
UNIX System Manager Manual (SMM)

Addendum

Integrated Solutions
1140 Ringwood Court
San Jose, CA 95131

(408) 943-1902

UNIX is a registered trademark of AT&T in the USA and other countries.

4.2BSD and 4.3BSD were developed by the Regents of the University of California (Berkeley), Electrical

Engineering and Computer Sciences Departments.

490198 Rev. A

December 1987

Copyright 1987 by Integrated Solutions. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by any means (e.g., electronic,

mechanical, photocopying, recording) without the prior written permission of Integrated Solutions.

The information in this publication is subject to change without notice.

PREFACE

This document consists of training modules for the following commonly used system administration tasks:

• Automating System Processes

• Adding a User

• System Startup and Shutdown

• Using the Find Command

If you have not already done so, please take a few minutes to complete the two surveys in the introductory

section.

iii

Automating System Processes

Introduction

In running a UNIX computer system, one frequently
encounters tasks that need to be accomplished after some
delay and possibly repeated on a regular basis. These include
resource intensive jobs, backups, cleaning up directories, send
ing reminder letters, polling UUCP connections, etc. The at
and cron mechanisms of UNIX enable you to schedule such
tasks. The at command can be used to submit a job to be exe
cuted at a later time, while regularly scheduled events can be
auto.mated with the cron utility.

Prerequisites

Before beginning this module you should be able to edit a file
with vi.

Copyright 1987 Lumix

Automating System Processes

Objective

After completing this module, you will be able to:

• use the at facility to execute commands after a specified
delay; and

• use the cron facility to automate commands.

Procedures

Objective A
Using the at Mechanism to Send Phantom Mail

After all your hard work you are about to go on a well-earned
vacation. The thought of being a whole week away from your
work and your colleagues is of course a cause of concern to
you: will they miss you? Will they remember you with the
fondness you deserve? Well, fear not, you can send them a
reminder of your existence while you are away, and let them
figure it out.

You can do this by using the at utility.

Al First create a file called, for instance, phantom:

vi phantom

In it enter the message you would like your colleagues to
receive while you are counting grains of sand on the beaches of
Waikiki - just try not to overdo it; you do have to survive
their greetings when you come back. Save the file and, from
the command line, enter

Page 2

Copyright 1987 Lumix

Automating System Processes

at time
at> mall everybody< phantom
lcoNTROL-d I

where tim~ is the time at which you want the command to be
executed. This can be, in its simplest form, a two digit
sequence meaning an hour, or a four digit sequence meaning
hour and minutes. It can also be two or four digits followed by
am or pm, to specify time of the day. Note that if am or pm do
not follow the digits, a 24-hour clock is assumed (e.g., 1700 is
equivalent to 5 pm). In addition to this, you can specify a day
of the week (e.g., Fri or Friday) and/ or a month and a date (for
instance Jan 24).

The above does not exhaust all the possibilities. The following
are examples of possible entries:

at 081 Sam Jan 14
at 08:15
at 17:05
at noon Friday
at midnight January 24

Let's go back to our example:

at time
at> mall everybody < phantom
lcoNTROL-d\

We now know what time means. We use the word everybody to
indicate that you can have an alias for the names of all your
colleagues, or you can enter their login names one after the
other.

A2 Another way to set this up would be to modify the phantom file
so that instead of being a simple text file it becomes a script file
that you ask at to execute for you at the time and date
specified. For this, open the phantom file and at the top enter
the following:

Page 3

Copyright 1987 Lurnix

Automating System Processes Page 4

mail everybody << EOF
Here put the text of the message you want to send.
It can occupy as many lines as you want.
EOF

A3 Now make sure that the file is executable; enter

chmod 740 phantom

and call up at to run the file:

at 12:30 Jan 24
at> phantom
lcoNTROL-dl

A4 All files queued up for execution by at are located in
/usr/spool/at during execution.

Objective B
Using Crontab to Ditch Those tmp Files

Let's say you have the nasty habit of creating a lot of tem
porary files while using UNIX. You give these files names
starting with "tmp" but you never get around to deleting them.
Eventually they take up a lot of disk space, and they never get
used again. You can use the cron mechanism to remove all of
your "tmp" files every night while you sleep.

Bl First, create a shell script to perform the task. In this example,
let's call our script cleanup and put it in our home directory. A
script to remove all files whose names start with tmpfrom your
home directory and all of its descendant directories might con
sist only of the following line:

find /work/staff/ours -name "tmp .. " -exec rm -f "{}'' \;

Copyright 1987 Lumix

Automating System Processes Page 5

B2 Call up the file /usr/lib/crontab for editing.

B3 Add the appropriate crontab entry to /usrllib/crontab. The entry
is of the following form:

mah hod dom moy dow command ...

The first five fields are separated (or delimited) by spaces and
each contains an integer specifying a time or times as follows:

• mah -- minutes after hour. The number of minutes past the
hours the task should be performed.

• hod -- hour of day. The hour of the day (in twenty-four hour
format) the task should be performed.

• dom -- day of month. The day of the month (1-31) the task is to
be performed.

• moy -- month of year. The month (1-12) the task is to be per
formed. Note that if an impossible date, such as February 30, is
specified, the task will never be performed.

• dow -- day of week. The day of the week (1-7, with 1 represent-
ing Monday) the task is to be performed.

Any of the above integers may be replaced by a comma
separated list of integers (or an asterisk (*) to represent all pos
sible values). The task will be performed at any time which
matches the listed entries. For example, if the hod field con
tains 3,4,5 and the mah field contains 30,50, and all of the other
fields contain an asterisk{*), the task will be performed every
day at 3:30 AM, 3:50 AM, 4:30 AM, 4:50 AM, 5:30 AM and 5:50
AM.

If we want our task to be performed every day at 3:30 AM, the
entry we should add to /usr/lib/crontab is:

30 3 * * .. /bl n/sh lworklaccountslourslcleanup

Remember that our hypothetical script is called cleanup and
our hypothetical home directory is /work/accounts/ours. Notice

Copyright 1987 Lumix

Automating System Processes

also that we are invoking the Bourne shell (/bin/sh) to run the
script. The reason for this is that the Bourne shell loads faster
than the C shell (/bln/csh), and not because our script requires
it - this particular script would run under either shell. There
may be times when you will need to specify a shell because the
script is written using a specific shell's syntax.

Objective C
Making a Change

Suppose you discover that you are creating these nasty files not
just in your own directories but in public directories

. throughout the system. You want to remove any files owned by
you whose names begin with the letters tmp.

Cl Replace the one line in the file cleanup in your home directory
with the following:

find -user ours -name "tmp*" -exec /bin/rm -f "{}'' \;

C2 Note that we made no changes whatsoever to the crontab file!
This is a major rationale behind using scripts instead of insert
ing commands directly into the crontab file. Now if you
wanted to make an additional change (like only removing tmp
files that are over 24 hours old, to prevent clobbering files that
are in use) you could do so without having to access the cron
tab file.

Objective D
How cron Works

The cron process, unlike many other processes in UNIX, never
exits once it is initiated-it stays in the background and checks
the lusr/liblcrontab file once every minute. It is therefore started
every time the system is started up and killed every time the
system is shut down.

PageE

Copyright 1987 Lurnix

Automating System Processes

If you look at the table of processes running in your system at
any time, by entering the command ps axu, you will see that
cron is not associated with any terminal and is run by root.

The above implies two things:

• Error messages should be dealt with, and

• File- and command-pathnames should be given specifically.

If you look at our examples above you will see that indeed in
all cases we provided full pathnames not only for the files in
question (for instance, /work/accounts/ours) but also for the com
mands themselves (as in /bin/sh). This not only makes the pro
cess execute slightly faster, but does not depend on whether
the command in question is findable through root's path.

What about the error messages? Some utilities have options
that suppress the output of error messages. Such is the case
with rm. The -f option to rm, for instance, prevents rm from
asking the user whether certain file permissions should be
overlooked when removing the file or not, forcing the removal
no matter what the permissions are. This option should
always be used when the rm command is invoked in the cron
tab file. Other utilities do not have such options; in this case,
the error messages that conditions such as non-existent files
would produce are lost. If you want to capture these messages
when they occur, you have to redirect them to a file-they will
not appear on a terminal, since there is no terminal associated
with cron.

Error messages are generally output to standard error, so you
have to redirect standard error-an imaginary entry in
/usr /lib/ crontab doing this would look like:

30 02 * * * /bin/sh command 2> ltmplerrlog

It could also look like this:

30 02 * * * /bin/sh command 2> ltmplerrlog 1 > output_ file

In the first case the command will be executed every day at

Page7

Copyright 1987 Lurnix

Automating System Processes

2:30 in the morning, and the standard error of the command
will be redirected to ltmp/errlog. In the second case, standard
error will be redirected to ltmplerrlog and standard output to a
file called output_ file.

Objective E
Securing the crontab File

The file lusrllib/crontab is owned by root, and the cron program
is also run by root. This means that in order to make sure that
unwanted programs are not run on the system as if root were
running them you have to make sure of a few things.

One is making sure that at all times the file /usr/liblcrontab is not
writable by anyone but the owner (that is, root).

The other is making sure that processes that do not have to be
run by root are run by the owner of the program file. This is
done by preceding the crontab command entry with an su com
mand that will substitute user id from root to the owner of the
program file. For instance, uucp programs can be run as:

time su uucp command

where you would substitute the appropriate entries for time
and command

Failing to seeure the crontab file and the entries in it can result
in extremely serious security breaches. You may even consider
having an entry in /usrllib/crontab that periodically makes sure
that the file's ownership and permissions are set properly, such
as

Page 8

22 * * * * su root /etc/chown root /usr/llb/crontab 2> ldevlconsole
23 * * * * su root /bln/chmod 744 /usr/llb/crontab 2> ldevlconsole

This will make sure, every hour of every day, that the owner-
ship and permissions have not been modified accidentally. It
does not constitute a total defense against unwanted intrusions
on the system.

Copyright 1987 Lumix

Notes

Notes

Adding a User

Introduction

One of the tasks that you will need to perform from time to
time is adding a new user to the system. While adding a user
is not difficult, it does requires some advance planning to be
successful.

Prerequisites

Before beginning this module, you should be able to edit files
using the editor; create and move among UNIX directories.
You should also be able to read, understand, and modify the
access permissions of UNIX files.

Copyright 1987 Lumix

Adding a User Page 2

Objective

After completing this module you will be able to add and
remove users and modify a user's working environment.

Objective A
Preparing to Add a User

Al In this section you will learn the steps needed prior to adding a
user to the UNIX computer. Before we get going, turn to the
end of this module and take out the sheet titled Nw User Infor
mation Sheet. Throughout this section you will be adding
entries to this sheet. While you may not understand what all
the entries on this sheet mean, they will become clear as you
work through the module. This sheet, or one like it of your
own creation, should be used whenever you add a new user.

As a practice exercise, you will add a fictitious user to your
system. Later in the module, you will remove the user so you
won't have any extra personalities running around in the sys
tem.

A2 The /etc/passwd File:

The first file we are going to look at is the passwdfile, located in
the /etc directory. This file contains each user's password,
along with other information that the system needs to set up a
user's working environment. Look at this file using the follow
ing command:

more letclpasswd

Each line is a separate entry consisting of seven different fields,
each field separated by a colon. This is what a typical entry in
the /etclpasswd file would look like:

tut:p6zbNENKMisjl:47:101 :as in the king:/staff/tut:/bin/csh

Copyright 1987 Lurnix

Adding a User Page 3

While this file may look chaotic, each line is consistent in its
pattern. The pattern is as follows:

login:password:uid:gid:miscellaneous:home directory:start up shell

A3 login: The login field is the name given to the person so that the
computer knows who it is talking to. The only two real con
straints in choosing a login name is that it has to be unique, so
no two users have the same login name, and it should also be
written in lower case letters.

On the New User Information Sheet find the line that says
Login name. For our fictitious user we are going to turn to the
world of entertainment, so write down the name daffy in the
space.

Above, we said that one of the constraints for choosing a login
name is that it had to be unique. To make sure there is nobody
named daffy already on the system, enter the following line:

grep daffy letclpasswd

If there is already a daffy on the system just substitute a dif
ferent name for this module. Then try to find him and get his
autograph. (Don't be too persistent, though, or you might
ruffle his feathers.)

A4 password: The password entry is an encrypted copy of the
person's password that only the computer can read. You may
notice that on the New User Info' Sheet the space for password
tells you to leave it blank. When you first enter a new user in
the /etc/passwd file this field should be left blank. Later in the
module you will assign daffy a password using the passwd
command.

AS uid: The initials uid stand for user id. Like the login name the
user's uid must be unique. No two users should have the same
uid.

The easiest way to assign a user a uid number is to find the
largest number in use and add one to it. To find the largest

Copyright 1987 Lumix

Adding a User Page 4

number in this field, enter the following command from the
shell:

awk -F: '{print $3}' letclpasswd I sort -n I tall -1

In this command, the awk command looks at the file /etc/passwd
and separates the third field, uid numbers. These numbers are
piped to the sort command which arranges them in reverse
numerical order and pipes them to the tail command. The tail
command then takes the last number and displays it on the
screen.

To choose a uid number for the new user simply add 1 to the
highest number displayed. For instance, if the output from
this command is

36

the number for the new user should be 37. When you have
arrived at the correct number write it down on the appropriate
line on the New Users Information Sheet.

A6 gid: The initials gid in the fourth field stand for group id. This
is a number that establishes the user's default group when he
or she logs in. Each user must be a member of at least one
group.

To find out which groups are available enter the following
command:

more !etc/group

There are four fields in each entry, each field separated by a
colon. A typical entry should look like the following:

guest::31 :root,bob,carol,ted,alice

The fields are as follows:

name:password:number:members

Copyright 1987 Lumix

Adding a User Page 5

The first field is the group's name. The second field is for the
group password if it is needed. This field should be left blank
in this version of UNIX. The third field is the group ID number
and the last field is a list of members of the group.

The lists in the fourth field do not necessarily contain all the
users in the group. If a user has a certain group as their default
group then his or her name does not have to appear in the list
of members. However, to be a member of a group other than
the default group, each user must have his or her name in the
respective group.

There may be any number of groups in the file. The group
names are purely arbitrary. For our user it doesn't really
matter which group you choose so just pick the one that looks
like other staff users might belong to it. We don't want daffy to
feel left out.

Now look at the third field in whichever group you chose and
write the number in the appropriate space on the New User
Info' Sheet.

A7 miscellaneous: This field is available to enter any miscellane
ous information about the user such as their phone number or
job title or any thing you may find useful. This field can also
be left blank if you choose.

Note: We recommend leaving this field blank. You can then
use the chfn command (described below) to add information to
this field in a standard format.

AB home directory: Each user should have their own home direc
tory when they log in. This field establishes where the user's
home directory will be located. It will also be where the com
puter looks for the user's .login or .profile file depending on
which shell they are assigned. For convenience sake it is usu
ally easiest to establish one directory that contains only user's
home directories.

Copyright 1987 Lurnix

Adding a User Page 6

For now put daffy's home directory in the same directory as
your home directory and write the full path name in the New
Users Info' Sheet. For example, if your home directory is
lusrlyou, write down lusr/daffy.

A9 start up shell: The final column tells the computer which shell
the user will work from when he or she logs in. There are basi
cally two shells available to users of the UNIX system: the
Bourne shell and the C shell. The path names are /bin/sh and
/bln/csh respectively. During this module we will be using the
C shell but either shell may be used.

In the New Users Info' Sheet write the full path name of the C
shell, /bin/csh, or whichever shell you choose.

A10 By now your New User Info' Sheet should look something like
the following:

Login name:_daffy ________________ _

Password: (Leave this blank for a new user)

uid (user id number) 45 --------------
gid (group id number)_32 _____________ _

Miscellaneous:_(blank) _____________ _

Users home directory (full path name)_/usr/daffy ____ _

Start up shell (full path name)_/bin/ csh ________ _

Copyright 1987 Lumix

Adding a User Page 7

Objective B
Actually Adding the User

Bl Now that you have all the information you need to add daffy to
the system, it is time to actually do it. From this point on you
will need to log in as root to make the following changes. Start
by making a copy of the /etclpasswd file so that if you make a
mistake you have a backup ready.

cp letclpasswd /etc/passwd. old

B2 Open the passwd file with vi:

vipw

The vlpw stands for visually edit the password file. This com
mand makes a temporary copy of the password file. and
allows you to edit it. When you are done, the original
letclpasswd file is replaced by the temporary file. The advan
tage of the vlpw command is that it may not be used by two
people at once. If two users edit the same file at the same time,
confusion usually results.

Move to the end of the file and type o to open a new line. Enter
the information from the New Users Sheet using the same
structure as the rest of the file (seven fields, separated by
colons, etc). The line should look something like this:

daffy::32:45::/usr/daffy:/bin/csh

For your entry, the fields for uid, gid and home directory may be
different than the ones here.

Now close the file using :wq.

Copyright 1987 Lumix

Adding a User Page 8

Objective C
Giving daffy a Home

Cl In the home directory section of the New User Info' Sheet you
wrote down the full path name of the user's new home direc
tory. As you know, directories do not spontaneously appear
out of thin air. Using the following command, make a new
home directory using the full pa th name as it appears in the
New User Sheet.

mkdir /usrldaffy

Obviously, you should replace /usrldaffy with whatever home
directory you specified on the New User Sheet.

Now cd to the directory above daffy' s home directory and
enter:

Is -lgd daffy

The output from this command should look something like
this:

drwxrwxrwx 1 root sys july 4 12:34 daffy

From the output you can see that, not only does daffy not own
his home, but he's not even a member of the right group. But
fear not, we will soon set his life in order.

C2 The first thing you will do is change the ownership of the
home directory, and do not worry if the command looks a little
silly. Enter:

chown daffy daffy

This command changed the ownership of the directory daffy
from root to daffy. Enter Is -Id daffy to make sure that it
worked.

C3 The next step is to change the group permissions of the home
directory. Again from the directory above the home directory

Copyright 1987 Lumix

Adding a User Page 9

enter the following command (substitute the name of daffy's
default group for newgroup in the command line):

chgrp newgroup daffy

Enter the command

Is -lgd daffy

to see if the directory permissions have been changed. The
output should look something like this:

drwxrwxrwx 1 daffy newgroup july 4 12:34 daffy

Objective D
Adding the .login File

Dl There is one last thing you must do before daffy is actually a
member of the system. When a user logs on to the system their
.login file is read so that the system can set up the different vari
ables necessary to work. (If you are using the Bourne shell,
you should create a .profile file instead of a .login file. If you are
using some other shell, or if the new user will be using a
graphics workstation, additional files may be required.) There
are several ways to set up a .login file but we'll just discuss two
of them here.

The first strategy is to have a generic .login file that is kept per
manently in the computer so you can copy it whenever you
need to add another user. If you will be adding a number of
users this is probably a good idea.

02 The second strategy is to simply copy your own (not roofs)
.login file to daffy' s home directory. Move into daffy' s home
directory and enter the following line:

cp /usrlyoul.login •

Copyright 1987 Lurnix

Adding a User Page 10

Substitute your home directory for /usr/you.

This command will copy your .login file to daffy' s home direc
tory. To make sure it worked enter the following command:

Is -a

D3 Just two more quick commands and daffy will be an official
member of the team. Now that daffy has a home directory and
a .login file, the only thing left to do is to make sure the file will
work. Open .login using the visual editor and see if there are
any variables that contain the path to your home directory. If
ther~ are change the path so that it is daffy's home directory.

Now write and quit the file using :wq. The only thing left to do
is to change permissions and ownership of the file over to daffy.
Enter the next two commands in the order they appear:

chmod 640 .login

chown daffy .login

Now enter Is -la to see if everything looks correct.

Objective E
Assigning a Password

El So far we have given daffy an entry in the letclpasswd file, a
home directory and a .login file. You are almost done but there
is still one piece of unfinished business. At this point daffy does
not have a password (remember, the password field in the
passwd file was left empty). As a security precaution you
should never have a login without a password, unless you
choose to have a guest account set up this way.

To assign a password for daffy use the following command:

passwd daffy

Copyright 1987 Lu.mix

Adding a User Page 11

You will be prompted to enter the new password two times.
Remember that a password must be at least six letters long and
should contain at least two letters and at least one number.

E2 Now log out of the system and try to log back in as daffy.
Hopefully you remembered the password you just assigned.
Once you have logged in try opening a file and moving around
within the system. If everything went right you should have
no problems.

E3 Log out again, and log in as the super user.

Objective F
Adding more information

Earlier, we mentioned that the chfn command can be used to
add information to the miscellaneous field of the letclpasswd
file. As the super-user, enter the command:

chfn daffy

Fl Enter the information that the system requests, pressing
IRETURNl after each entry.

F2 When you return to the shell, you can confirm the information
by typing:

finger daffy

Any user of the system may now view this information by
entering the same command.

F3 Normally, any user may modify his/her own finger informa
tion with the chfn command. If you wish to prevent this,
change the permissions of the chfn command. Enter:

Copyright 1987 Lumix

Adding a User Page 12

chmod go-rx lusrlucblchfn

F4 To restore users' ability to use the chfn command, enter:

chmod go+rx /usrlucb/chfn

Objective G
Removing a user

Gl Removing a user from your system is not a difficult pro
cedure. It can be as simple as inserting a word such as VOID
in the encrypted password field for that user in letclpasswd.
If the user has created many files that must be saved, you
may need to find all files owned by the user and back them
up before deleting them. ,

Before deleting any files, you should first determine who
else uses the files and change the ownership of the shared
files.

G2 This section introduces the most moderate form of user
removal first, and then discusses additional steps that make
the removal more extreme.

Objective H
Mild Deletion

Hl The first step in removing a user from your system is to
deny the user access to it. The cleanest way to do this is to
edit the user's /etclpasswd entry (using vlpw) and enter the
word VOID in the encrypted password field. This makes it
impossible for any one to login as that user (although that
user's files remain unaffected).

Copyright 1987 Lumb

Adding a User Page 13

H2 Do not leave the password field blank. A blank password
allows anyone to access the system with that login name and
no password.

H3 Do not yet delete the whole letclpasswdentry for that user. If
you do, you will not only deny the user access to the system
but also will affect the files owned by that user. If there is no
login name for a file's owner, it is replaced by a number. If
you delete a few letclpasswd entries you will probably get
confused as to what files belong to what ex-user.

Objective I
Backup and selective deletion

I1 Deleting a user's files should be done with care. In general,
it is a good idea to back up a user's files before deleting
them for two reasons.

• These files may contain information that you may wish to
access at a later time.

• These files may currently be used by other users on your
system.

12 To locate all files owned by the user that are not located
below the user's home directory the following steps should
be observed:

• Find all files belonging to the user, regardless of their
location, with the command:

find/ -user login_name-prlnt

• Back up the files using either tar or cplo.

• Void the user's password (see the section '':Mild deletion"
above).

Copyright 1987 Lurnix

Adding a User Page 1 ~

• Before you delete a user's files you should find out
whether anyone else is using the files. Use mail to ask the
other users on the system if they are using the files before
deleting them. If any one is using the files, change the
ownership and permissions to make sure someone else
can access the files.

Once you have all this information at hand, you can proceed
deleting the files, copying them to other directories or back
ing them up.

Objective J
Permanent Deletion

Normally you would have to go through all of the above
steps (under Mild Deletion) before permanently removing
daffy from the system. However, since daffy is just a practice
creation, we know he only owns two files: his home direc
tory, and his .login file. (If you have created other files for
daffy, remove them now.)

Jl Move into daffy' s home directory and enter the command:

rm .login

J2 Now move up one directory by entering:

Cd ••

J3 Remove daffy' s home directory with the command:

rmdir daffy

J4 Once you have removed all of daffy' s files, you may com
pletely remove him from the system by editing the
letclpasswdfile (using vlpw) and delete daffy's entry.

Copyright 1987 Lumi

Adding a User Page 15

Objective K
Modifying a User's Environment

Kl There are many different things you can do to change your
environment and make it easier to work. One of the easiest
ways to modify your environment is to change your .login
file. (This section assumes you are using the C-Shell.)

K2 Use vi to open your .login in your home directory:

vi .login

Add the following lines to the file substituting your login
name where it says your name-.

set path = (/bin /etc /usr/lib /usr/ucb /usr/bin /usr/local)
setenv MAIL /usrlmaillyour name

Now close the file using :wq. Each of these lines tell the
computer to do a particular thing. The first line tells the
computer to search through the /bin, /etc, lusrllocal, /usr/bin,
etc., directories whenever you type in a command. If you
keep a directory in your home directory that contains pro
grams you would like to use you can put your home direc
tory in the path so you can access the commands no matter
which directory you are located in.

The second line tells mail where to put your unread mail.
Both of these customizations are helpful but not completely
necessary. The next entry will be much more useful in
everyday computing.

K3 One of the most useful ways to change your everyday work
ing environment is to add aliases to your login file. Aliases
allow you to modify the commands you use every day, like
Is and ed. Again open the .login file and append the follow
ing alias lines complete with spaces.

alias lo logout
alias Is "Is -F"

Copyright 1987 Lurnix

Adding a User Page H

The first alias will allow you to simply enter lo whenever
you want to logout.

The second alias will display a slash(/) after every file that
is a directory, and an asterisk (*) after every file that is an
executable file.

K4 But before that works you have to do two things. First, close
the file .login using :wq. Then enter the following line:

source .login

This will force the shell to read your .login file as if you had
just logged in.

Copyright 1987 Lurni

Adding a User Page 17

New User Information Sheet

Login name: ____________________ _

Password: (Leave this blank for a new user)

uid (user id number)
~-----------------

gid (group id number) ________________ _

Miscellaneous
~--------------------

Users home directory (full path name) ___________ _

Start up shell (full path name) _____________ _

Below is the command for finding the highest current uid
number.

awk -F: '{print $3}' letclpasswd I sort -n I tall -1

Copyright 1987 Lurnix

Notes

Notes

System Startup and Shutdown

Introduction

The procedures for starting up and bringing down the UNIX
system are automated and require little administrative inter
vention. Well-informed intervention is necessary, however,
when something unusual occurs during the running of one of
these automated procedures, or when you're changing stan
dard procedures to accommodate particular needs.

This chapter describes how to use the standard startup and
shutdown procedures and introduces concepts for troub
leshooting and modifying these procedures.

Prerequisites

Before beginning this module, you should be able to manipu
late files from the shell, add and remove user accounts, and
create, remove, and move among UNIX directories.

You should also have access to a system that has been assem
bled and configured, and that has a terminal attached to the
console serial port. If you need to find out how to physically
set up your system, please look in the System Installation
Manual provided with your system.

We are also assuming that UNIX is installed on your fixed disk
drive. Usually, systems are shipped with UNIX installed on
the disk drive. If not, you will need to look in the System
Administrator's Guide (provided with your system) to see
how to install UNIX.

Copyright 1987 Lumix

System Startup and Shutdown Page 2

Objective

To be able to bring the system up, gracefully shut the system
down, perform basic trouble shooting on the startup and shut
down procedures, and implement simple modifications to
these procedures.

Procedures

The system console is the terminal plugged into the console
port of your UNIX system. The following procedures assume
that you are using a regular ASCII (non-graphics) terminal as
your system console. If you are using a graphics terminal, you
will be able to follow the procedures, and all of the appropriate
messages will appear on the screen, but they will appear in
"windows" (rectangular boxes) on the screen, and the win
dows will change in size and appearance several times. Do not
let this bother you; the steps for starting up and shutting down
the system are the same for ASCII and graphics terminals.

Objective A
Bringing up UNIX

Once your system is installed, plugged in and ready to go, start
up your system by performing the following steps:

Al Turn on the power to the machine.

A2 Press the IRESETI button, located on the computer front panel, to
run the monitor program. If there are two IRESETI buttons, but
you only have one system on the rack, the buttons should be
numbered. Press the lower-numbered button.

When you press the IRESETI button, the bootstrap program is
loaded from disk into main memory by a short program
located in the startup ROM. The startup ROM is built into the

Copyright 1987 Lurnix

System Startup and Shutdown Page 3

electronic memory of the computer.

A3 Press~ on the console terminal when the prompt(:) appears.
(On most terminals,~ is entered by holding down the shift
key and pressing the 00 key.)

Pressing!@], or simply waiting about thirty seconds, results in
the system performing the following actions:

The UNIX kernel (/vmunlx) is then executed. The kernel starts
several special processes, including the scheduler (sched), and
several "daemons" which take care of managing memory and
the disk drive.

The /etc/re program, which may call other programs, such as
/etc/re.local, or fsck to check the consistency of the file systems.
If there is a problem with a file system, a message something
like this will be displayed:

LINK COUNT DIR 1=6403 OWNER=root MODE=40770
SIZE=512 MTIME=Nov 24 13:28 1987 COUNT 1 SHOULD BE 2
ADJUST?

For more information, see the entry on fsck in your UNIX
Programmer's Manual.

If a message such as the above should appear, give the system
permission to fix the problem. Enter y and presslRETURNI.

If at the end of the fsck run the system informs you that you
should reboot the system, press the IReserl button on the
computer's front panel once more, and restart the procedure.

A4 Soon the system comes up and a login banner appears on the
console's screen and on any terminals physically connected to
your machine, including the console. You are now in multi
user mode. Later, in the discussion of the shutdown command,
we will explain how to move between single-user mode and
multi-user mode.

Copyright 1987 Lurnix

System Startup and Shutdown Page 4

The prompt

login:

will appear on your screen.

AS Enter the appropriate login name, followed by IRETURNl •

A6 The prompt

password:

appears on the screen after you've entered the login name.
Enter your password followed by IRETURNI • You are now
logged on.

Objective B
Configuring multi-user mode with the /etc/ttys file

Bl When UNIX starts in multi-user mode, the lnlt process starts an
/etc/getty (described below) process for each terminal accord
ing to that terminal's entry in the /etc/ttys file. Graphics works
tations are not treated as terminals, so they do not receive an
/etc/getty process. Each line in the file looks like this:

tty## "/etc/getty label" ttytype status

The first word, tty##, is the name of the corresponding terminal
in the ldev (device) directory.

The following quoted string is the command to be executed
when initializing the terminal before logging in a user. The
/etc/getty command initializes the terminal and reads a login
name from the keyboard. The terminal characteristics (e.g.,
communications speed) used by /etc/getty are determined by
the label. For graphics workstations, and other special cases
where /etc/getty is not used, some other command may appear
in this field.

The ttytype is the type of terminal that the system will assume is
connected to the corresponding device.

Copyright 1987 Lumix

System Startup and Shutdown

The status will be on if the terminal is to be used as a login ter
minal. Other keywords may be used in this field also. For
more information on /etc/ttys, check the entry on ttys in section
7 of your UNIX Programmer's Manual.

Note that if you change /etc/ttys while the system is running,
you need to enter the command:

kill -1 1

to signal the lnlt process to reread the file.

Objective C
UNIX system shutdown

When the UNIX system is running,· information is constantly
flowing between the system's memory and the disk drive. If
you were to simply shut off the power to the system while this
was going on, you would probably damage some of the data
on the disk, possibly crippling your system. The shutdown
command provides a way to gracefully and harmlessly shut
down your system.

Cl Login as root.

C2 If you are not in the I directory, type

Cd I

C3 Enter the command:

shutdown +1

C4 This command waits a minute before bringing down the sys
tem. It also sends a warning message to everyone who is
logged in. You can specify the message by including it after
the +1 in the command line; otherwise a default message will
be issued.

Pages

Copyright 1987 Lurnix

System Startup and Shutdown

To specify a different amount of time before shutting down,
you can invoke shutdown with a different argument:

shutdown +2

will cause the program to wait two minutes before effectively
shutting down the system (that is,. bringing it down to single
user mode).

shutdown now

will shut the system down immediately. This is very bad
manners if there are users on the system.

shutdown 16:30

will shut the system down at 4:30 this afternoon. You cannot
specify an absolute time any later than 11:59 on the evening of
the current calendar day.

cs The shutdown command sends periodic messages to users,
warning them that the system is about to be shut down. When
the scheduled time comes, shutdown brings the system to
single-user mode.

In single-user mode, only the console terminal is active. From
the console, you will have access to a shell with super-user
privileges. Also, in single-user mode, only a limited portion of
the system's files will be available. Some administrative func
tions, such as repairing file systems and making backups, are
best performed when the system is in single-user mode.

C6 If you wish to return to multi-user mode, presslcoNTROL·DI (that is,
hold down the lcoNTROLI key and press [Q]) at the shell prompt in
single-user mode.

C7 If you wish to power down the system, you may enter the fol
lowing command in single-user mode:

halt

Now wait for the system to inform you that it is Halted, and

Page6

Copyright 1987 Lumix

System Startup and Shutdown

shut off the power.

cs If you simply want to shut the system down, it is possible to
bypass single-user mode. Enter the -h option to the shutdown
command:

shutdown -h time

When shutdown time arrives, the system will halt and you can
then shut off the power.

Objective D
Other shutdown options

There are two other options to the shutdown command which
you may find useful.

Dl The -r (reboot) option:

shutdown -r time

causes the system to reboot (start multi-user mode) from scratch
when time is reached.

D2 The -k (bluffing) option:

shutdown -k time

causes the system to continue running uninterrupted when
time is reached. The usual messages are still sent out, so this
option is used to make users think the system is going to be
shutdown.

Page 7

Copyright1987Lurnix

System Startup and Shutdown

Conclusion

The health of your UNIX system depends on the orderly start
up and termination of the system's functions. Using the pro
vided utilities and following sound procedures will help
prevent major disasters which could inconvenience you or
your users.

Page8

Copyright 1987 Lumb

Notes

Notes

Using the Find Command

Introduction

Directories are very useful for organizing files. Having many
directories does, however, have one draw back. Separate
directories make it more difficult to find and perform actions
on a set of files that are not located within the same directory.
The find command is designed to reduce this problem by pro
viding a mechanism for finding and performing actions on
files located within or below one or more specified directories.

For example, the command

rm tmp•

will remove all files starting with the letters t mp within the
current directory. If, however, your goal is to remove all files
starting with the letters tmp that are within the current direc
tory or any subdirectories of the current directory (and sub
directories of its subdirectories and ...) you need the following
find command line:

find . -name "tmp•" -exec rm "{}'' \;

find does not have the prettiest syntax, but nonetheless, it's one
of the most useful commands on the UNIX system.

Prerequisites

Before beginning this module you should be able to manage
files from the shell, have a basic understanding of the UNIX
operating system, be able to set file permissions, and under
stand the concepts and concerns of being a superuser.

Copyright1987Lurnix

Using the Find Command Page ~

Objective

Upon completion of this module, you will be able to use the
find command to search for and perform actions on files
located within or below one or more specified directories.

Procedures

Many uses of the find command will work best if you are
logged in as the super user. This is because the find command
can only search directories that are both readable and execut
able by you. For this reason we recommend that the pro
cedures in this module be completed while you are logged in
as the super user. If this is not an option for you, be prepared
to see error messages such as cannot open Directory or some
similar message indicating that you do not have permission to
read or execute the named directory.

Objective A
Finding Files and Printing Their Full Pathnames

Al Finding a file with a known name: To find a file with a known
name located below your current directory enter the com
mand:

find • -name filename -print

replacing filename with the name of some file located below
your current directory (use a file that is not located within the
current directory to prove to yourself that find is not limited to
files within the current directory). This command line
instructs find to search the current directory and all of its sub
directories (and subdirectories of subdirectories and ...) for the
file you specified.

A2 The general form of the find command: In general the find
command is used to search through one or more directories

Copyright 1987 Lumh

Using the Find Command Page 3

specified by a path-list for a-set of files matching one or more
section-criteria and to perform some action on files that match
the selection criterion.

These three functions were specified in the above example as
follows.

• The path-list was • specifying that the current directory and
all of its subdirectories (and subdirectories of its subdirec
tories and ...) should be searched.

• The selection-criterion was -name filename which specified that
any file with the specified name should receive the action.

• The action was -print which specified that the full pathname
of each occurrence of the file(s) matching the selection cri
terion should be printed.

The general form of the command line used to specify these
functions is:

f Ind path-list selection-criteria action

A3 Finding all files owned by a user: To find all files on the sys
tem owned by a particular user you may need to be logged in
as the super user. This is because the find command can only
search directories that are both readable and executable by
you. Become the super user (if you can) and enter the com
mand:

find I -user username -print

replacing username with the login name of some user on your
system. The path list for this example is I specifying that the
root directory and every directory located below the root
directory should be searched. The selection criterion -user
username specifies that all files owned by username should
receive the action. The action -print again specifies that the full
pathname of each occurrence of the file(s) matching the selec
tion criterion should be printed.

Copyright1987Lurnix

Using the Find Command Page 4

A4 Finding all files that have not been accessed within a
specified time: Another useful selection criterion for the find
command can be used to select all files that have or have not
been accessed within a specified number of days. The follow
ing command will identify all files that have not been accessed
in the last 30 days and have the name .login

find I -atlme +30 -name .login -print

Access time is defined as the last time the file was opened for
reading. It is updated when the file is cated, mored, copied,
etc.

The path list for this example is again I specifying that the root
directory and every directory located below the root directory
should be searched.

Two selection criteria: -atlme +30 and -name .login specify that
all files that have not been accessed within the last 30 days and
are named .login should receive the action. The plus sign(+) in
front of the 30 means more than 30. To say "all files that have
not been accessed in 30 days, we are actually saying "all files
that have been accessed in more than 30 days." If you had said -
atlme 30 without the plus sign, the message would have been
"all files that have been accessed in exactly 30 days." If you had
said -atlme -30, the message would have been "all files that
have been accessed in less than 30 days." We will see more use
of the plus and minus sign with numbers in the find command
later. Note that two selection criteria together imply that both
criteria must be met. We will explore the case where one or the
other criteria must be met in a later example.

The action in this example is -print which says to print the
pathnames of files passing the selection criteria.

AS Finding all files that have been modified within a specified
time: Like the access time check, modify time can also be used
as a criterion for find. The following command will identify all
files that have been modified in the last 10 days and have the
name .login

Copyright1987Luntlx

Using the Find Command Page 5

find I -mtlme -10 -name .login -print

Modify time is defined as the last time the file was opened for
writing. It is updated when the file is written (:w) from within
vi, touched, etc.

The path list here is/, meaning that all files in root and below
should be tested with the selection criteria.

The first selection criterion here is -mtlme -10. It means "all
files that have been modified less than ten days ago." The minus
sign (-) is what gives us the less than. If we had left out the
minus sign before the 10, we would have been saying "all files
that have been modified exactly ten days ago," and if we had
had +10 in place of -10, we would have been saying "all files
that have been modified more than ten days ago."

The second criterion, -name .login, says that the file must be
named .login for it to receive the action.

The action in this example (because of the -print) is to print
each pathname passing the criteria.

A6 Finding all files that have been modified more recently than
a specified file: The above command line can be used to gen
erate a list of files that have been modified within a specified
period of time. It is also possible to generate a list of all files
that have been modified more recently then a specified file.
Try the following command:

find I -newer filename -print

In this find command, the path list is /, again specifying that
find should check all names in the root directory (and in all of
root's subdirectories and their subdirectories ...).

The selection criterion in this example is -newer filename. It
means that find should only select names for which the most
recent modification date (stored with each file) is newer than
the modification date for the file, filename.

Copyright 1987 Lurnix

Using the Find Command Page 6

-print specifies the action to be performed in this example for
names that pass the selection criterion. It says to print the
name.

One practical use of this example is to generate a list a files to
be archived onto some backup media. The strategy is to
update some dummy file when you create a backup. The
modification time on this dummy file is then the same as the
last time the system was backed up. The next time you back
up the system, this dummy file will have a modification date
against which all other file modification dates may be com
pared. All files that have been modified since the last backup
(and thus need to be backed up this time) are listed by the find
command in our example.

A7 Identifying the most recent version of a file: Sometimes you
have more than one version of a file, and you want to make
sure you are about to print or modify the most recent one. Try
the following command, substituting the name of one of your
files for filename.

find I -name filename -newer filename -print

The path list here is /, meaning root again.

The selection criteria are twofold: First, the -name filename
criterion is used to specify that a match must have the name,
filename. Only files (or directories) with the name, filename will
be selected. Second, the -newer filename criterion specifies that
a match must be newer than filename. filename here resides in
the current directory unless a full path is given. Note that the
name, filename, is the same for both selection criteria; we're
looking for newer versions with the same name as our current
file.

When two selection criteria are used as above, both must be
satisfied for a name in order for that name to pass the selection
test.

Copyright1987Lurnix

Using the Find Command Page 7

The action again (-print) is to print the names of the files that
pass all of the selection criteria.

If no files are listed by find, then we know that the version of
filename named by the criterion, -newer filename, is the most
recent version of the file with that name. On the other hand, if
path names are printed out by find, those versions of filename
have had more recent modifications than the filename specified
by the -newer filename criterion.

AB Finding all set-user-id files: Another characteristic of files that
find can trace is the permission status. Try typing the follow
ing command to print the names of files with the set-user-id bit
set

find I -perm -4000 -print

The path list in the above command is/. Thus, all files in root
and that are in root's subdirectories, etc. will be considered in
the selection criteria for the command.

The selection criterion for this example is -perm -4000. This
means that only files with their set-user-id bit set shoul<f be
selected. The -perm means we are talking about permissions.
The minus sign in front of the 4000means we are talking about
special flags (of which set-user-id is one) rather than ordinary
file permissions. And, the 4000 itself, refers to the set-user-id
bit in particular.

The action to be performed on each file that matches the selec
tion criteria is just to print the name of the file.

Listing with Is -I one of the file names printed by find (let's say,
/bin/passwd), should produce something like the following line:

-rwsr-xr-x 1 root 20480 Nov 4 1986 /bin/passwd

Notice the sin the position of the permissions field where the
owner's execute permission is usually specified. This is the

Copyright 1987 Lumix

Using the Find Command Page 8

indicator into which find tuned when it selected the name,
letclpasswd.

Note: The set-user-id bit is used primarily for system secu
rity. Instead of inheriting its parent process' user id (the
default case), the program in a file with the set-user-id bit gets
the user id of the file itself.

A9 Finding all set-group-id files: The set-group-id bit is similar to
the set-user-id bit. Try typing:

find I -perm -2000 -print

Here, by specifying a path list consisting of /, you had find
check every file in the paths that start with root.

The selection criterion is -perm -2000, indicating that the file's
set-group-id bit should be set. The -perm means we are look
ing at file permissions, the - before the 2000 means we are look
ing at a special flag in the file permissions, and 2000 refers
directly to the set-group-id bit.

The action is to print the name of each such file, and this was
done.

One of the file names printed was probably /bin/su. Listing the
permissions of this file should show you that the set-group-id
bit is set:

-rwsr-xr-x 1 root 20480 Nov 4 1986 /bin/su

Note: The security applications of the set-group-id bit are the
same as those for the set-user-id bit. Instead of inheriting its
parent process' group id (the default case), the program in a
file with the set-group-id bit set gets the group id of the file
itself.

AlO Finding all large directories (over ten blocks in size): find also
has selection criteria that involve size and that can be open
ended. Try the following find command to print the names of

Copyright 1987 Lum

,,

Using the Find Command Page 9

all directories of over ten blocks:

find I -type d -size + 10 -print

Again, we specified that find should check all names in root
and that are in directories beneath root. We did this by mak
ing root (/) the path list.

Then we gave two selection criteria:

-type d First, the type of the entity encountered by find
must be a directory. (find looks at both file
names and directory names.)

-size +10 Then the directory found must be larger than ten
blocks. The + in the + 10 means more than (more
than ten), and blocks are the default size for
find' s -size num selection criterion.

The action performed here (due to -print) is the printing of the
selected path names.

A11 Finding all large files (over 138 blocks in size): By modifying
the finer options of the previous example, we can restrict find
to look at files instead of directories, and we can increase the
size to say larger than 138 blocks rather than larger than ten
blocks. Try the following find command to print the names of
all files of over 138 blocks:

find I -type f -size + 138 -print

Again, we specified that find should check all names in root
and that are in directories beneath root. We did this by mak
ing root (/) the path list.

Then we gave two selection criteria:

-type t First, the type of the entity encountered by find
must be a file. (find looks at both file names and
directory names. Here, we tell it to select the file
names.)

Copyright1987Lurnix

Using the Find Command Page 10

-size + 138 Then the file found must be larger than 138
blocks. The + in the + 138 means more than (more
than 138), and blocks are the default size for
find 's -size num selection criterion.

The action performed here (because of the -print option) is the
printing of the selected path names.

Objective B
Using Multiple Selection Criteria

Until now, you have used more than one selection criterion in
sequence on a command line to mean that the file should pass
all criteria for the selection to be made. The following exam
ples illustrate a find construct that allows you to specify that
the file should pass either one or another selection criterion in
order to get the action.

Bl Finding all set-user-id and set-group-id files: Two of the
above examples might logically be combined into one find
command. Try the following example:

find I \(-perm -4000 -o -perm -2000 \) -print

In this example, the path list (as usual) is/, so all names in root
(and in subdirectories of root and in subdirectories of those ...)
will be subjected to the selection criteria.

The selection criteria for this example are \(-perm -4000 -
o -2000 \). The parentheses are used here to group-perm with
its two specifications (-4000 and -2000) as one overall criterion.
They also keep the selection criteria grouped separately from
the -print action which follows. The parentheses are preceded
by backslashes so they will be shielded from the shell.
Without the backslashes, the shell would interpret the
parentheses as process grouping characters. The -perm means
that a file permissions specification is to follow. In this case,
there are two permission specifications:

Copyright 1987 Lumb

Using the Find Command Page 11

-4000 to test for set-user-id and -2000 to test for set-group-id.
But rather than stringing the -4000 and -2000 together sequen
tially, a -o for or is inserted between them. Then find matches
any name having either permissions flag set.

The action in this example is still to print the passing file
names (-print).

So in this command, all names in root or below that have the
set-user-id or the set-group-id bit set are printed.

B2 Finding all large files and directories: The-o (for or) facility of
find can be used not only between pieces of a single selection
criterion, but also between complete selection criteria them
selves. Try the following command:

find I \(-type d -size + 1 o -o -type f -size + 138 \) -prl nt

The path list is I so that all names in root and in paths that start
with root are considered.

The selection criteria are -type d and -size + 10 together or
-type f and -size + 138 together. The selection criteria get all
names that are directories and are over ten blocks or that are
files and are over 138 blocks. The and (expressed by juxtaposi
tion) takes precedence over the or (expressed by -o) so there is
no need for new parentheses around the two sides of the or
operator. The parentheses are used to group the selection cri
teria separate from the -print, and the backslashes are again
necessary to shield the parentheses from the shell.

The action is again -print, so all selected files have their names
printed.

Copyright 1987 Lumix

Using the Find Command Page 12

Objective C
Performing Actions on Found Files

So far, we have always specified that our selected names
should be printed. (We used the -print action.) find also pro
vides the capability for other actions to take place on found
files. Often we want to do a lot more than just print the names.

Cl Changing the group membership of a set of files:

One application of find is to change the group membership of a
directory and all of its subdirectories etc. Rather than cding to
all of the subdirectories yourself and typing

chgrp groupname

in each one, you can execute a find command from the highest
level directory that you want affected and have it all done in
one command.

Try the following command to change the groupname of all
the files in and below your current directory.

find . -exec chgrp groupname "{}'' \;

The path list in this command is something new: • (dot) which
means "the current directory." So find considers all files in the
current directory and all of its subdirectories (and all of its sub
directories' subdirectories ...).

The selection criterion is empty. That is, for this example, there
are no selection criteria specified. This is because we wanted
all of the files in the pathlist to be selected for the action. Leav
ing the selection criteria (which is restrictive) unspecified
causes no names to be ruled out, so all are selected.

The action for this example is -exec chgrp groupname"{}" \;
The -exec means that the UNIX command following should be
executed on each selected name. In this case, the said UNIX
command is

chgrp groupname "{}" \;

Copyright 1987 Lumix

Using the Find Command Page 13

There are a few special characters in this command, because it
doesn't look like the typical

chgrp groupname filename

command. Rest assured it accomplishes the same thing,
though.

"{}'' First, the braces ({}) mean that the currently
selected filename should be used. That is, what
ever filename find is considering (after the name
passed through the selection criteria) is subs ti
tuted into the executed command at the position
of these braces. The quotation marks around he
braces are there to keep the shell from trying to
interpret the meaning of the braces. To the shell,
the braces have a separate meaning that would
interfere with flnd's meaning. Note: If you are
wondering why the writers of find had to come
up with the {} construct, you may want to read
the rest of this note. If you think about it, there is
no way to specify what the names of the files will
be ahead of time. At the time the find command
is about to perform its action on a file, a single file
name itself has already been selected according
to the selection criteria. Therefore, something
like the asterisk (•), which gets a substitution of
all names in the current directory (and all at once),
would be ineffective at naming each file at the
right time. Also, filename substitution for the
asterisk takes place at the time of command
issuance, when only the current directory's files are
listed. Therefore, files in subdirectories would be
skipped if you were to use the star in the chgrp
command. Furthermore, it is a fact that in this
example you happen to be selecting all files. This
is often not the case. When you are selecting out
only certain files to have your action performed
upon, the asterisk would surely seem inappropri
ate.

Copyright 1987 Lurnix

\;

Using the Find Command Page 14

Secondly, there is the semicolon. This character
is always required at the end of the command
part of the -exec action. It tells find where the
command ends. The backslash in front of the
semicolon is required to keep it from the shell. If
the shell sees it (when there's no backslash), it
will think it's a command separator.

So, the result of this find command is that for every file and
directory in and under the current directory, the group is
changed to groupname.

C2 Removing tmp files: Users often create temporary files for vari
ous and sundry tests. Almost just as often, the user forgets to
remove the temporary file right after she or he creates it;
maybe she or he needs to keep it around for a while. At some
point, there may be a proliferation of temporary files. A user
who always creates them with the string tmpsomewhere in the
names of the files has a consistency that will aid in periodically
removing all of the files at once.

Try the following find command to remove all tmp files in or
below the current directory. You may want to create some tmp
files before you try the command, so you can verify that it
works.

find . -name "•tmp•" -exec rm "{}'' \;

The path list for this example is • (dot) meaning the current
directory. So all names in the current directory and in its sub
directories (and in the subdirectories of its subdirectories ...)
are subjected to the selection criteria.

The selection criterion is one we've seen before:
-name "•tmp•". The •tmp• refers to any filename that has the
string, tmp, in it. The quotation marks around it are required to
shield the asterisks from the shell. If the shell saw them, it
would try to match all the filenames at once, and furthermore,
they'd only be from the current directory. This find command
is thus looking for any name in or below the current directory

Copyright 1987 Lumi

Using the Find Command Page 15

that has the string, tmp, in it

The action is another -exec. It does an rm of filename, where
filename is the currently selected name from the selection cri
terion. The{} are used in the command line to represent this
current name. Remember that the quotation marks around it
are required to shield it from the shell, and the\; at the end of
the line is used to end the command part of the -exec.

C3 Changing the owner of all files belonging to a particular
user: Should you find it necessary to rearrange the ownership
of certain files on your system, the following command will be
an aid.

find path -user olduid -exec chown username "{}" \;

In this find command, path is the path list, so all of the files in
path or in paths beginning with path are subjected to the selec
tion criterion.

The selection criterion here is -user olduid It means that the
name should be checked to see if its user id (or owner) is olduid,
where olduidis a user id number. All names that have the user
id, olduid, are selected for the action.

The action in this case is -exec chown username "{}" \;. It
executes the chown command to change the ownership of the
selected file to username. Again, the quotation marks are
necessary to shield the braces from the shell, and the semicolon
ends the command part of the -exec. The semicolon is escaped
with a backslash so that it, too, will not be interpreted by the
shell.

This command changes the ownership of every file and direc
tory previously owned by olduid in or below root to username.

C4 Searching for a pattern in all files below a specified direc
tory: When writing programs or manuscripts, the need often
arises for a way to search all files in and below a certain direc
tory for a certain string. A grep command alone will only

Copyright 1987 Lumix

Using the Find Command Page 16

handle the files in one directory, but a find command that does
a -exec grep might get the job done. Try the following com
mand:

find path-list -print -exec grep pattern "{}'' \;

Here, there is no selection criteria to limit what files are
selected, so all files in and below path-list are selected. The
actions are twofold this time. First, the name of the file is
printed due to the-print action. Secondly, the-exec action does
a grep for pattern in the file. The reason for the -print is so that
you will be able to see what files the grep results are referring
to. When given a single file name, the name of the file is not
printed by grep, so we have find 's -print do it for us.

Conclusion

After trying many examples, you can now see the usefulness of
find. The general form of the command line used to specify
find 's functions is:

find path-list selection-criteria action

Its path list can be any list of one or more directories, its selec
tion criteria look at nearly any aspect of a file or a directory,
and its action section can be used to print the selected name or
to execute just about any UNIX command on the file.

Copyright 1987 Lum

Notes

..

Notes

