
SCALD II User's Manual

(SCALD-2)

Thomas M. McWilliams, Jeffrey B. Rubin,
L Curtis Widdoes, and Steven Correll

Table of Contents

1 Wh2t ~r.A T .n nnP~ and whv .. ··- ----- --- --- .. --,

1.1 The Structure of SCALD 4

1.2 How to use this manual 6

2 How to use D (the Graphics Editor) 7

~1 Prelimina_ri~ 7
2.2 Commands for manipulating drawing. files 13

2.2.1 Getting and saving drawings l!·

2.2.2 Initializations '14

2.2.3 Finishing a drawing 15
2.2.i Looking for errors 15

2.3 Commands for Body Mode 17
2.4 Commands for Point Mode 19
2.5 Commands for Set Mode 21
2.S Commands for Edit Mode 22
2.7 Using Alter Submode to Edit Text 27
2.8 Defining and Using Editor Macros 29

3 A guided tour of D !1

3.1 Running the program !2
!.2 Initializing the workspace !i
!.! Positioning Bodies 37
!.i Drawing lines i2
!.5 Putting text on your drawing 52
3.6 Editor macros 59
!.7 Using sets 61
S.8 Final touches to your drawing 62
!.9 Creating a body temp late 5g

1.9.1 Getting started 63
!.9.2 Drawing the box SS
!.9.! Ornaments SS
!.9.i Defining pins 67
!.9o5 Creating body text 69

! .. 10 Making a menu -file 70

i How to use the macro expander 7!

~l Typical design procedure .•. 75

i.2 General Rules for the macro expander language 77
-t.! Inventing Bodies to Represent Macros 79

4.!.l Body Parameters . . .
4.!.2 Pin parameters

-i.4 How the macro expander binds bodies to drawings

4.5 Inventing Signal Names
4.6 Putting together a signal name

4.6.1 <Negation>
4.6.2 <Class Name><Sirnple Name>
4.6.! <Timing Assertion>
4.6.-4: <Assert Low> . . .
-t.6.5 <Bit Subscripts> . .
i.6.6 <Wire Delay>
4.6.7 <Timing Evaluation Directive>
4.6.8 <Scope> . .
'i:.6.9 <Multiplier>

4.6.10 <Version>
4.6.11 Constants a.s Signal Names
4.6.12 Text Substitutions .
4.6.13 Sundry Details About Naming Signals

4.7 M at.ching Signals with Bodies
4.8 Fictitiou$ Bodies . . .
4.9 How to construct the Terminal File

i.10 Running the Macro Expander
i.11 The Maao Expander Listing

5 A Guided Tour of a SCALD Maao

6 How to use the ti.rnlng veri1ier

6.1

6.2
6.!

Theory of operation • • .
6.1.1 Circuit Period

8.1.2 Value system for signals

6.1.S Combinational function
Defining chips

Preparing input for the verifier
6.3.1 Wire delays
603.2 Assertiom on Signals.

6.!o! Evaluation Directives

.

. .

.

.

.

.

8.3o4 Correlations . . . • o· •

6 .. 4 Input and output· ntes for the timllig verifier

6.5 A timing verifier example . . .

7 The layout program

7.1 Preparing instructiom for the layout program
7.1.1 The DA TE statement

79
8!
86

87
88
88.

89
90
90
92

. 9S

9!-
·93
95

. 97

98
98

100
104
106
110
112
11!

121

127

128

129

129
130
1!2
137

1!7

137

139

1-W
. . 142

l+i

H9

150
IM

Table of Contents iii

7.1.2 The WITH statement 155

7.1.3 The assignment statement 157
7.1.-t The PLACE statement 161
7.1.5 The BIND statement . . . 163
7.1.6 The CHIP statement 165

8 References 167

9 Implementation information 169

9.1 Format of the WDP file . . 169

10 Index . . . f 7g

1

1 What SCALD does and why
SCALD (the aaonym stands for •structured computer-aided logic design system") cuts the cost· and
time required to design iogtc. It does this by letting the logic designer express ideas as naturally as
possible, and by eliminating as many errors as possible-through consistency checking, simulation,
md timing verlfication-before the hard ware is built.

This manual describes SCALD ll, intended for use in the design of the S-1 Mark. IIA processor.
The original version, SCALD I, was used in the design of the Sl Mark. I processor.

Designing hardware with SCALD is in many respects analogous to programming in a high level
language. First, the designer uses a graphics editor to draw logic circuit diagrams on a CRT screen,
just as a progammer would use a text editor to compose a source program. The diagrams form a
hierarchy in which general, high level drawings are defined in terms of more specific, lower level
drawings, just as the top level procedures in a wen .structured program call more spedflc, low level
procedures. (Actually, each drawing represents a maao which can be replicated as often u necessary
within the design.)

Then the designer feeds the drawings to the SCALD macro expander, which translates the logical
design into a detailed plt-jsicaJ. design just as a compiler would translate source language into
machine code. In the process, the maao expander can find many errors by checking syntax and
design rules.

The designer then uses the SCALD layout prognms and physical design programs to map the
output of the maao expander onto actual circuit boards, just . as a programmer uses a tinker and
loader to map the compiler-generated code onto the actual computer hardware. And, just as a
programmer can use a symbolic debugger to find runtime errOrs, the· designer can use the SCALD
simulator and timing verifier to check the behavior of the hardware b~ore building it

Ultimately SCALD produces ~ and listings that permit .~bly of a prototype either
automatically or by hand.

2 1 What SCALD does and why

SCALD brings to hardware the top-down design prindples · that programmers have adopted for
software. At the top level or a we11-structur~ program, a programmer does not deal with loops and
branches and assignments, but with two or three procedures that divide the program's task logically
into major subtasb. Similarly, at the top level of a digital circuit designed with SCALD, the·
designer does not deal with gates and signal polarity and fanout, but with two or three functional
blocU that divide the circuit's task.1ogica11y into major subtasks. .

Each or the major blocks is then defined in terms of other blocks, and each of those in terms of stitl

other block.s, and so on, forming the hierarchy. Successive definitions become increasingly specific,
until finally the iowest ievel drawings correspond to. actual integrated circuits. Those integrated
circuits are themselves defined in terms of a few primitive logic elements-gates, flip-flops,
multiplexers, adders, and so on-to permit simulation.

This approach to logic design has a number of advantage& (Readers who are already convinced
should skip the following sales pitch and start with Section 1.1.) Some of them stem from the
hierarchical structure, others from the basic use of a computer to automate the task, and still others
from specific features in the SCALD programs.

Advantages of hierarchical structure-In hardware design as in programming, a top-down
approach lets the mind tack.le the most important and far-reaching questions rust, deferring the rest.
At any point, the designer confronts a manageable number of decisions. Structured design makes it

easier to apportion work. among a group of designers, since splitting the task into subtasks along
f'Unctional lines provides a set of relatively independent chunks of work. Structured design makes it
easier f'or a newcomer or outsider to understand the design by progressing from a general overview
toward rme details.

Some advantages of top-down design apply uniquely to ha.'"Ciwa.'"e. L'l a design requi..P1 .. "1g mar1;
individual drawings, structure reduces the confusion caused by wires running from one drawing to

the next on the basis of paper size rather than meaning.

Further, structured designs are subject to less trauma as technology advances. The upper levels of
the hierarchy tend to be general enough that they remain independent of the specific technology or
logic ?amity the designer uses. And as circuit packages come to hold increasing amounts of logic, the
bottom level of the hierarchy may simply vanish because each frequently-used macro which was
formerly deimed in terms of a network of a dozen integrated circuits can be implemented with a

single gate array chip.

Adnntages of automation-Other advantages result simply because SCALD maintains the design
on a computer in machine-readable f'onn. · ·

• It imposes uniform conventions on the design team.

• The ~puter's normal procedures handle mundane . concerns like sharing drawings
between designers. archiving old drawings, placing drawings in safekeeping, and so forth.

1 What SCALD does and why

• The designs are readily available to programs ror simulation, error-<hecking, cost
estimating, parts counting, and so forth.

• Handling post-design changes by computer makes it more likely they'll be systematic and
wen documented.

Advantages of SCALD itself-The SCALD family of programs provides a number of specific
services to make design easier.

• A timing verifier and logic simulator help test. the design before constructing it.

• Semiautomatic layout and automatic routing speed construction.

• Extensive error-<hecking reduces the number of bugs before construction even begins.
For example, SCALD checks the assertion level of signals againSt the expected inputs to

each functional block; it finds a source for the inverse of a signal when needed; it lets the
designer specify rules to handle fanout problems automatically; and it checks for undefined
signals, unconnected signals, outputs tied together unintentionally, and undef"med inputs.

1 What SCALD does and why

U The Structure of SCALD

SCALD itself ii, as~ hinted earlier, a family of programs rather than a single program, making it
easier to aiter the system to .suit different needs. For exampie, changes in the graphia input
hardware affect only the graphia editor. Changes in the wiring technology employed affect only the ·
packager programs.

For portability, all programs except the graphia editor and system-dependent utilities are written in
PASCAL, and generally allow configuration for varying memory usage.

SCALD divides into a iogicai design system (programs which appiy regardiess of the technoiogy

used to implement the design) and a physical design system (programs which implement the logical
design using a particular technology).

Important parts of the logical design system are:

D, the graphics editor-This program lets the designer define macros by drawing networks
of logic elements on a CRT display using a special keyboard or a light pen. One of its

outputs is a file listing alt the logic elements and the connections among them.

Macro expander-This program ·takes in the logical design (a set of hierarchical maaos
defined by graphia editor drawings) and transforms it into the first stage of the physical
design, outputting a set of actual IC functions and a list of the connections among them.

Alternatively. for simulating the design before construction, this program can further
expand the actual IC functions into the logical primitives which the simulator works with.

Lorie simulator-Usin£ a tvDical value for the bric delavs. this oroszram simulates the v w ,. ., ~ • • ""

design. In the case of a processor, it can even run small programs to check. the processor's
ability to execute various instructions.

Timing Yerifier-This program takes into account a range of logic delays, from minimum
to maximum, along with timing skews. It checks all the combinations of timing and signal
paths necessary to assure that the design meets worst case timing constraints.

Unlike the simulator, it does not fully simulate the network; it concerns itself with whether
a signal is true or false only to the degree necessary to determine the interval within which
that signal is stable. This division of tabor between the simulator and verifier allows
SCALD to assure a _thorough simulation of large designs.in a reasonable time.

Important parts or the physical design system are:

Layout-Within constraints specified by the designer, this program automatically positions
parts on circuit boards.

Packager-This group of programs routes wires among parts on the circuit board~

LI The Structure of SCALD 5

c:alculates waveforms or signals propagating along those wires, and manages post-design
changes.

6 1 What SCALD does and why

L2 How to use this manual

This edition of the ~anual covers the graphics editor, macro expander, and layout program, but not
the packager programs.

In some cases it gives two different views of the same material: a -iiow-to" section with a concise
desaiption, followed by a -Cuided tour'9 through lltustrative (that is, blatantly contrived} examples.

Installation-dependent information such as how to start a program running tends not to appear at

a1L Information of interest to those modifying the programs rather than to those using them, such as
the formats of files, appears in appendices.

7

2 How to use D (the Graphics Editor)
This chapter is an abridged desaiption of D, the graphics editor, describing a minimal subset of
commands needed to aeate drawings for SCALD. For a description of many more commands, see
the SUDS manual listed in Section 8.

2.1 Preliminaries

Terminology-We witl assume use of the Stanford keyboard, which has keys labelled CONTROL,
META, TOP, and SHIFT. This keyboard operates differently from that of either a typewriter or
an ASCll computer terminal:

Pressing a key without holding any shift key gives the lower case version of the bottom symbol
printed on the key.

Pressing a key while holding SHIFT gives the upper case (capital) version of the bottom symbol, not
the top symbol as it would on a typewriter. If the symbol in question isn't a letter and thus can't be
capitalized, then SHIFT has no effect.

Pres.ting a key while holding TOP gives the top symbol printed on the key.

- .
Holding CONTROL or META in addition to some other combination of keys affects the flavor of
the character but not its identity. For example, holding SHIFT changes •a• to •A"; but holding
MET A in addition merely produces a special version of •A• which the program regards u a
command, not some entirely new character. Generally, CONTROL gives the weak.er or more
ordinary version of that command while MET A gives a stronger or. more exotic version.

We'll use the following notation throughout this manual:

8 2 How to use D (the Graphics Editor)

c<character> says to hold down CONTROL while pressing the <character>

,l<character> says to bold down MET A while pressing the <character>

c,l<cbaracter> says to bold down both CONTROL and ME)'A while pressing the <Character>

(The program never requires use of the characters •a.• or •fl" themselves, so there's no danger of
confusion; throughout this document they always represent the CONTROL and META keys.)

When using D, latch the SHIFT LOCK key down to avoid having to lean on the SHIFT key
constantly, thu1 freeing all ten rmgers to manipulate SHIFT, TOP, CONTROL, and META.

Whenever the program expects a multiple character string-the name of a file or logic element, for
example-it permits use of the DEL key to backspace and erase mistakes.

The commands that consist of a character with META and/or CONTROL held down will,
however, execute immediately, giving you no chance to use DEL If, as a result of the command, the
program then prompts for additional information, the ALT key wilt generally abort the command;
otherwise, you must simply figure out a way to undo the results of the command.

Piles. libraries. and bodies-The program stores drawings in files with names of the form
•<name>.DRW". At the top of the screen, it constantly displays an equation 93-<name>" w~ich tells
the name of the rue (if any) that it is currently editing.

In the most general sense, the program can do two things: it can develop templates for 91>odies", and
it can draw drcuits by first drawing bodies based on those templates and then connecting lines
between those bodies. For SCALD;s purposes, a body generally represents either a macro or a logic
primitive such as a gate or adder. A drawing generally defines a maao in terms of additional bodies
connected together.

The templates for bodies hide in the back.ground until the designer either uses a template to place a
body in a drawing or enters a special mode (Edit mode) capable of creating or modifying body

templates.

When editing a drawing, the program operates on a copy of the drawing in a special area called a
work.spac:e. A particular drawing file can be copied into the workspace in three distinct ways:

1. The first drawing me copied in after clearing the worbpace becomes the one named in
the 93·" line. · ·

2. (One rarely uses this feature.) If you a>py in any additional drawing files, their body
templates are added to the repertoire of templates in the workspace, and their drawings
becmM Jets ot elements superimposed on your existing drawing. just like the sets you
yourself can aeate as described in Section 2.5. You may then mONe those sets around and

2.1 Preliminaries 9

add them to the exbting drawing.

S. It you tiring in a drawing rue u a library, its body templates are added to the repertoire
or templates in the work.space, but its drawings (if any) are not wed. There is nothing
special about a file used to hold libraries of body templates; any drawing can took like a
library if brought in as one.

Other files-The program can produce two other files corresponding to •<name>.DRW":
•<name>.PLT" is useful for malting a paper copy of the drawin~ and •<name>.wn• is a list of

bodies and interconnections which ultimately becomes the input to the SCALD macro expander.

Morine the cursor-The program wilt always display (though sometimes at the very edge of ~~e ·
screen) a set of crosshairs which serves as the cursor. Four keys above the RETURN key move it

incrementally to the left, to the right, up, and down:

(Left
) 1tight
I Up
\ Down

(On some keyboards, the sequence is i:] \/"instead; in any case, no matter what is marked on them,
use the four keys immediately above the RETURN key, and associate the directions with ringers
rather than with the markings on the keys.)

These are obviously int.ended to be convenient, not mnemonic;_ since you will probably use them
more heavily than any others, it's easy to become accustomed to placing four ringers over them
without looking at the keyboard or thinking about the symbols on the keys.

Holding down various shift keys multiplies the distance these keys cause the cursor to move:

CONTROL x2
META xi:
TOP xlS

Using several shift keys at once multiplies the factors. Holding down both CONTROL and
MET A, for example, multiplies the fundamental cursar moti!Jll by 8..

laJarrement. reduction, an~ movinr the paper-When the program starts, lt shows a x 16
mlargement or the •paper• it will draw on. That is a convenient scale for seeing everything clearly,
but the entire paper will not fit on the screen at once, so the screen acts as a sort of -Window"
through which you view the drawing.

To move the paper to see a different part or it through this window, use the .,..., •.i.•, •-.•. and ·~·
characters. Typing such a character once moves the drawing by 1/8 of the window dimension. As
with the cursor, the CONTROL key multiplies this motion by 2 and the META key by 4. (The

10 2 How to use D (the Graphia Editor)

TOP key isn't available as a multiplier in this ca.se, because it is needed to obtain any of those
characters in the first place..)

As the paper moves. the cursor stickJ to it until the cursor hits the edge of the saeen. You can
continue to move the paper further in that direction, but the cursor will remain at the edge of the
screen until you move the paper in a different direction. If y~ move the paper far enough, you'tt
reach its edge and see a tine representing the perimeter (assuming the SHOW'BOX feature
desaibed in Section 2.2.2 is enabled).

You can also reduce and enlarge the paper to see more or less of it through the screenj but this is
inconvenient because the text remains the same size while the bodies and lines shrink and grow.

The ••" key reduces, the •• • key enlarges, and once again CONTR 0 L and MET A multiply the .
effect.

If part of the drawing spills off the edge of the paper, the -X PICCEN" command (Section 2.2.2) ·
will recenter it, but the system automatically recenters the drawing anyway just before plotting a
hard copy of it. If the centered drawing won't fit on the paper, however, the plot wilt clip it at the
edges.

Modes-At any time, ~he program is in one of several major modes, each of which may have one or
more submodes. Only certain modes and submodes are essential to drawing cirOJits for SCALD. To ·
describe bodies one uses edit mode; to draw circuits with them one switches back and forth among
body mode, point mode, and set mode. The top line of the saeen wilt always contain 9MODE·"
followed by one or two letters. The rust letter generally tells the current mode and the second the
current submode.

The program begins in body mode. The fo11owing commands change back and forth among body,
point, and set modes:

~ Select body mode (MODE·B)
r43P Select point mode (MODE·P)
~ Select set mode (MODE·S)

Many commands work equally welt in any mode, others don't, and stilt others mean slightly different
things in different modes. Unless noted otherwise, assume the commands given here work in any
mode.

Attaching the cursor and moving objects-When the program enters body, point, or set mode, the
cursor is detached from all objects so it may· move at will wit~out affecting the drawing. The
program will superimpose a large flashing letter on the object ·or the appropriate type-a body if it
is in body mode, a point in point mode, or a set in set mode-which is closest to the cursor.
At'tachi11f the cursor to that object forces the object to follow wherever the cursor moves. The
following commands accorhplisb this:

Move the cursor to the object and attach the cursor to it. The large flashing

2.1 Preliminaries 11

letter identifying the object wilt vanish.

Move the object to the cursor and attach the cursor to it. The large flashing
Jetter identifying the object will vanish.

<SPACE> Detach the cursor from the object. The large flashing letter identifying the
object will reappear.

It's not aitical to understand them, but the large flashing letters do convey meanings:

B Body
P Point
PL Point with line(s)

TL Line (and usually a point, too) with text

PA Point to which you may attach a line. On a body,
this is usually an input or output pin

PLA Sarne as PA, but there's already a tine attached
BT Body text

BTP Body property name/text pair

Extended commands-A special set of commands beginning with -X" sets options and performs
functions without regard to mode. Wheri you see a command in this chapter described lik.e this:

>< CLEAR

it means that after you type -X" the program will type -WELL?" and wait for you to put in the
remainder of the command \CLEAR" in that example). Since operating systems supporting the
graphics editor generally offer "typeahead• {that is, they wilt save up characters if you happen to
produce them faster than a program can use them), it's usually safe to type the entire string without
waiting for the -WELL?".

In addition, you may combine these extended commands. The following example

x
IJELL? EW ,CLE.AR

shows how to perform -X Ew• and -X.. CLEAR" ~her. Note that the program executes them in

the order specifled, so this would (with considerably more kindness than one has any right to expect
from a machine) save the worllspace before clearing it ·

Text-The graphics editor provides two kinds of rext: simple text and property name/text pairs.
Text is usually a.uociated with a point or body, and thus appears, disappears. and moves around
whenever the point or body does. To deal with a piece of text, m~ve the cursor close to it and give
the appropriate command as described later in this chapter. Property name/text pairs give an
additional means of acces.1, a name usociated with the text. Because the name ls merely an access

12 2 How to use D (the Graphics Editor)

key, it's invisible on the drawings.

The editor distinguishes between text created as part of the drawing and text that is copied from a
body template. Though the editor provides a mode that can manipulate both kinds, we won't·
discuss that because you won't need to use it. Throughout the modes we'll desaibe, template text is

sacrosanct: because you didn't type it in, you can't touch it. A ·default property name/text pair is

semi-sacrosanct: you can replace its text completely, and thereafter you can edit the replacement, but
you can't edit the default text

2.2 Commands for manipulaling drawing files 13

2.2 Commands for manipulating drawing files

2.2.l Getting and saring drawings

X CLEAR.

otW

X GETLIB

X TITLE

XPAGE

X PR.OJECT

XEW

Clear the workspace, deleting drawings and body definitions but not macros.
This also resets the editor to MODE·B, LEVEL•O, SCALE· 16, and
3•<nothinp.

Bring in a new drawing file. (The program witt prompt for the name.) If the.
workspace is clear, the new file becomes the 93.• file; otherwise, it becomes a set

Within the existing drawing. Specifying 7 as the new file clears the remembered
name (the 93.• feature} at the top of the screen.

Save the workspace into a drawing file and change the -:3=" line, if necessary, to

point to that file. (The program will prompt for the name. If the 93·" already
shows the filename, reply T and the drawing will automaticatly go back into

that file, which is a lot safer than attempting to retype the name.)

List all body templates in the workspace (both bodies described in this drawing
flte and those desaibed in any libraries you are using).

Get a file and use it as a library. The program wilt prompt for the filename.
Once a particular drawing knows about a certain library, it will remember it, so
you need not repeat the command the next time you edit that drawing.

Invent a title for the drawing. (The program will prompt for the first line of the
title and then for the second.) The title is a label that appear~ at the bottom of
the drawing, and is quite distinct from the name of the file containing the
drawing.

The SCALD programs do not require it, but for documentation purposes you
may paginate drawings. This command prompts for SHEET (the current page
number) and OF (the· total number of pages). The numbers appear in the form
-Page x of v- at the bottom of the printed version or the drawing.

Specify which project the drawing belongs to. (SCALD does not require this, but
you may Wish to partition your design into projects. with a certain number of
macros In each project. If yau do, SCALD will p~t the project name on listings
to help y~ mentally sort macros into categories.)

Identical with •a.w- followed by ?. · It's a· good idea to use this command
periodlcalty as you edit. just as insurance against a system crash.

XEP

XEL

2 How to use D (the Graphics Editor)

Write a plot file called •<name>.PL T" based on this drawing, provided the 93.•
llne contains a name.

Write a wireUst file called •<name>.WD" based on this drawing, provided the
93.• line contains a name.

2.2.2 Initializations

We recommend using the following commands to set up initial conditions in the program. The most
painless approach is to make them into an editor macro called !NIT as explained in Section 2.8..
Then aeate a dummy drawing with nothing in it but the INIT macro. To aeate a new drawing {as
opposed to editing an existing one), mak.e it a practice always to start by clearing the workspace and
bringing in the dummy.

X -LOCS

XBOARD

XSHOWBOX

X PICCEN

Disables the displaying of a feature that SCALD doesn't use.

Sets a number of characteristics that in general don't matter to SCALD. The
program wilt prompt for the board type, and you should reply -OECPc•.
Consistency throughout all your drawings in this respect will spare you countless
annoying, but harmless error messages.

Tells the graphics editor to provide a border around the drawing similar to those
conventionally used fer eng4 ... rteeri.91g drL'ling. Boxes attached to the border have
room for the title, date, site, engineer's name, signature of approval, and so on.
Aside from the title, SCALD needs none of these, though · ~t wilt print page
numbers and project names on its output listings for documentation purposes.
Various -x• commands (explained in the SUDS manual) exist to specify each of
these items. Paper plots show the entire border, but on the screen, all that
appears is a simple rectangle defining the •edge" of the •paper".

The program wiD prompt for th~ type of box, the drawing seal~ and the plot
scale. Reply •A 16/1•.

Centers the drawing Within the box provided by -X SHOWBox•o This is
primarily a convenience, since the program whict'i produces a paper copy of the
drawing centers it within the SHOWBOX anywar.

X UNDERLINE Positions signal names so that signal wires always go under them, not at the end
of them.

2.2.2 Initializations 15

X DIAMONDS Engineering drafting is afflicted with one great unanswerable question: when two
lines ams. are they meant to connect? The DIAMONDS option causes D to
supply a diamond at the intersection point whenever the lines are indeed meant
to connect, but only on the copy or the drawing that gets plotted on paper.

The program Will also ask now whether to p_lot a diamond whenever only three
lines connect. Answer -Y-. (Terminology gets confusing here. What looks like
two lines aossing and connecting is, as far as D is concerned, a matter of four
lines-two pairs of colinear segments. And what looks like one line meeting
another in a -r" may, in some cases, be three discrete segments in the eyes of the
program.)

2.2.S finishing a drawing

When you are satisfied with a drawing and plan to make a paper copy, we recommend using the
following commands, which prepare it for plotting and clear the workspace in preparation for the
next drawing. We use a maao called PLOT (Section 2.8 explains maaos) to perform them
automatically.

X SCALI

X ·DEl'PIN,
EW,EP,CLI

Prompts for the scale of the drawing. Reply •1s•.

Described individually elsewhere.

2.2.4 Looking for errors

The following command looks for errors which occur when lines appear connected on the graphics
display screen, but are not connected fl'Ofl'.l the point of view of the program.

XDANCLE Mark. all dangling points. Once they're marked, you can enter ·point mode and
me •«F' ~ly to move the cursor from one marked point to the next

A dangling point II one which:

1. Hu no lines or text auoc:iated with it (in which case you should delete the
point), or

16 2 How to use D (the Graphics Editor)

2. Has two a>linear lines associated with it (in which case you should. within
point mode; type •13n• to delete the point and merge the lines), or -. -- - -

!. Has exactly one line associated with it but no text (in which case you should
label the point with some text), or

i. Hu text but no line (in which case you should either supply one or more lines,
or delete the point and its text), or

5. Lies atop another point (in which case you should type •aA ". The program
will put a star atop the twin points and ask, -rhis one?" Reply -Y" and the·
program will combine the points. ·

2.! Commands for Body Mode 17

2.S Commands for Body Mode

In body mode, all the commands implicitly refer to bodies in the drawing itself. They can create a

copy of a body based on a specified body template and place the new copy in the drawing; they can
move a body about, delete a body, rotate a body, or label a body.

Typically one first draws bodies in this mode and then switches to point mode to connect lines
between them.

Place a new copy of a body at the cursor position, leaving the cursor attached to
it. (The program will prompt for the body name.)

Deleti! the body closest to the cursor.

Create or replace the text of a property name/text pair for the body closest to the

cursor. The command woru whether the text came from a body template or
from one of the commands that let you type in text. The program wilt prompt
for the property name and, if it does not already exist, will establish a new one.

Then it will prompt for a text to go with the property name. That text may be
any string. including embedded blanks and using the character •.,." to break. the

string aao.u multiple tines. To replace an existing property text rather than to
aeate a new proper:cy name/text pair, the •fjy- command is safer.

Replace the text for an existing property name/text pair. (This command works

just like •a.v•. but requires you to type only enough of the property name to

identify the property unambiguously. In addition, this command won't create a

new property if you happen to mistype the old property name.)

Rotate the body closest to the cursor by 90 degrees counterclocA.wise. After

rotating it 360 degrees. the program will replace it with its mirror image.

Enter text/property submode ror the body closest to the cursor, showing
9MODE·BT• at the top of the screen. This submode of body mode lets you

manipulate text or properties of that body by attaching and detaching the cursor,
moving the cursor, and issuing commands. Until you attach the cursor, a large

flashing letter or ~ wilt identify the text or property closest to the cursor.

This mode will not alter text derived directly from a body template, but only text
yau have created or replaced yourself.

Not• t/iat ~th.inf r do 1J1itAin propm,Jtnt submOIU of bod' m.od8 applies to
t/u bod' tlul:l mas clos1st to th1 cursor on mtni:nt th1 sulm&odl. Once inside the
submode, moving the cursor to another body doesn't alter this; before working
with the properties or text or another body, you must get out of the submode,
move the cursor to the other body. and get back. in.

18 2 How to use D (the Graphics Editor)

The following commands apply to text/prOperty submode (while the •(Jy•, and
8 «.V- commands for body mode work equally welt within text/property submode,
it's a bad idea to use them here because if you forget which body t~e cursor was
closest to when you entered the submode, you can easily aeate a piece of text that·
appears within one body but belongs to another as far as the graphics editor is
concerned):

Delete the property or text closest to the cursor but belonging
to the current body

Use Alter submode to edit the text or property text closest to·

the cursor but belonging to the current body. You wilt see·
9MODE·BA" at the top of the screen. Note that this
command cannot change text obtained directly from a body
template. Only after you have used •av-, •(JY', or •aT" to
replace or produce text can you use •a(3A" to alter it.

Return to normal body mode.

2. i Commands for Point Mode 19

2.4 Commands for Point Mode

While point mode does deal with points, its prindpal use is to aeate lines by drawing lutw1en

points. The commands in point mode which explicitly aeate or delete a point are used f~ less than
those which draw lines, implicitly creating points as they do so.

.t.T

+

Create a point at the current cursor position. ·

Delete the point at the aJrrent cursor position, along with any lines or text

associated with that point. If two or more points coincide, the program deletes
whichever it likes. (Ir the point is really a pin on a body, the program deletes
lines and text associated with the point, but not the point itself.)

Like •trf"', but doesn't provide offset.

Label the point closest to the cursor with text and offset the text if necessary to
make it pretty. (The program will prompt for text.) You may use the • .. •
character to separate the text into multiple lines.

Delete the text (if any) labelling the point closest to the cursor.

Use Alter submode to edit the text, if any. labelling the point closest to the
cursor.· You wilt see "M 0 DE· PA" at the top of the saeen.

Starting at the point closest to the cursor, draw a perpendicular line toward the
line closest to that point. The program wilt place a star on the line it proposes to
connect to and will ask you to conrmn the command.

Draw a blinking line or pair of lines connecting the cursor with the point closest
to it. (The program wants to avoid slanted lines, so if necessary it will use two
perpendicular lines, one vertical and one horizontal). These lines are temporary
and will stretch and contract to follow the cursor wherever it goes. As the cursor
travels, the program puts a star on its current favorite •point of attachment?' (that
is, the point to which it will extend the lines automatically if you so choose.)

The command leaves you in a line-drawing submode of point mode, from which
you can issue the following comm~ds:

<ALT>

<SPACE>

+

Delete the blinking line(s)" an.d return to ordinary point mode.

If there are two lines blinking, swap them. In other words, if
the program previously chose ·to go rrom the point to the
cursor by drawing first horizontally and then vertically, it will
now draw first vertically and then horizontally.

If only one line is blinking, make it permanent by creating a

2 How to use D (the Graphia Editor)

new point at the end. If two lines are blinking. make the one
f'Urthest from the cursor permanent by creating a new point at
their intersection. Once it is permanent. the line stops
blinking.

In either case, leave the program in line-drawing mode so
that blinking lines continue to follow the cursor.

Extend the blinking line(s) as necessary to reach the current
favorite point of attachment (that· is, the point marked with a
star) and then make the lines permanent.

2.5 Commands for Set Mode 21

2.5 Commands for Set Mode

Set mode manipul~ groups of bodies and lines; it duplicates. moves, or deletes the entire group as
a single entity.

<SPACE>.
+, <ALT>, and - These work. more or less as desaibed under· point mode in Section 2. 4, but are

wed to draw a box around a group of bodies and points. The two important
differences are that you must use • -• to close the box, and that the lines of the
box will continue to flub after you've used • +" to make them permanent. Then
the box wilt vanish and the bodies· and points become members of a set, which
you can manipulate as a single entity, attaching the cursor to it, moving it,

. deleting it, and so on. The program will flag the bodies and points with large
fluhing 9B• and -p• characters to indicate they're members, and wilt place a

nuhing -s· at the center of the set. When you attach the cursor, all the flashing
letters vanish, and when you detach it, they reappear.

cD Release all members of the set which is closest to the cursor. The points and
bodies stilt exist, but don't belong to the set.

~D Delete all members of the set which is closest to the cursor. The points and
bodies no longer exist, so various lines and· text associated with them must
vanish too.

2 How to me D {the Graphia Editor)

2.& Commands for Edit Mode

Edit mode creates body templates, which you typically put into libraries and use to create bodies for
drawings. This mode differs from point, body, or set mode Ln certain buic ways. FLrst, the drawL'lg
temporarily hides in the background while you create or modify the template. Second, you must type·
a speciiic command to leave edit mode before switching to one of the other modes.

Edit mode performs three functions: drawing vectors to represent the body, defining pins on the
body, and labelling the body and pins with text For each function, there is a particular submode:
insert submode, grab-body submode, pin submode, and text/property submode.

When inside edit mode but not inside any of these submodes, the program will place a star at the
point on the body closest to the cursor. Resist the temptation to treat this like the star that appears·
in normal point mode; to draw the body you must use insert submode. ·

Enter edit mode. "M ODE·E· will appear at the top_ of the screen. The program
Will prompt for the name of the body template to be edited and, if that template
doesn't already exist, will create a new one.

While edit mode creates and modifies body templates, it does not delete them.
Instead, the command -X DELTYP-, which may be used only ou.tsilU of edit
mode, will ask. you for a body name and then delete that body's template along
with alt occurrences of that body in your drawing.

Leave edit mode and return to body mode. \i ou may safely do this even from
within one of the submodes of edit mode.) Note that if bodies derived from the
template Just edited exist in the drawing, the changes are reflected in the
drawing immediately. In particular, deleting pins can cause havoc because lines
formerly attached to them will vanish.

Enter insert submode within edit mode so as to draw vectors .to make the body
template. 9MODE·Er' will appear at the top of the screen. Within this mode the
commands resemble those used in point mode to draw lines; they are just similar
enough to instill a false sense of confidence.

When you enter this submode, the cursor is resting at the point which will be the
•origin• for the body~at is, the ·point the cursor wilt move to when you attach

it to the body, and the point upon which the program will superimpose the
flashing -s• when appropriate. By convention, we draw a body so its origin is at
the upper ieft, though nothing in the pr~ req~ires this.

From the origin, proceed to draw visible and invisible vectors forming a single
path around the body. Provided it is not invisible, the vector you are currently

working with wilt appear a bit brighter than the others.

These vectors must form a single path. To make three lines meet at a point. for

2.6 Commands for Edit Mode

example. you must draw through the point, then use an invisible vector to
backtrack to it. and finally start a new visible vector headed outward from th~
point. Trying· to attach the cursor to the intersection of two vecton and then
moving the cursor to start a new vector will either overlay two visible vectors or
move the intersection point without creating a new vector at all

Here are the commands allowed within insert submode:

<RUBOUT>

<SPACE>

End the pending vector (if any) and start a visible vector that
wm follow the cursor wherever it goes.

End the pending vector (if any) and start an invisible vector .
that wiD follow the cursor wherever it goes.

End the pending vector (if any) and move the cursor back
along the path of vectors, toward the origin. Each ttme· you
press <RUBOUT>, the cursor travels the length of the
preceding vector and lands at its starting point. The vectors
on either side of that starting point appear extra bright
(unless they're invisible), and if you move the cursor using the
up/down/right/left keys, the vectors will stretch to follow it

When <RUBOUT> causes the cursor to reach the origin, it

stops there, and further use of <RUBOUT> has no effect

Just like <RUBOUT>, but moves the cursor forward along
the path of vectors, away from the origin. It's a good idea to

use <RUBOUT> and <SPACE> to travel the path, checking
for any duplicate or unwanted vectors, before leaving edit
mode. If it takes two <RUBOUT>s to pass a; certain point, for
example, then you have inadvertently placed a zero length
vector there, and should delete it.

Delete a vector.

If the cursor lies at a point on the path with one vector
preceding it and another following it, this command deletes
the preceding vector and stretches the following one to take its

place, maintaining an unbroken. path.

It the mnor lies at the last point on the path, this command
deletes the vector preceding it and makes the previous point
into the last point on the p~h.

If the cursor lies at the origin, then this command deletes the

<ALT>

2 How to use D (the Graphics Editor)

first vector on the path and moves the cursor to the next
point. This becomes the first point on the path, but doesn't
change the origin-though <RUBOUT> will not move the
cunor back to the origin, the origin ls still there.

End the pending vector (if any), leave insert mode, and return
to normal edit mode.

Grab a copy of an existing body template and add it at the cursor position to the
body template being edited. The program will ask. for that body's name.
9M'ODE·EG" will appear at the top of the screen. For example, this command
allows you to deflne a diamond or "bubble• body template and grab that body.
whenever necessary to show that a pin expects its signal to assert tow.

The new body arrives with the cursor attached, and you can move it by moving
the cursor. The following commands are valid within this submode:

<SPACE>

<ALT>

Detach the cursor from the new body, incorporate it into the
body template being edited, and return to normal edit mode.
Once detached, the cursor cannot be reattached; attempting to

do so wilt put you into insert submode, dealing with its path
at vectors.

The reason wilt become clear if you enter insert submode and
use <SPACE> and <RUBOUT> to travel the path; the
program has already converted the new body into a series of
vectors inside the path.

Delete the body just grabbed and return to normal edit mode.

Rotate the body just grabbed, exactly as you would in body
mode.

Enter pin submode within edit mode. 9MODE·EP" will appear at the top of the
screen. Within this submcde, -use the cursor as you would within ordinary point
mode to attach to pins, move them around, delete them, and so on. Important
commands within this mode are: ·

Create a· pin at the cursor position.. The program will ask for
a pinname (actualty, thiS -name• must begin with a number.)
To create an invisible duplicate of a pin for bus-through
purposes, end the name with •{B•: thus, a pin calted •1• and a
pin ca11ed •t(s• are e~cally identical though physically

they appear in two separate places on the body.

2.6 Commands for Edit Mode 25

X DD'PIN

X -DEFPIN

<ALT>

(You can actually create pins outside of pin submode, but it's
a disorderly sort of practice since you must then get into pin
submode to do anything else with them.)

Delete the pin closest to the cursor.

Leave pin submode and return to normal edit mode.

Display the pinnarne next to each pin, within edit mode and in the normal
drawing modes. It's handy to tum this feature on while working with pins within
edit mode, but one customarily turns it off in the normal drawing.

Don't display the pinnarne next to each pin.

Enter text/property submode within edit mode. ~ODE·ET" will appear at the
top of the saeen. Here you can label the body with text, create properties for the
body or for pins, attach the cursor to text or properties, move them around with
the cursor, delete them, alter them, and so on. Important commands within this
submode are:

otT

cY

Create text at the cursor position. Such text merely labels the
body, as a sort of comment that has ·no more significance to

SCALD than does the shape of the body itself.

Create or replace the text of a property name/text pair just as
in normal drawing modes.

Replace the text for an existing property name/text pair just
as in normal drawing modes.

You can actually use e<T, aY, and {1Y in edit mode without
getting into text/property submode, but that's a disorderly sort
of practice since you must then get into the submode to do
anything else with the text you've aeated.

Delete the text or property name/text pair closest to the
cursor.

KlD the ·text or property ci~ to the cursor. If it's simple
text, this deletes it If it's a property name/text pair, this

doesn't deJete it, but simply hides the text so it doesn't appear
when you use the body in a drawing. This is handy because it
allows you to label pins as. SCALD requires while avoiding
clutter on simple bodies, such as gates, where the purpose of

each pin is understood by convention.

<ALT>

2 How to use D (the Graphics Editor)

If you use cxK by mistake on a property, the only way to undo
the damage is to delete the propeit; i.-i question and aeate it
anew.

Use Alter submode to edit the property or text closest to the
cursor. 9MODE•EA" will appear at the top of the saeen.

Leave text/property submode and return to normal edit mode.

2. 7 Using Alter Submode tX> Edit Text 27

2.7 Using Alter Submode to Edit Text

Alter .wbmode 1s a text editor into which you may momentarily descend from within a. drawing
mode or .wbmode. When you leave alter submode, you return to whatever you were doing before. If,
for example, you were in the text/property submode of body mode when you decided to alter
IOmething. you'll be back in text/property submode when you return.

Invoking alter submode from point mode edits the text associated with the point closest to the
ausor, or creates text if that point has none.

Invoking alter submode from a text/property submode edits the text closest to the aJrsor. If that text
is part of a property name/text pair, then alter mode affords you the side benefit of itnding out the
property name associated with that text. which is otherwise invisible.

Within alter submode, the program displays the text with the• .. • character indicating any point at

which the text breaks into multiple lines. Under:neath the text, an L-shaped line serves as a pointer.

In the list of commands that follows, <-> indicates that placing •-jj before the command reverses its
operation-backward instead of forward or forward instead of back.ward. <n> indicates that placing
a digit in front of the command causes it to repeat .itself the specified number of times.

·~ Enter alter submode.

<ALT> Leave alter submode.

<-><nxSPACE> Move the pointer forward one character.

<-><n><RUBOUT>

<·><n>S<cbar>

<·><n>D

<-><n>K <char>

I

Move the pointer back.ward one charar:er.

Move the pointer forward put the next occurrence of character <char>. If
<Char> doesn1t occur, leave the pointer at the end of the text. With <->, the

pointer will move back.ward and come to rest before the character, or at the
beginning of the text if the character doesn't occur.

Delete the character to the right of the pointer.

Delete characters to the right or the pointer up to and including the next
occurrence_ of <char>. If <char> doesn1t cxcur, ~eave the pointer at the end of the
tut without deleting anything.

With <->, the program will delete characters to the left of the pointer through
the next ocmrrence of the character. If the character doesn't occur, the pointer
wm .land at the beginning of the text without d.eleting anything.

Insert text at the pointer position. The program wilt prompt you by asking

<·><D>R.

2 How to me D (the Graphia Editor)

"INSERT TEXT..-•. Type the characters you want to insert and press
<RETURN>. (To put a carriage return inside the text, use the• .. • character.)

Replace characters. Equivalent to a • <-><n> D" command foltowed by an T
command.

2.8 Defininr and Using Editor Macros

2.8 Defining and Using Editor Macros

To speed repetitive, tasks, you can collect together into an editor maao any set of commands you
could have perfonned individually. Such a maao can even define or use another macro. Note that
editor macros. which are convenient ways to reduce the amount you must type, are quite different
from SCALD maaos. which are drawinp representing functional blocks of circuitry.

Maaos are not associated with particular drawings, but rather with the session at the editor.
Clearing the workspace doesn't delete them, and saving a drawing doesn't necessarily save them
unless the -X SMACRO" command described later is in effect.

The maao commands actually need only begin with •a;• when used within a macro definition;
outside, the •a;• iJ optionaL

Note that after you type the initial •a;• for any of the following commands, the program will print
•.,.• to prompt for the rest of the command. The •a; C" command wilt also print *TYPE MACRO
NAME• to prompt for the <id>. .

As you enter and exit macros, the number to the right of -i.EVEL•" at the top of your screen will
keep track of their nesting. If LEVEL is 0, no maaos are pending .

&; ll<num>

~ M<id>

. Define a temporary, unnamed macro. After you type •a; p•, each command you
type will execute within the drawing and also become part of the maao. This
will continue until you use •a; S" to abort the macro or •a; R" to call it repeatedly.
After executing the proper number of times, the maao vanishes.

Abort all macros currently pending. This is the command to use when you're
inside one or more levels of maaos and realize you've made a mistake or lost

track of the situation.

Stop adding commands to the current maao, end it, and execUte it the number
of times specified by <num>. That number should include the first execution,
which for •a; P" or •ex; M" has already taken place within the drawing. For
example, •ex; R 4" will execute the macro three addl.tional times.

Like •ex; P", this begins by execu~g commands as it collects them into a maao
and ends by executing the entire maao enough additt.onaJ. times to satisfy the
closing •ex; R• command. But it also gives the maao the name <id> so you can
can it again with •ex; r::'.

The name "INIT" gives a macro two special properties that make it useful for
initializing various aspectt of the program. FirSt, the program will save this
macro in the •<name>.DRW- file along with the drawing whether or not the -X
SMACRO" command is in effect. Second, it wtll execute the macro automatically
when you bring the file into your work.space.

so

~ C<id>

.c; A <s>,<i>

X SMACllO

X .SMACllO

XDMACllO

X MACRO

2 How to use D (the Graphics Editor)

Ir, for example, you want to set the scale to. -x 1 r whenever you begin a drawing
but don't want to have to remember to use the ••" command, create a macro
catted 1NIT containing that ""'mmand.

Call the macro named <id> and execute it the number of times specifed by the
•ex; R• command used to close the macro when you originally de?med it.

This command puts a counter inside a maao. It is valid anywhere inside a
maao definition-even partway through a string of characters. Every time the
maao executes, the •a; A• expressio~ replaces itself with the text representing a
number, starting with the number <S> and inaementing by <i>.

Associated with each macro is a flag telling the program whether that macro
should be saved in the drawing file whenever you perform a •aw- or -X EW"
command.

When you bring in a drawing file that contains a macro, or when you use such a
drawing file u a library, you acquire the maao and retain it, even if you clear
your workspace, until you l~ve the program or use the -X DMACRO"
command to get rid of it.

This command asks you for a macro name and sets the flag for that particular
maao..

Clears the flag for a particular .macro, thus telling the program not to save the
macro in the drawing file when you use -X Ew• or •aw•.

Deletes a macro-from the work area. (The program will prompt f">r the name of
the macro.)

Lists all macros associated with this editing session.

31

3 A guided tour of D
This section proceeds step by step through an entire session with the graphia editor, showing how
to create a typical drawing. It makes a number of assumptions which-if true-will make it much
easier to learn to use the program:

• We assume you're uSing a Stanford keyboard, whose distinguishing features are shift keys
labelled -roP", •coNTROL ", and "MET A". If not, consuit a friendly local wuard, or

refer to the SUDS manual mentioned in Section 8, for the conversion procedure.

• We assume you know, or can find out from a friendly local wuard~ how to start the
program running at your installation.

• We assume someone has already described and placed in libraries called "SIMLB" and
"STDLB" the bodies your drawing will need, and that they've given you a blank drawing
called 9BLANK" that initializes the appropriate options for yoµ.

• We uk you to assume the complete drawing was revealed to you in some mysterious flash
of insight, so we can concentrate on the graphics editor, and postpone discussion of the
SCALD language.

Before you start, you should read the fint few pages of the preceding chapter-Section 2.1 should be
plenty. .

In the examples that follow, !e use italic type for the characters you produce and normal type for
the characters the computer produces. We use •a." and •rr- as explained in Section 2.1, and use
<ALT> to represent the key labelled •ALT" or •ALTMODE"; <SPACE> to represent the space bar;
and <RETURN> to represent the key marked "RETURN•. .

3 A guided tour of D

SJ. Running the prognm

Get the program running by whatever means, fair or foul, your local wizards have taught you. You
should see scrnethi£:g si.-nilar to Figure !=1. The progr:un devotes most of the screen, below the_
~ODE·· line, to your drawing. On the bottom quarter of the screen it superimposes the
character-by-character dialog between the program and the keyboard. Soon you'tt probably rmd

yourself focusing on the drawing rather than the characters you type, since the drawing is a lot more
fascinating, and it will seem as if your fingers control the image directly. When the keys don't seem
to be working, however, you can often te11 from the character-by-character dialog what's wrong.

·T1a)E-"

LINE

Ct.RSOR

CHARACTER-BY
~ACTER --+- •
INTERACTION

SCA-E-16

x

Figure ~1
An empty screen

The top line sho:ws you're in body mode \MODE·B") with scale set to 16, no macros pending
("LEVEL-Oj, and no file brought into your workspace(-:3-"). Throughout the rest of the chapter,
we'tt show only the drawing portion of the saeen, leaving the top line implicit.

To get accustomed to moving the cursor, place the four flngers of your right hand on the keys

marked T, 7, \",and •r above the RE!URN key. Press with your index finger and you should
see the cursor move left. The long finger should make the airsor move right. The next ringer
should move the cursor up, and the little finger should move it down.

-
Experiment with holding down the shift keys-CONTROL. MET A, .and TOP-first by themselves
and then in combination-to make the cursor move further with each keystroke. With CONTROL
atone, it should move twice as far as it does without any shift key; with MET A, four times as far;
with TOP, 16 times as far. With CONTROL, MET A, and TOP together, it should whiz across
the screen 128 times as far as it does with none of the shift keys. .

Practice moving the cursor around till you feel bored or comfortable with it. Soon, you will

!. I Running the program

automatically associate the four fingers with the four directions, without thinking about the keys
they're premng.

3 A guided tour of D

1.2 Initializing the workspace

Before you can start drawing. you need to initialize certain options and to gather bodies from the
libraries. "

At our installation, we keep around a drawing calted "BLANK" whose function is to bring in bodies
&om a library and to call an INlT maao which performs without toil or strain on your part the
initializations covered in Section 2.2.2. Remember that, as explained in Section 2.1, •13" means you
should hold down the MET A key white you press the succeeding character. Thus, the command for
bringing in a new drawing is written •f!>I" and stands for 9MET A I":

•!JI FILENAME? BLANK
READ I NG BLANK. DAW CMIC2, Sl l

LIBRARY STOLB.DRIJCMK2,Sll
PLOT
INIT
LEAVING MACRO LEVEL l

The reply from the program (which may vary slightly from that shown here indicates that the it

found the file you wanted (BLANK.[MK2.S ll), brought in one of the libraries you'll need bodies
from (STDL:S[MK.2,S tl), and carried in with it a couple of macros. Among the macros was !NIT,
which is unique in that it executes. as it enters your work.space, performing the initializations you
need.

To list the bodies you reCeived use of through that deal, use the •aL" (remember--CONTROL L j
command:

STDLB. CRI 01K2, SlJ
81.1DO 31JO SIJO R8MERGEO SMERGEO
(and eo on •••)

You'll need bodies from a second library, too, so bring the drawing SIMLB into your work.space as a
library:

•X
LEl..L?GETLIB
GETLIB -
LIBRARY Fl LENAME?S IM LB

LI BRARV SI MLB. OR&J CMK2, Sll
INIT

Now if you try •aL • again, you-it see a tot more bodies:

!.2 Initializing the workspace

SirLB.ORU CMK2,Sll
2 ANDO 2 ANO 5 ORO 4 ORO 3 ORO 5 OR 4 OR
(and·eo·on ••• }
STOLB. DAW CMK2, Sl l
UJO 3IJO 5LIJ RSMERGEO 8MERGEO
{and so on ••• }

Before you draw anything, it's not a bad idea to writ1 your workspace into a file, just to get the file
established. Since the 93.• in the header makes it clear that the program has no idea what you
want to call the file, you1t have to tell it. For this example, we want to call the file •1001s•:

*°lK'FILENAME?10016
URITING 18816.0FW D1K2. Sll

Notice that the top Une of the saeen now says 93·10016[MK2,S1T. The program now remembers
which file it is dealing with, so from now on you can use a shortcut to save your workspace into· that
file without your having to retype the filename:

.x
UELL? EW RITE
SIRITE
FILENAME?10016
IJRI TING 10916. DRU CMK2, Sll

We won't mention it, but it'.s a good idea to use th~ command periodically-just after you've done
something particularly difficult, or just before you leave the keyboard to answer the telephone or a
call from nature-so that even if your computer system crashes, you won't lose alt of your work.

!6

• ..,_. ICLD OIC

•
~ ..
IG.D ••••

•

~ A guided tour of D

:s.z:~sa...::;_~~--..~~--...... ~~~~~~~+--~~-

..... I]

L

Figure 3-2

s ., ,.. .. > ,,.
..-~~I~ Tt--~~__;~~

.1.-..J. .. ····I
ex

laAf

r••a>
ex
•

~I.
~L

..... >"'
~1..N

Our goal is a drawing like this

This seems a good time to take a 1ook at Figure !-2, which shows the drawing we will practice upon.
It ii the deftnition of an ECL 10016 IC in terms of the primitive bodies that the SCALD logic
simulator understands. We'll split the work up systematically: first position alt the bodies, then
draw lines between them, and f"mally add text.

!7

U Positioning Bodies

To position hodtes ~ yoa:r drawinf. you mmt get into botl'J mode, and ta do that you should type:

(ot caurse, this isn't necessary this time, becu11e you were already in body mode by virtue of having
jlllt started to run the program. but the command wi11 prove useful in the rumre.)

Wh8'eu the c:ammands wve shown you so far apply more or less anywhere in the program, you'd
beer' umme that the an• that tallow will Uve up to our promises far them only within the proper
made. For example, In body mode the •cxP" command we're about to introduce places bodies. but it
bu an entirely differenc effect in paint made.

Lee's start with the body c:a11ed -wIN PULSE WIDnr' at the tap of the drawing. Each body hu a
short tocadoa parameter below lts name; in this cue, it's -Pt•, so we can refer to the body as MIN
PULSE WIDTH at Pl m disdnguish it from the copy of MIN PULSE WIDTH at P2 on the right

side of the drawing. To /llau a copy of a body at the cursor, type:

--.PTYPE BmY NNE
MIN PUL3Z WIDTH
SEARDf UG FOR MIN PlLSE 1.IIOTH IN SI !'LB. CRLI CMK2, Sll

and preslD, you'D see the body bef'are you, Witb the cursor at its tap left earner. The cursor· happens
tD be aitadled to the body-that's always the cue when you first place a body-so that wherever you
move the c:ursar, the body will foDaw. Try it.

MIN PU.SE wmTM
I •X

HIGH-0.0~
L.OW -e.e

Flgan S.S
Yaar ftnt body, wttlr amar detached

To detach the cunar, pnm <SPACE>. Yau'D immediately see a big f1ashing 9B• atop the body
(Ftpre 3-3). Now try moving the mrsar, and observe that the body doesn't follow. There are two
ways to reattach the cunar. •or moves the cursor to the body and reattxhes it, white ·~ moves
the body to the cmsar and reattaches tt. Once reaaached, you ~ once again move the body by
mcmng the cursor, and then detach the cursor by pressing cSPACE>.

! A guided tour of D

This sort of thing works throughout body mode. Once you have more than one body on the screen,
the program operates on the body closest to the cursor; it alone wilt have the flashing "B•.
~Tna'I"'!-•:.1.., -.... ""'""'.u·-,;r .1..:. 1..-....1 .. '" .. t1·1 -ou ,.._, :-...a.-..a •'"'- _ •'"'• ...,__,., t. ""'• ,. _ ,..~ -r-A&u a W.U.U •-"' g loll.I.a ~, I 1 1-1 JCIM~t lo&IQI t'UI. I.II'"' IJVW., IJA- U,._a& lo&&,._ ~&lolliii.l Vol

the screen and detach the cursor by pressing pressing <SPACE>, but leave the cursor in position on·
the body.

Let's place the body SETUP HOLD CHK. in location S2 next. Move the cursor to the right by one
CONTROL-TOP. {That is, while holding down both CONTROL and TOP, "'ak.e one sttoke
with your long finger to move the cursor to the right.) Now place the body, whose name is, as far as
the program's concerned, simply -SETtJP HOLD":

*&PTYPE BODY NAME
3ErUP HOLD
SEARCHING FOR SETUP HOLC IN Str1LB.DRIHMK2,Sll

Now detach the cursor from the body by pressing <SPACE>.

Why did we emphasize that you should move the cursor by one CONTROL-TOP? Obviously it
doesn't make any difference to the final circuit where you place a body. Conventionally, however, it's
considered good drawing style to place bodies so that the lines connected to them Ue a uniform
distance apart. And iC-s considered better to use a few large increments than several assorted small
ones.

There are two reasons for this. First, uniform spacing makes it easier to apply editor macros to
reduce repetitive typing. as you'll see tater in the chapter. Second, it just plain takes fewer keystrokes
to get from one body or line to another when they're CONTROL-TOP apart rather than a TOP
plus a META plus a CONTROL apart.

Unfortunately, this empyrean goal of style is tough for a beginner to achieve, particularly because
one can't always tett precisely where on a body the program will want to attach a particular line. Just
keep the goal in mind as you position the bodies, and comfort yourself with the knowledge that you
can always move things around tater to repair any irregularities you cause now.

Next, place a REG RS bady at position Rl, right under the previous body. To do this, first type a
space to detach the cursor f'rom the previous body, then move it down by a META plus a TOP,
(first hold down MET A and move the body, then hold down TOP and move it again) and then
place the new body: ·

*ctPTVPE BODY NAME
REG RS
SEARCH I NG FOR REG RS IN SI MLB. DRU

Because this body is narrower than the previous one, it's not ~tered beneath it {Figure ~), so
move it to the right by one CONTROL before you type a space to detach the cursor {Figure 3-5).

!.3 Positioning Bodies

MIN PU..SE WIDTH
I •X

HIGH-0.0;
LOW -0.0

XS
SETLP HOLD CH<

I
+)(

SETUP-0.0;
HOLD -0.0

CK

XS
R REG RS
s +)(

I DELAY• T

10.0, 0;, 0.01
Figure !-4

Third body. off center

MIN PU...SE WIDTH X8
SETLP HOLD CH<

+X I •X

HIGH-0 .. 0;
La.I -0.0

Ir

Figure S-5

SETLP•0.0;
HOLD •0.0

CK

X8
R REG RS
S +X

I DELAY• T
0. 0, 0. 0, 0. 0

. CK

Third body centered and cursor detached

!9

Moring the paper-Before you proceed to place the rest of the bodies in your drawing, there are a

! A guided tour of D

few loose ends to clear up.

Sooner or tater, for example, you're going to run out of room on the screen. Fortunately, the •paper"
you're drawing on is much larger than the screen; at any time, you effectively took through the.
screen at a small area of it. To move the paper to the right, press the ·~" key {you'll have to use
TOP to produce this character). Do this repeatedly until the bqdies you've drawn disappear. Keep

doing it, and pretty soon a vertical line wilt emerge from the left side of your screen, representing the
left edge of the paper.

Now press the•._• key repeatedly until your bodies come back. onto the screen. You can use..,.,, and
•.i.• similarly to move the drawing up and down.

You already know how to move a body around if you accidentally put it in the wrong place-simply
bring the cursor close to it, use the •riw- or •cqlM" command to attach the cursor, and move the
body by moving the cursor. You also need to know how to get rid of a body entirety if you need to.

First move the cursor so it's closer to that body than to any other (the big flashing B will appear
atop the potential victim) and then type •an".

Now go ahead and position the rest of the bodies. Some of them are pretty obvious-the adder is

called •ADDER•, the multiplexer ii called "2 MUX" and the gate is called •4 OR"-but others are a
little tricky. The parameter list at the lower right comer needs a body calted -PAR", and the two
Y-shaped gizmos at._the lower left which look. like lines are actually bodies catted -W2MERGE".
When you finish placing bodies, your drawing should took something like Figure !-6$

,.! Positioning Bodies

> ...

Figure 3-6
All the bodies

,.
......... OIC

•IC

I ,. t.,,... T
~

-tl

S A guided tour ot D

1.9' Drawing lines

In the graphics editor, u in high 5Chool .geometry, any two points define a line, and therefore you
must get into fJOint modi to draw lines:

*«.{JP

At the top of the saeen, you'll now see "MODE·P·, and the flashing 9B" on the nearest body will
vanuh. Instead, youit see a flashing letter -P" or string of letters beginning with T atop the nearest
point. Try moving the cursor around; youit see letters hop from one point to another.

Every pin on a body provides a point you may connect to, and you will aeate points implicitly a.S
you draw lines between them. Whereas geometry tells us that points are everywhere-lines consist .of'
an infinite number of them side by side, and planes consist of giant smorgasbords of points spread
out endlessly-the graphia editor takes a more manageable vi~ aside from the points provided
free with bodies for the purpose ot attaching lines, points exist only where you explidtly or

implidtly aeate them. Like geometry. however, it will let you put two points in the same spot,
usually to your own distress.

You're about to learn three different ways to aeate a tine: drawing from one existing point to

another, drawing from an existing point into midair, and drawing from an existing point to the
closest point on an existing tine. Those three techniques will cover every situation you'll encounter in

this drawing, and in just about any other.

Point to point-First, let's try a line from pin -r• on the multiplexer at M 1 to pin T on the
-SETUP HOLD CHK" body at 52.

Move the cursor close enough to pill T on body 'M 1 so you see a big -PA" fl:uhing Mop the pill
(Figure ,_ 7).

S.ii Drawing lines

1 2]

............. ,.-. ,. ,.
•• .,.. °" •• .,_...ooec •• WftP IGJ» OIC

l ... I •• I • • I I ~,...... .. UM..._t tmP-&81
NllLD, IG..D

jX_ ac ~

,. >.< ,. '>.< ,. I
• •• I •• • • •
1-.-. T I l_,.,.T t T

I fZl- :
~ oc 0(

• x I
,.

I I PUC
•• • •• T ...,..,. .

___ ,

---'
~ ~ •

MOVE CLRSOR Q.OSE TO TYPE + TO START LINES. TYPE + TO SOLIDIFY FIRST
STARTING POINT OF LINE

I ·•

I
ll_II
. UM ... t

•• ..,...
•

4

MOVE CLRSOR SO SEND IS
IN RIGHT PLACE

c:::i ~
-x .--- ~.- --· 1 I 11 ...:.:.., I . I :::;.: I I Ult.... I

,. ·-· ...
l_,.... T

~

~ T

'
. t

5

LINE.

,.
I •IC t..,.. T
~

MOUE a..RSOR SO SECOND
eeD IS IN 1l£

AFTER MAKING Sl.RE 1l£
Cl.RSOR IS. CLOSE a.o.JGH
SO THE STM"IS ATOP TI£
ENO POINT, PRESS -

RIGHT PLACE

Figure ~7
Drawing a line from point to point

3 A guided tour of D

Now press •+• and you'll see a flashing line or lines from the cursor to pin -r•. Try moving the
cursor around; the lines will stretch and move to follow it wherever it goes. Ir the cursor happens to
be directly in line with pin T vertically or horizontally, you'll see a single line, but otherwise the

- program draws two lines intersecting at a right angle, so as to avoid having to draw a sloping line
between the pin and the cursor.

With the cursor positioned so you see two flashing lines, try pressing <SPACE>. Every time you do
so, the lines will trade places. The program tries to guess whether the vertical or horizontal should
come rll'St-it knows, for example, that lines customarily attach to bodies perpendicularly-but
sometimes it isn't too bright, and you must then use <SPACE> to help it along.

Now position the cursor so that the first bend in the tine is where you want it, and type • + ". The ·
flashing tine attached to pin T will stop flashing; you've just made it a nxed, permanent line arid
implidtly created a point at the end where it intersects the other line.

Now try moving the cursor and you'tt see a second right angle, with an additional flashing line
helping to follow the cursor wherever it goes. In general, every time you press •a+" in this
line-drawing submode within point mode, you solidify the oldest flashing line and make it possible
to add a new flashing line at the cursor.

While you~re in this mode, you'll see a star flashing atop the point which is dosest to the cursor but
also eligible to have a line attached to it Move the cursor close enough to pin T so that the star
appears on that pin, type a space if necessary to put the second bend in the line roughly where you
want it, and type •a-" (or just • -j. In one fen swoop, the program will extend the flashing lines co
reach the star, attach them to that point, make them permanent, and free the cursor to move without
dragging any lines around behind it.

And that, in essence, is the technique for drawing a line between two existing points. Move the
cursor close to one point and type •a+• to get a pair of stretchable, flashing tines. Move the cursor
around, and whenever you need a new flashing line, type •a+" to solidify the oldest flasher and give
you an additional one. When you get the last pair of flashing lines you need, make sure the cursor is
close enough to the destination point that the star appears atop it, and type •a-• to f"mish the job.

Tbe line from pin -CK" on the body at S2 to the unnamed pin at the top of the body at Rl is even
easier, since it has no bench. Move the cursor close to pin -CK" so that 8P A" flashes atop the pin.
Press •a+" to start the flashing lines. Move the cursor·ctose enough to the unnamed pin that the star
appears atop it (you're probably so close that the star is already there) and press •a-. to rmish it off.

Correcting mistakes in UneS-To get rid of a line, you simply delete the points that define it
Fortunately, the program is intelligent about this. When you delete an ordinary point in midair, it
vanishes together with an the tines attached to it, but when you delete a point that represents a pin
an a body, only the line vanishes; the pin remains intact for future use.

If you discover a mistake white you're still drawing the line, press <ALT> to escape. The flashing
lines wtn vanish, leaving the cursor free. With the cursor free, you simply move it close enough to

!.i: Drawing lines

the point you want to up so that large flashing letters appear over that point, and then type •an".

To iltustrate this, let's deliberately draw a line from pin T on the adder to pin -rr (rather than pin
•1; on the multiplexer. Move the cursor close to pin 9F" so -,, A• flashes above it, and type •a+" to

get stretchable tines. When you have the first bend where you want it, type •a+" again. Move the
cursor close enough to pin "rt' that the star appears atop the pin, and type •a-" to finish off the line.

Now that you've successfully committed a blunder, how do you undo it? Notice that you want to

wipe out both the horizontal line attached to pin •rt' a1U.l the vertical line, because the latter is longer
than it should be. The easiest way to blow both of them away at once is to delete their point of

intersection. So move the cursor close enough to that point so that large letters -PL• flash above it
(Figure 3-8) and then type •an". Both lines (and the point at which they intersect) will vanish.

1

MOVE TI-£ C1.RS<R O..OSE
TO TI-£ INIERSECTION
OF TI-£ n.K> Lit-ES
YOJ ~ TO DELETE

4

2

x

•• ... ,
•

TYPE CCNTRCl.. 0 TO
GET RIO a: TI-EM

5

! A guided tour of D

]

MOUE TI-£ Ct.RSOR CLOSE
TO THE Ra'FlINING Lii'€

AS BEF~. TYPE • TO
BEGIN A ~ PAIR

••• ~ - TO. Cet-FLETE
TH! JOB.

CF Lit€S •••

ltgure s-a
Correcting an errcneous line

S.-i Drawing lines i7

To tmish repairing the damage, proceed as you would when drawing from body to body, but use
the end of the tine that's dangling in midair as the starting point Move the cursor close to it so
-PL• appears over the point, type •ex+• to start nashing lines, type a space if necessary to get the
bend to go in the proper direction, bring the cursor close enough to the •1• pin to place the star over
that pin, and type •ex-" to finish. .

Just ror practice, draw the two remaining point-to-point lines: the line from the adder to the upper
MERGE body and the line frc?m the f:>ody at S 1 to the other MERGE body. Each is easy compared
with the lines we just fmished, because neither has any bends; in fact, the instant you type •a+" to
start the line, the star will probably appear on the destination point so you can type •ex-"' to f"mish it.
Don't try to draw lines from the register to the body at Pl, or to the body at P2; weit use other
techniq_ues for those. When you're fmished, the drawing should look. like Figure S-9.

L

..

L

,.
.Vta.DOIC ..

Ftgure !-9

,.
I •IC t__.. T

oc:

After fmishing the point-to-point lines

Poiat-to-midair lines-When a line originates at an existing point but terminates in _midair, you
must use a second, slightly different technique to draw it To iDustrate, let's draw the line that begins
at pJn -s• on the multiplexer at M 1 and ends with the label •-PE[0.51' at the 1eft edge of the
drawing.

(You may need to use the •..,.• key to shift the entire paper to the right so you have room to work..)

S A guided tour of D

The first part of the procedure will look familiar. Move the Cursor close enough to pin -S" so that
the leaers -PA• flash atop it (Figure !-10). Type •ex+• to get a pair of flashing lines, and move the
cursor down until the bend ii in the proper pta.-e Then u.ove the cursor to the left until the
horizontal line is the length you wmt.

MOUE Q.RS(R SO
•PA• ~S
~PIN •••

4

TYPE • TO
S<l..IDIFY SECOM)
LUE •••

2 3

x--·

TYPE • TO
GET FLASHING
LI~S •••

5

NOW. TO GET
RIO CF ~
FLASHING LIJ€S •••

Figure 9-10

x

TYPE • TO
SOLIDIFY FIRST
Lif'IE •••

6

••• PRESS < t:l.. T>

Drawing from a point ta midair

Now type •ex+• once to solidify the vertiCd line, and ·again to solidify the horizontal one. Actually,

you've just created two new stretchable, flashing line rrom the left endpoint to the cursor. ~ut since
the cursor is atop the endpoin~ you don't see them. Move the cu~ a bit (try it) and there they are.

To get rid of those unwanted flashing lines, simply press <ALT>, rubbing them out and freeing the
cursor.

Now you know . how to aeate a point-to-midair Une. Note that YQU've implidtly created two points:
one where the two .-gments ot the line intersect, and another at the endpoint in midair. That agrees
with what we said earlier: once you're inside this line-drawing submode, every time you use •ex+• you

!.i Drawing lines -i9

solidify a line and create a point at the end of it, too. This has two implications. First, if you ever
decide to delete the segment that ends in midair, you must make sure to delete the midair endpoint.
You can get the line to vanish bj deleting its other endpoint, but that will leave an. unused (and
invisible) point in midair.

Second, you must not use <ALT> in place of •ex-• to finish up a point-to-point (body-to-body) line
even if you have the cursor ~irectty atop the destination point, becase it wilt create a second point
atop the existing destination point.

Just for practice, draw the rest of the point-to-midair lines: the two attached to pins -r" and -it" of
the register at R 1, the one atached to pin -0- of the multiplexer at M 1, the one attached to pin •A"

of the adder, the four attached to the merge bodies, the one attached to pin -CK• of the body at S 1,
the one to the right of gate G 1, and the one from pin T' of the body at P2 to the endpoint labelled
-CK /P". That's an impressive enough list, .so for now don't bother to draw any of the four lines to

the 1eft of gate G 1. When you're finished, the drawing should look like Figure !-11.

trnllloe.9:
Hll.D

oc

,.
~~~~~~~~~~~~~~~~+-~----

L 

Figure S-11 

' •IC lmurr- Tt--~~~~-........... 
oc 

~ 
~ 

Drawing with point-to-midair lines finished 

Point-to-line lines-The third and last way to draw a ttne is to go from an existing point to the 
closest spot on an existing tine, and to connect to the tine by creating a new point there. (Thus, this 
Is 71.lJt the way to connect a new line to a bend on an existing line; because a bend always provides 
an existing point, you would use the point-to-point technique for that.) 



3 A guided tour of D 

To illustrate, let's draw a line from pin T of the body at P 1 to the horizontal line below it. As you 
may suspect, the opening moves will be the same as those you've used for the last two kinds of lines; 
only the endgame is different. 

Move the mrsor close enough to pin Tso that -PA• flashes abc:rve the point, and type •a+" to get a 
pair of stretchable, flashing lines. Move the cursor and, if necessary, type a space to put the bend -
where you want it. and then move the cursor down close to the place on the existing line where 
you'd like to connect the new lines. Type •/3A •. The program will put a star on the line where it 

plans to make the new connection (Figure S-12) and a.sk you whether that's the right place: 

Answer -V- and the program wiD complete the connection; answer 8N• and the program will decide 
not to connect the lines, gtvtng you a chance to move the cursor doser to the precise spot where 
you'd like the connection before you try again. 

:~--~ 
' I 
I 

* 

Figure 3-12 
Connecting a line to an existing line 

For practice, draw the two remaining point-to-line lines: one from the -CK• pin of the register at 

R 1 to the line below it, and the other from the T pin of that register to the line to the left of it. 

When you're finished, the drawing should look like Figure 3-13. 



S.-t Drawing lines 

• tlVl&ltOIC .. 

•· 
~--~~--------------.... ----------------~----~---

.. ,. I 
tl1\PtG.AOIC •• 

Figure !-1! 

• • • 
.,_--~t..._ Ti--~~~~~-........... 

oc 

... _. ..... 
~------..... ~~t .. ......... 

Ull .... 

Drawing with (almost) all lines 

51 



52 ! A guided tour of D 

U Putting text on your drawing 

The text you'll add to your drawings belongs to either of two categories: signal names and body 

pa.ra.rneters. 

Sifnal names-Before you can add signal names, the program must be in point mode. (It is probably 
already in point mode if' you've been following these instructions,-but if not, type •cctJP".) 

Typically, you put i:ext on a line near a point where the line ends in midair. To illustrate. let's label 
the line at the tower left comer of the drawing. First, move the cursor close enough to the midair 
point that -PL• flashes atop the point Type: 

•,6TTEXT? 
CK/P 

And that's alt there ts to it. 

If you make a mistake, simply repeat the command and retype the text; the new version will replace 
the old. 

For practice. move the cursor upward and label the line above that one: 

•,6TTEXT? 
CE 

uid move the cursor upward once again to label the next line, too: 

This works rme so long as the signal names are short and you are a fairly good typist. When both 
of those conditions cease to be true and the probability of malting an error every time you retype the 
signal name to coirect an error therefore approaches unity, it's lucky that the graphia editor 

provides for you a simple text editor. 

This text editor is called a.I.ta mlnnotU. To ittustrate its use, let's deliberately put the wrong text on 

the fourth line up from the lower left comer: 

•tiTTEXT? . 
NOW IS THE TIME 

Now type •r#IA" to enter alter submode. which will show you the text plus a poi.ntn, a horizontal 
line under the characters which bends upward at its right end to mark. the current editing position. 
On the .tereen, youit see the text you're editing in large letters at the top and the characters you type 
in small letters near the bottom. To make the following discussion more compact. we'll act as if they 
appeared together on alternate lines: 



15 Putting text on your drawing 

*«-/jA 

_NOIJ IS THE TIME 

To move the pointer forward to the next occurrence of a character, type -S" followed by the 
character (with no intervening <RETURN>). It wilt stop just beyond that character: 

*3 
.. M 
Nm.I IS THE TIME 

To move the pointer back.ward to the previous occurrence of a character, type •-S• followed by the. 
character. It will stop just in front of that character . .. 

.s 

.-z 
NCI.I IS THE TIME 

In addition, you can type a . space to move the pointer forward one character at a time or a 
<RUBOUT> to move it backward one character at a time. To delete characters to the right of the 
pointer, type the number you'd like to delete, followed by -0": 

*2 
•D 
NOW IS THTl ME 

To delete characters to the left of the pointer. use a negative number instead: .. 
*2 
•D 
NOIJ IS TIME 

To insert characters at the pointer, type I followed by the characters you'd like to insert, ending with 
a<RETURN>: . 

*11NSERT TEXT?SUPPER 
NOW IS SUPPERTIME 

There are a number of other, more powerful commands within Alter submode, some of which are 
described in Section 2. 7, but the ones you just saw should suffice for now. After you've eradicated 
the damage we just did and you feel satisfied with the result, press the <ALT> key to leave alter 
submode and return to point mode: · 



*4 

•D 
NO&.i IS SUPPER 

·-•1 
•J 
sD 
•/INSERT TEXT?-PE/0-'J I 

-PE [8.5] 
s<ALT> 

! A guided toor of D 

Just for practice, put text on the rest of the signal lines that end in midair, using alter submode if 

you tmd it helpful in correcting mistakes. When you tmish, the drawing should look like Figure 
5-H. 

• 91\P 111.D OIC 

• ........ 
~-··· 

41 ................. --..~~~~~~+-~~~~~~-+-~---4•ia• 

- M 

1!,E 

.. .. 

L 

CIC Al 

• .,.. ... Ole 

" 1n11io&.•. ........ 
oc 

Figure S-1 'i 

t '1 Tc .. > Al 
.,.._~~zmuw. Ti--~~--'=-~ 

&.•.J.4 ... 
oc 

..... . 
tc•> 

oc 
• .. L 

on. L. 
tt•.> N 
Tt I."" 

Drawing with (almost) all signals labelled 

Text for bodies-The text you see on a body can be either of two kinds: simple text which, like a 
signal name, consists of a string of characters at a particular place; or the text portion of a property 
name/text pair, a piece of text which hu an invisible name that you can use to access it. 

On your drawings. however, you'11 need to deal only with property name/text pairs. Usually the 



!.5 Putting text on your drawing 55 

body comes to ycu f'rom the library with these name/text pairs already aea.ted. To change one, you 
simply ask. for it by name and teJI the program what to use for the teXt. Sometimes, you have to 

create the p1 opa CJ name/text pair yourself. 

For most bodies, you'll deal with three properties: 

LOC 

VAK. 

usually appears above the body name and arrives from the library set to -XB •. 
You'll want to change it to reflect the number of bits the body is supposed to 
deal with, such as •.m•. 

usually appears below the body name and arrives from the library set to •+x•. 

You'll want to change it to the kxacton code which, as mentioned earlier, helps · 
dlff'erentiate becween multiple occurrences of the same kind of body in orie 
drawing: something like 9G r or •AZ'. 

is additional information about the body for later we by SCALD. It an begin· 
with "DELA y .• or -SETUP·· or 9HIGH•" followed by a series of numbers. 

To iDustrate, let's start with a body for which an three property name/text pair already exist, but 
need changes: the one at the tower left comer of the drawing. 

To work with body text, you must first get into body mode by typing ·~·. You will see 
-WODE·B• on the top line of your screen. 

Now move the cursor close enough to the body at the lower left comer of the drawing so that a 
large -s• flashes atop it. Now when you ask. to work with a particular property, the program knows 
it must be a property associated with that body. 

First, you must change the -XB• to "2B•. AJ we just explained, this is doubtless the propeity called 
-SJZE•, so type the following command to replace the text associated with that propet ty name: 

•t!YPROPERTY NAME CENOUGH TO UNIQLE..V SPECIFY ITl? 
SIZE 
SIZE 
~ TEXT? 
2B 

You'll see the -x• magic:aDy ~ange ta a T. Actually, the program tolerates shortcuts when you type 
the propeity name. Since no other propezty begim with -s• .. you co~ld have typed -s• instead of 
"SIZE•. Notice that the program echoed -SIZE•. If you do get into the habit at ming this shortcut, 

it's not a bad idea to check. the echo to make sure you really get the property you want. If not, you 
can escape from the command by pressing the <ALT> key. 

Now do the same sort ot thing for the -X.OC' p1opety: 



•/JYPROPERTY NAME <ENOUGH TO UN I QUEL V SPEC I FV I Tl ? 
LOC 
LOC 
~ TEXT? 
31 

! A guided tour of D 

and magically the •+x" will change to an -St". Finally, change the "VAR" property, noting that you 
use the• .. " character instead of the <RETURN> key to break the text across two lines: 

•tJYPROPERTV TEXT CENOUGH TO UNIQUELY SPECIFY ITl? 
Y.4R 
VAR 
NSI TEXT? 
SETUP•2.5,-++HOLD •O.J 

If' you make a mistake, simply repeat the command and type the text again, correctly. The new· 
version will replace the old. 

Sometimes you'll have to create a property name/text pair for yourself. On this drawing, a good 
example is the PAR body, where each signal name in the list requires a separate property. To 
aeate these, move the cursor over toward the word PARAMETER in the lower right comer and 
place it where you'd like the center of the flrst name, 91<0:3>", to be. The name you give to each 
property isn't important, but by convention we use "O", •1•, and- so on. Type the following command 
to create a new property name/text pair: 

SctYPROPERTY NAME? 
0 
NBI PROPERTY, TEXT? 
l<O~> 

Now move the cursor down by a CONTROL and create the next property: 

SotYPROPERTY NAME? 
1 
NB.I PROPERTY, TEXT? 
CK 

The •«.Y" command will actually edit an existing property if the name you give has already been 
used, so it's a good idea to maic.e sure the program prints 9NEW PROPERTY" as those examples 
showed. If' not, you can escape from the command by pressing the <ALT> key. 

If you mistype a piece of text, you can simply repeat the command and retype it correctly. If you 
create a property you don't want, or if you inadvertently put a prop.erty in the wrong place, you must 
get into text/property submode or body mode to repair the damage. 



!.5 Putting text on your drawing 57 

To illustrate, suppose there's something wrong with the -CK• text. First, make sure the cursor is 

close enough to the PA RA METER body so that "B" flashes above it. Type •a(JY" and you'll see 
9MODE·BT• on the top line of the screen, iridicating you're in the submode. Now as you move the 
cursor around, you will see large letters flash atop whichever property is closest to the cursor. Move 
it JO that the letters are atop -ex.• and type •<XM" to attach the cursor to that property. Now 
wherever the cursor moves, the property will follow. Try it. When you have that property in an 
appropriately ridiculous place, press <SPACE> to detach the cur5or. Now move the cursor and you'll 
see that the property no longer f otlows it. 

You may also use alter submode on a property once you're within text/property submode. Simply 
move the cursor close enough so that the big letters flash above the text you want to edit, and type 
•CXIJA ". Then you can proceed as you did when editing signal names. When you press the <ALT>. 
key to leave alter submode, you'll find yourself back in text/property submode as you were before. . 

Suppose you want to get rid of the property altogether. Mak.e sure the cursor is close enough that 
the big flashing letters are atop our intended victim, and type •<XD" to vaporize it. Now that you're 
finished playing, type "~B" to return to ordinary body mode. 

You should observe two important limitations about body text/property submode. First, you can edit 
and delete only the text that you yourself have created or at least replaced, not text that arrived 
along with the body from the library. For example, you cannot edit a SIZE property that stilt has its 
original -XB", but you can edit it once you have replaced that -X'B" with 92B". Second, everything 
you do within the submode applies to the body that was closest to the cursor when you entered that 
submOde. The program will -let you move the cursor to another _body while you're still within 
text/property submode, but before you can deal with properties associated with that body you must 
get out of the submode and back in again. 

Now that we've enticed you into destroying the pf!rfectly good -CK" property you just createds 
practice your property creating and replacing skills by completing the properties for the rest of the 
drawing. When you're f"mished, the drawing should took like Figure 3-1 S. 



1.-•> .. 

..... 11 

.. 
~ .. ......... 

~ - . 
I ::-:::: I 

• 

Flgu~ !-l5 

1 .. ~a.I 
I .,...., .. .......... 

.. ...... 
• •JC 
1 0BAr- T ........... 

oc 

Drawing with body text finished 

! A guided tour of D 

......... 
Ull .... 

~ "' 



S9 

I.& Editor macros 

By now you are no doubt wonderinc why we have postponed so long drawing the four lines to the 
lllft at gate G 1. 

The reuan is that they're an esc:ellent way to demorutrate the use of graphics editor maaos. to 

eliminate repetitive typing. If you were to draw those four lines and label them in the obviou.s 
fashion, you would wind up doing almost exactly the same thing four times in a row. 

An editor maao lets you draw and label one line. and then tell the program to repeat the process 
three additional times for you. 

To see how it works. get into point made by typing •af,1p•. Move the cursor cJase enough to the top · 
diamond so that -PA• flashes above the diamond, type •aM• to attach the cursor to that point, and 
press <SPACE> to detach it. The attaching and detaching simply assures that the mrsor is really 
directly atop the point; precise alignment is important when you're using ma.am. 

To begin the macro. type •a;P" {use the CONTROL key on the •r but not on the -pj. Fram now 
an, each command you type will execute, changing the drawing: but the program will also save each 
cammand into the macro for future Use. On the top line or the screen, you'll see "LEVEL·t•, 
showing that you're one level deep inside a macro. If you get confused or make a mistake while 
inside the macro, type •a::;'!' to escape. You an then delete whatever the maao has done so far and 
start over. 

Type • + • to start a 1lne, move the cursor left by one TOP, and type • +" to solidify the line. Then 
press the <ALT> k.ey ta finish off the line. 

Type •trr" to label the midair end of the line with itS signal name. Now we have a slight problem: 
the signal name ought to be slightly different for each line we want the macro to draw. The first 
line represents bit 0, the second represents bit 1, and so on. F~natety, the program's macro facility 
provides a •«;A• command that puts a counter in the middle of the maao for you. ·The first number 
after the •A• gives the initial value for the counter, and the second number gives the increment. 
Thus. the part of the macro that aeates text wm look like this: 

Now move the cursor down by a CONTROL and right by a TOP. That puts it bad where it was 
when we started the maaa, except that it's now on the second diamond rather than the rirst. Now 
w. want to stop adding commands ta the macro and to have the program repeat the commands 
three additional times to produce a total of four lines. To aa:ompllsh this. type •a;1t i• and press 
<ltETURN>. You'll see three more Unes appear below the one you~ drew. On the top line of 
the screen. 9LEVEL-a' shows you that you're no longer inside the macro. 



so ! A guided tour of D 

Now that you've used it, the macro vanishes. Section 2.8 explains seven.I other useful macro 
commands, including one which allows you to create a macro that remains after you've used it, but 
for now this should sumce. 



!. 7 Using sets 61 

S.7 Using sets 

As yoµ11 discover if you try, the program is very obliging about patching up the damage that occurs 
when you move a body that has signals attached to it. Often it manages to stretch lines and 
introduce bends carefully enourh that the result is stilt pretty. 

When you want to move a group of ob jectJ including one or more bodies and one or more points 
and one or more lines, however, you can avoid this interob ject stretching by def"ming a sit that 
includes the objects, and then moving the entire set together. 

To illmtrate this, let's move gate G 1 around a bit. First, get into set mode by typing ·~·. On the 
top line of the screen you'll see 9MODE-s·~ 

Now the strategy iJ to draw a box around the part of the drawinr you want to move (in this ca.Se, 
encompassing the lines cconnected to the inputs of gate G 1 in addition to the gate itself). Every 
body and point inside the box belongs to the set, and if both endpoints of a line are inside the box 
then effectively the line belongs, too. 

Move the cursor to the spot you,d like to become the upper left comer of the box and type •ex+" to 

start a line. Move the cursor to the right until the line is long enough and type •ex+" to mak.e the line 
permanent. (In set mode, by contrast with point mode, the line won't stop flashing when you do this.) 
Move the cursor downward until the right side of the box is tong enough and type •ex+" again. 
Move the cursor left until the bottom of the box is tong enough and type •ex+" again. Finally, move 
the cursor up to complete the box and this time type •ex-" to finish it off. {Actually, the program 
offers you a shortcut. After you've drawn the first two sides, you can simply type •cc+«-" without 
moving t~e cursor and the program wiD complete the third and fourth sides for you.) 

As soon as you complete the box, a big flashing letter will appear atop each point or body in the set, 
and a big flashing -S" will appear near the center of the set. Type •exM" to attach the cursor to the 
set. Now try moving the 01rsor; you'll see the entire set move with it. As with individual points and 
bodies, you press <SPAC.E> to detach the cursor and leave the set where it is. You can then go 
deime another set elsewhere in the drawing: within set mode, as within body or point mode, 
commands always refer to the set closest to the cursor. 

Once the cursor is detached you can delete the set definition by typing •cxn•. This doesn't delete any 
points or bodies, but merely releases them from membership in the set. Typing "'3D., (don't try it!) 

deletes each point and body belonging to the set closest to the cursor. 

When you're tired of playing with sets, you can type ·~· to r~m to body mode or •cxt3P" to 
return to point mode. -



62 3 A guided tour of D 

S.8 Pinal touches to your drawing 

Just a few steps remain before your drawing is finished. 

Because it's so easy to place one point atop another, the program provides a command to check. for 
this and other faults. Type •ailp" to get into point mode, and then typet 

•X 
!JELL? DDIGLE 
DANGLE 

If the piogram tells you 9NO MATCHES FOUND", congratulations-it found no erron. Otherwise, 
press •cxF" and the program will place the cursor atop the tll'st error. Section 2.2.3 explains possible · 
erron and the usual solutions. After you correct the first one, type •aF" to move the cursor to the 
next (if any), and so on until typing •ar ceases to move the cursor. 

·when you think you've fixed them an. try the -X DANGLE• command again, just to be sure. 

Now the drawing is fine as far as the graphics editor is concerned. You must give it a title so that 
SCALD knows what body this drawing defmes. Type: 

.x 
LJEU. ?T rr LE 
TITLE 
~ TITLE LINE 1110016 

NEU TITLE LINE 2?SIZE•4B 

FL'lally, write the files that ho!d the drawL"lg, allow you to p!ot it on paper, ami provide a wirtrig list 
for ultimate use by SCALD: 

•X 
LELL?EW, EP, EL, CLE 

You've finished the drawing. In the next section of this chapter, you~I learn how to describe a body 

to represent the drawing. 



!.9 Creating a. body template 

5.9 Creating a body template 

Now that you've drawn the def'mition of an ECL 10016 IC. you need a template for a body that you 
can we in your drawings to represent that IC and invoke its definition. In a realistic situation, you'd· 
probably add the template for this body to an existing library, perhaps one called 9E lOK"; and then 
place the body on a menu drawing. perhaps one called 41:10Kl", that shows people what bodies are 
available from that library. But since this is the first body template you've created, we'll a.uurne you 
want to aeate a brand new library file and menu file. 

S.9J Getting started 

First, imagine that a nash of inspiration tells you that the body should look like Figure 3-16. Now 
clear your work.space and perform a few necessary initializations to establish the file ~lOK" which 
wilt become your library: 

•X 
IJEl..L ?-LOCS 
-LOCS 
..x. 
IJEl..L? BO.ARD 
BOARD 
BOARD TYPE? DECPC 
aratW 
FILENAME? EIOK 
WRITING ElSK.ORl.I CMK2,Sll 
..x 
LJELL?GETLJB 
GETLIB 
LIBRARY NAME?STDLB 

LIBRARY STDLS. CBI CMK2, Sl 1 



PIN NA"1E • 1 
PROP ~r'E • 1 
PROP TEXT • I 

) I 

1~ 

X8 
10016 

+X 

TC 

T 
( 

3 A guided tour of D 

P!N ~ • 7 
PROP NAME • 7L• 
PROP rcXi - TC 

PIN ~ • 6 
PROP ~ • 6 
PROP TEXT• T 

O~-
/1 t ~ ~ 

:~·~{:2~/ J 
PIN ~ • J 
PROP NAr-E • J 
PROP TEXT • R 

""'" PIN t-R'E • 5 
""" PROP NAME • SL• 

PIN NAME • 4 PROP TEXT • CNTE 

PROP NAME • 4L• 
PROP TEXT • PE 

Figure 3-16 
This is what you want to create 

Body templates are hidden in the back.ground of a file, entirety separate from the drawing portion 
of the file, if indeed there is one. To aeate or edit a body template, you enter Edit mode, in which 
the drawt.-1g va.-iishes tempora.i.-tl;. Of course, ;ou won't notice this b~aUse ;ou haven't sta.-ted a 
drawing in this workspace (and you probably never wilt since it's supposed to be used as a library). 

Type: 

*«,<1ETYPE BOOV NAME? 
10016 
N~ BODV. 

On the top line or your saeen you'll see "MODE•E". At the center of the screen you11 see the 
familiar cursor. The initial position of the cursor iJ ·special because it wilt become the origtn of the 
body. When, in the process or ma.king a drawing, you attach the cursor to a body, it moves to the 
origin; and when you detach the cursor, the nuhing letter -s• appears atop the origin. 'By 
convention, though nothing in the program demands it, we always draw a body so the upper left 
corner is the origin. 

Within edit mode, rour submodes let you perform four different tasks: add or insert lines to define 
the body shape, grab bodies from elsewhere to add to this one, aeate pins to which you can connect 
signals, and label the body and pins with text. 



!.9.1 Getting started 65 

5.9.2 Drawing the box 

First, get into insert submode by typing •<XI". You'll see "MODE·EI" on the top line of the screen. 

Now we want to draw tines. Edit mode is deceptively similar to point mode, but with two important 
differences. First, you're not drawing lines between existing points, but creating a series of brand 
new vectors. Some of the vectors are visible and others are invisible, but each starts where the 
previous one leaves off. Second, the program is perfectly willing to let you draw slanted lines, and 
thus doesn't bother with pain or lines at right angles as it does in point mode. 

Type •ex+" to start a visible vector and move the cursor to the right by TOP. Type •a+" a second 
time to finish that vector and begin another, and move the cunor down by TOP. Type •a+" a 
third time to flni.sh that vector and begin a third, and move the cursor left by TOP. Finally, type 
•ex+• a fourth time and move the cursor back. up to the origin by TOP. 

To rmish off that fourth vector without starting another, press <ALT>. Y ou'lt find yourself out of 
iruert submode and back in plain edit mode. 

Actually, there was no need to get out of insert submode just then, because we're about to draw more 
vectors, but we wanted to iDustrate the use of <ALT>, which is the only way to end a vector without 
starting a new one. 

5.9.5 Ornaments 

That produced a fine box, but we're missing the triangle that represents the clock. input, and the 
three diamonds that represent inputs and outputs that assert low. Once you've drawn the outline of 

your body there are two ways to add details to it: use invisible vectors to skip around, or grab bodies 
from elsewhere. 

Based on your experience with the program so far, you might guess you could move the cursor to 
the point at which you'd like to add something, enter insert submode, and start using the cursor to 
draw vectors. If you try that, however, you'll find that the cursor hops back to the origin on its way 
into the submode. The program insists that a body consist or a single path of vectors, so the only 
way to add to the body is to follow the path to its end and append vectors there. If' you want to go 
bad to a point along the path. you must go to the end of the path and append an invisible vector 
that jumps back to the desired point. 



66 ! A guided tour of D 

Type •ar to enter insert submode again. The cursor wiD appear at the origin. Now press <SPACE> 
repeatediy. The cursor wiii travei one vector's length along the path every tia1.e you do so. When it 
stops moving and the drawing doesn't even blink. at <SPACE>, you've reached the end of the path 
and can add more vectors. 

InYisible vectors-To start an invisible vector, type •a-•. Now move the cursor downward by TOP 
and to the right by a single unit (that is, an unshifted keystroke), and it wilt rest where the left edge 
of the triangle should be (Figure S-17). 

D 
STARTING ""'ITH a.RSOR 
AT ORIGIN ••• 

4 

L 
TI-EN MO\.£ Cl.RSOR 
RIGHT 1 STEP ••• 

2 

L 
C~l TYPE 
CONTROL - ANO 
SKIP TO La.ER LEFT 
CORl'ER ••• 

L 
TYPE CONTROL +, 

MOVE CURSOR 00&.JN 
1 _ANO RIGHT 1 .•. 

Figure ~17 

J 

L 
TYPE CON'TROL. + 

~ MOUE CURSOR 
.UP 1 STEP ••• 

6 

D 
••• TYPE <ALT> 
At-{) SKIP TO RIGHT 
TO BEGIN NEXT 
ORNAMENT. 

_A closeup view of drawing the trian_gle 

To draw the left slant. type •a+", move the cursor up by a single unit and to the right by a single 
unil To draw the right slant, type •a+", move the cursor down by a single unit and to the right by a 
single unit. 

Obviously, one could now skip to the point at which the first diamond should appear, and draw it 



!.9.S Ornaments 67 

in the same fashion. But there's an easier way, so press <ALT> to leave insert submode. 

Crabbing bodies from elsewhere-The easier way is to grab a copy of an existing body and add it 

to thil one. Suppose that one of your libraries contains a body called DIAMOND which is useful 
for indicating that a pin asserts low. 

To grab it, move the cursor JO it rests on the bottom tine of the box, five CONTROLs from the 
lower left comer. Then type: 

*ctGTVPE BOOV NAME 
DIAMOND 
SEARCH I NG FOR DI AMONO IN STDLS. DR&J CMK2, Sll 

First youit see ~ODE·EG" appear on the top line of the saeen and then you'll see the diamond 
appear at the cursor position. The cursor is actually attached so that the diamond will follow it 

wherever it ~ Experiment with moving it When you have the diamond back where it belongs, 
press <SPACE> to release the cursor. The diamond will become part of the body, and you will find 
yourself back in normal edit mode. 

To add the next diamond, move the cursor to the proper position and use th_e •ac• command again. 
Finally. move up to the top line and add the third and last diamond. 

5.9.4 Defining pins 

Corresponding to the seven inputs and outputs listed under PARAMETERS in the drawing we just 
made, the body has seven labelled pins. In addition, it has two invisible -Ous-through" pins at the 
top. Pin ~B", for example, is identical electrically with pin 2. as if any signal you connect to pin 2 
travelled underneath the body and reemerged on the opposite side (Figure 3-18). 



68 ! A guided tour of D 

¢ 

11 II 
BJS-11-RX..GH PINS 
LET US ORA.J THIS ••• ••• TO REPRESENT THIS. 

Figure ~18 
Using bus-through pins 

To define the pins, type •«tJP" to enter pin mode. You'll see "MODE·EP" on the top line of the 
screen. Ordinarily we don't want pin numbers on drawings, because they represent unneeded clutter, 
but until you have a chance to aeate labels near the pins, pin numbers make it easier to find the 
pins, so type: 

•X 
UELL?DEFPIN 
OEFPIN 

As you create each pin, you will have to supply its pin number (which the program refers to as a 
-pin name"). To begin, move the cursor to the midpoint of the left side of the box ~d type: 

._pp IN NAME?l 

Now move the cursor down to the bottom line of the body, directly under the apex of the triangle, 
and type: 

*°'PPIN NAME?2 

Continue until you've created an the pins. If you make a mistake, move the cursor to the erroneous 



19.-i Defining pins 

pin, type ·~· to delete it, and then we •aP" to create it anew. 

When you're rmished, hide the pinnames once again so they won't clutter your drawings: 

x 
IJELL?-DEFPIN 
-OEFPIN 

Press <ALT> to leave pin submode and return to plain edit mode. 

S.9.5 Creating body text 

69 

The last step in describing your body is to create a property name/text pair for each of the pins, 
plus a few pairs for the body as a whole. Type •api"' to enter text/property submode. You will see 
-WODE·ET" on the top line of the screen. Within this submode you can create. alter, delete, and 
move text f'or a body template just as you would edit text in ordinary body mode or body text 
submode for the drawing as a whole. 

Each visible pin has a property name/text pair associated with it. T!J begin, move the cursor to the 
center of the area where you'd like the label for pin 1, T, to appear. Create a property name/text 
pair: 

*°lY 
PRO~TV NAME? 
1 
NEW PROPERTY, TEXT? 
I 

Now move the cursor to the spot where you'd like the label for pin 4, -PE" to appear. As Figure 
!-16 shows, the property name for this pin is more elaborate. W e'lt postpone explaining the reason 
until chapter 4, but note that the difference is important to SCALD: 

*°'y 
PROPERTY NAME? 
4L* 
NEW PROPERTY, TEXT? 
PE 

For the sake or practice, create the property name/text pairs for the rest of the visible pins-R, CK, 
CNTE, T, and TC. When you're finished, the body should look. like Figure !-19. 



70 ! A guided tour of D 

TC 

I 
T 

Figure !-19 
Body with all pin properties 

As you've probably guessed, the •xB" in the middle of the body is the text of property SIZE and 
the "+X" is the text of property LOC. The name of the body, "10016", is the text of a property 
called MNAME. For each of these, position the cursor to the center of the place you'd like to put 
the text and use •a.Y" to create the property. Remember that if you make a mistake, you can 
proceed as we did with properties in the drawing as a whole: attach the cursor to the one you want 
to correct and either move it, delete it, or use alter submode to edit it. 

When you're satisfied with the text, the body is done. Press <ALT> to escape from text/property 
submode and return, to normal edit mode. Then type "a.E" to escape from edit mode. 

Now save the file and dear your workspace: 

•X 
iJELL?.EW, CLE 
EWRITE 
WRITING E10K.DRWCMK2,Sll 
CLEAR 

S.10 Making a menu file 

If you were to plot the library file "EIOK" which you just created, you'd see nothing. You've 
described the body •10016", but you won't see it until you use it in a drawing. It turns out to be 
convenient to put the body templates in one file for use as a library and to put a rogues' gallery of 
their portraits in another file for use as a menu. 

Now that your work.space is clear, type the following to create a new file •E !OK I" to serve as a 



!.10 Making a menu file 

menu: 

*°'W 
FILENAME?ElOKJ 
WRITING E10Kl.ORLHMK2,SlJ 

*x 
UELL?-LOCS, GETLIB, SHOWBOX 

-LOCS 
GETLIB 
LIBRARY NAME?ElOK 
SHOWBOX 
A.1.6/1 

71 

Now move the cursor to an appropriate point-near the upper left, for example-and place a copy 
of body •10016" in the drawing: 

*<x:PTYPE BODY NAME 
10016 
SEARCHING FOR 10016 IN E10K.DRWCMK2,Sll 

Press <SPACE> to detach the cursor from the body. In this case, it's obvious what name to use 
when you want to fetch a copy of the body from the library: 10016. Sometimes, however, the name 
of the body may differ from the text of the MNAME parameter that appears on the body, so it's a 
good idea to put the name above the body on the menu drawing. To do this, move the cursor to an 
appropriate place near the body and create some text: 

SolTTEXT? 
10016 

In a realistic case, you would fill the menu with many different bodies belonging, to the ECL 1 OK 
family, but since you have defined only one so far, save the file and you're finished: 

.x 
lJELL?EW, EP, CLE 

And that's the end of the tour. Congratulations. You have made a drawing to define ECL IC 
10016, a body template to represent it, and a menu drawing to advertise its existence to, the world. 



! A guided tour of D 



73 

4 How to use the macro expander 
Like the graphics editor, the SCALD macro expander deals with bodies and the lines connecting 
them. 

A body represents a logic element, and the pins on the body to which you may connect signals 
represent inputs and outputs. 

A line between bodies represents a signal, whose characteristics are determined partly by the bodies 
it connects and partly by the name, if any, used to label it on the drawing. 

A body may represent a macro-a functional block which must be expanded into the logic elements 
that comprise it-in which case an additional drawing must exist to define it in terms of other 
bodies connected with signals. Or a body may represent a terminal-a fundamental, irreducible logic 
element-in which case the program looks for entries in a special text file called the TERM file (or 
t1rminal jtlt), which describes the body's inputs and outputs. 

Visually, connecting a line from one body to another with the graphics editor •reeds" the signal from 
the output of one body to the input of the other. Effectively, this calls the two macros, using the 
output parameter of one macro as the input parameter of the other. The task of the S~ALD macro 
expander is to replace each body which represents a macro with the set of bodies and signals which 
define that macro. Because a macro may be defined in terms of additional macros, the program 
repeats the process until it obtains a network of bodies and signals in which all the bodies are 
terminals. 

Exactly what constitutes a terminal depends on whether you . want to obtain a wire list for actually 
building a prototype, or whether you simply want to simulate the logical design. When building a 
prototype, you regard a macro as a terminal if it corresponds to an actual IC or chip to be used in 
the prototype. By using a TERM file containing entries for these chips, the macro expander 
produces a list of chips and interconnections for use by the SCALD physical design system. 

When simulating a design, however, you define each IC or chip with a drawing that uses only 



74 4 How to use the macro expander 

logical primitives-that is, idealized gates, adders, latches, -multiplexers and so on-which the 
sirnulator ca..n deal with. By using a TERM file cont~ining entries for the logical primitives, the 
macro expander can expand the design past the IC or chip level, producing a network of logic 
primitives for use by the SCALD simulator and timing verifier. (The behavior-the truth or state 
table-of each logical primitive is built into the simulator and verifier.) 

Thus, the choice between an JC terminal file and a primitive terminal file determines the operation 
of the macro expander. 

Incidentally, SCALD has no trouble dealing with an IC or chip which contains several copies of a 
particular logic function-a quad latch or dual flip-flop, for example. In such a case, the body 
representing that terminal, the entries for it within the IC terminal file, and the drawing defining 
the terminal in terms of logical primitives all pertain to a single copy of the function. A file called 

CHIPS (which also contains electrical characteristics of the IC inputs and outputs} takes care of 
telling the physical design system that it can obtain multiple copies of the function from a single 
package. 



i..1 Typical design procedure 75 

4.1 Typical design procedure 

The remainder of the chapter is full of rules for the syntax of bodies and signals that makes up the 
input language for the SCALD macro expander. Those rules may make better sense after an 
outline of the typical procedure for designing a large project with the macro expander: 

1. For each kind of IC to be used in the design, make entries in the IC Terminal File. 

2. If you will want to simulate the design, make a drawing for each IC that defines it in 
terms of the logical primitives-adders, gates, and so on--available in the graphics editor 
library "SIMLB". (These primitives are sufficiently general to apply regardless of the 
actual fogic technology used to implement the design, though the numbers for timing will 
of course vary.) If the IC contains multiple units in one package-a quad latch, for. 
example-the drawing should define a single unit 

3. Develop a graphics editor library containing a body template for each of the ICs. The 
S-1 Mark. II dP_tigners, for example, developed a library called •ElOK" containing bodies 
representing ECL lOK parts. Note that the body template for a multiple-unit IC should 
represent a single unit. 

Since body templates are invisible until used to place bodies in drawings. it helps to make 
one or more menu drawings for each library. A menu drawing simply shows each IC 
available in the library, and next to it gives the proper name for its macro. SCALD itself 
doesn't use these menus. but they aid designers in picking out the proper bodies to use. 
For the ECL IOK library. for example, the menu drawings are called "ElOKl", •ElOK2", 
and so on. 

4. Now define any macros expected to be used frequently throughout the design, invent 
body templates for them, and place those bodies in a library so designers can find them 
easily. As work progresses, designers can add new templates as needed. 

For example, the S- l Mark II design frequently uses vision registers, registers with 
auxiliary logic that accesses the register contents for diagnostic purposes. Placing in a 
library a set of body templates representing vision registers makes it as easy for a designer 
to incorporate one of them as it is to design with an ordinary register. 

5. Now the designers can start ·at the top level of the machine and proceed hierarchically 
down toward the bottommost, detailed level At each level, the designer makes a drawing 
by connecting signals between bodies representing macro calls and/or terminals. The 
designer can obtain bodies for the terminals from the ·templates in the library described 
above.. For a body representing a macro call, the designer must invent a body template and 
then make a further drawing defining that body in terms of additional bodies; thus the 
process recurs. 

S. SCALD does not consider the top level drawing in the hierarchy as a special case, so to 

start the macro expansion process, someone must invoke that drawing through a macro 



76 4 How to use the macro expander 

call The usual approach is to make a dummy drawing of the "universe" consisting of 
appropriate drivers and rer..eivers attached to a. single body representing the entire design. 
When it comes time to lay out hardware to implement the machine, simply allocate the 
contents of this drawing to a separate circuit board which never actually gets built 

While this outline suggests proceeding hierarchically from the top level of the design toward the 
bottom, SCALD is actually quite flexible in this respect. If it becomes obvious at some point that the 
design catts for additional types of ICs or that some functions occur so frequently that it is worth 
repackaging them as standard macros, it is quite easy to change these aspects. 

It is possible to expand the upper levels of the design to check for syntax errors and design ru.le · 
violations even if the lower levels are not finished-simply ignore the errors generated by the 
missing drawings. Simiiarly, it is possible co expand a subsection of the design-a subtree within 
the hierarcy-without expanding the design, simply by concocting a dummy •universe" file that calls 
the topmost drawing of the subsection rather than the topmost drawing of the entire design. 



4.2 General Rules for the macro expander language 77 

4.2 General Rules for the macro expander language 

Expressions-Wherever the macro expander accepts an integer, it will generally accept an expression 
instead. The expression syntax is that of a subset of PASCAL. which includes the following 
operators (where "O" indicates the highest precedence): 

S;xmbol Meanin~ Precedence 
NOT Logical NOT 0 

Unary minus 0 

+ Unary plus 0 

* Multiplication 1 

I Integer division 1 
MOD Modulo 1 
AND Logical AND 1 

+ Addition 2 
Subtraction 2 

OR Logicai OR 2 - Equals 3 
<> Not equals g 

<• Less than or equal to 3 

>• Greater than or equal to 3 

> Greater than 3 

< Less than 3 

Parentheses override precedence as usual in Algebra. 

When the macro expander needs to convert a logical value to an integer, it treats ~ ALSE" as 0 and 
'TRUE"a.~ l. When it needs to convert an integer to a logical value, it treats "O" as false and 
anything else as 'TRUE". Thus, the following example evaluates to either "SIGNAL<0:5>" or 
-SIGNAL< 1:5>": 

SIGNAL<ASIZE-15:5> 

Note that within a bit subscript (Section 4.6.S), which normally uses •<" and ">" as brackets, you 
must parenthesize an expression that uses •>" to mean •greater than", or the macro expander (which 
parses with limited lookahead) will think it has reached a right bracket: 

SIGNAL<CASIZE>15l:5> 

Throughout the the macro expander language, integers can end in -X" {for •times") or "B" (for 
'i>itsj to improve readability; thus •sB" and •sx" are the same as 115". 

Signal, pin, and macro names-While most programming languages prohibit blanks or spaces 
within identifiers, the macro expander permits them in signal names, pin names, and macro names. 
And while most languages require identifiers to begin with an alphabetic character, the macro 
expander permits digits. Thus, it's perfealy legal to use the kind of multiple word signal names and 



78 

numeric part names that designers are accustomed to: 

P SEQUENCER 
PARITY CHECK INHIBIT 

54LS181 
CLK ENABLE 

4 How to use the macro expander 

This freedom is possible because the graphics editor, with its "text" and "property" features, takes 
care of specifying where one chunk of text begins and ends, so the macro expander does not need to 
reserve blanks for use in delimiting such chunks. 

In general, the macro expander deletes leading and trailing blanks in names, and reduces several 
consecutive blanks to a single blank. 

As noted in chapter 2, the graphics editor also allows the use of the·~" character to split a piece of 
text across two lines. It converts that character to a blank before sending the text to the macro 
expander, however. 



i.3 Inventing Bodies to Represent Macros 79 

.f.3 Inventing Bodies to Represent Macros 

Parameters-A SCALD macro accepts two kinds of parameters. Pin parameters represent signal 
inputs and outputs, while body parameters specify some general characteristics of the macro. 

Now, most programming languages match actual parameters (the values or variables you plug into a 
macro or procedure) with formal parameters (the dummy arguments that specify what inputs and 
outputs the macro wants to see) strictly by their position in a list. The macro expander, by contrast, 
matches actual parameters with formal parameters by name; whenever you feed a parameter to a 
macro, you implicitly or explicitly state the name of the formal parameter you're dealing with. The 
property name/text feature of the graphics editor helps accomplish this. 

For a pin parameter, the pinnarne points to a property name, and the text paired with that prop~ty 
name gives the formal parameter name. 

For a body parameter, the property name holds the formal parameter name and the property text 
holds the actual parameter. Thus, to set the SIZE body parameter to "14B" for a particular macro, 
use the graphics editor to create or modify the property named SIZE and then specify "14B" as the 

property text. 

4.3.1 Body Parameters 

By convention, SCALD macros have up to five standard body parameters; whereas signal 
parameters are invented by the designer and vary from one macro to another, body parameters are 
concepts built into the macro expander which govern the way it expands each macro. Body 
parameters are somewhat unusual in that some of them have an initiai vaiue which wiii appear in 

the drawing until you supply a value. 

MNAME 

SIZE 

Actualty not a parameter, but rather the name of the macro. To find the 
definition of the macro, the macro expander will search for a drawing with this 
name in the first line of its title. {It may also use a selection equation as 
explained in Section 4. 4.) 

Basically, an integer specifying how many times the macro should occur. This is 
useful for creating several independent copies of a macro-for example, to 
generate 36 copies of a flip-flop to build a register to store data from a 36 bit 
bus, set SIZE to 36. · · 

A more precise explanation is that the macro expander invokes any macro 
repeatedly in a loop using a special count~r variable -X", which starts at 
X FIR.ST, increments by X STEP, and quits at SIZE- I. You can set X FIRST 
and X STEP using the DEFINE list described later in this chapter. 



80 

TIMES 

1: How to use the macro expander 

X F LllST defaults to 0. X STEP defaults to 1 if SIZE is 1, but otherwise you 
must (as a safety feature) explicitly set X STEP. Failing to do so produces an 
error message and sets X STEP equal to SIZE. 

The variable "X" is available for use within the macro definition, and will be 
replaced with successive loop-counter values when the macro expander expands 
and replicates the macro. 

The initial value of SIZE is "XB ", deliberately chosen to be nonnumeric and 
therefore invalid so that the system will produce an error message if you forget to 
specify a size. 

An integer telling the macro expander to invoke the macro repeatedly to obtain 
multiple copies, and then to tie together the corresponding inputs on all the 
copies white leaving the outputs independent. This is useful as shown in Figure 
4-1 when you'd like several different gates to produce the same signal because a 
single gate doesn't have enough fanout capability. If not specified, the TIMES 
parameter defaults to 1. If TIMES is 0, the macro expander ignores the body 
instead of expanding it. 

SETTING TIMES• •3 ... 

Figure 4-1 

. .. PRODUCES 
THREE OUTPUTS 

The body TIMES parameter 

When the macro expander invokes a macro repeatedly due to the TIMES 



'i.3.1 Body Parameters 81 

LOC 

VAR 

param@tP-r, it sets a special variable called TIMES to a different value on each 
invocation, starting at 1 and incrementing by 1. You may use this variable to 
distinguish one invocation from another if you wish. 

Within a drawing, every body must have a unique alphanumeric location label; 
the actual labels don't much matter, but conventionally we label gates as G 1, G2, 
G3_ and registers as R 1, RZ R3- and so on. It's quite safe to use the same label 
for two bodies in two different drawings. (These labels are used internally by 
the macro expander to make local signal names unique when the same macro is 
invoked in two or more places. Section 4.6.13 recites the details). 

The initial value for LOC is "+X", a deliberately invalid choice which will 
produce an error if you forget to specify a location. 

This parameter passes information through the SCALD macro expander to the 
logic simulator and timing verifier. Its exact purpose varies from one body to 
another-sometimes it specifies setup and hold requirements and other times it 
specifies delays-but by convention the initial value will always be something like 
"DELAY-." or "SETUP·" which explains what the parameter is for. 

Figure 4-2 shows two versions of the same body. first exactly as it comes from the library, with 
parameters set to initial values; and then with values specified by a user. 



XB 
----1 R REG RS 
----4$ +X 

I DELAY= T 
0.0,0.0,0.0 

CK 

T 
BODY PARAMETERS: 
INITIAL VALUES 

4 How to use the macro expander 

----!' R RE~B RS 
----4$ R7 

Figure 4-2 
Body parameters 

I DELAY= T 
1 • 5, 2. 2, 3. 7 

CK 

T 
BODY PARAMETERS: 
USER VALUES 

Note that while the property names (that is, the formal parameter names) don't appear explicitly on 
the drawings, the graphics editor wilt identify any of them within Alter submode as explained in 
Section 2. 7. 

One point concerning SIZE and TIMES deserves mention. When you use these parameters on a 
terminal macro, the physical design system will ultimately generate the specified number of copies of 
the macro's function. 

But when you use these parameters on a nonterminal macro, the definition of the macro determines 
whether replication actually occurs. If a signal inside the definition has its number of bits expressed 
in terms of SIZE and TIMES, or if a body has its own SIZE and TIMES parameters expressed in 
terms of SIZE and TIMES, then replication will take place. Otherwise, a signal or body inside the 
definition is a constant, independent of SIZE and TIMES. 

A good analogy is a procedure in a high level language which accepts an integer parameter and 
then doesn't use that parameter anywhere in its body. Only when the procedure uses a parameter 
does it have an effect. 



4..3.2 Pin parameters 83 

4.!.2 Pin parameters 

The graphics editor always associates a "pinname" (actually a number) with each pin on a body. For 
each pin, the macro expander requires a property name/text pair that ties the pinname to the 
corresponding signal parameter name. 

If the body in question is a terrnina~ then by convention each pinname should be the number of the 
corresponding pin on the actual IC. (If there are multiple units within one IC, use the pin numbers . 
for the •rirst" unit-the one that has the lowest numbered pin. The CHIPS file will take care of 
mapping the remaining units onto the first) If the body represents a macro, the numbering can be 
arbitrary, but each pin must have a unique number. 

The property name/text pair for a pin is derived from the pinname. For the property name, start 
with the pinname and append an .,_,, if the corresponding signal parameter inside the macro asserts 
low (see Section 4.6.4). Then append a •*" if the pin has a diamond or "bubble" on it, telling the 
macro expander to check to be sure that any signal connected to this pin invokes low. 

The property text should include the <Class>, <Simple Name>, and <Timing Spec> portions of the 
signal parameter name. Essentially, it should be identical with the version of the signal name that 
appears in the parameter list (Section 4.6.8) but without the •1v" appendage or <Bit Subscripts>. 
Figure 4-S is an example. 



84 

PINNAME • 3 
SIGNAL NAME • CLR L /P 

PROPERTY NAME • 3•L 
PROPERTY TEXT • CLR 

0 

4 How to use the macro expander 

XB 
COUNTER 

+X 

PIN~ • 2 

T 

CK 

SIGNAL NAME • T<0:SIZE-1> /P 
PROPERTY NAME • 2 
PROPERTY TEXT = T . 

PINNAME • 1 
SIGNAL NAME • CK L /P 

PROPERTY NAME • 1L 
PROPERTY TEXT • CK 

Figure ·4-3 
Pin properties 

Removing the "L" from the property text· and putting it in the property name allows the property 
text to label the pin on drawings; the •r." is customarily omitted in such labels. 

Why have a separate •*" to tell the signal check.er that the signal asserts low when you already have 
an "L ~ Because the macro's internal notions about the signal polarity may have nothing to do with 
the outside world. Consider the case of an AND gate which could just as well be represented as an 
OR gate for inputs and outputs that assert low. A single macro defines both gates equally well, but 
u Figure 4-4 shows, one body expects its inputs to assert low and the other doesn't 



i..!.2 Pin parameters 

PROPERTY NAME • 12 
PROPERTY TEXT = IO 

PROPERTY NAME :a 13 
PROPERTY TEXT • I1 

PROPERTY NAME .a 12• 
PROPERTY TEXT = IO 

PROPERTY NAME = 13• 
PROPERTY TEXT :a !1 

DELAY•0.0 

2 ANO 
+X 

DELAY=0.0 

Figure 4-4 
Gates for high and low assertion 

PROPERTY NAME • 9• 
PROPERTY TEXT : T 

PROPERTY NAME • 15L 
PROPERTY TEXT = T 

PROPERTY NAl'"E • 9 
PROPERTY TEXT • T 

PROPERTY NAME = 15L• 
PROPERTY TEXT = T 

85 



86 i How to use the macro expander 

4.4 How the macro expander binds bodies to drawings 

When the macro expander encounters a macro body in a drawing, it takes the text from the 
property MNAME· and looks for a drawing with that text in the first line of its title. 

Note that two other names exist and thereby confuse the issue. The body template itself has a name 
which the graphics editor recognizes when you ask to place a copy of that body in a drawing. The 
file containing the drawing that defines a body has a filename by which the computer operating 
system recognizes it. Neither of those names has anything to do with the process of finding which 
drawing to use to expand a macro. 

(There are good reasons for that. Keeping the body name separate from the macro name permits 
multiple bodies to have the same MNAME and thus the same macro definition: for example~ 
consider again a gate which can be either an AND gate which expects its signals to assert high or 
an OR gate which expects them to assert low_ The macro expander can use two different bodies 
called "2 AND" and "2 ANDO" (the latter looking suspiciously like an OR) to represent the _same 
function. And keeping the drawing filename out of the picture makes SCALD less dependent on 
the operating system.) 

If the macro expander finds more than one file with the same name in the first line of the title, it 
then goes to the second line of the title in each file and evaluates it as a selection equation. It uses the 
drawing for which the selection equation evaluates to 'TRUE". 

This is handy because in many cases you will want to implement a function differently depending 
on some parameter such as (for example) the size. If the number of bits you're generating parity for 
is 12 or Jess, for example, you may want to use one circuit but if it's greater than 12 you'll want to 
use another. By putting a selection equation like "SIZE<• 12" on the second title line of one drawing 
and an equation like "SIZE> 12" on that of another, you can accomplish this. 

Of course, you must invent these selection equations so that for each value of SIZE you expect to 
use, the equation inane and only one drawing evaluates to TRUE. · 

A typical selection equation is ~function of one of the macro body parameters-SIZE, TIMES, or 
VAR-but can in general be any expression. If you provide only one drawing to define a given 
macro, leave its second title line blank and the expander will always select that drawing. 



i.5 Inventing Signal Names 87 

4.5 Inventing Signal Names 

Not every signal need have a name. If, for example, a signal originates at one body and terminates 
at another within the same drawing~ the macro expander can infer from the characteristics of the 
output and input pins everything it needs to know about the signal: its width in bits, its assertion, 
and so on. 

But attaching a name to a signal-which, within the graphics editor, merely requires attaching text 
to a point along the line that represents the signal-can provide additional information: wire delay, 
clock skew, and so on. 

And sometimes the macro expander requires a name for a signal-when, for example, the signal is 
an input or output parameter; or when the signal should be made global so other drawings can refer 
to it 

Concatenation-To combine several different signals into one multiple-bit signal, use ":" between 
their names to indicate concatenation. The signa! whose name is leftmost provides the most 
significant bits! 

HIGHBYTE : MIODL;BVTE : LOWBYTE 

Conditional signals-To make a signal name depend on an expression, use an IF /THEN/ELSE 
construct. If the expression is true, the macro expander uses the name following the word THEN, 
but otherwise it uses the name following the word ELSE. The quotation marks shown in the 
following example are required: 

"IF" SIZE<8 "THEN" FIRSTBVTE "ELSE" -FIRSTBYTE 

Do not omit the ELSE part, and do not nest the IF /THEN/ELSE construct. 

Comments-Everything following a •;" in a signal name becomes a comment. Thus, when you use 
concatenation or IF/THEN/ELSE, you're allowed only one comment: 

RIGHT 
CA: OR WA; Pacific states 

"IF" FLAKY NTHEN" CA "ELSE" WA : OR ; A pointed comment 

WRONG 
CA ; Far out WA ; Far up OR Far gone 



88 4 How to use the macro expander 

4.6 Putting together a signal name 

'Wholly apart from concatenation or IF /THEN/ELSE, an L~dividuaI signal name consists of a series 
of individual pieces strung together, each of them describing some aspect of the signal. 

The syntax of a signal name is: 

<Name> :_: • 
<Negation> 
<Signal Class> 
<Simple Name> 
<Timing Assertion> 
<Assert Loa.a> 
<Bit Subscript> 
<Wire Oeiay> 
<Timing Evaluation Directive> 
<Scope> 
<Mui tip I ier> 
<Version> 

Not alt of the information is meaningful to the macro expander; the <Timing Assertion>, <Wire 
Delay>, and <Timing Evaluation Directive>, for example, are included for the benefit of the timing 
verifier. All the components except the <Simple name> are optional, and the last five may appear in 

any order. Thus, a rather elaborate example of a name is: 

-SHAKESPEARESHAMLET.Cl-2,3-4 L <0:6:2,4:8> C2.5,3.7]&A /M *<SIZE> /18 

and a simple example of a na.rne is: 

CLOCK 

In order to persuade the macro expander that two signals are the same, the <Signal Class>, <Simple 
Name>, and <Timing Assertion> pieces must be identical, character for character. Other pieces of 
the name may or may not appear in various places in a drawing. Weil proceed to talk about the 
various pieces of syntax, one by one. 

4.6.1 <Negation> 

To invert a signal without indicating that it asserts low, put a minus sign at the front of the 
subname: 

DECODE I 



i.6.1 <Negation> 89 

-DECODE I 

Contrast this with the use of <Assert Low>, described later in this chapter, which requires that the 
pin receiving the signal have a "bubble" or •diamond" indicating that it expects a signal that asserts 

low. 

H a signal is generated by a gate with the complementary outputs, then the macro expander 
recognizes that the inverse of the signal is available, too, and will allow you to use that inverse in 
the drawing without explicitly connecting a line to the inverse output of the gate. 

The absence of~-" implicitly indicates the uninverted form of the signal. Note that putting a"+" in 
front of a signal name creates an entirely different signal name; a plus sign is not a superfluous 

symbol. 

A • - " inverts each individual bit of a multiple-bit signal. 

4.6.2 <Class Name><Simple Name> 

Within <Class Name> and <Simple Name>, you may use alphabetic characters, digits, •+", •-n, "(", 
and j" as you wish, though you should be prudent about it: if you put a • - " at the front of the 
name, for example, the macro expander will think it's a <Negation> rather than an innocent 
character in the name. 

Similarly, if a <Simple Name> ends in • L •, and there is no <Timing Assertion>, the macro 
expander interprets the ~n to mean "<Assert Low>" as described later in this chapter. 

And if there's no <Class Name> and the <Simple Name> consists of nothing but ·digits •rr and 11 1" 
then the signal is a binary constant as described in Section 4.6.11. 

<Class Name> is a sort of prefix, consisting of a string of the characters just mentioned, followed by 
"S", which you can attach to each member of a family of signal names, making it easy to pick them 
all out of the crowd. If signals "DECODE INST", "SHIFT LEFT", and "SKIP" are all part of a 
functional block called 11ARITH BOX",· for example, you might want to make that clear by using 
•ARITH BOX" as a signal class: , 

ARITH BOXSDECOOE INST 
-ARITH BOXSSHIFT LEFT 

ARITH BOXSSKIP 

<Simple Name> is just a name made up of the legal characters listed a few paragraphs ago: 



90 

4.6.3 <Timing Assertion> 

LJ 

0 
28V4 

MANY MANY MANY WORDS 

4 How to use the macro expander 

This specifies the time varying behavior of the signal. It's useful for documenting the expected . 
behavior of signals entering and leaving a functional block.. In addition, it lets the timing verifier 
check a subsection of the design even if the entire design is not complete; the verifier can use the 
<timing assertion> on an input instead of evaluating the unfinished circuitry that will eventually 
feed that input 

When the macro expander parses a signal name, it does not actually regard the <timing assertion> 
as separate from the <simple name>. Only the timing verifier recognizes the <timing assertion> as 
anything more than a few additional characters : in the name. The exact syntax of a <timing 
assertion> appears in Section 6.3.2. 

4.6.4 <Assert Low> 

To indicate that a signal asserts low, place • L" after the <timing assertion>. Note that in the 
absence of the timing assertion, the • L" will follow the signal name, reducing to_ the conventional 
notation: · 

MULTIPLICAND READY L 
CLK .Cl-2, 3-4 L 

Note also that if a gate has complementary outputs, the macro expander recognizes that the output 
and its inverse both exist, and will allow you to refer to both even if you connect a line and invent a 
signal name for only one. 

The distinction between the • -" preceding a signal name and the "I." following it is important. Each 
indicates inversion, but only "I.." indicates that the signal asserts low. Thus, a signal with "L" implies 
that the pin receiving the signal mu.st have a "bubble" or •diamond", as Figure 4-5 shows. 



4..6. 4 <Assert Low> 

muu ... e El!t.Af .... 

~ 

Figure 4-5 
Assertion checking 

91 

RIGHT 

Two special techniques tell the system precisely how to check assertions. First, to regard a signal as 
asserting low without actually inverting it, use both •-" and "L ". The effect is that of using neither 
._,. nor "L ", except that the system will check to make sure all receiving pins have bubbles (Figure 

4-6). 

DELAYs0.0 

2 OR 
+X 

DELAY=0.0 

-SIGNAME L ~ 20R \ 
•>< ) 

[______/<> 

Figure 4-S 
Assertion checking without inversion 

Second, to flout the convention that a signal originating at a pin with a bubble asserts low and a 
signal originating at a pin without a bubble asserts high, use a fictitious body called a "NOT"; see 
Section 4.8. 



4 How to use the macro expander 

4.6.5 <Bit Sub.scripts> 

Bit subscripts tell the macro expander that a signal consists or" one or more bits of a multiple-bit 
signal-that is, a bus. 

The macro expander accepts either one- or two-dimensional si~uals. The following examples specify 
single bits out of multiple-bit signals: 

ONE DIMENSION<S> 
TWO OIMENSIONS<S,3> 

Either or both subscripts can specify a range of bits, which the macro expander processes in. row 
major order. Thus, the following two examples specify identical three-bit signals: 

MULTI BIT <0:2> 
MULTI BIT<0>:MULTI BIT<l>:MULTI BIT<2> 

And likewise, the following two examples specify identical four-bit signals: 

TWO 0<1:2,S:S> 
TWO 0<1,S>:TWO 0<1,S>:TWO 0<2,S>:TWO 0<2,S> 

Either or both subscripts may also specify a step-size for the range of bits. Thus, the fotlowing 
example includes bits from the fourth through the tenth, incrementing by 3: 

ONE 0<4:19:3> 
ONE 0<4>:0NE 0<7>:0NE 0<19> 

A single bit signal name-one without any bit subscripts-is by default the same as a signal name 
with both subscripts zero. Thus, the following three examples are identical: 

LONE BIT 
LONE BIT<0> 

LONE BIT<B,0> 



-4.6.6 <Wire Delay> 93 

4.6.6 <Wire Delay> 

For any input signal to a body, you may specify a wire delay or range of delays within square 
brac.k.~ 

See Section 6.3.1 for details. 

POP L [6. 81 

CK t2. 5: 3. 7] 

4.6.7 <Timing Evaluation Directive> 

When several signals feed into a gate, the timing verifier ordinarily uses the individual timing 
assertions for each of the inputs in determining the output. But sometimes you may want it to ignore 
certain aspects of the other inputs when propagating one of them through the circuitry. For details 
on the syntax for doing this, see Section 6.3.3. 

4.6.8 <Scope> 

The scope of a signal is the environment within which the macro expander recognizes that 
particular signal by name. Within a macro name you can specify either of two scopes: •1p" for 
parameters or ,./M" for module-specific signals. 

Parameters-If a signal is a formal parameter, then its name is reatly just a stand-in for the name of 
whatever signal is used as the actual parameter when the macro is invoked. Thus, it's "hidden" from 
the world outside the macro; you can use the same name inside another macro and no conflict wilt 
result. After all, signal par;uneters and pin labels are the s~e thing, and for example it's 
understood that when a counter and a shift register both have a pin labelled "CLK", the two pins 
are nevertheless distinct from each other. 

By convention, when a parameter ls •common"-that is, when it requires only a one-bit signal even 
when its body gets replicated due to the SIZE parameter-we give its signal a name ending in "C": 
"CI.RC", "INHIBC", and so on. 



4 How to use the macro expander 

To provide extra error-checking, the macro expander requires that each drawing that defines a 
macro contain a P.A.RA.METER list giving the na.T.e of each parameter. 

To create a PARA METER list, add to the drawing a fictitious body (typically one keeps a template 
for it in a graphics editor library} called PAR, which has no visible lines or pins, but whose 
MNAME is PAR and whose main purpose in life is to support -property name/text pairs. For each 
parameter signal name, create a body property name/text pair. By convention, we name the 
properties •r•, "2", •s", and so on (but it doesn't matter). Each property text should contain the 
<Signal Class>, <Simple Name>, <Timing Assertion>, and <Bit Subscripts>, if any, from the signal 
name. Omit all other pieces of the name. List either a signal or its inverse, but not both; including 
either automatically declares both. (For ECL, the timing verifier will benefit if <Assert low> is 
included in the parameter list where appropriate, though the macro expander does not require this.} · 

If a signal parameter is an output, append •iV" to its name. Do this only in the parameter list, not in · 
the drawing as a whole. (This tells the macro expander which signals to tie together when the 
TIMES body parameter, described in Section 4.3. l causes it to duplicate a macro). 

Module-specific signal-Like a parameter, a module-specific signal is "hidden" from the outside 
world; the macro expander regards it as distinct from any other signals with the same name in other 
macros. In addition. the macro expander creates a different incarnation of it every time the macro is 
invoked. 

As a safeguard against accidents, a module-specific signal name must not duplicate that of any 
signal that is global to the macro. You cannot by creating a module-specific signal name dethrone a 
global name that your macro would · otherwise recognize. To see whether a particular 
name-ALPHA, for example-is allowed to be module-specific inside a particular macro, simply 
as¥"'7 "If the signal h~n some other name, would ALPHA always be mea..ningless and undefined, 
every time the macro gets called?" If the answer is •yes", then it's safe to use the name ALPHA. 

Global signals-Any signal which tacks •1p" or •1M" is global. Ordinarily, a global signal is visible 
from within every macro; throughout the entire design, every reference to its name means the same 
signal. 

Thus if you call a macro several times, the corresponding global signals in every invocation of the 
macro alt get connected together. And if you use the same global signal name in two different 
macros, both those signals get connected together. 

A feature called DECLAR~ creates nested scopes similar to those found in many high --level 
programming languages. H you place a global signal name in a DECLARE list inside a macro, the 
macro expander creates a different incarnation of that signal every time the macro is invoked. In 
addition, while that incarnation is "hidden" from other macros in general, it's visible throughout the 
subtree of this macro-that is, within this macro call and also throughout all the circuitry resulting 
from the macros which it calls in tum. 

A sign al declared in a macro is local and hidden as far as the caller of that macro is concerned, but 



-i.6.8 <Scope> 95 

global and visible as far as all of the callees of the macro are concerned. 

This is similar to the dynamic nesting of scope found in languages like LISP. 

To create the DECLARE list, add to the drawing a fictitious body (available from a graphics editor 
library) called DECL. This works just as the PARAMETER list does: create a body property 
name/text pair for each signal name in the list; name the properties "1", ~", "3", and so on; and put 
the <Class Name>, <Simple Name>, and <Timing Assertion> portion of each signal name in a 
property text. List either a signal or its inverse, but not both. The •1v" rule doesn't apply to the 
DECLARE list. 

4.6.9 <Multiplier> 

To guard against errors and to help enforce design rules concerning fanout capability, the macro 
expander requires the designer to specify very explicitly how to interconnect bodies. 

To feed the output of a gate into three different inputs, a conventional schematic would show 
something like Figure 4-7. 

() 
2~ l 

EN 

Figure 4-7 
Conventional schematic 

EN EN 

But the macro expander makes it easy to replicate a logic element without drawing multiple copies 
of it. simply by setting the SIZE parameter of the corresponding body to the desired number of 
copies. Thus, on first thought, one might try to draw something like Figure 4-8. 



96 

~_J 
I ./ 

Figure 4-8 
Wrong way 

4 How to use the macro expander 

38 
LATCH 

LS 

I DELAY= T 
0.0,0.0,0.0, 

I EN I 

However, that would generate an error because the macro expander knows the gate generates a 
one-bit signal but, because of its definition, the "I" input of a three bit latch requires a three bit 
signal. The solution is to eliminate the line connecting the gate to the latch. Instead, give the output 
of the latch a name-•A ", for example-and use that name along with a •*3" multiplier to feed the 
input of the latch (Figure 4-9). 

DELAY•0.0 

2 ANO 
G3 

SCXRCE•3 

Figure 4-9 
Correct way 

313 
LATCH 

LS 

I DELAY• T 

0.0,0.0,0.0 

EN 



4.6.9 <Multiplier> 97 

The multiplier effectively concatenates the signal to itself the specified number of times. Thus, 
•A*3" is equivalent to •A-.A:.A ". A multiplier will concatenate multiple bit signals, too, so the 
following examples are equivalent: 

8<1:5>*3 
8<1:5>:8<1:5>*8<1:5> 

The value for <Multiplier> may be any expression, but it must begin with •*"· If the value is 0, the 
macro expander creates a zero-width signal by concatenating no bits. 

Note that using a multiplier does not increase the number of gates that drive a signal; to automate 
the entire issue, make the TIMES parameter on the gate a function of the SIZE parameters on all 

logic elements driven by the gate. 

4.6.10 <Version> 

Using the TIMES parameter to duplicate a logic element as explained earlier in this chapter 
automatically generates multiple physical output signals for each logical output signal shown and 
labeled on the drawing. The ability to gather a handful of similar physical signals and deal with 
them as one logical signal is a particular advantage of the macro expander. The macro expander 
itself, however, must deal individually with the physical signals, and thus needs a unique name for 
each one for use in preparing wirelists and so on. It derives these names by placing a slash and a 
version number after the name you invent 

Ordinarily, these versions need not concern you until it actually comes time to build the prototype. 
If you ever do need to specify a particular version during the design phase, however, you can do so 
using the same syntax: 

MULTIVERSION SIGNAL /0 
MULTIVERSION SIGNAL /1 
MULTIVERSION SIGNAL /2 

Note that although the macro expander uses numbers, you may place any alphanumeric string after 
the slash provided it cannot be confused with the <scope> portion of t~e name. 

You can, in fact, use the <Version> option as a general-purpose qualifier on a signal name, for 
whatever purpose you wish. 

A signal name may accumulate multiple version numbers as one macro calls another. The macro 
expander concatenates the version numbers, separated by dots, with the version contributed by the 



98 4 How to use the macro expander 

highest level macro at the right: 

A SIGNAL /2.3.1 

4.6.11 Constants as Signal Names 

Naming a sign~l •1" or •o"indicates that it is permanently TRUE or FALSE-a binary constant 
rather than a variable. Putting a row of •t"s and "O"s together concatenates them just as the •:". 
operator would. Thus, the folJowing examples are equivalent: 

19118 
1:8:1:1:0 

Essentially the only valid options to apply to a binary constant are <Negation>, <Assert Low>, and 
<Multiplier>. A •-" preceding such a constant or an • L" following it applies to all the bits, 
inverting each one. Note that the <Multiplier> doesn't multiply the numbers, but rather concatenates 
each individual bit with itself the specified number of times. Thus "101 *4" is the same as: 

1:1:1:1:0:0:0:0:1:1:1:1 

not 11 101:101:101:101" or "10110100". 

4.6.12 Text Substitutions 

Within a drawing, you can provide a list of text substitutions or abbreviations to be used 
throughout that drawing. 

Effectively, these are "text macros", but we'll call them •substitutions" to avoid confusion with 
drawing macros. Each substitution rule should look like "A=-B", where A is the abbreviation and B 
is its meaning. The abbreviation must be a single word {that is, embedded spaces are forbidden) but 
its meaning may be any string _of characters including leading or embedded blanks. 

To define text substitutions, you use a DEFINITION list similar to the PARAMETER and 
DECLARE lists described in Section 4.6.8. Add to your drawing a fictitious body called DEF 
(usually one keeps a template for it in a graphics editor library) and give it a property name/value 
pair for each substitution rule. The properties are unimportant (by convention one uses •t" as the 
first name, ~ as the second, and so on) but each value should give a substitution rule in the form 



4.6.12 Text Substitutions 

DEFINE 
LOWBYTE-8:15 
HIGHBVTE•0:7 

99 

Except inside the <Bit Subscript> portion of a signal name, you must surround an abbreviation 
with \" characters. This is a safety feature to prevent destruction of a signal name that happens to 
contain one of these abbreviations within an otherwise innocent word. 

(A more precise ~xplanation is that the entity within the macro expander which scans signal names 
operates in two states, either looking for abbreviations to expand or not looking for them. When it . 
gets to the beginning of the signal name, it enters the not-looking state. Each \" toggles the state. 
Thus, you could place a single ~" before the first abbreviation in a name and leave the scanner in 
the same state until the end. But it's safer and prettier to turn it off again with another \" 
immediately after the abbreviation. 

When the scanner reaches the beginning of the bit subscript part, it enables text substitutions. If it 
encounters a "\" within the bit subscript, it will actually turn substitutions off.) 

Substitutions are illegal in the first line of the title of a drawing. 

The text substitutions defined in the previous example would cause the macro expander to expand 
the foUowing signal names as shown: 

TOP OF STACK<HIGHBYTE> ••> TOP OF STACK<0:7> 
TOP OF STACK<LOWBYTE> ·~> TOP OF STACK<8:15> 

The scope of an abbreviation-The definition of an abbreviation takes effect throughout the 
drawing containing the definition, and throughout any macros called from tha~ drawing, unless 
those macros themselves override it by redefining .the same abbreviation. Thus, the DEFINE list 
implements dynamic scope similar to that of the .LISP language and the macro expander's own 
DECLARE feature. 

Special variables-As mentioned earlier, when you call a macro with SIZE set to a value other than 
1, the macro expander executes an implicit loop from X FIRST to SIZE-1 by X STEP. The 
variables X FIRST and X STEP default to 0 and 1 respectively. but a macro can use the DEFINE 
li.Jt to set them to any desired values during its own evaluation. This has no effect, however, on 
their value during evaluation of any macros which it calls in tum. 



100 4 How to use the macro expander 

4.6.13 Sundry Details About Naming Signals 

The material in this section will interest the serious user of the macro expander, but the casual 
reader may skim it without loss. 

The PATH mechanism-When you use "JM" to make a signal module-specific, or when you use the 
DEFINE list to µ-eate a local scope for a signal, the macro expander must find a way to generate 
multiple, distinct signal names from each of the names you invent. It accomplishes this by prefixing . 
the signal name with various paths. 

A path is a route from the root of a tree to a particular node you're interested in. You can visualize 
the process of expanding macros as a tree, where each node represents the invocation of a macro, 
and the father of a node is whoever called the macro. You can derive a unique name for a 
path-and thereby for a particular node-by tracing the chain of macro calls from the root (topmost 
macro in your design) to the node you're interested in, ma.king a list of the LOC body parameters of 
all the macro calls in the chain. 

Thus, when the macro expander wants to make a unique incarnation of a "/M" name (or of a global 
name mentioned in a DECLARE list) for a particular invocation of a macro, it simply prefixes the 
name with the path (in parentheses) to the node that represents that invocation. 

Suppose a module called GAMMA has a module-specific signal called •MINE /M". In Figure 4-10, 
the invocation of GAMMA at the lowest level of the tree wilt have a signal named 
\A I BI G l)MINE /M" while the other invocation of GAMMA will have a signal named 
"(A 1 G l)MINE /M". 



4.6.13 Sundry Details About Naming Signals 

f=l_PHA 

LOC - A1 

BETA GAMMA 
LOC • 81 LOC • G1 

GAMMA DELTA 
LOC =- G1 LOC • 01 

Figure 4-10 
Macro expansion tree 

101 

When the SIZE parameter causes the macro expander to replicate a macro, the special variable Xis 
different for each copy. Since the macro appears only once in the drawing, there's only one value of 
LOC for alt the copies. To distinguish them, the macro expander appends a "•", followed by the 
value of X, to the LOC value of each copy for which X is not 0. Thus, if X FIRST ·O and 
X STEP· I and SIZE-2, then a body at location S 1 in the drawing will generate three bodies as 
locations S 1, S l•l, and S 1•2. 

(Incidentally, the macro expander follows a similar convention to distinguish multiple copies 
resulting from the TrMES body parameter. It appends a*+" foiiowed by a number to each copy 
after the first, so that a body at location 52 with TIMES set to 3 generates ~hree bodies with 
locations 52, S2+ 1, and 52+2. If a location has both a TIMES and a SIZE appendage, the TIMES 
appendage comes first.) 

The PA TH text abbreviation-Ordinarily, such path construction ls transparent. But the macro 
expander makes the feature available to the designer, too, by providing a special predefined text 
abbreviation "PATH". When you use •PATH" (inside most of the signal name, of course, you'll 
have to write \PA TH\ as you would with any abbreviation) in a signal name, the macro expander 
will automatically substitute a parenthesized path for it during macro expansion. 

DOWN THE PRIMROSE \PATH\ 

becomes 

DO~N THE PRIMROSE CG3 Ml R7l 



102 4 How to use the macro expander 

Obviously. it's a good idea to place paths in the middle or at the end of signal names so there's no 
confusion between them and the ones the system adds for mntiu!e-specific signals. 

How is the PA TH feature useful? Suppose you want to be able to access any register in your design 
from a special piece of diagnostic hardware to aid in field servicing. You can hide this extra 
complexity by providing a special macro called REGISTER which automatically generates the 
proper circuitry. Each incarnation of this macro will need a pair of signals connecting it to the 
diagnostic hardware. Giving the macro extra input and output parameters for the diagnostic signals 
makes it more complicated to draw. But using globals poses a problem because each incarnation of 
the macro needs a set of globals with unique names. 

The solution is to use global signals but include PA TH in each global name so that all incarnations · 
of the macro will use the same global name-with a unique path name attached to the end of it 
When the design is finished, these global signals will produce error messages because no hardware 
exists to generate them, and you can then design the diagnostic hardware specifically to generate the 
signal names that appear in these error messages. 

Naming Unnamed Signals-When the designer does not name a signal, the macro expander always 
derives an internal name for the signal For each. pin the signal connects to, the macro expander 
constructs a possible name by taking the LOC par.ameter of the pin's body, then appending a "1.", 
next appending the signal parameter name from the property text field, and finally tacking on • L" 
if there's a "*" in the property name for that pin: 

<body LOC>X<signal parameter name> 

Then it alphabetizes this list of possible names and uses the one that appears first 

When an unnamed signal connects to a body which has no LOC parameter, the macro expander 
doesn't construct a possible name for that connection. If that leaves the macro expander with no 
possible names to choose from, then it will reluctantly construct a name of the form: · 

%<number>i<signal parameter name> 

followed by " L" if the signal invokes low. Then it alphabetizes these and selects the first 

Synonyms-Putting two names on the same signal is perfectly legitimate so long as the names don't 
conflict on matters like timing or the number of bits the signal represents. The macro expander 
considers such names.to be synonyms. 

When the signal in question has multiple bits, the macro expander matches the individual bits of 
one name with those of the other in row major order. Thus if signal A:B:C is synonymous with 
signal Z<0:2>, then A is the same as B<O>, B the same as Z< l>, and C the same as Z<2>. If signal 
X<O:!> is synonymous with Y <0: 1,0:1>, then X<O> is the same as '( <0,0>, X<l> the same as Y <0,1>, 

X<2> the same as Y<l,0>, and X<3> the same as Y<l,l>. 



4.6.1! Sundry Details About Naming Signals 

X8 
BIT REVERSA.... 

IN •X OUT 
CAN BE 
DEFINED AS ••• 

TN< 0: SIZE-1: 1 > /fl OUT<SIZE-1:0:-1> /P 

IN<X> /P 

Figure 4-11 
Bit reversal 

OR 

OUT<SIZE-X-1> /P 

103 

Figure 4-11 shows two different ways to reverse the bits of a bus using synonyms. The first uses a 
step size of -1 in the bit specification, while the second uses the special variable X which the macro 
expander increments from X FIRST through SIZE-i as it expands any macro. 



104 4 How to use the macro expander 

4.7 Matching Signals with Bodies 

just as programming languages demand that actual pararneters match formal pat-a.meters in terms of 
data type and number, so the macro expander demands that signals match body pins in terms of 
assertion level and number of bits. 

As mentioned earlier, if a signal has the • L" (<Assert Low>) option, you may connect it only to pins 
which have diamonds. If a signal asserts high, then you may connect it only to pins which don't 

have diamonds. 

Similarly, the nu_mber of bits that a signal name represents must match the number of bits that a 
body pin represents. It's not always apparent from the outside of a body which pins represent 
multiple bits, as the Figure 4-12 shows. 

I 

48 
CONTRIVED 

EXAMPLE 

+X 

CK 

T 

Figure i-12 
Common pins 

The CK input of this register is a one-bit signal or common pin, since a single clock suffices for 
multiple cells of the register; the I input and T output are four-bit signals, since they are a function 
of size. The parameter list inside the drawing that defines the macro determines this by specifying 
CK independent of SIZE and by dimensioning I and T to have the number of bits specified by 
SIZE: 

CK 
1<0:SIZE-l> 
T<8:SIZE-1> 

Reconciling bits-the macro expander deals with vectors and arrays of bits in row major order. 
That is, whenever it processes the bits it travels through an array from the 0th bit to the highest 



4. 7 Matching Signals with Bodies 105 

order bit, varying the rightmost subscript most rapidly. 

When a multiple-bit signal connects to a multiple-bit input on a body, the only requirement is that 
the number of bits in the signal matches the number of bits in the input. The means of arranging 
the multiple bits or multiple inputs into a vector or array doesn't matter; in effect, the system 
converts the pins into a vector (a one-dimensional array) using row-major order, converts the signal 
bits into a vector using row-major order, and connects the two vectors bit by bit 

Obviously, this works most neatly when the pins and signals comprise arrays with precisely the same 
dimensions. But using arrays with like numbers of elements but different dimensions (connecting a 
2*S array of signal bits to a 3*4 array of pins, for example) is permitted also. 

Similarly, concatenation always decomposes various signals into vectors (that is, one dimensional 
arrays) of bits if necessary before •glueing" them together. The decomposition takes place in row 
major order as just explained. 



106 4 How to use the macro expander 

4.8 Fictitious Bodies 

Along with all the bodies that eventuaiiy resuit in semiconductors and wrrmg, macro expanaer 
drawings also use bodies that denote no hardware whatsoever, but convey information to the macro 
expander and router. 

Not-As mentioned earlier, a NOT body allows you to flout a5sertion-check.ing conventions for a 
particular signal On one side of the NOT body, the signal is considered to assert high and on the 
other to assert low, as Figure 4-13 shows. 

CIBAT ..... 
~· 

WRONG 

Figure 4-13 
Using NOT bodies 

RIGHT 

Slash-A vertical or horizontal slash has no effect, but makes clear the number of bits on a bus 
(Figure 4-14). 



-i.8 Fictitious Bodies 

368 
R REG RS 
s R3 

I DELAY• T 
0.0.0.0,0.0 

CK 

36 
Z< 5: 40> 

Y< 4: 39> 

Figure 4-14 
Slash body 

0 
368 

2 MUX 
MS 

DELAY• 
0.0.0.0.0.0 

s 

107 

T 

Merge-Using the •:" operator to combine individual signal names as explained earlier in this 
chapter can leave a lot of ugly unconnected lines. A prettier means to the same end is to use a 
fictitious body called a "MERGE", which joins the lines representing two or more signals. The signal 
on the branch marked ~" supplies the high order bits, the signal on the branch marked "M" (if 

any) supplies the middle order bits, and the signal on the branch marked "L" supplies the low order 
bits (Figure 4-15). 

l:IBJl'(.4 •• 

,. 
U'10t 

•M 
I DBA'I'• T 
...... c.e.e 

IN 

OBA'r ... e 

Figure 4-15 
-Three way merge 

.,. 
""'°' •IC 

---i--1 aa.A'r• T 

··········· P4 



108 4 How to use the macro expander 

You can similarly use a reverse MERGE to split a multiple-bit signal and feed pieces of it to 
various destinations (Figure 4-16). 

,. 
u.f'04 

•JC 
I DBA'l'a T ........... 

9f 

.. 

Figure 4-16 
Reverse merge 

Sign Extension-To widen a signal by replicating the sign bit, use the body shown in Figure 4-17. 
That example would convert SIGNAL<0:3> into SIGNAL<0>*5:SIGNAL< 1:3> and call the result 
WIDESIGNAL<0:7>. MNAME is the property that provides the text •4 TO 8". 

Figure 4-17 
Sign extension 

Wire-Or-As mentioned earlier, the macro expander does its level best to prevent you from 
connecting outputs together accidentally. If you truly intend to connect two signals, you must use a 
WIRE-OR body to do so. Unlike an actual OR, the WIRE-OR implies no hardware, but simply 
connects the signals. Bodies exist for positive and negative assertion (Figure 4-18). 



U Fictitious Bodies 

2 
t..IIRE 

OR 
+X 

Figure 4-18 
Wire-Or bodies 

109 

Comment, Par, Def, Deel-The PAR, DEF, and DECL bodies were mentioned in sections 4.6.8 and 
4.6.12. The COMMENT body works similarly, allowing ypu to attach to it body text which appears 
on your drawing as a comment and has no effect on the macro expander. 



110 4 How to use the macro expander 

.-.9 How to construct the Terminal File 

As mentioned earlier in the chapter, there are two kinds of terminal files: an actual IC terminal file 
for use when generating wirellsts for the router, and a primitive terminal file for generating input to 
the simulator. When you run the macro expander program, you tell it which file to use. 

The format of the terminal file is the same in either case: a series _of entries listing the inputs and 
outputs of the macro. 

On any particular line of the file, anything to the right of a 9!" is a comment Otherwise, the entries 
appear in free format, each ending with a semicolon. 

Here,s a typical entry: 

PARITY GEN 100160 CSIZE-91 C1001S0,ll IA<0:8>, 18<0:8>, ZA /V, 
ZB /V, C L /V; 

The individual items in the entry are: 

• The name of the macro representing the actual IC {which should exactly match the name 
of the drawing that defines that IC and the macro body that represents it). In the 
preceding example, the name is "PARITY GEN 100160". 

• An optional expression like -SIZE-9" which serves as a selection equation similar to that 
of the second line of a drawing title. You can make multiple entries in the terminal file for 
a given IC, and the -macro expander will choose from them the entry whose selection 
equation evaluates to TRUE. (In the terminal file, it's permissable for none of the 
equations to evaluate to TRUE, in which case the macro expander wiU decide that it 
hasn't reached the definition of an actual IC after alt, and will go search for a drawing to 
expand. This is handy, for example, when you want to use an actual IC when SIZE is 
small enough but cascade several !Cs when SIZE is too large.) 

If it appears, this optional expression must be enclosed in square brackets. 

• A pair of items inside parentheses: the chip name followed by the number of copies of the 
same function within each IC. Typically, the chip name is simply the manufacturer's part 
number. SCALD allows you to use an elaborate macro name during the logical design 
phase, translating it _into the actual part number for us~ during the physical layout and 
prototyping. 

• The names of the input and output signal parameters for the macro, separated by commas. 
Each name should include the desired <Class>, <Simple Name>, <Timing Assertion>, and 
<Bit Subscript> parts. List either the uninverted or the inverted form of a signal, but not 
both. If a signal is an output, append a •tv" to the name. 



-t.9 How to construct the Terminal File 111 

For a logical primitive, each parameter name must match the corresponding one built into 

the SCALD logic simulator. For either an actual IC or a logical primitive, each parameter 
name must match that in the property text field for the corresponding pin of the body 

definition, except that the property text field will lack the <Assert Low> and <Bit 
Subscript> portions of the name. 

Note again that the entry for each macro ends with a semicolon. 



112 4 How to use the macro expander 

4.10 Running the Macro Expander 

Once all the drawings are prepared, using the macro expander is simply a matter of running the 
program and specifying all the files it needs. 

First you must run the WDPR program to trans1ate binary files from the graphics editor into a form 
that the macro expander can read. It witJ ask you for the name of a "WD input file" (the one you 
want to convert) and a "WDP output file" (the one it will put the conversion into.) When it's 
finished, it will print "Done." and ask you for a new pair of names, again and again till you abort it 

To run MAC, the macro expander itself, first prepare a file containing nothing but the word 
"END", which you'll use to terminate input to the expander. 

Then run the program. It wilI ask for the following files: 

MACLST-The file into which the program writes its listing. 

MACEXP-The file into which the program writes the list of bodies and connections resulting from 
the macro expansion, which will serve as the input to the next phase of SCALD. 

TERM· The TERM file from which the program reads parameters of terminal bodies. 

WDP-Tell the program the names of the files produced by the WDPR program for the individual 
drawings. The macro expander will ask again and again for FILEO until you give it the file 
containing only •END". 



4.11 The Macro Expander Listing 113 

4.11 The Macro Expander Listing 

The macro expander produces an extensive listing. We11 discuss the individual phases of the listing 
in order of appearance, showing an example of each phase. The examples are occasionally distorted 
somewhat to squeeze within the width of the page, or to illustrate additional features of the 
program. 

Progress report-This gives a dutiful account of the program's activities: 

READING TERftINAL BODY DEFINITIONS 

FINISHED READING TERftINRL BODY DEFINITIONS 

READING ftACRO DEFINITIONS STARTED 

FINISHED READING ftACRO DEFINITIONS 

Undefined macros-A list of each macro you failed to define, along with the name of the macro 
which attempted to catl it. Despite these errors, the program expands the design as far as it can; 
c~nnections to undefined macros are simply missing from the output file. 

To help you find macro definitions in the listing. the program assigns a number to each macro that 
t!,o,s have a definition, according to the order in which you supplied the macro names to the 
program. Thus in the following example, "93" is the number assigned to macro "FORMAT· 
CONTROL". 

UNDEFINED MACRO<S>: 

•DUAL 1 OF 4 DECODE 188178l 

•INT FP SUBTRACT 

•tNT FP ADDER 

•188178 

•188178 

•"osv nux 
•noav nux 

• CRLLED.FROft •FORMAT CONTROL 193• 

• CALLED FRO" •INT FP A-B 1183• 

• CALLED FROn ·RNO NORn 1111· 

• CALLEO FROM •t OF 8 DECODE 188178 1143• 

• CALLED FROn •t OF 8 DECODE 188178L 1144• 

• CALLED FROn ·Asox 1149• 

• CALLED FROn ·Aaox 1149• 

Alphabetic macro list-The names-as given by the MNAME property and by title line 1-of all 
the nonterminal macros that are defined, in alphabetic order. Again. each macro's number follows its 

name. 

The column marked -CALLS" gives the number of static calt.s on the macro: the number of times it 
appears in somebody else's definition. rather than the number of times it actually occurs once the 

expansion takes place. For example, suppose a macro calted POPULAR appears once in the 
definition for macro ALPHA and twice in the definition for macro BET A. Static calls on 
POPULAR total 3 even if ALPHA gets used 36 times and BET A never gets used at all 

The column marked "FILE" gives the project name (see Section 2.2.1 for details), if any, followed by 
a dot and the name of the file holding the drawing for this macro. Sometimes several different 
drawings may define a given macro; in that case, the •macro portrait" phase of the listing \described 



114 1: How to use the macro expander 

later on) gives all of their names, but only the first of them appears here. 

SEQ CRLLS FILE 

1 8 LOLl.1788CMK2,Sll 

2 2 LOLl.17880CMK2,Sll 

3 2 LOLl.187CnP CftK2,Sll 

4 22 188112.l88112CMK2,Sll 

S 3 LOLl.188RDDCftK2,S1l 

8 4 RCMPY.23X18RCMK2,Sll 

nACRO DEFINITION<ALPHABETICRLLY ORDERED> 

1 OF 8 DECODE 188178 #143 

1 OF 8 DECODE 188178L 1144 

181111 cnP 1142 

188112V 181 

18 BIT ADDER 188K 185 

18X18 RECODE MPY 179 

Readin-ordered macro list-Identical with the preceding list, but with the macros appearing in the 
order in which you supplied their names to the program. 

Terminal body list-A list of terminal macros-that is, the macros at the ver; end of the chain of · 
expansions, which cannot themselves be expanded. If you are going to use the logic simulator, these 
will be logical primitives; otherwise, they'll be macros representing actual integrated circuits. 

For each macro, the CALLS column gives the number of static calls upon that macro, the 
TERMINAL BODY column gives the macro name corresponding to the MNAME property or to 
title line l, and the CHIP NAME column gives the chip name that will be used by subsequent 
programs in the SCALD family. (The terminal file tells SCALD which chip name to use for each 
terminal macro; see Section 4.9 for details). 

SEQ CALLS CHIP NAnE TERMINAL BODY 

1 57 188181 188181 

2 74 188182 188182 

3 1 ft87871H 256M RAn nB7871H 

4 3 188183 2X& BIT RECODE MPY 188183 

s 7 188179 CARRY LOOK-AHERO 188179 

Terminal portrait-For ea.ch terminal macro, the program provides a detailed description. First the 
program prints the MNAME of the macro and the number assigned to the macro. Then it prints 
the number of static calls upon the macro, and the filenames and MNAMEs of all the other macros 
which called it 

After the MNAME of each caller, the ·program prints the caller's number, and the values of 
parameters LOC and SIZE which the caller used in invoking this terminal macro. (The program 
omits the SIZE parameter here if SIZE-1.) 

Following the list of callers, the portrait shows the formal parameters for the terminal macro, just as 
they appear in the terminal file. 

In the example below, for instance, macro -cA.RRY LOOK-AHEAD 100179", whose identifying 
number is 69, was called four times by macro •72 BIT CARRY OUT ADDER", whose number is 
118. The drawing defining macro 118 is in file COA[MK2,S 1] which belongs to project COA. 



i.11 The M aero Expander Listing 115 

Since the program didn't print the SIZE parameter, COA must have invoked this terminal macro 
with SIZE· I. It did so at locations Cl, C2, C3, and Ci. 

The macro's parameters are •co+2468 L<0:3> /V", •pG L<0:7,0:l>", and "CI L". 

TERnlNRL: CRRRY LOOK-AHEAD 188179 

CALLEO 7 TinES FROn: COA.COACnK2,Sll 

COA. COA CMK2, S ll 

COA. COR cnK2, Sll 

NUr!BER 69 

72 BIT CARRY OUT RODER #ll8<LOCaC2> 

72 BIT CARRY OUT RODER 1118CLOCaCl> 

72 BIT CARRY OUT ADDER 1118CLOCaC4> 

COA.COACMK2,Sll 72 BIT CARRY OUT ADDER 1118CLOC=C3> 

LOM.188ADDCnK2,Sll 18 BIT ADDER 188K 18SCLOCaCLA> 

LOM.368ROOCMK2,Sll 36 BIT ADDER 188" #84CLOCaCLA1> 

LOM.368ADDCMK2,Sll 36 BIT ADDER 188K #84<LOC•CLA2) 

PARRnETER C0+2468 L<8:3> IV, PG L<8:7,8:1>, CI L 

Macro portrait-A detailed description of an individual non-terminal macro. 

The program first prints the macro MNAME and identifying number. In the following example, the 
name is HW MPY RND NORM and the number is 106. 

Then it lists all files which define the macro; elsewhere in the listing, only the first of these 
filenames will appear. {Typically one would encounter multiple files because each file has a different 
selection equation as explained in Section 4.4, not because a macro definition won't fit in a single 
file.) For each file, the program prints the project name (explained in Section 2.2.1) followed by a 
dot and the actual name of the file. In the exampl~ a single file called HWRN 1[MK2.S I] in project 
HWMRN defines the macro. 

Next the program gives the number of static calls on this macro and lists each of the callers; for 
details, see the preceding explanation of the terminal portrait. In the example, macro 106 is called 4 
times by macro •Hw ADDER ROUNDER". 

Next it lists the formal parameters of the macro, just as they appear in the PAR body inside the 
macro's definition. 

Next the program lists each of the synonyms-signals which have more than one name-within the 
macro's definition. In the example, for instance, signal 1.11. is the same as 
MUXotO:MUX01.l:MUX01.2. (Evidently, this resulted from using a MERGE to concatenate three 
unnamed signals into one.) 



116 4 How to use the macro expander 

Next the program lists all of the text substitutions given in the DEFINE body inside the macro'~ 
definition. In the example, X STEP is defined to be •1". Next the program prints a list of the 
synonyms that result when a fictitious SLASH body splits one signal into two identical pieces within 
the drawing that defines the macro. In the example, for instance, a 9 bit wide signal from the body 
at LOC-TG apparently got interrupted, forcing the macro expander to invent two synonymous 
names, 1.21. and TG1.T, instead of just one. 

Finally, the program prints one entry for each of the macros called by this macro. At the left of the 
entry is the LOC parameter for the call To the right of that is a paragraph beginning with the 
macro MNAME and number. If the SIZE parameter for the call is not 1, it appears in parentheses 
following the macro number. Then the program prints a list of formal/actual parameter pairs, also 
in parentheses. 

If the macro being called is a terminal, a •*" appears in front of its name; if it's undefined, a "?" 
appears in front of its name. 

If, from the caller's viewpoint, a formal parameter asserts low (in other words, the pin corresponding 
to that parameter has a diamond), a •*" appears after its name in the parenthesized list. If the 
caller did not supply a signal for a particular formal parameter (in other words, left a pin 
unconnected in the drawing), then the formal/actual parameter pair will look. lik.e 

FORMAL • , 

instead of 

FORMAL • ACTUAL, 

In the following example, for instance, the macro calls another macro "HW EXP" with LOC-EXP 
and SIZE· I (we k.now that because no size appears on ~he listing). The macro expander connects 
signal EXP1.EXP to formal parameter EXP, signal EXP~OVFL UNFL L to formal parameter 
OVFL UNFL L*, and so on. Format parameter OVFL UNFL L* asserts low. as shown by the"*" 
following its name. The macro also calls •100171", which is a terminal macro as shown by the "*" 
preceding its name, with LOC·MUXO and SIZE·6B, and so on. 

When a macro lacks one of the features just described, the program omits the corresponding portion 
of the profile. Thus, if a macro contains no text substitutions or synonyms, the DEFINE and 
SYNONYM portions of the p_rofile would not appear at alt 

nACRO: HM rtPY RND NOR" NUnSER 186 

FILESz 1/1 HMnRN.HMRN1CnK2,51] 

CALLED 4 TinES FROn: HMAOORNO.H~RODRCnK2,Sll HM RODER ROUNDER 1112CLOC·RN3) 



i.11 The Macro Expander Listing 

HMADDRNO.HMAODftOIK2,Sll HM ADDER ROUNDER 1112CLOC.RN2> 

HWADORND.HMAOORCnK2,s11 HW ADDER ROUNDER 1112CLOC.RN1) 

HMAODRNO.HMADDRO!K2,Sll HM RODER ROUNDER lll2CLOC•RN8) 

PARAt1ETER T<8:26>1V, CTRL, I<HMBUS> 

SYNONYM %1% • nUX8%8:"UX8%1:ftUX8%2 

%2% • nux1xe:nux1x11Mux112 

SLASH <SIZE·9>X2% • TGXT 

DEFINE 

<SIZE·18>%1% • EXPXEXP 

<SIZEal)TGXINT OVFL L a RNXOVFL L 

<SIZE·S>EXPXOVFl UNFL L a TGXFP OVFL UNFL L 

X STEP• 1 

11ACROS CALLED 

EXP HU EXP #187 < EXP • EXPXEXP, OVFL UNFL L* • EXPXOVFL UNFL L, 

I • I<HUEXP>IP ;HERE AT START OF A2> 

nuxa •1ee111 1Sacs1ZE.sB> < T L* • , e • nuxexa, 1 • "uxex1, 
2 • nux8'%2, 3 • 8*6, s • EXPONENT OFFSET<8:l>IM, 

T • T<8t5>1P, OE L* • "PY HM SEL ENA A3.C3 L> 

nux1 •188171 168CSIZE·3B> ( T L• • , •• nux1xe, 1 • 11UX1%1, 

2 • 11UX1%2, 3 • 8*3, S • EXPONENT OFFSET<8:1>111, 

T • T<24i26>1P, OE La • npy HM SEL ENA A3.C3 L> 

RN RND NORn 1111 (EXP. EXPONENT OFFSET<81l>ln, OVFL L*. RNXOVFL L,. 

T • T<8s23>1P, I • I<HUFRRC>IP ;HERE AT START OF A3, 

CTRL • CTRLIP> 

TG IN TAG '10DIFIER 1189 C T • TG%T, INT OVFL La • TG%INT OVFL L, 

FP OVFL UNFl L• • TGXFP OVFL UHFL L, 

I • I<HMTRG>IP ;HERE AT START OF A3> 

117 

Expansion trace-As it processes your design, the program prints a line of text every time it 
expands a macro. Up to now, the listing has dealt with the static structure of the macro hierarchy; 
this part of the listing traces alt the dynamic calls. The left half of each line describes the path 
(defined in Section 4.6.1 !) leading to that particular macro catl, and the right describes the call. 



ll8 4 How to use the macro expander 

To describe the call, the macro expander prints the level of the call-that is, how deeply the call is 

nested-the name of the macro it's excandinsr. the value of the soecial variable X (as described in 
I. 6J• .. .. 

Section 4.3.1, the macro expander uses X to count from X FIRST to SIZE in increments of 
X STEP, determining how many times it will replicate a given macro), and the value of the SIZE 
parameter used in this call. 

In the following example, the first line represents the expansion of the body at location ABOX. 
This occurs at level 1, and involves a macro called "ABOX" whose number is 149. X is 0 during 
this call, so the expansion produces a single copy of ABOX. The parameter SIZE is 1. 

The second line shows that the program expanding the body at location lAMl within the macro at 
location ABOX. This one is a terminal called •100171" whose number is 68. Again, X=O and. 
SIZE·l. 

The third line shows the program expanding the body at location 1AM2 within the macro at 
location ABOX, and so on. 

The next interesting expansion occurs several lines later in the original listing, so our example skips 
the boring part. Look at the line immediately foll<;>wing the skip. Here you can see what happens 
when the loop from X FIRST to SIZE produces '110re than one copy of a macro during a single 
expansion. The fourteen lines following the skip alternate between macro 129 at level 6 and 
terminal macro 58 at level 7. The first instance of macro 129 occurs with X=O, the second with X=8, 
the third with X· 16, and so on; we can infer that X runs from X FIRST·O to SIZE=48 with an 
increment of X STEP-8. 

nACRO EXPANSION PRSS 1 

<ABOX> I l:'\JC'I • t •nrnn. nnnv ••~a 1v_A OT,r_t\ 
1.1.Wl.1.i .1. un"'n'-'• MUWft .... ~~ 'ftMV'W~r..1.5~# 

CABOX 1R1H> LEVEL: 2 TERtUNAL: 189171 #88 CX=8,SIZE•l82) 

CABOX 1Aft2> LEVEL: 2 TERrUNAL: 188171 188 CXa8,SIZE•l82> 

CABOX ll'UU> LEVEL: 2 TERftINAL: 188171 #68 cx.e,SIZE•l82> 

CABOX 1nn2> LEVEL: 2 l:ERnINAL: 188171 #68 <X=8,SIZE=l82) 

<ABOX lnULTFU> LEYELt 2 tlACRO: nULTIPLIER FCN UNIT 1158 cx.e,SIZE•l) 

<ABOX ll1ULTFU HMAR> LEVEL: 3 rtACRO: HM ADDER ROUNDER 1112 CXs8,SIZE=l> 

<RBOX lMULTFU HUAR AtlB> lfVEls 4 11ACRO: INT FP A-B 1183 CX•8,SIZEsl} 

<ABOX 1'1ULTFU HUAR Ans nooe> LEVEL: S t1RCRO: A+-8 TAG nODIFIER 1114 cx.a,SIZE:l) 

<h•r• we skip• few tin•• to avoid llOnotony> 

LEVEL: 6 nACRO: SHIFT REG CLR 188141 1129 OC•8,Sl2E=54) <ABOX ltlULTFU HURR Ana V8 R> 

<ABOX lnULTFU HMAR Aft8 ve R Rl) 

<ABOX lnULTFU HWAR Ans've RIS) 

LEVEL: 7 TERftINAL: SHIFT REG 188141 158 cx.e,SIZE·l> 

LEVELi 6 tlACROs SHIFT REG CLR 188141 1129 CX=8,SI2Ea54) 

<ABOX 1'1ULTFU HLIAR AftB ve R.18 Rl) LEVEL: 7 TERnINAL: SHIFT REG 188141 158 cx.a,SIZEal) 

<ABOX lnULTFU HWAR Ana V8 Rl16) LEVEL: 6 nACRO: SHIFT REG CLR 188141 1129 CXal6,Sl2E=54) 

<ABOX lnULTFU HMAR Ana va Rl18 ftl) LEVEL: 7 TERnINAL: SHIFT REG 188141 158 cx.a,SIZEsl) 

<ABOX 1nULTFU HMAR Ans V8 Rl24) LEVELz 8 nACRO: SHIFT REG CLR 188141 1129 <X·24,SIZE·54) 

(A80X lftULTFU HMAR Ana ve R.124 Rl) LEVEL1 7 TERnINAL: SHIFT REG 188141 158 cx.e,SIZE·l> 

<ABOX UftJLTFU HWAR Aft8 V8 Rl32> LEVEL: 6 11ACR0s SHIFT REG CLR 188141 1129 <X•32,SIZEa54) 



-i.11 The M aero Expander Listing 119 

msox l"UL~U HURR R"8 Y8 Rl32 Rl) LEYELi 7 TERnINAL: SHIFT REG 188141 158 cx.e,SIZE·l> 

(RBOX lnULTFU HMAR AnB V8 Rl48) LEVEL: 6 nACROs SHIFT REG CLR 188141 1129 <X•48,SlZEa54) 

<ABOX lnULTFU HMAR RMB Y8 Rl48 Rl> LEVEL: 7 TERnINRL: SHIFT REG 188141 158 CX•8,SIZE•l> 

<ABOX lnULTFU HUAR AnB V8 Rl48> LEVEL: 6 ftACROs SHIFT REG CLR 188141 1129 <Xa48,SIZE•54> 

<ABOX lftULTFU HUAR Ans va Rl48 Rl> LEVEL: 7 TERftlNAL: SHIFT REG 188141 158 cx.e,SIZEal) 

<ABDX lnULTFU HMAR APB> LEVEL: 4 MACRO: INT FP A+B 1184 <X•8,SIZE·1> 

Chip counts-For each nonterminal macro, the program tells you the names and numbers of all the 
terminals that it requires. This includes terminals it uses indirectly--that is, by calling other 
nonterminals which in tum use the terminals-as well ·as the terminals that appear directly in this 
macro's definition. And the totals for a particular macro represent all calls on that macro throughout 
the system, not just a single invocation. 

This is useful for estimating the cost of any particular part of the design. And the listing for the 
highest-level macro in your design wilt, by definition, give totals for all chips used throughout the 
design. 

Note that these totals count each invocation of a terminal macro, even when one actual IC 
containing multiple sections can provide several copies of a macro. 

su"nARY OF TOTAL CHIPS USED BY EACH MACRO 

nACRO: 18X18 RECODE 11PY NUMBER 79 

CHIPS TYPE 

38 188117 

188 188183 

144 

ftACROs PARTIAL PRODUCT SHIFTER NUnBER 88 

CHIPS TYPE 

4 188182 

4 188188 

8 

Error summary-At the end of the listing, the macro expander prints the number of errors found 
throughout all passes of the program. The actual messages are printed in various phases of the 
listing. 



120 4 How to use the macro expander 



121 

5 A Guided Tour of a SCALD Macro 
If you followed the guided tour of the graphics editor in Section 3, you are now no doubt sick of the 
drawing that defines macro 10016. But you are also no doubt very familiar with it, so it seems like 
the best locale for a guided tour of the aspects of 10016 that relate to the macro expander language 
itself. 

This time, we won't try to take you step by step through the thought process of the guy who made 
the drawing originally but instead will let you wander around enjoying the sights while we offer 
random comments. 

FigUres 5-1 and 5-2 give a reprise of the drawing and the body respectively. 



122 5 A Guided Tour of a SCALD Macro 

• S'1U' tQ.D CH< 
II 

I . 

~·. tQ.D ., •• 

~·~-:>..::;:~~':&,...;.;"";..,_~~~~~~~.....j~~~~~~~~~~4-~~-'• ~·.., 

L 

·!'!U.g 

111£ a 
W"IU' tG..D otC 

t1 

CE 
~.s. 

L 
H.10.._S 

oc 

O< A' 

TL<> 

Figure 5-1 
The drawing 

• '" Tr .. > ,., 
+-~~~IDll.Jn!- Tt-~~~_..;~::;...;:.. 

2.e . .J. .. Le 
0( 

"'" 11\.LS W!D'IM 
:OC;:...;..;~~~~....._~__.I Pa 

NIGM.J.f;. 
LOW -1.S 

,, .. > 
0( 

A 
~L 

Ol11i L 
Tf .. .JI '1IJ 

Tt. L ..V 



5 A Guided Tour of a SCALD Macro 

PIN NAME • 1 
PROP NAME • 1 
PROP TEXT • I 

) I 

1~ 

PIN NAME = 2 / 
PROP NAME = 2 
PROP TEXT • CK 

XS 
10016 

+X 

R 

TC 

T 

00 

( 

PIN NAME = 7 
PROP NAME =- 7L • 
PROP TEXT = TC 

PIN NAME :a 6 
PROP NAME • 6 
PROP TEXT• T 

T ~~~s-5SL· 
PIN NAME = 3 __j 
PROP NAME = 3 

PIN NAME = 4 . PROP TEXT • CNTE 

PROP NAME = 4L• 
PROP TEXT = R PROP TEXT = PE 

Figure 5-2 
The body 

123 

The drawing's mission in life is to describe a four bit binary counter in terms that the SCALD 
simulator can understand. The counter has a clock input CK and a four bit parallel output T, as 
you would expect. It also has a reset input R, a count enable input CNTE, a four bit parallel input 
I, a parallel load enable PE, and a terminal count TC which goes low when T reaches 15 decimal. 

The various inputs and outputs work together like this: 

CNTEL PEL R CK Function 
x L L f Load parallel 
L H L 't Count 
H H L 1' Hold 
x x H x Reset 

Now one way to represent such a counter is to cascade four master-slave flip flops and a bunch of 
gates. But that way madness lies, because while the manufacturer provides such a representation on 



124 . 5 A Guided Tour of a SCALD Macro 

the data sheet, the data sheet parameters don•t deal with it on such a microscopic basis. Rather, they 
sin1p!y describe the setup :L'ld held ti.mes fer the v~9ious clock a.~d enable signals, plus the delay 

from the time the device is clocked until all outputs have responded. 

An easier representation of a counter is an adder which adds one to its outputs every time a clock 
pulse occurs {Figure 5-3), which is basically the approach that the drawing takes. 

T<0:3> ---.:.------1 A 

~000..;..._1 _____ -iB 

CK 

DELAY' • 0.0 

48 
ADDER 

A1 

48 
LATCH 

L1 

F~-----1! DELAY= T 

2.0,J.6,S.0 

EN 

Figure 5-3 
A simple view .of a counter 

T<0:3> 

The extra bodies and signals in the actual drawin~ serve either to represent extra functions like TC 
and PE, or to specify setup, hold, and delay times. . 

For example, the data sheet specifies that you must set up PE or CE 2.5 ns before CK and hold 
them 0.5 ns after CK; the body in the lower left corner informs the simulator of thi~. 

The data sheet specifies that the delay between ci< and Tis 2.0 ns minimum, 3.6 ns typical, and 5.0 
ns maximum; the VAR parameter on register R 1 expresses this. The delay from R to T is 4.0 ns 
typical, so a delay of i:o.o,o.sr on the R signal itself added to the 3.6 ns typical delay on register R 1 
achieves this. 

The drawing illustrates a few intimate details of SCALD syntax, too. For example, we want the 
adder to add the CNTE signal to the outputs so that the counter counts when CNTE is high and 
holds when CNTE is not That's fine, but the macro expander will not let you apply a one bit signal 
like CNTE to a four bit body like the adder, so you must use a MERGE body to concatenate the 
three bit binary constant signal •000" to CNTE. 

When the outside world asserts PE, the signal goes low, so we want the low state of PE to select the 
0 input of our multiplexer and thereby choose the parallel inputs L But using PE L would cause 
problems because the multiplexer's S input has no diamond, so we use -PE instead: same signal as 



5 A Guided Tour of a SCALD Macro 125 

the PE L which the outside world sees, but no diamond required. 

Note that you must use a bit of care in a case like this: the macro expander will permit you to use 
PE rather than -PE or PEL in your drawing even though the outside world gives you only PEL, 
but if you carelessly omit the •-" or 9L ". the macro expander will invert the signal for you for free, 
either by finding an inverted form in the outside world or by permuting inputs to the multiplexer. 

The first line of the title indicates that this drawing is a candidate to define any body whose 
MNAME parameter is •10016". The second line, however, makes it a successful candidate only if 

the body's SIZE parameter is 4. If you use this body with SIZE set to some other value, you'll 
presumably have another drawing with •10016" as the first line of its title, which cascades enough 
four bit units to make up the required size. 



126 5 A Guided Tour of a SCALD Macro 



127 

6 How to use the timing verifier 
The timing verifier reads the output of the macro expander and checks for timing errors using 
knowledge of the minimum and maximum propagation delays of the circuit components, their 
set-up and hold times, minimum pulse width constraints, and wire delays. 

An important feature permits verification of individual modules instead of the entire design. This 
permits the program to execute on computers with limited memory size, allows errors to be 

discovered daily, before they can propagate through the design, and helps estimate a machine's cycle 
time before the design is complete. 

The verifier gets information about the design from. several different sources: 

• For each terminal body-that is, each acttfa.1 IC function-used in the design, the designer 
must provide a macro definition in terms of logical primitives. These primitives describe 
the timing constraints of that terminal body. 

• Within the logical design of the ma.chine, the designer may estimate wire delays for certain 
critical signals as part of the signal names. · 

• The designer may optionally make assertions about the timing of a particular signal, 
incorporating them in the signal name. 

• The designer may specify how to evaluate the timing of certain gates by incorporating 

directives in signal n~es. 

• After the physical design system lays out the parts and routes wires, it provides wire delay 
information, based on chip electrical characteristics and actual wire lengths, for all signals. 

This section will first explain the theory behind the verifier, then explain how to define chips in 

terms of logical primitives, and finally explain how to use wire lengths, assertions, and evaluation 

directives in a design. 



128 6 How to use the timing verifier 

6.1 Theory of operation 

Within synchronous sequential circuits, most signals can change only during particular parts of the 
clock period. For example, it may be possible for a particular signal to change only during the 
second half of the clock r_yde, provided all of the components malting up the system are within their 
timing specificati.ons. 

Consider a register that can be clocked only at a particular time within the clock period. The output 
of the register can change only during a short time after it is clocked, so it is guaranteed to be stable 
for the entire clock. period except around the point at which it is clocked. The output of a gate 
driven from this register can then be changing only during a period of time determined by its 
propagation delay and when the output of the register is changing. 

Determining when within the clock period a given signal may be changing and when it is stable is 

the lc.ey step for the timing verifier. Once this has been done, it is relatively easy to check all of the 
timing constraints placed on the circuit. For instance, to check the set-up and hold times on a 
register, the timing verifier need only determine whether its input could be changing at a time when 
it might be clocked. 

If the timing of the circuit never depended on the values of signals, but merely on when they were 
changing or stable, the timing verifier would be very simple. Clock signals have a value which is 

periodic, and have the same value every cycle, so they are easy to handle. The signals which are 
dL.lficult to treat are those whose va.iues affea the circuit timing, and which have different values 
during different cycles of the circuit.· For example, a control signal which determines whether a 
register is clocked during a given cycle affects whether the output of the register might change that 
cycle. If the circuit relies on the register not changing every cycle, then the timing· verifier must do 
cast anal'sts to keep from generating false error messages. This requires the timing verifier to 
check the type of cycle when the control signal is true, and to check the type of cycle when it is false. 
This could be a time-consuming process, but in practice is not, because most signals have a. 

"worst-case" state. For example, the worst case for most registers is to assume that they are clocked 
every cycle. Only in those situations where both the docked and unclocked cases need to be checked 
separately does the timing verifier have to compute both of them. In those cases, the timing verifier 
remembers the values of all the signals which are not affected by the signal which is subject to case 
analysis, and thus has to recompute only the signals which change with the signal being analyzed. 

The designer must specify which signals require case analysis and list the cases; most circuits have 
proven to contain fairly few such signals. 

Basically, the timing verifier then takes the first case, calculates when each signal in the system could 
be changing. and checks for violation of timing constraints for that case. It then goes on to the next 



6.1 Theory of operation 129 

case, recomputing only the signals which are different from those in the first case, and checking for 
any possible timing errors. It repeats this process for all of the cases. 

6.1.1 Circuit Period 

The circuit being verified must contain one basic clock, whose period is specified to the timing 
verifier. If different parts of the circuit run at different clock rates, then the period specified to the 
timing verifier is the least common multiple of the clock periods. For example, for a processor . 
whose instruction unit has a period of 30 nsec and whose execution unit has a period of 15 nsec the 
designer would specify a 30 nsec period to the timing verifier. Within the circuit, clock signals may 
occur at any phase within the basic period. 

6.1.2 Value system for signals 

At any instant, each and every signal has one of seven values: 

0 
1 
Sor STABLE 
C or CHANGE 
R or RISE 
For FALL 
UorUNKNOWN 

Meaning-

false, or 0 
true, or 1 
signal is stable, not changing 
signal may be changing 
sign al is going from zero to one 
sign at is going from one to zero 
initial value used for all signals 

The value of a signal over the clock period is represented by a linked list, each node of which 
specifies a value and the duration of that value. The sum of the durations of all the nodes in the 
list must eq uat the period of the circuit being analyzed. 

When a signal propagates through a gate or wire where it is delayed by a variable amount of time, 

then skew is added to the signal, representing the uncertainty in when the signal will subsequently 
change. This skew is maintained separately in the representation of the signal to preserve 
information about the width of pulses in the signal, in order to avoid bogus timing errors asserting 
that minimum pulse width requirements have not been met. If two or more changing signals are 
combined, the skew then cannot be simply represented separately. It is therefore incorporated into 
the signal representation by using the CHANGE, RISE, and FALL values. 



130 6 How to use the timing verifier 

6.1.~ Combinational function 

The following tables define the INCLUSIVE-OR (OR), EXCLUSIVE-OR (XOR), AND, 
CHANGE (CHG), and NOT functions for the seven-value logic system used in the timing verifier. 

A OR e 
e--. e 1 s c R F u 

11 0 1 s c R F u 
1 1 1 1 1 1 1 1 
s s 1 s c A F u 
c c 1 c c c c u 
R R 1 R c R c u 
F F 1 F c c F u 
u u 1 u u u u u 

A AND B 
e--. 0 1 s c R F u 

A 

~ 0 0 0 0 0 a 0 
1 0 1 s c A F u 
s 0 s s c R F u 
c 0 c c c c c u 
R 0 R R c R c u 
F 0 F F c c F u 
u 0 u u u u u u 

A XOR B 
a ..... 0 1 s c R F u 

A 
j 0 1 s c R F u 
1 1 0 s c F R u 
s s s s c c c u c c c c c c c u 
R A F c c c c u 
F F R c c c c u 
u u u u u u u u 



S.1.3 Combinational function 131 

A CHG 8 

8-+ 0 1 s c R F u 
A 

i s s s c c c u 
1 s s s c c c u s s s s c c c u c c c c c c c u 
R c c c c c c u 
F c c c c c c u 
u u u u u u u u 

NOT A 
A 

~ 1 
1 0 
s s 
c c 
R F 
F R 
u u 

The output of the CHANGE function has the value CHANGE if any of its inputs are changing; 
otherwise it has the value ST ABLE. It is a useful function in modeling complex combinational 
logic, where the actual function being performed is not important to the verification process. 
Common examples are in the modeling of parity trees and adders, for which the timing verifier 
cares only when the outputs of these circuits are changing, not for their actual value. 



132 6 How to use the timing verifier 

6.2 Defining chips 

As Section 4 explair1ed, the meh."'TO expander operates in either of two modes, depending on which 
TERM file it uses. It can expand the design into a network consisting of macros which represent 
chiptypes. or it can expand one level further, replacing each chiptype with a network of logical 
primitives which describes the function and timing of the chiptype. 

To produce input for the timing verifier, the macro expander must run in the latter mode, and 
therefore the designer must provide a drawing for each chiptype, defining that chiptype in terms of 
the logical primitives shown in Figure 6-1. (This is actually a subset of the primitives; logic 
simulation can use additional kinds not shown here.) 

Delay-Most of the bodies have associated with them a string beginning "DELAY •0.0". This is the · 
body parameter cal1ed VAR {represented i.n the graphics editor as a property name/text pair whose 
name is VAR and whose text is that string). When using these bodies in a drawing, the designer 
usually replaces the •o.o" with a delay expressed in nanoseconds, or a pair of delays (minimum and 
maximum) separated by a comma, or a trio of delays (minimum, typical, and maximum) separated 
by commas. Regardless of the number of zeros in the initial DELAY string for a particular body 
template, any body can accept one, two, or three delay paramters. 

Minimum pulse width-The body called MIN PULSE WIDTH accepts a single bit input and 
checks that the pulses at that input exceed specified widths. The VAR parameter for this body is a 
string, initially set to "HIGH-0.0, LOW -0.0", which specifies in nanoseconds how long the input 
must remain high and how tong it must remain low to avoid error. 

Setup and hold c:heck-The body whose body name is SETUP HOLD and whose macro name is 

SETUP HOLD CHK accepts an input {whose width is dictated by the SIZE parameter) at pin 'T' 
and a common {cne=bit) clock signal at •cK". Its VAR parameter specifies in nanoseconds the 
minimum setup and hold times for those inputs with respect to the rising edge of that clock. 

The body whose body name is SETUP RISE HOLD FALL and whose macro ·name is SETUP 
RISE HOLD FALL CHK works in similar fashion, but checks the setup time with respect to the 
rising edge of the clock and the hold time with respect to the falling edge. 

CHANGE gates-The gates whose names include MCHG" strip away information about the actual 
values-high or low-of their inputs. Their outputs have instead the two states ST ABLE and 
CHANGING. This simplifies the definition of the timing of complex functions for which 
knowledge of the exact logical operation is unnecessary. 

AND, OR, and XOR gates-These operate in obvious fashion. 

Latches and registers-Each of these accepts an input at pin T and an output at 9T"; the SIZE 
parameter dictates the width of those inputs and outputs. The -CK" (clock), •EN" (enable), 11R" 
{reset}, and "S" (set) pins are common (each accepts a one-bit signal). 

The first ~d of register has only -CK" and T inputs, and cHanges its output on the rising edge of 



6.2 Defining chips 133 

"CK". The output of the register wilt be ~t to the "CHANGE" state between the time determined 
by the minimum and maximum delays of the register following the rising edge of •cK". Unless the 
T input is a true or false during the rising-edge of the "CK" input, the output will be set to the 
-STABLE" value for the rest of the cycle; otherwise, it will be set to the value of the T input. 

The second kind of register has asynchronous "S" and "R" inputs in addition to the "!" and "CK" 
inputs. If the "S" {or ~j input is one, then it sets (or resets) the output of the register after the 
specified propagation delay. 

The output of the first latch merely follows the •r input when the •EN" input is high, and is stable 
for the remainder of the cycle. The second latch has additional asynchronous "S" and "R" inputs, 
which set or clear the latch when the "EN" input is low, after the specified propagation delay. 

Multiplexers-Each of these bodies accepts an input at each of the numbered pins and an output at 
-r"; the SIZE parameter dictates the width of those inputs and outputs. The -s• input is 
common-one bit wide for the 2 MUX, two bits wide for the 4 MUX, and three bits wide for the 
SMUX. 

If the select lines are changing, the output of a rnuJtiplexer is changing. If the select lines are stable 
but their value is not known, the output is the worst case of all the inputs. If the select lines have a 
known value, the output reflects the appropriate input. A change in the select lines or the input 
propagates to the output with the specified delay. 

Note that these primitives are deliberately idealized, so it may take more than just a primitive latch 
to model accurately a real latch, and more than. just a primitive multiplexer to model a real 
multiplexer, and so on. In particular, the primitives provide the same delay from each input to the 
output If the real part exhibits different delays.:-if. for example, the "SET" input of a latch 
propagates to the output more rapidly than does the data input-then the definition must use a 
buffer at the slower input to increase its delay. 



1!4 

&.A1tH 

t u; I 
t DElkr• T ........... 

!"4 

unoc e 

~ I( 

t~. T ........... 
£lo4 

•IC T 
tEAr-' .......... . 

t 

6 How to use the timing verifier 

lllE& tE'T\P tQJ) mm .... 

I; I I tEl\18 ;, Of( I 
l tEIA1'• T EJ .. ......... 

Ck 
Ck 

• 

ICR~ 

~ HR ) 

·~ 

llEG .. trn.P ~ IQ.D FJU. HR°' l-~ 
L..J> LY l:+l I SEnP~~ I 

I( 

~ 
t CE.Ar• T I( . .......... . 

• CJ( 
O< 

OELA'r.... CEUtl' .... 

4CR ~ .. ciwJ ).:\> 

~ LY 
CEL.Ar.... Cll.AT .... 

~CR~ SCJI>~ 

~ LI 
I l'UIC 

CE.Ar .... aaA'I' ... • 

·-0 (9 ' •I( 
iOG T 

l CEUtr- z •X ........... 
>8 

l • l I !UC 
•>< T 

CEJn' .... ma.Ar ... • • ,_[9 0 5 IELm-
.J O«i ........... 

6 
ol( 

~ ca.Ar ... • ·-B .. OG 
•>< 

CB.Ar .... ·-9 9 OtG 
•IC 

Figure 6-1 
Timing verifier logical primitives 

Ftgures 6-2 and 6-3 provide two examples showing how to define the timing of a chip using these 
primitives. 

Figure 6-2 shows the definition of a 10145A, a 16-word RAM. Figure 6-3 shows the definition of 

a 10158, a 2-input multiplexer. The 10145A example models only timing, not logic function. thanks 



6.2 Defining chips 135 

to the CHANGE gates, which strip away information about logic state. The model for the 10158, on 
the other hand, is an accurate model, which could be used to do full logic simulation. For the 10158, 
the model of its complete logical operation is necessary to verify timing constraints in many circuits. 

't~•1tt2£- .. ,p 

g_,.,. 

- '-£AS 

rsUD 
srnJ9 M1J) OI( 

SI 
1 
~ ... 
..:11..D-•·• 

oc 
I 
II 

~ IO.DCHC 
sa 

l 
~.ti; 
IQ.I) ... 6 

Cl< 
I 

t~e1SUli-I> 
!.€ .. 
cs~ 

- .. > 

I 9EYU"~- I 
_Ar....,ei .... >_,,,. _______ -ll t ~ ~ Of( I llltN PU.SE._.. wmnt1I 

I tE"nl"-J.s: I .. , 

I IO.DO<..... ' nl I 
.-i.E.._,.. _________ -__ ,..j __ • __ __.J ;::=::~ 

Figure 6-2 
A 10145A 16-word RAM 



136 

ere1t12!'-1• 
1~e1tI2E• I> 

s 

JC STEP• sm 

:. .. ;.::.;:..::• l~LZE=--1-~ _,,....__ _ __. e 

Figure-6-! 

.. 

A 10158 2-input multiplexer 

6 How to use the timing verifier 



6.3 Preparing input for the verifier 137 

6.! Preparing input for the verifier 

Assertions, estimated wire delays, and evaluation directives are all incorporated in the names of 
signals in the drawings that make up the design (not in the drawings that define individual chips). 

6.3.1 Wire delays 

To specify a wire delay for a particular input signal, the designer must name the signal and include 
a <Wire delay> after the <bit subscript> part (if any), as described in Section 4.5. Expressed in 
nanoseconds, this consists of either a single value or a pair of values (minimum and maximum, 
respeaively) separated by a colon. In either case, enclose the delay in square brackets: 

SHORT WIRE L<0:7>[1.0l 
LONG WIRE (49. 7] 
INDETERMINATE WIRE<0:35>[1.0:49.7J 

If the timing verifier is using wire delay information from the router based on actual wire lengths, it 
ignores these specifications. 

In traversing the macro expansion tree. the timing verifier associates each predicted wire delay with 
the input which the signal feeds but not with the output that generates the signal, thus assuring that 
a single delay does not affect the network twice. As a result, placing a wire delay specification on a 
signal which is an output parameter of a macro definition has no effect. 

6.3.2 Assertions on Signals 

Assertions serve two purposes. Before a design is complete, the designer can isolate one module and 
place timing assertions on all the inputs and outputs of that module; the verifier will then use those 
assertions to tak.e the place of the timing information it would otherwise obtain from the circuitry 
surrounding that module. Within a module or complete machine, the designer can place timing 
assertions on any signal for documentation purposes, and to convey to the timing verifier additional 
requirements that he or she wishes to impose; the verifier witl then wue warnings, if the assertions 
are not at least as generous as the actual timing-even if the actual timing is not strictly erroneous. 

When it comes time to integrate separately verified modules into a complete machine, the macro 
expander automatically checks to see that the assertions on the outputs of one module match the 
assertions on the corresponding inputs of another. It considers an assertion to be part of a signal 
name, so two otherwise identical names with different assertions represent two different-and 
incompatible-signals. 



138 6 How to use the timing verifier 

If the timing of a signal is not defined by preceding circuitry or by an assertion, then the verifier 
assumes the signal is always stable; thus, one need not place assertions on input signals whose timing 
is not of interest 

The <timing assertion> part of a signal name appears after the <simple name> as mentioned in 
Section 4.5 and consists of a string beginning with a period. The syntax is: 

<timing assertion> ::• <clock assertion type> 
<value specification> <skew specification> I 
<clock assertion type> <value specification> 
<stable assertion type> <value specification> 

<clock assertion type> ::• C I P 

<stable assertion type> ::• S 

<value specification> ::• <time range> 
<time range> , <value specification> 

<time range> : : • <time> I <time> - <time> 

<time> : : . <real number> 

<skew specification> : : - ( <minus skew> ' 
<plus skew> ) 

<minus skew> : :- <negative real or zero> 

<plus skew> : :- <positive real or zero> 

For a clock. signal, a typical <timing assertion> is: 

XVZ .C4-6 L 

which says that the signal goes from high to low at time 4, and from low to high at time 6. (Each 
time unit represents a fraction of the cycle time; when you run the verifier program, you specify the 
number of units in a cycle. This convention keeps the assertions independent of the duration of the 
cycle time.) The signal: 

XYZ .P2-3,5-6 

is high from 2 to 3 and from 5 to 6, and is low for the rest of· the clock cycle. If a single time is 

given instead of a range, then a time interval of one clock unit is assumed. For example, 



6.3.2 Assertions on Signals 139 

XYZ .P2,5 

is equivalent to the previous signal. 

For dock signals, the "C" and "P" assertions are both useful, the only difference being the default 
sk.ew used when none is explicitly given. Skew is generated by variations in the delay from the 
clock generator to different parts of a large digital system, due to varying wire lengths and buff er 
propagation delays. In a large digital system, these variations can become large enough to degrade 
performance unacceptably. To reduce this sk.ew, the shorter clock paths can have additional delay 
deliberately inserted into them. Because the delays in a clock distribution system may vary between 
successive implementations of a design, in many cases it must be adjusted by hand, by using some 
type of adjustable delay for each of the clock lines. Using this technique, the skew can be reduced 
below some designer-specified amount. A "P" assertion assures the verifier it can rely upon such 
ad justrnents; a "C" assertion does not. 

For a control or data signal, use the "S" assertion, which specifies whether the signal is stable or 
changing, but not its actual value. For example, the name: 

xvz .$4-8 

says that the signal is stable from time 4 to time 8, and may be changing during the rest of the cycle. 
Note that an -S" assertion never specifies a skew. 

6.3.3 Evaluation Directives 

Evaluation directives tell the timing verifier how to evaluate certain gates. They can also specify the 
exact point in a circuit at which a precision clock is adjusted to reduce skew. 

As mentioned in Section 4.5, an <evaluation directive> follows the <wire delay> in a signal name. It 
consists of •&" immediately followed by a string of letters. The first letter in the string refers to the 
logical primitive (ordinarily a gate) immediately following the signal, the second refers to the second 
level of gating fallowing the signal, and so on. 

The fallowing letters are permitted: 

w 

z 

A 

Zero the wire delay going into the gate that this evaluation direetive refers to. 

Zero the wire delay going into the gate and the delay of the gate itself. 

When this signal is asserted, make sure all other inputs to the gate are stable. If 
so, operate as if the directive were T: ignore the other inputs and base the 
timing of the gate's output solely on that of this signal If not, issue an error 



li:O 

I 

H 

6 How to use the timing verifier 

message. 

Ignore the other inputs of the gate and base the timing of its output solely on 
that of this signal 

This directive is equivalent to applying the •A" and -Z" directives together at a 
single level 

6-3.4 Correlations 

When the operation of a netWork reties on known correlations between clock signals, the timing 
verifier must be told the correlations or it will generate spurious errors. Consider the two examples 
in Figure 6-4, each driven by a clock exhibiting plus· or minus 2 nsec skew. The first example 
represents an authentic timing error because if the clock arrives at register R 1 2 nsec before it 
arrives at register R2, the input of R2 will be changing as the clock rises. The timing verifier sees 
the second case no differently, but in reality no error can occur because the input and output of the 
latch are governed by exactly the same clock. No matter how great the skew, the changing output 
cannot propagate back to the input to conflict with the rise of the same clock pulse that caused the 
changing output 

a 
UrtOf 

LI 

I DEl.A1• T ........... 
Df 

0C.C2-' 6-• ~., 

.l!B 
IAT04 

L..! 

l DElA1• T ........... 
Ell 

• 

T At 

111 
tATOC 

u 
IE.A1• T----1 CE.AT• T ___ , .... :...... . ......... . 

Ell 

Figure 6-i 
Uncorrelated and correlated clocks 

To solve the problem, add to the signal called -r /M" a wire delay sufficient to eclipse the clock 
skew. To make clear that this delay is meant to convey a correlation rather than to suggest a lengthy 



6.3. 4 Correlations 141 

wire, it is customary to define a text substitution called CORR and use it as the delay: 

T /M C\CORR\J 



142 6 How to use the timing verifier 

6.4 Input and output files for the timing verifier 

The verifier accepts the following input files: 

MACEXP 

OPTION 

WIRES 

This is the output data from the macro expander. 

This file contains a set of real-number equates specifying various options and 
para.lletc:-rs. A typical OPTION fiie might iook like: 

CycleTime-58.0; 
ClockUnits-6.25; 
ClockSkew-5.0; 
PrecClockSkew•l.0; 
MaxUOelay-2.9; 
MinUOelay-0.0; 

CjcleTime is the length in nsec of the least common multiple of all clock periods 
in the network. 

ClockUnits is the length in nsec of one of the time units used in the <timing 
assertion> syntax. Usually Cycle'.'fime is evenly divisible by ClockUnits, though 
this is not a requirement 

ClockSkew is the default skew used when a clock signal bears no timing assertion 
or bears a ".C" assertion with no skew specified. In the preceding example, the 
default skew is -5 to +5 nsec. · 

PrtcClockSkew is the default skew used when a •.P" timing assertion specifies 
that a clock is precision adjusted but does not specify the resulting skew. In the 
preceding example, the default skew for precision clocks is -1 to + 1 nsec. 

Mo:xWDela' and MinWDelay are the wire delay values in nsec used when a 
signal name does not specify a wire delay. In the preceding example, defaulting 
the wire delay would have the same result as specifying "[0:2]". 

Produced by the physical design system router program, this file provides wire 
delays based on actual wire lengths and chip electrical characteristics. If this 
information is not yet available, provide a file containing the word •END;" and 
the verifier wilt use the wire delay estimates specified within signal names. 

The timing verifier produces the following output files; 

TIMLST This is a listing of timing errors plus a listing of each signal along with a 
description of its behavior versus time. 



6:4 Input and output files for the timing verifier 143 

LCROSS 

CCROSS 

BCROSS 

This is a cross reference of local signal names. 

This is a cross reference of global signal names. 

This is a listing of signals which for various reasons appear to be "dangling". 
These are not necessarily errors, but might be conscious omissions by the 
designer. 



6 How to use the timing verifier 

6.5 A timing verifier example 

Figure 6-5 shows a saiuple SCALD macro consisting of a i6-word by ~~-011: .KAM, a 32-bit 
register, a 2-input ·multiplexer and several gates. It illustrates the use of assertions, evaluation 
directives, and predicted wire delays in signal names. It in tum calls several more macros, the two 
most interesting of which appeared earlier as Figures 6-2 and 6-3. 

The assertion on the signal "W DATA .S0-6<0:31>" says that it is stable from time 0 to time 6, 
allowing the verifier to check the timing of this circuit without knowing how the signal is generated. 
The assertion on the clock signal "CK .P2-3 L" says that it is low between times 2 a.'ld 3, and high 
for the rest of the cycle. The signal "ADR<0:3> · [0.0:6.0]'' states that the 4 address wires on the 
RAM can be between 0.0 and 6.0 nsec long. 

The clock signal •cK .P2-3 L" is being ANDed with the control signal "WRITE .S0-6 L" to 
generate a write-enable pulse for the RAM array. If the data is stable every cycle during the period 
in which the RAM is to be written, then the most efficient way to check for timing errors is just to 
analyze the case in which the signal "WRITE .S0-6 L" enables a write operation. The "&H" 
directive shown at the end of the clock signal says to ignore the value of the "WRITE .S0-6 L" 
signal, allowing the clock signal always to propagate through the gate. In addition, it says the timing 
specified by the clock signal is to be adjusted so that it refers to the time at which the output, rather 
than the input, of the gate changes. The "&H" directive also specifies to check that the control 
signal "WRITE .S0-6 L" is stable while the clock is asserted, to ensure that the write will be either 
solidly enabled or solidly disabled. 

The •ac'l:' directive on the signal •cK .P0-4" states that the clock timing refers to the time at which 
the output of the gate changes. 



6.5 A timing verifier example 

l2B 
llf!'G 

Tl--=RA'W;..;;;..:;.:••=31_~ --1 t 1~76 T 

CJ( 

.. CIC,,.._.. &Z 

t~;a Ti--:.IOlt:::;;..;:9=1>--...;:;9=.9t=6=• ......._. 

CIC .P4-8 

CJC ."2-3 L CM 

!ol!'f1J • se-6 L 

Figure'S-5 
Example to be verified 

145 

The first step in verifying the timing is to run the macro expander to expand the design into logical 
primitives. Then run the timing verifier, which proeesses the MACEXP file generated by the macro 
expander. It generates a listing {somewhat condensed here to fit the page) which begins with a 
play-by-play description of its operation: 

Readln9 wire llst ••• 

8 error(s) detected 

Doing croH refaranca l_lstlng 

Inltlallzlng signals ••• 

8 error(s) detected 

Doing tl•lng analy•i• ••• 

Circuit evaluation co111pletad 

Total nulllber oi evaluation pasaeaa 6 

Total nulllber of events proc••••da 28 



146 6 How to use the timing verifier 

Next the listing shows setup. hold, and pu1~ width errors: 

S•tup, Hold, and Minimum Pulse ~idth errors •••• 

Setup ti .. error; Setup Ti .. • 3.5, Hold Ti .. • 1.8 

CJ( INPUT • I.IE 

DATA INPUT -. ROR 

8:8.8, R:ll.5, 1115.S, F:17.8, 8:21.8 

5:8.8, C:8.S, S:ll.S, C:2S.S, 5:36.S 

Setup time error; Setup Ti .. • 2.S, Hold Time • 1.5 

CK INPUT • REG CLK R:8.8, 1:3.8, F:24.8, 8:28.8, Ra49.8 

DATA INPUT• RAM S18.8, C1S.8, S:22.S, C:38.8, S:47.5 

B c h 1 • ·ned '"' · • 11A9'R ,.. " "" "' ,. ..... ,.. · · ecause 01 t 1e 1ong wire spea 1 on trn~ s1gna1 u <u:'> Lv.u:o.uJ , two set-up t1me errors occur. 
The first error message shows the address inputs to the RAM becoming stable at 11.5 ns, just as the 
write enable (WE) signal starts rising. Since the RAM requires a setup time of 3.5 nsec, the wire 
delay on the address signal must be reduced to 2.5 nsec to eliminate the error. The second error 
message shows the data output of the RAM becoming stable at 47.5 nsec and the clock starting to 

rise at 49.0 nsec, giving only 1.5 nsec of setup time instead of the required 2.5 nsec. 

Next it prints a list of signal values: 
Values of all signals 

ADR<8:3> • 

CK .P8-4 • 

CK .P2-3 • 

CK .P•-8 • 

OUTPUT<8:31> .. 

RAn<8131>. 

READ AOR .S4-9<8:3>. 

REG CLK • 

M DATA .S8-0<8a31> • 

ME • 

URI TE • S8-8 

MRITE AOR .58-0<8:3> 

Sl8.8, Cl8.S, S:S.S, C:2S.S, 5:38.S 

R:8.8, 1:1.8, F:24.8, 8:26.8, R:49.8 (constant value) 

818.8, Rall.S, 1113.S, F:17.8, 8:19.8 (constant value) 

F:@.8, 8:!.8, R:24.8, 1:25.8, F:49.9 (constant valua) 

S18.8, C:8.S, S:7.S 

S18.8, C&S.8, Ss28.S, Cs38.8, Sa45.5 

Si8.8, C:8.3, S:2S.$ 

R:8.8, 1:1.8, F:24.8, 8:26.8, R:49.8 

5:8.8, C:37.5 

818.8, R:ll.S, 1:13.S, F117.8, 8:19.8 

S18.8, C:37.S 

S:8.8, C:37.S 

In that listing, "S" stands for •stable", -C" for •changing", "F" for •ramng", "R" for •rising", "U" for 
"unknown", •1" for the high state and •o" for the low state. Consider the first signal in the list, 
•ADR<0:3>". Because the timing is identical for all four of its bits, the listing describes them all in 
one line. The signal is stable at time 0 (the beginning of the cycle), changes from 0.5 nsec to 5.5 nsec, 
remains stable until 25.5 nsec, changes from 25.5 nsec until 30.5 nsec, and finally remains stable from 
!0.5 nsec until the end of the cycle. 

Next it prints a list of signals whose timing failed to fall within the limits set by assertions. {These 
are signals for which the designer specified assertions even though the verifier could calculate their 



6.5 A timing verifier example 147 

timing without those assertion. The verifier thus calculates the timing independently and uses the 
assertions as a check.) This example has no such errors, but a typical one might look like the 
following example, which gives the signal name including the assertion. followed by the calculated 
timing: 

Signals not 111aetin9 their stable assertions 

DC ftOOIFIED 18 .56-12 5:8.8, C:23.8, 5:28.6 

I-SEQ USING SR .SS-18 5:8.8, C:18.8, 5:31.5 

Finally. the listing shows how much storage the program used. This is useful when running the 
verifier on computers with limited address spaces, because it helps predict when a design is about to 

grow so large that it must be split into modules which can be verified individually: 

RI I done 

Storage su111111ary: 

Record Na .. Nulllbar Used Total Bytas 

Value 416 4992 

Vatue8aaa 125 2588 

ValueHaad 128 1448 

SICJnal 17 888 

Def 35 1828 

Cal llst 13 468 

Pri•Daf 23 3864 

ParArr 35 148 

C~l ILstAf"r 248 992 

Strin9Chr e..,., 527 >J'I 

Str 111 1332 

SortSigArr 14 58 

18811 



148 6 How to use the timing verifier 



149 

7 The layout program 
Starting with the circuitry established by the macro expander plus a set of instructions from the 
designer, the SCALD layout program positions chips on circuit boards. The program is 

semiautomatic for best results, the designer specifies how to lay out important or complicated 
macros, but lets the program do the routine part of the job automatically. 

Thus the program requires three inputs: a circuit description from the macro expander, two files 
called CHIPSLA Y and CHPTYP .LAY (derived from the CHIPS file by another part of the 
SCALD physical design system) which describe the chips themselves, and a file of instructions from 
the designer. It puts out a listing, a file of runs for use by the SCALD router, a fi1e of unconnected 
signals for error-<heck.ing, and a file describing the position of each chiptype laid out. 

To avoid confusion, this chapter will use 6location' to mean the label generated by the graphics 
editor and used by the macro expander to indicate w11ere within a drawing a particular macro lies. 
A location is simply an identifying string such as •o 1" or ~6". It will use 'position' to indicate 
where upon a board a particular macro or chip ties. A position is a set of coordiilates on a circuit 
board. In fact, the main ta5k of the layout program is to map a set of locations onto a set of chips at 
specified positions. 



150 7 The layout program 

7.1 Preparing instructions for the layout program 

To give instructions to the layout pro,;cai-n, the de.signer creates a fiie containing a sort of program 
that consists of statements, analogous to the statements of a high level language like PASCAL or 
FORTRAN. 

Context-The layout program starts at the top level of the· macro expansion tree and works 
downward toward the most primitive elements. Similarly it starts at an initial board position and 
works onward from there. At any time, the program works within a context, consisting of the 
location label for a particular macro ca.11, p1us a board position. AU of its work. takes place relative to 
that macro caU and that position. 

Position-Several of the statements use identical syntax for position. A position can specify four 
elements or 'coordinates': a board, a column of chips on that board, a row of chips on that board, 
and a seetion within the chip at that row/column. Most of the statements allow the designer to 
default one or more of these elements. 

Specifying board, row, and column pinpoints exactly one sock.et, and sockets are all equivalent as far 
as the layout program is concerned; within the constraints imposed by the instructions from the 
designer, the program will map chips onto sockets in whatever fashion minimizes wire lengths. (The 
layout program treats a socket as if it were a point to be placed at a certain coordinate position. 
Other programs in the physical design system know the true size of each socket, how many pins it 
has, whether it is interchangeable with sockets at other coordinate positions on the board, and so 
forth. They worry about checking to make sure sockets don't overlap each other. and so forth.) 

The section coordinate, on the other hand, indicates a functional unit within a chip and thus 
depends on the chiptype, as we will explain later. For now, regard the section as simply another 
coordinate. Similarly, we will postpone the question of chips that :require more than one socket. 

Boards, columns, and rows have integer numbers beginning at l. Sections have names, given to 
them by the CHIPS.LAY and CHPTYP.LA Y files, which consist" of an optionar alphabetic string 
followed by a number-'AO', for example, or 'SG 12', or just '7'. To identify a board. precede its 

number with 'aB'; for a column, precede its number with '.C'; for a row, '•R'. For a section, precede 
the alphabetic/numeric name with '.S'. The following specifies board 5 row 16 column 12 section 
Al: 

.SS .RlS 8C12 aSAl 

The following specifies row 12 column 5 within the current board: 

eR12 &CS 

More commonly, however, the designer will-by omitting the '•'--specify position relative to the 
current context If the program is already working with board 3, for example, then 'Bl' indicates 
board 3 (the current board), 'B2' indicates board 4, 'B3' indicates board 5, and so on. In a section 
name, the numeric part is taken relative to that of the context while the alphabetic part (if any) is 



7.1 Preparing instructions for the layout program 151 

absolute. If the program is already working with section A,, for example, then 'SAO' indicates 
section A 3 (the current one}, 'SA l' indicates section A 4, and so on. 

For example, if the current context is '•BS •R 16 llC 12 aSB l', then the following: 

R4 CG 

actually indicates board 5, row 19, column 17 section B 1. 

A simple rule: given the context and a set of context-relative coordinates, determine the position by 
adding each relative coordinate to the corresponding context coordinate and then subtracting 1 (for 
board, row, or column) or 0 (for section). 

Some layout program statements require a list of positions separated by commas, such as: 

RlS C12, RlS C13, R16 Cl4, RlS ClS, RlS ClS 

To abbreviate this, one can use an implied loop by specifying the initial value for the loop and the 
number of times the loop should execute (not the final value of the loop as in many programming 
languages). The following example steps from C 12 through C 16: 

c (12,5) 

and thus is equivalent to: 

Cl2,C13,C14,C15,ClS 

An optional step size increments or decrements the loop by any desired integer. The fellowing 
example steps from Cl2 through C16, incrementing by 2: 

CC12,3,2J 

and thus is equivalent to: 

C12,C14,C16 

Ordinarily the order of the board, column, row, and section specifications doesn't matter. When you 
use more than one of these implied loops, however, the loops nest, with the rightmost loop 
incrementing most rapidly. The following examples are thus equivalent: 

RCl,21 CCl,21 
Al Cl, Rl C2, R2 Cl, R2 C2 

but different from the following two, which are likewise equivalent: 



7 The layout program 

C Cl,2) R Cl,21 

Rl Cl, R2 Cl, Rl C2, R2 C2 

An implied loop for section names looks like this: 

SA(0,4,2> 

which ls equivalent to: 

SA0, SA2, SA4, SAS 

Locations-As mentioned before, a location is simply the label designer chose to identify a particular 
macro call to the maao expander. (originally, the text field of the LOC property name/text pair for 
the body that calls the macro). The designer needs to keep in mind three additional details. 

First, when the SIZE parameter causes multiple invocations of the same macro call, the macro 
expander appends a 1

.' and a number to each invocation after the first Thus, a body for which 
LOC·05 and SIZE·S results in locations called G5, GS.2, and GS.!. 

Second, when the TIMES parameter causes multiple invocations of the . same macro can, the 
expander appends a '+' and a number to each invocation after the first The TIMES suffix precedes 
the SIZE suffix, if any, so that the last invocation of a body with LOC·06, SIZE•S, and TIMES·2 
would be c:alted 1C6+2•3'. (SCALD customarily deals with these invocations alphabetically, so SIZE 
varies faster then TIMES as the macro expander steps through the two-dimensional matrix of cans 
resulting from such a body.) 

Third, when more than one drawi.'!g de?mes a macro, the expander prefaces each location with the 
page number of the drawing. Thus, a body for which LOC-05 would result in location 1G5 if it 
lay on page 1 of the drawing, location 2G5 if it lay on. page 2, and so on. 

Chiptypes-Many ICs contain several functions inside one package. The layout program recognizes 
an entity called a cltipfrJpc which embodies that concept 

Defined by the CHIPS.LAY and CHPTYP .LAY files, each chiptype is a collection of one or more 
terminal macros within a single unit which the layout program can place on a board. Such a 
chiptype contains one or more s~ctitms. each corresponding to one terminal macro. 

An ECL 10105 chip, for example, contains two 2-input OR/NOR gates and one 3-input OR/NOR 
gate. The macro expander rieed know nothing about this. Simply use two different macros to 

represent the two different kinds of gate: for example, one macro called 10105A to represent a 
2-input OR/NOR gate and another called 10105B to represent a 3-inpuc OR/NOR gate. The 
CHIPS.LAY and CHPTYP .LAY files must then telt the layout program that a chiptype called 
10105 will provide two lOIOSA's (in sections 'AO' and 'A 1'} and one 10105B (in a section cal1ed 'BO'). 

Some chiptypes are a good deal limpler, of course. The chiptype 10016 corresponds to exactly one 



7.1 Preparing instructions for the layout program 153 

terminal macro, likewise called 10016, and its only valid section is 'O'. Chiptypes can also be a good 

deal more complicated. The designer may choose to combine a number of ICs on a small printed 
circuit board and plug that circuit board into a socket on the main circuit board. If so, the layout 
program treats the entire printed circuit board as a chiptype even though its complexity may far 
exceed that of a commercially available IC package. 

Whereas each board position (specified by means of the board, row, and column .coordinates 
mentioned earlier) represents ~single ~ket, chiptypes require varying pinouts. Some, like the 10105 
or 10116, correspond to 16 pin DIPs. Others have fewer than 16 pins. Some may very well occupy 
more than one socket position on the board. 

The layout program deals only with the position of each chiptype, ignoring its physical size. But an 
overview of how SCALD handles the problem may make things clearer. 

Suppose you want to use a 2'i pin DIP IC package on a circuit board whose sockets accept only 16 
pin DIPs. In physical terms, one must plug the 24 pin package into an adaptor, a small printed 
circuit board with a 24 pin socket on one side and two 16 pin plugs on the other, designed to fit two 
adjacent 16 pin sockets on the main board. In logical terms, the CHIPS file read by other physical 
design system programs specifies a logical 'adaptor' for each chiptype, describing the number and 
arrangement of 16 pin sockets which that chiptype requires. A simple IC like the 10105 or 10116 
needs no physical adaptor, and its logical adaptor simply maps the pins straight through. 

(A chiptype must occupy an integral number of sockets. This limitation would be significant only 
for SIP terminator packages, two of which will fit side by side within a DIP socket, but the SCALD 
router assigns terminators automatically anyway, so they do not concern the designer.) 

The CHIPS file also specifies the X-Y coordinates of the pin corresponding to each input or output 
signal of each section (that is, terminal macro) within a given chiptype. And it specifies 'hidden' 
connections within a chiptype: section inputs and outputs connected to each other but not brought 
out to the input/output pins of the chiptype. 

The position for a chiptype that occupies more than one socket is that of the upper left corner of the 
area it occupies (viewed from the chip side of the adaptor}. The layout program itself does not 
guard against one multiple-socket chiptype overlapping another, but other physical design system 
programs will detect such errors later in the SCALD design process. 

Though the CHIPS.LAY file specifies a default chiptype for each terminal macro, the CHIP 
statement (Section 7.1.6) can override this. 



154 7 The layout program 

7.1.1 The DA TE statement 

To help document the layout_ the designer may include a DATE statement at the beginning of the 
file of instructions, giving the date and the designer's initials. The layout program witl pass this 
string along to subsequent programs in the SCALD physical design system. (Actually, the statement· 
will in general accept any string of characters not including";"): 

DATE 9-0ct-79 JBR; 
~ITH *; 

WITH C3; 
GS • Rl CS Sl; 
·M4 • Rl CS Sl; 

END; 
END; 



7.1.2 The WITH statement 155 

7.1.2 The WITH statement 

A WITH statement establishes a context within which other statements work. Every WITH 
statement must pair with an END statement; the context it establishes applies to every statement 
between the matching WITH and END. 

The simple form of the WITH statement specifies a single location-in other words, specifies a 
particular macro ca11- and causes the statements within its scope to work within the context of that 
macro. The fol1owing example operates on macro calls GS and M 4 within the context of (that is, 
within the expansion of) macro call CS: 

UITH C3; 
GS • Rl CS Sl; 
M4 • Rl CS Sl; 

END; 

Commonly. the instructions for a layout program wilt nest WITH statements. Each WITH statement 
descends one level deeper into the macro expansion tree, and concatenating the WITH statement 
locations one by one creates a path that completely and unambiguously describes the context (that is, 

the particular macro call) within which the innermost statements work. In the following example, the 
innermost statements deal with the macro calls ·whose paths are (Cl G2A1.S G5) and 
(Cl C2 A1+7 M3 ): 

IJITH Cl; 
WITH G2; 

WITH Al#S; 
GS • Rl CS 51; 

END; 
IJI TH Allf.7; 

M3 • R2 CS Sl; 
ENO; 

ENO; 
END; 

Because the topmost level of the macro tree-the macro representing the entire design-never gets 
called by any other macro, it has no location name. Thus, the first WITH statement in any layout 
program must use the special symbol '*' to indicate the topmost level of the design. Other statements 
may precede this initial WITH (provided they do not require a context in which to 
operate-statements which actually cause the program to place chips on boards always require a 
surrounding WITH to tell them what part of the design to work on) but its matching END must be 
the last statement of the program: 

SET XYZ • 15; 
WITH *i 

WITH Al; 
G2 • R2 CS Sl; 



156 7 The layout program 

G7 • R2 CS Sl; 
END; 

END; 

Specifying position-Any WITH statement may include an AT clause, specifying a position relative 
to that of the previous WITH context. The program starts at position '•B 1 aC 1 eR 1 aSO', so in the 
following example the innermost statement operates in ~ context whose macro call path is (04 A6 ) 
and whose position is board 3, row 17, column 7: 

WITH * AT R3 C2; 
COMMENT Now we're at board 1 row 3 column 2; 
WITH G4 AT 83 RS C2; 

COMMENT Now we're at board 3 row 7 column 3; 
UiiH A6 Ai Rll C4; 

COMMENT Now we're at board 3 row 17 column 6; 
GS • Rl C2 50; 

ENO; 
END; 

END; 

If a WITH statement doesn't include an AT clause, then the context inside that WITH has the 
same position as the context enclosing it. Note that while intervening layout statements may have 
altered the position at which the program is working, a WITH statement ignores them, goes back to 
the previous WITH statement, and alters the context position relative to it. Thus the innermost 
context is identical in the following two examples: 

WITH *; 

WITH Gl AT RlG C7; 
MS • R2 Cl; 
WITH GS AT RS; 

MS • Rl Cl; 
ENO; 

ENO; 
END; 

l.ITTU •• ... .lo II I ... , 

WITH Gl AT RlS C7; 

WITH GS AT RS; 
MS • Rl Cl; 

END; 
END; 

END; 

Because the AT clause specifies a single position, the notation for an implied loop is illegal within it 



7.1.3 The assignment statement 157 

7.1.S The assignment statement 

An assignment statement tells the layout program to place a particular piece of circuitry at a 
particular position on a board. In its simplest form, it consists of a location name for a terminal 
macro (that is, a macro which maps directly to a single section of a chiptype), the name of a 
chiptype, an '•' symbol, and a position. The board, row, and column coordinates of the position 
are-unless they contain '•'-interpreted relative to the context· of the enclosing WITH statement. 
Any omitted coordinate defaults to that of the enclosing context. Thus, the following example places 
macro call C7 on the board specified by the context, at the column specified by the context, one row 
beyond the row specified by the context, and at the third 'B' section of the chiptype: 

C7 • R2 Cl 582; 

Note that the position in an assignment statement is not relative to that of a previous assignment 
statement. 

If a terminal macro has its SIZE or TIMES body parameter set to a number larger than one, then 
that macro will require multiple chiptype sections and thus multiple positions on the board. If, for 
example, macro C7 had SIZE set to 3, the designer must give a list of positions, one for each 
invocation of the macro. Either of the following examples would accomplish this: 

C7 • R2 Cl 5BC0,3); 
C7 • R2 Cl 580, 581, 582; 

An entire subtree at once-If the designer specifies the location of a nonterminal macro call, the 
layout program will automatically expand that macro call to obtain a list of terminal macro calls, and 
will then lay out each of the terminal macro calls. In other words, the program wilt traverse the 
subtree resulting from a nonterminal macro. · 

In such a case, the assignment statement must give a list of positions to the right of the '•' sign, one 
position for each terminal macro resulting from the expansion, and taking into account the multiple 
copies of a terminal that result from SIZE or TIMES parameters that exceed 1. In the following 
example, the macro at location C6•2 {which is itself the second invocation of macro CS, resulting 
from the SIZE parameter being greater than one) expands to produce five different terminals, and 
thus requires a list of five positions: 

C6#2 • Rl Cl, Rl C3, Rl CS, R2 Cl, R2 C3; 

The list of positions must contain at least one position for each terminal resulting from the 
expansion, but may contain more. The layout program will simply ignore the extra positions rather 
than using them up or leaving them empty. This makes it easier to use the loop notation to simplify 
a list. The following assignment statement has precisely the same effect as the preceding example, 
even though it sped.fies an extra position: 

C6112 • RCl,2> CCl,3,21; 



158 7 The layout program 

When the layout program expands the subtree of a macro for you, it does so predictably. After 
expanding the subtree into a list of terminal macros, it sorts the list in alphabetic order by path 
name. (These path names are identical with those that appear in the output listing from the macro 
expander except that a blank space appears immediately before the closing parenthesis of the path 
to prevent the parenthesis from spoiling the alphabetizing.) 

Inversion-Certain chiptypes allow you to use the complementary form of some of their inputs 
simply by rearranging connections. With a multiplexer, for example, simply rearranging the data 
inputs permits use of complemented (assert tow) forms of the select lines.' This is particularly 
important with ECL logic families which typically pr~vide both true and complemented forms of 
gate outputs; using both outputs effectively doubles the fanout capability of the gate. 

Provided the CHIPS.LAY file describes the required signal rearrangement, the assignment 
statement permits the designer to choose whether to use true or complemented connections for any 
particular instance of a given chip. Simply add a'/' to the end of the assignment statement, followed 
by a list of 'H' and 'L' letters: 

CS#2 • RCl,2) CCl,3,2) I H L H H L; 

Every time it positions a chip on the board, the layout program looks at the next letter in the H/L 
list. An 'H' tells it to connect the chip according to the drawing that defines that chip, and an 'L' 
tells it to rearrange the inputs to use complemented inputs. 

Two shortcuts make the H/L list easier to use. First, placing a number immediately after a letter is 
equivalent to repeating the letter that number of times, so the following two examples have the same 
effect: 

CS#2 • RCl,2) CCl,3,2) I H L H H H L; 
C6#2 • RCl,2) CCl,3,2) I H L H3 L; 

Second, if the layout program exhausts the H/L list before positioning all the chips, it returns to the 
beginning and reuses the list as many times as necessary (just as, in FORTRAN, a WRITE 
statement which exhausts its FORMAT list reuses the list). Thus, if the H/L list repeats a pattern, 
the designer need write only one cycle of the pattern: 

C6112 • RCl,3) CCl,3,2} I H L H H L H H L H; 
C6112 • RCl,31 CCl,3,2} I H L H; 

If the H/L list is too long, the layout program simp1y ignores the extra letters. 

Versions-As exp1ained in Section 4.3.1, the macro expander provides any macro call with a 
parameter called TIMES which allows the designer to obtain multiple copies of that macro with 
their respective inputs tied together and their respective outputs left independent 

Within the drawings, the designer need not distinguish among these independent outputs: a single 



7.1.3 The assignment statement 159 

line and a common name represent all of them. The macro expander does, however, derive a unique 
name for each actual output by appending to the common name a'/' followed by a number. 

When laying out circuitry automatically with the PLACE statement, the designer need not specify 
which version to connect to which input, because the physical design system router program handles 
this detail But with the assignment statement, the designer may either leave the decision to the 
router or state explicitly which version of a multiversion output to connect to each possible 
destination. 

To specify this, use a colonstring which gives a signal name and a list of version numbers, one for 
each macro call in the subtree. The following example connects version 2 (of whatever signal is 
appropriate) to input pin 'CNT ENBL' of the first macro in the subtree, version 1 to the 
corresponding pin of the second macro in the subtree, and version 3 to the corresponding pin of the 
third macro in the subtree: 

CS • RCl,3) CS 50 :CNT ENBL • 2, 1, 3; 

Note that the signal name must be an input, never an output. If the statement uses an H/L list, the 
colon string may either follow or precede it. 

As with the H/L list, the program permits shortcuts. If the version list is not long enough, the 
program rereads it; if the list is too tong, it ignores the latter part. To repeat a version, append a'*' 
fo11owed by the number of repetitions desired. For example, the following two assignments are 
identical: 

CS• RCl,71 CS 50 
CS= RC1,7l CS 50 

CNT ENBL • l, 2, 2, 3, 3, 3, 3; 
CNT ENBL • 1, 2*2, 3*4; 

Note that the program expects to read from the iist one version number for each macro in the 
expansion, whether or not the macro in question actually has an input pin with the specified name, 
and whether or not the macro is a terminal To •skip over' macros which do not have a particular 
input, omit the version number but include the appropriate repetition factor. Thus, the following 
example skips over the first macro and the last three macros in the subtree: 

C7 • RC1,8l CS 50 : PRESET • *1, 1*2, 2*2, *3; 

This ability to skip over certain macros in the expansion is also useful when a subtree contains two 
different kinds of macro calls with the same input signal name, where one set of calls needs version 
specifications and the other set does not. 

It is possible for the macro expander to produce a signal name with multiple versions, one after 
another. To cope with this situation in the colon string, specify the versions in the proper order, 
separated by dots: 

ca - RCl,4) C4 50 :CLEAR - 1.2*2, 1.1*2; 



160 7 The layout program 

If more than one input signal requires version specifications, simply use multiple colon strings in any 
order: 

C9 • RCl,81 C4 S0 :CNT ENBL - 1*4, 2*4 :CLEAR • 2.2*2, 2.1*2; 

~ 

Adding drive capability during layout-By including a TIMES expression in parentheses after the 
location 1abel, the designer c~ ove~ide the TIMES parameter used for that macro call during 
macro expansion. This is useful for adding extra drive capability. Like the macro expander TIMES 
parameter, this feature replicates the macro, ties together the corresponding input signals of the 
resulting copies ¢ the macro, and leaves the output signals independent, assigning a different 
version number to each output. 

The list of sections in the assignment statement must be large enough to take into account these 
extra copies of the macro. 

The following example produces three copies of the macro at location C7 and assigns them new 
location labels C7, C7+ l, and C7+2: 

C7[*3J • R2 Cl SBC2,3l 

The layout program permits this TIMES expression only with terminal macro calls. 



7.1.4 The PLACE statement 161 

7.1.4 The PLACE statement 

Whereas the assignment statement lays out chips manually, the PLACE statement lays them out 
automatically. While the assignment statement dictates exactly where to put each macro, the 
PLACE statement allows the program to rearrange the chips {through pairwise interchanges) among 
the specified positions in an attempt to minimize wirelengths. 

The place statement specifies er list of location labels and positions. The positions may i~clude board, 
row, and column but not sectio~: 

PLACE GS, M6, A4, R2 WITHIN 82 RCl,5,2) CC6,12l; 

If the list of positions is larger than it need be, the program will simply allow itself extra freedom in 
placing chips anywhere within the set of positions. 

As with the assignment statement, if the macro calt designated by a location label is a nonterminal, 
the program automatically expands the macro to obtain a list of terminal macros. In other words, it 
lays out the entire subtree resulting from that macro call. 

Combining automatic and manual layout-Using a'*' instead of a list of locations tells the PLACE 
statement to lay out automatically alt macros within the current context for which there are no 
assignment statements. In the following example, the program expands macro call GS, lays out calls 
M 4 and R 1 according to the assignment statements, and lays out the remainder of the subtree 
resulting from GS automatically: 

WITH GS; 
M4 • RS C7 S0; 
Rl • RS C7 Sl; 
PLACE* WITHIN RS CC8,9l 5(0,l) 

END; 

The layout program does not actually perform assigment and PLACE statements in order. Instead, it 
performs alt manual layout throughout the design and then all automatic layout. Thus the automatic 
layout algorithm can minimize the length of wires between manually-positioned and 
automatically-positioned chips along with that of the wires within the automatic areas. 

As a result, assignment statements may actually occur either before or after the PLACE statement 
In addition, the list of locations (or the subtree of a location) given to a PLACE statement may 
include some macro calls specified in manual layout statements elsewhere; PLACE will process only 
the macro calls which are not positioned manually. 

Chiptypes of varying sizes--Because the 1ayout program will rearrange the chips anyway, the order 
of positions within the ti.st does not matter. But the 'resolution' of positions does matter: if each chip 
is two rows tall and one column wide, for example, the positions in the list should be two rows apart. 
Or, for another example, if each chip is three rows tall and two columns wide, the positions should 
be three rows apart and two columns apart. Otherwise, because the layout program deals only with 
the upper left corner position of each chip and not with the actual size of the chip, chips may 



162 7 The layout program 

overlap. 

If a particular macro expands to require chiptypes of varying sizes, there are several solutions: 

• Specify positions far enough apart to accomodate the largest chiptype, wasting some board 
space on the smaller chiptypes. 

• Use the BIND statement to group macros into 'super-chiptypes' which are then all 
identical in size and shape. 

• Use multiple PLACE statements to force the layout program to segregate the chiptypes by 
size into different areas. 

• Take a rhance. hoping that none of the chiptypes overlap, and later replace the PL.\CE 
statement with assignment statements if they do. 



7.1.5 The BIND statement 163 

7.L5 The BIND statement 

The BIND statement aids the PLACE statement by pointing out patterns and symmetries that the 
automatic layout algorithm might otherwise miss. Ordinarily, the PLACE statement maps terminal 
macro calls onto chiptype sections in alphabetic order by pathname, without attempting to optimize 
section assignments or exploit symmetries. The BIND statement, however, allows the designer to 
group together in one chip the terminal macro calls which logically belong together. 

A BIND statement applies to every PLACE statement within the scope of the enclosing WITH 
statement, even if the BIND actually appears following the PLACE. 

The BIND statement takes the form: 

BIND <location>• <list of sections># <list of chiptypes> 
& <list of instances> 

The <location> names a macro call If the macrp is not a terminal, the layout program will expand it 
as usual in alphabetic order by path name. 

The <list of sections> includes a section for each terminal macro resulting from the <location> 
specified. Its syntax is identical with that described for the list of sections within the assignment 
statement, and may list more sections than necessary. 

The <list of chiptypes> is a series of chiptype names separated by commas. 

The <list of instances> is a series of names invented by the designer and separated by commas. Each 
name must consist of one or more letters, digits, or "+' and '-' characters. 

For each terminal macro can in the subtree of <location>, the layout program will read the next 

section from <list of sections>, the next chiptype from <list of chiptypes> and the next instance name 
from <list of instances>. It maps that call onto the specified section of the specified chiptype, which 
will be shared with all other macro calls having the same instance name. 

The following example binds the first and third macro calls within the subtree of RA to sections 0 
and I of one instance (called 'Ml') of chiptype 94550, binds the second and fifth to sections 0 and 1 
of another instance (called 'M2') of chiptype 94550, and binds the fourth and sixth calls to sections 
AO and BO of an instance (called 'WZ) of chiptype 20021: 

BIND RA - S0, se,· Sl, SA0, Sl, 580 
#94550, 94550, 94550, 20021, 84550, 20021 
&Ml, M2, Ml, W2, M2, W2; 

Using various shortcuts makes the statement easier to write but harder to read: 

BIND RA • SB, S0, Sl, SA0, Sl, 589 
#94550*3, 20021, 94550, 20021 



lSi 7 The layout program 

&Ml, M2, Ml, U2, M2, W2; 

Obviously, it's easy to violate the rules when writing a BIND statement A particular instance name 
must not pair with two different chiptypes; each section name must be valid for the corresponding 
chiptype; and the chiptype and instance lists must not be too short (though they may be too long). 

That example suggests that chiptype 20021 may well have additional sections (A 1 and B 1, perhaps), 
not mentioned in this BIND statement Additional BIND statements can, by referencing common 
instance names, access sections within the same chips that this BIND statement uses. Thus, one 
would expect to see another BIND statement referencing sections A 1 and B 1 of instance W2 of 
chiptype 20021. ·Two BIND statements which share instances in this manner must be within the 
scope of one common PLACE statement, but they can be in different WITH contexts beneath it 

If all the BIND statements referencing sections of a particular instance of a chiptype fail to use up 
all the sections available in that chiptype, the remainder are available for the PLACE statement to 
use in laying out locations not in valved in any BIND statement 

One additional shortcut exists for specifying chiptypes. Omitting the chiptype but including the 
repetition factor is equivalent to specifying the default chiptype. Thus, if 94550 is the default 
chiptype for each of the macro calls referencing it in the previous example, then a simpler way to 

write the B~D statement would be: 

BIND RA • 50, 50, Sl, 5A0, Sl, 580 
#*3, 20021, *l, 20021 
&Ml, M2, Ml, W2, M2, W2; 

BIND statements are not compatible with manual layout If a particular macro call appears in a 
manual layout statement, don't attempt to bind it If a particular macro call appears in a BIND 
statement, don't attempt to lay it out manually. The program wilt flag any such errors. 



,.1.6 The CHIP statement 165 

7.1.6 The CHIP statement 

Provided a macro is being laid out manually. the CHIP statement can override the default chiptype 
for a terminal macro call by specifying a particular chiptype at the board position which that macro 
will occupy. 

For example, if location X 4 is a call on a terminal macro. the following pair of statements places it 
five rows and two columns beyond the current context and forces it to use chiptype 20023: 

CHIP 20023 - RS C2; 
X4 • RS C2; 

Provided the designer knows which macro calts result from a nonterminal macro. the CHIP 
statement can specify chiptypes for them as well. If location XS is a call on a nonterminal macro 
which expands so as to place terminal G 7 at the second column from its starting position, then the 
following pair of statements forces G7 to use chiptype 19711: 

CHIP 19711 • RS C4; 
X6 .. RS C2; 

A single CHIP statement can dictate a number of different positions= 

CHIP X7 • RS C2, R7 Cl, 82 Rl Cl; 

The CHIP statement may precede or follow an assignment statement. 



166 7 The layout program 



167 

8 References 
1. A manual providing complete information on D, the graphics editor, is kept in a file on the SAIL 
computer system at Stanford University. D is one piece of a package of programs called SUDS 
(Stanford University Drawing System), so the manual includes information on other programs (such 
as one for PC board layou~ for example) which don't pertain to SCALD. 

Since the manual hasn't been published, you must either sign on to the SAIL computer system to 
read it, or have someone with access to SAIL print a copy for you. The filename is 
SUDS.RPH[UP,DOCl 

2. These papers describe the philosophy behind SCALD. Because they deal with SCALD I, an 
earlier version, some details may differ from those you've read about here. 

McWilUams, T. and Widdoes, L., SCALD: StT".utured Computer-Aided Logic Design. 

Lawrence Livermore Laboratory Report UCRL-80950, March 1978. 

-. The SCALD Ph'jsical De~ign Subsystem. Lawrence Livermore Laboratory Report 
UCRL-80951, March 1978. 



158 8 References 



169 

9 Implementation information 

9.1 Format of the WD P file 

Each WDP file gives the macro expander the equivalent of the information in one drawing 
produced by the graphics editor D-toosely speaking, the definition of a single macro. The file is 
organized by lines. If column 1 is not blank, the line should contain either the keyword "END" or 
the keyword "NUL ". "END" signifies the end of a list of elements, and "NUL" signifies a null text 
string on a line. Blank lines are ignored. The format of the file is as follows: 

MN a me 

Selection 
equation 

PageOf 

FileName 

Section 

The name of the macro being defined; identical with title line 1 in a drawing 

generated by the graphics editor D. 

This is title line 2 in a drawing generated by D. 

Each drawing bears a page number in the form "Page x of y", strictly for 
documentation. The WDP file expresses this as "x/y" 

The name of this file; strictly for documentation. 

Project name; strictly for documentation. 

For each macro called from this drawing, include the following: 

MName Name of the macro being called. 

For each body parameter, include the following pair of lines: 



1,0 

END 

Body parameter 
name 

Body parameter 
value 

9 Implementation information 

The formal parameter name of a body 

parameter, such as "LOC" or -SIZE". This 
corresponds to the name portion of a 
property name/text pair in D. 

The value of the formal oarameter iust 
& ~ 

named. This corresponds to the text 
portion of a property name/text pair in D. 

At the end of the list of body parameter names and values, include: 

END This terminates the list of body parameters. 

For each signal parameter, include the following pair of lines: 

PinName 

Signal 

The formal parameter name for a signal; 
this corresponds to the •pinname" in D 

The actual signal name for that parameter; 
this is the name of the signal connected to 
the pin in question. 

At the end of the list of pinnames and signal names, include: 

END This terminates the list of pinnames 

This terminates the list of cal1ed macros 

This terminates the file 

An example of a WDP file is: 

ADDER 10181 
CSIZE < Sl 
1/1 
ADDER.DAW 
A DOERS 
10181 
LDC 
A 
SIZE 
48 

;CALL MACRO 10181 
;PASS IT LDC PROPERTY WITH VALUE A 

;PASS IT A SIZE PROPERTY WITH VALUE 48 



9.1 Format of the WDP file 

ENO 
A 
A<0:SIZE-1> /P 
B 
B<0:SIZE-1> /P 
F 
F<0:SIZE-1> /P 

ENO 
END 
END 

;PASS PARAMETER "A" THE SIGNAL "A<0:SIZE-1> /P" 

;PASS •••• 

;ENO OF MACRO CALL 
;END OF MACRO DEFINITION 
;ENO OF FILE 

171 



9 Implementation information 



10 Index 
A, evaluation directive, 139. 
Abbreviations, in macro expander, 98. 

Adaptors, in layout program, 153. 
Alt key, 8. 

Alter submode, in graphics editor, 27. 
AND function, in timing verifier, 130. 
AND, logical primitive, 132. 
Assert low, in layout program, 158. 
Assert low, in macro expander, 90. 
Assertion checking, in timing verifier, 146. 
Assertions, in timing verifier, 137. 
Assignment statement, in layout program, 157. 
Automatic layout, 161. 

BCR OSS file, in timing verifier, 143. 

BIND statement, in layout program, 163. 

Binding, in macro expander, 86. 
Bit subscripts, in macro expander, 92. 
Board coordinate, in layout program, 150. 
Body mode, in graphics editor, 17. 
Body parameters, in macro expander, 79. 
Body templates, creating, in graphics editor, 22. 
Body templates, described, 8. 
Boolean constants, in macro expander, 98. 
Case analysis, 128. 
CHANGE function, in timing verifier, 130. 
Change gates, in timing verifier, 132. 
CHANGE state, for signals in timing verifier, 129. 
CHG function, in timing verifier, 1 SO. 
Chip counts, on macro expander listing, 119. 
CHIP statement, in layout program, 165. 

173 



174 

Chips file, described, 74. 
Chips, defining them for timing verifier, 132. 
CHIPS.LAY file, in layout program, 149. 
Chiptype, in layout program, 152. 
Chiptype, overriding default, 165. 

CHPTYP .LAY file, in layout program, 149. 

Circuit period, 129. 

Class name, in macro expander, 89. 
Clear workspace, in graphics editor, IS. 
Clock. period, 12~. 

Clock period. in timing verifier, 142. 
Clock skew, 129. 
Clock skew in timing assertion, 139. 
Clock skew. in timing verifier, 142. 
Clock timing assertion, 1 !9. 
Colonstring, in layout program, 159. 
Column coordinate, in layout progr~ 1 SO. 
Combinational functions, in timing verifier, 130. 

Comment body, in macro expander, 109. 
Comments, in macro expander, 87. 
Common pins, in macro expander, 9S. 
Complementary outputs, in layout program, 158. 
Complementary outputs, in macro expander, 90. 

Concatenating signal names, in macro expander, 87. 
Conditional signal names, in macro expander, 87. 
Constant signals, in macro expander, 98. 

Context, in iayout program, 150. 

Control key, 7. 
CORR text substitution, 140. 

Correlations, in timing verifier, 140. 
Cursor, in graphics editor, 9. 

Cycle time, 129. 
Cycle time, in timing verifier, 142. 

D, description of, i. 
D, guided tour, !1. 
D, use of, 7. 
Dangling points, in graphics editor, 15. 

DA TE statement, in layout program, 1 M. 
Declare list, in macro expander, 94. 
Define list, in macro expander, 98. 

Defining chips for timing verifier, 132. 

Del key, 8. 
DELAY parameter, in timing verifier, 1!2. 

Drawing library, 8. 
Drawings, manipulating in graphics editor, 13. 

10 Index 



10 Index 

Dynamic scope, in macro expander, 94. 

Edit mode, in graphics editor, 22. 

END statement, in 1ayout program, 155. 

Enlargement, graphics editor, 9. 
Error messages, macro expander, 113. 
Errors, in timing verifier, 146. 
Evaluation directive, in timing verifier, 139. 
Expressions, in macro expander, 77. 
Extended commands, graphics editor, 11. 
FALL state, for signals in timing verifier, 129. 

Fiies, formats of, '169. 

FiJes, input and output to timing verifier, 142. 
Flashing letters, in graphics editor, 11. 
Gates, logical primitives, 132. 

GCROSS file, in timing verifier, 143. 
Global signals, in macro expander, 93. 
Graphics editor, description of, 4. 

Graphics editor, guided tour, 31. 
Graphics editor, use of, 7. 
Guided tour, graphics editor, 31. 

Guided tour, macro expander, 121. 

H, evaluation directive, 140. 
H/L list, in layout program, 158. 
Hold time checking, in timing verifier, 146. 
Hold time checking, primitive for, 132. 
I, evaluation directive, 140. 
IC terminal file, definition, 73. 
IF /THEN construct, in macro expander, 87. 

Inclusive OR function, in timing verifier, 130. 
Initializations, in graphics editor, 14. 

Inversion of signals, in layout program, 158. 
Keyboard, Stanford, 7. 
Latch, logical primitive, 132. 

Layout program, description of, 4. 

Layout program, use of, 149. 
LCROSS file, in timing verifier, 143. 

Letters, flashing in graphics editor, l l. 
Library, graphics editor, 8. 
Lines, drawing in graphics editor, 19. 

Listing, from timing verifier, 145. 
Listing, macro expander, 113. 
LOC parameter, in macro expander, 81. 
Location tabets, in layout program, 149. 
Logic simulator, description of, 4. 

Logic states, for signals in timing verifier, 129. 

175 



176 

Logical design system. 4.. 
Logical pri_rnitiv~ 73. 
Logical primitives. used in timing verifier, 132. 
MA CEXP file, 112. 
MA CEXP file, in timing verifier, 142. 
MACLST file, 112. 
M aero expander, description of, 4. 

M aero expander, guided tour, 121. 
Macro expander, how to run the program, 112. 
M aero expander, listing, 113. 

Macro expander, use of, 73. 
Macro, description, in macro expander, 73. 
Macros, graphics editor, 29. 
Macros, text, in macro expander, 98. 
Menu drawings, in macro expander, 75. 
Merge body, in macro expander, 107. 
Meta key, 7. 
MIN PULSE WIDTH, 132. 
Minimum pulse width checking, logical primitive, 132. 
MNAME parameter, in macro expander, 79. 
Modes, graphics editor, 10. 
Module-specific signals, in macro expander, 93. 

Multiplexer, logical primitive, 133. 

Multiplier, in macro expander, 95. 

Mu~, logical primitive, 133. 

Name syntax, in macro expander, 77. 
Negationj in m~n-o expa.'!der, 88. 
NOT body, in macro expander, 106. 
NOT function, in timing verifier, 130. 
OPTION file, in timing verifier, 142. 
OR function, in timing verifier, 130. 
OR, logical primitive, 1!2. 
Pack.ager, description of, 4. 
Paper, moving in graphics editor, 9. 
Parameter list, in macro expander, 94. 
Parameter signals, in macro expander, 9!. 
Parameters, in macro expander, 79. 
Path name, in macro expander, 100. 

Period, cl~ 129. 
Period, dock., in timing verifier, 142. 
Physical design system, 4. 

Pin parameter syntax, in macro expander, 83. 
Pin parameters, in macro expander, 79. 
Pinname, use in macro expander, 83. 
PLACE statement, in layout program, 161. 

10 Index 



10 Index 

Point mode, in graphics editor, 19. 
Position. defined, in layout program, 149. 
Position, syntax for, in layout program, 150. 

Precedence of operators, in macro expander, 77. 
Precision clock timing assertion, 139. 
Precision clock, in timing verifier, 1 ~9. 
Primitive terminal file, definition, 73. 
Primitives, logical, used in timing verifier, 132. 
Propagation delay, in timing verifier, 132. 
Pulse width checking, in timing verifier, 146. 
Reduction, graphics editor, 9. 

Register, logical primitive, 132. 

RISE state, for signals in timing verifier, 129. 
Row coordinate, in layout program, 150. 

S-1 Mark. IIA, 1. 
SCALD I, 1. 
Scope, in macro ex.pander, 93. 

Screen, graphics editor, 32. 
Section coordinate, in layout program, 150. 
Selection equation, in macro expander, 86. 
Set mode, in graphics editor, 21. 
Setup checking, in timing verifier, 146. 
Setup time checking, primitive for, 132. 
Shift key, 7. 
Sign extension body, in macro expander, 108. 

Signal class name, in macro expander, 89. 
Signal constants, in macro expander, 98. 
Signal name syntax, in macro expander, 87. 
Signal names, in macro expander, 77. 
Signal parameter, in macro expander, 93. 

Signal parameters, in macro expander, 79. 
Signal times expression, in macro expander, 95. 
Simple name, in macro expander, 89. 
SIZE parameter, in layout program, 152. 

SIZE parameter, in macro expander, 79. 
SIZE parameter, in path name, 101. 

Skew, 129. 
Skew, in clock timing assertion, 139. 
Skew, in timing verifier, 142. 
Stash body, in macro expander, 106. 

Socket, in layout program, 150. 

Stable signal timing assertion, 139. 
ST ABLE state, for signals in timing verifier, 129. 
Stanford keyboard, 7. 
States, for signals in timing verifier, 129. 

177 



rm 

Storage requirments, timing verifier, 147. 
Synonyms, in macro expander, 102. 
TERM file, 112. 
Terminal file, 112. 
Terminal file, how to construct, 110. 
Terminal file, in macro expander, 73. 
Terminal, description, in macro expander, 73. 
Terminals, on macro expander listing, 114. 
Text substitution macros, in macro expander, 98. 
Text, editing in graphics editor, 27. 

Text/property submode of body mode, in graphics editor, 17. 
TIMES body parameter, in layout program, 152. 
TIMES body parameter, in macro expander, 80. 

TIMES expression, in layout program, 160. 
TIMES parameter, in path name, 101. 

Times signal expression, in macro expander, 95. 
TIMES variable, in macro expander, 80. 
Timing assertion, in macro expander, 90. 

Timing assertions, in timing verifier, 137. 
Timing evaluation directive, in macro expander, 93. 
Timing verifier, description of, 4. 
Timing verifier, how to use, 127. 
Timing verifier, input and output files, 142. 
Timing verifier, theory of operation, 128. 
TIMLST file, in timing verifier, 142. 
Top key, 7. 
Undefined macros, on H~ting, !13. 
Universe drawing, in macro expander, 75. 
UNKNOWN state, for signals in timing verifier, 129. 
Unnamed signals, in macro expander, 102. 
Values, for signals in timing verifier, 129. 
VAR body parameter, in timing verifier, 132. 
VAR parameter, in macro expander, 81. 
Version, in macro expander, 97. 
Versions, in layout program, 158. 
W, evaluation directive, 139. 
WDP file, format of, 169. 

WDPR program, 112. 
Wire delay estimate, in timing verifier, 137. 
Wire delay, in macro expander, 93. 
Wire delay, in timing verifier, 142. 
Wire OR body, in macro expander, 108. 
WIRES file, in timing verifier, 142. 
WITH statement, in layout program, 155. 
X commands, graphics editor, 11. 

10 Index 



10 Index 

X FIRST variable, in macro expander, 79. 
X FIRST variable, seope of, 99. 
X STEP variable, in macro expander, 79. 
X STEP variable, scope of, 99. 
X variable, in macro expander, 80. 
XOR function, in timing verifier, 130. 
XOR, logical primitive, 1!2. 
Z, evaluation directive, 139. 

179 



Notice 

This report was prepared as an account of work sponsored by 
the United States Government. Neither the United States nor 
the United States Department of Energy, nor any of their 
employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, 
completeness or usefulness of any information, apparatus, 
product or process disclosed. or represents that its use would 
not infringe privately-<>wned rights. · , 

Reference to a company or product name does not imply 
approval or recommendation of the product by the University 
of California or the U.S. Department of Energy to the· 
exclusion of others that may be suitable. 


	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180

