
ITHACA INTERSYSTEMS
LINK Z

A LINKING LOADER
REVISION 1.0

Copyright by
© Ithaca Intersystems, Inc.

LINK!Z

A. Linking Loader

@ Copyright 1980 by
Ithaca InterSystems, Inc.

Manual Revision 1

TABLE OF CONTENTS

Introduction 1
Why Link? 2
Worked Example 3

Linker Operation 4
Command Line 5
Librarian ~

Query 7
Auxiliary File 8

Load 10
Loading Space lQ
Loading Buffer 10
Loading Order 11
Offset Load 13
Input Files lA
Linking 15
Load Map 16
Unresolved EXT Symbols 1~
Symbol Table l~
Search 17
Output Files 18
Exit, Go 19

Commanq Summary 20
Linker Modes 20
File Names 20

-Librarian Optio~s 21
toad Options 21

Error Messages 23
Linking under K3 2~

This program is dedicated to and named after a good friend, Link
Hogthrob.

INTRODUCTION

This· manual is concerned with the actual operation of the
linker. The RELOCATION section in the assembler manual discusses
the use of the assembler and linker togethe~ to produce a
program.

You may be read ing this manual because you want to know how to
link and run a program written in Pascal. If this is the case,
you need read only the first few sections of this manual up to
and including the WORKED EXA~PLE.

On the other hand, you may want to add your own assembler
routines to a Pascal program, or you may want to write a
stand-alone assembler program. In that case, you should first
read the entire assembler manual and then read this manual
includ.ing the sections immed iately following.

The examples in thjs manual assume that you .are using the linker
with "the CP/M- oper~ting system.

- 1 - LINK/Z

WHY ,LINK?

<', '-,

"

Linking together and loading a program from relocatable modules
gives 'you the following advantages:

1) You may load the program almost anywhere in memory_

2) You may use a library of pre-assembled subroutines in
your prog ram.

'3) The search option loads onl y the needed modul es from
the library which keeps the program size down.

4) Editing and assembling a small main module and linking
it with a library is quicker than editing and
assembling a single large equivalent program.

Let us look at the steps you go through from the creation of a
Pascal program to its execution.

1) Run the text editor, create a new PAS file on a disk,
and type in your Pascal program.

2) Run the Pascal compiler which translates your Pascal
statements 'into assembler mnemonic statements.

3) Run th~ 'ass~mbler
mn emon i c s ta temen ts
lan'3uage module.

which
into

translates the ·assembler
a relocatable machine

4) Run the linker ·and load the relocatable module you
9 en era ted in the p rev i 0 us s t epa long with the P a sc a 1
subroutine library.

5) Save your new program (if you want to) and run it.

The compiler translates your Pascal statements into assembler
statements which, after assembling and linking, are translated
into machine executable code. This code is capable of loading
and storing variables and of doing a few other general tasks.
The compiler handles the more specialized tasks (multiplying
floating point numbers, reading and writing data files, etc.) by
calling subroutines contained in the library. This is why the
module that you create must be linked with the library to make a
complete executable program.

LINK/Z - 2 -

WORKED EXAMPLE

In this example, assume that you have al ready used the text
editor to create a Pascal file called TESTPROG.PAS. Below is an
example of what your console might look like after the creation
of an executable program.

A>PASCAL TESTPROG
InterSystems Pascal v-3.0 Copyright 1980 by Jeff Moskow

A>ASMBL MAIN,TESTPROG/REL
PASCAL RUN-TIME SUPPORT LIBRARY ASMBLE v-Sb

A>LINK TESTPROG /N:TESTPROG /E
LINK version le
·Load mode
Generate a COM file

A)

The first command, PASCAL TESTPROG, runs the Pascal compiler and
compiles TESTPROG.PAS into TESTPROG.SRC.

The second command., ASMBL MAIN ,TESTPROG/REL,
and assembles MAIN.SRC (the start-up code)
TESTPROG.SRC, into TESTPROG.REL~

runs the assembler
wi th your pr.og ram,

The third command, LINK TESTPROG /N:TESTPROG /E, ~uns the linker
and loads your modul~, TESTPROG.REL, into memory. It then
automatically loads ~he necessary parts of. the library, LIB.REL,
in search mode, writes a COM file, TESTPRtiG.COM,· and returns to
the monitor. You may now run this COM file·by typi~g:

TESTPROG

When you are debugging a program you do not have to generate a
COM file in order to test the program. Instead, you may give the
following linker command:

LINK TESTPROG /G

This loads your module along with the necessary parts of the
library and starts it. When you have completely debugged your
program you may link it again and save it in a COM file.

- 3 - LINK/Z

LINKER OPERATION

The linker may operate in one of two modes: the librarian mode
(to build libraries) or the load- "mode (to load programs).

In the 1 ibrar ian mode, the -1 inker reads in several relocatable
modules and writes them all out together to a single library
file.

In the load mode (the defaul t mode), it reads one or more
relocatable modules, loads them into memory, and links them
together (matches external symbols with entry points) •

LINK!Z - 4 -
I

-COMMAND LINE

A command line tells the linker what to do. ' You can put a
complete set of co~mands on one line or you can put the commands
on many lines. ~or example, you could write:

NAVIGAT,TRIG/G

or you could write:

NAVIGAT
TRIG
/G

Both have the same meaning to the linker •.

The command lines are made of one or more items (file names,
options) which are separated from each other by spaces or commas
or carriage returns. These items are grouped together to forrtl
entries which consist of a file name and/or options. An entry
consists of: everything in the line up to but not including the
next file name. Each option starts with a slash (/). An option
may be followed by a colon (:) and an output file name. A
command line is read and executed from left to right, entry by
entry. Fo'r example, cons ider the following command 1 ine:

, /A 'FILEI FILE2/S:0UTFILE/C FILE3/D

The first entry is just an option, /A. It is executed first ..
The next entry is FILEI with no options. It names an input file
which is read In. The next entry is FILE2/B:OUTFTLE/C. The
input file name is FILE2 which is read in. Two options,
/B:OUTFILE and /C, apply to this entry. The /B option is
followed by a file name, OUTFIL, which is opened for output. The
last entry in the line is FILE3/D. FILE3 is read in. An option;
/D, applies· to this entry.

If you -forget to specify an output file name or if the file
cannot be successfully opened the linker will not let you proceed
wi th an ope rat ion wh ich requi res an output fi Ie. It pr ints an
error message and ignores the remainder of the command line. At
that time you should specify the option and file name again. For
example:

/B:OUTFILE

When the linker has exhausted a command line it prompts you for
another one by printing an asterisk (*).

- 5 - LINK/Z

LIBRARIAN

A 1 ibrary is a collection .. of subroutines which are related in
some way. For example, the Pascal system uses a 1 ibrary which
con ta ins subrout ines to mul tipl y and divide, do floating po int
operations, handle files, etc. This library is called LIB.REL.
You may want to generate your own· libraries. For example,
suppose you write a lot of text processing programs and you
notice that certain subroutines appear in many of the programs
(5 ear c h a b u f fer for a s t ring, p r i n t a s t ring, etc.). Yo u may
put these subroutines into a library and add them to your
programs at link time. This saves a lot of writing, assembling,
and debugg ing.

To make a library you first assemble each subroutine (one at a
time) into a' relocatable (REL) module. Then you run the linker
and type /L:filename as the very first' command (filename is
replaced by the actual name of the library file you wish to
create). For example, you might type:

LINK /L:TRIG

type /L as the fi rst command to tell the It i s i m po r tan t to
linker to enter the
type something el se

lib r a ria n mod e • I f yo u m a k e ami s t a k e and

restart it by typing
file with the Same
before the new output

LINK /L:B:TRIG

the linker enters the load mode. You can
/R (0 n ali neb y its elf) and the n / L • . I f a
name exists on that device 'it is deleted
file is opened. For example:

Now you specify the modules you want to be included in the output
file in the order in which they should appear. You might type:

COT
TAN
SIN
COS
DIV
MULT

or you could specify all the files names on a single line (SO
characters max) •

COT,TAN,SIN,COS,DIV,MULT

As each module is read its internal name (specified by the NAME
command in the assembler) is printed on the console.

LINK/Z - ~ -

If you· make· a" mistake and include- a·: module that you really didn't·
want you can start over by typing IR. This restarts the linkero
You now have to type IL:filename and all of the input file names
again.

QUERY

The librarian ha~ a query option v /0. If you select this option
(for a given file) the linker: asks you if you want to include a
particular module from an existing library in the output file.
It does this by printing OK? after the module name. If you want
to include the module type Y (yes), if you do not want to include
any more modules from this file type Q (quit), if you want to
skip just this one module type any other key_ This is a one
keystroke response. The linker begins including or skipping the
module as soon as you hit a key, so be careful. You can't ~elete
a wrong keypress. The linker is purposely made this way so that
you can place your fingers over two· keys (Y and space, for
example) and quickly zip through a library.

SUPPOS$ that you rewrite the COT module and want to put it in the
library to, replace the existing module" 1'he best place to put
the new module is, at the b8glnning of the library. You might
type:

LIN~ /L:TRIGNEW COT TRIG/Q/E

LINK loads and starts the linkere It puts it intG the librarian
mode 0 :TRIGNEW' generates a ne,r; output file called TRIGNEW.RELc
Notice that its name is different from the old library file,
TRIG_REL~ If it was given the same name the old library file
would be deleted before. it is read in~ After the linking session
i.s complete you can delete the o;ld library and rename TRIGNEW.REL
to TRIGoREL ..

The new COT module is included in the new 1 ibrary. The old
1 ibrary f TRIG. REL, is read in query mode. You select which
modules you want to include.

When you have incl udad everything you want in the 1 ibrary type
IE. This closes the output file· and returns control to the
operating systemo

- 7 - LINK/Z

The console' looksylike this-at th~ end of the previous example:"
" ,', ~. " ' '

A)LINK /L:TRIGNEW COT TRIG/Q/E
LINK version I
Librarian mode
Module name is COT
Module name is COT OK?
Module name is TAN OK? Y
Module name is SIN OK? Y
Modul e name is COS OK? Y
M.odule name is DIV OK? Y
Module name is MULT OK? Y
A>

AUXILIARY INPUT FILE

It is often necessary to replace one or two modules in the middle
of a library file. You can easily do this by opening an
auxiliary file in the middle of a normal library file and adding
the modules from the auxiliary file. You ,then continue
processing the remainder of the normal file.

If you are reading ~ tibrary file in query mode you may respond
to the OK? with A ("auxiliary"). The linker saves the current
normal module, prompts you with an asterisk (*), an'd waits for'
you to type an, input file name. When you give it a file name it
reads that file and prints the name of the first module in the
f i I e f 0110 we d by 0 K? • Yo u may res po n d by t yp i ng Y, Q ,or .a n y
other key. When the linker"has finished processing ihe auxiliary
file it returns to the normal file, prints the name of the module
again (the name to which you responded with A), and continues.
Note: the remainder of the command line is ignored when an
auxiliary file name is given. .

Suppose you have rewritten the SIN module. You might replace it
in the library as follows. First you type:

LINK /L:TRIGNEW TRIG/Q

This is the same command line that you used before •. You tell the
linker to include the COT and TAN modules in the library_ When
it comes to the SIN module you tell it to open an auxiliary file
and include the new SIN module. Then you tell it to skip the old
SIN module and include the remainder of the old library. The
console looks like this at the end of the operation:

LINK/Z - 8 -

A>LINK /L:TRIGNEW TR!G/Q
LINK version 1
Librarian mode
Module name is COT OK? Y
Module name is TAN OK? Y
Module nama is SIN OK? A
*SIN
Aux Module name is SIN OK? Y
Module name is SIN OK?
Module name is COS OK? Y
Module name is DIV OK? Y
Module name is MULT OK? Y
*/E
A)

- 9 - LINK/Z

LOAD

If the first command you give the linker is anything but /L it
enters the load mode. If you make 'a "mistake (load a module you
really didn't want to, for e~ample) yo~ may restart the linker by
typing IR. The linker forgets everything it has loaded and
starts from scratch.

LOADING SPACE

The linker takes up some space in memory (five or six kilobytes,
depending upon the version). It generates two symbol tables; one
for entry points and one for unresolved external symbols. Each
symbol takes' up eight bytes. Suppose that your system has twenty
kilobytes of user space and that you want to load a program with
125 symbols. The linker (~K) and the symbol table (lK) take up
about seven kilobytes of memory. You have thirteen kilobytes
left for your program. You may load anywhere in that space from
location zero on up.

LOADING BUFFER

The linker does not load code directly into memory but instead
puts it in a 'load ing buffer. After all the code for a prog ram
has been loaded the I inke r moves the code down to its actua 1
execution location (where you want it). This means that you may
load code anywhere you want, even at location zero. It will not
interfere with the operating system because the code that you
load does not actually appear in low memory until after the
I inker has completed its task. The code to execute the move
consists of a block move instruction (tDIR, two bytes) and a jump
to the beginning of the program or a return to the operating
system (three bytes). This code is placed at location 80H (the
co mm a nd I i. neb u f fer) • I n a C pi M e nv i r 0 nm e nt, COM f i 1 e s (the
usual type of file containing an executable program) must start
at IOOH; the linker automatically puts eight bytes of code there
to initialize the stack pointer and jump to the beginning of the
program. (The stack pointer is initialized to the top of the TPA
- the transient program area.) You are free, then, to store code
from 0 to 7FH, from 8SH to FFH, and from IOSH to the top of the
TPA - assuming, of course, that the quanti ty of code you load
leaves room for the operation of the linker.

LINK/Z - 10 -

LOADING 'ORDER

If no forced loading is specified all relocatable code is loaded
startirig at location 108H as follows:

1) All common sections from the first module are loaded
first.

2) The program section from the first module is loaded
next.

3) The data section from the first module is lo~ded.

4) Common sections from the second module that have not
yet been defined (whose names are different~from those
in the previous modules) are loaded.

5) The program section from the second module is loaded.
6) The data section from the second module is loaded.

7) Etc. for the remaining modules.

You may force all 0 f the sect ions (/A),' the common sect ions (/e) ,
the data sections (/0), or the program sections (/P) to be loaded
starting at a particular location. These options must always be
followed by a colon and a hex address. For example: .

IA: 1,234

forces the mqdules to be loaded, in the order given abo~le,
startlng at location 1234H.

The /C, ID, and Ip options break up the loading order. For
example:

/C:4000

forces all common sections to be loaded starting at location
4000H. Since the data and program section locations have not
been forced they are loaded in their normal order starting at the
default location (lOSH); PROGl, DATAl, PROG2, DAT~2, etc.

A program which is to be burned into a PROM may be loaded as
follows: Suppose the PROM is to·be a~ location IOOOH and the data
space is to be in RAM at location zero •.

/ P : 10 DO/D·: 0

'Any or all of these options may be used together (if you are
careful). When the linker loads code it checks to make sure that
the code fits in the available space (that is, it doesn't
overwrite the linker, tables, or operating system). However, it.

- 11 - LINK/Z

does not keep track of what has been written in the available
space (where your program is). You must carefully examine the
load map to make sure that one section has not overwritten
another section. If you discover that something has been
overwritten you can start over (with /R) and allow more room ,to
prevent the overwrite.

t:..INK/Z - 12 -

0FFSET LOAD

Sometimes it is necessary to load code outside of the normal
linker loading space (for instance, when patching or building an
operating system). The offset load mode lets you do this. You
enter the offset load mode by typing /O:XXXX (letter oh) as the
first command to the linker (or as the first command following a
/R). XXXX is the lowest address into which you want to load
code. For example, if you want to load a routine at Eoaa you
would type:

/O:EOOO

Several things happen differently in the offset load mode:

1) The start-up
po inter, j urnp
generated.

code
to

at location
beg inn i ng 0 f

lOOH (load stack
prog ram) is not

2) Th e s 1 i d e- down cod e (L D I R , j urn p to s tar t) i s not
generated and the code in the buffer is not moved down
(or up) to its ex ecut ion locat ion.

3) You cannot generate a true COM file, only a HEX file e

(If you use the /N option, the linker will display the
message "Generate a nan-standard object code file",
and ~ill generate an output file designed specifically
for use with - the pascal/Z overlaying ·compiler. The
format of this file is as follows: the fi~st two bytes
give the addre ss at wh ich the code is suppo sed to be
executed. Th isis followed by 12~ null s. Then the
act ual code beg ins. For the code to be executed, the
address and the 126 nulls must be stripped off, and
the code must be moved to the specified address. The
ex tension COM wi 11 not be added to the output f il e
name -- it is left with no extension.)

4) You cannot sta rt the prog ram wi th a /G command. You
may only exit with IE.

You use the offset load mode to load code into the buffer and
then store it in a HEX file. You can later load the HEX file and
execute the program.

You may use the /A, Ie, /D, and Ip options to force the loading
address of any section of code as long as the forced address is
at or above the address given in the 10 command. The amount o.f
loading space is the same as in the normal mode except that now
the available locations start at the address given in the /0
command instead of starting at location zero.

- 13 - LINK/Z

INPUT FILES

An input file may be preceded by a device specification and may
be followed by one or more options. The extension is always
forced to REL. The file ~is loaded as soon as its name is
encountered "in the command line. . Any options immediately
following a file name apply to that file.

LINK/Z - 14 -

L!NKING

The linker does several operations when it loads a module:

1) I f /V (II ve r bo se") has bee n s p e c i f i ed i t P r in t s the
module name.

2) Entry points (if any) are added to the entry point
symbol table.

3) The sizes of the common, program, and data sections
are defined. If /v has been specified the sizes and
section addresses are printed.

4) Th e cod e i s loa d ed •

5) External symbols (if any) are added to the external
symbol table.

Ex ternal symbol s a re resolved (if possi bl e) and
removed from the external symbol table.

External symbols are resolved as follows: The 1 inker takes a
symbol, from the external symbol table and tries to find a match
for it in the entry symbol table. If it finds a match it sets
all of th~ corresponding external references to the address value
found 1-n the entry' symbol table and removes the external symbol
from ··the table. If it cannot find a match it skips the symbol
and. goes on to the next one.

Note that some 'space is taken up by unresolved symbols but when
all the modules in a program are loaded and all external symbols
are resolved the external symbol table is empty and the space it
occupied is reclaimed •.

- 15 - LINK/Z

LOAD MAP

The /M option prints a load map, that is, a list of entry points
(to date) with their absolute addresses followed by a list of
unresolved external symbols (marked with asterisks). The map
tells you which entry points have been loaded (and where) and
which have not. The map is normally printed on the console.
However, if you follow the /M wi th a colon and a file name' the
map is stored in a file with that file name. The extension is
set to MAP~ For example, the following command line generates a
file called TRIG.MAP on drive B:

/M:B:TRIG
Note that if generating a load map when linking a program with a
collection of library subroutines, the library must be specified
in the command line; the defaul t 1 ibrary wi 11 not be 1 inked in
automatically.

UNRESOLVED EXT SYMBOLS

The /U option prints a list of the unresolved external symbols.
Each symbol is preceded by an asterisk {*) to mark it as
unresolved. Like the' /M option, the /U option n'Jrmally prints
the lis.t on the console but it may also take a file name and

.generate a file with the extension MAP.

SYMBOL TABLE

The /Y option sets up a request to generate a symbol table. The
table is generated when a /G or IE command is given, that is,
when everything has been loaded. The symbol table is in the same
format as the load map. Li ke the 1M option, the /Y option
normally prints the symbol table on the console but it may also
take a file name and generate a file with the extension 8YM.

INK!Z - 1~ -

.SEARCH

Library files usually contain more modules than are needed by a
program being linked. The search option (/S) tells the linker to
load only the· modules needed to resolve pending external
symbols. For example, you might type:

NAVIGAT TRIG/S

The main program, NAVIGAT.REL, is loaded first. It ha~ probably
generated som~ entries in the external symbol table. The
library, TRIG.REL, is loaded next in search mode. This means
that as each library module is read in its entry symbols a're
compared with external symbols from the table. If a match is
found the module is loaded. If not it is skipped. This
continues until all the modules in a library have been
·processed.

Note that a module in the library which is loaded may add more
external symbols to the table. These symbols will (hopefully) be
resolved by subsequent modules in the library. This is very
useful, especially with Pascal, since you end up with a minimum
run-ti~e package.

- 17 - LINK!Z

OUTPUT FILES.

The linker's primary task in the load mode is to load a program
into memory. After the program is loaded you may save it in
either COM file or in a HEX file. You may request a COM file
with the IN option ("name") or a hex file with the /H option
("l!ex") followed by a colon (:) and the file name. The
extension is forced to COM or HEX. Notice that this is only a
request for an output file. The file is not actually generated
until the linker executes a IE or /G option (see below).
Therefore, you may rename the output file as often as you like
and you may even change its types For example, you might type:

/N:NAVIGAT
IN:B:FLY
IH

Request NAVIGAT.COM.
Change it to FLY~COM on drive B.
Change it to FLY.HEX on drive B.

The linker keeps track of the lowest and highest addresses into
which it has actually loaded code. When it saves a program it
uses the lowest and highest addresses as bounds and saves
everything in between. (A COM file always starts at location
IOOH: and therefore always uses lOOH as the lowest address).. This
means that if your program reserves some space at the very end
with the DS instruction those locations are not saved as part of
the output file (this saves some space).

If the linker is operating °in the offset load mode it cannot
generate a COM file, only a HEX file •

• INK/Z - 18 -

EXIT, GO

After you have finished loading a' program you leave the linker
with either the /E ("exit") or /G (exit and "go") options.- - The ..
1 inke r does several operations when it executes ei ther 0 f the
options:

1) It c he c k s the ext ern a 1 s ym bo 1 tab 1 e • If i t find san y
unresolved external symbols it loads the library file,
usuall y LIB. REL, (on the logged- in d rive) "in search
mode (/5).

2) It checks the external symbol table again. If it
still finds any unresolved external symbols it prints
a list of the external symbols, ignores the remainder
of the command line, and prompts you for a new
command line.

3) It g en era t e saC OM 0 r HE X f i lei f 0 n e has been
requested.

4) It generates a symbol table •

. 5) Its e t sup the b 1 0 c k m 0 v e r 0 uti n e (at 10 cat ion 8 0 H) •

6) It sets either the program starting address (for /G)
or zero.' (fo r· IE) in to the. j urnp add re~s in the block
move routine.

7t It prints the lowest, highest, and starting addresses
of the program.

8) It executes the block move routine (which moves the
program down to the location at which it will execute)
and jumps to, either the beginning of the program (/G)
or to the operating system via location zero (IE).

At this time the linker is no longer in memory.
replaced by your program.

It has been

If the linker is operating in the offset load mode it stops after
step 4 and returns to the monitor without moving any code.

- 19 - LINK/Z

COMMAND SUMMARY·

Commands may be given to the linker on the same line in which it
is called:

LINK FILEI FILE2 FILE3

and/or they may be given whi 1 e the 1 inker is operating. The
command line is read and executed from left to right, entry by
entry. An entry is everyth ing in the 1 ine up to but not
including the next file name. Any options following a file name
are part of that entry and are executed with it. For example:

/A FILEB/B/C FILED

The first entry is just the option /A. The second entry is the
name, FILEB,· and its options, /8 and /C. The third entry is just
the file name, FILED, with no options. Note that in this example
At B t and C are arbitrary options.

The linker has two operating modes: the librarian mode and the
! load mode. You may enter the librarian mode by typing

/L:filename as th~ very first command given to the linker. If
you start with anything else you enter the load mode. You may
enter the offset load· mode by typing /0: xxxx as the very first
command given to the linker. xxxx is the lowest add.ress that you
want to load code into •.

A tan y tim e yo u may res tar t the 1 ink e r by t yp i ng / R (n res tar t!') •
Th i scI ear s a 11 i n t ern a 1 tab 1 e san d t e 11 s the 1 ink e r to for get
that it has read, loaded, or writtan any files. It also ignores
the remainder of the command line.

Input file names are not preceded by anything and may be followed
by one or more options. The input file extension is always
fo reed to REL.

Output file' names f,011ow colons (:) in options. The output file
extension is forced to COM, HEX, MAP, 8YM, or REL.

:"INK/Z - 20 -

A file name may ','contain 'a':drive specification.' For example:

, INPUTl/M:A:LISi B:INPUT2/H:OUTPUT

,',

The following options are valid in the librarian mode:

/L:NAME

/Q

/E

Open a I ibrary output file named NAME. REL. Once this
option is given and the file is opened the name is
fixed. It cannot be renamed with this option.

Ask~ module by module, if it is OK to keep each of the
modules in this library file. You may respond with Y
(yes: accept this module), Q (quit: ignore the
remainder of this file), A (open an auxiliary, input
f i Ie), 0 r ' any 0 th e r key' (s kip t his mod u Ie). Th i s
option takes effect while its input file is read.

Close the library file and return to the monitor. This
option takes effect after its input file (if any) is
read.

The following options are valid in the load mode:

/0: XXXX

/s

/V

/A:XXXX

/C:XXXX
/D:XXXX
/P:XXXX

/H:NAME
/N:NAME

Load in the offset mode. XXXX is the lowest address
available for loading.

'Load a file' (pr'o"bahly a file already created by the
I inke r in the libra r ian mode) in sea rch mode. Load
only the modules needed to resolve symbols in the
ex ternal symbo I table. Ski p the rest. Th i 5 option
takes effect while its input file is read.

Print the, name of each module loaded and the
locations and 5i zes of each of its sections. Thi 5

option takes effect before its input file (if any) is
re~d and stays in effect forever.

T~e address setting options takes effect before their
input files (i f any) are read.
Load all sect ions (unl ess 0 the rwi se spec i fi ed)
starting at location XXXX.
Load all common sections starting at location XXXX.
Load all data sections starting at location XXXX.
Load all program sections starting at location xxxx.

Request a hex file called NAME. HEX.
Request a COM file called NAME.COM.

- 21 - LINK/Z

/M : NAME

/U:NAME

/Y:NAME

IE

/G

LINK/Z

. "'. Th~i. map and" '.,11·st·< .opti·ons .take·· effect '·after tl'iei r·r
input files (if any) are read.
Generate a map of all symbols in both symbol tables
and send it to a file called NAME.MAP. If :NAME is
missing print· the map on the console.

Generate a' list of unresolved external symbols and
send it to a file called NAME.MAP. If :NAME is
missing pri~t the list on the console.

Generate
command
NAME.SYM.
console.

a symbol table jus~ before a IE or /G
is executed and sent it to a file called

If :NkME is missing print the table on the

Lo ad the 1 i bra r y f i 1 e (us u a 11 y LIB • R E L) , i f
necessary, generate an output file if requested, move

·the program down to its actual execution location
(if not in the offset load mode), and return to the
mo nit 0 r • Th i sop t ion t a k e s e f fee t aft e r its in pu t
file (if any) is read ~
Do the same as IE except start the program instead of
returriing to the monitor. The /G option is not
available in the offset load mode.

- 22 -

E'RROR MESSAGES

Bad address

Bad command character

<name) is a bad EXT chain

Bad fi 1 e name

Ba din pu t 'f i 1 e

Bad option

Can't find <name)

Can't open output file

Code below lowest address

/A /C, /0, /0, or /p is not .. ' ,- ,
followed by a colon. The remainder
of the command line is ignored.

There is an extraneous character in
the command line, probably a
punctuation character. The
remainder of the command' 1 ine is
ignored.

An address link in an external
symbol chain points to a location
outside of the available program
area. The relocatable input file
may .be bad or some code may have
overwritten part of the ,chain.
This is a fatal error.

There is something wrong in the
file n~me specification. The
rema inder of the command 1 ine is
igno red.

The input file does not make sense
as a REL file. A read error may
have occured or the file may not
actuall y contain relocatable code.
The rema i nde r 0 f the command 1 ine
is ignored.

An option was spe'cified which is
not valid in theocurrent mode. The
remainder of the command line is
igno red.

The specified input file does not
exist on the specified device. The
remainder of the command line is
igno red.

The specified output file cannot be
open on the specified device. The
device may be full or not
operating. The remainder of the
command line is ignored.

You have attempted to load code
below the lowest available address
{usually in the offset load mode}.

- 23 - LINK/Z

Code overwrites tables

Entry point symbol ,redefined

Error writing file

Name too long

No COM file in off~et mode

No GO in offset mode

No output file

~INK/Z

Thi~ is·a fatal error.:

. There is not enough memory to hold
the linker, its symbol tables, and
your program. You 16se. This is a
fatal error.

The linker tried to load a module
containing an entry point symbol
identical to one already in the
en try po i n t tab 1 e • I t rna y be
trying to load the same module
twice.

A write error occurred while
writing an output file. It may not
be valid. You may have to write it
again. The remainder of the
command,line is ignored.

There are too many ,characters in
the file name. The remainder of
the command line is ignored.

Yo u canno t generate a COM f i 1 e in
the offset load mode because the
load image in the buffer is not the
s'ame as a COM f il e memory image.
You can generate a HEX file
instead.

You cannot execute a /G command .. in
the o,ffset load mode because the
load image in the buffer is not
moved down (or up) after everything
has been loaded. You can only
generate a HEX file and load it
later.

You attempted to read an input file
in the 1 ibrar i an mode wi thout
opening an output file. The
remainder of the command line is
ignored. Open it now with the
/L:filename option.

You attempted to exit the linker in
the load mode wi th an output file
request pending but no output file
name. The remainder of the command
line is ignored. Specify the
output file now with the

- 24 -

Second common larger

Starting address redefined

Too many commons

Undefined common

Undefined REL entry

You loaded a module which attempted
to define an existing common to. a
larger size. This is 'not allowed.
If a module contains a common
section which has already been
defined (by a previous module) it
may use less than or all of that
common space but not more. This is
a fatal error.

You loaded two modules which both
have sta rt i ng add resses. Yo u ma y
have loaded the same one twice.
Only one starting address may be
specified in a program.

More than 15 commons have been
defined. This is a fata~ error.

A module tried to reference a
common section which has not been
defined. The input file is
defective. It may not actually
contain relocatable ·code.

A module contains a relocation
in s"t r uc t ion wh i c h the 1 ink e r doe s
not understand • Th~ relocat ion
instruction is ignored. The input
file may be defect,ive or it may
contain a feature which this
version of. the linker cannot
handle.

- 25 - LINK/Z

LINKING UNDER THEK3 OPERATING SYSTEM

There are several differences between using a K3 operating system
and usirig~ a CP/M operating- system~·

1)' You must tell the operating system to run the linker
with the command R LINK. You may type a string of
commands on the same line if you wish.

2) A SAY file is created instead of a COM file.

3) A SAY file may be created in the offset load mode.

4) The K3 operating system is able to start a program no
matter where it is located in memory.. It also has a
sufficient stack spa~e for most programs. Therefore,
no code is automatically generated at location 100H to
set the stack and jump to the start of the program.
You may load code into location IOOH if you wi$h.

5) The default loading address is 70H.

~) The code that moves the program from the offset buffer
to its. final execution address (LOIR, JMP start) is
stored at location 3.

·A-command to link-a test program from- -DKO:, print a load map on
the line printer; and -save the program in a SAV file on DK2: is
as follows:

.R LINK TSTPRG/M:LP:/N:DK2:TEST/E

LINK/Z - 2~ -

