
UNIXt 4.3BSD SOURCE RELEASE NOTE 

For Source Licensees 

Release 5.0 

490277 Rev. A 

About this Release Note 

This Release Note describes the current source release from Integrated Solutions. This Note accompanies 
the general Release Note that describes binary releases. Refer to the general Release 5.0 Release Note for 
information on release contents and installation procedures. When you are finished with this Note, please 
insert it in the back of your UNIX 4.3BSD System Administrator Guide (SMM: 1) tt for future reference. 

This Note contains the following subsections: 

1.1 Format of the Source Release Tape 

1.2 Installation of the Source Release Tape 

1.3 The Kernel Debugger 

1.1 Format of the Source Release Tape 

The source release tape contains two tape files, as shown in Table 1-1: the /usr/src file system and the X 
window system, a public-domain package for graphics workstations. Graphics customers receive both 
graphic files and the X window system. Non-graphics customers receive only the X window system. 

NOTE 

The source release tape includes some files related to the Network File System (NFS ttt). 
The files on the source release tape do not allow you to use NFS without additional 
software under separate license from lSI. 

NOTE 

The source release tape does not include lSI graphics source files, other than the public
domain X sources. lSI graphics sources are on a separate tape. Use the following 
procedure to install the graphics source release tape. 

t UNIX is a registered trademark of AT&T in the USA and other countries. 4.3BSD was developed by the Regents of the 
, University of California (Berkeley), Electrical Engineering and Computer Sciences Departments. 

tt References of the form CXXX:N) refer to a section of the seven-volume UNIX 4.3BSD Reference SeL SMM:l, for example, 
refers to the first section of the UNIX System Manager's Manual (SMM). 

ttt NFS (the Sun Network File System) is a product created and developed by Sun Microsystems, Inc. NFS is a separate product 
option. 

1 



Integrated Solutions 

Table 1-1. Format of the UNIX Source 5.0 Release Tape 

File Contents Description 

0 src tar (1) of lusrlsrc file system 
1 X tar (1) of X window system sources 

1.2 Installation of the Source Release Tape 

Use this procedure to install the new source release from the source release tape. 

1. Load the source release tape and rewind it with the command 

mt rewind 

2. Enter these commands: 

cd I 
tar xp 

The tar files on the source release tape are created relative to the root (j) directory. These commands 
will extract the lusrlsrc files and install them on your system. 

3. If you want to extract the X window system sources, load the source tape and enter these commands: 

cd I 
mt rew 
mt fsf 1 
tar xp 

These commands extract the lusrl srcl graphicslX files and install them on your system. 

4. Kernel sources reside in the directory lusrlsrc/sys. The binary distribution includes kernel 
configuration files in lusrlsys. The lusrlsys directory is redundant after you have installed sources. 

If you have edited or added any files in lusrlsys, move them now to lusrlsrc/sys. Remove the 
directory lusrlsys and, in its place, make a link to the lusrlsrc/sys directory. Use these commands: 

rm -r lusrlsys 
In .. s lusrlsrelsys lusrlsys 

This completes the installation procedure. 

2 



Integrated Solutions 

1.3 The Kernel Debugger 

The kernel debugger is a kernel-resident machine-level debugger. This is a special lSI debugger, with 
syntax unlike other UNIX debuggers. 

The kernel debugger runs from the system console. When the kernel debugger runs, it turns off all 
interrupts; therefore, there should be no other system activity during debugging. 

The DEBUGGER option in the kernel configuration file enables the kernel debugger. To enter the 
debugger, type ""_tt (CTRL-.J; hold down the ClRL key and type an underscore. You should now see 
the debugger prompt (d:) and you can issue debugger commands. To exit the debugger, type "Gtt or 
another "" tt. 

The debugger, when enabled, will come up automatically after panics. The system will reboot after you 
exit the debugger. 

The con fig (8) program causes a command ksymbol (8) to be invoked when making a kernel. ksymbol 
configures the kernel's internal symbol tables to allow symbolic address interpretation during debugger 
sessions. Any address that begins with an alphabetic character will be interpreted as a symbolic address. 
The address "A2", for example, should therefore be expressed as "0A2" to force numerical 
interpretation. 

In addition, the debugger has a limited capability for expression evaluation. Note that precedence is right 
to left in the evaluation. 

The debugger will catch invalid kernel accesses. However, the kernel may panic if you write into text and 
data space incorrectly. 

Table 1-3 shows the commands for the kernel debugger. 

Table 1-2. Kernel Debugger Commands 

Command What It Does 

I address Insert Breakpoint 
Insert a breakpoint in the kernel text space. The debugger supports up 
to 16 breakpoints. 

K address Delete Breakpoint 
Delete a breakpoint. "K *tt deletes all breakpoints. 

? Display Breakpoints. 
Show all existing breakpoints. 

A address Disassemble. 
Display the contents of address interpreted as 68010/68020 
instructions. 

! Continue to Disassemble. 
Same as A, moving to the next memory address. Successive "!" 
commands will move through memory. 

D address Dump Memory. 
Display 256 bytes of memory at address, both in hex and as ASCn 
characters. 

(continued on next page) 

3 



Command 

E address 

Waddress 

F format 

Integrated Solutions 

Table 1-3. Kernel Debugger Commands (continued) 

What It Does 

Examine/Change Memory. 
Examine memory according to the display format (F), and allow 
change if desired. 

Write Memory. 
Write into memory, without examining first. 

Set Display Format 
Set the default display format to one of the following: 

F B Byte format 

F W Word format 

F L Long format 
G address Go. 

Continue execution at address. 

R[modijier] value Display/Set Register(s). 

S 
<ESC> 
B 

Show the contents of the registers. These are the available modifiers: 

R displays register contents. 

RP loads value into the pc register. 

RS loads value into the status register. 

RDn loads value into data register n (0-7). 

RAn loads value into address register n (0-7). 

value can be any of the following: 

• a hexadecimal number 

• @address-the contents of the given address 

• R[A,D]n-the contents of the given register 

Examples: 

RP lC+2 loads the number value IE into the pc register. 

RS @OD2 loads the contents of memory address D2 into the status 
register. 

RD2 RA4 loads the contents of address register 4 into data register 
2. 

Single Step. 
Displays JDemory addresses consecutively. 

Reboot. 
Reboots the system from within the debugger. 

4 


