. 

If set, control characters are deleted from 
terminal input. 

Set to IBBEG. 

Points to SM one past last character input. 
(Overwrites CR or LF character). 

Zeroed if end of stacked input reached. 

Points to next line of stacked input. 

GETBUF, PCRLF (both local); uses one additional level of subroutine 
linkage. 

Error Conditions and Abnormal Exits 

If the "stacked" input line exceeds IBSIZE, the line is truncated at 
IBSIZE; the remainder of the line is lost. 

XX-51 



REALITY 2.0 UPDATE 

GETBUF 

Functional Description 

Inputs data from the terminal, and performs line editing functions. 
Returns control when a non-editing control character is input, or 
when the number of characters specified in TO has been input. 

Line editing features: 

Character Input 

Control-H 

Control-X 

Control-R 

Rubout 

Action 

Logically backspaces buffer pointer; echoes 
character defined at BSPCH. 

Logically deletes (or cancels) entire input 
buffer; echoes a carriage return, line feed, 
re-issues prompt character. 

Re-types input line. 

Ignored; the character is echoed, but is not 
stored in the buffer. 

Control-shift-K ] 
Control-shif t-L 
Control-shif t-M 
Control-shif t-N 
Control-shif t-0 

These characters are converted to the internal 
delimiters SB, SVM, VM, AM, and SM respectively; 
they echo as the characters [, / ,] , ,_ 

Note: The high-ord.er bit of all characters input is zeroed. 

Input Interface 

Rl4 R 

TO T 

PRMPC c 

BSPCH c 

Output Interface 

Rl5 R 

Points one prior to input buffer area. 

Maximum number of characters to be accepted. 

Character output as a "prompt" when input is 
first requested. 

Character echoed when a control-H is input. 

Points to control character causing return to 
caller. 

XX-52 



REALITY 2.0 UPDATE 

WRTLIN AND WRITOB 

Functional Description 

Standard terminal output routines. Outputs data to the terminal or 
line-printer; controls pagination and page-heading routines. Entry 
WRTLIN adds a carriage-return/line-feed to the data; WRITOB does not. 
The data to be output starts at OBBEG, and continues through to the 
location addressed by OB. 

The data is output to the terminal if LPBIT is off; it is stored in 
the printer spooling area if it is set. Pagination and page-heading 
are controlled by PAGINATE, if set. In this case, when the number of 
lines output in the current page (in LINCTR) exceeds the page size 
(in PAGSIZE), the following actions take place: 1) The number of 
lines specified in PAGSKIP are skipped; 2) the page number in PAGNUM 
is incremented, and 3) A new page heading is printed (see PRNTHDR 
documentation). A zero value in PAGSIZE suppresses pagination 
regardless of the setting of PAGINATE. 

Editing Features 

Theinternaldelimiters SM, AM, VM, SVM, SB, are converted to the 
characters_, ,] ,/,[, respectively, if SMCONV is off; the output 
buffer area is blanked if NOBLNK is off. Trailing blanks are always 
deleted by the entry WRTLIN. 

Carriage returns and line-feeds should not occur in the buffer if 
pagination is to be used. 

Input Interface 

OBBEG s 

OB R 

LPBIT B 

LISTFLAG B 

SMCONV B 

NOBLNK B 

PAGINATE B 

PAGHEAD S 

Points one prior to the output data buffer. 

Points to the last character in the buffer; the 
buffer must extend two characters beyond this 
location. 

If set, routes output to the spooler. 

If set, suppresses all output to the terminal. 

If set, suppresses conversion of internal delimiters. 

If set, suppresses blanking of output buffer. 

If set, pagination and page-headings are invoked. 

Location of page-heading message. 

XX-53 



LINCTR 

PAGSIZE 

PAGSKIP 

LINESOUT 

LFDLY 

Internal Usage 

RECORD, 
LINQUE, 
OVRFLW, 
IR 

Output Interface 

OB 

T 

T 

T 

T 

T 

R 

REALITY 2.0 UPDATE 

Number of lines printed in current page. 

Number of printable lines per page. 

Number of lines to be skipped at bottom of page. 

(Above four elements used only if PAGINATE IS 
set.) 

Incremented on every entry. 

Lower byte contains number of "fill" characters to 
be output after CR/LF. 

Destroyed if LPBIT is set causing output to go 
to the print spooler. 

Reset to OBBEG 

LINCTR, PAGNUM, LINESOUT: reset appropriately. 

Subroutines Used 

PPUT (printer spooler); PCRLF: NPAGE. Requires two additional levels 
of subroutine linkage. 

Errors and Abnormal Exits 

None 

PCRLF 

This subroutine may be used to output a CR/LF, with appropriate delays 
if necessary. Its use is not compatible with pagination. 

Input ~nterface 

LFDLY See above. 

XX-54 



"··· 

REALITY 2.0 UPDATE 

PRNTHDR AND NEWPAGE 

Page-heading control routine; PRNTHDR is used to initialize the 
pagination control elements; NEWPAGE is used to cause a skip to a new 
page, and to output a new page heading. 

PRNTHDR sets the page number to one, the line counter to zero; sets 
the pagination flag, and outputs the first page heading. The page 
heading must be stored in a buffer defined by PAGHEAD; the header 
message is a string of data terminated by an SM; other system 
delimiters are used as below: 

Delimiter 

SM,X'FF' 

AM,X'FE' 

VM,X'FD' 

SVM,X'FC' 

Action 

Terminates header line with a CR/LF. 

The current page-number is inserted in the heading. 

Prints header line, starts a new header line. 

The current time and date are inserted in the 
heading. 

Carriage-returns, line feeds and form-feeds should not be included in 
the header message. 

Input Interface 

LPBIT 

PAGHEAD 

LINCTR 

PAGNUM 

LFDLY 

OB BEG 

Internal Usage 

OB 

B 

s 

T 

T 

T 

s 

R 

If set, output is routed to the print spooler. 

Points one prior to the beginning of the header 
message, which must be terminated by an SM. 

Line number in current page. 

Current page number. 

Lower byte contains number of "fill" characters 
to be output to terminal after a CR/LF. Upper 
byte: if non-zero, a form-feed (X'OC') character 
will be output before the start of a ne~ page, and 
that number of "fill" characters will be output. 

Points one prior to a buffer when the translated 
header message is built; this buffer area must be 
16 bytes greater than the longest header line. 
(Not total header message size.) 

Used to build the header message and to output it. 

XX-55 



Output Interface 

LINCTR, PAGNUM 

Subroutine Usage 

WRITOB, TIMDATE 

Errors 

None 

REALITY 2.0 UPDATE 

Reset appropriately. 

Uses two additional levels of subroutine 
linkage (three if time and date are inserted 
in header) 

XX-56 



\_ 

REALITY 2.0 UPDATE 

PRINT AND CRLFPRINT 

Functional Description 

Sends a message to the terminal from textual data in the calling 
program; used primarily for printing error messages. These subroutines 
are not compatible with output conventions to the lineprinter, and 
with the pagination routines. The message is a string of characters 
assembled immediately following the subroutine call in the calling 
program. The message must be terminated by one of the four delimiters 
SM, AM, VM, or SVM. Control is returned to the instruction at the 
location immediately following the terminal delimiter. 

Delimiter 

SM,X'FF'] 
AM,X'FE' 

VM,X'FD' 

SVM,X'FC' 

Input Interface 

Action 

End of message; print carriage-return/line-feed 
before return. 

Print carriage-return/line-feed, continue. 

End of message, no carriage return/line-feed. 

Message follows the call to this routine. 

LFDLY 

Subroutine Usage 

T Low-order byte contains number of "fill" 
characters after CR/LF is output. 

PCRLF; one additional level of subroutine linkage. 

Errors 

None 

XX-57 



REALITY 2.0 UPDATE 

VIRTUAL MEMORY I/O 

XX-58 



REALITY 2.0 UPDATE 

RD REC 

Functional Description 

RDREC is used to set up the registers IR, IRBEG, and !REND to the 
beginning and ending of the frame as defined by the tally RECORD. The 
subroutine assumes the frame has the linked format and therefore, IR 
and IRBEG are set pointing to the eleventh byte of the frame, that is, 
one prior to the first data byte of the frame. !REND is set up 
pointing to the last or Sllth byte of the frame. Additionally the 
subroutine RDLINK is entered to set up Rl5 pointing to the link portion 
of the frame, and to set up the link elements NNCF, NPCF, FRMN, FRMP. 

Input Interface 

RECORD D Contains FID required. 

Output Interface 

IR R Points one prior to first data byte of frame. 

IR BEG s As above. 

!REND s Points to last data byte of frame. 

Rl5 R Points to zero-th byte of frame. 

NNCF H Contains "nncf" field of frame. 

FRMN D Contains forward link FID of frame. 

FRMP D Contains backward link FID of frame. 

NPCF H Contains "npcf" field of frame. 

Subroutines Usage and Error Condition 

None 

XX-59 



REALITY 2.0 UPDATE 

RDLINK AND WTLINK 

Functional Description 

These routines read or write the link fields from or to a frame, to 
or from the tallies NNCF, FRMN, FRMP and NPCF. The FID of the frame 
is specified in RECORD. 

Input/Output Interface 

RECORD D FID of frame whose links are to be written or 
read. 

NNCF H Number of next contiguous frames. 

FRMN D Next or forward link FID. 

FRMP D Previous or backward link FID. 

NPCF H Number of previous contiguous frames. 

RlS R Points to zero-th byte of frame. 

Subroutines Used and Error Conditions 

None 

XX-60 



' '"-

REALITY 2.0 UPATE 

LINK 

Functional Description 

Sets up the link fields of a group of unlinked contiguous frames. Up 
to 127 frames can be so linked. In each frame of the linked set, this 
subroutine sets up the number of next contiguous frames field, the 
next or forward link field, the previous or backward link field, and 
the number of previous contiguous frames field. 

Input Interface 

RECORD 

NNCF 

Output Interface 

Rl4 

RlS 

D 

H 

R 

R 

Contains first FID of the group to be linked. 

Contains one less than the number of frames in 
the group (NNCF <127). 

Points one prior to the first data byte of first 
frame of linked set. 

Points to the last data byte of the last frame 
of linked set. 

Subroutines Called and Error Conditions 

None 

XX-61 



REALITY 2.0 UPDATE 

OVERFLOW SPACE MANAGEMENT 

XX-62 



REALITY 2.0 UPDATE 

GETOVF, GETBLK 

Functional Description 

These routines obtain overflow frames from the overflow space pool 
maintained by the system. GETOVF is used to obtain a single frame; 
GETBLK is used to obtain a block of contiguous space (used mainly 
by the CREATEFILE processor). Note that the link fields of the 
frame(s) obtained by a call to GETBLK are not reset or initialized 
in any way; this is a function of the call~ routine (also see 
ATTOVF and NEXTOVF documentation); GETOVF zeroes all the link fields 
of the frame it returns. 

Input Interface 

DO 

Output Interface 

OVRFLW 

Subroutines Used 

SYSGET 

Error Conditions 

D 

D 

(Accumulator) contains number of frames needed 
(block size), for GETBLK only. 

Contains FID of the frame obtained (GETOVF) or 
first FID of the block obtained (GETBLK). 

One additional level of subroutine linkage 
required. 

Zero returned in OVRFLW if system overflow space is exhausted. 

XX-63 



REALITY 2.0 UPDATE 

RELOVF, RELCHN AND RELBLK 

Functio~al Description 

These routines are used to release frame(s) to the overflow space 
pool. RELOVF is used to release a single frame; RELCHN is used to 
release a chain of linked frames (which may or may not be contiguous); 
RELBLK is used to release a blork of continguous frames. A call to 
RELCHN specifies the first FID of a linked set of frames; the routine 
will release all frames in the chain until a zero forward link is 
encountered. 

Input lnterf ace 

OVRFLW D 

DO D 

Output Interface 

None 

Subroutines Called 

Contains the FID of the frame to be released 
(RELOVF), or the first FID of the chain or 
block to be released. 

(Accumulator) contains the number of frames in 
the block to be released (block-size), for 
RELBLK only. 

SYSREL (RELBLK only); one additional level of subroutine linkage 
required. 

Errors 

None 

XX-64 



\ 
'-· 

REALITY 2.0 UPDATE 

ATTOVF 

Functional Description 

ATTOVF is used to obtain a frame from the overflow space pool and to 
link it to the frame specified in RECORD. The forward link field of 
the frame specified in RECORD is set to point to the overflow frame 
obtained; the backward link field of the overflow frame is set to 
point to that in RECORD, and the other link fields of this frame are 
zeroed. 

Input Interface 

RECORD D 

Output Interface 

OVRFLW D 

Subroutines Used 

GETOVF 

Error Conditions 

Contains FID of the frame to which an overflow 
frame is to be linked. 

Contains FID of the frame obtained from 
overflow space. 

Requires two additional levels of subroutine 
linkage. 

Zero returned in OVRFLW if system overflow space is exhausted. 

XX-65 



REALITY 2.0 UPDATE 

NEXTIR AND NEXTOVF 

Functional Description 

These routines obtain the foward linked frame of the frame to which the 
register IR currently points; if the forward link is zero, an available 
frame from the system overflow space pool is obtained and linked 
appropriately (see ATTOVF documentation). In addition, the IR register 
triad is then set up before return, using the subroutine RDREC. 

NEXTOVF may be used in a special way to automatically handle end-of­
linked-frame conditions, on register six (IR), on single or multiple 
byte move on scan instructions. Set tally XMODE to the mode-id of the 
subroutine NEXTOVF before the move or scan instruction is executed; if 
the instruction causes register IR to reach an end-of-linked-frame 
condition (forward link zero), the system will generate a subroutine 
call to NEXTOVF, which in turn obtains and links up an available frame, 
and then resumes execution of the interrupted instruction. Note that 
the instruction "increment register by tally" cannot be so handled. 
Instructions compatible with NEXTOVF are: MIID, MII and MCI. 

Input Interface 

IR 

9utput Interface 

IR 
IRBEG 

I REND 

RECORD 

FRMN, 
NNCF, 
FRMP, 
NPCF, RlS 

Subroutine Used 

R On last data byte of frame. 

~] Points to first data byte of forward linked frame. 

s Points to last data byte of frame. 

D Contains FID of frame to which IR points. 

As set up by RDREC. 

RDREC; ATTOVF; uses two additional levels of subroutine linkage. 

Error Conditions 

None 

XX-66 



REALITY 2.0 UPDATE 

WORK SPACE INITIALIZATION 

XX-67 



REALITY 2.0 UPDATE 

WSINIT 

Functional Description 

Initializes the process work-space pointer dyads: BMSBEG, BMSEND; 
CSBEG, CSEND; AFBEG, AFEND; IBBEG, IBEND; OBBEG, OBEND; PBUFEND, 
PBUFBEG. All work-spaces except the last are contained on one frame; 
PBUFBEG and PBUFEND define a 4-frame linked work-space. 

Work-Space Size (Bytes) 

BMSBEG-BMSEND 50 

AFBEG-AFEND so 

CSBEG-CSEND 100 

IBBEG-IBEND Contents of IBSIZE; max. 140 

OBBEG-OBEND Contents of OBSIZE; max. 140 

PBUFBEG-PBUFEND 2000 (4 linked frames) 

Input Interface 

VO BIT B Set if linking of PBUF-space required. 

IBSIZE T Size of IB buffer. 

OBSIZE T Size of OB buffer. 

Output Interface 

Storage registers set up as in above table; associated address 
registers BMS, AF, CS, IB, OB, set at beginnings of respective buffers. 

Subroutine Usage 

LINK; one additional level of subroutine linkage is used. 

XX-68 



\ 

REALITY 2.0 UPDATE 

TSINIT 

Functional Description 

This routine sets up the pointers to a one-frame scratch space; 
the pointers set up are TSBEG, TSEND, by TSINT. The associated 
address register, TS, is set at the beginning of the buffer. 

ISINIT 

Functional Description 

This routine initializes all the system work-space pointers. The 
link-fields of linked work-spaces (IS, OS, HS, PBUF) are not 
initialized unless VOBIT is set. As the IS, OS and HS may have addi­
tional work-space assigned to them, calling ISINIT with VOBIT set 
will cause a loss of the additional work-space and a loss of system 
overflow space. 

Output Interface 

As for TSINIT and WSINIT above; 

ISBEG, IS Point to PCB + 16 

I SEND = ISBEG + 3000 

OSBEG, OS Point to PCB + 22 

OS END =OSBEG + 3000 

HS BEG Points to PCB + 10 

HS END =HS BEG 

XX-69 



REALITY 2.0 UPDATE 

PERIPHERAL I/O 

XX-70 



REALITY 2.0 UPDATE 

Tape Control Subroutines 

These routines provide for passing control commands to the magnetic 
tape unit. As in all tape connnands, it is assumed that the tape 
unit is "attached" to the process executing these routines; this is 
flagged by the bit ATTACH being set. Conventionally, ATTACH should 
only be set by executing the verb T-ATT from the TCL level. 

INIT and TPSTAT 

All tape i/o routines use the INIT and TPSTAT subroutines. INIT 
outputs a function-code of "l" to the tape controller, thereby setting 
it to an initial condition, and then falls through into the tape 
status from the controller. It will return only if the tape is in a 
"ready" state. If the tape is rewinding, the subroutine will wait 
till it finishes. Otherwise, the status is tested up to one hundred 
times; if the tape unit is still not ready, an exit is taken to MD99 
with error message 95 (NOT ON-LINE). 

Input Interface 

None 

Internal Usage 

T6 T Used as a delay counter 

Output Interface 

REJCTR T Zero 

Tape status bits are as below: 

EOFBIT B 

EOTBIT B 

PARITY B 

NOR ING B 

Set if an end-of-file mark is reached. 

Set if the tape is at load point, or at the 
end-of-tape marker. 

Set if a parity error is detected. 

Set, on a write operation, if the write ring 
in the tape is not present. 

WEOF 

Writes and end-of-file mark on the tape. 

XX-71 



REALITY 2.0 UPDATE 

BCKSP 

Back spaces the tape by one record. 

REWIND 

Rewinds the tape unit. 

FRWSP 

Forward spaces the tape by one record; this subroutine destroys 
location X'lFF' in the PCB. 

XX-72 



I 

'--

REALITY 2.0 UPDATE 

Tape I/O Routines 

TPREAD reads one record from the tape to a buffer defined by Rl5; 
the read stops either when the inter-record gap in the tape is 
detected, or at the end of the frame to which Rl5 points. 

TPWRITE writes one record from the buffer defined by Rl5 to the 
magnetic tape; the write will always continue until the end of the 
frame to which Rl5 points. 

A maximum of 512 bytes may be transferred by these routines. 

Input Interface 

ATTACH 

Rl5 

Output Interface 

Rl5 

B 

R 

R 

Must be set, indicating tape unit is attached. 

Points to first byte of buffer area. 

Points to last byte read (TPREAD). In the case 
of a read where the tape record is shorter than 
the buffer, Rl5 points one byte past the last 
data byte. 

Tape status bits set appropriately. 

Subroutines Used 

!NIT, TPSTAT (local); uses two additional levels of subroutines 
linkage. 

Error Conditions 

Read parity error: the read is repeated ten times; if the parity 
error persists, an exit is taken to MD99 with error number 98. 

Write parity error: the write is re-tried once; then the sequence -
backspace I write end-of-file mark I backspace and repeat write - is 
tried nine times; if the parity error persists, an exit is taken to 
MD99 with error number 98. 

Also see INIT and TPSTAT. 

XX-73 



REALITY 2.0 UPDATE 

Blocked Tape I/O Operations 

The routines ITPIB, TPIB, OBTP and FOBTP allow reading and writing 
variable length records, blocked in fixed-length 500-byte records. 
These routines use the first two frames of the OS workspace to block 
and de-block; the unblocked data is passed to the write routine (OBTP) 
in the OB; it is passed from the read routine (IBTP) in the IB. 

Reading a blocked tape: An initial call must be made to ITPIB to 
initialize the de-blocking pointers; subsequently, each call to TPIB 
will return one tape record. 

Writing a blocked tape: The data to be written to the tape is placed 
in the OB, and OBTP is called to store it in the blocking area. When 
the output is to be terminated, one call to FOBTP must be made to 
clear the blocking area and force the data to be written to the tape. 

These routines use the delimiter SB (X'FB') as the block delimiter; 
therefore, SB's in the data to be written to tape are converted to 
blanks before being output. 

Note interface equivalence of these routines with the corresponding 
terminal i/o routine. 

Input Interface 

ITPIB 

TPIB 

OBTP 

FOBTP 

OSBEG S Points are prior to deblocking buffer. 

IBBEG S Points one prior to buff er area where 
deblocked data is to be copied. 

OBBEG S Points one prior to buff er area containing 
data to be blocked. 

OB R Points to last byte of data. 

NONE 

Internal Usage (All Routines) 

OS BEG s Points to a linked work-space used by the 
blocking and de-blocking routines. Must be 
at least 3 frames. 

XX-74 



OS R 

SC2 c 

Output Interface 

ITPIB : OS R 

TPIB : IB R 

!BEND S 

OBTP : OB R 

FOBTP : NONE 

Subroutines Called 

REALITY 2.0 UPDATE 

Current pointer in blocked data area; must be 
maintained. 

Scratch (OBTP, FOBTP only). 

Points to OSBEG; first two tape records have 
been read into the OS frames. 

Points to IBBEG, one prior to de-blocked data. 

Points to a SM following last byte of data. 

Reset to OBBEG 

TPREAD or TPWRITE; three additional levels of subroutine linkage. 

Errors 

See preceding documentation. 

SEGMNT (3,TAPEIO-II) 

This subroutine is used by the File-Restore, Sel-Restore, and Acc­
Restore processors to de-block data from a File-Save tape. The 
built-up "segment" (data between segment marks on the tape) is stored 
in the IS. 

Input Interface 

Sl 

Output Interface 

ISBEG 

IS 

XMODE 

s 

s 

R 

T 

Points to location, within IB, of the last SM 
found. On initial entry, this is setup by the 
calling mode; it must be maintained between 
calls to SEGMNT. 

Buffer where the segment has been copied. 

=IS BEG 

Zero 

XX-75 



REALITY 2.0 UPDATE 

Subroutines Used 

TPIB 

XX-76 



REALITY 2.0 UPDATE 

LABELED TAPE i/o ROUTINES 

Label format: 

(SM)L ... labei data .•. (VM) time date (AM) reel# (AM) (SM) 

The label is stored in the quadrenary control block (PCB + 3); 
displacements to various elements are as below: 

Byte Displacement Type Description 

lAS (Bit 0) B "unlabeled tapes in use" flag 

1A6 T Reel number 

lAB L Label save buff er (46 bytes) 

1D6 L Label write/read buffer (30 bytes) 

Since the tape-i/o routines are non-reentrant, internal storage is 
utilized when an EOT condition is handled by the tape write or read 
subroutines. 

These routines save Rl3, R14, Rl5 in internal save areas (defined in 
TAPEIO-II), and set up Rl3 to displacement X'lA6' in the quadrenary 
control block in order to address elements in that block. 

Rl3, Rl4 and Rl5 are restored on exit. 

RDLABEL (2,TAPEIO-II) 

May be called once by any program to read the label from reel #1; if 
the tape is labeled, the label is stored in the save area; if not, the 
"unlabeled tapes in use" flag is set. If the tape is not at the load 
point, no action is taken. No input interface. On output, the label 
save area is set up. 

RDLABELX (5,TAPEIO-II) 

As for RDLABEL, except that no check is made to see if the tape is 
at the load point. This routine is used by the FILE-RESTORE 
processor (ABSL), to read a label even though the tape may be positioned 
past the load point. May be used by user-programs, though the 
implications of doing so should be kept in mind. 

XX-77 



REALITY 2.0 UPDATE 

WTLABEL (2,TAPEIO-III) 

May be called once by any processor to write a label on reel #1; no 
action is taken if the tape is not at load point. The label (if any) 
passed as an input parameter is written to the tape, with the current 
time and date, and reel number one, added. The label is also stored 
in the label save buffer. 

Input Interface: 

IS 

Output Interface 

IS 

R 

R 

Points one before the label data, which must be 
terminated by any standard system delimiter. The 
label cannot be greater than 16 characters; it will 
be truncated to 16 if it is. If a null label is 
submitted, no label is written to the tape, and 
the "unlabeled tapes in use" flag is set. 

Points to delimiter terminating label, or to 
16 bytes beyond the input position if none is 
found. 

Label save area initialized. 

WTLABELX (4,TAPEIO-III) 

As for WTLABEL, except that no check is made to see if the tape is not 
set to load point. This routine is used by the FILE-SAVE processor 
(ABSD), to write a label at the current position of the tape. May be 
used by user-programs, though the implications of doing so should be 
kept in mind. 

XX-78 



REALITY 2.0 UPDATE 

CREAD 

Functional Description 

The subroutine either reads a card and returns the card reader status 
after the read or it just returns the status if it cannot read a card. 
Cards are read in EBCDIC and are not converted by this routine. 

Input Interface 

R2 

OBBEG 

R 

s 

Must point to a scratch byte. (Typically R2 
will always point to byte zero of the SCB.) 

Points anywhere within the frame that the card 
is to be read into. (Typically OBBEG will always 
point within PCB+4). 

Internal Usage 

T3 T Used as a counter for status timeout after a read. 

Output Interface 

R2 

CBIT 

RlS 

Errors 

R 

B 

R 

Unchanged. The byte that R2 points to contains 
the status of the card reader. 

Zero if no card was read. Set if an attempt to 
read a card was made. 

Points to first byte of card read, 80 bytes from 
the end of the frame that OBBEG points to. 

None, except card reader errors returned as status. The status bits 
are as follows: 

Bil 

0-2 

3 

4 

Explanation of the set condition. 

Unused by the controller. Will be zero. 

Card reader mechanical error (e.g., pick failure, 
card motion error, etc.) 

EBCDIC error detected~ (e.g., an invalid punch 
combination was detected.) Not an error if CBIT is 
zero. 

XX-7Q / 



5 

6 

7 

3,5,7 

REALITY 2.0 UPDATE 

Input hopper empty. Not an error if CBIT is set. 

This bit is always zeroed by the routine. It is only 
used for byte 1/0. 

Card reader ready. 

If bits 3, 5, and 7 are all set, this indicates that 
power is off on the card reader. 

X.X-80 



REALITY 2.0 UPDATE 

MISCELLANEOUS 

Some of these subroutines are primarily used by system processors, and, 
therefore may use elements other than the minimum set used by the 
general-purpose system subroutines. 

TIMDATE, TIME AND DATE 

Functional Description 

These routines obtain the system time and/or the system date, and 
store it in the buffer area specified by RlS. The time is returned 
as on a 24-hour clock. 

Entry Buffer Size Required Format 

TIME 8 HH:MM:SS 

DATE 11 DD MMM YYYY 

TIMDATE 21 HH:MM: SS DD MMM YYY 

Input Interface 

RlS R Points one prior to the buffer area. 

Output Interface 

RlS R Points to last byte of data stored. 

Subroutines Used 

Entry TIMDATE uses TIME; requires two additional levels of subroutine 
linkage; other entries require one level. 

Errors 

None 

XX-81 



REALITY 2.0 UPDATE 

ASCII-Character to Binary Conversion 

Functional Description 

The routines described below will convert a string of ASCII decimal or 
hexadecimal characters to their binary equivalent; the conversion 
continues until an illegal (non-decimal or non-hexadecimal) character 
is encountered. 

On entry, the appropriate register (see table) points either to a 
non-numeric character, one prior, or to the first character of the 
string, which must be a plus sign, a minus sign or an appropriate 
numeric (0-9 for the decimal routines, 0-9 and A-F for the hexadecimal 
routines). On return, the converted binary number is in the accumulator 
(and in some cases, in CTR!); the register points to the illegal 
character causing the conversion to terminate. Note that the register 
will always be incremented by one even in the case of a null string 
(no legal characters). Arithmetic overflow due to too many digits in 
the character string cannot be detected. 

Entry Register Conversion From: Value Returned IN: 
Name Used Dec. Hex. Accumulator CTR! 

CVDRlS RlS x x 

CVXR!S RlS x x 

CVTNIS IS (R4) x x x 

CVTHIS IS (R4) x x x 

CVTNOS OS (RS) x x x 

CVTHOS OS (RS) x x x 

CVTNIR IR (R6) x x x 

CVTHIR IR (R6) x x x 

CVTNIB IB (RlO) x x x 

CVTHIB IB (RIO) x x x 

Subroutine Used 

CVDR15 or CVXR15 are called by the other routines; one additional level 
of linkage is required. 

XX-82 



\ 
~ 

REALITY 2.0 UPDATE 

Binary to ASCII-Character Conversion 

MBDSUB AND MBDNSUB 

Functional Description 

These routines will convert a binary number to the equivalent: string 
of decimal ASCII characters. The conversion will store a minimum 
number of characters (that is, leading zeroes will be padded if needed) 
if the entry MBDNSUB is used; if MBDSUB is used, only as many 
characters as are needed to represent the number will be stored. A 
minus sign will precede the character string if the number to be 
converted is negative. 

These subroutines are implicitly called by the assembler instructions 
MBD (move binary to decimal) and MBDN. 

Input Interface 

DO D 

RlS R 

T4 T 

Output Interface 

RlS R 

(Accumulator) Contains number to be converted. 

Points one prior to buffer where converted 
characters are to be stored (maximum 9 characters). 

(MBDNSUB entry only) Contains minimum number of 
char3cters to be stored. 

Points to last converted character. 

Subroutines Used and Error Conditions: 

None. 

XX-83 



REALITY 2. 0 UPDATE 

EBCDIC to ASCII Conversion 

Functional Description 

EBCDIC to ASCII conversion - ECONV 

The register IB points to the EBCDIC character; a call to ECONV 
converts it to ASCII; characters that cannot be converted are returned 
as a question mark (?). 

String EBCDIC to ASCII with move - R.ETA.M 

The registers RlS and RS point to the first character of the source 
and destination strings, respectively. CTRl contains the character 
count. Rl3, Rl4, and TO are destroyed. All characters are converted. 
CTRl should be zero on return. RlS and R8 point to the last 
character of their respective strings on return. 

String ASCII to EBCDIC with move - R.ATE.M 

Same as R.ETA.M except ASCII to EBCDIC translation. 

XX-84 



REALITY 2.0 UPDATE 

File-initialization 

DLINIT (6 ,DLOAD) 

Functional Description 

Obtains a block of contiguous overflow space for a file; links the 
frames and sets up initial conditions using the routine DLINITl 
(described below) 

Input Interface 

MODULO 

SEPAR 

Output Interface 

BASE 

T 

T 

D 

Contains the modulo required for the file. 

Contains the separation required for the file; if 
SEPAR is greater than 127, it will be n~set to 
one. 

Contains the beginning FID of a contiguous block 
of size MODULO*SEPAR. If BASE=O, the system does 
not have sufficient- overflow space. 

Note: This subroutine automatically enters DLINITl if the overflow 
space is obtained. 

Subroutines Used 

GETBLK; two additional levels of subroutine linkage. 

DLINITl (7,DLOAD) 

Functional Description 

Initializes link fields of a file as specified by its base, modulo 
and separation parameters; sets each group empty by adding an AM at 
the beginning. 

Input Interface 

BASE 
MODULO 
SEP AR 

Contains base-FID, modulo and separation of 
file. 

XX-85 



REALITY 2.0 UPDATE 

Internal Usage 

CTRl T 

RECORD D 

Output Interface 

Rl4 R As returned by subroutine LINK 

RlS R 

Subroutines Used 

LINK; RDREC; two additional levels of linkage required. 

System Accessing Routines 

These subroutines may be used to setup pointers to system-files 
(SYSTEM,ACC), to the PIB's, etc. 

GPCBO (4,ABSL) 

Functional Description 

Returns the PCB-FID for channel zero in the accumulator. 

Input Interfaces 

None 

Output Interfaces 

DO D Contains FID of PCB for channel zero. High 
order 16 bits are zero. 

SETPIB (4,LOGON) 

Functional Description 

Sets up Rl4 to point to the first byte of the PIB associated with the 
process. No input interface. 

XX-86 



\ __ 

REALITY 2.0 UPDATE 

Internal Usage 

SR5 s Scratch 

Output Interface 

Rl4 R As described. 

SETPIBF (3,ABSL) 

Functional Description 

Sets up Rl4 to point to the first byte of the PIB associated with 
channel zero. No input interface. 

Output Interface 

Rl4 R As described. 

XX-87 



REALITY 2.0 UPDATE 

GMMBMS 

Functional Description 

Sets up pointers to the SYSTEM dictionary (formerly called MM/DICT). 
No Input Interface. 

Output Interface 

BASE ] 
MODULO 
SEPAR 

D 
T 
T 

Contains base-FID, modulo and separation of 
SYSTEM dictionary. 

GACBMS (l,LOGOFF) 

Functional Description 

Sets up pointers to the ACC dictionary. No Input Interface. 

Internal Usage 

SRl s Scratch 

T6 T Scratch 

All elements as used by GBMS 

Output Interface 

BASE ] 
MODULO 
SEPAR 

REJl 

D 
T 
T 

T 

Subroutines Called 

Contains base-FID, modulo and separation of the 
ACC dictionary (actually a file, since ACC as 
defined in SYSTEM is a Q-entry to the DL/ID of 
ACCOUNT) 

Contains the value 331 if the ACC file is 
missing. 

GMMBMS; GBMS; two additional levels of linkage required. 

XX-88 



REALITY 2.0 UPDATE 

GETOPT (10,SYSTEM-SUBS-II) 

Functional Description 

This program converts an option string consisting of single alphabetic 
chauacters or a numeric specification. Alphabets set the corresponding 
bit (A sets ABIT, etc.). Multiple options are separated by commas, 
and the string must be terminated by a ")". ABIT through ZBIT are not 
zeroed on entry. 

Input Interface 

IS R Points one before the option string. 

Output Interface 

ABIT through ZBIT 

NOB IT B 

RMB IT B 

D4 D 

Error Conditions 

Set as described above. 

Set if numeric option is found; 
zero ot:herwise. 

Set 

Contains numeric values if numeric options is 
found; unchanged otherwise. 04 contains 
first numeri', D5 second if found, otherwise 
the same value as D4. 

Exits to MD99 with error 209 after setting RMODE zero if a format error 
is encountered. 

GETUPD 

Functional Description 

Sets up the register triad UPDBEG,UPD and UPDEND, in unlinked format, 
to PCB+28. A convenient way to setup a register to a buffer (also 
used by RPG). Note that the UPD registers are treated as a scratch 
register by some system subroutines. No Input Interface. 

XX-89 



REALITY 2.0 UPDATE 

Output Interface 

UP BEG s Points to byte zero of PCB+28 

UPD R =UPDBEG 

UPDEND s Points to last byte of PCB+28. 

XI SOS 

Exchanges the register triads ISBEG/IS/ISEND and OSBEG/OS/OSEND. 

PRIVTSTl (5,SYSTEM-SUBS-III) 

Tests if the process has system privileges, level one; exits to MD99 
with error 82 after setting RMODE zero. clearing PQFLG and LISTFLAG, 
and setting the history string null if not. 

PRIVTST2 (7,SYSTEM-SUBS-111) 

As above, for system privileges, level two. 

XX-90 



\ 

REALITY 2.0 UPDATE 

SORT 

Functional Description 

Sorts an arbitrarily long string of keys in ascending sequence only; 
the calling program must complement the keys if a descending sort is 
required. The keys are separated by SM's when presented to SORT; they 
are returned separated by SB's. Any character, including system 
delimiters other than the SM and SB may be present within the keys. 

An n-way polyphase sort-merge sorting algorithm is used. The original 
unsorted key string may "grow" by a factor of 10%; and a separate buffer 
is required for the sorted key string, which is about the same length 
as the unsorted key string. The "growth" space is contiguous to the 
end of the original key string; the second buffer may be specified 
anywhere. The SORT subroutine will automatically obtain additional 
overflow space and link it if needed. 

Due to this, one can follow standard system convention and build the 
entire unsorted string in an overflow table with OVRFLCTR containing 
the beginning FID; the setup is then: 

beginning of 
unsorted keys 

I • "" 

end of 
unsorted keys 

"growth" beginning of 
space f second buffer 

v---------1-------1· v 

The second buffer pointer then is merely set at the end of the 
"growth" space, and SORT allowed to obtain additional space as 
required. 

Alternately, the entire set of buffers may be in the IS or OS work­
space if they are large enough. 

Input Interface 

SRl s Points to SM preceeding first key. 

SR2 s Points to SM terminating last key. 

SR3 s Points to beginning of second buffer area. 

.!_r;ternal Usage 

Entire BMS work area. 

Sl through S9: Scratch 

XX-91 



BMS 

cs 

IS 

OS 

TS 

HBIT 

LBIT 

SBl 

Output Interface 

SRl 

Subroutine Usage 

R 

R 

R 

R 

R 

B 

B 

B 

s 

REALITY 2.0 UPDATE 

Points ~ bytes before SB preceding first 
sorted key. The sorted keys are delimited by 
SB's, and the entire string terminated by an 
SM. 

Internal call to COMP; ATTOVF if end of second buffer is reached. 
One additional level of linkage required. 

XX-92 



REALITY 2.0 UPDATE 

BLOCK-LETTERS 

Functional Description 

This program provides the block letter capability (see BLOCK-TERM 
and BLOCK-PRINT documentation.) In addition to its use at the verb 
level, it may be called as a subroutine (DEFM 2,290). It will format 
a string of words on the terminal of the printer and return to the 
caller. 

Input Interface 

ZBIT 

IS 

PAGSIZE 

OBSIZE 

Internal Usage 

If set direct output to the terminal; if not set, 
direct output to the printer 

Points one character prior to the first character to 
be output; end of data is indicated by the character 
pair SM,Z, if a segment mark is present in the 
string not followed by a "Z" the string must be 
terminated by a switch block (SB) X'FB' (see TCL-1 
interface). 

Maximum number of lines per page. 

Maximum number of characters on each output line. 

The following functional elements are used and not restored. 

SC2, SCL REJCTR, CO, PAGINATE, BASE, MODULO, SEPAR, 
CTR16, CTR17, CTR18, SR5, SR6, SR?, SR8J SR9, SRlO, 
SRll, SR12, SR13, SR14, SR15, SR16, SR17, SR18, SR19, 
SR20, SR21, SR22, AFEl'D, LPBIT, ZBIT 

Subroutines Called: 

RETIX, GBMS, NEWPAGE, CVTNIR, WRTLIN 

Error Conditions: 

See verb write-up on BLOCK-TERM and BLOCK-PRINT. 

XX-93 



ENGLISH INTERFACES. 

Selection Processor. 
LIST Processor. 
CONVERSION Processor. 
FUNCTION Processor. 

XX-94 

REALITY 2.0 UPDATE 



REALITY 2.0 UPDATE 

ENGLISH Interface 

It is possible to interface with the ENGLISH processor at several 
levels. A typical LIST on SORT statement passes through the Pre­
processor and Selectio~ Processor before entering the LIST processor. 
All statements must pass through the first two stages; but control 
can be transferred to user-programs from that point onward. 

General Conventions 

The ENGLISH processors use a compiled string that is stored in the 
IS work-space. String elements are separated by segment marks; there 
is one element for each attribute specified in the original statement; 
one file-defining element, and special elements pertaining to selection 
criteria, sort-keys, etc. 

Formats: 

File-Defining Element; at ISBEG+l 

(SM)D file-name (AM) base (VM) modulo (VM) separ (AM) conv. (AM) corr~l. 
(AM) type (AM) just. (AM) (SM). 

Attribute-Defining Element 

(SM) c attribute-name (AM) amc (t..M) conv. (AM) carrel. (AM) type (AM) 
just. (AM) (SM) 

c = A - regular or D2 attribute. 

Q - Dl attribute. 

BX - SORT-BY, SORT-BY-DSND, etc. "X" is from attribute one 
of the connective. 

End-of-String Element 

(SM)Z 

Explicit Item-id's 

(SM)I item-id (SM) 

The Selection Processor 

This performs the actual retrieval of items which pass the selection 
criteria, if specified. Every time an item is retrieved, the processor 

vv_ai:: 



REALITY 2.0 UPDATE 

at the next level is entered with RMBIT set; a final entry with RMBIT 
zero is also made after all items have been retrieved. If a sorted 
retrieval is required, the Selection processor passes items to the 
GOSORT mode, which builds up the sort-keys preparatory to sorting them. 
After sorting, GOSORT then retrieves the items again, in the requested 
sorted sequence. 

A user-program may get control directly from the selection processor 
(or GOSORT if a sorted retrieval is required); the formats of the 
verbs are: 

Line Number Non-Sorted Sorted 

001 PA PA 

002 35 35 

003 xxxx 76 

004 xx xx 

where "xxxx" represents the mode-id of the user-program. Note that, 
in this method of interface, only item retrieval has taken place; 
none of the conversion and correlat'IVe processing has been done. For 
functional element interface, the column headed "Selection Processor" 
in the table shown later must be used. 

Exit convention: On all but the last entry, exit indirectly via RMODE 
(using ENT* RMODE); on the last entry, exit to one of the WRAPUP entry 
points. Processing may be aborted at any time by setting RMODE zero 
and entering WRAPUP. SBO must be set on first entry. 

Special Exit From The LIST Processor 

A user-program may also gain control in the place of the normal LIST 
formatter, to perform special formatting. The advantage here is that 
all conversions, correlatives, etc. have been processed, and the 
resultant output data has been stored in the history string (HS area). 
The formats of the verbs that are: 

Line Number Non-Sorted Sorted 

001 PA PA 

002 35 35 

003 4D 4E 

004 xxxx xx xx 

Where "xxxx" is the mode-id of the user-program. 

XX-96 



.. 
'· 

REALITY 2.0 UPDATE 

History-String Format: The output data is stored in HS area; data from 
each attribute specified is stored in the string, delimited by AM's; 
multiple values and sub-multiple values are delimited within by VM's 
and SVM's respectively. Since the HS may contain data other than the 
retrieved item, the user-program should scan from HSBEG, looking for a 
segment preceded by an "X"; all segments except the first are 
preceded by an SM. 

X item-id (AM) value one (AM) ... (AM) value n(AM)(SM)Z 

The program must reset the history string pointer HSEND, as items are 
taken out of the string. In special cases, data may not be used till, 
say, four items are retrieved, in which case HSEND is reset on every 
fourth entry only. HSEND must be reset to point one byte before the 
next available spot in the HS; normally one before the first "X" code 
found. 

001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 

Exit convention: see preceding section. 

Example: The following program is an example of one which 
prints item id's (only) four-at-a-time across the page. 

FR.AME 504 INTERNAL FLAG 
ZB SB30 INTERNAL FLAG 
BBS SBO,NOTF NOT FIRST TIME .. FIRST TIME SETUP .. 
MOV 4,CTR32 
SB SBO .. .. 

NOTF BBZ RMB IT, PRINT IT LAST ENTRY 
BDNZ CTR32,RETURN NOT YET 4 ITEMS OBTAINED 
MOV 4,CTR32 RESET 

PRINT IT MOV HSBEG,Rl4 
LOOP INC Rl4 

BCE C'X',Rl4,STOREIT FOUND AN ITEM 
BCE C'Z',Rl4,ENJHS Ef\D OF HS STRING 

SCANSM SCD Rl4,X'CO' SCAN TO NEXT (SM) 
B LOOP 

STORE IT BBS SB3 0, COPYI T NO FIRST ID FOUND 
SB SB30 FLAG FIRST ID FOUND 
MOV Rl4,SR28 SAVE LOCATION OF FIRST "X" 

COPY IT MIID Rl4,0B,X'AO' COPY ITEM-ID TO OB 
MCC C' I ,OB OVERWRITE (AM) 
INC OB,5 INDEX 
B SCAN SM 

Ei'DH:: BSL WRTLIN PRINT A LINE 
MOY SR28,HSEN!) RESTORE HSEND TO FIRST "X" CODE 
DEC HSEND &\CKUP ONE BYTE 
BBZ RMBIT,QUIT 

RETURN ENP: RMODE RETURN TO SELECTION PROCESSOR 
QUIT ENT l'-0999 TERMINATE PROCESSING 

END 

XX-97 



REALITY 2.0 UPATE 

Functional Element Usage 

The following table summarizes the functional element usage by the 
Selection and LIST processors. Only the most important usage is 
described; elements that have various usages are labeled "scratch". 
A " " indicates that the processor does not use the element. Since 
the LIST processor is called by the Selection processor, any element 
used for "memory" purposes (not to be used by others) in the former 
is indicated by a blank usage in the latter column. 

In general, user-programs may freely use the following elements: 

Bits 
Tallys 
S/R Is 

SB20 upwards 
CRT30 upwards 
SR20 upwards 

D3-D8 

SBO and SBl have a special connotation; they are zeroed by the 
Selection processor when it is first entered, and not altered there­
after. They are conventionally used as first-time switches for the 
next two levels of processing. SBO is set by the LIST processor when 
it is first entered, and user-programs that gain control directly from 
Selection should do the same. SBO may be used as a first-entry switch 
by user-programs that gain control from the LIST proce~sor. 

An ENGLISH verb is considered an "update" type of verb of the SCP 
character (from line one of the verb definition) is A, B, C, D, E, G, 
H, I or J. SCP characters of B, C, D and E are reserved for future 
ENGLISH update verbs. 

BITS 

ABIT 
BBIT 
CBIT 
DBIT 
EBIT 
FBIT 
GBIT 
HBIT 
IBIT 
JBIT 
KBIT 
LBIT 
MBIT 
NBIT 
OBIT 
PBIT 
QBIT 
RBIT 
SBIT 
TBIT 

Selection Processor 

unused 
first entry flag 
scratch 
scratch 
reserved 
reserved 
reserved 
reserved 
explicit item-ids specified 
reserved 
scratch 
scratch 
conversion interface; zero 
scratch 
selection test on item-id 
scratch 
scratch 
full-file retrieval flag 
selection on values (WITH) 
scratch 

XX-98 

LIST Processor 

non-columnar list 

scratch 
dummy control-break 
control-break flag 
scratch 
scratch 
scratch 

D2 attribute in process 
scratch 
left-justified field 
zero 
scratch 

scratch 
scratch 

print limiter flag 



\.. 

BITS 

UBIT 
VBIT 
WBIT 
XBIT 
YBIT 

ZBIT 
SBO 

SBl 

SB2 
SB4 
through 
SB16 

VO BIT 

COLHDRSUPP 
DBLSPC 
HD RS UPP 
!DSUPP 
LP BIT 
CBBIT 
PAGINATE 

RMB IT 

SMBIT 
GMBIT 
BKBIT 

DAFl 

DAF8 

Tallys 

Cl;C3-C9 
C2 
CTR1-CTR4 
CTR5 

CTR6 
CTR7 
CTR8 
CTR9 
CTRlO 

Selection Processor 

scratch 
reserved 
scratch 
scratch 
left-justified value being 
tested 
left-justified item-id 
Unavailable 

Unavailable 

reserved; zero 
scratch or reserved 

set for WPAPUP interface 

set if corresponding connective 
was found in ln~ut stateme11t 

set on exit if an iteM was 
retrieved; zero on final 
exit. 

FUNC interface 
FUNC interface 
scratch 

set if SCP = B,C,D,E,G, 
H,I or J 
set if accessing a dictionary 

Selection Processor 

Scratch 
contents of MODEID2 
Scratch 

REALITY 2.0 UPDATE 

LIST Processor 

reserved 
scratch 
reserved 
reserved 
left-justified 
print-limiter test 

first entry flag, 
level one 
first entry flag, 
level two 

scratch or reserved 

FUNC interface 
FUNC interface 
scratch 

LIST Processor 

Scratch 

Scratch 
Scratch AMC of current element 

in IS 
reserved Scratch 
reserved AMC corresponding to IR 
reserved Scratch 
reserved Scratch 
reserved Scratch 

XX-99 



Tallys 

CTRll 
CTR12 
CTR13 
CTR14 
CTRlS 
CTR16 
CTR17 
CTR18 
CTR19 
CTR20 
CTR21 
CTR22 
CTR23 
CTR24 
CTR25 
CTR26 
CTR27 
CTR28 

D9 

FP1-FP3,D7 

RMODE 

SIZE 

SBA SE 
SMOD 
SSEP 

DBASE 
DMOD 
DSEP 

S/R Is 

Sl 

S2-S9 

SRO 

SRl 
SR2 
SR3 
SR4 
SRS 
SR6 
SR7 

Selection Processor 

reserved 
FUNC interface 
FUNC interface 
reserved 
reserved 
reserved 
reserved 
reserved 
reserved 
CONV interface 
CONV interface 
CONV interface 
CONV interface 
reserved 
reserved 
reserved 
reserved 
reserved 

count of retrieved items 

FUNC interface 

return mode-id (MD30) 

item-size 

b,m,s of file 

b,m,s of dictionary 

Selection Processor 

Points to next explicit 
item-id 
Scratch 

Points one before count 
field of item 
Points to correlative field 
Scratch 
reserved 
Points to last AM of item 
reserved 
Points to conversion field 
reserved 

XX-100 

REALITY 2.0 UPDATE 

LIST Processor 

Scratch 
current-sub-value count 
current value count 
Scratch 
Scratch 
Contents of item count file 
reserved 
Scratch 
Scratch 
CONV interface 
CONV interface 
CONV interface 
CONV interface 
Scratch 
Scratch 
Scratch 
current max-length 
Scratch 

FUNC interface 

Scratch 

LIST Processor 

Scratch 

Current correlative field 
Scratch 
Scratch 

Next segment in IS 
Current conversion field 
Scratch 



S/R's 

SR8 
SR9 
SRlO 
SRll 
SR12 
SR13 
SR14 
SRlS 
SR16 
SR17 
SR18 
SR19 

PAGHEAD 

Workspace 
pointers 

A/R's 

AF 
BMS 
cs 
IB 

\..._ OB 
IS 
OS 
TS 
UPD 
IR 

Work-Space 
Usage 

AF 

BMS 

cs 

IB 

OB 

IS 

OS 

Selection Processor 

reserved 
reserved 
reserved 
reserved 
reserved 
GOSORT only: next sort-key 
reserved 
reserved 
reserved 
reserved 
reserved 
reserved 

Heading in HS if HEADING 
was specified 
See section on work­
space usage 

Selection Processor 

Scratch 
within BMS area 

compiled string 

within TS area 

within item 

Selection Processor 

Scratch 

Contains item-id 

Compiled string 

XX-101 

REALITY 2.0 UPDATE 

LIST Processor 

reserved 
reserved 
Scratch 
reserved 
reserved 
reserved 
reserved 
reserved 
reserved 
reserved 
reserved 
reserved 

generated heading in HS 

LIST Processor 

Scratch 
Scratch 
Scratch 
Scratch 
Output data line 
compiled string 
Scratch 
within TS area 
within HS area 
within item 

LIST Processor 

Output line. 

Scratch 



REALITY 2.0 UPDATE 

Work-Space 
Usage Selection Processor LIST Processor 

HS 

TS 

Heading data 

Scratch 

Heading data, attribute 
data for special exits. 
Current value in 
process. 

Additional Notes 

1. If a full-file retrieval is specified, the additional internal 
elements as used by GETITM will be used. If explicit item-id's 
are specified, RETIX is used for retrieval of each item. 

2. Elements as used by the FUNC and CONV processors have been 
shown in the table; both may be called either by the Selection 
processor or the LIST processor. 

3. Since the ISTAT and SUM/STAT processors are independently driven 
by the Selection processor, the element usage of these processors 
are not shown. 

4. The section of the IS and OS used by the Selection and LIST 
processors is delimited by ISEND and OSEND respectively. The 
buffer space beyond these pointers is available for use by 
other programs. 

BATCH Processor Interface 

The BATCH processor uses a BATCH- string which defines the method of 
updating one or more items in one or more files using a single line 
of input data. The updated item(s) is(are) built as disc-update 
string(s) in the history string area (see WRAPUP for format). 

A user-exit can be defined in the BATCH-string; the functional 
elements used by BATCH are described in the following tables; the 
column headed "Level" has the following entries: 

0 - Element is used in the described fashion throughout 
the BATCH processing. 

F Element is redefined every time a file-defining 
element is found. 

A - The element is redefined for every attribute. 

blank - Scratch element, on reserved for future usage. 

As far as user-exit programs are concerned, therefore, all elements 
defined at the "A" level can also be considered scratch. 

XX-102 



REALITY 2.0 UPDATE 

Exit Convention: The user-exit must return to the BATCH processor by 
executing the external transfer to the mode BATCH5 (DEFM 0,84). 

Bits 

ABIT 
BBIT 
CBIT 
DBIT 
EBIT 
FBIT 
GBIT 
HBIT 
!BIT 
JBIT 
KBIT 
LBIT 
MBIT 
NBIT 
OBIT 
PBIT 

OBIT 
RBIT 
SBIT 
TBIT 
UBIT 
VBIT 
WBIT 
XBIT 
YBIT 
ZBIT 

SBl 
through 
SB9 

DAFlO 

Level 

0 

A 
F 
0 

A 
0 

F 
F 
A 

F 

0 

0 

0 

Description 

First-time switch for BATCH process. 
reserved 
Scratch 
D2 attribute in process. 
Updates to be merged with item on file. 
Set when a BV or BC Arb-element is found. 
reserved 
Dl attribute in process. 
Set when a "secondary" file. 
reserved 
Item to be verified as existing on file. 
Item to be verified as not existing on file. 
Set; CONV interface. 
reserved 
reserved 
Flag indicating that a multi-valued field 
referenced by BC/BV element. 
reserved 
reserved 
scratch 
scratch 
Item is being deleted (X element in file-definition) 
scratch 
scratch 
reserved 
Primary item being deleted. 
scratch 

scratch 

Set if SELECT/SSELECT is driving BATCH. 

U"U' , "- 'l 



Tallys 

Cl 
C2 
C3-C9 

CTRl 
CTR2 
CTR3 
CTR4 
CTR5 
CTR6 
CTR7 
CTR8 
CTR9 
CTRlO 
CTRll 

CTR12 

CTR13 

CTR14-CTR19 
FP1-FP3 
BASE 
MODULO 
SEP AR 
SBASE 
SMOD 
SSEP 
D7 
D9 

RMODE 

Level 

A 

F 

F 

F 

F 

0 

Description 

scratch 
scratch 
reserved 

scratch 
scratch 
scratch 

REALITY 2.0 UPDATE 

Dl-D2 set number (follows Dl or D2 element) 
reserved 
reserved 
scratch 
Current amc in process. 
reserved 
reserved 
Value no. of "Dl;l" attribute; 
0 if unspecified. 
Value no. of "Dl;2" attribute; 
0 if unspecified. 
Value no. of "01;3" attribute; 
0 of unspecified. 
reserved 
scratch 

scratch 
scratch 
scratch 
scratch 
scratch 
scratch 
scratch 

Return mode-id for WRAPUP 

XX-104 



Work-Spaces 
& A/R's 

BMS 

cs 

AF 

IB 

OB 

TS 

IS 

OS 

UPD 

S/R's 

Sl-S9 

SRO 
SRl 
SR2 
SR3 
SR4 
SRS 
SR6 
SR7 
SR8 
SR9 
SRlO 
SRll 
SR12 

SR13 
SR14 
SR!S 

SR16-SR19 

Level 

A 

0 

0 

0 

0 

Level 

0 
0 

F 

0 

A 
F 
0 
0 

F 
F 

REALITY 2.0 UPDATE 

Description 

Work-space contains current value 

Scratch; work-space reserved. 

Unused 

Input data line 

Unused 

Used for reading input lines. 

Contains BATCH string; IS points to AM 
before next element. 

Scratch work-space 

Points to history-string 

Description 

Scratch 

One before count field of primary item on file. 
End of primary item on file 
scratch 
reserved 
End of current item on file. 
reserved 
reserved 
End of OS deletion table 
reserved 
Last byte of value in BMS area. 

End of primary update string if FBIT set. 
Points one before "DU" of history string 
for primary item update. 
reserved 
Location of file-defining element in IS 
Location of IB when current file-defining 
element was found. 
reserved. 

XX-105 



REALITY 2.0 UPDATE 

Characters Level Description 

SCP 0 Contains a "D" for B/DEL; "A" for B/ADD 

sea 0 Contains a blank. 

SCl 0 Scratch 

SC2 0 Contains a comma. 

Also note elements used by CONV processor. 

CONVERSION Processor Interface 

The Conversion processor is called as a subroutine (CONV DEFM 0, 90) 
and may be used to perform the Translate, Date, or Mask Conversions. 
More than one conversion can be performed at once if the conversion 
string is set up to do so; multiple conversion codes are separated by 
VM's. Conversion is called by the ENGLISH pre-processor to perform 
conversions on "input" data (in selection criteria), and by the LIST/ 
SORT processor to perform "output" conversion. 

Input Interface 

MBIT 

TSBEG 

IS 

BMSBEG 

Internal Usage 

SBlO 
SBll 
SB12 

SC2 

CTR20 
CTR21 
CTR22 
CTR23 

B 

s 

R 

s 

B 
B 
B 

c 

T 
T 
T 
T 

Set if an "input" conversion is to be performed; 
zero for an "output" conversion. 

Points one b~ >re the value to be converted; the 
value is conv ted "in place", and the buffer is 
used for scra• ~ spare; therefore it must be 
large enough to contain the converted value. The 
value to be converted is terminated by any of the 
standard system delimiters; SM, AM, VM, SVM. 

Points to the first character of the conversion 
code specification string; the code(s) must be 
terminated by an AM. 

Used for item-id copy on Translate conversions. 

XX-106 



54 
SS 
S6 
S7 

s 
s 
s 
s 

Output Interface 
IS R 

TS BEG 

TS 
TS END 

s 

R 
s 

REALITY 2.0 UPDATE 

Scratch; used to save and restore various elements. 

Points to AM terminating the conversion code(s). 

Points one before converted value. 

Points to the last character of the converted 
value; a SM is also placed one past the value. 
If a null value is returned, TS=TSEND=TSBEG. 

If a Translate conversion is used, subroutines GBMS, GDLID, and RETIX 
are used. Thus all elements used by those subroutines will be 
destroyed, with the exception of IR, SR4 and SIZE, which are restored 
before exit to their values or entry. 

Subroutines Used: GBMS, GDLID, RETIX (T-conversion only); MBDSUB, 
CVDR15 

Error Exits: 

CONV will exit to WRAPUP after setting RMODE zero under the following 
conditions: 

705 Illegal conversion code 

706 Illegal T-conversion: format incorrect, filename 
cannot be found, etc. 

707 DL/ID cannot be found for T-conversion file. 

WRAPUP is also entered, without setting RMODE zero, under the following 
error conditions: 

708 Value cannot be converted by the T-conversion. 

339 Invalid format for input data conversion. 

User Conversion Processing 

The Conversion Processor will pass control to a user-written routine if 
a 11 Uxxxx" code is found in the conversion string, where "xxxx" is the 
hexadecimal mode-ID of the user-routine. This routine can then perform 
special conversion before returning. The input interface at the user­
routine will be identical to that described in the preceding section; 
after performing the conversion the user-routine should setup the 

XX-107 



REALITY 2.0 UPDATE 

output interface elements described under CONVERSION, and exit via an 
external branch to l,CONV, which will continue the cvnversion process 
H multiple conversions are specified; a RTN may be executed if this is 
not needed, or to prevent further conversions being oerformed. Elements 
used by the regular conversion processors may be safely used by user­
routines; however, if additional elements are needed, a complete know­
ledge of the processor that called CONVERSION (LIST, SELECTION, etc.) 
will be necessary. 

FUNCTION Processor Interface 

The FUNCTION processor is used by the ENGLISH LIST/SORT processors to 
compute values which have an "F" correlative specified. It may also 
be called, as a subroutine, by user routines. Each call to FUNC 
(DEFM 0,101) returns one value. 

Input Interface 

SRl 

SRO 

SR4 

CTR13 

CTR12 

TS BEG 

Internal Usage 

SMBIT 
GMBIT 

CTRl 
CTR12 
CTR20 
CTR21 

IR 
IS 

D7 
FP1-FP3 

s 

s 

s 

T 

T 

s 

B 
B 

T 
T 
T 
T 

R 
R 

D 
D 

Points to the "F" of the Function string. 

Points one before the count-field of the item. 

Points to the last AM of the item. 

Contains the "value number" currently being 
processed (one on initial entry). 

Contains the "sub-value number" (D2 sub-value) 
currently being processed. 

Points to a buffer area-350 where the value is to 
be stored on exit. 



Output Interface 

IR R 

Rl5 R 

IS R 

DO,FPl D 

Programming Note 

REALITY 2.0 UPDATE 

Points one before the value copied (TSBEG+350); the 
value is delimited by an AM if none of the 
referenced fields contained multiple or sub­
multiple values; by a VM if at least one of the 
referenced fields contained a VM on this entry 
by A SVM if at least one of the referenced fields 
contained a SVM on this entry. 

Points to a blank following the terminal delimiter 
of the value. 

Points to the AM or one past a VM, terminating the 
Function string. 

Contains final computed result. 

On the first call to FUNG, CTR12 and CTR13 are both set to one; when 
FUNC returns a value, the terminal delimiter determines what action to 
take or subsequent calls--a VM indicates increment of CTR13 before the 
next call; a SVM indicates increment of CTR12; an AM indicates end of 
processing: 

ONE CTR13 SET VALUE NUMBER TO ONE 
FCl ONE CTR12 SET SUE-VALUE Nill-IBER TO ONE 
FC2 BSL FUNC 

store value from IR 

DEC Rl5 
BCE AM,RlS,END END OF PROCESSING 
INC CTR12 INCREMENT SUB-VALUE COUNT 
BCE SVN,Rl5,FC2 GET NEXT SUB-VALUE 
INC CTR13 INCREMENT VALUE COUNT 
B FCl GET NEXT VALUE; RESET SUB-VALUE COUNT 

END EQU * CONTINUE 

XX-109 



A (PROC) .• 
A (EDITOR). 
A/ AMC • • • • 

A D/CODE 

Abort at LOGOFF •. 
Abs Section Dump .• 
Abs Section Restore . . 
Account File . . • • • 
Account File Overflow . 
Account File Attribute 

Description • . . 
Accounting History 

En try . . • . . • 
Accounting History 

File . • . . . . 
Active Users Entry 
ADDD (TCL-I Verb) • 

Address Computation • • 

Addressing . . . • 
Address Modification 

Operations 
Address Registers . 
Address Register 

Attachment ..• 
Address Registers, 

Monitor • • . . . 
Address Register One. • 
Address Register Zero 
ADDS • • •• 

ADDX (TCL-I Verb) • 

AMC • • • 
Ampersand (&) - Disk 

Error . . . • 
Arithmetic Commands •• 
Arithmetic Instructions 
Arithmetic Operations . 
AS (TCL-11) . • . • . • 

ASCII-Char To Binary 
Conversion •..•. 

Assembler, Calling the 
Assembler, Cross 

Reference . . • • • 

V-8 
VIII-4 
III-8, 
X-12 
III-5 ,8 
IV-9 
XVII-5 
VI-4 
XVIII-12 
XVIII-5 
III-7 
VI-4 

VI-11 

VI-10 

VI-9 
VI-9 
IV-4, 
IX-1 
XV-16-10 
XV-16-5 
XV-2 

XV-20 
XV-9 

XV-9 

XV-13 
XV-10 
XV-10 
XVIII-22 
IV-4, 
IX-1 
III-4 

XIX-8 
IX-1 
XVI-15 
XV-16-11 
IV-4, 
XVI-2 

XX-82 
XVI-2 

XVI-5 

INDEX 

Assembler Directives 
Assembler Error Messages. 
Assembler, Listing. 
Assembler, Loading. 
Assembler Output •. 
Assembler Tables 
Assembly Language (REAL). 
ASSIGN (TCL-I) • . . • . 

Attached (A/R) 
Definition • . . . 

ATTOVF • • • • 
Attribute Definition 

Items (Synonym) . 
Attribute Definition 

Items (Dictionary). 
Attribute Definition 

Items (Item). . • . 
Attribute Definition 

Items (ACCOUNT File) • • 
Attribute Definition 

Items (File 
Definition . . • . . 

Attribute Definition 
Items (User) . • . • . 

Attribute Definition 
Items (Verbs) 

Attribute Mark, Count • 
Attribute One 

(Contains D/CODE) 
Attribute Synonym 

Definition Items 
Attribute Values, 

Multiple · • • • · 
Attribute Values .• 

Attributes Defining 
Accounting History 

Attributes for Output 
Specification 
(English) .. 

Attributes Used for 
Verbs . 

B (PROC) . . 
B (EDITOR). 
B/ADD (TCL-II) ... 

B/DEL (TCL-II). 

INDEX-L 

XVI-26 
XVI-60 
XVI-3 
XVI-3 
XVI-58 
XVI-54 
XVI-1 
IV-4, 
IX-8 

XV-9 
XX-65 

III-6 

III-8 

III-4 ,5 

VI-11 

III-2 

VI-5 

XX-22 
III-4 

III-2 

III-6 

II-7 
II-7, 
III-4 

VI-10 

X-12 

IX-9 

V-9 
VIII-4 
IV-4 
XIV-1 
IV-4, 
XIV-1 



Backslash (for null 
values . . . . • . 

Backspace (Control-H) .. 
Base Definition. • 

BATCH Processor .• 
BATCH, Interaction with 

Select Verb 
BATCH-String Format 
BATCH-String File­

Defining Element . • 
BATCH-String Attribute­

Defining Element . . . 
BATCH-String Elements •• 
BATCH-String 

Sub-Elements • . 
Bit Instructions . 
Bit Manipulating 

Instructions . 
BLOCK-PRINT (TCL-I) 

BLOCK-TERM (TCL-I) 

BO (PROC) . 
Bootstrap Procedure. 
Break Key 

Break Messages • . 
Buffer Definition 
Buffer (I/O Operation) . 
Buffer Map . . . • • . . 
Buffer Queue . • . • 
Buff er Status 
Buffer Status Byte . 
Buffers Locked in Core . 

C (PROC) . • . • 
C-READ (TCL-II). 

Calling The Assembler .• 
Cancel (Control-X) • • 
Card Reader Command 
Carriage Return .... 
Character Instructions 

(Moves) . . • . . . 
Character Instructions 

(Test) . • . . . 
CHOO-CHOO PROC • • 
CLEAR-FILE (TCL-I) 

INDEX (Continued) 

XVIII-11 
IV-3 
II-6, 
III-2 
XIV-1 

X-6-1 
XIV-1 

XIV-4 

XIV-5 
XIV-7 

XIV-7 
XVI-15 

XV-22 
IV-4, 
IX-17 
IV-4, 
IX-16 
V-9 
XVIII-1 
IV-8, 
XVII-1 
XVII-4 
XV-3 
V-5 
XV-4 
XV-4 
XV-3 
XV-3 
II-17 

V-10 
IV-4, 
IX-2 
XVI-2 
IV-3 
IX-2 
I-8 

XVI-11 

XVI-14 
XVIII-22 
IV-4, 
VII-2 

Clearing the ACCOUNT 
File ....•.•. 

Cold-Start Initialization 
of Core • • . . . • 

Cold-Start Procedure •. 
COLD-START PROC . . . 
Comment Field • . . . 
Comparisons (Numeric 

and Alpha) . . 
COMPILE PROC .. 
Condition Codes . 
Connectives . . 
Control Character 

Representation. 
Control Characters (TCL) • 
Control Instructions •• 
Conventions for Typing 

Data 
Conversion. . • . • • 
Conversion Operations • • 
COPY (TCL-II Verb) •• 

Copying to Mag Tape, 
LP, Terminal 

COREDUMP (TCL-I) 
Core-locked Buffers • 
Core Map. . . • 

Correlatives. . 
COUNT Verb (ENGLISH) . 

CREATE-FILE (TCL-I) 

CREATE-ACCOUNT PROC • 

CROSS-INDEX (TCL-II 
Verb) • • 

CROSS REFERENCE 
CAPABILITY. • • 

CT PROC . . . 

D Conversion 
D Correlative • 
D (PROC) . . 
D/CODE. • . . 

Data (Same as 
Attribute Value 

INDEX -2 

VI-4 

II-17 
XVIII-! 
XVIII-8 
XVI-2 

X-10 
XVIII-22 
XV-13 
X-13 

I-8 
IV-3 
XV-22 

1-7 
XI-1 
XV-33 
II-10, 
IV-4, 
VII-3 

VII-6 
IV-4 
II-17 
II-17, 
XV-43 
XII-1 
IV-4 
X-5 
IV-4, 
VII-1 
XVIII-8, 
XVIII-10 

IV-4, 
XVI-5 

XVI-5 
XVIII-22 

XI-1 
XII-1 
V-10 
III-2 ,8 
X-12 

III-2 



\ 
'-

Data Comparison 
Instructions • . • . • 

Data Display Commands •• 
Data Movement 

Instructions • • • 
Data Structures 
Data Transmission 

Operations • • 
Data Conversion. • • 
DCT • • • • • • • 
:DDUMP (TCL-I SYSPROG 

Verb). • • 

DE(editor) 
Debugger • 
DEBUG Commands • 

Debug Control Block. • • 
Debug Facilities-

Limited • • • • • 
Debug Prompt Character • 
DEBUG Statement Format • 
DEBUG Syntax • • • • 
DEBUG Tables • • . • 
Definition of Terms 
DEL-OBJ PROC • • • • 
DELETE PROC • • • • 
DELETE-FILE (TCL-I) ••• 

Density vs. Overflow 
Detached (A/R) 

Definition . • • • • • 
Device Control Table 
Device Orders 
Dictionaries • 
Dictionary 

Interrelationships • • 
Dictionary Item 

Definitions 
Dictionary, Master • 
Dictionary, System • 
Directives, Assembler 
Disc Address 

Computation 
Disc Address Format. 
Disc Errors • • • • 
Disc Interrupt Handling. 
Disc Scheduling Tables • 
Disc Space Assignment 
DIVD (TCL-I Verb) 

INDEX (Continued) 

XVI-19 
XVII-3 

XVI-15 
II-1 

XV-17 
XI-.1 
xv..:.16-5 

XVIII-9, 
XVIII-19 
VIII-5 
XVII-1 
IX-18 
XVII-2 
XX-15 

IV-7 
XVII-1 
XVII-2 
XVII-1 
XVII-4 
XV-16-10 
XVIII-22 
XVIII-22 
IV-4, 
VII-3 
II-12 

XV-9 
XV-44 
XV-44 
III-1 

III-2 

III-8 
III-6 
III-6 
XVI-26 

XV-16-5 
XV-16-5 
XV-16-8 
XV-16-6 
XV-16-1 
II-3 
IV-4, 
IX-1 

DIVX (TCL-I Verb) 

DL/ID • • • • · • • · 
:DLOAD (TCL-I SYSPROG 

Verb· ••• 

DTX (TCL-I Verb)· 

DUMP (TCL-I)· • • 

Dump of Sample File • 

EBCDIC to ASCII 
Conversion 

EBTPRD (TCL-II) 

ED or EDIT (TCL-II) · 

Edit Commands • • • • 
Edit Command Structure· • 
EDITOR • · • • • • • 
EDITOR Error Messages 
Effective Address 

Computation • • • • • • 
EJECT (TCL-I) • • • • 

END (DEBUG) • • 

ENGLISH • • • • • • • 
ENGLISH Input Rules 
ENGLISH Language 
ENGLISH Verbs • • 

ERRMSG File • • . . . 
Error Messages, EDITOR· • 
Error Messages, 

Assembler • • • • • • • 
Error Messages, System 
Evoking BATCH • • • • • • 
EX (EDITOR) · • • • • • • 
EXEC PROC 
Executable Frames 
Execution Transfer 

Instructions 
Exit Format • • • • 
Exists from PROC • • • • 
Executable Frames • 
Expansion, REAL Macro 

IV-4, 
IX-1 
Ill-1 

XVIII-9 
XVIII-19 
IV-4, 
IX-1 
IV-4, 
IX-20 
II-8 

XX-84 
IV-4, 
IX-3 
IV-4, 
VIII-2 
Vlll-4 
VIII-2 
VIII-1 
VIII-3 

XV-16-10 
IV-4, 
IX-11 
IV-8, 
IX-18, 
XVII-3 
1-5 
X-2 
X-1 
IV-6-1, 
X-2 
III-7 
VIII-3 

XVI-60 
XIX-1 
XIV-1 
VIII-5 
XVIII-22 
II-1 

XVI-22 
XVI-57 
V-5 
II-1 
XVI-61 



INDEX (Continued) 

F Correlative (Function) • XII-3 
F (PROC) • • • • • • V-10 
F (EDITOR) • • • VIII-5 
F /REALLOC • • • • III-8 
FD (EDITOR) ••••••• VIII-5 
FI (EDITOR) • VIII-5 
FS (EDITOR) •••••• VIII-5 
FID • • . • • • • •• II-1 
FID, Computing • • • II-4 
Fields •••••••••••• III-4 
File Definition. • • • • II-6, 

III-1 
File Definition Items III-1,2 
File, Hold •••••••••• IX-9 
File Management Verbs •• VII -7 
File-Name •••••••••• III-1 
File-Name Specification • X-6-2 
File Reallocation • • • III-2 
File-Restore Example XVIII-6 
File-Restore to 

Reallocate File III-2 
File, Sample Dump ••••• II-8 
FILE-SAVE PROC • • • XVIII-12 
File-Save Example. • XVIII-14 
File Size Limits • • VII-1 
File Space • • • • • II-4 
File-Space Limits ••• XVIII-6 
File Structure • • • •• III-1,3 
File Synonym Definition 

Items . . . . . . .. 
File with 3 Groups, 

2 Frames/Group • 
FORM (TCL-I) ••• • 

III-2,4 

II -8 
rv-5-1, 

••••• IX-8 
Frame Formats ••• 
Frame ID •••• 

• XV-10 
•• II-1 

Frames, Executable •• 
FTC PROC •••••• 
FTE PROC 

II-1 
• XVIII-19 
• XVIII-19 

••• XVIII-19 FTF PROC 
FTH PROC 
FTI PROC 
FTL PROC 
Fl'O PROC 

G Correlative 
G (DEBUG) •••• 

XVIII-19 
• • • XVIII-19 

• XVIII-19 
•• XVIII-19 

• • • • • XII-7 
IV-8 
IX-18 
XVII-3 

G (EDITOR) •••••••••• VIII-5 

GO or G (PROC) •...•.•. V-10 
GBMS •••••• . . . • XX-46 
GDLID ••••••• • XX-48 
Gen Format (REAL) 
GETBLK •• 

•••••• XVI-57 
• XX-63 

GETBUF •• • • • • • XX-52 
GETIB ••• • XX-50 
GETIBX •••••• • XX-50 
GETITM •••• • XX-41 
GETOVF • • • • • • • • • • • XX-63 
GROUP (TCL-II Verb) • 

Group Definition 
Group, Calculated • 

H (PROC) • • • • • • 
Halting the CPU 
Hardware Trap 

Conditions ••• 
HASH •••••••• 
Hashing Algorithm ••• 
Heading (Connective) 
Hexadecimal Conversion 

from Decimal 
Hold File •• . . 
RS Work Area • • 

I (EDITOR) •••••• • 
I-DUMP (ENGLISH) • 

. . 

I/O Device Orders •••• 
I/O Instructions (REAL) 
Identification Items, 

User •••• 
IH (PROC) 

• IV-5-1, 
VII-8 

• II-6 
II-6 

•• V-10 
• XVIII-1 

• XVII-5 
•• XX-40 

• II-6 
• X-17 

IX-1 
IX-9 
II-2, 
VI-6,8 

• VIII-6 
IV-5-1 

• • XV-44 
•• XVI-23 

•• VI-5 
•• V-12 

IN (PROC) 
IOQ Table 

. . . . ••• V-12 
• • XV-16-2 

IOQ Table Format • •• XV-16-2 
IOQ Process Selection 
IOQ Setup •••••• 

• XV-16-4 
•• XV-16-4 
• • V-13 IP (PROC) • • • 

IT (PROC) 
IF (PROC) 

• ..• • • .. V-13 
••• V-11 

Information Formats 

(REAL) • • • • • • • • • XV-1 
Initial System Files 
Initial System Setup 
:INIT-LINES (TCL-I) • • 

•• • • III-7 
XVIII-8 

••• XVIII-9, 
XVIII-20 

••• XVIII-9, 
XVIII-20 

:!NIT-SPOOLER (TCL-1) 

INDEX-4 



Input Data Conventions 
For BATCH ••.••• 

Input Environment •. • • • 
Input/Output Buffer 

Processing • • • • . 
Input Rules for ENGLISH · 
Input Statements •••• 
Instruction Set • • • 
Instruction Summary 

(REAL) • • • • • • • • 
Instructions 

Description (REAL) 
Interaction of TCL-II 

with SELECT 
Interrupt Processing 

. . . 
Interrupts • • • • • • • 
Introduction • • • 
IS Work Area • . 

ISTAT (ENGLISH)· •• 
ITEM (TCL-II) • • • • • 

Item-Def •••• 
Item Format - Physical • • 
Item Format - Logical • • 
Item-ID Def ••• 
Item List 
Item Size Limit 
Item Storage 

KILL (TCL-I) 

L(EDITOR) 
L/RET 

L/UPD 

. . . 
. . . . 

Label Field (REAL)• 
Link Command, PROC • • • • 
Lines (Same as 

Attributes) • • • • • • 
Linked Frames • .• • · 
Linked Frame Format • • 
List (ENGLISH) • • 

LISTACC PROC • • 
LISTCONN PROC 
LISTDICTS PROC • • • • 
LISTFILES PROC 

INDEX (Continued) 

XIV-3 
VIII-4 

V-5 
X-1 
IV-1 
I-4 

XV-37 

XV-16-9 

IV-7 
IV-7 
XV-14 
I 
II-2 
VI-6,8 
IV-5-1 
IV-5-1 
VII-7 
II-6 
II-7 
II-10 
II-6 ,10 
X-7 
II-7 
II-7 

IV-5-1, 
IX-8 

VIII-6 
III-8 
XIII-1 
III-8, 
XIII-1 
XVI-1 
V-3-1 

II-10 
XV-10 
XV-11 
IV-4, 
X-3 
XVIII-23 
XVIII-23 
XVIII-24 
XVIII-24 

LISTPROCS PROC • • 
LISTU PROC • • • • • • • 
LISTVERBS PROC • 
Listing Output • • 
Literal Generation • • • 
LOAD-SPOOLER PROC • 
Loading the Assembled 

Mode • · • • • • • 
Logical Operations • • • 
LOGON /LOGO FF • • • • • • 

XVIII-24 
XVIII-24 
XVIII-24 
XVI-3 
XVI-59 
IX-8 

XVI-3 
XV-30 
VI-1 
thru 4 

Logging On To The System • VI-1 
Logon PROC • • • • • • VI-2 
LOGON Item contains 

security codes• • • • • 
Logging Off The System 
LOGOFF Abort • • • • 
LP106 PROC 
LP132 PROC • • • • • 

XIII-2 
VI-3 
VI-4 
XVIII-24 
XVIII-24 

Macro Definition Format • • XVI-56 
Macro Expansion Example • • XVI-61 
Maintenance, System • • 
Management Processors, 

File • • • • • • • • 
Manual Syntax • • • • · 
Master Dictionary 

(M/DICT) • • • • • 
MBDSUB and MBDNSUB 
MD Conversion • • • • • • · • 
ME (EDITOR) • • • • • • • • 
MESSAGE, MSG (TCL-1) 

MLIST (TCL-II) 

MLOAD (TCL-II) 

Modes. Table of System 
Modulo Definition 

Modulo, Reallocation • • 
Modulo Selecting 
Monitor 
Monitor Calls • • • • • • 
Monitor Disc 

Scheduling Tables 
Monitor Mode • • · • • • • 

Monitor Operations • • • 

XVIII-1 

VII-7 
I-7 

III-6 
XX-83 
XI-2 
VIII-7 
IV-5-1 
IX-20 
IV-5-1, 
XVI-3 
IV-5-1, 
X.VI-3 
II-14 
II-6, 
II-11, 
III-2 
III-2 
II-11 
XV-11 
XV-14 

XV-16-1 
XV-14, 
35,36 
XV-35 



INDEX (Continued) 

Monitor PCB • • • • • 
Monitor Registers • 
:MSETUP (TCL-1) •• 
MT Conversion •• 
MULD (TCL-1 Verb) 

Multiple Reel Tape 

. . . 

Files ••• . . . . . . . . 
MULX (TCL- I) • • • • • 

Multiple Attribute 
Values ••••• 

MVERIFY (TCL-II) 
MX Conversion 

N (EDITOR) • · • • 

. . 
. . . 
. . . 
. . . 

New Account, Creating 
NEWAC File • • .• • 
NEXTIR and NEXTOVF • • • • 
Numbers, Prime, 

Table of 

0 (PROC) • • 
OFF (TCL-I or DEBUG) 

OFF Abort •••••••••• 
One, Address Register 
Operand Conventions 

(REAL) ••• • • • • 
Operand Field (REAL) 
Operand Field 

XV-12 
XV-13 
XVlll-20 
XI-3 
I\1-5-1, 
IX-1 

IX-6 
IV-5-1, 
IX-1 

II-7 
XII-2 
IV-5, 
XI-3 

VIII-7 
XVIII-10 
III-7 
XX-66 

II-19 

V-13 
IV-5-1, 
VI-3 
XVII-3 
VI-4 
XV-10 

XVI-2 
XVI-2 

Expressions (REAL) 
Operating System ••• 
Operation Field (REAL) 
Options for COPY 

• • XVI-2 
I-3 

• XVI-1 

Processor 
Orders, Device, 

Peripheral I/O 
OS Work Area •••• 

OSYM Table Entry Format • 
OSYM Table-Lookup 

Technique • • • ••• 
Output from Assembler • • 
Output/Input Buffer 

Operation •••••• 
Output/Input Instruction 
Output Listing (REAL) • • 

VII-6 

XV-44 
II-2, 
VI-6,8 
XVI-56 

XVI-55 
XVI-58 

V-5 
XVI-23 
XVI-3 

Output Specifications 
(ENGLISH) • • • • • • • • • X-10 

IX-7 Output Spooler •• • • • • • • 
Output Spooler Error 

Messages •••••••• 
Overflow vs. Density 
Overflow Probability 
Overflow Space 

IX-15 
II-12 
II-13 

Management • • • • • • • • • 
Overflow Space, 

Contiguous ••••••••• 

II-4 

II-4,5 

P (DEBUG) • • 

P (EDITOR) •••• 
P (PROC) • • • • • 
P (TCL-I) • • • 
P-ATT (TCL-I) • • 

P-ATT-KIL (TCL-I) 

P-DET (TCL-1) • 

P-STAT (TCL-I) 

Panel, Front, 
Interaction 

. . . 

PCB Definition , • 

PCB For Monitor 
Peripheral I/O Device 

Orders ••••. 

• • IV-8, 
IX-18 
XVII-3 
VIII-7 

• • V-14 
•• • IV-5-1 

IV-5-1, 
IX-13 
IV-5-1, 
IX-13 
IV-5-1 
IX-13 
IV-5-1 
IX-13 

XVIII-1 
II-1, 
XV-8 
XV-12 

PIB • • • · • • · • · • • 

XV-44 
XV-5 
XV-5 
IV-5-1 
V-14 
II-1, 
XV-8, 
XX-11 
II-19 

PIB Status Bytes 
POVF (TCL- I) • • • • • • 
PP (PROC) • • • • • 
Primary Control Block 

Prime Numbers, Table •••• 
Primitive Definition 

Formats 
PRINT • • • • • • • . . . 
Print Queue •• 
Print Spooler • • • • 
PRINT-HOLD (TCL-I) • 

XVI-57 
• • XX-5 7 

IX-10 
• • IX-8 

IV-5-1, 
IX-14 

PRINT-QUE (TCL-I) • • • • • IV-5-1, 
IX-14 

INDEX-6 



INDEX (Continued) 

PRINT-TAPE PROC • 

PRINTHDR 
Privileges, System 

PROC Commands • • • • 
PROC Exe cu ti on • • • • 
PROC Link Command 
PROC User Exits 
Process . . . . . . . . . . . 

IX-15 
XVIII-24 
XX-55 
VI-5, 
VII-1 
V-4 
V-1 
V-3-1 
V-5,15 
II-l, 
XV-1,5 

Process Identification 
Block ••••••• XV-5 

II-1 
••• IV-9 

V-1 

Process Work Space • 
Processing Aborts •• 
PROCs ••••••• • • 
PROCs, Special SYSPROG 
Programming Notes 

• XVIII-8 

Prompt Char (BATCH)> 
Prompt Char (DEBUGGER)!. 
Prompt Char (EDITOR) • 
Prompt Char (PROC 

Command IN, IP, PP) 
Prompt Char (TCL) •••• 
PRTERR (WRAPUP"':'Il) •••• 
PSYM ••••••••••• 
PSYM/TSYM Table Entry 

Formats •• 

XV-16-8 
XIV-1 
XVII-1 
VIII-2 

V-4,5 
IV-1 
XX-34 
XX-16 

XVI-54 

Q D/CODE • • III-4,8 
Quotes, Double (ENGLISH) 

Surrounding Value ••• V-8 
X-2,8 

Quotes, Single (ENGLISH) 
Surrounding Item-id • • V-9 

X-2 
Quotes, Single (TCL-II), 

Surrounding Item-id IV-6 

R (EDITOR) . . . . 
RDLINK •••• 
RDREC • • • • 
RE-GEN PROC 

. . . . . . 
REAL Macro Expansion 
REAL, REALITY Assembly 

Language ••• • • • 
REALITY - CPU • • • • · 

VIII-7 
XX-60 
XX-59 
XVIII-16 
XVI-61 

XVI-1 
I-2, 
XV-1 
XVI-60 Reassembly in Pass II 

Register Instructions •• XVI-17 

Registers, Address 
Registers, Address 

Attachment • • • • 
Registers, Address, One • 
Registers, Address, Zero • 
Registers, Monitor ••• 
Relational Operators 

(CORRELATIVES) • • • • • • 
Relational Operators 

(ENGLISH) ••• 
RELBLK • • •• 
RELCHN 

. . 

XV-9 

XV-9 
XV-10 
XV-10 
XV-13 

XII-3 

X-13 
XX-64 
XX-64 

RELOVF • • • • • • • • • • XX-64 
XVI-58 Reset Format • • • • • • • • • 

Restarting After STEP/INT 
Hal ts • • • • • • • • • • • XVIII-I 

Restore, File, Process XVIII-5 
RETI •••••• • • • • • • XX-39 
RETIX • • • • • • • • • • • • • XX-39 
Retype (Control-R) • • • • • IV-3 
RI (PROC) • • • • • • • • • • V-14 
RPG - CLEAN PROC • • • • • XVIII-24 
Rules for ENGLISH Input • X-2 

S D/CODE 
S (EDITOR) 
S (PROC) 
S/NAME) 

. . . . . ... . . . . . 
III-6, 8 
VIII-8 

•• V-14 
III-8, 
X-12 

S/AMC • • III-8, 
X-13 

Secondary Control Block • XX-14 
Secondary Value Mark • • • XII-2 
Security Code Comparison • XIII-2 
SEL-RESTORE (TCL-II 

Verb) • • • • • • • · • • • • IV-5-1, 
VII-8 

Select Next User Routine • XV-16-7 
SELECT Verb (ENGLISH) • • • IV-5-1, 

X-6-2 
Select Verb, Interaction 

With TCL-11 • • • • • • • IV-7 
Select Verb, Interaction 

With BATCH • • • • • • X-6-1 
Select Criteria 
Selection of Next I/O 
Separation Definition 

• • X-8 
XV-16-6 

Separation, Reallocation • 
Separation, Selecting 

INDEX- 7 

II-6, 
III-2 
III-3 
II-11 



IUDEX (Continued) 

SETUP-ASSY PROC . . . . . . 
Shift Operation 

(Reference) •••• 
Size, Buffer 
Size, File ••••• 
Size, Item • 
Software 

. . . . . 
Software Overview 
SORT Verb (ENGLISH) 
SORT, Interaction with 

Correlative and 

XVIII-17 

XV-31 
V-11 
Vll-1 
II-7 
I-6 
IV-2 
IV-5-2 

Conversion • • • • • • • • X-3 
SORT, Use after X-REF • XVI-7 
Source Language (REAL) • XVI-1 
Spooler Error Messages • IX-15 
Spooler - Output IX-7 

SSELECT (ENGLISH) . . . 
ST (PROC) ••••••• 
Stack • • • •••••• . . . . 
: START-SPOOLER PROC ••• 
Starting 1/0 ••••• 
STAT Verb (ENGLISH) ••• 

Statement Formats (TCL) • 
Statement Formats 

(ENGLISH) ••••••••• 
Storage, Virtual 

Management • • • • 
Stored Procedures 

(PROCS) •• , ••• 
String Format ••• 
String Operation 

(Reference) • , ••••• 
Sub-Elements (BATCH) 
SUBD (TCL-I) ••• . . . 
SUBX (TCL-I) 

SUM (ENGLISH) 

Summary of Instructions 
(Reference) 

: SWD (ENGLISH) 

. : SWE (ENGLISH 

Symbol-Codes (REAL) 
Synonym, Attribute, 

Definition Items • . . . 

XVIII-18 
IV-5-2, 
X-6-1 
V-15 
V-4,15 
XVIII-18 
XV-16-7 
IV-5-2 
X-5 
IV-6-1 

X-1 

XV-3 

V-1 
VIII-3 

XV-31 
XIV-7 
IV-5-2, 
IX-1 
IV-5-2, 
IX-1 
IV-5-2, 
X-5 

XV-37 
XVIII-10, 
XVIII-21 
XVIII-10, 
XVIII-21 
XVI-54 

III-6 

Synonym, File, Definition 
Items ••...•••.•. lII-2,4 

I-7 
XVlII-18 

Syntax for the Manual 
SYS-GEN PROC 
SYS-LOAD PROC •••••• 
SYSPROG Account . . 
SYSPROG Account Verbs 
System Commands 
SYSTEM Files, Initial 
SYSTEM Dictionary 
SYSTEM Dictionary, 

Updating ••••• 
System Maintenance 
System Messages ••• 
SYSTEM Modes, Table •• 
System Privileges ••• 

•• XVIII-18 
• • III-7, 

XVIII-8 
XVIII-19 
IX-1 
III-7 

•• III-1,6 

VI-7 
XVIII-1 

•• XIX-1 
II-14 
VI-5, 
VII-1 

System Setup, Initial ••• 
System Software ••••• 
System Software Linkage 
System Structure 

XVIII-8 
XX-1 
IV-2 

(REALITY Reference) ••• XV-1 

T Conversion 
T Correlative •• 
T (EDITOR) •• 
T-ATT (TCL-I) 

. . . . XI-3 
XII-8 
VIII-8 
IV-5-2, 
IX-3 
IV-5-2, 
IX-3 
IV-5-2, 
IX-4 
IV-5-2, 
IX-4 

T-BCK (TCL-1) 

T-DET (TCL-l) 

T-DUMP (ENGLISH) 

T-FWD (TCL-1) •• , 

T-LOAD (TCL-II) 

. . . . 

.... 

T-READ (TCL-I) . . . . 

• , IV-5-2, 
IX-4 
IV-5-2, 
IX-4 
IV-5-2, 
IX-5 
IV-5-2, 
IX-5 
IV-5-2, 
IX-4 

T-REW (TCL-1) 

T-RDLBL (TCL-I) 

T-WEOF (TCL-I) ••• 

Table of Prime Numbers 
Tables for the 

Assembler ••••••• 
Tables for Debugging •• 

HID_ex_-8 

IV-5-2, 
IX-6 
II-19 

XVI-54 
XVII-4 



'"\...._ 

INDEX (Continued) 

Tape CoJIU11ands . . . . 
Tape-I/O ••••• . . . . . . 
Tape Labels . . . 
TCL Reels (TB) EDITOR . 
TCL Control Characters . 
TCL Processing ••••• 
TCL Statement Parsing 
TCL Verb Definitions 
TCL-I (Software) •• 
TCL-I Verbs ••••••• . . 
TCL-II Verbs . . . . . . 
TCL-II, Interactions with 

Select Verb • • • 
TCL-II (Software) • 
TERM (TCL-1) 

Terminal vs. Process 
Terminal Control 

Language (TCL) 
Terminate Execution 

(DEBUG) • • 
TIME (TCL-I) • • • • • 

. . . 

Timdate • • · • • • • • • • • 
Trace Mode •••••••••• 
Transfer, Execution, 

IX-2 
XX-73 
IX-6 
VIII-8 
IV-3 
IV-3 
IV-6-1 
IV-9 
XX-21 
IV-7 
IV-6-1 

IV-7 
XX-21 
IV-5-2, 
IX-21 
XV-1 

IV-1 

IX-18 
IV-5-2, 
IX-22, 
XX-81 
XX-81 
XV-16- l 

Instructions • • • • • • • XVI-22 
Translate Instructions • XVI-20 
Trap, Hardware, 

Condition • • • • • • XVII-5 
Traps • • • • • • XV-15 
TSINT • • • • • • • ••• XX-69 
TSYM Table Entry Format • XVI-54 
TSYM Table Entry Setup • XVI-55 

U Conversion ••• 
U (EDITOR) ••••• 
U (PROC) • • • 
Underlined Data 

(Typed in) • • • • • • • • 
Unlinked Frames • • • • 
Up-arrow (t) for Ignore 

Character • • • • • • 

XI-5 
VIII-9 
V-15 

I-8 
XV-10 

X-9 
XVIII-19 UPDATE-ACCOUNT PROC • • • 

Updating System 
Dictionary Entries 

UPDITM • • • • • • • • • 
• • VI-7 

Usage of CREATE-ACCOUNT • 
User Assigned Codes • • • 
User Developed Software • 
User Exits From PROC 

XX-34 
XVIII-10 
XIII-2 
II-1 
V-5,15 

User Identification Items 
Users, Active, Entry . . . 
V/CONV Attribute • •• 
VCORR Attribute . . . 
V/EDIT . . . . . . 
V/MAX . . . . . . . . . 
V/MIN . . . . . . 
V/TY.PE . . . . . . . . 
Verb Format (Software). 
Verb Format (ENGLISH) 

VI-5 
VI-9 

XI-1 
XII-1 
III-8 
III-8 
X-13 
III-8 
III-i, 
X-13 
xx 
IV-6,1, 
X-1 
IV-6 
X-2 

Verb Format (TCL-II) 
Verbs, ENGLISH ••••• 
Verbs, Special SYSPROG 
Verbs, Standard REALITY 
VERIFY-SYSTEM (SYSPROG) 

• XVIIl-8 
• IV-4 

PROC) • • • • • • • • • • • • 
Virtual Memory • • • ••• 
Vi.rtual Mode ••• 

Virtual Memory Management 

XVIII-19 
I-1 
II-18 
XVIII-1 
XV-3 

\.Jho (TCL-I) • • • • • • IV-5-2 
WITH (Designates 

Selection Criteria) • • • X-8 
Work-Space/Process • • • • II-2 
Work-Space Assignment, 

Disk • • • • • • • • • • • • • II-3 
Work-Space Assignment, 

Additional •• 
WRAPUP-I 
WRITOB 
WRITLIN ••••• 
WSINT . . . 
WTLINK ••• 

. . . . . . . 
. . . . . . 

X D/CODE • • • • • •••••• 
X (EDITOR) • • • 
X (PROC) 
XLOAD (TCL-II) 
X-REF (TCL-II) 
XREF (PROC) 
XTD (TCL-I Verb) 

VI-6 
XX-31 
XX-53 
XX-53 
XX-68 
XX-60 

III-6,8 
VIII-9 
V-15 
XVI-5 
XVI-6,7 
XVI-8 
IV-5-2, 
IX-1 

Y Element In Batch XIV-6 

Z (EDITOR) • • • • • • • • • • VIII-8 
Zero, Address Register • • XV-10 

INDEX-9 




